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Gaugino condensation plays a crucial role in the formation of de Sitter vacua. However, the theory of this
effect is still incomplete. In four dimensions, the perfect square nature of gaugino couplings follows from the
square of auxiliaries in the supergravity action. We explain here why the supersymmetric non-Abelian
Dp-brane action,which is the basis for the theory of ten-dimensional gaugino condensation,must have a four-
gaugino coupling. This term in the Einstein-Yang-Mills ten-dimensional supergravity is a part of the perfect
square, mixing a 3-form with a gaugino bilinear. The perfect square term follows from the superspace
geometry, being a square of the superspace torsion. The supercovariant equation of motion for a gaugino on
the non-AbelianDp-brane also involves a supertorsion in agreementwith the perfect square term in the action.

DOI: 10.1103/PhysRevD.99.066003

I. INTRODUCTION

The issue of supersymmetry in Dp-brane actions is well
understood for a single Dp-brane. The corresponding
action constructed in Refs. [1–3] has a local fermionic κ
symmetry. When this local κ symmetry is gauge fixed as in
Refs. [4,5], one recovers the Abelian supersymmetric Dp-
brane action, which breaks the maximal supersymmetry of
type-II supergravity, half of it being realized linearly.
In [6–10] the coupling of the background 3-form field to

the bilinear of the fermions was established for Abelian
supersymmetric Dp-branes. The four-fermion nonderiva-
tive coupling is absent in the Abelian Dp-brane action,
as one can see by a direct inspection of the gauge-fixed
κ-symmetric brane action [1–5].
The concept of gaugino condensation in ten dimensions

is based on properties of N coincident D7-branes. The
problem of finding the supersymmetric non-Abelian action
for the N coincident Dp-branes is not fully solved yet. In
particular, the four-fermion nonderivative coupling was not
investigated in Refs. [6–10] in this context.
This issue attracted some attention after the recent

ten-dimensional (10D) investigation of the Kachru,
Kallosh, Linde, Trivedi (KKLT) mechanism [34] in
Ref. [11] (see also Ref. [12]). This investigation was based
on a number of assumptions debated in Refs. [13–16], and
the final conclusions of Refs. [11,12] turned out to be

inconsistent with the results of the four-dimensional (4D)
KKLT analysis [15–17].
One of the assumptions made in Refs. [11,12] was the

absence of the four-fermion nonderivative coupling on
D7-branes. This assumption was recently challenged in
Ref. [18]. The proposal of how to incorporate such terms,
which wasmade in Ref. [18], was motivated by the heterotic
string theory andHorava-Wittenmodel [19–21], which both
have the corresponding four-gaugino couplings associated
with the perfect square structure of Einstein-Yang-Mills
supergravity in ten dimensions.
Here, wewill explainwhy the non-Abelian generalization

of Dp-brane action must have a four-fermion nonderivative
coupling. We will also show that the supersymmetric
equation of motion for a gaugino has a cubic gaugino
coupling,which vanishes only in theAbelian case of a single
Dp-brane. The perfect square structure underlying these
features of the Dp-branes is a consequence of the superspace
geometry. These results are quite general; they apply to
type-IIB theory and to theKKLT scenario. They support and
further develop the proposal made in Ref. [18].

II. GAUGINOS IN DP-BRANE ACTIONS

The Abelian Dp-brane action upon gauge fixing a local
κ symmetry has an unbroken supersymmetry. Consider the
coupling of the background 3-form with the spinor field on
the brane in the form given in Ref. [8], in which the gauge-
fixed action for the Dp-brane is given in approximation
quadratic in fermions,Z

dpþ1xGμνρλ̄Γμνρλ: ð1Þ

Looking at the complete gauge-fixed Dp-brane action [4,5],
one finds that there are no four-fermion terms without
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derivatives on the supersymmetric Dp-brane world volume.
But there is also no disagreement with the possibility to
add to the action these terms in the form ðλ̄ΓμνρλÞ2 since
they vanish according to Fierz identities, as shown in
Refs. [22,23],

ðλ̄ΓμνρλÞ2 ¼ 0: ð2Þ

The situation changes dramatically when one is trying to
figure out the form of the supersymmetric non-Abelian Dp-
brane action. The coupling of a background 3-form (1) to
gauginos generalizes to

Z
dpþ1xGμνρTrλ̄Γμνρλ: ð3Þ

In the non-Abelian case, the Fierz identity shows that the
four-fermion term is not vanishing anymore,

ðTrλ̄ΓμνρλÞ2 ≠ 0: ð4Þ

What is the generalization of the action (1) to the non-
Abelian case? The answer is defined by a supersymmetry
of the effective low-energy action of supergravity with Dp-
brane sources. We will show below that the four-fermion
terms with nonderivative coupling shown in Eq. (4) must be
present.
When a Dp-brane is described as a local source to the

bulk supergravity action, the issue of δ9−pð0Þ divergences is
important and has to be dealt with, as explained in Ref. [18]
in the case of D7-branes with δ2ð0Þ divergences. Following
Refs. [19–21], the authors of [18] argue that the infinite
terms cancel due to the presence of four-fermion terms,
whereas the finite terms also involve bilinear as well as
four-fermion gaugino coupling.
We will start with the space filling coincident D9-branes

where the issue of the existence/nonexistence of the four-
fermion gaugino term on the Dp-brane world volume is
disentangled from the issue of divergences.

III. FOUR-FERMION INTERACTION IN 4D
EINSTEIN-YANG-MILLS SUPERGRAVITY

In general 4D supergravity, the role of gaugino con-
densates with regard to spontaneous breaking of local
supersymmetry was explained in Ref. [24] based on the
properties of the auxiliary fields Fα of the chiral multiplets
discovered in Ref. [25]. The supergravity action is quad-
ratic in auxiliary fields

Laux ¼ −Fαgαβ̄F̄
β̄ ≡ jFj2: ð5Þ

Here, the on-shell value of auxiliary field is

Fα ¼ −eK=2gαβ∇̄β̄W̄ þ 1

4
f̄ABβ̄g

β̄αλ̄APLλ
B; ð6Þ

where we use Eq. (3.14) and in Eq. (4.4) in Ref. [25], but
we employ here notation of Ref. [26]. As in Eq. (3) in
Ref. [24], we omit the fermions from the chiral multiplets
here and only keep fermions from the Yang-Mills
multiplets.
Equations (5) and (6) give the first indication of the

perfect square nature of the two-fermion and four-fermion
coupling in the action. This phenomenon is very general1

and underlines the related examples in 10D theory and in
supersymmetry breaking by Dp-branes, which we will
discuss below.

IV. FOUR-FERMION INTERACTION IN 10D
EINSTEIN-YANG-MILLS SUPERGRAVITY

Once the Dp-brane is added as a local source to the 10D
supergravity action, half of supersymmetry is broken.
An effective supergravity action describing this situation
in an example of a single D9-brane is the action of the 10D
Einstein-Maxwell supergravity [23]. The gravitational
multiplet includes the graviton, gravitino, dilatino,
a 2-form field, and a dilaton: emμ ;ψμ; χ; Aμν;ϕ. A matter
Maxwell multiplet includes an Abelian vector and a
gaugino: Aμ, λ.
The total Einstein-Maxwell supergravity action with

N ¼ 1 10D supersymmetry is [23]

e−1LEM ¼ −
1

2
R −

3

4
ϕ−3

2

�
FM
μνρ −

ffiffiffi
2

p

24
ϕ

3
4λ̄Γμνρλ

�
2

−
9

16

�∂μϕ

ϕ

�
2

−
1

4
F2
μν −

1

2
λ̄γμDμλþ � � � ð7Þ

Here, terms with … depend on the gravitino ψμ and on a
dilatino χ. The 3-form field is FM

μνρ ¼ ∂ ½μAνρ� − 1ffiffi
2

p A½μFνρ�,
and Fμν ¼ ∂μAν − ∂νAμ. The four-fermion term here is
vanishing in the Abelian case of just one matter multiplet
(2). Therefore, the perfect square term in (7) is optional;
one could have had it in the form without a four-fermion
coupling, in which case it would not look like a perfect
square term. This is exactly the case in the Einstein-
Maxwell supergravity [23], for which, instead of the first
line of the action (7), one has

−
1

2
R −

3

4
ϕ−3

2

�
ðFM

μνρÞ2 −
ffiffiffi
2

p

12
ϕ

3
4FμνρM λ̄Γμνρλ

�
ð8Þ

and the four-fermion gaugino term is absent.
The D9-brane action at the level at which we neglect

higher-derivative nonlinear terms of the Born-Infeld
nature is precisely the supersymmetric Maxwell action in
the background of N ¼ 1 supergravity. Therefore, the
supersymmetric action (7) can be viewed as an effective

1I am grateful to S. Ferrara for explaining this to me.
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low-energy approximation of the single D9-brane interact-
ing with gravity, which has N ¼ 1 10D supersymmetry.
If, on the contrary, we would like to have a whole

nonlinear Dp-brane action in the background of type-IIB
supergravity, we would be able to start with a κ-symmetric
action [1–3], gauge fix local fermionic κ symmetry [4,5],
and identify the fermionic terms on the Dp-brane. For a
single Dp-brane, the four-fermion terms are absent, in
agreement with (2). Meanwhile, a complete κ-symmetric
action for coinciding multiple Dp-branes, which are sup-
posed to describe a nonperturbative gaugino condensation,
is not known.
Therefore, we can look at the gaugino condensation

problem from the perspective of the Einstein-Yang-Mills
10D supergravity [27] but correct the omission of the four-
gaugino term there (we skip terms depending on the
gravitino and dilatino):

e−1LEYM ¼−
1

2
R−

3

4
ϕ−3

2

�
FYM
μνρ −

ffiffiffi
2

p

24
ϕ

3
4Trλ̄Γμνρλ

�
2

−
9

16

�∂μϕ

ϕ

�
2

−
1

4
TrðFYM

μν Þ2− 1

2
Trλ̄γμDμλ: ð9Þ

The 3-form field is now FYM
μνρ ¼ ∂ ½μAνρ� − 1ffiffi

2
p TrðA½μFνρ� −

2
3
A½μAνAρ�Þ and FYM

μν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�. The four-
fermion term here is not vanishing in the non-Abelian case;
see (4).
In Ref. [27], the four-fermion gaugino term was omitted

even in the non-Abelian case, which was corrected in
Ref. [28]. The emphasis in Ref. [28] was on the fact that the
corresponding four-fermion term originates from a heter-
otic string theory in which the computation of the low-
energy scattering of gauginos has revealed its presence.

V. GEOMETRIC SUPERSPACE ORIGIN
OF THE PERFECT SQUARE

One could perform a brute force computation of the local
supersymmetry of the Chapline-Mantone action [27] (or
one can compute the four-fermion amplitude in the heter-
otic string) and find out that the four-fermion gaugino term
is required. For example, one can show that the terms with
two gauginos and a gravitino and a dilatino, λ2ψχ, and the
terms with two gauginos and two dilatinos, λ2χ2, in the
non-Abelian case have a variation of the form

δLM ∼ Trλ̄γabcλχ̄Xabca0b0c0ϵTrλ̄γa
0b0c0λ; ð10Þ

where Xabca0b0c0 is a complicated combination of the γ
matrices. In Abelian case, a cubic in the λ expression
λ̄γabcλγabλ vanishes, and it can be used to show that
δLM¼0 in the λ4χϵ sector. However, in the non-Abelian
case, the expression in (10) does not vanish, and the
cooperation with the variation from the four-fermion term
ðTrλ̄γabcλÞ2, with a specific factor in front, is required.

This can be confirmed by a laborious work, and one
would also notice the following. Once the ðTrλλÞ2 term
with the correct coefficient is added to the action, the
3-form and bilinear gaugino form a perfect square as shown
in Eq. (9). In this procedure, the appearance of the perfect
square in the action is not clear; it looks like an accident.
However, there is a geometric reason for the perfect

square in Einstein-Yang-Mills 10D supergravity in the
context of the superspace geometry: the perfect square in
the action is a square of the superspace torsion tensor at
θ ¼ 0, where θ is the Grassmann coordinate of the
superspace.
The 10D superspace was constructed in Refs. [29–31].

We represent it here in slightly more convenient notation.
One starts with a superspace with coordinates zM ¼
ðxμ; θmÞ. In this superspace, we introduce the vielbein
EA, the spin connection ωA

B, the 2-form potential B, and
the Yang-Mills 1-form A. The tangent space indices A and
B split into bosonic indices a and b and fermionic indices α
and β. We define an exterior derivative covariant with
respect to general superspace coordinate transformations as
well as local Lorentz and local Yang-Mills transformations:
D ¼ dþ ωþ A. The standard definition of the torsion and
curvature in the superspace follows, as do a 3-form and a
Yang-Mills 2-form; see Eqs. (3)–(6) in Refs. [29] for
details. The torsion TA, the curvature RA

B, the supergravity
3-form H, and the Yang-Mills 2-form F satisfy the super-
space Bianchi identities (BIs)

DTA ¼ −EB ∧ RB
A; DRA

B ¼ 0;

DH ¼ TrF ∧ F; DF ¼ 0: ð11Þ

For example, the torsion 2-form defines the torsion tensor

TA ¼ 1

2
EB ∧ ECTA

CB: ð12Þ

To find the solutions of the BI, one has to impose certain
constraints on the coupled Einstein-Yang-Mills superspace,
for example, that Ta

αβ ¼ −iγaαβ, etc., as shown in Table 1 in
Ref. [29]. The solution of BI was presented in Refs. [30,31]
and is given in terms of the following superfields. There is a
superfield with the first component, which is a dilaton,
φðxÞ, and all higher components are computed by the
repeated action of spinorial derivativesDα. There is a Yang-
Mills (YM) superfield with the first component being a
gaugino field λðxÞ. Finally, one more superfield is required
with the first component being a combination of the 3-form
and a gaugino bilinear,

Yabc ≡ −
1

72
Habc −

2

3
Λabc; ð13Þ

where
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Trλαλβ ≡ γabcαβ Λabc: ð14Þ

The component of the superspace torsion Taβ
γðx; θÞ which

solves the superspace BI depends both on the dilaton
superfield φðx; θÞ and on the superfield Yabcðx; θÞ,

Taβ
γðx; θÞ ¼ −

1

2
ðγbγaÞβγDbφ − Γa

bcdYbcd: ð15Þ

There is also another third-rank antisymmetric tensor
superfield, Kabc¼− 1

72
Habc− i

3
Λabc−5i

2
χabc, which includes

also a dilatino bilinear χabc and has a mix of Habc with
Λabc, which is different from the one in Yabc. It is a second
spinorial derivative of the dilaton superfield, and it does not
have superspace tensor properties like Yabc, which repre-
sents the superspace torsion.
The component action perfect square term in (9) orig-

inates from the square of the superspace torsion term

LEYM ⊃ Taβ
γTγ

aβðx; θÞjθ¼0 ∼ YabcYabcðxÞ; ð16Þ

where we have neglected the terms with derivatives on a
dilaton which are present in a superspace torsion (15).
The Einstein equation for the 10D curvature also

depends only on the same perfect square

R10 ⊃ YabcYabcðxÞ þ � � � ð17Þ

Thus, the superspace geometry clearly explains that
supersymmetry does require the four-fermion term
ðTrλ̄ΓμνρλÞ2 in the action, and moreover, it has to come
with the coefficient which forms a perfect square in the
action, as shown in Eqs. (9) and (16). Therefore, the
solution with gaugino condensation, which makes the first
component of the superfield vanish,

Yabc ¼ −
1

72
Habc −

2

3
hΛabci ¼ 0; ð18Þ

is consistent with local supersymmetry of the theory.
In such a case, the term in the action YabcYabc does not
contribute to the vacuum energy.
Thus, in the case of a noncompact geometry, described

by the superspace in Refs. [29–31], gaugino condensation
requires a nonvanishing 3-form. It backreacts so that the
total square vanishes. This is in agreement with the earlier
observations on this in Ref. [28].
We conclude that if a complete supersymmetric non-

linear non-Abelian Dp-brane action is available it must
have on its world volume the four-fermion term to provide
the perfect square term shown in Eq. (9) in the D9 case.
This is necessary to satisfy a condition of supersymmetry
of a non-Abelian vector supermultiplet interacting with
supergravity.

VI. GAUGINO EQUATION OF MOTION
ON DP-BRANE

For the D7-brane, it is more difficult to use the perfect
square structure of the action in the component form in (9)
or in the superspace form in (16), as we did for the
D9-brane. Indeed, the 10D action originates from the
supergravity action

R
d10xGabcGabc, whereas the gaugino-

dependent terms originate from the brane actionR
d8xGabcTrλ̄γabcλ and

R
d8xðTrλ̄γabcλÞ2. Therefore, we

have to deal with some singular terms from the local
sources.
Of course, one can rely on the simple fact that the four-

fermion term existing on D9 should remain on D7 after
dimensional reduction. To support this argument that the
term

R
d8xðTrλ̄γabcλÞ2 must be present in D7-brane action,

we may look at the supersymmetric equation of motion for
the gaugino which interacts with the supergravity back-
ground. Such an equation was derived in the context of
the superspace geometry [29–31] in the noncompact
10D space.
The manifestly supersymmetric field equation for the

gaugino is presented in Eq. (21) in Ref. [31]. It depends on
the background 3-form only via the torsion tensor Ybcd,

γaD̂aλ¼ 3Yabcγ
abcλ¼ 3

�
−

1

72
Habc−

2

3
Λabc

�
γabcλ: ð19Þ

Here, D̂a ¼ Da − 3Daϕ. The three-gaugino coupling term
in the manifestly supersymmetric field equation for a
gaugino in (19) is given by

γabcΛabcλ ∼ Trðλ̄γabcλÞγabcλ; ð20Þ

since Λabc ∼ Trλ̄γabcλ. This cubic gaugino coupling van-
ishes in the Abelian case in which ðλ̄γabcλÞγabλ ¼ 0, but in
the non-Abelian case, the cubic coupling is not vanishing.
This confirms unambiguously the presence of the four-
gaugino coupling on a non-Abelian Dp-brane.

VII. STRING THEORY AND FINITE
VOLUME ISSUES

The next conceptual step away from supergravity,
defined in the infinite 10D space-time, was an observation
in Refs. [19–21] about an M theory compactified on a one-
dimensional finite-size interval. The localized source in this
case of the form ∼δðx11Þ is present; however, it is argued in
Refs. [19–21] that supersymmetry requires the presence of
a quartic gaugino term in the action. In Ref. [21], it was
suggested to shift the field strength 4-form GIJK11 ≡Gabc
by a term supported at the boundary and bilinear in the
gauginos and to define the modified 3-form field as
follows:

G̃abc ¼ Gabc þ cδðx11ÞΛabc: ð21Þ
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The effective action depends on the 3-form Gabc only via
the perfect square,

L ⊃ ðG̃abcÞ2: ð22Þ

The presence of this four-fermion term in the action
precisely cancels the divergence due to a perfect square
structure analogous to the one we explained above. In a
sense, the 10D non-Abelian supersymmetry is an under-
lying reason for the four-fermion term in the action.
The four-fermion term plays an important role in

gaugino condensation, as shown in Ref. [18]. The authors
have proposed that gaugino condensation in D7-branes
should be described by the effective action in their
Eqs. (39)–(41). The presence of the four-gaugino coupling
on the D7-brane, according to Ref. [18], resolves the issues
of divergences and allows a comparison with the 4D theory.
In view of the compact volume of compactification,

things are more complicated than in the case of the infinite
six-dimensional (6D) space described above in our Eqs. (9)
and (16) for 10D Einstein-Yang-Mills supergravity and for
non-Abelian D9-branes.
However, the perfect square structure of the effective

action in non-Abelian D7 is not just reminiscent of
heterotic strings or M theory compactified on the interval;
the perfect square terms in the action in all of these cases
are actually inherited from the 10D Einstein-Yang-Mills
superspace geometry.
If the D9-branes are compactified on a torus of a square

area A2
T ¼ L2, and the total internal space is X ¼ Σ × T2

with VΣ being the finite volume of the Σ manifold, one
would expect that our action (9) would lead to Eqs. (39)–
(41) in Ref. [18]. This would result in cancellation of the
relevant infinities and in clarification of the gaugino
condensation on D7-branes.
Specifically, once the conjectured supersymmetric action

of D7 non-Abelian branes is derived from a compactifica-
tion of D9-branes on T2, it is plausible that the remaining
finite terms in the action are of the form given in Eq. (41) in
Ref. [18],

−gs

����Gð0Þ
3 þ λλffiffiffiffi

gs
p

AT2

Ω̄3

����
2

: ð23Þ

If one admits the terms bilinear in spinors on a non-Abelian
D7-brane, also the quartic terms must be present, as follows
from (9) and from (19) and (20).
The technical issues with singularities may still require

some clarification. The issue of supersymmetry in singular
spaces is complicated, as was shown in the past in a
different context in Ref. [32].

VIII. RELATION TO 4D SUPERSYMMETRY

It is known that type-IIB supergravity with local sources,
which involve calibrated Dp-branes and O planes, leads to a

4DN ¼ 1 supergravity. String theory constructions in 10D
space compactified on calibrated manifolds were mostly
compared with 4D N ¼ 1 supergravity with chiral mul-
tiplets. The dictionary between the Kahler potential Kðz; z̄Þ
and the holomorphic superpotential WðzÞ and 10D theory
was established. Moreover, in the presence of pseudocali-
brated anti–Dp branes, the 4D supergravity also involves a
nilpotent chiral superfield; see Ref. [33] and references
therein. Meanwhile, the presence of the vector multiplets in
10D supergravity, which live on the Dp-branes, can also be
studied. In particular, one may associate the known
structure of 4D theory with N ¼ 1 vector multiplets with
10D theory with Dp-branes. The dictionary between string
theory models and N ¼ 1 4D supergravity in such a case
will also involve the holomorphic vector coupling func-
tions fABðzÞ.
In Ref. [18], evidence was given that the authors’

proposal for the D7-brane action with four-fermion terms
with careful account of a compact volume of compactifi-
cation leads to a 4D action with the vector multiplets.
The action of N ¼ 1 vector multiplets interacting with

supergravity has the following relevant terms [26]:

−
1

4
RefðzÞðFA

μνFμνA − 2λ̄γμDμλ
AÞ þ � � �

þ 1

4
e
Kðz;z̄Þ

2 f;α∇̄αW̄λ̄APLλ
A þ H:c:

þ 3

64
½RefðzÞðλ̄Aγμγ�λA�2

−
1

16
f;αf̄;αλ̄APLλ

Aλ̄BPRλ
B; ð24Þ

where we consider the case with the diagonal holomorphic
vector coupling fABðzÞ ¼ fðzÞδAB. This expression is in
agreement with Eqs. (5) and (6) above. Clearly, 4D
supergravity if derived from 10D string theory with branes,
should have no singularities, and must have four-fermion
gaugino coupling.
If fðzÞ is a gauge coupling on N coincident D7-branes

and 10D theory is compactified on a compact T2 × T2 × T2

space with finite volume, one finds that, indeed, the 4D
action (24) with terms bilinear and quartic in gaugino
follows from Eq. (23), as observed in Ref. [18].
In conclusion, here, we have shown that the perfect

square term in the 10D Einstein-Yang-Mills supergravity
originates from the superspace geometry. Namely, the
action includes a square of the first component of the
supertorsion superfield, as shown in Eq. (16), which is a
unique combination of the 3-form and a gaugino bilinear in
Eq. (13). The same torsion superfield is present in the
gaugino equation of motion consistent with supersym-
metry, as shown in (19). This means that a cubic gaugino
coupling is present in the gaugino equation of motion,
and the quartic fermion coupling must be present on a
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non-Abelian Dp-brane, as follows from the superspace
geometry.
A better understanding of the impact of the four-fermion

terms in condensing D7-branes, particularly with regard to
a finite volume of compactification, would be useful for the
purpose of relating 10D string theory to cosmological
observations described by the 4D physics.
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