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Abstract

Studies associated with processes with photons play an essential role at the Large
Hadron Collider (LHC). With their clean signal, they contributed significantly to
the discovery of the Higgs particle. In this thesis, we provide important building
blocks for precision studies of processes including photons. It is expected that in
the decade to come, with the runs of the High Luminosity LHC, experimentalists
will measure some of these processes at percent level precision. Comparisons to
the experiment will require that theoretical predictions include at least next-
to-next-to-leading-order (NNLO) QCD and next-to-leading-order (NLO) elec-
troweak corrections. Some of the critical bottlenecks of NNLO calculations are
double-virtual contributions, which require two-loop scattering amplitudes. Ob-
taining those amplitudes can be challenging given the complex Feynman integrals
that they include and the large intermediate expressions encountered when com-
puting the coefficients of the integrals. We present the computation of double-
virtual corrections to two-photon and three-photon production at the LHC. We
obtained the needed multi-loop amplitudes using the numerical unitarity method
to determine the master integral coefficients and employing functional reconstruc-
tion algorithms. We achieved our result using Caravel, a numerical framework
for the calculation of one- and two-loop helicity amplitudes, which we extended
to include photons and the capability to operate in the physical region of phase
space. Our three-photon production amplitudes are the first publicly available
expressions of any two-loop five-particle amplitude ready for phenomenological
studies. Our results have been used in a phenomenological calculation that has
been compared with measurements by the ATLAS collaboration.
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1. Introduction

We can develop a physical understanding of nature by focusing on either more and
more complex systems or on nature’s fundamental building blocks. Following the
latter approach, it is necessary to explore the elementary constituents of matter
and study how they interact. For this purpose, physicists employed many tools.
These reach from microscopes relying on visible light, to electron microscopy with
smaller wavelengths and, in the end, high-energy particle accelerators.
The particle accelerator with the highest beam energy today is the Large

Hadron Collider (LHC) at CERN. It is a circular collider with a circumference of
26.7 km [1], designed to achieve maximum center-of-mass energy of 14 TeV. Up
to now, experiments at the LHC, most notably the general-purpose experiments
ATLAS and CMS, have accumulated an integrated luminosity of about 160 fb−1

[2]. Before the LHC, the most powerful accelerator was the Tevatron with a
center-of-mass energy of 1.96 TeV [3]. That means that with the invention of the
LHC, experimentalists could study a new energy regime. Today and after two
runs, the LHC could already advance our understanding of particle physics in
multiple ways. The Tevatron had a high enough center-of-mass energy to allow
the top quark to be observed [4, 5] and get a reasonable estimate for its mass.
However, the production rate was not high enough to study other parameters
like its decay width [6]. At the LHC, the top pair production rate is orders of
magnitude higher so that the ATLAS Collaboration could determine its decay
width with a precision that made a quantitative comparison to theory possible
[7]. The most prominent achievement of the LHC was the discovery of the Higgs
particle [8, 9] and the measurement of its production and decay mechanisms.
With Run 2 of the LHC, the experimental uncertainty for many of the measured
cross sections has been reduced significantly [10]. With Run 3 of the LHC coming
next year, the collision center-of-mass energy will be increased once again [11].
ATLAS and CMS upgraded the readout of their inner layers during the current
shutdown to support higher rates. The upgrade will make it possible to keep
the peak luminosity at Run 3 up for a longer time [12], leading to a doubling
of the integrated luminosity during Run 3 compared to Run 2. Thus, statistical
uncertainties will become significantly smaller, leaving us to expect even more
precise results from Run 3.
The Run 3 forecast means that soon experimentalists can test the Standard

Model of particle physics with more precise measurements and that phenome-
nologists will be able to spot tiny deviations. For this to happen, theorists have
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Chapter 1. Introduction

to produce precise predictions. To accomplish this task, they expand the cross
sections of the studied events perturbatively in the coupling constant of the un-
derlying theory. Currently, next-to-leading-order (NLO) electroweak corrections
and next-to-next-to-leading-order (NNLO) QCD corrections are phenomenologi-
cally relevant. However, phenomenologists often can use theoretical predictions
which are still at NLO in the strong coupling constant only; see for example
references [13, 14]. Thus, currently, the challenge for the theorists is to compute
NNLO QCD corrections for processes with two or three particles in the final state.
The main building blocks needed to compute cross sections are scattering am-

plitudes. Higher orders in the coupling constant can come through additional
real particles in the final state or additional virtual intermediate particles. The
presence of these particles increases the number of interactions, therefore raising
the power of coupling constants.
Corrections stemming from real particles in the final state lead to additional

scales, so to more phase space integration variables. Phenomenologists perform
these high-dimensional integrations numerically using Monte Carlo techniques.
They take special precautions when particles become unresolved, either by being
soft or collinear to other particles, which leads to singular integrals. They use dif-
ferent methods to deal with this type of problem, like subtraction, like references
[15–18], and slicing, e.g., reference [19].
If the corrections come from virtual particles, which is our focus of study here,

there are different obstacles to overcome. To achieve sufficiently precise results,
we must efficiently integrate over the internal momenta. To this end, we reduce
the involved integrals to a suitable basis. This can be done using Passarino–
Veltman reduction [20] for NLO calculations or integration-by-parts techniques
[21] for NLO or NNLO calculations. After that, we must evaluate the basis
integrals, which are called master integrals. In simple cases, this can be done
using Feynman parameters or Mellin–Barnes techniques [22], whereas for higher-
order corrections with multiple scales the method of differential equations [23]
often proves to be more successful. See also reference [24] for a review.
Using integration-by-parts techniques to find a set of master integrals and the

method of differential equations to compute these made it possible to find master
integrals suitable for all two-to-three processes with massless particles [25]. To
further simplify the evaluation, the team of reference [25] presented the master
integrals in terms of a smaller set of transcendental functions, which are called
pentagon functions.
Once master integrals for the virtual corrections to the process are known, the

coefficients of these integrals still have to be determined to arrive at the final
result. We could achieve this using a Feynman diagram approach, considering all
diagrams contributing to the correction and matching the integral coefficients.
For higher-order QCD calculations, new methods have been developed in the

last years, particularly numerical unitarity [26–29]. It made it possible to de-
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Chapter 1. Introduction

termine the analytic form of the planar two-loop five-parton amplitudes [30].
Numerical unitarity allows the calculation of master integral coefficients from
on-shell gauge-invariant tree-level diagrams, thus reducing computational effort
compared to pure Feynman diagrammatic methods.
This technique, applied to NNLO QCD, became publicly available in the Car-

avel framework [31]. Initially, the team of reference [31] set up Caravel to
handle color-ordered diagrams in QCD. Because of the achieved results, this ap-
proach looks promising and is currently being applied to various processes. One
of the key technical results of this work was to extend the Caravel library to
include photons as external states involving upgrades to handle their unordered
diagrams effectively.
Processes involving photons are interesting in multiple ways. Photons have

a relatively clean signature in particle detectors. Moreover, a key decay of the
currently actively studied Higgs particle is into two photons. The calculation of
NNLO QCD corrections to three-photon production at the LHC [32] is of particu-
lar interest. It plays an important role in QCD phenomenology yielding the first
precision phenomenology study for a three-particle final state process. Three-
photon production is further relevant for determining anomalous gauge couplings
as present in theories beyond the Standard Model [33, 34]. The ATLAS collabo-
ration analyzed the process with Run 1 data [35]. Already here, the theoretical
prediction superseded the experimental uncertainty. The effect will be even more
significant for a future analysis using the Run 2 data.
In this work, we present the two-loop scattering amplitudes for the process

qq̄ → γγγ and assemble the so-called hard functions required for NNLO QCD
phenomenology. Our results can directly be evaluated using a new pentagon
functions library [36], which is significantly faster than the previous version [25].
Using Caravel, we obtained numerical finite field values for the coefficients of
the master integrals and the coefficients of the pentagon functions. From these,
we got analytic expressions for the coefficients with functional reconstruction
methods. Because there are no colored particles in the final state, the ampli-
tudes can be used in existing subtraction algorithms. This has been done in the
phenomenological study of reference [37]. The latter results were compared to
the calculation of reference [32], finding agreement in differential and total cross
sections at the 1 percent level. Furthermore, recently our scattering amplitudes
have been reproduced by the independent study of reference [38].
This thesis is organized as follows. In chapter 2, we give a summary of stan-

dard procedures for computing physical observables in the context of QFT. In
particular, we explain scattering cross sections from an experimental and theo-
retical point of view. Following this, we state how to quantize expressions in the
context of particle physics. In the end, we discuss how to renormalize a theory to
deal with occurring singularities. In chapter 3, we define the techniques we use
for the calculation of QCD helicity amplitudes. That is, we explain how to treat
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Chapter 1. Introduction

regularized amplitudes with quarks and introduce their color decomposition. We
give an overview of how to determine master integrals using integration-by-parts
techniques and the method of differential equations. Furthermore, we explain the
numerical unitarity method used to determine numerical coefficients of the mas-
ter integrals and functional reconstruction techniques to get their analytic form.
In chapter 4, we describe the main building blocks of the Caravel framework.
We outline the structure and interplay between its modules, delineate consistency
tests and, provide examples. We furthermore depict the external input Caravel
relies on to operate. In chapter 5, we present the main result of this work. We
compute the analytic form of the two-loop helicity amplitudes for three-photon
production at hadron colliders. We explain the structure of the results, how we
validated them and how to use them for phenomenological studies. In chapter 6,
we present our conclusions and give technical material in a series of appendices.

4



2. Theory

During a particle collider experiment, various scattering processes take place.
The quantities, which the experiment can measure to probe particle physics,
are scattering cross sections. Quantum field theories (QFTs) have been proven
successful in describing scattering processes and their cross sections. QFTs are
developed by postulating a classical Lagrangian density and quantizing it. To
arrive at phenomenological predictions, one usually considers perturbation the-
ory in a coupling constant. Within perturbative QFT, ultraviolet infinities occur.
These infinities must be regularized and then renormalized to yield results com-
parable to experiments. Infrared singularities cancel in correctly set up physical
observables such as cross sections.

2.1. Cross Sections

The properties of elementary particles can be determined using particle acceler-
ators, which bring particles to collision within particle detector experiments. If
the center-of-mass energy of the collision is higher than the mass threshold to
produce a certain particle, this particle can be studied using a detector. The ac-
celerator with currently the highest collision energy is the LHC at CERN, which
is designed to have a maximum of

√
s = 14 TeV [39]. It also has one of the high-

est luminosities L [40] which measures the number of collisions that can occur
at a given time. In its detectors, most notably the multi-purpose experiments
ATLAS and CMS, the proton beams are crossed to produce collisions. If the two
beams consist of Gaussian bunches with root mean squares σ1 and σ2 and N1

and N2 particles each which collide with frequency ν, the luminosity is given by1

L =
νN1N2

4πσ1σ2

. (2.1)

During a collision of two hadrons, these scatter, and new particles are produced,
which can be identified by the detectors. Performing the experiment one notices
that the number of these events N of specific particles being produced per time
scales with the luminosity

dN

dt
= σhL . (2.2)

1For simplicity we assume a single bunch. The number of bunches appears as a multiplicative
factor Nb, such that L = νN1N2Nb/4πσ1σ2.
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Chapter 2. Theory

The proportionality factor σh, can be written as

σh =
Ṅ

L
=
Ṗ

Φ
, (2.3)

where P is the probability of the process event taking place and Φ is the relative
particle flux. σh is called the hadronic cross section of the studied process and
can be computed in field theory.
The cross section gives us an insight into the probability that an event happens.

A related value, which considers the directions and energies of the produced par-
ticles is the differential cross section. The differential cross section is a differential
dσh such that

σh =

∫
dσh , (2.4)

which can be given with respect to various parameters a detector can measure,
for example the solid angle Ω

σh =

∫
dσh

dΩ
dΩ . (2.5)

A central role in the computation of the hadronic cross section is played by the
parton model [41]. According to the parton model, the collided protons have an
inner structure. The proton’s momentum is distributed among the elementary
particles inside it, which are the partons. The parton i then has the probability
f(xi) to have the fraction xi of the total momentum of the proton. f is called a
parton distribution function and relies on experimental input to be determined.
During the scattering of two hadrons h1 and h2, two partons a and b, one of

each hadron, are thought to interact with each other, as shown in the following
picture.

h1

a c1

h2

b ···
cn′

fa

fb

During this scattering, the particles c1, . . . , cn′ are created. With dσ being the
differential cross section of the process ab → c1, . . . , cn′ , the differential cross
section on hadron level is given by

dσh =

∫
dx1dx2

∑
a,b
fa(x1)fb(x2)dσ . (2.6)
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Chapter 2. Theory

Here, fa and fb are the parton distribution functions for the partons a and b.
Particles c1, . . . , cn′ can be identified by analyzing the detector signals. Simi-

larly, experimentalists can determine many of their properties. Within the inner
layer of a detector, a magnetic field bends the paths of charged particles, which
allows fixing upon their charges and momenta. Calorimeters measure the energies
of the particles. There are also specific devices, which help to distinguish between
different particles with the same charge. An electron, for example, would lay a
track inside the inner layer of a detector and be stopped in the electromagnetic
calorimeter producing characteristic bremsstrahlung. Because of an effect called
confinement, partons produced during collision wouldn’t fly through the detec-
tor on their own. They would instead produce a parton shower and eventually
hadronize. A hadron would pass the electromagnetic calorimeter. It would end
up in a hadronic shower inside the hadronic calorimeter.
The partons’ total momentum in the forward direction is only described sta-

tistically by the parton distribution functions. Because of that, only the part
of the momenta transversal to the beam axis can be constrained by momentum
conservation. There is a useful parametrization of the momenta, which considers
this. If a beam axis points into z direction, we set

pµ = (mT cosh η, pT sinφ, pT cosφ,mT sinh η) , (2.7)

with the transverse momentum pT , the transverse mass mT and the pseudora-
pidity η given by

pT =
√
p2
x + p2

y , mT =
√
p2
T +m2 , and η =

1

2
log

( |p|+ pz
|p| − pz

)
. (2.8)

pT , mT , φ and differences of η defined in such a way are invariant under boosts in
beam direction. The experiments measure the angle φ within the plane transverse
to the beam, the angle θ to the beam axis and the transverse energy ET = E sin θ,
which are directly related to the former quantities.
If a parton is created, its energy does not correspond to a single track because

of the showers and hadronization occurring. Instead, it is assigned the transverse
energy inside a region in the φη-plane measured by

R =
√

(∆η)2 + (∆φ)2 . (2.9)

A precise definition requires an infrared-safe algorithm, the so-called jet algo-
rithm. The individual tracks inside the detector, which belong to a jet, need to
be combined, usually using a clustering algorithm such as the anti-kt algorithm
[42]. Similarly, prompt photons have to be distinguished from those produced
during a shower, which can be done using Frixione isolation [43].
After performing an analysis of the experiment’s results, the differential cross

7



Chapter 2. Theory

sections to these parameters, that is, for example, dσ
dpT

, or the difference in angle of
two produced particles dσ

d∆φ
, can be obtained. To compare to or test the existing

particle physics theories, one thus has to determine these cross sections, which is
typically done in the framework of perturbative QFT.

2.2. Gauge Theories

Gauge theories describe the dynamics of fields, which are smooth functions on
the Minkowski space. As in classical mechanics, with gauge theories, a physical
system can be described by its action functional. Some formulas for that are
summarized in the appendix A. The most straightforward field theory is a scalar
field theory, where the fields are real- or complex-valued. We will use scalar
field theories to introduce field dynamics. The process we are interested in is
described by QCD, which is a non-abelian gauge theory. To define QCD, we
need a description of gauge fields, as well as matter fields. These fields have
values in different representations of the Lorentz algebra, which we will describe.
We then introduce QCD fields, as well as extensions relevant to our process of
interest.
While the properties of the QCD gauge fields differ fundamentally, the descrip-

tion of free QCD gauge fields is similar to a theory whose implications are easily
observed, which is electrodynamics. As an introduction to free gauge fields, we
describe electrodynamics without matter fields in the following.

Electrodynamics We know from observation that moving charges create an
electric field E and a magnetic field B, for which Maxwell’s equations hold. We
want to write them in a Lorentz covariant way, which will allow us to find a
Lorentz invariant Lagrangian for them. Maxwell’s equations are given by

εijk∂jEk + ∂0Bi = 0 , (2.10)
∂iEi = ρ , (2.11)

εijk∂jBk − ∂0Ei = Ji , (2.12)
∂iBi = 0 , (2.13)

where ρ is the charge density of the source and J its current density.
We now will see that ρ and J together transform contravariantly under Lorentz

transformations, which will help us to understand why the gauge field we are going
to introduce transforms in the same way. Because the total charge is conserved,
ρ and J obey a continuity equation

∂0ρ+ ∂iJi = ∂µJ
µ = 0 , (2.14)

8



Chapter 2. Theory

where we define the four-current J = (ρ,J). We want to examine, how Jµ and the
derivative transforms under Lorentz transformations. In the following we write
xµ
′
= x′µ. The coordinates x transform under Λ ∈ O(1, 3) according to

xµ
′
= Λµ′

νx
ν . (2.15)

That is, using the chain rule, derivatives transform according to

∂µ′ =
∂xν

∂xµ′
∂ν = (Λ−1)νµ′∂ν . (2.16)

Applying the continuity equation (2.14) to J and J ′ yields

∂µJ
µ = 0 = ∂µ′J

µ′ = (Λ−1)νµ′∂νJ
µ′ , (2.17)

so that it must hold
Jµ
′
= Λµ′

νJ
ν . (2.18)

That is, as the coordinates x, J transforms contravariantly under Lorentz trans-
formations.
We next define the gauge field of electrodynamics, which will help us to un-

derstand the gauge field of QCD. Because of the fourth of Maxwell’s equations
(2.13), we can write B using a vector potential A, as

Bi = εijk∂jAk . (2.19)

Then, because of the first of Maxwell’s equations (2.10), we have

εijk∂j(Ek + ∂0Ak) = 0 , (2.20)

so that we can define a scalar potential φ, satisfying

− ∂iφ = Ei + ∂0Ai . (2.21)

The potentials φ and A determine the fields E and B. However, since they define
E and B through their derivatives, there is an ambiguity of choice of φ and A
for fixed E and B. This degree of freedom is known as gauge symmetry, and
the fields φ and A will form the gauge field of electrodynamics. We will discuss
gauge fields in more detail later in this section. Because of equations (2.10, 2.13,
2.21), given the potentials φ and A, we can choose an arbitrary scalar field α so
that

A′i = Ai + ∂iα , and φ′ = φ− ∂0α (2.22)

will define the same fields E and B. Since the choice of the gauge is unphysical,
we can choose one, which best suits our needs. A convenient choice is the Lorenz

9



Chapter 2. Theory

gauge, where α is the solution of

0 = ∂2
i α− ∂2

0α . (2.23)

If we now define the four-potentialA = (φ,A), combining equations (2.12,2.19,2.21)
we arrive at

∂ν∂
νAµ = Jµ . (2.24)

We now can apply the known transformations from equations (2.16, 2.18) to see
that

Aµ
′
= Λµ′

µA
µ . (2.25)

That means the four-potential also transforms contravariantly under Lorentz
transformations. Accordingly, Aµ transforms covariantly under Lorentz trans-
formations.
We can abbreviate the notation if we notice that E and B are part of the

Field-strength tensor
F µν = ∂µAν − ∂νAµ . (2.26)

Using equations (2.16, 2.25), we see that F also transforms contravariantly under
Lorentz transformations. Using F , Maxwell’s equations can be written as

∂µF
µν = Jν ,

εµνρσ∂νFρσ = 0 ,
(2.27)

where the first is the equation of motion for A. The Lagrangian, which gives
these Euler-Lagrange equations should give the same results in every inertial
frame, that is it should be Lorentz invariant. It also should not be dependent on
an unphysical gauge choice, that is it should be gauge invariant. This means in
particular,

L(Aµ
′
, ∂ν′A

µ′) = L(Aµ, ∂νA
µ) , (2.28)

for the transformations (2.25, 2.22). If we consider first the vacuum case L0, for
which J = 0, then it can be given by

L0 = cFµνF
µν , (2.29)

Where we now need to determine the coefficient c. As in classical mechanics, the
normalization can be constructed by looking at the kinetic energy. It holds that∫

d3xL0 = T − V , (2.30)

where the kinetic energy is quadratic in the time derivatives of the field A. Con-
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Chapter 2. Theory

sider for a moment a field with ∂iA0 = 0, then

T =

∫
d3x

ȦiȦ
i

2
= −1

4

∫
d3x(F0iF

0i + Fi0F
i0) , (2.31)

if we write it with the part of the sum FµνF
µν which contributes here, so it must

be
L0 = −1

4
FµνF

µν . (2.32)

Now we can include back the source to find

L = −1

4
FµνF

µν + AµJ
µ . (2.33)

Thus, we have constructed a Lagrangian for electromagnetism. To better under-
stand field theory and how it emerges from mechanics we now have a look at
scalar field theory.

Scalar Field Theory We now want to find the Lagrangian of a scalar field
invariant under Lorentz transformations [44]. A scalar field is a function on the
Minkowski space, which transforms as

ϕ′(xµ
′
) = ϕ′(Λµ′

νx
ν) = ϕ(xµ) , (2.34)

so that one always gets the same result for the field’s value, irrespective of the
Minkowski space coordinates. That means it transforms under the trivial repre-
sentation of the Lorentz group. The Higgs field, for example, is scalar. To find
the corresponding Lagrangian, we look at the field’s values on every spatial point
as a generalized coordinate, just as in classical mechanics. For that we discretize
the Minkowski space and label every point by an index a. Then we define

qa(t) ≡ ϕ(~xa, t) and q̇a(t) ≡
∂ϕ

∂t
(~xa, t) , (2.35)

so that
L(t) =

∑
a
La(qa(t), q̇a(t)) =

∑
a

q̇2
a

2
− V (qa) . (2.36)

Now in order to be invariant under Lorentz transformations, a time derivative
cannot appear alone in the Lagrangian but rather a four-gradient. The discretized
version of the spacial gradient in direction of ~xa+1 can be calculated by

∂~xa+1ϕ(~xa, t) =
qa+1 − qa
‖~xa+1 − ~xa‖

. (2.37)

11



Chapter 2. Theory

Now if λ is the cell width of our discrete space, we can define k and K so that

K(λ) =
k(λ)

‖~xa+1 − ~xa‖
with lim

λ→0
K(λ) = const , (2.38)

and set
V (qa) =

K

2
(qa+1 − qa)2 . (2.39)

The system then becomes a system of coupled harmonic oscillators

L(t) =
∑

a

( q̇2
a

2
− K

2
(qa+1 − qa)2

)
. (2.40)

Taking the limit λ → 0, the sum over the oscillators becomes an integral over
space and with equations (2.35) and (2.37) we get

L(t) =

∫
d3xL0(ϕ, ∂µϕ) , (2.41)

with
L0(ϕ, ∂µϕ) = −1

2
∂µϕ∂

µϕ . (2.42)

In general, we can add terms with higher power of ϕ to the potential, where in
the minimum of the potential there are no linear terms.

L(ϕ, ∂µϕ) = −1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − g3

3!
ϕ3 − g4

4!
ϕ4 − . . . (2.43)

The quadratic term is by dimensional analysis related to the mass term and
higher terms are interaction terms. Consider a Lagrangian with only the first
two terms. Using integration-by-parts we can bring it in the form

L(ϕ, ∂µϕ) = ϕ(�−m2)ϕ , (2.44)

with the equation of motion

(�−m2)ϕ = 0 (2.45)

called the Klein–Gordon equation.
Accordingly, we can consider complex scalar fields φ, parametrized additionally

by their complex conjugate φ̄. If both, φ and φ̄ are to solve the Klein–Gordon
equation (2.45), the Lagrangian has to have the form

L0(φ, ∂µφ) = φ̄(�−m2)φ . (2.46)

12
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We notice, that the complex scalar Lagrangian has a U(1) symmetry

φ′ = eiαφ . (2.47)

Finally, as in the Lagrangian for electromagnetism (2.33), we can introduce a
source term to the Lagrangian. In order not to break the U(1) symmetry, we
define a complex source χ and extend the Lagrangian to be

L = φ̄(�−m2)φ+ χ̄φ+ φ̄χ . (2.48)

Indeed, calculating the Euler–Lagrange equations now yields

(�−m2)φ = −χ , (2.49)

and accordingly for the complex conjugate fields, so that χ is indeed a source
term.

Bosons and Fermions When a scalar field transforms under the Lorentz group
like in equation (2.34), a generic field transforms according to

Φ′(x′µ) = ρ(Λ)Φ(xµ) , (2.50)

with ρ some representation of the Lorentz group. For these fields, Lagrangians
and thus equations of motion can also be obtained. Inside the Lorentz algebra
so(3, 1), for the generators of rotations Ji and boostsKi defining the combinations

Mi =
Ji + iKi

2
and Ni =

Ji − iKi

2
(2.51)

gives two independent su(2) algebras, that is

[Mi,Mj] = iεijkMk , [Ni, Nj] = iεijkNk and [Mi, Nj] = 0 . (2.52)

That is, the algebra of the Lorentz group is isomorphic to su(2) ⊕ su(2), where
every of the su(2) can be in any of its representations. The trivial representation
transforms scalar fields, so we next look at the fundamental representation. It
has a basis given by the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
. (2.53)

Conventionally we normalize the basis by 1
2
and call the respective represen-

tations with one of the su(2) in the fundamental and the other in the trivial
representation, the (1

2
, 0) and the (0, 1

2
) representations. We get a representation

13
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for the corresponding Lorentz groups by exponentiation, so for a generic Lorentz
transformation

Λµ
ν =

(
eiωiKieiθiJi

)µ
ν

(2.54)

in the (1
2
, 0) representation we get Ji = iKi = σi

2
, which then acts on two-

dimensional fields as
ψ′a =

(
e
ωiσi

2 ei
θiσi

2

)
a

b
ψb , (2.55)

where the metric is given by
εab = −iσ2 . (2.56)

so that
ψη = −ηψ . (2.57)

We call fields transforming under the (1
2
, 0) representation left-handed Weyl

spinors. Similarly, fields transforming under the right-handed representation
(0, 1

2
), where Mi = 0 are called right-handed Weyl spinors and satisfy

ηȧ′ =
(
e−

ωiσi
2 ei

θiσi
2

)ȧ
ḃ
ηḃ . (2.58)

Lagrangians invariant under (1
2
, 0) and (0, 1

2
) transformations with σµ = (1, ~σ)

and σ̄µ = (1,−~σ) can be given by

L(ψa, ∂µψa) = iψ†ȧσ
µȧb∂µψb ,

L(ηȧ, ∂µη
ȧ) = iη†aσ̄µ

aḃ
∂µη

ḃ ,
(2.59)

which are the equivalent of equation (2.44) for spinors, however first degree on
derivatives and without a mass term. The corresponding equations are the Weyl
equations

iσµȧb∂µψb = 0 ,

iσ̄µ
aḃ
∂µη

ḃ = 0 .
(2.60)

Applying both operators to ψb or to ηḃ one after the other yields the Klein–Gordon
equation (2.45) for massless spinors, which has plane wave solutions [45]

ψb(x) =

∫
d4p

(2π)4
ub(p)e

ipµxµ ,

ηḃ(x) =

∫
d4p

(2π)4
vḃ(p)eipµxµ .

(2.61)
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Plugging these solutions into the Weyl equations (2.60) yields

σµȧbpµub = 0 ,

σ̄µ
aḃ
pµv

ḃ = 0 .
(2.62)

Now we have
σµȧbpµ =

(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
, (2.63)

that is, with pµp
µ = 0, solutions for the Weyl equations in momentum space

(2.62) can be given by [31]

|p〉 ≡ u+(p) =

√
|p+|
p+

(
p+

p⊥+

)
,

|p] ≡ v+(p) =
1√
|p+|

(
p+

p⊥−

)
,

(2.64)

with
p+ = p0 + p3 , p⊥+ = p1 + ip2 , and p⊥− = p1 − ip2 , (2.65)

where we normalize so that σµpµ = |p〉[p|.
A way to introduce a mass term is to take the direct sum of the (1

2
, 0) and

(0, 1
2
) representations of the Lorentz algebra to get another representation. If we

define
γµ =

(
0 σµ

σ̄µ 0

)
, (2.66)

then Σµν = γµγν − γνγµ gives a basis for the Lorentz algebra. We then can write
a first degree Lagrangian for the bispinors ψ = (ψa, η

ȧ), invariant under action
of the (1

2
, 0)⊕ (0, 1

2
) representation as

L0(ψ, ∂µψ) = ψ̄(iγµ∂µ −m)ψ , (2.67)

where ψ̄ = ψ†γ0, which is the Dirac Lagrangian. For our purposes it is enough to
consider Weyl spinor fields. Left-handed Weyl spinor fields transforming under
the (1

2
, 0) representation of the Loretnz algebra are called fermions, while right-

handed Weyl spinor fields transforming under the (0, 1
2
) representation of the

Lorentz algebra are called antifermions. Just as in equation (2.48) for the scalar
field, we can introduce fermionic source terms ξ so that the Dirac Lagrangian
becomes

L = ψ̄(iγµ∂µ −m)ψ + ξ̄ψ + ψ̄ξ , (2.68)

With the corresponding Euler–Lagrange equation

(iγµ∂µ −m)ψ = −ξ , (2.69)
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and accordingly for the conjugated fields .
Finally, we can consider the (1

2
, 1

2
) representation of the Lorentz algebra, that

is, we deal with fields acted on by SU(2)⊗SU(2) and thus having two indices. A
basis for these is given by σµ so we can write

ψαα̇ = Aµσ
µ
αα̇ . (2.70)

These are the covariant vector fields that transform according to

Aµ′(x
′) =

∂xν

∂xµ′
Aν(x) , (2.71)

and whose Lagrangian is the Lagrangian of electromagnetism as given in equation
(2.32). These fields are called vector bosons, like the four-potential in electro-
dynamics. Just as Weyl spinors, they satisfy a massless Klein–Gordon equation
and have plane wave solutions

Aµ =

∫
d4p

(2π)4
ε±µ eipµxµ , (2.72)

where the polarization states can now be chosen to

εµ+(p, n) =
〈n|σ̄µ|p]√

2〈n|p〉
,

εµ−(p, n) = − [n|σµ|p〉√
2[n|p]

,

(2.73)

where nµ is an auxiliary massless reference vector.
Since the Lagrangian only depends on the derivatives of Aµ, and because of the

definition of the field strength tensor (2.26), the Lagrangian is invariant under a
symmetry transformation

A′µ(x) = Aµ(x) + ∂µα(x) , (2.74)

for some scalar field α(x), which is called gauge invariance. That is, to describe
the physical problem, we have the freedom of fixing the gauge by choosing α(x)
appropriate to our needs. Similarly, we see that the fermion Lagrangians (2.59)
and (2.67) are invariant under a global U(1) symmetry transformation

ψ′ = eieαψ . (2.75)

To describe the combined system including vector bosons and fermions, we can
promote this symmetry to the same local symmetry of the bosonic Lagrangian
(2.32) by viewing Aµ as a connection on the principal U(1)-bundle over the
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Minkowski space and ψ as a section of the associated spinor bundle. Aµ then
induces a connection on the spinor bundle, with the covariant derivative

Dµ = ∂µ + ieAµ . (2.76)

In that picture, the tensor Fµν can be seen as the curvature of the connection
given by

Fµν =
i

e
[Dµ, Dν ] , (2.77)

which in the U(1) case coincides with the previous definition in equation (2.26).
For the definition of the connection with the corresponding Dirac operator see
appendix A. With the corresponding Dirac operator /D = γµDµ, the combined
Lagrangian

L(ψ, ∂µψ) = ψ̄(i /D −m)ψ − 1

4
FµνF

µν , (2.78)

is invariant under a local U(1) symmetry, transforming

ψ′(x) = U(x)ψ(x) (2.79)

and
A′µ(x) = U(x)AµU

†(x) +
i

e
U(x)∂µU

†(x) , (2.80)

which in case of U(x) ∈ U(1) amounts to equation (2.74) .
The term eψ̄γµAµψ in equation (2.78) describes the interactions between vector

bosons and fermions. There are further transformations leaving the Lagrangian
(2.78) invariant. The simplest one is the discrete transformation

A′µ = −Aµ , (2.81)

called charge conjugation. Since the bosonic kinetic part of the Lagrangian
−1

4
FµνF

µν is quadratic in Aµ, it is invariant under charge conjugation. In or-
der for the rest of the Lagrangian to be invariant under charge conjugation, the
fermionic fields ψ have to transform under these so that

ψ̄
(
i/∂ − e/A−m

)
ψ = ψ̄′

(
i/∂ + e/A−m

)
ψ′ . (2.82)

This can be achieved by setting

ψ′ = −iγ2ψ
? , (2.83)

with ψ 7→ ψ′ called the charge conjugation operator. Indeed, employing the
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Clifford algebra rules, as given in appendix A, and using the basis

γ′µ = γ2γ
?
µγ2 (2.84)

for the gamma matrices on the right-hand side yields equation (2.82). Because of
the anti-diagonal structure of gamma matrices as seen in equation (2.66) and since
the charge conjugation operator acts like the metric εab from equation (2.56) on
spinors, it sends fermion states to corresponding antifermion states and vice versa.
Quantization, as described in section 2.3, makes the eigenvalues of the charge
conjugation operator multiplicative quantum numbers. Such an eigenvalue is
called charge parity, and it is −1 for photons, as seen from equation (2.81). Thus,
charge conjugation provides an essential limitation on allowed field interactions.

Quantum Chromodynamics We now can think of gauge groups other than
U(1), for example, SU(2), which occur in the theory of weak interactions, or
SU(3) for strong interactions. Then, as in the U(1) case, to make the Lagrangian
invariant under a local transformation, say U(x) ∈ SU(3), we introduce a con-
nection Ga

µ on the principal SU(3)-bundle, which transforms under the adjoint
representation of SU(3). ψi is then a section of the associated spinor bundle,
transforming under the fundamental representation. The covariant derivative is
given by

Dµij = ∂µδij + igsG
a
µT

a
ij . (2.85)

For SU(3) the structure constants fabc do not vanish, so that the curvature Gaµν
has the form

Gaµν = ∂µG
a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν . (2.86)

QCD is an SU(3) gauge theory making it a non-Abelian gauge theory. The
fermions in the fundamental representation of SU(3) are called quarks and the
bosons in the adjoint representation of SU(3) are called gluons. In QCD, there are
six quark flavors with the same properties but distinct masses. The Lagrangian
taking into account all flavors is given by

L =
∑

f
ψ̄fi (i /Dij −mfδij)ψ

f
j −

1

4
GaµνGµνa . (2.87)

While the masses of the first five quarks are negligible with respect to the energy
scale, we do not consider top quark effects, thus we deal with massless quarks
in our calculations. In addition to quarks and gluons we want to study effects
stemming from quark-photon couplings at NNLO in QCD. For that, we take the
gauge group to be SU(3) × U(1) and define connections (G,A) on the principal
SU(3)× U(1)-bundle. The respective covariant derivative is then given by

Dµij = ∂µδij + igsG
a
µT

a
ij + ieAµδij , (2.88)

18



Chapter 2. Theory

and the Lagrangian by

L = i
∑

f
ψ̄fi /Dijψ

f
j −

1

4
GaµνGµνa −

1

4
FµνF

µν , (2.89)

where as explained we neglected the quark masses. Now in phenomenologi-
cal studies photons will also be produced from interactions with electrons and
positrons. Because we are only interested in contributions at NNLO in αs, these
are still suppressed so that we can neglect them.

2.3. Quantization

The so far described classical fields cannot explain quantum effects such as dis-
crete energy levels or particle numbers. We want to solve this, by quantizing the
field theory. In quantum mechanics, if we have an initial state of an n-particle
system, it evolves to a final state of n′ particles using the scattering matrix, or
S-matrix, which we will introduce. In order to be able to calculate it, we can use
the LSZ-formula, which relates the S-matrix elements with vacuum expectation
values of the involved field operators. We can calculate vacuum expectation val-
ues using the path integral formalism. In order to do that, we will define path
integrals for point particles. We will then extend this idea to free scalar fields and
after that to interacting scalar fields. In order to calculate vacuum expectation
values for theories with interacting fields, we will introduce Feynman diagrams.
From Feynman diagrams, we can assemble scattering amplitudes, which deter-
mine the S-matrix elements and are the main topic of this work. We finally
extend this approach to vector and spinor fields and state the Feynman rules
needed to determine QCD scattering amplitudes.

S-Matrix In a quantum mechanical description of particle scattering, an initial
state of n particles evolves to a final state of n′ particles using an evolution
operator called the scattering matrix or S-matrix, which we want to define in the
following. In the Schrödinger picture states |ψ(t)〉 are time dependent and evolve
using the Hamiltonian [46]

i∂t|ψ(t)〉 = (Ĥ0 + ĤI)|ψ(t)〉 . (2.90)

Equation (2.90) is the Schrödinger equation. We can solve the free equation to

|ψ(t)〉 = U0(t)|ψ(t0)〉 , (2.91)

where U0 is the unitary operator

U0(t, t0) = exp
(
−iĤ0(t− t0)

)
(2.92)
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in case of free fields. As for the interaction part, states evolve using the interaction
Hamiltonian

i|ψ(t)〉I = ĤI |ψ(t)〉I , (2.93)

so that
|ψ(t)〉I = UI(t, t0)|ψ(t0)〉I . (2.94)

Because we cannot solve this equation directly, perturbation theory becomes
important. We expand UI in the coupling constant g, that is for example e for
QED or gs for QCD, where ĤI is proportional to g.

UI(t, t0) =
∞∑
k=0

gkUk(t, t0) . (2.95)

Comparing coefficients in g we get

∂tUk(t, t0) = −iĤI(t)g
k−1Uk−1(t, t0) , (2.96)

which can be iteratively solved to

Uk(t, t0) = (−i)k
∫ t

t0

dt1 · · ·
∫ tk−1

t0

dtkĤI(t1) · · · ĤI(tk) . (2.97)

We want to integrate every variable ti from 0 to t, which we can achieve by using
the time ordering operator

T [ĤI(ti1) · · · ĤI(tik)] := ĤI(t1) · · · ĤI(tk) , (2.98)

with t1 > · · · > tk. In the integral∫ t

t0

dt1 · · ·
∫ t

t0

dtkT [ĤI(t1) · · · ĤI(tk)]

=
∑
σ∈S(k)

∫ t

t0

dtσ(1) · · ·
∫ t

t0

dtσ(k)ĤI(tσ(1)) · · · ĤI(tσ(k)) (2.99)

we can then rename the variables ti so that

= k!

∫ t

t0

dt1 · · ·
∫ t

t0

dtkĤI(t1) · · · ĤI(tk) , (2.100)

and finally

Uk(t, t0) =
(−i)k

k!

∫ t

t0

dt1 · · ·
∫ t

t0

dtkT [ĤI(t1) · · · ĤI(tk)] , (2.101)
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which can be employed in the equation (2.95) to get a solution for |ψ(t)〉I using
(2.94). We now define the scattering matrix S as the evolution operator from
−∞ to ∞

S = UI(−∞,∞) =
∞∑
k=0

(−i)k

k!

∫ ∞
−∞

dt1 · · ·
∫ ∞
−∞

dtkT [ĤI(t1) · · · ĤI(tk)]

=
∞∑
k=0

(−i)k

k!

∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxkT [ĤI(t1) · · · ĤI(tk)] .

(2.102)

Note that S is also unitary. The transition amplitude of an initial state of n
particles |i〉 at t = −∞ to a final state of n′ particles |f〉 at t =∞ is then given
by

Tf←i = 〈f |S|i〉 , (2.103)

where the right-hand side in turn can be calculated using the LSZ reduction
formula, which for a scalar field looks like

〈f |S|i〉 = in
∫

d4x1eip1x1(−∂2
x1

+m2) · · · in′
∫

d4x′1e−ip′1x
′
1(−∂2

x′1
+m2) · · ·

× 〈0|Tϕ(x1) . . . ϕ(x′1) . . . |0〉 .
(2.104)

Vacuum Expectation Values According to equation (2.104), in order to cal-
culate S-matrix elements 〈f |S|i〉, we need to be able to determine vacuum expec-
tation values of the form 〈0|Tϕ(x1) . . . ϕ(x′1) . . . |0〉. To calculate these vacuum
expectation values, we utilize the path integral [47–49]. We will define it for point
particles first and extend the definition to fields in the following. To define a path
integral, consider a particle in the potential V with the Hamiltonian

Ĥ(x̂, p̂) =
p̂2

2m
+ V (x̂) . (2.105)

We want the probability of the particle to evolve from (x′, t′) to (x′′, t′′) . This
we can get using the time evolution operator [50]. Discretizing the time we have

〈x′′, t′′|x′, t′〉 =

∫ ∏
i
dxi〈x′′|e−iHδt|xN〉 · · · 〈x1|e−iHδt|x′〉 , (2.106)
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where for small δt, using the completeness relation for a momentum basis {pi}
we can write each of the factors as

〈x2|e−iHδt|x1〉 =

∫
dp1ei(δt/2m)p2

1e−iδtV (x1)〈x2|p1〉〈p1|x1〉

=

∫
dp1

2π
e−iH(p1,x1)δteip1(x2−x1) ,

(2.107)

so that in total

〈x′′, t′′|x′, t′〉 =

∫ ∏
i
dxi
∏

j

dpj
2π

eipj(xj+1−xj)e−iH(pj ,xj)δt .

Now take the limit δt→ 0 so that dxj
dt

=
xj+1−xj

δt
. Then the second product can be

written as an integral in the exponential. The integrals over the discrete spaces
and momenta xj and pj become integrals over possible paths between x′ and x′′
and the respective initial and final momenta

〈x′′, t′′|x′, t′〉 =

∫
DxDp exp

(
i

∫ t′′

t′
dt(p(t)ẋ(t)−H(p(t), x(t))

)

=

∫
Dx exp

(
i

∫ t′′

t′
dtL(ẋ(t), x(t))

)
,

(2.108)

where we have assumed H to be of the order p2 and moved the constant from the
p integration into the path integration measure Dx. The integral over the paths
x(t) is called a path integral.
For time dependent operators, time ordering has to be used, for example∫

DxDp x(t1)x(t2)eiS = 〈x′′, t′′|T[x̂(t1)x̂(t2)]|x′, t′〉 . (2.109)

We can also calculate the evolution of the ground state |0〉 under a force f , in
which case we consider the limit t′ → −∞ and t′′ → ∞, which using equation
(2.108) results in

〈0|0〉f =

∫
DxDp exp

(
i

∫ ∞
−∞

dtL(ẋ(t), x(t)) + fx

)
. (2.110)

We can then get operator expectation values using the chain rule for the functional
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derivative, see also appendix A, so that for example

〈0|T x̂(t1)x̂(t2)|0〉 =

∫
DxDp x(t1)x(t2)exp

(
i

∫ ∞
−∞

dtL(ẋ(t), x(t)) + fx

)
=

1

i

δ

δf(t1)

1

i

δ

δf(t2)
〈0|0〉f

∣∣∣∣
f=0

.

(2.111)
Similarly with appropriate dependence on p̂, 〈0|0〉f can be simplified to

〈0|0〉f = exp

(
i

∫ ∞
−∞

dtL1

(
1

i

δ

δf(t)

))∫
Dx exp

(
i

∫ ∞
−∞

dt (L0(ẋ, x) + fx)

)
.

(2.112)

Free Fields We now want to use the definition of a path integral for point
particles we established in equation (2.108) to define a path integral over free
fields in a similar manner. The path integral over field configurations will allow
us to calculate vacuum expectation values of field operators, as given in equation
(2.104). In the case of fields, we have to consider the Lagrangian density L. The
position x(t) and the position operator x̂(t) are replaced by the scalar field or
field operator, which we both denote by ϕ(x) and the force by a source J(x).
Consider a free scalar field with Lagrangian

L0 = −1

2
∂µϕ∂µϕ−

1

2
m2ϕ2, (2.113)

then the evolution of the ground state in presence of the source J is given by

Z0(J) ≡ 〈0|0〉J =

∫
Dϕ eiS0 , (2.114)

with the action
S0 =

∫
d4x(L0 + Jϕ) , (2.115)

where we now integrate over all possible field configurations ϕ(x). Fourier trans-
forming the fields

ϕ̃(p) =

∫
d4xe−ipxϕ(x) , (2.116)

and introducing a shift

χ̃(p) = ϕ̃(p)− J̃(p)

p2 +m2
, (2.117)
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the action becomes

S0 =
1

2

∫
d4p

(2π)4

(
J̃(p)J̃(−p)
p2 +m2

− χ̃(p)(p2 +m2)χ̃(−p)
)
, (2.118)

where the χ dependent part corresponds to the Lagrangian L0 without a source.
We impose the normalization condition∫

Dϕ exp
(
− i

2

∫
d4p

(2π)4
χ̃(p)(p2 +m2)χ̃(−p)

)
= 〈0|0〉0 = 1 , (2.119)

so that

Z0(J) = exp

(
i

2

∫
d4p

(2π)4

J̃(p)J̃(−p)
p2 +m2

)

= exp

(
i

2

∫
d4xd4x′J(x)∆(x− x′)J(x′)

)
,

(2.120)

where

∆(x− x′) =

∫
d4p

(2π)4

eip(x−x′)

p2 +m2
(2.121)

is the Green’s function for the Klein–Gordon equation

(�−m2)∆(x− x′) = δ4(x− x′) . (2.122)

∆(x− x′) is called the Feynman propagator for a free scalar theory.
We calculate vacuum expectation values for fields in analogy to equation (2.111).

We get for example

〈0|Tϕ(x1)ϕ(x2)|0〉 =
1

i

δ

δJ(x1)

1

i

δ

δJ(x2)
Z0(J)

∣∣∣∣
J=0

=
1

i
∆(x2 − x1)

(2.123)

or

〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0〉 =
1

i2
(∆(x1 − x2)∆(x3 − x4)

+ ∆(x1 − x3)∆(x2 − x4)

+ ∆(x1 − x4)∆(x2 − x3)) .

(2.124)

Interacting Fields Having established a way to calculate vacuum expectation
values for field operators in a free field theory using the path integral formalism,
we now want to look at vacuum expectation values for an interacting field theory.
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We will notice that these give rise to scattering amplitudes—quantities, which
determine S-matrix elements, as we present them for the process qq̄ → γγγ in
section 5.1 and following. We further define Feynman diagrams, which are con-
nected graphs that allow us to consistently parametrize and evaluate scattering
amplitudes. If we have an interacting theory like a ϕ3 theory

L = −1

2
∂µϕ∂µϕ−

1

2
m2ϕ2 +

1

6
gϕ3 , (2.125)

to get the ground state evolution, we need again to evaluate the path integral

Z(J) =

∫
Dϕ exp

(
i

∫
d4x[L0 + L1 + Jϕ]

)
, (2.126)

where
L0 = −1

2
∂µϕ∂µϕ−

1

2
m2ϕ2 (2.127)

is the free field Lagrangian. In analogy to equation (2.118) we can write Z(J) in
terms of the path integral for the free theory Z0(J) from equation (2.120) and a
prefactor to

Z(J) = exp

(
i

∫
d4xL1

(
1

i

δ

δJ(x)

))
Z0(J) . (2.128)

We can then expand the exponentials

Z(J) = exp

(
i

6
g

∫
d4x

(
1

i

δ

δJ(x)

)3
)
Z0(J)

=

 ∞∑
V=0

1

V !

(
ig

6

∫
d4x

(
1

i

δ

δJ(x)

)3
)V


×
(
∞∑
P=0

1

P !

(
i

2

∫
d4x′d4x′′J(x′)∆(x′ − x′′)J(x′′)

)P)
.

(2.129)

Now consider a particular term in the sum over V and P . Every of them has
2P sources from the second factor, from which 3V vanish after applying the
functional derivatives from the first factor. In total, in every term we have

E = 2P − 3V (2.130)

sources left. We see that not every combination of the terms of the two sums
yields a non-vanishing result. Diagrams can represent these non-vanishing terms.
For a fixed number of external sources and fixed power of g, every P -term is
an edge connecting to a V -term. When all functional derivatives have acted on
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one source each, every V -term connects to three P -terms, or twice to the same
P -term and once to another P -term. If there is no V -term drawn at the end
of a P -term, this represents an external source. These diagrams CI are called
Feynman diagrams, the V -terms vertices and the P -terms propagators. With
their help, we can write the path integral as

Z(J) = exp
(∑

I
CI
)
, (2.131)

where the sum is over all connected diagrams with at least two sources and
omitting so-called tadpole diagrams, so subdiagrams with a single source attached
to them. For example, for E = 2 and V = 2 by equation (2.130) we get P = 4
and the only diagram contributing is

,

the so-called bubble diagram. From Z(J) we then can compute vacuum expec-
tation values, that is for example for four fields

〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉 =
1

i

δ

δJ(x1)

1

i

δ

δJ(x2)

1

i

δ

δJ(x′1)

1

i

δ

δJ(x′2)
Z(J)

∣∣∣∣
J=0

,

(2.132)
and finally, using the LSZ reduction formula (2.104)

〈f |S|i〉 = i4
∫

d4x1d4x2d4x′1d4x′2ei(p1x1+p2x2−p′1x′1−p′2x′2)

× (−∂2
x1

+m2)(−∂2
x2

+m2)(−∂2
x′1

+m2)(−∂2
x′2

+m2)

× 〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉 ,

(2.133)

which using
(−∂2

xi
+m2)∆(xi − y) = δ4(xi − y) , (2.134)

and

∆(y − z) =

∫
d4p

(2π)4

eip(y−z)

p2 +m2
(2.135)

then becomes

〈f |S|i〉 = ig2(2π)4δ4(p1 + p2 − p′1 − p′2)

×
(

1

(p1 + p2)2 +m2
+

1

(p1 − p′1)2 +m2
+

1

(p1 − p′2)2 +m2

)
+O(g4)

= (2π)4δ4(pin − pout)Mf←i .
(2.136)

Every of the terms fromMf←i comes from a specific Feynman diagram, for the
s-, the t- and for the u-channel. Starting from the other side, we can also draw
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all diagrams corresponding to model-specific Feynman rules and then calculate
〈f |S|i〉 according to an equation similar to (2.136). The process specific quantities
Mf←i are called scattering amplitudes and are the core of a cross section com-
putation. According to equation (2.129), contributions to the scattering matrix
element of higher order in the coupling constants have to come from Feynman di-
agrams with more vertices. For a fixed number of external legs this is achieved by
gradually adding more internal lines, or loops, to the Feynman diagrams. Thus,
the fixed-order contributions toMf←i are the tree-level (or no-loop) amplitudes
M(0), the one-loop amplitudes M(1), the two-loop amplitudes M(2) and so on.
A key goal of this thesis is the computation of the planar two-loop amplitudes
relevant for the process qq̄ → γγγ.

Abelian Bosonic Action The partition function for a free field Aµ is given by

Z0(J) =

∫
DAei

∫
d4x(− 1

4
FµνFµν+JµAµ) , (2.137)

In order to find an expression for the propagator ∆µν(x − x′), as in equation
(2.118) we Fourier transform the field Aµ to arrive at

S0 =
1

2

∫
d4p

(2π)4

(
−Ãµ(p)(p2gµν − pµpν)Ãν(−p) + J̃µ(p)Ãµ(−p) + J̃µ(−p)Ãµ(p)

)
.

(2.138)
In analogy to the free scalar partition function (2.120), introducing a shift to Ãµ
and normalizing, we then can write

Z0(J) = exp

(
i

2

∫
d4xd4x′Jµ(x)∆µν(x− x′)Jν(x′)

)
. (2.139)

with the bosonic propagator given by

∆µν(x− x′) =

∫
d4p

(2π)4
eip(x−x′) gµν

p2
. (2.140)

Now for Jµ(x) the continuity equation ∂µJµ(x) = 0 holds, which means we have
pµJ̃

µ(p) = 0 for its Fourier transform. That is, we have the freedom to add
products of pµ to the propagator, without changing the result, so that we can
define

∆µν(x− x′) =

∫
d4p

(2π)4
eip(x−x′) 1

p2

(
gµν − (1− ξ)pµpν

p2

)
. (2.141)

We see that setting ξ = 0 makes the integrand of the propagator (2.141) a
projector onto the space orthogonal to pµ. Since it also holds that pµJ̃µ(p) = 0,
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only Ãµ(p) with pµÃµ(p) = 0 or ∂µAµ(p) = 0 contribute the integration over DA
within Z0(J). Thus, ξ = 0 corresponds to the Lorenz gauge. The choice ξ = 1
with the simpler propagator (2.140) is called the Feynman gauge, which we use
in our calculations.

Fermionic Fields The QED Lagrangian (2.78) also involves fermionic fields,
which need to be quantized. For this, we need to compute the purely fermionic
partition function

Z0(ξ, ξ̄) =

∫
DψDψ̄exp

(
i

∫
d4xL(ψ, ∂µψ)

)
, (2.142)

where L is from equation (2.68). Using the anticommutation of the spinor fields
(2.57) and with ∆ψ(x− x′) the Feynman propagator solving(

i(γµ∂µ)ij −mδij
)
∆ψjp(x− x′) = δipδ

4(x− x′) , (2.143)

we get

Z0(ξ, ξ̄) = det(iγµ∂µ −m) exp

(
i

∫
d4xd4x′ξ̄(x)∆ψ(x− x′)ξ(x′)

)
, (2.144)

where ∫
DψDψ̄ exp

(
i

∫
d4xψ̄(iγµ∂µ −m)ψ

)
= det(iγµ∂µ −m) (2.145)

does not depend on the participating fields ξ and ξ̄, so that we can move it into
the normalization of Z0(ξ, ξ̄) by identifying

Z0(ξ, ξ̄) ≡ det(iγµ∂µ −m)Z0(ξ, ξ̄) . (2.146)

Quantum Chromodynamics In non-abelian gauge theories, we encounter am-
biguity in the definition of our fields because of the gauge symmetry of our La-
grangian. When performing the path integral, configurations equivalent under
gauge symmetry are taken into account, thus overcounting. When the Lagrangian
of a U(1) theory was symmetrical under the transformation (2.74), as in equation
(2.80) the gauge field Gµ(x) = Ga

µ(x)T a of a SU(3) theory transforms according
to

G′µ(x) = U(x)Gµ(x)U †(x) +
i

gs

U(x)∂µU
†(x) , (2.147)
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where U(x) = exp(−igsu
a(x)T a) has values in SU(3). If we expand U(x) accord-

ing to
U(x) = 1− igsu

a(x)T a +O(u2) (2.148)

we can write the transformation (2.147) as

G′aµ(x) = Ga
µ(x)−

(
δac∂µ + gsf

abcGb
µ(x)

)
uc(x) ≡ Ga

µ(x)−Dac
µ u

c(x) (2.149)

in the infinitesimal limit. Now we want to fix the Gauge as we did for abelian
gauge fields. For this, we need to define a gauge fixing condition F a(G) = 0.
Since we want to use the simple propagator (2.140), we extend the Lorenz gauge
and set

F a(G(x), x) = ∂µGa
µ(x)− ga(x) , (2.150)

where ga(x) will allow us to introduce a gauge fixing parameter ξ as in equation
(2.141). Applying (2.149) to F a(G) we find that F a(G) transforms under an
infinitesimal gauge transformation U(x) according to

F ′a(G) = F a(G)− ∂µDab
µ u

b . (2.151)

Let uF ′(G) a solution to F ′a(G) = 0. To fix our gauge choice we set

Z =

∫
DGDuδ

(
u− uF ′(G)

)
exp

(
i

∫
d4xL

)
≡
∫
DG det

(
δF ′

δu

)
δ(F ′) exp

(
i

∫
d4xL

)
.

(2.152)

Here the functional derivative yields

δF ′a(G(x), x)

δub(x′)
= −∂µDab

µ δ(x− x′) , (2.153)

and does not depend on u, which is why we could absorb the u integral in the nor-
malization of Z. We can now evaluate the determinant det

(
δF ′

δu

)
using fermionic

fields c, c̄ as in equation (2.145), to get

Z =

∫
DGDcDc̄ exp

(
i

∫
d4x
(
L+ c̄a∂µDab

µ c
b
))

, (2.154)

where the unphysical fields c and c̄ are called Faddeev–Popov ghost fields. If we
now add a term −i

2ξ

∫
d4xgaga to the Lagrangian, so that, taking into account the

gauge fixing condition F (G) = 0,

Z =

∫
DGDcDc̄ exp

(
i

∫
d4x

(
L+ c̄∂µDab

µ c−
1

2ξ
∂µGa

µ∂
νGa

ν

))
, (2.155)
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ν
b p

µ
a

=
i

p2

(
−gµν + (1− ξ)p

µpν

p2

)
δab , j

p i =
iδij(6p+m)

p2 −m2
,

p

ν

b k
µ

a

q
ρ
c

=
gsf

abc

√
2

[gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ] ,

µ
a ν

b

ρ
c σ

d

=
−ig2

s [fabef cde(gµρgνσ − gµσgνρ) + facef bde(gµνgρσ − gµσgνρ)
+fadef bce(gµνgρσ − gµρgνσ)] ,

j

i

µ
a

=
igs√

2
γµT aij ,

µ

= ieγµ ,

Table 2.1.: Feynman rules for strongly interacting particles [45]. All momenta are
taken outgoing. Wavy lines represent photons, coily lines gluons, and
the incoming and outgoing arrows antiquarks and quarks, respectively.

Z yields a propagator as in equation (2.140), which is given by

∆ab
µν(x− x′) =

∫
d4p

(2π)4
eip(x−x′) gµνδ

ab

p2
, (2.156)

when choosing ξ = 1.
As will become apparent in section 3.6, we will work with gauge-invariant

tree-level building blocks in our multi-loop calculations. Because of that, the
introduction of Fadeev–Popov ghost fields is not required for our purposes. The
Feynman rules for the QCD Lagrangian without the ghost fields are listed in
table 2.1. In addition to the rules from table 2.1 we have to integrate over every
internal momentum flowing through a closed loop in the diagram.

2.4. Renormalization

In the previous section, we have seen that we can calculate S-matrix elements
using scattering amplitudes, which can be parametrized through Feynman dia-
grams. Because of the form of Feynman propagators, loop Feynman diagrams,
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which naturally appear in higher-order terms of the expansion of an amplitude in
the coupling constant, will be singular in certain limits of the momentum flowing
through the loop. There are two types of divergences we can encounter: infrared
(IR) and ultraviolet (UV) divergences. IR divergences stem from low energy, or
soft, loop momenta, or loop momenta collinear with the momentum of an ex-
ternal particle. They will cancel with divergences coming from additional real
particles at the same order of the coupling constant. UV divergences appear due
to large loop momenta. They need to be removed from a scattering amplitude
through a redefinition of the corresponding Lagrangian, a procedure known as
renormalization. This redefinition and the introduction of new parameters of the
theory gives rise to running couplings, that is, couplings, dependent on the energy
scale of the experiment. The evolution of the couplings with the energy scale has
significant consequences for the underlying theory, which we will address at the
end of this section. Before renormalizing, the amplitude’s divergences must be
made explicit in terms of a regularizing parameter. For example, we could use
only values for the momenta within the range we can observe; that is, we cut off
values of |`| < Λ where Λ is then the regulator. However, this cutoff regularization
will break the Lorentz invariance of our result. Another common regularization
technique is Pauli–Villars regularization [51]. Pauli and Villars introduce a mass
as the regulator. Pauli–Villars regularization requires additional mass terms in
the Lagrangian to account for the artificial mass. QCD results are usually given
using dimensional regularization. It lacks both prementioned disadvantages and
can regularize both UV and IR divergences. We will work with dimensionally reg-
ularized amplitudes. The dimension of the loop momentum space is then viewed
as a complex parameter D of the amplitude. Accordingly, internal states are in
Ds dimensions. In that case, there is an ambiguity in defining Ds and how to
embed external states in the Ds-dimensional space, which gives rise to different
regularization schemes.

Dimensional Regularization If we just calculate a loop diagram using Feyn-
man integrals, it can become infinite. Consider for example a QED bubble dia-
gram

`

p
,

which using Feynman rules is given by

Ibub =

∫
d4`

(2π)4

N (p, `)

`2(`− p)2
, (2.157)

where the numerator N (p, `) is at most quadratic in `. Using polar coordinates
we arrive at Ibub ∝

∫
`d` which diverges. When the integral diverges in the limit
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of large momenta we call it UV divergent. Similarly, a scalar triangle integral

Itri =

∫
d4`

(2π)4

1

`2(`− p1)2(`− p12)2
(2.158)

is divergent in the limit of small internal momenta. Either in this case, or if an
integral becomes divergent when the internal momentum becomes collinear with
an external momentum, we say it is IR divergent. Since physical observables must
be finite, the divergences of the bare amplitudes are unphysical and belong to
quantities, which are not accessible by experiment. There are multiple ways the
divergences can be moved away from the physically observable parts. In order to
do so, one needs first to regularize the amplitude, that is to represent the poles
in terms of a regularizing variable. The most convenient way to achieve that is
by dimensional regularization. Here, the regulator is the dimension of the loop
integration. Actually we can only integrate over integer dimensions. However if
we parametrize the integrand by the solid angle Ω and the radius, `, and use the
transformation ∫

dD` =

∫
dΩ

∫
`D−1d` , (2.159)

the integral becomes a function of D, which can then be analytically continued to
arbitrary D. In order to keep the coupling dimensionless, when going from four
to D dimensions, we introduce a mass dimension one parameter µ and replace
the coupling

g → gµ
4−D

2 . (2.160)

Imagine a tadpole diagram of a scalar theory,

Itad =

∫
dD`

(2π)D
1

`2 +m2
, (2.161)

which is obviously UV divergent for D ≥ 2. Now we want to write down the
integral first in terms of an arbitrary dimension D. Using the transformation
formula (2.159), we can replace dD` by spherical coordinates [45]

dD` = `D−1d`dΩ

= `D−1d`dϕ sinϑ1dϑ1 sin2 ϑ2dϑ2 · · · sinD−2 ϑD−2dϑD−2 ,
(2.162)

with 0 < ` < ∞, 0 < ϕ < 2π and 0 < ϑi < π. Now in this simple case the
integrand only depends on the magnitude of the loop momentum ` and we can
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integrate the ϑi using the identity∫ π

0

dϑi sin
i ϑi =

Γ
(
i+1

2

)
Γ
(

1
2

)
Γ
(
i+2

2

) . (2.163)

With this using Γ
(

1
2

)
=
√
π and canceling terms in the numerator against the

denominator we get

Ω = 2π
D−2∏
i=1

∫ π

0

sini ϑidϑi =
2πD/2

Γ
(
D
2

) , (2.164)

that is
Itad(D) =

Ω

(2π)D

∫ ∞
0

d``D−1 1

`2 +m2
. (2.165)

now this integral can be expressed using the beta function

B(α, γ) =

∫ ∞
0

dyyα−1(1 + y)−α−γ =
Γ(α)Γ(γ)

Γ(α + γ)
(2.166)

so that

Itad(D) =
(m2)D/2−1

(4π)D/2
Γ(1−D/2) , (2.167)

which we can analytically continue to a function on the complex plane with poles
at D = 4. We look at dimensionally regularized integrals as functions of ε so that
D = 4− 2ε rather than as functions of the dimension D, so that they have poles
at ε = 0. The later representation we can expand in ε, that is

Itad(ε) =
(m2)1−ε

(4π)ε−2
Γ(ε− 1) =

m2

16π2

(
−1

ε
− 1 + γE + log

m2

4π

)
+O(ε) , (2.168)

With γE = −Γ′(1) the Euler–Mascheroni constant.
Consider the NLO approximation of the massless quark-photon-vertex as in

section 2.3.

p1

p2

`

µ

Using Feynman rules, it is given by [45]

V µ = −(eµ
4−D

2 )3

∫
dD`

(2π)D
ū(p2)γν(6`+ 6p2)γµ(6`− 6p1)γνv(p1)

(`+ p2)2(`− p1)2`2
. (2.169)
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In order to bring the integral into a form we can evaluate we use Feynman pa-
rameters, given by

1

ρ1 · · · ρn
= (n− 1)!

∫ 1

0

dx1 · · ·
∫ xn−2

0

dxn−1
1(

ρ1 + x1(ρ2 − ρ1) + · · ·+ xn−1(ρn − ρn−1)
)n .

(2.170)
Using the fact that the quarks are massless and performing the Clifford algebra
in the numerator, we arrive at

V µ = −2iγµe2µ4−D
∫

dx1

∫
dx2

dD`

(2π)D

(D−2)2

D
`2 + s((2−D)xy + 2x+ 2y − 2)

(`2 + sxy)3
,

(2.171)
where the first, `2 proportional, term V µ

1 of the integrand is UV divergent, whereas
the second s proportional V µ

2 is IR divergent. In particular, we can perform the
IR divergent integral over the loop momentum using∫

dD`

(2π)D
1

(`2 −∆)3
=

−i

2(4π)
D
2

1

∆3−D
2

Γ

(
3− D

2

)
, (2.172)

where ∆ = −sxy yielding

V µ
2 =

γµe2

8π2
(4π)ε

(
−µ

2

s

)ε(
− 4

ε2
+
−4 + 2γE

ε
+
−54 + 24γE − 6γ2

E + π2

12
+O(ε)

)
.

(2.173)
So using regularization, we can make the divergence of the integral explicit.
There is the question of how many dimensions Ds the state space has and what

happens with the external particles. In conventional dimensional regularization
(CDR) both, the external and internal particle states are in Ds = D = 4 − 2ε
dimensions. CDR comes in handy when implementing the amplitude calculation
because one does not have to distinguish between internal and external particles
and can apply the same Feynman rules. In the case of CDR, however, we would
also need more helicity states to consider when dealing with helicity amplitudes.
There the t’ Hooft–Veltman (HV) scheme [52] is better suited, which leaves the
external states in four dimensions and only promotes the internal states to Ds =
4 − 2ε dimensions. In the context of numerical unitarity, there is also the four-
dimensional helicity scheme [53]. It uses the fact that tree amplitudes play an
essential role for numerical unitarity and sets Ds = 4. While one must state the
utilized scheme, users can transform from one consistent scheme to another. Here
we use the HV scheme.

34



Chapter 2. Theory

Counterterm Lagrangian After having regularized the results, they are still
diverging for ε → 0. To get measurable quantities, we need to apply renor-
malization in the next step. In this process, we introduce additional unphysical
renormalization parameters of the Lagrangian. These parameters allow us to
rewrite the bare Lagrangian of our theory in terms of a renormalized Lagrangian
and a counterterm Lagrangian, which we will define in the following. The coun-
terterm Lagrangian is defined so that contributions from it cancel divergences
of the original bare Lagrangian, making its definition ambiguous. We discuss
different renormalization schemes, addressing this ambiguity.
In (2.168) the mass m is contributing to the pole. It thus needs to be renormal-

ized for the result to match the experiment. In (2.169) the electric charge e needs
to be renormalized. In a general context, this means renormalizing a coupling
g of the theory. Also, the fields ψ and Aµ themselves have to be renormalized.
In that process, we replace the bare fields, masses, and couplings of the original
Lagrangian with renormalized quantities. We index the bare quantities with a
0 and renormalized quantities with an R. The bare and renormalized quantities
are related by normalization factors Zi [45], that is

ψ0 =
√
Zψψ

R, Aµ,0 =
√
ZAA

R
µ , m0 = ZmmR, g0 = µ

4−D
2 ZggR .

(2.174)
If we now write Zi = 1 + δi, the Lagrangian for the bare fields L0 consists of two
terms

L0 = LR + LC , (2.175)

with LR the renormalized Lagrangian and LC the counterterm Lagrangian re-
sponsible for the cancellation of infinities. To this end, the counterterms δi are
functions that depend on the regulators like ε so that no poles appear in the
finite result. There is an ambiguity about how one can choose the counterterms.
For example, one could add arbitrary functions of the regulators with no poles to
them, and they still would cancel the poles stemming from L0. A choice of the
renormalization scheme fixes these ambiguities. The renormalization scheme dis-
tinguishes different kinds of renormalization. It has to be stated when comparing
different results. The scheme, which just cancels the poles with no additional
functions added to the counterterms, is called the minimal subtraction scheme.
When we renormalize, we use the MS scheme, where constants are added to the
counterterms to make the result simpler. Because of the solid angle integration
as in equation (2.164), for every pole, there will always be the terms γE − log 4π
as seen for example in equation (2.168). These terms are added to the countert-
erms of the minimal subtraction scheme to get the MS scheme. The transition
from the minimal subtraction scheme to the MS scheme can also be achieved by

35



Chapter 2. Theory

adjusting the renormalization scale µ as in equation (2.160) by

µ2 → µ2 eγE

4π
. (2.176)

The renormalization scale is unphysical, and thus physical predictions cannot
depend on it. Because of that, phenomenologists use it to measure the quality
of a theoretical perturbative approximation. Cross sections are then obtained at
various values for the scale, and they look at how their values change with the
scale to estimate the error.

Running Couplings Having defined the parameters of the renormalized theory,
we can look at the evolution of its couplings with the energy scale of the exper-
iment. We will see that couplings evolve according to a renormalization group
equation (RGE). The RGE tells us that the electric charge will increase with
energy, while the strong coupling constant decreases with the energy scale. The
latter phenomenon is known as asymptotic freedom. The RGE is characterized
by employing a beta function, which defines the evolution of the couplings. We
will give the beta function coefficients relevant for NNLO QCD.
When two particles interact, at leading-order, we describe the interaction with

a single propagator. Now at higher-order in the coupling constant, we can extend
this interaction with virtual particles, for example, adding a tadpole as in equa-
tion (2.168) or a bubble to the propagator line. As we discussed, these integrals
are divergent. A good first approximation for all possible diagrams which can
extend a propagator is to consider all possible bubbles added

+ + · · · ,

where every of them, similarly to the tadpole diagram (2.168) will contribute a
characteristic factor x = g0

3π
log Q2

m2 where Q2 is the momentum transfer of the
propagator and g0 = g(µ2) is the bare coupling constant. That is, including all
terms, we get a geometric series 1 + x + x2 + · · · = 1

1−x . This is the leading log
approximation. Because the coupling g0 accompanying the propagator cannot be
measured directly, we can move the divergences inside there. We end up with

g(Q2) =
g(µ2)

1− g(µ2)
3π

log Q2

µ2

. (2.177)

This is an example for a running coupling, as it appears in QED. Equation (2.177)
can equivalently be written as

1

g(Q2)
=

1

g(µ2)
− 1

3π
log

Q2

µ2
. (2.178)
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Differentiating this with respect to logQ2 we get

dg

dQ2
=
g2

3π
≡ β(g) , (2.179)

which is the renormalization group equation, where

β(α) = −α
(
β0

α

4π
− β1

( α
4π

)2

+ · · ·
)

(2.180)

is called the beta function and describes the evolution of the coupling with the
energy transfer. From it we can see whether a coupling will increase or decrease
with the energy. For QED β(e) > 0, or β0 < 0, so the coupling will increase with
energy.
For QCD, in addition to fermion loops, gluon loops need to be taken into

account, which results in

β0 =
Nc

3

(
11− 2

Nf

Nc

)
. (2.181)

Here β0 > 0 so that the coupling will decrease with energy for QCD which is
called asymptotic freedom. When one considers NNLO contributions as we do,
the second coefficient of the beta function becomes important, which is

β1 =
N2
c

3

(
17− 13

2

Nf

Nc

)
. (2.182)

With these coefficients, the QCD bare and renormalized couplings α0 = g2
s,0/4π

and αs = g2
s /4π are related by [54]

α0Sε = αs

(
1− β0

ε

αs
4π

+

(
β2

0

ε2
− β1

ε

)(αs
4π

)2

+O(α3
s)

)
, (2.183)

with Sε = (4π)εe−εγE and γE = −Γ′(1).
Renormalized virtual amplitudes are UV-finite; however, they still can have IR

poles. According to the KLM theorem, these IR poles have to cancel against the
IR poles of the real contributions to a cross section at the same order of expansion
in the coupling constant. The IR pole structure of QCD amplitudes at NNLO is
known for generic processes, which we will further discuss in section 3.8.

2.5. Cross Sections Revised

Now that we have defined the basic tools used in particle physics, we can get
back to the measurable cross sections. As mentioned in section 2.1, we get a
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cross section by

σ =
Ṗ

Φ
. (2.184)

The differential cross section is then given by

dσ =
dṖ

Φ
, (2.185)

with Ṗ the probability of a process taking place per unit time T and Φ the particle
flux. Since the probability has to be normalized to one, it is given by

P =
|〈f |S|i〉|2
〈f |f〉〈i|i〉 . (2.186)

Using equation (2.136) it holds that

|〈f |S|i〉|2 = [(2π)4δ4(pin − pout)]
2|Mf←i|2 .

Since one of the delta functions already sets the momenta on-shell, we can rewrite
this as

= (2π)4δ4(pin − pout)(2π)4δ4(0)|Mf←i|2 ,

where writing

δ(p) =
1

(2π)4

∫
d4xeipx (2.187)

with the space-time volume of integration V T for the second term we get

(2π)4δ4(0) = V T . (2.188)

A Lorentz invariant definition of the states |i〉 and |f〉 yields the normalization

〈p|p〉 = (2π)32p0δ3(0) , (2.189)

which again using (2.187) yields

= 2p0V . (2.190)

With E1 and E2 the energies of the incoming particles we arrive at

Ṗ =
(2π)4δ4(pin − pout)|Mf←i|2

4E1E2V
∏n′

j=1 2p′0jV
, (2.191)
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The corresponding differential dṖ within a phase space volume is then

dṖ =
(2π)4δ4(pin − pout)V |Mf←i|2

4E1E2V 2
∏n′

j=1 2p′0jV

n′∏
j=1

d3pj =
|Mf←i|2
4E1E2V

dLIPSn′(p1 +p2) (2.192)

where we define the Lorentz invariant phase space differential to be

dLIPSn′(p) = (2π)4δ4(p− pout)
n′∏
j=1

d3pj
2p0

j

. (2.193)

Taking the second incoming particle to be at rest, the flux is given by

Φ =
|p1|
E1V

. (2.194)

Thus, the differential cross section from equation (2.185) becomes

dσ =
1

4|p1|
√
s
|Mf←i|2dLIPSn′(p1 + p2) . (2.195)

From this, we can get the total cross section by integration over a solid phase
space angle

σ =

∫
dΩ

dσ

dΩ
. (2.196)

So, to calculate the cross section for a process, it is most important to calculate
the interaction part of the scattering matrix squared |Mf←i|2. This can be done
perturbatively in the coupling constants involved in the process

dσ = dσLO +
αs
4π

dσNLO +
(αs

4π

)2

dσNNLO +O(α3
s) . (2.197)

Looking at the Feynman rules from section 2.3 we realize that the lowest order
contribution to |Mf←i|2 and thus to dσ comes from tree-level amplitudes.

dσLO = ∝M(0)†
n′ M

(0)
n′ dLIPSn′(p1 + p2)

These are the leading-order contributions. At NLO, there are contributions with
one more loop—the virtual corrections—and one more leg—the real corrections.

dσNLO = dσV + dσR = + ,
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that is

dσV ∝
(
M(0)†

n′ M
(1)
n′ +M(1)†

n′ M
(0)
n′

)
dLIPSn′(p1 + p2) ,

dσR ∝
∣∣M(0)

n+1

∣∣2dLIPSn′+1(p1 + p2) .
(2.198)

Finally, at NNLO, there are double-virtual, real-virtual, and double-real correc-
tions to the differential cross section

dσNNLO = dσVV + dσRV + dσRR

= + + + ,

with the single contributions combined in analogy to the NLO case given in equa-
tion (2.198). These contributions are necessary to obtain the total IR-finite result
for the differential cross section to a particular order in the coupling constant.
Due to the occurring integrals over the internal phase space, the double-virtual
contributions are the bottleneck of the calculations. This work concentrates on
the calculation of these virtual and double-virtual contributions to processes in-
volving partons and photons.
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To make the theory comparable to the particle physics collision experiment, we
need to calculate some fiducial and differential cross sections for various observ-
ables, starting from the Lagrangian of the theory we want to study. The best way
to do so is by using Feynman diagrams; that is, one can draw all diagrams needed
for the process one considers, calculate their values using Feynman rules, and sum
over them. These calculations turn out to be complex in case of high multiplicity
or multiple loops, so some alternative methods are required to simplify them.

3.1. Helicity Amplitudes

We use helicity amplitudes as a basis for the amplitude of the considered process.
To get the scattering matrix element square, one must perform a sum over the
squared helicity amplitudes with all possible helicities. As described in section
2.4, virtual amplitudes can exhibit soft and collinear divergences, which need to
be regularized. We want to regularize our amplitudes using the ’t Hooft–Veltman
scheme [55], which defines the internal momenta inD dimensions and the external
still in 4 dimensions. Because of this, we embed our external states into a Ds

dimensional state space S[Ds], where Ds is taken as the dimensionality of the spin
space for internal particles (Ds ≥ D). We then find the analytic dependence
of the amplitude on Ds and consider the limit Ds → D. External gluon vector
states ε± are embedded trivially [56, 57]

εµj =


εµ±, j ≤ 2, µ < 4

0, j ≤ 2, µ ≥ 4

δµ(j+1), j > 2 .

(3.1)

For the external fermion spinor states uᾱλ we factorize S[Ds] = S[4] ⊗ S[Ds−4] and
set

uᾱα̂λ,i = uᾱλδ
α̂
i , i = 1, . . . , 2Ds/2−2 (3.2)

with λ = ±1
2
so that we in total have 2Ds/2−1 spinor states.

Then the k-th perturbative expansion coefficient M (k) of the amplitude can
be written as a vector in the space of the (Ds − 4)-dimensional tensors vi with
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coefficients M (k)
i , which contain no spinor indices

M (k) =
∑
n

vnM
(k)
n .

For the case of one spinor chain, because of the properties of gamma matrices
[58] we can absorb the S[Ds−4] part of our amplitude into v ∈ S[Ds−4] leaving an
S[Ds−4] scalar M

(k)
0 [57], that is

M (k) = vM
(k)
0 , vβ̂α̂ = δβ̂α̂. (3.3)

The dependence of M (k)
0 on Ds has now to be established. In analogy to the

discussion in reference [59], we find that the second-order of the amplitude’s
expansion can be written as

M (2)(Ds) =
∑2

i=0
K̃i(Ds − 6)i . (3.4)

Just as in equations (3.1) and (3.2) we factorize our Ds metric

gµν[Ds]
= gµν[6] + gµν[Ds−6] , (3.5)

and γ matrices [57]

(γµ[Ds])
bλ
aκ =

{
(γµ[6])

b
aδ
λ
κ , µ < 6

(γ?[6])
b
a(γ

µ−6
[Ds−6])

λ
κ, µ ≥ 6

, (3.6)

with γ? fulfilling {γ?[6], γ
µ
[6]} = 0 and γ?[6]γ

?
[6] = 1. Because there are no momenta

with components in Ds − 6 to contract with, the only objects in the (Ds − 6)-
dimensional chains will be metric tensors gµν[Ds−6]. Diagrammatically they can
be accounted for by adding a scalar particle, which represents the (Ds − 6)-
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dimensional gluon after taking the trace over µi ≥ Ds − 6, as for example

q̄−

q+

γ

γ

γ

= (Ds − 6)0 ×
q̄−

q+

γ

γ

γ

+
(
(Ds − 6)1 + (Ds − 6)2)

)
×

q̄−

q+

γ

γ

γ

, (3.7)

where the loop momenta on the left-hand side are six-dimensional, and the spin
states are Ds-dimensional. The dashed lines represent scalars. The diagrams on
the right-hand side are all evaluated using six-dimensional states only. We end
up with a quadratic function in Ds. Taking the limit Ds → D gives us the desired
result. In the case of a single pair of quarks, for every order of perturbation k
one single coefficientM(k) has to be determined by

M(k) = M
(k)
0 = w0M (k) (3.8)

with (w0)λκ = δλκ .
The helicity amplitudes need to be normalized in order to be Lorentz invariant.

With C = (h1, . . . , hn) the helicities of the amplitude, and v, f± the indices of
the vector-bosons and fermions in the order of C we define [31]

ΦC =
nv∏
i=1

ω
sign(hvi )
vi

nf∏
i=1

ηf−i f+i
, (3.9)

in the case that the corresponding tree-level amplitudeM(0) vanishes and

ΦC =
1

M(0)(1h1
f1
, . . . , nhnfn )

(3.10)

in case of a non-vanishing tree-level amplitude. Here, nv is the number of vector
bosons of the considered process and 2nf the number of participating fermions,
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so that n = nv + 2nf . The corresponding values for ω±i and ηij are

ω+
1 =

[12] 〈32〉
〈13〉 , ω+

i =
〈13〉

〈i1〉2 [12] 〈32〉 for i ≥ 2,

ω−i =
1

ω+
i

, ηij = 〈ikij〉 [kijj] ,
(3.11)

with kij = min{k | k 6= i, k 6= j}. With this spinor weight we can normalize the
amplitudeM(k)(1h1

f1
, . . . , nhnfn ) by

M(k)(1h1
f1
, . . . , nhnfn ) = e3

qΦCM
(k)

(1h1
f1
, . . . , nhnfn ) (3.12)

This definition makesM(k)
(1h1
f1
, . . . , nhnfn ) a Lorentz invariant quantity.

3.2. Color Ordering

The QCD Feynman rules have SU(3) indices in them, which propagate to the
amplitude and can be simplified [60]. As can be seen from the Feynman rules,
the gluon vertices contribute SU(3) structure constants fabc to the amplitude,
whereas quark-gluon vertices contribute SU(3) generators T aij. For now, we keep
the degree 3 arbitrary; that is, we consider SU(Nc) in order not to lose it within
the calculations. The structure constants are defined by

[T a, T b] = i
√

2fabcT c = f̃abcT c , (3.13)

where we always sum over repeated indices here. From equation (3.13) we get

f̃abc =
(
Tr(T aT bT c)− Tr(T aT cT b)

)
. (3.14)

With the normalization Tr(T aT b) = δab, the generators obey the Fierz identity

T aijT
a
kl = δilδkj −

1

Nc

δijδkl . (3.15)

The Fierz identity is helpful because it replaces all the generators within the
propagators of the considered diagram by contractions. For example if we con-
sider the gluon diagram in figure 3.1, the color factor is according to the Feynman
rules

f̃aedf̃ ebc =
(
Tr(T aT eT d)− Tr(T aT dT e)

)(
Tr(T eT bT c)− Tr(T eT cT b)

)
= T aijT

e
jkT

d
kiT

e
lmT

b
mnT

c
nl − T aijT djkT ekiT elmT bmnT cnl

− T aijT ejkT dkiT elmT cmnT bnl + T aijT
d
jkT

e
kiT

e
lmT

c
mnT

b
nl .
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a

d

e

b

c

Figure 3.1.: s-channel leading-order gluon-gluon scattering diagram, the letters
are the color indices of the gluons.

Now we can use the Fierz identity on the propagator with the index e. The
second term in equation (3.15) is suppressed by 1

Nc
, which means contributions

from this factor will be suppressed by 1
N2
c
in the cross section. We leave them

away here, which is the leading-color approximation:

≈ T aijT
b
jnT

c
nkT

d
ki − T aijT djkT bknT cni − T aijT cjnT bnkT dki + T aijT

d
jkT

c
knT

b
ni .

Performing the same calculation in the t- and the u-channel we can find a closed
expression for the whole amplitude, by multiplying every trace with a respective
amplitude calculated from Feynman rules without any color factors, which exactly
cancels the signs of the traces.

M(0)

l.c.(g1g2 → g3g4) =
∑
Sn/Zn

Tr(T σ(1)T σ(2)T σ(3)T σ(4))A(0)(σ(1), σ(2), σ(3), σ(4)) .

(3.16)
These A are called color-ordered amplitudes. They are simpler to calculate be-
cause they have a fixed order of the colored particles. For example, the u-channel
belongs to another color-ordered amplitude than the s- and the t-channel. When
calculating color-ordered amplitudes, we don’t have to deal with the color factors.
The color decomposition of an n-gluon amplitude has the same appearance. With
the rules (3.14) and (3.15), we can find color decompositions for amplitudes with
quarks, uncolored particles like photons and loops. Uncolored particles’ Feynman
rules do not contribute any SU(Nc) generators to the amplitude and can be left
out when performing the color decomposition. Therefore, they also don’t ap-
pear ordered in the partial amplitudes A. The decomposition for the amplitude
M(0)

l.c.(qq̄ → gγ) has a single term

A(0)
l.c.(q1q̄2 → g3γ4) = T aijA(0)(1, 2, 3, 4) , (3.17)

where now A(0)(1, 2, 3, 4) consists of all partonic channels.
We can find a consistent color decomposition for pieces with the same number

of closed fermion loops in the case of loop amplitudes. At leading-color, every
gluon or open fermion loop contributes a factor of Nc and a closed fermion loop
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a factor Nf , which is the number of fermions in the loop, that is [54]

M(k)
(g1, . . . , gn) = (Nc)

k
∑
Sn/Z4

Tr(T aσ(1) · · ·T aσ(n))A(k)(σ(1), . . . , σ(n))

M(k)
(q, q̄, g1, . . . , gn, γ, . . . , γ) = (Nc)

k
∑
Sn

(T aσ(1) · · ·T aσ(n))ij

×A(k)(q, q̄, σ(1), . . . , σ(n), γ, . . . , γ) ,

where the generator string (T aσ(1) · · ·T aσ(n))ij = δij if no external gluons are
present and an Nc factor has to be replaced by an Nf factor for every closed
fermion loop.

3.3. Recursion Relations

We have seen that one can determine the differential cross section for a particle
scattering process up to the desired order in the coupling constant by calculating
the relevant amplitudes and integrating over phase space. The amplitudes, in
turn, can be determined by deriving the Feynman rules from the Lagrangian of
the considered theory, drawing all possible diagrams, and calculating the ampli-
tudes according to the rules. For tree amplitudes, where no integration over the
internal momenta takes place, one can build numerical and analytical recursion
relations to get the amplitude. If we want to have the analytic expression for
an amplitude, we can use a BCFW-type recursion [61, 62]. For numerical eval-
uations, a convenient approach is to use Berends–Giele recursion [63], which we
describe here.
As the amplitude is given by the sum of all Feynman diagrams, we can equiv-

alently write it as

A(ψ1, . . . , ψn) = ψn · J(ψ1, . . . , ψn−1) (3.18)

where ψi are states of the external particles and the product · depends on the
state of the particles, that is it is given by ηµν for gluons or photons or by εαβ for
quarks. J(ψ1, . . . , ψn−1) is called the (n− 1)-current [60] of the amplitude A and
consists of all the Feynman diagrams belonging to the amplitude, without the leg
n. This current can be represented diagrammatically as shown in figure 3.2. The
legs can be gluons, photons or quarks and the blob represents ways allowed by
the Feynman rules to connect the legs. The (n− 1)-current J(ψ1, . . . , ψn−1) can
be obtained from bottom to top, by first defining the 1-currents, then building
2-currents from these using Feynman rules, until we connected all particles to
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J

1
· · ·

n− 1 .

Figure 3.2.: The (n− 1)-current corresponding to the amplitude A(ψ1, . . . , ψn)

obtain the (n− 1)-current. The 1-currents are given by the external states

J(ψi) = ψi . (3.19)

From these, we can build the 2-currents using the Feynman rules, that is we can
build the 2-current J(ψi, ψi+1) from the Feynman rule V for the states ψi and
ψi+1

J(ψi, ψi+1) = V (ψi, ψi+1) . (3.20)

While gluons and quarks are color-ordered, photons can attach everywhere to
a quark line in color-ordered amplitudes, so that if the second particle in the
current is a photon it does not have to be adjacent. While the 1- and (n − 1)-
currents were on-shell, the 2-currents are off-shell and come with a quark or gluon
propagator ∆̃(p), p being the momentum flowing through the propagator.
As for 3-currents, multiple corresponding Feynman diagrams connect the three

particles—the s- and the t-channel in the planar case. Also, we need not to forget
to act with propagators on the off-shell 2-currents. That is, the three-current for
states ψi, ψi+1 and ψi+2 is given by

J(ψi, ψi+1, ψi+2) = V
(
J(ψi), ∆̃(pi+1,i+2)J(ψi+1, ψi+2)

)
+ V

(
∆̃(pi,i+1)J(ψi, ψi+1), J(ψi+2)

)
[+V

(
J(ψi), J(ψi+1), J(ψi+2)

)
] .

(3.21)

Depending on the model, there can also be a four-vertex, as it is the case for
gluons, which is the last line. This graphically can be represented by the diagrams

i+ 1 i+ 2
i

+

i i+ 1
i+ 2

+

 i
i+ 1

i+ 2

 .

From this and other 3-currents, for example J(ψi−1, ψi, ψi+1), we can recursively
construct the (n − 1)-current J(ψ1, . . . , ψn−1). Following the same steps like we
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did to come from 2-currents to 3-currents we get

J(ψ1, . . . , ψn−1)

=
n−2∑
j=1

V
(
[∆̃(p1j)]J(ψ1, . . . , ψj), [∆̃(pj+1,n−1)]J(ψj+1, , . . . , ψn−1)

)
+

[ n−3∑
j=1

n−2∑
k=j+1

V
(
[∆̃(p1j)]J(ψ1, . . . , ψj), [∆̃(pj+1,k)]J(ψj+1, . . . , ψk),

[∆̃(pk+1,n−1)]J(ψk+1, . . . , ψn−1)
) ]
,

(3.22)
where the propagators only appear in front of off-shell currents. J(ψ1, . . . , ψn−1)
can be graphically represented by

∑
j

1 j j + 1 n− 1
· ·· ·· ·

+


∑
jk

1

j

j + 1 k

k + 1

n− 1·

·

··

·

··

·

·


.

3.4. Integration

So with the above recursion relations, we can calculate tree-level amplitudes.
At higher orders of the expansion in the coupling constant, integrals over the
internal momenta appear, and it is a central problem in amplitude calculations
to solve those integrals. If one writes down all the Feynman diagrams appearing
in a one- or two-loop amplitude, there will be many different integrals with some
Lorentz tensors in the numerator. These tensor integrals will then be contracted
with the external states after integration to give the amplitude. It is, in most
relevant cases, impossible or at least time-consuming to calculate those integrals.
Thus, it is beneficial to find a basis for the integrals involved in a process. We
then can write the amplitude as a linear combination in that basis. The basis
should be simple so that the integration can be performed either analytically or
numerically in a reasonable time. For this purpose, integration-by-parts identities
[21] and differential equations [64] turned out to be most useful. We can use the
convenient fact that the integration of total derivatives vanishes in dimensional
regularization, which can be seen by transforming into position space [21] or
by observing that the surface terms disappear if we choose the dimension of
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the internal momenta to be low enough. Because the dimensionally-regularized
amplitude is analytic in D, they also have to vanish in an arbitrary dimension
[55]. One can use an appropriate IBP vector uµ as an insertion of an integral and
calculate the derivative to find relations between integrals of the form

0 =

∫
[d`]

∂

∂`µi

uµ

ρ1 · · · ρn
. (3.23)

Here is a simple example of how to do that [65]. If we take a regularized massive
bubble integral I(α1, α2) with two propagators, the first appearing α1 times and
the second α2 times and choose uµ = `µ, we get

0 =

∫
dD`

iπD/2
∂

∂`µ
`µ

(−`2 +m2)α1(−(`+ p)2 +m2)α2
, (3.24)

to get a relation between those bubble integrals with different numbers αi of
inverse propagators ρ1 = −`2 + m2 and ρ2 = −(` + p)2 + m2 we calculate the
derivatives of the propagators

`µ∂µρ1 = −2`2 = 2ρ1 − 2m2 , (3.25)
`µ∂µρ2 = −2`2 − 2` · p = ρ2 + ρ1 + p2 − 2m2 . (3.26)

That is

0 =

∫
[d`]∂µ

`µ

ρα1
1 ρ

α2
2

=

∫
[d`]

(
δµµ

ρα1
1 ρ

α2
2

− α1

ρα1+1
1 ρα2

2

`µ∂µρ1 −
α2

ρα1
1 ρ

α2+1
2

`µ∂µρ2

)
=

∫
[d`]

(
D

ρα1
1 ρ

α2
2

− 2α1

ρα1
1 ρ

α2
2

+
2m2

ρα1+1
1 ρα2

2

− α2

ρα1
1 ρ

α2
2

− α2

ρα1−1
1 ρα2+1

2

+ α2
2m2 − p2

ρα1
1 ρ

α2+1
2

)
,

so we get

0 = (D − 2α1 − α2)I(α1, α2)− α2I(α1 − 1, α2 + 1)

+ 2m2I(α1 + 1, α2) + (2m2 − p2)α2I(α1, α2 + 1) .
(3.27)

Now we can choose the momentum routing to be in the opposite direction inside
the loop, that is I is symmetrical under the change of α1 and α2, and get a second
equation of this kind with α1 and α2 interchanged. These equations we can solve
for I(α1, α2+1) and I(α1+1, α2) in terms of I(α1, α2) and I(α1−1, α2+1)—that
is in terms of integrals with a smaller total power of propagators. Furthermore,
by looking at equation (3.27) we see that an integral of the form I(α1, 0) can
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be expressed in terms of I(α1 − 1, 0) and thus in terms of I(1, 0). That way
every integral I(α1, α2) in the family can be expressed by only two integrals, for
example I(1, 0) and I(1, 1), which are then the “master integrals” for the vector
space of I(α1, α2). This method can be also used for multi-loop integrals [66, 67]
and can as well be implemented recursively [68], which has been done resulting
in various programs for that purpose [69–72].
With the integration-by-parts method above, we can write an integral as a

linear combination of master integrals. Now we can find other relations to fi-
nally obtain expressions for the master integrals using differential equations [73].
Consider the bubble integral I(α1, α2) from above. The relation (3.27) can be
iterated to be able to write the integral in terms of two master integrals, for
example I(1, 0) and I(1, 1). However, these diverge at least logarithmically, so
a smarter choice might be I(2, 1) and I(3, 0), which are UV-finite. All massive
tadpole integrals can be written down in terms of gamma functions, so to be able
to evaluate I(α1, α2) it remains to calculate I(2, 1). The idea for that is now to
differentiate with respect to the invariants of the integral, say m2. Because m2 is
a linear term in both of the propagators, we get

∂m2I(2, 1) = −2I(3, 1)− I(2, 2) . (3.28)

Now we use equation (3.27) with one time setting α1 = 1, α2 = 2 and one time
α1 = 2, α2 = 1. Adding both results yields

0 = 2(D − 5)I(2, 1)− 2I(3, 0) + (4m2 − p2)
(
I(2, 2) + 2I(3, 1)

)
, (3.29)

which in turn can be solved for the right-hand side of equation (3.28) so that it
only depends on the chosen master integrals I(2, 1) and I(3, 0). This differential
equation is a first-order inhomogeneous differential equation and can be solved
using standard techniques, in particular by series expansion in the dimensional
regulator ε, as

I(2, 1) =
∑

k
εk
∂kε
k!
I(2, 1)

∣∣∣∣
ε=0

. (3.30)

If we have more master integrals, using IBP identities, in general the differential
equations for the basis integrals f = (fi)i depending on the invariants x = (xi)i
can be brought into the form [67]

∂if(ε,x) = Ai(ε,x)f(ε,x) . (3.31)

Equation (3.30) reads in this case

f(ε,x) =
∑∞

k=−p
εkf (k)(x) , (3.32)
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where the maximum pole order is p = 2L with L the number of loops. If we also
expand Ai(ε,x), that is

Ai(ε,x) =
∑∞

k=0
εkA

(k)
i (x) , (3.33)

and plug the both expansions into equation (3.31), we get

∂if(ε,x) = ∂i

(∑
k
εkf (k)(x)

)
=
∑

k
εk∂if

(k)(x)

= Ai(ε,x)f(ε,x)

=
(∑

j
εjA

(j)
i (x)

)(∑
k
εkf (k)(x)

)
=
∑

j,k
εjA

(j)
i (x)εkf (k)(x) ,

(3.34)

that is for example for two-loop, where f (−5) is known to vanish, comparing ε
coefficients we have

∂if
(−4)(x) = A

(0)
i f (−4)(x) ,

∂if
(−3)(x) = A

(0)
i f (−3)(x) + A

(1)
i f−4(x) ,

(3.35)

and so on, so for the finite term we have five coupled differential equations to
solve. It becomes particularly easy to solve those differential equations if we can
bring them in the so-called canonical form

∂if(ε,x) = εAi(x)f(ε,x) . (3.36)

Then equations (3.35) read

∂if
(−4)(x) = 0 ,

∂if
(−3)(x) = Ai(x)f (−4)(x) ,

∂if
(−2)(x) = Ai(x)f (−3)(x) ,

(3.37)

and so on, which means the differential equations decouple and can be solved
order by order. With this, the task of solving differential equations for an integral
basis is shifted towards finding a canonical form for the equations [67].

3.5. Integral Functions

From equations (3.37) we see that the (k− p)-th term of the expansion of f(x) is
given by a k-fold iterated integral, which are called Chen iterated integrals [74].
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We say k is the transcendental weight of the iterated integral. In general, the
coefficients of those iterated integrals are simpler than the coefficients of master
integrals. Also, they are often simpler to evaluate than master integrals. Thus,
in phenomenology rather coefficients of iterated integrals are used than the ones
of master integrals. A Chen iterated integral of transcendental weight k has the
form [75]

hk =

∫ b

a

d logR1 ◦ · · · ◦ d logRk , (3.38)

with ◦ given by∫ b

a

d logR1 ◦ · · · ◦ d logRk =

∫ b

a

(∫ t

a

d logR1 ◦ · · · ◦ d logRk−1

)
d logRk(t) .

(3.39)
Iterated integrals are characterized by the terms Ri. The arguments of the ite-
rated integrals Ri needed to represent an integral basis are called the alphabet
{Wi} of the basis, with Wi being the letters. To find an iterated integral basis,
the alphabet and the Ri have to be found first [76]. In the special case where
the alphabet of the iterated integral basis can be rationally parametrized, the
basis can be given in terms of so-called Goncharov or multiple polylogarithms,
recursively defined by [23, 77, 78]

G(a1, . . . , ak, z) =

∫ z

0

dt

t− a1

G(a2, . . . , ak, t) , and G(z) = 1 , (3.40)

if at least one of the ai does not vanish, or by

G(a1, . . . , ak, z) =
1

k!
logk z , (3.41)

if all ai = 0. Because, in the case of MPLs, the integrations come with only linear
factors, MPL bases relevant for calculations at low loop order can be efficiently
evaluated, and there are multiple tools to do so [79–82]. Because a helicity
amplitude can be written as a linear combination of master integrals, and the
master integrals, in turn, can be written in terms of iterated integrals hi, we
can write the whole amplitude in terms of iterated integrals. For a two-loop
amplitude this means [30, 83, 84]

A(2,j)
h =

∑
i∈B

0∑
k=−4

εkdk,ihi +O(ε) , (3.42)

with hi the MPLs, h the particle’s helicities and j the number of closed fermion
loops. Because also the one-loop amplitudes can be written in the same iterated
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integral basis, the finite remainders R(2,j)
h , which can be obtained from the two-

loop amplitudes using one-loop amplitudes and which are further discussed in
section 3.8 can also be represented using the same iterated integrals

R
(2,j)
h =

∑
i∈B

rihi . (3.43)

MPLs are useful to parametrize four-point amplitudes. Five-point amplitudes
depend on more scales and thus need another parametrization. A basis of iterated
integrals called pentagon functions [25, 36] is available to parametrize all massless
five-point amplitudes. In their role as master integral parametrizations, iterated
integrals like MPLs and pentagon functions are called integral functions.

3.6. Unitarity

Having reduced the occurring integrals as described in section 3.4, a color-ordered
L-loop amplitude can be written in terms of a master integral decomposition

A(L) =
∑

Γ,i
cΓ,iIΓ,i , (3.44)

where the master integrals

IΓ,i =

∫
dD`l

mΓ,i(`l)∏
j∈PΓ

ρj
, (3.45)

with insertions mΓ,i(`l) and the coefficients cΓ,i depend on the propagator struc-
tures Γ, that is, which propagator factors appear in the integrals.
Having talked about integrals IΓ,i, there is the question about how to obtain

their coefficients cΓ,i. For this task we used numerical unitarity [26–29] as it is
described in [30]. In numerical unitarity we consider the integrand

A(2)(`l) =
∑
Γ∈∆

∑
i∈MΓ∪SΓ

cΓ,i
mΓ,i(`l)∏
j∈PΓ

ρj
, (3.46)

with ∆ the set of all possible propagator structures for the process, PΓ the set of
all inverse propagators ρj in Γ, MΓ the set of master integrands and SΓ the set of
surface terms. To get the master integral coefficients cΓ,i with i ∈MΓ we sample
the expression (3.46) on multiple internal on-shell points, meaning points where
`l → `Γ

l so that ρj(`Γ
l ) = 0. Here, the left-hand side of (3.46) factorizes into a

product of tree amplitudes corresponding to the vertices i ∈ TΓ appearing in the
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propagator structure Γ, so that∑
states

∏
i∈TΓ

A(0)
i (`Γ

l ) =
∑

Γ′≥Γ,i∈MΓ′∪SΓ′

cΓ′,imΓ′,i(`
Γ
l )∏

j∈(PΓ′\PΓ) ρj(`
Γ
l )
. (3.47)

Depending on Γ, on the right-hand side we now have to take into account all
propagator structures Γ′ with PΓ′ ⊇ PΓ, which defines a partial ordering Γ′ ≥ Γ
iff PΓ′ ⊇ PΓ. After sampling over different values of `Γ

l we can solve the system
of equations (3.47) numerically for the cΓ,i.
At one-loop this means for example that the pentagon coefficient can be ob-

tained from a single evaluation of the equation∑
states

(
A(0)

1 A(0)
2 A(0)

3 A(0)
4 A(0)

5

)
(`pent) = cpentmpent(`

pent) . (3.48)

Having that coefficient, in order to get the box coefficient for say the box with
legs one and two pinched, one has to evaluate the equation∑

states

(
A(0)

12A(0)
3 A(0)

4 A(0)
5

)
(`box,12) =

cpentmpent(`
box,12)

ρ12(`box,12)
+ cbox,12mbox,12(`box,12) ,

(3.49)
where ρ12 is the propagator between leg 1 and leg 2

1

2

3

4

5

ρ12

−→

12

3 4

5

and to proceed in that manner until one gets the bubble coefficients [27, 59].
The left-hand side of equation (3.47) can be evaluated using off-shell recursion

techniques as in section 3.3. As for the right-hand side, to span the integrand
space, we need the master integrands from MΓ and the surface terms from SΓ

[29]. To find them, we think about what numerator insertions we can have in
general. Numerator insertions have to be Lorentz invariant. Thus they can
be generally parametrized by scalar products of the internal momenta `µl . Valid
factors can be internal momenta, external pµi or vectors n

µ
j in the space transverse

to the space of the external momenta. Some of these scalar products like `2
l will

be canceled by the respective propagator or linear combinations thereof. Thus
integrals with this insertion belong to a propagator structure Γ′ < Γ, that is
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PΓ′ ⊂ PΓ as described before. That means they are not needed to parametrize
the integrand. We use only the scalar products irreducible by propagators (ISPs)
for the integrand parametrization. These ISPs are then our variables.
We want the integrals to be UV-finite. Thus, for every propagator structure,

we cannot go higher than the number of propagators in the polynomial degree of
the ISPs. Their polynomial degree gives us an upper bound on the dimension of
the space of numerator insertions, which we then subdivide into master integrals
MΓ and surface terms SΓ. We determine MΓ and SΓ by generating as many SΓ

as possible. The remaining space is spanned by master integrands, resulting in a
small basis.
To generate the surface terms, we first notice that a loop integral with an `µ

insertion has to be inside the physical space due to Lorentz symmetry. The con-
traction of the integral with a vector from outside of the physical space, such as
µij = `

(D−4)
i · `(D−4)

j then vanishes. Thus, odd multiples of transverse ISPs vanish
and therefore belong to SΓ. Even multiples of these ISPs do not vanish. However,
algorithmically we can bring them into a form, where they vanish by a method
called “traceless completion”. For the remaining surface terms integration-by-
parts as described in section 3.4 is used, that is, we need appropriate IBP vectors
uµi for equation (3.23). However, in order to stay in the same propagator struc-
ture, we use unitarity-compatible IBP relations [85, 86] which are characterized
by the equation ∑

i
uµi

∂

∂`µi
ρk = fkρk , (3.50)

where fk are polynomial functions of the `µi . This condition ensures that we
stay in the same propagator structure. More importantly, we do not generate
doubled propagators, which are not compatible with unitarity. Equation (3.50)
is a syzygy equation, that is, an equation with polynomial coefficients, which can
be solved using algebraic geometry methods [87]. When a set of polynomials f sk
and solutions uµi,s parametrized by s to (3.50) is found, we can generate surface
terms from them. By iteratively applying integration-by-parts r times we see
that if uµi,s solves equation (3.23), then also tr(`)uµi,s with a degree r polynomial
tr(`). For a set of polynomials tr(`) we thus can generate a set of surface terms
by plugging tr(`)uµi,s into equation (3.23)

0 =

∫
[d`]

∂

∂`µi

tr(`)u
µ
i,s

ρ1 · · · ρn

=

∫
[d`]

(
uµi,s

ρ1 · · · ρn
∂

∂`µi
tr(`) +

tr(`)

ρ1 · · · ρn
∂

∂`µi
uµi,s −

∑
k

tr(`)u
µ
i,s

ρ1 · · · ρ2
k · · · ρn

∂

∂`µi
ρk

)
=

∫
[d`]

(
uµi,s

ρ1 · · · ρn
∂

∂`µi
tr(`) +

tr(`)

ρ1 · · · ρn
∂

∂`µi
uµi,s −

∑
k

tr(`)

ρ1 · · · ρn
∑

k
f sk

)
,

55



Chapter 3. Methodology

where we used equation (3.50) in the last step. That is, with a set of IBP
generating vectors uµi,s and a set of polynomials tr(`) for a propagator structure
Γ we can generate a set of surface terms mΓ,(r,s) by [88]

mΓ,(r,s) = uνi,s
∂tr(`l)

∂`νi
+ tr(`l)

(
∂uνi,s
∂`νi
−
∑
k∈PΓ

f sk

)
. (3.51)

3.7. Momentum Twistors

The four-momenta of an n-particle process normally would have 4n free parame-
ters. However, due to Lorentz invariance of the system, there are six parameters
less. Furthermore, every of the n particles obeys the on-shell condition p2

i = 0.
Finally, there is the momentum conservation fixing another four parameters. In
the end we are left with 3n−10 free parameters [89, 90]. These parameters can be
a set of independent Mandelstam invariants sij = (pi + pj)

2. Although it is easy
to get Mandelstam invariants from four-momenta, the parametrization of four-
momenta by Mandelstam invariants results in irrational expressions, which are
harder to handle. The external momenta are conveniently parametrized by so-
called momentum twistor variables [91]. Setting s12 = 1 with ~s = (s23, x, s45, s15)
as parameters we generate the external momenta according to

pµi =
1

2
λ̃Ti σ

µλi , (3.52)

where (
λ1 · · · λ5

µ1 · · · µ5

)
=


1 0 1 1 + 1

x
1 + 1

x
+ x−s23+s45

xs15

0 1 1 1 1
0 0 0 s23

x
1

0 0 1 1 1− s45

s23

 (3.53)

four a five-point or with ~s = (s, t)

(
λ1 · · · λ4

µ1 · · · µ4

)
=


1 0 −1

s
−1
s
− 1

t

0 1 1 1
0 0 1 0
0 0 0 1

 (3.54)

for a four-point process with

λ̃i =
〈i, i+ 1〉µi−1 + 〈i+ 1, i1〉µi + 〈i− 1, i〉µi+1

〈i, i+ 1〉〈i− 1, i〉 (3.55)
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where 〈i, j〉 = det({λi, λj}) and [i, j] = det({λ̃j, λ̃i}). After the calculation has
been performed, the dependence of the result on s12 can be obtained from dimen-
sional analysis. The twistor parametrization naturally rationalizes the square
root tr5 of the Gram determinant ∆5 of the independent momenta participating
in the process

(tr5)2 = (pi · pj)i,j=1,...,4 = ∆5 , (3.56)

where tr5 is given by
tr5 = 4iεµνρσpµ1p

ν
2p
ρ
3p
σ
4 . (3.57)

Here ε(p1, p2, p3, p4) = εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 , with εµνρσ the Levi–Civita symbol.

3.8. Pole Structure

Virtual QCD amplitudes have UV, soft and collinear poles. While the UV poles
are canceled by renormalization, the IR, so the soft and collinear poles, still
appear in the renormalized amplitudes. The IR pole structure of virtual QCD
amplitudes is known explicitly up to the second order in the strong coupling
constant expansion [92]. One can view the soft divergence of a one-loop diagram
by inserting a soft gluon between two legs i and j [93]. As explained in section
3.2 about color ordering, this brings a factor of T acici′T

a
cjc′j

to the tree amplitude.
Also, after integration, dimensional regularization as in section 2.4 gives a factor
of the form 1

ε2

(
− µ2

sij

)ε
+O(1/ε). That is, at most double poles appear at one-loop

and that means quartic poles will appear at two-loop order. Performing the color
algebra results in [54]

A(1)
R = I(1)(ε)A(0)

R +O(ε0) , (3.58)

with

I(1)(ε) = − eγEε

Γ(1− ε)
n∑
i=1

γai,ai+1
(−si,i+1 − iε)−ε (3.59)

at µ = 1. The color factors γai,ai+1
depend on the partons ai and ai+1.

Similarly, the renormalized two-loop amplitude can be written in the form

A(2)
R = I(2)(ε)A(0)

R + I(1)(ε)A(1)
R +O(ε0) , (3.60)

with

I(2) = −1

2
I(1)(ε)I(1)(ε)− β0

Ncε
I(1)(ε) +

e−γEεΓ(1− 2ε)

Γ(1− ε)

(
β0

Ncε
+K

)
I(1)(2ε) + H(ε),

(3.61)

57



Chapter 3. Methodology

where
K =

67

9
− π2

3
− 10Nf

9Nc

. (3.62)

Like the color factors γai,ai+1
, the operator H(ε) depends on the particles involved

in the process. In section 5.2 we will give the color factors relevant for three-
photon production.
Looking at equations (3.58) and (3.60) we see that the genuine one- and two-

loop information of the respective amplitudes is within the finite remainders R(l)

given by

R(0) = A(0)
R ,

R(1) = A(1)
R − I(1)A(0)

R +O(ε),

R(2) = A(2)
R − I(1)A(1)

R − I(2)A(0)
R +O(ε) .

(3.63)

3.9. Functional Reconstruction

The analytic form of the master integral coefficients cΓ,i as in equation (3.44)
or the remainder coefficients ri of the integral functions hi as in equation (3.43)
can be functionally reconstructed, as described in references [30, 83]. Where
four-point results can be reconstructed in one variable, for five-point processes
we use the twistor parametrization (3.52), which naturally rationalizes tr5. As
tr2

5 = ∆5, the coefficients are at most linear in tr5. Because of that, for every
coefficient cΓ,i, we need two evaluations to probe the tr5 dependence—one with
sign tr5 = str5 = 1 and one with str5 = −1. The flip tr5 → −tr5 is accomplished
by

x→ x̄ =
s23(s23 − s45 − s15)(s45 − s23 + x)

(s45 − 1)s15x− s23(s23 − s45 − s15 − x)
. (3.64)

The tr5 dependent coefficients cΓ,i(~s, tr5) are then given by

cΓ,i(~s, tr5) = c+
Γ,i(~s) + tr5c

−
Γ,i(~s) , (3.65)

where
c+

Γ,i(~s) =
1

2

[
cΓ,i

(
~s(x)

)
+ cΓ,i

(
~s(x̄)

)]
,

c−Γ,i(~s) =
1

2tr5

[
cΓ,i

(
~s(x)

)
− cΓ,i

(
~s(x̄)

)]
.

(3.66)

First, we want to find the denominators of c±Γ,i(~s). To this end, we make an ansatz

c±Γ,i(~s) =
n±Γ,i(~s)∏
jW

qji (~s)
, (3.67)
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with Wi being the letters of the alphabet of our integral basis. To find the
denominators, we consider curves through the parameter space {~s(t)} so that the
invariants are linear in t and every letter Wi of the alphabet is a distinct function
Wi(~s(t)) of the parameter on that curve. We then reconstruct c±Γ,i(~s(t)) using
Thiele’s method. To this end, we have to numerically evaluate the amplitude
multiple times, where the evaluations are performed in a finite field. Thiele’s
method works as follows [94]. Given y0, . . . , yN we write a rational function f(x)
as a continued fraction

f(x) = a0 +
x− y0

a1 + x−y1

···+x−yN−1
aN

= a0 + (x− y0)

(
a1 + (x− y1)

(
· · ·+ x− yN−1

aN

)−1
)−1

. (3.68)

As seen from equation (3.68), when one evaluates f(y0), the whole second term
vanishes and one obtains a0. Then with a0 being known, evaluating at y1 gives
us a1. Thus, one gets the unknown coefficients ai by iteratively evaluating

a0 = f(y0), a1 =
y1 − y0

f(y1)− a0

, . . . , aN+1 = 0. (3.69)

Having obtained the analytic form of c±Γ,i(~s(t)), we match the denominator against
the letters Wi(~s(t)). This way, we never have to use multivariate reconstruction
of rational functions, although it would be possible with Peraro’s method as
described in reference [94]. Next, we need to reconstruct the polynomials nΓ,i

in four variables for a five-point process, for which we use the Newton method
[94]. Because we chose the invariants to be linear in t during the application
of Thiele’s method, we know the degree R of the nΓ,i, which tells us how long
the reconstruction will need. The reconstruction of a polynomial works using
Newton’s method. Given y0, . . . yN we write a polynomial p(x) using Newton’s
formula

p(x) = a0 + (x− y0)
(
a1 + (x− y1)

(
· · ·+ (x− yN−1)aN

))
. (3.70)

One sees, if we evaluate at y0 then we get the coefficient a0. Knowing a0, we can
get a1 by evaluating at y1 and so on, that is

a0 = p(y0), a1 =
p(y1)− a0

y1 − y0

, . . . , aN+1 = 0 . (3.71)

59



Chapter 3. Methodology

For two variables we write

p(x1, x2) = a0(x1) + (x2 − y0)
(
· · ·+ (x2 − yN−1)aN(x1)

)
(3.72)

and reconstruct

a0(x1) = p(x1, y0), a1(x1) =
p(x1, y0)− a0(x1)

y1 − y0

, . . . (3.73)

That is, we can reconstruct a polynomial p(x1, . . . , xk) recursively, by looking
at it as a polynomial in one variable with coefficients a(x1, . . . , xk−1). For a
reconstruction of a dense degree R polynomial in n variables (n+R

n ) evaluations
are needed.
With the above procedure we arrive at an analytic result for the coefficients cΓ,i

from equation (3.44) or ri from equation (3.43) in a finite field, which we want to
lift to the rational numbers. The lifting is possible with a single finite field if the
rational numbers in the lift’s image are not too large. To assure that, we decom-
pose the finite field result into partial fractions using a variant [30] of Leinartas’
algorithm [95]. This approach is still insufficient for some rational numbers to
lift to them using only one finite field evaluation, so we numerically evaluate the
amplitudes in a few different finite fields. Knowing the function shape of the co-
efficients from the functional reconstruction, we can deduce the missing numbers
in these finite fields, which eventually allows us to fix the coefficients in all finite
fields without functionally reconstructing them a second time.
Since the coefficients of the finite remainder decomposition ri as in equation

(3.43) in general have a smaller polynomial degree and fewer terms as functions
of the Mandelstam invariants than the master integral coefficients cΓ,i, it is often
desirable to reconstruct these.
Recently, the authors of reference [31] could assemble the methods mentioned

in this chapter to a publicly available code called Caravel, which is described
in the next chapter.
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Caravel is a C++-17 framework for the numerical evaluation of multi-loop
amplitudes based on the numerical unitarity method. It also provides interfaces
for the evaluation of master integrals as well as functional reconstruction tools.
It has been used to determine the analytic coefficients of the integral-function
decomposition of the remainders of five-parton amplitudes in the Euclidean region
in the computations [30, 83] and coefficients for the four-graviton amplitudes
[88]. A vital part of this work focuses on constructing this library which we
have published in reference [31]. Furthermore, we implemented the required
components for evaluating amplitudes involving photons numerically and for the
reconstruction of the coefficients of these amplitudes and the corresponding finite
remainders.
In Caravel, an integrand of an amplitude is parametrized based on reference

[29], as explained in section 3.6. Through this parametrization, its decomposition
coefficients directly correspond to the coefficients of a basis of master integrals.
If one can evaluate the chosen basis integrals, with the coefficients delivered by
Caravel one can get the full amplitude on a given phase space point.
Through numerical unitarity, Caravel determines the coefficients of the master-

integrand decomposition by solving a linear system of equations combining needed
on-shell limits. Depending on the task one wants Caravel to perform, it relies
on external software. Also, some parts of the calculation are process-dependent
and are not automatically generated, such as the surface terms or the embraced
cut diagrams and their hierarchy. The library needs them as external input.
In this chapter, we present the internal structure of Caravel, technical details

for its installation, dependencies, validation of the code, and a series of examples
to showcase the usage of the library. We emphasize aspects, which are relevant
for the computation of amplitudes involving photons.

4.1. Modules

As numerical unitarity is model-independent, we developed Caravel to have
the functionality to allow the usage of multiple theory models. Also, for different
physical applications, there are often multiple approaches, where each of them
has advantages for one application and disadvantages for another. Caravel
was designed to be highly modular. With this modularity, it is easier to add new
physical models on the one hand and implement different features in multiple ways
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on the other hand and then use the best one depending on the task. Moreover,
one can decide what modules to include before compilation, such that the built
version of Caravel does not become unnecessarily large. In figure 4.1 we show
the main modules of Caravel and on what they depend. A red arrow means
that a component produces certain results, and a blue arrow that a component
expects some given input. The modules with red boxes around them need external
input produced by other means. GraphLibrary with the red background is
a module designed to process and classify graphs. It is needed to define the
propagator structures Γ highlighted in red in figure 4.1. The black arrows mean
dependencies. OnshellStrategies is an example of a module implemented in
multiple ways with a possibility to choose one, depending on whether one wants
to calculate in floating-point or finite field numbers.
In the following, we describe the functionality of the modules and how they

are related to each other.

Core: This is the module offering basic objects that most other modules need.
Every other module depends on the Core module. Here, the types one can
select for the states and momenta in Caravel are defined, such as floating-
point, finite field, or arbitrary-precision rational. Additionally, interfaces
to internal or external linear algebra tools, which work in floating-point
precision or finite fields, are implemented here. This module also includes
classes to represent kinematical objects in D-dimensional Minkowski space
like spinors and vectors, which are, for example, needed for the calculation
of tree amplitudes and ‘cuts’—that is, products of trees—like on the left-
hand side of equation (3.47).

GraphLibrary: This is also an essential module, which allows the classification
of graphs. For example, the cut diagrams Γ are internally represented
as graphs, and a partial ordering is defined on them dependent on how
many propagators are present. The tree diagrams in the vertices of the cut
diagrams, which in the on-shell limits are calculated via recursion relations,
are also represented by graphs dressed with the particle properties. These
objects are all inherited from a basic graph class.

FunctionalReconstruction: This module is used in the outermost shell of a cal-
culation for the reconstruction of the analytic form of the coefficients cΓ,i

from equation (3.44) or ri from equation (3.43). Here, the univariate re-
construction of rational functions as well as the multivariate reconstruction
of polynomials is implemented, as needed to get the analytic form of the
coefficients cΓ,i or ri. Tools for parallelization through the Message Passing
Interface (MPI) and multithreading are included.

OnShellStrategies: Here, tools are implemented to calculate on-shell loop mo-
menta `Γ

l for one- and two-loop propagator structures Γ. These are needed
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∑
states

∏
i∈TΓ

Atree
i (`Γ
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Γ
l )∏

j∈(PΓ′/PΓ) ρj(`
Γ
l )
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A(L) =
∑
Γ∈∆

∑
i∈MΓ

cΓ,i · IΓ,i

A(L) =
k∑

j=−2L

∑
i∈B

di,j · hi εj + O(εk+1)

Forest OnshellStrategies FunctionSpace

Coefficient providers

FunctionalReconstruction Integral providers

Core

Figure 4.1.: Here, the internal structure of Caravel is shown. Dependencies
of the modules are indicated by black arrows, input by blue arrows,
and output by red arrows. The module GraphLibrary classifies the
graphs for the propagator structures Γ written in red. Every module
depends on the Core module.
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on both sides of the cut equation (3.47). On the one hand, to evaluate the
tree vertices on the left-hand side of equation (3.47) by the Forest module,
where the internal legs of each amplitude are determined using OnShell-
Strategies. On the other hand, to evaluate the integrands mΓ,i, which are
provided by the FunctionSpace module. The module has a strategy de-
sign pattern allowing to add strategies that might suit future purposes, such
as massive propagators. So far, there is a finite field strategy called surd
parametrization, which is described in reference [96] and the osm strategy
for floating-point kinematics which is described in appendix B.

Forest: In the on-shell limits as in equation (3.47), the integrand of the amplitude
can be represented by a product of trees A(0)

i . In the Forest module,
these tree-level amplitudes are implemented in terms of a Berends–Giele
[97] recursion, as described in section 3.3. Because some legs of the vertices
represented as trees are loop legs, the recursion is written in Ds dimensions.
According to the ’t Hooft–Veltman scheme [55] the external particles are
kept four-dimensional. The module is divided into the generation of the
needed recursions by the Forest class, which does not use phase space
information, and an evaluation of the trees by the Builder class template.
Depending on the type of the provided external momenta, it is initialized for
finite field types, arbitrary precision using GMP, or multiple fixed precision
types using the QD library. The Forest class decides how the trees A(0)

i are
constructed depending on a set of Feynman rules defined in a Model class.

FunctionSpace: Here the master integrands as well as surface terms mΓ,i(`l) as
in equation (3.46) are implemented alongside with the relevant numerator
insertions, such as Mandelstam invariants, inverse propagators, or µ inser-
tions, see section 3.6. The code for these insertions is generated alongside
with the Integral providers using the external tools described later in
section 4.5.

Integral providers: Multiple sets of integrals are included in Caravel. At first,
there are the integrals from reference [98] in the class IntegralsBH which
were being used for NLO Wbb̄ + jet predictions and thus have massive
propagators and are also available in the physical region. Then there are
two-loop four-point integrals in terms of MPLs, which can be evaluated
using GiNaC [79]. Finally, there are the integrals from reference [30, 83] for
two-loop five-point processes in the Euclidean region.

Coefficient providers: This module uses the Forest module to calculate the
left-hand side of the linear system of equations (3.47) and solves it for the
coefficients cΓ,i. In the one-loop case, there is the generic AmpEng class,
which can do the task without additional input. For the case of two-loop
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amplitudes, there is the AmplitudeCoefficients class, which depends on
input from the external process-library module, which holds information
on the propagator structure hierarchy ∆ and the color structure of the
amplitude.

PhaseSpace: Here the momentum twistor parametrizations as in section 3.7
for four-, five-, or six-point kinematics are implemented. A hard-coded
example phase space point from reference [99] is implemented for the five-
point case. Functions to get the Mandelstam invariants and tr5 from a
momentum configuration are implemented here for four-, five-, and six-
point kinematics.

PoleStructure: Here, the known pole structure [92] of the one- and two-loop
amplitudes is implemented, as described in section 3.8. A sound consistency
check for amplitudes for new processes is whether they exhibit the known
pole structure, which can be tested using this module. The checks are
performed on the level of integral functions, so the module relies on the
Integral providers module. The module can subtract the pole structure
from the respective amplitudes to produce finite remainders as in equation
(3.63) as input for the FunctionalReconstruction module.

4.2. Installation and Configuration

Before going public, some results, as the analytic five-gluon [83], five-parton [30]
and four-graviton [88] amplitudes, were obtained using Caravel. The public
version available now [31] showcases these calculations. To obtain the Caravel
repository, to build it in a build subdirectory of the repository directory, and to
install it at the path <install-dir>, one has to run the following commands.

1 > git clone https://gitlab.com/caravel-public/caravel.git
2 > cd caravel
3 > mkdir build
4 > cd build
5 > meson .. -Dprefix=<install-dir>
6 > ninja
7 > ninja install

Listing 4.1: Commands to clone and install Caravel.

Further information on the installation of Caravel can be found in the file
INSTALL.md in the root directory of the repository, see also section 4.4.
If one installs Caravel as suggested in listing 4.1, only the basic modules

like Core and Forest are going to be available. The functionality to perform
calculations in finite fields or floating-point precision higher than double precision
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and the integral libraries are optional. Thus, with the default setting only tree
amplitudes can be calculated. One can then add and remove modules with the
following command.

> meson configure -D <opt1>=<val1> -D <opt2>=<val2> ...

The list of configuration options can be shown running

> meson configure

without specifying options. The output of meson configure shows the available
compiler settings and options specific to Caravel. Using the compiler settings
one can for example increase the optimization by using -Doptimization=3.
Next we describe the available options.

caravel-debug: With this option one can make Caravel print additional infor-
mation when it runs. Users can create a file debug.dat in the execution
directory where they are to specify the file and function from which they
want to see more output. For example, adding the line

IntegrandHierarchy.cpp finish_construction

to debug.dat will make Caravel print out the cuts used for the two-loop
amplitude one computes together with information about their relations in
the hierarchy ∆. Lines in debug.dat can be commented out using # in
front.

double-inverter: To solve the linear system of equations (3.47) in floating-point
precision, Caravel relies on the external linear algebra library Eigen [100].
Alternatively, for double precision calculations, one can use LAPACK [101].
In the case of LAPACK, users can set the path to the library with the
lapack-path option in case it cannot be found by meson.

finite-fields: Users must activate this option if they want to perform calculations
in finite fields. It will initialize the classes depending on kinematics with
the finite field type and compile functions implemented differently for finite
fields, such as the solutions of linear systems of equations. For this option
to work the GMP [102] library has to be available and seen by meson.

field-ext-fermions: This option has to be set if one wants to calculate ampli-
tudes involving fermions using finite field arithmetic because the option
applies fermion-specific changes to the code. When fermions are involved,
during numerical evaluations, the Forest currents need to be algebraically
extended to be able to deal with square roots stemming from the generation
of on-shell momenta.
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gravity-model: With this option, one can select which gravity models to compile.
To reproduce the results from reference [88] one has to set this to Cubic,
which activates the compilation of the cubic Einstein–Hilbert gravity model
[103].

precision-QD: By default, floating-point calculations are performed in double
precision. With this option, Caravel can increase the precision using the
external QD [104] library to double-double or quadruple-double precision.
For even higher precision, the option precision-arbitrary can be used. In
this case, instead of the QD library, the GMP [102] and MPFR [105] libraries
are required.

integrals: When one wants to not only calculate master integral coefficients,
but coefficients dk,i of integral functions as explained in section 3.5, the
IntegralLibrary module has to be compiled, which is done with this op-
tion. One can further select whether a representation with MPLs requiring
GiNaC [79] for four-point amplitudes or a representation with pentagon func-
tions requiring the pentagon-library [25] for five-point amplitudes shall
be used, with the respective values goncharovs and pentagons. For the
three-photon production in this work, Caravel rather produces output
compatible with the PentagonFunctions++ [36] library. The correspond-
ing functionality is selectable by setting integrals to pentagons-new.

doxygen: With this setting an HTML documentation of the Caravel routines
will be compiled. It can then be found under

<install-dir>/share/doc/Caravel/html/index.html

The documentation requires the external Doxygen [106] package to be in-
stalled on the system.

ds-strategy: Here, one can set how the Ds-dependence of the amplitudes shall
be obtained. It is either by particle content as described in section 3.1 or by
determining the coefficients of the amplitude as a Ds polynomial through
multiple evaluations in different Ds values. While the first approach is
faster, it is currently not implemented for gravity calculations.

instantiate-rational: With this option, various functions can be called directly
using rational numbers rather than finite fields in exact calculations. This
option is only of use when obtaining numerical results.

timing: With this option at the end of execution Caravel will show how much
time was needed for the steps of the calculation. That is, it will show in
particular how long the off-shell recursion, the inversion of the linear system
of equations (3.47), and the evaluation of the surface terms have taken.
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Caravel can be used for different purposes which need different modules, like
floating-point calculations versus finite field calculations, numerical evaluations
versus functional reconstruction, or QCD amplitudes versus gravity amplitudes.
Thus, often only a fraction of the listed options need to be activated for a specific
task.

4.3. Tests

Caravel comes equipped with several test suites. That way, developers can rig-
orously check whether they broke some functionality while introducing another.
To run the tests on the Caravel installation, after running ninja install
the command meson test or ninja test has to be executed. The tests per-
formed are separated into four test suites. The first is the suite unit_test,
which contains fast tests that make simple consistency checks. There is a sepa-
rate integrals test suite, which compares the implementation of the integrals
against reference values. The third is the suite big_test, with tests that check
complete modules for consistency. The fourth is the suite full_amplitudes,
with tests investigating whether some four- and five-gluon amplitudes reproduce
the results from reference [54]. The suites can be selected individually by typing

> meson test --suite Caravel:<suite name>

Depending on the chosen options at installation as described in section 4.2, Car-
avel will be installed with different modules. Thus, Caravel performs more or
fever tests depending on the options. All available tests can be run by executing

> ninja test

Next, we describe the tests included in each suite.

unit_test: This suite checks the individual building blocks of Caravel for con-
sistency. If the user did not select any options, no integral representations,
gravity models, or extensions specific to fermions in Ds dimensions would
be installed. It would still be possible to calculate tree amplitudes with
floating-point precision. In this case, Caravel can still perform various
unit tests because they are made to check a specific functionality with few
dependencies on other modules. In particular, the GraphLibrary will be
checked for consistency, the input parser dealing with the command-line
options passed to Caravel, as well as the vector boson implementation,
which is valid for every value ofDs. Although no integral representations are
available with that choice of options, the integral classes and methods are
installed, and multiple checks for their consistency as well as their decompo-
sition into integral functions are performed inside MasterIntegral_test.
Furthermore, suppose a set of integrals has been made available by enabling
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the according integrals option. In that case, it becomes possible to check
the implementation of the pole structure of amplitudes and its subtrac-
tion to determine finite remainders according to equations (3.63) using the
PoleStructure and Remainder unit tests. The pole structure and remain-
der checks are done on the level of integral functions, for which at least
one set of integrals has to be available. To this end, some pole operators
are checked for consistency, and the poles of partonic amplitudes are cal-
culated without amplitude evaluation. In particular, the option field-ext-
fermions and time-consuming coefficient determination are not needed to
check the pole subtraction.

Gravity models like the Einstein–Hilbert model are heavy and thus not
activated by default. As soon as at least one gravity model is installed, the
tensor algebra needed to deal with graviton states, including corresponding
completeness relations, is going to be checked for consistency inside the
tensorbasis test.

With the installation option finite-fields Caravel gains multiple appli-
cations. With this setting, the exact fermionic Clifford algebra as described
in appendix A becomes available and is checked for consistency. Moreover,
it becomes possible to functionally reconstruct amplitude and remainder
coefficients as described in section 3.9, so with the option finite-fields set
to true, simple reconstructions using Peraro’s as well as Thiele’s algorithm
[94] are performed. As described in section 3.9, the reconstruction of am-
plitude coefficients is simplified by the fact that their denominators are
polynomials in the alphabet of the integral basis. Caravel can determine
the denominator by reconstructing it in one variable and then fitting the
alphabet’s letters to it. This functionality is also checked by fitting the
denominators of a known test function inside of the guess_denominators
test, which is enabled when running the unit test suite with the option
finite-fields selected.

integrals: Running this suite checks the implementation of the integrals selected
during installation. Integrals available to select are the massive one-loop in-
tegrals defined in all physical regions from the BlackHat library, Goncharov
polylogarithms evaluated with the help of GiNaC for 2 → 2 processes, or
pentagon functions for 2 → 3 processes. If Goncharov polylogarithms are
available, that is, the option integrals set at least to goncharovs, Car-
avel will perform consistency checks on them. Also, it will check some
simpler constants and functions, like the logarithm, against reference val-
ues. As the evaluation of Goncharov polylogarithms depends on GiNaC, the
Caravel–GiNaC interface will also be checked when running this test suite.
Similarly, if integrals is set to all or to pentagons, the available massless
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five-point integrals in the Euclidean region are checked against reference val-
ues. As described in section 4.4, these tests rely on the pentagon-library
and thus check Caravel’s pentagon-library interface.

big_test: This suite consists of fewer tests, where each checks the interplay
between multiple modules. It should be run when the correct performance
of the individual classes has been verified with appropriate unit tests. As
mentioned, it is possible to calculate tree amplitudes with Caravel with
no additional options selected during installation. With these settings,
the big_test suite checks some partonic tree amplitudes against reference
values. It also checks gluonic MHV amplitudes against simple analytic
expressions from reference [107].
While there have been unit tests for simple graviton amplitudes, selecting
a gravity model makes respective tree amplitudes with up to six gravitons
available as a big test to check against reference values.
For the determination of loop amplitude or remainder coefficients, some
linear algebra functionality has to be installed to invert the linear system
of equations (3.47). If this is the case, in particular if LAPACK or Eigen is
available to Caravel, one-loop partonic amplitudes can be checked against
results from BlackHat. Also, the automatic one-loop or two-loop four-point
Coefficient provider AmpEng is checked. In particular, the coefficient de-
termination is tested by extracting the sunrise coefficient of a four-gluon
process, thus checking the proper implementation of the whole propagator
hierarchy. A similar check for non-planar propagator structures is per-
formed with a four-graviton process if the cubic Einstein–Hilbert model is
available.
If the option integrals was set at least to pentagons, the interface to the
pentagon-library is tested, comparing the evaluation of selected pentagon
functions against reference values.
Again, if the option finite-fields is set to true, Caravel can perform more
tests. Additional checks on gravity tree amplitudes become possible. Also,
partonic one-loop amplitudes are checked against the results of reference
[54] using either the IntegralsBH implementation of the integrals with
1L_with_IntegralsBH, or using GiNaC if the option integrals was set at
least to goncharovs with 1L_QCD_Amplitudes. For sufficient precision of
intermediate expressions, this check needs the option precision-QD to
be set to HP. This test involves all of the off-shell recursion mechanisms for
partonic amplitudes to calculate the left-hand side of (3.47), thus providing
a check for this part of Caravel.
If the option integrals was set to pentagons and finite fields are avail-
able, a full remainder calculation for the single-minus two-loop five-gluon
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amplitude is performed. Caravel then checks that the poles can be
reproduced by the strategy described in section 3.8. This test is called
mpppp_remainder_check and is the most extended check performed in this
suite at the same time testing the whole numerical part of Caravel for
QCD amplitudes.

If integrals are set to goncharovs and finite fields are available, one-loop
checks against reference values for the three available gravity models are
performed. Also, now a reconstruction of a gluonic four-point MHV am-
plitude is performed, testing the functional reconstruction capabilities of
Caravel in one variable.

full_amplitudes: In this suite, selected complete two-loop amplitudes are cal-
culated numerically and checked against values from reference [54]. The
individual tests first reproduce the values from reference [54]. After that,
every master integral coefficient up to finite order in the regularization pa-
rameter is checked against individually. The comparison of the coefficients
allows finding errors specific to individual propagator structures more ef-
ficiently. Every of the checked amplitudes needs the option finite-fields
to be activated. If the option integrals is set to goncharovs, four-point
amplitudes are going to be checked and if it is set to pentagons, five-point
amplitudes are going to be checked. If the option field-ext-fermions is
activated, in addition to gluonic amplitudes, amplitudes involving quarks
are checked. In the cases where the coefficients can be compared exactly,
the amplitudes are compared to benchmark values with a tolerance ranging
from three digits for an MHV gluonic five-point amplitude to nine digits
for partonic four-point amplitudes. The amplitude tests are all executed by
the same example code, which is presented in section 4.6 and was extended
with the checks of amplitudes and individual master integral coefficients.

The unit tests and the integral tests are located in the unit_tests directory and
the big tests as well as the full amplitude tests in the tests directory. In addition
to be part of a suite, every test can be run individually when executing

> meson test <test name>

For example, to check Caravel against available one-loop values one has to run

> meson test 1L_QCD_Amplitudes

For this test to be available the option finite-fields has to be activated, the
option precision-QD to be set at least to HP and the option integrals to be set
to all or goncharovs during installation.
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4.4. Dependencies

Notes on Caravel’s dependencies are available with the files README.md and
INSTALL.md from the Caravel repository. Here we give further hints on their
installation and where the dependencies are needed.

meson and ninja: As we described in section 4.1, Caravel consists of multiple
modules. Each of these modules, in turn, consists of multiple individual
files. This distinction makes the compilation of Caravel nontrivial so
that we rely on building automation for that task. To build Caravel,
we use the meson build generator [108]. In comparison to the widely used
autotools [109], meson’s build files are easier to read and understand. Fur-
thermore, we compared the compilation time of Caravel with meson with
respect to autotools at an early stage of development. In this compari-
son, Caravel was build considerably faster using meson than autotools.
meson is available publicly [108] and depends itself on Python 3 [110]. If
the Python package installer pip [111] is used, meson can be integrated in
the available Python system by running

> sudo pip install meson

for the whole operating system or by running

> pip install --user meson

for the user who is executing the command.

In contrast to autotools, meson does not create build strings to be executed
by a shell itself but relies on other low-level tools based on Python. As a
back end to meson, we use the build system ninja [112] for this task. ninja
is available publicly [112]. Like meson, it can conveniently be installed using
pip by running

> sudo pip install ninja

for the whole operating system or by running

> pip install --user ninja

for the user who is executing the command.

With meson and ninja installed on the system, Caravel can be installed with
the minimal set of functionality. For some tasks, however, additional software
libraries are needed. In particular, Caravel needs additional libraries for ex-
act and high-precision floating-point calculations, for the inversion of the linear
system of equations (3.47), and the evaluation of master integrals.
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QD: Without any extension, Caravel can produce results in double floating-
point precision. These can exhibit limited accuracy, so that one might be
interested in performing calculations with more precise floating-point arith-
metic. For this task, Caravel uses the QD [104] library, which efficiently
implements the double-double and quadruple-double types. It is available
publicly [104]. To do so and to install QD, the commands in listing 4.2 can
be used.

1 > wget https://www.davidhbailey.com/dhbsoftware/\
2 > qd-2.3.22.tar.gz
3 > tar -xzf qd-2.3.22.tar.gz
4 > cd qd-2.3.22
5 > autoreconf -i
6 > ./configure --prefix=<install-dir> --enable-shared=yes
7 > make
8 > make install
Listing 4.2: Commands to download, build and install the QD library

The appropriate initializations and methods inside Caravel can be acti-
vated using the precision-QD option as described in section 4.2.

GMP and MPFR: If more than quadruple-double precision is needed, Caravel
can produce arbitrary precision results using the MPFR library [105]. MPFR
is a C library and Caravel uses a C++ wrapper [113] to access it. The
wrapper comes with Caravel and does not need to be installed addition-
ally. MPFR in turn depends on the GMP library [102] for the treatment of
large integer numbers. GMP is available publicly [102]. MPFR should come
with version higher than 4.0.0 and GMP with version higher than 6.2.0 in
order for Caravel to work properly. As described in section 4.2, arbi-
trary precision calculations can be enabled using the installation option
precision-arbitrary. To install GMP 6.2.1, the commands in listing 4.3
can be used.

1 > wget https://gmplib.org/download/gmp/gmp-6.2.1.tar.xz
2 > tar -xf gmp-6.2.1.tar.xz
3 > cd gmp-6.2.1/
4 > mkdir build
5 > cd build
6 > ../configure --prefix=<install-dir> --enable-cxx
7 > make
8 > make install
Listing 4.3: Commands to download, build and install the GMP library
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When installing GMP, the newest version number can be found in reference
[102] and then used instead of 6.2.1 in the commands of listing 4.3. When
GMP is available, to install MPFR, 4.1.0 the commands of listing 4.4 can be
used.

1 > wget https://www.mpfr.org/mpfr-current/mpfr-4.1.0.tar.gz
2 > tar -xzf mpfr-4.1.0.tar.gz
3 > cd mpfr-4.1.0/
4 > mkdir build
5 > cd build
6 > ../configure --prefix=<install-dir> \
7 > --with-gmp=<gmp-install-dir>
8 > make
9 > make install
Listing 4.4: Commands to download, build and install the MPFR library

Same as for GMP, the newest version number of MPFR can be found in ref-
erence [105] and then used instead of 4.1.0 in the commands of listing 4.4.
GMP is also used in the context of rational numbers arithmetic. Here, the
numerators and denominators of some master integral coefficients exceed
the 64 bit available to machine integer variables and are represented by
particular arbitrary precision types. For this task, Caravel uses arbitrary
size numbers represented by the classes BigRat and BigInt, which in turn
rely on the GMP library.

Eigen: Starting from one-loop amplitudes, to solve the linear system of equa-
tions (3.47), we need to invert the matrix mΓ′,i(`

Γ
i ) containing the prop-

agator structure specific integrands, as has been described in section 3.6.
The inversion is done in various ways, dependent on the field used in the
calculation. For floating-point precision the inversion is performed through
a PLU decomposition of the matrix using Eigen [100] by default. Eigen is
a templated linear algebra library and, as such, can invert matrices with en-
tries in all floating-point types available to Caravel. To install the current
stable version of Eigen, the commands of listing 4.5 can be used.

1 > git clone https://gitlab.com/libeigen/eigen.git
2 > cd eigen
3 > mkdir build
4 > cd build
5 > cmake .. -DCMAKE_INSTALL_PREFIX=<install-dir> \
6 > -DPKGCONFIG_INSTALL_DIR=lib/pkgconfig
7 > make install

Listing 4.5: Commands to download, build and install the Eigen library
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LAPACK: Specifically for the case of double precision, additional routines for the
determination of the coefficients cΓ′,i in equation (3.47) are implemented.
As described in section 4.2, as an alternative to Eigen, the LAPACK library
[101] can be selected as the linear algebra package for this task by setting
the installation option double-inverter to lapack. To install LAPACK
3.9.0, the commands of listing 4.6 can be used.

1 > wget https://github.com/Reference-LAPACK/lapack/archive/\
2 > v3.9.0.tar.gz
3 > tar -xzf v3.9.0.tar.gz
4 > cd lapack-3.9.0
5 > mkdir build
6 > cd build
7 > meson .. -Dprefix=<install-dir>
8 > ninja install

Listing 4.6: Commands to download, build and install the LAPACK library

To take advantage of the most recent bug fixes, the newest version number
of LAPACK as found in reference [101] can be used instead of 3.9.0 when
executing the commands of listing 4.6. Note that it might be necessary to
pass the <install-dir> of LAPACK to Caravel by setting the installa-
tion option lapack-path. With LAPACK selected, the integrand matrix
from equation (3.47) is inverted by PLU decomposition in case of square
matrices or using QR decomposition otherwise. In some specific cases, this
combination can be more precise than using Eigen and its decomposition
routines.

CLN and GiNaC: The last set of dependencies of Caravel is used for integral
evaluation needed to obtain numerical results for one- or two-loop ampli-
tudes and their remainders. For four-point processes Caravel relies on the
MPLs implemented in GiNaC [79]. GiNaC itself needs CLN [114] as additional
dependency if the MPLs have to be evaluated at high-precision. To install
CLN 1.3.6, the commands of listing 4.7 can be used.

1 > wget https://www.ginac.de/CLN/cln-1.3.6.tar.bz2
2 > tar xvjf cln-1.3.6.tar.bz2
3 > cd cln-1.3.6
4 > ./configure --prefix=<install-dir>
5 > make
6 > make install
Listing 4.7: Commands to download, build and install the CLN library
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CLN’s newest version number can be found on in reference [114] and then
used instead of 1.3.6 in the commands of listing 4.7. To install GiNaC 1.7.10,
the commands of listing 4.8 can be used.

1 > wget https://ginac.de/ginac-1.7.10.tar.bz2
2 > tar xvjf ginac-1.7.10.tar.bz2
3 > cd ginac-1.7.10
4 > ./configure --prefix=<install-dir>
5 > make
6 > make install

Listing 4.8: Commands to download, build and install the GiNaC library

Just as in the case of CLN, GiNaC’s most current version number can be
found in reference [79] and then used instead of 1.7.10 in the commands of
listing 4.8.

pentagon-library: The integral functions needed for five-point processes are not
available within GiNaC. There is a convenient basis of transcendental func-
tions spanning both the massless one-loop and the massless two-loop am-
plitudes, which are called pentagon functions [25]. With Caravel we
provide an implementation of a full set of pentagon functions derived from
a version described by reference [25] which Caravel can link against. This
version is called pentagon-library and is available publicly [31]. To install
pentagon-library, the commands of listing 4.9 can be used.

1 > git clone git@gitlab.com:caravel-public/pentagon-library.git
2 > cd pentagon-library/
3 > mkdir build
4 > cd build
5 > meson .. -Dprefix=<install-dir> -Dlibdir=lib
6 > ninja
7 > ninja install

Listing 4.9: Commands to download, build and install the
pentagon-library.

The values of the amplitudes in the reference [54] were produced using
pentagon-library, however from Carvavel 0.2.0 on it is also possible to
produce output compatible with the faster PentagonFunctions++ [36].

Open MPI: Caravel is written in a parallelized manner—multiple instances of
the Builder class from the module Forest can be distributed among the
available processor cores of a machine to speed up coefficient determination.
Also, it is natural to parallelize the functional reconstruction of coefficients
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by distributing their evaluation among the computers participating in a
computer cluster. For these tasks Caravel relies on MPI [115], where the
results from references [30, 83, 84, 88] were obtained using the open-mpi
implementation [116]. To install open-mpi 4.0.5, the commands of listing
4.10 can be used.

1 > wget https://download.open-mpi.org/release/open-mpi/v4.0/\
2 > openmpi-4.0.5.tar.gz
3 > tar xzf openmpi-4.0.5.tar.gz
4 > cd openmpi-4.0.5
5 > ./configure --prefix=<install-dir>
6 > make
7 > make install
Listing 4.10: Commands to download, build and install open-mpi.

open-mpi’s newest version number can be found in reference [116] and then
used instead of v4.0 and 4.0.5 in the commands of listing 4.10. Parallelized
programs using Caravel can then be run by typing

mpirun -np <ncores> <program-name> "<par1>" "<par2>" ...

where <ncores> is the number of processor cores which shall be dedicated
to the Caravel program <program-name> and <pari> are the parameters
of the program <program-name>, which have to be enclosed in quotation
marks "". The names of the examples inside the examples directory as
well as the names of the programs inside the my_programs directory have
to start with the string mpi_ or MPI_ or to end with the string _mpi or _MPI
respectively if they shall be run using MPI; see also the file CONTRIBUTING.md
from Caravel’s repository.

4.5. Other External Tools

In section 4.1 we described Caravel’s modules, which are linked against by the
programs using Caravel for amplitude evaluation and coefficient reconstruction.
Some of those modules are not fully automated and depend on external input in
some calculation steps. Furthermore, some parts of the source code of the modules
are machine-generated. To generate this input and the mentioned source code,
we use external tools, which will have to be adjusted to future processes, for
which Caravel will calculate coefficients and amplitudes.
In particular, the generation of the propagator structure hierarchy ∆ as in

equation (3.46) is automated in the case of one-loop amplitudes and two-loop
four-point amplitudes. However, ∆ has to be generated and saved to a headed list
style file individually for every considered two-loop five-point amplitude. When
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calculating two-loop corrections to processes with three particles in the final state,
Caravel obtains information about the relevant propagator structures and the
color decomposition of the considered amplitude, as described in section 3.2,
at runtime from the corresponding headed list file. We call the file containing
propagator structure hierarchy and color information as well as the tool used for
its generation the “process-library”. The process-library is produced using
qgraf [117]. To obtain the color decomposition and to generate the hierarchy
∆ for an amplitude, the process-library uses the color-dressed equivalents of
the possible tree amplitudes A(0)

i (`Γ
l ) on the left-hand side of equation (3.47) as

vertices in the qgraf model file. Using this model file makes qgraf generate
all color-dressed cuts relevant for the considered amplitude. In a second step, a
color decomposition [118, 119] as described in section 3.2 is performed on the cut
diagrams. They are then assembled into a hierarchy according to their propagator
structures. Their position in the hierarchy defines the partial ordering ≥ on them
as described in section 3.6. Finally, diagrams withDs-dimensional internal quarks
are simplified using scalar fields as described in section 3.1, which can be used
if the option ds-strategy is set to decomposition. The result of process-
library is then an input file for Caravel specific to the defining amplitude. It
contains the color indices of the amplitude, the cut diagrams defining the left-
hand side of equation (3.47) and their relations among them due to propagator
cutting. During the execution of Caravel the Forest module then obtains the
cut diagrams from the process-library to calculate the trees A(0)

i (`Γ
l ) on the left-

hand side of equation (3.47), while the Coefficient provider uses the relations
among their propagator structures to perform the summation on the right-hand
side of the equation.
There is another large block of Caravel’s source code generated by external

tools. It is responsible for the evaluation of the master integrals IΓ,i as defined
in equation (3.45) as well as the parametrization of the master integrands and
surface terms on the right-hand side of equation (3.47). This part of Caravel is
generated with the help of the scripts bundled to form the external tool Caravel-
Database. CaravelDatabase expects a definition of a master integral basis and
appropriate surface terms as input. Every integral of such a basis contains the ex-
act propagator structure information encoded in a CaravelGraph structure which
is described in appendix C. Furthermore, it features its defining numerator inser-
tion as described in section 3.6 and lastly information about its integral function
decomposition as introduced in section 3.5. For each of the given basis integrals
and surface terms, the scripts of CaravelDatabase transform this information
to C++ code. They add the integrand or surface term to the FunctionSpace
module as well as the corresponding integral function decomposition to the In-
tegralLibrary in the case of master integrands. Lastly, the meson build files for
the FunctionSpace and the IntegralLibrary modules are updated to include
routines to build the added integral basis. The new basis becomes available to
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programs linking against Caravel after recompilation.
Caravel can determine coefficients of a master integral decomposition of an

amplitude as in equation (3.44) as well as of an integral function decomposition
of an amplitude or a remainder as in equations (3.42) and (3.43). The integral
function decompositions are obtained from the master integral decompositions
by writing every master integral as a linear combination of integral functions.
For massless five-point master integrals such a representation is available as a
headed list file within the Mathematica package PentagonMI [36]. The external
tool IntegralReplacements converts an integral function decomposition inside
PentagonMI into an input file readable by Caravel. For the determination
of the integral function decomposition of an amplitude, after the Coefficient
provider has calculated the integral coefficients, the Integral provider decom-
poses the master integrals it has got from CaravelDatabase into corresponding
integral functions according to the information from IntegralReplacements. It
then combines the integral function coefficients with the ones from Coefficient
providers resulting in an integral function decomposition of the amplitude or
the remainder.
Finally, there is a publicly available tool, which automatizes the installation

process of Caravel’s dependencies as described in section 4.4. It is called
caravel-deps-setup and is available publicly [31]. To use it, Rust [120] has
to be installed. This can be done by executing

curl --proto ’=https’ --tlsv1.2 -sSf https://sh.rustup.rs | sh

from the command line and following the on-screen instructions. To install Car-
avel’s dependencies, the commands of listing 4.11 can be used, after which
Caravel can be built and installed as described in section 4.2.

1 > git clone git@gitlab.com:caravel-public/caravel-deps-setup.git
2 > cd caravel-deps-setup
3 > ./target/release/caravel-deps-setup <install-dir> -s
4 > source source.sh

Listing 4.11: Commands to download, build and install all Caravel dependen-
cies.

4.6. Examples

We now describe how to link against Caravel and how to select what scattering
amplitudes one wants to compute with it. More information on the presented
examples can be found in the file examples/README.md from Caravel’s reposi-
tory. The examples we provide can calculate numerical values for tree-level, one-
and two-loop amplitudes with four or five external particles and functionally re-
construct the respective master integral coefficients. Caravel directly computes
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the color-stripped helicity amplitudes A(L) from equation (3.44) numerically, or
analytically reconstructs the master integral coefficients cΓ,i from equation (3.44).
The amplitudes A(L) = A(L)(1h1

f1
, . . . , nhnfn ) depend on n = 4 or n = 5 particles.

Every particle k has a defined type fk and a helicity hk. As the external particles
are in four dimensions, they have two possible helicity states given in equation
(2.64) if the particle is a fermion or in equation (2.73) if the particle is a vector
boson. In addition, for QCD amplitudes, we consider the leading-color approx-
imation as discussed in section 3.2. In particular, we look at the limit where
the number of colors Nc is large, keeping the fraction Nf/Nc constant, where Nf

is the number of fermions in closed fermion loops. With this assumption, the
amplitudes A(L) can be further decomposed to

A(L)(1h1
f1
, . . . , nhnfn ) = A(L)[0] +

Nf

Nc

A(L)[1] + . . .+

(
Nf

Nc

)L
A(L)[L] . (4.1)

Caravel then computes the amplitudes A(L)[i]. Note that for gravity amplitudes
the color-stripped leading-color amplitudes A(L)[0] are the same as the amplitudes
M(L) as in equation (3.12). We factor out a normalization of the integrals so that
they are given by

IΓ,i =

∫ ( L∏
j=1

dD`j
(2π)D

)
mΓ,i(`l)∏
k∈PΓ

ρk(`l)
. (4.2)

Particle types Arguments can be passed to Caravel using headed list expres-
sions. One can pass the information about the process one wants to compute the
amplitude for with the PartialAmplitudeInput parameter, as for example

PartialAmplitudeInput[Particles[Particle[u,1,qbp],
Particle[ub,2,qm],
Particle[photon,3,m],
Particle[photon,4,p],
Particle[photon,5,p]],

ColourStructure[NfPowers[1]]]

The fermions u, ub, d and db can have the helicity states qbp and qm, the vector
bosons gluon and photon have states p and m and gravitons G have states hpp and
hmm. The selectable particles with their respective helicity states are shown in ta-
ble 4.1. With the additional parameter ColourStructure[NfPowers[i]] one can
set the number of closed fermion loops in the desired amplitude, so the number
i in A(L)[i] in equation (4.1). Note that even though A(2)[1](1h1

q , 2
h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ )

includes non-planar contributions in the leading-color approximation, Caravel
will always calculate the partial amplitude spanned by the planar subset of the
corresponding master integrals, as further described in section 5.1.
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Type field state
Gluon gluon p, m
Photon photon p, m
Quark q, u, d, c, s, b qbp, qm

Anti-quark qb, ub, db, cb, sb, bb qbp, qm
Graviton G hpp, hmm

Table 4.1.: The fields, which can be a parameter of Particle with their respective
helicity states.

4.6.1. Numerical Amplitudes

Caravel can either evaluate amplitudes on a given phase space point, including
the evaluation of integral functions delivered by external libraries it links to, or
functionally reconstruct the amplitude’s coefficients either of a master integral
or integral function decomposition. The release version of Caravel [31] comes
with examples for both tasks. Here we describe the numerical calculation of tree,
one- and two-loop amplitudes, and two-loop finite remainders.

Kinematics If one does not specify anything, the numerical example programs
will take values for the external momenta, which yield the results of reference
[54]. However, one can specify the kinematics by defining twistor parameters as
described in section 3.7, which then determine the kinematics. In order to do
that, one has to provide the option TwistorParameters with two parameters
s12 and s23 for four-point scattering and five parameters x0, . . . , x4 in the case
of five-point scattering.

Tree-Level Amplitudes The example program to calculate tree-level ampli-
tudes is called treeamp. To specify the process for the tree-level amplitude it is
enough to pass the Particles list to it

> ./treeamp "Particles[Particle[..],...,Particle[..]]"

The result is normalized as described in section 3.1. To calculate gravity tree-
level amplitudes the option gravity-model has to be set to Cubic. There are
two possibilities to select on what phase space point the amplitude is to evalu-
ate. If one does not provide any additional information, Caravel will generate
a random phase space point and print out the point in addition to the result of
treeamp. Or one creates a file called treeampPSP.dat in the execution direc-
tory and saves the phase space point one wants the tree-level amplitude to be
evaluated on to the file. For example one can create the file with the entries
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1/3 1/3 -2 2
-5/16 1/4 -9/64 15/64

329/144 -355/144 17/16 -25/48
-83/36 271/144 69/64 -329/192

which makes Caravel evaluate the tree-level amplitude defined by the particles
in the Particle list on the point

p1 =

(
1

3
,
1

3
,−2, 2

)
, p2 =

(
− 5

16
,
1

4
,− 9

64
,
15

64

)
,

p3 =

(
329

144
,−355

144
,
17

16
,−25

48

)
, p4 =

(
−83

36
,
271

144
,
69

64
,−329

192

)
.

For finite field kinematics the installation option finite-fields has to be selected
and an additional parameter Cardinality[p] has to be passed to treeamp

> ./treeamp "Particles[...]" "Cardinality[p]"

Cardinality[p] selects the characteristic of the field, which has to be a prime
number larger than 230, but smaller than 231 because Caravel implements a
32 bit Barrett reduction algorithm [121] for the modular arithmetic. The file
src/misc/Moduli.hpp provides many possible cardinalities, where Caravel
also chooses from during rational reconstruction. The metric (+,−,+,−) is
used with finite field kinematics. The specification of a phase space point in-
side treeampPSP.dat is mandatory for finite field calculations.
To calculate results with double-double or quadruple-double precision the de-

sired precision has to be passed to treeamp using the HighPrecision[prec]
setting, where prec=HP for double-double and prec=VHP for quadruple-double
precision. For this feature to work, the option precision-QD has to be set to the
respective value of prec during installation.

One-Loop Amplitudes The example program to evaluate one-loop amplitudes
up to the order ε2 in the regularization parameter is amplitude_evaluator_1l, as
needed, for example, for the determination of the pole structure of the respective
two-loop amplitudes. The example can evaluate partonic four- and five-point am-
plitudes and thus can reproduce the results from reference [54]. Here, the whole
PartialAmplitudeInput list is needed to be passed to amplitude_evaluator_1l.
As has been described at the beginning of the section, it is possible to select
to calculate A(1),[1], that is an amplitude with a closed fermion loop instead of
A(1)[0] by passing ColourStructure[NfPowers[1]] as a second argument to the
PartialAmplitudeInput list.

82



Chapter 4. Caravel Framework

By default, the evaluation is performed on the phase space point given by

p1 =

(
1

2
,

45

272
,

45i

272
,
1

2

)
,

p2 =

(
−1

2
, 0, 0,

1

2

)
,

p3 =

(
21

26
,−21

26
,− 5i

26
,− 5

26

)
,

p4 =

(
−1169

2652
,

2165

10608
,−13459i

38896
,−5075

9724

)
,

p5 =

(
− 973

2652
,

581

1326
,
1813i

4862
,−2779

9724

)
,

(4.3)
which is the same as the one used in reference [54]. It corresponds to the Man-
delstam invariants

s12 =− 1, s23 = −8/13, s34 = −1094/2431,

s45 = −7/17, s51 = −749/7293 .
(4.4)

Suppose one wants to evaluate the amplitude on a different phase space point. In
that case, one has to define it with the additional parameter TwistorParameters
as described in the kinematics paragraph above. The command to compute a
one-loop four-point amplitude with s12 = −1

3
and s23 = −1

5
for example has the

form

> ./amplitude_evaluator_1l "PartialAmplitudeInput[...]" \
"TwistorParameters[-1/3, -1/5]"

Note that without additional settings, the example has access to integrals in the
Euclidean region only, so that the parameters have to be chosen in such a way
that all Mandelstam invariants become negative.
In contrast to treeamp, amplitude_evaluator_1l works only in finite fields.

That is, the option finite-fields has to be enabled for it to compile. Furthermore,
loop-level amplitudes need at least one set of integrals to be available, and they
need the option field-ext-fermions to be enabled if some of the involved particles
are fermions. The example becomes available if the options finite-fields as well as
field-ext-fermions were enabled during installation and if the option integrals
has been set to all.
The amplitudes are normalized by the corresponding tree-level amplitudes as

in equation (3.10) if these do not vanish. If the tree-level amplitudes do vanish,
they are normalized by the spinor weight factor given in equation (3.9).

Two-loop Amlitudes To evaluate two-loop amplitudes, the example program
called amplitude_evaluator_2l can be used. It requires input in the same
format as amplitude_elaluator_1l, which has been described before. Just as
amplitude_evaluator_1l, it is capable of calculating four- or five-point QCD
amplitudes, at two-loop order. By default, the amplitude is evaluated on the
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point defined in equation (4.3), thus reproducing the results of reference [54].
Without any additional settings, it can evaluate an amplitude on a Euclidean
point, which can be provided using the TwistorParameters argument in the
same way as for amplitude_evaluator_1l. Having read the particle types and
helicities defining the two-loop amplitude from the command line, the Coeffi-
cient provider determines the values of the corresponding master integral coef-
ficients in multiple finite fields, from which it then reconstructs the values for the
coefficients in the rational numbers. The coefficient determination is performed
distributed among all processor cores available on the computer. At the next
step, the Integral provider combines the integral coefficient of every master
integral with the coefficients of its integral function decomposition and performs
cancellations between the same integral functions appearing in different master
integrals contributing to the amplitude. In this way, the amplitude is repre-
sented as an integral function decomposition, with the coefficients being series
expansions in the regularization parameter. At the last step, the amplitude is
evaluated by evaluating the integral functions either with GiNaC for four-point
processes or with the pentagon-library for five-point processes. In analogy to
the one-loop example, the two-loop amplitude is normalized by the corresponding
tree-level amplitude as in equation (3.10) if it does not vanish. It is normalized
by the respective spinor weight factor given in equation (3.9) if the corresponding
tree-level amplitude does vanish. Just as amplitude_evaluator_1l, this exam-
ple works in finite fields only. When in amplitude_evaluator_1l the amplitude
was determined as a series expansion in the regularization parameter up to sec-
ond order, in the two-loop analogue amplitude_evaluator_2l the amplitude is
determined up to finite order. amplitude_evaluator_2l needs the same instal-
lation options to be enabled as amplitude_evaluator_1l in order to compile.
That is for the example to work, the installation option finite-fields has to be ac-
tivated, field-ext-fermions set to true and integrals set to all. In addition to
the command line settings available for amplitude_evaluator_1l, one can add
Verbosity[All] to see additional output concerning the currently evaluated gen-
eration of the coefficient hierarchy. While all available one-loop amplitudes are
evaluated in a couple of seconds, N0

f two-loop amplitudes need minutes for the
rational reconstruction of the master integral coefficients and again O(10min) for
the evaluation of the integral functions in double precision. The time for the
first evaluation of an amplitude will be considerably longer than the times for the
succeeding. This difference occurs because some hierarchy information and the
universal denominators of the amplitude are cached in a warm-up file at the first
run so that they don’t need to be calculated in future runs.

Finite Remainder The example finite_remainder_2l is a combination of the
two examples described before and needs the same command line input. There
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is an additional verbosity setting Verbosity[Remainder] available. This setting
will print explicit information about the coefficients of the integral functions that
parametrize the remainder and their poles. In contrast to the one- and two-loop
examples finite_remainder_2l only accepts five-point input. Because of that,
among the activated options finite-fields and field-ext-fermions it is sufficient
that integrals is set to pentagons. When evaluating finite_remainder_2l,
after the two-loop amplitude has been computed as in amplitude_evaluator_2l,
the correct pole structure as described in section 3.8 is subtracted from it. During
this procedure, the relevant one-loop amplitudes are evaluated. The so obtained
integral function coefficients are evaluated in multiple finite fields to reconstruct
them in rational numbers. After the subtraction of the poles, the program checks
whether all divergences have vanished indeed, which provides an additional con-
sistency check of the amplitude, which is not present in amplitude_evaluator_2l.
As the timings for one-loop amplitudes are negligible regarding the two-loop tim-
ings, for the same processes, the evaluation of the remainders takes roughly the
same time as the evaluation of the two-loop amplitudes.

4.6.2. Coefficient Reconstruction

While in the previous examples, the respective amplitudes were evaluated on
one phase space point numerically, Caravel can reconstruct coefficients either
of a master integral or integral function decomposition of an amplitude or a re-
mainder. The coefficients have to be evaluated on multiple phase space points
during their functional reconstruction. Thus, it is convenient to parallelize this
procedure, which Caravel does by distributing the Coefficient providers ei-
ther among the available threads on a local machine, among multiple cores, or
multiple computers on a cluster using MPI [115]. The examples of functional
coefficient reconstruction coming with Caravel and presented here use MPI for
parallelization.

Caravel has methods for univariate rational and multivariate polynomial
reconstruction. Univariate reconstruction is used to reconstruct four-point am-
plitudes, where, by setting s = 1 and later regaining the s dependence from pdi-
mensional analysis, the reconstruction can be performed in one variable x = t/s.
It furthermore is used to determine the denominators of five-point amplitudes as
functions of the respective master integral basis alphabet. Multivariate recon-
struction is needed for five-point processes where, by again setting s12 = 1, four
independent parameters span the phase space and thus remain for reconstruction.
There are examples for both univariate and multivariate reconstruction coming
with Caravel. They have the same output format, which is described in the
following paragraph.
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NumeratorLabel Master-integral numerator
scalar 1
mu2 µ2

mu4 (µ2)2

dbTensor (p1 + `2)2

Table 4.2.: Possible numerator insertions as given in the output files of the func-
tional reconstruction programs and corresponding expressions. The
momentum routing defining dbTensor can be read off from figure 4.2.

Output The output of the reconstruction programs is saved to the subdirectory
analytics of the execution directory. The analytics directory, in turn, has
three subdirectories. In the first subdirectory called amplitudes_<char>, the
finite field coefficients together with strings identifying the corresponding integrals
are saved in headed list format. Here, <char> is the characteristic of the finite
field set by the program, in which the calculation has been performed. The
integral strings are headed lists with the head naming the integral according to
its propagator structure, like Box or BubbleBubble. They contain the integral’s
numerator insertion as given in table 4.2 as the first entry and a list of inverse
propagators Di as a second entry. The µ insertions appearing at one-loop level
are products of the (D − 4)-dimensional part of the loop momenta, which does
not lie in the physical space spanned by the external momenta, that is

µ2 = `(D−4) · `(D−4) , where `(D−4) · ki = 0 . (4.5)

The integral strings have thus the form

PropagatorStructure[NumeratorLabel, {D1, D2, ..., Dm}]

The inverse propagators are given in terms of the internal momenta l1 and l2
and the external momenta labeled ki, where all momenta are defined outgoing.
After having determined the analytic form of the coefficients in a finite field,
the example programs attempt to reconstruct the values of the coefficients in
the rational numbers. When the program obtains a candidate set of coefficients
in the rational numbers, it evaluates the amplitude numerically in a different
finite field and compares the result against the rational coefficients mapped to
that finite field. If both evaluations agree, the rational reconstruction has been
successful. In that case a second directory called amplitudes_rational is cre-
ated, which contains the analytic form of the coefficients in the rational numbers.
The files in amplitudes_rational have the same structure as the ones in the
amplitudes_<char> directory. The functionally reconstructed amplitudes are
normalized the same way as the numerically evaluated, that is by their respective
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ℓ1 ℓ2

1

2 3

4

Figure 4.2.: Here the momentum routing for the integral string BoxBox produced
by the analytic reconstruction examples is shown. All momenta are
defined as outgoing, the external momenta ki are labeled by their
indices i.

tree amplitudes as in equation (3.10) if these do not vanish or by the corre-
sponding spinor weight factor given in equation (3.9) if the respective tree ampli-
tudes do vanish. Inside Caravel, propagator structures are represented using
CaravelGraph lists as they are described in appendix C, rather than by sets of in-
verse propagators. In order to relate the both propagator structure descriptions,
inside the analytics directory there is a third directory called integral_info,
where a mapping between the integral strings used to parametrize the ampli-
tude and corresponding CaravelGraph structures is defined. A graph structure
facilitates the representation of an integral and can for example be used by the
code math/CaravelGraph.m provided with Caravel to display the propagator
structure graphs. To do that, using Mathematica one can evaluate

getMathGraph[CaravelGraph[...]]

from math/CaravelGraph.m on the graph one wishes to display, which results in
a representation of the graph’s momentum routing as shown for example in figure
4.2. In the following we describe the both coefficient reconstruction examples in
more detail.

Univariate Two-Loop Coefficients The both reconstruction examples are par-
allelized using MPI. The first example program performing a functional recon-
struction is called 4parton_2loop_analytics_MPI. It reconstructs the master
integral coefficients of two-loop four-point QCD amplitudes. To define the am-
plitude which is to be reconstructed it requires the same input as the numerical
programs described in section 4.6.1 and is run using mpirun as described in sec-
tion 4.4. For example, the command
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> mpirun -np <ncores> ./4parton_2loop_analytics_MPI \
"PartialAmplitudeInput[Particles[Particle[gluon,1,p],
Particle[gluon,2,p],Particle[gluon,3,p],
Particle[gluon,4,p]]]"

reconstructs the master integral coefficients for the amplitudeA(2)[0](1+
g , 2

+
g , 3

+
g , 4

+
g ),

which will then be normalized by the corresponding spinor weight factor as de-
fined in equation (3.9). The parameter <ncores> specifies the number of proces-
sor cores which should be dedicated to the reconstruction. The rational and finite
field coefficients for the amplitude will be given as a series in the dimensional reg-
ularization parameter ep with the series coefficients being rational functions in
terms of the Mandelstam variables s = (p1 + p2)2 and t = (p2 + p3)2. In order
for 4parton_2loop_analytics_MPI to compile, the installation options finite-
fields and field-ext-fermions have to be activated. As in the case of functional
reconstruction, the integrals are not evaluated, so the option integrals is not
required for the example to work.

Multivariate One-Loop Coefficients Finally, there is an example, which per-
forms multivariate reconstruction. Functional reconstruction in multiple variables
is more involved, since as described in section 3.9 prior to reconstruction the de-
nominator of the coefficients has to be fitted by the letters of the integral basis
alphabet first. As the reconstruction of most of the two-loop five-point ampli-
tudes is computationally intense, the example 5parton_1loop_analytics_MPI is
provided with Caravel to demonstrate multivariate functional reconstruction. .
The example reconstructs master integral coefficients for one-loop five-point am-
plitudes and can be executed the same way like 4parton_2loop_analytics_MPI
now specifying five instead of four particles. That is for example, the command

> mpirun -np <ncores> ./5parton\_1loop\_analytics\_MPI \
"PartialAmplitudeInput[Particles[Particle[gluon,1,p],
Particle[gluon,2,p],Particle[gluon,3,p],
Particle[gluon,4,p],Particle[gluon,5,p]]]"

reconstructs the coefficients for the amplitude A(1)[0](1+
g , 2

+
g , 3

+
g , 4

+
g , 5

+
g ), which

will be normalized by the spinor weight factor defined in equation (3.9). In order
to be available 5parton_1loop_analytics_MPI needs the same installation op-
tions enabled as 4parton_2loop_analytics_MPI, that is finite-fields and field-
ext-fermions. The coefficients are presented as functions in the momentum
twistors x0, . . . , x4 as defined in section 3.7. Since in the one-loop case, the rep-
resentation of the integrals is straightforward, 5parton_1loop_analytics_MPI
does not define any mappings of the used integral strings to the respective
CaravelGraph structures. Instead, the integral_info directory contains map-
pings to Strand structures as they are defined in appendix C, which are sufficient
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to characterize one-loop amplitudes. Every entry of a Strand list corresponds to
a vertex of the propagator structure. It contains the information on whether the
vertex is massless and a list of the indices of the momenta attached.

4.6.3. Photon Amplitudes

As part of this thesis we extended Caravel to be able to calculate amplitudes
including photons.
In particular, we extended the QCD Model as part of the Forestmodule, which

the authors of reference [30] have already used to determine the coefficients for
five-parton amplitudes. In particular, we added photon fields and corresponding
Feynman rules. Unlike gluons, photons have no color and appear unordered in the
color-ordered diagrams. The functionality to treat unordered particles correctly
was already implemented in Caravel, as it has been used for the four-graviton
calculation [88]. We adapted it to implement photons as colorless particles, where
special attention had to be paid since now colored as well as colorless particles
could appear within one diagram, which did not happen for any other Model
before. We took care of this feature by introducing an unordered container for
uncolored particles for every off-shell current. As described in section 2.3, the
quark-photon vertex differs from the quark-gluon vertex by a factor of

√
2. We

implemented the quark-photon vertex in analogy to the already available quark-
gluon vertex, where the information about the additional factor has been stored
inside the object representing the coupling of the vertex. The coupling factors
are not considered during the numerical evaluation of the tree-level amplitudes
defining a propagator structure. Instead, they are combined symbolically, thus
allowing calculations in a finite field without field extension.
To determine the relevant propagator structures for two-loop amplitudes in-

volving photons, the process-library as described in section 4.5 had to be ex-
tended by photons. In particular, all relevant vertices of cut diagrams involving
photons had to be added to the process-library to generate the corresponding
process-library files. As with the off-shell currents extended by photons, spe-
cial attention had to be paid to account for both colored and colorless particles
appearing in one vertex.
We updated the external library IntegralReplacements and extending the

module Integral providers. In particular, we implemented the integral function
decomposition of the master integral basis we used for the photon amplitudes, as
given in appendix D, into the integral functions of reference [36]. This decomposi-
tion allows an efficient evaluation of two-loop five-point processes in the physical
region. Since the integral functions parametrize both the two- and the one-loop
amplitudes for a process, the decomposition made it possible to reconstruct the
coefficients of the finite remainder decomposition of the respective process in the
physical region.
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As the three-photon production amplitudes were the first which were calculated
in the physical region by Caravel, the pole operators defined in the module
PoleStructure had to be analytically continued appropriately.
Photons are available starting from version 0.2.0 of Caravel. From that

version, the functional reconstruction examples described in section 4.6.2 can
be used to reconstruct integral function coefficients for one-loop three-photon as
well as two-loop two-photon production. As described in the previous paragraphs,
in order to run the functional reconstruction examples, the installation options
finite-fields and field-ext-fermions have to be activated. To reconstruct the
one-loop five-point amplitude A(1)[0](1+

q , 2
−
q̄ , 3

+
γ , 4

+
γ , 5

+
γ ), which is the term A(2,0)

in equation (5.9), one then has to execute

> mpirun -np <ncores> ./examples/5parton_1loop_analytics_MPI\
"PartialAmplitudeInput[Particles[Particle[u,1,qbp],\

Particle[ub,2,qm],\
Particle[photon,3,p],\
Particle[photon,4,p],\
Particle[photon,5,p]]]"\

"CaravelSettingsInput[Setting[integrals::integral_family_1L,\
pentagon_functions_new],\

Setting[general::master_basis,\
pentagon_functions_new]]"

This example relies on the new pentagon functions as in reference [36] to be avail-
able, which is accounted for by setting the integrals option to pentagons-new.
Similarly, to reconstruct the two-loop four-point amplitude A(2)[0](1+

q , 2
−
q̄ , 3

+
γ , 4

+
γ ),

which also is the term A(2,0) in equation (5.9), one has to execute

> mpirun -np <ncores> ./examples/4parton_2loop_analytics_MPI\
"PartialAmplitudeInput[Particles[Particle[u,1,qbp],\

Particle[ub,2,qm],\
Particle[photon,3,p],\
Particle[photon,4,p]]]"

In order for this example to work, the installation option integrals has to be set
at least to goncharovs.
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5. Two-Loop Two-Parton Three-Photon
Amplitudes

This chapter presents our computation of the leading-color two-loop scattering
amplitudes for the process qq̄ → γγγ. These are the amplitudes required to con-
struct the double-virtual contributions to the O(α2

s) corrections to three-photon
production at hadron colliders. The calculation is performed with the numerical
unitarity method, employing exact evaluations in a finite field of characteristic
O(232). Those evaluations are combined with a functional reconstruction algo-
rithm to extract the analytic form of the amplitudes’ master integral coefficients
[94]. The contents of this chapter have been published in reference [84].
Our results have been employed in an NNLO QCD study for three-photon

production at the LHC [37], which also compares to ATLAS data [35]. Previous
to our publication, a similar calculation was performed [32]. However, the used
expressions for corresponding leading-color two-loop amplitudes were too complex
to be published in an analytic form. We considerably improved on this, producing
compact, stable, and fast-to-execute expressions. More recently, the same group
has reproduced our results [38].

5.1. Helicity Amplitudes

The two-loop interference diagrams contributing to NNLO QCD corrections to
three-photon production at hadron colliders are schematically written as

q

q̄ γ

γ

γ
q

q̄
γ

γ

γ

,

and

q

q̄

γ

γ

γ

q

q̄

γ

γ

γ

,
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where the first figure corresponds to two-loop amplitudes interfering with the
tree-level amplitude and the second to the one-loop amplitude squared. Note
that there is no tree amplitude for the process gg → γγγ. Thus, the two-loop
amplitude for gluon fusion does not contribute to the three-photon production
at NNLO. Also, the gg → γγγ one-loop amplitude square vanishes due to charge
conservation, as described in section 2.2.
The process involves five massless particles. As said in section 3.7, the am-

plitude is therefore a function of five Mandelstam invariants, which we choose
as

s12 = (p1+p2)2 , s23 = (p2 + p3)2 , s34 = (p3 + p4)2 ,

s45 = (p4 + p5)2 , s15 = (p1 + p5)2 ,
(5.1)

as well as
tr5 = 4iε(p1, p2, p3, p4). (5.2)

Here ε(p1, p2, p3, p4) = εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 , with εµνρσ the Levi–Civita symbol. We use

an all-outgoing convention for the momenta of the particles. The five Mandelstam
invariants parametrize the amplitude we chose in equation (5.1). Nevertheless,
since the photons have no color, all possible invariants sij with i, j = 1, . . . , 5
will appear in the analytic expressions we obtain for the amplitude. In the case
of A+++ for example, if an expression depends on s23, there will be analogous
expressions depending on s24 and s25, because photons 4+

γ and 5+
γ take the same

places as 3+
γ in the Feynman diagrams representing A+++. This symmetry, in

turn, means that there is no Euclidean region for the process qq̄ → γγγ. Indeed,
photons can attach at every point of the quark line so that the Euclidean region
would correspond to every sij < 0. This is not possible, as follows e.g. from
0 = p2

5 = (p1 + p2 + p3 + p4) · p5 = s15 + s25 + s35 + s45. However, the physical
region for the process is simple, because there are no photons in the initial state.
According to equation (5.2), for physical, that is real, momenta then (tr5)2 is
negative. Since p1 and p2 are incoming, they have negative energy components
in our convention. Using the Cauchy–Schwarz inequality, from this follows

s12, s34, s45 > 0 , s23, s15 < 0 , tr2
5 < 0 . (5.3)

The process we have to consider is

q(p1, h1) + q̄(p2, h2) → γ(p3, h3) + γ(p4, h4) + γ(p5, h5) , (5.4)

where pi are the momenta and hi the helicities of the particles. As we describe
in section 3.2, we decompose the amplitude M(1h1

q , 2
h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ ) as a linear

combination of a color-dependent part and a kinematics-dependent part. To
normalize the amplitudes as in section 3.1, we additionally strip off a spinor
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Helicity Expression

+− + ++ A+++(1, 2, 3, 4, 5)
+− −++ A−++(1, 2, 3, 4, 5)
+− +−+ A−++(1, 2, 4, 3, 5)
+− + +− A−++(1, 2, 5, 3, 4)
+− −−+ PA−++(2, 1, 5, 3, 4)
+− +−− PA−++(2, 1, 3, 4, 5)
+− −+− PA−++(2, 1, 4, 3, 5)
+− −−− PA+++(2, 1, 3, 4, 5)

Helicity Expression

−+ + ++ A+++(2, 1, 3, 4, 5)
−+ −++ A−++(2, 1, 3, 4, 5)
−+ +−+ A−++(2, 1, 4, 3, 5)
−+ + +− A−++(2, 1, 5, 3, 4)
−+ −−+ PA−++(1, 2, 5, 3, 4)
−+ +−− PA−++(1, 2, 3, 4, 5)
−+ −+− PA−++(1, 2, 4, 3, 5)
−+ −−− PA+++(1, 2, 3, 4, 5)

Table 5.1.: Relations to get every needed amplitude from the amplitudes we com-
pute as defined in equation (5.6). P is parity conjugation here. The
indices ij in A±++(i1, . . . , i5) signify at what position the momentum
pij has to be inserted into A±++ to get the expression with the desired
helicity.

weight factor, such that we can write the amplitude as

M(1h1
q , 2

h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ ) := e3

qδi1i2Φ(1h1
q , 2

h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ )A(1h1

q , 2
h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ ) ,
(5.5)

where eq is the electric charge of the quark q, Φ the spinor weight given in
equations (3.10) and (3.9) and A(1h1

q , 2
h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ ) the helicity amplitudes

which we compute. It turns out that there is only one independent two-loop
helicity amplitude relevant for NNLO corrections to the process. Thus, for this
process, it is convenient to use helicity amplitudes.
With

A+++(1, 2, 3, 4, 5) := A(1+
q , 2

−
q̄ , 3

+
γ , 4

+
γ , 5

+
γ ) ,

A−++(1, 2, 3, 4, 5) := A(1+
q , 2

−
q̄ , 3

−
γ , 4

+
γ , 5

+
γ ) ,

(5.6)

and PA+++, PA−++ their parity conjugated versions we can get all 16 helicity
amplitudes by permutation of the external legs and parity conjugation, see table
5.1. Here, the amplitudes have to be evaluated in the physical region (5.3). The
tree-level amplitudes corresponding to A+++ and A−−− always vanish, hence
for NNLO QCD corrections only A−++ is required. We have still computed all
amplitudes to all orders in the regularization parameter for completeness (for
example, all are needed as part of the N3LO correction to the process, where
they are combined with the corresponding non-vanishing one-loop amplitudes).
The spinor weights are given by

Φ+++ =
[31]〈12〉3〈13〉
〈14〉2〈15〉2〈23〉2 , Φ−++ =

1

A(0)
−++

, (5.7)

93



Chapter 5. Two-Loop Two-Parton Three-Photon Amplitudes

q̄

q

γ γ γ

Figure 5.1.: Non-planar Nf contribution to the NNLO correction to qq̄ → γγγ.

where the spinor products 〈ij〉 and [ij] were defined in section 3.7, and A(0)
−++ is

the tree-level amplitude. If we were to include all possible light quark loops, non-
planar diagrams as, for example, shown in figure 5.1 would have to be considered.
Although the calculation of non-planar massless five-particle Feynman integrals
is complete [36, 122], in this work, we focus on calculating the planar leading-
color contributions. The one- and two-loop amplitudes can be written as a sum
of gauge-invariant parts

A(1) = CFA
(1),

A(2) = C2
FB

(2,0) + CFCAB
(2,1)

+ CFTFNfA
(2,Nf ) + CFTF

∑Nf

f=1
Q2
f Ã

(2,Nf ),

(5.8)

with CF = (N2
c −1)/2Nc being the quadratic Casimir operator of the fundamental

representation of the quarks, TF = 1/2 and Qf the ratios of the electric charges of
a quark which has flavor f to the quark q from the initial state. For the contribu-
tions B(2,0) and B(2,1), there are no quark loops in the diagrams. Contributions
A(2,Nf ) have one Nf quark loop, where no photon attaches to. Contributions
Ã(2,Nf ) have also one Nf quark loop, where because of charge parity conservation
exactly two photons attach to. Here, also non-planar diagrams contribute, as
for example the one in figure 5.1. Example diagrams for every of the terms are
given in figure 5.2. Taking the leading-color approximation where Nc is large and
Nf/Nc is constant, terms scaling like O(N−2

c ) are suppressed. One would expect
that contributions from A(2,Nf ) and Ã(2,Nf ) are of the same order, but when look-
ing at the analogous process qq̄ → γγ the contributions from Ã(2,Nf ) are actually
subleading with respect to A(2,Nf ) [37], so we expect them also to be small in
our case. In the large Nc approximation and additionally expecting Ã(2,Nf ) being
small we thus can write

A(2) =
N2
c

4

(
A(2,0) +O(N−2

c )
)

+ CFTFNfA
(2,Nf ),

A(2,0) = B(2,0) + 2B(2,1).

(5.9)

In the following, we focus on the calculation of the yet unknown ingredients for
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(a) Diagram proportional to C2
F

q

q̄

γ

γ

γ

(b) Diagram proportional to CFCA

q

q̄

γ

γ

γ

(c) Diagram proportional to Nf

q

q̄

γ
γ

γ

(d) Diagram proportional to
∑

f Q
2
f

Figure 5.2.: Example diagrams for each of the gauge-invariant contributions in
equation (5.8).

the matrix element square of the process qq̄ → γγγ, which are the “partial”
helicity amplitudes A(2,0)

+++, A
(2,Nf )
+++ , A(2,0)

−++ and A
(2,Nf )
−++ . Every of the four pieces

possesses a master integral decomposition as in equation (3.44). For example, the
A(2,0) pieces can be constructed from the 8-propagator diagrams—the “maximal
cuts”—shown in figure 5.3.
Since the photons are not color-ordered, they appear in every possible permu-

tation. The cut hierarchy for this amplitude is then composed of 1945 propagator
structures.

5.2. Finite-Remainder Definition

To simplify the analytic expressions A±++, it is convenient to remove all informa-
tion that is intrinsically associated with lower-loop contributions [92]. Specifically,
we subtract all IR divergent structures, including the O(ε0) finite pieces, as has
been described in section 3.8.
We define the so-called finite remainder [30, 92]

R = A(2)
R − I(1)A(1)

R − I(2)A(0)
R +O(ε), (5.10)

as described in section 3.8. TheA(L)
R ≡ A

(L)
R,±++ are the renormalized leading-color
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q̄−
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q+
γ
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γ
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q̄− γ

Figure 5.3.: Maximal cut diagrams contributing to the A(2,0) partial amplitude
(see equation (5.9)).

L-loop amplitudes, which are related to the bare amplitudes by [54]

A(0)
R = A(0),

A(1)
R = S−1

ε A(1),

A(2)
R = S−2

ε A(2) − β0

Ncε
S−1
ε A(1) ,

(5.11)

where Sε = (4π)εe−εγE , γE is the Euler-Mascheroni constant and

β0 =
Nc

3

(
11− 2

Nf

Nc

)
. (5.12)

We use the ’t Hooft–Veltman regularization scheme [55] as it was discussed in
section 2.4. We have established the dependence of the amplitudes on Ds as it
was explained in section 3.1 and consider now the amplitude at Ds = 4−2ε. The
functions I(k) in equation (5.10) for the physical region are given by

I(1) ≡ I(1)(ε) = − eγEε

Γ(1− ε)

(
1

ε2
+

3

2ε

)
(−s12 − iε)−ε , (5.13)
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and I(2) has a universal structure as in equation (3.61). In this case,

H(ε) =
2eγEεHq

εΓ(1− ε) , (5.14)

with
Hq =

(
7ζ3

4
+

409

864
− 11π2

96

)
+

(
π2

48
− 25

216

)
Nf

Nc

. (5.15)

Using the equations from this section allows to regain the bare two-loop ampli-
tudes up to finite order from the remainder R or vice versa. Similar to equation
(5.9), in the leading-color approximation the remainders can be split into the
part coming from diagrams with no closed fermion loops and a part coming from
diagrams with one closed fermion loop, that is

R(1) = CFR
(1),

R(2) =
N2
c

4

(
R(2,0) +O(N−2

c )
)

+ CFTFNfR
(2,Nf ) .

(5.16)

5.3. Pentagon-Function Decomposition

The master integrals for one-loop amplitudes cannot be expressed through the
two-loop master integrals at integrand level. That means, we also cannot param-
etrize the remainders by two-loop master integrals only anymore, as seen from
equation (5.10). As we discussed in section 3.5, both, the one- and two-loop
amplitudes, however are spanned by a basis of the same transcendental functions
called pentagon functions [25, 76] {hi}, which can be evaluated efficiently [36].
Since, as discussed in section 3.8, two-loop amplitudes have at most quartic poles
in the regularization parameter, with the help of pentagon functions we can write
the amplitudes from equations (5.8) and (5.9) as

A
(2,j)
h =

∑
i

∑0

k=−4
εkdjk,ihi +O(ε) , (5.17)

and
A

(1)
h =

∑
i

∑2

k=−2
εkd

(1)
k,ihi +O(ε3) , (5.18)

where we have to expand A
(1)
h to the second order in the regulator because of

the double pole of I(1). Thus, the remainders from equation (5.16) can also be
written in terms of pentagon functions

R
(2,j)
h =

∑
i∈B

rihi . (5.19)
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Not only can these functions be efficiently evaluated, but their space has a smaller
dimension than the one of master integrals which will become clear in the com-
parison of the amplitude and remainders reconstruction.

5.4. Amplitude Evaluation

To numerically compute the two-loop amplitude for three-photon production, we
have extended the setup of reference [30]. As we described in sections 4.5 and
4.6.3, we have generated all color-dressed cut diagrams relevant for the ampli-
tudes A(2,j)

h extending the process-library by photons, which uses qgraf [117]
for the diagram generation. We then have decomposed the cut diagrams into a
color- and a kinematics-dependent part following the procedure from references
[118, 119]. We have defined a partial ordering on the set of the cut diagrams,
thus defining the propagator structure hierarchy ∆ for the process. We have used
the master integrands and unitarity-compatible surface terms as described in [96]
and section 3.6. In order to get the master integral coefficients cΓ,i from equation
(3.45), we sampled values for the loop momenta `Γ

l which set the propagators of
Γ on-shell, thus filling the linear system of equations (3.47). We evaluated the
left-hand side of equation (3.47) using the off-shell recursion [63] of the Car-
avel framework [31], which we extended in such a way that it could perform
calculations involving photons as we described in section 4.6.3. In particular,
we have introduced color-unordered photon states and the quark-photon vertex
to the recursion. The numerical evaluation was performed in a finite field of
characteristic O(232) employing Barrett reduction [121, 123]. After sampling a
sufficient number of momenta `Γ

l , we have solved the linear system of equations
(3.47) by PLU factorization and back substitution. With this procedure, given
an external phase space point, we can extract all the master integral coefficients
of equation (3.44) numerically.
We provide reference values for the amplitudes and remainders from equations

(5.9) and (5.16) as well as the corresponding one-loop amplitudes evaluated on
the phase space point

s12 = 1.322500000, s23 = −0.994109498, s34 = 0.264471591,

s45 = 0.267126049, s15 = −0.883795230, tr5 = −0.11382836i,
(5.20)

in tables 5.2, 5.3 and 5.4. The invariants are assumed to be exactly these values,
without any (floating-point) rounding performed.
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ε−2 ε−1 ε0 ε1 ε2

A
(1)
−++ −1.000000000

−3.174284697
−3.141592654i

−3.437681197
−16.69077768i

−4.542364174
−48.29215997i

−28.34154945
−104.73071151i

A
(1)
+++ 0 0

−122.4876141
−218.2099911i

−613.1620024
−1772.249665i

−1264.781477
−6727.583766i

Table 5.2.: Reference evaluations of all independent bare one-loop amplitudes on
the phase space point of (5.20).

ε−4 ε−3 ε−2 ε−1 ε0

A
(2,0)
−++ 0.500000000

2.257618031
+3.141592654i

−3.317245357
+20.90350063i

−55.54942686
+44.34772277i

−248.7699347
−87.79211669i

A
(2,Nf )

−++ 0 0.1666666667
1.335872677

+1.047197551i
4.646264515

+12.872514370i
10.33373680

+83.15472523i

A
(2,0)
+++ 0 0

122.4876141
+218.2099911i

−132.6755953
+2049.613188i

−9927.845724
+3575.607623i

A
(2,Nf )

+++ 0 0 0
81.65840942

+145.4733274i
895.9475013

+2327.538099i

Table 5.3.: Reference evaluations of all independent bare two-loop amplitudes on
the phase space point of (5.20).

R
(1)
−++ −5.281908761− 6.718468192i

R
(1)
+++ −122.4876141− 218.2099911i

R
(2,0)
−++ −17.93042514− 84.48074943i

R
(2,Nf )

−++
8.536235118 + 25.51694192i

R
(2,0)
+++ −2043.581205− 3461.464426i

R
(2,Nf )

+++
327.6279319 + 861.8112864i

Table 5.4.: Reference evaluations of all independent one-loop and two-loop re-
mainders on the phase space point of (5.20).
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5.5. Analytic Master-Integral Coefficients

The phenomenologically relevant NNLO information for a process can be ob-
tained from the finite remainders as discussed in section 5.2, which are simpler
than complete two-loop amplitudes. For example, dimensionally-regularized two-
loop amplitudes generally have quartic poles in the regularization parameter, and
every pole coefficient is a rational function of the external kinematics. In contrast,
the remainder is finite in the regularization parameter. That is why in previous
two-loop calculations [30, 83, 88] performed with the help of Caravel only the
remainders were reconstructed. If desired, one can then obtain the amplitude
using the pole operators as described in section 5.2.
However, there are so far no publicly available analytic two-loop five-point am-

plitudes to all orders. Thus, we can only estimate the difference in complexity
between remainder and amplitude. We want to directly compare the sizes of the
expressions and thus their evaluation time. Thus, besides the finite remainders,
we have also determined the two-loop amplitudes to all orders in the regular-
ization parameter ε. In addition to this quantitative difference in performance
between amplitudes and remainders, the two-loop amplitudes up to order ε2 can
be used to determine the pole structure of three-loop amplitudes.
Excluding the propagator structure Γ from the following discussion, according

to equation (3.44), the two loop partial helicity amplitudes A(2,0)
h and A(2,Nf )

h from
equation (5.9), all have the form

A
(2,j)
h =

∑
i
ci(ε, ~s, tr5)Ii(ε, ~s, tr5) , (5.21)

with ~s = {s12, s23, s34, s45, s15} and tr5 as in equations (5.1) and (5.2). We use a
so-called pure basis of integrals [124], that is a basis consisting of integrals where
all residues of an integral are the same up to a sign. Therefore, the structure of the
coefficients ci as functions in ε does not depend on the phase space point. Thus
we can determine the highest power κi of the numerator of ci as a polynomial
in ε, as well as its denominator which turns out not to depend on kinematics,
during a warm-up run. At this stage, these quantities are reconstructed using
Thiele’s formula, from some evaluations of the amplitude in finite fields. Thus
the coefficients can be written in the form

ci(ε, ~s, tr5) =
1

Pi(ε)

κi∑
k=0

εk ci,k(~s, tr5) , (5.22)

and κi and Pi(ε) are known after the warm-up evaluation. As stated in equation
(3.56), (tr5)2 is the Gram determinant and thus polynomial in the Mandelstam
invariants. That is, the coefficients ci,k(~s, tr5) are at most linear in tr5, so that
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we can write
ci,k(~s, tr5) = c+

i,k(~s) + tr5 c
−
i,k(~s) , (5.23)

as already was stated in section 3.9. Now since tr5 is not rational, ci,k(~s, tr5) is
also not rational and we cannot reconstruct it employing finite fields. But, we
can use the parity-conjugated phase space point with −tr5, such that for c±i,k(~s)
one arrives at

c+
i,k(~s) =

1

2

(
ci,k (~s, tr5) + ci,k (~s,−tr5)

)
,

c−i,k(~s) =
1

2 tr5

(
ci,k
(
~s, tr5

)
− ci,k

(
~s,−tr5

))
,

(5.24)

where we notice that the left-hand side is a function of ~s only. The task to
determine the analytic form of the amplitude to all orders in the regularization
parameter becomes then equivalent to the reconstruction of the coefficients c±i,k(~s)
in the five independent Mandelstam invariants sij, where we set s12 = 1 for the
reconstruction, since we can impose the dependence of the analytic results on s12

through dimensional analysis. Note that to determine one value for one coefficient
c±i,k(~s) one needs to evaluate the amplitude two times, one with positive tr5 and
one with negative tr5.
In order to obtain the analytic form of the coefficients c±i,k, we use multivariate

functional reconstruction, as it was described in section 3.9. The complexity of
the amplitude as a master integral decomposition is then characterized by the
number of independent coefficients c±i,k(~s) and their maximal degree as a poly-
nomial in the invariants. Recall from section 3.9 that the denominators of the
coefficients can be obtained from a reconstruction in one variable. They resemble
the physical poles of the amplitude and the degenerate points of master integrals,
i.e., points where linear combinations of master integrals with rational coefficients
in the invariants become zero. Thus, they are simple in comparison to the numer-
ators. We show the data characterizing the complexity of the amplitudes A(2,j)

h

in table 5.5. On the one hand, the maximal degrees are similar to those of the
remainders of the five-parton amplitudes [30]. So, approximately the same num-
ber of points and thus evaluations are needed for the reconstruction. The time
for the reconstruction is thus of the same order as for five parton remainders. On
the other hand, since photons are not color-ordered in contrast to gluons, their
permutations appear in every amplitude so that more integrals are needed to
parametrize them. Also, as just explained, amplitudes are expected to be more
complex than remainders. This is seen in the fact that the number of independent
coefficients is much higher for the photon amplitudes as seen in the last column
of table 5.5 when compared to the respective number of coefficients in reference
[30], which was at most 95.
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Helicity Max degree # independent c±i,k

A
(2,0)
−++ 32 1320

A
(2,Nf )
−++ 20 203
A

(2,0)
+++ 27 1244

A
(2,Nf )
+++ 18 130

Table 5.5.: Information about the complexity of the coefficients c±i,k for the rele-
vant amplitudes in equation (5.9). Max degree means the polynomial
degree of the most complex coefficient c±i,k and # independent c±i,k
means how many coefficients are needed to parametrize the ampli-
tude.

Helicity Max degree # independent r±i Max weight

R
(2,0)
−++ 30 171 4

R
(2,Nf )
−++ 13 57 3
R

(2,0)
+++ 16 62 2

R
(2,Nf )
+++ 12 12 1

Table 5.6.: Information about the complexity of the finite remainder coefficients
in equation (5.19). Max degree means the polynomial degree of the
most complex coefficient r±i and # independent r±i means how many
coefficients are needed to parametrize the remainder. Max weight
means the highest transcendental weight appearing in the integral
function decomposition in equation (5.19) as described in section 3.5.

5.6. Analytic Finite Remainders

After we have determined the partial helicity amplitudes A(2,j)
h from equation

(5.9) by reconstruction and simplified them by multivariate partial fractioning
as described in section 3.9, we have obtained the remainders using the equations
from section 5.2. In analogy to equation (5.23) for the master integral coefficients
we wrote the pentagon function coefficients ri from equation (5.19) as

ri(~s, tr5) = r+
i (~s) + tr5 r

−
i (~s) , (5.25)

such that we could compare to the data from table 5.5. We present the data
characterizing the complexity of the remainders in table 5.6. Here, we show the
same characterizing properties of the remainders as we did for the amplitudes in
table 5.5, and add information about the highest transcendental weight of the
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appearing pentagon functions. As explained in section 3.5, the transcendental
weight describes how many times one needs to integrate an algebraic function to
get the respective function. It thus gives a measure for the evaluation time of the
function. That is, we see that not only the coefficients ri of the remainder R(2,0)

−++

are more complex than the other two-loop remainders, but also the respective
integral functions hi. There are 3518 basis functions in total, where 277 have
weight four [36]. We also see that fewer coefficients are needed to parametrize
a remainder than to parametrize an amplitude. Thus, phenomenological studies
can benefit from the simplicity of remainders. For the reconstruction, however,
the difference in complexity is negligible because the overall maximal degrees of
the polynomials r±i and c±i,k are similar. There is another fact that we observed,
which is not shown in the table. Although the denominators of the remainders
are like the ones of the coefficients determined by reconstruction in one variable
and matching against the non-planar alphabet, there is no pole at tr2

5 appearing
in the remainders, whereas it appears in coefficient functions. That means there
is more chance to get numerical instabilities during phase space integration when
one decides to use amplitudes compared to remainders in our case.

5.7. Validation

We validated our results in multiple ways. A consistency check of both the finite
remainders and the two-loop amplitudes, in general, is to look at their poles,
which were described in sections 3.8 and 5.2. We verified that the remainders
(5.10) when obtained from the amplitudes using equation (5.11) and following
indeed were finite, which is done explicitly for instance in the example program
finite_remainder_2l, as described in section 4.6. Because, as seen in equation
(5.10), the remainder is obtained from the two-loop amplitudes, this also provides
a consistency check for the two-loop amplitudes.
After reconstructing the coefficients of the amplitudes and remainders, we com-

pared the results to purely numerical calculations. This checks that the recon-
struction worked as expected, which means, for example, that the denominators
of the coefficients can indeed be parametrized by the alphabet of the integral
basis as seen in equation (3.67).
In contrast to the five-parton calculation [30], we have used the integral func-

tions of reference [36] for the remainder calculation as described in section 4.6.3,
and extended Caravel with them. We reproduced the numeric five-parton re-
sults from reference [99] in the physical region to check that we added them
correctly.
In table 5.1 we describe relations, which allow obtaining all relevant helicity

amplitudes for two-loop three-photon production from only one amplitude. As
a consistency check, we calculated every helicity configuration numerically. We
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then compared the results to the values obtained from permuting external mo-
menta and parity conjugation as stated in table 5.1 finding complete agreement.
To calculate the two-loop remainders, we used one-loop amplitudes calculated

by Caravel, which have been implemented together with the two-loop ampli-
tudes and thus not checked before. Also, as described in section 4.1, the co-
efficients of two-loop five-point amplitudes are determined with a Coefficient
provider of a different type than the one used for one-loop amplitudes. We
have checked the one-loop coefficients for correctness by reproducing results by
OpenLoops [125] up to finite order in the regularization parameter. Further-
more, we have used the fact that at one-loop, when replacing the weak coupling
constant by the strong coupling constant and summing amplitudes with three
permuted gluons instead of three photons, contributions stemming from gluon
self-interactions exactly cancel. We checked explicitly that this procedure repro-
duces the one-loop amplitudes for three-photon production.
While the amplitude coefficients we have determined are new to the public,

the two-photon amplitudes are available for a few years [126]. In addition to
the three-photon amplitude coefficients, we have reconstructed the one- and two-
loop two-photon coefficients with Caravel and compared them to the results of
reference [126] finding agreement on the provided remainders. We have also used
the two-photon amplitudes to check the behavior of our three-photon amplitudes
in the limit of two particles going collinear, as described in the following section.
Finally, when publishing, we had the advantage that the amplitude, although

not made publicly available, was already obtained in reference [32]. There are no
results in [32] we could check against directly. The phenomenological study in ref-
erence [37] however, which has used our results was consistent with the outcome
of reference [32]. This agreement indirectly checks our implementation. Further-
more, the authors of [32] checked that their implementation of the amplitude
agrees with ours later on in reference [38].

5.8. Collinear Limits

We obtained a vital check of our three-photon amplitudes by taking collinear lim-
its since these can be calculated from known lower multiplicity results [126] using
universal functions called splitting functions [127, 128]. If two of the external
momenta become collinear, say pi and pj, that means their spacial components
are proportional, so pi = xpj. We denote this limit by i||j. Because the particles
are massless, we then have (p0

i )
2 = p2

i = x2p2
j = x2(p0

j)
2 so that pi and pj are

proportional as four-momenta, that is pi = xpj. The total momentum of the
collinear legs i and j is given by pP := pi + pj, where for the later calculation we
define z as the energy proportion of the leg i with respect to pP so that in the
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collinear limit
pi → zpP and pj → (1− z)pP . (5.26)

If z = 0, then the whole energy of the collinear particles is carried by particle j,
so that particle i is soft and vice versa if z = 1.
To relate our five-point amplitudes to lower multiplicity results we use the

kinematic part of the amplitudeM as in equation (5.5), which we call the color-
stripped amplitude Ā consisting of the partial amplitude A including the spinor
weight normalization

Ā(1h1
q , 2

h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ ) ≡ Φ(1h1

q , 2
h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ )A(1h1

q , 2
h2
q̄ , 3

h3
γ , 4

h4
γ , 5

h5
γ ) .
(5.27)

In the collinear limit, the legs ihi and jhj behave like a single leg P h, where
in addition, collinear divergences can occur. These can be represented by so-
called splitting functions SplitPh(ihi , jhj) [127, 128], which are three-point helicity
amplitudes with pairwise proportional external legs. In the limit i||j the color-
stripped amplitude Ā factorizes and can be written as

Ā(ihi , jhj , . . .)
i||j−→
∑

h
SplitPh(ihi , jhj)Ā(P̄−h, . . .) , (5.28)

where if Ā(ihi , jhj , . . . ) is an n-point amplitude, Ā(P̄−h, . . . ) is an (n− 1)-point
amplitude. Since SplitPh(ihi , jhj) are also amplitudes we can expand them in the
bare strong coupling constant α0

s

SplitPh(ihi , jhj) = Split
(0)

Ph
(ihi , jhj) +

α0
s

2π
Split

(1)

Ph
(ihi , jhj) +

+

(
α0
s

2π

)2

Split
(2)

Ph
(ihi , jhj) +O

(
(α0

s)
3
)
.

(5.29)

Expanding the splitting functions and the color-stripped amplitudes in equation
(5.28) and comparing coefficients we can obtain factorization formulas for the
collinear one-loop amplitude Ā(1)

Ā(1)(ihi , jhj , . . .)
i||j−→
∑

h

(
Split

(1)

Ph
(ihi , jhj)Ā(0)(P

−h
, . . .)

+ Split
(0)

Ph
(ihi , jhj)Ā(1)(P

−h
, . . .)

)
, (5.30)
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i

j

i||j−→ i

j P
+

i

j P
+

i

j P

Figure 5.4.: Graphic representation for equation (5.31). The white circles on
the left-hand side are represent the different orders of the splitting
functions Split

(l)

Ph
(ihi , jhj) in the bare strong coupling constant. The

gray circles are the different orders of the color-stripped amplitudes
Ā. The circles with zero, one or two circles inside represent tree, one-
and two-loop contributions respectively.

and for the collinear two-loop amplitude Ā(2)

Ā(2)(ihi , jhj , . . .)
i||j−→
∑

h

(
Split

(2)

Ph
(ihi , jhj)Ā(0)(P

−h
, . . .)

+ Split
(1)

Ph
(ihi , jhj)Ā(1)(P

−h
, . . .)

+ Split
(0)

Ph
(ihi , jhj)Ā(2)(P

−h
, . . .)

)
. (5.31)

Before checking the two-loop behavior, we have performed the same checks on
Ā(1) in the collinear limit, verifying the consistency of our one-loop amplitudes
and splitting functions Split

(1)

Ph
(ihi , jhj). Similar to cut diagrams, the factorization

in equation (5.31) can be represented graphically, as seen in figure 5.4. We note
that the color-stripped amplitude Ā does not have any collinear divergences, if
the right-hand side of equation (5.31) vanishes. The l-loop splitting functions
Split

(l)

Ph
(ihi , jhj) can be written by means of the process dependent tree vertex

Split
(0)

Ph
(ihi , jhj) and transcendental functions ρ(l)

Ph
(ihi , jhj) in sij and z [128, 129]

Split
(l)

Ph
(ihi , jhj) = ρ

(l)

Ph
(ihi , jhj)Split

(0)

Ph
(ihi , jhj) , (5.32)

which also depend on the regularization parameter ε and the state dimension of
the internal particles Ds. Looking at equations (5.31) and (5.32) we can often
find out that an amplitude is regular in the collinear limit without knowing the
transcendental part ρ(l)

Ph
(ihi , jhj).

Photons do not carry color and thus appear unordered in the color-stripped
amplitudes. Because of that, the limits where different photons with the same
helicity go collinear are equivalent. In addition, if amplitudes involving a quark
vanish, the same holds for respective amplitudes with an antiquark. Thus, in
order to check the collinear behavior according to equation (5.31) we have to
consider the three limits (γ, γ), (q, q̄) and (q, γ) (or (q̄, γ)), for every helicity
pairing (hi, hj). We discuss these three limits one by one in the following.
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(q, q̄) limit: In this limit s12 = (p1 + p2)2 = p2
P = 0, which does not lie in the

physical region (5.3) of three-photon production, so it cannot be checked.

(γ, γ) limit: Since there is no tree vertex Split
(0)

Ph
(ihiγ , j

hj
γ ), all splitting functions

Split
(l)
Ph

(ihiγ , j
hj
γ ) in equation (5.32) and thus the right-hand side of equation (5.31)

vanish. That is, our computed amplitudes should be regular in the (γ, γ) limit,
which we have checked numerically.

(q, γ) and (q̄, γ) limit: In that case it is simpler to check Ā+++(ihiq , j
+
γ ) and

Ā−++(ihiq , j
−
γ ) first, because the corresponding color-stripped tree-level amplitude

on the right-hand side of equation (5.31) is Ā(0)
++ = 0. That is, for these cases we

don’t have to calculate Split
(2)

q̄h
(ihiq , j

hj
γ ) to obtain the right-hand side of equation

(5.31). To obtain Split
(1)

q̄h
(ihiq , j

hj
γ ), we employ the results for Split

(1)

q̄h
(ihiq , j

hj
g ) from

reference [130], where appropriate color factors have to be used to account for the
switch from gluons to photons. The relevant transcendental functions ρ(1)

q̄∓ (i±q , j
hj
γ )

from equation (5.32) are then given by

ρ
(1)

q̄+ (i−q , j
−
γ ) = ρ

(1)

q̄− (i+q , j
+
γ ) = F (z, sij, ε)− z rΓ(ε)

(−sij
µ2

)−ε
Ds − 2

4(1− ε)(1− 2ε)
,

(5.33)
for splittings into particles with the same helicity and by

ρ
(1)

q̄+ (i−q , j
+
γ ) = ρ

(1)

q̄− (i+q , j
−
γ ) = F (z, sij, ε) , (5.34)

for splittings into particles with different helicities. Here, F (z, sij, ε) is defined as

F (z, sij, ε) = rΓ(ε)

(−sij
µ2

)−ε
1

ε2

∞∑
m=1

εmLim

( −z
1− z

)
, (5.35)

and the polylogarithms Lim as [131]

Li1(x) = −log(1− x) ,

Lim(x) =

∫ x

0

dt

t
Lim−1(t) .

Finally, the normalization factor is

rΓ(ε) =
1

(4π)ε
Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)
. (5.36)
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We have obtained the tree-level vertices Split
(0)

q̄∓ (i±q , j
hj
γ ), which are needed to

calculate Split
(1)

q̄∓ (i±q , j
hj
γ ) by means of equation (5.32), from the corresponding

Feynman rule as given in section 2.3. With the above constraints we could verify
numerically that equation (5.31) holds in the (q, γ) and (q̄, γ) limit.
The last type of check we had to perform was the collinear limit of Ā−++(ihiq , j

+
γ ),

where the color-stripped tree-level amplitude on the right-hand side of equa-
tion (5.31) is Ā(0)

−+ and does not vanish so that the two-loop splitting function
Split

(2)

q̄∓ (i±q , j
+
γ ) has to be taken into account. We did not evaluate Split

(2)

q̄∓ (i±q , j
+
γ )

explicitly. Instead, we used the fact that if we normalize it to the corresponding
tree-level splitting function according to equation (5.32), it should depend only
on the Mandelstam invariant sij and the energy fraction z. It does not depend on
other Mandelstam invariants in this case. We then solved (5.31) first for the one-
and then for the two-loop splitting functions normalized by the tree-level value.
Evaluating them on multiple phase space points, keeping z and sij constant and
changing the remaining Mandelstam invariants, we could verify that the splitting
functions remained unchanged as expected.

5.9. Ancillary Files

We provide our results for the one- and two-loop amplitudes A(1)
h , A(2,0)

h , and
A

(2,Nf )

h as defined in equations (5.8) and (5.9) as well as the finite remainders R(1)
h ,

R
(2,0)
h and R(2,Nf )

h as in equation (5.16) in headed list ancillary files coming with
reference [84]. The one- and two-loop amplitudes as well as the remainders are
in the subdirectories oneLoopAmplitudes, twoLoopAmplitudes and remainders
respectively. The strings pmppp and pmmpp in the filenames denote the helicities
of the external particles of the respective amplitude, that is whether h = +++ or
h = −+ +. The strings nf0 and nf1 for the two-loop amplitudes or the optional
string nf for the remainders are there to distinguish between the amplitudes A(2,0)

h

and remainders R(2,0)
h without closed fermion loops and the amplitudes A(2,Nf )

h

and remainders R(2,Nf )

h with closed fermion loops. The one-loop amplitudes are
given as a two-dimensional list (Ii, ci(~s,Ds))i, with the master integrals needed
to represent the amplitude in the first entry and their coefficients in the second
entry, so that the one-loop amplitudes can be obtained by summing

A
(1)
h =

∑
i
ci(~s,Ds)Ii . (5.37)

The coefficients are functions of Mandelstam invariants andDs = D = 4−2ε. The
remaining amplitudes and remainders are given using tags fj for often occurring
polynomials to save space.
As for the remainders, every file consists of a three-dimensional list with the
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form ((PPair[ai, bi], Fi)i, (fj)j) where ai and bi are dimensionless functions of
the polynomials fj. The Fi are integral functions in the notation of the pack-
age PentagonMI [36]. They can be evaluated using PentagonMI, or using ref-
erence values for the evaluation on the point from equation (5.20) in the file
numerics/Fvalues.m of reference [84]. The remainders can then be obtained
from the lists in the remainders directory by calculating

R =
∑

i

(
ai
(
~f(~s)

)
+

tr5

s2
12

bi
(
~f(~s)

))
Fi . (5.38)

The two-loop amplitudes follow a similar pattern. Their coefficients are saved
as a two-dimensional list ((PPair[ai, bi])i, (fj)j). The master integrals Ii are iden-
tical for all helicity configurations of one specific amplitude and therefore saved
in the files labeled IntegralsMI_nf0.m and IntegralsMI_nf1.m once per helic-
ity configuration. In analogy to equation (5.38), the two-loop amplitudes can be
assembled from those lists in the respective coefficient files by calculating

A(2,j) =
∑

i

(
ai
(
~f(~s), ε

)
+

tr5

s2
12

bi
(
~f(~s), ε

))
Ii . (5.39)

This procedure and a test, whether the formulas from section 5.2 indeed deliver
the remainders R from the amplitudes A is saved in the file example_assembly.m.
The integral strings which can be found in the one-loop files IntegralsMI_nf0.m

and IntegralsMI_nf1.m follow a similar pattern to the integral strings Caravel
uses as output as described in the reconstruction examples in section 4.6.2. Now
they have the form

MI[PropagatorStructure, i, mandelstam1, mandelstam2, ...]

where as in section 4.6, PropagatorStructure is a name describing the graph
representation of the integral, such as TwoMassTriangle or PentagonBox. Instead
of the NumeratorLabel, as described in section 4.6.2 for Caravel output, now
the master integrals are indexed with i. The numerators for each master integral
can be found in the files MasterIntegralDefinitions.m. In analogy to table
4.2, the numerator insertions for three-photon production are given in table 5.7,
where

µij = `D−4
i · `D−4

j . (5.40)

In contrast to the Caravel examples in section 4.6, the MI[] strings employed in
the photon files don’t provide information about the propagators of the integral.
We list these in appendix D.
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l[i] `i

p[k] pk

sq[v] v2

sp[v[i], v[j]] vi · vj
tr5[1, 2, 3, 4] tr5

mu[i, j] µij

D D

Table 5.7.: Numerator insertion naming of the master integrals in the ancillary
files to three-photon production amplitudes.

5.10. Hard Functions

We have shown the analytic structure of one- and two-loop amplitudes as well
as two-loop remainders relevant for three-photon production at hadron colliders.
However, as has been shown [132], the double-virtual NNLO contributions to
the differential cross section can be determined from tree amplitudes and finite
remainders only, which lack the redundant information stemming from lower-
loop contributions. By summation over possible helicity states and color these
remainders and tree amplitudes can be assembled into so-called hard functions
H [133]. Like the amplitude, the hard function can be expanded in the strong
coupling constant αs

H = H(0) +
αs
2π
H(1) +

(αs
2π

)2

H(2) +O(α3
s) , (5.41)

where we factor out the Born-level contribution so that H(0) = 1. The NLO
correction H(1) is then given by

H(1) =
1∑

h

∣∣M(0)
h

∣∣2 CF
(∑

h

∣∣M(0)
h

∣∣2 2Re
[
R

(1)
h

])
, (5.42)

and the NNLO correction H(2) by

H(2) =
1∑

h

∣∣M(0)
h

∣∣2
(∑

h

N2
c

4
Nc

∣∣ΦhR
(1)
h

∣∣2 +

∑
h

∣∣M(0)
h

∣∣2 2Re

[
N2
c

4
R

(2,0)
h + CFTFNfR

(2,Nf )

h

])
.

(5.43)
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For H(2), the contribution proportional to
∣∣R(1)

h

∣∣2 is the convolution of the two
one-loop amplitudes as described in section 2.5 and the one proportional to the
remainder R(2,0)

h and R
(2,Nf )

h defined in equation (5.16) is the convolution of a
tree with a two-loop amplitude. Taking the normalizations of the remainders
into account, the tree matrix elementM(0)

h is set to∣∣M(0)
h

∣∣2 = e6
qNc|Φh|2

∣∣A(0)
h

∣∣2 . (5.44)

The calculation of the hard functions H(1) and H(2) is facilitated by the permu-
tation relations in table 5.1. Also, the respective two-loop remainders don’t have
to be evaluated, because the tree amplitudes M(0)

+++ vanish. This means, H(1)

and H(2) can be obtained from permutation and conjugation of the analytic form
of the two one-loop remainders R(1)

+++ and R
(1)
−++ and the two two-loop remain-

ders R(2,0)
−++ and R(2,Nf )

−++ . The hard functions have been implemented in the C++
library FivePointAmplitudes-cpp, which can be obtained from the website of
reference [84]. To install it, the commands of listing 5.1 can be used.
1 > git clone git@gitlab.com:five-point-amplitudes/\
2 > FivePointAmplitudes-cpp.git
3 > cd FivePointAmplitudes-cpp
4 > mkdir build
5 > cd build
6 > meson .. -Dprefix=<install-dir>
7 > ninja install
Listing 5.1: Commands to download, build and install the FivePointAmplitudes

library

To obtain the values for the hard functions H(1) and H(2) one can use the example
inside examples/example_H2, which calculates their values on the phase space
point given in equation (5.20), where the phase space point and the renormal-
ization scale can be set inside the example. The evaluation time is dominated
by the integral function evaluation and takes about five seconds in total using
double precision. As for numerical stability, H(2) has been evaluated in double
precision to H(2)

double and in quadruple-double precision to H(2)
quad on 90000 phase

space points [37]. Assuming H(2)
quad to be correct within double precision, the value

d = − log10

∣∣∣∣∣H(2)
double

H
(2)
quad

− 1

∣∣∣∣∣ (5.45)

is a measure of the correct digits of H(2)
double and shown in figure 5.5.

In the figure, one sees that the results are correct to more than four digits on
the bulk of the phase space points, whereas less than one per mille has less than
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Figure 5.5.: The number of correct digits d as in equation (5.45) of the evaluation
of the two-loop hard function H(2) in double precision [37]. The
authors set the renormalization scale here to the invariant mass of
the three photons.

four correct digits. The low accuracy in that regions could be traced back to the
vanishing of letters of the alphabet of the chosen integral function basis, which
means that one should take care that no letters vanish when choosing the phase
space integration contour.
The hard functions implemented in FivePointAmplitudes-cpp have been em-

ployed in the Matrix framework [134] and used in the phenomenological study
of reference [37]. They agree fully with the previous study of reference [32] and
show good agreement with the experimental study [35] on ATLAS 8 TeV data,
as for example seen in the invariant mass distribution of the three-photon system
plot shown in figure 5.6. One can see that the Matrix result agrees with the
data within one standard deviation, whereas the data is underestimated using
NLO predictions in the lower bins. The azimuthal angles ∆φ, the pseudora-
pidities ∆η, and the transverse momentum distributions behave similarly [37].
One also sees in the lower diagram that the NNLO contributions are sizable:
they are up to twice as high as the NLO contributions to the invariant mass
distribution and reached a factor of three compared to other observables. That
means that including NNLO contributions is crucial for accuracy, for example,
in a 13 TeV study of this process. Although the double-virtual contributions are
relatively small, as was the case for two-photon production [135], when using
qT -subtraction [136] they can reach up to 6 % of the NNLO corrections [37] thus
making them noticeable.
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Figure 5.6.: Invariant mass distribution of the three-photon system produced by
Matrix compared to ATLAS 8 TeV data as well as the enhancement
of NNLO to NLO [37]. This studies used our hard functions defined
in equations (5.41), (5.42) and (5.43).
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6. Conclusion

In this thesis, we have obtained the analytic form of the two-loop leading-color
scattering amplitudes for three-photon production at hadron colliders for the first
time. We have used the numerical unitarity method to obtain the coefficients of
a decomposition of the amplitude into master integrands and surface terms. The
decomposition was performed in a finite field and to all orders in the regulariza-
tion parameter. We have employed the available setup to determine the finite
remainder coefficients of the planar two-loop five-parton amplitudes in the Eu-
clidean region as described in reference [30]. We have extended the setup by
colorless photon fields and made it work in the physical region of phase space.
After establishing a framework for the numerical evaluation of the master integral
coefficients for amplitudes involving photons, we have obtained the analytic form
of the amplitudes. We have observed that the denominators of the coefficients
are given by products of letters of the master integral basis alphabet and have
matched them accordingly. We have then reconstructed their numerators using
multivariate polynomial reconstruction algorithms. The master integral expres-
sions we provide with the analytic coefficients can be evaluated in the physical
region using the pentagon functions implementation [36]. We have assembled
the hard functions required to calculate NNLO QCD corrections to three-photon
production at the LHC with our amplitudes.
The authors of reference [37] have used our results for their phenomenolog-

ical study. They have performed systematic comparisons against three-photon
production data from the ATLAS Collaboration [35].
We have calculated the master integral and finite remainder coefficients numer-

ically and functionally reconstruct them using the Caravel framework, which
we extended to meet this task. We have presented the public version of Car-
avel in reference [31]. Caravel is a series of C++ libraries that implement
the multi-loop numerical unitarity method. It is written in a modular way al-
lowing to extend it by different QFT models. Provided with a decomposition of
the relevant integrands into master integrals and surface terms, Caravel can
determine the master integral coefficients either in floating-point precision or in
a finite field. Applying rational reconstruction from multiple finite field eval-
uations Caravel can determine exact rational values for the coefficients. It
represents four-point results via multiple polylogarithms [77] and five-point re-
sults in terms of pentagon functions [25, 36]. Caravel can extract the analytic
form of these coefficients by using functional reconstruction algorithms [94]. We
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have explained how the modules of Caravel work, and we have described how
to use the consistency tests and examples provided with the software. We par-
ticularly emphasized the changes coming with version 0.2.0 of Caravel, which
allow the determination of master integral coefficients for amplitudes involving
photons. In version 0.2.0, we included colorless particles in the framework, as
required when studying processes with photons. Furthermore, we provided an
interface to the recent pentagon function implementation in the physical region
as described in reference [36].
Multiple research projects are natural extensions of the presented work. We

have considered contributions from closed fermion loops within our three-photon
production calculation, particularly fermion loops without external photons. The-
se contributions are gauge-invariant and do not include any non-planar Feyn-
man diagrams. A non-planar master integral basis is available in principle, and
there are already results including non-planar contributions for similar processes
[137, 138]. However, there is no public implementation of an integrand decompo-
sition into master integrands and surface terms, considering non-planar contribu-
tions. We expect a parametrization of non-planar two-loop five-point integrands
to be available soon, which we can employ to extend the present calculation by
non-planar terms. A further possible extension of the presented results is related
to the Caravel framework itself. While the current version of Caravel is ca-
pable of calculating all the amplitudes obtained with its help before, users cannot
choose any new amplitudes. Crucial steps of the calculation like the access to
master integrals, the generation of the cut hierarchy, and the decomposition of
the result in terms of integral functions rely on private codes to be extended to
different models. We need to check and automate these codes to make them
public so that the user can obtain amplitudes for a broader range of processes.
The next step would be to get full-color results for three-photon production and
calculate the coefficients of other amplitudes with photons in the final state, such
as the production of two jets with a photon. For some of these processes, results
already have been published [137–139]. Furthermore, since the master integrals
for one massive particle in the final state are already available [140], vector-boson-
plus-four-parton amplitudes are within reach. Finally, it will be exciting to work
towards cross-section predictions and NNLO phenomenology for multi-particle
processes at the LHC.

115



Appendix

We present next a series of appendices with complementary information. In ap-
pendix A we give some definitions and relations within the calculus of variations,
representation theory and gauge theory important for the development of a QFT.
In appendix B we explain how the internal momenta which are on-shell within a
certain propagator structure Γ are generated. In appendix C, we give a definition
for a propagator structure with a certain momentum routing, as it is used inside
Caravel. In appendix D we define the master integrals used as a basis for our
one- and two-loop three-photon production results.

A. Mathematical Formulas

A functional is a function of functions

F : C2(X)→ R . (A.1)

The variation of the functional is then given by

δF [u, φ] =
d

dε
F [u+ εφ]

∣∣∣∣
ε=0

, (A.2)

for an arbitrary test function φ. The functional derivative for F with respect to
a function u is a function

f(x) =
δF [u]

δu(x)
, (A.3)

such that ∫
f(x)φ(x)dx = δF [u, φ] (A.4)

for all test functions φ. A necessary condition for a minimizer u of F is the
variational principle

δF [u, φ] = 0 , (A.5)

for all test functions φ on X. For variational integrals

F =

∫
X

L(x, u,Du)dx (A.6)
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from the variational principle we can derive the Euler–Lagrange equations

DLDui(x, u,Du)− Lui(x, u,Du) = 0

for all i. We call the integrand L the Lagrangian here. In a field theory, we set
F = S the action of the system. We write u = ϕ for the fields. The equations of
motion which tell us how the fields obeying the theory will behave are given by
the corresponding Euler–Lagrange equations.
A Lagrangian is invariant under a group G action iff for all g ∈ G we have
L(gϕ) = L(ϕ). A group has a representation—a vector space V together with a
map · : G×V → V , v 7→ g ·v, so that e·v = v and for all g in G it holds that g1(g2 ·
v) = (g1g2) · v. Matrix Lie groups, so subgroups of the group of invertible n× n
matrices GL(n,C), have a fundamental representation with V = Cn and · given
by the multiplication of the respective matrices with v in V . A matrix Lie group
also has a Lie algebra, g which is the vector space of all matrices T (Φ) so that for
all real t the exponential eitX is an element of the Lie group in the representation
Φ. The elements of its basis T (Φ)

a are called the generators of the matrix Lie
group. The Lie algebra also has a map [·, ·] : g× g→ g given by the commutator
(A,B) 7→ AB−BA. For every Lie algebra there are defining structure constants
fab

c so that [T
(Φ)
a , T

(Φ)
b ] = ifab

cT
(Φ)
c . With these, every matrix Lie group has an

additional representation—the adjoint representation with (T
(adj)
a )b

c = −ifab
c.

We can define a fiber bundle P with the base manifold being an oriented
manifold X with Minkowski signature and the fibers being matrix Lie groups,
that is P is locally homeomorphic to U × G with G ∈ GL(n,C) and U ⊂ R1,3.
These fiber bundles are called principal bundles and we refer to their structure
groups as gauge groups. We can also define a spinor bundle over the Minkowski
space. For that, we first define a Clifford algebra [141]

Cl1,3(R) = T (R1,3)/〈vµvν − ηµνvµvν〉
= Cl01,3(R)⊕ Cl11,3(R) ,

(A.7)

with T (R1,3) being the tensor algebra of R1,3 which induces a finite grading on
Cl1,3(R). Note that in that case

(v + w)µ(v + w)ν = vµvν + vµwν + wµvν + wµwν

= ηµνv
µvν + 2ηµνv

µwν + ηµνw
µwν ,

(A.8)

which by using again the quotient from equation (A.7) means

vµwν + wµvν = 2ηµνv
µwν , (A.9)

which is the defining property of gamma matrices, that is they can be used as

117



Appendix

generators for the Clifford algebra. Consider as another example Cl0,3(R), which
for orthonormal basis vectors ei is generated by 1, e1, e2, e3 and the combinations
e1e2, e1e3 and e2e3 and e1e2e3. Since it holds that(

1± e1e2e3

2

)2

= 1 ,

(
e1e2 ∓ e3

2

)2

=

(
e1e3 ∓ e2

2

)2

=

(
e2e3 ∓ e1

2

)2

= −1 ,

(A.10)
we can identify Cl0,3(R) ∼= H⊕H with Cl00,3(R) ∼= H. Consider now the map

Cl0,3(R)→ Cl01,3(R)

v0 + v1 7→ v0 + v1e0 .
(A.11)

Since in the second term all odd basis elements are mapped onto even ones, which
are not there in Cl00,3(R), the map is an isomorphism, in particular we can identify
Cl01,3(R) ∼= H⊕H. Cl1,3(R)⊗ C has a unique complex representation

SC
1,3(R) = SC+

1,3 (R)⊕ SC−
1,3 (R) (A.12)

so that Cl1,3(R) ⊗ C ∼= End(SC
1,3(R)). SC±

1,3 (R) are closed under the action of
Cl01,3(R)⊗ C, while

Cl11,3(R)⊗ C ∼= Hom(SC±
1,3 , S

C∓
1,3 ) . (A.13)

We then define the Spin group to consist of normalized elements of an even
grading of Cl1,3(R) and the SpinC group to consist of normalized elements of an
even grading of Cl1,3(R)⊗ C, that is

Spin1,3(R) = {v1v2 · · · ∈ Cl01,3(R) | ηµνvµi vνi = 1} ,
SpinC

1,3(R) = {v1v2 · · · z ∈ Cl01,3(R)⊗ C | ηµνvµi vνi = 1} .
(A.14)

As an example, consider here Spin0,3(R) ⊆ Cl00,3(R) = H. The normalized vi can
be taken as the basis vectors ei here. As can be seen from equation (A.10), the
identification Cl0,3(R) ∼= H ⊕ H relates the even components 1, e1e2, e1e3 and
e2e3 with a basis of H. Since for the elements v1v2 · · · ∈ Spin0,3(R) it has to hold
that ηµνvµvν = 1, it follows that the v1v2 · · · must themselves be of unit length,
that is v1v2 · · · = c01+c1e1e2 +c2e1e3 +c3e2e3 with cici = 1. We can thus identify
v1v2 · · · = cµσµ and

Spin0,3(R) ∼= SU(2). (A.15)

As another example consider Spin1,3(R) ⊆ Cl01,3(R) with Spin0,3(R) ⊂ Spin1,3(R),
because Cl00,3(R) ⊂ Cl0,3(R) ∼= Cl01,3(R). Since there are S3 ∼= SU(2) possibilities
to embed R0,3 into R0,4, we get

Spin4(R) ∼= SU(2)× SU(2) , (A.16)
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where we can wick rotate the R0,4 → R1,3 which amounts to

Spin1,3(R) ∼= SL(2,C) . (A.17)

As a final example consider SpinC
1,3(R). It is Spin1,3(R) × U(1) � SpinC

1,3(R),
where (z, z−1) 7→ 1 so that

SpinC
1,3(R) ∼= SL(2,C)× U(1)/Z2 . (A.18)

Note that Spin1,3(R) is a double cover of SO+(1, 3). To see that, for v1v2 · · · vk ∈
Cl1,3(R) define the transposition by

(v1v2 · · · vk)t = vk · · · v2v1 . (A.19)

Because of the quotient in the definition (A.7) we can write

Spin1,3(R) = {v ∈ Cl01,3(R) | vvt = 1} . (A.20)

Furthermore set
ε : Cl1,3(R)→ Cl1,3(R)

v0 + v1 7→ v0 − v1

(A.21)

then v? = ε(v)t is an automorphism of Cl1,3(R). Choose a v ∈ R1,3, then the map

Spin1,3(R)→ SO+(1, 3)

w 7→ ρw
(A.22)

with
ρw(v) = wvw? (A.23)

defines a double covering

SO+(1, 3) ∼= SL(2,C)/Z2 . (A.24)

In analogy, since
SpinC

1,3(R)/Z2
∼= SO+(1, 3)× U(1) , (A.25)

SpinC
1,3(R) is the double cover of SO+(1, 3)× U(1). The complex Cl1,3(R) repre-

sentation SC
1,3(R) can be restricted to a complex Spin1,3(R) representation

∆C
1,3(R) = ∆C+

1,3 (R)⊕∆C−
1,3 (R) : Spin1,3(R)→ Aut(SC

1,3(R), SC
1,3(R)) . (A.26)

Elements of SC
1,3(R) under the action of ∆C

1,3(R) are called spinors. Since we
established that Spin1,3(R) ∼= SL(2,C), ∆C

1,3(R) is the standard representation of
SL(2,C) on C2, which is then called the Weyl representation. If ∆C

1,3(R) admits a
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real structure, it is called the Majorana representation. Since ∆C
1,3(R)(−1) = −1,

it can be uniquely extended to a representation

∆C
1,3,C(R) : SpinC

1,3(R)→ GL(SC
1,3(R),C) . (A.27)

Now consider the tangent bundle TX of X regarded as the associated vector
bundle to the frame bundle F (TX) with the structure group being SO+(1, 3).
We can promote F (TX) to a Spin1,3(R) bundle P if the double cover as given
in equation (A.22) can be extended equivariantly to a map P → F (TX), which
is true in most cases, especially if X is parallelizable. P is then called a spin
structure for X. In analogy, if PC is a SpinC

1,3(R) bundle and the double cover
can be extended equivariantly to a map PC → F (TX), PC is called a SpinC

structure for X. It is always possible to define a SpinC structure for oriented
four-dimensional manifolds. A subbundle of the SpinC bundle is the determinant
line bundle L → X, with fiber SpinC

1,3(R)/ Spin1,3(R). Since X admits Spin and
SpinC structures P and PC, there also are associated complex spin bundles

SC
1,3(P ) = P ×Spin1,3(R) S

C
1,3(R) and SC

1,3(PC) = P ×SpinC
1,3(R) S

C
1,3(R) (A.28)

induced by the representations ∆C
1,3(R) and ∆C

1,3,C(R).
The spinors so far describe free theories. Lastly, we want to introduce con-

nections on our Spin and SpinC bundles. Let π : P → X be a principal bundle
with structure group G and Lie algebra g, then V P = ker(dπ) is a subbundle of
P called the vertical bundle and HP so that TpP = HpP ⊕ VpP everywhere the
horizontal bundle. A connection is a subbundle {Hp}p ⊆ HP . Consider now a
one-form

ωp : TpP → VpP → g , (A.29)

so that ker(TpP → VpP ) = Hp and VpP → g is the isomorphism given by
the derivative of the action of G. We can promote {Hp}p to a connection on
an associated vector bundle E = P ×G X, given by the covariant derivative
∇ : Ω0(X,R1,3)→ Ω1(X,R1,3) defined for a section Ω0(X,R1,3) by for every x ∈ X
and every τ ∈ TxX defining a curve γ so that τ = d

dt
γ
∣∣
t=0

and promoting γ to a
curve p(t) on P tangent to {Hp}p. Then σ|γ = (x(t), p(t)) and

∇(σ)(τ) =
(
p,
∂x

∂t

∣∣∣
t=0

)
. (A.30)

For every connection one-form ω, we can define a two-form

F = dω +
1

2
ω ∧ ω , (A.31)

which is the curvature or the field strength with respect to ω. There is a unique
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connection on the frame bundle F (TX) given by

∇eµ(eν)Γ
ρ
µνeρ , (A.32)

where the Christoffel symbols Γρµν are defined as metric compatible, that is

∇eρ(eµ)σeν,σ + eσµ∇eρ(eν)σ = ∂ρe
σ
µeν,σ (A.33)

and torsion free, so
∇eµ(eν) = ∇eν (eµ) , (A.34)

which is called the Levi-Civita connection. We get a Spin connection, if we pro-
mote the frame bundle F (TX) to a spin structure P . The horizontal distribution
on P is then given by the inverse of the differential of the double cover. We
also get a connection on SC

1,3(P ) as the associated vector bundle to P . If ω is its
connection one-form and σ(u) = (u, s(u)) the section, it is locally given by

∇(σ)(u) =

(
u, ds(u) +

1

2

∑
µ<ν

ωνµeµeνs(u)

)
. (A.35)

On a SpinC bundle, we additionally have a U(1) connection A on the determinant
line bundle. Locally with e the basis vector in the section of L the connection
has the form

∇e(σ)(u) =

(
u,
ds(u)

de
+

1

2

(
iA(e) +

∑
µ<ν

ωνµ(e)eµeν

)
· s(u)

)
. (A.36)

The connection A is the photon field. Using (A.36), we can define the Dirac
operator on SC

1,3(P ), describing the dynamics of the fields. Locally it is given by

∂/A(σ)(u) = eτσ
ds(u)

deτσ
+

1

2

(
Aτ (eσ)eτσ +

∑
ν<ρ

ωρν(eσ)(eνeρ)
)
s(u) . (A.37)

B. On-Shell Momenta

To solve the linear system of equations (3.47) for the integrand coefficients, we
have to evaluate the left-hand side on multiple points `Γ

l , which set the propaga-
tors defined by Γ on-shell. To this end, we extended the approach described in
references [27, 59] to two loops. We first determine the loop momentum of one of
the loops `1 by considering its one-loop diagram, where the other loop is pinched
to a point. We then determine the remaining loop momentum `2 by looking
at the other loop, now with a middle rung, where `1 is treated like an external
momentum—as pictured in figure B.1. Note that this way, both of the represen-
tations have identical propagators cut. In every loop, we then parametrize the
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1

2

3

5

4

`1

→
5

4

1

2

3

+

5

4

`1

123− `1

Figure B.1.: splitting of a two-loop cut into two one-loop cuts with the same
propagators

loop momenta `1 and `2 by the inverse propagators ρ and some free to choose
parameters α. We then can sample over α to get enough values for the left-hand
side of equation (3.47) to solve the system of equations. To this end, we split the
loop momentum `l into its physical part ri(ρ)vi and its transverse part αini

`l = V + αjnj = ri(ρ)vi + αjnj . (B.1)

The physical part ri(ρ)vi is spanned by the vectors vi = (G−1)ijpj withGij = pi·pj
the gram matrix, which are then dual to the momenta pi meaning pi ·vj = δji . The
coefficients ri(ρ) can be determined from the inverse propagators ρi = (`l − p1i)

2

to be
ri(ρ) =

1

2
(ρi−1 − ρi + p2

1i − p2
1,i−1) . (B.2)

The momenta pi are the ones defining a cut; that is, for a bubble cut, there would
be one momentum, for a triangle two, for a box three, and for a pentagon four.
The transverse momenta ni then have to span the (D − 4)-dimensional space
transverse to the one spanned by pi. To this end, we choose arbitrary vectors ti
and project them onto the transverse space creating vectors ui by

uiµ = g⊥µνt
ν = (ηµν − viµpiν)tν . (B.3)

In a last step we orthonormalize the ui using Gram–Schmidt orthonormalization
to arrive at the vectors ni. Because the ni are orthonormal, using equation (B.1)
we get the condition

0 = `2
l = V 2 + αiα

i (B.4)

for the αi, so that in case of codimension one we can solve for α1 = i
√
V 2. For

higher codimension we can parametrize α1 and α2 by

α1 =
1

2

(
t− V 2 +

∑
i>2 α

2
i

t

)
, and α2 =

1

2i

(
t+

V 2 +
∑

i>2 α
2
i

t

)
, (B.5)

where the αi with i > 2 can be freely chosen.
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Bead[Leg[1]] `1

Bead[Leg[2,0]] Node

`2 Bead[Leg[4,0]]

Bead[Leg[3,0]]

Figure C.1.: An exemplary double box CaravelGraph with the Beads and the
last Node displayed. The Links with the loop momenta `1 and
`2 read Link[LoopMomentum[1]] and Link[LoopMomentum[-2]] re-
spectively. The first node connects `−2, the middle Strand and `1.

By this procedure, for every propagator structure Γ, we parametrize the loop
momenta `1 and `2 by the propagators defining the cut and free variables t, α3, α4, . . . .
Lastly, for the propagators defining the cut, we set ρi = 0. This choice yields a
parametrization of the solution space of the equations defining the cut.

C. CaravelGraph Structure

For every propagator structure Γ in equation (3.46), the headed list CaravelGraph
defines the propagator structure and the loop momentum routing. A diagram-
matic representation of an example CaravelGraph can be seen in figure C.1. A
CaravelGraph consists of one or two Nodes, dependent on whether the propaga-
tor structure factorizes into two one-loop structures or not. The Nodes are the
vertices connected to the middle rung. Every Node can have zero or one Legs,
which represent the attached momenta. Every momentum is considered outgo-
ing. Every Leg has one or two attributes, which are an index associated to it and
an optional zero if the Leg is massless.
The second entry of CaravelGraph describes the Connection between the

Nodes. It can have two or three rungs or Strands, dependent on whether the
propagator structure is factorized or not. Every Strand goes from the first to
the second Node or from the unique Node to itself if the propagator structure
factorizes. The Strands consist of Beads, which have the attached Legs as at-
tributes and the Links connecting the Beads. The first Links of the first and last
Strands have an attribute LoopMomentum with an index with the absolute value
1 or 2 for the first and last Strand respectively. These define the positions of
the loop momenta `1 and `2 within the propagator structure. A positive index
signifies that the LoopMomentum flows along with the Strand from the first to the
last Node, a negative index signifies that the LoopMomentum flows in the opposite
direction.
The third entry of the CaravelGraph is a name describing the propagator

structure. It has an optional index or further description in case the propagator
structure is ambiguous within the basis. The suffix Simple signifies that there
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are no Legs attached to the Nodes, SemiSimple means there is exactly one Leg
attached to a Node and Generic means there are two Legs attached to the Nodes,
one to each Node.
The CaravelGraph entry for the example in figure C.1 is

CaravelGraph[Nodes[Node[], Node[]],
Connection[Strand[Link[LoopMomentum[1]], Bead[Leg[1]],

Link[], Bead[Leg[2, 0]], Link[]],
Strand[Link[]],
Strand[Link[LoopMomentum[-2]], Bead[Leg[4, 0]],

Link[], Bead[Leg[3, 0]], Link[]]],
"BoxBoxSimple"]

D. Master Integrals for Three-Photon Production

The master integrals in the ancillary files for one- and two-loop amplitudes for
three-photon production do not carry information about their propagator struc-
tures. Because of this, they are listed in table D.1 for one-loop amplitudes and in
tables D.2, D.3 and D.4 for two-loop amplitudes. To not produce singularities,
propagators must appear only once per integral, which is the case for the chosen
bases. As in other Caravel studies, the external momenta are considered out-
going. Only the integrals corresponding to the clockwise ordering of the external
particles are shown here. The integral basis consists of multiple integrals with
the same name but different permutations of the Mandelstam invariants.
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MI["Bubble", i, s12] 12 345

MI["OneMassTriangle", i, s12]

1

345

2

2

MI["TwoMassTriangle", i, s12, s45]

3

45

2

12

MI["OneMassBox", i, s45, s12, s23] 451

2 3

MI["Pentagon", i, s12, s23, s45, s45, s15] 5
1

2 3

4

Table D.1.: One-loop master integrals momentum routing.

MI["PentagonBox", i, s12, s23, s34, s15, s45]

`1`2
1

2

4

5

3

MI["FivePointDoubleBox", i, s12, s23, s34, s15, s45]
1

2

3

4

5`1 `2

MI["FivePointBoxTriangle", i, s12, s23, s34, s15, s45]

`1
`2

1

2

4

5

3

MI["PentagonBubble", i, s12, s23, s34, s15, s45] `1

`2

1

2

4

5

3

Table D.2.: Two-loop five-point master integrals momentum routing.
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MI["OneMassDoubleBox", i, s12, s34, s45] 12

3 4

5`1 `2

MI["FourPointBoxTriangle", i, s23, s14, s45]

1

23 4

5

MI["OneMassSlashedBoxHard", i, s45, s12, s23]

1

45 3

2

`2

`1

MI["OneMassSlashedBoxEasy", i, s12, s34, s45]

3

12 5

4

MI["OneMassBoxBubbleHard", i, s23, s14, s45]

1

23 4

5

MI["OneMassBoxBubbleEasy", i, s12, s34, s45]

4

5 12

3

MI["FactorizedBoxBubble", i, s45, s12, s23]

1

45

3

2

Table D.3.: Two-loop four-point master integrals momentum routing.
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MI["TwoMassSlashedTriangle", i, s23, s45]

1

23

45

MI["OneMassTriangleBubble", i, s45]

123

4

5

MI["TwoMassTriangleBubble", i, s12, s45]

45

3

12

MI["ThreePointFactorizedBubbleBubble", i, s23, s45]

1

45 23

MI["FactorizedBubbleBubble", i, s45] 45 123

MI["Sunrise", i, s34] 512 34

Table D.4.: Two-loop three- and two-point master integrals momentum routing.
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