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Abstract: The muonic 2P-2S Lamb shift in muon-electron atoms and ions of helium, lithium, beryl-

lium, and boron with the electron in the ground state was calculated by the perturbation theory

using the fine structure constant and the electron-muon mass ratio. The corrections of first- and

second-orders of perturbation theory on the Coulomb interaction and nucleus recoil were taken into

account. The obtained analytical results were validated numerically using calculations within the

variational method.

Keywords: muonic atoms and ions; quantum electrodynamics; fine structure

1. Introduction

The study of the energy levels of three-particle Coulomb systems is one of the funda-
mental problems of atomic physics that has practical applications in the study of muon
catalysis reactions. The energy spectrum of three-particle muon-electron-nucleus systems
has been studied in a number of experiments along with two-particle muonic atoms [1–3].
New plans for precision microwave spectroscopy of the J-PARC MUSE [4] collaboration in-
volved measuring the hyperfine structure (HFS) of the ground state of muonic helium with
an accuracy two orders of magnitude higher than the accuracy of previous experiments in
the 1980s [5].

Usually, when calculating the fine and hyperfine structures of the spectrum in muon-
electron-nucleus systems, several methods have been used. A number of approaches use
the adiabatic representation of the three-body problem, the variational method, which
allows one to find wave functions and energies with very high accuracy [6–15]. Another
analytical method for calculating the energy levels of such three-particle systems was
formulated in [16,17] and applied to calculate the hyperfine structure of the spectrum and
the electron Lamb shift in [18–22]. It was based on the use of the perturbation theory (PT)
method, according to the following parameters: the fine structure constant α and the mass
ratio of the electron and muon.

In the last decade, the CREMA collaboration has measured the Lamb shift in a number
of the simplest muonic atoms [1,2] and obtained more precise values of the charge radius
of the light nuclei. If there was a significant discrepancy in the results obtained for the
charge radii of the proton and deuteron of muonic hydrogen and muonic deuterium,
as compared to the previous values found in studies of electronic systems, then such a
discrepancy was not found for muonic helium. In [2], the experimental determination of
the Lamb shift and the fine structure of the muonic helium ion was carried out using a
previously developed measurement procedure for muonic hydrogen and deuterium. In
the experiment, approximately 500 negative muons per second with ultra-low energy (a
few keV) were stopped in helium gas at a low pressure of 2 mbar and room temperature.
As a result of these collisions, the muon ejected an electron and was captured by the He
atom, forming a three-particle muon-electron atom in a highly excited state (with the
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principal quantum number n = 14). For orbits with a high principal quantum number n,
the Auger rates were much higher than the rates of the radiative transitions. As a result,
the remaining electron was ejected from the atom and a helium muonic ion was formed.
Within approximately 100 ns, it transitioned to the 1S ground state or to the 2S metastable
state via radiative transitions. Approximately one percent of muons populated the 2S
(µHe − 4)+ metastable state, which has a lifetime of 1.75 µs. When a low helium gas
pressure of 2 mbar was used, the helium ions were not neutralized. At the same time,
if some individual atoms of neutral muonic helium were present, then the bound electron
had little effect on the measurement of the muon Lamb shift. A precision calculation of the
energy spectrum of two-particle muonic ions was performed in [23,24]. The purpose of this
work was to take into account the effects of the presence of an electron in a muonic helium
atom when measuring the muon Lamb shift. We expanded on [21,22], which studied the
energy levels of muon-electron atoms and ions of helium, lithium, beryllium, and boron, as
related to the muon Lamb shift in the framework of the analytical perturbation theory (PT)
and the variational method. We investigated how the presence of an electron affected the
measurement of the muon Lamb shift and the charge radius of the nucleus.

2. General Formalism

To calculate the energy levels by analytical perturbation theory, we divided the Hamil-
tonian of the system into several parts, including the main contribution of the Coulomb
interaction in the term H0 in the form:

H = H0 + ∆H + ∆Hrec + ∆Hvp + ∆Hstr + ∆Hvert, (1)

H0 = − 1

2Mµ
∇2

µ − 1

2Me
∇2

e −
Zα

xµ
− (Z − 1)α

xe
, (2)

∆H =
α

|xµ − xe|
− α

xe
, ∆Hrec = − 1

M
∇µ ·∇e, Me =

me M

(me + M)
, Mµ =

mµ M

(mµ + M)
, (3)

where xµ and xe are the muon and electron radius vectors with respect to the nucleus, and
Ze is the nuclear charge. The terms ∆Hvp, ∆Hstr, and ∆Hvert denote the contributions to
vacuum polarization, nuclear structure, and vertex corrections.

In the initial approximation, which was determined by the Hamiltonian H0, the wave
function of the system has a simple analytical form:

Ψ2S(xe, xµ) = ψe 1S(xe)ψµ 2S(xµ) =
(WeWµ)3/2

2
√

2π

(

1 − Wµxµ

2

)

e−
Wµ xµ

2 e−Wexe , (4)

Ψ2P(xe, xµ) = ψe 1S(xe)ψµ 2P(xµ) =
(WeWµ)3/2

2
√

6
(Wµxµ)e

−Wµ xµ
2 e−Wexe(εn), (5)

Wµ = ZαMµ, We = (Z − 1)αMe, (6)

which makes it possible to calculate the corrections using the perturbation theory. In (5),
the angular part of the wave function was represented in tensor form, ε is the polarization
vector, and n = xµ/xµ.

In the initial approximation, the energy of a bound system was determined by the
sum of the Coulomb energies of an electron and a muon:

E2S,2P = −1

2
Me(Z − 1)2α2 − 1

8
MµZ2α2. (7)
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In the energy shift (2P − 2S), these contributions canceled out. In the first order PT,
the Coulomb interaction ∆H resulted in shifts that were determined by matrix elements:

∆E(1)(2S) =

〈

Ψ2S

∣

∣

∣

∣

(

α

xµe
− α

xe

)∣

∣

∣

∣

Ψ2S

〉

= Weα
(

−28a2
1 + 220a3

1 − 1152a4
1 . . .

)

,

∆E(1)(2P) =

〈

Ψ2P

∣

∣

∣

∣

(

α

xµe
− α

xe

)∣

∣

∣

∣

Ψ2P

〉

= Weα
(

−20a2
1 + 140a3

1 − 672a4
1 . . .

)

,

(8)

∆E(1)(2S − 2P) = Weα
8a2

1

(1 + 2a1)5
, a1 =

We

Wµ
, (9)

where xµe = |xµ − xe|. The results of (8) are presented as an expansion of the small
parameter a1.

2.1. The Coulomb Corrections in Second Order PT

The general expression for the correction to the energy levels in the second order of
the perturbation theory (PT), with respect to the ∆H interaction when the muon was in the
intermediate state n = 2S, had the following form:

∆E
(2)
2S (n = 2S) =

∫

ψµ2S(xµ)ψe1S(xe)

(

α

xµe
− α

xe

)

ψµ2S(xµ)

(

α

x′µe
− α

x′e

)

× (10)

ψµ2S(x
′
µ)ψe1S(x

′
e)G̃e1S(xe, x′e)ψµ2S(x

′
µ)dxµdx′µdxedx′e,

where G̃e1S(xe, x′e) is the reduced Coulomb Green’s function of the electron for the 1S
state [25]:

G̃e1S(x1, x3) =
∞

∑
n 6=1S

ψen(x3)ψ
∗
en(x1)

Ee1S − Een
= −We Me

π
e−We(x1+x3)

[

1

2Wex>
− (11)

− ln(2Wex>)− ln(2Wex<) + Ei(2Wex<) +
7

2
− 2C − We(x1 + x3) +

1 − e2Wex<

2Wex<

]

,

where x< = min(x1, x3), x> = max(x1, x3), C = 0.577216 . . . is the Euler constant, and
Ei(x) is integral exponential function.

The expression (10) contains two identical integrals, which were calculated analytically:

Vµ(xe) =
∫

d(xµ)|ψµ2S(xµ)|2
(

α

xµe
− α

xe

)

= −αe−Wµxe

8xe

(

8 + 6Wµxe + 2(Wµxe)
2 + (Wµxe)

3
)

. (12)

After analytical integration and expansion in a1andusing (12) and the explicit form
G̃e1S(xe, x′e) [21,23,25], we obtained the following:

∆E
(2)
2S (n = 2S) = −Meα2a3

1

[5993

64
+ a1

(

−24111

64
− 784 ln 4a1

)

+ . . .
]

. (13)

A similar result for a muon in the 2P state had the form:

∆E
(2)
2P (n = 2P) = −Meα2a3

1

[31329

576
+ a1

(

−26965

192
− 400 ln 4a1

)

+ . . .
]

. (14)

Now, we assumed the muon was in an intermediate state that would not coincide
with 2S (or 2P). In the second order PT, such a contribution was determined by the
following expression:

∆E
(2)
2S (n 6= 2S) =

∫

ψµ2S(xµ)ψe1S(xe)

(

α

xµe
− α

xe

)

ψµ2S(x
′
µ)dxedx′edxµdx′µ (15)
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× ∑
n 6=2S

ψµn(xµ)ψ
∗
µn(x

′
µ)∑

n′

ψen′(xe)ψ∗
en′(x′e)

Ee1S − Een′ + Eµ2S − Eµn

(

α

x′µe
− α

x′e

)

ψe1S(x
′
e).

Equation (15) contains the Coulomb Green’s function of the electron, which we re-
placed in the leading order in a1 with the free Green’s function:

Ge(xe, x′e) ≈ −Meα2

2π

e−bn |xe−x′e |

|xe − x′e|
, bn =

√

2Me(Eµn − Eµ2S − Ee1S). (16)

Note that this approximation could be improved by using a PT series for the electron
Green’s function, as in [22]. Integration over coordinates in (15) could be achieved using
the completeness condition:

∑
n 6=2S

ψµn(xµ)ψ
∗
µn(x

′
µ) = δ(xµ − x′µ)− ψµ2S(xµ)ψ

∗
µ2S(x

′
µ). (17)

In this case, the following integral in (15) was initially calculated:

I =
∫

dy1
e−bn |x1−y1|

|x1 − y1||y2 − y1|
ψe1S(y1) = ψe1S(0)

∫

dy1
e−bny1 e−We |y1+x1|

y1|y1 + x1 − y2|
≈ (18)

ψe1S(0)e
−Wex1

4π

b2
n

(1 − e−bn |x1−y2|)
|x1 − y2|

≈ ψe1S(0)e
−Wex1 4π

[

1

bn
− |x1 − y2|

2
+

bn|x1 − y2|2
6

+ . . .

]

,

where an expansion in terms of the recoil parameter a1 was also used. The contribution of
the first term in the square brackets was equal to 0 due to the orthogonality of the muon
wave functions, and the second term indicated the contribution of the leading order in
a1. Using the completeness condition, this contribution could be expressed in terms of
integrals, which were calculated analytically. One of them took the following form:

J =
∫

dx1dx2dy2|ψµ 2S(y2)|2
|x1 − y2|
|x1 − x2|

|ψµ 2S(x2)|2|ψe 1S(x1)|2 = 1 + 28a2
1 −

20073

64
a3

1 + . . . . (19)

In the case of the 2S state, the contribution of the second term from the right side of
(18) was determined by the following expansion:

∆E
(2)
2S (n 6= 2S) = Meα2a2

1

(

−7 +
20073

256
a1 +

137165

256
a2

1 . . .

)

. (20)

If the muon was in the 2P state, then the analogous contribution was equal to

∆E
(2)
2P (n 6= 2P) = Meα2a2

1

(

−5 +
12441

256
a1 +

76997

256
a2

1 . . .

)

. (21)

The total contribution of the first and second orders of PT in ∆H of the muon Lamb
shift (2P − 2S) had the form:

∆E(2P − 2S) = Meα2a2
1

[

2 + 8(Z − 1) + a1(
151

16
− 80(Z − 1))+ (22)

a2
1(−

42997

96
− 384 ln(4a1) + 480(Z − 1))

]

.

To improve the calculation accuracy, we considered the contribution of the third term
in expansion (18). After the integration over the electron coordinate and expansion in a1,
we presented this contribution, as follows:

∆E
(2)
2S (n 6= 2S) = −Meα2

3
|ψe 1S(0)|2

2π

W4
e

∫

ψµ 2S(x2)dx2ψµ 2S(y2)dy2× (23)
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∑
n

bnψµ n(x2)ψµ n(y2)

[

−1

3
(x2y2)a2

1 −
1

3
x2

2y2
2a4

1 + . . .

]

.

The first term in the square brackets yielded the leading order contribution in a1. It
was determined by the following square of the matrix element:

∆E
(2)
2S (2S → nP) =

Meα2

9

√

Me

Mµ
WeWµ ∑

n

√

n2 − 4

n2
||
∫

ψµ 2S(x2)x2ψµ n(x2)dx2||2. (24)

The contribution of the discrete and continuous spectrum for transitions 2S → nP
were represented separately as:

∆E
(2)
2S ((2S → nP)) =

Meα2

9

√

Me

Mµ

We

Wµ

(

S
1
2
d (2S → nP) + S

1
2
c (2S → nP)

)

, (25)

S
1
2
d (2S → nP) =

∞

∑
n=3

√

n2 − 4
217n6(n2 − 1)(n − 2)2n−6

(n + 2)2n+6
= 9.83655 . . . , (26)

S
1
2
c (2S → nP) =

∫ ∞

0
26 k(k2 + 1)dk

(k2 + 1
4 )

11
2 (1 − e−

2π
k )

e−
4
k arctg(2k) = 3.12747 . . . . (27)

For the 2P state, it was necessary to take into account the transitions 2P → nD and
2P → nS. The contribution from transition 2P → nD was numerically dominant:

∆E
(2)
2P ((2P → nD)) =

2Meα2

27

√

Me

Mµ

We

Wµ

(

S
1
2
d (2P → nD) + S

1
2
c (2P → nD)

)

, (28)

S
1
2
d (2P → nD) =

∞

∑
n=3

√

n2 − 4
219n8(n2 − 1)(n − 2)2n−7

(n + 2)2n+7
= 21.44214 . . . , (29)

S
1
2
c (2P → nD) =

26

3

∫ ∞

0

k(k2 + 1)dk

(k2 + 1
4 )

13/2(1 − e−
2π
k )

e−
4
k arctg(2k) = 2.71117 . . . . (30)

The contribution of the 2P → nS transition was much smaller, but it was also important
for achieving a good calculation accuracy. The structure of the expressions by which it was
defined was the same as for other transitions:

∆E
(2)
2P ((2P → nS)) =

Meα2

27

√

Me

Mµ

We

Wµ

(

S
1
2
d (2P → nS) + S

1
2
c (2P → nS)

)

, (31)

S
1
2
d (2P → nS) =

∞

∑
n=3

√

n2 − 4
215n8(n2 − 1)(n − 2)2n−6

3(n + 2)2n+6
= 0.90371 . . . , (32)

S
1
2
c (2P → nS) =

24

3

∫ ∞

0

k(k2 + 1)dk

(k2 + 1
4 )

11/2(1 − e−
2π
k )

e−
4
k arctg(2k) = 0.22078 . . . . (33)

Along with the correction for the Coulomb interaction of particles ∆H in (3), there was
another perturbation operator ∆Hrec on the nucleus recoil.

2.2. Nuclear Recoil Corrections

To date, we considered corrections that were determined by the Me/Mµ mass ratio
and could be called recoil corrections. At the same time, there were other corrections for the
recoil of the nucleus with the mass mN of a three-particle system. They were determined
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by the term of the Hamiltonian ∆Hrec. In the first order of the perturbation theory in ∆Hrec,
the correction to energy levels was zero:

∆E
(1)
rec (2S, 2P) = 〈ψ2S,2P|∆Hrec|ψ2S,2P〉 = 0. (34)

In the second order of the perturbation theory, when the second perturbation operator
was equal to ∆H, in general, the correction for the level 2S was equal to

∆E
(2)
rec (2S) =

∫

ψµ2S(xµ)ψe1S(xe)

(

α

xµe
− α

xe

)

dxedx′edxµdx′µ (35)

∑
n,n′

ψµn(xµ)ψ∗
µn(x

′
µ)ψen′(xe)ψ∗

en′(x′e)

Ee1S − Een′ + Eµ2S − Eµn

(−1)

mn
∇

′
µ∇

′
eψµ2S(x

′
µ)ψe1S(x

′
e).

Here again, it was convenient for our calculation to isolate the muon state 2S from the
total sum first. However, then the resulting integral vanished when integrated over angles:
∫

ψµ2S(x
′
µ)∇

′
µψµ2S(x

′
µ)dx′µ = 0. If the muon was in the intermediate state n 6= 2S, then

the corresponding contribution could be reduced to the form:

∆E
(2)
2S,rec(n 6= 2S) =

∫

ψµ2S(xµ)ψe1S(xe)
α

xµe
ψµ2S(x

′
µ)dxedx′edxµdx′µ (36)

× ∑
n 6=2S

ψµn(xµ)ψ
∗
µn(x

′
µ)

(

−Me

2π

)

e−b|xe−x′e |

|xe − x′e|
(−1)

mN
(∇′

µ∇
′
e)ψµ2S(x

′
µ)ψe1S(x

′
e).

The integral over the coordinate x′e was calculated in (18). Taking the second term in
square brackets in (18) and calculating the derivatives with respect to the coordinates of the
wave functions, we rewrote the intermediate result for the correction in the following form:

∆E
(2)
rec (2S) = −αMe

mN

W5/2

√
2π

W4
e

π

∫

ψµ2S(xµ)dxµ|xµ − x′e|
[

δ(xµ − x′µ)− ψµ2S(xµ)ψµ2S(x
′
µ)
]

× (37)

(x′ex′µ)
x′ex′µ

dx′µdx′ee−Wex′e e−
1
2 Wµx′µ

(

1 − 1

4
Wµxµ

)

After that, the direct calculation of integrals over coordinates in two terms in square
brackets (37) yielded the following result:

∆E
(2)
rec (2S) = −4αMeWe

mN

(2 + 10a1 + 6a2
1 + 5a3

1 + a4
1)

(1 + a1)5
. (38)

In the case of the 2P state, the second-order contribution of PT was calculated in a
similar way. The final analytical result for the correction to the 2P level was equal to

∆E
(2)
rec (2P) = −4αMeWe

mN

(2 + 10a1 + 10a2
1 + 5a3

1 + a4
1)

(1 + a1)5
. (39)

From expressions (38) and (39), it follows that the value of the correction in the Lamb
shift contains a small parameter a2

1:

∆E
(2)
rec (2P − 2S) = −16αMeWe

mN

a2
1

(1 + a1)5
. (40)

In addition to the corrections for the Coulomb interaction (22), other corrections for
vacuum polarization, nuclear structure, and recoil must also be taken into account in order
to obtain the total value of the muon Lamb shift with high accuracy. The corrections of this
type had been calculated previously in [23,24].
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3. Variational Method

The analytical results obtained in the previous sections were verified using the varia-
tional method [11,13]. The trial wave function for a system of three particles in the S-state
was presented in the following form:

Ψ(ρ, λ, Ai
ij) =

K

∑
i=1

Ciψi(ρ, λ, Aij) =
K

∑
i=1

Cie
− 1

2 [A
i
11ρ2+2Ai

12ρλ+Ai
22λ2], (41)

where the Ci variables are linear variational parameters. The Jacobi coordinates ρ and λ

were related to the radius vectors of the nucleus r1, muon r2, and electron r3:

ρ = r2 − r1, λ = r3 −
m1r1 + m2r2

m1 + m2
, (42)

where Aij is the matrix of nonlinear parameters. The problem was to find such values of
the parameters and expansion coefficients that the average value of the Hamiltonian was
minimal. To find the energies of bound states, the Schrodinger equation with the Coulomb
interaction of three particles was reduced to solving a matrix eigenvalue problem of the
following form:

HC = EλBC, (43)

where the matrix elements Hij =< ψi|H|ψj > and Bij =< ψi|ψj > are calculated analyti-

cally using the variational wave functions, and Eλ is one of the energy eigenvalues. The
upper bound for the state energy of a system of three particles in the variational approach
was provided by the smallest eigenvalue of the generalized eigenvalue problem.

The numerically obtained wave functions of various states made it possible to calcu-
late various corrections to energy levels to increase the accuracy of the calculation. The
radial distribution densities in ρ and λ, as well as the root-mean-square values

√

< ρ2 >,√
< λ2 > were:

W(ρ) =
8
√

2π5/2

< Ψ|Ψ >

K

∑
i,j=1

CiCj

B3/2
22

ρ2e
− 1

2 ρ2 detB
B22 , W(λ) =

8
√

2π5/2

< Ψ|Ψ >

K

∑
i,j=1

CiCj

B3/2
11

λ2e
− 1

2 ρ2 detB
B11 , (44)

W(ρ, λ) =
16π2

< Ψ|Ψ >

K

∑
i,j=1

CiCj

B12
ρλe−

1
2 [ρ

2B11+λ2B22]sh(B12ρλ), Blk = Ai
lk + A

j
lk, (45)

< ρ2
>=

24π3

< Ψ|Ψ >

K

∑
i,j=1

CiCj
B22

(detB)5/2
, < λ2

>=
24π3

< Ψ|Ψ >

K

∑
i,j=1

CiCj
B11

(detB)5/2
. (46)

The radial distribution densities are shown in Figures 1 and 2 for muonic helium-3.
These plots showed the presence of two characteristic distances in the particle system
He − µ − e. From (46), it followed that the root-mean-square values ρN =

√

< ρ2 > and

λN =
√

< λ2
> for muon-electron helium (He − 3, 4) had close values: ρHe = 850 f m,

λHe = 91.3 × 103 f m.
Our numerical calculations of the variational method were carried out in a MATLAB

environment [11]. Along with the Gaussian basis, the exponential basis was also used,
as in [13]. The comparison of the numerical values of the energy of the states 2S(µ)1S(e)

and 2P(µ)1S(e), which were obtained using these two bases, is presented in Table 1.
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Figure 1. The radial distribution densities W(ρ) and W(λ) for the state 2S(µ)1S(e). The variable

values ρ and λ are presented in muonic atomic units.

Figure 2. The radial distribution density W(ρ, λ) for (µe3He). The variable values ρ and λ are

presented in muonic atomic units.

Table 1. Numerical values of the Coulomb corrections of the muon Lamb shift. The abbreviations G

and Exp. denote Gaussian and exponential trial wave functions. The last column presents the results

of the analytical calculation of the Lamb shift.

N − µ − e Basis 2S, µ.a.u. 2P, µ.a.u. (2P − 2S) (2P − 2S)

3
2He − µ − e G −0.48428998695 −0.48428934525 3.61 meV 3.37 meV

Exp. −0.48429003559 −0.48428946173 3.23 meV

4
2He − µ − e G −0.48863657185 −0.48863598056 3.33 meV 3.32 meV

Exp. −0.48863665520 −0.48863609292 3.16 meV

4. Conclusions

When calculating some of the contributions analytically, we replaced the exact Green’s
function of the electron with the free one. In this case, we neglected corrections of the order
of
√

Me/Mµ in comparison with the calculated terms (see Equation (15)). Numerically,
√

Me/Mµ ≈ 0.1, so the main error of analytical calculations was approximately 10 percent.
By including the calculation of the Lamb shift in the framework of the variational method,
we then had to verify the results of the analytical calculations, on the one hand, and on the
other hand, improve the accuracy of the calculations. The variational method provides a
very high accuracy in the calculation of energy levels. In Table 1, we defined the results
with an accuracy of two digits after the decimal point in order to achieve a comparison
with analytical results. The comparison of the results obtained by different methods has
shown that these results agreed with each other within the limits of a possible theoretical
error in analytical calculations. The slight difference in the variational results when using
the exponential and Gaussian bases could be explained by the size of the bases and by the
fact that the convergence with the Gaussian basis was slower than with the exponential
wave functions. The maximum size of a basis with the Gaussian wave functions was
approximately 400, and with exponential wave functions, approximately 2000.
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The measurement of the Lamb shift in two-particle muonic atoms and ions by the
CREMA [1] collaboration had made it possible to obtain an order of magnitude of more
accurate values of the charge radii of the proton, deuteron, and alpha particles. This was
accomplished after the precise calculations of the Lamb shift, which had included the effects
of vacuum polarization, nuclear structure, relativistic corrections, and higher-order mixed-
type effects in the α and particle mass ratio [23,24]. In this paper, we studied the influence
of the particle coupling effects on the magnitude of the muon Lamb shift in three-particle
muon-electron-nucleus systems. The presence of an electron led to an additional Coulomb
interaction with the muon and nucleus, and it changed the magnitude of the Lamb shift,
as compared to two-particle systems. The numerical values of the Coulomb correction for
various muon-electron systems were as follows:

∆E(µe7
3Li) = 9.12 meV, ∆E(µe9

4Be) = 14.27 meV, ∆E(µe11
5 B) = 19.33 meV. (47)

Considering (47) and the results of [23,24], we obtained the values of the muon
(2P − 2S) Lamb shift (Ls) (values were given for nuclei Li, Be, and B with the same spin
3/2):

ELs(3
2He) = 1263.23 meV, ELs(4

2He) = 1382.43 meV, (48)

ELs(Li) = 1540.90 meV, ELs(Be) = −1228.55 meV, ELs(B) = −7981.00 meV.

The Coulomb interaction of the particles in three-particle systems led to a small but
significant change in the magnitude of the muon Lamb shift, as compared to two-particle
muon systems. Accounting for the correction (47) was necessary to extract the value of the
charge radius of the helion and the α particles with an accuracy exceeding 0.01 fm.
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