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1
Introduction

The structure of matter has fascinated humans for centuries. For example, already in
ancient Greece, Anaxagoras (c. 500-428 BC) proposed that changes in matter result
from different arrangements of indivisible particles, while Empedocles (c. 494-434 BC)
explained the complexity of all matter in terms of four elements: earth, air, fire, and
water. Leucippus (c. 470–360 BC) and his student Democritus (c. 460–370 BC) devel-
oped a more sophisticated philosophical foundation known as atomism. They proposed
that the physical universe consists of atoms and void that have always existed, with
the diversity of matter arising from infinitely many variations in the shapes, arrange-
ments, and positions of atomic clusters. Although we now know their ideas differed
significantly from reality, it is fascinating that they speculated about the fundamental
building blocks of the universe in terms of ‘atomos’, which means uncuttable.

Centuries later, in 1766, Cavendish discovered the chemical element hydrogen by
recognising its elemental nature, although others, such as Boyle, had prepared hydro-
gen gas for many years prior. At the beginning of the 19th century, Dalton introduced
atomic theory, proposing that each chemical element has a characteristic type of atom
that differs in properties from atoms of all other elements, and that atoms of different
elements can combine to form compounds, later introduced as molecules by Avogadro
in 1811. In 1838, Laming first hypothesised the existence of an indivisible unit of
electric charge to explain the chemical properties of atoms, which Stoney named the
‘electron’ in 1891. By 1897 Thomson had identified the electron as a particle (much
later identified as part of the lepton family). Meanwhile, in 1869, Mendeleev published
his periodic table, organising atoms, which were then understood as the building blocks
of nature.

About 40 years later, in 1911, Rutherford, Marsden and Geiger discovered the
dense nucleus of the atom. However, the planetary model of the atom of Rutherford, in
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which electrons orbiting a solar-like nucleus, was problematic because it predicts that
atoms would be unstable as classical mechanics suggests they would emit radiation
and collapse. In 1913, Bohr resolved this issue by incorporating the quantum theory of
Planck from 1900, proposing that electrons occupy fixed orbits with specific energies,
based on their angular momentum being an integer multiple of the reduced Planck
constant. Not long after, in 1919, Rutherford provided evidence for the proton, and
in 1932, Chadwick discovered the neutron. These two particles, known as nucleons,
make up the core of atoms, with the number of protons determining the chemical
element.

To explain that not all electrons in an atom are in the lowest energy state, Pauli
formulated the exclusion principle in 1925, which states that no two electrons in the
same quantum system can share the same quantum state, i.e. quantum numbers.
Later that year, Uhlenbeck and Goudsmit proposed spin, an intrinsic form of angu-
lar momentum, as a property of electrons. Although initially opposed to spin, Pauli
inferred its existence in 1927 based on the results of the Stern–Gerlach experiment
conducted in 1922. In this experiment, silver atoms with no orbital angular momen-
tum were passed through an inhomogeneous magnetic field, and their deflection was
measured. The reaction between sulfur from the cigar of Stern and the silver atoms on
the detection plate made it clear that the atoms exhibited two distinct intrinsic angu-
lar momentum states. Hence, the exclusion principle states that two electrons in the
same orbital must have opposite spins. Meanwhile, quantum mechanics was advanc-
ing with the formulation of matrix mechanics by Heisenberg and wave mechanics by
Schrödinger, based on the idea from Broglie that matter can have wavelike properties.
The existence of spin was later supported by the spin-statistics theorem of Pauli in
1940, which states that fermions, e.g. electrons and nucleons, have half-integer spins,
while bosons, e.g. photons, have integer spins.

In 1932, Heisenberg introduced the concept of isospin, analogous to spin, to account
for the fact that nucleons have nearly identical masses and experience the same strong
interaction between them. This led to the interpretation of protons and neutrons as
two states of the same particle. He assigned them to an isospin-1/2 doublet that
transforms under the SU(2) symmetry group, introducing a new quantum number
to describe these particles. Although the neutron has a slightly greater mass due
to isospin breaking (now understood to result from the mass difference between up
and down valence quarks as well as the effects of electromagnetic interactions), the
approximate symmetry remains useful. The small deviations from perfect symmetry
can be treated using perturbation theory, which accounts for the subtle differences
between the nearly degenerate states.

Isospin symmetry also proved valuable in the study of pions, discovered in 1947,
which were classified as part of an isospin-1 triplet. However, during the 1950s and
1960s, a growing number of strongly interacting particles, called hadrons (including
nucleons and pions), were detected in particle detectors, after the invention of the
bubble chamber in 1952. The sheer number of these particles made it increasingly
unlikely that they were all fundamental building blocks of matter. To bring order to
this ‘particle zoo’, Gell-Mann and Ne’eman independently began classifying them by
their mass and various quantum numbers: electric charge, isospin, and strangeness
(introduced to explain the unusually slow decay of some particles such as kaons).
This organisational scheme, known as the eightfold way, is based on a SU(3) symme-
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try. In this framework, baryons (including nucleons), belong to octet and decuplet
representations, while mesons, including pions, belong to octet and singlet represen-
tations. In 1964, Gell-Mann and Zweig, shortly after defending his PhD thesis under
the supervision of Feynman, independently proposed that baryons and mesons are
not elementary particles but are instead bound states of hypothetical particles called
quarks, which obey a SU(3) symmetry known as flavour. According to this theory,
hadrons are composed of three types of quarks: up (u), down (d), and strange (s);
spin-1/2 constituents that each carry a fractional electric charge. Mesons were defined
as quark-antiquark pairs, while (anti)baryons were identified as bound states of three
(anti)quarks.

A major success of the quark model was the accurate prediction by Gell-Mann
of the existence, mass, and decay products of the Ω−, which was observed in 1964.
The Ω−, composed of three strange quarks with parallel spins and no orbital angular
momentum, appeared to violate the generalised exclusion principle of Pauli. This
issue was first noted by Struminsky and a similar problem was identified for the ∆++.
Around 1965, Greenberg, and Han and Nambu independently proposed a solution by
introducing a new quantum number for quarks, which is now known as colour. This
colour charge can take one of three forms: red, blue, or green. It was also theorised
that quarks interact by exchanging vector gauge bosons, i.e. gluons, and that hadrons
are colour neutral.

In the early days of the quark model, there was no experimental evidence for the
existence of quarks or gluons, so it was initially viewed as a mathematical frame-
work for categorising hadrons based on their properties. However, the idea arose that
if quarks and gluons do exist, they must be confined within hadrons. To investi-
gate this, the Stanford Linear Accelerator Center (SLAC) began measuring elastic
electron-proton scattering, followed by deep inelastic scattering (DIS) in 1967, study-
ing electron-proton collisions of the form e + p → e + X. Unexpectedly, large-angle
deviations were observed, prompting Feynman to propose the parton model in 1969.
This model suggest that the electron elastically scatters off one point-like, approx-
imately free, constituent of the proton, called a parton, through the exchange of a
virtual photon, such that the inelastic interaction of the electron with the proton is
the incoherent sum of all the elastic scatterings between the electron and the con-
stituents. The partons were naturally identified with the three constituent quarks of
the proton: uud. This model predicted a behaviour in the scattering cross-section
known as Bjorken scaling, where the structure functions, encoding information about
the internal structure of the proton, depend only on x: the collinear momentum frac-
tion of the parton taken from the proton. SLAC experiments initially confirmed this
scaling. However, to match experimental data more accurately, it became necessary
to include a sea of quark-antiquark pairs and gluons inside the proton as shown in
Fig. 1.1, violating Bjorken scaling. The original three quarks are then reinterpreted as
valence quarks, and the internal composition of the proton, as probed by the electron,
is seen to change with x on which we elaborate below. Indeed, this is currently our
understanding of the constituents of hadrons. We note that this view of the proton
aligns with findings that valence quarks account for only a small fraction of its spin,
while the distribution of the remaining spin among other contributions is an unsolved
problem to this day.
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u

d

u
Valence quarks
net quark content of the proton
that give its overall charge

Quark-antiquark pairs
transient and can have any flavour

Gluons
bind everything together
and are omnipresent

Figure 1.1: Impression of the interior of a colour-neutral proton. The flavours of the
valence quarks define the hadron as a proton. Due to the nature of the strong force
it also contains a swirling sea of quarks, antiquarks and gluons. Its constituents are
also called partons.

The experimental evidence that partons are confined within hadrons initially ap-
peared inconsistent with the fact that high-energy electrons seemed to interact with
what behaved like freely moving partons. This apparent contradiction is resolved by
quantum chromodynamics (QCD), a quantum field theory (QFT) developed in 1973 by
Gell-Mann, Fritzsch, and Leutwyler. This was a few years after Weinberg and Salam
independently formulated the QFT in 1967 and 1968, respectively, that describes the
electroweak force: a unified description of the electromagnetic and weak forces, with
its gauge symmetry spontaneously broken through the Higgs mechanism. A QFT
merges classical field theory, special relativity and quantum mechanics. In QCD the
charge associated with the strong force is colour. QCD is similar to quantum elec-
trodynamics (QED), which describes the electromagnetic force. The foundation of
QED was established by Dirac in 1927 and later independently refined by Feynman,
Schwinger, and Tomonaga, who were awarded the Nobel Prize in 1965 for their contri-
butions. Unlike QED, QCD is a non-Abelian theory, also known as Yang-Mills theory.
This means that the force carriers in QCD, the gluons, carry colour charge them-
selves, allowing them to interact with both quarks and other gluons. In 1973, Gross
and Wilczek, independently of Politzer, discovered a key property of QCD known
as asymptotic freedom, which ’t Hooft had already observed in 1972: the coupling
constant decreases at high energies, enabling perturbative calculations of hadronic
cross sections. These kind of predictions have been experimentally verified with high
precision. At low energies, however, the coupling becomes strong, consistent with
the phenomenon of confinement; our knowledge on nonperturbative physics relies on
fits to experimental data and lattice QCD, a numerical method to explore the non-
perturbative regime of QCD. The result: the force between partons grows as they
are separated, and when the distance between two partons becomes large enough, it
becomes energetically favourable to create new colour-neutral hadrons, rather than
allowing the coloured partons to exist freely. Lattice QCD supports the existence of
confinement, although there is still no general mathematical proof for it. For more
details on QCD we refer to App. A.
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As the understanding of the strong interaction became more understood in the
1970s, yet another series of particles were discovered. In 1974, two groups at SLAC
and Brookhaven National Laboratory (BNL) simultaneously announced the discovery
of a new particle: the J/ψ meson, whose name is a combination of the names given
to it by the two collaborations. This event marked the beginning of the so-called
‘November Revolution’. The identification of the J/ψ as one of the lowest bound states
of a charm-anticharm quark pair marked the discovery of the charm quark (c). Since
e++e− collisions at SLAC primarily involved the exchange of a virtual photon, the J/ψ
was the most easily produced bound state because it has the same quantum numbers
as the photon. The charm quark was first proposed by Glashow and Bjorken in 1964,
and later shown to be essential in 1970 by the Glashow-Iliopoulos-Maiani mechanism,
which explains the suppression of flavour-changing neutral currents in electroweak
loop diagrams that would otherwise violate observed selection rules. The suppression
occurs due to a small ratio mu/mc, which minimises these problematic contributions,
suggesting the charm quark must be relatively heavy indeed. Furthermore, in 1973,
Kobayashi and Maskawa proposed that a new doublet of heavy quarks was needed
to explain charge-parity (CP ) violation in electroweak decays. One of these was the
bottom quark (b), discovered in 1977 at Fermilab in Υ mesons, which are similar to
J/ψ mesons but consist of a bottom-antibottom quark pair. We note that the Υ
meson played a crucial role in the lead-up to the experimental confirmation of gluons
through the observation of three-jet events in 1979. The other, the top quark (t), was
not discovered until 1995 at the Tevatron particle accelerator due to its extremely large
mass of about 173GeV, which placed it out of reach of earlier colliders. Interestingly,
although the top quark is predominantly produced through strong interactions, it
decays rapidly via the weak interaction into a W boson and a bottom quark, in a time
much shorter than that of typical strong interactions. Because of this the top quark
does not hadronise directly, offering a rare opportunity to study the properties of a
bare quark.

During the 1970s and 1980s, numerous new flavour-neutral heavy-quark mesons,
like J/ψ and Υ, were regularly detected in experiments, collectively referred to as
quarkonium. In addition to these, open-charm and open-bottom mesons were dis-
covered, consisting of a charm or bottom quark paired with a light quark: u-, d-,
or s-quark. A notable feature of these heavy-quark mesons is that their masses are
close to the masses of their constituent quarks, resulting in relatively small momentum
between the quarks. This makes it possible to describe their binding using nonrela-
tivistic potentials. Therefore, heavy-light mesons are analogous to hydrogen atoms,
while quarkonium resembles positronium, which gave rise to its name. In particular,
various models exist to describe heavy-quark mesons formation in collider experiments,
but not all production data can be consistently explained, i.e. the relative contribu-
tions of different models to specific processes remain a topic of debate. Despite these
uncertainties, heavy-quark mesons have become an important tool in several areas of
high-energy physics, extending beyond the study of its own production mechanisms,
e.g. open-bottom meson factories are used to study CP -violation and quarkonia are
utilised as probes of the characteristics of the quark-gluon plasma, and to investigate
the gluon content of the proton. In general, these particles are receiving a lot of atten-
tion as they can be used to investigate the perturbative and nonperturbative aspects
of QCD, and their interplay, since much is still unknown about this.
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In particular, we are interested in exploring the internal structure of nucleons in
greater detail, which can be studied in collider experiments. To analyse specific QCD
processes, factorisation frameworks that separate short-distance contributions from
long-distance ones in the calculation of cross sections are used. The former can be
perturbatively calculated through a systematic expansion in the strong coupling con-
stant αs, while the latter has to be parametrised in terms of nonperturbative functions,
which need to be extracted from experiments. In the context of the parton model,
these nonperturbative functions are known as parton distribution functions (PDFs),
which describe the probability of finding a parton within a hadron as a function of
x. The factorised description, where the PDFs are convoluted with a perturbative
high-energy calculation, is valid when collinear factorisation holds. We note that the
parametrisation of the hadron structure in terms of PDFs relies also on an expansion.
The theoretical description of a specific final state requires a factorisation too, in-
volving the use of another nonperturbative function for its hadronisation. Moreover,
the parametrisation of the hadronisation procedure in terms of this function relies
generally on an expansion as well. Therefore, the theoretical framework is structured
as an expansion in αs along with two other variables to apply the nonperturbative
functions: one for the PDFs and another for the hadronisation process.

Once factorisation is established, theory and experiment can be directly compared
to extract one-dimensional PDFs, provided the nonperturbative hadronisation process
is already understood from other experiments. We note that experiments generally
probe nonperturbative functions at different energy scales, so their scale evolution
must also be considered. Over the past few decades, this iterative process has led to a
solid understanding of PDFs, though some still exhibit significant uncertainties in cer-
tain kinematic regions. It is known that for large values of x, valence quarks dominate
the composition of the proton. At smaller x, however, the sea of quark-antiquarks
provides probabilities for also other flavoured quarks, while the internal structure of
the proton becomes increasingly dominated by gluons, e.g. see [1]. The next step is
naturally to understand higher-dimensional functions of the hadron structure, such as
the three-dimensional transverse-momentum-dependent (TMD) PDFs (TMDPDFs, in
short TMDs). These functions not only depend on x, but also on the two-dimensional
transverse momentum (TM) of the parton and can be probed in processes when TMD
factorisation is applicable. While currently quark TMDs are already quite well under-
stood, hardly anything is known about the gluon TMDs experimentally.

Particularly, quarkonium production is a promising tool for probing gluon TMDs.
Namely, it is predominantly driven by gluon fusion, as heavy quarks are primarily
generated from gluons and are not intrinsically present in hadrons at small values
of x. From an experimental viewpoint, these processes also exhibit a clean signature
because certain quarkonia, like the J/ψ, are relatively easy to detect due to their large
branching ratios in leptonic decay modes which enable the collection of numerous
clean events in collider experiments. In particular, this thesis focuses on studying
quarkonium production in both proton-proton collisions at the Large Hadron Collider
(LHC) and in electron-proton collisions at the future Electron-Ion Collider (EIC) to
investigate gluon TMDs. For further insights into what quarkonium production can
reveal at the EIC we refer to [2].

Predictions for high-energy processes require factorisation which is process depen-
dent and nontrivial. In particular, processes that produce final state coloured particles
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have difficulties, as radiation of soft-gluons to form a colour-neutral particle can lead
to interactions with the initial state. Although TMD factorisation has not been explic-
itly proven for quarkonium production in electron-proton collisions, it has been proven
to all order in perturbation theory for light hadron production in electron-proton col-
lisions [3]. At leading order, the only difference between these processes lies in the
underlying hard scattering: γ∗q for light hadrons versus γ∗g for quarkonium, where
γ∗ denotes a virtual photon, q a quark and g a gluon. However, this does not make
a difference from the perspective of TMD factorisation, and neither does the mass of
the final state hadron. Similarly, TMD factorisation is argued to hold for quarkonium
production in proton-proton collisions, based on analogous processes [4,5]. Neverthe-
less, the production of coloured particles in this process could be problematic. Taking
this into account, it is not expected that any TMD factorisation-breaking effects occur
for the processes discussed in this thesis. The latter is also assumed for the factori-
sation that describes the hadronisation. However, coloured quarkonium production
suggests that final state TM smearing effects may arise, which are described by the
TMD shape functions (TMDShFs). A large part of this thesis is focused on deter-
mining these functions as well, since they are essential to the theoretical description
of the processes that we study and hardly anything is known about them currently.
This is aimed to facilitate their experimental determination.

This thesis is organised as follows: Ch. 2, 3, and 4 provide a comprehensive
overview of the theoretical framework for our studies of various processes, their features
and uncertainties, which is applied in Ch. 5 and 6 where we present our conducted
research.

In more detail, we examine the TMD partonic correlator in terms of gluon TMDs
in Ch. 2 and explore its relationship to other correlators, especially the collinear cor-
relator that is parametrised with PDFs. Additionally, we explain constraints on the
gluon TMDs derived from the theoretical framework, including their process depen-
dence. In Ch. 3 we provide an overview of various models for quarkonium production,
with a particular focus on two models that are employed later on: one that allows only
the production of colourless quarkonium, and another that includes the production
of quarkonium from a coloured pair of quarks, both within the framework of nonrel-
ativistic QCD. Then we have all the necessary ingredients to compute the theoretical
differential cross sections for the processes studied in this thesis; we present their TMD
results along with their particular features, covering single quarkonium production in
proton-proton and electron-proton reactions, as well as quarkonium-pair production
in proton-proton collisions for which LHCb data is available for comparison.

In Ch. 4 we explore possible approaches for TMD studies aimed at providing theo-
retical predictions for quarkonium production at the LHC and the EIC. In particular,
one can employ parametrisations for the TMDs, or use the TMD-evolution formal-
ism to relate them to the well-known PDFs, while the nonperturbative quarkonium
hadronisation can be taken from experimental studies. Although both approaches
to TMDs involve some unknown parametrisation, TMD evolution that follows from
TMD factorisation is more predictive than directly parametrising the TMDs them-
selves. Therefore, we focus particularly on this approach while also examining its
limitations.
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Thereafter, we discuss that the TMDShFs are generally required for quarkonium
production within TMD factorisation in Ch. 5. Specifically, we explain how we deter-
mine their leading-order functional form, relevant when the quarkonium is not colour
neutral immediately after production, by solving the matching of the process within
TMD and collinear factorisations. We also address that the TMDShFs should be uni-
versal, while noting that they are accompanied by a process-dependent (soft) factor.

In Ch. 6 we finally present numerical predictions for observables related to the
processes under investigation. We evaluate various approaches for the nonperturbative
component of TMD evolution, incorporating both standard parametrisations and our
own developed model for it. Additionally, we conduct a thorough analysis of the
uncertainties affecting our predictions. The highlight of this chapter is that good
agreement with recent data on J/ψ-pair production at the LHC is found, although
many questions remain and new issues have emerged. We end with an exploratory
study of the complete TM spectrum of J/ψ production at the EIC.

In Ch. 7 we conclude the results and insights gained throughout this work. More-
over, we discuss where further research is needed, outlining potential directions for
future investigations to build on our work and to address remaining questions.



2
The TMD gluon correlator

The partonic correlator that encapsulates the internal dynamics of the hadron cannot
be computed through perturbation theory; instead, it is described by nonperturbative
distribution functions. In particular, we are interested in the TMD gluon correlator
parametrised by the poorly known three-dimensional gluon TMDs. This chapter is
devoted to the understanding of this object, which enters the cross section of the
processes we investigate in this thesis. Moreover, we elaborate on properties of the
gluon TMDs that follow from the correlator definition. We start by giving a brief
overview in Sec. 2.1 of the unintegrated correlator and gauge invariance. In Sec. 2.2 we
explain light-cone coordinates that are commonly used for high-energy collisions and
employed throughout the rest of this thesis. In Sec. 2.3 we discuss the parametrisation
of the unintegrated gluon correlator and construct the TMD correlator in terms of the
TMDs. Here we also explain relations with other types of correlators and distribution
functions. Sec. 2.4 covers the bounds of gluon TMDs and Sec. 2.5 their process
dependence that follows from the Wilson-line structure.

19



20

2

The TMD gluon correlator

2.1 Unintegrated correlators and gauge invariance
We first introduce the definition of the quark-quark correlation matrix Φ in a hadron,
that is given by

Φαβ(k, Ph) ≡
∑
X

∫
d3PX

(2π)3dP 0
X

〈Ph|ψ̄β(0)|X〉〈X|ψα(0)|Ph〉 δ4(Ph − k − PX) , (2.1)

where k and Ph are the momenta of the quark and hadron, and α and β are the indices
of the Dirac fields that describe an incoming and outgoing quark, respectively. Here
flavour labels and colour (triplet) indices are omitted. The Dirac delta function reflects
the momentum conservation of the process. The product of matrix elements gives the
probability density for extracting a quark with momentum k from the hadron, leaving
a remnant X with momentum PX . Since X is a final state, we integrate over its
phase space. Moreover, since it is not experimentally measured, we also perform a
summation over all possible final states. Such processes are called inclusive, in contrast
to exclusive processes. The delta function can facilitate the translation of the field
ψ from position 0 to ξ. Therefore, after utilising the completeness relation for the
unobserved final states, one can write:

Φαβ(k, Ph) =

∫
d4ξ

(2π)4
eik·ξ 〈Ph|ψ̄β(0)ψα(ξ)|Ph〉 . (2.2)

Since this correlator, depicted in Fig. 2.1, depends on the full four-momentum k, it is
referred to as an unintegrated correlator.

Because the two quark fields reside at two different space-time positions, i.e. the
matrix element is bilocal, Eq. 2.2 is not gauge invariant. Explicitly, under local SU(3)
transformations of QCD (see App. A), the quark fields transform as:

ψα(ξ) → V (ξ)ψα(ξ) , ψ̄β(0) → ψ̄β(0)V
†(0) . (2.3)

Therefore, the complete correlator contains a gauge link U[0,ξ] between the two fields
to be gauge invariant, also called Wilson line, that transforms as

U[0,ξ] → V (0)U[0,ξ]V
†(ξ) , (2.4)

and is defined as follows

U[0,ξ] = P exp
(
igs

∫ ξ

0

dηµAµ(η)

)
, (2.5)

where gs is related to the strong coupling constant αs through the relation αs = g2s/4π,
and A is a four-vector field that describes a gluon. Upon expanding the exponent of
the Wilson line it becomes evident that the path-ordering, denoted by the symbol P ,
is required (for each term) because the group generators (contracted with the gluon
fields) do not commute. Physically, a Wilson line reflects a sum over infinitely many
gluon emissions which can be calculated explicitly. In principle, any possible path
between 0 and ξ guarantees gauge invariance of the unintegrated correlator, yet the
actual path that results from the summation of gluon exchanges in TMD correlators
is dictated by the particular process at hand as discussed in Sec. 2.5.
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Φαβ(k, Ph)
Ph

kα kβ

Figure 2.1: The definition of the unintegrated quark correlator. The figure is split by
a dotted line, called the final-state cut, into an amplitude (all that is to the left of the
cut) and a conjugate amplitude (all that is to the right of the cut).

The gluon-gluon correlation matrix is obtained by replacing the quarks in Fig. 2.1
with gluons. However, employing the gluonic fields A in the correlator is not con-
venient because of their gauge transformations. Instead, one uses the field strength
tensor Fµν , that transforms as:

Fµν → V FµνV
† . (2.6)

Therefore, two Wilson lines enter the gluon correlator. Including the hadron spin Sh,
the unintegrated gluon correlator is written as

Γµν;ρσ(k, Ph, Sh) =

∫
d4ξ

(2π)4
eik·ξ 〈Ph, Sh|F µν(0)U[0,ξ]F

ρσ(ξ)U ′
[ξ,0]|Ph, Sh〉 , (2.7)

where the summation over colour (octet) indices is understood.

2.2 Light-cone coordinates
In high-energy scattering it is convenient to work with light-cone coordinates [6].
A four-vector a = (a0, a1, a2, a3) is then represented as a = (a+, a−, aT ), where
a± = (a0 ± a3)/

√
2 (note that a± = a∓) and aT = (a1, a2). The inner product be-

tween two four-vectors a and b is given by: a · b = gµνaµbν = a+b− + a−b+ − aT · bT .
Defining light-like vectors n+ = (1, 0, 0) and n− = (0, 1, 0), such that n+ ·n− = 1 (note
that n2

+ = n2
− = 0), a four-vector can be decomposed as: aµ = a+nµ+ + a−nµ− + aµT . In

the latter aT = (0, 0, aT ) is defined, therefore a2T = −a2T . In terms of n+ and n−, the
parton and hadron momenta, and the space-like hadron-spin vector, e.g. for a spin-1/2
proton of mass Mh, can be written as:

P µ
h = P+

h n
µ
+ +

M2
h

2P+
h

nµ− , (2.8)

kµ = xP+
h n

µ
+ + k−nµ− + kµT , (2.9)

Sµ = SL
P+
h

Mh

nµ+ − SL
Mh

2P+
h

nµ− + SµT . (2.10)

The hadron moves along the ẑ axis and satisfies the on-shell condition: P 2
h = M2

h .
The collinear momentum fraction of the parton is defined as x = k+/P+

h . Typically,
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P+
h ∼ µH , where µH is the hard scale in the process. Therefore, P−

h becomes negligible
compared to its plus component in the high-energy limit when Ph becomes light-like.
The spin vector has three independent parameters, namely SL and the two trans-
verse components of ST ; they characterise longitudinal and transverse polarisation,
respectively. The parameters obey 0 ≤ S2

L, S2
T ≤ 1, such that S2

L + S2
T = 1. Besides,

Ph ·Sh = 0. Utilising the n± vectors, the transverse tensors gµνT and εµνT are defined as

gµνT = gµν − n
{µ
+ n

ν}
− , (2.11)

εµνT = εn+n−µν , (2.12)

where the symmetrisation operator is used: p{µqν} = pµqν + pνqµ. The non-zero
components are g11T = g22T = −1 and ε12T = −ε21T = 1.

2.3 The parametrisation of the gluon correlator
The unintegrated gluon correlator presented in Eq. 2.7 can be parametrised in terms of
Lorentz structures. These structures need to be antisymmetric in µ, ν as well as in ρ,
σ, which follows from the antisymmetric nature of the field strength tensor. They can
be built from the Levi-Civita tensor ε, the metric tensor g, and the available vectors k,
Ph and Sh. The different Lorentz structures are then accompanied by nonperturbative
amplitudes Xi (also called coefficient functions) with mass dimension [Xi] = −4, and
the hadron mass Mh can be used to give the terms the correct dimension: [Γ] = −2. As
the spin vector appears linearly in the spin density matrix, as shown in Sec. 2.4, it can
at most occur linearly in the parametrisation. Besides, the correlator is constrained
by requirements that arise from hermiticity and parity, given by

Γµν;ρσ(k, Ph, Sh) = Γρσ;µν∗(k, Ph, Sh) , (2.13)
Γµν;ρσ(k, Ph, Sh) = Γµν;ρσ(k̄, P̄h,−S̄h) , (2.14)

where k̄ = (k0,−ki). Hermiticity ensures that the amplitudes Xi are real and parity
conservation forbids the presence of parity-odd terms, i.e only odd numbers of Levi-
Civita tensors can be combined with the axial vector Sh. With these constraints, the
following parametrisation is found for an unpolarised hadron [7, 8]

Γµν;ρσU (k, Ph) =M2
hX1ε

µναβερσ αβ

+X2P
[µ
h g

ν][ρP
σ]
h +X3k

[µgν][ρkσ]

+ (X4 + iX5)P
[µ
h g

ν][ρkσ] + (X4 − iX5)k
[µgν][ρP

σ]
h

+
X6

M2
h

P
[µ
h k

ν]P
[ρ
h k

σ] , (2.15)

where the antisymmetrisation operator is employed: p[µqν] = pµqν − pνqµ. The sub-
script of the correlator denotes the polarisation of the hadron. Time-reversal invari-
ance imposes a third condition when applicable

Γµν;ρσ∗(k, Ph, Sh) = Γµν;ρσ(k̄, P̄h, S̄h) , (2.16)
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which implies that X∗
5 = −X5 for Eq. 2.15. For this reason such an amplitude is

called T -odd and must vanish when time reversal can be used as a constraint. Con-
sequently, unlike hermiticity and parity, time reversal does not impose constraints on
the parametrisation of the correlator in terms of distribution functions. We note that
since Wilson lines transform under time reversal, it relates two different correlators
with different Wilson lines as explained in Sec. 2.5.

The light-cone coordinates show their usefulness when the correlation functions
are used in a calculation of a hard-scattering process. Hence, power counting in the
hard scale tells one that the most important contributions from Γµν;ρσ are the ones
with the largest possible number of ‘+’-indices. The remaining indices are transverse
to generate non-zero terms at a specific order. Particularly, Γ+µ;+ν is referred to as
twist two, followed by Γ+µ;+− and Γµν;ρ+, referred to as twist three, etc. So, Eq. 2.15
at leading twist becomes:

Γ+µ;+ν
U (k, Ph) = (P+

h )
2

{
− gµνT [X2 + 2xX4 + x2X3] +

kµTk
ν
T

M2
h

X6

}
. (2.17)

Due to suppressed powers of P+
h in higher-order contributions, the expansion is similar

to an expansion in the inverse hard scale, like twist expansion in the operator product
expansion of deep inelastic scattering [9]. This explains the naming convention used
in this context.

The TMD correlator can be obtained by integrating the unintegrated correlator
over k−

P+
h Γµν(x, kT ) ≡

∫
dk− Γ+µ;+ν(k, Ph, Sh)

=

∫
dξ−d2ξT
(2π)3

eik·ξ 〈Ph, Sh|F+µ(0)U[0,ξ]F
+ν(ξ)U ′

[ξ,0]|Ph, Sh〉
∣∣∣∣
ξ+=0

, (2.18)

where a conventional factor of P+ is introduced. It can be rewritten as

Γµν(x, kT ) =
1

P+
h

∫
dk− Γ+µ;+ν(k, Ph, Sh)

=
M2

h

2(P+
h )

2

∫
[dσdτ ] Γ+µ;+ν(k, Ph, Sh) , (2.19)

where one usually introduces

[dσdτ ] ≡ dσdτ δ

(
τ − xσ + x2 +

k2
T

Mh

)
, (2.20)

with the dimensionless invariants σ and τ , given by:

σ ≡ 2k · Ph
M2

h

, τ ≡ k2

M2
h

. (2.21)

The gluon TMDs are then related to the amplitudes as follows

xf1(x, k2
T ) =M2

h

∫
[dσdτ ]

(
X2 + 2xX4 + x2X3 +

k2
T

2M2
h

X6

)
, (2.22)

xh⊥1 (x, k2
T ) =M2

h

∫
[dσdτ ]X6 , (2.23)
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where the symmetric traceless tensor of rank-2 (i.e. the number of open indices)

kµνT = kµTk
ν
T +

1

2
k2
Tg

µν
T , (2.24)

is used to ensure that the tensors that accompany the TMDs transform according
to an irreducible representations of the Lorentz group, i.e. are independent Lorentz
structures that do not mix under Lorentz transformations. So, the following parametri-
sation for the TMD gluon correlator in terms of TMDs is found:

ΓµνU (x, kT ) =
x

2

{
− gµνT f1(x, k2

T ) +

(
kµTk

ν
T

M2
h

+ gµνT
k2
T

2M2
h

)
h⊥1 (x, k2

T )

}
. (2.25)

It contains the unpolarised gluon TMD f1 and the linearly polarised gluon TMD h⊥1
examined in the phenomenological studies conducted in this thesis. For completeness,
the longitudinally and transversely polarised hadron integrated correlators in terms
of TMDs are given by [7, 8]:

ΓµνL (x, kT ) =
x

2

{
iεµνT SL g1L(x, k2

T ) +
ε
kT {µ
T k

ν}
T

2M2
h

SL h
⊥
1L(x, k2

T )

}
, (2.26)

ΓµνT (x, kT ) =
x

2

{
gµνT

εkTST
T

Mh

f⊥
1T (x, k2

T ) + iεµνT
kT · ST
Mh

g1T (x, k2
T )

− ε
kT {µ
T S

ν}
T + ε

ST {µ
T k

ν}
T

4Mh

h1T (x, k2
T ) +

ε
kT {µ
T k

ν}
T

2M2
h

kT · ST
Mh

h⊥1T (x, k2
T )

}
. (2.27)

The letters f , g, and h indicate unpolarised, circularly polarised, and linearly po-
larised gluons TMDs due to the Lorentz structures gijT , εijT and kijT they accompany,
respectively. We note that the nomenclature of the TMDs adopted here is in analogy
to the ones for quarks [10]. Besides, in correspondence to the transversity function for
quarks, the following function is usually defined:

h1 ≡ h1T +
k2
T

2M2
h

h⊥1T . (2.28)

We note that in [8] the analysis of [7] was extended by including a light-like vector
n in the parametrisation (n·ξ = 0), that can enter upon the consideration of staple-like
Wilson lines as explained in Sec. 2.5. Nevertheless, it was found that these structures
do not give rise to any new leading-twist TMDs. Additionally, the parametrisation of
the gluon correlator for a spin-1 hadron was as well performed by them. Prior the gluon
correlators, the quark correlators were studied in a similar way by a parametrisation
in terms of Dirac matrices. For their expressions for spin-1/2 as well as spin-1 hadrons
we refer to [11].

The collinear correlator can be obtained by integrating again, over TM kT :

Γµν(x) ≡
∫
d2kT Γµν(x, kT )

=
1

P+
h

∫
dξ−

2π
eik·ξ 〈Ph, Sh|F+µ(0)U[0,ξ]F

+ν(ξ)U ′
[ξ,0]|Ph, Sh〉

∣∣∣∣
ξ+=ξT=0

. (2.29)
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Explicitly, one finds

Γµν(x) =
x

2

{
− gµνT f1(x)− iεµνT SL g1L(x)

}
, (2.30)

where f1(x) =
∫
d2kT f1(x, k2

T ) and g1L(x) =
∫
d2kT g1L(x, k2

T ) are the one-dimensional
PDFs. Therefore, TMDs are also called unintegrated PDFs. We note that only TMDs
without kT -dependent tensors survive. Besides, in contrast to quark transversity,
h1 vanishes upon integration over TM, i.e. it has no collinear counterpart [12]. In
Table 2.1 the gluon TMDs are summarised by hadron and gluon polarisations and we
have indicated which functions are T -odd, i.e. that contain T -odd amplitudes, and
which ones have a collinear counterpart. We note that gaps in the table are due to
the lack of specific Lorentz structures that arise at leading twist.

The PDFs have been extensively investigated in various fixed-target and collider
experiments, and will be utilised in the TMD studies presented in this thesis, i.e. f i1(x)
simply provides the probability for finding a (unpolarised) parton i with collinear
momentum fraction x inside the hadron, while for the TMDs also their TM needs to
be taken into account. These functions must be normalised in a way such that the
valence quark content of the hadron is respected, this is called the number sum rule,
i.e. for the proton:∫ 1

0

dx
(
fu1 (x)− f ū1 (x)

)
= 2 ,

∫ 1

0

dx
(
fd1 (x)− f d̄1 (x)

)
= 1 . (2.31)

In the latter the antiquark distributions have to be subtracted to avoid infinities arising
form the sea quarks. Besides, they also satisfy the momentum sum rule. This rule
dictates that the total fractional momentum carried by the partons is unity:

∑
a=q,q̄,g

∫ 1

0

dx xfa1 (x) = 1 . (2.32)

It turns out that when µH � Mh, quarks and antiquarks only contribute to approxi-
mately half of the total momentum, with the remaining half being carried by gluons
that pronounces their importance. The implicit scale dependence of the PDFs, as well
as for TMDs, will be discussed later in this thesis. We note that, as done here, we
added from next chapter onwards a superscript to the distributions functions to mark
the parton associated to it.

Upon integrating Eq. 2.29 over k+ one finds the local hadronic matrix elements:

P+
h

∫
dk+ Γµν(x) =

∫
d4k Γ+µ;+ν(k, Ph, Sh) = 〈Ph, Sh|F+µ(0)F+ν(0)|Ph, Sh〉 . (2.33)

The trace of this quantity is precisely the energy momentum tensor: 〈T µν〉 ≡ 〈Ph|T µν |Ph〉
= 2P µ

h P
ν
h . So, the integration of the parametrisation Γµν in terms of the gluon distri-

bution f1(x) in Eq. 2.30 over x gives

2(P+
h )

2

∫ 1

0

dx xf1(x) = 〈Ph, Sh|T++|Ph, Sh〉 , (2.34)
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Table 2.1: Overview of the leading-twist gluon TMDs for unpolarised (U) and po-
larised (L or T ) hadrons. The functions indicated in red also occur as collinear PDFs,
and the ones in blue are T -odd. The historical names of the equivalent quark TMDs
(unpolarised, chiral and transverse quarks) are enclosed in parentheses, although for
the quark case the TMDs in bottom row have the opposite time-reversal symmetry
and transversity has a collinear counterpart as well [13].

Parent hadron polarisation
Unpolarised Longitudinal Transverse

Gluon polarisation

Unpolarised
f1

(Number density)
f⊥
1T

(Sivers)

Circular
g1L

(Helicity)
g1T

(Worm-gear)

Linear
h⊥1

(Boer-Mulders)
h⊥1L

(Worm-gear)

h1

(Transversity)
h⊥1T

(Pretzelosity)

where the restriction −1 ≤ x ≤ 1 and the symmetry relation f1(−x) = −f1(x) are
employed. Since the right-hand side is only the gluonic part of the energy momentum
tensor, it follows that the normalisation of the correlator is in agreement with the
momentum sum presented in Eq. 2.32, namely:

0 ≤
∫ 1

0

dx xf1(x) ≤ 1 . (2.35)

For completeness, we mention that there also exist generalised TMDs (GTMDs)
that depend on more kinematical variables. These are interesting because these con-
tain more information on the internal structure of the hadron. However, their corre-
lator parametrisation will require more terms to describe all the possible interactions.
To study these correlators a different family of processes is used, namely exclusive
processes where one measures the momentum shift denoted by ∆ of e.g. the pro-
ton. Note that there is no final-state cut in such processes; a correlator represents
then an amplitude rather than a squared amplitude. Through Fourier transforms,
the ∆ dependence translates into a dependence in the position of partons inside the
proton, bringing information that is complementary to those encoded in momentum-
dependent correlators. The ∆ dependence is divided in light-cone coordinates too: its
‘+’-component via the shift fraction 2ξ = ∆+/P+

h called skewness (its physical region
corresponds to −1 ≤ ξ ≤ 1), the transverse component ∆T and the ‘−’-component
being fixed by the on-shell condition of the proton. Fig. 2.2 presents some types of
multidimensional correlators and the connections between them, from the most gen-
eral fully unintegrated correlator, to the one-dimensional collinear PDF. Integrating
the full correlator over k− gives a GTMD that still depends both on three-dimensional
partonic momenta and the proton momentum shift. Integrating over transverse par-
tonic momentum kT will give a generalised parton distribution (GPD), while taking
the forward limit ∆ = 0 will give a TMD. Naturally, enforcing the forward limit on
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Full(k, Ph,∆)

GTMD(x, kT , ξ,∆T )

∫
dk−

∆T = 0
ξ = 0

∫
d2kT

TMD(x, kT )GPD(x, ξ,∆T )

∆T = 0
ξ = 0

∫
d2kT

PDF(x)

Figure 2.2: Overview of some types of multidimensional parton correlators and the
relations between them.

a GPD or integrating a TMD over kT must result in a PDF, although matching the
two requires specific care [14,15]. For a more complete review of the proton structure
landscape and different types of correlators we refer to [16].

The distribution functions discussed above can be utilised in single-parton scatter-
ing (SPS) processes. However, in proton-proton collisions resulting in a two-particle
final state, such as the production of quarkonium pairs, one should also consider the
particles to originate from two distinct hard scatterings. This is called double-parton
scattering (DPS), in which each hard scattering takes place with one parton from
the double-parton distribution (DPD). The two interactions are separated by a finite
distance in the plane transverse to the colliding proton momenta, such that a DPD de-
pends not only on the momentum fractions of two partons, but also on the transverse
distance between them. Our understanding of multi-parton distribution functions,
like DPDs, is currently not yet as developed as our knowledge of SPS distribution
functions (especially when compared to PDFs), but are extensively studied in recent
years, e.g. for TMD DPS see [17]. Although it really depends on the kinematic region,
when the momentum fractions become small a DPD is expected to grow roughly like
the square of an ordinary SPS distribution function (up to some normalisation) [18].
Therefore, the importance of DPS compared to SPS is increased in the small-x region,
and hence cannot probably be neglected in the case of gluon fusion to a two-particle
final state. DPS contributions are further discussed for quarkonium-pair production
in Sec. 6.3.

2.4 Positivity bounds
In order to make the hadron spin explicit, the TMD correlator can be written as [7]

Γµν(x, kT ;Sh) = Tr
(
ρ(Sh)Nµν(x, kT )

)
= ρs′s(Sh)N ij

ss′(x, kT ) , (2.36)

where s, s′ label the hadronic polarisation states. This form of the correlator is
examined as it can be used to establish constraints on the nonperturbative TMDs. Γ
can be seen as a 2×2 matrix in the two gluon polarisations, and N can be understood
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as a 4× 4 matrix in gluon ⊗ hadron-spin space. ρ(Sh) is the spin density matrix for
a spin-1/2 particle characterised by the spin vector Sh = (SL,ST ), in its rest frame
given by

ρ(Sh) =
1

2

(
1 + Sh · σ

)
(2.37)

where σ = (σ1, σ2, σ3) are the well-known Pauli matrices. It should not matter which
basis is used, whether it be the (real) linear polarisations or circular polarisations for
the gluons, for instance. Adopting the latter as is usually done, e.g.

|±〉 = 1√
2
(∓|1〉+ i|2〉) , (2.38)

one obtains the following matrix elements

Γ++ =
1

2

(
Γ11 + Γ22) + Im{Γ12} ,

Γ+− = −1

2

(
Γ11 − Γ22)− iRe{Γ12} ,

Γ−+ = −1

2

(
Γ11 − Γ22) + iRe{Γ12} ,

Γ−− =
1

2

(
Γ11 + Γ22)− Im{Γ12} , (2.39)

where kT in the explicit expressions is conveniently expressed in terms of its polar
coordinates |kT | and φ. Besides, using the density matrix, Eq. 2.36 can be written as:

Γµν =
1

2

(
Nµν

++ +Nµν
−−
)
+
SL
2

(
Nµν

++ −Nµν
−−
)

+
S1
T

2

(
Nµν

+− +Nµν
−+

)
+
iS2

T

2

(
Nµν

+− −Nµν
−+

)
. (2.40)

In general, N has the following structure

N =
x

2

(
A B
B† C

)
(2.41)

where the 2 × 2 blocks A and C are related by parity and the off-diagonal blocks B
are Hermitian conjugates. For the explicit expression we refer to [7,19]. To make the
properties of the matrix N more apparent, one can write its elements in the following
form

Nµν
ss′ (x, kT ) =

1

P+
h

∫
dξ−d2ξT
(2π)3

eik·ξ 〈Ph; s|F+µ(0)F+ν(ξ)|Ph; s′〉
∣∣∣∣
ξ+=0

=
1

P+
h

∑
n

〈Pn|F+µ(0)|Ph; s〉∗〈Pn|F+ν(0)|Ph; s′〉

× δ(P+
n − (1− x)P+

h ) δ
2(PnT + kT ) , (2.42)

where a complete set of momentum eigenstates is inserted. This equation infers that
N is positive-semidefinite or, equivalently, that the eigenvalues of N in must be ≥ 0.
From its 2× 2 principal minors the following positivity bounds are derived:

|g1L| ≤ f1 , (2.43)
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k4
T

4M4
h

[
(h⊥1L)

2 + (h⊥1 )
2] ≤ (f1 + g1L)(f1 − g1L) , (2.44)

|kT |
Mh

|h1| ≤ f1 + g1L , (2.45)

|kT |3

2M3
h

|h⊥1T | ≤ f1 − g1L , (2.46)

k2
T

M2
h

[
(f⊥

1T )
2 + g21T ] ≤ (f1 + g1L)(f1 − g1L) . (2.47)

For spin-0 hadrons the parametrisation of the correlator in Eq. 2.25 is given by
the only two functions. Then there is no spin density matrix, meaning that Γ = N ,
such that one simply needs to compute the eigenvalues of the ΓU , that results in the
single bound:

k2
T

2M2
h

|h⊥1 | ≤ f1 . (2.48)

This inequality also follows from Eq. 2.44 upon omitting the TMDs related to the
polarisation of the hadron. We note that the positivity bounds for gluon TMDs in
higher-spin hadrons can be derived similarly, e.g. the spin-1 case is derived in [19]. Fur-
thermore, for positivity bounds of quark TMDs we refer to [20] for spin-1/2 hadrons,
and to [21] for spin-1 hadrons.

Since the positivity bounds are derived from the operator definition of the correla-
tor, they serve as a test of the TMD formalism. Moreover, these bounds are useful as
a method to obtain a rough estimate of certain TMDs, e.g. by saturating the bounds.
In turn, such estimates could be used for evaluating certain observables of a specific
process.

2.5 Wilson lines and process dependence
As explained in Sec. 2.1, ensuring gauge invariance of the correlator requires the
inclusion of Wilson lines, which account for collinear and soft gluon emissions. In the
collinear case, e.g. Eq. 2.29, the Wilson line that bridges the nonlocality is given by

UN
[0,ξ−;0] = P exp

(
igs

∫ ξ−

0

dη−A+(η+ = 0, η−, η = 0)
)
, (2.49)

which runs along the minus direction with respect to the hadron as indicated by the
superscript N . Specifically, two such lines are needed for the collinear gluon correlator.
We note that the integration path is fixed which implies that these Wilson lines are
uniquely determined. Therefore, PDFs are universal, i.e. independent of the hard-
scattering event so that they can be extracted from one process and used in others.
For this reason, and the fact that they only depend on the variable x, the PDFs are
the most conveniently to study and therefore the most well-known. Besides, in the
A+ = 0 light-cone gauge, the collinear Wilson lines reduce to unity and can be even
omitted.

However, the Wilson lines for the TMD correlators are no longer unique, because
the fields are not only separated in the minus direction but also in the transverse
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η

ξ

Figure 2.3: The integration paths of the future-pointing Wilson line U [+]
[0,ξ] (left) and

the past-pointing Wilson line U [−]
[0,ξ] (right). The paths run along the light-front η+ = 0

via plus or minus light-cone infinity, respectively.

directions. This means that the Wilson line necessarily includes a transverse piece [22,
23]. The two gauge links that are of importance for the considered processes in this
thesis are the so-called future- and past-pointing gauge links, also known as staple-like
Wilson lines, denoted by U [+]

[0,ξ] and U [−]
[0,ξ], respectively. They are constructed by

U [±]
[0,ξ] = UN

[0,±∞;0] UT
[±∞;0,ξ] UN

[±∞,ξ−;ξ] , (2.50)

and their integration paths are illustrated in Fig. 2.3. The links along the minus
directions are given in Eq. 2.49 and the link along the transverse direction, indicated
by the superscript T , is defined by:

UT
[±∞;0,ξ] = P exp

(
igs

∫ ξ

0
dη · A(η+ = 0, η− = ±∞, η)

)
. (2.51)

We note that one can choose a gauge such that the staple-like Wilson line becomes
unity, e.g. U [+]

[0,ξ] (that will alter the other Wilson line accordingly, e.g. U [−]
[0,ξ]). However,

it is not allowed for both of them to become unity simultaneously as can be inferred
from the gauge invariant (rectangular) Wilson loop: U [�] ≡ U [+]

[0,ξ]U
[−]
[ξ,0].

Which staple-like Wilson lines are employed for the TMD gluon correlator depends
on the direction of colour flow in the perturbative hard-scattering process. There are
four possibilities with these lines, namely: [+,+], [−,−], [+,−], and [−,+]. The
[−,−] structure appears in processes with colour flow annihilated within the initial
state, such as quarkonium (-pair) production in proton-proton collisions (g+g → [QQ̄],
where the brackets denote the quarks are bound) [24, 25]. The structure [+,+], on
the other hand, is related to colour flow into the final state, which is the case for
quarkonium production in electron-proton collisions (γ∗ + g → [QQ̄]) [26]. The other
Wilson lines, [+,−], and [−,+], appear in processes with q+g → q+g and q̄+g → q̄+g
partonic contributions, respectively [27], in which the colour flow involves both initial
and final states. For a comprehensive overview of the staple-like Wilson lines involved
in various processes, such as quarkonium production, we refer to [28]. In general,
when the hard-scattering process contains more coloured particles the colour flow gets
more complicated, leading to more complicated link structures, e.g. Wilson loops, or
even factorisation breaking of the process. Actually, for dijet and open heavy-quark
pair production in hadron-hadron collisions (g + g → q + q̄) possible factorisation-
breaking effects are expected [29, 30], although at small x these contributions may
become suppressed [31, 32].
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As pointed out before, time-reversal transformations relate correlators with time-
reversed Wilson-line structures. Hence, TMDs in different processes can be related.
This was initially argued in [33], while the comprehension came later. Considering
staple-like Wilson lines, Eq. 2.16 can be written as

Γ[±,±]µν∗(x, kT ) = Γ[∓,∓]
µν (x, kT ) , Γ[±,∓]µν∗(x, kT ) = Γ[∓,±]

µν (x, kT ) , (2.52)

where Hermitian conjugation is implied for the second gauge link entry. So, the T -even
and T -odd parts of Γ are given by

Γ(T -even)(x, kT ) =
1

2

[
Γ[+,+](x, kT ) + Γ[−,−](x, kT )

]
, (2.53)

Γ′(T -even)(x, kT ) =
1

2

[
Γ[+,−](x, kT ) + Γ[−,+](x, kT )

]
, (2.54)

Γ(T -odd)(x, kT ) =
1

2

[
Γ[+,+](x, kT )− Γ[−,−](x, kT )

]
, (2.55)

Γ′(T -odd)(x, kT ) =
1

2

[
Γ[+,−](x, kT )− Γ[−,+](x, kT )

]
, (2.56)

where the Lorentz indices are suppressed. It follows that the unpolarised and linearly
polarised gluon T -even TMDs f1 and h⊥1 are expected to be the same in both quarko-
nium (-pair) production in hadron-hadron collisions and quarkonium production in
electron-hadron collisions, although their Wilson-line structures are different. On the
contrary, T -odd TMDs in polarised hadron reactions (see Table 2.1) are expected
to have a sign flip between these processes. This is a striking prediction of the TMD
formalism. Additionally, it tells that for certain processes, TMDs are entirely indepen-
dent of each other and encapsulate distinct information, e.g. f [+,+]

1 cannot be related
to f

[+,−]
1 . Consequently, different experimental extractions provide complementary

insights. We note that TMDs in a certain process are not Wilson line independent
of course, e.g. distinctions relative to a direct straight line from 0 to ξ appears to be
related to orbital angular momentum [34,35].
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Quarkonium production is a two-scale process, i.e. it consist out of two steps that
occur at different energies: the high-energy scattering in which a heavy-quark pair is
produced and their binding to a mass MQ. The former can be calculated using pertur-
bative QCD, i.e. using Feynman graphs, while the latter requires a nonperturbative
description (like the distribution functions). There are various models available for the
hadronisation of the heavy-quark pair in the final state which rely on the factorisation
of the constituent parts of the processes at different scales (with the hard scale µH
much larger that the masses involved). In this chapter we discuss the most commonly
used models for quarkonium production with particular focus on the colour-singlet
model and the colour-octet mechanism within the framework of nonrelativistic QCD
that are employed in this thesis. Moreover, by assuming factorisation of a process, we
can then calculate the cross sections in terms of the TMDs that we want to probe. In
Sec. 3.1 we discuss the current understanding of quarkonium and its formation meth-
ods. Furthermore, we show in Sec. 3.2 how to calculate the probability amplitude
of quarkonium production by employing the Bethe-Salpeter wave function, i.e. that
contains the hard scattering as well as the nonperturbative binding. Thereafter, we
employ the correlator definition for unpolarised protons in terms of their gluon TMDs
to calculate the differential cross sections of the processes investigated in this thesis.
Particularly, we organise the studies as follows: single quarkonium hadroproduction
(proton-proton collisions) in Sec. 3.3, single quarkonium photo- and electroproduc-
tion (photon-proton and electron-proton collisions) in Sec. 3.4, and quarkonium-pair
hadroproduction in Sec. 3.5.
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3.1 Binding the heavy-quark pair
The name quarkonium originates from its resemblance to positronium [36], discovered
in 1951, which is a bound state composed of an electron and its corresponding antipar-
ticle: the positron. The light-quark flavours (up, down, and strange) have respectively
closely lying masses in contrast to the heavy-quark flavours (charm, bottom and top).
This results in experimentally observed [qq̄] states, e.g. η, η′, and π0 mesons, that are
actually quantum mechanical mixtures of light quark-antiquark flavour combinations.
On the other hand, heavy-quark bound states are better defined in terms of their va-
lence quark–antiquark content of a given flavour denoted by [QQ̄], where the capital
Q denotes that the quarks are heavy. The top quark is however too heavy to form
a bound state as it decays through the electroweak interaction (a rare example of a
weak process proceeding more quickly than a strong process). Therefore, quarkonium
refers only to charmonium, [cc̄], and bottomonium, [bb̄], states.

Besides the mass, quarkonium actually exhibits two additional scales, mQv and
mQv

2, that are the momentum and the kinetic energy of the heavy quarks, respectively,
where v is their relative velocity in the rest frame of the bound state. Unlike in the
case of the proton, the mass of quarkonium is close to the masses of its valence quarks,
i.e. MQ = 2mQ up to small corrections. In particular, their ground state (ηQ) masses,
2984.1± 0.4MeV and 9398.7± 2.0MeV [37], are in accordance with twice the charm
quark mass mc = 1.5GeV and twice the bottom quark mass mb = 4.7GeV, considering
the binding energy to be negligible. As such, the heavy quarks typically have a small
relative velocity. Therefore, it is possible to use nonrelativistic potentials, like models
of the hydrogen atom, to describe the binding between the heavy quarks and to study
the spectroscopy of quarkonium.

The strong force is well described in the nonrelativistic regime by the Cornell
potential [38, 39], among other models. It is a combination of a Coulombic potential
at small distances in accordance with asymptotic freedom, and a linear potential at
large distances describing the effect of confinement

V (r) = −CF
αs(1/r)

r
+ σr , (3.1)

where r is the distance between the quark and antiquark, αs the strong coupling and
σ the string tension of the flux tube formed by gluonic field lines between the quark
and antiquark. The latter must be proportional to Λ2

QCD, that is small such that
only at large distances this term becomes important. The size of the bound state is
determined by a balance between the kinetic energy and the potential energy

mQv
2 ∼ αs(1/r)

r
, (3.2)

where we have used that the distance between the quarks is small. By noticing that
the inverse of the momentum mQv is the length scale for the size of the quarkonium
state, we have that v2 ∼ α2

s(mQv). This can be solved self-consistently, yielding for
charmonium v2 ' 0.3 and for bottomonium v2 ' 0.1.

The naming of quarkonium is based on its quantum numbers JPC , where J denotes
the total angular momentum (the orbital angular momentum L plus spin S), P the
parity and C the charge-parity [37, pp. 148–150]. The naive quark model relates these
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Table 3.1: Schematic spectrum of quarkonium states and their naming, for charmo-
nium up to the DD̄ threshold, for bottomonium up to the BB̄ threshold. The states
in curly brackets have not been experimentally verified but are expected to exist based
on their hierarchical structure. The states are sorted by JPC (up to 2−−) and states
with a higher total angular momentum are denoted with an extra subscript J . The
excited states are presented above the ground states and for the explicit energies of
the states we refer to [37, p. 1898, p. 2023]. We note that the ηQ states are the true
ground states of quarkonium.

0−+ 1−− 1+− 0++ 1++ 2++ 2−−

{ηb(3S)} Υ(3S) {hb(3S)} {χb0(3S)} χb1(3P ) χb2(3P )

{ηb(2S)} Υ(2S) hb(2P ) χb0(2P ) χb1(2P ) χb2(2P )

[bb̄] ηb(1S) Υ(1S) hb(1P ) χb0(1P ) χb1(1P ) χb2(1P ) Υ2(1D)

ηc(2S) ψ(2S)
[cc̄] ηc(1S) J/ψ(1S) hc(1P ) χc0(1P ) χc1(1P ) χc2(1P )

quantum numbers as follows: P = (−1)L+1 and C = (−1)L+S, which impose restric-
tions on the quantum numbers that are allowed for the bound QQ̄ states. In Table 3.1
the quarkonium states and their naming is summarised up to the lowest-lying thresh-
olds for decay to a pair of ground state open-charm or open-bottom mesons, i.e.DD̄ for
charmonium and BB̄ for bottomonium. For a complete picture of our current under-
standing of quarkonium we refer to the complete energy spectra in [37, p. 1898, p. 2023]
and to the review of mesons containing two heavy quarks [37, pp. 985–993]. Usually,
the spectroscopic notation of the state is added to the name, e.g. J/ψ(1S), as for most
quarkonium states it is known. However, when it is unknown, the energy in MeV is
usually given between the brackets instead. In the spectra of [37, p. 1898, p. 2023]
the most dominant hadronic decays, the location of higher-lying decay thresholds to
a pair of open-charm/bottom mesons and some exotic quarkonium states are also in-
corporated. In particular, the closely related tetraquarks are included that consist out
of a heavy-quark and antiquark with the same flavour, and additional up en down
valence quarks (giving rise to isospin). These kind of hadronic states are possible in
QCD as long as the bound state is colourless.

In general, the binding of quarks can result in colour-singlet (CS) or in colour-
octet (CO) states, i.e. in a colourless bound state or a non-colourless bound state,
respectively. Namely, in group theoretical terms, we have that for mesons, such as
quarkonia:

3 ⊗ 3̄ = 8 ⊕ 1 . (3.3)

However, in the CO case, the bound state needs to becomes colourless as only CS
states can be observed physically. As mentioned before, there exist different models
to describe the actual hadronisation procedure that takes place which have different
advantages and disadvantages, and for a comparison of their applicability to data we
refer to [40].

We begin by discussing the colour-evaporation model (CEM), proposed in 1977 [41,
42], which aims for describing quarkonium production. The CEM was actually im-



36

3

Quarkonium production

proved in [43], but for simplicity we present here the original one. In the CEM,
the cross section governing the creation of a quarkonium state Q is calculated by a
nonperturbative fraction FQ times the perturbative cross section that generates the
heavy-quark pair with an invariant mass below the threshold for meson-pair decay
at a mass 2mthr. Here, mthr denotes the mass of the D-meson for charmonium and
the mass of the B-meson for bottomonium. These fractions FQ are assumed to be
universal, allowing their determination from experimental data, which in turn enables
the prediction of cross sections in different processes or kinematic regions. We note
that the idea of universal nonperturbative factors enters every model discussed here.
The cross section for the creation of heavy-quark pairs imposes constraints solely on
the mass of the heavy-quark pair, i.e. there are no restrictions on the colour or spin
of the pair. Subsequently, the pair is hypothesised to neutralise its colour through
interaction with the collision-induced colour field, called ‘colour evaporation’. In some
versions of the CEM [44], it is further assumed that this colour-neutralisation process
also randomises the spins of the quarks. The probability FQ provides the likelihood
that a heavy-quark pair with an invariant mass less than 2mthr will bind to form
the quarkonium state, that is zero if the invariant mass of the pair exceeds 2mthr.
Therefore, the inclusive differential cross section can be written as

dσCEM(Q+X) = FQ ×
∫ 2mthr

2mQ

dmQQ̄

dσ(QQ̄+X)

dmQQ̄

, (3.4)

where mQQ̄ is the invariant mass of the heavy-quark pair. There is an implied sum
over the colours and spins of the final state heavy-quark pair. This is where the model
assumptions of colour evaporation and spin randomisation manifest themselves. We
note that the CEM remains a rather phenomenological approach which does not rely
(so far) on any proof of factorisation. For this reason, we have opted not to study this
model.

The second model is the CS model (CSM), that was introduced around 1980 [45–
47]. Basically, the CSM excludes CO state production. In this model the heavy-quark
pair is directly projected onto a CS state where the quantum numbers of the pair do
not evolve between the production of the pair and its formation of the bound state.
In particular, one considers only the leading Fock-state (an element of a Fock space
with a well-defined number of particles) of the bound state with v = 0 such that the
momenta of the two heavy quarks become identical, i.e. the S-wave quarkonium states
(L = 0). The inclusive differential cross section can then be obtained by the following
factorisation

dσCSM(Q[2S+1S1
J ] +X) = dσ(QQ̄[2S+1S1

J ] +X)× |R(0)|2 (3.5)

where R(0) is the nonperturbative universal radial wave function of a quarkonium state
at the origin. This model can be as well employed for P -waves by using instead R′(0)
as will be shown in the next section. In order to the improve theory predictions one
can either tune the value R(0) by comparison with new data, or include higher-order
αs corrections in the high-energy scattering to the heavy-quark pair.

The third and final model we discuss, the CO mechanism (COM), was much
later introduced within the framework of nonrelativistic QCD (NRQCD) in 1994 [49].
NRQCD, which is an effective field theory (EFT), stands as a subject of study in its
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Table 3.2: Relative velocity scaling for S-waves and P -waves LDMEs up to order
v4 [48]. Here the naming of charmonium states is employed as an example.

1S1
0

3S1
1

1S8
0

3S8
1

1P 1
1

3P 1
0

3P 1
1

3P 1
2

1P 8
1

3P 8
0

3P 8
1

3P 8
2

ηc 1 v4 v3 v4

J/ψ 1 v3 v4 v4 v4 v4

hc v2 v2

χc0 v2 v2

χc1 v2 v2

χc2 v2 v2

own regard. Here we provide simply a short overview, since we only employ its results
in this thesis. It is based on a hierarchy of scales: mQv

2 . ΛQCD � mQv � mQ. The
factorisation for the inclusive cross section in NRQCD is given by

dσNRQCD(a+ b→ Q+X) =
∑
n

Cab
n (Λ)× 〈OQ

n (Λ)〉 , (3.6)

where 〈OQ
n 〉 ≡ 〈0|OQ

n |0〉 are universal vacuum-expectation values (vevs) of four-
fermion operators in NRQCD, evaluated in the rest frame of the quarkonium, i.e. the
heavy-quark pair is produced in a point in the EFT. The latter are more commonly
called the long-distance matrix elements (LDMEs). The short-distance, high-energy
coefficients Cab

n can be calculated in perturbation theory by matching amplitudes in
NRQCD with those in full QCD. Both the short-distance and long-distance physics
depend on Λ, the ultraviolet cut-off of the effective theory, i.e. the scale where the
theory breaks down. The operators have a general form

OQ
n = χ†κnψPQ(Λ)ψ†κ′nχ , (3.7)

where ψ is the two-component Pauli spinor that annihilates a heavy quark and χ is
the two-component spinor that creates a heavy antiquark. PQ is a projector onto Fock
states that in the asymptotic future contain Q and X whose energies and momenta
lie below the cut-off Λ:

PQ(Λ) =
∑
X

|Q+X, t→ ∞〉〈Q+X, t→ ∞| . (3.8)

The factors κn are direct products of a colour matrix (either the unit matrix or the
matrix ta with octet index a), a spin matrix (either the unit matrix or the Pauli
matrix σi with triplet index i, respectively S = 0 or 1), and a polynomial in the QCD
covariant derivative and field strengths (increasing L and J of the heavy-quark bound
state). Therefore, the summation in Eq. 3.6 is in n = 2S+1LcJ , where c is the colour
configuration of the quarkonium, i.e. c = 1 or c = 8 for CS and CO, respectively.
With the inclusion of higher Fock-states, the CO states become colourless through
soft-gluon emission taken into account by the LDMEs.

So, in NRQCD the heavy-quark pair can not only be produced in a CS state, but
also in a CO state. Essentially, we can therefore rewrite the inclusive cross section as

dσNRQCD(Q+X) =
∑
n

dσ(QQ̄[n] +X)× 〈OQ[n]〉 , (3.9)
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where we have slightly altered the notation of the LDMEs, that contain all of the
nonperturbative physics of the transition of a heavy-quark pair into a quarkonium
state (in collinear factorisation). From the EFT it can be derived that LDMEs fall
into a hierarchy according to their scaling with the relative velocity v, and as v is
small the summation over the matrix elements can be truncated at a low order in
v. In Table 3.2 one finds the velocity scaling rules for S- and P -waves. When one
truncates at LO in v, one ends up with the CSM by identifying that |R(0)|2 equals
the corresponding LDME. We note that the COM has been introduced to address
the issue of remaining infrared divergences in the decay of P -wave quarkonium states
(L = 1) to gqq̄ in the CSM [49, 50]. This additional divergence is removed with the
inclusion of the CO state 3S8

1 , which within the framework of NRQCD has the same
power counting in v2 as the P -waves. The CO LDMEs bring however also difficulties
as the emission of soft-gluons can alter the quantum numbers of the heavy-quark pair.
Therefore, it is only possible to study the CS LDMEs from potential models and lattice
calculations, while the CO ones are usually only determined by fits to experimental
data. As a result, the present knowledge of CO LDMEs is not very accurate.

We note that another EFT named potential NRQCD [51] was introduced subse-
quent to NRQCD, which is based on a slightly different hierarchy of scales, namely:
ΛQCD � mQv

2 � mQv � mQ. This situation only holds for very heavy quarkonium
that is outside the scope of this thesis. Though, there are situations with a different
relative size between ΛQCD and mQv

2 where this theory can provide statements for
less heavy quarkonium production [52].

Another approach to describe quarkonium production is through the use of nonper-
turbative fragmentation functions (FFs). In essence FFs are similar to the distribution
functions discussed in Ch. 2 as they are defined by a correlator, e.g. Di(z), similar
the PDF f i1(x), provides the probability for producing a (unpolarised) hadron from
a (unpolarised) parton i with collinear momentum fraction z. The difference is that
for FFs time-reversal symmetry cannot be used as a constraint because of the explicit
appearance of outgoing states |Ph, Sh;X〉 in the definition of the unintegrated corre-
lator, e.g. the expression for gluon TMDFFs can be found in [7]. Usually the FFs
are employed for light hadron states, but since NRQCD with NLO αs short-distance
calculations have not been able to fully describe all collinear experimental data of in-
clusive quarkonium production (especially polarised quarkonium is problematic), the
fragmentation description of quarkonium was studied in [53–55]. In particular, they
consider the following expression

dσFF(Q+X) = dσ(i+X)×Di→Q(z) + dσ(QQ̄+X)×DQQ̄→Q(z) , (3.10)

where Di→Q are single-parton FFs and DQQ̄→Q parton-pair FFs which give rise to
the leading power and next-to-leading power contributions, respectively. The latter
contribution is important and may even dominate over the leading power in certain
kinematical regions. They found that these FFs can be evaluated analytically, i.e.
expressed in terms of LDMEs with perturbative coefficients as in NRQCD, when the
scale of the FFs is of the order of the invariant mass of the quarkonium. Therefore,
quarkonium production is this way is not another model, but rather a different way
of describing the production phenomenology. We will not utilise the fragmentation
description in this thesis, but since we explore some relations to it in Sec. 5.3 we have
presented it here for completeness.
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3.2 Analysis of quarkonium production amplitudes
In Fig. 3.1 the formation of a bound QQ̄ state from a two particle initial state is
schematically shown. The two particles a and b are understood from the process under
investigation: they are both partons in hadroproduction, and a photon/electron and
a parton in photo/electroproduction. They undergo a high-energy scattering after
which a bound QQ̄ state is formed. The high-energy perturbative calculation through
Feynman diagrams relies on the small coupling of αs and α at the hard scale of the
process, which provides the hard factor denoted by H. The probability amplitude M,
including the binding of the heavy quarks, can be written as [56–59]

M
(
a(p1) + b(p2) → [QQ̄](2S+1LcJ ;P )

)
=

∫
d4k

(2π)4
Tr[O(p1, p2; k) ΦLS;J,Jz(P, k)]

=
1

√
mQ

∑
Lz ,Sz

∑
s1,s2

∑
i,j

∫
d3k
(2π)3

〈s1; s2|S, Sz〉 〈LLz;SSz|J, Jz〉ψLLz(k)

× 〈3i, 3̄j|c〉M
(
a(p1) + b(p2) → Qi(P/2 + k) + Q̄j(P/2− k)

)
, (3.11)

with 2k being the relative momentum of the quarks and i, j the colour indices of the
quark and antiquark, respectively. The orbital angular momentum eigenfunction is
ψLLz(k) and the brackets denote the appropriate Clebsch-Gordan (CG) coefficients
that project onto the specific quantum numbers of the bound state. The bound QQ̄
state obeys the on-shell condition: P 2 = M2

Q = 4m2
Q. The mass dimension of the

amplitudes is [M] = 4 − n, where n is the total number of particles involved in the
process, i.e. the sum of the incoming and outgoing particles. We point out that in
this section the boldface momentum denotes a spatial three-vector, not the spatial
TM two-vector employed throughout the rest of this thesis. Moreover, Eq. 3.11 is also
applicable to processes involving additional initial and final state particles by altering
the partonic amplitude that is part of O. An example of this is shown in Sec. 5.1,
where collinear J/ψ production in electron-proton collisions is discussed.

In the first line of Eq. 3.11 we have introduced the Bethe-Salpeter wave function
of the produced bound amplitude, namely

ΦLS;J,Jz(P, k) = 2π δ

(
k0 − |k|2

MQ

) ∑
Lz ,Sz

ψLLz(k) 〈LLz;SSz|J, Jz〉 PSSz(P, k) , (3.12)

where the δ-function reflects its nonrelativistic nature. The amplitude O contains
the hard factor and is calculated without including the heavy-quark legs of the final
states that form the bound state, since they are absorbed into the definition of PSSz

as shown below. Therefore, O is defined by

〈3i, 3̄j|c〉M(a+ b→ Qi + Q̄j) = ūi

(
P

2
+ k; s1

)
Oij(p1, p2; k) vj

(
P

2
− k; s2

)
, (3.13)

which includes the colour projection of the bound state. It is important to note that
when calculating the amplitude within TMD factorisation, the polarisation vectors of
the initial states are also excluded from O, as they are incorporated into the definitions
of the TMDs. PSSz plays a role of a spin projection operator that is defined as

PSSz(P, k)ji =
1

√
mQ

∑
s1,s2

〈s1; s2|S, Sz〉 vj
(
P

2
− k; s2

)
ūi

(
P

2
+ k; s1

)
, (3.14)
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H

P
2
+ k

P
2
− k

a(p1)

b(p2)

[QQ̄](n = 2S+1LcJ ;P )

Figure 3.1: Production of a bound QQ̄ state by a two particle initial state. The
particles a and b, with momentum p1 and p2, undergo a hard scattering after which
they are bound to a particular state n with momentum P . The relative momentum k
between the outgoing quark and antiquark is considered small for the production.

where the factor m−1/2
Q comes from the normalisation which can be derived from

[Φ] = −2. Therefore, Eq. 3.11 can be written in a more compact form, namely:

M
(
a+ b→ [QQ̄](2S+1LcJ ; p1, p2;P )

)
=
∑
Lz ,Sz

∫
d3k
(2π)3

ψLLz(k) 〈LLz;SSz|J, Jz〉

× Tr[O(p1, p2; k)PSSz(P, k)] . (3.15)

From the Dirac equation, (/p−m)us(p) = 0 and (/p+m) vs(p) = 0, it follows that
the spinors of the quark and antiquark with momentum p and mass m can be related
to the corresponding ones evaluated at rest

us(p) = (/p+m)us(0) , vs(p) = (−/p+m) vs(0) , (3.16)

where here the subscript of the spinors denotes their spin. Considering the following
Dirac spinors by taking into account that the quarks are of nonrelativistic nature

u+(0) =
1√
2mQ


1
0
0
0

 , u−(0) =
1√
2mQ


0
1
0
0

 ,

v+(0) =
1√
2mQ


0
0
0
1

 , v−(0) =
1√
2mQ


0
0
−1
0

 , (3.17)

and the CG coefficients, Eq. 3.14 can be simplified, e.g.

P00(f, f̄) =
1

√
mQ

∑
s1,s2

〈1
2
s1;

1

2
s2|00〉 v(p2; s2) ū(p1; s1)

=
1√
2mQ

[v−(p2) ū+(p1)− v+(p2) ū−(p1)]

=
1√
2mQ

(−/p2 +mQ)[v−(0) ū+(0)− v+(0) ū−(0)](/p1 +mQ)

=
1√
8m3

Q

(− /p1 +mQ)

[
− γ5

I + γ0

2

]
(/p2 +mQ) . (3.18)
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The derivation for S = 1 is equivalent, whereby a factor of /ε∗Sz
(I + γ0)/2 is found

between the square brackets instead. The explicit form of the polarisation vector is
given in Eq. 3.24 below (equivalent to ε∗Lz

). Finally, the spin projection is approximated
as

PSSz(P, k) =
1

4
√
M3

Q
(−/P + 2/k +MQ)ΠSSz ( /P + 2/k +MQ) +O(k2) , (3.19)

where:

ΠSSz =

{
−γ5 S = 0

/ε∗Sz
S = 1

. (3.20)

Eq. 3.15 can be Taylor expanded in powers of |k| around k = 0 as the relative
momentum of the quarks in the bound state is expected to be small. For this purpose,
it is convenient to separate the Fourier transform of the wave function ψLLz(k) of the
bound state into its radial and angular pieces∫

d3k
(2π)3

eik·rψLLz(k) = ψ̂LLz(r) = RL

(
|r|
)
YLLz(θ, φ) , (3.21)

whereRL

(
|r|
)

is the radial wave function, YLLz(θ, φ) a spherical harmonic and spherical
coordinates are employed: r =

(
|r|, θ, φ

)
. For S-waves (L = 0, J = 0, 1) we obtain by

expanding: ∫
d3k
(2π)3

ψ00(k) =
1√
4π
R0(0) . (3.22)

However, for P -waves (L = 1, J = 0, 1, 2) R1(0) = 0. Therefore, we need to consider
the linear term kα in the expansion. For the wave function we can write:∫

d3k
(2π)3

ikαeik·rψ1Lz(k) =
∂

∂rα
ψ̂1Lz(r) = R′

1

(
|r|
)
Y α
1Lz

(θ, φ) . (3.23)

This, together with the spherical harmonic

Y α
1Lz

(θ, φ) =

√
3

4π
εα∗Lz

=

√
3

4π

{
(0, 0, 0, 1) Lz = 0

(0,−λ, i, 0)/
√
2 Lz = λ = ±1

, (3.24)

gives: ∫
d3k
(2π)3

kαψ1Lz(k) = −iεα∗Lz
(P )

√
3

4π
R′

1(0) . (3.25)

The polarisation vector εα∗Lz
(P ) refers to the L = 1 bound state and R′

1(0) is the
derivative of radial wave function evaluated at the origin. Putting everything together,
we obtain the following equations for the S- and P -wave amplitudes

M[2S+1ScJ ](p1, p2;P ) =
1√
4π
R0(0)Tr[O(p1, p2; 0)PSSz(P, 0)] , (3.26)
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M[2S+1P c
J ](p1, p2;P ) = −i

√
3

4π
R′

1(0)
∑
Lz ,Sz

〈1Lz;SSz|J, Jz〉 εα∗Lz
(P )

× ∂

∂kα
Tr[O(p, q; k)PSSz(P, k)]

∣∣∣∣
k=0

= −i
√

3

4π
R′

1(0)
∑
Lz ,Sz

〈1Lz;SSz|J, Jz〉 εα∗Lz
(P )

× Tr[Ôα(0)PSSz(P, 0) +O(p1, p2; 0) P̂SSzα(0)] , (3.27)

where:

Ôα(0) ≡
∂

∂kα
O(p1, p2; k)

∣∣∣∣
k=0

, P̂SSzα(0) ≡
∂

∂kα
PSSz(P, k)

∣∣∣∣
k=0

. (3.28)

PSSz can be simplified further by considering its possible quantum numbers, using
the anticommutator relations of the gamma matrices and the general identity of a
polarisation vector: Pαεα(P ) = 0. In the different cases we obtain

P00 =
1

2

1√
MQ

[ /P −MQ]γ
5 , (3.29)

P1Sz = −1

2

1√
MQ

[ /P −MQ]/ε
∗
Sz
, (3.30)

P̂00α =
1√
MQ

γα
/P

MQ
γ5 , (3.31)

P̂1Szα =
1

2

1√
MQ

[
γα/ε

∗
Sz

/P +MQ

MQ
−

/P −MQ

MQ
/ε∗Sz

γα

]
, (3.32)

where we employed that P · k ∼ O(k2). Therefore, we find for the particular S-waves

Mµν [1Sc0](p1, p2;P ) =
1

4

1√
πMQ

R0(0)Tr[Oµν( /P −MQ)γ
5] , (3.33)

Mµν [3Sc1](p1, p2;P ) = −1

4

1√
πMQ

R0(0)Tr[Oµν( /P −MQ)/ε
∗
Sz
] , (3.34)

and for the P -wave with S = 0

Mµν [1P c
1 ](p1, p2;P ) = −i

√
3

4πMQ
R′

1(0)

× Tr
[(
εα∗Lz

Ôµν
α

/P −MQ

2
+Oµν/ε∗Lz

/P

MQ

)
γ5
]
, (3.35)

where the CG coefficients are just 1.
For the more difficult triplet P -wave amplitudes we have:

Mµν [3P c
J ](p1, p2;P ) = i

√
3

4πMQ
R′

1(0)
∑
Lz ,Sz

〈1Lz;SSz|J, Jz〉 εα∗Lz
(P )εβ∗Sz

(P )

× Tr
[
Ôµν
α

/P −MQ

2
γβ −

1

2
Ôµν

(
γαγβ

/P +MQ

MQ
−

/P −MQ

MQ
γβγα

)]
. (3.36)
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In order to evaluate these we utilise the following relations of the CG coefficients∑
LzSz

〈1Lz; 1Sz|00〉 εα∗Lz
εβ∗Sz

=

√
1

3

(
gαβ − PαP β

M2
Q

)
, (3.37)

∑
LzSz

〈1Lz; 1Sz|1Jz〉 εα∗Lz
εβ∗Sz

= − i

MQ

√
1

2
εαβµνPµε

∗
Jzν(P ) , (3.38)∑

LzSz

〈1Lz; 1Sz|2Jz〉 εα∗Lz
εβ∗Sz

= εαβ∗Jz
(P ) , (3.39)

where ενJz is the polarisation vector for a bound state with J = 1 and εαβJz the polarisa-
tion tensor for a bound state with J = 2. The latter satisfies the following identities:
εαβJz (P ) = εβαJz (P ), ε

α
Jzα

(P ) = 0 and Pαε
αβ
Jz
(P ) = 0. When squaring the amplitude one

can employ the tensor polarisation sum, that is given by∑
λ=−2,−1,0,1,2

εµνλ (P )εαβ∗λ (P ) =
1

2

[
ZµαZνβ + ZµβZνα

]
− 1

3
ZµνZαβ . (3.40)

where Zµν is the common vector polarisation sum given in Eq. A.25. Exploiting the
cyclic identity of the trace and the symmetry of the individual terms, the following
expressions for the remaining P -wave amplitudes are found:

Mµν [3P c
0 ](p1, p2;P ) = i

1√
4πMQ

R′
1(0)

× Tr
[(
γαÔµν

α −
/PPα

M2
Q
Ôµν
α

)
/P −MQ

2
− 3Oµν

]
, (3.41)

Mµν [3P c
1 ](p1, p2;P ) = −

√
3

8πMQ
R′

1(0) ε
αβρσ Pρ

MQ
ε∗Jzσ(P )

× Tr
[
γαÔµν

β

/P −MQ

2
+Oµν

/P

MQ
γαγβ

]
, (3.42)

Mµν [3P c
2 ](p1, p2;P ) = i

√
3

4πMQ
R′

1(0) ε
αβ∗
Jz

(P )Tr
[
γαÔµν

β

/P −MQ

2

]
. (3.43)

We note that overall minus signs and factors of i are irrelevant in the end since the
cross sections are proportional to the squared amplitude M ·M∗.

The formalism discussed in this section provides the description to compute the
amplitudes of S- and P -wave quarkonium states in either a CS or CO configuration
by choosing the specific hard interactions in the amplitude O. By definition the
SU(3) CG coefficients are included in O defined in Eq. 3.13, that project out the
colour configuration c of the quarkonium state. In particular, for CS and CO we have
respectively that

〈3i, 3̄j|1〉 = δij√
Nc

, 〈3i, 3̄j|8〉 =
√
2 tcij , (3.44)

where the numerical factors come from their normalisation. Although increasingly
more complicated, the amplitude for higher-L bound states could be obtained simi-
larly, e.g. for D-waves see [59]. Moreover, since the radial wave functions at the origin
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and the derivatives thereof are related to the LDMEs of NRQCD as we will see, the
amplitude of a particular state naturally shows their relative importance in v.

3.3 Hadroproduction in the TMD formalism
If TMD factorisation is valid for the inclusive process at hand, it follows from the
correlator parametrisation in terms of light-cone coordinates that the TM of the parton
pT should be small with respect to the hard scale µH of the process. By momentum
conservation this translates into the need for a small-qT final state to probe TMDs in a
certain process. On the other hand, if a large TM final state is generated, e.g. if the TM
is generated by the recoil of another outgoing particle, one cannot probe the TM of the
parton. Then the appropriate approach is to employ collinear factorisation instead to
theoretically describe the process. Therefore, it is useful to define the low TM (LTM)
region for which TMD factorisation is assumed and the high TM (HTM) region for
which collinear factorisation is assumed. In particular, we have that qT � µH for
the LTM and qT � ΛQCD for the HTM, where qT = |qT |. The HTM region will be
addressed later in this thesis. In the remainder of this chapter the LTM differential
cross sections are investigated that can be written as

dσ

d2qT
= H(µH)× C[wfAfB](qT ) + Y (q2

T/µ
2
H) , (3.45)

where C[wfAfB] is the convolution of the nonperturbative TMD functions fA and fB,
in particular two TMDs for a proton-proton collision, with a certain TMD weight w
that is multiplied with the hard factor H (up to a certain order) and Y is the correction
factor at large qT (towards the HTM region). We note that for each process there can
be also higher-twist terms that are power-suppressed like Mh/µH which are omitted
in this equation.

In this section we discuss the results of [24], where they choose to inspect single
C = + quarkonium production in proton-proton scattering, i.e. the scalar particle
ηQ, the pseudoscalar particle χQ0, and the tensor particle χQ2. The other vector
quarkonia (J = 1) are not investigated because these states cannot be produced
due to the Landau-Yang theorem [60, 61]: massive on-shell spin-1 particles cannot
be produced by two massless on-shell spin-1 particles, i.e. their production from two
gluons requires an additional gluon. Besides, χQ1 production is suppressed due to
conservation of helicity (the sign of the projection of the spin of a particle onto the
direction of its momentum). We note that in Sec. 3.5 we explain how the helicities of
the partonic gluons can be used to understand the specific form of the differential cross
section found in double quarkonium production in proton-proton collisions, which is
related to the single quarkonium production discussed here. It is important to notice
that the hard scale of this process is set by the quarkonium mass: µH ∼MQ.

The LO αs perturbative-QCD diagrams for quarkonium hadroproduction are shown
in Fig. 3.2, where a gluon is taken out of each protons. These are the leading gluon-
induced hard-scattering diagrams because every interaction introduces at least a small
factor gs in which perturbation theory is applied. As both gluons carry a colour charge,
with colour index a and b, these diagrams are proportional to tatb. Therefore, from
the trace of the colour that arises at amplitude level (see App. A), both CS and CO
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pa P
2
+ k

P
2
− kpb

a i

k

jb

pa P
2
+ k

P
2
− kpb

Figure 3.2: LO Feynman diagrams for g + g → Q+ Q̄ that are constructed following
the Feynman rules for QCD presented in App. A. In the left diagram the colour indices
are made explicit.

states can be constructed at LO by taken into account the CG coefficients presented
in Eq. 3.44. However, for this process we consider the CSM because the CO contri-
butions for these particles are suppressed with respect to the CS contributions (see
Table 3.2). Actually, for the χQ particles there are CO contributions of the same order
v2. Nevertheless, it can be argued that these matrix elements are suppressed reflected
by the ratio RχQJ ≡ m2

Q〈OχQJ [3S8
1 ]〉/〈OχQJ [3P 1

J ]〉 [48], for which measurements are
reasonably close to the estimated value from NRQCD: Rχc0 ≈ v0/(2Nc) ≈ 0.17 [50].
The expectation from NRQCD is that the ratio Rχb should be comparable to Rχc .
Besides, the triplet P -wave LDMEs can be related to each other by the heavy-quark
spin-symmetry relations [49]

〈OQ[3P c
J ]〉 = (2J + 1) 〈OQ[3P c

0 ]〉+O(v2) , (3.46)

therefore, by assuming 〈OχQ2 [3S8
1 ]〉 ∼ 〈OχQ0 [3S8

1 ]〉, one can expect thatRχQ2 ∼ RχQ0/5,
i.e. 〈OχQ2 [3P 1

2 ]〉 is even more dominant over 〈OχQ2 [3S8
1 ]〉 than the χQ0 P -wave LDME.

For a detailed investigation of (collinear) CO quarkonium hadroproduction we refer
to [62, 63].

Employing the Feynman rules gives (see App. A) the following expressions for the
amplitude O:

Oµν = −i δ
ab

√
Nc

g2s
2M2

Q
[γν( /P − 2/pa +MQ)γ

µ − γµ( /P − 2/pa −MQ)γ
ν ] , (3.47)

Ôµνα = i
δab√
Nc

g2s
M2

Q

[
2pαa
M2

Q
[γν( /P − 2/pa +MQ)γ

µ

+ γµ( /P − 2/pa −MQ)γ
ν ]− γνγαγµ − γµγαγν

]
. (3.48)

Using these in Eqs. 3.33, 3.34, 3.35, 3.41, 3.42 and 3.43, and calculating the traces we
find the following non-zero amplitudes:

Mµν [1S1
0 ](pa, P ) = −2

δab√
Nc

g2s√
πM5

Q
R0(0) ε

µνρσpaρPσ , (3.49)

Mµν [3P 1
0 ](pa, P ) = −6

δab√
Nc

g2s√
πM3

Q
R′

1(0)

[
gµν − 2

M2
Q
P µpνa

]
, (3.50)

Mµν [3P 1
2 ](pa, P ) = −4

δab√
Nc

√
3

πM3
Q
g2s R

′
1(0) ε

σρ∗
Jz

(P )

[
gµσg

ν
ρ −

2

M2
Q
gµνpaσpaρ

]
. (3.51)
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Γµρ(xb,pbT )

[QQ̄](2S+1L1
J)

Γνσ(xa,paT )

Mµν Mρσ∗
pµb pρb

pνa pσa

Figure 3.3: The LO gluon-induced inclusive cross section for p + p → [QQ̄] + X
within TMD factorisation and the CSM. It consist out of the contraction of two TMD
correlators and two amplitudes. The blob in the middle is where the quarkonium is
formed from the hard scattering of the two partonic gluons.

We note that the TMD correlators in the cross section are proportional to the partonic
polarisations: e.g. Γνσ ∼ ενεσ, so that pνaΓνσ ' (xaPa+paT )νΓνσ = pνaTΓνσ gives power-
suppressed terms. Therefore, such terms are excluded from the amplitudes presented
above.

The cross section for the process, shown in Fig. 3.3, is given by

dσ =
1

2s

1

Ng

d3P

(2π)32P 0

∫
dxa dxb d

2paT d2pbT (2π)4δ4(pa + pb − P )

× 1

x2ax
2
b

Γνσ(xa,paT ) Γµρ(xb,pbT )Mµν(pa, P )Mρσ∗(pa, P ) , (3.52)

where s = (Pa+Pb)
2 is the total energy squared in the hadronic centre-of-mass frame,

and the average over the colour state of the incoming gluons is taken: Ng = N2
c −1. We

employ the TMD gluon correlator for an unpolarised proton twice given in Eq. 2.25,
which incorporates a factor of 1/2 that accounts for the averaging over the initial spin
states of the gluon. Considering light-cone kinematics in which p−a = p+b = 0 (with a
slight off-shellness for the gluons) and renaming the quarkonium momentum P ≡ q
for comparison with the process discussed hereafter, we re-express the delta function
as

δ4(pa + pb − q) = δ(p+a − q+) δ(p−b − q−) δ2(paT + pbT − qT )

≈ 2

s
δ

(
xa −

MQ√
s
ey
)
δ

(
xb −

MQ√
s
e−y
)
δ2(paT + pbT − qT ) +O

(
q2T
M2

Q

)
, (3.53)

where y is the rapidity of the produced bound state with respect to the axis of the
colliding hadrons. The phase-space element can be rewritten as:

d3q

(2π)32q0
=
dq3 d2qT
(2π)32q0

=
1

16π3
dy d2qT . (3.54)

Introducing the following LO relations from NRQCD [49,59]

Nc

2π
|R0(0)|2 =

1

2J + 1
〈OQ[2S+1S1

J ]〉 , (3.55)
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3Nc

2π
|R′

1(0)|2 =
1

2J + 1
〈OQ[2S+1P 1

J ]〉 , (3.56)

we find the differential cross sections at LO in αs, v and leading twist

dσ(ηQ)

dy d2qT
=

2

9

π3α2
s

M3
Qs

〈OηQ [1S1
0 ]〉 C[f

g
1 f

g
1 ] [1−R(q2

T )] , (3.57)

dσ(χQ0)

dy d2qT
=

8

3

π3α2
s

M5
Qs

〈OχQ0 [3P 1
0 ]〉 C[f

g
1 f

g
1 ] [1 +R(q2

T )] , (3.58)

dσ(χQ2)

dy d2qT
=

32

45

π3α2
s

M5
Qs

〈OχQ2 [3P 1
2 ]〉 C[f

g
1 f

g
1 ] , (3.59)

where Nc = 3 and:

R(q2
T ) =

C[w2h
⊥g
1 h⊥g1 ]

C[f g1 f
g
1 ]

. (3.60)

We introduced the convolutions of the TMDs as

C[wff ](xa, xb, q2
T ) =

∫
d2paT

∫
d2pbT δ2(paT + pbT − qT )

× w(paT ,pbT ) f(xa,p2
aT ) f(xb,p2

bT ) , (3.61)

with the TMD weight

w2(paT ,pbT ) =
1

4M4
h

[
2(paT · pbT )2 − p2

aTp2
bT

]
, (3.62)

which comes from the contraction of the tensor structures in front of h⊥g1 in the
definition of the correlator. We note that the contribution of linearly polarised gluons
described by h⊥g1 is suppressed in χQ2 production. As a consequence, in leading order
in v2 the ratio of χQ0 to χQ2 cross section yields a direct probe of the ratioR(q2

T ). Other
convolutions of TMDs (that have also different weights), and different ratios of them,
emerge in this process by considering polarised protons, while the hard factors stay the
same. These are studied in [64]. We also mention that the same convolutions occur
in Higgs production which have been investigated (using TMD evolution) in [65–67].

3.4 Photo- and electroproduction
Single quarkonium production in electroproduction, e(l)+ p(Ph) → e′(l′)+ [QQ̄](P )+
X, within the TMD formalism is similar to the computation presented in the previous
section. We can just modify Fig. 3.2 slightly: taking pb → p and pa → q = l − l′,
an off-shell photon with its energy determined by the difference of the incoming and
outgoing electron defined by q2 = −Q2. Since photoproduction is the limiting case
in which the photon becomes on-shell, i.e. Q = 0, its results follow directly from the
electroproduction results presented here. Particularly, we discuss the results of [26].
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The amplitude O becomes

Oµν = i
√
2

e eQ gs δ
ab

2(M2
Q +Q2)

[γν(/p− /q +MQ)γ
µ − γµ(/p− /q −MQ)γ

ν ] , (3.63)

Ôµνα = −i
√
2
e eQ gs δ

ab

(M2
Q +Q2)

[
2pα

(M2
Q +Q2)

[γν(/q − /p−MQ)γ
µ

+ γµ(/q − /p+MQ)γ
ν ]− γνγαγµ − γµγαγν

]
, (3.64)

where eQ is the fractional electric charge of the heavy quark. We note that the hard
scale of electroproduction is not only determined by the quarkonium mass, but also
by the photon virtuality. By comparing Eqs. 3.63 and 3.47, as well as Eqs. 3.64
and 3.48, we find that µ2

H ∼ M2
Q + Q2. However, a more detailed discussion of this

relationship, and in general the hard scale dependence of processes, is provided in
Ch. 4. In this case we produce CO quarkonium states by employing Eq. 3.44 instead
of CS states because the LO hard scattering only provides one colour matrix, i.e.
producing CS would result in the trace of just one colour matrix giving zero for all
amplitudes. From Table 3.2 we find that these computations are of particular interest
for producing vector quarkonium, e.g. the J/ψ and the Υ, although suppressed in v as
compared to the CS LDMEs. At higher-order α2

s it is possible to produce the 3S1 CS
state for these quarkonia. More precisely, the CS contribution is suppressed relatively
to the CO by a perturbative coefficient of the order αs/π. Hence, together with the
NRQCD scaling rules the CO configuration is enhanced by a factor v3π/αs, already
around 2 for Q = 3 GeV and grows with increasing Q. Furthermore, it is known that
for large values of z, defined in Eq. 3.71, the CS term becomes negligible due to the
dominance of the CO term [68]. Because the kinematical variable z is fixed to 1 in
this analysis as we will see, it allows for a study concerning only CO contributions.

Similar as before, the non-zero amplitudes are found to be

Mµν [1S8
0 ](q, P ) = 2

√
CS,0
MQ

δab
e eQ gs
M2

Q +Q2
εµνρσqρPσ , (3.65)

Mµν [3P 8
0 ](q, P ) = 2

√
CP,0
3MQ

δab
e eQ gs
M2

Q +Q2

3M2
Q +Q2

MQ

[
gµν − 2

M2
Q +Q2

P µqν
]
, (3.66)

Mµν [3P 8
1 ](q, P ) = 4i

√
CP,1
2MQ

δab
e eQ gs

(M2
Q +Q2)2

P ρεσ∗Jz
Q2

M2
Q

×
[
(M2

Q +Q2)ε µν
ρσ + 2ερσαβq

α(P µgβν − gβµP ν)

]
, (3.67)

Mµν [3P 8
2 ](q, P ) = 4

√
CP,2MQ δ

ab e eQ gs
M2

Q +Q2
εσρ∗Jz

×
[
gµσg

ν
ρ −

2

M2
Q +Q2

qσ(g
µνqρ + P µgνρ − gµρP

ν)

]
, (3.68)

where we used Nc = 3 and defined:

CS,J ≡ 1

4π
(N2

c − 1) |R0(0)|2 =
1

2J + 1
〈OQ[2S+1S8

J ]〉 , (3.69)
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CP,J ≡ 3

4π
(N2

c − 1) |R′
1(0)|2 =

1

2J + 1
〈OQ[2S+1P 8

J ]〉 . (3.70)

We note that latter equations are equivalent to Eq. 3.55 and Eq. 3.56 upon replacing
(N2

c − 1) → 2Nc for CS states.
Before we continue with calculating the differential cross section, we remark that

single quarkonium production in electron-proton scattering has some advantages with
respect to proton-proton scattering. Namely, in this process we only probe one TMD
at a time instead of two as there is only one proton involved. Moreover, due to the
second hard scale Q, that is determined by the electron, we can investigate the process
for a whole range of hard scales instead of only at the mass of the quarkonium that
is produced. It was already mentioned in Sec. 2.3 that the TMDs like the PDFs have
an implicit scale dependence, hence, with this processes one can probe the TMDs at
different scales and thus use it to study how the TMDs evolve with this scale. TMD
evolution is discussed in detail in Sec. 4.2.

However, the process studied here has also disadvantages. Aside from the fact
that the peak in the spectrum from CO contributions has not been observed in any
data and that at z = 1 a diffractive signal is obtained [2] (first discussed in [69]), a
further complication arises from the large uncertainties in the CO LDMEs. Moreover,
TMD factorised expressions have to take into account the TMDShFs, which include
smearing effects that can arise in the formation of quarkonium [70, 71]. This non-
perturbative hadronic quantity describes the transition from the QQ̄ pair to a bound
quarkonium state, i.e. it not only contains the formation of the bound state in terms
of a LDME, but also the TM effects that can arise to produce the final state hadron,
which generally change the momentum of the quarkonium. In particular, the required
soft-gluon emission in CO quarkonium production is the reason for considering final
state smearing to occur in this process, while at least for LO CS production the TMD-
ShFs are expected to be absent. The complete relation between the TMDShFs and the
LDMEs of NRQCD is not yet known as discussed in Ch. 5, where the LO TMDShFs
for single quarkonium in photo- and electroproduction are investigated. As a first step
we consider the transition to the colourless final state as infinitely narrow, i.e. as a
delta function in TM, thereafter, we add the TMDShFs which convolute with TMDs.
This process can therefore provide insight to the poorly known gluon TMDs, as well
as to the unknown TMDShFs of which the CO LDMEs are part. A comparison of this
process to open heavy-quark pair production in electron-proton collisions (neglecting
final state smearing), ideally performed with the same kinematics, has been proposed
as a approach to investigate the CO LDMEs as well [26, 72].

Since quarkonium production in the electron-proton scattering is similar to con-
ventional semi-inclusive deep inelastic scattering (SIDIS), e + p → e′ + h + X, we
employ the following kinematical variables

xB =
Q2

2Ph · q
, y =

Ph · q
Ph · l

, z =
Ph · P
Ph · q

, (3.71)

were xB is the Bjorken-x variable, y the inelasticity variable and z the elasticity
variable, the fraction of momentum of the (virtual) photon carried into the final state.
We choose the reference frame such that both the photon in the reaction and the
incoming proton move along the ẑ axis. The azimuthal angle φT of the outgoing
quarkonium is measured with respect to the lepton scattering plane (φl = φl′ = 0).
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Figure 3.4: Visualisation of the azimuthal angle φT , the scattering angle θ, and the
lepton and hadron scattering planes of quarkonium production in electron-proton col-
lisions in the frame where the photon and proton have no TM.

Moreover, the electron scatters with an angle θ. Fig. 3.4 provides a visual overview of
these planes and angles.

Compared to proton-proton collisions, the cross section is slightly altered for
electron-proton collisions as shown in Fig. 3.5. We have now a leptonic tensor in-
stead of a second TMD gluon correlator Γνσ. Therefore, the differential cross section
with an extra outgoing electron becomes

dσ =
1

2s

1

Ng

d3l′

(2π)32l′0
d3P

(2π)32P 0

∫
dx d2pT (2π)4δ4(q + p− P )

× 1

x2Q4
L(l, q)νσ Γµρ(x,pT )Mµν(q, P )Mρσ∗(q, P ) , (3.72)

where s = (l + Ph)
2 ≈ 2Ph · l = 2Ph · q/y = Q2/(xBy) is the total invariant mass

squared and Q2 ≈ 2 l · l′. In addition, the invariant mass squared of the photon-target
system is defined as W 2 = (q + Ph)

2, and can be expressed in terms of the other
invariants: W 2 = Q2(1 − xB)/xB = (1 − xB)ys. The factor Q−4 in the differential
cross section comes from the squared photon propagator. For an unpolarised massless
electron, the leptonic tensor is given by (see e.g. [73])

Lµν(l, q) =
1

2
e2 Tr[/lγµ/l

′
γν ] = e2[−gµνQ2 + 2(lµl′ν + lνl′µ)] , (3.73)

where the factor 1/2 comes from averaging over the initial spin states of the electron.
The four-momenta Ph and q in light-cone coordinates are more involved than in the
hadroproduction case. They can be written as:

P µ
h = nµ+ +

M2
h

2
nµ ≈ nµ+ , qµ = −xBnµ+ +

Q2

2xB
nµ ≈ −xBP µ

h + (Ph · q)nµ . (3.74)

Hence, we perform a decomposition of all the momenta in terms of nµ+ = P µ
h (i.e.

P+
h = 1 in Eq. 2.8) and nµ = nµ− = (qµ+ xBP

µ
h )/Ph · q. The leptonic momenta can be

written as

lµ =
1− y

y
xBP

µ
h +

1

y

Q2

2xB
nµ +

√
1− y

y
Q l̂µ⊥ , (3.75)

l′µ =
1

y
xBP

µ
h +

1− y

y

Q2

2xB
nµ +

√
1− y

y
Q l̂µ⊥ , (3.76)
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Γµρ(x,pT )

[QQ̄](2S+1L8
J)Mµν Mρσ∗

pµ pρ

Lνσ

qν qσ

Figure 3.5: The LO gluon-induced inclusive cross section for e + p → e′ + [QQ̄] +X
within TMD factorisation and the COM. It is constructed by the contraction of the
TMD correlator, the leptonic tensor and two amplitudes.

where l̂µ⊥ is the unit vector in the transverse direction of l with respect to the photon-
proton axis. Similarly, the gluon momentum can be expanded as:

pµ = xP µ
h + pµT + (p · Ph − xM2

h)n
µ ≈ xP µ

h + pµT . (3.77)

Lastly, the momentum of the quarkonium state is written as

P µ = z(Ph · q)nµ +
M2

Q + P2
⊥

2z Ph · q
P µ
h + P µ

⊥ , (3.78)

where we introduced the subscript ⊥ for the TM of the quarkonium. This distinction is
made to highlight the difference with respect to the reference frame where the photon
has TM qT , i.e. the frame in which the hadrons do not possess TM. We note that all
these momentum expressions above can be easily checked by squaring them.

As before, we evaluate first the delta function

δ4(p+ q − P ) ≈ δ

(
x− xB −

M2
Q

yzs

)
δ
(
Ph · q − z(Ph · q)

)
δ2(pT − P⊥)

=
2

ys
δ

(
x− xB −

M2
Q

yzs

)
δ(1− z) δ2(pT − P⊥) , (3.79)

from which it follows that:

x = xB +
M2

Q

ys
=
M2

Q +Q2

ys
= xB

M2
Q +Q2

Q2
. (3.80)

Moreover, since z = 1 the TM of the photon and the quarkonium in the two frames
are equal: qT = P⊥. The phase-space elements can be rewritten as

d3P

(2π)32P 0
=

1

16π3

dz

z
d2P⊥ , (3.81)

and

d3l′

(2π)32l′0
=
l′0dl′0dΩ

16π3
=

1

16π2
sy dxB dy , (3.82)
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where Ω = 4π sin2 (θ/2) is the solid angle with apex angle 2θ. The latter equation is
most conveniently derived in the target hadron rest frame where Q2 = 2l0l′0(1− cos θ)
such that l′0 = s(1− y)/(2Mh) = syxB/

(
4l0 sin2 (θ/2)

)
.

With all these ingredients we can evaluate the unpolarised cross section in terms
of gluon TMDs again. Specifically, we find for J/ψ production

dσ(J/ψ)

dxB dy dz dq2
T dφT

=
α

yQ2

{
[1 + (1− y)2]FUU,T + 4(1− y)FUU,L

+ 4(1− y) cos 2φT F cos 2φT
UU

}
, (3.83)

where,

FUU,T = 2π2 ααse
2
c

MQ(M2
Q +Q2)

[
〈OJ/ψ[1S8

0 ]〉

+ 4
(7M4

Q + 2M2
QQ

2 + 3Q4)

M2
Q(M

2
Q +Q2)2

〈OJ/ψ[3P 8
0 ]〉
]
δ(1− z) f g1 (x,p2

T )

∣∣∣∣
pT=qT

, (3.84)

FUU,L = 2π2 ααse
2
c

MQ(M2
Q +Q2)

[
16Q2

(M2
Q +Q2)2

〈OJ/ψ[3P 8
0 ]〉
]

× δ(1− z) f g1 (x,p2
T )

∣∣∣∣
pT=qT

, (3.85)

F cos 2φT
UU = π2 ααse

2
c

MQ(M2
Q +Q2)

[
− 〈OJ/ψ[1S8

0 ]〉

+ 4
3M2

Q −Q2

M2
Q(M

2
Q +Q2)

〈OJ/ψ[3P 8
0 ]〉
]
δ(1− z)

p2
T

2M2
h

h⊥g1 (x,p2
T )

∣∣∣∣
pT=qT

, (3.86)

with MQ =MJ/ψ. Here we employed α = e2/4π and the heavy-quark spin symmetry
relations presented in Eq. 3.46. The first and second subscripts of the structure func-
tions F denote the polarisation of the initial electron and proton, respectively, while
the third one when present specifies the polarisation of the exchanged virtual photon;
whenever relevant the angle associated to the function is added. We note that the
dot product qT · l ∝ |qT | cosφT together with another term q2T = −q2

T generates the
angular term cos 2φT in the cross section.

As explained, the transition from the CO state into the true colourless hadronic
final state is not fully described by the CO LDMEs solely. Including the general
TMDShFs ∆[n] in the differential cross section we obtain the following expressions for
the structure functions

FUU,T =
∑
n

H[n]
T C[f g1∆[n]](x, z, q2

T ) , (3.87)

FUU,L =
∑
n

H[n]
L C[f g1∆[n]](x, z, q2

T ) , (3.88)

F cos 2φT
UU =

∑
n

H[n]
cos 2φT C[wh⊥g1 ∆

[n]
h ](x, z, q2

T ) , (3.89)
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where we have introduced the convolutions

C[f g1∆[n]](x, z, q2
T ) =

∫
d2pT

∫
d2kT δ2(pT + kT − qT )

× f g1 (x,p2
T )∆

[n](z, k2
T ) , (3.90)

C[wh⊥g1 ∆
[n]
h ](x, z, q2

T ) =

∫
d2pT

∫
d2kT δ2(pT + kT − qT )

× w(pT , kT )h⊥g1 (x,p2
T )∆

[n]
h (z, k2

T ) , (3.91)

similar to Eq. 3.61. The hard factors H can be easily extracted from Eqs. 3.84, 3.85
and 3.86. The TMD weight function w(pT , kT ) is constructed by contracting the TM
of the produced quarkonium (hence the difference with respect to Eq. 3.62) with the
tensor structure of the gluon correlator

w(pT , kT ) =
1

2M2
h(pT + kT )2

[2(pT · kT )2 + p2
T

(
p2
T − k2

T

)
] , (3.92)

such that when qT = pT , one retrieves Eq. 3.86.
The TMDShFs can be thought of as a generalisation of the LDMEs from collinear

factorisation in the HTM region. We have added the superscript h in Eq. 3.89 as we
consider that the TMDShFs that convolute with h⊥g1 could in principal be unequal
to the ones that convolute with f g1 . The naive expectation is that the TMDShFs are
proportional to the LDMEs, at least at LO:

∆
[n]
(h)(z, k

2
T ) ≡ 〈OQ[n]〉∆(h)(z, k2

T ) . (3.93)

Although z = 1 for the process studied in this section, we note that we have included
the corresponding delta function in the final state TMDShFs due to their comparability
to FFs that depend on z (see Eq. 3.10), which is discussed later in this thesis. In
absence of smearing ∆(h)(z, k2

T ) = δ2(kT ) δ(1− z) in Eq. 3.93, such that the previous
equations without the TMDShFs are recovered.

The weighted average of the angle φT in the differential cross section can be cal-
culated as follows:

〈cos 2φT 〉 =
∫
dφT cos 2φT dσ(φT )∫

dφT dσ(φT )

=
1

2

∑
n 4(1− y)H[n]

cos 2φT C[wh⊥g1 ∆
[n]
h ]∑

n

(
[1 + (1− y)2]H[n]

T + 4(1− y)H[n]
L

)
C[f g1∆[n]]

. (3.94)

This observable is interesting to study experimentally alongside the cross section,
as it also provides insights into the TMDShFs and the TMDs. Indeed, the azimuthal
asymmetry arises due to the presence of linearly polarised gluons inside an unpolarised
proton. In absence of smearing we can write

〈cos 2φT 〉 =
2(1− y)F cos 2φT

UU

[1 + (1− y)2]FUU,T + 4(1− y)FUU,L

R ≡ AR , (3.95)

with

R ≡ C[wh⊥g1 ∆h]

C[f g1∆]
⇒ q2

T

2M2
h

h⊥g1

f g1
, (3.96)
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Table 3.3: LMDE values for J/ψ production from various studies. The charm quark
mass in this table is set to 1.5GeV.

〈OJ/ψ[3S1
1 ]〉 〈OJ/ψ[1S8

0 ]〉 〈OJ/ψ[3S8
1 ]〉 〈OJ/ψ[3P 8

0 ]〉/m2
c

(GeV3) (10−2 GeV3) (10−2 GeV3) (10−2 GeV3)
BK [74] 1.32 4.50± 0.72 0.312± 0.093 −0.538± 0.16

CMSWZ [75] 1.16 8.9± 0.98 0.30± 0.12 0.56± 0.21
SV [76] 1.2 1.8± 0.87 0.13± 0.13 1.8± 0.87

BCKL [77] - 9.9± 2.2 1.1± 1.0 0.49± 0.44

where we have redefined the structure functions, i.e. we removed the TMDs from
their definitions given in Eqs. 3.84, 3.85 and 3.86 (including the q2

T/(2M
2
h) term from

F cos 2φT
UU ). We note that the positivity bound outlined in Eq. 2.48 implies that |R| ≤ 1.

For numerical calculations different extractions of J/ψ LDMEs are available. Ta-
ble 3.3 provides a summary of these values from selected studies, that are derived
from fits to data from Tevatron, Relativistic Heavy Ion Collider (RHIC), and LHC.
Most of these results are obtained from NLO analyses, except for the SV set, which
is based on a LO calculation. We note that, although the BK set is the only one that
describes J/ψ photoproduction data well [2], the negative value of 〈OJ/ψ[3P 8

0 ]〉 results
in negative cross sections for certain values of Q when used in the LO calculation
presented in this section, and is therefore not utilised by us. Moreover, the relevant
CO LDME values from BCKL are comparable to those from CMSWZ, but exhibit
larger uncertainties.

In Fig. 3.6 the behaviour of the asymmetry hard factor A defined in Eq. 3.95, in
case no smearing occurs, is shown as a function of y, where we used the central values
of the CMSWZ LDMEs as an example and MJ/ψ = 3.1GeV (employed throughout
the rest of the thesis). |A| = |〈cos 2φT 〉| when the positivity bound is saturated, i.e.
it actually is the upper bound of the average azimuthal angle for a specific y. In
general, it turns out that A depends very strongly on the specific set of CO LDMEs
adopted, but it always vanish in the limit y → 1 and maximises when y → 0. Since
|〈cos 2φT 〉| ≤ 1 and |R| ≤ 1, the LDMEs must be such that |A| ≤ 1 and the denom-
inator of A should be greater or equal to zero, which are important constraints to
impose on LDME extractions at EIC. These constraints are not satisfied by the BK
set for 2.5M2

Q & Q2, but that seems a problem of applying LDMEs that were obtained
from a NLO analysis in a LO computation.

It should be noted that, in our investigations, we indirectly sum over the quarko-
nium polarisations in the calculation of the cross sections for both proton-proton and
electron-proton collisions by projecting the amplitudes of the quarkonium states onto
|J, Jz〉. Although we do not present any numerical predictions for polarised quarko-
nium production reactions in this thesis, we explain some polarised LO electron-proton
collisions to unpolarised as well as polarised J/ψ in App. B for completeness. In such
calculations similar hard factors like A can be determined for J/ψ (or for Υ with the
appropriate LDMEs).
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Figure 3.6: The absolute value of the asymmetry hard factor A as a function of y
in unpolarised J/ψ electroproduction. Here we employed the central values of the
CMSWZ LDMEs [75].

3.5 Quarkonium-pair hadroproduction
The last process we investigate is this thesis is quarkonium-pair production in unpo-
larised proton-proton collisions in the TMD regime where we employ again the CSM.
The differential cross section of the reaction of interest is shown in Fig. 3.7. Not only
are CO contributions suppressed in v since both the CO and the CS yields appear
at the same order in αs, they can also likely break TMD factorisation. Namely, in
the case of CO production one expects gluonic interactions between the initial and
final state. Besides, it is expected that for CO TM effects from soft-gluon radiation
need to be taken into account by TMDShFs, like for TMD single quarkonium pro-
duction in electron-proton collisions. So, although one probes convolutions of two
TMDs, it is expected that at LO it does not have the problem that TMDShFs enter
the process (likewise for single quarkonium production in proton-proton collisions).
In particular, we are interested when two J/ψ mesons are produced, as these are
most easily detected, allowing for the recording of a large number of events in the
detector (note that in this case the Landau-Yang theorem is not applicable). Indeed,
new measurements of J/ψ-pair production have been made recently available by the
LHCb collaboration [78]. Hence, this process emerges as currently the most promising
one for probing gluon TMDs, as it allows for direct comparison between experimental
data and theoretical predictions, which is performed in Sec. 6.3.

Processes involving two particles in the final state offer advantages when compared
to those involving only a single detected particle. Because the TM of the final state
needs to be small for the cross section to be sensitive to TMD effects, single-particle
final states tend to remain close to the beam axis, making them in general more
challenging to detect due to a large background and triggering requirements. However,
when two particles are produced nearly back-to-back, they can each possess significant
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Figure 3.7: The LO gluon-induced inclusive cross section for p+p→ [QQ̄]+[QQ̄]+X
within TMD factorisation and the CSM.

individual transverse momenta that collectively contribute to a small overall TM in
order to stay in the LTM region for TMD factorisation. Moreover, unlike single
quarkonium production in proton-proton collisions where the hard scale is determined
by its mass, the invariant mass of the quarkonium-pair MQQ can be tuned with their
individual momenta. The latter allows one to study the scale evolution of the TMDs
like single quarkonium in electroproduction.

For this process it is convenient to work with the helicity formalism. Then the
differential cross section can be calculated from contracting helicity correlators with
helicity amplitudes, which can be derived from the usual correlators and amplitudes
as shown in App. C. In [25] this procedure was performed for this process utilising
the LO α4

s uncontracted amplitudes from [79]. They found that the differential cross
section in the case of two unpolarised protons can be written as

dσ(J/ψ + J/ψ)

dMQQ dyQQ d2qT dΩ
=

√
M2

QQ − 4M2
Q

(2π)28sM2
QQ

×
{
F1(θCS,MQQ) C[f g1 f

g
1 ] + F2(θCS,MQQ) C[w2h

⊥g
1 h⊥g1 ]

+
{
F3(θCS,MQQ) C[w3f

g
1h

⊥g
1 ] + F ′

3(θCS,MQQ) C[w′
3h

⊥g
1 f g1 ]

}
cos 2φCS

+ F4(θCS,MQQ) C[w4h
⊥g
1 h⊥g1 ] cos 4φCS

}
, (3.97)

with dΩ = d(cos θCS) dφCS, where θCS and φCS are the Collins-Soper angles that are
defined in the Collins-Soper reference frame shown in Fig. 3.8. The rapidity of the
quarkonium-pair yQQ is defined in the hadron centre-of-mass frame, i.e.

xa,b = exp(±yQQ)MQQ/
√
s , (3.98)

similar to single quarkonium production (where we take yQQ → y and MQQ → µH).
We note that it is evident from the overall factor of the differential cross section that
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Figure 3.8: Illustration of p+ p→ J/ψ + J/ψ in the Collins-Soper reference frame in
which the angles θCS and φCS are defined.

MQQ > 2MQ. The definition of the convolutions is given in Eq. 3.61. Besides the
TMD weight w2 defined in Eq. 3.62, we have that:

w3 =
1

2M2
hq2

T

[p2
bTq2

T − 2(pbT · qT )2] , w′
3 =

1

2M2
hq2

T

[p2
aTq2

T − 2(paT · qT )2] (3.99)

w4 = 2

(
paT · pbT
2M2

h

− (paT · qT )(pbT · qT )
M2

hq2
T

)2

− p2
aTp2

bT

4M4
h

. (3.100)

For the specific analytic expressions of the hard factors Fi(θCS,MQQ) we refer to [25].
We point out that strictly the nonperturbative factor 〈OJ/ψ[3S1

1 ]〉2 should not be in-
cluded in Fi. However, for this process only, we continue this practice for convenience.
The hard factors contain the information on the helicities of the partonic gluons. In
particular, we have two helicity amplitudes that are shown in Fig. 3.9, which lead
to four different combinations of squared amplitudes. Namely, F1 corresponds to no
helicity change within the squared amplitude as both gluons are unpolarised, while
F3 = F ′

3 contain a single helicity flip of one linearly polarised gluon. On the other
hand, F2 corresponds to a double helicity flip for which the two gluons of one ampli-
tude have the same helicity, while F4 corresponds to a double flip with initial state
gluons of opposite helicities. Again, the weight factors arise due to the contraction of
the TM prefactors in front of h⊥g1 in the parametrisation of the correlator. Moreover,
within the helicity formalism, the TM prefactors also generate a phase for F3 and F4

that translates directly into the cos (nφCS)-terms of the differential cross section, with
n = 2, 4. For a figure presenting squared helicity amplitudes see [80].

The two-particle final state is used to define the azimuthal angle φCS which is
most naturally distinguished as an interesting observable because this asymmetry is
directly related to gluon TMDs, like in single quarkonium production in electron-
proton collisions as discussed before. Namely, by calculating its average, similar to
Eq. 3.94, one can identify two azimuthal modulations [25]

〈cos 2φCS〉 =
1

2

F3

(
C[w3f

g
1h

⊥g
1 ] + C[w′

3h
⊥g
1 f g1 ]

)
F1 C[f g1 f

g
1 ] + F2 C[w2h

⊥g
1 h⊥g1 ]

, (3.101)

and:

〈cos 4φCS〉 =
1

2

F4 C[w4h
⊥g
1 h⊥g1 ]

F1 C[f g1 f
g
1 ] + F2 C[w2h

⊥g
1 h⊥g1 ]

. (3.102)
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±1 Jz=0 ±1

±1 Jz=±2 ∓1

Figure 3.9: Helicity amplitudes induced by two gluons: the signs denote their spin
and the arrows the direction of their momentum. The Jz = ±2 amplitudes generate
azimuthal modulations in the cross section of the process.

The positivity bound for the gluon TMDs in Eq. 2.48 implies that the convolutions
must obey

|C[w3f
g
1h

⊥g
1 ]| ≤ C[f g1 f

g
1 ] , |C[w′

3h
⊥g
1 f g1 ]| ≤ C[f g1 f

g
1 ] ,

|C[w2h
⊥g
1 h⊥g1 ]| ≤ C[f g1 f

g
1 ] , |C[w4h

⊥g
1 h⊥g1 ]| ≤ C[f g1 f

g
1 ] (3.103)

such that upper bounds for the modulations are obtained:

|〈cos 2φCS〉| ≤
|F3|

|F1| − |F2|
, |〈cos 4φCS〉| ≤

1

2

|F4|
|F1| − |F2|

. (3.104)

In Fig. 3.10 we show the hard factors over the whole cos (θCS) region for two different
values of MJ/ψ J/ψ as an example. Although the polynomial structure of the hard
factors in terms of cos θCS are complicated, one can observe some trends. We see
that F1 has a relatively large magnitude compared to F3 and F4, and decreases with
increasing MQQ (until at some point it does not change much any more). F2 behaves
similarly: it is close to zero for large MQQ, but increases (more and more) rapidly
at the maxima of cos θCS when decreasing MQQ. The numerators of the modulations
have a different shape as a function of cos θCS. F3 first increases in magnitude when
increasing MQQ (although not visible from Fig. 3.10), but (continuously) decreases
thereafter. On the other hand, the magnitude of F4 only increases with increasing
MQQ (until at some point it does not change any more like F1). Moreover, from the
fact that F4 is negative for some values of cos θCS (depending on MQQ) a sign flip for
cos 4φCS is predicted with respect to θCS, so choosing bins in θCS must be done with
care. We note that both F3 and F4 are zero for MJ/ψ J/ψ = 2MJ/ψ.

One can neglect F2 C[w2h
⊥g
1 h⊥g1 ] in the azimuthal modulations [25], in the case

that |cos θCS| ≤ 0.5 or when MQQ is large. Indeed, it is expected that in collider
experiments most of the data are found at small cos θCS and not too small MQQ. Such
a restriction is useful to simplify computations, e.g. it can be used to make sure that
the upper bounds of the modulations in Eq. 3.104 cannot become larger than unity;
that can occur due to the minus sign in front of F2 in the denominator of Eq. 3.104
that originates from the unknown sign of C[w2h

⊥g
1 h⊥g1 ].

The behaviour of the modulations becomes slightly more evident when choosing a
cos (θCS)-bin, i.e. we perform an extra integration in the numerator and denominator of
Eqs. 3.101 and 3.102. The corresponding upper bounds are shown in Fig. 3.11, where
we see that the maximum of the cos (2φCS)-modulation first grows with increasing
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Figure 3.10: Isolated hard factors as a function of cos θCS for two different invariant
masses MJ/ψ J/ψ as an example. We note that the factors are multiplied with an overall
factor D/N from [25] that cancel out in the modulations. The grey area denotes the
region where |cos θCS| ≥ 0.5, in which F2 becomes non-negligible.
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MQQ and thereafter decreases towards zero, although the specific shape and magnitude
depend on the bin choice. For the cos (4φCS)-modulation we observe instead that it
goes towards a certain asymptotic value, as well as by first crossing the horizontal axis.
Therefore, the cos (θCS)-bin choice for the modulations is crucial to make predictions.

Although the sign of h⊥g1 is unknown, it is typically assumed to be positive in
models. Regardless of its sign, the theory predicts that a sign flip of the cos (4φCS)-
modulations with respect to MQQ (or with respect to another bin) occurs. We note
that the C[w3f

g
1h

⊥g
1 ] and C[w′

3h
⊥g
1 f g1 ] convolution that enter the cos (2φCS)-modulation

provide a way to determine the sign of h⊥g1 , while C[w4h
⊥g
1 h⊥g1 ] that enters the cos (4φCS)-

modulation can allow one to extract h⊥g1 independently of f g1 (when F2 C[w2h
⊥g
1 h⊥g1 ]

is negligible and C[f g1 f
g
1 ] is extracted), but not its sign.

In principle, all differential cross sections and modulations presented in this chap-
ter can be measured in current LHC and future EIC experiments to try to extract
the nonperturbative TMDs by comparing to theory expressions. However, a step
further would be to provide actual numerical predictions for observables in collider
experiments. In the following chapter possible approaches for this are discussed and
investigated.
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Recently, there has been a significant development in extracting quark TMDs from ex-
perimental SIDIS and Drell-Yan (DY) lepton-pair production data [81–84]: in SIDIS
the hadron formation goes through quark fragmentation and in DY a quark and an
antiquark annihilate creating a virtual photon or a Z-boson (at higher energies), which
decays into a pair of oppositely-charged leptons perturbatively, i.e. p+ p→ l+ l̄+X.
Specifically, they extracted values for the parametrisations of the unknown nonpertur-
bative components of the TMDs by employing TMD evolution. However, not much
is known about the gluon TMDs experimentally, although from a theoretical point
of view it is expected that data of inclusive quarkonium production is likely to make
their extraction possible. Besides the studies investigated in Ch. 3, many others have
appeared about this topic already [85–93]. Furthermore, back-to-back heavy-quark
pair production in both proton-proton and electron-proton collisions [94]; and ηQ-
pair [95], quarkonium plus photon [96], quarkonium plus virtual photon or Z [97] in
proton-proton collisions; and J/ψ plus jet [98, 99], J/ψ plus photon [100], D-meson
plus jet [101] and J/ψ plus pion [102] in electron-proton collisions, have been put for-
ward as gluon TMD probes too. The electron-proton processes mentioned above are
expected to be measurable at the future EIC, but one must still wait for a while for it
to become operational. The proton-proton processes on the other hand can be mea-
sured at the ongoing LHC experiment, where the current challenge lies in achieving
sufficient statistical significance and resolution at LTM (also for Higgs production). In
the meantime, there are multiple ways to study processes with gluon TMDs in greater
detail. In particular, we distinguish two approaches: one can either fully parametrise
the TMDs, as explained in Sec. 4.1, or employ TMD evolution in which only their
nonperturbative part is parametrised, as discussed in Sec. 4.2.
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4.1 Parametrisations of TMDs
A useful approach is to assume that the nonperturbative unpolarised gluon TMD has
a simple Gaussian dependence on TM [103]

f g1 (x,p2
T ;µ) =

f g1 (x;µ)

π〈p2T 〉
exp
(
− p2

T

〈p2T 〉

)
, (4.1)

where 〈p2T 〉 is the width parameter, such that the integral over TM gives the uninte-
grated collinear PDF f g1 by its definition in Eq. 2.30. We note that the dependence
on the scale µ with mass dimension [µ] = 1, that comes from the renormalisation of
the PDF, is made explicit from now on. Moreover, 〈p2T 〉 is taken independent of x, i.e.
the x behaviour is solely determined by the PDF. Since there is no collinear version
of h⊥g1 it is completely unknown on the other hand, but one can saturate its positivity
bound given in Eq. 2.48. This makes it possible to describe h⊥g1 by a simple Gaus-
sian expression too. Another model, where the bound is satisfied, but not saturated,
is [104]

h⊥g1 (x,p2
T ;µ) =

2M2
h

〈p2T 〉
(1− r)

r

f g1 (x;µ)

π〈p2T 〉
exp
(
1− 1

r

p2
T

〈p2T 〉

)
, (4.2)

where r < 1. Initially a model of this type was explored in [105]. The usual value
taken for the input parameter r is 2/3, as it maximises the second moment of h⊥g1 ,
i.e. the variance of the Gaussian function. We note that even less is known about the
TMDShFs, therefore there is no conventional parametrisation for these functions at
present.

These TMD parametrisations can be used to analytically compute the convolutions
in the cross sections that appear. In particular, employing Eq. 3.61 we have for
unpolarised proton-proton collisions that:

C[f g1 f
g
1 ] =

f g1 (xa;µ)f
g
1 (xb;µ)

2π〈p2T 〉
exp
(
− 1

2

q2
T

〈p2T 〉

)
. (4.3)

By employing the Gaussian r-dependent model for h⊥g1 (with r = 2/3), which we
define as Model 1, expressions for the other convolutions are found:

C[wh⊥g1 h⊥g1 ] =
f g1 (xa;µ)f

g
1 (xb;µ)

32π〈p2T 〉3
(r − 1)2

r

×
[
8r2〈p2T 〉2 − 8r〈p2T 〉q2

T + q4
T

]
exp
(
2− 1

2r

q2
T

〈p2T 〉

)
, (4.4)

C[w3f
g
1h

⊥g
1 ] =

f g1 (xa;µ)f
g
1 (xb;µ)

π〈p2T 〉2
(r − 1)r2

(r + 1)3
q2
T exp

(
1− 1

r + 1

q2
T

〈p2T 〉

)
, (4.5)

C[w4h
⊥g
1 h⊥g1 ] =

f g1 (xa;µ)f
g
1 (xb;µ)

32π〈p2T 〉3
(r − 1)2

r
q4
T exp

(
2− 1

2r

q2
T

〈p2T 〉

)
. (4.6)

Saturating the positivity bound for h⊥g1 , which we define as Model 2, gives instead the
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following expressions:

C[w2h
⊥g
1 h⊥g1 ] =

f g1 (xa;µ)f
g
1 (xb;µ)

2π〈p2T 〉

{[
4− 3 e

q2T
2〈p2

T
〉

]
exp
(
− q2

T

〈p2T 〉

)
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4

〈p2T 〉
q2
T

[
EI
(
− q2

T

〈p2T 〉

)
− 1

2
EI
(
− q2

T

2〈p2T 〉

)]}
, (4.7)

C[w3f
g
1h

⊥g
1 ] = −f

g
1 (xa;µ)f

g
1 (xb;µ)

2π〈p2T 〉q2
T

×
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q2
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)
e

q2T
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T
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exp
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− q2

T

〈p2T 〉
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, (4.8)

C[w4h
⊥g
1 h⊥g1 ] =

f g1 (xa;µ)f
g
1 (xb;µ)

2π〈p2T 〉q4
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q2
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exp
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− q2

T

〈p2T 〉

)
, (4.9)

where we make use of the exponential integral:

EI(x) =
∫ x

−∞
dt
et

t
. (4.10)

In all these equations it is used that 〈p2aT 〉 = 〈p2bT 〉 ≡ 〈p2T 〉.
We recall that all TMD expressions are applicable only when qT � µH . Hence,

in order to stay within the TMD regime one usually defines qT,max = µH/2, e.g. for
ηc hadroproduction discussed in Sec. 3.3 we have that qT,max = Mηc/2 ≈ 1.5GeV.
Therefore, we expect the model approach and in particular a Gaussian fall-off of h⊥g1

at qT ∼ µH to be unrealistic: one rather expects a power-law fall-off that would result
from a perturbative collinear treatment [106]. In practice, this difference may not
matter much, as the contribution from linearly polarised gluons in the tail region are
expected to be quite small. Given that no experimental constraints have been imposed
on the gluon TMDs so far, an alternative model can also be adopted.

In Fig. 4.1 we show the behaviour of Eqs. 4.1 and 4.2, where the PDFs are factored
out, thereby eliminating their µ dependence. Increasing (or decreasing) the value of
〈p2T 〉 increases (or decreases) the width of the TMDs and decreases (or increases) the
value of f g1 at pT = 0GeV, hence the magnitude of the TMDs. Similarly, increasing
r broadens h⊥g1 as well. Although it is likely scale dependent, 〈p2T 〉 = 1.0GeV2 is
chosen, which is often considered to be a realistic value for gluon-induced single char-
monium production. This is because this value has been found to provide an accurate
description of the unpolarised cross section data for J/ψ production in proton-proton
collisions [90, 107], while for quark induced SIDIS a smaller value of 0.25GeV2 was
found [108]. Generally, for bottomonium larger values are expected such that not too
much of the Gaussian h⊥g1 tail lies within the TMD regime.

An example of the Gaussian convolutions is shown in Fig. 4.2, where we investigate
their ratio with respect to Eq. 4.3 for a (larger) value of 〈p2T 〉 that is relevant for
J/ψ-pair production (which generally exbibits a larger scale than single quarkonium
production). The latter number was found in [25] from fitting C[f g1 f

g
1 ] to normalised

J/ψ-pair production data at
√
s = 13TeV with 〈MJ/ψ J/ψ〉 = 8GeV from LHCb [109],
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Figure 4.1: Gaussian models for the TMDs f g1 and h⊥g1 , divided by f g1 (x), as a function
of pT in units of GeV−2 with 〈p2T 〉 = 1.0GeV2 as an example.

which will be explained in more detail in Sec. 6.3. We note that in the large-qT
limit all the convolutions become zero due to their Gaussian nature and, again, that
the dependence of the PDFs is factored out. In Model 1 the ratios all tend toward
zero as the Gaussian convolutions containing h⊥g1 are all steeper than C[f g1 f

g
1 ] in the

large-qT limit. This is a consequence of the presence of the factor r in the argument
of the pT -exponential in Eq. 4.2. In Model 2, however, the Gaussian convolutions
containing h⊥g1 are as broad as C[f g1 f

g
1 ] in the large-qT limit. Therefore, they actually

become all identical to C[f g1 f
g
1 ], making their ratio equal to 1 (up to a minus sign for

C[w3f
g
1h

⊥g
1 ]). Hence, ensuring a maximal size for the azimuthal modulations. We note

that C[w2h
⊥g
1 h⊥g1 ]/C[f g1 f

g
1 ] is the only non-zero ratio for the models at qT = 0GeV:

in Model 1 it is e2/27 = 0.27, while in Model 2 it is 1. Hence, C[w2h
⊥g
1 h⊥g1 ] is the

only convolution involving h⊥g1 that contributes to the φCS-independent part of the
differential cross section.

Furthermore, we point out that
∫
d2qT (q2

T )
α C[w2h

⊥g
1 h⊥g1 ] = 0 for α = 0, 1, inde-

pendent of the model. The case of α = 0 implies that linearly polarised gluons do
not affect the qT -integrated cross section. The case of case of α = 1 implies that the
convolution must have at least two nodes as a function of qT , i.e. it has to flip sign at
least twice as can be observed in Fig. 4.2. This distinctive double-node feature can
be used to experimentally demonstrate the presence of the linear polarisation of the
gluons when part of the TMD regime.

The behaviour of the TMD Gaussian convolutions as function of 〈p2T 〉 naturally
follows the behaviour of the individual TMDs that are discussed above: increasing
〈p2T 〉 increases the width of the ratios (and the other way around), while the values at
qT = 0GeV stay the same. It shifts the value at which the ratios in Model 1 peak to
larger qT (the magnitude stays the same), while it makes the ratios in Model 2 slower,
at larger qT , to reach their maximal value. We note that the large-qT behaviour of
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Figure 4.2: Ratios of TMD Gaussian convolutions in unpolarised hadron-hadron colli-
sions as a function of pT with 〈p2T 〉 = 3.3GeV2 as an example. Two different Gaussian
models of h⊥g1 are employed: Model 1 is the r-dependent model given in Eq. 4.2 with
r = 2/3 and Model 2 is the saturation of the positivity bound given in Eq. 2.48 with
Eq. 4.1.

the ratios and the convolutions discussed here are expected not to be observable since
qT,max = 4GeV in this example, i.e. a larger hard scale or a smaller value for 〈p2T 〉 (like
in Fig. 4.1 for single quarkonium production) would in that regard be more useful.

The Gaussian TMDs can of course be used to make predictions of the azimuthal
modulations as well. In Fig. 4.3 we show such a prediction for J/ψ production in
electron-proton collisions without smearing following Eq. 3.95. We utilise the value of
〈p2T 〉 for the Gaussian TMDs that was employed in Fig. 4.1 and the central values of
the CMSWZ LDMEs [75] that were employed in Fig. 3.6. However, for this prediction
we also need the (central) gluon PDF that depend on x and the scale µ as additional
integration is performed in the numerator and denominator (determined by the other
kinematic values). Here, and in the rest of this thesis, we employ the LO MSHT20
extraction of the PDFs [1]. We point out that, although the performance of PDF sets
from major collaborations varies depending on the process, they currently perform
equally well across all available data [110]. In the figure we observe that the Gaussian
model predicts an asymmetry that should be measurably large. Moreover, we have
again that r and 〈p2T 〉 alter the position of the peak and its width like the TMDs
themselves, while the magnitude of the (2φCS)-modulation remains unchanged as it
is determined by the integration ranges.

In Fig. 4.4 we employ the TMD Gaussian models for the modulations in J/ψ-
pair hadroproduction in two different cos (θCS)-bins. The values of MQQ investigated
are in line with the LHCb measurements [78], namely: 6.6, 7.9 and 11.0GeV. In
contrast to the previous example, the PDFs cancel in the modulations as no addi-
tional integration is performed for comparison with the TMD-evolution results pre-
sented in Sec. 6.3. Besides, each prediction is plotted up to qT,max = MQQ/2 to show
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Figure 4.3: An example prediction for the cos (2φT )-asymmetry in unpolarised J/ψ
electroproduction at z = 1 as function of qT , without smearing, using Gaussian TMDs.
Here we employed the central values of the CMSWZ LDMEs [75] and

√
s = 45GeV.

Also Mp = 938MeV is employed, and an additional integration over 0.1 ≤ y ≤ 0.9
and 0.0001 ≤ xB ≤ 0.9 is performed determining µ = Q following [89].

the observable in the TMD regime. We observe that the cos (2φCS)-modulation is
largest in the 0.25 ≤ |cos θCS| ≤ 0.50 bin, while the cos (4φCS)-modulation is best ob-
served in the |cos θCS| ≤ 0.25 bin. A notable difference between these two is that
the MJ/ψ J/ψ = 6.6GeV prediction is almost zero in the latter. Indeed, a sign flip of
the cos (4φCS)-modulations with respect to MQQ can be observed when taking the
cos (θCS)-bin to be 0.25 ≤ |cos θCS| ≤ 0.50 as discussed in Sec. 3.5. In general, for
large MQQ it is also possible to observe this sign flip between the two considered bins.

We also show the corresponding upper bounds of the modulations in Fig. 4.4 such
that we see that Model 2 is approaching the upper bound at large qT naturally. We
note that the sign in front of |F2| in the denominator of Eq. 3.104 is now positive
set by the positive sign of h⊥g1 in the Gaussian model. When a smaller 〈p2T 〉 is taken,
Model 2 will approach the upper bound value earlier, at smaller qT , and more of the
Gaussian shape of the Model 1 will be visible within the TMD regime (and the other
way around), equivalent to the behaviour of the ratio of the convolutions as discussed
before. We note that in the cos (4φCS)-modulations more of the Gaussian shape is
observed with respect to the cos (2φCS)-modulations, especially visible for large MQQ.

Similarly, Gaussian models for other TMDs in polarised interactions can be con-
structed, e.g. for the gluon Sivers function see [111], but since our focus is solely on f g1
and h⊥g1 these are not discussed. For completeness, we briefly mention the existence
of another model. This spectator model is based on the assumption that the remain-
ders after the emission of a parton from the hadron are treated as a single spectator
particle. The hadron-parton-spectator coupling is then described by an effective ver-
tex containing two form factors in which the spectator mass can take a continuous
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range of values described by a spectral function. The parameters of this model are
subsequently determined by reproducing the PDFs obtained in global fits. For details
we refer to [112–114].
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Figure 4.4: The cos (2φCS)- and cos (4φCS)-modulations in unpolarised J/ψ-pair
hadroproduction as a function of qT for different values of MJ/ψ J/ψ in two different
θCS-bins, |cos θCS| ≤ 0.25 (left column) and 0.25 ≤ |cos θCS| ≤ 0.25 (right column), by
using Gaussian TMDs. We employ the model parametrisations as in Fig. 4.2. Model 1
predictions are shown with solid lines and Model 2 predictions with dashed lines. Also
the corresponding upper bounds of the modulations are shown with dotted lines.

4.2 TMD evolution
A more sophisticated approach to study TMDs is to make use of evolution to the
scale where we can relate the large TM part of TMDs to the well-known collinear
PDFs. Although more involved, we consider TMD evolution, that originates from the
Collins-Soper-Sterman formalism [115–120] for formulating TMD factorisation (up-
dated in [3]), to be more reliable than the simple parametrisations discussed in the
previous section. Beyond tree level the TMDs (and the TMDShFs or TMDFF) present
in the form of convolutions and the perturbative hard factor become scale dependent
(like the PDFs) which makes evolution possible [115,118]. Implementing evolution of
TMD functions is more easily done in impact-parameter space, where convolutions
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become simple products as we will see. In general, we can rewrite Eq. 3.45 as follows:

dσ

d2qT
=

∫
d2bT e−ibT ·qT Ŵ (bT , µH) + Y (q2

T/µ
2
H) . (4.11)

While the natural hard scales of the process under investigation were identified in
Ch. 3, we note that there actually exists some freedom in selecting µH . In the electron-
proton case this scale can be dependent on MQ or Q, or a combination of both, such
that µH = f(MQ, Q) with f(MQ, Q) & µNP , where µNP is the nonperturbative scale
that is discussed below. Instead, in the proton-proton collision case the hard scale
is a function of the (invariant) quarkonium mass only: µH = f(MQ(Q)). Since in
all cases our interest is in the region where qT is small compared to the hard scale,
TM dependence in µH is neglected (unlike e.g. dijet production). Ŵ consists of the
following factors

Ŵ (bT , µH) = w f̂A(bT ; ζA, µ) f̂B(bT ; ζB, µ)H(µH ;µ) , (4.12)

where f̂A and f̂B are Fourier transforms of TMD functions that depend on kinematic
variables of the specific process (not explicitly shown), the spatial bT , the renormali-
sation scale µ and the rapidity variable ζ. We note that the hard factor H is instead
independent of bT . As we have seen, the operator definition of the TMDs involve
gauge links, which arises from summation of all insertions of gluons that are not
power-suppressed. These gauge links have light-like pieces which lead to light-cone
divergences: divergent contributions for infinite negative rapidity y = 1/2 ln p+/p−,
i.e. zero ‘+’-momentum. ζ arises due to the required regularisation of the latter.
As a regularisation, the path can be taken off the light-cone, specified by some finite
rapidity. For example, the rapidity variable for two TMDs in the proton-proton case
is defined as [3, pp. 562–563]

ζA =M2
Ax

2
Ae

2(yA−ys) , ζB =M2
Bx

2
Be

2(ys−yB) , (4.13)

where yA/B denotes the rapidity of the hadrons. The dependence on the arbitrary
cut-off ys cancels in the cross section, which only depends on the combination ζAζB,
where ζA ≈ ζB ≈ µ2

H .
We first Fourier transform our TMD functions f g1 , h⊥g1 and ∆

[n]
(h) as follows

f̂ g1 (x,b2
T ) ≡

∫
d2pT eibT ·pT f g1 (x,p2

T ) , (4.14)

ĥ⊥g1 (x,b2
T ) ≡

∫
d2pT

(bT · pT )2 − 1
2
b2
Tp2

T

b2
TM

2
h

eibT ·pT h⊥g1 (x,p2
T ) , (4.15)

∆̂
[n]
(h)(z, b

2
T ) ≡

∫
d2kT eibT ·kT ∆

[n]
(h)(z, k

2
T ) . (4.16)

such that the factors of (2π)2 are included in their inverse Fourier transforms. To
simplify the notation, we have omitted here their dependence on µ and ζ. If we
change the Cartesian variables (kxT , k

y
T ) to polar ones (kT , φ), the angular integrals can

be expressed in terms of Bessel functions of the first kind:

Jn(z) =
1

π

∫ π

0

dφ cos (z sinφ− nφ) =
i−n

π

∫ π

0

dφ eiz cosφ cos (nφ) . (4.17)
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When n is even this function is symmetric. Employing this and Eq. 3.61 we can write:

C[f g1 f
g
1 ](xa, xb, q2

T ) =
1

(2π)2

∫
d2bT e−ibT ·qT

×
∫
d2paT eibT ·paT f g1 (xa,p2

aT )

∫
d2pbT eibT ·pbT f g1 (xb,p2

bT )

=

∫ ∞

0

dbT
2π

bT J0(bT qT ) f̂
g
1 (xa,b2

T ) f̂
g
1 (xb,b2

T ) . (4.18)

Similarly, Eq. 3.90 becomes:

C[f g1∆[n]](x, z, q2
T ) =

∫ ∞

0

dbT
2π

bT J0(bT qT ) f̂
g
1 (x,b2

T ) ∆̂
[n](z, b2

T ). (4.19)

The convolutions containing a weight function are more difficult to evaluate. Here
we consider C[wh⊥g1 ∆

[n]
h ] given in Eq. 3.91 as an example

C[wh⊥g1 ∆
[n]
h ](x, z, q2

T ) =
1

(2π)2
1

2M2
hq2

T

∫
d2bT e−ibT ·qT

× qkTqlT
∫
d2pT eibT ·pT piTpjT [2δkiδlj − δklδij]h⊥g1 (x,p2

T ) ∆̂
[n]
h (z, b2

T ) . (4.20)

where i, j, k and l are transverse indices. We express the TM integral as a function of
the impact-parameter components∫

d2pT eibT ·pT piTpjT h
⊥g
1 (x,p2

T ) = Aδij +B
(

biTbjT − b2
T

2
δij
)
, (4.21)

where the product of the two terms is zero. The solutions are found by contracting
on both sides with (biTbjT − b2

T δ
ij/2) and δij:

A =
1

2

∫
d2pT eibT ·pT p2

T h
⊥g
1 (x,p2

T )

= π

∫ ∞

0

dpT p
3
T J0(bT pT )h

⊥g
1 (x,p2

T ) , (4.22)

B =
2

b4
T

∫
d2pT eibT ·pT

[
(pT · bT )2 −

p2
Tb2

T

2

]
h⊥g1 (x,p2

T )

= −2π

b2T

∫ ∞

0

dpT p
3
T J2(bT pT )h

⊥g
1 (x,p2

T ) . (4.23)

So, the convolution becomes

C[wh⊥g1 ∆
[n]
h ](x, z, q2

T ) = − 1

2π

1

2M2
hq2

T

∫
d2bT e−ibT ·qT

×
[
2(qT · bT )2 − q2

Tb2
T

] ∫ ∞

0

dpT
p3T
b2T
h⊥g1 (x,p2

T ) J2(bT pT ) ∆̂
[n]
h (z, b2

T )

=
1

2M2
h

∫ ∞

0

dbT b
3
T J2(bT qT )

∫ ∞

0

dpT
p3T
b2T
h⊥g1 (x,p2

T ) J2(bT pT ) ∆̂
[n]
h (z, b2

T ) , (4.24)
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where only the B term survived the contraction. Precisely the remaining integral over
pT can be related to the Fourier transform defined in Eq. 4.15

ĥ⊥g1 (x,b2
T ) = −π

∫ ∞

0

dpT
p3T
M2

h

J2(bT pT )h
⊥g
1 (x,p2

T ) , (4.25)

such that:

C[wh⊥g1 ∆
[n]
h ](x, z, q2

T ) = −
∫ ∞

0

dbT
2π

bT J2(bT qT ) ĥ
⊥g
1 (x,b2

T ) ∆̂
[n]
h (z, b2

T ) . (4.26)

Similarly, the convolutions for proton-proton collisions are evaluated [92], i.e.

C[w2h
⊥g
1 h⊥g1 ](xa, xb, q2

T ) =

∫ ∞

0

dbT
2π

bT J0(bT qT ) ĥ
⊥g
1 (xa,b2

T ) ĥ
⊥g
1 (xb,b2

T ) , (4.27)

C[w3f
g
1h

⊥g
1 ](xa, xb, q2

T ) =

∫ ∞

0

dbT
2π

bT J2(bT qT ) f̂
g
1 (xa,b2

T ) ĥ
⊥g
1 (xb,b2

T ) , (4.28)

C[w4h
⊥g
1 h⊥g1 ](xa, xb, q2

T ) =

∫ ∞

0

dbT
2π

bT J4(bT qT ) ĥ
⊥g
1 (xa,b2

T ) ĥ
⊥g
1 (xb,b2

T ) . (4.29)

For more details of their derivation we refer to [121]. Indeed, the convolutions take a
rather simple form in bT space where the angular structure (determined by the weight)
is incorporated by Jn(bT qT ). Our next step involves utilising the evolution equations
to assess them at different scales.

As discussed above, the TMDs depend on two auxiliary parameters ζ and µ. To
obtain useful predictions for experiments at different scales, equations are needed to
relate these functions at different values of their auxiliary parameters. The Collins-
Soper equation for the evolution of a Fourier transformed TMD f̂ with respect to ζ
is [3, 122]

∂ ln f̂(x,b2
T ; ζ, µ)

∂ ln
√
ζ

= K̂(bT , µ) , (4.30)

where K̂ is the Collins-Soper kernel. This kernel is universal, i.e. it is flavour and spin
independent, and does not depend on the momentum fraction x. It is different for
quarks and gluons as it depends on the colour representation of the considered parton.
The kernel has a renormalisation group equation

d K̂(bT , µ)

d lnµ
= −γK(αs(µ)) , (4.31)

like f̂ :

d ln f̂(x,b2
T ; ζ, µ)

d lnµ
= γ(αs(µ), ζ/µ

2) . (4.32)

Derivatives with respect to different variables commute, which gives:

∂

∂ ln
√
ζ
γ(αs(µ), ζ/µ

2) = −γK(αs(µ)) . (4.33)
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Therefore, the anomalous dimension can be written as

γ(αs(µ), ζ/µ
2) = γ(αs(µ), 1)−

1

2
γK(αs(µ)) ln ζ

µ2
, (4.34)

such that the above differential equations relate f̂ at different parameter values:

ln f̂(x,b2
T ; ζ, µ)

f̂(x,b2
T ; ζ, µ0)

=

∫ µ

µ0

dµ′

µ′

(
γ(αs(µ

′), 1)− 1

2
γK(αs(µ

′)) ln ζ

µ′2

)
, (4.35)

ln f̂(x,b2
T ; ζ, µ)

f̂(x,b2
T ; ζ0, µ)

=
1

2
K̂(bT , µ) ln ζ

ζ0
, (4.36)

In particular, we can evolve the TMD from the scales {ζ0, µ0} to the scales {ζ, µ} by
introducing a Sudakov factor SP as follows

f̂(x,b2
T ; ζ, µ) = e−SP (bT ;ζ,ζ0,µ,µ0) f̂(x,b2

T ; ζ0, µ0) , (4.37)

with:

SP (bT ; ζ, ζ0, µ, µ0) = −1

2
K̂(bT , µ0) ln ζ

ζ0

−
∫ µ

µ0

dµ′

µ′

(
γ(αs(µ

′), 1)− 1

2
γK(αs(µ

′)) ln ζ

µ′2

)
. (4.38)

While the renormalisation scale µ in the hard factor should be set to µ ∼ µH to avoid
large logarithms of µ/µH , the TMDs should be evaluated at a much lower scale in
order to avoid large logarithms of µ/Mh or µ/ΛQCD. Instead of selecting a fixed low,
but still perturbative, scale for the TMDs, it is common to take

√
ζ0 ∼ µ0 ∼ µb, where

µb ≡
b0
bT

=
2e−γE

bT
, (4.39)

and to make sure in the calculation that µb ≤ µH ∼
√
ζ ∼ µ, at which the scattering

takes place. The Sudakov factor then expresses the resummation of logarithms in
µb/µH :

f̂(x,b2
T ;µ

2
H , µH) = e−SP (bT ;µH ,µb) f̂(x,b2

T ;µ
2
b , µb) . (4.40)

The TMD scale µb should be much smaller than the hard scale µH , but it in
the intermediate range where it is sufficiently larger than the nonperturbative scale
ΛQCD, TMD factorisation remains valid and the scale is still large enough to allow
for a perturbative expansion of the Sudakov factor and the TMDs. For this purpose,
we must restrict µb. On the one hand, the point where perturbation theory starts
to fail is defined by bT,max = 0.5 − 1.5GeV−1, equivalent to 0.1 − 0.3 fm, on which
we elaborate later in this thesis. A usual method to ensure that bT ≤ bT,max is the
b∗T -prescription [118], i.e.

b∗T =
bT√

1 + (bT/bT,max)
2
. (4.41)
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On the other hand, because evolution should stop at the scale µH , we have that
bT,min = b0/µH ≤ bT . This lower limit marks the point beyond which µb becomes
larger than µH , such that it is assured that the perturbative Sudakov factor does not
flip sign. This can be done by e.g. the b′T -prescription [15], given by:

b′T =
√
b2T + b2T,min . (4.42)

The two expressions should be applied in the right order

µb → µ̃′
b =

b0√
b2T + b20/µ

2
H

→ µ̃′
b∗ =

b0√
b∗2T + b20/µ

2
H

, (4.43)

where we added a tilde on µ′
b to denote its difference with the µ′

b used in [65,123] that
uses a slightly different method to enforce bT,min ≤ bT :

µb → µ′
b∗ =

b0
b∗T + b0/µH

. (4.44)

The latter prescription is also employed in this thesis, although there is in practice no
preference for one or the other as discussed below. The replacement of the scale effec-
tively boils down to a different resummation in the Sudakov factor, e.g. in logarithms
of µ̃′

b∗/µH rather than µb/µH . This scale is then also the one that should be used in
the TMDs (and the TMDShFs).

In summary, the bT -prescriptions, e.g. Eq. 4.41 and Eq. 4.42, ensure together
that bT,min ≤ bT ≤ bT,max. However, we note that b∗T (bT = bT,max) < bT,max, so,
besides that the value of bT,max is not known, b∗T approaches it slowly and perturbative
expressions as a function of µ̃′

b∗ will continue to change when bT > bT,max. Therefore,
there is actually not a clean separation at bT = bT,max (after which nonperturbative
physics comes into play, i.e. bT > bT,max) and one does not know exactly what happens
when bT ≤ bT,max either. Similarly, we have that b′T provides no clean separation at
bT = bT,min and perturbative expressions as a function of µ̃′

b∗ will continue to change
for bT < bT,min too. These issues are further addressed in Sec. 6.2.

The perturbative expressions of the kernel and the anomalous dimensions are de-
termined in [124, 125]. Particularly, we have that

K̂(bT , µ) = −αs(µ)
CA
π

ln µ
2b2T
b20

+O(α2
s) , (4.45)

which equals zero in case µ = µb. Therefore, the perturbative Sudakov factor can be
rewritten as

SP (bT ;µH , µb) =
1

2

∫ C2
2µ

2
H

C2
1µ

2
b

dµ′2

µ′2

[
A ln C

2
2 µ

2
H

µ′2 +B

]
, (4.46)

similar to the quark case [120], where:

A =
∞∑
n

A(n)

(
αs(µ)

π

)n
, B =

∞∑
n

B(n)

(
αs(µ)

π

)n
. (4.47)
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The LO expressions are given by

A(1) = CA (4.48)

B(1) = −CA
(
β0
6

+ 2 ln C2

C1

)
, (4.49)

with β0 defined in Eq. A.16. Employing these we perform a leading-logarithmic (LL)
resummation. For next-to-leading-logarithmic (NLL) accuracy, which is also applied
in this thesis, we have to include A(2) according to [84], which is given by:

A(2) =
CA
2

[(
67

18
− π2

6

)
Nc −

10

9
TRnf + β0 lnC1

]
. (4.50)

We note that SP is spin independent, making it identical for all gluon TMDs, and in
the proton-proton case this Sudakov factor is employed twice, once for each TMD, ef-
fectively multiplying the right-hand side of Eq. 4.46 by two. Besides, these expressions
are also applicable for TMDFFs (see e.g. [122]).

The values C1 and C2 in the perturbative Sudakov factor should be of order one;
they represent a prescription arbitrariness of the aforementioned differential equations.
Typically, it is practical to set C1 = C2 = 1. However, they can be utilised when scale
variation is considered. Specifically, in a complete non-truncated calculation at all
orders, there should be no dependence on these (spurious) scales. Therefore, the de-
pendence on these scales serves as an empirical measure of the quality of predictions
at a specific order, i.e. varying these scales provides theoretical uncertainties of observ-
ables. Often they are varied between 1/2 and 2. The scale µb (that multiplies with C1

in the perturbative Sudakov factor) also enters the TMD functions as can be seen in
Eq. 4.40. Therefore, it is natural to define another value C3 that multiplies with that
scale in the TMD functions following [126]. We note that according to [118, 120] this
value should actually equal C1/C2. In practice, we employ bT -prescriptions, therefore
we point out that C2 enters via bT,min, e.g. Eq. 4.42, in the restricted version of µb as
well. This procedure and its results are further discussed in Sec. 6.3.

Adopting the scale µ ∼ µH in the TMDShFs is also expected to lead to logarithms
of µb/µH , which should be resummed. However, there are no rapidity divergences
associated to the TMDShFs [70, 127]. So, for the electron-proton case, the natural
choice would be ζA ≈ µ2

H , ζB ≈ 1 instead, similar as in [128] for open heavy-quark
pair production in electron-proton collisions. Using again a renormalisation group
equation, this leads to a contribution to the overall Sudakov factor at the single
logarithm level (performing the integration in SP by neglecting the µ dependence
in αs), i.e. in the B term of Eq. 4.46. The associated soft-gluon radiation in CO
quarkonium production is therefore incorporated by changing SA at LL accuracy into:

SP (bT ;µH , µb) =
1

2

CA
π

∫ µ2H

µ2b

dµ′2

µ′2 αs(µ
′)

[
ln µ

2
H

µ′2 −
(
β0
6

+ BCO

)]
+O(α2

s) . (4.51)

Including the one loop running of αs presented in Eq. A.17, one can perform the µ
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integral explicitly:

SP (bT ;µH , µb) =− 1

2

36

33− 2nf

[
ln µ

2
H

µ2
b

+ ln µ2
H

Λ2
QCD

ln
(
1− ln (µ2

H/µ
2
b)

ln (µ2
H/Λ

2
QCD)

)
+

(
β0
6

+ BCO

)
ln
( ln (µ2

H/Λ
2
QCD)

ln (µ2
b/Λ

2
QCD)

)]
+O(α2

s) . (4.52)

The specific expression of BCO will be discussed below. Here we note that the LO
MSHT20 PDF set employed is characterised by αs(MZ) = 0.130. Therefore, by using
the one loop running of αs, ΛQCD in our calculations is set by nf . In particular, we
have that ΛQCD = 0.277GeV for nf = 4 and ΛQCD = 0.168GeV for nf = 5. For
simplicity we set nf = 4 when µH < 2mb ∼ 10GeV, and nf = 5 otherwise.

The TMDs themselves can be calculated within the collinear formalism as well
(the terms that are not resummed in SP ), i.e. the large TM perturbative tails of the
TMDs. For the two gluon TMDs considered the explicit expressions at LO are

f̂ g1 (x,b2
T ;µb) = f g1 (x;µb) +O(αs) +O(bT ΛQCD) , (4.53)

as we discuss in Sec. 5.2.2, and:

ĥ⊥g1 (x,b2
T ;µb) = −αs(µb)

π

∫ 1

x

dx′

x′

(
x′

x
− 1

)[
CA f

g
1 (x

′;µb) + CF
∑
i=q,q̄

f i1(x
′;µb)

]
+O(α2

s) +O(bT ΛQCD) . (4.54)

The later expression is derived in [106]. They both are determined by collinear dis-
tributions fa1 , but start at different orders in αs since there is no collinear version of
h⊥g1 , i.e. it requires a helicity flip and therefore an additional gluon exchange. The last
term denotes an additional error, which grows large when bT � Λ−1

QCD.
The large TM perturbative tails of the TMDShFs for J/ψ electroproduction were

first studied in [129] by a matching calculation with the collinear regime and were
found to be the same for polarised quarkonium thereafter [130]. The logarithms that
arise can then be resummed in SP . However, these studies lead to a contradiction
as it has been demonstrated for ηc production in proton-proton collisions [127] and
for open heavy-quark pair production in electron-proton collisions [131] that there are
no double logarithms associated to CO heavy-quark production (hence no rapidity
divergences), i.e. they should contribute to BCO in Eq. 4.51. This mismatch and the
correct calculation of BCO is explained in Ch. 5. Here we present simply the result [132]

∆̂[n](z, b2
T ;µH , µb) = 〈OJ/ψ[n]〉

(
1 +

αs
2π

CA BCO(µH) ln µ
2
H

µ2
b

)
δ(1− z)

+O(α2
s) +O(bT ΛQCD) , (4.55)

where:
BCO(µH) = 1 + ln

µ2
HM

2
Q(

Q2 +M2
Q)

2
. (4.56)

To determine the tail of ∆̂[n]
h requires a study at higher-order αs study as we will see.

We note that the Fourier transformed TMDShFs both start at order α0
s, in contrast



TMD evolution

4

75

to the large TM perturbative tails of the TMDs discussed above. This order α0
s

contribution stems from the small TM part, irrespective of whether they are simple
expressions without smearing or more realistic versions of ∆[n]

(h)(z, k2
T ).

We point out that logically there should be an order α0
s contribution from ĥ⊥g1

as well. In particular, in a model prescription for the TMD, like a Gaussian, its
contribution is in general non-zero, while by employing TMD evolution at αs = 0 it is,
according to Eq. 4.54. Although in the complete evolution approach a model for the
nonperturbative part needs to be taken into account, as discussed below, it leaves this
discrepancy. Namely, to obtain a order α0

s contribution would imply that the proper
nonperturbative contribution for h⊥g1 should be of order α−1

s , while it is naturally of
the order α0

s. To incorporate both an intrinsically present nonperturbative h⊥g1 of
order α0

s and a perturbative tail of order αs, one could consider that the TMDs are
approximately Gaussian for small TM, but have the proper power-law fall-off for large
TM, following the Gaussian plus tail model presented in [65].

To recap, we note that Eqs. 4.46 (as well as 4.51 and 4.52), 4.53, 4.54 and 4.55 hold
when µb is kept in the perturbative regime. Particularly, we take µb → µ̃′

b∗ presented
in Eq. 4.43 as an example, such that: bT,min ≤ bT ≤ bT,max. While the equations freeze-
out for bT < bT,min as the evolution stops at bT = bT,min, when bT > bT,max one enters
the nonperturbative regime that in principle can only be extracted from data. In
addition, it depends on the prescriptions used to separate the perturbative and the
nonperturbative components inside the convolutions, and could be very well different
for different convolutions. Therefore, one can identify

Ŵ (bT , µH) ≡ Ŵ (b∗T , µH)e
−SNP (bT ;µH ,µNP ) , (4.57)

such that Ŵ (b∗T , µH) contains the perturbative expressions which is multiplied with a
correction factor, called the nonperturbative Sudakov factor SNP , to make up for the
difference to the real Ŵ (bT , µH). The explicit form of the correction factor is discussed
below. Taking this factor into account, we summarise the TMD-evolution formalism
by a general expression for the convolutions:

C[wfAfB](qT ;µH) =
∫ ∞

0

dbT
2π

bT Jm(bT qT ) e
−SP (b∗T ;µH ,µ̃

′
b∗ )e−SNP (bT ;µH ,µNP )

× f̂A(b
∗
T ; µ̃

′
b∗) f̂B(b

∗
T ; µ̃

′
b∗) . (4.58)

We note that changes in the b∗T -prescription, i.e. the value of bT,max, should not af-
fect the physical cross section, but only the nonperturbative phenomena that are
parametrised in SNP .

In principle there are two convenient ways to study SNP : one can either use a
studied quark SNP extracted from data and Casimir scale it, i.e. CF → CA, or use a
parametrisation. For the latter, it should be of the following form [118,120]

SNP (bT ;µH , µNP ) = ln
(
µH
µNP

)
gK(bT ) + gfA(bT ) + gfB(bT ) , (4.59)

where µNP is a parameter with the dimension of mass, that is chosen to be (near)
the smallest scale at which perturbation theory is expected to be valid (see App. A).
It is natural to identify µNP = b0/bT,max in line with the formalism discussed in this
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section. gK is related to K̂ in SP , and gfA and gfB are attributed to the two TMD
functions. General constraints are that exp (−SNP ) should be unity at bT = 0GeV−1,
and it should smoothly vanish at large bT in order to exclude contributions from (far)
outside the proton (bT & 0.8 fm). This also guarantees convergence of the convolutions.
Therefore, it is logical to choose a simple Gaussian for the correction factor, e.g.

SNP (bT ;µH , µNP ) = A ln
(
µH
µNP

)
b2T , (4.60)

where A is the parameter of the model. In [92] a range of this parameter was employed,
A = 0.64−0.04GeV2, to cover the maximal and minimal range of the nonperturbative
regime for bT,max = 1.5GeV−1. This approach aimed to assess our lack of knowledge
on nonperturbative physics by examining its effect on observables. Such a simple
Gaussian ansatz works certainly in particular situations, however, it clearly has some
limitations as well that are further investigated in Sec. 6.2.

We note that the perturbative Sudakov suppression of the convolutions presented
in Eq. 4.58 can be calculated theoretically at qT = 0GeV. Namely, we can apply the
saddle point approximation to the following expression [120, 133, 134]∫ ∞

0

db2T b
n
T e

−SP (bT ) =

∫
d ln (b2TΛ

2
QCD)

(Λ2
QCD)

1+n
2

exp
{(

1 +
n

2

)
ln (b2TΛ

2
QCD)− SP (bT )

}
, (4.61)

where we utilise the LO expression of Eq. 4.46 with the one loop expression of αs,
such that the perturbative Sudakov factor can be rewritten as:

SP (bT ) =

∫ µ2H

µ2b

dµ′2

µ′2
1

ln
(
µ′2/Λ2

QCD
)(a ln µ

2
H

µ′2 + b

)
+O(α2

s) . (4.62)

Employing the Leibniz rule, a saddle point of the integral is found at

bSP =
b0

ΛQCD

(
µH

ΛQCD

)γn
exp
(
b

2a
γn

)
, (4.63)

where we defined: γn = −a/(a + (1 + n
2
)). Therefore, the suppression that arises as

function of the hard scale is found to be∫ ∞

0

db2T b
n
T e

−SP (bT ) SP∝
(

µ2
H

Λ2
QCD

)(1+n
2
)γn+a(1+γn+ln(−γn))

, (4.64)

where the µH dependence of b is neglected, that can arise from the TMDShFs (although
suppressed). In particular, we obtain for n = 0 and nf = 4, (µ2

H)
−0.76 in the proton-

proton case, and (µ2
H)

−0.63 in the electron-proton case, where the distinction comes
from a factor 2 in a. The case of 5 flavours makes only a small difference, i.e. it
adds 0.01 in both cases. We note that the saddle point is not very pronounced at
small scales. Besides, introducing the nonperturbative Sudakov factor and the bT -
prescriptions (specifically bT,max) will have an effect on the full Sudakov suppression.
However, at large scales the majority of the suppression arises from the perturbative
Sudakov. Consequently, the effect of the nonperturbative Sudakov can be neglected,
such that an improved agreement is expected with the saddle point approximation for
large µH (especially in the proton-proton case).
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Although we have not yet examined specific process observables with the TMD-
evolution approach, we have seen that it systematically allows for studies of TMD
functions at different scales. Due to the discrimination between perturbative and
nonperturbative contributions, it naturally involves model dependence through the
nonperturbative Sudakov factor only, which is particularly important for small hard
scales. Moreover, it enables the estimation of theoretical uncertainties through scale
variation apart from the various nonperturbative uncertainties that can arise. These
uncertainties are further investigated in the phenomenological studies presented in
Ch. 6.





5
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As discussed in Sec. 3.4, calculations within the TMD regime need to take into account
the TMDShFs that describe final state smearing effects in quarkonium production. In
particular, these functions are expected to be important for CO production due to
the required soft-gluon radiation to become colourless [70]. On the other hand, it
may be that for CS states no TMDShFs need to be taken into account, although we
cannot exclude that any non-trivial TMDShFs apply to CS channels too, if one goes
to next orders in perturbation theory, e.g. by considering two soft gluon emissions. In
Sec. 4.2 it was shown that in the case of CO J/ψ photo- and electroproduction the
TMDShFs give non-negligible modifications to the cross section. These were found
by a matching procedure between the LTM and HTM region, in which the TMD and
collinear differential cross sections are compared in the intermediate TM (ITM) re-
gion where both should be valid. The introduction of TMDShFs solves the mismatch
between the collinear and TMD expressions by resumming qT -divergences in the per-
turbative Sudakov factor [129,130]. However, the term they found did not match the
expectation from a study on hadronic collisions [127]. In this chapter we present the
results of [132], where we investigate and solve this discrepancy. First, we calculate
the differential cross section of J/ψ electroproduction within collinear factorisation
in Sec. 5.1. Thereafter, we perform the naive matching with the cross section in the
TMD formalism in Sec. 5.2. In particular, we explain how to evaluate the limiting
cases: from the HTM to the ITM region in Sec. 5.2.1 and from the LTM to the ITM
region in Sec. 5.2.2. Then the problem of the matching procedure is identified and the
correct LO large TM perturbative tails of the TMDShFs are obtained in Sec. 5.3. In
Sec. 5.4 we show that an eikonal approximation provides an additional verification of
our findings. In Sec. 5.5 we discuss possible universality of the TMDShFs by a pro-
posed factorisation that includes a process-dependent soft factor in analogy to what
was done for open heavy-quark pair production in hadronic collisions [30].
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5.1 Collinear J/ψ electroproduction
The difference between a collinear calculation and a TMD calculation lies in the mas-
ter formula for the cross section, while at the amplitude level it proceeds along the
same lines as presented in Sec. 3.2. As explained in Sec. 3.3, in the collinear case
applicable in the HTM region, the cross section is not sensitive to the initial partonic
TM. Specifically, for the process under investigation, the large TM of the quarkonium
is produced by the recoil of another outgoing particle. In order to calculate this cross
section, we first investigate the LO collinear squared amplitudes of J/ψ photoproduc-
tion to observe some simplifications in the gluon-induced hard scattering, which can
be used for electroproduction as well. Thereafter, we investigate the difference at the
cross section level to obtain the expressions that are necessary for the matching.

For convenience, we start by splitting up the amplitude O from Eq. 3.13 as follows

O(p, q; k, pg) = eecg
2
s ε

µ
λa
(p)ενλb(q)ε

ρ∗
λg
(pg)

8∑
m=1

CmOm(q, p; k, pg) , (5.1)

where the expressions of the individual gluon-induced Feynman diagrams, shown in
Fig. 5.1, are given by:

O1 = 4 γν
/P + 2/k − 2/q +MQ

(P + 2k − 2q)2 −M2
Q
γµ

−/P + 2/k − 2/pg +MQ

(P − 2k + 2pg)2 −M2
Q
γρ , (5.2)

O2 = 4 γρ
/P + 2/k + 2/pg +MQ

(P + 2k + 2pg)2 −M2
Q
γν

−/P + 2/k + 2/p+MQ

(P − 2k − 2p)2 −M2
Q
γµ , (5.3)

O3 = 4 γν
/P + 2/k − 2/q +MQ

(P + 2k − 2q)2 −M2
Q
γρ

−/P + 2/k + 2/p+MQ

(P − 2k − 2p)2 −M2
Q
γµ , (5.4)

O4 = 2 γν
/P + 2/k − 2/q +MQ

(P + 2k − 2q)2 −M2
Q
γσ

1

(p− pg)2

× [gµρ(p+ pg)σ + gρσ(p− 2pg)µ + gσµ(pg − 2p)ρ] . (5.5)

The other expressions, O5, O6, O7 and O8, can be obtained by interchanging the
particles Q and Q̄ in the diagrams, i.e. by replacing k → −k and reversing the fermion
flow (like in Fig. 3.2). Cm denotes the colour factor of each diagram and is given by:

C1 = C6 = C7 = 〈3i, 3̄j|8c〉 (tatb)ji , (5.6)
C2 = C3 = C5 = 〈3i, 3̄j|8c〉 (tbta)ji , (5.7)
C4 = C8 = 〈3i, 3̄j|8c〉 ifabd(td)ji . (5.8)

Using Eq. 3.44 and evaluating the colour traces (see App. A), we have the following
colour factors for the production of the bound QQ̄ pair in a CS state

C1 = C2 = C3 = C5 = C6 = C7 =
1

2

δab√
Nc

, C4 = C8 = 0 , (5.9)
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Figure 5.1: LO Feynman diagrams for γ + g → Q + Q̄ + g. In total there are eight
diagrams; the other four are obtained by interchanging the particles Q and Q̄.

and the following factors for a CO state:

C1 = C6 = C7 =
√
2

4
(dabc + ifabc) , (5.10)

C2 = C3 = C5 =
√
2

4
(dabc − ifabc) , (5.11)

C4 = C8 =
√
2

2
ifabc . (5.12)

Employing these colour factors we can simplify the amount of diagrams that need
to be evaluated. Taking k = 0, see Eq. 3.26 for S-wave amplitudes, we have the
following symmetry relations for the 3S1 state (C = −1)

Tr[O1(0)P1Sz(0)] = Tr[O5(0)P1Sz(0)] ,

Tr[O2(0)P1Sz(0)] = Tr[O6(0)P1Sz(0)] ,

Tr[O3(0)P1Sz(0)] = Tr[O7(0)P1Sz(0)] ,

Tr[O4(0)P1Sz(0)] = −Tr[O8(0)P1Sz(0)] , (5.13)

with the CS factor

C1 + C5 = C2 + C6 = C3 + C7 =
δab√
Nc

, (5.14)
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Figure 5.2: LO Feynman diagrams for γ + q(q̄) → Q + Q̄ + q(q̄). In total there are
four diagrams; the other two are given by interchanging the particles Q and Q̄.

or the CO factor:

C1 + C5 = C2 + C6 = C3 + C7 =
√
2

2
dabc . (5.15)

We note that diagrams 4 and 8 do not contribute to the amplitude in this case. The
amplitude expression in Eq. 5.1 for the 3S1 state is therefore evaluated by only three
diagrams, times the appropriate CS factor from Eq. 5.14 or CO factor from Eq. 5.15,
which enters Eq. 3.34.

For the 1S0 state (C = +1) the symmetry relations are given by

Tr[O1(0)P00(0)] = −Tr[O5(0)P00(0)] ,

Tr[O2(0)P00(0)] = −Tr[O6(0)P00(0)] ,

Tr[O3(0)P00(0)] = −Tr[O7(0)P00(0)] ,

Tr[O4(0)P00(0)] = Tr[O8(0)P00(0)] , (5.16)

with the CO factors

C1 − C5 = −C2 + C6 = −C3 + C7 =
√
2

2
ifabc , C4 + C8 =

√
2ifabc , (5.17)

such that Eq. 5.1 for the 1S0 state requires only four diagrams to be evaluated, in
order to compute Eq. 3.33 (note the factor of 2 difference in the colour factors when
m = 4). The CS contribution is zero in this case.

Lastly, see Eq. 3.27 for P -wave amplitudes, the symmetry relations for 3PJ states
(C = +1) are given by:

Tr[Ô1α(0)P1Sz(0) +O1(0)P̂1Szα(0)] = −Tr[Ô5α(0)P1Sz(0) +O5(0)P̂1Szα(0)] ,

Tr[Ô2α(0)P1Sz(0) +O2(0)P̂1Szα(0)] = −Tr[Ô6α(0)P1Sz(0) +O6(0)P̂1Szα(0)] ,

Tr[Ô3α(0)P1Sz(0) +O3(0)P̂1Szα(0)] = −Tr[Ô7α(0)P1Sz(0) +O7(0)P̂1Szα(0)] ,

Tr[Ô4α(0)P1Sz(0) +O4(0)P̂1Szα(0)] = Tr[Ô8α(0)P1Sz(0) +O8(0)P̂1Szα(0)] . (5.18)

Therefore, the 3PJ amplitudes, Eqs. 3.41, 3.42 and 3.43, can be obtained using the
same trick as for the 1S0 amplitude, with no CS contributions. We note that the 1P1

amplitude (presented in Eq. 3.35) is suppressed in v for J/ψ production (see Table 3.2)
and therefore not considered.
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Γµρ(x)

J/ψ(2S+1LcJ)Mµν Mρσ∗
pµ pρ

Lνσ

qν qσ
pa

Figure 5.3: The LO inclusive cross section for e+p→ e′+J/ψ+a+X within collinear
factorisation and NRQCD.

For the quark contributions, shown in Fig. 5.2, equivalent simplifications are not
explored because these diagrams are mathematically much easier to evaluate, i.e. they
are more straightforward since they contain only one quark propagator. We note that,
in this case, the quarkonium must be in a CO state to obtain non-zero amplitudes,
as a three-flavour scheme is adopted. If (anti)charm contributions were included, four
additional diagrams would need to be evaluated.

As usual in 2 → 2 processes we employ partonic Lorentz-invariant Mandelstam
variables for the kinematics, which are defined for this process as follows:

ŝ = (q + p)2 , t̂ = (q − P )2 , û = (p− P )2 , ŝ+ t̂+ û =M2
Q . (5.19)

The summation over the transverse polarisations of the photon, as well as the initial
and final on-shell gluons, is performed using completeness relations, see Eq. A.24 with
nα = Pα/MQ. For the quark-induced diagrams, we need to sum over spinors instead,
which are provided in Eqs. A.26 and A.27. Employing these relations, we confirm the
squared amplitudes from previous photoproduction studies, gluon induced [135] as
well as quark induced [136]. For the explicit expressions we refer to their appendices.

Besides the kinematic variables in Eq. 3.71, we introduce the partonic scaling
variables:

x̂ =
Q2

2p · q
, ẑ =

p · P
p · q

. (5.20)

If we neglect the proton mass and any smearing effects, we can write

x̂ =
xB
x
, ẑ = z , (5.21)

which implies that:

x̂p = xBP and x̂ ≥ xB . (5.22)

In the collinear computation the proton is parametrised by PDFs via the collinear
correlator derived in Eq. 2.30, therefore the inclusive cross section for quarkonium
electroproduction with an unpolarised proton, shown in Fig. 5.3, can be written as:∑

a=q,q̄,g

dσ(e+ p→ e′ + J/ψ + a+X) =

∫ 1

0

dx
∑
a

fa1 (x;µ)

× dσ(e+ a→ e′ + J/ψ + a) . (5.23)
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Furthermore, according to the NRQCD factorisation formalism, i.e. Eq. 3.9, we write

dσ(e+ a→ e′ + J/ψ + a) =
∑
n

dσ̂
(
e+ a→ e′ + cc̄(n) + a

)
〈OJ/ψ[n]〉 , (5.24)

which we again truncate at order v4, i.e. n = 3S1
1 , 1S8

0 , 3S8
1 and 3P 8

J with J = 0, 1, 2.
We note that the outgoing parton can fragment into a jet for example. Decomposing
the partonic subprocess into a leptonic part, e → e′ + γ∗, L, and a hadronic one,
γ∗ + a→ cc̄(n) + a, H, from which the virtual photon leg is amputated, we can write
the partonic cross section as

dσ̂
(
e+ a→ e′ + cc̄(n) + a

)
=

1

2sx

1

2

1

Q4
dPS3(p+ q; l′, P, pa)L

µν Ha[n]
µν , (5.25)

where the leptonic tensor L is given in Eq. 3.73 and the hadronic tensor H, the
squared amplitude of the hadronic scattering subprocess, is calculated with Eq. 3.11
(from which the LDMEs are removed). The latter includes the average over the colour
multiplicities (Ng = d(G) and Nq = Nq̄ = d(F ), see App. A) and the summation over
polarisations when a = g or the summation over spinors when a = q. The first factor
in Eq. 5.25 comes from the flux, the second is due to the average over the initial
parton spin and the third factor arises from the squared photon propagator, like in
the TMD cross section presented in Eq. 3.72. Moreover, we introduced the general
Lorentz-invariant phase-space measure:

dPSn(p; p1, . . . , pn) = (2π)4 δ4
(
p−

∑
n

pn

)∏
n

d3pn
(2π)32p0n

. (5.26)

The frame where the momenta Ph and q are collinear and lie on the ẑ axis, is
discussed in Sec. 3.4. In particular, the decomposition of the four-momenta in terms
of light-like vectors n+ and n− is given in Eqs. 3.74, 3.75, 3.76, 3.77 (dismiss pT ) and
3.78. Employing these, the Mandelstam variables in Eq. 5.19 read:

ŝ = Q2

(
1− x̂

x̂

)
, (5.27)

t̂ = −(1− ẑ)Q2 − 1

ẑ
P2

⊥ − 1− ẑ

ẑ
M2

Q , (5.28)

û = − ẑ
x̂
Q2 +M2

Q . (5.29)

Another convenient reference frame is the one in which the hadron four-momenta
P and Ph are collinear, where the light-like vectors (neglecting the proton mass again)
can be expressed as:

kµ+ = P µ
h , kµ− =

1

Ph · P

(
P µ −

M2
Q

2Ph · P
P µ
h

)
. (5.30)

Hence, the four-momentum of the virtual photon is defined by

qµ = −xB
(
1− q2T

Q2

)
kµ+ +

Q2

2xB
kµ− + qµT , (5.31)
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and the following relations between the light-like vectors of the two frames are found:

nµ+ = kµ+ , nµ− = 2x2B
q2
T

Q4
kµ+ + kµ− +

2xB
Q2

qµT . (5.32)

In the frame where the four-momenta are expressed in terms of k+ and k−, the ex-
pression for t̂ is different

t̂ = −(1− ẑ)Q2 − ẑq2
T − 1− ẑ

ẑ
M2

Q , (5.33)

hence, by comparing with Eq. 5.28, we obtain the relation between the TM of the
photon with respect to the hadrons, and the TM of the quarkonium with respect to
the photon and the proton:

q2
T =

P2
⊥
ẑ2

. (5.34)

The quarkonium phase space and the lepton phase space are given in Eq. 3.81
and Eq. 3.82, respectively. The remaining phase space of the outgoing parton can be
simplified together with the momentum conserving delta function, i.e. we relate the
momentum of the outgoing particle to the Mandelstam variables

p2a = (p+ q − P )2 = (p+ q)2 + P 2 − 2(p+ q) · P = ŝ+ t̂+ û−M2
Q +Q2 , (5.35)

such that we can write∫
d3pa

(2π)32p0a
δ4(q + p− P − pa) = (2π)−3

∫
d4pa δ(p

2
a −m2

i )
∣∣∣
p0i > 0

δ4(q + p− P − pa)

= (2π)−3 δ(ŝ+ t̂+ û−M2
Q +Q2) , (5.36)

where we neglected the mass of the outgoing particle. Furthermore, we rewrite the
momentum conserving delta function as

δ(ŝ+ t̂+ û−M2
Q +Q2) =

1

ẑQ2
δ(F (x̂, ẑ)) , (5.37)

where we have defined

F (x̂, ẑ) =
q2
T

Q2
+

1− ẑ

ẑ2
M2

Q

Q2
− (1− x̂)(1− ẑ)

x̂ẑ
, (5.38)

using Eqs. 5.27, 5.28, 5.29 and 5.34. The complete differential cross section for the
process under investigation, i.e. Eq. 5.23, can therefore be rewritten as follows, by
performing a change to the variable x̂:

dσ(J/ψ)

dxB dy dz dq2
T dφT

=
1

64

1

(2π)4
yz

∫ x̂max

xB

dx̂

x̂

∫ 1

z

dẑ

ẑ
δ
(
F (x̂, ẑ)

)
×
∑
a

∑
n

[
1

Q6
fa1

(
xB
x̂
;µ

)
Lµν Ha[n]

µν 〈OJ/ψ[n]〉
]
δ(z − ẑ) . (5.39)
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The kinematic constraint

x̂max =
Q2

Q2 +M2
Q
, (5.40)

for the integration over x̂, follows from Eq. 3.80. Besides, we rewrite the leptonic
tensor as [129]

Lµν =
e2Q2

y2

{
[1 + (1− y)2] εµνT + 4(1− y)

(
εµνL + εµνcos 2φT

)
+ 2(2− y)

√
1− y εµνcosφT

}
, (5.41)

which can be found by substituting Eqs. 3.75 and 3.76 in Eq. 3.73, where we introduced
the tensors

εµνT = −gµνT , εµνL = εµLε
ν
L ,

εµνcosφT =
(
εµLl̂

ν
⊥ + ενLl̂

µ
⊥

)
, εµνcos 2φT =

(
l̂µ⊥l̂

ν
⊥ +

1

2
gµνT

)
, (5.42)

and the longitudinal polarisation vector of the exchanged virtual photon

εµL =
1

Q

(
q +

Q2

Ph · q
Ph

)µ
, (5.43)

which fulfils the relations ε2L = 1 and qµε
µ
L = 0. Moreover, the transverse projector

defined in Eq. 2.11 can be written as

gµνT = gµν − 1

Ph · q
(qµP ν

h + P µ
h q

ν)− Q2

(Ph · q)2
P µ
h P

ν
h , (5.44)

for which ε2T = −2 and qµε
µν
T = 0. We note that the sum of these tensors, εµνT − εµνL ,

gives the polarisation tensor of an unpolarised spin-1 boson with mass q2 following
Eq. A.25. Moreover, the Ward identity, given in Eq. C.3, can be employed for further
simplifications of the leptonic tensor in the cross section. This identity is generally
not true for individual Feynman diagrams, i.e. one must sum over the diagrams at
any given order. By taking Eq. 5.41 into account, the final result can be expressed as

dσ(J/ψ)

dxB dy dz dq2
T dφT

=
α

yQ2

{
[1 + (1− y)2]FUU,T + 4(1− y)FUU,L

+ 2(2− y)
√

1− y cosφT F cosφT
UU + 4(1− y) cos 2φT F cos 2φT

UU

}
, (5.45)

where we have used a different font for the structure functions to denote their difference
to the ones presented in Eq. 3.83 that are calculated within TMD factorisation. They
are given by

FΦ
UU,P =

1

4(4π)3
z

∫ x̂max

xB

dx̂

x̂

∫ 1

z

dẑ

ẑ
δ
(
F (x̂, ẑ)

)
×
∑
a

∑
n

[
1

Q2
fa1

(
xB
x̂
;µ

)
εµνP;ΦH

a[n]
µν 〈OJ/ψ[n]〉

]
δ(z − ẑ) , (5.46)
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where we have introduced a shorthand notation in which P refers to the virtual photon
polarisation and Φ to the azimuthal modulation when applicable.

We note that this process was studied in [137,138]. In particular, we have that our
FUU,T and FUU,L are related to the explicit hard factors provided in the first reference:

εµνT Ha[n]
µν = 64π (ŝ+Q2)2 Fa[n]Ta[n] , (5.47)

εµνL Ha[n]
µν = −64π Q2 (ŝ+Q2)2 Fa[n]La[n] . (5.48)

This can be observed by rewriting Eq. 5.39 as follows

dσ(J/ψ)

dxB dy dz dP2
⊥ dφT

=
α

yQ2

1

4(4π)3

∑
a

∑
n

∫ x̂max

xB

dx̂ fa1

(
xB
x̂
;µ

)
δ
(
D(x̂, z)

)
×
{
[1 + (1− y)2] εµνT Ha[n]

µν + 4(1− y) εµνL Ha[n]
µν

}
, (5.49)

where we introduced:

D(x̂, z) = x̂z2Q2 F (x̂, z) . (5.50)

Integrating over φT and changing the integration variable back to x gives

dσ(J/ψ)

dy dxB dP2
⊥ dz

=
α

yQ2

1

32(2π)2

∑
a

∑
n

∫ 1

xB/x̂max

dx fa1 (x;µ)
1

xB

Q4

(ŝ+Q2)2
δ
(
D(x̂, z)

)
×
{
[1 + (1− y)2] εµνT Ha[n]

µν + 4(1− y) εµνL Ha[n]
µν

}
, (5.51)

such that by subsequently changing dxB dP2
⊥ → dQ2 dt̂ and integrating over z (em-

ploying the delta function) confirms [137]:

dσ̂
(
cc̄(n) + a

)
dy dQ2 dt̂

=
α

2π
Fa[n]

{
1 + (1− y)2

yQ2
Ta[n]−

4(1− y)

y
La[n]

}
. (5.52)

5.2 Matching high and low TM
So far we have discussed that, depending on the value of qT , two different TM regions
are determined: the HTM region is given by the condition qT � ΛQCD, while the
LTM region corresponds to qT � µH . These regions denote the collinear and TMD
regime, respectively. Adopting the proper factorisations in each regime enables one
to separate the short-distance from the long-distance contributions in the differential
cross sections and calculate them. In the ITM region, namely ΛQCD � qT � µH , we
have that both prescriptions of the process are valid, such that the differential cross
section within this overlap region should match, schematically shown in Fig. 5.4. The
idea is as follows: the mismatch that occurs in the ITM is solved by introducing the
TMDShFs in the LTM description. Particularly, we perform this computation at LO
in order to find the large TM perturbative tails of the TMDShFs.

The differential cross section of the process was derived for the LTM region in
Sec. 3.4 and for the HTM region in Sec. 5.1. Therefore, to perform the actual matching
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qT

p

J/ψ

ΛQCD � qT � µH

TMD Collinear

dσ

Figure 5.4: Schematical overview of matching the TMD and collinear differential cross
section of the investigated process e+p→ e′+J/ψ+X: the mismatch of the differential
cross section in the overlap region is solved by introducing the TMDShFs.

it remains to obtain the differential cross section in the ITM region from the HTM
region and from the LTM region. The latter is done by utilising evolution, while the
former can be achieved by replacing the momentum conserving Dirac delta function
in the differential cross section by its expansion in the small-qT limit [129, 139].

5.2.1 From HTM to ITM
Applying the expanded delta function in Eq. 5.46, derived in App. D, we obtain the
leading power behaviour of the structure functions1

FUU,P = σUU,P
αs
q2
T

[
L(q2

T ) f
g
1 (x;µ) + (Pgg ⊗ f g1 + Pgi ⊗ f i1)(x;µ)

]
, (5.55)

F cos 2φT
UU = σcos 2φT

UU

αs
q2
T

[
(δPgg ⊗ f g1 )(x;µ) + (δPgi ⊗ f i1)(x;µ)

]
, (5.56)

where a sum over i = q, q̄ is understood. Here we have defined the logarithmic function

L(q2
T ) ≡ CA

{
2 ln

(
Q2 +M2

Q

q2
T

)
− β0

6

}
, (5.57)

and:

x ≡ xB/x̂max . (5.58)
1To perform the ẑ → 1 and x̂′ → 1 limits that appear in Eq. D.21 one can use the following

replacements from the delta function:

1

1− ẑ
=

1

q2
T

Q2(1− x̂′)ẑ +M2
Q(ẑ − x̂′)

x̂′ẑ2
, (5.53)

1

1− x̂′ =
ẑ(1− ẑ)

ẑ

Q2 +M2
Q

ẑ2q2
T + (1− ẑ)2M2

Q
. (5.54)
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Up to corrections of O(ΛQCD/qT ) and O
(
q2T/(Q

2 + M2
Q)
)

these structure functions
are valid. Furthermore, F cosφT

UU is power-suppressed by a factor of qT/
√
Q2 +M2

Q
compared to the others ones and is not considered for matching, since there exist
no F cosφT

UU at the order we consider. The symbol ⊗ denotes a convolution in the
longitudinal momentum fractions, i.e.

(P ⊗ f)(x;µ) =

∫ 1

x

dx̂′

x̂′
P (x̂′;µ) f

(
x

x̂′
;µ

)
, (5.59)

where x̂′ is defined in Eq. D.2. The well-known unpolarised splitting functions read [140]

Pgg(x) = 2CA

[
x

(1 + x)+
+

1− x

x
+ x(1− x)

]
+ δ(1− x)CA

β0
6
, (5.60)

Pgq(x) = Pgq̄(x) = CF
1 + (1− x)2

x
, (5.61)

while the splitting functions of an unpolarised parton into a linearly polarised gluon
are given by [106, 141]:

δPgg(x) = CA
1− x

x
, (5.62)

δPgq(x) = δPgq̄(x) = CF
1− x

x
. (5.63)

We note that the ‘+’-prescription on the singular parts of the splitting functions is
given in Eq. D.11 and that the β0 term in Pgg cancels with the second term of the
logarithmic function L, given in Eq. 5.57, in FUU,T and FUU,L.

The quantities σUU,P and σcos 2φT
UU , that are related to the partonic process γ∗+g →

[QQ̄], can be written as

σUU,T =
ααse

2
c

MQ(M2
Q +Q2)

[
〈OJ/ψ[1S8

0 ]〉

+ 4
(7M4

Q + 2M2
QQ

2 + 3Q4)

M2
Q(M

2
Q +Q2)2

〈OJ/ψ[3P 8
0 ]〉
]
δ(1− z) , (5.64)

σUU,L =
ααse

2
c

MQ(M2
Q +Q2)

[
16

Q2

(M2
Q +Q2)2

〈OJ/ψ[3P 8
0 ]〉
]
δ(1− z) , (5.65)

σcos 2φT
UU =

ααse
2
c

MQ(M2
Q +Q2)

[
− 〈OJ/ψ[1S8

0 ]〉

+ 4
3M2

Q −Q2

M2
Q(M

2
Q +Q2)

〈OJ/ψ[3P 8
0 ]〉
]
δ(1− z) , (5.66)

by using the heavy-quark spin symmetry relations in Eq. 3.46. We note that the
partonic subprocess contributing to the cross section in the LTM region are only the
n =1S8

0 , 3P 8
J ones, which correspond to t̂-channel Feynman diagrams: Fig. 5.1.4 and

Fig. 5.2.2. The other subprocess depicted in these figures are suppressed, including
the CS one that is only non-zero in the gluon-induced case. We point out that the
structure function F cos 2φT

UU does not contain any large logarithm like FUU,T and FUU,L
in the region q2T � Q2 +M2

Q, whereas the corresponding observable in SIDIS diverges
logarithmically and is suppressed by an overall factor of q2T/Q2 [142]. Moreover, the
appearance of the logarithm (Q2 +M2

Q)/q2
T in the expressions, instead of lnQ2/q2

T ,
suggest that Q2+M2

Q is the natural choice for the factorisation scale µ2 of the process.
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5.2.2 From LTM to ITM
The same differential cross section in the TMD regime with the corresponding struc-
ture functions are given in Eq. 3.83 and Eqs. 3.84, 3.85 and 3.86, respectively. To
conduct the matching at order α2

s we employ evolution following Sec. 4.2, with the
appropriate scale choices. By Fourier transforming as done in Eq. 4.14, we first inves-
tigate the perturbative part of the gluon TMD f g1 . In general, its expression valid in
the limit bT � Λ−1

QCD is given by [3, 529–530]

f̂ g1 (x,b2
T ;µ = µH) =

∑
a

(Cg/a ⊗ fa1 )(x;µb) e
−SP (bT ;µH ,µb) , (5.67)

where we note that we fixed the hard scale to the factorisation scale of the collinear
calculation, as from our analysis it will turn out that this choice is needed to allow
for a smooth transition of the cross section from the LTM to the HTM region. The
coefficient functions can be expanded in powers of αs as follows

Cg/a(x, µb) = δgaδ(1− x) +
∞∑
k=1

C
(k)
g/a(x)

(
αs(µb)

π

)k
, (5.68)

where the explicit expressions for C(k)
g/a are not relevant for this analysis (they can be

found in e.g. [66]). Employing the perturbative Sudakov factor in Eq. 4.46 at LO

SP (bT ;µH , µb) =
1

2

CA
π
αs

(
1

2
ln2 µ

2
H

µ2
b

− β0
6

ln µ
2
H

µ2
b

)
, (5.69)

by neglecting the running of the coupling, and substituting Eq. 5.68 in Eq. 5.67, we
find:

f̂ g1 (x,b2
T ;µH) = f g1 (x;µb)−

αs
2π

[
CA

(
1

2
ln2 µ

2
H

µ2
b

− β0
6

ln µ
2
H

µ2
b

)
f g1 (x;µb)

− 2
∑
a

(C
(1)
g/a ⊗ fa1 )(x;µb)

]
. (5.70)

Using the well-known DGLAP equations we can evolve the PDF f g1 , from the scale
µH down to the scale µb:

f g1 (x;µb) = f g1 (x;µH)−
αs
2π

(Pgg ⊗ f g1 + Pgi ⊗ f i1)(x;µH) ln µ
2
H

µ2
b

+O(α2
s) . (5.71)

Substituting the above expression in Eq. 5.70 we obtain

f̂ g1 (x,b2
T ;µH) = f g1 (x;µH)−

αs
2π

[
CA

(
1

2
ln2 µ

2
H

µ2
b

− β0
6

ln µ
2
H

µ2
b

)
f g1 (x;µH)

+ (Pgg ⊗ f g1 + Pgi ⊗ f i1)(x;µH) ln µ
2
H

µ2
b

− 2
∑
a

(C
(1)
g/a ⊗ fa1 )(x;µH)

]
, (5.72)

such that Eq. 4.53 is proven. Using the following integrals∫
d2bT e−ibT ·qT ln2 µ

2

µ2
b

= −8π

q2
T

ln µ
2

q2
T

,

∫
d2bT e−ibT ·qT ln µ

2

µ2
b

= −4π

q2
T

, (5.73)
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we can transform the TMD back to momentum space:

f g1 (x,p2
T ;µH) =

1

(2π)2

∫
d2bT e−ibT ·qT f̂ g1 (x,b2

T ;µH)

=
αs

2π2p2
T

[
CA

(
ln µ

2
H

p2
T

− β0
6

)
f g1 (x;µH) + (Pgg ⊗ f g1 + Pgi ⊗ f i1)(x;µH)

]
. (5.74)

We note that the term at the order α0
s and the coefficient C(1)

g/a do not appear because
they are independent of bT and hence give a contribution to f g1 proportional to δ2(p2

T ).
Since we require pT � ΛQCD, such terms are discarded. For the same reason, the PDFs
in the HTM region do not depend on any nonperturbative TM model [142, 143].

By substituting Eq. 5.74 in Eqs. 3.84 and 3.85, evolved up to the scale µ2
H ≡

Q̃2 = Q2 +M2
Q, we find that the structure functions FUU,P do not match with the

corresponding collinear expressions FUU,P in Eq. 5.55 at µ2 = Q̃2. This mismatch
can be solved by introducing the TMDShFs in the form of a convolution following
Eqs. 3.87 and 3.88. Assuming the logarithmic function in Eq. 5.57 is correct, despite
being incomplete due to the invalid expansion of the delta function for this process as
explained in the next section, we proceed by taking

∆̂[n](z, b2
T ;µ = Q̃, µb) = 〈OJ/ψ[n]〉

(
1− αs

2π

CA
2

ln2 Q̃
2

µ2
b

)
δ(1− z)

+O(α2
s) +O(bT ΛQCD) , (5.75)

that in momentum space becomes

∆[n](z, k2
T ; Q̃) =

αs
2π2k2

T

CA ln Q̃
2

k2
T

〈OJ/ψ[n]〉 δ(1− z) , (5.76)

for kT � ΛQCD. The derivation of the convolution is then as follows

C[f g1∆[n]](x, z, q2
T ; Q̃) =

〈OJ/ψ[n]〉
(2π)2

∫
d2bT e−ibT ·qT

{
f g1 (x; Q̃)

− αs
2π

[
CA

(
1

2
ln2 Q̃

2

µ2
b

− β0
6

ln Q̃
2

µ2
b

)
f g1 (x; Q̃) + (Pgg ⊗ f g1 + Pgi ⊗ f i1)(x;µH) ln Q̃

2

µ2
b

− 2
∑
a

(C
(1)
g/a ⊗ fa1 )(x; Q̃)

]}
×
(
1− αs

2π

CA
2

ln2 Q̃
2

µ2
b

)
δ(1− z)

=
〈OJ/ψ[n]〉
(2π)2

∫
d2bT e−ibT ·qT

{
f g1 (x; Q̃)−

αs
2π

[
CA

(
ln2 Q̃

2

µ2
b

− β0
6

ln Q̃
2

µ2
b

)
f g1 (x; Q̃)

+ (Pgg ⊗ f g1 + Pgi ⊗ f i1)(x; Q̃) ln µ
2
H

µ2
b

− 2
∑
a

(C
(1)
g/a ⊗ fa1 )(x; Q̃)

]}
δ(1− z)

=
αs

2π2q2
T

〈OJ/ψ[n]〉
[
L(q2

T ) f
g
1 (x; Q̃) + (Pgg ⊗ f g1 + Pgi ⊗ f i1)(x; Q̃)

]
δ(1− z) , (5.77)

such that by multiplying with the corresponding hard factors matching is seemingly
obtained for the cross section.
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The large TM perturbative tail of the linearly polarised gluon distribution h⊥g1 in
Eq. 4.54 can be derived along the same lines of f g1 , where its expansion in powers of
the coupling starts at order αs as discussed in Sec. 4.2. According to [106], the tail in
momentum space is given by:

q2
T

2M2
h

h⊥g1 (x, q2
T ;µ) =

αs
π2

1

q2
T

∫ 1

x

dx′

x′

(
x′

x
− 1

)
×
{
CA f

g
1 (x

′;µ) + CF f
i
1(x

′;µ)

}
+O(α2

s) . (5.78)

Employing this gives direct matching between F cos 2φT
UU in Eq. 3.86 and F cos 2φT

UU in
Eq. 5.56. This is achieved without the need of any extra smearing contribution from
the TMDShFs, i.e. ∆[n]

h (z, k2
T ) = 〈OJ/ψ[n]〉 δ2(kT ) δ(1− z) in Eq. 3.89, because of the

absence of a logarithmic term at the perturbative order we consider. Therefore, a
higher-order αs matching computation is needed to obtain their non-trivial perturba-
tive tails. Having examined the technical aspects of the matching procedure, we now
focus on addressing its underlying issue.

5.3 An effective delta function
Although the correct derivation of the LO large TM perturbative tails of the TMD-
ShFs proceeds along the same lines as in Sec. 5.2, their expressions given in Eq. 5.75
and Eq. 5.76 are incorrect. The origin of the discrepancy with respect to the expecta-
tion that the TMDShFs should contribute to the single logarithm of the perturbative
Sudakov factor, instead of to the double logarithm as explained in Sec. 4.2 (i.e. by
resumming the term between brackets of Eq. 5.75), comes from the fact that the expan-
sion of the delta function in Eq. D.21 was obtained by applying the full delta function
to two continuous test functions. However, the structure functions in Eq. 5.45 actually
contain infinite discontinuities that originate from the soft-gluon radiation associated
with the CO final state. These contributions in the structure functions of Eq. 5.46 are
explicitly exposed via a decomposition into poles through a Laurent expansion2

1

4(4π)3
1

Q2
εµνP;ΦH

a[n]
µν ≡ Ha[n]

P;Φ(x̂
′, ẑ)

= Ha[n];(0)
P;Φ (x̂′, ẑ) +

∞∑
k=1

(
1− ẑ

1− x̂′

)k
Ha[n];(k)

P;Φ (ẑ) , (5.79)

where we changed to the variable x̂′ as before. In this expression Ha[n];(0)
P,Φ and Ha[n];(k)

P,Φ
are finite for all x̂′ and ẑ, including their limits to 1. We have found that the poles are
present only for the gluon initiated process with the expansion running up to k = 2.
Instead, the quark initiated processes are fully described by the k = 0 finite term.
Moreover, up to the precision considered in this work, the poles contribute only to
the structure functions FUU,P as expected. These poles are under control when the
amplitude squared is evaluated at large qT , as the TM forces the phase space to deviate

2Before performing the expansion we suggest applying Eq. 5.53 once.
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from ẑ = 1 and x̂′ = 1. They have a significant impact solely when we consider the
small-qT limit.

Because of the poles the expanded delta function in Eq. D.21 is applicable only to
the first term Ha[n];(0)

P,Φ , while all other terms require a different approach. In particular,
we can split the differential cross section into three parts in the HTM region

dσ(J/ψ)

dy dxB dz dq2
T dφT

≡ dσA + dσB + dσC , (5.80)

where

dσA =
α

yQ2
z
∑
a

∑
n

∫ 1

0

dx̂′
∫ 1

0

dẑ ẑ fa1

(
xB

x̂max x̂′
;µ

)
δ
(
G(x̂′, ẑ)

)
〈OJ/ψ[n]〉 δ(z − ẑ)

×
{
[1 + (1− y)2]Ha[n];(0)

T (x̂′, ẑ) + 4(1− y)Ha[n];(0)
L (x̂′, ẑ)

+ (2− y)
√

1− y cosφT Ha[n];(0)
cosφT (x̂′, ẑ) + (1− y) cos 2φT Ha[n];(0)

cos 2φT (x̂
′, ẑ)

}
, (5.81)

and

dσB =
α

yQ2
z
∑
n

∫ 1

0

dx̂′
∫ 1

0

dẑ ẑ f g1

(
xB

x̂max x̂′
;µ

)
δ
(
G(x̂′, ẑ)

)
〈OJ/ψ[n]〉 δ(z − ẑ)

×
(
1− ẑ

1− x̂′

){
[1 + (1− y)2]Hg[n];(1)

T (ẑ) + 4(1− y)Hg[n];(1)
L (ẑ)

}
, (5.82)

dσC =
α

yQ2
z
∑
n

∫ 1

0

dx̂′
∫ 1

0

dẑ ẑ f g1

(
xB

x̂max x̂′
;µ

)
δ
(
G(x̂′, ẑ)

)
〈OJ/ψ[n]〉 δ(z − ẑ)

×
(
1− ẑ

1− x̂′

)2{
[1 + (1− y)2]Hg[n];(2)

T (ẑ) + 4(1− y)Hg[n];(2)
L (ẑ)

}
, (5.83)

with G(x̂′, ẑ) defined in Eq. D.4. The difference in the lower integration limit for
both x̂ and ẑ between the above equations and Eq. 5.46 has been introduced for the
convenience of the calculation as before. This modification is possible since the added
integration range does not contribute to the final result (see App. D).

As mentioned, the first integral dσA involves only finite terms in the double limit
x̂′, ẑ → 1 and can therefore be calculated in the ITM region by using the naive
expansion of the delta function. Instead, the expansions of dσB and dσC are obtained
by considering the integral with respect to dx̂ and dẑ of those terms that are truly
indeterminate in the limit qT → 0, with the indeterminacy solved by the presence of
the full delta function. In particular, in the double limit the indeterminate terms in
dσB and dσC are given by poles, while the other quantities can be Taylor expanded
around ẑ = 1 and x̂′ = 1, e.g. the quantities Ha[n];(k)

P (ẑ) are decomposed as:

Ha[n];(k)
P (ẑ) = Ha[n];(k)

P (1) +
∑
l

(1− ẑ)l
dlHa[n];(k)

P,Φ (ẑ)

dẑl

∣∣∣∣
ẑ=1

. (5.84)

After the first order, the presence of (1 − ẑ)l solves the indeterminacy, making the
quantity (1− ẑ)k+l/(1− x̂) null in the double limit. Hence, one can approximate ẑ = 1
and x̂′ = 1 whenever possible, and subsequently perform the analytic integral.
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It turns out that the Hg[n];(k)
P (ẑ) → Hg[n];(k)

P (1) limit gives

Hg[n];(1)
P (1) = −2

M2
Q

Q2 +M2
Q
Hg[n];(0)

P (1, 1) , (5.85)

Hg[n];(2)
P (1) =

(
M2

Q

Q2 +M2
Q

)2

Hg[n](0)
P (1, 1) , (5.86)

such that dσB can be expanded as follows

dσB ≈ α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(1)

T (1) + 4(1− y)Hg[n];(1)
L (1)

}
×
∫ 1

0

dx̂′
∫ 1

0

dẑ

(
1− ẑ

1− x̂′

)
δ
(
G(x̂′, ẑ)

)
〈OJ/ψ[n]〉 δ(1− z)

=
α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(1)

T (1) + 4(1− y)Hg[n];(1)
L (1)

}
× Q2

∫ 1

0

dx̂′
∫ 1

0

dẑ

(
1− ẑ

ẑ2q2
T + (1− ẑ)2M2

Q

)
δ(x̂′ − x̂′0) 〈OJ/ψ[n]〉 δ(1− z)

=
α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(1)

T (1) + 4(1− y)Hg[n];(1)
L (1)

}
×
(

Q2

2M2
Q

ln
M2

Q

q2
T

)
〈OJ/ψ[n]〉 δ(1− z)

=
α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(0)

T (1, 1) + 4(1− y)Hg[n];(0)
L (1, 1)

}
×
(
− x̂max ln

M2
Q

q2
T

)
〈OJ/ψ[n]〉 δ(1− z) , (5.87)

and dσC as

dσC ≈ α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(2)

T (1) + 4(1− y)Hg[n];(2)
L (1)

}
×
∫ 1

0

dx̂′
∫ 1

0

dẑ

(
1− ẑ

1− x̂′

)2

δ
(
G(x̂′, ẑ)

)
〈OJ/ψ[n]〉 δ(1− z)

=
α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(2)

T (1) + 4(1− y)Hg[n];(2)
L (1)

}
〈OJ/ψ[n]〉

× Q2

∫ 1

0

dx̂′
∫ 1

0

dẑ
(1− ẑ)2[ẑ2q2

T + (1− ẑ)(ẑQ2 +M2
Q)]

[ẑ2q2
T + (1− ẑ)2M2

Q]
2

δ(x̂′ − x̂′0) δ(1− z)

≈ α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(2)

T (1) + 4(1− y)Hg[n];(2)
L (1)

}
〈OJ/ψ[n]〉

× Q2

∫ 1

0

dx̂′
∫ 1

0

dẑ
(1− ẑ)3

[ẑ2q2
T + (1− ẑ)2M2

Q]
2
(Q2 +M2

Q) δ(x̂
′ − x̂′0) δ(1− z)

=
α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(2)

T (1) + 4(1− y)Hg[n];(2)
L (1)

}
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×
[
Q2 +M2

Q

M2
Q

Q2

2M2
Q

(
ln
M2

Q

q2
T

− 1
)]

〈OJ/ψ[n]〉 δ(1− z)

=
α

yQ2
f g1 (x;µ)

∑
n

{
[1 + (1− y)2]Hg[n];(0)

T (1, 1) + 4(1− y)Hg[n];(0)
L (1, 1)

}
×
[
x̂max

2

(
ln
M2

Q

q2
T

− 1
)]

〈OJ/ψ[n]〉 δ(1− z) , (5.88)

where we recall that x is defined in Eq. 5.58. We note that in these derivations the
solution of x̂′ imposed by δ(G(x̂′, ẑ)) is utilised, namely x̂′0 presented in Eq. D.7. Since
the small-qT limit of these additional cross sections is proportional to Ĥ

g[n];(0)
P (1, 1),

we can effectively add these terms to the coefficient in front of the double delta of the
naive expansion of the delta function given in Eq. D.21, i.e.

Hg[n]
P (x̂′, ẑ) δ

(
G(x̂′, ẑ)

x̂′ẑ2

)
∼ Hg[n](0)

P (x̂′, ẑ) δeff(x̂, ẑ) , (5.89)

such that:

δeff(x̂
′, ẑ) = x̂max

{
1

2

(
ln
Q2 +M2

Q

q2
T

− 1− ln
M2

Q

Q2 +M2
Q

)
δ(1− x̂′) δ(1− ẑ)

+
x̂′

(1− x̂′)+
δ(1− ẑ) +

Q2 +M2
Q

Q2 +M2
Q/ẑ

ẑ

(1− ẑ)+
δ(1− x̂′)

}
. (5.90)

Considering the contributions from the various terms in Eq. 5.90, we found that the
small-qT limit is dominated by the first two terms for the gluon channel (and simi-
larly the first two terms of Eq. D.21 for the quark and antiquark channels). Instead,
the contribution coming from the ‘+’-distribution of ẑ is subdominant and can be
neglected.

Taking this into account, the logarithmic function in Eq. 5.57 needs to be rewritten
as follows

L(q2
T ) = CA

{
ln
Q2 +M2

Q

q2
T

− BCO − β0
6

}
, (5.91)

where:

BCO(Q̃) = 1 + ln
M2

Q

Q2 +M2
Q
. (5.92)

Following the matching procedure in Sec. 5.2 it can be easily understood that the re-
vised large TM perturbative tails of the TMDShFs are given by Eq. 4.55 (with µH = Q̃;
the more general form will be discussed in Sec. 5.5), where the difference with respect
to the incorrect expression in Eq. 5.75 arises from the new logarithmic function given
in Eq. 5.91. This function contains only once the logarithm of (Q2+M2

Q)/q2
T such that

the double logarithm from the perturbative Sudakov factor is directly matched. This
is due to the factor of 1/2 in Eq. 5.90 that originates from the presence of the poles.
Indeed, it is through the inclusion of Eqs. 5.87 and 5.88 that in Eq. 5.91 one of the log-
arithms has been removed. The price to pay corresponds to the novel qT -independent
terms in Eq. 5.92 defined as BCO. Now, we find that the tails of the TMDShFs deviate
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from a TMDFF one, having a less divergent behaviour compared to the latter: they
contribute to the single logarithm in SA and hence do not contain rapidity divergences.
In the limit kT � ΛQCD the TMDShFs can be written in momentum space as follows:

∆[n](z, k2
T ; Q̃) = − αs

2π2k2
T

CA BCO(Q̃) 〈OJ/ψ[n]〉 δ(1− z) +O(α2
s) . (5.93)

We note how the modification of Eq. 5.91 compared to Eq. 5.57 has a significant impact
on the TMDShF expression. Indeed, the TMDShF perturbative tail in Eq. 5.93 does
not contain any kind of logarithmic divergence in kT , being tamed by the presence of
the heavy mass. We emphasise that the absence of kT -divergent terms associated to
the quarkonium is in accordance with other works in the literature, e.g. [70, 71, 127,
131, 144].

We remark that our results on the TMDShF for observables involving f g1 hold for
every CO quarkonium state with the same quantum numbers as the J/ψ we con-
sidered, e.g. Υ(nS) and ψ(2S). The magnitudes of TMDShFs are different though,
determined by the LDMEs. This conclusion holds up to the precision considered, cor-
responding to the αα2

s and v4 orders in the NRQCD double expansion. Moreover, the
same considerations apply if we take into account the polarisation of the J/ψ, since
the kinematics are the same. Namely, we have the same TMDShF tails for both the
longitudinal and transverse J/ψ polarisation states. Besides, to check that the same
form of the TMDShF applies for observables involving h⊥g1 it would require the com-
putation of the cross section within NRQCD at higher-order αs, both for polarised and
unpolarised J/ψ productions. However, this calculation is currently still unavailable.

Recently, subsequent work on the TMDShFs for the same process was performed
within the soft-collinear effective theory approach [145]. We point out that our results
are in agreement with theirs for a specific choice of ζB. Besides, they included LDME
mixing contributions by considering higher-order terms in the NRQCD v expansion
(beyond the order v4 considered here, see e.g. [146]), which are significantly suppressed
in phenomenological analyses.

Although our work is based on J/ψ electroproduction, we expect that the presence
of the poles, as in Eq. 5.79, at small qT is an intrinsic feature of any inclusive quarko-
nium production, and they apply to different processes and observables too. Hence,
the logarithmic dependence on TM in Eq. 5.91 (unlike when a TMDFF contribution
is considered) is not an exclusive outcome of the specific process under considera-
tion, but rather a general statement. Thus, the observed singularities in this process
may be connected to other regularisation procedures associated with CO contribu-
tions to heavy quarkonium production. While it is worthwhile to further pursue these
connections in the NRQCD factorisation, such a study is beyond the scope of the cur-
rent research. However, to emphasise the importance of further investigation, we will
briefly comment on the similarities of our findings with those obtained by adopting
the FF description.

The same cross section in the HTM region can be expressed in terms of FFs, as
shown in [53–55]. Hence, the TMDShFs may also be seen as a fragmentation-like
function of a cc̄ into a J/ψ evaluated at ITM. The evolution of the latter has been
studied in [55], which includes real contributions having a component proportional to
the (1 − ẑ)+ distribution and another one to δ(1 − ẑ). Hence, our analysis is related
to the latter term. Moreover, an important difference concerns the integration range
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of the outgoing gluon. The integration of the soft-gluon momentum in our case has a
lower limit set by the J/ψ TM as is shown in Eq. 5.117 in the next section, whereas
no lower limit is present in [55] causing infrared divergences. On the other hand,
subdominant terms and higher-order corrections in the LTM region are also expected
to contribute away from z = 1. In that case the description of the heavy-quark pair
that hadronises into the heavy quarkonium state will be even more similar to a single-
parton TMDFF description applied in light hadron production. See also [147] for
a description involving both single-parton and parton-pair fragmentation processes.
Therefore, the connection between our work and the FF description cannot be carried
out further without the inclusion of next order (real and virtual) contributions and
we leave this discussion to further studies.

5.4 The eikonal approximation
In this section we explain how to evaluate the soft-gluon radiation from the LO par-
tonic subprocess by adopting the eikonal approximation that provides agreement with
the logarithmic function presented in Eq. 5.91. The Born amplitude is depicted in
Fig. 5.5.1 and the soft-gluon emission is obtained by attaching a (soft) gluon to the
initial (hard) gluon, as in Fig. 5.5.2, or to the heavy-quark pair, as in Figs. 5.5.3 and
5.5.4. The eikonal gluon has a four-momentum pg that is negligible compared to the
other (hard) momenta in the process. Hence, its polarisation vector ελg fulfils the
relation ∑

λg=±1

εµλg(pg)ε
ν∗
λg(pg) → −gµν , (5.94)

which follows from Eq. A.24. The soft external gluon has colour index c and the initial
gluon and the outgoing heavy-quark pair have colour index a and b, respectively.

The LO amplitude of Fig. 5.5.1 can be written as

M(0) = δabM
(0) , (5.95)

where

M (0) =

∫
d4k

(2π)4
Oij(P, k)Φ

b
ji(P, k) , (5.96)

similar to Eq. 3.11. Here we included an explicit dependence on the colour configu-
ration of the pair, i.e. Φ1

ji(P, k) = N
−1/2
c δij Φ(P, k) for CS states, while Φ8

ji(P, k) =√
2 tbjiΦ(P, k) for CO states. Specifically, we have taken the colour projection to be

part of the projection operator, i.e. Pb
SSZ

(P, k)ji = 〈3i, 3̄j|1, 8〉PSSZ
(P, k), to keep the

colour structure evident in this derivation (instead it is usually part of O).
The corresponding amplitudes for the Figs. 5.5.2-4 with the eikonal gluon insertion

are given by M(1)
I , with I = 2, 3, 4. They can be obtained from the Born one in

Fig. 5.5.1 through proper replacements in a light-cone gauge. In particular, for M(1)
2
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q

p, a

J/ψ P, b

(1)

q

p, a

pg, c

J/ψ P, b

(2)

q

p, a

J/ψ P, b

pg, c

(3)

q

p, a

J/ψ P, b

pg, c

(4)

Figure 5.5: LO diagrams for the process γ∗+g → J/ψ, with the inclusion of soft-gluon
emission (in red) from the initial and final state.

we have the following replacement:

εµλg(p) → ενλa(p) ε
α∗
λg (pg) (−gsfadc) [(2p− pg)α gνβ + (2pg − p)ν gβα − (p+ pg)β gαν ]

× i

(p− pg)2 + iε

[
− gβµ +

pβgn
µ + pµgn

β

pg · n

]
≈ ενλa(p) ε

α∗
λg (pg) (−gsfadc) [2pα gνβ − pν gβα − pβ gαν ]

igβµ

2p · pg − iε

= εµλa(p) ε
α∗
λg (pg) (−igsfadc)

[
pα

p · pg − iε

]
. (5.97)

For completeness, we retain the iε in the replacements presented here. According to
the eikonal approximation we can neglect pµg with respect to the hard momenta in
the numerators, such as pµ. Moreover, the last two terms in the second line do not
contribute because of ελa(p) · p = 0 and the Ward identity (see Eq. C.3). Since this
replacement does not depend on the internal momentum k we can apply it directly to
Eq. 5.96, such that we obtain:

M(1)
2 = δdbM

(1)
2 = (−igsfabc) εα∗λg (pg)

[
pα

p · pg − iε

]
M (0) . (5.98)

Similarly, we can evaluate M(1)
3 and M(1)

4 via the replacement of the projection
operator PSSz in the amplitudes: for S-waves we refer to Eq. 3.26, while for P -waves
to Eq. 3.27. While both equations involve PSSz(P, 0), the P -waves require also the
evaluation of ∂PSSz(Pψ, k)/∂k|k=0. Moreover, this replacement is slightly different
between the quark and antiquark cases, given by Fig. 5.5.3 and 5.5.4, respectively.
Considering first the common term, the substitution of the projector reads for M (1)

3

Pb
SSz

(P, k)ji

∣∣∣∣
k=0

→ Pb
SSz

(P, k)jl (−igs γα tcli) εα∗λg (pg)
i( /P/2 + /k + /pg +mc)

(P/2 + k + pg)2 −m2
c + iε

∣∣∣∣
k=0

≈ gs t
c
li ε

α∗
λg (pg)

[
Pb
SSz

(P, k)jl
(−/P/2− /k +mc)γα + (P + 2k)α

P · (k + pg) + iε

]
k=0
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= gs t
c
li ε

α∗
λg (pg)

[
Pb
SSz

(P, k)jl
(P + 2k)α

P · (k + pg) + iε

]
k=0

≈ gs t
c
li

Pα
P · pg + iε

εα∗λg (pg)P
b
SSz

(P, 0)jl , (5.99)

where in the second line we neglected pg whenever possible. Moreover, in the third
line we made use of the Dirac equation for the heavy-quark spinor

PSSz(P, k) (−/P − 2/k +M) ∝ ū(P/2 + k)
(
( /P/2 + /k)−mc

)
= 0 , (5.100)

by Eq. 3.14. Analogously, for M (1)
4 we have:

Pb
SSz

(P, k)ji

∣∣∣∣
k=0

→
i( /P/2− /k − /pg −mc)

(P/2− k − pg)2 −m2
c + iε

(−igs γα tcjl) εα∗λg (pg)P
b
SSz

(P, k)li

∣∣∣∣
k=0

≈ −gs tcjl
Pα

P · pg + iε
εα∗λg (pg)P

b
SSz

(P, 0)li . (5.101)

Moving to the derivative of the projection operator, we have for M (1)
3

ερ∗Lz
(P )

∂Pb
SSz

(P, k)ji

∂kρ

∣∣∣∣
k=0

→ gs t
c
li ε

α∗
λg (pg) ε

ρ∗
Lz
(P )

∂

∂kρ

[
Pb
SSz

(P, k)jl
(P + 2k)α

P · (k + pg) + iε

]
k=0

≈ gs t
c
li

Pα
P · pg + iε

εα∗λg (pg) ε
ρ∗
Lz
(P )

∂Pb
SSz

(P, k)jl

∂kρ

∣∣∣∣
k=0

+ gs t
c
li

2 gαρ
P · pg + iε

εα∗λg (pg) ε
ρ∗
Lz
(P )Pb

SSz
(P, 0)jl , (5.102)

where we again made use of the Dirac equation, neglected pg whenever possible and
in addition employed the identity of the J/ψ polarisation vector. The same derivation
for M (1)

4 reads:

ερ∗Lz
(P )

∂Pb
SSz

(P, k)ji

∂kρ

∣∣∣∣
k=0

→ −gs tcjlεα∗λg (pg) ε
ρ∗
Lz
(P )

∂

∂kρ

[
Pb
SSz

(P, k)li
(P − 2k)α

P · (k + pg) + iε

]
k=0

≈ −gs tcjl
Pα

P · pg + iε
εα∗λg (pg) ε

ρ∗
Lz
(P )

∂Pb
SSz

(P, k)li

∂kρ

∣∣∣∣
k=0

+ gs t
c
jl

2 gαρ
P · pg + iε

εα∗λg (pg) ε
ρ∗
Lz
(P )Pb

SSz
(P, 0)li . (5.103)

Although the last lines of Eq. 5.102 and 5.103 are present at the amplitude level,
when considering the squared amplitude, they vanish (i.e. the cross term is null due
to the polarisation vector and the second term squared effectively becomes a 3S1-state
contribution, which is null too in the TMD regime). This was also found for the
quarkonium decay into two gluons [50].

In the end the replacement rules for the projection operator and its derivative are
the same, such that we can write:

M
(1)
3+4 = gs

Pα
P · pg

εα∗λg (pg)

×
∫

d4k

(2π)4

[
Oil(P, k)

(
Pb
SSz

(P, k)jl t
c
li − tcjl Pb

SSz
(P, k)li

)]
. (5.104)
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Due to the opposite signs of M (1)
3 and M

(1)
4 , the sum of their contributions is only

non-zero for CO states. Independently of the wave type it is given by

M
(1)
3+4 = gs

Pα
P · pg

εα∗λg (pg)

∫
d4k

(2π)4

√
2

[
Oij(P, k)

(
tbjl t

c
li − tcjl t

b
li

)
Φ(P, k)

]
= (igs fbcd)

Pα
P · pg

εα∗λg (pg)

∫
d4k

(2π)4

[
Oij(P, k) Φ

d
ji(P, k)

]
, (5.105)

such that:

M(1)
3+4 = δadM

(1)
1 = (igsfabc)

Pα
P · pg

εα∗λg (pg)M
(0) . (5.106)

Finally, we can combine the contribution from the single diagrams to obtain the
full amplitude:

M(1) = (igsfabc)

[
Pα
P · pg

− pα
p · pg

]
εα∗λg (pg)M

(0) . (5.107)

The squared amplitude is then found using Eq. 5.94

|M(1)|2 = g2s CA

[
2Sg
(
p, P

)
− Sg

(
P, P

)]
|M (0)|2 , (5.108)

where the soft functions dependent on the momenta vi are defined as:

Sg(v1, v2) =
v1 · v2

(v1 · pg)(v2 · pg)
(5.109)

Considering the frame where q and p are along the ẑ axis, the momenta of the
particles can be decomposed as follows

pµ = p+nµ+ =
xB
x̂max

nµ+ , (5.110)

qµ = q+nµ+ − Q2

2q+
nµ− = −xBnµ+ +

Q2

2xB
nµ− , (5.111)

pµg = p+g n
µ
+ + p−g n

µ
− + pµgT =

p2
gT

2p−g
nµ+ + p−g n

µ
− + pµgT , (5.112)

and the TM of the quarkonium satisfies the relation PT = −pgT . So, we have that

ŝ = −Q2 + 2p+q− =M2
Q =⇒ 2p+q− = Q2 +M2

Q , (5.113)

and we define the following variable:

xg ≡
pg · p
q · p

=
p−g
q−

=
2xB
Q2

p−g . (5.114)

In the TMD limit, we have that pgT → 0 and q+p ≈ P . Hence, we have that P− ≈ q−

and P+ ≈ p+ −Q2/(2q+). Furthermore, momentum conservation implies that:

p−g ≤ q− and p+g ≤ p+ − Q2

2q+
≤ p+ . (5.115)
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If we divide the first inequality by q−, we obtain xg ≤ 1, while, taking into account
that p+g = p2

gT/(2p
−
g ), the second one implies:

p−g ≥
p2
gT

2p+
. (5.116)

Dividing the latter by q−, we get xg ≥ p2
gT/(Q

2 +M2
Q), such that an upper and lower

bound are found:

p2
gT

Q2 +M2
Q
≤ xg ≤ 1 . (5.117)

Using that phase space of the emitted (on-shell) soft gluon can be written as follows

d4pg
(2π)4

δ(p2g) =
1

(2π)4
dp+g dp

−
g d

2pgT δ(2p+g p−g − p2
gT ) =

1

2(2π)4
dp−g
p−g

d2PT , (5.118)

the differential cross section can be calculated:

dσ(1) ∝ g2s
2(2π)3

CA

∫ 1

p2
gT

Q2+M2

dxg
xg

[
2Sg
(
p, P

)
− Sg

(
P, P

)]
|M (0)|2

=
g2s

2(2π)3
CA

[
2I1
(
p, P

)
− I2

(
P, P

)]
|M (0)|2 . (5.119)

The soft functions read explicitly

Sg
(
p, P

)
=

2

M2
Q x

2
g + p2

gT

, (5.120)

and

Sg
(
P, P

)
=

4M2
Q x

2
g

(M2
Q x

2
g + p2

gT )
2
, (5.121)

such that we find

I1 =

∫ 1

p2
gT

Q2+M2
Q

dxg
xg

2

M2
Q x

2
g + p2

gT

≈ 1

p2
gT

[
ln
Q2 +M2

Q

p2
gT

+ ln
Q2 +M2

Q

M2
Q

]
, (5.122)

and:

I2 =

∫ 1

p2
gT

Q2+M2
Q

dxg
xg

4M2
Q x

2
g

(M2
Q x

2
g + p2

gT )
2
≈ 2

p2
gT

. (5.123)

Therefore, Eq. 5.119 becomes

dσ(1)
ep ∝ αs

2π2p2
gT

CA

[
ln
Q2 +M2

Q

p2
gT

− 1− ln
M2

Q

Q2 +M2
Q

]
|M (0)|2 , (5.124)

where the term in square brackets agrees with the first terms of Eq. 5.91 that belong
to the large TM perturbative tails of the TMD and the revised TMDShF.
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Similarly, for single CO quarkonium photoproduction and hadroproduction3

dσ(1)
γp ∝ αs

2π2p2
gT

CA

[
ln
M2

Q

p2
gT

− 1

]
|M (0)|2 , (5.125)

dσ(1)
pp ∝ αs

2π2p2
gT

CA

[
2 ln

M2
Q

p2
gT

− 1

]
|M (0)|2 , (5.126)

where the factor 2 in front of the logarithm in the proton-proton case is related to the
fact that this process contains two TMDs.

On a different note, we point out that recent calculations using soft-gluon radiation
have demonstrated that azimuthal correlations between a J/ψ and a jet in photopro-
duction at EIC provide a unique probe of the quarkonium production mechanism [148]:
a significant cos (φ)-asymmetry is found for the CS channel, whereas it vanishes or
has an opposite sign for CO production, depending on the TM of the jet.

5.5 Universality and factorisation
We have seen that the LO TMDShF tails from the matching procedure absorb all
the qT -divergent terms coming from the collinear limit. However, they have been
obtained at the particular scale Q̃, whereas for more general application they need to
be considered at a general scale µH . This can be obtained by tracing back the µH
dependence in Eq. 5.91, which is related to the full Sudakov for J/ψ electroproduction
in terms of this general scale up to order αs. Namely, evaluating Eq. 4.51 gives

SepP (bT ;µH , µb) =
1

2

CA
π
αs

[
1

2
ln2 µ

2
H

µ2
b

−
(β0
6

+ BCO(µH)
)

ln µ
2
H

µ2
b

]
, (5.127)

where the scale dependent BCO term is defined in Eq. 4.56. This agrees with the Su-
dakov factor obtained in heavy-quark pair production in electron-proton collisions [131].
Specifically, they have instead of BCO(µH)

Bfinal(µH) = − 1

2N2
c

1 + β2

β
ln 1− β

1 + β
+ 2

CF
Nc

− ln t1u1
µ2
Hm

2
c

, (5.128)

for which the kinematic variables are defined as follows:

β =
√

1− 4m2
c/M

2
Q , (5.129)

t1 = (k1 − xPh)
2 −m2

c , (5.130)
u1 = (k2 − xPh)

2 −m2
c . (5.131)

When the heavy-quark pair binds we obtain β → 0 and u1 = t1, because k1 = k2 = P/2.
This gives in the small-qT limit:

u1 = t1 = P · p =
Q2 +M2

Q

2
. (5.132)

3It should be mentioned that vector quarkonia produced from gluon-gluon fusion are necessarily in
the CO state due to the Landau-Yang theorem. Moreover, in case of a CO final state in proton-proton
collisions the gluon TMD will involve a different gauge link structure than in electroproduction and
TMD factorisation may not even hold. As there is much unclear about this, we will ignore this
complicating matter in this thesis.
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The limit of the first two terms in Bfinal give rise to a constant term

− lim
β→0

1

2N2
c

1 + β2

β
ln 1− β

1 + β
− 2

CF
Nc

= 1 , (5.133)

while the last term can be rewritten as:

ln
µ2
HM

2
Q

(Q2 +M2
Q)

2
. (5.134)

However, it is not natural to fully include Eq. 4.56 into something that we identify
as the TMDShF, as done in Eq. 4.55 (although it might be convenient for numerical
calculations). Indeed, being a quarkonium-related object, its complete dependence is
given by ∆

[n]
ShF(z, k2

T ;MQ, µ = µH), while it may depend on the process-related hard-
quantity Q only via the µH choice. Thus, the Q2 dependence deriving from Eq. 4.56
must stem from a process-dependent part, which can be incorporated into an extra
process-dependent factor S(b2

T ;MQ, Q, µ = µH). Therefore, we split the full ∆[n]
ep into

these two terms:
∆[n]
ep (µH) = ∆

[n]
ShF(µH)× Sep(µH) . (5.135)

The ∆
[n]
ShF is what we truly identify as the TMDShF and is expected to be universal

because it solely depend on MQ. Instead, the Sep is an extra soft factor which incorpo-
rates the specific process dependence and it can be removed by a proper choice of the
factorisation scale µ = µH . This implies that at that scale the full ∆[n]

ep is equivalent
to the TMDShF. At this level, the simplest way to perform the splitting in bT space
is to take:

∆̂
[n]
ShF(z, b

2
T ;µH , µb) = 〈OQ[n]〉

(
1 +

αs
2π
CA

[
1 + ln

M2
Q

µ2
H

]
lnµ

2
H

µ2
b

)
δ(1− z) , (5.136)

Sep(b2
T ;µH , µb) = 1 +

αs
2π
CA

[
2 ln µ2

H

Q2 +M2
Q

]
lnµ

2
H

µ2
b

. (5.137)

Then, by taking µH = Q̃, the full ∆[n]
ep reduces to the TMDShF, implying that the

latter is given by Eq. 5.93 with Eq. 5.92.
To test the proposed factorisation, one can take another process and check if it

is possible to identify the same TMDShF in Eq. 5.136. We consider J/ψ hadropro-
duction, for which the small-qT behaviour of the cross section evaluated in the HTM
region has been calculated in [127]. The corresponding Sudakov factor for the channels
g + g → [QQ̄](1Sc0,

3P c
J) can be written as

SppP (bT ;µH , µb) =
CA
π
αs

(
1

2
ln2 µ

2
H

µ2
b

−
(β0
6

+
1

2
Bpp

CO(µH)
)

ln µ
2
H

µ2
b

)
, (5.138)

where
Bpp

CO(µH) = 1 + 2 ln µ2
H

M2
Q
, (5.139)

in which the first term is directly related to the δ8c term in [127]. Also in this case we
checked that previous equations agree in the kinematic limit corresponding to a bound
pair with the open heavy-quark pair production Sudakov factor, which can be found
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in the literature (see e.g. [144]). Moreover, we find that in proton-proton collisions,
our perturbative tail applies exclusively to CO states as well. Despite this, we cannot
exclude that any non-trivial TMDShF perturbative tail applies to the CS channel at
higher-order αs.

Even if the full ∆[n]
pp is different from ∆

[n]
ep , we can still identify the same ∆

[n]
ShF,

which is now combined with a different (extra) soft factor Spp, namely

∆[n]
pp (µH) = ∆

[n]
ShF(µH)× Spp(µH) , (5.140)

with:
Spp(b2

T ;µH , µb) = 1 +
αs
2π
CA

[
3 ln µ2

H

M2
Q

]
ln µ

2
H

µ2
b

. (5.141)

Interestingly, for Spp the coefficient in front of the logarithm is 3, whereas the same
coefficient for Sep is 2, which corresponds to the number of TMD quantities (PDFs and
ShFs) involved. Hence, even if process dependent, these terms are the same apart from
the number of TMDs involved. This may allow one to guess the required term for other
processes, such as for quarkonium-pair hadroproduction (if this process factorises at
all for CO-CO production).

The factor Spp reduces to unity when µH =MQ, such that ∆[n]
pp (MQ) = ∆

[n]
ShF(MQ),

which agrees with our result in the eikonal approximation presented in Eq. 5.126. For
this scale choice, ∆[n]

ShF(MQ) is compatible with the corresponding one presented in [71]
for χc decay into light-quarks, where the NLO TMDShF up to corrections of O(k−1

T )
is given by a constant too.

According to our findings, in principle one may obtain the value of ∆[n]
ep (Q̃) from

the experimentally determined ∆
[n]
pp (M2

Q) = ∆
[n]
ShF(MQ)

(
6= ∆

[n]
ep (MQ)

)
, by evolving

∆
[n]
ShF(MQ) to ∆

[n]
ShF(Q̃). Hence, we propose a strategy for the extraction of the TMD-

ShF from different processes, relying on their factorisability. For processes where we
have a dominant hard scale it is reasonable to expect that by setting µH equivalent
to it we reduce our uncertainties in the extraction of the TMDShF. This applies to
both proton-proton collisions, where we have only MQ, and electron-proton collisions,
if Q�MQ or Q�MQ (including photoproduction). Then, this term can be re-used
for every process involving a CO J/ψ by evolving ∆

[n]
ShF to the scale µ′

H and combining
it with the proper process-dependent extra soft factor S(µ′

H).
For completeness, we mention that the soft factor derived for the open heavy-

quark pair production also involves an additional process-dependent factor [30, 149,
150] (which is sometimes denoted by ∆, but should not to be confused with ours).
This additional factor stems from soft radiation in the QQ̄ production and can in
principle even depend on the angle of qT . Hence, it is natural to expect an additional
process-dependent soft term in the quarkonium case too. In that sense we expect that
our extra soft term S will acquire azimuthal and rapidity dependencies if one goes
beyond the order and approximation we have considered, as they are present in the
∆ quantity of [30, 150].



“Master your instrument, master the music,
and then forget all that stuff and just play.”

- Charlie Parker





6
Predictions of TM spectra

and azimuthal modulations
In this chapter we present numerical predictions for observables that have been dis-
cussed in this thesis by employing TMD evolution. We assess multiple approaches
for the nonperturbative Sudakov factor. First, we improve on predictions of the con-
volutions and the cos 2φ azimuthal asymmetry in quarkonium electroproduction by
including the TMDShF contributions in Sec. 6.1. To do so we use an extracted non-
perturbative Sudakov factor from quark induced processes and vary it to estimate the
nonperturbative uncertainty. Thereafter, we investigate the nonperturbative Sudakov
factor in greater detail in Sec. 6.2. Specifically, we examine the problems associated
with using a simple Gaussian ansatz for it and revise the bT -prescriptions to address
the issues mentioned in Sec. 4.2, leading to the construction of a novel nonpertur-
bative Sudakov factor. In Sec. 6.3 this correction factor is employed for C[f g1 f

g
1 ] and

quarkonium-pair production observables. The particular focus on this convolution
arises from the observation that it is a general quantity that determines the differen-
tial cross section for any unpolarised proton-proton collisions that are dominated by
gluon-gluon fusion, such as quarkonium production [24], Higgs production [104, 106],
quarkonium-dilepton production [97] and quarkonium-pair production [92]. Moreover,
it is important in processes next to quark-antiquark and quark-gluon contributions,
like in photon-pair production [151], Higgs plus jet production [152], dijet produc-
tion [153] and open heavy-quark pair production [12, 80, 94]. In this section we also
examine the theoretical and nonperturbative uncertainties in more depth. Besides,
we compare our results with data on J/ψ-pair production, which shows good agree-
ment. Lastly, we present examples of numerical matching between the collinear and
TMD regimes for J/ψ electroproduction in Sec. 6.4, as a first step towards a complete
theoretical TM spectrum for gluon-induced quarkonium production.
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Predictions of TM spectra and azimuthal modulations

6.1 TMD-evolution results for J/ψ production at EIC
In this section we update on the results presented in [123] since this work was carried
out prior to the study of the corrected LO TMDShF tails discussed in Ch. 5. In
particular, we utilise the TMD-evolution formalism presented in Sec. 4.2 with µH = Q
and apply µ′

b∗ in Eq. 4.44 to constrain the perturbative expressions (we note that the
difference in µb does not alter the matching procedure to obtain the TMDShF tails).
Moreover, we employ the perturbative Sudakov factor given in Eq. 4.52, and use the
tails of the TMDs presented in Eqs. 4.53 and 4.54. Since the tail of ∆

[n]
h (z, k2

T ) is
currently unknown we take it equal to the tail of ∆[n](z, k2

T ), i.e. absence of smearing
is considered (they are simply equal to δ2(kT ) times the LDMEs). This is what
we adopt, but only after including effects from TMD evolution, i.e. their large TM
perturbative part is resummed in SP by the BCO term defined in Eq. 4.56. We note
that this choice is supported by the eikonal approximation presented in Sec. 5.4 since
it is spin independent.

Following Eq. 4.58 the only missing ingredient to evaluate C[f g1∆[n]] and C[wh⊥g1 ∆
[n]
h ]

is the nonperturbative Sudakov factor. A parametrisation for SNP for quarks was ob-
tained from fits to low energy SIDIS data as well as higher energy DY and Z-boson
production data [122]

SNP (bT ;Q,µNP ) =

[
g1 ln Q

2µNP
+ g2

(
1 + 2g3 ln 10xx0

x0 + x

)]
b2T , (6.1)

with g1 = 0.184GeV2, g2 = 0.201GeV2, g3 = −0.129, x0 = 0.009, µNP = 1.6GeV
and bT,max = 1.5GeV−1. We take this expression for two fixed small-x values as our
starting point and Casimir scale it in order to apply to gluons:

SNP (bT ;Q,µNP ) =

[
A ln Q

µNP
+B(x)

]
b2T , with A =

CA
CF

g1 = 0.414GeV2 . (6.2)

The B term can be thought of as related to the intrinsic TM of the TMD (in case
there is no nonperturbative contribution from the TMDShF), which generally is x
dependent. By Fourier transforming a simple Gaussian dependence for f g1 (x,p2

T ) ∝
exp[−p2

T/〈p2T 〉], we obtain B ≈ 〈p2T 〉/4 (at Q = µNP ). Of course, the B term is not
necessarily the same for the convolution containing h⊥g1 (x,p2

T ), but for simplicity we
do not distinguish between these cases. Matching Eq. 6.1 and 6.2 for the x values that
we will consider yields the specific B values shown in Table 6.1.

To perform an error estimate and to assess the importance of SNP for the size of the
convolutions and asymmetry, we will vary A within the extreme limits following [92]
(where the difference with respect to their A values, presented below Eq. 4.60, comes
from their choice of µNP = 1GeV), instead of taking the one quoted in Eq. 6.2. The
idea is that one expects the exp(−SNP ) term to be non-negligible (arbitrary defined as
being larger than 10−3) anywhere between bT,max and the charge radius of the proton.
If exp(−SNP ) becomes negligible around bT,max already, then there will be hardly any
nonperturbative contribution outside the perturbative regime, which is not intuitive.
On the other hand, one does not expect significant contributions to the convolutions
beyond the charge radius of the proton, offering an upper bound. To implement this
range, we define a value bT,lim such that for large Q, where the A term is dominant and
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Table 6.1: Values of the parameters A and B used in the Gaussian SNP . Left the A
values are shown along with the corresponding bT,lim and r determined at Q = 12GeV.
Right the B values are shown determined by x.

bT,lim (GeV−1) r (fm ∼ 1/0.2GeV−1) A (GeV2)
2 0.2 0.80
4 0.4 0.20
8 0.8 0.05

x B (GeV2)
10−1 0.456
10−2 0.521
10−3 0.715

the B term can be neglected, exp(−SNP ) becomes negligible, i.e. ∼ 10−3. Considering
bT,lim as the diameter, since it is conjugate to qT , r is defined as the characteristic
radius r = bT,lim/2, that can be thought of as the range over which the interactions
occur from the centre of the proton. For three values of bT,lim or r we determined the
A values at Q = 12 GeV, which are shown in Table 6.1. We note that A = 0.414GeV2

from Eq. 6.2 lies roughly in the middle of this range.
We will include the B term in SNP as it is needed for smaller Q values and

large-bT,lim values. This is illustrated in Fig. 6.1: the product exp(−SP ) exp(−SNP )
for Q = 3GeV receives large contributions from SP all the way up to or even beyond
the proton radius. This results in an upward bump at small qT in the convolutions,
in particular for C[wh⊥g1 ∆

[n]
h ]. Moreover, for small Q the limit of B → 0 can result

in a violation of the positivity bound for the convolutions: C[wh⊥g1 ∆
[n]
h ] ≤ C[f g1∆[n]].

These issues will be discussed in greater detail in the following section. For larger Q
values, the curves with and without B term lie increasingly closer to each other, as
expected.

To illustrate the typical features of the TMD evolution of the convolutions C[f⊥g
1 ∆[n]]

and C[wh⊥g1 ∆
[n]
h ], and their ratio R (see Eq. 3.96), we present in Fig. 6.2 results for

a specific LDME, namely 〈OJ/ψ[1S8
0 ]〉 from CMSWZ (that only contributes to the

magnitude of the convolutions). The results are shown for a range of Q values of
relevance to the EIC, Q = 3, 6, 12, 20 and 30 GeV, and for three different values
of x: 10−3, 10−2, and 10−1. Although x = 10−1 lies outside the gluon dominated
region and we do not include the contribution from quark TMDs, we include this case
for illustration purposes in order to see the results for larger Q values. For the two
smaller values of x, the contribution from the collinear quark PDF to the tail of h⊥g1

is non-negligible, therefore it is included. We note that in this figure, as well as in
the remaining figures of this section, the dashed line represents that bT,lim = 2GeV−1

is employed for the nonperturbative part of the computation, while the solid line in-
dicates that bT,lim = 8GeV−1 is used. Moreover, in this chapter all curves are shown
up to qT,max to remain within the TMD regime as is commonly done, i.e. Q/2 in this
particular section.

We identify that the TM spectrum broadens and the estimated uncertainty band
from the unknown nonperturbative contributions becomes smaller with increasing
Q, as one would expect. Generally the maxima of the convolutions increase towards
smaller Q, for which the Q = 3GeV cases with small x are an exception. For qT C[f g1∆]
this can be understood from the significant relative decrease in magnitude of the
perturbative f g1 tail for smaller Q values in combination with the Sudakov factors,
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Figure 6.1: bT times the product of the Sudakov factors as a function of bT for
Q = 3GeV and Q = 20GeV, which shows the importance of the extra B term in
SNP at small Q and large bT,lim, suppressing the unwanted contributions at large bT .
Here bT,max = 1.5GeV−1 and B at x = 10−3 is used.

where the B term is then of large influence. The decrease of qT C[wh⊥g1 ∆h] is, on the
other hand, predominantly due to the Sudakov factors as the perturbative h⊥g1 tail
with these x values stays approximately constant when varying Q.

The differences in behaviour of the two convolutions depends on various factors:
the differences between the tails of the TMDs, the type of Bessel function and the
Sudakov factors. It can be seen in Fig. 6.2 that the presence of h⊥g1 in a convolution
contributes to reducing the magnitude of the integrand. This is because its tail is
naturally suppressed by order αs in comparison to f g1 . We note that αs(µ′

b∗
) increases

as a function of bT , up to its upper value ∼ αs(b0/bT,max), such that the h⊥g1 tail can
become larger in comparison to the f g1 tail at large bT . This effect becomes more
pronounced for smaller x. Besides, while the product of the tail with the Sudakov
factors approaches zero at large bT , the h⊥g1 tail typically exhibits a more gradual
slope compared to f g1 . As a result, its presence contributes to bT -broadening.

It is observed that all convolutions begin to decrease as a function of qT beyond
a certain point. This specific behaviour depends on the type of Bessel function and
the width of the integrands in bT space. In particular, the consequence of the bT -
broadening is that more damped oscillations of the J0 Bessel function in C[f g1∆] occur
before the integrand becomes zero. Each additional oscillation in the integrand brings
the convolution closer to zero and more oscillations fit in a given bT range when qT
increases. Therefore, C[f g1∆] with smaller Q decreases faster, taking into account
the bT -broadening of the Sudakov factors. It is important to note that the peaks of
these convolutions in Fig. 6.2 arise from their multiplication with qT . The situation
is different for C[wh⊥g1 ∆h] that contains the J2 Bessel function. This function starts
its damped oscillation at zero, instead of one, and goes up, instead of down. The
consequence is that the bT integrals benefit from unsuppressed intermediate bT values.
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Figure 6.2: The convolutions times qT and the ratio of the convolutions, R, as a
function of qT for various values of Q, with x = 10−3 (left), x = 10−2 (middle) and
x = 10−1 (right), using bT,lim = [2 : 8]GeV−1. Here we are using the central value of
〈OJ/ψ[1S8

0 ]〉 from CMSWZ as an example (see Table 3.3).

This results in a peak maximum before large-bT oscillations will bring the convolution
down towards zero in a similar way as for C[f g1∆], i.e. the peaks in these convolutions
are generated by themselves. As can be seen, these maxima naturally occur at smaller
qT for smaller Q. Another crucial difference is that the envelope of J2 tends slower
towards zero than the J0 one with increasing bT . The consequence is that C[wh⊥g1 ∆h]
falls slower than C[f g1∆], although h⊥g1 generally gives rise to more broad integrands.
Hence, R and the azimuthal asymmetry, always grow with qT , but more slowly for
larger Q. In addition, as the large-bT values in C[wh⊥g1 ∆h] are less suppressed than in
C[f g1∆], the azimuthal asymmetry and C[wh⊥g1 ∆h] are more sensitive to the changes
in SNP .

Varying x in the computations changes the convolutions. First, we notice that the
overall magnitude of the convolutions decreases for larger x, as the collinear gluon PDF
is less prominent at larger x. Additionally, except for the smallest Q computations, the
magnitude of R becomes smaller for large Q. Second, the shape of the perturbative
TMD tails is different, in particular the f g1 tail is broader in bT for larger x. Moreover,
the B term in SNP is smaller, as can be seen in Table 6.1. Together, the broader
bT integrands make these convolutions go faster to zero for larger x. This explains
the behaviour of the magnitude of R and that the azimuthal asymmetry increases
slower with qT for larger x, especially visible for larger Q. For the small-Q values,
the magnitude of R as a function of x is found to be dictated by a delicate balance
between both convolutions.

After these general qualitative observations, we present predictions for the az-
imuthal asymmetry at the EIC by employing Eq. 3.95. These are shown in Figs. 6.3
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Figure 6.3: The azimuthal asymmetry as a function of qT for Q = MJ/ψ with the
CMSWZ and SV LDMEs. Left is for

√
s = 140GeV and x = 10−3. Right is for√

s = 45GeV and x = 10−2.

to 6.6, using the LDMEs from Table 3.3 and s = Q2/(xBy) for two
√
s values, 45GeV

and 140GeV, commonly considered for the EIC. Specifically, we use the CMSWZ and
SV sets here, and in the rest of this thesis, because the BCKL set gives similar results
as the CMSWZ set for this process, and the BK set is not favourable to use as dis-
cussed in Sec. 3.4. We recall that the CMSWZ set is based on a NLO analyses, while
the SV set is based on a LO calculation. In general, the asymmetry is (much) larger
when using the CMSWZ set compared to the SV set, especially for small Q. TMD
evolution predicts the azimuthal asymmetry to grow with qT as discussed previously,
and we see that the choice of LDMEs is of large influence in the predictions. This
results in an uncertainty in the predictions that is larger than that due to SNP , in
some cases even an order of magnitude. Given this, going to the next order in αs in
the TMD-evolution calculation will not lead to much more precise predictions at the
current stage. Besides, in the plots we restrict to the central values of the LDME fits,
but of course, taking into account the uncertainties in these values would broaden the
bands further, such that the bands for CMSWZ and SV start to overlap more, giving
rise to a large range of possible asymmetry values at EIC. Depending on the kinemat-
ics measurably large asymmetries may thus be expected at the EIC, especially for the
larger centre-of-mass energy of 140GeV. Improved constraints on the CO LDMEs,
and more generally on the TMDShFs, can very likely be obtained in this way.

In contrast to a LO Gaussian TMD model prediction [89], like the one presented
in Fig. 4.3, we find that the azimuthal asymmetry grows monotonically in the TMD
regime, more in line with the predictions from the generalised parton model approach
with additional gluon radiation [93], except that the magnitude can be much larger by
as much as an order of magnitude depending on the LDME set considered. Of course,
the asymmetry cannot keep continuously growing, therefore the expectation is that a
maximum will be reached outside the TMD regime. Larger and monotonically rising
asymmetries have also been obtained in [26] for the McLerran-Venugopalan model
including non-linear evolution x, showing decreasing asymmetries with decreasing x
values. In our results the x dependence of the asymmetries is less systematic in the
EIC kinematic range, as it depends on the considered Q value and on the LDMEs.
Especially predictions with the SV set for Q = MJ/ψ do not follow the observed
trends and are exceptionally small due to a cancellation of the S- and P -wave LDMEs
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Figure 6.4: The azimuthal asymmetry as a function of qT for x = 10−2 using the
CMSWZ (left) and SV (right) LDMEs, for various Q values that are kinematically
allowed.
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LDMEs.



114

6

Predictions of TM spectra and azimuthal modulations

at Q2 near M2
Q in the numerator of the azimuthal hard factor (see Eq. 3.86). As

Q increases, the P -wave LDME increasingly dominates the azimuthal hard factor,
leading the predictions with different LDME sets to become similar, i.e. differing only
in their magnitude.

In comparison to the previous results presented in [123], we point out that our
educated guess was to take the TMDShFs universal, i.e. we chose BCO = 1 as for J/ψ
hadroproduction in [127]. The additional Q dependence in this factor, see Eq. 4.56,
makes a significant difference for the TMD evolved predictions, especially for large Q.
In retrospect, this explains why we had to reduce the usual validity range in qT of
the TMD regime to ensure that R ≤ 1, i.e. the process was actually not completely
factorised.

6.2 A novel nonperturbative Sudakov factor
Before we continue with our discussion on the nonperturbative Sudakov factor we
point out that we make a couple of different choices for the TMD evolution. First, we
take µ̃′

b∗ , given in Eq. 4.43, instead of µ′
b∗ , such that the perturbative expressions as a

function bT in both limiting cases of the bT -regime, i.e. bT,min and bT,max, converge to
particular values with the same power (we elaborate more on this below). Moreover,
here we use NLL resummation for the perturbative Sudakov (defined below Eq. 4.46)
and consider the case of hadroproduction as an example, i.e. two TMDs are employed
(instead of a TMD and a TMDShF as for electroproduction).

Because we can identify that bT,max = b0/µNP , we have that µNP ∼ 750MeV
when bT,max = 1.5GeV−1. This can be considered doubtfully small since most of the
evolution will be determined by perturbative physics as the integrand of the convolu-
tions will already be quite small at large bT,max. On the other hand, a much smaller
value of bT,max, such as 0.5GeV−1, results in µNP ∼ 2.25GeV, which can be con-
sidered conservative as the integrand of the convolutions will be still large at bT,max
such that the nonperturbative Sudakov factor is very relevant. Whatever the value of
bT,max, a change in µNP , that alters the correction factor SNP , should compensate the
corresponding change in Ŵ (b∗T , µH) to leave the physical cross section unchanged, i.e.

Ŵ (bT , µH) u Ŵ (b∗T → b∗′T , µH)e
−SNP (bT ;µH ,µNP→µ′NP ) , (6.3)

for which the left-hand side should remain unchanged (see Eq. 4.57). For example,
take the Gaussian ansatz

SNP (bT ;µH , µNP ) = A ln
(
µH
µNP

)
b2T , (6.4)

as recalled from Eq. 4.60. When bT,max is altered, an additional change must come from
A in order to obtain a bT,max-invariant Ŵ (bT , µH). Although there is for the particular
Gaussian ansatz an educated guess to determine the A values for different hard scales,
it is not bT,max dependent and thus will not provide adequate compensation. In other
words, if one wants a bT,max-invariant Ŵ (bT , µH), then one needs to allow for the
most general form of Eq. 4.59, in particular with gK(bT ) more general than ∝ b2T .
Besides, we note that the Gaussian ansatz is TMD independent: it does not contain
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Figure 6.7: qT C[f g1 f
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1 ] as a function of qT by employing Eq. 6.4 with A = 0.16GeV2

as an example, for various µH and bT,max values, with y = 0 and
√
s = 13TeV.

x dependence and it is taken to be the same for every convolution although different
TMDs may enter the convolution.

As mentioned before, for small hard scales the integrand of the convolutions can
have large contributions at large values of bT , all the way up to or even beyond the
proton radius, depending on the value of bT,max and the value of A in the Gaus-
sian ansatz (in the examples of this section we simply adopt the various A values
presented below Eq. 4.60 without taking into account the variation of µNP ). These
large-bT nonperturbative contributions lead to an upward bump at small qT in the
convolutions as shown for C[f g1 f

g
1 ] in Fig. 6.7. Since these upward bumps can violate

the positivity bounds of the convolutions, a solution was implemented to avoid this in
the previous section: an extra x-dependent B term in SNP based on data. We note
that contrary to the electroproduction case, no such term is necessary to satisfy the
positivity bounds of the convolutions for hadroproduction when bT,max is chosen to be
1.5GeV−1. This is because of the extra perturbative Sudakov suppression and that
NLL instead of LL accuracy is employed. However, we do observe the strange upward
bump behaviour too when taking smaller values of bT,max instead, for µH = 3GeV as
well as for larger values. It disappears again at some point due to suppression by SP ,
when one continues to increase the hard scale. On the contrary, we can observe oscil-
lations for the convolutions within the TMD regime by decreasing A from 0.16GeV2

to 0.04GeV2 (the smallest value of A; that gives the largest nonperturbative contri-
butions), especially for small µH and small bT,max. This originates from unsuppressed
oscillations of the Bessel function in the convolutions at large bT too. Indeed, the
upward bump at small qT is merely the initial indication of it. Since the f g1 TMD
cannot be negative, such large-bT contributions that lead to unphysical oscillations
should be suppressed. However, whether the upward bump is real in the end, while
not violating the positivity bound, depends on the extent of nonperturbative physics,
which can only be determined by experimental data. We note that, unlike in qT space,
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there is no positivity bound in bT space.
If one investigates the perturbative expressions of the computation (the perturba-

tive Sudakov factor, the TMD tails and αs) as a function of bT via µ̃′
b∗ , one observes

that these will deviate from those as a function of µb when bT is around bT,min and
bT,max. This is simply due to the definitions of b∗T and b′T in Eq. 4.41 and Eq. 4.42,
respectively, as was mentioned in Sec. 4.2. Moreover, when bT,min and bT,max are close
together there is almost no agreement between the perturbative expressions as a func-
tion of µ̃′

b∗ and µb. Quarkonium production is very sensitive to this effect as one can
have very small hard scales, i.e. less evolution from µH to µ̃′

b∗ , much smaller than
e.g. Higgs production [65]. Nevertheless, this is considered acceptable because the
freeze-outs at both limits are satisfied, the same bT -prescriptions are applied for all
perturbative expressions and the perturbative expressions are smooth. Moreover, one
still needs to multiply with SNP which is unknown and alters the computation anyway.

Although it is expected that in reality there exists a region where nonperturbative
physics takes over, we have chosen to enforce a clear separation between the pertur-
bative and nonperturbative regimes. This allows us to fully rely on the perturbative
expressions as a function of µ̃′

b∗ and, more specifically, to conduct a more careful study
of SNP . In particular, to make the perturbative expressions within bT,min ≤ bT ≤ bT,max
more equal to the ones as a function of µb, we increase the power of the two restriction
methods 1

b∗T =
bT(

1 + (bT/bT,max)
n )1/n , b′T =

(
bnT + bnT,min

)1/n
, (6.5)

where n is an arbitrary integer and when n = 2 we retrieve Eqs. 4.41 and 4.42. We
note that the same order n in both b∗T and b′T motivates our choice for µ̃′

b∗ presented in
Eq. 4.43. The larger the value of n the closer the trend of the perturbative expressions
as a function of µb is followed by the perturbative expressions as a function of µ̃′

b∗ .
We found that n = 20 is sufficient for our purposes as increasing n to larger values
only continues to make the curves even closer together at the limiting points bT,min
and bT,max. Henceforth, we adopt n = 20 as the representative value for large n.

Naturally, it follows that the nonperturbative physics should only contribute when
bT & bT,max with the same order n. Therefore, we define

b† 2T =
(
bnT + bnT,max

)2/n − b2T,max , (6.6)

such that

SNP (b
†
T ) = g b† 2T , (6.7)

where g is the parameter of our Gaussian-like nonperturbative Sudakov factor. Al-
though one can determine the exact asymptotic behaviour of SNP as bT → 0 using
perturbation theory, i.e. SNP ∝ b2T , we note that any power-law behaviour in this limit
is considered acceptable [118]. Besides, when n = 2, i.e. b†T = bT , we retrieve Eq. 6.4
by considering g = A ln(µH/µNP ).

1We note that we are not the first to explore alternatives to the standard b∗T -prescription given
the limited understanding of nonperturbative physics, see e.g. [154–157]; however these studies adopt
approaches that differ from the one presented here.
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Figure 6.8: An example of the interplay between SNP and SP for n = 2 (above) and
n = 20 (below) as a function of bT , with bT,max = 1GeV−1 and µH = 12GeV. The
dark grey area is not taken into account for actual computations (i.e. this region is
not part of the TMD evolution since bT ≤ bT,min), the white area is the perturbative
regime and the light grey area is the nonperturbative regime (bT ≥ bT,max). We note
that the dotted orange line is better followed by the solid red line when n = 20. The
dashed blue line is produced with the Gaussian ansatz for SNP , where g = 0.09GeV2,
while the solid blue line is produced by our novel SNP presented in Eq. 6.7, where
gS = 1.89GeV2 for n = 2 and gS = 3.52GeV2 for n = 20 following Eq. 6.8. The
green lines are the multiplication of exp(−SP ) with the corresponding exp(−SNP ),
both dashed and solid.
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Figure 6.9: An example of the interplay between SNP and the perturbative tails
f g1 (left) and h⊥g1 (right) as a function of bT for n = 20, with bT,max = 1GeV−1,
µH = 12GeV and x = 10−2, similar to Fig. 6.8. The dashed green line is produced
with the Gaussian ansatz, where g = 0.09GeV2, while the solid green line is produced
by our novel SNP presented in Eq. 6.7, where gfg1 = 2.76GeV2 following Eq. 6.9 and
gh⊥g

1
= Λ2

QCD = 0.03GeV2 due to the exception. For comparison, the dotted line,
obtained by using g = gh⊥g

1
= 0.06GeV2, is also shown.

With these new bT -prescriptions we first investigate the interplay between SNP and
SP . In Fig. 6.8 we show these Sudakov factors and their product for n = 2 and n = 20,
with bT,max = 1GeV−1 and µH = 12GeV as an example. We note that due to the
increase of n we obtain two peaks from their product, one in the perturbative regime
and one in the nonperturbative regime, while for n = 2 one obtains a more smeared-
out curve such that only one peak is observed. So, as this local minimum between the
two peaks introduces an inflection point in the convolutions, although they quickly
revert to their original curvature (thus, it actually gives rise to two inflection points),
we have actually worsened the computation by increasing n. On the other hand,
we have gained that the two regimes are separated from each other and (almost) do
not interfere. To remove the local minimum in the large-n case we notice that SNP
is dependent on perturbative physics by inverting Eq. 6.3. i.e. we find that we can
remove the second peak (at large bT ) through g in Eq. 6.7 by matching the derivative
of SNP and SP at bT = bT,max

gS(µH , bT,max) =

∣∣∣∣ ∂
∂bT

SP (bT ;µH , µb)
∣∣
bT=bT,max

∣∣∣∣
22/n bT,max

, (6.8)

where we added a subscript S to denote its relation to SP . Its relation to gK in Eq. 4.59
is discussed below. The value of gS makes the product of the Sudakov factors double
peak free for large n. In principle, the value of gS serves as a lower bound, i.e. it can
be taken larger than the value in Eq. 6.8 to further suppress nonperturbative physics.
By continuing to larger values, one will reach almost a vertical cut-off at some point.
However, gS cannot be smaller than the found numerical value in Eq. 6.8 because then
one will generate the second peak in bT space like we have seen in the example and,
hence the local minimum. We note that the absolute value of the numerator is taken
because the derivative of SP can switch sign in exceptional cases (depending on the
value of µH , as shown in Fig. 6.10 and discussed below), which is not allowed as the
correction factor should give a suppression.
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After employing gS for SNP one will still observe similar inflection points in the
full convolutions when n is taken large since µ̃′

b∗ also enters the TMD tails. To remove
these again, we employ the same method as before, namely

gf (x, bT,max) =

∣∣∣∣ ∂
∂bT

ln f̂(x, bT ;µb)
∣∣
bT=bT,max

∣∣∣∣
22/n bT,max

, (6.9)

where we added a subscript f to denote its relation to the TMD f . We note that
gf (x, bT,max) is independent of µH for large n. In Fig. 6.9 we show an example of the
interplay between SNP and the perturbative tails for bT,max = 1GeV−1, µH = 12GeV
and x = 0.01. Again, one can choose a larger numerical value for gf than to the one
from Eq. 6.9, but not a smaller one, and we take the absolute value of the derivative to
avoid a sign flip of gf . However, since the latter occurs quite often for gf (depending
on the value of x, as shown in Fig. 6.11 and discussed below), it is unnatural to
use the flipped derivative of the perturbative tail at bT,max for its large-bT suppression
coefficient. Therefore, we introduce an exception: when gf ≤ Λ2

QCD we take gf = Λ2
QCD

instead of the value found by Eq. 6.9. We note that a similar exception could be
employed for gS; however, in practical applications we will use values for µH and
bT,max for which this is unnecessary.

Putting everything together our complete novel nonperturbative Sudakov factor
that includes TMD and x dependence reads

SNP (bT ;x, µH , bT,max) =
(
gS(µH , bT,max)+gfA(xa, bT,max)+gfB(xb, bT,max)

)
b† 2T , (6.10)

which removes the local minima in the computations that arise due to the large-n
b∗T -prescription we employ in the TMD evolution. We note that this form is consis-
tent with predictions from QCD, see [158, p. 7] and [159], like the general expression
in Eq. 4.59; we elaborate below that our SNP expression has a similar form. The
indirect consequence of our correction factor is that large-bT contributions of the per-
turbative Sudakov factor and the TMD tails are likely suppressed. Therefore, upward
bumps at small qT (or oscillations in an extreme case), which originate from large-bT
contributions to the integrand of the convolutions, are then removed. An example
of this is shown in Fig. 6.12, in which the same convolutions of Fig. 6.7 are pre-
sented by employing Eq. 6.10. Furthermore, we observe that all computations with
bT,max = 0.5GeV−1 lie consistently below those with bT,max = 1.5GeV−1. This is due
to the fact that our novel nonperturbative Sudakov factor consistently forces the peak
of the integrand in bT space into the perturbative regime, a point we will elaborate on
below. Other types of convolutions and their ratios will be discussed in the following
sections. It should be understood that the upward bump is not removed in general,
i.e. there could be cases in which g = gS + gfA + gfB is still too small. However, it
turns out that this is actually rare for hadroproduction, as we will elaborate. On the
other hand, in electroproduction this is not the case due to the different shape of SP
and the fact that only one TMD is involved as we will see in Sec. 6.4. Besides, it
can be seen in Fig. 6.12 (especially for small µH) that bT,max invariance is not fully
achieved with our robust novel nonperturbative Sudakov factor, as was anticipated.
Nevertheless, Eq. 6.10 does now take bT,max systematically into account. Therefore,
bT,max-variation, as well as increasing the value of g, can actually serve as an estimate
for the nonperturbative uncertainties.
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Figure 6.10: gS as a function of µH for various bT,max values with n = 20.
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Figure 6.12: qT C[f g1 f
g
1 ] as a function of qT by employing Eq. 6.10 with n = 20 for

various µH and bT,max values, similar to Fig. 6.7.

We can relate Eq. 6.10 to Eq. 4.59 which gives the following relations: gf (bT ) =
gf (x, bT,max) b

† 2
T and ln (µH/µNP ) gK(bT ) = gS(µH , bT,max) b

† 2
T . Especially, the latter

relation is of interest because of the logarithmic µH dependence predicted by QCD
that we mentioned. In particular, we found that we can fit gS with the parametrisation
|g1 ln (µH/µNP )+g2| as shown in Fig. 6.10, for which the values are given in Table 6.2.
That is, we find the expected logarithmic behaviour, but we need an additional term
g2 in order to obtain good fits. This extra term is in line with parametrisations of
correction factors from various studies of DY data summarised in [3, pp. 564–568]. In
general, we observe larger values, which is expected due to the large-n b∗T -prescription
that is employed in our formalism. We observe that gS increases more rapidly as
a function of µH when one decreases bT,max. Moreover, the reason for the absolute
value in Eq. 6.8 becomes evident: for small µH the derivative of SP is taken before its
minimum. In particular, exp[−SP (bT ;µH , µb)] grows from zero to a maximum after
which it decreases back towards zero, and this peak shifts for smaller µH to larger
bT . Therefore, the point where gS touches the horizontal axis in Fig. 6.10 is for larger
bT,max is at smaller µH . Hence, around the minimum of gS, one still obtains large
contributions from SP for large bT .

Similarly, the behaviour of gf as a function of x is shown in Fig. 6.11. Here we
observe that the behaviour is less systematic as compared to gS because the PDFs in
the perturbative tails are obtained from fitting data rather than SP , which is derived
from theory. We observe that for large x, gf reaches the point where it becomes equal
to Λ2

QCD, since this is where the tails start to increase instead of decrease at bT,max. For
h⊥g1 this is observed at smaller x because the valence quark PDFs start to contribute
significantly in its perturbative tail. For smaller bT,max, these observations occur at
smaller x. Hence, at large x one still obtains large contributions from the TMD
perturbative tails for large bT . However, in large-y hadroproduction, when one value
of x is large, the other becomes small, as can be seen from Eq. 3.98. It is the cumulative
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Table 6.2: Values obtained from fitting the parametrisation of gS that are shown in
Fig. 6.10. For various values of bT,max they are presented for nf = 4 (left) and nf = 5
(right).

bT,max (GeV−1) g1 (GeV2) g2 (GeV2)
0.5 -6.317 7.945
0.75 −3.638 3.013
1.0 −2.580 1.333
1.5 −1.783 0.111

bT,max (GeV−1) g1 (GeV2) g2 (GeV2)
0.5 -5.289 6.545
0.75 -2.863 2.340
1.0 -1.902 0.982
1.5 -1.131 0.097

contributions to g that determine whether large-bT contritions to the integrand of the
convolutions are sufficiently suppressed; consequently, instances where this is not the
case in hadroproduction are rare. We note that it is difficult to compare gf with other
values from literature because they are differently parametrised; it is however possible
to find values of similar magnitude, depending on x and the kind of TMD tail.

In Fig. 6.13 and Fig. 6.14 we show the behaviour of gS and gf (with x = 10−3

as an example) as a function bT,max. One expects that both functions smoothly vary
as a function of bT,max. In principle, gS does so, except for small bT,max when too
small µH values are considered. On the other hand, gf shows peculiar behaviour that
does not originate from our formalism, i.e. it comes from the MSHT20lo_as130 PDF
set [1] that is employed; for an unknown reason the derivative of the PDFs at a scale
of 1.4GeV is not smooth. Since this not our main interest here, we simply accept
this observation. Besides, we note that the extrapolation of the PDFs to even smaller
scales than µNP = 1GeV is questionable. In conclusion, we recommend avoiding too
large values for bT,max to prevent unpredictable behaviour, while also advising against
too small values to avoid the critical point in gS for the nonperturbative Sudakov
factor discussed in this section.

While our developed nonperturbative Sudakov factor adheres to theoretical expec-
tations, it has the downside of consistently shifting the peak of the integrand into the
perturbative regime (with the exception if no decrease has occurred within the pertur-
bative regime), leaving little room for nonperturbative physics. Specifically, we expect
the integrand of the convolutions, see Eq. 4.58 (excluding the Bessel function from
the angular integral), to first rise in bT space and then fall to zero, without some kind
of intermediate behaviour. However, this does not imply that this single smooth peak
must occur in the perturbative regime. We can distinguish two extreme scenarios for
the convolution integrand by comparing the use of the novel nonperturbative Sudakov
factor and a Gaussian ansatz for the nonperturbative Sudakov factor, as illustrated
in Fig. 6.15. On one hand, when bT,max is small, a Gaussian ansatz would predict a
peak at a larger bT , in the nonperturbative regime, resulting in more nonperturbative
contributions. On the other hand, when bT,max is large, both nonperturbative Sudakov
factors would roughly predict agreement on the position and magnitude of the peak
in the perturbative regime, but the Gaussian ansatz would still predict more nonper-
turbative contributions. Since we expect that there could be more nonperturbative
contributions in the integrand than with our novel nonperturbative Sudakov factor
(especially for convolutions involving f g1 that have generally a large g in SNP ), the
actual smooth curve might lie somewhere between these two curves, having the same
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Figure 6.13: gS as a function of bT,max for various values of µH with n = 20.
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Figure 6.15: Schematic illustration on a log-log scale depicting the effect of the novel
nonperturbative Sudakov factor (solid line) compared to a Gaussian ansatz for the non-
perturbative Sudakov factor (dashed line) in the convolution integrand for unpolarised
hadroproduction as a function of bT , for bT,max = 0.5GeV−1 (left), bT,max = 1.0GeV−1

(middle) and bT,max = 1.5GeV−1 (right), and n = 2, 20.

kind of shape as with our novel nonperturbative Sudakov factor (whatever the value
of n), but its peak at slightly larger bT . Because a Gaussian(-like) function for the
nonperturbative Sudakov factor cannot provide this in general, this suggests that the
true correction factor cannot have such shape, i.e. alternative forms for it should be
considered in future TMD-evolution studies, such as the one presented in [158, p. 7].

We note that the need for an alternative nonperturbative Sudakov factor, de-
pending on the b∗T -prescription and choice of bT,max, is supported by the violation of
positivity bounds observed with our novel nonperturbative Sudakov factor at small
hard scales in both hadroproduction, and even more significantly in electroproduc-
tion, that are discussed in the following sections. That is, this issue could potentially
be resolved by increasing nonperturbative contributions for convolutions involving f g1
by employing a different nonperturbative Sudakov, or by decreasing nonperturbative
contributions in the current formalism for convolutions involving h⊥g1 , i.e. increasing
gh⊥g

1
. The latter is allowed since we can always increase g in our formalism, as ex-

plained above. All in all, the uncertainty regarding the form of SNP introduces an
additional layer of uncertainty in the predictions, highlighting the need for data to
establish restrictions on it. Furthermore, the uncertainty associated with our novel
SNP , as discussed in the next section, should be regarded as an approximation rather
than an accurate representation of the nonperturbative uncertainty.
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6.3 C[f g1 f
g
1 ] and quarkonium (-pair) production at LHC

Having established our novel nonperturbative Sudakov factor (with large n), we apply
it in this section to the TMD-evolution formalism to study TM spectra and mod-
ulations in hadroproduction. In particular, we investigate C[f g1 f

g
1 ], which provides

theoretically the most important contribution to the differential cross section of gluon-
induced unpolarised proton-proton collisions within the TMD regime. The only differ-
ence for this observable between single and quarkonium-pair production investigated
in this thesis is the hard scale at which it occurs. Therefore, we first consider a general
range of hard scales. Thereafter, we will move to the particular example of J/ψ-pair
production for which we can compare our theoretical predictions with experimental
data.

C[f g1 f
g
1 ], and in general all the convolutions, are subjected to uncertainties from var-

ious factors. Specifically, we distinguish two cases: nonperturbative and perturbative
uncertainties. As mentioned in the previous section, there are two nonperturbative
uncertainties identified from our SNP . Namely, the variation of bT,max and the possible
extra suppression of nonperturbative contributions by increasing g. Besides, we have
uncertainties arising from the PDFs that originate from their extraction from data, i.e.
the propagation of experimental uncertainties, as well as model and parametrisation
uncertainties. Especially, since x is small, the gluon PDFs that enter the TMD tails,
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Figure 6.16: C[f g1 f
g
1 ] as a function of qT for various µH , with y = 0 and

√
s =

13TeV that determine xa and xb (see Eq. 3.98). Various nonperturbative uncertainties
are investigated: from bT,max (upper left), from the PDFs (upper right), from g for
bT,max = 1.0GeV−1 (down left) and bT,max = 0.5GeV−1 (down right).
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given in Eqs. 4.53 and 4.54, are known to have quite large uncertainties depending on
the scale: while the absolute uncertainty increases with scale, the relative uncertainty
becomes much larger at smaller scales. The corresponding uncertainty in observables
can be determined by calculating the observable using both the central PDFs and the
eigenvector PDFs, following the Hessian method (e.g. see [1]). In Fig. 6.16 examples
of these three nonperturbative uncertainties are shown. We note that although the
use of bT,max = 0.5GeV−1 and bT,max = 1.5GeV−1 are not recommended for the de-
veloped SNP , we have employed these values here to estimate the uncertainty from
bT,max-variation since these two extreme values provide the largest difference between
the computations. Moreover, it can be seen that increasing g to for example 10g as an
uncertainty estimate does not alter the results much because we already have a lot of
suppression from our developed SNP , especially when bT,max = 1.5GeV−1. In general,
we observe significant uncertainties that are larger for small hard scales, but all appear
small due to our use of logarithmic scale. This choice however facilitates a convenient
comparison with the perturbative uncertainties that are discussed hereafter.

As explained in Sec. 4.2, scale variation is typically employed to estimate the
perturbative uncertainty of the computations. Because of our SNP , we point out that
C1 (that multiplies with µ̃′

b∗) and C2 (that multiplies with µH) affect gS, and C3 (that
multiplies with the scale of the TMD tails µ̃′

b∗) affect gf (besides that C2 enters µ̃′
b∗).

In particular, we can express the convolutions in this section, including scale variation,
as

C[wfAfB](xa, xb, qT ;µH) =
∫ ∞

0

dbT
2π

bT Jm(bT qT )

× exp
(
−
∫ C2

2µ
2
H

C2
1 µ̃

′
b∗ (C2)

dµ′2

µ′2

[
A(C1) ln C

2
2 µ

2
H

µ′2 +B(C1, C2)
])

× exp
(
−
[
gS(C1, C2, µH , bT,max) + gfA(C3, xa, bT,max) + gfB(C3, xb, bT,max)

]
b† 2T

)
× f̂A

(
xa, b

∗
T ;C3 µ̃

′
b∗(C2)

)
f̂B
(
xb, b

∗
T ;C3 µ̃

′
b∗(C2)

)
, (6.11)

following Eq. 4.58. In Fig. 6.17 we show their separate impact on C[f g1 f
g
1 ], as well as

the case in which C1 = C3 is varied since both multiply the same scale in principle.
We observe that the variation of C1 and C2 have an opposite effect on the magnitude,
and they alter the shape of the convolutions in slightly different ways. Indeed, they
change the integration limits of SP in opposite ways and the behaviour of SNP as a
function of its scales is non-linear. C3 variation provides the largest uncertainty. The
shape and as well as the magnitude variation due to C3 variation are determined by
the PDFs, e.g. if the gluon PDF increases as a function of its scale, a larger magnitude
for the convolution with C3 = 2 is observed as can be seen in Fig. 6.17 (this does
not necessarily have to be the case, e.g. for large x the PDF decreases instead when
the scale is increased). Besides, since C1 and C3 variation have opposite results on
the convolutions, but C3 variation has more impact (especially for small qT ), their
combined variation is similar to the effect of C3 variation giving a smaller uncertainty.
Since the perturbative uncertainties are much larger than the nonperturbative ones,
we will from now on only consider scale variation as uncertainty in our predictions.
Moreover, to avoid bT,max being either too large or too small, and given that the
nonperturbative uncertainty can be neglected, we simply choose it to be 1.0GeV.
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Figure 6.17: C[f g1 f
g
1 ] as a function of qT for various µH , similar to Fig. 6.16. Various

perturbative uncertainties from scale variation are investigated: from C1 (upper left),
from C2 (upper right), from C3 (down left) and from C1 = C3 (down right).

Similar figures for the other convolutions in proton-proton collisions are shown
in App. E: see Figs. E.2, E.3, and E.4, along with C[f g1 f

g
1 ] in Fig. E.1, all having

the same axis for comparison. In these examples the various scale variations have a
similar effect on the convolutions as for C[f g1 f

g
1 ], except that C3 variation provides a

smaller uncertainty than C1 variation for C[w2h
⊥g
1 h⊥g1 ] and that these variations have

similar impact for C[w4h
⊥g
1 h⊥g1 ]. Hence, we have that C1 = C3 variation follows C1

variation for C[w2h
⊥g
1 h⊥g1 ], while a more complicated behaviour for this scale variation

is found for C[w4h
⊥g
1 h⊥g1 ]. This makes sense since the quark PDFs contribute to the

tail of h⊥g1 as well, making its scale variation less volatile. We note that we observe
a small upward bump at small qT in C[w4h

⊥g
1 h⊥g1 ], which is absent in C[w2h

⊥g
1 h⊥g1 ].

This points out that the specific Bessel function in the convolution integrand logically
affects the extent of large-bT contributions as well. In the azimuthal modulations
discussed below, this upward bump is no longer observed, due to the smallness of the
associated hard factor of this convolution.

Before we continue our discussion on C[f g1 f
g
1 ] and scale variation, we explain the

different features of the various TMD evolved convolutions. In general, for smaller µH
larger magnitudes are obtained for all the convolutions, and C[f g1 f

g
1 ] and C[w2h

⊥g
1 h⊥g1 ]

exhibit the largest magnitudes, followed by C[w3f
g
1h

⊥g
1 ] (and C[w′

3h
⊥g
1 f g1 ]). The small-

est magnitude is observed for C[w4h
⊥g
1 h⊥g1 ]. Besides, there is a clear difference in

behaviour: while C[f g1 f
g
1 ] and C[w2h

⊥g
1 h⊥g1 ] decrease as function of qT , C[w3f

g
1h

⊥g
1 ] and

C[w4h
⊥g
1 h⊥g1 ] increase instead (within qT ≤ qT,max). The difference in the magnitudes
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of the convolutions is due to the αs suppression of h⊥g1 with respect to f g1 and their
shape, while the difference in shape is due to the specific Bessel function and the
bT -broadening of the integrand by h⊥g1 , like for the electroproduction case discussed
in Sec. 6.1. We note that the bT -broadening is now clear from the fact that gh⊥g

1
< gfg1

in Fig. 6.11 (when choosing a specific bT,max). Indeed, C[w2h
⊥g
1 h⊥g1 ] decreases faster

than C[f g1 f
g
1 ] as a function of qT (both containing J0), making their ratio fall with

qT . The integrand of the convolutions with J2 or J4 start their damped oscillation
at zero and go up (instead of starting at one and going down), therefore C[w3f

g
1h

⊥g
1 ]

and C[w4h
⊥g
1 h⊥g1 ], reach a maximum before they decrease like the convolutions con-

taining J0. We note that in our example figures this decrease is not visible due to
the cut at qT,max. Besides, since the envelopes of J2 and J4 decrease more gradually
towards zero compared to J0, C[w3f

g
1h

⊥g
1 ] and C[w4h

⊥g
1 h⊥g1 ] decrease more slowly than

the convolutions containing J0. Hence, the modulations presented in Eqs. 3.101 and
3.102 will always increase with qT , also after the peak maximum of C[w3f

g
1h

⊥g
1 ] and

C[w4h
⊥g
1 h⊥g1 ] (again equivalent to the electroproduction case). However, J4 tends even

slower towards zero than J2 with increasing bT , such that the increase of C[w4h
⊥g
1 h⊥g1 ]

to its peak maximum takes longer as a function of qT . Therefore, one will observe a
more rapid increase in the convolution and the corresponding cos (4φCS)-modulation,
although it has a smaller magnitude.

We now combine the scale variation, i.e. we calculate the full perturbative uncer-
tainty estimation for observables by considering all the combinations of [C1, C2, C3].
Since according to studies of Collins et al. [118, 120] C3 = C1/C2, we distinguish two
cases: Case 1 in which the observable is calculated 27 times and Case 2 in which
the observable is calculated 7 times. We note that logically Case 2 always provides
an uncertainty band within the uncertainty band given by Case 1. To denote their
difference we present in the remainder of this section uncertainties from Case 1 by
light areas and from Case 2 by darker areas.

Fig. E.5 displays the ratios of the convolutions calculated for the general hard scales
using both scale variation cases. For ratios of observables, the same scale is applied to
both the numerator and the denominator. These figures are shown up to unity, since
from the positivity bounds it follows that these ratios cannot become larger than that
(see Eq. 3.103). It should be noted that for small hard scales we observe violation of
the positivity bounds within the uncertainty band, or even with the central value for
C[w2h

⊥g
1 h⊥g1 ]/C[f g1 f

g
1 ]. However, this may not a problem as long as the entire range

of perturbative uncertainties does not lie above 1, i.e. somewhere within the band we
expect the occurrence of the true curve that does not disobey the positivity bounds,
like the dashed lines which present the particular scale variation that agrees best
with the experimental data of J/ψ-pair production as discussed below. Besides, the
perturbative tails of the TMDs in the TMD-evolution formalism, which determine the
magnitudes of the convolutions, do not know about the positivity bounds, i.e. they
only enter via the weight factors in the Bessel functions that determine the shape.
As mentioned before, a simple solution within the current formalism might be to
decrease the amount of nonperturbative contributions further by increasing gh⊥g

1
. On

the other hand, it might be that higher-order perturbative corrections for the evolution
formalism, as well as for higher-order nonperturbative PDFs, solve the issue as well
by shrinking the estimated uncertainty band of the convolutions and their ratios. We



C[f g1 f
g
1 ] and quarkonium (-pair) production at LHC

6

129

0 1 2 3 4 5 6

qT (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
σ

[ d
σ
/d
q T

] (
G

eV
−1

)
y = 3.25

µH = 6.6 GeV

µH = 7.9 GeV

µH = 11.0 GeV

Figure 6.18: The normalised differential cross section as a function of qT for various
µH , with y = 3.25 and

√
s = 13TeV. The solid lines done central values and the

dashed line is the particular scale variation that agrees best with data from J/ψ-pair
production.

note that since the violation of the positivity bound occurs only at small µH , we choose
to disregard this issue here and leave it for future investigations.

Using the TMD-evolution formalism, a first comparison to J/ψ-pair production
data from the LHCb collaboration in 2017 was conducted in [92], using a simple
Gaussian ansatz for the nonperturbative Sudakov factor. This comparison to the
theoretical normalised differential cross section was later updated in [160]. Here, we
present another update by comparing to the new LHCb data for this process from
2023 [78]. On the theoretical side, we employ our developed nonperturbative Sudakov
factor and take scale variation into account for the uncertainty. The normalised differ-
ential cross section is a promising observable because it suppresses the uncertainties in
the TMD evolution. Additionally, this observable is unaffected by the LDME uncer-
tainties, as these cancel out when adopting the naive TMDShFs. In particular, since
dσ/dqT ∝ qT C[f g1 f

g
1 ], it is given by:

1

σ

(
dσ

dqT

)
=

dσ/dqT∫ qT,max
0

dqT (dσ/dqT )
≈ qT C[f g1 f

g
1 ]∫ qT,max

0
dqT (qT C[f g1 f

g
1 ])

. (6.12)

As mentioned in Sec. 2.3, it is expected that DPS contributes significantly to this
process. Therefore, one needs to subtract a part from the data in order to compare
to our theoretical SPS description. The LHCb collaboration has accomplished this
in the following manner. Since it is expected that the distributions as a function of
yJ/ψ J/ψ exhibit distinct shapes for SPS and DPS processes, it allows for the extraction
of the DPS contribution using a data-driven template for the DPS process. Namely,
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Figure 6.19: The normalised differential cross section in bins as a function of qT
together with the LHCb data for various 〈MJ/ψ J/ψ〉, with 〈yJ/ψ J/ψ〉 = 3.25 and√
s = 13TeV.

the shape of the DPS component is derived by employing the widely used ‘pocket
formula’

σDPS(J/ψ + J/ψ) =
1

2

σ2(J/ψ)

σeff
, (6.13)

which follows from the conjecture is that the distribution follows the measured produc-
tion cross section of single prompt J/ψ (with the assumption that they are uniformly
distributed over the azimuthal angle). Then, by assuming that the SPS contributions
to J/ψ-pair production are negligible in the 1.8 < yJ/ψ J/ψ < 2.5 region according to
predictions within the NRQCD framework [161–164], they determine the normalisa-
tion of the DPS contribution σeff within this range. Subsequently, the DPS contri-
butions can be subtracted to the data, assuming that the remainder is attributed to
SPS.

Our results following the invariant masses MJ/ψ J/ψ of the LHCb measurements
are given in Fig. 6.18 and compared to their data in Fig. 6.19. We note that we have
renormalised the LHCb data and the associated uncertainties in the TMD regime, as
they normalised their data over the whole measured qT region. Multiplying C[f g1 f

g
1 ]

with qT naturally results in a peak for the normalised differential cross sections, after
which they decrease. Besides, the magnitudes are smaller for larger µH , similar to
the behaviour of C[f g1 f

g
1 ] itself. Both cases of scale variation provide good description

with the data. However, we observe that the data is in favour of having the peak of
the distribution at small qT . Therefore, we have investigated the average of qT for
the different scale variations as shown in Fig. 6.20. We note that the scale variations
are sorted according to the values they produce for 〈qT 〉. Hence, the sequence of scale
variations from left to right slightly differs for the various hard scale cases, although
a general trend is observed. Besides, the impact on 〈qT 〉 from the different variations
increases for larger µH . We find that the scale variation [1, 2, 2] gives the smallest
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Figure 6.20: Average of qT as a function of sorted variations of the scales via:
[C1, C2, C3]. The red crosses denote the combinations of Case 2 scale variation.

〈qT 〉. Indeed, it is this variation, which is not part of Case 2 variation, that gives the
best agreement with data, i.e. we have a good indication to allow for C3 6= C1/C2. In
Fig. 6.21 we compare to different rapidity data instead, for which we again find good
agreement and preference for the Case 1 scale variation. Moreover, as predicted by
theory, there is (almost) no difference for the various investigated rapidities. We note
that a recent study demonstrated that a CS high-energy factorisation approach can
also successfully describe the data [165].

Despite these motivating observations of agreement between experiment and the-
ory, we note that the smallest-qT bin data does not overlap with our predictions at
all. The theoretical multiplication of qT with C[f g1 f

g
1 ] forces the normalised differential

cross section to approach zero at qT = 0GeV, consequently the average value in the
first bin is not necessarily required to be small, but it generally tends to be. We expect
that this discrepancy with respect to the data might be due to flaws in the experi-
mental detection or in the method used to subtract the DPS contributions. Given the
substantial uncertainties, both theoretical and experimental, efforts should be made
to achieve improvements on both fronts in the future.

We finish our discussion on the comparison with J/ψ-pair data by noting that the
LHCb collaboration fitted the theoretical differential cross section given in Eq. 3.97
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Figure 6.21: The normalised differential cross section in bins as a function of qT
together with the LHCb data for various 〈yJ/ψ J/ψ〉, with 〈MJ/ψ J/ψ〉 = 8.0GeV and√
s = 13TeV.

in order to determine the azimuthal modulations [78]:

〈cos 2φCS〉 = −0.029± 0.050 (stat.)± 0.009 (syst.) , (6.14)
〈cos 4φCS〉 = −0.087± 0.052 (stat.)± 0.013 (syst.) . (6.15)

Unfortunately, their statistical (stat.) and systematic (syst.) uncertainties were too
large to determine the sign of h⊥g1 via the cos (2φCS)-modulation (see Eq. 3.101),
although there is a hint of linearly polarised gluons in the proton, i.e. |〈cos 4φCS〉| > 0
(see Eq. 3.102). Moreover, due to the lack of statistics they were unable to study the
qT dependence of the modulations, hence the extraction of the h⊥g1 TMD is currently
impossible.

Regardless of these observations, we present in Fig. 6.22 the corresponding cos (2φCS)-
and cos (4φCS)-modulations for the measured unpolarised J/ψ-pair. We employ again
the two different θCS-bins, as for the Gaussian models presented in Fig. 4.4. In con-
trast, now the modulations are dependent on y, hence x. We observe that the evolution
predictions have indeed a different shape, i.e. they constantly increase as a function for
qT . The Case 1 scale variation allows for larger modulations than the Case 2 variation.
Moreover, we point out that the specific variation that agrees best with data predicts
that the modulations are relatively large. Although the increase as a function of qT
within the considered TMD regime gives rise to similar magnitudes for the cos (2φCS)-
modulations, smaller magnitudes are obtained for the cos (4φCS)-modulations. This
is due to the additional αs suppression in case there are two h⊥g1 tails in the nu-
merator of the modulations. Similar to the Gaussian TMD case, we observe that
the MJ/ψ J/ψ = 6.6GeV predictions are almost zero for the cos (4φCS)-modulation.
Moreover, the sign flip is naturally observed for the cos (4φCS)-modulation due to the
positive fixed sign of the h⊥g1 tail and the hard factor F4. However, taking into account
the magnitude of the modulations according to TMD evolution, we expect that the
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Figure 6.22: The cos (2φCS)- and cos (4φCS)-modulations in unpolarised J/ψ-pair
hadroproduction as a function of qT , similar to Fig. 4.4. Here the TMD-evolution
formalism is employed instead with yQQ = 3.25,

√
s = 13TeV. The solid lines denote

the central values, while the dashed lines show the specific scale variation that agrees
best with the data from J/ψ-pair production.

sign flip is only measurable in the current kinematical configuration when very high
precision is reached in the future. The evolution formalism predicts that the asymme-
try will be measurably large, depending on the value of MJ/ψJ/ψ, i.e. larger MJ/ψ J/ψ

are more favourable for the modulations since they allow for larger qT,max.
For completeness, we show in Figs. E.6, E.7, E.8 and E.9 example modulations, in

line with the hard scales employed in Fig 3.10, with separate scale variations. We find
that C1 variation allows for an increase of the modulations, while C2 and C3 variation
provide both larger and smaller modulations, depending on the value of MJ/ψ J/ψ and
the modulation. C2 variation allows for more larger than smaller modulations, while
C3 variation shows the opposite. C1 = C3 variation gives again a more complicated
behaviour, i.e. for the small hard scale larger and smaller modulation can arise, while
for the large hard scale only larger modulations are expected.

With regards to the fixed-target program at the LHCb [166], we provide an example
of what can be expected for J/ψ-pair production. Our predictions for the normalised
differential cross section and the modulations are shown Fig. 6.23 and Fig. 6.24, re-
spectively, considering similar invariant masses of the pair as in the collider mode
discussed above. The difference in the computations is due to the expected centre-of-
mass energy of

√
s = 115GeV and the rapidity shift of yQQ, chosen to be −1 chosen in
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Figure 6.23: An example of the normalised differential cross sections for J/ψ-pair
production in fixed-target mode (

√
s = 115GeV) as a function of qT for various µH

with y = −1. The estimated TMD regime, qT,max = MQQ/3, is denoted with the
dotted lines.

our example. This leads to much larger x values following Eq. 3.98, outside the gluon
dominated region, resulting in smaller magnitudes for the convolutions and causing
them to approach zero more quickly, as explained in Sec. 6.1. Since we have that
C[f g1 f

g
1 ] including scale variation becomes negative within the usual considered TMD

regime, we have to restrict the computations, i.e. we have chosen qT,max = MQQ/3 to
avoid this. We observe that the normalised differential cross section peaks at smaller
qT and has larger magnitudes in fixed-target mode compared to collider mode. The
modulation increases much more rapidly, but due to the smaller qT,max, the cos(2φCS)-
modulations do not exceed the magnitudes observed in the collider mode. On the other
hand, it results in very small magnitudes for the cos(4φCS)-modulations. Taking these
observations into account, we conclude that this process is interesting for testing the
theoretical framework at large x, where corrections to it are likely necessary.

Another process of interest for future measurements would be Υ-pair production
in collider mode, that is almost identical to the discussed J/ψ-pair production. The
main difference is the mass of the heavy quarks and the corresponding quarkonia,
here taken to be: MΥ = 9.5GeV. Therefore, the evolution at generally larger scales is
probed, making it possible to observe more of its behaviour. The value of the LDME
also varies, but this difference cancels in observables like the normalised differential
cross section and the modulations, as we use the simple LDME description for the
quarkonium formation instead of the TMDShFs. In Fig. 6.25 and Fig. 6.26 example
predictions of these observables are shown, i.e. we take a rapidity for the pair similar
to the J/ψ-pair case, but consider larger invariant masses. Due to the increase of MQQ
one obtains larger TMD regimes favourable for observing the peaks of the convolutions
and the normalised differential cross section, while their magnitudes are as expected
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Figure 6.24: An example of the modulations in J/ψ-pair production in fixed-target
mode as a function of qT for different values of MJ/ψ J/ψ, similar to Fig. 6.22, with
kinematics following Fig. 6.23. Since the cos(2φCS)-modulations are large, we also
present their corresponding upper bounds.

smaller. Besides, we note that these computations are less sensitive to nonperturbative
physics. We observe that the modulations increase less quickly with qT , but reach
similar magnitudes as J/ψ-pair production in the collider mode. The latter can be
explained as follows. The hard factors for Υ-pair production are much smaller in
magnitude, but their ratios, and therefore their upper bounds, are equivalent to the
ones for J/ψ-pair production when the following scaling is employed: if MΥ = νMJ/ψ

then MΥΥ = νMJ/ψJ/ψ. For example, since ν ∼ 3, the modulations for MΥΥ = 30GeV
and MJ/ψJ/ψ = 11GeV should have approximately the same magnitude, hence small
deviations from this come from the convolutions.

We end this section by investigating the hard scale dependences of observables,
since this provides a way to study TMD evolution as well. In this regard we need to
select a specific qT to conduct our analysis. C[f g1 f

g
1 ] has its maximum at qT = 0GeV,

which is therefore a natural choice. Its behaviour as a function of µH is shown in
Fig. E.10 for two different rapidities. We observe the expected decrease, which is
faster for larger rapidity. By fitting, its proportionality to µH is obtained, which can
be compared to the theoretical asymptotic behaviour of the perturbative Sudakov
suppression as discussed in Sec. 4.2. Of course, we find much larger powers for µH
due to the suppression by the nonperturbative Sudakov factor and the TMD tails.
The same analysis holds for C[w2h

⊥g
1 h⊥g1 ] that is shown in Fig. E.11, for which the
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Figure 6.25: An example of the normalised differential cross sections for Υ-pair pro-
duction in collider mode (

√
s = 13TeV) as a function of qT for various µH with y = 3.
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Figure 6.26: An example of the modulations in Υ-pair production in collider mode
as a function of qT for different values of MΥΥ, similar to Fig. 6.22, with kinematics
following Fig. 6.25. Since the cos(2φCS)-modulations are large, we also present their
corresponding upper bounds.
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power behaviour of µH is even larger. We note that the scale dependence of the
differential cross section can be approximated by dσ ∝ M−3

QQ C[f g1 f
g
1 ](qT = 0GeV),

where C[f g1 f
g
1 ](qT = 0GeV) ∝Mα

QQ, with α depending on the rapidity as can be seen
in the figures. Or course, another value for qT may be chosen as well, but then a
different power law will be expected in general.

The normalised differential cross section and the modulations are zero at qT =
0GeV, therefore qT,max is chosen as the point at which their µH dependence is in-
vestigated. The results are shown in Fig. E.12 and Fig. E.13, respectively. For the
normalised differential cross section similar behaviour as for C[f g1 f

g
1 ] is found, where

the normalisation suppresses naturally the power behaviour with respect to the non-
normalised case. Similarly, its fitted power-law behaviour is displayed in the figure,
once again showing dependence on rapidity, although this dependence is reduced. We
observe that while the cos (2φCS)-modulations increase in magnitude by increasing
the rapidity, the cos (4φCS)-modulations decrease. This opposite behaviour is found
since all the convolutions decrease in magnitude when increasing y, while C[w3f

g
1h

⊥g
1 ]

and C[w′
3h

⊥g
1 f g1 ] decrease significantly less. We note that the cos(2φCS)-modulations

consistently exceed the upper bounds for large MJ/ψJ/ψ, regardless of both Case 1 and
Case 2 scale variation and the rapidity (note that the upper bounds are independent of
y). Even the central value surpasses the upper bounds at a certain point. Since this is
likely not due to the choice of nonperturbative Sudakov factor, we suspect that other
contributions become significant at such large scales or that higher-order corrections
might solve this issue.

6.4 Towards a complete TM spectrum
We now return to the process of J/ψ electroproduction as an example since we have
both the LO TMD and collinear differential cross section at our disposal, aiming to
obtain a spectrum over the full qT -range. This ongoing research is being conducted in
collaboration with D. Boer and L. Maxia. Here we employ again our novel nonpertur-
bative Sudakov factor developed in Sec. 6.2 together with scale variation to estimate
the perturbative uncertainty. Indeed, this will alter our TMD predictions presented
in Sec. 6.1, therefore we first investigate how the predictions are altered before we
continue with discussing the numerical matching procedure.

With respect to hadroproduction, there are two differences taken into account.
First, for consistency with the other predictions of this process we employ LL resum-
mation for the perturbative Sudakov (defined below Eq. 4.46), which has an effect on
the accuracy as we will see. Second, instead of a second TMD, we have a TMDShF, for
which we note the following: since the LDMEs are scale- and therefore bT -independent
within the TMD-evolution formalism, we cannot determine a nonperturbative coeffi-
cient g∆(h)

for the nonperturbative Sudakov factor given in Eq. 6.10 as for the TMDs
following Eq. 6.9. However, neglecting the TMDShF contribution in SNP is not an
issue, since our formalism guarantees a smooth continuation in bT space of the pertur-
bative Sudakov factor (incorporating the LO large TM TMDShF tail by resummation)
and the LO large TM perturbative TMD tails within the integrand of the convolution
through the nonperturbative Sudakov factor.
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Figure 6.27: Example predictions for the convolutions and their ratio R for J/ψ
electroproduction at z = 1 as a function of qT by employing our novel nonperturbative
Sudakov factor and Case 1 scale variation, for various values of Q, with x = 10−2 and
bT,max = 1.0GeV−1, similar to Fig. 6.2. We note that for R the previous predictions
with a Gaussian ansatz are given in red for comparison.

In particular, we recompute the x = 10−2 convolutions and their ratios from
Sec. 6.2 that are shown in Fig. 6.27 in order to obtain a general understanding on
how our new results compare to the previous ones. Here we have employed large n
and bT,max = 1.0GeV−1 in line with the discussions presented in the previous sec-
tions. Indeed, we observe the upward bumps in C[wh⊥g1 ∆h] as discussed in Sec. 6.2,
which presence is enlarged in the observable R. Additionally, significantly larger un-
certainties are observed. Since the R predictions only need to be multiplied by the
corresponding azimuthal hard factors to obtain the azimuthal modulations, it is evi-
dent that these new calculations allow for a much larger range of possible asymmetries
at the EIC. Additionally, the uncertainties are so significant that the variation in scale
contributes as much to the overall uncertainty as the choice of LDME set. Our pre-
dictive power improves for larger Q like before, however such values lead to larger x
values due to the kinematical constraints of this process where the gluon TMDs are
unlikely to be probed.

However, the R predictions show that the positivity bound is largely violated
for the three lowest values of µH . To address this issue, we point out that in the
current implementation only less nonperturbative contributions could be assumed for
C[wh⊥g1 ∆h], to decrease its magnitude. With our novel SNP there are two ways to
do so. One way is to assume a smaller nonperturbative TMD part for h⊥g1 , i.e. one
can choose a larger value for gh⊥g

1
. The other way is to change the point where

nonperturbative physics takes over by altering bT,max, i.e. one can choose a larger bT,max
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for which a larger g is found in general. Nevertheless, we expect that there are also
nonperturbative TMD contributions from the TMDShFs, but we lack understanding of
their values. Taking into account the assumption that the TMDShFs are the same for
both convolutions, on top of our current state of our knowledge as summarised above,
we conclude that more research is required and our formalism is currently unable to
provide adequate predictions for the azimuthal modulations.

In the matching discussed below, we have chosen to proceed with our novel nonper-
turbative Sudakov factor for the TMD computations as only isotropic contributions
are investigated, i.e. we solely focus on the angle-independent terms involving C[f g1∆].
For the complete picture, non-isotropic contributions, those with C[wh⊥g1 ∆h], should
be taken into account too, but before that can be done the violation of the positivity
bound discussed above should be settled first.

Keeping the correction terms general, we can re-express the differential cross sec-
tion in the LTM region as

dσ
∣∣∣
qT�µH

= W (qT , µH) +

[
O

(
qT
µH

)a
+O

(
m

µH

)a′]
dσ , (6.16)

where W is the TMD approximation of the differential cross section dσ. The correction
of order qT/µH comes from the HTM region, identified as the Y term in Eq. 3.45, while
the correction of order m/µH comes from corrections to the hadronic correlator, i.e.
the scale m = Mh is the hadronic mass scale of the order of 1GeV. As qT increases,
the accuracy of the TMD approximation decreases and the power corrections are
increasingly relevant until the expansion breaks down as qT approaches µH . On the
other hand, the differential cross section in the HTM region can be written as

dσ
∣∣∣
qT∼µH�m�ΛQCD

= Z(qT , µH) +O

(
m

qT

)b
dσ , (6.17)

where Z is the collinear approximation of the differential cross section dσ, also called
the fixed-order (FO) differential cross section. For qT ∼ µH � m � ΛQCD, Z is a
good approximation of the full cross section, but as qT decreases the accuracy of the
collinear approximation diminishes, which breaks down as qT approaches m.

The values of the exponents a and b are given by the strength of the power correc-
tions and depend on the details of the process and its factorisation. In the case of an
unpolarised processes, the smallest values allowed by Lorentz symmetry are a = a′ = 2
and b = 2, since qT is the only transverse vector that explicitly appears in the fac-
torisation theorems. We therefore use these values in the numerical implementations
presented below. We note that for cross sections involving spin (e.g. see App. B), a
more conservative matching scheme can be employed with a = b = 1.

With both these factorisation theorems, the full numerical TM spectrum can be
constructed through a matching scheme. Such a scheme must make sure that the
result agrees with W in the LTM region and with Z in the HTM region, and that
there is a smooth transition in the intermediate region. Instead of employing the
commonly used theoretical CSS method, in which the complete cross section is given
by dσ = W + Y = W + Z − A, where A is the asymptotic term that is divergent for
qT → 0 (i.e. the FO small-qT expansion of Z), we employ the phenomenological inverse-
error weighting (InEW) method from [167]. In this scheme the power corrections to
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the factorisation theorems are used to quantify the trustworthiness associated to the
respective contributions, i.e. they are employed to build a weighted average. The
resulting differential cross section over the full range in qT is then given by

dσ = ω1W (qT , µH) + ω2 Z(qT , µH) , (6.18)

where the normalised weights for each of the two terms are

ω1 =
∆W−2

∆W−2 +∆Z−2
, (6.19)

ω2 =
∆Z−2

∆W−2 +∆Z−2
, (6.20)

with ∆W and ∆Z being the uncertainties of both factorisation theorems generated
by their power corrections. In particular, ∆W = ∆W dσ and ∆Z = ∆Z dσ are given
by:

∆W =

(
qT
µH

)2

+

(
m

µH

)2

, (6.21)

∆Z =

(
m

qT

)2
(
1 + ln µH

MQ
+ ln

√
µ2
H + q2T
q2T

)
. (6.22)

We elaborate on the additional term introduced in ∆Z below. The uncertainty in
Eq. 6.18 simply follows from the propagation of these (uncorrelated) theory uncer-
tainties:

∆dσ =
1√

∆W−2 +∆Z−2
≈ ∆W ∆Z√

∆2
W +∆2

Z

dσ . (6.23)

In general, once the matched cross section is obtained, one can include other important
sources of uncertainty, i.e. we will combine the uncertainty of the matching with those
from scale variations and LDME extractions.

In the region where qT becomes smaller than µH , large logarithms will reduce the
accuracy of the power counting of the collinear cross section. Therefore, the additional
term of ∆Z is introduced as it improves the reliability of the scheme for all qT , i.e.
when qT � µH it corresponds to the leading logarithms of the FO calculation. Un-
like [167], we modified this term by exchanging one of the qT -logarithms for another
one over the hard scale, inspired by the divergent behaviour found for J/ψ electro-
production (see Eqs. 5.91 and 5.92). In particular, we take here: µ2

H = Q2 +M2
Q.

This additional logarithm is negligible for small-Q values, whereas it contributes to
reducing the applicability of the collinear factorisation at small qT for large-Q values.

Before we continue to present results of the InEW method, we make two more
remarks. First, for the FO calculation of order αα2

s performed with Eq. 5.39, x̂max was
shown as independent of qT , see Eq. 5.40, since we were primarily interested in the
kinematical region where qT � MQ, Q (i.e. giving the asymptotic term). However,
the following equation is needed to properly evaluate it when qT &MQ, Q:

x̂max(qT ) =
Q2

Q2 +M2
Q + 2MQ|qT |

. (6.24)
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Figure 6.28: Examples of the J/ψ electroproduction differential cross section matched
via the InEW method as a function of qT for two values of Q and two LDME sets, with
x = 10−2 and

√
s = 140GeV. For the uncertainty bands we combine the uncertainties

from (Case 1) scale variation, the LMDE set and the matching procedure. The dotted
lines denote the regions for which ∆W , ∆Z < 0.15; we note that in the right graphs
they lie approximately on top of each other.

Second, unlike studies on the production of light hadrons in SIDIS (see e.g. [168,
169]), we have no flexibility in the choice of z for performing the matching in J/ψ
(or generally quarkonium) production, with z = 1 being the only possibility. This
constraint arises from approximating the invariant mass of the cc̄ pair to the J/ψ
mass in its rest frame. As qT decreases, the energy fraction of the cc̄ pair saturates,
leading to ẑ → 1, as shown in [129, 132] and in Ch. 5, which directly corresponds
to the energy fraction of the J/ψ (z). However, we expect this approximation to
break down with a more refined z dependence in the TMDShFs, allowing for slight
deviations between z and ẑ, as suggested in [170, 171]. In particular, a complete
TM spectra with z 6= 1 would allow for a comparison with Hadron–Electron Ring
Accelerator (HERA) data [172] that could possibly set constraints on the TMDs and
the TMDShFs. Nonetheless, given our primary focus on the Q dependence of the
TMD observables, we continue using this approximation and leave a detailed study of
the z dependence in the TMDShFs for future investigations.

In Fig. 6.28, we present the FO and TMD cross sections along with the matched
curves obtained using the InEW method. Specifically, we show examples with x = 10−2

and
√
s = 140GeV, identified in Sec. 6.1 as the optimal centre-of-mass energy for the

TMD cross section at the EIC. Two different values for Q are considered, MJ/ψ and
12GeV, representing extreme kinematically allowed cases under these conditions. Like
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before, we also employ the CMSWZ and SV sets for the LDMEs (see Table 3.3) to
illustrate the differences between them, i.e. the SV predictions lie slightly lower as
expected. The uncertainty bands for each curve are obtained by propagation of in-
dependent errors. Specifically, for the TMD and FO cross sections we combined the
LDMEs uncertainties with the scale variation, namely the factorisation scale for the
latter and C1, C2 and C3 variations for the former. For the matched curve, we combine
these bands with the uncertainty given in Eq. 6.23.

We note that the uncertainty in Eq. 6.23 identifies two scenarios. On the one
hand, we expect that for a sufficiently large µH matching occurs in an ITM region
where both frameworks are reliable, i.e. the associated ∆W and ∆Z are small. On the
other, if µH is smaller, the matching happens in a region where both factorisations lose
there reliability. Which scenario occurs is decided by a certain threshold on ∆dσ, for
which we have chosen ∆dσ/dσ = 0.15/

√
2 ≈ 10%. With this choice an ITM region is

found for Q > 12GeV, which becomes larger when Q is further increased. Especially
for smaller values of Q the identification of this matching region is relevant, i.e. to
have greater control over the TMD cross section when ∆W > 0.15, we exclude its
negative values. Indeed, within the TMD uncertainty band, the predictions lose at
some point their physical meaning by allowing negative values for the cross sections,
e.g. for Q =MJ/ψ negative values are found for qT & 2.5GeV. On the contrary, when
matching happens below this uncertainty threshold, this behaviour of the TMD cross
section is suppressed by the smallness of the associated weight. We anticipate that
this artificial solution is required due to the magnitude of the TMD uncertainties since
we can choose the threshold to be larger. Hence, by improving the precision of both
the TMD and FO descriptions, the uncertainty in the matched curve is expected to
be dominated by ∆dσ.

The fact that the TMD curve tends to lie above the FO one, as can be clearly
seen by comparing the central values within the two factorisations, is an important
feature as this indicates smooth matching between the two regimes is possible. In
particular, the TMD differential cross sections evaluated at the origin lie above the
collinear cross sections evaluated at qT,max, the point at which the TMD calculation is
expected to break down and where therefore approximately the matching occurs. To
investigate this in greater detail we show in Fig. 6.29 these specific points as a function
of Q. We observe that both the TMD and collinear curves decrease with qT , but at
different rates; in particular, the FO one will drop much faster. Indeed, it is found
that the TMD curve lies above the collinear one in both the 1S8

0 and 3P 8
J channels,

i.e. matching the cross section of those channels will have no surprising features.
However, when we take all contributions into account we observe that for large

Q the FO computation becomes larger than the TMD one, for the CMSWZ set at
smaller Q than for the SV set. Since this is not due to the 1S8

0 and 3P 8
J channels,

this observation must come from the 3S1 channel. Therefore, we also show the FO
calculations without these contributions, for quark and gluons separately. In par-
ticular, the gluon contribution to the 3S1 channel is proportional to 〈OJ/ψ[3Sc1]〉 =
〈OJ/ψ[3S1

1 ]〉+ 15
8
〈OJ/ψ[3S8

1 ]〉 ≈ 〈OJ/ψ[3S1
1 ]〉 (where the factor of 15/8 comes from the

relative colour projectors and the LDME normalisations), i.e. of order unity, while the
quark contribution to this channel is proportional to 〈OJ/ψ[3S8

1 ]〉, i.e. suppressed by
order v4 (see Table 3.2). Hence, as Q increases, the hard factor associated with the
quark 3S1-wave in the FO calculation grows, becoming more important than the other
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Figure 6.29: The central values of the TMD differential cross section at qT = 0GeV
and the collinear differential cross section at qT,max for J/ψ electroproduction as a
function of Q, with x = 10−2 and

√
s = 140GeV. In the upper graphs we show the

1S0 and 3P0 CO cross sections independently, while in the lower graphs we show the
complete cross sections with the CMSWZ and the SV set. In the latter we also present
the FO cross section without 3S1 contributions, from gluons, as well as from quarks,
to explain the observed behaviour at large Q.

contributions. The corresponding expected outcome is a distinctive bump in the ITM
region of the matched curve for large Q.

Nevertheless, one can question whether such large-Q values will ever be relevant,
and once these values are reached it is likely that additional contributions must be
incorporated such as QED corrections [173] and fragmentation contributions [53,147].
However, it is currently unclear how these connect to their TMD counterparts. The
QED corrections should correspond to a TMD photon distribution of the proton or
are affiliated with the electron, while the FFs require an understanding of how the
TMDShFs relate to the TMDFFs. We note that a transition region in Q likely ex-
ists between our predictions and these additional contributions. As a result, a more
complex behaviour could already be expected at smaller-Q values compared to those
shown in Fig. 6.29.

In addition to investigating non-isotropic contributions, other kinematic regimes
at the EIC should also be explored as was done previously. Moreover, the uncertainty
from CO LDME values remains a significant challenge, so a broader range of LDME
sets should be investigated as well. Furthermore, a next step would be to explore
the matching in J/ψ photoproduction, since there is data available from HERA and
indirectly from ultra-peripheral collisions (UPCs) at the LHC. For an overview of
these experiments and how proton-lead UPCs, in which a quasi-real photon emitted
by a fully stripped lead ion breaks a proton, can be used to study inclusive vector-
quarkonium production we refer to [174].





7
Discussion and conclusions

Quarkonium production is considered as a main tool for probing the unknown gluon
TMDs at the current LHC but also at the upcoming EIC. Therefore, we analysed
the differential cross sections of quarkonium (-pair) production in proton-proton col-
lisions, as well as quarkonium production in electron-proton collision, for which TMD
factorisation is expected to hold. Specifically, by treating all incoming particles as
unpolarised, we were able to study both the unpolarised and linearly polarised gluon
TMDs. Moreover, we investigated these TMDs by examining the azimuthal modula-
tions that can arise in these processes due to the presence of linearly polarised gluons
within unpolarised protons. In particular, we studied the convolutions of TMD func-
tions in these reactions by employing the TMD-evolution formalism, as opposed to
relying on models. This is because their large transverse momentum perturbative tails
are related to known functions, namely the nonperturbative PDFs from collinear fac-
torisation and the nonperturbative LDMEs from NRQCD factorisation for quarkonium
production. As a result, only the unknown nonperturbative TMD contributions, incor-
porated in the nonperturbative Sudakov factor, needed to be parametrised. In order
to study TMD evolution, we concentrated on processes with a variable hard scale, i.e.
quarkonium-pair hadroproduction and quarkonium electroproduction. In particular,
we consider mainly J/ψ production, as this quarkonium is relatively straightforward
to detect in collider experiments.

The TMD shape functions (TMDShFs), which generalise the LDMEs within TMD
factorisation, are important in the phenomenological description of quarkonium pro-
duction as they account for final state smearing effects. So far the LO expression
for the TMDShF in terms of LDMEs has proven to be sufficient for CS quarkonium
production. However, we have shown that their contribution to the evolution of CO
J/ψ electroproduction at LO is essential due to the unavoidable soft-gluon radia-
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tion required for the quarkonium to become colourless. Particularly, we showed that
the large transverse momentum perturbative tails of the TMDShFs can be found by
matching the TMD and collinear cross sections of a process in the region where both
factorisations are applicable, provided that collinear singularities in the hard factors,
that were not noticed before, are properly taken into account when performing the
small transverse momentum limit. We expect that the presence of these poles from the
gluon channel are an intrinsic feature of any inclusive quarkonium production process.
Specifically, at LO the large transverse momentum perturbative tails of the TMDShFs
that convolute with the unpolarised gluon TMD have been determined, while for the
TMDShFs that convolute with the linearly polarised gluon TMD, a higher-order αs
matching is required. The functional form of the TMDShFs is supported by an eikonal
approximation, which does not discriminate which gluon TMD is employed, hinting
that they might be the same. Moreover, we found that the TMDShFs provide a unique
contribution to the process, different from a FF description. Given that the TMDShFs
should solely depend on the quarkonium mass and the hard scale of the process, we
proposed that the TMDShFs are universal. This implies that a process-dependent soft
factor must be considered, which can be removed by a proper scale choice. Hence,
we proposed a strategy for determining the TMDShFs experimentally from different
processes: extract them from one process and validate them in another by evolving to
the relevant hard scale and including the appropriate soft factor.

By incorporating the large transverse momentum tails of the TMDShFs (assuming
them to be the same for both convolutions), we predicted significantly large azimuthal
asymmetries for J/ψ electroproduction at the future EIC, depending on the specific
kinematics and the poorly determined CO LDMEs. The asymmetries were found to
increase monotonically as a function of transverse momentum in the TMD regime, with
the expectation that their peak will occur outside of it. Generally, smaller hard scales
(sufficiently larger than the quarkonium mass) and the larger centre-of-mass energy
of 140 GeV will result in larger asymmetries, while the dependence on the collinear
momentum fraction is less systematic within the EIC kinematic range. Due to the
uncertainty in the LDMEs, going to higher-order calculations in the TMD evolution at
this stage is unlikely to yield significantly more precise predictions. These predictions
were made using a Gaussian ansatz for the nonperturbative Sudakov factor, with its
coefficient varied to estimate the nonperturbative uncertainty. The EIC experiment is
crucial for reducing these uncertainties, such that our understanding of gluon TMDs
and TMDShFs, and with them the LMDEs, can be improved.

Given the limitations associated with a general Gaussian ansatz for the nonpertur-
bative Sudakov factor, we developed a novel nonperturbative Sudakov factor for the
TMD-evolution formalism. In particular, since real measurements are independent of
the theoretical separation between perturbative and nonperturbative physics by bT,max,
the nonperturbative Sudakov factor should provide bT,max invariance of observables (at
a specific perturbative order). Additionally, it should account for the specific TMD
functions employed. Our novel Gaussian-like nonperturbative Sudakov factor is based
on a stricter separation between perturbative and nonperturbative physics, ensuring
a smooth transition of known contributions into the nonperturbative regime. Specifi-
cally, we expected that the integrand of the convolutions (without the Bessel function)
would increase in bT space, followed by a decrease towards zero, resulting in a single
smooth peak. By matching the derivatives of the TMD functions in the convolutions
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at bT,max, we identified the minimal value of the coefficient in our nonperturbative Su-
dakov factor necessary to achieve this behaviour. Consequently, the peak in bT space
consistently occurs within the perturbative regime, with the extent of nonperturba-
tive physics determined by perturbative physics. Approximate bT,max invariance for
the observables followed from this formalism as well. Besides, we note that in general
an upward bump at small transverse momentum can arise in the convolutions, driven
by large-bT contributions. It was found that our novel nonperturbative Sudakov fac-
tor generally does not allow for such a bump in proton-proton collisions, whereas it
does permit such a bump in electron-proton collisions, due to the different perturba-
tive Sudakov factor and the different combinations of TMD functions involved in the
convolutions. Although our nonperturbative Sudakov factor provides an innovative
approach to exploring TMD evolution by utilising the interplay between perturbative
and nonperturbative physics, it may not be the definitive solution as some concerns
have been raised in particular situations; it remains a process-dependent factor that
requires validation through experimental data.

When applying the novel nonperturbative Sudakov factor in the TMD-evolution
formalism for quarkonium (-pair) hadroproduction at LHC kinematics, we found that
the nonperturbative uncertainties in the convolutions are negligible compared to the
perturbative uncertainties. That is, we observed that the uncertainties arising from
bT,max-variation, extra suppression by increasing the coefficient of the nonperturbative
Sudakov factor and the PDF set, are much smaller than those from scale variation.
In particular, we took two distinct approaches to scale variation: one more conserva-
tive than the other, which restricts the scale entering the large transverse momentum
perturbative tails of the TMDs. In general, we found good agreement to recent nor-
malised differential cross section data of J/ψ-pair production from LHCb, but the
best fit was achieved by relaxing this additional scale-variation restriction, especially
when different hard scales are employed. Continuing with only scale variation as the
source of uncertainty, we generated predictions for the azimuthal modulations in J/ψ-
pair production, which exhibited a similar behaviour to the modulation observed in
J/ψ electroproduction as a function of transverse momentum. In contrast, in this
process larger asymmetries within the TMD regime are expected when the hard scale
is increased. Generally, the magnitudes of the cos (2φCS)-modulations are found to
be larger than those of the cos (4φCS)-modulations and our results indicate how to
optimise the binning in θCS. Future measurements at the LHCb of J/ψ-pair produc-
tion in fixed-target mode or Υ-pair production in collider mode could offer valuable
complementary information by probing the gluon TMDs under different kinematic
conditions, at larger collinear momentum fractions or at larger hard scales, respec-
tively. Moreover, further improved measurements of the J/ψ-pair differential cross
section in the current collider mode (with optimised binning), along with an analysis
of the azimuthal modulations in specific θCS-bins, would help to better constrain the
gluon TMDs too. Besides, it might be suitable to test the TMD-evolution formal-
ism as well by analysing the power-law behaviour of observables with respect to the
hard scale of the process, e.g. the normalised cross section at a specific transverse
momentum.

We finished our analysis by presenting some examples of the complete J/ψ electro-
production cross section by numerically matching its collinear and TMD regimes. We
demonstrated that when our novel nonperturbative Sudakov factor is applied to this
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process at EIC kinematics, along with scale variation, similar results are observed to
those obtained using a Gaussian ansatz, but with significantly larger uncertainties in
the observables. Given that our findings show a significant violation of the positivity
bound for this process and that other uncertainties, such as the lack of knowledge
about nonperturbative TMD contributions from the TMDShFs, need to be addressed,
we focused solely on matching isotropic cross sections, i.e. terms involving the un-
polarised gluon TMD. We demonstrated the potential of the inverse-error weighting
method for matching, for which we introduced an alternative collinear weight function
to account for the distinct divergent behaviour caused by the TMDShFs in this process.
This forms a preliminary step towards developing a complete theoretical transverse
momentum spectrum for gluon-induced quarkonium production. Moreover, for the to-
tal uncertainty of the matched curve we combined the perturbative uncertainties from
scale variation with the uncertainties from the LDME sets and the matching proce-
dure itself. Additionally, we examined the hard scale dependence in both regimes.
Although the TMD and collinear cross sections follow significantly different power
laws in the kinematic regime to be probed by the EIC, we find that smooth matching
is expected in general since the TMD cross sections lie above the collinear ones in the
regime where matching occurs.



A
QCD in a nutshell

In this appendix we summarise some important results and identities from QFT, in
particular QCD, that are used throughout this thesis. For details we refer to standard
textbooks such as [175, 176].

Conventions
• We work in natural units: h̄ = c = 1.

• We adopt the following Minkowski metric: g00 = −g11 = −g22 = −g33 = 1.

Colour Algebra
QCD is a non-abelian gauge theory with a local SU(Nc) symmetry, where Nc = 3
denotes the number of colours. The invariance of the fermionic quark fields under
these local transformations gives rise to eight massless gauge boson fields: the gluons.
The special unitary symmetry group SU(Nc) consists of all Nc ×Nc unitary matrices
V with determinant 1:

V † = V −1 , detV = 1 . (A.1)

Therefore, the group elements of the local symmetry can be represented by

V (ξ) = eiωa(ξ)ta , (A.2)

where ta are the traceless Hermitian generators spanning the Lie algebra su(Nc) of
the Lie group SU(Nc) and ωa(ξ) are the (arbitrary) transformation parameters. The
index a runs from 1 to d(G), where d(G) = N2

c − 1 is the dimension of the group.
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In particular, the generators of QCD in the fundamental representation are the
eight Gell-Mann matrices λa, with ta = λa/2. The traces of the generators, also
referred to as colour matrices, are normalised according to

Tr[tatb] = taijt
b
ji =

1

2
δab , (A.3)

where the index i and j run from 1 to Nc. They obey the commutation and anticom-
mutation relations

[ta, tb] = ifabc tc , (A.4)

{ta, tb} =
1

Nc

δab + dabc tc , (A.5)

where:

fabc = −2iTr(ta[tb, tc]) , (A.6)
dabc = 2Tr(ta{tb, tc}) . (A.7)

The brackets denote the standard commutator, [a, b] = ab− ba, and anticommutator,
{a, b} = ab + ba. The structure constants f are antisymmetric in all indices, and
the structure constants d are symmetric in all indices. From these equations one can
derive:

Tr[tatbtc] = 1

4
(dabc + ifabc) . (A.8)

In general, one can write for a representation R

TrR[tatb] = T (R)δab , TrR[I] = d(R) , (A.9)

where T (R) and d(R) are the index and dimension, respectively, and I the identity
matrix. Besides the fundamental representation (F ), there are two other important
representations: the trivial representation with dimension one, in which the generators
are zero, so, every group element 1, and the adjoint representation (A) with dimension
d(G), in which the generators are: (taA)

bc = −ifabc. The invariant quadratic Casimir
is found by

CR =
TrR[tata]
d(R)

=
T (R)d(G)

d(R)
, (A.10)

where d(F ) = Nc, d(A) = d(G), T (F ) = 1/2 and T (A) = Nc, i.e. for the fundamental
and adjoint representations we obtain:

CF =
N2
c − 1

2Nc

, CA = Nc . (A.11)

In QCD quarks transform under the fundamental representation (triplet, 3), anti-
quarks under the antifundamental representation (3̄) and gluons under the adjoint
representation (octet, 8) of the colour gauge symmetry. The trivial representation is
colourless (singlet, 1).
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The Lagrangian
A QFT is described by a Lagrangian, for QCD given by

LQCD = −1

4
FµνF

µν +

nf∑
q

ψ̄q(i /D −mq)ψq , (A.12)

where the Dirac field ψq with mass mq represents a quark with a flavour q and nf
denotes the number of flavours. Here the Feynman slash notation /D = γµDµ is
employed, where γµ are the Dirac matrices. Besides, ψ̄ = ψ†γ0 is the Dirac adjoint.
The covariant derivative is given by

Dµ = ∂µ − igsAµ , (A.13)

where gs is the strong coupling constant, also called colour charge, and A the four-
vector field representing a gluon, in particular, Aµ = Aaµt

a. The gluon field strength
tensor, Fµν ≡ (i/gs)[Dµ, Dν ], is expressed as:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν . (A.14)

We note that Eq. A.12 is by construction invariant under local SU(3) transformations
given in Eqs. 2.3 and 2.6. From the Lagrangian one can derive the Feynman rules for
perturbative calculations of scattering amplitudes. In particular, one can expand the
action in correlators, that are vacuum expectation values of time-ordered products of
field operators, when the coupling constant is small. The Feynman rules that are used
in this thesis are summarised below.

The last term of Eq. A.14 gives rise to gluonic self interactions, which is absent in
an abelian theory like QED. In the latter, the gauge symmetry group is U(1), where
the generator is identity. LQED is similar to Eq. A.12: one can just replace gs with e,
where e is the elementary electric charge. In case the fermionic field describes a quark
instead of a charged lepton, the coupling constant must be multiplied by the fractional
electric charge eq. In this theory, the invariance under local U(1) transformations gives
rise to the massless four-vector photon fields.

Confinement and asymptotic freedom
Opposite charges are drawn to each other via the electromagnetic force of QED, which
diminishes quickly as the distance between them increases. This enables the separation
of oppositely charged particles over long distances. In contrast, the strong force of
QCD involves self-interacting gluons forming a flux tube between two quarks. As
the quarks approach each other, the interaction weakens. On the other hand, as the
distance between quarks increases, the interaction intensifies. At a sufficiently large
distance, it becomes energetically more favourable to generate quark-antiquark pairs
than to isolate the quarks as free particles. Consequently, isolating colour charged
particles is impossible, and only colour singlet composite particles, known as hadrons,
are observed. This property is referred to as confinement.

In QED, a single electron is surrounded by a cloud of e+e− pairs. The fluctuating
pairs arrange themselves in such a way that the e+ particles are closer to the electron,
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thereby screening its charge. This results in a reduced effective charge for the electron,
causing the QED coupling constant α = e2/4π to decrease as the distance increases.
At lower energies, α is approximately 1/137, whereas at large scales, e.g. the mass
of the Z-boson (around 90GeV), α measures around 1/128. As energy increases, α
continues to increase, eventually leading to a strong coupling.

Conversely, in QCD, a quark with a colour charge is surrounded not only by
qq̄ pairs contributing to a similar screening effect but also by gluons due to their
self-interactions, giving an antiscreening effect. Ultimately, the antiscreening effect
from gluons outweighs the screening effect, causing the running of the strong cou-
pling αs = g2s/4π to be smaller at higher energies instead. This allows quarks to be
treated as free particles at high energies, a phenomenon known as asymptotic freedom.
This property permits the application of perturbation theory in high-energy collisions.
However, in the strong coupling region, one enters the nonperturbative regime. Per-
turbation theory relies on the small coupling, and the first order expansion in αs is
referred to as the leading order (LO), followed by the next-to-leading order (NLO),
etc. Higher-order terms in the expansion provide smaller contributions due to the
larger powers of αs.

In high-energy collisions single quarks and gluons with some colour charge can be
created. Then, in order to obey confinement, other coloured objects will be created
to form colourless hadrons. The ensemble of these particles tend to travel in the same
direction and is called a jet; a narrow cone of hadrons and other particles produced
by the hadronisation of quarks and gluons.

In practice, the running of the coupling is derived from the renormalisation group
equations, which follow from the requirement that observables associated with the
Lagrangian, such as the coupling, should not depend on an arbitrary renormalisation
scale µ. Namely, a renormalisation scheme is needed to absorb the infinities that arise
in perturbative calculations beyond LO. Quantitatively, the running of αs is encoded
in the β-function

β(as) ≡
d as(µ)

d lnµ2
= −

∑
i≥0

βi a
i+2
s (µ) , (A.15)

where as ≡ αs(µ)/4π. In this thesis we solely utilise the LO (one loop) coefficient,
that is given by

β0 =
11

3
CA − 4

3
T (F )nf

QCD
= 11− 2

3
nf , (A.16)

where the first term comes from gluon loops and the second term from quark loops.
Hence, in the standard model nf = 6, the β-function is negative (while for QED it is
positive). Higher-order terms up to five loops can be found in [177]. Using the first
order differential equation, αs at any scale µ can be related to a particular reference
scale. For this reference scale one usually takes the Landau pole ΛQCD, also referred to
as the QCD scale, which is the energy scale at which the coupling constant becomes
infinite. So, at the LO one obtains:

αs(µ) =
4π

β0 ln µ2

Λ2
QCD

. (A.17)
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Typically, ΛQCD ∼ 0.2GeV, however it is not uniquely determined: besides a depen-
dence on nf and the perturbative accuracy, it also depends on the renormalisation
scheme (which starts at three loops). The strong coupling behaviour around ΛQCD
and the rapid decrease of αs at larger values of µ have led to the commonly accepted
practice of applying a scale of µ & µNP = 1GeV in order to employ perturbation
theory (αs . 0.4). So, µNP can be thought of as the energy scale that determines the
separation between the perturbative and nonperturbative regime of QCD.

Feynman rules of QED and QCD
• Vertices

i

j

µ = −ieeqγµδij

i

j

µ; a = igsγ
µtaij (A.18)

k

q

p
µ; a

ρ; c

ν; b = gsf
abcCµνρ(k, p, q)

with Cµνρ(k, p, q) = gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν (A.19)

• Propagators

pi j =
iδij

/p−m+ iε
= i

/p+m

p2 −m2
δij (A.20)

p
µ ν = i

−gµν + (1− ξ)p
µpν

p2

p2 + iε
(A.21)

p
µ; a ν; b = i

−gµν + (1− ξ)p
µpν

p2

p2 + iε
δab

= −ig
µν

p2
δab when ξ = 1 (Feynman gauge) (A.22)

• External lines
= εµ(p) (incoming)

= ε∗µ(p) (outgoing)

= εµ(p)

= ε∗µ(p)

= us(p)

= ūs(p)

= v̄s(p)

= vs(p) (A.23)
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Completeness relations
• Polarisation sum massless vector boson∑

λ=±1

εµλ(p)ε
ν∗
λ (p) = −gµν + pµnν + pνnµ

p · n
− n2 pµpν

(p · n)2
(A.24)

in the axial gauge, where n is an auxiliary vector such that p · n 6= 0

• Polarisation sum massive vector boson∑
λ=−1,0,1

εµλ(p)ε
ν∗
λ (p) = −gµν + pµpν

p2
≡ Zµν (A.25)

• Spin sum Dirac spinors∑
s=±1/2

us(p)ūs(p) = /p+m (A.26)

∑
s=±1/2

vs(p)v̄s(p) = /p−m (A.27)

Identities Dirac matrices

{γµ, γν} = 2gµνI (A.28)
γ5 ≡ iγ0γ1γ2γ3 (A.29)
(γµ)† = γ0γµγ0 (A.30)

γµγµ = 4I (A.31)
γµγνγµ = −2γν (A.32)
γµγνγργµ = 4gνρI (A.33)
γµγνγργσγµ = −2γσγργν (A.34)

Tr(γµ) = Tr(γ5) = 0 (A.35)
trace of any product of an odd number of γµ is zero (A.36)
trace of γ5 times a product of an odd number of γµ is zero (A.37)
Tr(γµγν) = 2gµν (A.38)
Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (A.39)
Tr(γµγνγργσγ5) = −4iεµνρσ (A.40)

Note that Eq. A.28 and the Schouten identity, gµ[νeρσαβ] = 0, can be used to evaluate
traces with an even larger number of Dirac matrices.



B
Polarised interactions

Using polarised initial state particles gives access to other azimuthal asymmetries and
other TMDs than the one studied in this thesis. Besides, by a small adaptation in the
calculation of the amplitudes, also the hard factors for polarised final state quarkonium
can be calculated. In this appendix we show how these calculations are performed and
what it gives in the case of single J/ψ electroproduction as an example, extending
Sec. 3.4. Concerning the illustrative purpose here, final state smearing is neglected
for this process.

Proton and electron polarisation

If the proton in the calculation is taken to be polarised it will carry a spin and this
will introduce a new angle φS in the system as shown in Fig. B.1. This spin vector
is defined in Eq. 2.10. We also consider a polarised electron beam for the interaction.
In particular, the longitudinally polarised antisymmetric leptonic tensor is given by
Lµν = 2ie2εµνll

′ , while the unpolarised leptonic tensor presented in Eq. 3.73 is symmet-
ric. Together with the gluon correlators for a longitudinally and transversely polarised
proton that are parametrised in Eq. 2.26 and Eq. 2.27, respectively, additional contri-
butions of the differential cross section are found [26, 178]

dσ(J/ψ)

dxB dy d2qT
≡
∑
Pe,Pp

dσPe,Pp(φT , φS) , (B.1)

where the superscripts denote the polarisation of the electron and the proton. The
unpolarised cross section is of course the same as presented in Eq. 3.83, however here
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Figure B.1: Visualisation of the azimuthal angles φT and φS in quarkonium electro-
production with a polarised proton, similar to Fig. 3.4.

a different notation is adopted:

dσUU = N
[
AU f g1 (x, q2

T ) +
q2
T

M2
h

BU h⊥g1 (x, q2
T ) cos 2φT

]
. (B.2)

The other contributions are found to be:

dσUT = N |ST |
|qT |
Mh

[
AT f⊥g

1T (x, q2
T ) sin (φS − φT )

+ BT

{
hg1(x, q2

T ) sin (φS + φT )−
q2
T

2Mh

h⊥g1T (x, q2
T ) sin (φS − 3φT )

}]
, (B.3)

dσUL = N SL
q2
T

M2
h

BL h⊥g1L (x, q2
T ) sin 2φT , (B.4)

dσLU = 0 , (B.5)
dσLT = 0 , (B.6)
dσLL = N SL CL gg1L(x, q2

T ) . (B.7)

The normalisation factor is given by

N = (2π)2
α2αse

2
c

yQ2MQ(M2
Q +Q2)

, (B.8)

and the factors are

AU = AT = [(1− y)2 + 1]Aγ∗g→J/ψ
1 − y2Aγ∗g→J/ψ

2 , (B.9)
BU = BT = BL = (1− y)Bγ∗g→J/ψ , (B.10)
CL = [(1− y)2 − 1] Cγ∗g→J/ψ , (B.11)

where:

Aγ∗g→J/ψ
1 = 〈OJ/ψ[1S8

0 ]〉+
1

3

4

M2
Q(M

2
Q +Q2)2

[
(3M2

Q +Q2)2〈OJ/ψ[3P 8
0 ]〉

+ 2Q2(2M2
Q +Q2)〈OJ/ψ[3P 8

1 ]〉
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+
2

5
(6M4

Q + 6M2
QQ

2 +Q4)〈OJ/ψ[3P 8
2 ]〉
]
, (B.12)

Aγ∗g→J/ψ
2 =

16

3

Q2

(M2
Q +Q2)2

[
〈OJ/ψ[3P 8

1 ]〉+
3

5
〈OJ/ψ[3P 8

2 ]〉
]
, (B.13)

Bγ∗g→J/ψ = −〈OJ/ψ[1S8
0 ]〉+

1

3

4

M2
Q(M

2
Q +Q2)2

[
(3M2

Q +Q2)2〈OJ/ψ[3P 8
0 ]〉

− 2Q4〈OJ/ψ[3P 8
1 ]〉+

2

5
Q4〈OJ/ψ[3P 8

2 ]〉
]
, (B.14)

Cγ∗g→J/ψ = 〈OJ/ψ[1S8
0 ]〉+

1

3

4

M2
Q(M

2
Q +Q2)2

[
(3M2

Q +Q2)2〈OJ/ψ[3P 8
0 ]〉

+ 2Q4〈OJ/ψ[3P 8
1 ]〉+

2

5
(−6M4

Q +Q4)〈OJ/ψ[3P 8
2 ]〉
]
. (B.15)

The explicit expressions for A, B and C can be further simplified by the heavy-
quark spin relations presented in Eq. 3.46:

Aγ∗g→J/ψ
1 = 〈OJ/ψ[1S8

0 ]〉+ 4
7M2

Q + 3Q2

M2
Q(M

2
Q +Q2)

〈OJ/ψ[3P 8
0 ]〉 , (B.16)

Aγ∗g→J/ψ
2 = 32

Q2

(M2
Q +Q2)2

〈OJ/ψ[3P 8
0 ]〉 , (B.17)

Bγ∗g→J/ψ = −〈OJ/ψ[1S8
0 ]〉+ 4

3M2
Q −Q2

M2
Q(M

2
Q +Q2)

〈OJ/ψ[3P 8
0 ]〉 , (B.18)

Cγ∗g→J/ψ = 〈OJ/ψ[1S8
0 ]〉+ 4

3Q2 −M2
Q

M2
Q(M

2
Q +Q2)

〈OJ/ψ[3P 8
0 ]〉 . (B.19)

We note that each independent azimuthal modulation in the cross section probes a
different gluon TMD. These modulations are the same for open heavy-quark pair
production in electron-proton collisions after integration over the azimuthal angle
φ⊥ [179]. Moreover, such angular structures along with the corresponding quark TMDs
are found in SIDIS as well [180].

Additional azimuthal asymmetries
In order to single out the different azimuthal modulations of the differential cross
section we define the following azimuthal moments

AW (φT ,φS) ≡ 2

∫
dφT dφSW (φT , φS) dσ(φT , φS)∫

dφT dφS dσUPp(φT , φS)
, (B.20)

where the denominator reads:∫
dφT dφS dσ

UPp(φT , φS) =

∫
dφT dφS

dσUPp

dxB dy d2qT
= (2π)2NAU f g1 (x, q2

T ) . (B.21)

By taking W = cos 2φT we obtain

〈cos 2φT 〉 =
1

2
Acos 2φT

=
(1− y)Bγ∗g→J/ψ

[(1− y)2 + 1]Aγ∗g→J/ψ
1 − y2Aγ∗g→J/ψ

2

q2
T

2M2
h

h⊥g1 (x, q2
T )

f g1 (x, q2
T )

, (B.22)
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which is equivalent to Eq. 3.95. Assuming that SL = 1 or |ST | = 1, the other moments
can be written as:

Asin (φS−φT ) =
|qT |
Mh

f⊥g
1T (x, q2

T )

f g1 (x, q2
T )

, (B.23)

Asin (φS+φT ) =
(1− y)Bγ∗g→J/ψ

[(1− y)2 + 1]Aγ∗g→J/ψ
1 − y2Aγ∗g→J/ψ

2

|qT |
Mh

hg1(x, q2
T )

f g1 (x, q2
T )
, (B.24)

Asin (φS−3φT ) = − (1− y)Bγ∗g→J/ψ

[(1− y)2 + 1]Aγ∗g→J/ψ
1 − y2Aγ∗g→J/ψ

2

|qT |3

2M3
h

h⊥g1T (x, q2
T )

f g1 (x, q2
T )

, (B.25)

Asin 2φT =
(1− y)Bγ∗g→J/ψ

[(1− y)2 + 1]Aγ∗g→J/ψ
1 − y2Aγ∗g→J/ψ

2

q2
T

M2
h

h⊥g1L (x, q2
T )

f g1 (x, q2
T )

. (B.26)

We note that only the unpolarised TMD f g1 appears in the denominators by its def-
inition, because the contributions related to the other TMDs are angular dependent
and therefore vanish upon integration over φT and φS. The azimuthal moments in
Eqs. B.22, B.24, B.25 and B.26 vanish in the limit y → 1 when the virtual photon is
longitudinally polarised. Moreover, we point out that a measurement of their ratios
would directly probe the relative magnitude of the different gluon TMDs, without any
dependence on the CO LDMEs

Acos 2φT

Asin (φS+φT )
=

|qT |
Mh

h⊥g1 (x, q2
T )

hg1(x, q2
T )

, (B.27)

Asin (φS−3φT )

Acos 2φT
= − |qT |

2Mh

h⊥g1T (x, q2
T )

h⊥g1 (x, q2
T )
, (B.28)

Asin (φS−3φT )

Asin (φS+φT )
= − q2

T

2M2
h

h⊥g1T (x, q2
T )

hg1(x, q2
T )

, (B.29)

Asin 2φT

Acos 2φT
=
h⊥g1L (x, q2

T )

h⊥g1 (x, q2
T )
, (B.30)

where Eq. B.30 can be used to define two additional rations from Eqs. B.27 and B.28.
In contrast, since the contribution to the gg1L TMD (like f g1 ) to the cross section is
angle independent, it can only be isolated by defining another azimuthal moment:

ALL ≡
∫
dφT dσ

LL∫
dφT dσUU

=
[(1− y)2 − 1] Cγ∗g→J/ψ

[(1− y)2 + 1]Aγ∗g→J/ψ
1 − y2Aγ∗g→J/ψ

2

gg1L(x, q2
T )

f g1 (x, q2
T )

. (B.31)

Quarkonium polarisation
In this example the spin-1 quarkonium in the final state can be longitudinally or
transversely polarised. If the bound QQ̄ pair is produced in a 1S0 state, namely with
L = S = 0, the final quarkonium will be unpolarised. Therefore, in a 1S0 config-
uration each helicity state will contribute 1/3 to the differential cross section. This
results in a relative multiplicative factor of 1/3 when the quarkonium is longitudinally
polarised and a factor of 2/3 when transversely polarised. For the P -wave states, with
L = S = 1, the method consisting of the projection of the hard-scattering amplitudes
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onto states of definite quantum numbers J and Jz is not useful when the final quarko-
nium is polarised. Instead, one can project the amplitudes onto states of definite
Lz and λ ≡ Sz in Eq. 3.36, square them and sum over Lz and λ. The results for
the longitudinal and transversely polarised quarkonium are then obtained by using,
respectively, the following relations for the λ polarisation vectors [181]

εµ0(P )ε
ν∗
0 (P ) =

P µP ν

M2
Q

− P µnν + P νnµ

P · n
+
M2

Q n
µnν

(P · n)2
, (B.32)

∑
λ=±1

εµλ(P )ε
ν∗
λ (P ) = −gµν + P µnν + P νnµ

P · n
−
M2

Q n
µnν

(P · n)2
, (B.33)

where n is a vector which obeys n2 = 0 and P ·n 6= 0. By summing these equations we
obtain the usual completeness relation of a massive vector boson presented in Eq. A.25,
and we note that Eq. B.33 is similar to Eq. A.24.

With respect to the previous calculations only the factors A, B and C change, while
naturally the sum of the differential cross sections for polarised quarkonium gives back
the unpolarised quarkonium one. The explicit expressions for longitudinally polarised
quarkonium are as follows

Aγ∗g→J/ψL

1 =
1

3
〈OJ/ψ[1S8

0 ]〉+ 4
M4

Q + 10M2
QQ

2 +Q4

M2
Q(M

2
Q +Q2)2

〈OJ/ψ[3P 8
0 ]〉 , (B.34)

Aγ∗g→J/ψL

2 = Aγ∗g→J/ψ
2 = 32

Q2

(M2
Q +Q2)2

〈OJ/ψ[3P 8
0 ]〉 , (B.35)

Bγ∗g→J/ψL = −1

3
〈OJ/ψ[1S8

0 ]〉+
4

M2
Q
〈OJ/ψ[3P 8

0 ]〉 , (B.36)

Cγ∗g→J/ψL =
1

3
〈OJ/ψ[1S8

0 ]〉+
4

M2
Q
〈OJ/ψ[3P 8

0 ]〉 , (B.37)

and for transversely polarised quarkonium given by:

Aγ∗g→J/ψT

1 =
2

3
〈OJ/ψ[1S8

0 ]〉+ 8
3M4

Q +Q4

M2
Q(M

2
Q +Q2)2

〈OJ/ψ[3P 8
0 ]〉 , (B.38)

Aγ∗g→J/ψT

2 = 0 , (B.39)

Bγ∗g→J/ψT = −2

3
〈OJ/ψ[1S8

0 ]〉+
8

M2
Q

M2
Q −Q2

M2
Q +Q2

〈0|OJ/ψ[3P 8
0 ]〉 , (B.40)

Cγ∗g→J/ψT =
2

3
〈OJ/ψ[1S8

0 ]〉 −
8

M2
Q

M2
Q −Q2

M2
Q +Q2

〈0|OJ/ψ[3P 8
0 ]〉 . (B.41)

We note that for polarised quarkonium production it is possible to define azimuthal
moments exactly as before, as well as their ratios. In particular, it turns out that such
ratios of asymmetries depend neither on the LDMEs, nor on the polarisation state of
the detected quarkonium.
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The helicity formalism

The helicity formalism involves constructing each hard factor by contracting ampli-
tudes with particular helicities of the incoming particles with their complex conju-
gates, in which their helicities can be different. In a collinear factorisation approach,
polarised gluons are generated perturbatively, while in the framework of TMD factori-
sation polarised gluons are already present at tree level through the nonperturbative
TMDs, e.g. h⊥g1 corresponds to an interference between +1 and -1 helicity gluon states
that would be suppressed without TM dependence. This appendix demonstrates the
construction of helicity amplitudes and helicity correlators from standard computa-
tions, and it is explained how the specific differential cross section of the subsequent
example emerges from this formalism.

Gluon-induced unpolarised proton-proton collisions
In general, a proton-proton cross section can be written as follows:

dσ ∝
∫
d2paT d2pbT δ2(paT + pbT − qT ) Γνσ(xa,paT ) Γµρ(xb,pbT )Mµν Mρσ∗ . (C.1)

To rewrite this expression in terms of helicity amplitudes and helicity correlators we
insert gluon polarisation sums given in Eq. A.24, which become∑

λ=±1

εµλ(p)ε
ν∗
λ (p) = −gµν , (C.2)

by virtue of the Ward identity:

pµMµ(p) = 0 . (C.3)
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Therefore, we obtain for gluon-induced production

dσ ∝
∫
d2paT d2pbT δ2(paT + pbT − qT ) Γλ1λ̄1 Γλ2λ̄2 M

λ1λ2 Mλ̄1λ̄2∗ , (C.4)

where the helicity correlators are defined by

Γλ1λ̄1 = Γνσ ε
ν∗
λ1
(pa)ε

σ
λ̄1
(pa) , (C.5)

Γλ2λ̄2 = Γµρ ε
µ∗
λ2
(pb)ε

ρ

λ̄2
(pb) , (C.6)

and the helicity amplitudes as:

Mλ1λ2 = Mµν ελ1ν (pa)ε
λ2
µ (pb) , (C.7)

Mλ̄1λ̄2∗ = Mρσ∗ ελ̄1∗σ (pa)ε
λ̄2∗
ρ (pb) . (C.8)

To calculate the helicity correlators we can use an explicit representation of the po-
larisation vectors in the lab frame (by adding a phase):

εµ∗λ (pa) = εµλ(pb) = (0,−λ, i, 0)e−iλ(φ+φqT )/
√
2 . (C.9)

Contracting the polarisation vectors with the leading-twist gluon correlator for an
unpolarised hadron in Eq. 2.25, the helicity correlators for an unpolarised hadron can
be written as

Γλ1λ̄1(xa,paT ) =
x

2


f g1 (xa,p2

aT ) ++, −−
w∗(paT )h⊥1 (xa,p2

aT ) +−
w(paT )h⊥1 (xa,p2

aT ) −+

, (C.10)

and

Γλ2λ̄2(xb,pbT ) =
x

2


f g1 (xb,p2

bT ) ++, −−
w(pbT )h⊥1 (xb,p2

bT ) +−
w∗(pbT )h⊥1 (xb,p2

bT ) −+

, (C.11)

where we have defined

w(pT ) ≡
p2
T

2M2
h

ei2(φpT −φqT −φ) , (C.12)

that includes an extra phase from the partonic gluon. We note that:

Γλ2λ̄2(xa,paT ) = Γ∗
λ2λ̄2

(xb,pbT ) , (C.13)

and that it is evident from the helicity correlator that f g1 conserves the gluon helicity
at the nonperturbative level, while the the distribution of linearly polarised gluons
h⊥g1 flips it.

Taking the different helicity combinations into account the cross section can be
split up with different hard factors:

F1 =
∑
λ1,λ2

Mλ1λ2 Mλ1λ2∗ , (C.14)
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F2 =
∑
λ1,λ2

Mλ1λ2 M−λ1−λ2∗ , (C.15)

F3 =
∑
λ1,λ2

Mλ1λ2 M−λ1λ2∗ , (C.16)

F ′
3 =

∑
λ1,λ2

Mλ1λ2 Mλ1−λ2∗ , (C.17)

F4 =
∑
λ1,λ2

Mλ1−λ2 M−λ1λ2∗ . (C.18)

We note that F2 corresponds to a double helicity flip, where the two gluons within one
amplitude possess identical helicities, while F4 corresponds to the double-flip scenario
with initial state gluons having opposite helicities. From the general property of the
helicity amplitudes

Mλ1λ2 = M−λ1−λ2 , (C.19)

which is a consequence of parity conservation, it follows that the imaginary parts of
Fi are zero. Therefore, the differential cross section can be rewritten as

dσ ∝ F1 C[f g1 f
g
1 ]

+ F2 C[Re{w(paT )w∗(pbT )}h⊥g1 h⊥g1 ]

+ F3 C[Re{w(paT )}h⊥g1 f g1 ] + F ′
3 C[Re{w(pbT )}f g1h

⊥g
1 ]

+ F4 C[Re{w(paT )w(pbT )}h⊥g1 h⊥g1 ] , (C.20)

where the TM weights in the convolutions containing two momenta are symmetric
when the momenta are swapped. In particular, they can be rewritten as

Re{w(paT )w(pbT )∗} =
p2
aTp2

bT

4M4
h

cos 2(φpaT
− φpbT

) =
2(paT · pbT )2 − p2

aTp2
bT

4M4
h

, (C.21)

Re{w(pT )} =
p2
T

2M2
h

cos 2(φpT
− φqT − φ) =

2(pT · qT )2 − p2
Tq2

T

2M2
hq2

T

cos (2φ) , (C.22)

Re{w(paT )w(pbT )} =
p2
aTp2

bT

4M4
h

cos 2(φpaT
+ φpbT

− 2φqT − 2φ)

=

[
2

(
paT · pbT
2M2

h

− (paT · qT )(pbT · qT )
M2

hq2
T

)2

− p2
aTp2

bT

4M4
h

]
cos (4φ) , (C.23)

such that the differential cross section can be written as Eq. 3.97 including the redef-
inition of the weights following Eqs. 3.62, 3.99 and 3.100, where φ is identified with
the Collins-Soper angle. We note that F3 and F ′

3 have picked up a minus sign along
this way.

The results in this appendix are valid for an arbitrary production induced by
the interaction of two initial state partonic gluons. In particular, from symmetry
consideration it follows that F3 = F ′

3 = F4 = 0 for single quarkonium production in
proton-proton collisions presented in Sec. 3.3, namely φT = 0. The fact that F2 = 0 for
single χQ2 production as well, see Eq. 3.59, simply arises from the actual computation
of the amplitude itself. The latter would instead require a four-unit helicity flip,
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which is heavily suppressed. Additionally, we note that the sign of F2 is dictated by
the parity of the quarkonium (see Table 3.1), hence opposite for ηQ and χQ0 as shown
in Eqs. 3.57 and 3.58, respectively.

Moreover, one can easily alter the derivation above for electron-proton collisions,
i.e. one of the two initial state helicities can just be identified as the helicity of the
photon instead. The weight functions that accompany F2, F4 and e.g. F ′

3 are then
zero, such that only F1 and F3 are of relevance. Indeed, the remaining structure
of the general differential cross section in terms of helicity hard factors corresponds
to the one of single quarkonium production in electron-proton collisions presented in
Sec. 3.4.



D
Expanding the delta function

In order to obtain the differential cross section in the ITM region from the collinear
computation in the HTM region, one can replace the momentum conserving Dirac
delta function by its expansion in the small-qT limit. In this appendix the deriva-
tion of this expansion is shown for the delta function that occurs in the process
e+ p→ e′ + J/ψ +X, originally presented in [129]. It is important to note that
here it is (naively) assumed that the differential cross section is a continuous function
of its kinematic variables.

Rewriting the differential cross section
Consider the following integral

I =

∫ 1

0

dẑ g(ẑ)

∫ x̂max

0

dx̂ f(x̂) δ
(
F (x̂, ẑ)

)
, (D.1)

which corresponds to the differential cross section of the process given in Eq. 5.39.
Here f and g are two generic continuous test functions, and F (x̂, ẑ) is defined in
Eq. 5.38. By introducing the variable

x̂′ ≡ x̂

x̂max
with 0 ≤ x̂′ ≤ 1 , (D.2)

the integral becomes

I = x̂max

∫ 1

0

dẑ ẑ2 g(ẑ)

∫ 1

0

dx̂′ x̂′ f(x̂′) δ
(
G(x̂′, ẑ)

)
, (D.3)
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where:

G(x̂′, ẑ) =
q2
T

Q2
x̂′ẑ2 +

M2
Q

Q2
(1− ẑ)(x̂′ − ẑ)− ẑ(1− ẑ)(1− x̂′) . (D.4)

Performing the integral over x̂′ one obtains

I = x̂max

∫ 1

0

dẑ
g̃(ẑ) f̃(x̂′0)

(1− ẑ)
[
1 +M2

Q/(ẑQ
2) + q2

T ẑ/
(
Q2(1− ẑ)

)] (1 + M2
Q

ẑQ2

)
, (D.5)

with

g̃(ẑ) = ẑ

(
1 +

M2
Q

ẑQ2

)−1

g(ẑ) , f̃(x̂′) = x̂′ f(x̂′) , (D.6)

and

x̂′0(ẑ) =

(
1 +

M2
Q

Q2

)[
1 +

M2
Q

ẑQ2
+

q2
T

Q2

ẑ

1− ẑ

]−1

, (D.7)

where it is used that the delta function can be rewritten as: δ
(
G(x̂′)

)
= δ(x̂′ − x̂′0)/|G′(x̂′0)|.

By employing

g̃(ẑ)f̃(x̂′0) =
(
g̃(ẑ)− g̃(1)

)
f̃(1) + g̃(1) f̃(1) + g̃(ẑ)

(
f̃(x̂′0)− f̃(1)

)
, (D.8)

one can split the integral into three parts respectively:

I = x̂max (I1 + I2 + I3) . (D.9)

The small-qT limit
In the integral I1 one can directly take the limit qT → 0

I1 =

∫ 1

0

dẑ
g̃(ẑ)− g̃(1)

1− ẑ
f̃(1)

=

∫ 1

0

dẑ g̃(ẑ) f̃(1)
1

(1− ẑ)+

=

∫ 1

0

dẑ

∫ 1

0

dx̂′ g̃(ẑ) f̃(x̂′)
1

(1− ẑ)+
δ(1− x̂′)

=

∫ 1

0

dẑ

∫ 1

0

dx̂′ g(ẑ) f(x̂′)

(
1 +

M2
Q

ẑQ2

)−1
ẑ

(1− ẑ)+
δ(1− x̂′)

= x̂−1
max

∫ 1

0

dẑ

∫ x̂max

0

dx̂ g(ẑ) f(x̂)

(
1 +

M2
Q

ẑQ2

)−1
ẑ

(1− ẑ)+
δ(1− x̂/x̂max) , (D.10)

where in the second line the ‘+’-prescription is introduced; the integral of a sufficiently
smooth distribution f is given by∫ 1

a

dx
f(x)

(1− x)+
=

∫ 1

a

dx
f(x)− f(1)

1− x
− f(1) ln

(
1

1− a

)
, (D.11)
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and:
1

(1− x)+
=

1

1− x
for 0 ≤ x < 1 . (D.12)

The integral I2 can be performed exactly. Subsequently, the leading terms are kept
in the expansion:

I2 = g̃(1)

∫ 1

0

dẑ
1

(1− ẑ)
[
1 +M2

Q/(ẑQ
2) + q2

T ẑ/
(
Q2(1− ẑ)

)] (1 + M2
Q

ẑQ2

)
f̃(1)

= g̃(1) f̃(1) ln
(
Q2 +M2

Q

q2
T

)
+O

(
q2
T

Q2 +M2
Q

)
=

∫ 1

0

dẑ

∫ 1

0

dx̂′ g̃(ẑ) f̃(x̂′) ln
(
Q2 +M2

Q

q2
T

)
δ(1− x̂′) δ(1− ẑ)

=

∫ 1

0

dẑ

∫ 1

0

dx̂′ g(ẑ) f(x̂′)

(
1 +

M2
Q

Q2

)−1

ln
(
Q2 +M2

Q

q2
T

)
δ(1− x̂′) δ(1− ẑ)

=

∫ 1

0

dẑ

∫ x̂max

0

dx̂ g(ẑ) f(x̂) ln
(
Q2 +M2

Q

q2
T

)
δ(1− x̂/x̂max) δ(1− ẑ) . (D.13)

Lastly, the integral I3 needs to be evaluated:

I3 =

∫ 1

0

dẑ g̃(ẑ)
f̃(x̂′0)− f̂(1)

(1− ẑ)
[
1 +M2

Q/(ẑQ
2) + q2

T ẑ/
(
Q2(1− ẑ)

)] (1 + M2
Q

ẑQ2

)
=

∫ 1

0

dẑ g(ẑ)
ẑ

(1− ẑ)

f̃(x̂′0)− f̂(1)[
1 +M2

Q/(ẑQ
2) + q2

T ẑ/
(
Q2(1− ẑ)

)] . (D.14)

Trading the integration variable ẑ with x̂′ by inverting the relation x̂′ = x̂′0(ẑ) gives
two solutions:

ẑ− =
M2

Q

Q2

x̂′

M2
Q/Q

2 + 1− x̂′

[
1 +

q2
T

Q2

M2
Q

Q2

(
1 +

M2
Q

Q2

)−1

× x̂′2

(M2
Q/Q

2 + 1− x̂′)(1− x̂′)

]
+O

(
q4
T

(Q2 +M2
Q)

2

)
, (D.15)

ẑ+ = 1− q2
T

Q2

(
1 +

M2
Q

Q2

)−1
x̂′

1− x̂′
+O

(
q4
T

(Q2 +M2
Q)

2

)
. (D.16)

The first solution is not physical since momentum conservation implies that qT = 0
when ẑ = 1 and 0 < x̂′ < 1. Therefore, we take ẑ = ẑ+, which is the only solution
that survives the massless limit. Neglecting terms of order q4

T/(Q
2 +M2

Q)
2, one finds

that x̂′ ≤ 1− q2
T/(Q

2 +M2
Q) since ẑ ≥ 0. Moreover, it can be shown that

dẑ =
q2
T

Q2

(
1 +

M2
Q

Q2

)−1
dx̂

(1− x̂′)2
, (D.17)

and:

ẑ

(1− ẑ)
[
1 +M2

Q/(ẑQ
2) + q2

T ẑ/
(
Q2(1− ẑ)

)] = Q2

q2
T

(1− x̂′) . (D.18)
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Expanding the delta function

Substituting these equations into Eq. D.14 and tanking into account that g(ẑ) → g(1)
as qT → 0 gives:

I3 =

(
1 +

M2
Q

Q2

)−1

g(1)

∫ 1

0

dx̂′
f̃(x̂′)− f̃(1)

1− x̂′

=

(
1 +

M2
Q

Q2

)−1

g(1)

∫ 1

0

dx̂′
f̃(x̂′)

(1− x̂′)+

=

∫ 1

0

dẑ g(ẑ)

∫ 1

0

dx̂′ f̃(x̂′)

(
1 +

M2
Q

Q2

)−1
x̂′

(1− x̂′)+
δ(1− ẑ)

=

∫ 1

0

dẑ g(ẑ)

∫ x̂max

0

dx̂ f̃(x̂)
x̂/x̂max

(1− x̂/x̂max)+
δ(1− ẑ) . (D.19)

Combining the integrals, the integral in Eq. D.1 reads

I = x̂max

∫ 1

0

dẑ g(ẑ)

∫ x̂max

0

dx̂ f(x̂)

×
{

x̂/x̂max

(1− x̂/x̂max)+
δ(1− ẑ) +

Q2 +M2
Q

Q2 +M2
Q/ẑ

ẑ

(1− ẑ)+
δ(1− x̂/x̂max)

+ δ(1− x̂/x̂max) δ(1− ẑ) ln
(
Q2 +M2

Q

q2
T

)}
, (D.20)

when q2T � Q2 +M2
Q. Therefore, the final result becomes:

δ
(
F (x̂, ẑ)

)
= x̂max

{
ln
(
Q2 +M2

Q

q2
T

)
δ(1− x̂′) δ(1− ẑ)

+
x̂′

(1− x̂′)+
δ(1− ẑ) +

Q2 +M2
Q

Q2 +M2
Q/ẑ

ẑ

(1− ẑ)+
δ(1− x̂′)

}
. (D.21)

In the limit MQ → 0 one recovers the relation

δ

(
q2
T

Q2
− (1− x̂)(1− ẑ)

x̂ẑ

)
=

x̂

(1− x̂)+
δ(1− ẑ) +

ẑ

(1− ẑ)+
δ(1− x̂)

+ δ(1− x̂) δ(1− ẑ) ln Q
2

q2
T

, (D.22)

in accordance with the one for SIDIS [139]. We note that in Eq. 5.39 the integration
ranges do not start at zero, but from a minimal value. However, it follows from
the definition in Eq. D.11 that one can just apply f(x) → f̄(x) = f(x) θ(x − a) in
Eq. D.20, where θ denotes the Heaviside step function (even though f̄ is not a smooth
function). Therefore, the lower limits of the integration over the kinematical variables
in the differential cross section do not affect the result of Eq. D.21.



E
Additional figures

In this appendix we present additional figures related to Sec. 6.3 obtained within the
TMD-evolution formalism. Figs. E.1, E.2, E.3, and E.4 show examples of the convo-
lutions C[f g1 f

g
1 ], C[w2h

⊥g
1 h⊥g1 ], C[w3f

g
1h

⊥g
1 ] and C[w4h

⊥g
1 h⊥g1 ], respectively, as function

of qT for various scale variations. Using the full scale variation, we present in Fig. E.5
the relevant ratios of these convolutions. Furthermore, in Figs. E.6, E.7, E.8, and E.9,
we show examples of modulations with separate scale variations.

In Fig. E.10, we present C[f g1 f
g
1 ] at qT = 0GeV as a function of µH , similarly for

C[w2h
⊥g
1 h⊥g1 ] in Fig. E.11. The other observables are zero at qT = 0GeV, therefore we

show the normalised differential cross section as a function of µH at qT,max = µH/2 in
Fig. E.12. Finally, we display in Fig. E.13 examples of modulations as function of qT
at qT,max =MJ/ψJ/ψ/2 as well.
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Figure E.1: C[f g1 f
g
1 ] as a function of qT for various µH , with bT,max = 1.0GeV−1, y = 0

and
√
s = 13TeV. Different perturbative uncertainties from scale variation are shown:

from C1 (upper left), from C2 (upper right), from C3 (down left) and from C1 = C3

(down right).
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Figure E.2: The same analysis as in Fig. E.1 is presented here for C[w2h
⊥g
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Figure E.3: The same analysis as in Fig. E.1 is presented here for C[w3f
g
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1 ]. We

note that since y = 0 this figure is equivalent to the one for C[w′
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Figure E.4: The same analysis as in Fig. E.1 is presented here for C[w4h
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note that at small qT we observe small upward bumps appearing as kinks in this figure.
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Figure E.5: Ratios of convolutions as a function of qT for various µH , with y = 0 and√
s = 13TeV. The solid lines denote the central values, while the dashed lines show

the specific scale variation that agrees best with the data from J/ψ-pair production.
The uncertainties are found by employing scale variation: the light areas correspond
to Case 1 scale variation, while the dark areas come from Case 2 scale variation.
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Figure E.6: The effect of C1 scale variation on the cos (2φCS)- and cos (4φCS)-
modulations in unpolarised J/ψ-pair hadroproduction as a function of qT in two differ-
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for two different values of MJ/ψ J/ψ as an example, with y = 0 and

√
s = 13TeV. The

solid lines denote the central values of the predictions.
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Figure E.7: The same analysis as in Fig. E.6 is presented here with C2 scale variation.
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Figure E.8: The same analysis as in Fig. E.6 is presented here with C3 scale variation.
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Figure E.9: The same analysis as in Fig. E.6 is presented here with C1 = C2 scale
variation.
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dashed lines show the best fits to the predictions. The uncertainties are found by
employing scale variation: the light areas correspond to Case 1 scale variation, while
the dark areas come from Case 2 scale variation.
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’Cause we’re all just
Protons, neutrons, electrons

That rest on a Sunday
Work on a Monday

- The Cat Empire





Samenvatting

De operationele Large Hadron Collider (LHC) van de Europese Organisatie voor
Kernonderzoek, ook bekend als CERN, voert experimenten uit met hoogenergeti-
sche botsingen tussen protonen- of zware-ionenbundels. De toekomstige Electron-Ion
Collider (EIC), die gebouwd zal worden in het Brookhaven Nationaal Laboratorium
(BNL), zal experimenten uitvoeren met hoogenergetische botsingen tussen elektro-
nen en protonen- of zware-ionenbundels. Deze deeltjesversnellers bieden een unieke
kans om de fundamentele bouwstenen van materie te onderzoeken. De vraag die ons
interesseert is: hoe zijn deze bouwstenen binnen het proton verdeeld?

Ooit dachten we dat de twee kerndeeltjes, het positief geladen proton en het neu-
trale neutron, de fundamentele bouwstenen van alle materie waren. Inmiddels weten
we echter dat deze deeltjes een complexe substructuur hebben. Het klassieke model
van een proton beschrijft het als bestaande uit drie valentiequarks: twee up-quarks
en één down-quark. Echter blijkt dat door de aanwezigheid van kortlevende quark-
antiquarkparen alle zes soorten quarks, naast up en down, ook strange, charm, bottom
en top in het proton kunnen voorkomen, waarbij de zwaarste paren het kortst ver-
schijnen. Bovendien bevat het proton gluonen, de dragers van de sterke kernkracht, die
niet alleen de quarks via hun kleurlading samenbinden, maar ook onderling interacties
aangaan.

De sterke kernkracht wordt beschreven door de veldentheorie kwantumchromody-
namica (QCD), die stelt dat er drie kleurladingen zijn (en drie antikleurladingen):
rood, groen en blauw. Het is willekeurig welke kleurlading de quarks in een deeltje
hebben, zolang ze samen maar kleurneutraal zijn. Bekende voorbeelden hiervan zijn
baryonen, zoals protonen en neutronen, die bestaan uit drie valentiequarks met ver-
schillende kleurladingen, en mesonen, die uit een valentie- quark en -antiquark bestaan
met bijpassende kleurlading en antikleurlading. De kracht tussen de quarks verdwijnt
niet wanneer ze ruimtelijk van elkaar gescheiden worden. Integendeel, de energie neemt
toe naarmate ze verder uit elkaar worden getrokken, totdat uiteindelijk nieuwe deel-
tjes worden gevormd. Dit betekent dat quarks nooit alleen voorkomen, maar altijd
sterk gebonden zijn door gluonen. Deze complexiteit maakt het moeilijk om de in-
terne structuur van kerndeeltjes te doorgronden, en er is nog veel dat we niet weten.
Wat we wel weten, is dat wanneer een kerndeeltje botst met een ander deeltje, dit
kan leiden tot verstrooiing aan een parton van het kerndeeltje, waarbij een parton een
quark of gluon is.

Voor dit soort botsingen kunnen we theoretische modellen ontwikkelen die we met
experimenten kunnen vergelijken om zo meer inzicht te krijgen in de interne structuur
van bijvoorbeeld het proton. Dit gebeurt door gebruik te maken van distributiefunc-
ties, die de waarschijnlijkheid beschrijven dat een botsend deeltje verstrooit aan een
specifiek parton in het proton. Door behoud van impuls kunnen we uit de botsings-
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reactie de longitudinale impulsfractie, de hoeveelheid impuls die een parton van het
proton overneemt, bepalen en gebruiken als variabele van de distributiefunctie. Deze
eendimensionale functies, genaamd parton-distributiefuncties (PDFs), zijn, waar het
mogelijk is om theorie en experiment naast elkaar te leggen, al met grote precisie
bekend. Zo weten we dat bij een grote longitudinale impulsfractie een deeltje voorna-
melijk verstrooit met een van de valentiequarks. Daarentegen, bij lagere longitudinale
impulsfracties kunnen ook andere quarks deelnemen in de reactie, maar verstrooit het
deeltje vrijwel zeker met een gluon.

Om een vollediger beeld van het proton te krijgen, kan ook de transversale impuls
van het parton ten opzichte van de botsingsrichting worden meegenomen als varia-
bele. Dit leidt tot driedimensionale functies, de zogenoemde transverse-momentum-
dependent PDFs (TMDPDFs, of kortweg TMDs). Hoewel er al redelijk veel bekend is
over quark-TMDs, is onze kennis van gluon-TMDs nog zeer beperkt. Het doel van dit
promotieonderzoek is dan ook om meer inzicht te verkrijgen in de gluon-TMDs van
het proton door processen te bestuderen die het mogelijk maken deze functies te ex-
traheren. Specifiek richten we ons op de productie van quarkonium in proton-proton-
en elektron-protonbotsingen, omdat quarkonium voornamelijk ontstaat uit gluonen.

Quarkonium is een meson, bestaande uit een gebonden toestand van een zwa-
re quark en een antiquark van dezelfde soort, waarbij het specifiek verwijst naar
charmonium of bottomonium. In dit onderzoek richten we ons op processen die be-
studeerd kunnen worden op verschillende hoge energieschalen, zodat we het TMD-
evolutieformalisme dat we gebruiken ook kunnen onderzoeken. Dit doen we door voor-
namelijk te kijken naar J/ψ-paarproductie voor de LHC en J/ψ-productie voor de
EIC. De J/ψ-meson is de laagstgelegen vector-toestand van charmonium en is daar-
naast eenvoudig waar te nemen in experimenten.

Om distributiefuncties in een specifiek proces te bestuderen, is het noodzakelijk om
het proces te kunnen ontbinden in factoren die (perturbatief) berekend of op een ande-
re manier bepaald kunnen worden. Hiermee bedoelen we dat de werkzame doorsnede
een convolutie is van de niet-perturbatieve distributiefunctie(s) en een perturbatie-
ve berekening. De werkzame doorsnede vertegenwoordigt de kans voor het specifieke
proces en kan worden gemeten in een experiment. De storingsrekening kan worden
berekend op basis van de theorie, omdat de koppeling tussen quarks en gluonen bij
hoogenergetisch processen klein is, dankzij de asymptotische vrijheid van QCD. Hoe-
wel factorisatie niet specifiek is bewezen voor de processen die wij bestuderen, zijn
er ook geen aanwijzingen dat dit niet is geldig is. Daarom gaan we ervan uit dat de
processen in factoren kunnen worden ontbonden.

Volgens de definitie geeft de storingsrekening aan dat de eenvoudigste interactie
tussen de deeltjes dominant is. Daarom worden in de bestudeerde reacties alleen een
quark en een antiquark van dezelfde soort geproduceerd; andere deeltjes die ontstaan
bij het opbreken van het proton worden niet gemeten en daarom niet meegenomen
in de theoretische berekening. Vervolgens moeten de twee uitgaande quarks worden
samengevoegd tot een J/ψ, waarvoor een andere niet-perturbatieve bijdrage vereist
is. Dit doen we met behulp van de zogenaamde niet-perturbatieve lange-afstand ma-
trixelementen (LDMEs), die voortkomen uit de theorie van niet-relativistische QCD.

Bij het bestuderen van de J/ψ-productie in elektron-protonbotsingen valt op dat
de gebonden toestand van het quarkpaar aanvankelijk niet kleurneutraal is vanwege
de kleurencombinatie die het gluon draagt. Om kleurneutraliteit te bereiken, moeten
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lage-energie gluonen worden uitgezonden. Deze emissie kan afhankelijk zijn van de
transversale impuls, wat de introductie van een nieuwe functie, de vormfunctie, vereist
in de berekening van de werkzame doorsnede. We hebben de leidende orde vormfunctie
voor dit proces bij grote transversale impuls vastgesteld via een matching-berekening.
Voor de TMD-beschrijving moet de transversale impuls van het quarkonium klein zijn
ten opzichte van de hoge energieschaal, terwijl voor de bekende PDF-beschrijving de-
ze groot moet zijn ten opzichte van de niet-perturbatieve QCD-schaal. In dit laatste
geval moet een extra parton worden uitgezonden om de J/ψ een grote transversale
impuls te geven. In het overlappingsgebied moeten de TMD- en PDF-beschrijvingen
gelijk zijn, waarbij de vormfunctie in de PDF-beschrijving simpelweg de LDME is.
De vormfunctie is dan nodig om de beschrijvingen in het overlappingsgebied exact
op elkaar af te stemmen. Deze methode is toepasbaar op J/ψ-productie en andere
vergelijkbare processen, mits, zoals wij hebben laten zien, singulariteiten in de glu-
on geïnitieerde PDF-beschrijving correct worden behandeld. We concludeerden verder
dat de vormfunctie universeel is, maar wel met een proces-afhankelijke factor gepaard
gaat. De verwachting is dat de vormfunctie ook een rol speelt bij direct kleurneutraal
geproduceerde quarkonia wanneer hogere orde berekeningen worden uitgevoerd. Onze
resultaten met betrekking tot de vormfunctie worden ondersteund door een alterna-
tieve berekening in de zogenaamde eikonale benadering.

Om theoretisch numerieke voorspellingen te doen voor processen kunnen we para-
metrisaties gebruiken voor de TMDs, of TMD-evolutie toepassen, waarbij de TMDs
gerelateerd zijn aan de bekende PDFs zoals in de bovenstaande matching-berekening.
Met deze methode hebben we een studie uitgevoerd die de azimutale asymmetrie
voorspelt, dat wil zeggen de hoek tussen het elektronvlak en het proton-J/ψ-vlak,
wanneer het proton ongepolariseerd is. De asymmetrie die in dit proces optreedt, is
evenredig aan de verhouding van twee gluon-TMDs: de lineair gepolariseerde gluon-
TMD gedeeld door de ongepolariseerde gluon-TMD. Volgens onze berekeningen is
deze asymmetrie, die toeneemt met de transversale impuls, meetbaar in het toekom-
stige EIC-experiment, zodat nieuwe inzichten kunnen worden verkregen in zowel de
gluon-TMDs als de vormfunctie.

Daarnaast hebben we een studie uitgevoerd die zich richt op het deel van TMD-
evolutie dat is geparametriseerd, namelijk de zogenaamde niet-perturbatieve Sudakov-
factor. Hiervoor wordt vaak een Gaussische functie gebruikt, die echter bepaalde be-
perkingen heeft. We lossen dit op door de bekende (perturbatieve) functies te ex-
trapoleren naar het niet-perturbatieve gebied en een duidelijke scheiding tussen deze
gebieden aan te brengen. Hoewel onze niet-perturbatieve Sudakov-factor een innova-
tieve benadering biedt voor het verkennen van TMD-evolutie is het mogelijk niet de
uiteindelijke oplossing. In bepaalde situaties vinden we namelijk obstakels; het blijft
een procesafhankelijke factor die via experimentele gegevens moet worden gevalideerd.

Vervolgens hebben we onze nieuw ontwikkelde niet-perturbatieve Sudakov-factor
gebruikt om voorspellingen te doen voor quarkoniumproductie in ongepolariseerde
proton-protonbotsingen, evenals voor recent gemeten J/ψ-paarproductie in de LHC.
We constateren een goede overeenstemming met de genormeerde werkzame doorsnede
van dit proces. De grootste onzekerheid in onze voorspellingen komt voort uit schaal-
variatie; dit betekent dat hogere orde correcties moeten worden meegenomen om de
theoretische voorspellingen te verbeteren. We merken op dat de beste voorspellingen
in overeenstemming met de data worden verkregen door een schaalvariatie die door-
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gaans niet wordt beschouwd in conventionele studies. Helaas is de experimentele data
niet geschikt voor het vergelijken van de azimutale asymmetrie die we hebben bere-
kend. Daarnaast hebben we ook andere voorspellingen gedaan voor de LHC, zowel
voor Υ-paarproductie (de bottomonium-tegenhanger van de J/ψ) in hoogenergeti-
sche proton-protonbotsingen als voor J/ψ-paarproductie in een configuratie waarbij
een van de protonen in rust is. Deze processen kunnen respectievelijk in de toekomst
belangrijke inzichten verschaffen over de gluon-TMDs bij hogere energieschalen en
grotere waarden van de longitudinale impulsfractie.

Tenslotte hebben we de eerste stap gezet richting een volledig transversaal impul-
safhankelijk spectrum voor J/ψ-productie in de EIC. Hierbij passen we opnieuw onze
nieuw ontwikkelde niet-perturbatieve Sudakov-factor toe, maar richten we ons uitslui-
tend op hoek-onafhankelijke bijdragen. Om dit spectrum te verkrijgen, moeten we de
TMD-beschrijving en de PDF-beschrijving numeriek op elkaar afstemmen. Dit doen
we met behulp van de inverse foutweegmethode, waarvan we aantonen dat deze goed
functioneert nadat we het gewicht van de PDF-beschrijving hebben aangepast voor
de vormfunctie. Voor de totale onzekerheid van de curves hebben we de perturbatieve
onzekerheden van de schaalvariatie gecombineerd met de onzekerheden van de LDMEs
en de matching-berekening. Bovendien hebben we de hoge energieschaalafhankelijk-
heid onderzocht van onze berekeningen, waarbij we hebben gevonden dat de TMD-
beschrijving en de PDF-beschrijving aanzienlijke verschillen vertonen. Desalniettemin
concluderen we dat ze netjes op elkaar kunnen worden aangesloten, aangezien de
TMD-voorspellingen boven de PDF-voorspellingen liggen in het overlappingsgebied.



Résumé

Le Large Hadron Collider (LHC) de l’Organisation européenne pour la recherche nu-
cléaire, aussi appelée CERN, en opération actuellement, réalise des expériences impli-
quant des collisions à haute énergie entre des faisceaux de protons ou d’ions lourds.
Le futur Electron-Ion Collider (EIC), qui sera construit au Laboratoire National de
Brookhaven (BNL), réalisera des expériences impliquant des collisions à haute éner-
gie entre des électrons et des faisceaux de protons ou d’ions lourds. Ces accélérateurs
de particules permettent d’étudier de manière unique les éléments fondamentaux de
la matière. La question qui nous intéresse est la suivante : comment ces éléments se
répartissent-ils dans le proton ?

Nous pensions autrefois que les deux nucléons, le proton chargé positivement et le
neutron neutre, étaient les éléments fondamentaux de toute matière. Or, nous savons
aujourd’hui que ces particules ont une sous-structure complexe. Le modèle classique
du proton le décrit comme étant constitué de trois quarks de valence : deux quarks
up et un quark down. Cependant, il s’avère qu’en raison de la présence de paires de
quarks-antiquarks dont la durée de vie est courte, les six types de quarks, en plus
des quarks up et down, peuvent également apparaître dans le proton sous les formes
de strange, de charm, de bottom et de top, les paires les plus lourdes apparaissant
d’autant plus brièvement. En outre, le proton contient des gluons, porteurs de la force
nucléaire forte, qui non seulement lient les quarks entre eux par leur charge de couleur,
mais interagissent également les uns avec les autres.

La force nucléaire forte est décrite par la chromodynamique quantique (QCD), qui
est une théorie des champs qui stipule qu’il existe trois charges de couleur (et trois
charges d’anti-couleur) : le rouge, le vert et le bleu. La charge de couleur des quarks
d’une particule est arbitraire, pour autant qu’ils soient neutres ensemble. Des exemples
bien connus sont les baryons, tels que les protons et les neutrons, qui sont constitués de
trois quarks de valence avec des charges de couleur différentes, et les mésons, qui sont
constitués d’un quark de valence et d’un antiquark avec une charge de couleur et une
charge d’anti-couleur correspondantes. L’interaction entre les quarks ne diminue pas
lorsque l’on les éloigne les uns des autres. Au contraire, l’énergie de liaison augmente
au fur et à mesure que l’on les éloigne, jusqu’à ce que de nouvelles particules soient
créées. Cela signifie que les quarks ne sont jamais isolés, mais qu’ils sont toujours
fortement liés par des gluons. Cette complexité rend difficile la compréhension de la
structure interne des nucléons, et beaucoup reste à découvrir. Ce que nous savons, c’est
que lorsqu’un nucléon entre en collision avec une autre particule, cela peut entraîner
une diffusion au niveau d’un parton, à savoir un quark ou un gluon du nucléon.

Pour ces collisions, nous pouvons développer des modèles théoriques que nous
pouvons comparer aux expériences pour mieux comprendre la structure interne du
proton, par exemple. Pour ce faire, nous utilisons des fonctions de distribution qui
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décrivent la probabilité qu’une particule impliquée dans une collision se diffuse sur un
parton spécifique du proton. Grâce à la conservation de la quantité de mouvement,
nous pouvons déterminer, à partir de la réaction de collision, la fraction de quantité de
mouvement longitudinale, c’est-à-dire la quantité de mouvement qu’un parton prend
au proton, et l’utiliser comme variable de la fonction de distribution. Ces fonctions
unidimensionnelles, appelées fonctions de distribution des partons (PDFs), sont déjà
connues avec une grande précision grâce à des mesures expérimentales précises. Par
exemple, nous savons que pour une fraction de l’impulsion longitudinale importante,
une particule se diffuse principalement sur l’un des quarks de valence. En revanche, à
des fractions d’impulsion longitudinale plus faibles, d’autres quarks peuvent également
participer à la réaction, mais la particule se diffuse presque à coup sûr sur un gluon.

Pour obtenir une image plus complète du proton, l’impulsion transversale du par-
ton par rapport à la direction de la collision peut également être incluse comme va-
riable. Cela conduit à introduire des fonctions tridimensionnelles appelées transverse-
momentum-dependent PDFs (TMDPDFs, ou TMDs en abrégé). Alors que l’on connaît
déjà certaines caractéristiques des TMDs de quarks, notre connaissance des TMDs de
gluons est toujours très limitée. Le but de cette thèse est donc d’améliorer notre
compréhension des TMDs de gluons dans le proton en étudiant les processus qui per-
mettent l’extraction de ces fonctions. Plus précisément, nous nous concentrons sur la
production de quarkonia dans les collisions proton-proton et électron-proton, car le
quarkonium est principalement généré à partir de gluons.

Le quarkonium est un méson qui est un état lié d’un quark et d’un antiquark lourds
de la même espèce, se référant spécifiquement au charmonium ou au bottomonium.
Dans cette thèse, nous nous concentrons sur les processus qui peuvent être étudiés à
différentes échelles d’énergie, afin que nous puissions également étudier le formalisme
d’évolution TMD que nous utilisons. Pour ce faire, nous nous intéressons principa-
lement à la production de paires J/ψ pour le LHC et à la production de J/ψ pour
l’EIC. Le méson J/ψ est l’état vectoriel le plus stable de la famille des charmonia et
il est également le plus facile à observer dans les expériences.

Pour étudier les fonctions de distribution dans un processus spécifique, il est né-
cessaire de pouvoir décomposer le processus en facteurs qui peuvent être calculés (de
manière perturbative) ou déterminés d’une autre manière. Nous entendons par là que
la section efficace est une convolution des fonction(s) de distribution non perturbatives
et d’un calcul perturbatif. La section efficace représente la probabilité du processus
spécifique et peut être mesurée lors d’une expérience. Le calcul perturbatif peut être
effectué à partir de la théorie, car le couplage entre les quarks et les gluons dans les
processus à haute énergie est faible, grâce à la liberté asymptotique de la QCD. Bien
que la factorisation n’ait pas été prouvée spécifiquement pour les processus que nous
étudions, rien n’indique qu’elle n’est pas valide. Par conséquent, nous supposons que
les processus peuvent être factorisés.

Par construction, le calcul en théorie des perturbations indique que l’interaction
la plus simple entre les particules est dominante. Par conséquent, dans les réactions
étudiées, seuls un quark et un antiquark du même type sont produits ; les autres
particules créées par la rupture du proton ne sont pas mesurées et ne sont donc pas
incluses dans le calcul théorique. Ensuite, les deux quarks sortants doivent se lier en
un J/ψ, ce qui nécessite une autre contribution non perturbative. Pour ce faire, nous
utilisons ce que l’on appelle les éléments de matrice à longue portée non perturbatifs
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(LDMEs), qui proviennent de la théorie de la QCD non relativiste.
En étudiant la production de J/ψ dans les collisions électron-proton, l’on remarque

que l’état lié du couple de quarks n’est initialement pas neutre en couleur à cause
de la combinaison des couleurs portées par le gluon. Pour atteindre la neutralité de
couleur, des gluons de basse énergie doivent être émis. Cette émission peut dépendre
de l’impulsion transverse, ce qui nécessite l’introduction d’une nouvelle fonction, la
fonction de forme, dans le calcul de la section efficace active. Nous avons déterminé
la fonction de forme d’ordre principal pour ce processus à grand moment transverse
par un calcul d’appariement. Pour la description TMD, l’impulsion transverse du
quarkonium doit être petite par rapport à l’échelle des hautes énergies, alors que pour
la description en termes de PDF, il doit être grand par rapport à l’échelle QCD non
perturbative. Dans ce dernier cas, un parton supplémentaire doit être émis pour donner
au J/ψ une grande impulsion transverse. Dans la région intermédiaire, les descriptions
TMD et PDF doivent être égales, la fonction de forme dans la description en termes
de PDF étant simplement la LDME. La fonction de forme doit ainsi correspondre
exactement aux descriptions dans la région intermédiaire. Cette méthode est applicable
à la production de J/ψ et à d’autres processus similaires, à condition, comme nous
l’avons montré, que les singularités dans la description en termes de PDF initiée par
le gluon soient traitées correctement. Nous avons également conclu que la fonction de
forme est universelle mais associée à un facteur dépendant du processus. On s’attend
à ce que la fonction de forme joue également un rôle dans les quarkonia directement
neutres en couleur lorsque des calculs d’ordre supérieur seront effectués. Nos résultats
concernant la fonction de forme sont étayés par un calcul alternatif dans l’approche
dite eikonale.

Pour faire des prédictions numériques théoriques pour les processus, nous pouvons
utiliser des paramétrisations pour les TMDs ou appliquer l’évolution des TMD, où les
TMDs sont liés aux PDFs connus, comme dans le calcul d’appariement ci-dessus. En
utilisant cette méthode, nous avons réalisé une étude qui prédit l’asymétrie azimutale,
c’est-à-dire l’angle entre le plan de l’électron et le plan J/ψ du proton, lorsque le proton
n’est pas polarisé. L’asymétrie qui se produit dans ce processus est proportionnelle au
rapport de deux gluon-TMDs : le gluon-TMD polarisé linéairement divisé par le gluon-
TMD non polarisé. Selon nos calculs, cette asymétrie, qui augmente avec l’impulsion
transverse, est mesurable dans la future expérience EIC, ce qui permettra de mieux
comprendre à la fois les gluon-TMDs et la fonction de forme.

En outre, nous avons mené une étude axée sur la partie de l’évolution des TMD
qui doit être paramétrée, à savoir le facteur de Sudakov non perturbatif. Pour ce
faire, une fonction gaussienne est souvent utilisée, mais elle présente certaines limites.
Nous résolvons ce problème en extrapolant les fonctions (perturbatives) connues à la
région non perturbative et en établissant une séparation claire entre ces régions. Bien
que notre facteur de Sudakov non perturbatif constitue une approche innovante pour
explorer l’évolution des TMD, il ne s’agit pas nécessairement de la solution finale.
En effet, nous trouvons des obstacles dans certaines situations ; il reste un facteur
dépendant du processus qui doit être validé par des données expérimentales.

Nous avons ensuite utilisé notre nouveau facteur de Sudakov non perturbatif pour
prédire la production de quarkonia dans les collisions proton-proton non polarisées,
ainsi que la production de paires J/ψ récemment mesurée au LHC. Nous observons
un bon accord avec la section efficace normalisée de ce processus. La plus grande
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incertitude dans nos prédictions provient de la variation d’échelle ; cela signifie que
des corrections d’ordre supérieur doivent être incluses pour améliorer les prédictions
théoriques. Nous notons que les meilleures prédictions cohérentes avec les données sont
obtenues à partir d’une variation d’échelle qui n’est généralement pas prise en compte
dans les études conventionnelles. Malheureusement, les données expérimentales ne
permettent pas de comparer l’asymétrie azimutale que nous avons calculée. En outre,
nous avons également fait d’autres prédictions pour le LHC, à la fois pour la production
de paires Υ (la contrepartie bottomonium du J/ψ) dans les collisions proton-proton
à haute énergie et pour la production de paires J/ψ en mode cible fixe au LHC.
Ces processus, respectivement, peuvent fournir des informations importantes sur les
TMDs de gluons à des échelles d’énergie plus élevées et à des valeurs plus grandes de
la fraction d’impulsion longitudinale.

Enfin, nous avons fait le premier pas vers une description complète du spectre en
impulsion transverse pour la production de J/ψ auprès de l’EIC. Ici, nous appliquons
à nouveau notre nouveau facteur de Sudakov non perturbatif, mais nous nous concen-
trons exclusivement sur les contributions indépendantes de l’angle. Pour obtenir ce
spectre, nous devons faire correspondre numériquement la description TMD et la des-
cription PDF. Pour ce faire, nous utilisons la méthode de pondération par l’inverse
de l’erreur, qui fonctionne bien après avoir ajusté le poids de la description en termes
de PDF pour la fonction de forme. Pour l’incertitude globale des courbes, nous avons
combiné les incertitudes perturbatives de la variation d’échelle avec les incertitudes des
LDMEs et du calcul de correspondance. En outre, nous avons examiné la dépendance
à l’échelle de haute énergie de nos calculs, en constatant que la description TMD et la
description PDF présentent des différences significatives. Néanmoins, nous concluons
qu’il est possible de les faire correspondre, car les prédictions TMD sont supérieures
aux prédictions en termes de PDF dans la région de chevauchement.
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