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Abstract. In this paper, we studied on the defect structures as topological by non-linear
three scalar fields. By using modified Adomian decomposition method (MADM), and Adomian
decomposition method (ADM) we have found the solutions of three scalar fields. Then we
compared the obtained results each other by numerical solution. Also, we consider the static
case and draw φ(x), χ(x), and ρ(x) with the choice of different values for parameter r.

1. Introduction

Recently, a lot of literatures have been considered nonlinear equations as ordinary differential
equation (ODE) and partial differential equation (PDE). These nonlinear equations are used
in the different branches of physics, engineering and the other sciences. One of applications is
defect structures that plays an important role in cosmology and high energy physics and can
be of topological or non-topological nature [1, 2, 3]. Kink-like and lump-like are topological
and non-topological structures respectively, which can be described by real scalar fields in 1+ 1
space-time dimensions under the action of nonlinear interactions. One of main applications of
topological defects is in cosmology especially for formation of structure in the early Universe,
because topological defects are as carriers of attractive gravitational force [4, 5].
So far, the defect structures solutions have investigated by orbit method [6, 7]. In the present
work, we focus attention on three coupled real scalar fields which are topological or kink-like
defects [8]. For example the single real scalar field support just single defect as tanh-like kink,
and the double sin-Gordon model may support two different defects, large and small kink [8].
In other words, a system containing two or more real scalar fields give rise to at least two other
classes of systems those that support defects that engender internal structure and those that
support junctions of defects [6, 7, 9, 10]. Also, we know that the regular hexagonal network of
defects described by two and three real scalar fields [11, 12, 13, 14].

Also the three fields solutions in the Einstein equations for describing black holes with the
cosmic string discussed by [15]. In general, these give us motivation to study three scalar fields.
However, to make the present investigation as general as possible.

In most of the natural problems and modelings we encounter the nonlinear equations which
could be solved by using different methods, such as Variational Iteration Method (VIM)
[16], Modified Variational Iteration Method (MVIM) [17, 18], Homotopy Perturbation Method
(HPM) [19, 20, 21, 22, 23], Adomian Decomposition Method (ADM) [24, 25], Modified Adomian
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Decomposition Method (MADM) [26] and so on. Here we investigate the three last ones with
comparing the results to show the accuracy of these methods and obtain a reliable solution for
this physical problem.

The present work are organized as follows:
In the section 2 we will study topological defect by three scalar fields. Afterward, we will present
the general form of ADM and MADM methods in section 3. Then, we will apply the ADM and
MADM methods to three coupled scalar fields and obtain the corresponding solutions for the
fields φ(x), χ(x) and ρ(x) in section 4. In section 5, the result is showed in a table and the
fields φ(x), χ(x) and ρ(x) are drew in terms of position for three different values of parameter r.
Finally, we conclude in section 6 that this solutions is capable to describe the topological defect.

2. Three scalar fields system

We start with the following Lagrangian density [1],

L =
1

2

∂φ

∂xα

∂φ

∂xα
+

1

2

∂χ

∂xα

∂χ

∂xα
+

1

2

∂ρ

∂xα

∂ρ

∂xα
+ U(φ, χ, ρ), (1)

where xα and xα are as x0 = x0 = t, x1 = −x1 = x and U(φ, χ, ρ) is the potential which is
a linear function of the three fields. The variation of Lagrangian density with respect to fields
lead to equations of Euler-Lagrange in the following form

∂

∂t
(
∂L
∂φ̇

) =
∂L
∂φ

,
∂

∂t
(
∂L
∂χ̇

) =
∂L
∂χ

,
∂

∂t
(
∂L
∂ρ̇

) =
∂L
∂ρ

(2)

where point symbol demonstrates derivative with respect to time. So, the above model we have

∂2φ

∂t2
− ∂2φ

∂x2
+

∂U

∂φ
= 0,

∂2χ

∂t2
− ∂2χ

∂x2
+

∂U

∂χ
= 0,

∂2ρ

∂t2
− ∂2ρ

∂x2
+

∂U

∂ρ
= 0. (3)

If the field is constant we get ∂U
∂φ

= ∂U
∂χ

= ∂U
∂ρ

= 0. However, for static fields configurations

(i.e. φ = φ(x), χ = χ(x), ρ = ρ(x)) we have

∂2φ

∂x2
=

∂U

∂φ
,

∂2χ

∂x2
=

∂U

∂χ
,

∂2ρ

∂x2
=

∂U

∂ρ
. (4)

So the above equations of motion are a system of three non-linear differential equations. The
energy density associated with these configurations could be written as

ǫ =
1

2

(

dφ

dx

)2

+
1

2

(

dχ

dx

)2

+
1

2

(

dρ

dx

)2

+ U(φ, χ, ρ) (5)

We note, for existence of soliton solutions the following restrictions are require

U(φ, χ, ρ) = U(−φ, χ, ρ), U(φ, χ, ρ) = U(φ,−χ, ρ), U(φ, χ, ρ) = U(φ, χ,−ρ).

Let us now consider models described by three scalar fields, given by [6, 7, 8, 9]

U(φ, χ, ρ) =
1

2
(1− φ2 − r(χ2 + ρ2))2 + 2r2φ2(χ2 + ρ2) (6)

by inserting (6) into (4), the equations of motion for above system be in the form

d2φ

dx2
= −2φ(1− φ2 − r(χ2 + ρ2)) + 4r2φ(χ2 + ρ2),

d2χ

dx2
= −2rχ(1− φ2 − r(χ2 + ρ2)) + 4r2φ2χ,

d2ρ

dx2
= −2rρ(1− φ2 − r(χ2 + ρ2)) + 4r2φ2ρ. (7)

In next section, we will study a brief review on ADM and MADM methods.
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3. A brief review of ADM, and MADM methods

In here we explain ADM and MADM methods in below separately.

3.1. Fundamentals of Adomian decomposition method

We start with a general nonlinear differential equation in the following form

Lu+Ru+Nu = g(t), (8)

where linear term is represented by Lu and L is a linear operator and easily invertible. We
choose L as the highest-ordered derivative, R is the reminder of the linear operator, namely a
term consists only u with a coefficient (constant or variable). The nonlinear term is represented

by Nu, L−1 is defined as n-fold integration for L = dn

dtn
. For example, we can write L = d2

dt2
as

L−1L = u− u(0) − tu′(0). (9)

where L−1 =
∫ t

0

∫ t

0 [.] dtdt. From equation Eq. (8) we get

Lu = g(t) −Ru−Nu, L−1Lu = L−1g(t) − L−1Ru− L−1Nu, (10)

in that case one can obtain u as follows,

u = u(0) + tu′(0) + L−1g(t)− L−1Ru− L−1Nu. (11)

The first three terms are identified as in the assumed decomposition u =
∑∞

n=0 un,

u0 = u(0) + tu′(0) + L−1g(t), u1 = −L−1Ru0 − L−1Nu0, (12)

u2 = −L−1Ru1 − L−1Nu1, ..., un = −L−1Run−1 − L−1Nun−1,

also we write

Nu =
∞
∑

n=0

An(u0, u1, ..., un),

where An are called Adomian polynomials and depend only on u components and make a rapidly
convergent series (any nonlinearity are written in terms of An and Nu need not even be analytic).
The Adomian polynomials for one variable function are generated by the following formula :

An(u0, u1, ..., un) =
1

n!
[
dn

dλn
N(

n
∑

i=0

uiλ
i)]λ=0, (13)

we write here the first five Adomian polynomials for convenience,

A0 = f (u0) , A1 = u1f
(1) (u0) , A2 = u2f

(1) (u0) +
(

1
2!

)

u21f
(2) (u0) ,

A3 = u3f
(1) (u0) + u1u2f

(2) (u0) +
(

1
3!

)

u31f
(3) (u0) ,

A4 = u4f
(1) (u0) +

[(

1
2!

)

u22 + u1u3
]

f (2) (u0) +
(

1
2!

)

u21u2f
(3) (u0) +

(

1
4!

)

u41f
(4) (u0) , ... (14)

The Adomian polynomials for two variables function f(u(x), v(x)) are as follow:

A0 = f(u0, v0), A1 = u1f1,0 + v1f0,1,

A2 = u2f1,0 + v2f0,1 + (
u2

1

2! )f2,0 + u1v1f1,1 + (
v2
1

2! )f0,2

A3 = u3f1,0 + v3f0,1 + u1u2f2,0 + [u1v2 + u2v1]f1,1 + v1v2f0,2 + (
u3

1

3! )f3,0 + (
u2

1

2! )v1f2,1

+(
u1v

2

1

2! )f1,2 + (
v3
1

3! )f0,3, ... (15)

ScieTech 2015 IOP Publishing
Journal of Physics: Conference Series 622 (2015) 012046 doi:10.1088/1742-6596/622/1/012046

3



where

fµ,ν(u0, v0) =
∂µ+ν

∂uµ∂vν
f(u(x), v(x))|x=0,

We can write the practical solution in n-term approximation [24]

ϕn =

n−1
∑

i=0

ui, u = lim
n→∞

ϕn =

∞
∑

i=0

ui. (16)

where u0, u1, u2, ... are determined by the following recursive relation as mentioned above,

u0(x) = f(x), un(x) = −L−1Run−1 − L−1Nun−1, n ≥ 1 (17)

3.2. Fundamentals of modified Adomian decomposition method

In ADM method the zeroth component u0(x) is usually identified by the function f(x) defined
in Eq. (17). It is obvious that Adomian method changes the differential equations to obtain an
easily computable components. The closed form for the solution u(x) if exists can be immediately
obtained because of the rapid convergence presented by the method.

The modified decomposition method suggests that the function f(x) defined above in Eq.
(17) be decomposed into two parts, namely f0(x) and f1(x) such that f(x) = f0(x) + f1(x).
The proper choice of the parts f0(x) and f1(x) depends mainly on trial basis. In view of
this decomposition of f(x), a slight variation only on the components u0(x) and u1(x) should
be introduced. The proposed variation is that only the part f0(x) be assigned to the zeroth
component u0(x), whereas the remaining part f1(x) be combined with the other terms given in
u1(x) to define it. In view of this assumption, we formulate the following recursive relation for
the modified decomposition method [26],

u0(x) = f0(x), u1(x) = f1(x)− L−1(Ru0(x))− L−1(Nu0(x)),

un(x) = −L−1(Run−1(x)) − L−1(Nun−1(x)), n ≥ 2. (18)

The success of the modified method depends mainly on the proper choice of the parts f0(x)
and f1(x). We have been unable to establish any criterion to judge what forms of f0(x) and
f1(x) can be used to yield the acceleration demanded. It appears that trials are the only criteria
that can be applied so far.

4. Solving of the three scaler fields

In this section, we are going to solve the equations system of Eqs. (7) by three methods of
MADM and ADM as follows:
Now we expand the the system of Eqs. (7) and apply MADM formulism to them. So that we
have,

Lφ = −2φ+ 2φ3 + (4r2 + 2r)φχ2 + (4r2 + 2r)φρ2

Lχ = −2rχ+ 2r2χ3 + 2r2χρ2 + (4r2 + 2r)χφ2

Lρ = −2rρ+ 2r2ρ3 + 2r2ρχ2 + (4r2 + 2r)ρφ2, (19)

assuming β = 4r2 + 2r, and with the integration of the operator L we can obtain the following
expressions

φ = a0 + a1x− 2L−1φ+ 2L−1φ3 + βL−1φχ2 + βL−1φρ2

χ = b0 + b1x− 2rL−1χ+ 2r2L−1χ3 + 2r2L−1χρ2 + βL−1χφ2

ρ = c0 + c1x− 2rL−1ρ+ 2r2L−1ρ3 + 2r2L−1ρχ2 + βL−1ρφ2, (20)
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where, we let (base on modified decomposition)

φ0 = a0, χ0 = b0, ρ0 = c0. (21)

φ1 = a1x− 2

∫ x

0

∫ x

0
φ0(x)dxdx+ 2

∫ x

0

∫ x

0
A0[φ(x)

3]dxdx+

+ β

∫ x

0

∫ x

0
A0[φ(x)χ(x)

2]dxdx+ β

∫ x

0

∫ x

0
A0[φ(x)ρ(x)

2]dxdx

χ1 = b1x− 2r

∫ x

0

∫ x

0
χ0(x)dxdx+ 2r2

∫ x

0

∫ x

0
A0[χ(x)

3]dxdx+

+ 2r2
∫ x

0

∫ x

0
A0[χ(x)ρ(x)

2]dxdx+ β

∫ x

0

∫ x

0
A0[χ(x)φ(x)

2]dxdx

ρ1 = c1x− 2r

∫ x

0

∫ x

0
ρ0(x)dxdx+ 2r2

∫ x

0

∫ x

0
A0[ρ(x)

3]dxdx+

+ 2r2
∫ x

0

∫ x

0
A0[ρ(x)χ(x)

2]dxdx+ β

∫ x

0

∫ x

0
A0[ρ(x)φ(x)

2]dxdx (22)

Finally from equation (9) one can obtain φn(x), χn(x) and ρn(x) as follows:

φn = −2

∫ x

0

∫ x

0
φn−1(x)dxdx+ 2

∫ x

0

∫ x

0
An−1[φ(x)

3]dxdx+

+ β

∫ x

0

∫ x

0
An−1[φ(x)χ(x)

2]dxdx+ β

∫ x

0

∫ x

0
An−1[φ(x)ρ(x)

2]dxdx

χn = −2r

∫ x

0

∫ x

0
χn−1(x)dxdx+ 2r2

∫ x

0

∫ x

0
An−1[χ(x)

3]dxdx+

+ 2r2
∫ x

0

∫ x

0
An−1[χ(x)ρ(x)

2]dxdx+ β

∫ x

0

∫ x

0
An−1[χ(x)φ(x)

2]dxdx

ρn = −2r

∫ x

0

∫ x

0
ρn−1(x)dxdx+ 2r2

∫ x

0

∫ x

0
An−1[ρ(x)

3]dxdx+

+ 2r2
∫ x

0

∫ x

0
An−1[ρ(x)χ(x)

2]dxdx+ β

∫ x

0

∫ x

0
An−1[ρ(x)φ(x)

2]dxdx (23)

for n = 2, 3, 4, . . .
where An−1[.] are (n− 1)th Adomian polynomials. The exact solution will be

φ = lim
n→∞

n
∑

i=0

φi, χ = lim
n→∞

n
∑

i=0

χi, ρ = lim
n→∞

n
∑

i=0

ρi, (24)

with applying initial conditions φ(0) = 1
2 , φ′(0) = 1

2 , χ(0) =
√
2
4 , χ′(0) = −

√
2
4 , ρ(0) =

√
2
4 and

ρ′(0) = −
√
2
4 the constant coefficient from Eq. (3) will be

a0 =
1

2
, a1 =

1

2
, b0 =

√
2

4
, b1 = −

√
2

4
, c0 =

√
2

4
, c1 = −

√
2

4
,

so the above information into equation (6) give us,

φ(x) =
1

2
+

1

2
x+ (

1

4
r2 +

1

8
r − 3

8
)x2 + (− 1

12
r2 − 1

24
r − 1

24
)x3

+(
1

12
r4 − 1

96
r3 − 13

192
r2 − 1

148
r +

1

64
)x4 + ...+ ℜ(x), (25)
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χ(x) = ρ(x) =

√
2

4
−

√
2

4
x+ (

3
√
2

16
r2 − 3

√
2

16
r)x2 + (−

√
2

48
r2 +

5
√
2

48
r)x3

+(
23
√
2

384
r4 −

√
2

24
r3 +

√
2

128
r2 +

5
√
2

192
r)x4 + ...+ ℜ(x), (26)

where ℜ(x) is the reminder.
By using ADM method we obtain the following results

φ(x) = (− 19

9600
r5 − 73

1920
+

13

76800
r3 +

121

19200
r4 +

403

6400
r2 +

31

960
r − 19

9600
r6)x5

+(
61

640
− 203

3840
r2 − 23

15360
r3 − 5

192
r +

1

1920
r5 +

1

1920
r6 +

1

3840
r4)x4

+(− 1

38400
r3 − 13

320
− 1

19200
r4 − 1/12 r2 − 1/24 r)x3 + (1/8 r +

1

12800
r3 − 121

320

+
1

6400
r4 + 1/4 r2)x2 +

67

120
x+

43

84
+ . . .+ ℜ(x). (27)

χ(x) = ρ(x) = (− 1169

38400
r2
√
2− 871

614400
r6
√
2− 1

160
r
√
2− 931

76800
r4
√
2 +

7

76800
r5
√
2

+
197

10240
r3
√
2)x5 + (

43

3072
r4
√
2 +

317

7680
r2
√
2− 1

96
r
√
2 +

21

40960
r6
√
2

− 1343

30720
r3
√
2 +

1

15360
r5
√
2)x4 + (− 13

4800
r4
√
2 +

5

48
r
√
2− 11

307200
r6
√
2

+
401

76800
r3
√
2− 1/48 r2

√
2)x3 + (3/16 r2

√
2 +

1

800
r4
√
2− 79

25600
r3
√
2− 3/16 r

√
2

+
1

102400
r6
√
2)x2 + (− 1

64
r2
√
2− 1/4

√
2 +

1

960
r3
√
2)x+ 1/4

√
2− 1

6720
r3
√
2

+
1

320
r2
√
2 + . . . + ℜ(x). (28)

5. Discussions

In this section, we are going to discuss on obtained solutions. As the solutions of nonlinear
equations are very sensitive to initial conditions and parameters thus we should choose them
carefully, otherwise the result will be very different from our interest. For this purpose, we first
solve system of (7) by Runge-Kutta method and the obtained values of φ(x), χ(x) and ρ(x) are
written in table 1 and 2 for interval 0 < x < 1 in r = 0. Also, the obtained values of φ(x),
χ(x) and ρ(x) are calculated with MADM and ADM methods by Eqs. (25), (26), (27) and
(28) for interval 0 < x < 1 in r = 0 in table 1 and 2. Then, we compare the obtained results
of MADM and ADM methods with numerical solution (Runge-Kutta method), and we specify
them accuracy with column of error in table 1 and 2.
In what follows, we draw the φ(x), χ(x) and ρ(x) with the choice of different values for real
parameter r = 0, 16 , 1. Also, we add solution of HPM method in figures of 1 and 2 that it has
come of Ref. [27]. We can see the diverse results in figures of 1 and 2 in interval −1 < x < 1.
It is worth noting that the figures 1 and 2 show kink-like topological solutions.

6. Conclusion

In this paper, we studied on topological defect structure by a system of three scalar fields. For
this purpose, we wrote the Lagrangian density in terms of three scalar fields and a potential
functional of three fields. We note that the fields are functional of position, and by using of
equations of Euler-Lagrange we obtained equations of field as a system of three scalar fields. In
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Table 1. The results of field φ(x) for r = 0.
x Numerical MADM Error ADM Error

0 0.5000000000 0.5000000000 0 0.5119047619 1.190 ∗ 10−2

0.2 0.5847777033 0.5846916667 8.604 ∗ 10−5 0.6082602709 2.348 ∗ 10−2

0.4 0.6388794848 0.6377333333 1.146 ∗ 10−3 0.6740968653 3.522 ∗ 10−2

0.6 0.66272761418 0.6580250000 4.703 ∗ 10−3 0.7104041009 4.768 ∗ 10−2

0.8 0.65678514162 0.6450666667 1.172 ∗ 10−2 0.7170933419 6.031 ∗ 10−2

1 0.62092003909 0.5989583333 2.196 ∗ 10−2 0.6902529763 6.933 ∗ 10−2

Table 2. The results of fields χ(x) = ρ(x) for r = 0.
x Numerical MADM Error ADM Error

0 0.3535533905 0.3535533905 0 0.3535533905 0
0.2 0.2828427124 0.2828427124 0 0.2828427124 0
0.4 0.2121320343 0.2121320343 0 0.2121320343 0
0.6 0.1414213562 0.1414213562 0 0.1414213562 0
0.8 0.0707106781 0.0707106780 0 0.0707106780 0
1 0.984455−16 0 9.84 ∗ 10−17 0 9.84 ∗ 10−17

-1 -0.5 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Numerical Result
HPM
MADM
ADM

-1 -0.5 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Numerical Result
HPM
MADM
ADM

-1 -0.5 0.5 1
0

0.5

1

Numerical Result
HPM
MADM
ADM

Figure 1. The graph of φ(x) for
cases r = 0 (left hand), r = 1

6
(middle) and r = 1 (right hand).
The HPM calculated in Ref. [27].

order to solve this system, we used the ADM and MADM methods. In these methods, choice
of initial condition is very sensitive, so that we chose them due to find kink-like solutions. Also
the parameter r plays an important role in the solution of this system of differential equations.
Therefore, we considered its value with r = 0, 16 , 1. Afterward, we solve this system as numerical
solution by Runge-Kutta method, so that tables 1 and 2 are included by three solutions of nu-
merical, ADM and MADM in interval 0 < x < 1 for r = 0. Finally, we plotted three scalar fields
in terms of position, and compared them together. The figures 1 and 2 depicted the variation
of three fields against position. Also we entered solution of HPM method (result of Ref. [27])
in figures 1 and 2.
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Figure 2. The graph of χ(x) =
ρ(x) for cases r = 0 (left hand),
r = 1

6 (middle) and r = 1 (right
hand). The HPM calculated in Ref.
[27]

[1] J. Sadeghi, A. R. Amani, and A. Pourdarvish, Canadian Journal of Physics 86.7 (2008): 943-946. 1, 2
[2] A. de Souza Dutra, and P. E. D. Goulart, Physical Review D 84.10 (2011): 105001. 1
[3] J. Sadeghi and A. R. Amani, Acta Physica Polonica-Series A General Physics 113.2 (2008): 677-690. 1
[4] R. H. Brandenberger, International Journal of Modern Physics A 9.13 (1994): 2117-2189. 1
[5] A. Vilenkin and E. P. S. Shellard, Cosmic strings and other topological defects, Cambridge University Press,

2000. 1
[6] D. Bazeia, R. F. Ribeiro and M. J. dos Santos, Phys. Rev. D 54 1852 (1996). 1, 2
[7] D. Bazeia, R. F. Ribeiro and M. J. dos Santos, Phys. Rev. E 54 2943 (1996). 1, 2
[8] E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 (1967). 1, 2
[9] R. Jackiw, Rev. Mod. Phys. 49 681 (1977). 1, 2
[10] R. Rajaraman, Phys. Rev. Lett. 142 200 (1979). 1
[11] J. R. Morris and D. Bazeia, Phy. Rev. D 54, 5217 (1996). 1
[12] S. M. Carroll, S. Hellerman, and M. Trodden, Phy. Rev. D 61, 065001 (2000). 1
[13] D. Bazeia and F. A. Brito, Phys. Rev. D 62, 101701(R) (2000). 1
[14] D. Bazeia, L. Losano, and C. Wotzasek, Phys. Rev. D 66 (2002) 105025. 1
[15] V. P. Frolov and D. V. Fursaev, Class. Quant. Grav. 18 1535 (2002). 1
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