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Abstract

This thesis explores the derivation of chiral current algebras from different gravita-

tional theories, including R1,3 gravity, AdS4 gravity, and 3d conformal gravity. We

propose chiral boundary conditions consistent with the variational principle for 4d

asymptotically flat solutions yielding a chiral bms4 asymptotic symmetry algebra.

This symmetry algebra was earlier discovered in the context of celestial conformal

field theory. It is an infinite-dimensional chiral extension of the Poincaré algebra and

includes a copy of Virasoro algebra, a copy of sl(2,R) current algebra, and a doublet

of commuting currents with conformal weight h = 3
2
. Additionally, a novel non-chiral

infinite-dimensional symmetry algebra for R1,3 gravity is introduced through alterna-

tive non-chiral boundary conditions, considering the boundary metric in conformal

gauge.

Generalising the chiral boundary conditions of R1,3 gravity for AdS4 gravity, we

derive chiral locally AdS4 solutions in the Newman-Unti gauge consistent with vari-

ational principle whose asymptotic symmetry algebra we show, to be an infinite

dimensional chiral extension of so(2, 3). This symmetry algebra coincides with the

chiral bms4 algebra in the flat space limit. We posit this symmetry algebra as the

chiral version of recently discovered Λ-bms4 algebra. We postulate line integral

charges from the bulk AdS4 gravity corresponding to this chiral symmetry algebra

and show that the charges obey the semi-classical limit of W-algebra that includes

a level k, sl(2,R) current algebra. The complete quantum version of this algebra

which we denote by W(2; (3/2)2, 13) already existed in the literature in a different

context.

We also construct four inequivalent W-algebras based on exactly four inequivalent

embedding of sl(2,R) in so(2, 3). These algebras are denoted as W(2; 22, 1),W(2, 4),

W̃(2; 22, 1) and W(2; (3/2)2, 13). We show the emergence of W(2; (3/2)2, 13) and

W(2, 4) algebras in the semi-classical limit from the asymptotic symmetries of

so(2, 3) Chern-Simons theory formulation of 3d conformal gravity. The analogous

calculation for W(2; 22, 1) already existed in the literature which can be extended

trivially for the case of W̃(2; 22, 1). The emergence of W(2; (3/2)2, 13) algebra from

asymptotic symmetry analysis of three-dimensional gravitational Chern-Simons ac-

tion is also demonstrated in this thesis. This action describes 3d conformal gravity in

the second-order formulation and plays an important role in AdS4 gravity. Charges

generating this symmetry algebra are calculated using the modified Lee-Wald co-

variant phase space formalism.



Finally, classical theories for scalar fields in arbitrary Carroll spacetimes, invariant

under Carrollian diffeomorphisms and Weyl transformations, are constructed. These

theories, upon gauge fixing, become Carrollian conformal field theories, with a clas-

sification provided for scalar field theories in three dimensions up to two derivative

orders. We show that only a specific case of these theories arises in the ultra-

relativistic limit of a covariant parent theory.
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Chapter 1

Synopsis

1.1 Introduction

Asymptotic symmetries play a crucial role in the study of holography. For instance,

before the seminal work of Maldacena [1] that conjectured the AdS/CFT corre-

spondence, it was shown by Brown and Henneaux [2] that the commutator algebra

of canonical charges that generate asymptotic symmetries of asymptotically locally

AdS3 configurations with Dirichlet boundary conditions is the sum of two commut-

ing copies of Virasaro algebra. It is also well known that these are global symmetries

of 2d conformal field theory (CFT) defined on the time-like boundary of such space-

times. They further calculated the central charge associated with the two copies of

Virasaro algebra to be c = 3l
2G

, where l is the AdS radius and G is Newton constant.

This work was the first validation of one of the expectations from the holographic

principle, which states that the global symmetries of the holographic dual boundary

theory are isomorphic to asymptotic symmetries of bulk gravitational theory.

Similarly, before the initial works on flat space holography, in the 1960s Bondi, van

der Burg, Metzner [3] and Sachs [4] showed the existence of an infinite dimensional

algebra of asymptotic symmetries for spacetimes that approach Minkowski space-

time near the boundary null infinity. Their analysis was done in a particular gauge

now famously known as Bondi gauge . This algebra, denoted by bms4, is a semi-

direct sum of Lorentz algebra and supertranslations (parametrized by an arbitrary

function defined on the sphere at the boundary). Though done in the context of

gravitational waves, this work later became the foundation of the flat space holog-

raphy program. In a series of seminal works by Strominger and collaborators [5]

, it was proved that the Ward identities of charges associated with bms4 algebra
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are equivalent to Weinberg soft theorems for gravitational theories. The connection

of this algebra with the soft theorems and memory effects have far-reaching conse-

quences on gravitational theories in asymptotically flat spacetimes, which include

imposing strict constraints on the infrared structure of the gravitational S-matrix.

The study of asymptotic symmetries has proved insightful in our search for dual

boundary theories in the context of flat space holography as well. There are two

candidates of dual holographic theories for 4d gravitational theories in asymptoti-

cally flat spacetimes, (i) celestial conformal field theory, a putative 2d theory defined

on the celestial sphere at null infinity [6] and (ii) Carrollian conformal field theory,

a 3d theory defined on null infinity akin to the traditional co-dimension one holog-

raphy like AdS/CFT correspondence [7]. These theories include bms4 symmetry

algebra as their global symmetries.

The asymptotic symmetries are known to be sensitive to the boundary conditions

imposed on the bulk configuration space. Therefore, it is important to study the

interplay of these boundary conditions with the asymptotic symmetry algebra as it

allows us to probe the features and properties of the boundary theory, and explore

the relationship between various physical bulk configurations and the corresponding

boundary theories. A prime example of such a case includes relaxing the Brown and

Henneaux boundary conditions for asymptotically locally AdS3 spacetimes, such

that it breaks the symmetry between left-moving and right-moving sectors of the 2d

CFT and gives rise to 2d chiral CFT or 2d polyakov induced gravity in chiral gauge

at the boundary [8, 9, 10].

In the context of 4d asymptotically flat spacetime, one proposes boundary conditions

on the celestial sphere at null infinity where bms4 gets enhanced as follows,

• Extended bms4, where Lorentz algebra is enhanced to two copies of Witt

algebra [11].

• Generalised bms4, where Lorentz algebra is enhanced to the algebra of diffeo-

morphisms on a celestial sphere (Diff (S2)) [12].

However, there has not been an attempt to consider chiral boundary conditions

for 4d flat space gravity along the lines of AdS3 gravity [8, 9, 10]. This question

becomes important in light of the recent results in celestial CFT, where a sector

in the celestial CFT holographically computes MHV graviton scattering amplitudes

[13, 14]. The complete symmetry algebra of such a sector includes one copy of the

sl(2,R) current algebra, one copy of Virasoro algebra and a pair of commuting h = 3
2

2



conformal primaries which is also a current algebra doublet. This symmetry algebra

is an infinite dimensional chiral extension of the Poincare algebra iso(1, 3), which

will be referred to as the chiral bms4 algebra. Then, a natural question, which will be

answered in the thesis is whether one can obtain such an algebra as the asymptotic

symmetry algebra of the 4d flat space R1,3 gravity.

The situation is different for AdS4 gravity, where until recently, it was thought that

the symmetry algebra of asymptotically AdSd + 1 spacetimes for d ≥ 3 is finite-

dimensional so(2, d) for a class of boundary conditions. Compère and collaborators

in [15, 16], proposed new boundary conditions for generic asymptotically AdS4 space-

times in Bondi gauge, where they uncover the symmetry algebra of residual gauge

transformations to be an infinite dimensional algebra, the Λ-bms4. The Λ-bms4 and

its corresponding phase space in the flat space limit (Λ → 0) coincide with the

generalised bms4 algebra and the phase space associated with it. This raises the

following questions, which we address in the thesis,

1. Is there a chiral extension of so(2, 3) algebra that in some appropriate flat

space limit reduces to the chiral bms4?

2. Can one obtain such a chiral Λ-bms4 algebra from the AdS4 gravity?

3. How many chiral extensions of so(2, 3) are possible, and is there a systematic

way to derive them?

4. Can one obtain all these chiral extensions as the asymptotic symmetry algebra

of 3d conformal gravity?

One of the two proposed duals of flat space gravity is a Carrollian conformal field

theory defined at null infinity, an example of a Carrollian manifold. Earlier ef-

forts to construct Carrollian conformal field theories have involved taking the ultra-

relativistic limit c→ 0 (c being the speed of light) of some parent relativistic confor-

mal theory [17, 18]. This is because a simple way to obtain flat Carrollian geometry

is to take c→ 0 limit of the Minkowski spacetime. Also, there have been few other

attempts to construct Carrollian conformal field theories over the years [19], how-

ever, none of these attempts were general enough to demonstrate all the features of

Carrollian manifolds as they did not include field theories defined on curved Car-

rollian manifolds. Hence, the question of constructing more general conformal field

theories intrinsically on a Carrollian manifold is an important one. We will address

this in the thesis by providing a systematic method to construct such field theories.

3



The thesis comprises two parts. In the first part, we concern ourselves with some

aspects of flat space holography. The following is a summary of the main results of

this part of the thesis:

• ŝl2 symmetry of R1,3 gravity: We propose chiral boundary conditions for

4d asymptotically flat solutions consistent with the variational principle. The

asymptotic symmetry algebra of such solutions is shown to be the chiral bms4.

We also construct boundary terms that lead to a well defined variational prin-

ciple. Six arbitrary holomorphic functions parametrize the resultant solutions,

which correspond to Goldstone modes associated with the spontaneous break-

ing of this symmetry algebra in the gravitational vacuum.

• Scalar Carollian conformal Field theories: We provide an explicit con-

struction of classes of conformal scalar field theories on Carrollian manifolds in

three dimensions using the geometrical covariant tensors of the Carroll geome-

try. These theories by construction have their symmetry algebra as Carrollian

conformal algebra cca
(z)
3 , a one parameter generalization of bms4, defined for

generic values of dynamical exponent z.

In the second part of the thesis we derive all the possible infinite dimensional chiral

extensions of so(2, 3) algebra and their holographic realizations. We propose bound-

ary conditions for AdS4 gravity that will give rise to one of these chiral extension of

so(2, 3) as its asymptotic symmetry algebra. Furthermore, we will derive all these

chiral algebras in the semi-classical limit (large central charge c or level κ limit)

from the asymptotic symmetries of 3d conformal gravity by providing appropriate

boundary conditions. This analysis fills a gap in the literature where most of the

work done on the asymptotic symmetries of 3d conformal gravity except the one

in [20], did not include so(2, 3) algebra [21, 22, 23]. In the following, we provide a

summary of the main results of the second part of the thesis:

• A chiral W-algebra extension of so(2, 3) : We propose chiral boundary

conditions for AdS4 gravity in Neumann-Unti gauge inspired by the chiral

boundary conditions of R1,3 gravity considered in the first part of the thesis

and, obtain the symmetry algebra for resultant solutions. The result is a W-

algebra, which coincides with chiral bms4 algebra in the flat space limit. This

algebra is the chiral version of Λ-bms4 algebra. The derivation of this algebra

from the AdS4 gravity is in the semi-classical limit. The complete quantum

version of this algebra is very similar to a W-algebra that already existed in
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the literature [24], but, in this thesis, we re-derive for so(2, 3) this quantum

algebra analogue of chiral bms4 using the tools of 2d CFT and denote it by

W(2; (3/2)2, 13).

• All chiral W-algebra extension of so(2, 3): We construct all the four infi-

nite dimensional chiral extensions of so(2, 3) by showing that there are exactly

four inequivalent ways to embed the sl(2,R) in so(2, 3). Each of these embed-

dings gives rise to a W-algebra. We use the associativity of operator product

expansions on the postulated operator product algebra for each of the four

cases to derive these algebras. The four resultant W-algebras are denoted by,

W(2; 22, 1), W̃(2; 22, 1) ,W(2, 4),W(2; (3/2)2, 13). The semi-classical limit of

W(2; 22, 1) was known from the asymptotic symmetries of 3d conformal grav-

ity [20]. The W(2, 4),W(2; (3/2)2, 13) can be identified with those that existed

in the older literature in different contexts [24, 25].

• Chiral boundary conditions of 3d conformal gravity: Using the Chern

Simons theory formulation of 3d conformal gravity in its first order formula-

tion, we provide boundary conditions and gauge fixing of so(2, 3) gauge con-

nection compatible with variational principle. We then show that the symme-

try algebra of charges that generate residual gauge transformations of these

gauge connections form representations of W(2, 4),W(2; (3/2)2, 13) algebras

in the semi-classical limit. The analogous calculation for W(2; 22, 1) already

existed in the literature [20], which can be extended trivially for the case of

W̃(2; 22, 1). We also demonstrate that one can obtain some of these W alge-

bras as the asymptotic symmetry algebra for 3d conformal gravity directly in

its second-order formulation.

We now provide more details about these results, highlighting some of the key points

that form the crux of these results.

1.1.1 ŝl2 symmetry of R1,3 gravity

As mentioned in the introduction, the chiral bms4 algebra of celestial CFT intro-

duced by the authors in [13] includes one copy of the sl(2,R) current algebra (with

generators Ja,n for a = 0,±1 and n ∈ Z), one copy of Virasoro (Ln with n ∈ Z) and
two h = 3

2
conformal primaries (with generators Ps,r with s = ±1

2
and r ∈ Z + 1

2
).

The Ward identities of these operators Ps,r and Ja,n are equivalent to leading and
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sub-leading soft graviton theorems. The algebra of these generators is,

[Lm, Ln] = (m− n)Lm+n , [Ja,m, Jb,n] = (a− b) Ja+b,m+n , [Lm, Ja,n] = −nJa,m+n,

[Ln, Ps,r] =
1

2
(n− 2r)Ps,n+r , [Ja,m, Ps,r] =

1

2
(a− 2s)Pa+s,m+r , [Ps,r, Ps′,r′ ] = 0

(1.1)

with possible central terms, that remains undetermined. This algebra is different

from the classical bms4 algebra of [3, 4, 26]. In this thesis, we present asymptot-

ically locally flat solutions in R1,3 gravity consistent with the variational principle

and derive the asymptotic symmetry algebra of such solutions to be the chiral bms4

in (1.1). One implements the asymptotically locally flatness by demanding that

Rµ
νρσ → 0 as r → ∞ where Rµ

νρσ is the Riemann tensor of asymptotically locally

flat solutions of R1,3 gravity, expanded in the radial coordinate r near the boundary.

We argue that to obtain the asymptotic symmetries of these asymptotically locally

flat solutions, one does not need to solve for the complete solution space. It is

sufficient to find the locally flat solutions that share the same boundary conditions

as these asymptotically locally flat solutions and study their asymptotic symme-

tries. Therefore, we analyse locally flat solutions, which are Ricci flat solutions with

vanishing Riemann tensor.

We first provide all locally flat solutions in the Neumann-Unti gauge with u-

independent boundary metric on spatial part (Σ2) of null infinity, where u is the

coordinate of null infinity. We then impose chiral boundary conditions on locally flat

solutions by taking the metric on Σ2 of the null infinity (celestial sphere or celestial

plane) with coordinates (z, z̄) of the form: Ω0(z, z̄) dz(dz̄ + f(z, z̄)dz) (sometimes

called Polyakov or chiral gauge) and further impose additional conditions coming

from a well-defined variational principle. The topology of Σ2 was chosen to be ei-

ther R2 (with Ω0 = 1) or S2 (with Ω0 = 4(1 + zz̄)−2 ). To impose a consistent and

correct variational principle, we also constructed appropriate set of boundary terms

(Gibbon Hawking type) and add them to Einstein Hilbert action. The resultant chi-

ral locally flat solutions are given in terms of six arbitrary holomorphic functions.

After this, we computed vector fields that keep us within this class of locally flat

solutions, and show that these vector fields close under the modified commutator,

namely the Courant bracket. The commutators of these vector fields at the bound-

ary obey chiral bms4 algebra in eq (1.1). These vector fields result in the non-trivial

transformations of background fields in the solution space, which is same for either

choice of Σ2.
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1.1.2 Constructing Carrollian CFTs

Carrollian conformal field theories are defined at the boundary of asymptotically

flat spacetimes which includes the null infinity, an example of a Carrollian manifold.

Therefore to better understand the properties of these field theories defined on such a

boundary, we provide an effective framework to construct such theories intrinsically

on a Carrollian manifold.

A three-dimensional Carrollian manifold as defined in [27], is a fibre bundle with a

two-dimensional base and one-dimensional fibre. We use the local coordinates x on

the base and t on the fibre. There are three geometrical quantities that describe

a Carrollian manifold, metric on the base aij(t,x), a 1-form bi(t,x) (called the

Ehereshmann connection) and a scalar ω(t,x). One defines the following Carroll

diffeomorphisms, which keep this structure invariant,

t→ t′(t,x), x → x′(x) (1.2)

Under these diffeomorphisms the geometrical data transform as,

a′ij(t
′,x′) =

(
J−1
)k
i

(
J−1
)l
j
akl(t,x) , ω′(t′,x′) = J−1ω(t,x)

b′i(t
′,x′) =

(
J−1
)k
i

(
bk(t,x) + J−1Jk ω(t,x)

)
(1.3)

where J = dt′

dt
, Ji =

dt′

dxi and J ij =
dx

′i

dxj are the Jacobian of Carroll diffeomorphisms.

In addition to the Carroll diffeomorphisms, one also defines Carroll-Weyl transfor-

mations on background geometrical quantities as follows,

ãij(t,x) = B(t,x)−2 aij(t,x) , ω̃(t,x) = B(t,x)−z ω(t,x),

b̃i(t,x) = B(t,x)−z bi(t,x). (1.4)

where B(t,x) is an arbitrary function and z is the dynamical exponent. We work

with a real scalar field Φ(t,x) that transforms under Caroll diffeomorphisms and

Caroll-Weyl transformations as,

Φ
′
(t′,x′) = Φ(t,x) , Φ̃(t,x) = B(t,x)δ Φ(t,x) (1.5)

respectively, where δ is the Weyl weight of the scalar field Φ(t,x). We then con-

struct the most general type of Carroll diffeomorphisms and Carroll-Weyl covariant

equation of motions as well as invariant actions on generic 3-dimensional Carrollian

manifolds for scalar fields up to two derivative order in both time (t) and space (x)
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coordinates for general values of z (dynamical exponent) and δ.

For this we start by listing invariants under Carroll diffeomorphisms involving the

geometrical quantities (aij, bi, ω) and the field Φ(t,x) and combining them into Weyl

covariant blocks. We also construct various Weyl covariant time and space deriva-

tives up to second order on the scalar fields that form building blocks of appropriate

Lagrangian densities. This results in the following,

• Two classes of diffeomorphic and Weyl covariant equations of motion, one with

two-time derivatives of the field (time-like), and the other with (up to) two

space derivatives (space-like). These exist for general values of z and δ.

• For the special value of z = 1, one can combine time-like and space-like equa-

tions of motion with at least five real parameters.

• For z = 2, there are two classes of the equation of motion: one with second

order time-derivatives and the other with first-order time as well as second-

order space derivatives.

• The invariant actions exist only when δ = z
2
for space-like action and δ = 1− z

2

for time-like action with both types of actions combining for z = 1.

• Having a stable monomial potential (Φ2n) further restricts the value of z to be

determined by the degree of monomials.

• When one expands the equation of motion and action of a conformally coupled

scalar field in pseudo-Riemannian geometry as a polynomial in c, the speed

of light, using the Randers-Pappetrou parametrization of 3d metric, the co-

efficient of order O
(

1
c2

)
corresponds to the time-like equation/action and the

coefficient O (1) corresponds to the space-like equation/action mentioned in

the first point for z = 1 and δ = 1
2
case with appropriate identification of

parameters.

• Gauge fixing the metric aij and ω using local symmetries leads to field theories

with Carrollian conformal algebra cca
(z)
3 worth of symmetries that have an

additional fluctuating two-component field bi along with the scalar field Φ(t,x).

For z = 1, this conformal algebra is isomorphic to the bms4. Alternatively, if

one gauge fixes bi, ω and the determinant of aij, then the global symmetries

of the field theories defined on the Carroll manifold is isomorphic to R × A,

where A is the algebra of volume-preserving diffeomorphisms on the sphere.

This algebra is also known to arise from AdS4 gravity [15].
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1.1.3 A chiral W- algebra extension of so(2, 3)

The Λ-bms4 algebra of [15, 16] mentioned in the introduction is a non-chiral exten-

sion of so(2, 3). The chiral boundary conditions that we use to obtain (1.1) in flat

space gravity were a subset of gbms4 boundary conditions, therefore, we consider

such chiral boundary conditions suitably adapted to asymptotically locally AdS4

solutions and examine the asymptotic symmetry algebra that one obtains after im-

posing these boundary conditions.

Following the same arguments as that of flat space gravity, we derive the asymptotic

symmetries of locally AdS4 solutions that share the same chiral boundary conditions

as asymptotically AdS4 solutions. To this end, we solve for locally AdS4 equation

in the Neumann-Unti gauge and obtain a solution after imposing chiral boundary

conditions on the co-dimension-2 boundary of AdS4 whose topology we take it to be

R2. We further impose boundary conditions obtained from a well defined variational

principle after adding the boundary terms we use in the case of R1,3 gravity. The

boundary conditions we use are a subset of those employed in [15, 16]. The resultant

chiral locally AdS4 solutions that we obtained are in a specific form such that in the

flat space limit (l → ∞, where l is the AdS length), one obtains the chiral locally

flat solutions that we mentioned in section (1.1.1). Our chiral locally AdS4 solutions

are given in terms of six holomorphic fields,

{T (z), Ja(z), Gs(z)} where a ∈ 0,±1 , s ∈ {−1

2
,
1

2
}. (1.6)

We then compute vector fields that keep us within the same class of chiral locally

AdS4 solutions and show that six holomorphic functions parametrize the vector

fields. The algebra of these vector fields is a Lie algebroid as the structure constant

depends on the fields Ja , which in the flat space limit reduces to (1.1). Furthermore,

the variations of the fields (1.6) under these vector fields are computed.

One can write an expression for conjectured line integral charges that will generate

the correct variations of the currents in (1.6) due to large gauge transformations,

given the OPEs between various currents. The derivation of these charges from

the bulk is an open problem that won’t be addressed in this thesis. The operator

product expansions between these currents and the commutation relations obtained

from them obey a W-algebra. This W-algebra is similar to the semi-classical limit of

the one already existing in the literature, which is a N = 1 case of an infinite series

of W-algebra defined for 2N bosonic spin-3
2
currents and spin-1 Kac-Moody current

for sp(2N) [24]. We re-derive this algebra in the context of the chiral extension of
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so(2, 3) algebra for spin-1 sl(2,R) Kac-Moody current by imposing Jacobi identities

on the commutators of the modes of the chiral (quasi-) primaries. The resultant

algebra is,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[Lm, Ja,n] = −nJa,m+n , [Lm, Ps,r] =
1

2
(n− 2r)Ps,n+r ,

[Ja,m, Jb,n] = −1

2
κmηab δm+n,0 + fab

c Jc,m+n, [Ja,n, Ps,r] = Ps′,n+r(λa)
s′

s ,

[Ps,r, Ps′,r′ ]=ϵss′
[
α
(
r2 − 1

4

)
δr+r′,0+β Lr+r′+γ (J

2)r+r′
]
+δ (r − r′) Ja,r+r′(λ

a)ss′(1.7)

with c = −6κ (1 + 2κ)

5 + 2κ
, α = −1

4
γκ(3 + 2κ), β =

1

4
γ(5 + 2κ), δ = −1

2
γ(3 + 2κ)

where ηab = (3a2 − 1)δa+b,0, fab
c = (a− b)δca+b, (λ

a)ss′ =
1
2
δas+s′ , (λa)ss′ = ηab(λ

b)ss′ ,

κ ̸= −5/2, and γ can be fixed to be any non-zero function of κ by rescaling

the Ps,r appropriately. (J2)n are the modes of the normal ordered quasi-primary

ηab(JaJb)(z). We denote this algebra by W(2; (3/2)2, 13) and show that in the semi-

classical limit with proper identification of parameters, this algebra matches with

the algebra obtained from bulk AdS4 gravity. In a pure CFT calculation, we also

provide the expressions of 3-point and 4-point correlation functions of the currents in

(1.6) having the symmetry algebra 5.1, that obey crossing symmetry and conformal

invariance.

1.1.4 All chiral W- algebra extension of so(2, 3)

After uncovering the algebra (5.1), we show that there are four infinite dimensional

chiral extensions of so(2, 3) based on exactly four inequivalent embedding of sl(2,R)
in so(2, 3). The steps that we use to construct all these chiral extensions of so(2, 3)

are as follows,

1. To start with, we show that there are exactly four ways to embed a copy of

sl(2,R) inside so(2, 3)

2. Then we identify in each case a maximal sub-algebra h ⊂ so(2, 3) that com-

mutes with the sl(2,R) of the previous step.

3. The rest of the generators arrange themselves into finite dimensional irre-

ducible representations of the subalgebras sl(2,R)⊕ h. These steps facilitate

writing so(2, 3) Lie algebra in four avatars.
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4. We then postulate a quasi-primary chiral stress tensor T (z) with central charge

c for the sl(2,R) and a chiral current algebra of h at level κ.

5. To the generators in step three, we associate chiral fields that are both con-

formal primaries and the current algebra primaries of appropriate conformal

weights and current algebra representations.

6. We then use the sl(2,R) ⊕h symmetries to give the general ansatz of the OPEs

among the additional chiral fields of the previous step with some unknown

parameters that are to be determined.

7. Lastly, to implement the associativity of OPEs, we impose Jacobi identities

on the commutators of the modes of the chiral (quasi-) primaries.

Going through these steps, we find that there are exactly four chiral W- algebra

extensions of so(2, 3) that may be denoted as follows,

W(2; 22, 1), W̃(2; 22, 1) ,W(2, 4),W(2; (3/2)2, 13).

Out of these, W(2, 4) was already well known in the literature [25]. It is associated

with the principal embedding of sl(2,R) in so(2, 3), where h = ∅. The algebra

W(2; (3/2)2, 13) given in eq.(5.1) has h = sl(2,R). The algebra W(2; 22, 1) has

h = so(1, 1) and may be called conformal bms3. Its semi-classical limit was found to

be the asymptotic symmetry algebra of a 3d conformal gravity in [20]. This algebra

is given as follows

[Lm,Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n,0 , [Lm, P

a
n ] = (m− n)P a

m+n,

[Lm, Hn] = −nHm+n [Hm, Hn] = κmδm+n,0, [Hm, P
a
n ] = P b

m+n ϵb
a

[P a
m, P

b
n] = ηab

[α
6
m(m2 − 1)δm+n,0 + (m− n)

(
β Lm+n + γ (H2)m+n

)]
+ ϵab

[
δ (m2 + n2 −mn− 1)Hm+n + σΛm+n + ωΣm+n

]
(1.8)

where a ∈ {0, 1} and the non-zero components of ηab are η00 = −1, η11 = 1 and ϵab

is an antisymmetric tensor with ϵ01 = 1. The values of the coefficients are,

α =
3κ2(κ− 1)

κ+ 1
σ, β = −κ

2
σ, γ =

2κ− 1

2(κ+ 1)
σ, δ = −κ(κ− 1)

2(κ+ 1)
σ,

ω = − 2κ

κ+ 1
σ, c = −2 (6κ2 − 8κ+ 1)

κ+ 1
. (1.9)
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Λm,Σm are modes of the h = 3 composite normal ordered quasi primaries,

Λ(z) := (TH)(z)− 1

2
∂2H(z), Σ(z) :=

1

2κ
((H2)H)(z)− 1

2
∂2H(z) (1.10)

where T (z) is the field associated with Virasaro mode Ln. The algebra W̃(2; 22, 1)

has h = so(2). It is closely related to W(2; 22, 1) and has the same structure except

δab replaces ηab in (1.9) and other minor changes accompanied by the Euclidean

signature of the Killing form of current algebra h.

Since each of the four chiral W-algebras is an extension of the 3d conformal algebra

so(2, 3) one should expect to realise all of them as the asymptotic symmetry algebra

of 3d conformal gravity. To show this, we work with 3d conformal gravity in the

first order formalism, formulated as the Chern-Simons theory with so(2, 3) gauge

algebra given by the following action,

S =
k

4π

∫
M

Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
(1.11)

and go through the following standard steps,

• We start by considering one-form A in 3d written in one of the avatars of

so(2, 3) that matches with the global part of the W algebra that we are inter-

ested in deriving as the asymptotic symmetry algebra.

• We choose gauge and boundary conditions forA compatible with a well defined

variational principle and solve its equation of motion.

• One then obtains the set of residual gauge transformations that obey gauge

and boundary conditions of the connection A. These residual gauge transfor-

mations induce the variation of fields in the connection.

• After calculating the charges that generate these residual gauge transforma-

tions, one writes down the commutators between the modes of the fields that

parametrize the gauge connection A.

Using the methodology described in the points above, we propose boundary condi-

tion of so(2, 3) gauge connection and obtain W(2, 4),W(2; (3/2)2, 13) as the asymp-

totic symmetry algebra in the semi-classical limit. As mentioned before, the semi-

classical limit of W(2; 22, 1) was shown as the asymptotic symmetry algebra of

so(2, 3) Chern-Simons theory previously in the literature [20]. The W̃(2; 22, 1) can

then be trivially derived from this result.
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1.1.5 Chiral W-algebra from second-order formulation of 3d

conformal gravity

Over the years, the second-order formulation of three-dimensional conformal gravity

with the following action,

S =
k

2

∫
d3x

√
−g ϵλµν

(
Γρλσ ∂µΓ

σ
ρν +

2

3
Γρλσ Γ

σ
µτ Γ

τ
νρ

)
(1.12)

has not garnered much attention, even though it is equivalent to so(2, 3) gauge

theory formulation of conformal gravity. k is the dimensionless coupling constant,

which is the level of the Chern-Simons action. The equation of motion for the

action defined in 1.12 is Cotton tensor vanishing condition Cµν = 0, where Cµν =

ϵ σρ
µ ∇σ

(
Rρν − 1

4
Rgρν

)
. The Lagrangian density is invariant up to a total derivative

under diffeomorphisms as well as Weyl transformations. We provide chiral boundary

conditions for solutions to Cµν = 0 that solve variational principle and show the

emergence of W(2; (3/2)2, 13)- algebra as the asymptotic symmetry algebra.

This action becomes relevant when one quantizes the AdS gravity using the Neu-

mann boundary condition where the holographic stress tensor Tij = 0, and one

expects the boundary action to be an induced gravity action. One can add a bulk

Pontryagin term Spontryagin = k
∫
d4x

√
−gϵµνσλRα

βµν R
β
ασν with an arbitrary cou-

pling constant to the bulk 4d action for negative cosmological constant. The Pon-

tryagin term is a total derivative, equivalent to Chern Simons Gravity action in eq

(1.12) at the boundary. In the large k limit, this action dominates the induced grav-

ity action at the boundary and thus becomes relevant for AdS4 holography. One

solves the equation Cµν = 0 after writing the metric in Fefferman Graham gauge

expansion as follows,

ds2 =
l2

r2
dr2 +

r2

l2

(
g
(0)
ab +

l

r
g
(1)
ab +

l2

r2
g
(2)
ab + · · ·

)
dxa dxb (1.13)

Further, we also impose the gauge condition to fix Weyl symmetry as follows,

∂r

(
det(g)

r2

)
= 0 (1.14)

where det(g) is the determinant of the full metric in (1.13). The boundary coor-

dinates xa are light-cone coordinates with xa ∈ {x−, x+}. We choose the following
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chiral boundary conditions that satisfy the variational principle,

g
(0)
−− = 0 , g

(0)
+− = −1

2
, g

(1)
−− = 0 , g

(1)
+− = 0 , g

(2)
−− = −N

2

4
.

The solution is,

g
(0)
++ = J−(x+) e−

i N x−
l + J0(x+) + J+(x+) e

i N x−
l = Ja(x+) ea

i N x−
l (1.15)

g
(1)
++ = G−1/2(x+) e−

i N x−
2 l +G1/2(x+) e

i N x−
2 l = Gs(x+) es

i N x−
l (1.16)

g
(2)
++ = T (x+) + Terms containing function of Ja and Gs (1.17)

The complete solution is parameterized by {Ja, Gs, T}, a ∈ {0,±1}, s ∈ {±1
2
} and

subleading terms are given in terms of these chiral currents. The residual gauge

transformations will induce a variation of these fields. The line integral charges

that generate these transformations are calculated by modified Lee-Wald covari-

ant phase space formalism, first proposed by Tachikawa [28] for Lagrangian densi-

ties that are not invariant under symmetry transformations. It turns out that the

O(r) divergences in diffeomorphism charges cancel the contribution from the Weyl

charges, and the resultant canonical charges are integrable. The algebra of charges

is W(2; (3/2)2, 13) in the semi-classical limit.

1.1.6 Conclusions

• We provide a general prescription to construct actions and equations of mo-

tions of Carrollian conformal field theories for scalars that one can extend to

other higher spin and fermionic Carrollian conformal field theories, which can

potentially describe flat space gravity/string theories holographically.

• We introduced novel chiral boundary conditions for classical gravity in four

dimensions without a cosmological constant ensuring asymptotic local flatness

near null infinities. The resultant locally flat solutions after imposing chiral

boundary conditions are complex in R1,3 gravity (real in R2,2 gravity). These

complex solutions are ’condensates’ of soft gravitons with definite helicity,

determined by six holomorphic (anti-holomorphic) functions.

• The analysis of chiral locally AdS4 solution and the emergence of

W(2; (3/2)2, 13) algebra from the asymptotic symmetry algebra points to the

fact that by imposing appropriate bulk boundary conditions, one obtains a
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topological sector in AdS4 that can be holographically described by some co-

dimension two hologram.

• We found exactly four chiral W-algebra extensions of so(2, 3) Lie algebra and

show that these algebras in the semi-classical limit emerge as the asymptotic

symmetry algebras of 3d so(2, 3) Chern Simons gauge theory. Just as chiral

algebras of celestial CFT play a role in 4d flat space gravity, the relevance of

these chiral W-algebras in probing the infrared effects of the bulk AdS4 gravity

needs to be understood better.

• We also show the emergence of W(2; (3/2)2, 13) algebra from the second order

formalism of 3d conformal gravity, which we argue to describe holographically

AdS4 gravity for some specific bulk configurations and boundary conditions.

The proposed organization of the thesis

1. The first chapter will comprise a general introduction of asymptotic sym-

metries in the context of 4-dimensional asymptotically flat spacetime and

3-dimensional conformal gravity with past relevant results and important for-

mulae reviewed.

2. The second chapter will mainly analyze chiral boundary conditions for asymp-

totically flat spacetime in R1,3 gravity and obtain symmetry algebra for such

solutions.

3. The third chapter will deal with a general method for constructing Carrollian

conformal scalar field theories in 3 dimensions on a curved Carroll manifold.

4. The fourth chapter will discuss chiral boundary conditions for asymptotically

AdS4 spacetime, obtaining symmetry algebra for such solutions and re-deriving

2d chiral W- algebra that governs such asymptotic symmetry algebra.

5. The fifth chapter will discuss the derivation of all chiral W-algebra extensions

of so(2, 3) and further derive these W-algebras as the asymptotic symmetry

algebra of 3d conformal gravity in the first-order and second-order formulation.

6. The sixth chapter will be the conclusion of the results and future directions.
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Chapter 2

Introduction

The starting point to answer several relevant questions in quantum gravitational

theories is to study the symmetries of these theories. One such class of symme-

tries are called asymptotic symmetries, which become prominent near the spacetime

boundaries and represent the physical symmetries of gravitational theories. They

are also called ‘large’ gauge transformations. Because of their origin and nature,

they play a crucial role in determining the gravitational dynamics in holography.

One of the most successful examples of holographic duality is AdS/CFT corre-

spondence. However, before the seminal work of Maldacena [1] that conjectured the

AdS/CFT correspondence, Brown and Henneaux showed in [2] that the commutator

algebra of canonical charges that generate asymptotic symmetries of asymptotically

locally AdS3 configurations with Dirichlet boundary conditions is the sum of two

commuting copies of Virasaro algebra. It is also well known that these are global

symmetries of 2d conformal field theory (CFT) defined on the time-like boundary

of such spacetimes. They further calculated the central charge associated with the

two copies of Virasaro algebra to be c = 3l
2G

, where l is the AdS radius and G is

the Newton constant. This work was the first validation of one of the expecta-

tions from AdS/CFT correspondence, which states that the global symmetries of

the holographic quantum field theory at the boundary are isomorphic to asymptotic

symmetries of corresponding bulk gravitational theory in asymptotically locally AdS

spacetimes. Understanding the symmetries on both sides of the correspondence is

vital for exploring the holographic duality and gaining insights into quantum grav-

itational theories.

Similarly, in the 1960s, Bondi, van der Burg, Metzner [3] and Sachs [4] showed

the existence of an infinite dimensional algebra of asymptotic symmetries for four-
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dimensional spacetimes that approach Minkowski spacetime near the boundary null

infinity. Their analysis was done in a particular gauge now famously known as the

Bondi gauge. This algebra, denoted by bms4, is a semi-direct sum of Lorentz alge-

bra and supertranslations (parameterised by an arbitrary function defined on the

sphere at the null infinity). It is an infinite dimensional extension of Poincare alge-

bra iso(1, 3) where translations enhance to supertranslations. The action of Lorentz

transformations on the sphere at null infinity is isomorphic to global conformal trans-

formations. In [29, 30, 11], Barnich and Troessaert showed that one can extend the

original bms4 algebra further by considering local conformal transformations on the

sphere denoted by superrotations. Therefore, the resultant symmetry algebra gets

enhanced to a direct sum of supertranslations and two copies of Virasaro algebra.

This extension is known as extended bms4 (ebms4) algebra.

Due to the connection of asymptotic symmetries and soft theorems, one has been

able to understand better the constraints imposed on S-matrix in the IR regime [31,

32]. In [33], Strominger established the invariance of S-matrix under the diagonal

element of the BMS group acting on the scattering data at the future and past

null infinity using the results of [34]. In the subsequent paper [35], the authors

showed that the Ward identity associated with the supertranslation symmetries was

equivalent to Weinberg leading soft graviton theorem [36, 37]. This leading soft

graviton theorem is a universal factorisation property of scattering amplitudes at

the tree level. It relates the S-matrix element of any quantum field theory including

gravity in the limit when the energy ω of one of the graviton goes to zero, to the

S-matrix element without the soft graviton multiplied by the leading soft factor that

is proportional to O(ω). This work [35] led to a renewed interest in the study of soft

graviton theorems [38, 39, 40, 41] and a plethora of work connecting the invariance

of S-matrix under these asymptotic symmetries via corresponding soft theorems

ensued [42, 43, 44, 45]. Notably, it was shown in [46] that the subleading universal

soft graviton theorem at tree level corresponding to O(1) pole in ω [38] implies

the Ward identity of S-matrix associated with the Virasaro symmetry of ebms4

algebra. However, as the superrotations include singular transformations on the

sphere, one could not establish this equivalence entirely the other way. To remedy

this Campliglia and Laddha in [47, 12] proposed a different extension of original

bms4 called generalised bms4 algebra (gbms4), where Lorentz algebra is enhanced

to the algebra of arbitrary diffeomorphisms on the sphere diff(S2) at null infinity.

For smooth vector fields in diff(S2), they showed that the Ward identity of S-matrix

associated with diff(S2) symmetry is equivalent to Cachazo-Strominger subleading

soft theorem [38]. Recently Freidel and collaborators proposed another extension of
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bms4 called Weyl bms4 algebra which includes local Weyl rescalings of the boundary

metric in addition to supertranslations and arbitrary diffeomorphisms of the sphere

metric [48].

This connection of asymptotic symmetries of gravitational theories in R1,3 gravity

with the soft graviton theorems of quantum field theory [36, 38, 39, 40, 41] has led to

the proposal of codimension-two holography for R1,3 gravity called celestial holog-

raphy. In celestial holography, one rewrites four-dimensional scattering amplitudes

in boost eigenstates instead of momentum eigenstates that recast these scattering

amplitudes as the correlation functions of two-dimensional putative celestial confor-

mal field theory defined on the celestial sphere at null infinity [49, 50, 51, 52, 53].

This recasting uses the isomorphism between Lorentz algebra and sl(2,C) to classify

conformal states on the sphere [54, 55, 56, 57]. Written in the boost eigenstates, also

called conformal basis, one rewrites the soft theorems in R1,3 gravity as conformal

Ward identity with the insertion of soft currents on the celestial sphere. These soft

currents correspond to the choice of particular conformal dimension ∆ in celestial

CFT [58, 52, 59]. Furthermore, one interprets the collinear limit between two opera-

tors on the amplitude side as OPEs between the corresponding conformal primaries

in the celestial CFT [60, 61, 62].

The developments in celestial CFT have revealed more insights into the symmetries

of gravitational theories defined in R1,3 gravity from the boundary perspective. For

instance, in [13, 14], the authors showed that the leading and subleading soft graviton

theorems written in a conformal basis are equivalent to conformal Ward identity of

two commuting h = 3
2
currents and a sl(2,R) current algebra respectively defined on

the celestial sphere. This chiral symmetry algebra, which we will refer to as chiral

bms4, describes a sector in celestial CFT which holographically computes MHV

graviton scattering amplitude at tree level in R1,3 gravity [13, 14]. Later in [63],

using the OPE between two conformal primaries graviton operators, the authors

showed the existence of an infinite tower of symmetry generating currents defined

on the celestial sphere for positive helicity gravitons. They further speculate that

this infinite tower of symmetry-generating chiral currents with higher spin may have

links to the infinite number of soft theorems defined in the bulk R1,3 gravity [64, 65].

Later, Strominger in [66] demonstrated that this infinite tower of currents form a

closed algebra known as the w1+∞ algebra, with the chiral bms4 algebra [13, 14] as

the sub-algebra within this w1+∞ algebra.

To strengthen the case for flat space holography, one should be able to derive the

symmetries revealed by celestial CFT from the bulk R1,3 gravity. As a first step,
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we note that a similar sl(2,R) current algebra appeared in the context of AdS3

gravity [10]. The authors in [10] considered boundary metric for asymptotically AdS3

solutions in chiral Polyakov gauge and showed the emergence of a sl(2,R) current

algebra from the asymptotic symmetries with the level k given in terms of central

charge c of the Virasaro algebra. This suggests that considering chiral boundary

conditions in R1,3 gravity may lead to the derivation of chiral bms4 algebra [13, 14].

We study this possibility with a positive conclusion in this thesis. See [67] for a

related later work where the authors have derived charges that form the canonical

representation of these w1+∞ algebra using vacuum Einstein equations.

In a parallel development, the results of [68, 69] established the isomorphism be-

tween conformal Carroll algebra cca
(z)
3 for z = 1 and bms4 algebra that generated

interest in Carrollian conformal field theories. One defines such theories on the

Carroll manifolds, which are null and have richer structures [27, 70] compared to

(Pseudo) Riemannian manifolds. The examples of Carroll manifolds include one

of the boundaries of R1,3 gravity (null infinity) and the horizon of black holes [71].

The fact that the Carrollian conformal field theories defined at null infinity contain

bms4 as their global symmetry algebra led to the expectation that these theories

are viable candidates for dual boundary theories to gravitational theories in R1,3

gravity [72]. One can obtain Carroll algebra from the group contraction of Poincare

algebra by taking the ultra-relativistic limit (c → 0, where c is the speed of light)

[73, 74]. Thus, earlier attempts to obtain field theories exhibiting Carrollian con-

formal symmetries involved taking the ultra-relativistic limit of parent relativistic

conformal field theories defined in Minkowski spacetime [72, 17]. Such theories were

defined on the flat Carrollian geometries and excluded the examples of general field

theories conformally coupled to the background Carroll geometries, which are not

necessarily flat [27]. The developments in [19, 75, 76], which involved construct-

ing some of the Carrollian fluid hydrodynamics equations directly on these curved

Carrollian manifolds, led to the construction of conformally coupled field theories

on general Carrollian manifolds [77, 78, 79, 80, 81, 82]. See [18, 83, 84, 85, 86] for

different approaches to the Carrollian CFTs.

Several works have explored the connections between Carrollian CFTs and celestial

CFTs [7, 87, 88, 89, 90, 91]. One of the differences between these two proposed

dual theories is that celestial CFT is a proposal for codimension-two holography.

In contrast, Carrollian CFT is the proposal for codimension-one holography akin to

AdS/CFT correspondence, and both address different aspects of flat space holog-

raphy. Celestial holography is better suited to study the scattering problem as
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it provides a better framework to examine the scattering amplitudes by rewriting

them as correlation functions on the celestial sphere. In Carrollian CFT, due to the

incorporation of an extra u coordinate of boundary, the study of the evolution of dy-

namical data on null infinity is natural. In celestial CFT, the momentum operators

act as weight-shifting operators of conformal primaries [53], whereas, in Carrollian

CFT, the action of momentum operators is much more natural as they manifestly

act by shifting the u-coordinate of null infinity [13].

The boundary conditions play an integral role in the study of asymptotic sym-

metries. The symmetry algebra can be enhanced or restricted depending on the

boundary conditions. For example, in the derivation of the classical bms4 algebra

and ebms4, the boundary metric on a 2-dimensional celestial sphere was kept fixed

[3, 4, 92]. This boundary condition was relaxed to only holding the determinant

of the 2-dimensional boundary metric on the celestial sphere fixed while deriving

gbms4 [47, 12]. Relaxation of this condition further leads to Weyl bms4 algebra

[48]. The interplay between boundary conditions and asymptotic symmetries has

been documented very well in the AdS/CFT correspondence, especially in AdS3

[2, 8, 9, 10, 93, 94]. The asymptotically locally AdS solutions to the Einstein equa-

tions near the boundary are given in terms of two independent data, (i) a bound-

ary metric and (ii) a holographic stress tensor which satisfies constraint equations

[95, 96]. This behaviour is unlike the flat case where an infinite number of free data

appear while solving Einstein equations [97, 98]. One can quantise gravity in the

bulk AdS spacetime in different ways by imposing different boundary conditions at

the AdS boundary [99, 100]. The following type of boundary conditions are the

most commonly imposed in AdS/CFT correspondence

• Dirichlet boundary condition, where one fixes the boundary metric [2, 101, 96].

• Neumann boundary condition, where one fixes the holographic stress tensor

to zero [99, 100].

• Mixed boundary conditions, where one fixes some components of boundary

metric and of the holographic stress tensor after adding a boundary action to

the bulk action that gives a finite contribution to the stress tensor [8, 99, 9, 10].

The symmetry algebra of asymptotically AdSd+1 spacetimes for d ≥ 3 with Dirichlet

boundary conditions is finite-dimensional so(2, d), whereas, for Neumann boundary

conditions all the residual diffeomorphisms turn out to be pure gauge transforma-
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tions [99, 95].1 This is because, according to [99], for Neumann boundary conditions

the boundary theory is an induced gravity for which codimension-two charges from

the bulk perspective and codimension-one charges from the boundary perspective go

to zero. Recently, Compère and collaborators in [15, 16] proposed boundary condi-

tions for generic asymptotically locally AdS4 spacetimes in Bondi gauge, where they

uncover the symmetry algebra of residual gauge transformations to be an infinite

dimensional algebra, the Λ-bms4. The Λ-bms4 and its corresponding phase space

in the flat space limit (Λ → 0) coincide with the generalised bms4 algebra and the

phase space associated with it. To impose a well-defined variational principle, they

implement mixed boundary conditions, giving rise to reduced symmetry algebra,

which is a direct sum of R⊕A, where R denotes the abelian time translations and

A is the algebra of 2-dimensional area-preserving diffeomorphisms. These results in

AdS4 gravity [15, 16, 99] and the derivation of chiral bms4 algebra from R1,3 gravity

that we will present in this thesis raises the following questions:

• Is there a chiral extension of so(2, 3) algebra that in some appropriate flat

space limit reduces to the chiral bms4?

• Can one obtain such a chiral extension of so(2, 3) from the study of asymptotic

symmetries in AdS4 gravity similar to the chiral extensions of so(2, 2) from

AdS3 gravity [2, 10, 93]?2

• How many chiral extensions of so(2, 3) are possible, and is there a systematic

way to derive them?

We address these questions in this thesis and see how Neumann boundary conditions

[99] play a part in answering the first two questions. One such chiral extension

of so(2, 3) already existed in the literature namely, conformal bms3 or W(2,2,2,1)

[20]. It was obtained from the asymptotic symmetries of three-dimensional so(2, 3)

Chern-Simons gauge theory which is equivalent to the first-order formulation of 3d

conformal gravity [103]. In the same way, we expect all the other chiral extensions of

so(2, 3) that we will derive in this thesis to emerge from the asymptotic symmetries

of 3d conformal gravity in the semi-classical limit (large central charge c or level κ

limit). This analysis aims to fill the gap in the literature, where the previous works

on asymptotic symmetries of 3d conformal gravity except in [20], did not include

1Brown York charges corresponding to Neumann boundary conditions evaluate to zero since for
asymptotically AdS configurations, they are proportional to holographic stress tensor contracted
with boundary Killing field [102, 95].

2See Appendix (G) for all possible chiral extensions of so(2, 2).
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the global symmetry algebra so(2, 3) [21, 22, 23]. See [104, 105, 106] for the role

played by 3d conformal gravity in AdS4 gravity.3

The thesis comprises two parts. In the first part, we concern ourselves with some

aspects of flat space holography. The following is a summary of the main results of

this part of the thesis:

• ŝl2 symmetry of R1,3 gravity: We propose chiral boundary conditions for

4d asymptotically flat solutions in Newman-Unti gauge consistent with the

variational principle. The asymptotic symmetry algebra of such solutions is

shown to be chiral bms4 which was derived from the celestial CFT in [13, 14].

We also construct boundary terms which are suitable for boundaries near null

infinity that lead to a well-defined variational principle. We obtain chiral

currents that are predicted to exist from celestial CFT in R1,3 gravity [13, 14].

We also show the existence of a novel non-chiral infinite dimensional symmetry

algebra of R1,3 gravity by proposing different non-chiral boundary conditions

where the boundary metric is considered in conformal gauge.

• Scalar Carollian conformal Field theories: To fully understand the prop-

erties of Carrollian CFTs, one needs to construct such theories intrinsically on

Carrollian manifolds. We address this by providing a systematic method to

construct such field theories. Specifically, we provide an explicit construction

of classes of conformal scalar field theories on Carrollian manifolds in three

dimensions using the geometrical covariant tensors of the Carroll geometry.

These theories by construction have their symmetry algebra as Carrollian con-

formal algebra cca
(z)
3 [70], a one-parameter generalization of bms4, defined for

generic values of dynamical exponent z. We also show that based on the dif-

ferent ways of gauge fixing the background data using the local symmetries of

Carroll Weyl and Carroll Diff. invariant field theories, one obtains a different

set of residual symmetry algebra including generalised bms4 algebra.

In the second part of the thesis, we present the results in AdS4 and 3d-conformal

gravity. The summary of the main results of this part of the thesis are:

• A chiral W-algebra extension of so(2, 3) from AdS4 gravity: We propose

chiral boundary conditions for AdS4 gravity in Newman-Unti gauge inspired

3See [81, 107] for the analogous role played by 3d Carrollian conformal gravity for 4d flat space
gravity.
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by the chiral boundary conditions of R1,3 gravity considered in the first part

of the thesis and, obtain the symmetry algebra for resultant solutions. This

symmetry algebra is an infinite dimensional chiral extension of so(2, 3), which

coincides with the chiral bms4 algebra in the flat space limit. We posit this

symmetry algebra as the chiral version of Λ-bms4 algebra.

We propose line integral charges from the bulk AdS4 gravity corresponding

to this chiral symmetry algebra and show that the charges themselves obey

a semi-classical limit of a W-algebra that includes a level k, sl(2,R) current

algebra. We then derive the complete quantum version of this W algebra using

the tools of 2d CFT such as the associativity of operator product algebra and

denote it by W(2; (3/2)2, 13).

• All chiral W-algebra extensions of so(2, 3): Using the same techniques of

2d CFT, we construct all four infinite dimensional chiral extensions of so(2, 3)

by showing that there are exactly four inequivalent ways to embed the sl(2,R)
in so(2, 3). Each of these embeddings gives rise to a W-algebra. The four

resultant W-algebras are denoted by, W(2; 22, 1), W̃(2; 22, 1) ,W(2, 4) and pre-

viously mentioned W(2; (3/2)2, 13). The semi-classical limit of W(2; 22, 1) was

known from the asymptotic symmetries of 3d conformal gravity [20]. The

W(2, 4),W(2; (3/2)2, 13) can be identified with those that existed in the older

literature in different contexts [24, 25].

• W-algebras from 3d conformal gravity: In the Chern-Simons theory

formulation of 3d conformal gravity, we provide boundary conditions and

gauge fixing of so(2, 3) gauge connection compatible with variational princi-

ple. We then show that the symmetry algebra of charges that generate resid-

ual gauge transformations of these gauge connections form representations of

W(2, 4),W(2; (3/2)2, 13) algebras in the semi-classical limit. The analogous

calculation for W(2; 22, 1) already existed in the literature [20], which can be

extended trivially for the case of W̃(2; 22, 1).

The gravitational Chern-Simons action equivalently describes the 3d conformal

gravity in its second-order formulation. After making the case for the impor-

tance of this action for AdS4 gravity, we show the emergence ofW(2; (3/2)2, 13)

algebra from the asymptotic symmetry analysis of the solutions to gravita-

tional Chern-Simons term. Furthermore, we calculate charges that generate

this symmetry algebra by the modified Lee-Wald covariant phase space for-

malism method defined for Lagrangian density like gravitational Chern-Simons

which we review in the next section.
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The organization of the thesis

1. We end this chapter by reviewing some of the preliminary concepts and

important results used in this thesis.

2. The second chapter will mainly analyze chiral boundary conditions for

asymptotically flat spacetime in R1,3 gravity and obtain symmetry algebra

for such solutions.

3. The third chapter will deal with a general method for constructing Car-

rollian conformal scalar field theories in 3 dimensions on a curved Carroll

manifold.

4. The fourth chapter will discuss chiral boundary conditions for asymp-

totically AdS4 spacetime, obtaining symmetry algebra for such solutions

and deriving 2d chiralW-algebra that governs such asymptotic symmetry

algebra.

5. The fifth chapter will discuss the derivation of all four chiral W-algebra

extensions of so(2, 3). In this chapter we further derive W(2; (3/2)2, 13)

and W(2, 4) as the asymptotic symmetry algebra of 3d so(2, 3) gauge

theory. We also show the emergence of W(2; (3/2)2, 13) from the second-

order formulation of 3d conformal gravity described by gravitational

Chern-Simons action.

6. The sixth chapter will discuss future directions.

2.1 Preliminaries

2.1.1 Review of asymptotic symmetries

In this section, we review some of the techniques associated with the asymptotic sym-

metries that will be useful for our analysis later. For a comprehensive review please

refer to [108, 109]. Gravity is a gauge theory with diffeomorphisms playing the role of

gauge transformations. This is also evident from the fact that the charges associated

with these diffeomorphisms vanish. To obtain non-trivial canonical charges associ-

ated with these theories one defines the charges on the codimension-two boundaries

of bulk space-time. This is because the physical gauge transformations associated

with these gravitational theories exist near the boundary and generate non-trivial

boundary dynamics. These are large gauge transformations that do not vanish at
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the boundary and give rise to non-zero charges. To find asymptotic symmetries of

these gravitational theories one starts by gauge fixing some of the components of the

metric using diffeomorphisms. This removes some of the gauge redundancies but

there is still some residual gauge freedom left. One then imposes non-trivial bound-

ary conditions on the fields and metric components of the gravitational theories near

the boundary of spacetimes and demands that the residual gauge transformations

preserve those boundary conditions. As defined in [108], there exist two defini-

tions of the asymptotic symmetry group. In the first definition, which is weaker,

the asymptotic symmetry group of gravitational theories are set of residual gauge

diffeomorphisms that preserve the boundary conditions. The second, which is a

stronger condition defines the asymptotic symmetries as a set of residual gauge

diffeomorphisms that preserve boundary conditions and have non-vanishing charges

associated with these diffeomorphisms. Therefore it is quite evident that the bound-

ary conditions play a huge role in determining the set of asymptotic symmetries.

We will work in four dimensions with the coordinates (r, u, xa) (a ∈ {1, 2}) suitable
for asymptotically flat spacetimes and gauge fix our metric in Newman-Unti gauge

[110] which is characterised by the following conditions

grr = gra = 0, gur = −1. (2.1)

The line element after gauge fixing is given by

ds2 = huu du
2 − 2 du dr + 2 gua du dx

a + gab dx
a dxb, (2.2)

where huu, gua, gab are functions of (u, r, xa) coordinates. The boundary topology is

Σ2 × R, where codimension-two hypersurface Σ2 can be S2 or R2. This gauge is

different from the commonly used Bondi gauge which imposes the following gauge

fixing conditions on the metric,

grr = grz = grz̄ = 0, ∂r

(
det (gab)

r4

)
= 0. (2.3)

As mentioned in [92], both ways of gauge fixing differ only by choice of radial coor-

dinates which does not impact the calculation of asymptotic symmetries and hence

asymptotic symmetry algebra in both of these gauges are found to be isomorphic

to each other. Apart from these gauge conditions, the following boundary condi-

tions are imposed which are not too stringent and allow for the possibility of some
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physical examples [5]

lim
r→∞

guu =− 1 +O(r−1), gua = O(1), gab = r2γab +O(r), (2.4)

where γab is a 2d fixed metric defined on the Σ2. Under any residual diffeomorphisms

the gauge conditions on metric component should be preserved, therefore to find

the diffeomorphisms that leave the form of asymptotically flat metric invariant,

we demand that under such transformations the Bondi gauge conditions (2.1) are

obeyed. This translates to

Lξgrr = 0, Lξgra = 0, Lξgur = 0. (2.5)

The Lie derivative of the metric tensor is

Lξgµν = ∂σξ
σgµν + ∂µξ

σgσν + ∂νξ
σgµσ, (2.6)

and the vector field in the coordinate-dependent chart is written as follows,

ξ = ξu(u, r, xa) ∂u + ξr(u, r, xa) ∂r + ξa(u, r, xa) ∂a. (2.7)

Therefore solving (2.5) one obtains

ξu = ξu(u, xa) , ξa = Y a(u, xc)− ∂bξ
u
(0)(u, x

c)

∫ ∞

r

gabdr,

ξr = −r ∂uξu +
∫ ∞

r

gua ∂r ξ
a. (2.8)

The asymptotic symmetries should also preserve boundary conditions (2.4), which

means that the corresponding Lie derivative of the metric component should obey

the same boundary conditions and fall-offs. For example, the Lie derivative of Lξguu
should fall off as O

(
1
r

)
, which means all the higher order terms in r should go to

zero for this Lie derivative. This allows us to solve for various functions of the vector

fields and further reduce the dependence of functions on the number of coordinates

ξu(u, z, z̄) = ξu(0)(z, z̄) + u ξu(1)(z, z̄), ξa(0) = ξa(0)(x
c), (2.9)

− 2 ∂uξ
u γab +Daξ

c
(0) γcb +Dbξ

c
(0) γab = 0. (2.10)
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The equation (2.10) implies that ξu(1) =
1
2
Daξ

a
(0) and

Daξb(0) +Dbξa(0) = Dcξ
c
(0) γab. (2.11)

This is the conformal killing equation for ξa for metric γab defined on Σ2 at null

infinity. Da is the covariant derivative associated with the metric γab . The resultant

vector fields that preserve the Newman-Unti gauge (2.1) and boundary conditions

(2.4) to leading order i r are,

ξ =

(
ξu(0)(x

a) +
u

2
Dcξ

c
(0)

)
∂u + ξa(0)(x

c)∂a −
r

2
Daξ

a
(0)(x

c) ∂r + · · · , (2.12)

with ξa(0)(x
a) satisfying CKV equation (2.11). The · · · in (2.12) denote subleading

terms that are determined in terms of {ξu(0)(xa), ξa(0)(xc)}. Also if at some order in r,

there exists free data in the metric component in (2.2), then the variation of it would

be the coefficient of the Lie derivative of that metric component at the same order.

Now that we have our full set of vector fields that enable us to move in the space of

solutions, to check that they satisfy some Lie algebra, the Lie brackets between any

two of these vector fields should close under the Courant bracket (see for instance

[111])

[ ξ1 , ξ2 ]M := ξσ1 ∂σ ξ2 − ξσ2 ∂σ ξ1 − δξ1 ξ2 + δξ2 ξ1. (2.13)

The last two extra terms in (2.13) are to take into account any background field

dependence of ξ. δξ1 ξ2 means the variation of background field in ξ2 with respect

to the variation in ξ1. Calculating the bracket as in (2.13) we find:

[ ξ1 , ξ2 ]M =

(
ξ̂u(0) +

u

2
Dc ξ̂

c
(0)

)
∂u +

(
ξ̂a(0)

)
∂a −

r

2
Da ξ̂

a
(0) ∂r + · · · (2.14)

where

ξ̂u(0) = ξa1(0) ∂a ξ
u
2 (0) +

1

2
ξu1 (0)Da ξ

a
2(0) − ξa2(0) ∂a ξ

u
1 (0) −

1

2
ξu2 (0)Da ξ

a
1(0), (2.15)

ξ̂a(0) = ξb1(0) ∂b ξ
a
2(0) − ξb2(0) ∂b ξ

a
1(0). (2.16)

Considering the Lie bracket with ξa1(0) = ξa2(0) = 0 one can check that the resul-

tant ξ̂u(0) = 0 and therefore they commute just like translations in Poincare algebra

iso(1, 3). However here ξu(0) is an arbitrary function defined on Σ2 and is a vector

field associated with supertranslations, which are angle-dependent translations in

the null direction u at null infinity. The vector field at the boundary when one set
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ξu(0) = 0 is given as ξbdry =
u
2
Dcξ

c
(0)∂u + ξa(0)∂a.

Global bms4 algebra: When the vector fields ξa(0) are restricted to the globally well-

defined transformations on Σ2 then their algebra obeys global conformal algebra

sl(2,C)/Z2 which is isomorphic to Lorentz algebra so(1, 3). The ξu(0)(x
a) for ex-

ample can be expanded in the natural basis of spherical harmonics Ylm which are

smooth functions on Σ2 = S2. The normal translations are the special case of

supertranslations for l= 0 and l= 1 spherical harmonics. Therefore the resulting

algebra becomes the semi-direct sum of these smooth functions (supertranslations)

and global conformal transformations.

Extended bms4 algebra: Taking a cue from the two-dimensional conformal field

theory, if the functions ξa(0), ξ
u
(0) are allowed to be meromorphic functions with a

finite set of poles on S2 or R2 then they can be expanded in Laurent series if one

works in stereographic coordinates (xa ∈ {z, z̄}) where the metric on Σ2 takes the

form γab dx
adxb = Ω(z, z̄)dz dz̄.

The general solution of the conformal killing equation in (2.11) is ξz = Y (z) and

ξz̄ = Ȳ (z̄). Now if we denote the vector field with components Y (z) = −zn+1, ξu(0) =

0, Ȳ (z̄) = 0 by Ln and Ȳ (z̄) = −z̄n+1, ξu(0) = 0, Y (z) = 0 by L̄n the commutation

relation using (2.16) is,

[Lm, Ln ] = (m− n)Lm+n, [ L̄m, L̄n ] = (m− n)L̄m+n, [Lm, L̄m ] = 0. (2.17)

If one denotes supertranslation vector field with components Ȳ (z̄) = Y (z) = 0, ξu(0) =

zm z̄n by Tm,n then the other commutators are given by,

[Ln, Tp,q ] =

(
n+ 1

2
− p

)
Tp+l,q, [ L̄n, Tp,q ] =

(
n+ 1

2
− q

)
Tp,q+l (2.18)

The extended bms4 algebra is the direct sum of supertranslations and local conformal

translations which are also called superrotations [11]. These transformations allow

for singular transformations of the boundary metric.

Generalised bms4 algebra: If one loosen the boundary conditions (2.4) to,

guu = O(1) , gab = r2 qab +O(1) (2.19)

where qab is an arbitrary metric independent of u on Σ2 with fixed determinant. The

vector fields associated with the residual gauge transformations that preserve these
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boundary conditions (2.19) are,

ξGBM =

(
ξu(0)(x

a) +
u

2
Dcξ

c
(0)

)
∂u + ξa(0)(x

c)∂a −
r

2
Daξ

a
(0)(x

c) ∂r + · · · (2.20)

with CKV condition dropped on ξa(0). The symmetry algebra is then the direct sum

of supertranslations and algebra of arbitrary diffeomorphisms on Σ2 diff(S2) with

the following transformation of the boundary metric,

δqab = −2Dc ξ
c
(0) qab +Da ξb(0) +Db ξa(0). (2.21)

2.1.2 Current Algebra from Celestial CFT

The S-matrix elements of R1,3 gravity can be recast as 2d conformal correlators,

called the celestial amplitudes [50, 49]. By taking conformal soft limits one can un-

cover Ward identities of various 2d conformal currents – referred to as the conformal

soft theorems. Here we review the existence of two current algebra symmetries of

the 2d celestial amplitudes that follow from the leading and subleading conformal

soft theorems for positive helicity soft graviton operators (see [13, 14] for notation

and more details). One starts with the leading order conformal soft theorem for an

outgoing positive helicity soft graviton operator S+
0 (z, z̄)

〈
S+
0 (z, z̄)

n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
= −

(
n∑
k=1

z̄ − z̄k
z − zk

ϵkPk

)〈 n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
, (2.22)

where Pkϕhi,h̄i(zi, z̄i) = δkiϕhi+1/2,h̄i+1/2(zi, z̄i), ϵk = ±1 for an outgoing (incoming)

particle. Also (hk, h̄k) = (∆k+σk
2

, ∆k−σk
2

) where ∆k and σk are the scaling dimension

and helicity of the k-th particle respectively. The RHS of equation (2.22) is a

polynomial in z̄, so we can expand it around z̄ = 0 and rewrite the equation as

〈
S+
0 (z, z̄)

n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉

=

(
n∑
k=1

z̄k
z − zk

ϵkPk

)〈 n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
− z̄

(
n∑
k=1

1

z − zk
ϵkPk

)〈 n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
.

(2.23)

Now if we define two currents C
1
2 (z) and C− 1

2 (z) in the following way,

S+
0 (z, z̄) = C

1
2 (z)− z̄ C− 1

2 (z) (2.24)
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then equation (2.23) implies separate Ward identities of these two currents given by,

〈
C

1
2 (z)

n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
=

(
n∑
k=1

z̄k
z − zk

ϵkPk

)〈 n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
, (2.25)

and

〈
C− 1

2 (z)
n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
=

(
n∑
k=1

1

z − zk
ϵkPk

)〈 n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
. (2.26)

One can see from (2.25) and (2.26) that C
1
2 (z) and C− 1

2 (z) are generators of in-

finitesimal supertranslations acting as:

δ
P

1
2
ϕh,h̄(z, z̄) = z̄ P

1
2 (z) ϵP ϕh,h̄(z, z̄), (2.27)

and

δ
P− 1

2
ϕh,h̄(z, z̄) = P− 1

2 (z) ϵPϕh,h̄(z, z̄) (2.28)

respectively. Next, we turn to the emergence of sl(2,R) current algebra from the

celestial CFT. For this one starts with the corresponding subleading conformal soft

graviton theorem (the holographic analogue of [38]) for a positive helicity outgoing

soft graviton operator S+
1 (z, z̄)

〈
S+
1 (z, z̄)

n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉
=

n∑
k=1

(z̄ − z̄k)
2

z − zk

[
2h̄k
z̄ − z̄k

− ∂̄k

]
⟨
n∏
i=1

ϕhi,h̄i(zi, z̄i)⟩, (2.29)

where S+
1 (z, z̄) is given by

S+
1 (z, z̄) = lim

∆→0
∆G+

∆(z, z̄). (2.30)

30



One follows the same procedure as the leading conformal soft theorem above. Ex-

panding the RHS of (2.29) in powers of z̄ gives

〈
S+
1 (z, z̄)

n∏
i=1

ϕhi,h̄i(zi, z̄i)
〉

= −
n∑
k=1

z̄2k∂̄k + 2h̄kz̄k
z − zk

⟨
n∏
i=1

ϕhi,h̄i(zi, z̄i)⟩+ 2z̄
n∑
k=1

h̄k + z̄k∂̄k
z − zk

⟨
n∏
i=1

ϕhi,h̄i(zi, z̄i)⟩

−z̄2
n∑
k=1

1

z − zk

∂

∂z̄k
⟨
n∏
i=1

ϕhi,h̄i(zi, z̄i)⟩.

(2.31)

Using this one can define three currents J i(z) where i = 0,±1, which are the gen-

erators of sl(2,R) current algebra. In terms of these currents, we can write the soft

graviton operator S+
1 (z, z̄) as,

S+
1 (z, z̄) = −J1(z) + 2 z̄ J0(z)− z̄2J−1(z). (2.32)

The mode algebra of the currents J i(z) is

[
J im, J

j
n

]
= (i− j)J i+jm+n. (2.33)

The symmetry algebra we have discussed has been obtained by analysing the corre-

lation functions between the primary operators of the 2d celestial field theory and

conformally soft gravitons. If a holographic duality exists between gravitational

theories in four-dimensional asymptotically flat spacetime and 2d celestial confor-

mal field theory then the bulk theory should also possess these symmetries. This

motivates us to search for these symmetries directly in the bulk R1,3 gravity.

2.1.3 An sl(2,R) current algebra from AdS3 gravity

An sl(2,R) current algebra can be seen as the asymptotic symmetry algebra of

AdS3 gravity by taking the boundary metric of asymptotically AdS3 geometries in

the Polyakov gauge [112]. Working in the Fefferman-Graham gauge the locally AdS3

geometries can be written as

ds2lAdS3
= l2

dr2

r2
+ r2

(
g
(0)
ab +

l2

r2
g
(2)
ab +

l4

r4
g
(4)
ab

)
dxadxb (2.34)
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along with

g
(4)
ab =

1

4
g(2)ac g

cd
(0)g

(2)
db , ∇a

(0)g
(2)
ab =

1

2
∂bR0, and gab(0)g

(2)
ab =

1

2
R(0). (2.35)

Choosing the chiral gravity gauge of Polyakov

ds2 = (F (z, z̄) dz + dz̄) dz (2.36)

for the boundary metric g
(0)
ab the differential conditions impose the following equation:(
∂zg

(2)
z̄z̄ − F ∂z̄ − 2 ∂z̄F

)
g
(2)
z̄z̄ =

1

2
∂3z̄F . (2.37)

One also has

g(2)zz = κ(z) + F 2 g
(2)
z̄z̄ +

1

4

[
(∂z̄F )

2 + 2F ∂2z̄F + 2 ∂z∂z̄F
]
. (2.38)

Finally, the bulk variational problem can be satisfied by setting g
(2)
z̄z̄ = 0 as shown

in [10]. This makes F (z, z̄) a polynomial of degree 2 in z̄. The residual bulk dif-

feomorphisms lead to one copy of sl(2,R) current algebra and one copy of Virasoro

algebra.4 We will implement a similar procedure in R1,3 gravity and demonstrate

that an analogous sl(2,R) chiral current algebra emerges in this context as well.

2.1.4 Asymptotic symmetries of so(2, 3) gauge theory

The 3d conformal gravity theory was originally formulated in a first-order formalism

where the basic field is the vielbein e a
µ (µ, ν, · · · are spacetime indices and a, b, · · ·

are local Lorentz indices.). The torsionless condition on the manifold is given by

[
∂µe

a
ν + ωabµ e

b
ν

]
−
[
∂νe

a
µ + ωabν e

b
µ

]
= 0. (2.39)

The spin connection is defined in terms of e a
µ and the Christoffel symbol associated

with the metric such that (2.39) is solved. In 3d one can construct a Lorentz vector

from a spin connection,

ωa =:
1

2
ϵabcωbc. (2.40)

4Strictly speaking the sl(2,R) current algebra is the correct one only when one is talking about
the Lorentizan AdS3 theory. When dealing with Euclidean theory we should say the relevant
algebra is sl(2,C).
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The action associated with 3d conformal gravity is then [113, 114, 103]

S =

∫
M

ϵµνρ
[
ωµa

(
∂νω

a
ρ − ∂ρω

a
ν

)
+

2

3
ϵabc ωµa ωνb ωρc

]
. (2.41)

The equation of motion one gets after varying the action (2.41) with respect to e a
µ

is

∇ρWµν −∇νWµρ = 0, (2.42)

where Wµν = Rµν − 1
4
gµν R is a Schoutten tensor. ∇ is the covariant derivative

for the Christoffel symbol associated with the metric gµν . The equation (2.42) is a

necessary and sufficient condition for the metric gµν to be conformally flat in three

dimensions. The LHS of (2.42) is also the definition of Cotton tensor in 3d.

Witten and Horne [103] showed that the equation of motion (2.42) associated with

the action (2.41) is equivalent to flat connection of so(2, 3) Chern-Simons gauge

theory given by the action

SCS =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.43)

where A is a so(2, 3) Lie-algebra value one form gauge field given by,

Aµdx
µ = eaµ Pa + ωaµJa + λaµKa + ϕD. (2.44)

Pa, Ja, Ka and D are generators associated with three translations, three Lorentz

transformations, three special conformal transformations and a dilatation respec-

tively and obey the following so(2, 3) algebra

[Pa, Jb] = ϵabcP
c , [Ja, Jb] = ϵabcJ

c , [Ka, Jb] = ϵabcK
c , [Pa, D] = Pa,

[Pa, Kb] = −ϵabc J c + ηabD , [Ka, D] = −Ka. (2.45)

The gauge choice considered to show such an equivalence was ϕ = 0 [103] as it

ensured that the vielbein e a
µ are non-degenerate which was required by the conformal

gravity theory (2.41). The action (2.43) is also gauge equivalent to (2.41) up to a

boundary term with this gauge choice [23]. To find the asymptotic symmetries of

so(2, 3) gauge theory we go through the following steps,

• We start by considering one-form A in 3d which takes value in so(2, 3) algebra.

• Just like in Chern-Simons theory formulation of AdS3 gravity and its higher
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spin extensions [115, 116, 117], one can gauge away the radial dependence and

effectively work with a 2d gauge connection a at the boundary of the manifold.

If r is the radial coordinate then for a choice of b, one can define

a(xa) = b−1A b− db−1 b (2.46)

where xa are the coordinates on 2d boundary manifold and b = f(r).

• From the flat connection condition of A, one obtain equations of motion for a

using da+a∧a = 0. We further choose gauge and boundary conditions that are

compatible with a well-defined variational principle. The boundary conditions

should be such that the resultant background geometry should also include

global AdS3 and flat R1,2 gravity solutions as well. These conditions allow

us to solve for constraints on various components of a arising from equations

of motion. The full solution space can then be obtained in terms of free

independent data.

• Then one consider gauge transformation parameter λ which is a scalar and

also takes value in so(2, 3) algebra and uses δa = dΛ+ [a,Λ] to obtain the set

of residual gauge transformations that do not spoil the gauge and boundary

conditions of the connection a. These residual gauge transformations in turn

induce variation of the free data in the connection.

• The canonical charges that generate these gauge transformations are given by

[118]

��δQ = − k

2π

∫
Tr (δAµΛ) . (2.47)

• One can write down the poison brackets between various free data in a such

that the variation of fields can be obtained as δΛf = {QΛ, f}. The commutator

from Poisson brackets can be obtained after expanding the fields in terms of

the mode.

2.1.5 Charges using modified Lee-Wald covariant phase

space formalism

Here we will review the formalism to calculate the charges for Lagrangian density

that are not invariant under the symmetry transformations and will use the notation
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and formulae of [28, 119]. We consider Lagrangian density L(ϕ) (ϕ denotes the

collection of various fields) as a D-form in D-dimensions and χ as the collection of

symmetry parameters such that

δχL(ϕ) = LχL(ϕ) + dΞχ, (2.48)

where Ξχ is a (D− 1) form. In Wald’s derivation of the entropy formula [120, 121],

(2.48) is without the second term. The variation of L is given by,

δL =
∑
ϕ

Eϕδϕ+ dΘ(ϕ, δϕ). (2.49)

Eϕ is the equations of motion associated with ϕ and Θ is a presymplectic potential

which is a D − 1 form. The on-shell Noether current is then given by

Jµχ (ϕ) = Θµ(ϕ, δχϕ)− χµ L(ϕ)− Ξµχ(ϕ), (2.50)

which is conserved ∂µJ
µ
χ (ϕ) ≃ 0, where ≃ is the symbol for on-shell equality. One

can construct Kµν from this current such that

Jµχ (ϕ) ≃ ∂νK
µν
χ (ϕ). (2.51)

Consider the variation of presymplectic potential under symmetry transformation

as

δχΘ
µ(ϕ, δϕ) = LχΘµ(ϕ, δϕ) + Πµ

χ(ϕ, δϕ). (2.52)

The Lee-Wald symplectic potential is given by,

wµ(ϕ, δϕ, δχϕ) =
1

16π

(
δΘµ(ϕ, δχϕ)− δχΘ

µ(ϕ, δϕ)−Θµ(ϕ, δδχϕ)
)
. (2.53)

The presence of the last term in (2.53) is to compensate for the background de-

pendence of the symmetry parameter χ. Using (2.50) and (2.51), the first term

becomes

δΘµ(ϕ, δχϕ) ≃ δ∂νK
µν
χ (ϕ) + χµδL(ϕ) + δχµ L(ϕ) + δΞµχ(ϕ). (2.54)

The third term is given as

Θµ(ϕ, δδχϕ) ≃ ∂νK
µν
δχ (ϕ) + δχµ L(ϕ) + Ξµδχ(ϕ). (2.55)
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Substituting (2.54), (2.55) and (2.52) in (2.53) one gets,

wµ(ϕ, δϕ, δχϕ) ≃
1

16π

(
δ∂νK

µν
χ (ϕ)− ∂νK

µν
δχ + δΞµχ(ϕ)− Ξµδχ(ϕ)− Πµ

χ(ϕ, δϕ)
)

+ χµdΘ(ϕ, δϕ)− LχΘµ(ϕ, δϕ). (2.56)

Using Cartan’s magic formula Lχ = iχ d+ d iχ,

χµdΘ(ϕ, δϕ)− LχΘµ(ϕ, δϕ) = iχdΘ− (iχ d+ d iχ)Θ = d iχΘ (2.57)

and the theorem in [122], one can show that,

δΞµχ(ϕ)− Ξµδχ(ϕ)− Πµ
χ(ϕ, δϕ) ≃ ∂νΣ

µν
χ . (2.58)

Therefore the final expression of (2.53) after substituting everything is,

wµ(ϕ, δϕ, δχϕ) ≃ ∂νQ
µν
χ (ϕ, δϕ), (2.59)

where Qµν
χ is given by

Qµν
χ =

1

16π

(
δKµν

χ (ϕ)−Kµν
δχ (ϕ) + 2 ξ[µΘν](ϕ, δϕ) + Σµν

χ (ϕ, δϕ)
)
. (2.60)

(2.60) is the final expression for the surface charge for Lagrangian that is not invari-

ant under the symmetry transformations. It has to be integrated appropriately on

a codimension-two hypersurface.
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Chapter 3

ŝl2 symmetry of R1,3 gravity

As mentioned in the introduction, the chiral bms4 algebra of celestial CFT intro-

duced by the authors in [13, 14] includes one copy of the sl(2,R) current algebra

(with generators Ja,n for a = 0,±1 and n ∈ Z), one copy of Virasoro (Ln with

n ∈ Z) and two h = 3
2
conformal primaries (with generators Ps,r with s = ±1

2
and

r ∈ Z + 1
2
). The Ward identities of the currents associated with the operators Ps,r

and Ja,n in celestial CFT are equivalent to leading and sub-leading soft graviton

theorems as was reviewed in section (2.1.2). The algebra that these generators obey

is,

[Lm, Ln] = (m− n)Lm+n , [Ja,m, Jb,n] = (a− b) Ja+b,m+n , [Lm, Ja,n] = −nJa,m+n,

[Ln, Ps,r] =
1

2
(n− 2r)Ps,n+r , [Ja,m, Ps,r] =

1

2
(a− 2s)Pa+s,m+r , [Ps,r, Ps′,r′ ] = 0

(3.1)

with possible central terms, that remain undetermined.1 This algebra is different

from the classical bms4 algebra of [3, 4]. In this chapter, we will derive the 4d bulk

realisation of chiral bms4 algebra and the currents associated with it. The sl(2,R)
current algebra like the one in (3.1) has already been derived from asymptotic sym-

metries of solutions in AdS3 gravity [10]. We briefly reviewed this in (2.1.3). Taking

a cue from the boundary conditions imposed in [10], we apply them to the solutions

in R1,3 gravity. We present asymptotically locally flat solutions in R1,3 gravity con-

sistent with the variational principle and derive the asymptotic symmetry algebra

of such solutions to be the chiral bms4 algebra. One implements the asymptotically

locally flatness by demanding that Rµ
νρσ → 0 as r → ∞ where Rµ

νρσ is the Rie-

1The computation of authors in [14] did not determine the value of central charge c of the
Virasaro algebra.
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mann tensor of the asymptotically locally flat solutions of R1,3 gravity, expanded in

the radial coordinate r near the boundary. To obtain the asymptotic symmetries of

these asymptotically locally flat solutions, one does not need to solve for the com-

plete solution space. It is sufficient to find the locally flat solutions that share the

same boundary conditions as these asymptotically locally flat solutions and study

their asymptotic symmetries. Therefore, we analyse locally flat solutions, which are

Ricci flat solutions with vanishing Riemann tensor.

The results of this chapter include,

• In Section (3.1), we provide all locally flat solutions (including complex ones)

with u-independent boundary metric on spatial part (Σ2) of null infinity, where

u is the coordinate of null infinity.

• In Section (3.2) we impose a consistent and well-defined variational principle,

and construct an appropriate set of boundary terms (Gibbon Hawking type)

for the Einstein- Hilbert action.

• After choosing a chiral gauge for the metric on Σ2, in Section (3.3), we show

that the residual large diffeomorphisms generate chiral bms4 algebra. In Sec-

tion (3.4), we consider the boundary metric in a conformal gauge and show

that the asymptotic symmetry algebra for the resultant solutions has a holo-

morphic and anti-holomorphic sector with each sector comprising of a Witt

algebra and two u(1)-type current algebras.

We provide a discussion of our results in Section (3.5). In the Appendix A, we carry

out the general analysis of asymptotic symmetries in the Newman-Unti gauge and

we present the analysis of the iso(1, 3) gauge theory in the Appendix B, which is

relevant for the discussion of charges in the main body of the chapter. This chapter

is mostly based on the work [123].

3.1 A class of ALF spacetimes in four dimensions

We start with collecting some useful formulae towards the construction of asymp-

totically locally flat (ALF) solutions in R1,3 (or R2,2) gravity. We work with the

coordinates (r, u, z, z̄) suitable for the future null infinity and find it convenient to
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use the Newman-Unti gauge [92],

grr = grz = grz̄ = 0, gur = −1. (3.2)

Let us write the remaining metric components gij for i, j ∈ {u, z, z̄} in the following

form:

gij(r, u, z, z̄) =
∞∑
n=0

r2−n g
(n)
ij (u, z, z̄) (3.3)

We seek Ricci flat metrics (Rµν = 0) which are also asymptotically locally flat. The

latter condition is implemented by demanding that Rµ
νσλ → 0 as r → ∞ [124].

The leading non-trivial conditions from solving Rµν = 0 for large r in a power series

in 1/r require that g
(0)
ij is degenerate. Since we are interested in solutions for which

the metric g
(0)
ab for a, b ∈ {z, z̄} on the spatial manifold Σ2 is non-degenerate we solve

this condition by assuming:

g(0)uu = g(0)uz = g
(0)
uz̄ = 0 . (3.4)

Then the next non-trivial condition implies that g
(1)
uu = −1

2
∂u(log det g

(0)
ab ). One

also finds the condition det (γ̂) = 1
4
(tr γ̂)2, for the 2 × 2 matrix γ̂ab = gac(0)∂ug

(0)
cb .

Any 2 × 2 matrix that satisfies such relation has to have both its eigenvalues the

same – and therefore can only be proportional to the 2 × 2 identity matrix I2.

Thus we arrive at the following conditions: ∂ug
(0)
ab = λ g

(0)
ab ∀ a, b ∈ {z, z̄} with the

same λ. This immediately leads to g
(0)
ab (u, z, z̄) = Ω(u, z, z̄)qab(z, z̄) where qab is u

independent general 2 × 2 matrix. At O(1/r) from vanishing of Ruz and Ruz̄ we

find g
(1)
uz = g

(1)
uz̄ = 0. We will further restrict that the conformal factor Ω for the

boundary metric g
(0)
ab is independent of u which in turn implies g

(1)
uu = 0. Further

one finds:

g(2)uu = −1

2
R0 −

1

2
∂u

(
gab(0)g

(1)
ab

)
, (3.5)

g(2)ua = Va(z, z̄) +
1

2
Dbg

(1)
ba − 1

2
Da

(
gcd(0)g

(1)
cd

)
(3.6)

and

g
(2)
ab (u, z, z̄) = Dab(z, z̄) +

1

4
g(1)ac g

cd
(0) g

(1)
cb . (3.7)
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and so on, where Va(z, z̄) and Dab(z, z̄) are unconstrained u-independent 2d vector

and rank–2 symmetric tensor respectively. Da and R0 are the covariant derivative

and Ricci scalar associated with the boundary metric g
(0)
ab respectively. It turns out

that imposing vanishing of Rµ
νσλ at order r implies

∂2u

[
g
(1)
ab − 1

2

(
gcd(0)g

(1)
cd

)
g
(0)
ab

]
= 0 . (3.8)

This means that one can determine the u-dependence of the trace-free part of g
(1)
ab

completely and it is at most linear in u. Any such solution can be written as

g
(1)
ab − 1

2

(
gcd(0)g

(1)
cd

)
g
(0)
ab = g

(1,0)
ab (z, z̄) + (u− u0) g

(1,1)
ab (z, z̄) (3.9)

where {g(1,0)ab (z, z̄), g
(1,1)
ab (z, z̄)} are traceless and symmetric. The remaining data in

(g
(0)
ab , g

(1)
ab ) has to satisfy some further differential conditions. In particular:

Db

(
∂u

[
g
(1)
ba − 1

2

(
gcd(0)g

(1)
cd

)
g
(0)
ba

]
+

1

2
R0 g

(0)
ba

)
= 0. (3.10)

The equation (3.10) is similar to (2.35) of AdS3 gravity.

Further constraints arising from asymptotic flatness are: Va(z, z̄) = 0,

∂ug
(3)
uu (u, z, z̄) = 0. Along with ∂ag

(3)
uu determined in terms of the data at order

r2 and order r and differential conditions on Dab. More unconstrained data also

appears at O(r−1) and Ricci flat solutions can be systematically constructed order

by order in powers of r−1. It turns out that gab(0)g
(1)
ab remains unconstrained and we

set it to zero.2

We now turn to analyse locally flat solutions which share boundary conditions with

our asymptotically locally flat solutions and find the asymptotic symmetries associ-

ated with them.

3.1.1 Classes of locally flat geometries

These form a subset of Ricci flat geometries discussed above which have vanishing

Riemann tensors. With our NU gauge and boundary conditions we find that any

2In [92] this condition follows from the constraints on the affine parameter r for the null geodesic
generator of u = const. null hypersurface.
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such locally flat solution can be written as polynomials in r:

ds2LF = g(2)uu du
2 − 2 du dr +

(
r2 g

(0)
ab + rg

(1)
ab + g

(2)
ab

)
dxa dxb + 2 g(2)ua dx

a du, (3.11)

where

g(2)uu = −1

2
R0, g(2)ua =

1

2
Dbg

(1)
ba , g

(2)
ab =

1

4
g(1)ac g

cd
(0)g

(1)
db , gab(0) g

(1)
ab = 0, (3.12)

g
(1)
ab = g

(1,0)
ab (z, z̄) + u g

(1,1)
ab (z, z̄), (3.13)

along with the differential conditions:

Db∂ug
(1)
ba +

1

2
∂aR0 = 0, (3.14)

Dag
(2)
ub −Dbg

(2)
ua +

1

4

(
g(1)ac g

cd
(0) ∂ug

(1)
db − g

(1)
bc g

cd
(0) ∂ug

(1)
da

)
= 0. (3.15)

We consider the boundary metric g
(0)
ab to be u- independent. The equation (3.14)

is one of the constraints on generalised bms4 phase space, as derived in [125, 126].

When these differential conditions (3.14, 3.15) are solved for g
(0)
ab and g

(1)
ab then the

rest of the 4d metric components (g
(2)
uu , g

(2)
ua , g

(2)
ab ) can be found using (3.12, 3.13).

The u-dependent part of the equation (3.15) is satisfied identically when we use

(3.14) and thus can be simplified to:[
DaD

cg
(1,0)
bc −DbD

cg(1,0)ac +
1

2
gcd(0)

(
g(1,0)ac g

(1,1)
db − g

(1,0)
bc g

(1,1)
da

)]
= 0 . (3.16)

(3.16) are the generalisation of Christodolou Klainermann (CK) conditions for

boundary metric that is allowed by generalised bms4 boundary conditions [127, 125,

126].

3.1.2 Complete set of solutions

It turns out that the equations (3.14, 3.15) can be solved completely which we turn

to now. To solve these equations first we take the boundary metric g
(0)
ab in the form

g
(0)
ab = Ω

(
f 1

2
(1 + f f̄)

1
2
(1 + f f̄) f̄

)
(3.17)
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with determinant: −Ω2

4
(1 − ff̄)2 where (f , f̄ , Ω) are arbitrary functions of (z, z̄).

Then we further parameterise f(z, z̄) and f̄(z, z̄) as follows in terms of two other

independent functions ζ(z, z̄) and ζ̄(z, z̄):

f(z, z̄) =
∂z ζ̄(z, z̄)

∂z̄ ζ̄(z, z̄)
, f̄(z, z̄) =

∂z̄ζ(z, z̄)

∂zζ(z, z̄)
. (3.18)

Notice that this parameterisation is not one-to-one: suppose ζ(z, z̄) (ζ̄(z, z̄)) gives

rise to a given f(z, z̄) (f̄(z, z̄)) then so does ψ(ζ(z, z̄)) (ψ̄(ζ̄(z, z̄))). Then the solu-

tions for g
(1)
ab components can be given explicitly in terms of the functions (f, f̄ ,Ω)

and ρ =
(
∂ζ∂̄ζ̄

)−1/2
and their derivatives.

To keep the expressions simple we drop all the coordinate dependencies (z, z̄) of

various functions and use ∂zf(z, z̄) → ∂f , ∂z̄f(z, z̄) → ∂̄f etc. We define:

{χ(z, z̄), z} =
∂3χ

∂χ
− 3

2

(∂2χ)2

(∂χ)2
, {χ(z, z̄), z̄} =

∂̄3χ

∂̄χ
− 3

2

(∂̄2χ)2

(∂̄χ)2
,

τab =
∂a∂bΩ

Ω
− 3 ∂aΩ ∂bΩ

2Ω2
, (3.19)

where a ∈ {z, z̄}. Then components g
(1,0)
zz and g

(1,0)
z̄z̄ are given by:

g(1,0)zz /
√
Ω = − ρ

(1− ff̄)2
[
2(1 + f2f̄2)∂2υ + 4f2 ∂̄2υ

]
+ ∂υ

[ 2 ρ

(1− ff̄)3
(
−f̄(1 + f2f̄2) ∂f − (1− 2ff̄ − f2f̄2) ∂̄f − f(1 + f2f̄2) ∂f̄ + 2f2 ∂̄f̄

)
− 4

(1− ff̄)2
(
(1 + f2f̄2)∂ρ− f(1 + ff̄) ∂̄ρ

) ]
+ ∂̄υ

[ 2ρ

(1− ff̄)3
(
(1 + f2f̄2) ∂f − 2f2f̄ ∂̄f + 2f3f̄∂f̄ − 2f3 ∂̄f̄

)
+

4f

(1− ff̄)2
(
(1 + ff̄) ∂ρ− 2f ∂̄ρ

) ]
+

4f(1 + ff̄)

(1− ff̄)2
ρ ∂∂̄υ,

(3.20)
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where υ = υ(z, z̄) is also arbitrary. Next, the g
(1,1)
zz is given by

g(1,1)zz =
∂Ω

Ω(1− ff̄)3

[
− 2f2 ∂̄f̄ + (1 + f2f̄2)f ∂f̄ + (1 + f2f̄2)f̄ ∂f + (1− 2ff̄ − f2f̄2) ∂̄f

]
+

∂̄Ω

Ω(1− ff̄)3

[
− 2f̄ f3 ∂f̄ + 2f3 ∂̄f̄ + 2f2f̄ ∂̄f − (1 + f2f̄2) ∂f

]
+

1

(1− ff̄)2

[
(1 + f2f̄2) τzz − 2f (1 + ff̄)τzz̄ + 2f2τz̄z̄

]
− 1

(1− ff̄)2

[
(1− f f̄)2{ζ, z}+ f2 (1− ff̄)2 {ζ̄, z̄}

]
+

1

(1− ff̄)2

[
2f ∂2f̄ − 2f2 ∂∂̄f̄ + f(1 + 2ff̄ − f2f̄2) ∂̄2f − (1 + f2f̄2) ∂∂̄f

]
+

1

(1− ff̄)3

[
− 2f3 ∂f̄ ∂̄f̄ + f2 (1 + ff̄) (∂f̄)2 − 1

2
(1− 3ff̄ − 3f2f̄2 + f3f̄3) (∂̄f)2

− f̄(1 + f2f̄2) ∂f ∂̄f + (1 + f2f̄2) ∂f ∂f̄ − 2f (1 + ff̄) ∂̄f ∂f̄ + 2f2 ∂̄f ∂̄f̄
]
.

(3.21)

The components g
(1,0)
z̄z̄ and g

(1,1)
z̄z̄ can be obtained from g

(1,0)
zz and g

(1,1)
zz respectively

by f ↔ f̄ and ∂ → ∂̄ (with ρ, υ and Ω unchanged).3

To summarise, a general locally flat metric solving equations (3.14, 3.15) is param-

eterised by the following arbitrary set of functions: (Ω(z, z̄), ζ(z, z̄), ζ̄(z, z̄)) in g
(0)
ab

and ρ, and υ(z, z̄) in g
(1)
ab . The remaining components g

(1,1)
zz̄ and g

(1,0)
zz̄ can be obtained

from the above ones using the tracelessness condition of g
(1)
ab :

g
(1)
zz̄ =

1

1 + ff̄

[
g(1)zz f̄ + g

(1)
z̄z̄ f

]
. (3.23)

We have generated this solution by starting with flat spacetime with metric ds2R1,3 =

−2 du dr + r2 dz dz̄ and making a finite coordinate transformation that keeps us

in the chosen gauge. A similar exercise was done in [128, 129] with a different

parameterisation of the boundary metric. We find our parameterisation better suited

for the problem at hand. The solution in [129] matches with our LF solution after

the following identifications, Φ = log ρ(z,z̄)−2

Ω(z,z̄)
and G =

(
ζ(z, z̄), ζ̄(z, z̄)

)
.

3As commented above under (ζ, ζ̄) → (ψ(ζ), ψ̄(ζ̄)) the functions (f, f̄) in (3.18) remain unaf-
fected, but we have

{ζ, z} → (∂zζ)
2 {ψ(ζ), ζ}+ {ζ, z}, {ζ̄, z̄} → (∂z̄ ζ̄)

2 {ψ̄(ζ̄), ζ̄}+ {ζ̄, z̄} (3.22)

Under this change, the resulting configurations remain LF solutions.
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3.1.3 Gauge fixing the boundary metric

As shown in the appendix (A), the residual diffeomorphisms that preserve the NU

gauge and the boundary conditions act as diffeomorphisms and Weyl transforma-

tions on g
(0)
ab . These boundary diffeomorphisms can be used to gauge fix the 2dmetric

g
(0)
ab down to one independent function. The most commonly used gauge choice for

2-dimensional metrics is the conformal gauge. In our language, this amounts to

setting f(z, z̄) = f̄(z, z̄) = 0 and letting Ω fluctuate. However, we are interested in

getting a symmetry algebra that includes sl(2,R) current algebra, so we choose the

boundary metric in the Polyakov gauge [112]:

f̄(z, z̄) = 0 or f(z, z̄) = 0 with Ω fixed to a given function. (3.24)

Below we provide the solutions for this gauge.

Locally flat solutions in Polyakov gauge

To be specific, we choose f̄ = 0. Then the components of g
(0)
ab reduce to

g(0)zz = Ω(z, z̄)
∂z ζ̄(z, z̄)

∂z̄ ζ̄(z, z̄)
:= Ω(z, z̄) f(z, z̄), g

(0)
zz̄ =

1

2
Ω(z, z̄), g

(0)
z̄z̄ = 0. (3.25)

Similarly the components g
(1,0)
ab and g

(1,1)
ab in (3.20, 3.21) reduce to:

g
(1,1)
z̄z̄ = −{ζ̄(z, z̄), z̄}+ τz̄z̄(Ω),

g
(1,0)
z̄z̄ /

√
Ω = −2

√
∂z̄ ζ̄(z, z̄)

∂zζ(z)
∂z̄

[
∂z̄υ(z, z̄)

∂z̄ ζ̄(z, z̄)

]
, (3.26)

g(1,1)zz = f 2 g
(1,1)
z̄z̄ − {ζ(z), z}+ f ∂2z̄f − 1

2
(∂z̄f)

2 − ∂z∂z̄f

+
∂zΩ(z, z̄)

Ω(z, z̄)
∂z̄f(z, z̄)−

∂z̄Ω(z, z̄)

Ω(z, z̄)
∂zf(z, z̄)

+ τzz(Ω) + f(z, z̄)2τz̄z̄(Ω)− 2 f(z, z̄) τzz̄(Ω), (3.27)
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g(1,0)zz /
√

Ω(z, z̄) = −2 ρ
[
∂2zυ + 2 f 2 ∂2z̄υ − 2 f ∂z∂z̄υ

]
+ 2 ρ

∂2zζ

∂zζ
[∂zυ − 2 f ∂z̄υ] + 2 [ρ (∂zf − 2 f ∂z̄f)− 2 f ∂zρ] ∂z̄υ, (3.28)

where ρ = 1√
∂zζ(z) ∂z̄ ζ̄(z,z̄)

. We also have to take

g
(1)
zz̄ = f(z, z̄) g

(1)
z̄z̄ . (3.29)

Now that we know g
(0)
ab and g

(1)
ab the rest of the components can be found using the

relations (3.12, 3.13). We will not be interested in general conformal factor Ω(z, z̄)

when the boundary metric is in the Polyakov gauge. We will be interested in only

two choices Ω = 1 for Σ2 = R2 and Ω = 4 (1 + zz̄)−2 for Σ2 = S2. These choices

mean that the quantities τzz, τz̄z̄ vanish.

Restriction to g
(1)
z̄z̄ = 0

In the next section, we will show that the solutions with vanishing g
(1,1)
z̄z̄ and g

(1,0)
z̄z̄

also satisfy the variational principle. Anticipating that result we write down the

solutions with g
(1)
z̄z̄ = 0. In the cases for Ω’s with τzz = τz̄z̄ = 0, we see from (3.26)

that

ζ̄(z, z̄) =
g1(z) z̄ + g2(z)

g3(z) z̄ + g4(z)
, υ(z, z̄) = υ(1)(z) + ζ̄(z, z̄) υ(2)(z). (3.30)

Then f(z, z̄) = ∂z ζ̄(z,z̄)

∂z̄ ζ̄(z,z̄)
turns out to be a polynomial of degree two in z̄:

(det g) f(z, z̄) = [g′2(z)g4(z)− g2(z)g
′
4(z)]

+ [g′1(z)g4(z)− g1(z)g
′
4(z) + g′2(z)g3(z)− g2(z)g

′
3(z)] z̄

+ [g′1(z)g3(z)− g1(z)g
′
3(z)] z̄

2

:= −(det g)
2∑

a=0

Ja−1(z) z̄
a, (3.31)

where det g := g1(z) g4(z)− g2(z) g3(z). For (3.31) to make sense we have to assume
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that det g ̸= 0.4 Furthermore,

g(1,0)zz = −2

√
Ω

ζ ′(z)∂z̄ ζ̄(z, z̄)

[
υ′′(1)(z) + ζ̄(z, z̄) υ′′(2)(z)−

ζ ′′(z)

ζ ′(z)

(
υ′(1)(z) + ζ̄(z, z̄) υ′(2)(z)

)]
.

(3.34)

Since ∂z̄ ζ̄(z, z̄) = (det g)/(g3(z) z̄ + g4(z))
2 we see that g

(1,0)
zz /

√
Ω is linear in z̄.

Therefore we write g
(1,0)
zz as

g(1,0)zz =
√
Ω
[
C−1/2(z) + z̄ C1/2(z)

]
, (3.35)

where

C−1/2(z) =

− 2

det g
√
ζ ′(z)

[
g4(z)

(
υ′′(1)(z)−

ζ ′′(z)

ζ ′(z)
υ′(1)(z)

)
+ g2(z)

(
υ′′(2)(z)−

ζ ′′(z)

ζ ′(z)
υ′(2)(z)

)]
,

C1/2(z) =

− 2

det g
√
ζ ′(z)

[
g3(z)

(
υ′′(1)(z)−

ζ ′′(z)

ζ ′(z)
υ′(1)(z)

)
+ g1(z)

(
υ′′(2)(z)−

ζ ′′(z)

ζ ′(z)
υ′(2)(z)

)]
.

(3.36)

We can equivalently write

g(1,0)zz (z, z̄) =
√

Ω(z, z̄)
∑

r,s∈{−1/2,1/2}

ϵrsz̄
r+1/2Cs (3.37)

4There is another interesting interpretation of the coefficients Ja of the powers of z̄ in (3.31) as
follows. First, consider the 2× 2 matrix

g =

(
g1(z) g2(z)
g3(z) g4(z)

)
(3.32)

with det g := g1(z) g4(z)− g2(z) g3(z) ̸= 0 making g ∈ GL2(C). Then define A(z) = g−1(z) ∂zg(z)
which is an element of the algebra gl2. Consider a 2 × 2 matrix representation of sl2 algebra
[ta, tb] = (a − b) ta+b – for instance, in terms of the Pauli matrices, we can take t(0) = 1

2σ3,

t(±1) = i
2 (σ2 ± i σ1). Then it turns out that

Ja(z) = 2 ηab Tr
[
tbA(z)

]
:= ηab J

b(z) (3.33)

where the non-zero components of ηab are η+1−1 = η−1+1 = 1/2 and η00 = −1. One also has
Tr [A(z)] = 1

2 det g∂z det g and without loss of generality we may choose det g = 1. This makes

A(z) ∈ sl2 and A(z) = Ja(z) t
a.
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with ϵ− 1
2

1
2
= −ϵ 1

2
− 1

2
= 1 and Cr(z) = ϵrsC

s(z). Finally, we have

g(1,1)zz = −κ(z) + 1

2
ηijJ

i(z) J j(z)− ∂zJ
(0)(z) + z̄ ∂zJ

(−1)(z)

+
∂zΩ(z, z̄)

Ω(z, z̄)
∂z̄f(z, z̄)−

∂z̄Ω(z, z̄)

Ω(z, z̄)
∂zf(z, z̄)− 2 f(z, z̄) τzz̄(Ω) (3.38)

where κ(z) = {ζ(z), z}.

Please note that we will be using a, b · · · as the coordinate indices on Σ2 where the

coordinates are xa ∈ {z, z̄}, as well as component indices of the currents Ja(z) and

ηab with a ∈ {0,±1}. Now we will leave the Polyakov gauge solutions found in this

section in store until we learn to impose the variational problem – which will be

done in the next section.

3.2 Boundary terms and variational principle

We now turn to the variational problem among the configurations we have consid-

ered so far. To be precise we consider our configuration space to be all the four-

dimensional metrics gµν that are in the NU gauge which asymptotically approach

the locally flat solutions. Then we will define our solution space to be a subset of

Ricci flat configurations, that also satisfy a variational principle δS = 0.

The usual prescription of boundary terms consists of adding a Gibbons-Hawking

term and a set of possible counter terms to the standard Einstein Hilbert action

SEH [102, 101]. There are two essential aspects required of such boundary terms:

1. The boundary action Sbdy has to be consistent with at least the symmetries

that leave the gauge choice and the boundary surface invariant.

2. The variation of SEH+Sbdy should be proportional to variations of metric data

on the boundary - but not its derivatives.

The standard Gibbons-Hawking term is invariant under the full set of 3d diffeomor-

phisms of the boundary [101]. In the context of AdSn+1 gravity in the Fefferman-

Graham gauge residual symmetries are the diffeomorphisms of the n-dimensional

subspace r = r0 and thus adding the Gibbons-Hawking term and other counter

terms that are also invariant under the n-dimensional diffeomorphisms is justified.

In Appendix (A), we find 4d vector fields which leave our boundary conditions
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and NU gauge choice invariant. Now we pose this question in our context: what

are the subset of asymptotic symmetries of the class of geometries that leave our

3-dimensional r = r0 hypersurface fixed? Generators of any such coordinate trans-

formations should have ξr = 0. The vector fields should continue to solve (A.1, A.3,

A.4).

The first consequence of the condition ∂rξ
r = 0, is that (∂u − guag

ab∂b) ξ
u = 0

from (A.1). Since ξr(0) = ξu(1) = ∂uξ
u from (A.3), we also have ∂uξ

u = 0 implying

guag
ab∂b ξ

u = 0. From (A.4) working in the gauge g
(0)
ab g

ab
(1) = 0 we see that ξr(1) = 0

requires ξu to be a harmonic function in 2d. Since the harmonic equation is Weyl

invariant and in 2d every metric is Weyl equivalent to flat space the solutions to

□ξu = 0 are ξu(z, z̄) = ξu(z)(z) + ξu(z̄)(z̄). Substituting this expression of ξu into

gu
a∂a ξ

u = 0 implies gu
z ∂zξ

u
(z)(z) + gu

z̄ ∂z̄ξ
u
(z̄)(z̄) = 0. This equation is background

dependent and a linear combination of holomorphic and anti-holomorphic functions

(∂zξ
u
(z)(z), ∂z̄ξ

u
(z̄)(z̄)) and unless the coefficients (gu

z, gu
z̄) are zero (and non-generic)

the only solutions are (∂zξ
u
(z)(z) = 0, ∂z̄ξ

u
(z̄)(z̄) = 0) which in turn implies ∂aξ

u = 0

and this is what we work with. To summarise the subset of symmetries of our class

of geometries that leave r = r0 invariant are: (ξr = 0, ξu = ξu(0), ξ
a = ξa(0)(z, z̄)) –

that is, rigid translations in u and arbitrary diffeomorphisms of (z, z̄).5 Now we seek

the boundary terms that respect at least these symmetries.

The bulk four-dimensional metrics in the NU gauge are of the form:

gµν =

 guu −1 gua

−1 0 0

gau 0 gab

 , gµν =

 0 − 1 0

−1 guagu
a−guu gu

b

0 gau gab

 (3.39)

where gab is the inverse of gab, gu
a = gubg

ba, etc. We take the unit normal to the

r = r0 surface as: nµ = 1√
guagua−guu δ

r
µ and nµ = 1√

guagua−guu g
rµ such that nµn

µ = 1.

The induced metric on r = r0 surface is:

γij = gµν e
µ
i e
ν
j =

(
guu gua

gau gab

)
(3.40)

5Another way to arrive at the same conclusion is the following. We should have expected that
the residual transformations do not mix different orders of powers of r. This in turn implies that
ξa is independent of r (ξu is already independent of r). Then the last of (A.1) implies ∂aξ

u is
zero, and the fact that ξr should also vanish requires ∂uξ

u = 0, thus making ξu a constant and
ξa = ξa(0)(z, z̄). These are the generators of the boundary coordinate transformations: (u → u′ =

u + u0, x
a → x′

a
= x′a(x)). The Jacobian of such transformations is: ∂u′

∂u = 1, ∂u′

∂xa = ∂x′a

∂u = 0

with the only non-trivial part Ja
b = ∂x′a

∂xb .
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with its inverse

γij =
1

N2

(
−1 gau

gau N2 gab − gaug
b
u

)
, (3.41)

with N2 = −guu + gau g
a
u and the usual completeness relation gµν = nµnν + γijeµi e

ν
j .

Thus the metric data in the line element

ds2bdy = guu du
2 + 2 guadu dx

a + gab dx
a dxb (3.42)

on the boundary is (guu, gua, gab). The expected set of symmetries of the boundary

(u → u′ = u+ u0, x
a → x′a = x′a(x)) is much smaller than the 3d diffeos in (u, xa).

Therefore, we expect much more freedom in the choice of the boundary terms.

The transformations of the components of the induced metric under the reduced

symmetry are:

gu′u′(u
′, x′a) = guu(u, x

a), gu′x′a(u
′, x′) =

∂xb

∂x′a
guxb(u, x)

gx′ax′b(u
′, x′) =

∂xc

∂x′a
∂xd

∂x′a
gxcxd(u, x). (3.43)

This enables us to classify the basic scalars under the boundary symmetries and

some of them are:

no derivatives :guu, gabguagub,

one derivative :∂uguu, g
abgua∂ugub, guagub∂ug

ab gab∂ugab, D
agua,

two derivative :R[gab], □guu, ∂
2
uguu, ∂uD

agua, ∂ug
ab∂ugab, g

ab ∂ugua∂ugub etc.

(3.44)

The integration measure invariant under our boundary symmetry (u, xa) → (u +

u0, x
′a(x)) is

∫
du
∫
d2x

√
σ where σ = det gab, which can be used to integrate any

function of the scalars listed above to obtain a potential boundary term.

3.2.1 The boundary terms

Now we look for the potential Gibbons-Hawking-type terms we can construct con-

sistent with our boundary symmetries. The bulk action is the standard Einstein-
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Hilbert action

SEH =
1

16 π G

∫
d4x

√
−g R . (3.45)

Then the variation of the action within our configuration space around a configura-

tion satisfying the Einstein equation Rµν = 0 is

δSEH =
1

16 π G

∫
d4x

√
−g gµν

(
∇κδΓ

κ
µν −∇ν δΓ

κ
µκ

)
=

1

16 π G

∫
Σ

d3x
√
−γ nµJµ,

(3.46)

where Jκ = gµν δΓκµν − gµκ δΓνµν . δΓ
κ
µν = 1

2
gκω (∇µδgων +∇νδgµω −∇ωδgµν) which

leads to Jµ = gµνgσλ (∇σδgνλ −∇νδgσλ). We will have to manipulate this term

carefully. Since our surface is defined by r = r0 the unit normal is nµ = Nδrµ

where N = 1√
grr

. But we also have grr = γ
g
where γ = det(γij) and g = det gµν

=⇒
√
−γ = N

√
−g. This boundary term can be written explicitly for geometries

in the NU gauge with nµ = 1√
grr
δrµ and we find:

√
−γ nµJµ =

√
σ ∂rδω +

1

2

√
σ σab∂rσab δω +

1

2

√
σ ω ∂rσ

abδσab +
√
σ ω σab∂rδσab

−
√
σ va∂rvb δσ

ab +
√
σ vavb ∂rδσab + ∂r(

√
σ) vavbδσab +

√
σ vavb ∂rσ

cb δσac

− 1

2

√
σ vav

a ∂rσabδσ
ab −

√
σ vcvc σ

ab ∂rδσab

−
√
σ σab ∂rva δvb −

√
σ va∂rσ

ab δvb − 2 ∂r(
√
σ) va δva − 2

√
σ va∂rδva

+
1

2

√
σ ∂uσab δσ

ab +
√
σ σab ∂uδσab

+
√
σ (Daδσbc)

(
σab vc − va σbc

)
− ∂a

(√
σ σabδvb

)
,

(3.47)

where we introduced the notation: ω = guu, va = gua and σab = gab along with

σab being the inverse of σab and va = σabvb. In this, we seek that those terms

with tangential derivatives (that is, derivatives w.r.t (u, z, z̄)) on variations of the

boundary data (δω, δva, δσab) have to be cancelled. The usual strategy involves

completing such terms into either total variations or total derivatives so that the

variations (derivatives) are moved away from the derivatives (variations) [130, 131].
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To do this one may use the following identities:

√
σ ∂rδω = δ

(√
σ ∂rω

)
− ∂rω δ

(√
σ
)
, (3.48)

√
σ
(
ω σab + vavb − vcvc σ

ab
)
∂rδσab

= δ
[√
σ
(
ω σab + vavb − vcvc σ

ab
)
∂rσab

]
− ∂rσab δ

(√
σ
(
ω σab + vavb − vcvc σ

ab
))
,

(3.49)

− 2
√
σ va∂rδva = δ

[
−2

√
σ va∂rva

]
+ 2 ∂rva δ

(√
σ va

)
,

(3.50)
√
σ σab ∂uδσab = δ

[√
σ σab ∂uσab

]
− ∂uσab δ

[√
σ σab

]
, (3.51)

√
σ (Daδσbc)

(
σab vc − va σbc

)
= ∂a

[√
σ
(
σab vc − va σbc

)
δσbc

]
−
√
σ δσbc

[
σabDav

c − σbcDav
a
]
. (3.52)

Using these and moving the total variations and total derivatives (in (z, z̄) coordi-

nates) to the lhs we find:

√
−γ nµJµ − δ

(√
σ ∂rω

)
− δ

[√
σ
(
ω σab + vavb − vcvc σ

ab
)
∂rσab

]
+ δ

[
2
√
σ va∂rva

]
− δ

[√
σ σab ∂uσab

]
− ∂a

[√
σ
(
σab vc − va σbc

)
δσbc

]
+ ∂a

(√
σ σabδvb

)
(3.53)

= −∂rω δ
[√
σ
]
− ∂rσab δ

[√
σ
(
ω σab + vavb − vcvc σ

ab
)]

+
1

2

√
σ σab∂rσab δω +

1

2

√
σ ω ∂rσ

abδσab

−
√
σ va∂rvb δσ

ab + ∂r(
√
σ) vavbδσab +

√
σ vavb ∂rσ

cb δσac −
1

2

√
σ vcv

c ∂rσabδσ
ab

−
√
σ σab ∂rva δvb −

√
σ va∂rσ

ab δvb − 2 ∂r(
√
σ) va δva + 2 ∂rva δ

[√
σ va

]
+

1

2

√
σ ∂uσab δσ

ab − ∂uσab δ
[√
σ σab

]
−

√
σ δσbc

[
σabDav

c − σbcDav
a
]
. (3.54)

Note that there are no terms involving a tangential derivative of (δω, δva, δσab) on

the rhs. Thus the boundary action required to be added to the Einstein-Hilbert

action (3.45) in our context is,

(16πG)Sbdy. =

∫
d3x

√
σ
[
2 va∂rva − ∂rω −

(
ω σab + vavb − vcvc σ

ab
)
∂rσab − σab ∂uσab

]
=

∫
d3x

√
σ ∂r(v

ava − ω) + 2 [(vava − ω) ∂r − ∂u]
√
σ

(3.55)
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and the total divergence term in δSEH is (16πG)−1 times

∂a
[√
σ
(
δva − va σbc δσ

bc
)]

(3.56)

that we ignore (this amounts to assuming that the geometry of Σ2 with coordinates

(z, z̄) is either compact or, when it is not, the integrand falls off fast enough near

its asymptotes).

In summary, we have managed to find the boundary action (3.55) we sought such

that the variation of the total (bulk plus boundary) action is a linear combination

of (δω, δva, δσab) but not their derivatives:

(16πG) δSEH+bdy. =

∫
r=r0

du d2z
√
σ
[
tab δσ

ab + ja δv
a + o δω

]
=

∫
r=r0

du d2z
√
σ
[
−(tab + j(avb)) δσab + jaδva + o δω

]
,(3.57)

where tab = σacσbdtcd, j
a = σabjb. The coefficients of (δω, δva) are:

δω : o = −1

2
σab ∂rσab,

δva : ja = −∂rσab vb + ∂rva + σcd ∂rσcd va, (3.58)

and the coefficient of δσab is :

tab :=
1

2
∂rω σab +

1

2
(v2 − ω)

(
∂rσab − σcd ∂rσcd σab

)
− 1

2

(
∂uσab − σcd∂uσcd σab

)
+
(
D(avb) − σabDcv

c
)
− 1

2
σcd∂rσcd vavb +

1

2
vcvd ∂rσcd σab − vc∂rvc σab,

(3.59)

where v2 = vav
a and D(avb) = 1

2
(Davb + Dbva) and so on. Finally, we can now

substitute the boundary conditions we have and find the expressions in powers of
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1/r.

o = −1

r
2 +

1

r2

(
gab(0)g

(1)
ab

)
+

1

r3

[(
gab(0)g

(2)
ab

)
− 1

2

(
gab(0)g

(1)
bc g

cd
(0)g

(1)
da

)]
+ · · · , (3.60)

ja =
1

r
2 g(2)ua +

1

r2

[
g(3)ua −

(
gab(0)g

(1)
ab

)
g(2)ua + g

(1)
ab g

bc
(0)g

(2)
uc

]
+ · · · , (3.61)

tab = −r 1
2

[
∂ug

(1)
ab −

(
gcd(0)g

(1)
cd

)
g
(0)
ab − 2 g(2)uu g

(0)
ab

]
+

1

2
g(3)uu g

(0)
ab +

(
3

2
g
(1)
ab − 1

2

(
gcd(0)g

(1)
cd

)
g
(0)
ab

)
g(2)uu +D(ag

(2)
b)u −Dcg(2)cu g

(0)
ab

+
1

2
∂u

(
gcd(0)g

(2)
cd

)
g
(0)
ab − 1

2
∂ug

(2)
ab + ∂u

(
gcd(0)g

(1)
cd

)
g
(1)
ab − 1

2

(
g(1)ac g

cd
(0) ∂ug

(1)
db + ∂ug

(1)
ac g

cd
(0) g

(1)
db

)
+

1

2

(
gcd(0)g

(1)
cd

)
∂ug

(1)
ab − 1

4
∂u

(
gcd(0)g

(1)
cd

)2
g
(0)
ab

+O(1/r). (3.62)

Substituting these expressions in (3.57), we find in large r → ∞ limit the variation

of the Lagrangian density is given by

δLEH+bdy. = −2 r3
√
g(0) δg(0)uu − r2

√
g(0)

[
1

2

(
gcd(0)g

(1)
cd

)
δg(0)uu + 2 δg(1)uu

]
− r

√
g(0)

[
2 δg(2)uu + g(2)uu g

ab
(0) δg

(0)
ab +

1

2

(
gcd(0)g

(1)
cd

)
δg(1)uu − 2 g(2)ua g

ab
(0)δg

(0)
ub

− 1

2

(
gab(0)∂ug

(1)
bc g

cd
(0) δg

(0)
da −

(
gcd(0)∂ug

(1)
cd

)(
gab(0) δg

(0)
ab

)]
−
√
g(0) δL0 +O(1/r), (3.63)

where:

δL0 = 2 δg(3)uu +
1

2
g(3)uu

(
gcd(0)δg

(0)
cd

)
+

1

2

(
gcd(0)g

(1)
cd

)
δg(2)uu +

1

2
g(2)uu

(
gab(1)δg

(0)
ab

)
− 1

2

[
Tr g(3) +

1

2
Tr g(1) Tr g(2) − Tr

(
g(1)g−1

(0)g
(2)g−1

(0)

)
− 1

8
Tr g(1)Tr

(
g(1)g−1

(0)g
(1)g−1

(0)

)
+

1

4
Tr
(
g(1)g−1

(0)

)3 ]
δg(0)uu −

(
D(ag

(2)
b)u −Dcg(2)uc g

(0)
ab

)
δgab(0)

− 1

4
Tr g(1)

(
∂ug

(1)
ab − ∂u(Tr g

(1))g
(0)
ab

)
δgab(0) +

1

2

(
∂ug

(2)
ab δg

ab
(0) − Tr(∂ug

(2))
(
g
(0)
ab δg

ab
(0)

))
+ g(2)ua g

ab
(1)δg

(0)
bu − g(3)au g

ab
(0) δg

(0)
bu − 2g(2)au g

ab
(0) δg

(1)
bu + g(2)uu g

ab
(0)δg

(1)
ab

− 1

2

(
Tr
(
g−1
(0)∂ug

(1)g−1
(0)δg

(1)
)
− Tr

(
g−1
(0)∂ug

(1)
)
Tr
(
g−1
(0)δg

(1)
))

, (3.64)

with Trg(2) = gab(0)g
(2)
ab and so on. As we will be taking the boundary r = r0 → ∞ we

will not need to keep terms that vanish in this limit.
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3.2.2 Conditions from variational principle

We first impose

δg(0)uu = δg(1)uu = δg(0)ua = δg(1)ua = 0 (3.65)

for all configurations as these are part of the boundary conditions derived in Section

(3.1). Furthermore, since we consider the class of geometries that are locally flat we

restrict to the class (3.11) of geometries: g
(2+n)
µν = δg

(2+n)
µν = 0 for n = 1, 2, · · · . We

also impose the gauge conditions and Tr g(1) = 0 as well. Then we have

δL = −2 r δ
(√

g(0) g(2)uu

)
+ r

√
g(0)

[
1

2
gab(0)∂ug

(1)
bc g

cd
(0) δg

(0)
da

]
−
√
g(0) δL0 +O(1/r)

(3.66)

where,

δL0/

√
g(0) =

1

2
g(2)uu

(
gab(1)δg

(0)
ab

)
−
(
D(ag

(2)
b)u −Dcg(2)uc g

(0)
ab

)
δgab(0)

+
1

2

(
∂ug

(2)
ab δg

ab
(0) − Tr(∂ug

(2))
(
g
(0)
ab δg

ab
(0)

))
+ g(2)uu g

ab
(0)δg

(1)
ab − 1

2

(
Tr
(
g−1
(0)∂ug

(1)g−1
(0)δg

(1)
))

.

(3.67)

We just have to ensure that this quantity δL, when integrated over the boundary

directions (u, z, z̄), vanishes in the r = r0 → ∞. One more condition that we will

impose for all the cases below is:

δ

∫
d2z
[√

g(0) g(2)uu

]
= 0 (3.68)

which when using the relation g
(2)
uu = −1

2
R0 is equivalent to holding the Euler char-

acter of the metric on Σ2 fixed under variations (see also [129]). Now we consider

special cases of boundary conditions that ensure δS = 0.

Solutions with Dirichlet Boundary conditions

In this case we take δg
(0)
ab = 0. Since g

(2)
uu is related to the curvature of g

(0)
ab as given

in (3.12) it follows that δg
(2)
uu = 0 and therefore δ

(√
g(0) g

(2)
uu

)
= 0. Using δg

(0)
ab = 0

in the rest of the terms leaves:

δL0 = −
√
g(0)

[
g(2)uu g

ab
(0)δg

(1)
ab − 1

2

(
Tr
(
g−1
(0)∂ug

(1)g−1
(0)δg

(1)
))]

. (3.69)
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The first term in the bracket is proportional to the variation of gab(0)g
(1)
ab which is

held to zero. So the only non-trivial term in the variation of the Lagrangian is

proportional to gab(1,1)δg
(1)
ab , and the simplest (covariant and non-chiral) way to ensure

the vanishing of this term is to set g
(1,1)
ab = 0. Thus, we conclude that the locally flat

solutions that satisfy the variational principle with fixed metric on the boundary Σ2

are given by the class of solutions in conformal gauge (3.106) with κ(z) = κ̄(z̄) = 0

for Ω corresponds to Σ2 being R2 (Ω = 1) or S2 (Ω = 4 (1 + zz̄)−2) or H2 (Ω =

4 (1− zz̄)−2).

There is a rather interesting consequence of this conclusion: The algebra of symme-

tries that enable us to move along the space of locally flat solutions, in this case, is

exactly bms4 [3, 4, 26], but do not allow for the bms4 algebra to become the extended

bms4 [111, 132].

3.2.3 Polyakov gauge solutions

Next, we turn to the non-Dirichlet boundary metrics on Σ2 and in particular restrict

to the chiral Polyakov gauge for the metric on Σ2: f̄(z, z̄) = 0 with Ω to be given a

function of (z, z̄). We will continue to impose the boundary conditions

δg(0)uu = δg(1)uu = δg(0)ua = δg(1)ua = δ

∫
d2z
√
g(0)R0 = 0. (3.70)

In this gauge even though δg
(0)
zz ̸= 0 we still have δ

√
det g

(0)
ab = 0. We will need to

ensure the remaining terms in (3.66, 3.67) also vanish.

1. From the O(r) term in δL that is proportional to g
(1,1)
z̄z̄ δF we need to set

g
(1,1)
z̄z̄ = 0.

2. From the first term in O(r0) terms we further need to impose g
(1,0)
z̄z̄ = 0.

3. Then imposing the conditions gab(0)g
(1)
ab = 0 immediately implies g

(1)
zz̄ = 0.

4. Substituting g
(1)
zz̄ = g

(1)
z̄z̄ = 0 into g

(2)
ab = 1

4
g
(1)
ac gcd(0)g

(1)
db we find that g

(2)
ab = 0.

5. Further in our gauge gab(0) δg
(0)
ab = 0, gab(0) δg

(1)
ab = 0, and Tr

(
g−1
(0)∂ug

(1)g−1
(0)δg

(1)
)
=

0.

6. Finally we need to check: Dz̄g
(2)
z̄u = Dz̄D

ag
(1)
az̄ . Using g

(1)
zz̄ = g

(1)
z̄z̄ = 0 and (3.12)

it is easy to see that this quantity also vanishes.
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To summarise the variational principle in the Polyakov gauge can be solved by

imposing:

g
(1,0)
z̄z̄ = g

(1,1)
z̄z̄ = 0 (3.71)

on the class of locally flat geometries we found in the previous section.

In anticipation of this result, we have already presented the solutions satisfying these

additional conditions in section (3.1.3). Here we present the locally flat solutions in

closed form for two cases: Ω = 1 and Ω = 4 (1 + zz̄)−2 that also are consistent with

our variational principle.

• Locally flat solutions Ω = 1:

ds2M2=R2 = − 2 du dr + r2 dz dz̄ + r2
(
−ηab Ja z̄1+b

)
dz2

+ r u

(
1

u
ϵsr C

r z̄
2s+1

2 − κ(z) +
1

2
ηab J

a(z) J b(z) + (1 + a) ηab z̄
a ∂zJ

b

)
dz2

+ 2

(
ϵrs

2s+ 1

2
Cr z̄

2s−1
2 + u ηab b (1 + b) ∂zJ

a z̄b−1

)
du dz

+ 2 ηab b (1 + b) Ja z̄b−1 du2. (3.72)

• Locally flat solutions with Ω = 4 (1 + zz̄)−2:

ds2M2=S2 = −2 du dr +
4 r2

(1 + z z̄)2
dz dz̄ − 4 r2

(1 + z z̄)2
ηab J

a z̄1+b dz2

+ r u

[
− κ(z) +

1

2
ηabJ

aJ b + (1 + a) ηab z̄
a ∂zJ

b

+
2

1 + z z̄

(
1

u
ϵsr C

r z̄
2s+1

2 + ηab [(b− 1) Ja − z ∂zJ
a] z̄b+1

)]
dz2

+
(
−1 + ηab (−z)1−a J b

)
du2−

[
ϵrsC

r (−z)
1−2s

2 + u ηab ∂z ((−z)1−a J b)
]
du dz.

(3.73)

The solutions (3.72) and (3.73) are parameterised in terms of six holomorphic func-

tions

{Ja(z), Cs(z), κ(z)} where a ∈ 0,±1 , s ∈ {−1

2
,
1

2
} (3.74)

where ηab is defined in (3.33) and ϵss′ in (3.37). ηab, ϵss′ can be used to lower and

raise the indices on Ja(z) and Cs(z) respectively. Now that we have obtained the
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locally flat solutions in the Polyakov gauge with the boundary conditions consistent

with the variational problem we turn to analysing the symmetry algebras of these

solution spaces in the next section.

3.3 Asymptotic symmetries

As reviewed in section (2.1.1), after obtaining our solution space, we will now look for

residual diffeomorphisms that keep us within the classes of solutions (3.72), (3.73).

This will involve deriving vector fields that do not spoil the Newman-Unti gauge

and other boundary conditions that we have imposed on our solution space. We will

then compute their commutator algebra.

3.3.1 The vector fields

From the general analysis of asymptotic symmetries done in (A.1-A.3), the first few

components of the vector fields that keep us within the class of (3.72, 3.73) are given

by,

ξz(0) = Y (z), ξz̄(0) = Y (z, z̄), ξu(u, z, z̄) = ξu(0)(z, z̄) +
u

2
Da V

a, (3.75)

ξr(0) = −1

2
Da V

a, ξa(1) = −gab(0)Db ξ
u, (3.76)

ξa(2) =
1

2
gab(0) g

(1)
bc g

cd
(0)Dd ξ

u, (3.77)

ξr(1) =
1

2
gab(0)DaDb ξ

u − 1

4
ξa(0)Da

(
gbc(0)g

(1)
bc

)
− 1

4
∂u
(
ξu gbc(0)g

(1)
bc

)
. (3.78)

In the above solution V a = (Y (z), Y (z, z̄)). So far, three functions parameterise our

vector fields,

{Y (z), Y (z, z̄), ξu(0)(z, z̄)}. (3.79)

The rest of the sub-leading terms in r in the vector field are given in terms of (3.79).

Under the action of these vector fields the data g
(0)
ab and g

(1)
ab transform as follows,

δg
(0)
ab = LV cg

(0)
ab − 2 ∂u ξ

u g
(0)
ab , (3.80)

δg
(1)
ab = LV cg

(1)
ab − ∂u ξ

u g
(1)
ab + ξu ∂ug

(1)
ab + g

(0)
ab g

cd
(0)DcDd ξ

u − 2DaDb ξ
u. (3.81)
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We now impose conditions coming from the variational principle: g
(1)
z̄z̄ = g

(1,0)
z̄z̄ +

u g
(1,1)
z̄z̄ = 0 as found in section (3.2.3) which will put constraints on (3.79). Consid-

ering δg
(1)
z̄z̄ component in eq (3.81) and setting it to zero gives

δg
(1,0)
z̄z̄ + u δg

(1,1)
z̄z̄ = −2Dz̄Dz̄

(
ξu(0) +

u

2
Da V

a
)
= 0 (3.82)

This requires setting Dz̄Dz̄ ξ
u
(0) = 0 and Dz̄Dz̄Da V

a = 0 separately.

• The equation Dz̄Dz̄ ξ
u
(0) = 0 can be solved for ξu(0) and we obtain

Σ2 = R2 : ξu(0) = P− 1
2
(z) + z̄ P 1

2
(z)

Σ2 = S2 : ξu(0) =
2

1 + zz̄

(
P− 1

2
(z) + z̄ P 1

2
(z)
)

(3.83)

• The equation Dz̄Dz̄Da V
a = 0 allows us to solve for Y (z, z̄) as

Y (z, z̄) = Y−1(z) + z̄ Y0(z) + z̄2 Y1(z) (3.84)

in either case of Σ2.

Therefore, the vector fields that keep us within our solution spaces are charac-

terised by six holomorphic functions: {Y (z), Ya(z), Ps(z)} where a ∈ {0,±1} , s ∈
{−1

2
, 1
2
}. The sub-leading components of vector fields are then found in terms of

these leading order components following the general analysis done in (A). If these

holomorphic functions are allowed to have poles, then the supertranslation vector

field ξu(0) for a specific choice of Ps,

P− 1
2
(z) = −(1 + ww̄) w̄

2 (z − w)
, P 1

2
(z) =

(1 + ww̄)

2 (z − w)

becomes,

ξu(0) =
1 + w w̄

z − w

(z̄ − w̄)

1 + zz̄
. (3.85)

The vector field in equation (3.85) was used in [133, 59] to show the equivalence

between supertranslation Ward identity and Weinberg leading soft theorem for pos-

itive helicity graviton localised at the reference direction (w, w̄) on the sphere. The

vector field in (3.85) induces transformation of g
(1,0)
z̄z̄ which is zero everywhere on
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the sphere except for z = w,

δg
(1,0)
z̄z̄ = −4π (1 + w w̄)

(1 + zz̄)
δ(2)(z − w). (3.86)

In a similar spirit for the vector field in equation (3.84) the choice,

Y−1(z) =
w̄2

(z − w)
, Y0 = − 2 w̄

(z − w)
, Y1 =

1

(z − w)
(3.87)

coincides with the vector field used in [12] to show the equivalence between Diff(S2)

Ward identity and Cazchao-Strominger (CS) sub-leading soft theorem for positive

helicity graviton (the conjugate vector field give rise to Ward identity that is equiv-

alent to CS soft theorem for negative helicity graviton).6 For this particular choice

of a vector field,

δg
(1;1)
z̄z̄ = 4πδ(2)(z − w) (3.88)

The singularity in (3.86) and (3.88) is similar to the one generated by superrotation

vector fields of the type

Y z =
1

z − w
, (3.89)

which change the sphere metric according to (3.80) at null infinity by adding singu-

larities at isolated points [134].

3.3.2 Algebra of vector fields

The full set of vector fields that enable us to move in the space of solutions (3.72,

3.73) are given by,

ξ =

(
ξu(0) +

u

2
Da V

a

)
∂u +

(
V a − 1

2 r
gab0 Db ξ

u

)
∂a −

r

2
Da V

a ∂r + · · · , (3.90)

where V a and ξu(0) are given by (3.83, 3.84). The · · · denote the subleading terms of

O(1/r) in the vector fields that are given in terms of ξu(0), V
a. We check that the Lie

brackets between any two of these vector fields close under the modified commutator

6As mentioned in [133] this vector field acts as a kernel from which any smooth vector field can
be constructed and therefore Ward identity associated with any Diff(S2) vector field on the sphere
can be obtained from the Ward identity associated with this vector field.
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defined in (2.14). We find:

[ ξ1 , ξ2 ]M =

(
ξ̂u(0) +

u

2
Da V̂

a

)
∂u +

(
V̂ a − 1

2 r
gab0 Db ξ̂

u

)
∂a −

r

2
Da V̂

a ∂r + · · ·

(3.91)

where

ξ̂u(0) = V a
1 ∂a ξ

u
2 (0) +

1

2
ξu1 (0)Da V

a
2 − V a

2 ∂a ξ
u
1 (0) −

1

2
ξu2 (0)Da V

a
1 , (3.92)

V̂ a = V b
1 ∂b V

a
2 − V b

2 ∂b V
a
1 . (3.93)

and · · · denote the subleading terms of O(1/r) in the resultant vector field.

• We denote the vector fields with Y (z) = ξu(0)(z, z̄) = 0 and following (3.84),

Y (z, z̄) = −znz̄a+1 by Ja,n for a ∈ {0,±1} and n ∈ Z. The commutator of

these vector fields using (3.93) is then given by,

[Ja,m , Jb,n ] =
(
a− b

)
Ja+b,m+n (3.94)

This can be recognised as the sl(2,R) current algebra.

• Denoting the vector field with Y = ξu(0) = 0 and Y (z) = −zn+1 by Ln for

n ∈ Z we find using (3.93):

[Lm,Ln] = (m− n)Lm+n, [Lm ,Ja,n ] = −nJa,m+n (3.95)

The first of these is simply the Witt algebra.

• Finally denoting the vector field with Y = Y = 0 and

ξu(0) = −zr+
1
2 z̄s+

1
2 for Σ2 = R2, ξu(0) = −z

r+ 1
2 z̄s+

1
2

1 + zz̄
for Σ2 = S2 (3.96)

by Ps,r where r ∈ Z + 1
2
and s ∈ {−1

2
, 1
2
}, the remaining commutators work

out to be:

[Ln,Ps,r] =
1

2
(n− 2 r)Ps,n+r, [Ja,n,Ps,r] =

1

2
(a− 2 s)Pa+s,n+r

[Ps,r,Ps′,r′ ] = 0 (3.97)

Thus the final result for the algebra of vector fields that preserve our spaces of

locally flat solutions (3.72, 3.73) are (3.94, 3.95, 3.97). We refer to this algebra as
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chiral bms4 algebra and it is identical to the symmetry algebra uncovered from the

analysis of conformal soft theorem in the celestial CFT by [13, 14].

3.3.3 Variations of fields in locally flat solutions

Our final set of locally flat solutions (both for Σ2 = R2 or S2) are characterised by the

fields in (3.74). We compute the transformations of these fields under the symmetry

algebra found in the previous subsection. It turns out that the transformations

of the fields are identical for either of the solutions (3.72) and (3.73). So we will

demonstrate this for the case of Σ2 = R2. First we rewrite the field Cr as (like in

[127, 125] for instance),

Cr(z) = −2 ∂2z Cr(z) +
(
1

2
ηab J

a(z) J b(z)− κ(z)

)
Cr(z)

+ gra s
(
− ∂ Ja(z) Cs(z)− 2 Ja(z) ∂Cs(z)

)
. (3.98)

Here the non-zero structure constant gris are given by: g
1
2

0 1
2

= g
− 1

2

−1 1
2

= 1 , g
1
2

1− 1
2

=

g
− 1

2

0− 1
2

= −1. We write explicitly the vector field (3.90) that preserves the form of

61



our solutions (up to 1/r-order terms) as follows:

ξu(u, z, z̄) = ϵrs z̄
2r+1

2 P s(z) +
u

2

(
ηab (1 + b)Y a(z) z̄b + ∂zY (z)

)
, (3.99)

ξr(r, u, z, z̄) = −r
2

(
ηab (1 + b)Y a(z) z̄b + ∂zY (z)

)
+ ηab (1 + b) Ja(z) z̄b

(
− ϵrs (2s+ 1)P r(z) z̄

2s−1
2 + u ηab (1 + b) b Y a(z) z̄b−1

)
− ϵrs (2s+ 1) ∂z P

r(z) z̄
2s−1

2 + u ηab (1 + b) b ∂zY
a(z) z̄b−1

− 1

r

[
ϵrs

2s+1
2
z̄

2s−1
2 (−2P r(z) + Cr(z)) + u ηab (1 + b) b z̄b−1 (Y a(z) + ∂zJ

a(z))
]
+ · · · ,

(3.100)

ξz(r, u, z, z̄) = Y (z) +
2

r

[
ϵrs

2s+ 1

2
P r(z) z̄

2s−1
2 − u ηab (1 + b) b Y a(z) z̄b−1

]
+ · · · ,

(3.101)

ξz̄(r, u, z, z̄) = ηab Y
a(z) z̄1+b +

1

r

[
2 ηab J

a(z) z̄1+b ϵrs (2s+ 1)P r(z) z̄
2s−1

2

+ 2 ϵrs ∂z P
r(z) z̄

2s+1
2 − u (2 ηab J

a(z) z̄1+b ηkl (1 + l) l Y k(z) z̄l−1

+ ηab (1 + b) ∂zY
a(z) z̄b + ∂2z Y (z)

)]
+ · · · . (3.102)

Under these residual diffeomorphisms, the variation of the fields (3.74) are

δJa(z) = Ja(z) ∂ Y (z) + Y (z) ∂ Ja(z) + fabc J
b(z)Y c(z)− ∂ Y a(z),

δκ(z) = Y (z) ∂ κ(z) + 2κ(z) ∂Y (z) + ∂3 Y (z),

δCr(z) = Y (z) ∂ Cr(z)− 1

2
∂Y (z) Cr(z) + ga

r
s

1

2
Y a(z) Cs(z) + P r(z). (3.103)

The values of the non-zero components of the structure constants fabc = −facb are
f−1
−1 0 = −1 , f 0

1 ,−1 =
1
2
, f 1

1 ,0 = 1.

One expects that these δξ{κ(z), Ja(z), Cs(z)} are given by the Poisson brackets of

putative charges Q[ξ] corresponding to the vector field ξ with the fields. Assuming

this interpretation to be true, one can comment on the nature of these fields by

looking at their transformations (3.103). The triplet Ja(z) transforms as a primary

of weight h = 1 under the left Virasaro transformation generator Q[Y (z)]. The

field κ(z) transforms like a quasi primary of weight h = 2 with an inhomogeneous

term similar to the chiral stress tensor of a 2d CFT. The Cs(z) are related to super-
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translation current and transform like the primary of weight h = −1
2
.7 The fields

κ(z), Ja(z), Cs(z) also transform as Kac-Moody primaries with j = 0, 1, 1
2
respec-

tively under the sl(2,R) current algebra with Cs(z) forming a doublet under the

current algebra which is also evident from looking at the commutation relation

[Ja,n,Ps,r] =
1

2
(a− 2 s)Pa+s,n+r

in (3.97).

3.3.4 Comments on the charges

The locally flat solutions that we have obtained parameterise the space of gravita-

tional vacua. The fields {κ(z), J i(z), Cr(z)} can be thought of as ‘Goldstone’ modes

associated with spontaneous symmetry breaking of chiral bms4 symmetry. To con-

struct complete phase space we are required to construct soft charges that generate

symmetry transformation (3.103) on these fields. From what we have seen the fields

in the solutions behave like (quasi-) primaries under the chiral Virasoro generators

as well as the current algebra ones and thus one expects the charges, if they exist, to

be given more appropriately as line integrals as it is the norm for a chiral conformal

field theory. It is not clear how to obtain such line integral charges from the 4d

bulk perspective where the usual route of defining charges through covariant phase

space formalism [120, 135, 136] or the cohomological formalism [118, 137, 138] lead

to co-dimension two surface charges that are defined as integrals over the celestial

sphere S2.

In [129] charges for gravitational vacua exhibiting supertranslation and Diff(S2)

symmetry were constructed. It was shown that these co-dimension two charges

corresponding to supertranslations vanish but charges for superrotations which are

proportional to terms quadratic in g
(1,0)
ab and their derivatives are in general non-

vanishing and conserved. These charges are evaluated to zero for our chiral solutions

in (3.72, 3.73). Therefore one needs to find an alternative prescription to calculate

charges that are line integrals and provide a representation of chiral bms4 algebra

and generate correct symmetry transformation on solution space.

One such potential partial resolution to get the charges as line integrals is to switch to

the first-order formalism of gravity where these locally flat solutions can be written

7The field Cr(z) in (3.98) will transform like h = 3
2 conformal primary but continue to be a

doublet of current algebra. Refer to (B.18) for its transformation.
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as connections Aµ that take value in iso(1, 3) algebra. Please refer to (B) for details

of this calculation. Here we provide the inferences drawn from that calculation.

The condition of vanishing curvature for this connection (Fµν = 0) is equivalent

to the local flatness condition that we imposed on our configuration space. Using

gauge transformation, one can gauge away the r dependence and get an effective 3d

flat connection. The sector within this 3d gauge connection parameterised by fields

{κ(z), J i(z)} is independent of field Cr(z) and finds a natural interpretation in terms

of 3d flat sl(2,C) Chern-Simons connection. The residual gauge transformations that

preserve the form of this connection are a subset of the asymptotic symmetries found

in the previous section (the sl(2,R) current algebra and the Witt algebra).8

The charges generating residual gauge transformations in a Chern-Simons theory

are line integral given by,

��δQ =
k

2πi

∫
dxµTr(Λ δAµ), (3.104)

where k is the level and Λ is the gauge parameter with δA = dΛ + [Λ, A]. Using

the formula (3.104) the charges generating sl(2,R) current algebra and Virasaro

symmetry are given by

Q =
k

2πi

∮
dz [ηab Y

a(z) J b(z) + Y (z)κ(z)]. (3.105)

One can construct a consistent phase space with these currents (Ja(z), κ(z)) them-

selves and after deriving the OPEs between them one can show that the charges

(3.105) generate the correct variation of δJa(z) and κ(z) in (3.103) for some fixed

value of k.

The part of gauge connection that has the information about the mode Cr(z) associ-
ated with supertranslation is gauged by the momentum generators (Pr,s) of Poincare

algebra and if one attempts to calculate charges associated with supertranslation us-

ing (3.104) one has to consider full iso(1, 3) gauge connection as δAµ gets non-trivial

contribution from the commutators of sl(2,C) generators with Pr,s.9 Since Poincare

algebra does not have a non-degenerate bi-linear invariant, therefore computation of

charges for currents associated with supertranslations is not possible using the for-

mula for charge in (3.104) and therefore one has to revisit some notions of covariant

8A similar computation was done in [139] where the Goldstone mode associated with Virasaro
transformation and Diff(S2) superrotation is described by two-dimensional Alekseev-Shatashvili
theory obtained after Hamiltonian reduction of 3d Chern-Simons theory that parameterised the
gravitational vacua associated with these symmetry transformations.

9The Poincare algebra in this basis is given in (B.2).
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phase space analysis for our solutions that can provide the full set of line integral

charge such that it reproduces the variations (3.103). This we leave to future works.

3.4 Locally flat solutions in Conformal gauge

In addition to the Polyakov gauge, one can parameterise the boundary metric (3.17)

in a conformal gauge. This gauge corresponds to setting f = f̄ = 0, such that

g
(0)
zz̄ = Ω(z,z̄)

2
. This was the choice of the boundary metric that authors considered

in [111]. The variation of this conformal factor allows for Weyl rescaling of the

boundary metric g
(0)
ab . The free data g

(0)
ab and g

(1)
ab in this gauge is given by,

g(0)zz = g
(0)
z̄z̄ = 0, g

(0)
zz̄ =

1

2
Ω(z, z̄), g

(1)
zz̄ = 0,

g(1,1)zz = κ(z) +
∂2zΩ(z, z̄)

Ω(z, z̄)
− 3 (∂zΩ(z, z̄))

2

2 (Ω(z, z̄))2
,

g
(1,1)
z̄z̄ = κ̄(z̄) +

∂2z̄Ω(z, z̄)

Ω(z, z̄)
− 3 (∂z̄Ω(z, z̄))

2

2 (Ω(z, z̄))2

g(1,0)zz = −2

(
∂2zC(z, z̄)−

∂zC(z, z̄) ∂zζ(z, z̄)

ζ(z, z̄)

)
− g(1,1)zz C(z, z̄),

g
(1,0)
z̄z̄ = −2

(
∂2z̄C(z, z̄)−

∂z̄C(z, z̄) ∂z̄ζ(z, z̄)

ζ(z, z̄)

)
− g

(1,1)
z̄z̄ C(z, z̄)

(3.106)

where C(z, z̄) and Ω(z, z̄) are arbitrary functions. To obtain the above solution from

the general solution of g
(1)
ab , we redefined the field υ(z, z̄) in (3.86) as follows,

υ(z, z̄) =
C(z, z̄)

ρ
√
Ω(z, z̄)

(3.107)

where ρ =
(
∂ζ∂̄ζ̄

)−1/2
. Because in conformal gauge f = f̄ = 0, one has ζ(z, z̄) =

ζ(z) and ζ̄(z, z̄) = ζ̄(z̄) and therefore we define

κ(z) = {ζ(z), z} , κ̄(z̄) = {ζ̄(z̄), z̄}. (3.108)

{ζ(z), z} and {ζ̄(z̄), z̄} are the Schwarzian derivatives defined in (3.19). Thus an

element of this space of solutions is specified by the functions

(κ(z), κ̄(z̄), C(z, z̄), Ω(z, z̄)). (3.109)
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The Ω(z, z̄) dependent terms in g
(1,1)
zz and g

(1,1)
z̄z̄ are simply the Schwarzian derivatives

of Ω(z, z̄) and they vanish by themselves if and only if Ω(z, z̄) = α2

(β+zz̄)2
. The cases

of the boundary metric being R2 corresponds to α = β → ∞ (that is, Ω(z, z̄) = 1)

whereas the case of round unit S2 corresponds to α = 2 and β = 1, and α = 2

and β = −1 corresponds to the case of H2. The space of solutions (3.106) gets

constrained further by the imposition of a variational principle, which we turn to

next.

3.4.1 Imposing variational principle

In this case we have δg
(0)
ab = g

(0)
ab Ω−1 δΩ. To satisfy the variational problem, we

first look at (3.66), where in the first term we require that
∫
M2
d2z
√
g(0)R0 is fixed.

This condition was already used to impose variational principle in previous sections.

Using the tracelessness condition of g
(1)
ab w.r.t g

(0)
ab the left-over terms at O(r) in

(3.66) read:10

δg
(1)
zz̄ = 0, g(1,1)zz = g

(1,1)
z̄z̄ = 0 (3.110)

Demanding g
(1,1)
zz = g

(1,1)
z̄z̄ = 0 requires

−κ(z) = ∂2zΩ(z, z̄)

Ω(z, z̄)
− 3 (∂zΩ(z, z̄))

2

2 (Ω(z, z̄))2
, − κ̄(z̄) =

∂2z̄Ω(z, z̄)

Ω(z, z̄)
− 3 (∂z̄Ω(z, z̄))

2

2 (Ω(z, z̄))2
.

(3.111)

However, for general Ω(z, z̄) these equations cannot be imposed as the right-hand

side of κ(z) (κ̄(z̄)) is not necessarily holomorphic (anti-holomorphic), and satisfying

these conditions imposes further conditions on Ω(z, z̄). To obtain what these condi-

tions on Ω(z, z̄) are, we start by noticing that the scalar curvature of the boundary

metric ds2Σ2
= Ω(z, z̄) dz dz̄ is

R0 =
4

Ω(z, z̄)3
[∂zΩ(z, z̄) ∂z̄Ω(z, z̄)− Ω(z, z̄) ∂z∂z̄Ω(z, z̄)] . (3.112)

10This choice is a “non-chiral” way of solving the variational problem. There may be other
“chiral” ways to do so that we do not consider.

66



Let us note the following identities:

∂z̄

[
∂2zΩ(z, z̄)

Ω(z, z̄)
− 3 (∂zΩ(z, z̄))

2

2 (Ω(z, z̄))2

]
+

1

4
Ω(z, z̄) ∂zR0 = 0,

∂z

[
∂2z̄Ω(z, z̄)

Ω(z, z̄)
− 3 (∂z̄Ω(z, z̄))

2

2 (Ω(z, z̄))2

]
+

1

4
Ω(z, z̄) ∂z̄R0 = 0 . (3.113)

Thus to satisfy (3.111) we require that R0 in (3.112) is a constant. We need to

consider the cases of R0 = 0 and R0 ̸= 0 separately.

• The case of R0 = 0 means

∂zΩ(z, z̄) ∂z̄Ω(z, z̄) = Ω(z, z̄) ∂z∂z̄Ω(z, z̄). (3.114)

Writing Ω(z, z̄) = eϕ(z,z̄) this equation is equivalent to ∂z∂z̄ϕ(z, z̄) = 0 which

is immediately solved by taking ϕ(z, z̄) = φ(z) + φ(z̄). Thus we write

Ω(z, z̄) = f ′(z)f̄ ′(z̄). (3.115)

• The case of R0 = r0 for non-zero constant r0: Again writing Ω(z, z̄) = eϕ(z,z̄)

this reads:

∂z∂z̄ϕ(z, z̄) +
r0
4
eϕ(z,z̄) = 0. (3.116)

This is the well-known Liouville equation on the complex plane. And a general

solution is

Ω(z, z̄) =
4α2f ′(z) f̄ ′(z̄)

(β + f(z) f̄(z̄))2
(3.117)

for which the curvature is r0 = 2β/α2. Whenever r0 > 0 we set α = β = 1 (which

means we take r0 = 2) and for r0 < 0 we set α = −β = 1 (which corresponds to

r0 = −2).

Let us also note that as a consequence of the consistent variational problem, we

have δR0 = 0. This still leaves two terms proportional to gab(0)∂ug
(2)
ab and Dag

(2)
au in

(3.67). Since we impose g
(1,1)
ab = 0 we immediately have ∂ug

(2)
ab = 0 and we just have

to impose

Dag(2)au = DaDbg
(1,0)
ab = 0. (3.118)
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This condition restricts the choice of C(z, z̄) in (3.11).

• For Ω = f ′(z)f̄ ′(z̄), this equation can be solved in generality by writing:

κ(z) =
3f ′′(z)

2 f ′(z)2
− f ′′′(z)

f ′(z)
, κ̄(z̄) =

3f̄ ′′(z̄)

2 f̄ ′(z̄)2
− f̄ ′′′(z̄)

f̄ ′(z̄)
,

C(z, z̄) = f0(z) + f̄0(z̄) + f(z) f̄1(z̄) + f̄(z̄) f1(z). (3.119)

• For Ω = (4f ′(z)f̄ ′(z̄))/(1 + f(z)f̄(z̄))2 we find:

κ(z) =
3f ′′(z)

2 f ′(z)2
− f ′′′(z)

f ′(z)
, κ̄(z̄) =

3f̄ ′′(z̄)

2 f̄ ′(z̄)2
− f̄ ′′′(z̄)

f̄ ′(z̄)
,

C(z, z̄) = f0(z) + f̄0(z̄) +
f(z) f̄1(z̄) + f̄(z̄) f1(z)

1 + f(z)f̄(z̄)
, (3.120)

for arbitrary functions (f0(z), f1(z), f̄0(z̄), f̄1(z̄)). Thus in the conformal gauge,

the locally flat solutions that satisfy the variational problem are specified by

three holomorphic functions (f(z), f0(z), f1(z)) and three anti-holomorphic functions

f̄(z̄), f̄0(z̄), f̄1(z̄)). We now turn to obtain the set of residual gauge transformations

for this space of solution.

3.4.2 Residual gauge transformations

From (A.3), we write down,

ξu(u, z, z̄) = ξu(0)(z, z̄) + u ξu(1)(z, z̄), ξa(0) = ξa(0)(z, z̄),

ξr(0) = −ξu(1), ξa(1) = −gab(0)Dbξ
u, ξa(2) =

1

2
gab(0)g

(1)
bc g

cd
(0)Ddξ

u,

ξr(1) =
1

2
gabDaDbξ

u. (3.121)

Now imposing δg
(0)
zz = δg

(0)
z̄z̄ = 0 one obtains,

ξa(0) = {V z(z), V z̄(z̄)}. (3.122)
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If we allow for Weyl rescaling of the boundary metric we have,

δg
(0)
ab = ω g

(0)
ab , =⇒ δΩ(z, z̄) = ω(z, z̄) Ω(z, z̄). (3.123)

The O(r2) terms in δgzz̄ gives,

ξu(1) =
1

2
DaV

a − 1

2
ω(z, z̄) (3.124)

where the covariant derivation Da is associated with the boundary metric in con-

formal gauge ds2Σ2
= Ω(z, z̄) dz dz̄. The resultant vector fields are parameterised by

the following functions

{V z(z), V z̄(z̄), ω(z, z̄), ξu(0)(z, z̄)}. (3.125)

These vector fields constitute the vector fields of extended bms4 algebra along with

abelian Weyl scaling ω in [111].11 So far we haven’t imposed any conditions coming

from the variational problem on our vector field. As we will see imposing these

conditions will kill some of the extended bms4 symmetries. We make a choice here

to work with Ω = f ′(z)f̄ ′(z̄) and for the other choice of Ω in (3.120), the calculation

is straightforward and for both choices of Ω the transformation of the fields are

identical just like in Polyakov gauge.

Now the first condition that we impose is that the vector field should obey δg
(1,1)
ab = 0.

From (3.81), this give us the following constraint equation on ω(z, z̄),

Lab := g
(0)
ab g

cd
(0)DcDd ξ

u
(1) − 2DaDb ξ

u
(1) = 0 (3.126)

where ξu(1) is given in terms of ω as in (3.124). The zz and z̄z̄ component of Lab can

be solved simultaneously for the following solution of ω,

ω(z, z̄) =
V z(z) f

′′
(z)

f ′(z)
+ ∂zV

z(z) +
V z̄(z̄) f̄

′′
(z̄)

f̄ ′(z̄)
+ ∂z̄V

z̄(z̄)

+ a1 + a2 f(z) + a3 f̄(z̄) + a4 f(z) f̄(z̄) (3.127)

When one fixes the conformal factor Ω = 1, this amounts to setting f(z) = z , f̄(z̄) =

z̄ and therefore if we do not set the constant parameters {a1, a2, a3, a4} to zero,

we will get, from (3.123), non-zero variation for a fixed conformal factor which is

contradictory. Hence we set these constants to zero and therefore for Ω = f ′(z)f̄ ′(z̄),

11See also the derivation of this vector field from the Weyl BMS group in [48].
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we finally get,

ω(z, z̄) =
V z(z) f

′′
(z)

f ′(z)
+ ∂zV

z(z) +
V z̄(z̄) f̄

′′
(z̄)

f̄ ′(z̄)
+ ∂z̄V

z̄(z̄). (3.128)

From (3.128) and variation in (3.123) one can deduce the transformation of f(z)

and f̄(z̄), which are

δf(z) = V z ∂zf(z) , δf̄(z̄) = V z̄∂z̄ f̄(z̄). (3.129)

From the u-independent part of (3.81), we obtain the transformation of C(z, z̄) as

δC(z, z̄) = V z ∂zC(z, z̄) + V z̄∂z̄C(z, z̄) + ξu(0)(z, z̄). (3.130)

For the form of C(z, z̄) in (3.119), using (3.130) one can deduce ξu(0) that will lead

to the correct variation of C(z, z̄),

ξu(0) = h0(z) + h̄0(z̄) + f(z) h̄1(z̄) + f̄(z̄) h1(z). (3.131)

The resultant transformation of the fields in (3.119) are,

δf̄0(z̄) = V z̄(z̄) ∂z̄ f̄0(z̄) + h̄0(z̄) , δf̄1(z̄) = V z̄(z̄) ∂z̄ f̄1(z̄) + h̄1(z̄), (3.132)

δf0(z) = V z(z) ∂z f0(z) + h0(z) , δf1(z) = V z(z) ∂z f1(z) + h1(z̄). (3.133)

Therefore the complete set of variations of the background fields induced by the

residual diffeomorphisms are given in (3.129), (3.132) and (3.133). The final vector

field is written as follows,

ξ =
(
h0(z) + h̄0(z̄) + f(z) h̄1(z̄) + f̄(z̄) h1(z)

)
∂u + V z(z) ∂z + V z̄(z̄)∂z̄

+
1

r

(
2 ∂z̄h̄1(z̄)

f̄ ′(z̄)
+

2 ∂zh1(z)

f ′(z)

)
∂r + · · · . (3.134)

The · · · in (3.134) denote subleading terms in O(1/r). It is interesting to note

that because of the imposition of variational problem, the O(r) component in the

vector field along the radial direction r and the linear in u component of ξu has

vanished. Just like the solution space in conformal gauge, the vector fields are also

parameterised by 3 holomorphic and 3 anti-holomorphic functions. As the boundary

vector fields in (3.134) have background dependence f(z), f̄(z̄), one uses the Courant

bracket defined in (2.14) to obtain the commutation relations between them. These
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vector fields close under this bracket and form a Lie algebra

[ξ1, ξ2] =
(
ĥ0(z) +

¯̂
h0(z̄) + f(z)

¯̂
h1(z̄) + f̄(z̄) ĥ1(z)

)
∂u + V̂ z(z) ∂z + V̂ z̄(z̄)∂z̄ + · · · ,

(3.135)

where ĥ0(z),
¯̂
h0(z̄),

¯̂
h1(z̄), ĥ1(z), V̂

z(z), V̂ z̄(z̄) are,

V̂ z(z) = V z
1 ∂zV

z
2 − V z

2 ∂zV
z
1 , V̂ z̄(z̄) = V z̄

1 ∂z̄V
z̄
2 − V z̄

2 ∂z̄V
z̄
1 , (3.136)

ĥ0(z) = V z
1 ∂z h

2
0 − V z

2 ∂z h
1
0 , ĥ1(z) = V z

1 ∂z h
2
1 − V z

2 ∂z h
1
1, (3.137)

¯̂
h0(z̄) = V z̄

1 ∂z̄ h̄
2
0 − V z̄

2 ∂z h̄
1
0 ,

¯̂
h1(z) = V z̄

1 ∂z h̄
2
1 − V z̄

2 ∂z h̄
1
1. (3.138)

Let us define the following doublets,

hγ = {h0(z), h1(z)} , γ ∈ {0, 1}

h̄γ = {h̄0(z̄), h̄1(z̄)} , γ ∈ {0, 1} (3.139)

• We denote the vector field with V z̄ = hγ = h̄γ = 0 and V z = −zn+1 as Ln and

V z = hγ = h̄γ = 0 and V z̄ = −z̄n+1 as L̄n for n ∈ Z then the commutator of

the vector fields are,

[Ln , Lm] = (n−m)Lm+n ,
[
L̄n , L̄m

]
= (n−m) L̄m+n (3.140)

These are two copies of Witt algebra.

• If we denote the vector field V z̄ = V z = h̄γ = 0 and hγ = −zn as hγ,n and

V z̄ = V z = hγ = 0 and h̄γ(z) = −z̄n as h̄γ,n for n ∈ Z then the commutator of

vector fields are,

[hγ,n, hβ,m] = 0 ,
[
h̄γ,n, h̄β,m

]
= 0 ,

[
h̄γ,n, hβ,m

]
= 0 , (3.141)

[Ln , hγ,m] = −m hγ,m+n ,
[
L̄n , h̄γ,m

]
= −m h̄γ,m+n (3.142)[

Ln , h̄γ,m
]
= 0 ,

[
L̄n , hγ,m

]
= 0 (3.143)

The asymptotic symmetry algebra for the locally flat solutions in conformal gauge

consistent with the variational principle is given by (3.140), (3.141), (3.142), (3.143).

This symmetry algebra factorises into a holomorphic and anti-holomorphic sector

with each sector having a copy of Witt algebra and two abelian current algebras.
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3.5 Further Comments and Discussions

Our variational problem is defined for 4d Einstein gravity with a specific set of

boundary terms we proposed in the text. We constructed boundary action which

is invariant under boundary-preserving diffeomorphisms in the NU gauge and is

adapted for the null infinity in the limit r → ∞. The boundary preserving diffeos

are not three-dimensional unlike the AdS4 case in the Fefferman-Graham gauge but

a smaller set of symmetries. It will be interesting to compare our boundary action

with those of [140] where the boundary action is constructed directly on the null

boundary of the spacetime. To ensure δS = 0 for the allowed classical solutions we

have chosen to impose additional boundary conditions on the configurations that

already solve the bulk equations of motion.12 We would like to emphasise that even

in the case of Dirichlet boundary conditions (in which the metric on Σ2 is held fixed)

there are additional conditions imposed by our variational principle and solving them

in a non-chiral fashion requires us to set g
(1,1)
zz = g

(1,1)
z̄z̄ = 0. Even though we did not

provide the details it can be seen easily that the residual large diffeomorphisms of

such Dirichlet class of solutions do not permit extension of the Lorentz algebra part

of the bms4 into two copies of Witt algebra. Thus our boundary conditions would

not allow the extended bms4 as the asymptotic symmetry algebra in the Dirichlet

case. It will be important to explore the consequences of this fact further.

Starting from our solution space we can generate three more classes of geometries

by T : u ↔ −v and/or P : z ↔ −1/z̄ – which are time-reversal and spatial parity

transformations respectively in the asymptotic flat spacetime (with Σ2 = S2). We

suggest that one should think of these four classes of solutions as valid in four

different coordinate patches of the fully extended (locally flat) geometries. Then

these four patches are related to each other by the (P, T) transformations. One

can, in principle, patch together these solutions that are (C) PT invariant. Just as

there are four classes of solutions there are four corresponding chiral algebras. This

is similar to the two copies of bms4 symmetry algebras in the context of Dirichlet

boundary conditions – one at the past null infinity and the other at the future null

infinity. Just as an appropriate combination was found by Strominger (see [5] for a

review) picked by the CPT invariance of the scattering amplitudes we expect that

an appropriate combination of the four copies of our current algebras to emerge as

the correct symmetry of the relevant scattering amplitudes.

12It is known that a consistent variational problem at null-infinities would not allow solutions rep-
resenting gravitational radiation at infinity. Our boundary conditions, however, are weak enough
to at least allow for a Schwarzchild black hole in the solution space.
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The locally flat (LF) solutions (3.72) and (3.73) that we worked with after imposing

chiral boundary conditions are complex in the R1,3 gravity (they are real however in

the R2,2 gravity as (z, z̄) will be light-cone coordinates (x+, x−)).13 As a consequence

the vector fields generating the asymptotic symmetries of this class of geometries

are also complex. Since for LF solutions, the Riemann tensor vanishes, in principle

these solutions can all be obtained (in open patches) by the finite complex coor-

dinate transformation of metric ηµν of the Minkowski spacetime R1,3. Expanding

the LF solutions around ηµν to the first order in the six holomorphic functions the

perturbation hµν can be written as pure diffeomorphisms with the same complex

vector fields that generate our asymptotic symmetries. In [59] it was shown that

the conformal basis for graviton wave-functions h∆,±µν;a of definite helicity (where ±
superscript denotes whether the graviton is incoming/out-going and the subscript a

denotes its helicity) in the soft limits ∆ → 1, ∆ → 0 become pure diffeomorphisms:

h∆,±µν;a = ∇µζ
∆,±
ν;a + ∇νζ

∆,±
µ;a .14 Near null infinity these vector fields ζ∆µ;± in the soft

limit become generators of supertranslation symmetry and Diff(S2) symmetry and

for positive helicity soft graviton take the form of (3.85), (3.87) respectively. The

conformal primary wave functions given in terms of these vector fields are then in-

terpreted as Goldstone modes of spontaneously broken asymptotic symmetries of

gravity theory.15 Similarly one can interpret our complex solutions as the ‘conden-

sates’ of soft gravitons of positive (negative) helicity if the solutions are characterised

by six holomorphic (anti-holomorphic) functions.

In this chapter, we used the definition of variational principle in the conventional

sense that implies stationarity of the action SEH+bdry. on the solutions. As argued in

[97], one modifies the definition of a well-defined variational principle in the presence

of radiation to allow for some presymplectic flux through the boundary. However, we

believe that even if we consider radiative solutions, then in the asymptotic regions

unaffected by the radiation (for instance, if a pulse of radiation reaches the boundary

during some finite interval in u, then sufficiently far away from this interval), the

solutions should approach one of the vacuum solutions. And these vacuum solutions,

we posit, have to be one of the classes of locally flat solutions for which the total

action is stationary. It will be interesting to see whether our symmetry analysis

still holds in the case of presymplectic flux, through the boundary, instead of the

13Gravity scattering amplitudes in such signature were explored recently by [141].
14Even though the analysis in [59] was done in harmonic gauge, the boundary vector fields that

generate generalised BMS transformations at leading order are the same as that of Bondi gauge
and hence NU gauge.

15Our solution spaces contain one additional holomorphic function κ(z) associated with the
vector field in (3.89) which is possibly the Goldstone mode of addition positive soft helicity mode
(related to the shadow transform of negative helicity graviton) with ∆̃ = 2 in section 5.3.1 of [59]
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stationarity condition of the action.

A bigger symmetry algebra (w1+∞) than the one we uncovered in this chapter is

observed from the conformal soft limits of graviton operators in the celestial CFT

[63, 66] recently. It will be interesting to explore whether our boundary conditions

can be generalised to incorporate these extended symmetries or not.16 Following

the analysis of [142, 143], one expects that the vector fields generating w1+∞ are

superleading in r as one approaches the boundary of spacetime. However, it can be

checked from eq. (A.2) that such behaviour for vector fields in the NU gauge does

not exist. Therefore, to extend the analysis of algebra in our present work to w1+∞

algebra, one may have to work in a different gauge. In [59], the authors derived the

vector fields that generate arbitrary diffeomorphisms of the celestial sphere in har-

monic gauge. One can do a similar analysis as theirs by demanding less restrictive

boundary conditions that allow for metric perturbation around Minkowski space-

time to fall off as O(rn) for n ≥ 2 and obtain vector fields that are superleading in r

near null infinity. It is plausible that imposing a variational problem for such config-

uration might further restrict the solution space, the residual gauge transformations

of which could map to w1+∞. However, the interpretation of solutions with such

superleading behaviour in r near the null infinity from the spacetime perspective is

unclear as they do not obey the standard asymptotically flat boundary conditions.

We considered the metric on Σ2 in the Polyakov gauge. The other natural choice

is the conformal gauge in which we have found a class of locally flat solutions. The

asymptotic symmetry algebra completely factorises into a holomorphic and anti-

holomorphic sector. It is different from extended bms4, as the supertranslation cur-

rent reduces to two holomorphic and two anti-holomorphic currents with conformal

weight h = 0 and h̄ = 0 under the left and right Virasaro transformations respec-

tively. The charges corresponding to this symmetry algebra and the significance of

such an algebra in the context of soft theorems are still under investigation.

The chiral gravity boundary conditions of [10] that gave rise to Polyakov’s chiral

sl(2,R) current algebra from the AdS3 gravity was generalised to the supersymmetric

context in [144]. It should be possible to generalise the boundary conditions used in

this chapter to 4d gravitational theories with supersymmetry to find supersymmetric

extensions of the chiral bms4 algebra found here. Very recently such supersymmetric

extensions have been observed in the celestial amplitudes [145].

We have obtained our chiral algebra from the future null infinity. The generalised

16See [67] for the derivation of charges using vacuum Einstein equations that form the canonical
representation of these w1+∞ algebra.
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bms4 has been shown to emerge from the asymptotic symmetry analysis around the

time-like infinity as well [146]. It will be interesting to analyse our problem from

the point of view of the time-like infinity.
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Chapter 4

Constructing Carrollian CFTs

In this chapter, we turn our attention to another proposed dual theory to asymp-

totically flat spacetimes in R1,3 gravity, which is a 3d conformal field theory defined

on null infinity, a quintessential example of Carrollian manifold. In particular, we

will consider the construction of such theories for scalar fields on a general Carroll

manifold. The Poincare algebra admits two interesting limiting algebras obtained

by Inonu-Wigner contraction where one takes the speed of light c ∈ [0,∞) to either

zero or infinity. When c → ∞ one obtains the well-known Galilean algebra, and

when c → 0 one ends up with the so-called Carrollian algebra [74, 73]. The former

case has played a very important role as it is relevant for a host of physical systems

in which typical velocities involved are very small compared to the speed of light,

such as Newtonian mechanics, many condensed matter systems etc. The Carroll

limit is relevant if the velocities involved are all very close to c and it remained

unexplored for a long time until the last decade.

An important realisation of the Poincare algebra arises from the isometries of the

flat Minkowski spacetime with the standard line element:

ds2 = −c2 dt2 + dx · dx

which is an example of a pseudo-Riemannian manifold, with non-degenerate

Lorentzian metric gµν = ηµν . If one takes either of the limits c → ∞ (better

done on gµν) or c→ 0 (done on gµν) one obtains a manifold with a degenerate met-

ric tensor. The geometries that realise Galilean or Carrollian algebras are therefore

not Riemannian manifolds but belong to a more general class of geometrical objects

called Newton-Cartan manifolds (for c→ ∞ case) and Carroll manifolds (for c→ 0

case) respectively (see, for instance, [70, 147, 148]).
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Just as the conformal algebra can be represented by conformal Killing vectors (CKV)

of (conformally) flat spacetimes, such as R× Sd with line element

ds2 = −c2 dt2 + dΩ2
d

or R1,d, the Galilean and Carrollian conformal algebras can be thought of as appro-

priately defined conformal algebras of (conformally) flat Galilei and Carroll space-

times. The conformal algebra of (any spacetime conformal to) Minkowski spacetime

Md+1 is finite-dimensional for d ≥ 2 and therefore obtaining the corresponding

Galilean or Carrollian conformal algebras via Inonu-Wigner contraction will nec-

essarily result in finite dimensional algebras for d ≥ 2. However, if one defines

these algebras directly as conformal algebras of the corresponding Galilei and Car-

roll spacetimes one may get bigger algebras than those obtained by the contraction

procedure [72]. There is a more general notion of conformal symmetry even in the

flat Carroll spacetime Cd+1, parameterised by z, the analogue of the dynamical expo-

nent of Galilean conformal transformations, which in turn is given by a non-negative

integer k by z = 2/k in [68, 69]. One obtains only the z = 1 (k = 2) case via the

contraction procedure.

Also as was shown in [69] the Carrollian conformal algebra cca
(z)
d+1 for d = 2 and

z = 1 is the bms4 algebra [3, 4], which is infinite dimensional. So if one wants

to describe some (d + 2)-dimensional gravitational theory with asymptotically flat

boundary conditions holographically then the holograms should be field theories on

I± with cca
(z=1)
d+1 as their global symmetries [11, 29]. This expectation has led to a

lot of work seeking field theories on null-manifolds which are Carrollian CFTs (see

for example [18, 17, 72]). The procedure followed there is typically to start with a

CFT on Md+1 and take an ultra-relativistic limit. This has been a fruitful exercise

and has resulted in quite a lot of interesting examples with cca
(z=1)
d+1 symmetries.

However, it is plausible that constructing field theories directly on a Carroll mani-

fold Cd+1 gives rise to a more general class of theories than those obtained by taking

an ultra-relativistic limit of known CFTs on the parent pseudo-Riemannian mani-

fold Md+1 [19]. Such a construction was known in the context of Carollian Fluid

dynamics [75, 76]. The main aim of this chapter is to demonstrate that this expec-

tation is indeed realised. We will construct classical scalar field theories on generic

3-dimensional Carroll manifolds that are invariant under both diffeomorphisms and

Weyl transformations of the Carroll manifold. These theories can be put on any

given Carroll manifold – of which the interesting examples include null boundaries

of asymptotically flat spacetimes, horizons of black holes, boundaries of causal de-
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velopments, etc [71, 149]. Then the residual symmetries should, by construction,

make the resultant theory have cca
(z)
3 as the symmetry algebra for generic values of

z. We will mainly concentrate on d = 2 for the most part (relegating the higher

dimensional case to Appendix C). We obtain a larger class of theories for scalar fields

going beyond what one obtains by the method of taking ultra-relativistic limit.

The results of this chapter include,

• In Section (4.1), we briefly review how one constructs a diffeomorphic and

Weyl invariant theory of a scalar field in the background of a generic (pseudo)

Riemann manifold.

• In Section (4.2) we repeat the steps of Section (4.1) to the case of scalar fields

Φ(t,x) in the background of a Carroll manifold. Specifically, we construct

two classes of diffeomorphic and Weyl covariant equations of motion, one with

two-time derivatives of the field (time-like), and the other with (up to) two

space derivatives (space-like). These exist for general values of z and conformal

dimension δ of Φ(t,x). We show that the invariant actions exist only when

δ = z
2
for space-like action and δ = 1− z

2
for time-like action with both types

of actions combining for z = 1.

• In Section (4.3) we show how a subset of results of Section (4.2) can be re-

covered starting from when one expands the equation of motion and action of

a conformally coupled scalar field in pseudo-Riemannian geometry as a poly-

nomial in c, the speed of light, using the Randers-Pappetrou parametrization

of 3d metric [19]. We show that the coefficient of order O
(

1
c2

)
corresponds

to the time-like equation/action and the coefficient O (1) corresponds to the

space-like equation/action mentioned in the second point for z = 1 and δ = 1
2

case with appropriate identification of parameters.

• In Section (4.4) we gauge fix our theories to recover and generalise the classical

scalar field theories with cca
(z)
3 algebra worth of symmetries. We also show

that alternative ways of gauge fixing lead to field theories with two distinct

symmetry algebras isomorphic to R⊕A and generalised bms4 algebra for z = 1,

where A is the algebra of volume-preserving diffeomorphisms on the sphere.

We conclude with some comments and discussions in Section (4.5). The Appendix

C contains some details of the case of arbitrary dimensions. This chapter is based

on the [150].
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4.1 Conformally coupled scalar field - revisited

In this section, we (re) construct the well-known conformally coupled scalar field

equation of motion and its action in detail. This will provide us with the method

we follow in the later sections. The result we want to re-derive is the diffeomorphic

and Weyl invariant classical (free) scalar field theory in d = 2 + 1 dimensions in a

general background with metric gµν . This has the action:

S =

∫
d2+1x

[
−1

2

√
−g

(
gµν∂µϕ ∂νϕ+

1

8
Rϕ2

)]
(4.1)

and the equation of motion

gµν∇µ∇νϕ− 1

8
Rϕ = 0 . (4.2)

This action (4.1) is invariant and the equation of motion (4.2) is covariant under

the Weyl transformations:

g′µν(x) =
1

B2
gµν(x), ϕ′(x) = B

1
2ϕ(x) (4.3)

where B is an arbitrary function of the coordinates, and diffeomorphisms:

g′µν(x
′) =

dxα

dx′µ
dxβ

dx′ν
gαβ(x), ϕ′(x′) = ϕ(x) (4.4)

where x → x′µ(x) is a coordinate transformation. Let us rederive this result (see

Wald [151] for instance). For this one starts with scalar (under diffeomorphisms in

(4.4)) combinations that are linear in Φ and have (at most) two derivatives, namely,

RΦ and ∇µ∇µΦ. Their transformation properties under the Weyl transformations

gµν → B−2 gµν and Φ → Bδ Φ, are

RΦ −→ Bδ
[
B2R + 4B gµν∇µ∇νB − 6 gµν∇µB∇νB

]
Φ ,

gµν∇µ∇νΦ −→ Bδ
[
B2 gµν∇µ∇νΦ + δΦB gµν∇µ∇νB + δ (δ − 2)Φ gµν∇µB∇νB

+ (2δ − 1)B gµν∇µB∇νΦ
]

(4.5)

where δ is the Weyl weight of the scalar Φ. For a linear combination of RΦ and

□Φ to be covariant all the inhomogeneous terms in the Weyl transformation of that

combination should cancel out. But in no linear combination the term containing

B gµν∇µB∇νΦ on the right hand side of □Φ in (4.5) gets canceled. So its coefficient
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(2δ−1) has to vanish identically, giving us δ = 1
2
. Then the only linear combination

that transforms homogeneously is

gµν∇µ∇νΦ− 1

8
RΦ → B

5
2

[
gµν∇µ∇νΦ− 1

8
RΦ

]
(4.6)

showing that the equation (4.2) is the only covariant one. For the construction of

an action one notes:

gµν∇µΦ∇νΦ −→ B

[
B2 gµν∇µΦ∇νΦ +

1

4
Φ2 gµν∇µB∇νB + ΦB gµν∇µΦ∇νB

]
(4.7)

which can be used along with the first line of (4.5) to show that

√
g

[
gµν∇µΦ∇νΦ +

1

8
RΦ2

]
−→√

g

[
gµν∇µΦ∇νΦ +

1

8
RΦ2

]
+ ∂µ

[
Φ2

2B

√
g gµν∂νB

]
. (4.8)

So the action (4.1) is also invariant under (4.3, 4.4) and results in the equation of

motion (4.2). In the next section, we use the same procedure to construct analogous

equations of motion and actions for scalar fields on 3-dimensional Carroll manifolds.

4.2 Scalar field theories on Carroll Spacetimes

Let us first review some essential aspects of Carrollian geometries. We will follow

the notations and conventions of [27], [76] here. A Carroll spacetime is a fibre bundle

Cd+1 with a d-dimensional base S and one-dimensional fibre. We work with local

coordinates x on the base and t on the fibre. Then the Carroll spacetime is specified

by a non-degenerate d-dimensional metric aij(t,x) on the base S, the Ehresmann

connection 1-form bi(t,x) and a scalar ω(t,x).1 Then one defines the Carroll dif-

feomorphisms as those that keep this structure invariant. In our coordinates, they

take the form:

t→ t′(t,x), x → x′(x). (4.9)

1There is another formulation of Carroll geometry in terms of 3d degenerate metric hµν and a
vector field ζµ defined everywhere [68, 70, 69]. Refer to the works [84, 82, 152, 85] which use this
definition to construct Carrollian conformal field theories. Also, see the work [78] for a detailed
comparison between the two formulations.
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The Jacobian of these Carroll diffeomorphisms (t, xi) → (t′(t,x), x′i(x)) is the matrix(
J(t,x) Ji(t,x)

0 J j i

)
(4.10)

where J = ∂t′

∂t
, Ji =

∂t′

∂xi
, and J j i =

∂x′j

∂xi
, with its inverse(

J−1 − J−1Jk(J
−1)ki

0 (J−1)
j
i

)
(4.11)

where (J−1)ij is the inverse of the matrix J ij. Under these transformations the

geometrical data (aij, bi, ω) of the Carroll spacetime transforms as:

a′ij(t
′,x′) = akl(t,x) (J

−1)
k

i(J
−1)

l

j, ω′(t′,x′) = J−1 ω(t,x)

b′k(t
′,x′) =

(
bi(t,x) + J−1 Ji ω(t,x)

)
(J−1)ik (4.12)

along with ∂′t = J−1∂t, ∂
′
j = (J−1)ij(∂i − J−1 Ji ∂t). Now one can list the objects

that are covariant under the Carroll diffeomorphisms. At the first derivative order,

one has

ϕi =
1

ω
(∂iω + ∂tbi), γ̂ij =

1

2ω
aik∂tajk, θ =

1

ω
∂t ln

√
a = γ̂ii , fij = 2 (∂[ibj] + b[i ϕj]) .

(4.13)

Because these are covariant one can raise and lower the indices using aij and its

inverse aij. One also has the following differential operators

∂̂t =
1

ω
∂t, ∂̂i = ∂i +

bi
ω
∂t (4.14)

that are covariant. Then the Carroll-Christoffel connection

γ̂ijk =
1

2
ail(∂̂jalk + ∂̂kajl − ∂̂lajk) (4.15)

allows one to write down further sets of covariant objects. This connection trans-

forms under Carroll diffeomorphisms in the same manner as the usual Christoffel

connection in Riemannian geometry. We will define the Carroll tensors to transform
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as:

Φ′(t′,x′) = Φ(t, x), V ′i(t′,x′) = J ij V
j(t, x), V ′

i (t
′,x′) = Vj(t, x) (J

−1)j i, etc.

(4.16)

Under the Carroll connection (4.15) aij and a
ij are covariantly constant. Another

fact is that if one defines ∇̂taij := ∂̂taij − γ̂ki akj − γ̂kj aik and ∇̂ta
ij := ∂̂ta

ij + γ̂ika
kj +

γ̂jka
ik then the metric aij and its inverse are covariantly constants under ∇̂t as well.

At the second derivative order, one can list the following invariant objects:

θ2, ∂̂tθ =
1

ω
∂tθ, γ̂ij γ̂

j
i , r̂, aij∇̂iϕj, aijϕiϕj (4.17)

where r̂ is the Carroll Ricci scalar defined [76] as follows:

r̂ijkl = ∂̂kγ̂
i
lj − ∂̂lγ̂

i
kj + γ̂ikmγ̂

m
lj − γ̂ilmγ̂

m
kj, r̂ij = r̂kikj, r̂ = aij r̂ij . (4.18)

Next, we consider Carroll Weyl transformations. Following [27] we define this as

ãij(t,x) = (B(t,x))−2aij(t,x), ω̃(t,x) = (B(t,x))−zω(t,x),

b̃i(t,x) = (B(t,x))−zbi(t,x) (4.19)

where B(t,x) is an arbitrary function and z is a non-zero real number. We are now

ready to emulate the steps of Section (4.1) and construct equations of motion that

are covariant under the Carroll diffeomorphisms (4.9) and Weyl transformations

(4.19).
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4.2.1 Constructing equations of motion

For this, we first start by listing the transformation properties of our Carroll diffeo-

morphism invariants (4.17) under (4.19). One finds:

θ −→ Bz−1
[
B θ − 2 ∂̂tB

]
,

∂̂tθ −→ B2 z−2
[
B2 ∂̂tθ + z B θ ∂̂tB − 2 (z − 1) (∂̂tB)2 − 2B ∂̂t∂̂tB

]
,

γ̂ij γ̂
j
i −→ B2 z−2

[
B2 γ̂ij γ̂

j
i − 2B θ ∂̂tB + 2 (∂̂tB)2

]
,

r̂ −→ B2 r̂ + 2B aij∇̂i∂̂jB − 2aij ∂̂iB∂̂jB ,

aij∇̂iϕj −→ B2 aij∇̂iϕj − z B aij∇̂i∂̂jB + z aij ∂̂iB∂̂jB ,

aijϕiϕj −→ B2 aijϕiϕj − 2z B ϕi∂̂iB + z2 aij ∂̂iB∂̂jB . (4.20)

Three combinations that transform homogeneously are:

r̂ +
2

z
aij∇̂iϕj −→ B2

(
r̂ +

2

z
aij∇̂iϕj

)
,

γ̂ij γ̂
j
i −

1

2
θ2 −→ B2 z(γ̂ij γ̂

j
i −

1

2
θ2) ,

fijf
ij −→ B4−2 z fijf

ij . (4.21)

Now we are ready to include matter fields. Let us consider a real scalar field Φ(t,x)

for simplicity. We seek to construct equations of motion which are Carroll Weyl

invariant. For this we start by listing Carroll diffeomorphism invariants up to two

derivatives (on both sets of objects (aij, bi, ω) and Φ), and linear in Φ:

Φ, θΦ, θ2Φ, γ̂ij γ̂
j
i Φ, ∂̂tθΦ, r̂Φ, ∇̂iϕiΦ, ϕiϕiΦ, fijf

ijΦ

∂̂tΦ, θ ∂̂tΦ, ϕi ∂̂iΦ, ∂̂t∂̂tΦ, ∇̂i∂̂iΦ (4.22)

Defining that the scalar Φ transforms as Φ → BδΦ under Weyl transformations we

can find how the objects in (4.22) transform. We find:

∂̂tΦ −→ Bz+δ−1
[
B ∂̂tΦ + δΦ ∂̂tB

]
,

∂̂t∂̂tΦ −→ Bδ+2 z−2
[
B2 ∂̂t∂̂tΦ + (z + 2 δ)B ∂tB ∂tΦ + δ B Φ ∂̂t∂̂tB + δ (δ + z − 1)Φ (∂̂tB)2

]
,

ϕi ∂̂iΦ −→ Bδ
[
B2 ϕi ∂̂iΦ + δ B Φϕi ∂̂iB − δ zΦ ∂̂iB ∂̂iB − z B ∂̂iΦ ∂̂iB

]
,

∇̂i∂̂iΦ −→ Bδ
[
B2 ∇̂i∂̂iΦ + δ(δ − 1)Φ∂̂iB ∂̂iB + 2 δ B∂̂iB ∂̂iΦ + δ B ∇̂i∂̂iB

]
. (4.23)
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The simplest and only Weyl covariant object linear and homogeneous in Φ at the

first derivative order is :

∂̂tΦ +
δ

2
θΦ −→ Bz+δ(∂̂tΦ +

δ

2
θΦ) . (4.24)

This combination was already known in [76] in the context of z = 1. At the second

derivative order, we find two such covariant objects:

∂̂2tΦ +
1

2
(z + 2 δ) θ ∂̂tΦ +

δ

4

[
(z + δ) θ2 + 2 ∂̂tθ

]
Φ

−→ B2 z+δ

(
∂̂2tΦ +

1

2
(z + 2 δ) θ ∂̂tΦ +

δ

4

[
(z + δ) θ2 + 2 ∂̂tθ

]
Φ

)
(4.25)

∇̂i∂̂iΦ +
2 δ

z
ϕi ∂iΦ− δ

2

[
r̂ − 2 δ

z2
ϕi ϕi

]
Φ

−→ B2+δ

(
∇̂i∂̂iΦ +

2 δ

z
ϕi ∂̂iΦ− δ

2

[
r̂ − 2 δ

z2
ϕi ϕi

]
Φ

)
. (4.26)

We found two distinct possibilities for the covariant equations of motion: one with

weight 2z + δ, and the other with weight 2 + δ. We will refer to these as time-like

case and space-like case respectively.

These are not yet the full set of covariant combinations. At the linear order in Φ, one

is free to consider linear combination of (4.25) with
(
γ̂ij γ̂

j
i − 1

2
θ2
)
Φ and (4.26) with

(r̂ + 2
z
aij∇̂iϕj) Φ. At the level of interactions we may consider linear combinations

of appropriate powers of Φ multiplying {1, r̂+ 2
z
aij∇̂iϕj, fijf

ij} added to (4.25) and

{1, γ̂ij γ̂
j
i − 1

2
θ2, fijf

ij} added to (4.26).

In the interaction terms the powers of Φ have to be chosen so that the combinations

have the right Weyl weights and the potentials are preferably polynomials in Φ.

This latter requirement constrains the data (z, δ). For instance, whenever 2 z+δ
δ

(:= Nλ0 − 1) is a positive integer then one can consider Φ
2 z+δ

δ along with (4.25).

Similarly in the space-like case one can add Φ
2+δ
δ whenever 2+δ

δ
(:= Nλ1 − 1) is a

positive integer. Such terms are expected to contribute to the equations of motion

when there are monomial potential of the type ΦNλ0 (ΦNλ1 ) in the action for Φ.

There are two special values of z, namely, z = 1 and z = 2, that have to be

treated more carefully because in these cases we can consider more general covariant

combinations.

• z = 1: We can consider constant linear combinations of the two quantities

(4.25) and (4.26) – for in this case the Weyl weights of both of these quantities
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become equal to 2 + δ. Furthermore precisely in this case the Weyl weights of(
γ̂ij γ̂

j
i − 1

2
θ2
)
Φ,
(
r̂ + 2

z
aij∇̂iϕj

)
Φ and fijf

ij Φ, (which are all linear in Φ) also

become 2 + δ and so can be added.

• z = 2: We can consider linear combinations of the first order time-derivative

object (4.24) with the space-like derivative object in (4.26) as both their Weyl

weights become equal to 2 + δ.

We can summarise our results so far for various types of Carroll diffeomorphic and

Weyl invariant equations of motion for a scalar field Φ as follows:

• For z = 1 we can take the covariant equation to be:

κ0

[
∂̂2tΦ +

1

2
(1 + 2 δ) θ ∂̂tΦ +

δ

4

[
(1 + δ) θ2 + 2 ∂̂tθ

]
Φ

]
+ κ1

[
∇̂i∂̂iΦ + 2 δ ϕi ∂̂iΦ− δ

2

[
r̂ − 2 δ ϕiϕi

]
Φ

]
+

[
σ0

(
γ̂ij γ̂

j
i −

1

2
θ2
)
+ σ1

(
r̂ + 2 aij∇̂iϕj

)
+ σ2 fijf

ij

]
Φ + λΦ

2+δ
δ = 0.

(4.27)

This equation has five independent real parameters – since (κ0, κ1, σ0, σ1, σ2, λ)

are equivalent to α (κ0, κ1, σ0, σ1, σ2, λ) for any non-zero real α. We may as-

sume that (κ0, κ1) ̸= (0, 0) so that we have a differential equation. Note also

that there is no reason to fix δ at this stage beyond the assumption that 2+δ
δ

is (preferably an odd) positive integer, whenever λ ̸= 0.

• For z = 2 we can take the covariant equation to be:

κ3

[
∂̂tΦ +

δ

2
θΦ

]
+ τ3

[
∇̂i∂̂iΦ + δ ϕi ∂̂iΦ− δ

2

(
r̂ − δ

2
ϕiϕi

)
Φ

]
+ σ3

(
r̂ + aij∇̂iϕj

)
Φ + ω3

(
γ̂ij γ̂

j
i −

1

2
θ2
)

Φ1− 2
δ +

(
λ3 + µ3 fijf

ij
)
Φ

2+δ
δ = 0,

(4.28)

with Weyl weight 2 + δ and (at most) five independent parameters, and/or

∂̂2tΦ + (1 + δ) θ ∂̂tΦ +
δ

4

[
(2 + δ) θ2 + 2 ∂̂tθ

]
Φ + σ0

(
γ̂ij γ̂

j
i −

1

2
θ2
)
Φ

+ κ0

(
r̂ + aij∇̂iϕj

)
Φ1+ 2

δ + (λ0 + µ0 fijf
ij) Φ

4+δ
δ = 0,

(4.29)

85



with Weyl weight δ + 4 and (at most) four parameters.

• For general values of z we have the following two types of Carroll diffeomor-

phism and Weyl invariant equations of motion

1.

∂̂2tΦ +
1

2
(z + 2 δ) θ ∂̂tΦ +

δ

4

[
(z + δ) θ2 + 2 ∂̂tθ

]
Φ + σ0

(
γ̂ij γ̂

j
i −

1

2
θ2
)

Φ

+ µ0Φ
1+ 4

δ
(z−1)fijf

ij + κ0

(
r̂ +

2

z
aij∇̂iϕj

)
Φ1+ 2

δ
(z−1) + λ0Φ

2z+δ
δ = 0,

(4.30)

2.

∇̂i∂̂iΦ +
2 δ

z
ϕi ∂̂iΦ− δ

2

[
r̂ − 2 δ

z2
ϕiϕi

]
Φ + σ1

(
r̂ +

2

z
aij∇̂iϕj

)
Φ

+ µ1 fijf
ij Φ1+ 2

δ
(z−1) + κ1

(
γ̂ij γ̂

j
i −

1

2
θ2
)

Φ1+ 2
δ
(1−z) + λ1Φ

2+δ
δ = 0,

(4.31)

where we assume that the coefficient (µ0, κ0) and (µ1, κ1) are non-

vanishing only if the powers of Φ multiplying them are positive integers.

Let us make some comments on the nature of interaction terms in the equations

(4.30, 4.31). In the next section, we will attempt to construct actions that produce

these equations. We will assume that the interaction terms can be obtained from

an action with a potential that is a polynomial in Φ and bounded below. This

requires the potential to be a linear combination of positive integer powers of Φ

with appropriate coefficients and the highest power (the degree of the polynomial)

being an even number. Further, we will assume that the Weyl scaling δ of Φ is

positive.

• In the time-like case let us denote the potential terms in (4.30) by

µ0 fijf
ij ΦNµ0−1 + κ0

(
r̂ +

2

z
aij∇̂iϕj

)
ΦNκ0−1 + λ0Φ

Nλ0
−1 (4.32)

• Then we have Nλ0 −Nκ0 =
2
δ
, Nµ0 −Nκ0 =

2
δ
(z−1) and Nµ0 −Nλ0 =

2
δ
(z−2).

Therefore

1. for z < 1 we have Nµ0 < Nκ0 < Nλ0 ,
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2. for 1 < z < 2 we have Nκ0 < Nµ0 < Nλ0 , and

3. for z > 2 we have Nκ0 < Nλ0 < Nµ0 .

Similarly

• for the space-like case let us denote the interaction terms in (4.31) by

µ1 fijf
ij ΦNµ1−1 + κ1

(
γ̂ij γ̂

j
i −

1

2
θ2
)

ΦNκ1−1 + λ1Φ
Nλ1

−1 . (4.33)

• Then we have Nλ1 −Nκ1 =
2z
δ
, Nλ1 −Nµ1 =

2
δ
(2−z) and Nκ1 −Nµ1 =

4
δ
(1−z).

Hence,

1. for z < 0 we have Nµ1 < Nλ1 < Nκ1 ,

2. for 0 < z < 1 we have Nµ1 < Nκ1 < Nλ1 ,

3. for 1 < z < 2 we have Nκ1 < Nµ1 < Nλ1 , and

4. for z > 2 we have Nκ1 < Nλ1 < Nµ1 .

Therefore depending on the range of z the degree of the polynomial is different.

Demanding that the powers of Φ are positive integers implies non-trivial constraints

on the set of values (z, δ) can take. As we will see in the next section the existence of

actions implies further constraints on these data. So we postpone further discussion

of this aspect for later.

4.2.2 Constructing actions

Now that we have derived the most general two-derivative diffeomorphic and Weyl

covariant equations of motion for a single real2 scalar field Φ in the background

of generic Carroll geometry, we would like to turn to construct the corresponding

actions next. We should seek actions that produce each of the equations (4.27, 4.28,

4.29, 4.30, 4.31) as their Euler-Lagrange equations for the scalar field Φ.

Note that our equations of motion in the absence of interactions are linear in Φ and

have up to two derivatives on Φ. If we are to be able to derive them from some

actions then they should be quadratic in Φ and should contain up to two derivatives.

2For complex Φ one has to replace the potentials to be appropriate real combinations, such as
|Φ|2n etc.
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Therefore let us again start by listing all such invariants – now counting derivatives

both on the background geometric quantities (aij, bi, ω) and on Φ.

θΦ2, Φ ∂̂tΦ,

γ̂ij γ̂
j
i Φ

2, θ2Φ2, θΦ ∂̂tΦ, ∂̂tθΦ
2, (∂̂tΦ)

2, Φ ∂̂2tΦ,

r̂Φ2, ∇̂iϕ
iΦ2, ϕiϕiΦ

2, fijf
ij Φ2, Φϕi∂̂iΦ, ∂̂iΦ∂̂iΦ, Φ ∇̂i∂̂iΦ . (4.34)

We have already listed in (4.23) all the transformations required under the Carroll

Weyl transformations and we simply have to find the combinations of quantities in

(4.34) that transform homogeneously.

After a straightforward analysis using the results of the previous subsection, we find

the following combinations up to quadratic order in Φ :

1. At first order in time-derivatives we have the unique combination with weight

z + 2δ

Φ (∂̂tΦ +
δ

2
θΦ) (4.35)

2. At second order in time-derivatives we find three covariant combinations with

weight 2(z + δ). (
∂̂tΦ +

δ

2
θΦ
)2
,

(
γ̂ij γ̂

j
i −

1

2
θ2
)
Φ2, (4.36)

(∂̂tθ +
z

2
γ̂ij γ̂

j
i ) Φ

2 +
2

δ
Φ ∂̂2tΦ− 2δ + z

δ2
(∂̂tΦ)

2. (4.37)

We will refer to these as time-like combinations.

3. At second order in space-derivatives we find three combinations with Weyl

weight 2(1 + δ):

(∂̂iΦ +
δ

z
ϕiΦ)(∂̂

iΦ +
δ

z
ϕiΦ), (r̂ +

2

z
∇̂iϕ

i) Φ2, (4.38)

Φ∇̂i∂̂
iΦ + 2

δ

z
Φϕi∂̂iΦ +

δ

z
(∇̂iϕ

i +
δ

z
ϕiϕ

i) Φ2. (4.39)

We refer to these as space-like combinations.
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At higher orders in Φ we can consider potentials with coefficients from any of

1, fijf
ij, r̂ +

2

z
∇̂iϕ

i, γ̂ij γ̂
j
i −

1

2
θ2 . (4.40)

Now any candidate action has to be an integral over the coordinates (t,x) of our

Carroll manifold:

S =

∫
dt d2xL . (4.41)

For the action to be invariant under diffeomorphisms the Lagrangian density should

transform as L → L′, such that∫
dt d2x L =

∫
dt′d2x′ L′ . (4.42)

From (4.9) we have dt′d2x′ = J det J ij dt d
2x. So the Lagrangian density L has

to transform as L → L′ = J−1 det((J−1)ij) L – i.e, as a scalar density of weight

3, equal to the dimension of the manifold – under the relevant Carroll diffeomor-

phisms. The combinations we listed above in (4.35 - 4.39) are all scalars under

Carroll diffeomorphisms, even though they have non-trivial weights under Carroll

Weyl transformations. So to make them densities of suitable weights we need to

multiply them by ω
√
a as this is the only combination of the Carroll geometry

without derivatives and transforms as desired:

ω
√
a→ J−1 det((J−1)ij) ω

√
a , (4.43)

where a is the determinant of the metric aij on the base space. For instance

S =

∫
dt d2x ω

√
a

[
∂̂iΦ∂̂

iΦ + 2
δ

z
Φϕi∂̂iΦ +

δ2

z2
ϕiϕ

iΦ2

]
(4.44)

is a good action for a Carroll diffeomorphism invariant theory. However, for it to be

also a Weyl invariant theory the Lagrangian density L has to be invariant by itself

(up to total-divergence terms) under (4.19). Let us check this for (4.44): the measure

transforms as ω
√
a → B−2−zω

√
a and the quantity in square-brackets transforms

as [· · · ] → B2+2δ[· · · ] under the Weyl transformations (4.19). So demanding that

the Lagrangian density L in (4.44) is Weyl invariant requires

2 + 2δ = 2 + z =⇒ δ =
z

2
. (4.45)

This conclusion is valid for all actions constructed using the space-like combinations
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with Weyl weight 2 + 2δ. Also δ > 0 requires z > 0.

Similarly, if we use any of the Carroll diffeomorphism invariants and Carroll Weyl

covariant time-like combinations in (4.36) we need to fix the weight δ of the scalar

such that:

2 + z = 2z + 2δ =⇒ δ = 1− z

2
. (4.46)

In this case, for δ > 0 we need to have z < 2.

Note that this is unlike the conformally coupled scalar in the background of a

(pseudo) Riemann manifold where the Weyl weight of the scalar is fixed at the

level of the equation of motion itself (as reviewed in Section (4.1)), whereas, for

the scalar in Carroll geometry, it is fixed (even for a free scalar) at the level of the

existence of an action.

When we include interactions, we have to continue to impose the constraints (4.46)

in time-like case and (4.45) in the space-like case. So we have the potential :

• in the time-like case is (ω
√
a times)

1

Nµ0

µ0 fijf
ij ΦNµ0 +

1

Nκ0

κ0

(
r̂ +

2

z
aij∇̂iϕj

)
ΦNκ0 +

1

Nλ0

λ0Φ
Nλ0 (4.47)

with Nµ0 = 4
δ
− 6, Nκ0 = 2

δ
− 2 and Nλ0 = 4

δ
− 2. We further assume that

Nµ0 , Nκ0 , Nλ0 ≥ 2. For Nµ0 ≥ 2 and Nκ0 ≥ 2 we need δ ≤ 1
2
and Nλ0 ≥ 2

requires δ ≤ 1. Thus we can have all three terms in the potential only when

0 ≤ δ ≤ 1
2
with Nλ0 being the largest power. When 1

2
< δ ≤ 1 we can only

have λ0 non-zero and if δ > 1 no potential is possible.

• In the space-like case it is (ω
√
a times)

1

Nµ1

µ1 fijf
ij ΦNµ1 +

1

Nκ1

κ1

(
γ̂ij γ̂

j
i −

1

2
θ2
)

ΦNκ1 +
1

Nλ1

λ1Φ
Nλ1 (4.48)

with Nµ1 = 6 − 2
δ
, Nκ1 = 2

δ
− 2 and Nλ1 = 2

δ
+ 2. We again assume that

Nµ1 , Nκ1 , Nλ1 ≥ 2. For Nµ1 ≥ 2 requires δ ≥ 1
2
, for Nκ1 ≥ 2 requires δ ≤ 1

2
,

and for Nλ1 ≥ 2 requires δ ≥ 0. So when we take 0 ≤ δ < 1
2
(which means

0 ≤ z < 1) we need to set µ1 = 0, and we have Nλ1 as the largest power. When
1
2
< δ ≤ 1 we cannot have κ1 non-zero and the highest power of the potential

is again given by Nλ1 . When δ > 1 we still have κ1 = 0 and the largest power

of Φ in the potential will be Nµ1 . Only when δ = 1
2
all three terms are possible

90



with Nλ1 = 6.

To summarise in both time-like and space-like cases the different types of interactions

are possible depending on the values of δ (determined in terms of z via (4.46, 4.45)).

When 0 ≤ δ ≤ 1 the dominant power in the potential comes from the monomial

λ0Φ
Nλ0 (λ1Φ

Nλ1 ) in the time-like (space-like) case. When δ > 1 no potential is

possible in the time-like case and in the space-like case the dominant power is given

by Nµ1 . Finally, we have to impose that the dominant power of the potential is

even.

• In the time-like case, whenever the potential is allowed the degree of the po-

tential is Nλ0 . For the potential to be bounded below we require that Nλ0 is

even, i.e., Nλ0 = 2nt for some nt ≥ 1. Thus the data (z, δ) are restricted to:

δ = 1− z

2
=

z

nt − 1
=⇒ z = 2

nt − 1

nt + 1
& δ =

2

nt + 1
, nt ≥ 1 . (4.49)

In this case the range of z is between 0 (when nt = 1) and 2 (when nt → ∞).

The case of nt = 3 gives z = 1 with δ = 1/2, and this is what one obtains by

taking the ultra-relativistic limit of conformally coupled scalar in 3 dimensions

– as we show in Section (4.3).

• In the space-like case when 0 < δ ≤ 1 we take Nλ1 = 2ns for some ns ≥ 2

(since when 0 < δ ≤ 1 we have Nλ1 ≥ 4). Then we have

δ =
z

2
=

1

ns − 1
=⇒ z =

2

ns − 1
& δ =

1

ns − 1
, ns ≥ 2 . (4.50)

This is the set of values assumed for z by Duval et al [69], where they denoted

k = ns − 1 with k ≥ 1. In this case the range of z is between zero (when

ns → ∞) and 2 (when ns = 2) with the corresponding values of δ ranging

between 0 and 1. Again the special value z = 1 gives δ = 1/2.

When δ > 1 we need to take Nµ1 = 2nµ for some nµ ≥ 3 since Nµ1 = 6− 2
δ
. At

the same time Nµ1 is bounded above by 6 and so the only non-trivial possibility

is nµ = 3. But when nµ = 3 both z and δ are infinite which we do not consider.

So we conclude that the existence of (i) bounded and polynomial potentials and (ii)

invariant actions implies discrete and specific rational values for both z and δ.
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Actions for Equations:

We now propose actions which produce (4.27 - 4.31) as their equations of motion.

• For the time-like case with z = 2 (1− δ) our action is

St =

∫
dt d2x ω

√
a

[
α1

(
∂̂tΦ +

δ

2
θΦ
)2

+ β1

(
γ̂ij γ̂

j
i −

1

2
θ2
)
Φ2 + λ1Φ

2+ 2 z
δ

]
,

(4.51)

which gives the equation of motion for Φ to be:

−2α1

[
∂̂2tΦ + θ ∂̂tΦ− 1

4
δ (δ − 2) θ2Φ +

δ

2
∂̂tθΦ

]
+2β1

(
γ̂ij γ̂

j
i −

1

2
θ2
)
Φ + 2λ1

(
2

δ
− 1

)
Φ

4
δ
−3 = 0 (4.52)

• For the space-like case with z = 2δ our action is

Ss =

∫
dt d2x ω

√
a

[
α2

(
∂̂iΦ +

δ

z
ϕiΦ
)(
∂̂iΦ +

δ

z
ϕiΦ
)

+ β2

(
r̂ +

2

z
∇̂iϕ

i
)
Φ2 + λ2Φ

2+ 2
δ

]
(4.53)

which gives rise to

− 2α2

[
□̂Φ + ϕi∇̂iΦ +

1

4
ϕiϕiΦ +

1

2
∇̂iϕ

iΦ

]
+ 2β2

(
r̂ +

2

z
∇̂iϕ

i
)
Φ + 2λ2

(
1 +

1

δ

)
Φ1+ 2

δ = 0 . (4.54)

It is easy to see that these equations are the same as (4.30 - 4.31) with appropriate

identifications of the coefficients.3

For the special case z = 1 we can consider linear combinations of (4.51), (4.53) with

(4.39), which can be seen to generate equations of the form (4.27).

The other special value of z, namely z = 2 needs some more attention. In this case,

we either have to consider a complex Φ or two real fields Φ1 and Φ2. To see this we

first note that in this case, we expect an action to reproduce an equation of motion of

the type (4.28) that includes (whenever κ3 ̸= 0) first-order time-derivatives. Using

3One can easily incorporate other interaction terms into the actions to produce potential terms
in (4.30), (4.31) with non-constant coefficients as well whenever they are allowed.
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a single real scalar a candidate action that could have produced a first-order time-

derivative term is ω
√
aΦ (∂̂tΦ + δ

2
θΦ). But such an action does not lead to a

non-trivial equation of motion in z = 2 case (which in turn requires δ = 1) since

ω
√
aΦ (∂̂tΦ + 1

2
θΦ) = ∂t(

1
2

√
aΦ2) is a total derivative. A simple way to overcome

this is to consider ω
√
aΦ⋆ (∂̂tΦ + δ

2
θΦ) for a complex Φ with Φ⋆ being its complex

conjugate. We will not pursue this further here.

4.3 A Carroll CFT from a conformally coupled

scalar

Now we show that some special cases of the equations of motion and their corre-

sponding actions we derived in the last section arise in the ultra-relativistic limit of

the conformally coupled scalar reviewed in Section (4.1).

Our starting point is the diffeomorphic and Weyl invariant scalar field theory in 2+1

dimensional spacetime. The background metric is taken in the so-called Randers-

Papapetrou form (see for instance [76]), with the line element:

ds2 = gµνdx
µdxν = −c2ω2(dt− ω−1bi dx

i)2 + aij dx
i dxj, (4.55)

where xµ = (t,x). This geometry in the c→ 0 limit is expected to produce a Carroll

geometry. Moreover, the subset of all diffeomorphisms that leave this metric form-

invariant is precisely the Carroll diffeomorphisms (4.9) and the quantities {aij, bi, ω}
transform under (4.9) as in (4.12).

It can be seen that the Ricci scalar of this geometry is

R = c−2
(
θ2 + γ̂ij γ̂

j
i + 2 ∂̂tθ

)
+
(
r̂ − 2∇̂iϕ

i − 2ϕiϕ
i
)
+
c2

4
fijf

ij . (4.56)

Consider the Weyl invariant Klein-Gordon scalar field equation on a general back-

ground in three dimensions:

gab∇a∇bΦ− 1

8
RΦ = 0. (4.57)

Using Randers-Papapetrou metric ansatz (4.55) one can reduce this equation to a

polynomial in c. This equation admits an expansion in terms of the combinations
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in (4.27 - 4.31) with (z, δ) = (1, 1
2
). In particular:

□̂Φ− 1

8
RΦ

=− 1

c2

[
∂̂2tΦ + θ ∂̂tΦ +

1

16

(
3 θ2 + 4 ∂̂tθ

)
Φ

]
− 1

8 c2

(
γ̂ij γ̂

j
i −

1

2
θ2
)

+

[
□̂Φ + ϕi∇̂iΦ− 1

4

(
r̂ − ϕiϕi

)
Φ

]
+

1

8

(
r̂ + 2 ∇̂iϕ

i
)
Φ

− c2

32
fijf

ij Φ . (4.58)

Notice that if we had set any of these terms at any given order in powers of c to

zero, it would have given us a Carroll diffeomorphic and Weyl covariant equation.

We do not have to just restrict to the lowest order term (the leading term in the

ultra-relativistic limit – as was done in the previous works [70, 69, 68, 27, 75, 76,

18, 17, 72, 19]). However, if we took the linear combination exactly as in (4.58) we

can re-package the equation into a fully diffeomorphic and Weyl covariant equation

(4.57) in the pseudo-Riemannian space with metric (4.55).

Let us now turn to the action in this special case. For this, we start with the

Lagrangian density of the conformally coupled scalar to the background Randers-

Papapetrou metric (4.55) and again expand it in powers of c. This gives us:

S =
1

c

∫
dt d2x ω

√
a

[
(∂̂tΦ)

2 − 1

8

(
θ2 + γ̂ij γ̂

j
i + 2 ∂̂tθ

)
Φ2

]
− c

∫
dt d2x ω

√
a

[
∇̂iΦ ∇̂iΦ +

1

8
(r̂ − 2 ∇̂iϕ

i − 2ϕiϕ
i) Φ2

]
− c3

32

∫
dt d2x ω

√
a fijf

ij Φ2 . (4.59)

If we put α1 =
1
c
and β1 = − 1

8c
(with λ1 = 0) and use

∂t(
√
a θΦ2) = ω

√
a
[
2 θΦ ∂̂tΦ + (θ2 + ∂̂tθ) Φ

2
]

(4.60)

we see that the O(1/c) term of this action is a special case of (4.51) with (z, δ) =

(1, 1
2
) up to a total derivative. Similarly noticing that

∂i
[
ω
√
a ϕiΦ2

]
+ ∂t

[√
a biϕ

iΦ2
]
= ω

√
a
[
2Φϕi∂̂iΦ + (ϕiϕi + ∇̂iϕ

i) Φ2
]

(4.61)

and setting α2 = 1, β2 = 1
8
we can see that the O(c) term in this action is again a

special case of (4.53). Finally, the order c3 term can be added for free again in this

case of z = 1 and δ = 1/2 as before.
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4.4 Gauge fixing and residual symmetries

So far we have been using both Carroll diffeomorphisms and Carroll Weyl symmetries

to constrain our theories. However, our main interest is in getting down to Carrollian

CFTs. For this, we need to fix the background spacetime geometry as much as

possible using the local symmetries. In the standard construction of CFTs in the

background of a (pseudo) Riemannian manifold one takes the background metric and

then uses the local symmetries in (d+1)-dimensional case ((d+1) diffeomorphisms

and 1 Weyl transformation) to fix (d + 2) components of the metric completely.

Furthermore, if one wants to get a conformal field theory with symmetry algebra

so(2, d+1), then the background should be conformally flat. This condition requires

that the metric gµν should have vanishing Weyl tensor: Wµνσλ = 0 (or the Cotton

tensor Cµν = 0 in d = 2 case).

Turning now to the Carroll case we again have in a generic geometry, specified by

(aij, bi, ω), as many as 1
2
(d+1)(d+2) components which are all arbitrary functions of

(t,x). But the local symmetries have two functions (t′(t,x), B(t,x)) of both space

and time and d functions (x′i(x)) of space alone.

We are looking for 3-dimensional Carrollian CFTs with symmetry algebra cca
(z)
3 that

contains the conformal algebra of the two-dimensional base space so(1, 3) – so we

would like to be able to completely gauge fix aij to some fixed time-independent

metric. One possibility is that we restrict to Carroll geometries where aij is of the

form:

aij(t,x) = eχ(t,x)a
(0)
ij (x), det a

(0)
ij (x) = fixed. (4.62)

Note that the choice of two-dimensional metric in (4.62) is the same as the choice of

boundary metric on codimension-two surface Σ2 in Newman-Unti gauge considered

in Chapter 3 for asymptotically locally flat solutions. In other words the metric aij is

conformally time-independent. Then we will have two components in a
(0)
ij (x) which

can be gauge fixed completely using the spatial diffeomorphisms alone. We can use

the temporal diffeomorphism and the Weyl symmetry to gauge fix χ(t,x) = 0 and

ω(t,x) = 1. It turns out (as shown later on in this section) that this will be sufficient

to ensure that the residual symmetry algebra is cca
(z)
3 .4

Some examples of Carroll spacetimes include: Flat Carroll spacetime [70, 69, 68, 27]

4For the choice of metric in (4.62), the complete set of Carrollian analogue of 3d Cotton tensor
do not go to zero as shown in [81] and one has to further impose some notion of conformal flatness
on the one-dimensional fibre of Carrollian manifold C2+1.
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given by

aij = δij, bi = b
(0)
i , ω = 1 (4.63)

where b
(0)
i are constants. For this we have θ = ϕi = γ̂ij = fij = γ̂ijk = 0. The

time-like action (4.51) is what people obtained by the ultra-relativistic limit of the

Klein-Gordon scalar in 3-dimensional Minkowski spacetime M2+1. The space-like

action (4.53) becomes, for z = 2δ∫
dt d2x

[
∂̂iΦ∂̂iΦ + λΦ2+ 2

δ

]
. (4.64)

More general Carroll manifolds that include some of the interesting Carroll space-

times, such as null infinities, black hole horizons etc, and their conformal symmetries

are discussed in detail in [27]. To study the symmetries of the gauge fixed actions

one takes the vector field that generates Carroll diffeomorphism to be of the form:

ξ = f(t,x) ∂̂t + ξi(x) ∂̂i

= ω−1 (f + ξi bi) ∂t + ξi∂i . (4.65)

Under the infinitesimal coordinate transformation

t′ = t+ ω−1 (f + ξi bi) + · · · , x′i = xi + ξi + · · · (4.66)

the background data (aij, bi, ω) and matter field Φ transform as:

δξaij = −2f γ̂ij − (∇̂iξj + ∇̂jξi) ,

ω−1 δξω = −∂̂tf − ϕi ξ
i ,

δξbi = −bi (ϕjξj + ∂̂tf) + fij ξ
j + (∂̂i − ϕi) f ,

δξΦ = −(f ∂̂tΦ + ξi∂̂iΦ) . (4.67)

Under the infinitesimal Weyl transformations with B = eσ, we have

δσaij = −2σ aij, δσω = −z σ ω,

δσbi = −z σ bi, δσΦ = δ σΦ . (4.68)

One first demands that the metric on the base aij is invariant under the combined
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action (4.67, 4.68):

(δξ + δσ) aij = 0 (4.69)

and this leads to

2 f
[
γ̂ij −

1

2
θ aij

]
+ ∇̂iξj + ∇̂jξi − ∇̂kξ

k aij = 0, σ = −1

2
(f θ + ∇̂iξ

i) . (4.70)

Now following [27] we will also choose to impose that the traceless symmetric tensor

ζij = γ̂ij − 1
2
θ aij (referred to as the Carroll shear) vanishes. This condition can be

solved for and it implies (4.62). Next we choose to impose (δξ + δσ)ω = 0 and this

leads to

(∂̂t −
z

2
θ) f − z

2
(∇̂i −

2

z
ϕi) ξ

i = 0 ,

along with ∇̂iξj + ∇̂jξi − ∇̂kξ
k aij = 0 . (4.71)

Finally noticing that these equations are Carroll Weyl invariant one chooses aij to

be a completely time-independent fixed metric. This implies that θ = 0 and the

Carroll Levi-Civita connection γ̂ijk reduces to the Christoffel connection for (now

time independent) aij. One also chooses a fixed background value for ω (say, ω = 1)

without loss of generality. Then the residual symmetries have to satisfy

∇iξj +∇jξi −∇kξ
k aij = 0 ,

∂t f − z

2
(∇i −

2

z
ϕi) ξ

i = 0 . (4.72)

One can integrate these equations completely and the result is given in terms of

{T (x), Y i(x} where ξi = Y i(x) are the conformal Killing vectors on aij and T (x) is

arbitrary:

f(t,x) = T (x) +
z

2

∫ t

dt′
[
∇iY

i(x)− 2

z
ϕi Y

i(x)

]
= T (x) +

z

2
t∇iY

i(x)− bi(t,x)Y
i(x) (4.73)

where we have set ω(t,x) = 1 and ϕi = ∂tbi. So the Carrollian conformal Killing
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vector is

ξ = (f + ξi bi) ∂t + ξi∂i

=
[
T (x) +

z

2
t∇iY

i(x)
]
∂t + Y i(x) ∂i . (4.74)

It is argued in [27] that the algebra of the Carrollian CKV does not depend on the

choice of ω either. The fact that the bi dependence is cancelled out in the final

answer (4.74) is also general enough that we do not need to fix bi to define the

residual symmetries. Therefore the residual fields bi(t,x) along with Φ transform

under the Carrollian conformal transformations as:

δbi = −bi (ϕjξj + ∂̂tf) + fij ξ
j + (∂̂i − ϕi) f − z σ bi ,

δΦ = −(f ∂̂tΦ + ξi∂̂iΦ) + δ σΦ , (4.75)

where we have to use aij to be fixed and time-independent (for instance that of a

round S2), ω = 1 (and hence ϕi = ∂tbi), ξ
i = Y i(x) and f(t,x) as in (4.73). These

form the symmetries of our theories by construction when we gauge fix as above.

This means that our cca
(z)
3 symmetric scalar field theories, after gauge fixing the

Carroll diffeomorphisms and Weyl symmetries would have the matter field Φ(t,x)

along with the geometric fields bi(t,x) dynamical. Then the transformations (4.75)

are their symmetries and can be used to study the conserved currents and charges

etc. of our theories both at the classical level and beyond.

There are other interesting possibilities to gauge fix the local symmetries with ap-

parently different residual symmetry algebras - we discuss one such gauge now. Let

us consider restricting the background Carroll geometric data (aij, bi, ω) by imposing

ϕi = 0. This condition can be solved as follows:

1

ω
(∂iω + ∂tbi) = 0 =⇒ bi(t,x) = b

(0)
i (x)− ∂i

∫ t

dt′ ω(t′,x) (4.76)

If we further gauge fix ω = 1 as in the previous gauge choice we conclude that

ϕi = 0 implies that bi is independent of time. So we can use the spatial Carroll

diffeomorphisms to gauge fix bi = 0.5 Finally, we can use the Weyl symmetry to

fix the determinant of aij, say a = 1, which in turn will imply θ = 0. So in this

gauge we have ϕi = θ = bi = fij = 0. Using (δξ + δσ) bi = 0 leads to ∂if = 0.

From (δξ + δσ)ω = 0 we find σ = −1
z
∂tf(t). This gauge leaves aij(t,x) to fluctuate

subject to the condition a = 1 along with Φ(t,x). The condition a = 1 also implies

5A weaker condition is to fix bi to be such that fij = 0.
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σ = −1
2
∇iξ

i. Since σ ∼ ∂tf(t) the only consistent choices are f(t) = α + β t and

∇iξ
i = 2

z
β, for constant α and β. One may further choose to set β = 0 (though

this is not necessary in all the cases) as in [15]. Then one has ξ = α ∂t + ξi∂i with

constant α and ∇iξ
i = 0, giving rise to an algebra isomorphic to R⊕A where A is

the algebra of volume-preserving (smooth) diffeomorphisms of aij (say R2 or round

S2). In the z = 1 case, such an algebra has appeared recently [15] in a different

context.

If we allow for partial gauge fixing of the local symmetries of our theory and only

gauge fix the determinant of aij to 1 and further gauge fix ω = 1 like in the previous

paragraph with no further conditions on bi’s then in this case from (δξ + δσ)ω = 0,

one obtains,

−∂tf − ϕiξ
i − z σ = 0 (4.77)

and the determinant condition aij (δξ + δσ) aij = 0 leads to,

σ = −1

2
(f θ + ∇̂iξ

i) (4.78)

As we are considering geometry with vanishing Carroll shear, the only time depen-

dence appearing in the metric is the conformal factor. Using Weyl symmetry to fix

the determinant of the metric implies that the metric is now time independent and

therefore one can set ∂taij = 0, which means that the Carroll Levi-Civita connection

reduces to the Christoffel connection. Solving for f in (4.4) one obtains,

f = T (x) +
z

2

∫ t

dt′
[
∇iξ

i − 2

z
ϕiξ

i

]
= T (x) +

z

2
t∇iξ

i − biξ
i (4.79)

This is similar to (4.73) except that the CKV condition on ξi is dropped. So the re-

sultant vector field that generates Carroll diffeomorphisms for this particular partial

gauge fixing is of the form,

ξ =
(
T (x) +

z

2
t∇iξ

i
)
∂t + ξi ∂i (4.80)

with no further condition on ξi. For z = 1, this vector field is identical to the bound-

ary vector field that forms the representation of generalised bms4 symmetry algebra

[47, 153] where T (x) is the supertranslations and ξi are vector fields associated with

arbitrary diffeomorphisms on S2, namely, Diff(S2). Therefore we see that to ob-
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tain generalised bms4 symmetry algebra from the residual gauge transformations of

Carrollian diffeomorphisms one has to resort to partial gauge fixing of background

geometric quantities because any attempt to gauge fix bi’s will eventually reduce

this symmetry algebra to R⊕A. We leave the determination of the exact nature of

field theories having generalised bms4 global symmetries to future endeavours.

4.5 Further Comments and Discussions

We presented equations of motion for a scalar field coupled to a generic 3-dimensional

Carroll geometry that are Carroll diffeomorphic and Weyl covariant. Even though

we have demonstrated our methods most explicitly for 3-dimensional Carroll space-

times the generalisation to arbitrary (higher) dimensions is straightforward – see

the Appendix C for some technical details of this exercise. Also one can extend our

construction following similar methods to include Carroll like Maxwell, Yang-Mills

fields and other matter fields.6

We have concentrated on classical theories in this chapter. It will be interesting to

explore the quantum aspects of our theories – including renormalisation, anomalies

etc. We need to compute the Noether charges for the symmetries and show that they

form cca
(z)
3 [19]. In particular, we will need to construct the soft charges – which may

lead to Ward identities of celestial amplitudes in connection with the soft graviton

theorems (see [134, 53, 6]). See [7, 88, 154, 87] that explore the connection between

Carrollian CFTs and Celestial CFT.

There are some features expected of holographic dual of flat space gravity [55, 56,

88, 154]. It will be interesting to see if these are borne out in theories of the type we

constructed here. In this connection, we anticipate that the existence of additional

fields, either bi(t,x) (or aij(t,x) with a = 1) may play a useful role. For example, the

emergence of chiral bms4 from this set-up would be extremely interesting to study

and constitute one of the future directions. One also expects such requirements to

impose further cuts on the spaces of classical theories we find, along with any other

possible quantum consistency conditions.

In this work, we concentrated on Carrollian theories. However, the same techniques

can be used for constructing the Galilean theories as well. There is a curious duality

between Carrollian and Galilean field theories [70]. It would be interesting to check

6See [81] for the construction of the Carrollian Chern Simons gravity actions and equations of
motion from the 3d Chern Simons gravity using the technique we provide in (4.3).
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if such duality exists between our theories and the corresponding Galilean ones.

Eventually one would like to construct fully consistent (perhaps supersymmetric)

Carrollian CFTs which can potentially be useful to describe flat space gravity/string

theories holographically. We hope that our methods will lead to more avenues to

explore than the method of taking ultra-relativistic limits of known theories.
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Chapter 5

A chiral W-algebra extension from

AdS4 gravity

One of the main results of the first part of the thesis was the realisation of chiral

bms4 algebra, uncovered in celestial CFT [13, 14] from the bulk asymptotic sym-

metries of R1,3 gravity. In this part of the thesis motivated by the existence of

chiral bms4 algebra defined in (3.1), we look for the chiral extensions of so(2, 3) that

play a role in AdS4 gravity. Until recently it was considered that the symmetry

algebra of asymptotically AdSd+1 spacetimes for d ≥ 3 is finite-dimensional so(2, d)

for a class of boundary conditions [155, 95].1 As mentioned in the introduction,

in [15, 16], the authors proposed new boundary conditions for generic asymptoti-

cally AdS4 spacetimes in Bondi gauge, where they uncover the symmetry algebra

of residual gauge transformations to be an infinite dimensional Lie algebroid,2 the

Λ-bms4. Specifically, they fixed only part of the boundary metric using the residual

symmetries. The Λ-bms4 and its corresponding phase space in the flat space limit

(Λ → 0) coincide with the generalised bms4 algebra and the phase space associated

with it. To impose a well-defined variational principle, they further set part of the

holographic stress tensor to zero giving rise to reduced symmetry algebra which is

a direct sum of R⊕A, where R denotes the abelian time translations and A is the

algebra of 2-dimensional area-preserving diffeomorphisms.3

In this chapter, we answer the following two very natural questions that arise due

1Special cases of infinite dimensional enhancement of symmetry algebra in the case of AdS4
were considered in [156, 157].

2In Lie algebroid, the structure constants are background field dependent [15].
3Note that such a symmetry algebra was also uncovered from the Carrollian CFT in Chapter

4.

102



to the existence of chiral bms4 in celestial CFT and its realisation from flat space

R1,3 gravity,

• Is there a chiral extension of so(2, 3) algebra that in some appropriate flat

space limit reduces to the chiral bms4?

• Can one obtain such a chiral version of Λ-bms4 algebra from the AdS4 gravity?

To obtain such a chiral extension of so(2, 3) from AdS4 gravity, inspired by the

chiral boundary conditions that we used in Chapter 3, we propose chiral boundary

conditions for solutions in Newman-Unti gauge in AdS4 gravity.

The boundary conditions that we employ in this chapter form the subset of Neu-

mann boundary conditions [99]. We consider locally AdS4 solutions for which the

components associated with the holographic stress tensor go to zero and the bound-

ary metric is conformally flat [105].4 Because the boundary metric is conformally

flat, these solutions are referred to as asymptotically AdS4 solutions in the litera-

ture [95, 158]. We obtain an infinite-dimensional algebra of asymptotic symmetries

associated with these solutions after imposing chiral boundary conditions consistent

with a well-defined variational principle. We denote this algebra by chiral Λ-bms4.

Furthermore, the resultant chiral locally AdS4 solutions that we obtained are in a

specific form such that in the flat space limit (l → ∞, where l is the AdS length),

one obtains chiral locally flat solutions derived in Chapter 3. The chiral Λ-bms4 is a

Lie algebroid and in the flat space limit it reduces to the chiral bms4 algebra (3.1).

The following are the results of this chapter:

• We obtain locally AdS4 solutions parameterized by six holomorphic functions

{Ja(z), T (z), Gs(z)} a ∈ {0,±1}, s ∈ {±1
2
} with the algebra of the residual

diffeomorphisms being a Lie algebroid. These diffeomorphisms induce non-

trivial transformations on the holomorphic functions similar to currents in a

2d CFT.

• We postulate a line integral charge as that of 2d chiral CFT and derive the op-

erator product expansions (OPEs) between the currents (of the previous para-

graph) such that they produce the same variations of these currents. These

OPEs (and the mode commutation relations obtained from them) give us the

semi-classical limit of a W-algebra.

4The necessary and sufficient condition for d = 3 boundary metric to be conformally flat is the
vanishing Cotton tensor.
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• We derive the quantum version of the aforementioned W-algebra in a 2d CFT

by imposing Jacobi identities on the commutators of the modes of the chiral

(quasi-) primaries, a method developed by Nahm et al. ([25] and references

therein) as an equivalent implementation of constraints from OPE associativity

[159].5 We denote this algebra by W(2; (3/2)2, 13) and show that in the semi-

classical limit with proper identification of parameters, this algebra matches

with the chiral W-algebra symmetry of AdS4 gravity alluded to above.

• The full commutator algebra of W(2; (3/2)2, 13) that we derive in this chapter

is given as follows,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[Lm, Ja,n] = −nJa,m+n, [Lm, Gs,r] =
1

2
(n− 2r)Gs,n+r ,

[Ja,m, Jb,n] = −1

2
κmηab δm+n,0 + fab

c Jc,m+n, [Ja,n, Gs,r] = Gs′,n+r(λa)
s′

s ,

[Gs,r, Gs′,r′ ]=ϵss′
[
α
(
r2 − 1

4

)
δr+r′,0+β Lr+r′+γ (J

2)r+r′
]
+δ(r − r′)Ja,r+r′(λ

a)ss′

with c =− 6κ (1 + 2κ)

5 + 2κ
, α = −1

4
γκ(3 + 2κ), β =

1

4
γ(5 + 2κ), δ = −1

2
γ(3 + 2κ)

(5.1)

where ηab = (3a2 − 1)δa+b,0, fab
c = (a − b)δca+b, (λ

a)ss′ = 1
2
δas+s′ , (λa)ss′ =

ηab(λ
b)ss′ , κ ̸= −5/2, and γ can be fixed to be any non-zero function of κ by

rescaling the Gs,r appropriately. Finally (J2)n are the modes of the normal

ordered quasi-primary ηab(JaJb)(z). This algebra can be identified with the

N = 1 case of an infinite series of algebra defined for 2N bosonic spin-3
2

currents and spin-1 Kac-Moody current for sp(2N) derived by Romans in a

different context [24]..

• We also write down all the 3 and 4-point functions of the currents in operator

product algebra (5.1) that can be shown to admit all the expected crossing

symmetries.

The rest of this chapter is organised as follows: In Section (5.1) we present the

calculations in locally AdS4 solution and show the emergence of chiral Λ- bms4 as

the asymptotic symmetry algebra after imposing chiral boundary conditions. We

then show that the algebra of charges that generate this symmetry algebra is a type

5See [160], [161] and also the comprehensive review [162] of everything to do with OPEs.
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of W-algebra. In Section (5.2) we derive the quantum version of this W-algebra

from 2d CFT techniques. We implement the OPE associativity of operator product

algebra through the Jacobi Identities of modes of symmetry-generating currents of

this W-algebra. Section (5.3) contains the details of the 3 and 4-point functions of

the symmetry currents of ourW-algebra. We conclude in Section (5.4). In Appendix

D, we provide the coordinate transformations that allow us to write the chiral locally

AdS4 solutions in Fefferman-Graham gauge and Appendix F provide some details on

the imposition of the associativity constraints on 3 and 4-point correlation functions

of symmetry generating currents. This chapter is partly based on [163]

5.1 Locally AdS4 Solutions

To obtain a candidate chiral Λ-bms4 algebra from AdS4 gravity, it is sufficient to

analyse solutions to Einstien equations that are locally AdS4 (LAdS4). Therefore we

consider LAdS4 geometries, which in addition to being the solution to the Einstien

equation for negative cosmological constant in four dimensions,

Eµν = Rµν +
3

l2
gµν = 0 (5.2)

also satisfies locally AdS4 condition given by

Aµνσλ = Rµνσλ +
1

l2
(gµσgνλ − gµλgνσ) = 0. (5.3)

Equation (5.3) implies equation of motion (5.2). Taking the flat space limit l → ∞
of these two equations we obtain the conditions for locally flat (LF) geometries

that were used in section (3.1.1). To obtain solutions satisfying the conditions (5.2)

and (5.3), we work in Newman-Unti (NU) gauge with coordinates (u, r, z, z̄). We

prefer this gauge over Fefferman-Graham (FG) gauge because it is straightforward

to compare LAdS4 solution with the locally flat solutions of (3.72) and (3.73) in the

limit (l → ∞). Using coordinate transformations one can map solutions in the NU

gauge to the solutions in the FG gauge as shown in the Appendix D. Recall that

this gauge is defined by imposing the following conditions on the metric gµν ,

grr = grz = grz̄ = 0, gur = −1. (5.4)
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The line element is then given by,

ds2lAdS = −2 du dr + gij(r, x
k) dxi dxj, (5.5)

where r is the radial coordinate and i labels the boundary directions (u, z, z̄). The

metric components gij for i, j ∈ {u, z, z̄} are expanded in the following form:

gij(r, u, z, z̄) =
∞∑
n=0

r2−n g
(n)
ij (u, z, z̄). (5.6)

Imposing the condition (5.3) one finds that the solution terminates at order O(1) in

power series expansion in r such that for LAdS4 solutions in 4d we have,

gij(r, u, z, z̄) =
2∑

n=0

r2−n g
(n)
ij (u, z, z̄). (5.7)

We begin by solving Einstein equations Eµν = 0 for the solution ansatz (5.5) in

NU gauge at each order in r near the boundary (r → ∞). From O(r2) term of the

component Euu one obtains the condition,

Det (g
(0)
ij ) = − 1

l2
Det (g

(0)
ab ), (5.8)

where a ∈ {z, z̄} labels the index on codimension-two hypersurface. This condition

is solved by taking g
(0)
uu to be of the form,

g(0)uu = − 1

l2
+ va v

a, (5.9)

where we define va := g
(0)
ua in this chapter and the indices {a, b} are lowered and

raised by boundary metric g
(0)
ab and gab(0) respectively. The algebraic condition at

O
(
1
r

)
in Era gives the expression for g

(1)
ua as follows,

g(1)ua = g
(1)
ab v

a. (5.10)

Similarly the order O
(
1
r

)
term of Eur and Era can be solved respectively to obtain

g
(1)
uu and g

(2)
ua ,

g(1)uu = −θ
2
+Dav

a − 2 g
(1)
ab v

a vb + 3 vag(1)ua − 1

2l2
gab(0) g

(1)
ab , (5.11)

g(2)ua =
1

2
g
(2)
ab v

b +
1

2
gcb(0)Dcg

(1)
ab − 1

2
gcb(0)Da g

(1)
cb , (5.12)
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where θ = gab(0) ∂ug
(0)
ab and Dav

a is the covariant derivative defined with respect to

the 2d boundary metric g
(0)
ab . At O (r) in Eab we obtain the following condition that

will be used to solve for g
(1)
ab ,

1

l2
g
(1)
ab −

[
Da vb +Db va −Dcv

c g
(0)
ab +

1

2
θg

(0)
ab − ∂ug

(0)
ab

]
− 1

2 l2
gcd(0) g

(1)
cd g

(0)
ab = 0.

(5.13)

The O(1) term in Eab gives us the following condition,

g
(0)
ab

[
g(2)uu +

R0

2
− 1

4 l2
g
(1)
cd g

cd
(1) +

1

2
gcd(0) ∂ug

(1)
cd − 1

4
gab(0) g

(1)
ab θ −

1

2
gcd(0) v

eDe g
(1)
cd

+ vc vd g
(2)
cd +

1

l2
gab(0) g

(2)
ab − 2 g(2)uc v

c +
1

2
gab(0) g

(1)
ab Dcv

c − gcd(1)Dcvd

]
+

1

4
Tr gab(0) g

(1)
ab ∂ug

(0)
ab +

1

l2
g
(2)
ab − 1

2
gab(0) g

(1)
ab D(a vb) = 0 (5.14)

where R0 is the Ricci scalar of metric g
(0)
ab . Taking the trace of this equation allows

us to solve for g
(2)
uu ,

g(2)uu = −R
(0)

2
+

1

4 l2
g
(1)
ab g

ab
(1) −

1

2
gab(0) ∂ug

(1)
ab +

1

8
gab(0) g

(1)
ab θ +

1

2
gab(0) v

eDe g
(1)
ab − va vb g

(2)
ab

− 3

2 l2
gab(0) g

(2)
ab + 2 g(2)ua v

a − 1

4
gcd(0) g

(1)
cd Da v

a + gab(1)Davb. (5.15)

In order to obtain g
(2)
ab , we impose locally AdS condition of (5.3) which is easier to

implement in the form

det(g(4d))Aµνρσ = 0, (5.16)

as the series expansion in r is a positive power with highest order 8. det(g(4d))

is the determinant of full 4d metric in NU gauge. The O(r2) term of component

det(g(4d))Aurur gives g
(2)
ab as follows,

g
(2)
ab =

1

4
g(1)ac g

cd
(0) g

(1)
db . (5.17)

The pullback of the metric in the Newman-Unti gauge at the boundary I at r → ∞
is given by,

ds2bdry =

(
− 1

l2
+ vav

a

)
du2 + 2 va du dx

a + g
(0)
ab dx

a dxb. (5.18)

Some comments about our solution are in order,
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1. In the flat space limit the condition (5.8) implies that gij is degenerate and

another way to solve it is to set g
(0)
uu = va = 0, as we did in (3.4).

2. The condition in equation (5.13) implies that g
(1)
ab is not free data on the

boundary and is given in terms of va and g
(0)
ab . This is in contrast to the locally

flat solution where g
(1)
ab is free data at the boundary null infinity. This can be

seen from taking the flat limit of (5.13) where the term proportional to g
(1)
ab

drops out and after putting va = 0 one is left with the condition constraining

the time dependence of the boundary metric g
(0)
ab . For a locally flat solution,

this equation implied that the boundary metric is conformally time-dependent,

i.e, (g
(0)
ab = Ω(u, z, z̄) qab(z, z̄)) where we choose Ω to be u-independent such

that θ = 0. For LAdS4 solutions we do not have any such restriction on g
(0)
ab .

3. We further set gab(0)g
(1)
ab = 0 as part of our gauge condition. This is standard

practice for solutions in NU and Bondi gauge and is equivalent to the condition

of fixing the origin of an affine parameter of the null geodesic [164]. The final

metric components are then given by,

g(1)uu = −θ
2
+Dav

a + g
(1)
ab v

a vb,

g(2)ua =
1

2
g
(2)
ab v

b +
1

2
gcb(0)Dcg

(1)
ab ,

g
(1)
ab = l2

[
Da vb +Db va −Dcv

c g
(0)
ab +

1

2
θg

(0)
ab − ∂ug

(0)
ab

]
,

g(2)uu = −R0

2
− 1

8 l2
g
(1)
ab g

ab
(1) −

1

2
gab(0) ∂ug

(1)
ab + gbc(0) v

aDc g
(1)
ab + gab(1)Davb

(5.19)

along with equations (5.9) and (5.10).

4. One can check that for va = 0 and θ = 0 in the limit l → ∞ the metric

components coincide with those of locally flat solution in (3.12) except that

g
(1)
ab is free data.

For LAdS4 solution the boundary metric g
(0)
ab and va are the free data on the bound-

ary,6 in terms of which all other metric components are given. For our solution to

completely solve equations (5.2) and (5.3), the Cotton tensor of the boundary metric

(5.18) necessarily vanishes following the analysis of [105]. This imposes constraints

on boundary data g
(0)
ab and va. We do not provide these constraints nor their general

solutions in this chapter as it is not needed for our analysis. We will solve the con-

6Note that {g(0)ab , v
a} constitute only five independent metric components of 3d boundary metric.

The sixth component is fixed due to the condition (5.8).
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straints only after imposing further boundary conditions on our free data {g(0)ab , va},
which we obtain after imposing a well-defined variational principle.

5.1.1 Variational principle

In this section, we will find boundary conditions for the fields in configuration space

motivated by the variational principle which will then allow us to completely solve

the constraint conditions on the free data. The action for the Einstien equation in

4d for non-zero cosmological constant is given by,

S =
1

16πG

∫
d4x

√
−g
(
R +

6

l2
)
. (5.20)

The variation of this action gives an equation of motion and a boundary term which

depends on the normal derivative of the boundary metric. To solve the variational

principle one usually adds Gibbons Hawking term and various counter terms such

that in the end total variation of the action is only proportional to the boundary

component and not its derivative. Since we are working in Newman-Unti gauge we

use the boundary terms found in (3.55).7 The boundary action that we add to the

Einstein-Hilbert action is,

Sbdry = (16πG)−1
√
σ
[
2 V a∂rVa − ∂rω −

(
ω σab + V aV b − V cVc σ

ab
)
∂rσab − σab ∂uσab

]
=

√
σ ∂r(V

aVa − ω) + 2 [(V aVa − ω) ∂r − ∂u]
√
σ

(5.21)

and the total divergence term in δSEH+bdry is (16πG)−1 times

∂a
[√
σ
(
δV a − V a σbc δσ

bc
)]

(5.22)

that we ignore (this amounts to assuming that the geometry of Σ2 with coordinates

(z, z̄) is either compact or, when it is not, the integrand falls off fast enough near its

asymptotes). Here Va = gua , ω = guu , σab = gab. Substituting the series expansion

of these components near the boundary I, one obtains the following expansion of

7Normally the boundary action for AdSd+1 gravity in Fefferman-Graham gauge [101, 102] or
the gauge used to describe ‘boosted black brane’ [165] is invariant under d-dimensional boundary
preserving diffeomorphisms. We expect the variational problem that gives rise to chiral symmetry
algebra in NU gauge to hold for these gauges as well.
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the variation of total Lagrangian density after adding boundary action,

δLEH+bdry = −2 r3
√
g(0) δg(0)uu − r2

√
g(0)

[
1

2

(
gcd(0)g

(1)
cd

)
δg(0)uu + 2 δg(1)uu

]
− r

√
g(0)

[
2 δg(2)uu + g(2)uu g

ab
(0) δg

(0)
ab +

1

2

(
gcd(0)g

(1)
cd

)
δg(1)uu − 2 g(2)ua g

ab
(0)δg

(0)
ub

− 1

2

(
gab(0)∂ug

(1)
bc g

cd
(0) δg

(0)
da −

(
gcd(0)∂ug

(1)
cd

)(
gab(0) δg

(0)
ab

)]
−
√
g(0) δL0 +O(1/r)

(5.23)

where:

δL0 =
1

2

(
gcd(0)g

(1)
cd

)
δg(2)uu +

1

2
g(2)uu

(
gab(1)δg

(0)
ab

)
− 1

2

[1
2
Tr (g−1

(0) g
(1)) Tr (g−1

(0)g
(2))− Tr

(
g(1)g−1

(0)g
(2)g−1

(0)

)
− 1

8
Tr (g−1

(0) g
(1))Tr

(
g(1)g−1

(0)g
(1)g−1

(0)

)
+

1

4
Tr
(
g(1)g−1

(0)

)3 ]
δg(0)uu −

(
D(ag

(2)
b)u −Dcg(2)uc g

(0)
ab

)
δgab(0)

− 1

4
Tr(g−1

(0) g
(1))

(
∂ug

(1)
ab − ∂u(Trg

(1))g
(0)
ab

)
δgab(0) +

1

2

(
∂ug

(2)
ab δg

ab
(0) − Tr(∂ug

(2))
(
g
(0)
ab δg

ab
(0)

))
+ g(2)ua g

ab
(1)δg

(0)
bu − 2g(2)au g

ab
(0) δg

(1)
bu + g(2)uu g

ab
(0)δg

(1)
ab

− 1

2

(
Tr
(
g−1
(0)∂ug

(1)g−1
(0)δg

(1)
)
− Tr

(
g−1
(0)∂ug

(1)
)
Tr
(
g−1
(0)δg

(1)
))

(5.24)

with Tr
(
g−1
(0) g

(2)
)

= gab(0)g
(2)
ab and so on. The variation is calculated at r = r0

hypersurface and in the end, we take the limit r0 → ∞. The terms at O
(

1
rn
(0)

)
for

n ≥ 1 vanish in this limit and therefore one does not need to consider these terms

for our analysis.

Now we impose boundary conditions on the boundary data such that the total

variation in (5.23) is zero on the solution space.

1. For the terms atO(r3) andO(r2) to vanish one has to impose δg
(0)
uu = δg

(1)
uu = 0.

This condition implies that va = δva = 0 for our solution. It also states that

δθ = 0 which is solved by keeping determinant of the 2d spatial boundary

metric fixed such that δ

√
det g

(0)
ab = 0. To impose such a condition we parame-

terize our boundary metric g
(0)
ab in chiral Polyakov gauge where we set g

(0)
z̄z̄ = 0

and g
(0)
zz̄ = Ω(z, z̄) and δg

(0)
z̄z̄ = δg

(0)
zz̄ = 0. Ω(z, z̄) is the conformal factor of 2d

metric which is 1
2
for R2 and 4

(1+zz̄)2
for S2. In rest of the analysis we work

with Ω(z, z̄) = 1
2
. It is straightforward to extend the solution for the case of
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S2. The line element of the resultant 2d boundary metric is given as follows,

ds22d = g(0)zz (u, z, z̄) dz
2 + dz dz̄ (5.25)

These chiral boundary conditions on the boundary metric are similar to what

was imposed in (3.25) except now the boundary metric has u dependence as

well.

2. At order O(r) we impose one more condition which is,

δ

∫
d2z

[√
g(0)R0

]
= 0. (5.26)

This condition was also used for locally flat case in Chapter 3. It corresponds

to holding the Euler character of metric g
(0)
ab fixed [129].

The above conditions along with gab(0) g
(1)
ab = 0 ensure that δLEH+bdy vanishes on the

solution space that shares the same boundary conditions. In literature the boundary

conditions va = δva = δ

√
det g

(0)
ab = 0 were also imposed in [15] where the symmetry

algebra of asymptotically locally AdS4 was found to be Λ-bms4. These conditions

were realised using the gauge freedom of the boundary diffeomorphisms and Weyl

scaling of boundary metric data. Instead of imposing chiral boundary conditions,

their treatment kept the boundary metric g
(0)
ab general with determinant fixed.

Once we impose these boundary conditions on our configuration space we see that

g
(0)
zz is the only free data on the boundary. One can now easily solve (5.2) and (5.3)

completely by solving the following constraint equations that are obtained from the

O(r3) terms of det(g(4d))Auruz̄, det(g
(4d))Auruz and O(r5) terms of det(g(4d))Auzuz

respectively,

∂u ∂
2
z̄ g

(0)
zz = 0, ∂z ∂

2
z̄ g

(0)
zz = l2 ∂2u ∂z̄g

(0)
zz , (5.27)

∂u

[
1

2

(
∂z̄g

(0)
zz

)2 − g(0)zz ∂
2
z̄ g

(0)
zz + ∂z ∂z̄ g

(0)
zz − l2

2
∂2u g

(0)
zz

]
= 0. (5.28)

It is important to keep track of the correct powers of l in the solution because g
(0)
ab

should have no length dimension and hence any power of u should be accompanied

by 1
l
to make it dimensionless. Being careful about the correct scaling factor plays

an important role while taking the flat space limit. Since g
(1)
ab has length dimension

one and should also survive the flat space limit, we write down the solution in a way
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that it scales as
√
G(G is the Newton constant) in the limit l → ∞.8 Keeping these

in mind, the solution to the equations (5.27) and (5.28) is given by,

g(0)zz = Γ(u, z) + J−1(z) + z̄2 J1(z) + z̄

(
J0(z)−

√
Gu

l2
G1/2(z) +

u2

l2
∂J1(z)

)
(5.29)

Γ(u, z) =
u
√
G

l2

(
3G1/2(z) ∂J1(z)

4 J1(z)2
−
∂G1/2(z)

2 J1(z)
−
G1/2(z) J0(z)

2 J1(z)

)
+
u2

l2

(
GG1/2(z)

2

4 l2 J1(z)
+
J0(z) ∂J1(z)

2 J1(z)
− 3 (∂J1(z))

2

4 J1(z)2
+
∂2J1(z)

2 J1(z)

)

−
u3

√
GG1/2 ∂J1(z)

2 l4 J1(z)
+
u4 (∂J1(z))

2

4 l4 J1(z)
+

sin

(
2u

√
J1(z)

l

)
√
J1(z)

K1(z)+

sin2

(
u
√
J1(z)

l

)
J1(z)

K2(z)

(5.30)

where,

K1(z) =

√
G

8 l J1(z)2
[
2 J1(z)

(
∂ G1/2(z)− 2G−1/2(z) J1(z)

)
+G1/2(z) (2 J0(z) J1(z)− 3 ∂J1(z))

]
, (5.31)

K2(z) = −1

2

(
κ(z)− 1

2
J0(z)

2 − ∂J0(z) + 2 J1(z) J−1(z)
)

+
1

4 J1(z)2
[
3 (∂J1)

2 − J0(z) ∂(J1(z)
2)− 2 J1(z) ∂

2 J1(z)−
G

l2
J1(z)G1/2(z)

2
]
.

(5.32)

Let us discuss some of the properties of this solution,

1. As mentioned before the only free data is g
(0)
zz . Rest all other metric compo-

nents are obtained from g
(0)
zz .

2. The solution is parameterised by six holomorphic functions,

{Ja(z) , κ(z) , Gs(z)} for a ∈ {0,±1} and s ∈ {±1/2}. (5.33)

3. As can be seen from the solution, function J1(z) appears in the denominator

at several places. However, the solution has a well-defined limit as J1(z) → 0

8One can also use Planck length lpl.
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along with the other five functions in (5.33) such that the solution does not di-

verge. One gets back to the global AdS4 solution when all the six holomorphic

functions approach zero value.

4. The solution has a well defined flat space limit (l → ∞) such that,

ds2LAdS4
= ds2LF +O

(
1

l2

)
+ · · · (5.34)

where · · · indicate higher order terms in 1
l2
with,

ds2LF =− 2 du dr + r2 dz dz̄ + r2
(
Jp(z) z̄

1+p
)
dz2

+ r u

(
1

u

√
GGs(z) z̄

2s+1
2 + κ(z) +

1

2
Jp(z)J

p(z)− (1 + p) z̄p ∂z Jp(z)

)
dz2

+ 2

(
2s+ 1

2

√
GGs z̄

2s−1
2 − u p (1 + p) ∂zJp z̄

p−1

)
du dz

− 2 p (1 + p) Jp z̄
p−1 du2, p ∈ {−1, 0, 1}, r ∈ {−1

2
,
1

2
} (5.35)

The expression of ds2LF coincides with the locally flat solution found in (3.72),

where the topology of the boundary metric at the boundary of flat space is R2

with the identification {Jp → −Jp , κ(z) → −κ(z), Gs → Cr√
G
}.

Now that we have obtained LAdS4 solution with chiral boundary conditions we

turn next to calculating its asymptotic symmetry algebra, i.e., a set of residual

diffeomorphisms that keep this solution within the same equivalence class. In the

process, we will derive the variations of the six holomorphic functions (5.33) due to

these diffeomorphisms.

5.1.2 Asymptotic symmetry algebra

We look for residual diffeomorphisms that take us from one LAdS4 solution to an-

other without spoiling the gauge and boundary conditions of our initial solution.

To preserve the gauge conditions of the NU gauge the vector fields of the form ξµ∂µ

should satisfy,

∂rξ
u = 0, ∂uξ

u + ∂rξ
r = gua ∂rξ

a, ∂aξ
u = gab∂rξ

b (5.36)

From first of the equation in (5.36) we see that ξu = ξu(0)(u, z, z̄). The other two

equations can further be solved in an asymptotic expansion around large-r. We
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expand ξr and ξa near the boundary as follows,

ξr =
∞∑
n=0

r1−nξr(n)(u, z, z̄), ξa =
∞∑
n=0

r−nξa(n)(u, z, z̄), a ∈ {z, z̄} (5.37)

At each order in r the equations (5.36) are solved recursively to obtain the terms at

subleading order in r of ξr and ξi in terms of leading coefficients ξr(0) and ξ
i
(0) and

ξu(0). The first few terms are given by,

ξr(0) = −∂uξu(0) + va ∂aξ
u
(0) , ξr(2) = g(2)ua ξ

a
(1) + 2 ξa(2) g

(1)
ua ,

ξr(n) = ξa(n−1) g
(2)
ua , for n = 3, 4, · · · ,

ξa(1) = −gab(0) ∂bξu(0) , ξa(2) =
1

2
gab(0) g

(1)
bc g

cd
(0)Dd ξ

u
(0).

(5.38)

Also demanding that the vector fields preserve the traceless condition of g
(1)
ab allows

us to solve for ξr(1) which is given by,

ξr(1) =
1

2
□ ξu − 1

4
ξa(0)Da

(
gbc(0)g

(1)
bc

)
− 1

4
∂u

(
ξu gbc(0)g

(1)
bc

)
+

1

4
vc ∂c ξ

u
(0) g

ab
(0) g

(1)
ab . (5.39)

Here ξa(0) and ξu(0) are unconstrained functions of (u, z, z̄) and constitute boundary

vector fields that are obtained by the pullback of ξ on the boundary

ξbdry = ξu(0) ∂u + ξa(0) ∂a. (5.40)

The variation of free data g
(0)
ab and va in terms of these components of boundary

vector fields are given by,

δg
(0)
ab = ξu(0)∂u g

(0)
ab + Lξc

(0)
g
(0)
ab + 2 v(a∂b) ξ

u
(0) − 2 g

(0)
ab

(
∂u ξ

u
(0) − vc ∂c ξ

u
(0)

)
, (5.41)

δva = ξu(0) ∂uva + Lξc
(0)
va + va

(
2 vc ∂c ξ

u
(0) − ∂u ξ

u
(0)

)
+ g

(0)
ab ∂uξ

b
(0)

− 1

l2
∂aξ

u
(0) g

(0)
uu + ∂a ξ

u
(0) v

b vb. (5.42)

Here Lξc
(0)
g
(0)
ab is the Lie derivative of boundary metric g

(0)
ab under boundary vector

field ξc(0). Demanding that the transformation of free data at the boundary {g(0)ab , va}
under (5.40) should obey the conditions obtained by solving variational principle will

give us constraints on these boundary vector fields. The conditions that we impose

are,

δg
(0)
z̄z̄ = 0 , δg

(0)
zz̄ = 0 , δva = 0 (5.43)
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along with g
(0)
z̄z̄ = va = 0, g

(0)
zz̄ = 1

2
. From δg

(0)
z̄z̄ = 0 one gets,

ξz(0)(u, z, z̄) = Y z(u, z). (5.44)

From δva = 0 one gets the equation

∂aξ
u
(0) g

(0)
uu = −g(0)ab ∂uξ

b
(0). (5.45)

The z̄ component of equation (5.45) can be solved to give

ξu(0) = f(u, z) +
l2

2
z̄ ∂uY

z(u, z). (5.46)

Imposing δg
(0)
zz̄ = 0 allows one to write ξz̄ as follows,

ξz̄(0) = Y z̄(u, z) + z̄ (2 ∂uf − ∂zY
z) +

l2

2
z̄2 ∂2u Y

z. (5.47)

Also, we have ξr(0) = −∂uξu(0). Note the explicit z̄ dependence of the boundary

vector fields. Using these expressions one finds that the z component of (5.45) is

a polynomial in z̄ with the highest power of z̄ as 2. Setting the coefficient of each

power of z̄ in δvz to zero separately one gets the following conditions,

l2

4
∂3u Y

z + J1(z) ∂uY
z(u, z) = 0, (5.48)

∂2u f(u, z) + J0(z) ∂uY
z(u, z)− ∂u ∂z Y

z(u, z)

+
1

l2
(
u2 ∂ J1(z) ∂u Y

z(u, z)− u
√
GG1/2(z) ∂uY

z
)
= 0, (5.49)

1

2
∂u Y

z̄(u, z)− 1

l2
∂z f(u, z) + Γ(u, z) ∂uY

z(u, z) = 0 (5.50)

where Γ(u, z) was defined in equation (5.30). After completely determining z̄ de-

pendence of these vector fields one can solve these differential conditions to obtain

the explicit u dependence. The solution to equation (5.48) is given by

Y z(u, z) = Y (z) +

√
GP1/2(z)

l

sin

(
2u

√
J1(z)

l

)
√
J1(z)

+ Y1(z)

sin2

(
u
√
J1(z)

l

)
J1(z)

. (5.51)

As the order of the differential equation is three, the solution has three undetermined

integration functions {Y (z), P1/2(z), Y1(z)}. Similarly to obtain f(u, z) one solves

115



equation (5.49) to find

f(u, z) =
√
GP−1/2(z) +

sin

(
2u

√
J1(z)

l

)
√
J1(z)

L1(u, z) +

cos

(
2u

√
J1(z)

l

)
J1(z)

L2(u, z)

+

√
G

4 J1(z)2
(
2 J1(z) (∂P1/2(z)− J0(z)P1/2(z)) +G1/2 Y1(z) + P1/2 ∂J1(z)

)
+

u

4 J1(z)2

(
2 J1(z)

(
∂Y1(z)−

G

l2
G1/2(z)P1/2(z)− J0(z)Y1(z)

)
− Y1(z) ∂J1(z)

)
+
u

2
(∂Y (z) + Y0(z))

(5.52)

where L1(u, z) , L2(u, z) are ,

L1(u, z) =
G

4 l J1(z)

[
2G1/2(z)P1/2(z) +

l2

G
(J0(z)Y1(z)− ∂Y1(z))

]
−

√
Gu

4 l J1(z)

[
G1/2(z)Y1(z) + 2P1/2(z) ∂J1(z)

]
+

u2

4 l J1(z)
Y1(z) ∂J1(z), (5.53)

L2(u, z) =

√
G

4 J1(z)

[
2 J1(z) J0(z)P1/2(z)−G1/2(z)Y1(z)− P1/2(z) ∂J1(z)−

1

2
∂P1/2(z)

]
+

u

4 l2 J1(z)

[
l2 Y1(z) ∂J1(z)− 2GJ1(z)G1/2(z)P1/2(z)

]
+

√
Gu2

2 l2
P1/2(z) ∂J1(z).

(5.54)

The solution has two undetermined integration functions P−1/2(z) and Y0(z). Now

that we know Y z(u, z) and f(u, z) in closed form, one can use them in equation

(5.50) to obtain Y z̄ as follows,

Y z̄(u, z) = Y−1(z) +
2

l2

∫
du ∂z f(u, z)− 2

∫
du (Γ(u, z) + J−1(z)) ∂uY

z(u, z) + L3(z)

(5.55)
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where L3(z) is given by,

L3(z) =

√
GP1/2(z)

2 l J1(z)
K1(z) +

3Y1(z)

8 J1(z)2
K2(z) +

∂Y1(z)

4 J1(z)3
(J1(z) J0(z) + ∂J1(z))

+
GP1/2(z)

2 l2 J1(z)3

[
J1(z)

2G−1/2(z) +
3

4
G1/2(z) ∂J1(z)−

3

2
G1/2(z) J1(z) J0(z)

]
+

3Y1(z)

8 J1(z)2

[
2

3
∂J0(z) +

J0(z) ∂J1(z)

3 J1(z)
− 3 ∂J1(z)

2

2 J1(z)2
+
∂2 J1(z)

J1(z)
− 8

3
J−1(z) J1(z)

+
5GG1/2(z)

6 l2 J1(z)

]
+

1

4 J1(z)2

(
3G

l2
G1/2(z) ∂P1/2(z)− ∂2 Y1(z)

)
(5.56)

where Y−1(z) is another integration function and the integral over u can be performed

easily to obtain the closed form. L3(z) is written in a way such that the flat space

limit of this vector field agrees with that of locally flat solutions in (3.99).

In conclusion, the boundary vector fields that generate residual diffeomorphisms on

the chiral LAdS4 solution are parameterised by six holomorphic functions

{Ya(z) , Y (z) , Ps(z) } for a ∈ {0,±1} and s ∈ {±1/2}.. (5.57)

The subleading terms in 1
l2

as well as in r expansion are given in terms of these

six holomorphic free functions. The solution to equations (5.48, 5.49, 5.50) is con-

structed in such a way that it has a well-defined flat space limit and the behaviour is

smooth if J1(z) is taken to zero. Also one needs to take care of the length dimension

of vector fields. ξz and ξz̄ is dimensionless but ξu has dimension one. In the flat

space limit ξu gets scaled by
√
G like we did for g

(1)
ab . After taking care of these sub-

tleties one finds that in the large l limit the components of boundary vector fields

behave as follows,

ξu(0) =
√
G
(
P−1/2(z) + z̄ P1/2(z)

)
+
u

2

(
Y(0)(z) + ∂Y (z) + 2 z̄ Y1(z)

)
+ · · · (5.58)

ξz(0) = Y (z) + · · · (5.59)

ξz̄(0) = Y−1(z) + z̄ Y0(z) + z̄2 Y1(z) + · · · . (5.60)

where · · · denotes higher order terms in 1
l2
. One observes that in this limit the leading

order terms in 1
l2

expansion of the boundary vector field is equal to the boundary

vector field that was found in the context of locally flat solutions in (3.99) with

appropriate identification of Ps(z). If we now inspect δg
(0)
zz then we can deduce the

transformations of background fields (5.33) in terms of (5.57). We do the following
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redefinition on the fields:

J1(z) →
1

2
J1(z) , J−1(z) →

1

2
J−1(z) , Y1(z) →

1

2
Y1(z) , Y−1(z) →

1

2
Y−1(z).

These variations are then given by

δJa(z) =
2G

l2
(τa)

ss′ Gs(z)Ps′(z) + ∂Ya(z) + f bc
a Jb(z)Yc(z) + ∂(Ja(z)Y (z)),

(5.61)

δκ(z) = Y (z) ∂ κ(z) + 2κ(z) ∂Y (z)− ∂3 Y (z)

+
2G

l2
(τa)ss

′
Ja(z)Gs(z)Ps′(z) +

3G

l2
ϵss

′
Gs ∂Ps′ +

G

l2
ϵss

′
∂Gs Ps′ , (5.62)

δGs(z) =
3

2
Gs(z) ∂Y (z) + Y (z) ∂Gs(z)− 2 ∂2 Ps(z) + Ps(z)

(
κ(z) +

1

2
ηab Ja(z) Jb(z)

)
+ Gs′(z) (τ

a)s
′

s Ya(z) + 4 ∂Ps′(z) (τ
a)s

′

s Ja(z) + 2Ps′(z) (τ
a)s

′

s ∂Ja(z). (5.63)

Here a, b, c.. ∈ {−1, 0, 1} and s, s′ ∈ {−1
2
, 1
2
} and f bc

a and (τa)rs are structure

constants defined as,

f c
ab = (a− b) δca+b , (τa)

r
s =

1

2
(a− 2s) δra+s. (5.64)

The indices s, s′ are raised and lowered by ϵss
′
and ϵss′ whereas indices a, b, c, .. are

raised and lowered by ηab and ηab. These are further defined as,

ηab = −(1− 3a2) δa+b,0, ηab = − 1

(1− 3a2)
δa+b,0, (5.65)

ϵss′ = 2s′ δs+s′,0, ϵss
′
= −2s′ δs+s

′,0. (5.66)

5.1.3 Algebra of vector fields

In the previous section, we derived full set of vector fields that enable us to move in

the class of LAdS4 solutions. Now we check whether the Courant brackets defined in

(2.14) between any two of these vector fields close under the modified commutator

[ ξ1 , ξ2 ]M := ξσ1 ∂σ ξ2 − ξσ2 ∂σ ξ1 − δξ1 ξ2 + δξ2 ξ1. (5.67)
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Calculating the bracket as in eq (5.67) we find:

[ ξ1(P
1
r , Y

1, Y 1
a ) , ξ2(P

2
r , Y

2, Y 2
a ) ]M = ξ̂u(0) ∂u + ξ̂z(0) ∂z + ξ̂z̄(0) ∂z̄ + ξ̂r(0)∂r + · · · (5.68)

where {ξ̂u(0) , ξ̂z(0) , ξ̂z̄(0) , ξ̂r(0)} are functions of P̂r , Ŷ , Ŷa which are defined as follows:

Ŷ = Y 1(z) ∂Y 2(z)− Y 2(z) ∂Y 1(z)− 2G

l2
ϵrs P 1

r (z)P
2
s (z),

Ŷa = Y 1(z) ∂Y 2
a − Y 2(z) ∂Y 1

a − f bc
a Y 1

b (z)Y
2
c (z)−

4G

l2
(τa)

rs P 1
r ∂P

2
s

+
4G

l2
(τa)

rs P 2
r ∂P

1
s +

4G

l2
Ja(z) ϵ

rsP 1
r P

2
s ,

P̂r = −(τa)sr
(
P 1
s Y

2
a − P 2

s Y
1
a

)
+ Y 1 ∂P 2

r − Y 2 ∂P 1
r +

1

2
P 1
r ∂Y

2 +
1

2
P 2
r ∂Y

1.

(5.69)

The vector fields on the L.H.S of (5.67) are parameterised by two sets of six holo-

morphic functions written down in (5.57) and under this modified commutator the

form of a resultant vector field on the R.H.S does not change and have the same

functional dependence on a combination of these two sets as written down in (5.69).

Note the dependence of Ŷ a on the background function Ja. Using (5.69) one can

write down the commutators between various modes of (5.57) as follows,

• Denoting the parameter Ya(z) = −zn by J a
n for a ∈ {−1, 0, 1} and n ∈ Z.

The commutator of these is given by,

[J a
m , J b

n ] =
(
a− b

)
J a+b
m+n (5.70)

This can be recognised as the sl2 current algebra.

• Denoting the parameter Y (z) as Y (z) = −zn+1 by Ln for n ∈ Z we find:

[Lm,Ln] = (m− n)Lm+n, [Lm ,J a
n ] = −nJ a

m+n (5.71)

which are Witt algebra, with J a(z) being h = 1 currents.

• Finally denoting the parameter Ps(z) as Ps,r(z) = −zr+ 1
2 where r ∈ Z+ 1

2
and

s ∈ {−1
2
, 1
2
}, the remaining commutators work out to be:

[Ln,Ps,r] =
1

2
(n− 2 r)Ps,n+r, [J a

n ,Ps,r] =
1

2
(a− 2 s)Pa+s,n+r = 0 (5.72)
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[
Ps,r,Pw,t

]
=

2G

l2
(r − t)Js+w,t+r −

2G

l2
ϵsw Lr+t +

4G

l2
ϵsw

(
J a
t+r+1Ja(z)

)
(5.73)

Thus the final result of the algebra of the vector fields that preserve our space of

locally AdS4 solutions are (5.70, 5.71, 5.72, 5.73). This algebra is one of the main

results of this chapter. The symmetry algebra can be considered as the chiral version

of Λ-bms4 [15, 16] and is a Lie algebroid as indicated by the presence of background

field (Ja(z)) dependent structure constant in the commutator of two Pr,s. We denote

this algebra as chiral Λ-bms4. In the limit l → ∞ one can see that Ps,r commute

and resultant algebra becomes the chiral bms4 (3.1).

5.1.4 Charges

If we perform the following redefinition of the field κ(z) and introduce a new function

T (z) as follows,

T = κ(z)− 1

2
ηab Ja(z) Jb(z)

then the resultant transformations of the field T (z) and Gs(z) are,

δT (z) = Y (z) ∂ T (z) + 2T (z) ∂Y (z)− ∂3 Y (z)

− ηab Ja(z) ∂Yb(z) +
3G

l2
ϵss

′
Gs(z) ∂Ps′(z) +

G

l2
ϵss

′
∂Gs(z)Ps′(z), (5.74)

δGs(z) =
3

2
Gs(z) ∂Y (z) + Y (z) ∂Gs(z)− 2 ∂2 Ps(z) + Ps(z)

(
T (z) + ηab Ja(z) Jb(z)

)
+ Gs′(z) (τ

a)s
′

s Ya(z) + 4 ∂Ps′(z) (τ
a)s

′

s Ja(z) + 2Ps′(z) (τ
a)s

′

s ∂Ja(z). (5.75)

The variation of holomorphic functions {T (z), Ja(z), Gs(z)} in (5.61, 5.74, 5.75) is

very similar to the transformation of chiral currents in 2d CFT. For instance, un-

der Y (z), T (z) transforms like a conformal stress tensor of weight 2 of a 2d CFT.

Therefore, we treat it as a stress tensor and Y (z) as the generator of Virasaro trans-

formations. Then under these Virasaro transformations Ja(z) and Gs(z) transform

as conformal primaries of weights 1 and 3
2
respectively. The transformation of Ja(z)

under Ya and the form of structure constant (f bc
a ) suggest that these are sl(2,R)

Kac-Moody currents at some (undetermined) level and therefore the parameters

Ya(z) generate this current algebra symmetry. The transformation of Gs(z) under

this current algebra indicates that these Gs(z) are a doublet of current algebra pri-
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maries. To summarize, the background fields can be classified as a chiral stress

tensor T (z), a triplet of sl(2,R) Kac Moody currents Ja(z) and a doublet (h = 3
2
)

of conformal primary as well as current algebra primaries Gs(z).

We now promote the fields in (5.33) to conformal operators and propose a line

integral charge just like in a 2d CFT that will induce the transformations (5.61,

5.74, 5.75). Once we propose such a charge, we derive the OPEs between various

operators in (5.33) that will give rise to these transformations. The conjectured line

integral charge is,

Q =

∮ [
T (z)Y (z)− ηab Ja(z)Yb(z) +

2G

l2
ϵss

′
Gs(z)Ps′(z)

]
dz

2πi
(5.76)

Here we assume that the underlying symmetry algebra is at a fixed level of cen-

tral charge and current level.9 The operator product expansions between various

operators in (5.33) are given by

T (z) Ja(w) =
Ja(w)

(z − w)2
+
∂Ja(w)

(z − w)
,

Ja(z) Jb(w) =− ηab
(z − w)2

− f cab Jc(w)

(z − w)
,

T (z)T (w) =− 6

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
,

Ja(z)Gs(w) =− Gs′ (τa)
s′
s

(z − w)
,

T (z)Gs(w) =
3Gs(w)

2 (z − w)2
+
∂Gs(w)

(z − w)
,

2G

l2
Gs(z)Gs′(w) =

4 ϵss′

(z − w)3
− ϵss′ T (w)

(z − w)
− ϵss′ J

2(w)

(z − w)

− 2 (τ)ass′

[
∂Ja(w)

(z − w)
+

2 Ja(w)

(z − w)2

]
. (5.77)

These OPEs are obtained using standard 2d conformal field theory techniques. Next,

we write the operators T (z), Ja(z) and Gs(z) in terms of their modes as

Ln =

∮
dz

2πi
zn+1T (z), Ja,n =

∮
dz

2πi
znJa(z), Gs,r =

∮
dz

2πi
zr+

1
2Gs(z). (5.78)

9The derivation of the charge (5.76) and the value of the current algebra level and central charge
c in terms of dimensionless parameters of the bulk is an open problem.
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The OPEs (5.77) are then translated to the following commutators,

[Lm, Ln] = (m− n)Lm+n −
1

2
m(m2 − 1)δm+n,0

[Lm, Ja,n] = −nJa,m+n, [Lm, Gs,r] =
1

2
(n− 2r)Gs,n+r

[Ja,m, Jb,n] = −mηab δm+n,0 − fab
c Jc,m+n , [Ja,n , Gs,r] = −Gs′,n+r(λa)

s′

s

2G

l2
[Gs,r,Gs′,r′ ]=ϵss′

[
2

(
r2 − 1

4

)
δr+r′,0− Lr+r′− (J2)r+r′

]
−(r − r′)Ja,r+r′(λ

a)ss′

(5.79)

where we shifted the zero mode of Ln as,

Ln → Ln +
1

2
δn,0. (5.80)

The commutator algebra in (5.79) is another main result of this chapter in addition

to (5.70, 5.71, 5.72, 5.73). Under a suitable scaling of operator Gs → l2

2G
Gs and

taking l → ∞, the algebra (5.79) reduces to chiral bms4 with non-zero central charge

and current level.

We have derived a charge algebra from the bulk AdS4 gravity after postulating the

existence of line integral charges that generate the residual diffeomorphisms which

themselves obey the algebra (5.70, 5.71, 5.72, 5.73). This charge algebra is non-

linear as can be seen by the presence of (J2)r+r′ term on the RHS of commutator

[Gs,r, Gs′,r′ ] and is a semi-classical limit of a W-algebra at a specific value of central

charge and current level. The operator contents of this W- algebra include,

1. Chiral stress tensor T (z) with central charge c.

2. Spin-1 sl(2,R) current algebra primary Ja for a ∈ {−1, 0, 1} with level κ.

3. A doublet of spin 3
2
chiral operators Gs(z) for s ∈ {−1

2
, 1
2
}.

To validate our findings, in the next section, we will derive a complete quantum

version of the algebra (5.79) for finite central charge and current level using tools of

2d CFT such as associativity constraints.
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5.2 Derivation of W-algebra

The problem of finding extensions of conformal symmetry of a 2d chiral CFT to those

with an extended set of symmetry currents has a long history. Such algebras can be

described by the operator product expansions of the set of all the conformal primary

chiral fields involved. The singular parts of the OPE result in Lie brackets of the

modes with the regular parts forming the normal ordered products. These OPEs are

demanded to be consistent with conformal symmetry as well as to satisfy the OPE

associativity constraints [159]. One can implement the associativity constraints in

terms of modes ϕn in which each chiral quasi-primary ϕ(z) with dimension hϕ is

written as

ϕ(z) =
∑
n∈Z

z−n−hϕϕn for hϕ ∈ Z>0

or

ϕ(z) =
∑
r∈Z+ 1

2

z−r−hϕϕr for hϕ ∈ Z≥0 +
1

2
.

This procedure was laid out fully by Nahm et al. [25] (see also [161]) developing

further on earlier works such as [166]. Even though these techniques of construction

of new algebra are standard, we review them and show their working explicitly to

derive the W-algebra of our interest for the convenience of the readers. We briefly

list the relevant steps involved.

1. One starts by listing out all simple Virasoro primary fields.10 In our case these

are, the identity operator I (h = 0), the chiral stress tensor T (z) (h = 2), the

sl(2,R) currents Ja(z) (h = 1) and the current algebra primary doublet Gs(z)

(h = 3/2).

2. Then one constructs all the quasi-primaries that are formed by considering

normal ordered products of simple primaries, that can appear on the right-

hand side of the OPE of simple primaries with dimensions up to 2h− 1 where

h is the largest conformal dimension in the set of simple primaries. In our

case, the highest dimension is that of T (z) which has h = 2 and therefore we

only have to consider quadratic normal ordered quasi-primaries of dimension

up to 2.

3. Then one uses global conformal symmetry (and other symmetries postulated)

to solve for the structure constants that appear between simple primaries and

10A primary is said to be simple if the corresponding state is orthogonal (with overlap defined
using the BPZ duals) to those of all the normal ordered quasi-primaries [25].
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global descendants of quasi-primaries completely. However, those between

three simple primaries remain free parameters at this stage.

4. Finally one needs to impose the Jacobi identities on the corresponding com-

mutators of modes of the simple primaries. This, in principle, determines the

remaining structure constants.

The theorems of Nahm et al. [25] then guarantee that the resultant chiral algebra

satisfies all the necessary constraints of 2d chiral CFTs.

Normal ordered quasi-primaries of interest

We have already declared our set of simple primaries. Now we need the list of

relevant quasi-primaries that are normal ordered products between any two of these

primaries. In terms of the modes of a primary

ϕi,n =

∮
dz

2πi
zn+hi−1ϕi(z) (5.81)

the normal ordered product is defined by

(ϕiϕj)n =
∑
k>−hi

ϕj,n−kϕi,k +
∑
k≤−hi

ϕi,kϕj,n−k . (5.82)

We need to consider normal ordered products such as

(TT )(w), (TJa)(w), (TGs)(w), (JaJb)(w), (JaGs)(w), (GsGs′)(w), (JaJbJc)(w), · · ·

and their derivatives. Among these, there is exactly one chiral operator of dimension

h ≤ 2 and it is (JaJb)(w) which has h = 2. It is easy to see that the symmetric tensor

(J(aJb))(w) is a quasi-primary (whereas the anti-symmetric combination is not). This

quasi-primary belongs to a reducible representation of the sl(2,R) algebra generated

by the zero modes of Ja(z); which can be decomposed into irreps by separating the

trace (constructed using the Killing form ηab of sl(2,R)) and the traceless parts. So

the only normal ordered quasi-primaries we need to consider are:

(J2)(w) := ηab(JaJb)(w) and (J(aJb))(w)−
1

3
ηab(J

2)(w).

Note that these are a singlet (j = 0) and a quintuplet (j = 2) respectively of the

sl(2,R) algebra.
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5.2.1 The OPE Ansatz

To construct the algebra that we seek we can start with all the OPEs that are un-

ambiguously fixed already by the nature of the chiral operators we have postulated,

namely, one T (z) (h = 2), one Ja(z) (h = 1) and one Gs(z) (h = 3/2). These are:

T (z)T (w) ∼ c

2
(z − w)−4 + 2 (z − w)−2 T (w) + (z − w)−1 ∂T (w) ,

T (z)Ja(w) ∼ (z − w)−2Ja(w) + (z − w)−1∂Ja(w) ,

T (z)Gs(w) ∼ (3/2)(z − w)−2Gs(w) + (z − w)−1∂Gs(w) (5.83)

and, following the conventions of Polyakov in [112] for the sl(2,R) current algebra

Ja(z)Jb(w) ∼ −κ
2
ηab(z − w)−2 + (z − w)−1fab

cJc(w),

Ja(z)Gs(w) ∼ (z − w)−1Gs′(w)(λa)
s′

s (5.84)

where a, b, · · · = 0,±1 and s, s′, · · · = ±1/2. The matrices λa form a 2 × 2 matrix

representation of sl(2,R) algebra which we take to be:

[λa, λb] = (a− b)λa+b . (5.85)

We use the following explicit form of these matrices

(λa)
s
s′ =

1

2
(a− 2s′)δsa+s′ . (5.86)

We define the sl(2,R) Killing form ηab via Tr (λaλb) =
1
2
ηab. Using the λa in (5.86)

we have

Tr(λaλb) = (λa)
s′

s(λb)
s
s′ =

1

2
(3a2 − 1)δa+b,0, (5.87)

which means ηab = (3a2 − 1)δa+b,0 along with its inverse ηab = (3a2 − 1)−1δa+b,0.

There is a unique invariant tensor in the tensor product of two spinor (j = 1/2)

representations of sl(2,R), namely the antisymmetric ϵss′ and we define it such that

ϵ− 1
2
,+ 1

2
= 1. We can lower and raise the fundamental/spinor indices on (λa)

s
s̃ using

ϵss̃ and its inverse ϵss̃, and the adjoint indices using ηab and its inverse ηab. We will
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also need the matrices (λa)ss̃ = ηabϵss′(λb)
s′

s̃ which have

(λa)ss′ = ηab(λb)ss′ =
1

2
δas+s′ (5.88)

and so are symmetric. Some more useful identities satisfied by the matrices λa are

(λa)
r
s(λb)

r′

s′η
ab = −1

2
ϵrr

′
ϵss′ −

1

4
δrsδ

r′

s′ ,

(λa)
s
s̃(λb)

s̃
s′ = −1

4
ηab δ

s
s′ +

1

2
fab

c(λc)
s
s′ . (5.89)

From these one also has ηab(λa)
s
s̃(λb)

s̃
s′ = −(3/4) δss′ . One more identity that λa

matrices satisfy is:

(λa)
s
ŝϵs′s̃ + (λa)

s
s̃ϵŝs′ + (λa)

s
s′ϵs̃ŝ = 0. (5.90)

Ansatz for Gs(z)Gs′(w) OPE :

The only remaining OPE is that of Gs(z)Gs′(w) and using global conformal invari-

ance we can write the right-hand side in terms of the quasi-primaries of dimension

up to (and including) h = 2 and their global descendants. The list of such quasi-

primaries is{
I, Ja(w), Gs(w), T (w), (J

2)(w), (J(aJb))(w)− (1/3)ηab(J
2)(w)

}
(5.91)

Apart from the (global) conformal symmetry, this OPE has to be consistent with

the sl(2,R) symmetry (the global part of the sl(2,R) current algebra) as well. From
the OPE of Ja(z) with Gs(w) we know that the index s is a doublet (j = 1/2)

index of this sl(2,R). Therefore the quasi-primaries that can appear in the OPE

Gs(z)Gs′(w) can only carry sl(2,R) indices of irreps in the tensor product of two

doublets, namely the singlet (j = 0) and the triplet (j = 1). Therefore, in our list

(5.91) of quasi-primaries neither Gs(w) nor (J(aJb))(w)−(1/3)ηab(J
2)(w) can appear

as they correspond to j = 1/2 and j = 2 irreps of sl(2,R) respectively.

• The coefficients in front of the j = 0 quasi-primary operators

{I, T (w), (J2)(w)} have to be proportional to the Clebsch–Gordan (CG) coef-

ficients of 1
2
⊗ 1

2
→ 0, namely ϵss′ .

• The coefficient in front of the j = 1 quasi-primary operator Ja(w) has to be
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proportional to the CG coefficients of 1
2
⊗ 1

2
→ 1, namely (λa)ss′ .

Thus after using all the global symmetries we arrive at the ansatz:

Gs(z)Gs′(w) = 2α ϵss′(z − w)−3 + δ (z − w)−2 (λa)ss′ [2 Ja(w) + (z − w) Ja
′(w)]

+β ϵss′(z − w)−1 T (w) + γ (z − w)−1 ϵss′(J
2)(w) .

(5.92)

The parameters (α, β, γ, δ) in (5.92) as well as the central charges (c, κ) in (5.83,

5.84) are to be constrained using OPE associativity, which we implement as Ja-

cobi identities of commutators of the modes of our simple primaries. Writing the

operators T (z), Ja(z) and Gr(z) in terms of their modes as

Ln =

∮
dz

2πi
zn+1T (z), Ja,n =

∮
dz

2πi
znJa(z), Gs,r =

∮
dz

2πi
zr+

1
2Gs(z) (5.93)

with n ∈ Z and r ∈ Z+ 1
2
, the OPEs (5.83, 5.84, 5.92) translate to:

1. Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (5.94)

2. Virasoro primaries:

[Lm, Ja,n] = −nJa,m+n, [Lm, Gs,r] =
1

2
(n− 2r)Gs,n+r (5.95)

3. sl(2,R) current algebra:

[Ja,m, Jb,n] = −1

2
κmηab δm+n,0 + fab

c Jc,m+n (5.96)

4. Current algebra primary:

[Ja,n, Gs,r] = Gs′,n+r(λa)
s′

s (5.97)
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5. Commutator [Gs,r, Gs′,r′ ]:

[Gs,r,Gs′,r′ ]=ϵss′

[
α

(
r2 − 1

4

)
δr+r′,0+β Lr+r′+γ (J

2)r+r′

]
+δ(r − r′)Ja,r+r′(λ

a)ss′

(5.98)

Finally, following [25] we have to impose the Jacobi identities on these commutation

relations. We turn to this next.

5.2.2 Imposing Jacobi Identities

Following our analysis of the imposition of Jacobi Identities, the details of which are

presented in Appendix E, the parameters (α, β, γ, δ, c, κ) must satisfy

α− c

6
β + γ

κ

2
= 0, α− δ

κ

2
= 0, β − γ (κ+ 2)− 1

2
δ = 0, β − γ − δ

2
= 0 .

(5.99)

These are linear and homogeneous equations in the variables (α, β, γ, δ). So for some

non-trivial solutions for (α, β, γ, δ) to exist the determinant of the coefficient matrix
1 − c

6
κ
2

0

1 0 0 −κ
2

0 1 −(κ+ 2) −1
2

0 1 −1
2

1
2


has to vanish. This gives c(2κ+ 5) + 6κ (2κ+ 1) = 0 which can be solved for c (for

κ ̸= −5/2) as

c = −6κ (1 + 2κ)

5 + 2κ
. (5.100)

When this holds, for generic values of κ the coefficient matrix is of rank 3 and

so there exists one non-trivial solution, which can be written (taking γ to be the

independent variable) as

α = −1

4
γκ(3 + 2κ), β =

1

4
γ(5 + 2κ), δ = −1

2
γ(3 + 2κ) . (5.101)

This is our final result valid for generic values of κ (̸= −5/2). The full commutator

algebra is (5.1) which we denoted by W(2; (3/2)2 , 13). Some observations are in

order:
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• As mentioned in the introduction, a W-algebra identical to that of

W(2; (3/2)2, 13) already existed in the literature in a different context [24].

The current algebra in [24] was sp(2) which is isomorphic to sl(2,R).

• When c ̸= −6κ (1+2κ)
5+2κ

we have to set α = β = γ = δ = 0, and the corresponding

algebra is a chiral extension of iso(1, 3) with arbitrary c and κ.

This case corresponds to the algebra found in [13, 14] as the central

charges there remained undetermined.

• We may also consider the limit γ → 0 in the non-trivial solution (5.101). This

corresponds to a contraction of the algebra (5.98) to the chiral extension of

iso(1, 3), but with the relation (5.100) still in place.

The chiral bms4 algebra obtained from the analysis of chiral boundary

conditions on R1,3 or R2,2 gravity appears to belong to this class.

• When γ ̸= 0 its value can be fixed to be any non-zero function of κ by an ap-

propriate normalisation of the generators Gs,r. Then the algebra is determined

completely in terms of one parameter (say) κ.

Relation to so(2, 3)

The non-trivial solution (5.100, 5.101) makes the algebra in (5.94 - 5.98) like the

W-algebras of yesteryears, particularly close to the Bershadsky-Polyakov algebra

W(2)
3 [167, 168]. Now we will argue that just as the W(2)

3 algebra is based on sl(3,R)
algebra, this new algebra is based on (and is an extension of) so(2, 3). For this, first

note that so(2, 3) algebra can be written more suggestively as follows:

[Lm, Ln] = (m− n)Lm+n, [L̄m, L̄n] = (m− n) L̄m+n, [Lm, L̄n] = 0

[Ln, Gs,r] =
1

2
(n− 2r)Gs,n+r, [L̄n, Gs,r] =

1

2
(n− 2s)Gn+s,r,

[Gs,r, Gs′,r′ ] = 2 ϵrr′ L̄s+s′ + 2 ϵss′ Lr+r′ (5.102)

for m,n · · · = 0,±1, r, s, · · · = ±1/2. Here one may think of Ln and L̄n to generate

either the so(2, 2) = sl(2,R) ⊕ sl(2,R) subalgebra or so(1, 3) = sl(2,C) ⊕ sl(2,C)c

subalgebra of so(2, 3). With the identification: L̄a = Ja,0 and noticing that fab
c =

(a − b)δca+b, the first two lines have the same form as those of our algebra (now

restricted to m,n · · · = 0,±1, r, s, · · · = ±1/2). To compare the [Gs,r, Gs′,r′ ] let us
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first take the large-κ (the “classical”) limit in (5.98). In this limit, from (5.100,

5.101) we have11

α → −1

2
γκ2, β → 1

2
γκ, δ → −γκ , c→ −6κ . (5.103)

Further in this limit by choosing γ → − 2
κ
we arrive at

α → κ, β → −1, γ → −2

κ
, δ → 2 , c→ −6κ . (5.104)

Finally noticing that in (5.98) the first term proportional to α drops out when

restricted to r, r′ = ±1/2. The term proportional to δ, for r, r′ = ±1/2 can be

rewritten, using (r − r′) = −ϵrr′ and (λa)ss′ =
1
2
δas+s′ , as

δ (r − r′) Ja,r+r′ (λ
a)ss′ → −ϵrr′L̄s+s′ . (5.105)

Therefore we conclude that the commutator (5.98) in the large-κ limit and restricted

to the global modes (r, r′, s, s′ · · · = ±1/2) reads

[Gs,r, Gs′,r′ ] = 2 ϵrr′ L̄s+s′ + 2 ϵss′ Lr+r′ +O(1/κ).

Thus the full algebra (5.1) is therefore an extension (and a deformation around

large-κ) of so(2, 3) algebra. This completes our analysis.

Comparison with the W-algebra of AdS4 gravity

In the large κ-limit, the coefficients {α, β, δ, c} take the value as in (5.104). In this

limit the OPEs become,

Gs(z)Gs′(w) =
2κ ϵss′

(z − w)3
− ϵss′ T (w)

(z − w)
−
ϵss′

2
κ
J2(w)

(z − w)

+ 2 (λ)ass′

[
∂Ja(w)

(z − w)
+

2 Ja(w)

(z − w)2

]
(5.106)

T (z)T (w) = − 3κ

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(5.107)

The rest of the other OPEs in this limit do not change. For the fixed value of κ = 2

and c = −12, these OPEs coincide with the OPEs in (5.77) (with the following

redefinition Gs →
√
G
l
Gs) that were derived using the postulated line integral charge

11It is curious that in this classical limit, the Virasoro central charge approaches the same value
as in [10, 169, 170], namely c = −6κ.
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(5.76). Therefore the currents that form the representation of chiral Λ-bms4 in AdS4

gravity obey a W-algebra which is the semi-classical limit of W(2; (3/2)2 , 13) that

we derived in this section.

5.3 The 3 and 4-point functions of currents

We have seen in previous sections how one can use Jacobi identities on the commu-

tators of the modes of the chiral (quasi-) primaries to impose the associativity of

OPEs of the corresponding chiral operators. Following [171], one can equivalently

impose the associativity of Operator Product Algebra by demanding the conformal

invariance and crossing symmetry conditions of 3 and 4- point functions of symmetry

generating currents {T (z), Ja(z), Gs(z)}. In this section, we present all the possi-

ble three-point and four-point correlation functions with the help of OPE relations

(5.83), (5.84) and (5.92), calculated using the method spelt out in [171]. Here we

also assume that one point function is zero for all the local operators. One demands

that these correlation functions follow two principles,

1. The n-point correlation function of primaries transform as follows under global

SL(2,R) conformal transformations z → a z+b
c z+d

,

⟨ϕ′
1(z

′
1)ϕ

′
2(z

′
2) · · ·ϕ′

n(z
′
n)⟩ =

(
dz′1
dz1

)−h1
...

(
dz′n
dzn

)−hn
⟨ϕ1(z1)ϕ2(z2) · · ·ϕn(zn)⟩

(5.108)

with the condition ad− bc = 1 imposed on the parameters {a, b, c, d}.

2. Correlation functions should be invariant under the rearrangement of quasi-

primaries in the correlation function, i.e., permutation symmetry.

It can be shown that imposing the above two conditions on these correlation func-

tions also leads to the constraint equations (5.99). The details of this calculation

are outlined in Appendix F. Here we only list these correlation functions resulting

after imposing equations (5.99). The non-zero 2-point correlation functions are,

⟨T (z1)T (z2)⟩ =
c
2

z412
, ⟨Ja1(z1) Ja2(z2)⟩ = −

κ
2
ηa1a2
z212

, ⟨Gs1(z1)Gs2(z2)⟩ =
2α ϵs1s2
z312
(5.109)

where zij = zi − zj.
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5.3.1 3-point functions

One expects the correlation functions to respect the global part of sl(2,R) current
algebra as well under Ja(z) is a triplet and Gs(z) is a doublet. Therefore any 3-

point correlator involving Ja’s and Gs’s should be given in terms of invariant tensors

carrying their representation indices of sl(2,R) and should vanish if no such invariant

tensors exist. This immediately leads to the expectation that any 3-point function

with one Ja(z) or odd number of Gs(z)’s vanishes. It is easy to verify that this is

indeed the case.

Now we list the remaining 3-point functions. The 3-point correlation functions of

the type ⟨TTT ⟩ , ⟨JJJ⟩ are:

⟨T (z1)T (z2)T (z3)⟩ =
c

z212 z
2
13 z

2
23

, ⟨Ja1(z1) Ja2(z2) Ja3(z3)⟩ = −
κ
2
fa1a2a3

z12 z13 z23
, (5.110)

These are invariant under the exchange of the insertion points (zi) and corresponding

indices (ai) and transform as (5.108) under global SL(2,R) conformal transformation

with h = 2 and h = 1 respectively. The correlation functions of the type ⟨TJJ⟩ are:

⟨T (z1) Ja2(z2) Ja3(z3)⟩ = ⟨Ja2(z2)T (z1) Ja3(z3)⟩ = ⟨Ja2(z2) Ja3(z3)T (z1)⟩

= − κ ηa2a3
2 z212 z

2
13

(5.111)

The correlation function (5.111) is invariant under the permutation of the zi and

corresponding ai index as expected. The 3-point correlation functions that contain

two G′s are given by,

⟨T (z3)Gs1(z1)Gs2(z2)⟩ = ⟨Gs1(z1)T (z3)Gs2(z2)⟩ = ⟨Gs1(z1)Gs2(z2)T (z3)⟩

=
3α ϵs1s2
z12 z132 z223

(5.112)

and

⟨Ja(z3)Gs1(z1)Gs2(z2)⟩ = ⟨Gs1(z1) Ja(z3)Gs2(z2)⟩ = ⟨Gs1(z1)Gs2(z2) Ja(z3)⟩

= −
2α (λa)s1s2
z13 z23 z122

. (5.113)

These are invariant under (z1, s1) ↔ (z2, s2) interchange as expected.
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5.3.2 4-point functions

Eight types of 4-point functions contain one Ja or odd number of Gs and they all

vanish as expected. This leaves us with seven types of 4-point functions that are

non-trivial and we provide their answers below.

The correlation function of four T (z)’s is given by,

⟨T (z1)T (z2)T (z3)T (z4)⟩ =
2c

(z1 − z2)4 (z3 − z4)4

[
x4

(1− x)2
+

x2

(1− x)

]
+

c2

4 (z1 − z2)4(z3 − z4)4

[
1 + x4 +

x4

(1− x)4

]
, (5.114)

where x is the cross ratio defined as

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
.

This correlation function is expected to be invariant under each of the permutations

of zi. To see this it is sufficient to check that the answer is invariant under each

of the exchanges z1 ↔ z4 ( x → 1
x
) and z1 ↔ z3 (x → 1 − x). The conformal

factor outside the bracket in (5.114) under these transformations compensates for

the changes inside the bracket such that the resultant answer is invariant.

The 4-point function with all Ja(z) is given by

⟨Ja1(z1) Ja2(z2) Ja3(z3) Ja4(z4)⟩ =
1

z212 z
2
34

(
κ2 I(1)a1a2a3a4

(x) + κ I(2)a1a2a3a4
(x)
)

(5.115)

where

I(1)a1a2a3a4
(x) =

1

4

[
ηa1a2 ηa3a4 + x2 ηa1a3 ηa2a4 +

x2

(1− x)2
ηa1a4 ηa2a3

]
, (5.116)

I(2)a1a2a3a4
(x) = −1

2

[
x (2− x)

1− x
f a5
a1a2

fa5a3a4 −
x

1− x
f a5
a1a3

fa5a2a4 + x f a5
a1a4

fa5a2a3

]
.

(5.117)

This correlator is expected to be invariant under the permutation of (zi, ai). For

this, it is sufficient to check that the answer (5.115) is independently invariant under

(x↔ 1
x

& a1 ↔ a4) and (x↔ 1− x & a1 ↔ a3). One can use Jacobi identity for

the structure constants f c
ab

f a5
a1a2

fa5a3a4 − f a5
a1a3

fa5a2a4 + f a5
a1a4

fa5a2a3 = 0 (5.118)
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to show that (5.115) is indeed invariant under these transformations.

The next non-trivial 4-point functions are

⟨T (z1) Ja2(z2) Ja3(z3) Ja4(z4)⟩ =
z24

z14 z312 z
2
34

κ

2
fa2a3a4

[
x3

x− 1
+

x

x− 1
− x2

x− 1

]
(5.119)

This correlation function (5.119) is invariant under all the permutations of (zi, ai)

for the three Jai(zi) insertions. One can further show that the correlation func-

tions ⟨JTJJ⟩ , ⟨JJTJ⟩ and ⟨JJJT ⟩ are all equal to (5.119), thus establishing its

invariance under all the possible rearrangements of the four operators involved.

The correlation functions with two T (z)’s and two Ja(z)’s such as ⟨TTJJ⟩, ⟨JTTJ⟩,
⟨JJTT ⟩, ⟨TJJT ⟩,⟨JTJT ⟩ and ⟨TJJT ⟩ are all equal to each other and given by,

⟨T (z1)T (z2) Ja3(z3) Ja4(z4)⟩ = −κ ηa3a4
z412 z

2
34

[
1

2

(
x2 +

x2

(x− 1)2

)
+
c

4

]
(5.120)

This expression (5.120) is invariant under (z1 ↔ z2) and/or (z3, a3) ↔ (z4, a4).

The next non-trivial 4-point function is with two G and two T given by,

⟨T (z1)T (z2)Gs3(z3)Gs4(z4)⟩ =
3α ϵs3s4
z412 z

3
34

(
c

3
+

2x2

(1− x)2
− x3

2(1− x)2
− 3x3

2(1− x)

)
(5.121)

The correlations obtained through permutations, such as ⟨GTTG⟩, ⟨GGTT ⟩,
⟨GTGT ⟩, ⟨TGTG⟩, ⟨TGGT ⟩ are all equal to ⟨TTGG⟩ in eq. (5.121) as required.

Next, we give the expression for ⟨JJGG⟩ type correlator:

⟨Ja1(z1) Ja2(z2)Gs3(z3)Gs4(z4)⟩ = − α

z212 z
3
34

Ja1a2s3s4 (5.122)

Ja1a2s3s4 = ϵs3 s4 ηa1a2

(
κ+

x2

2(1− x)

)
+ fa1a2

a3 (λa3)s3 s4

(
2x− x2

1− x

)
(5.123)

which can also be shown to be invariant under all permutations of the four operators

involved.

Finally, we present the correlation function involving four Gs(z) operators. After
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imposing the constraints (5.99), one can write this correlation function as follows,

⟨Gs1(z1)Gs2(z2)Gs3(z3)Gs4(z4)⟩ =
2α2

z312 z
3
34

(
2F (1)

s1s2s3s4
(x)− 1

κ
F (2)
s1s2s3s4

(x)

)
(5.124)

where

F (1)
s1s2s3s4

(x) = ϵs1s2 ϵs3s4
(
1 + x3

)
+ ϵs1s4 ϵs2s3

(
x3 +

x3

(1 + x)3

)
, (5.125)

F (2)
s1s2s3s4

(x) = ϵs1s2 ϵs2s4

(
x+ x2 +

x2

(1− x)2
+

x3

(1− x)2

)
ϵs1s4 ϵs2s3

(
x+

x

1− x
+

x3

(1− x)
+

x3

(1− x)2

)
. (5.126)

This correlator is expected to be invariant under all the permutations of the pairs

(zi, ai) which can be shown to be the case using the the following identity

ϵs1s3 ϵs2s4 − ϵs1s4 ϵs2s3 − ϵs1s2 ϵs3s4 = 0. (5.127)

This completes our verification of the expectation that the new algebra of the quasi-

primaries {T (z), Ja(z), Gs(z)} does lead to 3 and 4-point correlation functions of

these currents that are invariant under appropriate permutations.

5.4 Further Comments and Discussions

In this chapter, we found an analogue of chiral bms4 algebra for so(2, 3) Lie algebra.

This chiral extension of so(2, 3) which we denote as chiral Λ-bms4 was found to

be the asymptotic symmetry algebra of locally AdS4 solutions parameterised by

six holomorphic functions (T (z), Ja(z), Gs(z)) for a = 0,±1 and s = ±1/2 after

imposing chiral boundary conditions on codimension-two hypersurface consistent

with the well defined variational problem. We postulated line integral charge from

the bulk AdS4 gravity that induces the variations of these holomorphic currents.

The charge algebra obeyed a symmetry algebra which turned out to be the semi-

classical limit of a W-algebra. To validate our findings we derive such a W-algebra

from 2d chiral CFT techniques. We show that there exists a one-parameter family of

chiralW-algebras generated by six chiral operators (T (z), Ja(z), Gs(z)) for a = 0,±1

and s = ±1/2 with dimensions (2, 1, 3/2) which in semi-classical limit matches with

the W-algebra derived from AdS4 gravity. This W-algebra is identical to the one
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derived by Romans [24]. In the κ → ∞ limit it admits so(2, 3) as a subalgebra.

Just as so(2, 3) admits a contraction to iso(1, 3) our W-algebra (5.1) also admits a

contraction (γ → 0 for finite κ) to chiral bms4 algebra that appeared in the studies

of graviton soft-theorems [13, 14].

Using the nomenclature of [172] we refer to this new algebra (5.1) as

W(2; , (3/2)2, 13). It turns out this algebra is similar to the algebra found by Ro-

mans [24] in a different context. The spin-1 Kac-Moody current in [24] was sp(2) in

contrast to our sl(2,R) current algebra. Even though W(2; , (3/2)2, 13) has a chiral

primary Gs(z) of half-integer dimension, it is not a superconformal algebra such as

the one of Knizhnik [173]. The reason for this is that even though the current Gs has

h = 3/2 it still has an integer spin defined by L0−J0. Our algebra (5.1) is more akin

to the Bershadsky-Polyakov algebra W(2)
3 – where by considering a twisted stress

tensor one can make Gs(z) to appear bosonic (integral dimension).

The existence of line integral charges (5.76) from bulk AdS4 gravity needs to be

understood better. Usual ways of calculating charges through covariant phase space

formalism [120, 135, 136] or the cohomological formalism [118, 137, 138] lead to co-

dimension two surface charges. The charges for asymptotically locally AdS4 solution

as computed in [95, 99, 16] are proportional to holographic stress tensor which

vanishes for our locally AdS4 solution. However, as shown by authors in [99], for the

Neumann boundary condition, the effective boundary theory is an induced gravity

theory for which it is expected that such codimension-two charges will vanish. In

that case, the calculation of this induced gravity action at the boundary can lead

to such line integral charges. For locally AdS4 solution as shown by Skenderis

and Solodukhin in [105], the Weyl and diffeomorphism invariant boundary effective

action is zero therefore one needs to revisit the arguments of [105] and provide a

prescription to calculate such an effective action for locally AdS4 configurations.

The possibility of adding other boundary terms to the bulk action may also provide

a solution for such a problem as will be touched upon in the next chapter where

one can add a Pontryagin term to the bulk Einstein-Hilbert action that gives rise

to Chern-Simons gravity action at the boundary.

Originally the (finite-k) W(2)
3 algebra was realised in the constrained WZW model

with sl(3,R) algebra [167]. One expects that a similar realisation should exist for

the algebra presented here as well via Drinfeld-Sokolov reduction of so(2, 3) current

algebra (See for e.g [174, 175]). It will be interesting to exhibit this. Another chiral

W-algebra extension of so(2, 3) in the classical limit was obtained in [20] from the

asymptotic symmetry analysis of 3d conformal gravity. This algebra was called
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conformal bms3 or W(2,2,2,1).
12

One should also study possible representations of the chiral algebra constructed

here. Using the usual notions of inner products and unitarity of 2d CFTs, one does

not expect the algebra W(2; , (3/2)2, 13) to admit unitary representations without

imposing further constraints. This is because sl(2,R) current algebra at non-zero

level does not admit any unitary representations, the algebra will contain negative

norm states as can be seen from the two-point function of ⟨Ja(z)Jb(w)⟩ in equation

(5.109). The authors in [169] alluded to this issue, where sl(2,R) current algebra

arises in the context of 2d Polyakov-induced gravity. There exist two possible sce-

narios to preserve unitarity in this case. One can impose constraints to remove the

negative normed states, which require setting some of the currents Ja(z) to zero (see

for example [176]). Alternatively, one can set the level κ of the current algebra to

zero. One example of level zero sl2 current algebra is [13], which appears in the

context of celestial holography.13

Apart from the Ja(z) of the sl(2,R) current algebra at non-zero level, one can check

that the action of the Gs(w) operators on the vacuum state will also generate states

with the negative norm. These additional negative normed states are similar to the

ones encountered in the case of Feigin-Semikhatov algebra W
(2)
n , which for n = 3 is

the Berdshasky-Polyakov algebra. In this case, one tries to give a less limiting notion

of unitarity to construct unitary representation for even n [178]. Alternatively, we

note that setting the level κ = 0 for current algebra will also make the two-point

function ⟨Gs(z)Gs′(w)⟩ vanishing (the parameter α in (5.109) goes to zero as can be

seen from the first equation of (5.101)) thus circumventing the problem of negative

normed states for this algebra. It will be interesting to explore these topics further.

12We will provide the derivation of the full quantum version of this algebra for finite c and κ
and other possible chiral W-algebra extensions of so(2, 3) in the next chapter.

13See also [177] where the authors have shown that level zero su(2) Kac-Moody conformal field
theory is topological.
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Chapter 6

All chiral W-algebra extensions of

so(2, 3) algebra and their

holographic realisations

In the previous chapter, we showed that the charge algebra associated with chiral Λ-

bms4 symmetry of AdS4 gravity is a W-algebra. There, we also derived the complete

quantum version of this W-algebra from standard 2d chiral CFT techniques, which

we denoted by W(2; (3/2)2, 13). Now it becomes important to ask if this is the

only such chiral W-algebra extension of so(2, 3). In this chapter, we address this

question and show that W(2; (3/2)2, 13) found in Chapter 5 is one of the four such

chiral W-algebras. We identify the remaining three explicitly completing the list.

The construction of these W-algebras rely on rewriting so(2, 3) in four different ways

by following these simple steps:

1. To start with, we show that there are exactly four inequivalent ways to embed

a copy of sl(2,R) inside so(2, 3).

2. Then we identify in each case the maximal sub-algebra h ⊂ so(2, 3) that

commutes with the sl(2,R) of the first step.

3. The rest of the generators arrange themselves into finite dimensional irre-

ducible representations of the sub-algebra sl(2,R)⊕ h. These steps facilitate

writing so(2, 3) Lie algebra in four avatars.

The four inequivalent copies of sl(2,R) embedded into so(2, 3) have h as ∅, so(1, 1),
so(2) and sl(2,R). Each of these leads to, a chiral W-algebra extension. The
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resultant algebra corresponding to the case with h = ∅ can be identified to be

the W(2, 4) algebra found long ago [179]. Another, corresponding to h = sl(2,R)
is W(2; (3/2)2, 13) that we derived in Chapter 5. We will complete this list by

constructing the remaining two, with h = so(1, 1) and h = so(2). The one with

h = so(1, 1) may be called the conformal bms3 whose semi-classical limit (that is,

valid only for large values of central charges c and κ) has been obtained from a 3d

conformal gravity computation by [20].

Furthermore, we will derive the semi-classical limit of W(2, 4) and W(2; (3/2)2, 13)

from the asymptotic symmetries of 3d so(2, 3) Chern-Simons gauge theory which

is equivalent to 3d conformal gravity in the first order formulation as shown by

Witten and Horne in [103]. Using the standard methodology reviewed in (2.1.4),

we provide boundary conditions and gauge fixing of so(2, 3) gauge connection that

is compatible with variational principle and show that the symmetry algebra of

charges that generate residual gauge transformations of these gauge connections

form representations of W(2, 4),W(2; (3/2)2, 13) algebras in the semi-classical limit.

The analogous calculation for W(2; 22, 1) already existed in the literature [20], which

can be extended trivially for the case of W̃(2; 22, 1). See [21, 22, 23] for previous

works on asymptotic symmetries of 3d conformal gravity which do not include global

conformal symmetry algebra so(2, 3).

We also consider 3d gravitational Chern-Simons action (6.153), an equivalent second-

order formulation of 3d conformal gravity. This action is usually added to the

Einstein-Hilbert action where the resultant theory describes a topologically massive

gravity [113, 114, 180, 181, 182]. However, this action alone has not been explored

much in comparison to the equivalent first-order formulation of conformal gravity

in the language of so(2, 3) gauge theory. In [21], the authors studied holography

for theory described by gravitational Chern Simons action. They proposed the

Dirichlet boundary conditions and showed the existence of two copies of Virasaro

algebra with abelian Weyl scaling as the asymptotic symmetry algebra when the

Weyl factor of the bulk metric is not kept fixed. In this chapter after providing

arguments for the potential role played by this gravitational Chern Simons action in

AdS4 gravity, we analyse the asymptotic symmetries of such theory by considering

mixed boundary conditions on the configuration space such that the solutions satisfy

the variational principle. The treatment of [21] included the calculation of charges

using first-order formulation language. We further derive charges associated with

Weyl transformation and diffeomorphisms using the modified covariant phase space

formalism proposed by Tachikawa [28] as reviewed in (2.1.5) and show that the
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symmetry algebra that charges obey is semi-classical limit of W(2; (3/2)2, 13).

The rest of this chapter is organised as follows. In Section (6.1) we provide a simple

classification of all the inequivalent embedding of sl(2,R) inside so(2, 3). This results
in four different ways to write the algebra so(2, 3) which makes the embedded sl(2,R)
manifest. In Section (6.2) we provide a derivation of two novel W-algebra extension

of so(2, 3) completing the list of such algebras along with the two already known from

[179] and (5.1) (See also [24]). In Section (6.3) and (6.4) we provide the derivation of

W(2; (3/2)2, 13) andW(2, 4) respectively from the asymptotic symmetries of so(2, 3)

gauge theory. In Section (6.5), we discuss gravitational Chern-Simons (3d Weyl

gravity) action and its application in AdS4/CFT3 holography and show that the set

of residual diffeomorphisms and Weyl symmetry form an infinite dimensional algebra

which is W(2; (3/2)2, 13). We conclude with a discussion and future directions in

Section (6.6). In Appendix G we provide a similar derivation of chiral algebra

extensions of so(2, 2) and show that they are isomorphic to the Brown-Henneaux

algebra [2] and the conformal induced gravity algebra of Polyakov [112] as realised

in [10, 169]. This chapter will be partly based on [183].

6.1 Embedding sl(2,R) in so(2, 3)

We are interested in promoting the algebra so(2, 3) to an infinite dimensional one

that contains at least one Virasoro algebra. Each such Virasoro can in turn be

thought of as an infinite dimensional extension of an sl(2,R) subalgebra of so(2, 3).

Therefore we would end up with a potentially distinct chiral W-algebra extension of

so(2, 3) depending on which sl(2,R) ⊂ so(2, 3) is promoted to a Virasoro. Therefore

the first question to answer is: what are all the inequivalent embeddings of a copy

of sl(2,R) in the so(2, 3) algebra?

This can be answered in any faithful matrix representation of the algebra so(2, 3).

We choose to work with the matrix representation of so(2, 3) when the representation

space is R2,3 (with the pseudo-Cartesian coordinates (x0, x1, x2, x3, x4) where x
0, x4

are time-like and the rest space-like) on which the so(2, 3) algebra elements generate

linear homogeneous transformations xµ → Λµνx
ν that preserve the line element

ds2 = ηµνdx
µdxν , i.e., {Λ ∈ M5(R) : ΛµαΛνβηµν = ηαβ & detΛ = 1} where ηµν =

diag(−1, 1, 1, 1,−1).1 Here the algebra of so(2, 3) is realised in terms of 5 × 5 real

1Another simple choice would have been to work with the 4 × 4 real matrix generators of the
sp(4,R) which is isomorphic to so(2, 3).
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matrices M satisfying MTη + ηM = 0. We will use the basis Lµν

(Lµν)
α
β = δαµηνβ − δαν ηµβ, µ, ν, α, β · · · ∈ {0, 1, 2, 3, 4} (6.1)

satisfying

[Lµν , Lµ′ν′ ] = ηµν′Lνµ′ + ηνµ′Lµν′ − ηµµ′Lνν′ − ηνν′Lµµ′ . (6.2)

A general element in the Lie algebra is M = 1
2
ωµνLµν for ωµν = −ωνµ ∈ R, and

in the space of M we would like to identify choices of triplets (L0, L±1) that form

sl(2,R) algebra

[Lm, Ln] = (m− n)Lm+n . (6.3)

We want all such possible choices that are not equivalent under the action of the

group O(2, 3) which acts on M as M → Λ−1MΛ where the 5 × 5 real matrices Λ

satisfy ΛTηΛ = η.2 These realisations of Ln will therefore be a five dimensional

representation of sl(2,R).

Before proceeding further let us recall some known facts about finite-dimensional

representations of sl(2,R). The irreducible realisations of the sl(2,R) are given in

terms of (2j + 1) × (2j + 1) dimensional real matrices, one for each j ∈ 1
2
N (along

with j = 0, the singlet). Their matrix elements may be written as:

(L0)qp = p δqp, (L−1)qp = h(j, p)(p− j)δq,p+1,

(L1)qp = h(j, q)−1(p+ j)δq+1,p , for p, q ∈ {−j,−j + 1, · · · , j − 1, j}

(6.4)

for any arbitrary non-zero choice of h(j, p) – which can be fixed by appropriate

actions of the group GL(2,R). The simplest choices of h(j, p) include: (i) h(j, p) = 1

(or any other non-zero real number), (ii) h(j, p) = 1
p−j , or h(j, p) = p + j + 1 etc.3

In all these cases the L0 is diagonal with rank 2j (2j + 1) for 2j is even (odd), and

with real eigenvalues. Its eigenvalues range over −j, · · · , j. The only input we will

take from here is that L0 is diagonalisable with real eigenvalues, whereas L±1 are

expected to be nilpotent (such that Lk± = 0 for some k).

2We do not require the detΛ = 1 condition to keep so(2, 3) invariant under M → Λ−1MΛ.
3The choice h(j, p) =

√
p+j+1
p−j is the one related to the discrete series unitary representations

of sl(2,R) when j is analytically continued using the replacement −j → h for positive h [184].
However, this choice of course does not keep L±1 real.
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Next, we seek all possible candidates in the algebra so(2, 3) in its vector represen-

tation (6.1) that can play the role of L0. This requires us to consider the class of

all M that admits only real eigenvalues. We can take any such matrix M , using

the freedom of acting with the group O(2, 3), to be a linear combination of any two

commuting boost generators (L0a, Lb4) for a ̸= b. There are six such choices which

are all equivalent to each other under O(2, 3). So we choose:

L0 = λL01 + λ′ L34 (6.5)

for λ, λ′ ∈ R with real eigenvalues (0,±λ,±λ′). One can independently make the

exchanges λ ↔ −λ, λ′ ↔ −λ′ and λ ↔ λ′ with appropriate O(2, 3) transforma-

tions.4 So we further choose λ ≥ λ′ ≥ 0. Now taking this as the general form

of L0 we can seek candidate L±1 such that they form the algebra (6.3) of sl(2,R).
There are, depending on the values of (λ, λ′), further O(2, 3) transformations that

leave L0 invariant and we can use these residual symmetries to put the candidate

L±1 into their simplest forms. This exercise can be carried out systematically and

straightforwardly. We find that, at the first instance, the existence of non-trivial

L±1 with [L0, L±1] = ∓L±1 requires that (λ, λ′) have to satisfy one of the following

conditions: (i) λ = 1, (ii) λ′ = 1, (iii) λ′ = 1− λ and (iv) λ′ = λ− 1. We can then

impose the last condition [L1, L−1] = 2L0 in each of these four cases. We simply list

the results of this straightforward analysis:

1. λ = 1 leads to three sub-cases (i) λ′ = 1, (ii) 0 < λ′ < 1 and (iii) λ′ = 0.

(a) In the cases λ′ = 1 and 0 < λ′ < 1 there is no solution for L±1.

(b) When λ = 1 and λ′ = 0, with L0 = L01 the most general L±1 are:

(c212 + c213 − c204)L1 = c12(L12 − L02) + c13(L13 − L03) + c04(L14 − L04),

L−1 = c12(L02 + L12) + c13(L03 + L13) + c04(L04 + L14),

(6.6)

for c212 + c213 − c204 ̸= 0. It can be shown that the residual symmetries

(O(2, 3) transformations that leave L0 invariant) leave c212 + c213 − c204

invariant up to a positive scale. Thus depending on the sign of c212+c
2
13−

c204 we can take (c12, c13, c04) to be either (1, 0, 0) or (0, 0, 1) and these two

will be the only inequivalent choices in this case.

2. λ′ = 1 and λ > 1 leads to two sub cases: (i) λ = 2 and (ii) λ ̸= 2.

4These matrices are Λ = diag(−1, 1,−1, 1, 1), diag(1, 1,−1, 1,−1), Λmn = δm+n respectively.
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(a) For λ = 2 and λ′ = 1 with L0 = 2L01 + L34, we find:

b04b23L1 = b23(L04 − L03 + L13 − L14) + 3b04(L23 + L24),

L−1 = b04(L03 + L04) + (L13 + L14) + b23(L23 − L24). (6.7)

The residual symmetries can be used again to set b23 = b04 = 1.

(b) For λ > 1 and λ ̸= 2 leads to no solution.

3. λ′ = 1 − λ with 1
2
≤ λ < 1 (since λ′ = 0 is already considered) also leads to

two sub-cases: (i) λ = 1/2 and (ii) 1/2 < λ < 1.

(a) λ = 1/2 with L0 =
1
2
(L01 + L34) leads to a solution

4 a04 L−1 = −L03 + L04 − L13 + L14,

a−1
04 L1 = L03 + L04 − L13 − L14, (6.8)

again we can use the residual symmetries of L0 to set a04 = 1/2.

(b) 1/2 < λ < 1 – leads to no solution.

4. The final case is λ′ = λ− 1. This means λ ≥ 1. We have already covered the

cases of λ = 1 and λ = 2. So we restrict to λ > 1 and not equal to 2. And

one can show that there is no solution in this case.

Thus we have arrived at the result that there are precisely four inequivalent em-

beddings of sl(2,R) into so(2, 3): (i) (λ, λ′) = (1, 0) with (c12, c13, c04) = (1, 0, 0),

(ii) (λ, λ′) = (1, 0) with (c12, c13, c04) = (0, 0, 1), (iii) (λ, λ′) = (2, 1), and (iv)

(λ, λ′) = (1/2, 1/2). As the next step, we will write down the algebra of so(2, 3) from

the perspective of each of these embeddings. We choose to characterise these four

avatars of so(2, 3) by their maximal subalgebras h that commute with the embedded

sl(2,R).
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6.1.1 Four avatars of so(2, 3)

h = so(1, 1)

This case corresponds to (λ, λ′) = (1, 0) & (c12, c13, c04) = (1, 0, 0) with the genera-

tors

L−1 = L02 + L12, L0 = L01, L1 = −L02 + L12, H = L34,

P 0
−1 = −L04 − L14, P 0

0 = L24, P 0
1 = −L04 + L14 ,

P 1
−1 = −L03 − L13, P 0

0 = L23, P 0
1 = −L03 + L13 , (6.9)

satisfying

[Lm, Ln] = (m− n)Lm+n ,

[Lm, P
a
n ] = (m− n)P a

m+n ,

[P a
m, P

b
n] = −ηab(m− n)Lm+n − ϵabηmnH ,

[H,P a
m] = P b

m ϵb
a , (6.10)

for m,n, · · · ∈ {0,±1} and a, b, · · · ∈ {0, 1}. Further ϵ01 = −ϵ10 = 1, ηab =

diag(−1, 1) = ηab and ϵb
a = ηbcϵ

ca, and ηmn = (3m2 − 1)δm+n = m2 + n2 −mn− 1.

This avatar is related to the way so(2, 3) is realised as the conformal algebra of R1,2.

Clearly, in this case the subalgebra h that commutes with the subalgebra sl(2,R) is
generated by the boost generator H = L34 and hence is so(1, 1).

h = so(2)

This case corresponds to (λ, λ′) = (1, 0) & (c12, c13, c04) = (0, 0, 1) with the genera-

tors

L0 = L01, L1 = L04 − L14, L−1 = L04 + L14, R = L23,

P 1
−1 = −L03 − L13, P 1

0 = L34, P 1
1 = L03 − L13,

P 2
−1 = −L02 − L12, P 2

0 = L24, P 2
1 = L02 − L12 (6.11)
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satisfying

[Lm, Ln] = (m− n)Lm+n,

[Lm, P
a
n ] = (m− n)P a

m+n,

[P a
m, P

b
n] = δab(m− n)Lm+n + ϵabηmnR ,

[R,P a
m] = ϵabP b

m , (6.12)

for m,n, · · · ∈ {0,±1} and a, b, · · · ∈ {1, 2}. Further ϵ12 = 1 = −ϵ21. Contrary

to the previous case (h = so(1, 1)), the subalgebra h is generated by the rotation

generator L23 and hence is so(2). Thus, even though this case is very similar, it is

not equivalent to the one with h = so(1, 1).

h = ∅

This case corresponds to (λ, λ′) = (2, 1). The generators are

L0 = 2L01 + L34,

L1 = −L03 + L04 + L13 − L14 + 3L23 + 3L24,

L−1 = L03 + L04 + L13 + L14 + L23 − L24, (6.13)

W−3 = β(L03 − L04 + L13 − L14),

W−2 = β(L02 + L12),

W−1 = β
3

5
(−L03 − L04 − L13 − L14 +

2

3
(L23 − L24)),

W0 = β
3

5
(−L01 + 2L34),

W1 = β
3

5
(L03 − L04 − L13 + L14 + 2(L23 + L24)),

W2 = 3β(L02 − L12),

W3 = 9β(−L03 − L04 + L13 + L14), (6.14)

satisfying

[Lm, Ln] = (m− n)Lm+n,

[Lm,Wn] = (3m− n)Wm+n,

[Wm,Wn] =
β2

100
A(m,n)Lm+n +

β

10
B(m,n)Wm+n, (6.15)
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where

A(m,n) = (m− n)
(
3(m4 + n4)− 2mn(m− n)2 − 39(m2 + n2) + 20mn+ 108

)
,

B(m,n) = (m− n)(n2 +m2 −mn− 7) . (6.16)

We can fix β to be any non-zero real number by a residual O(2, 3) transformation –

and we choose β = 10/
√
1680 for later convenience. This avatar of so(2, 3) is special

as the corresponding embedding of sl(2,R) in it is what can be called the principal

embedding – as the rest of the generators form a single 5-dimensional irreducible

representation of sl(2,R).

h = sl(2,R)

This case corresponds to (λ, λ′) = (1/2, 1/2). The generators are

L0 =
1

2
(L01 + L34), L1 =

1

2
(L03 + L04 − L13 − L14),

L−1 =
1

2
(−L03 + L04 − L13 + L14), J0 =

1

2
(L01 − L34),

J1 =
1

2
(−L03 − L14 + L04 + L13), J−1 =

1

2
(L03 + L14 + L04 + L13),

G 1
2
, 1
2
= α(−L02 + L12), G− 1

2
, 1
2
= α(−L23 − L24),

G 1
2
,− 1

2
= α(L23 − L24), G− 1

2
,− 1

2
= α(L02 + L12), (6.17)

satisfying

[Lm, Ln] = (m− n)Lm+n, [Ja, Jb] = (a− b)Ja+b,

[Ja, Gsr] =
1

2
(a− 2s)Ga+s,r, [Lm, Gsr] =

1

2
(m− 2r)Gs,m+r,

[Gsr, Gs′r′ ] = −2α2(ϵrr′Js+s′ + ϵss′Lr+r′) (6.18)

where m,n, · · · ∈ {0,±1}, a, b, · · · ∈ {0,±1} and r, s, · · · ∈ {±1/2}, with ϵ− 1
2
, 1
2
= 1.

Again we can choose α to be any non-zero real number and we fix it to be unity.

This completes the exercise of finding the inequivalent embeddings of sl(2,R) in-

side so(2, 3) and writing the so(2, 3) algebra that makes the corresponding sl(2,R)
manifest. Each such embedding is based on the identification of a sub-algebra

sl(2,R)⊕ h ⊂ so(2, 3).5

5These sub-algebras are also in one-to-one correspondence with the maximal sub-algebras of
so(2, 3) listed in [185] that contain at least one copy of sl(2,R) in them.
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Next, we would like to promote each of these avatars (6.10, 6.12, 6.15, 6.18) of so(2, 3)

into an infinite dimensional algebra that consists one copy of Virasoro algebra. We

will show in the next section that the first two avatars above admit minimal chiral

W-algebra extensions that are novel. The third avatar leads to the known W(2, 4)

algebra, and the extension of the fourth one is what was done in Chapter 5.

6.2 The four W-algebra extensions

We now would like to find the minimal infinite dimensional extensions of the four

avatars of so(2, 3) found in Section (6.1) such that they contain modes of a chiral

stress tensor. We implement the following set of rules for this:

• For every copy of sl(2,R) with generators Ln (for n = 0,±1) we postulate

a chiral quasi-primary stress tensor T (z) with dimension h = 2 and central

charge c, and modes Ln (for n ∈ Z).

• For the generators of the subalgebra h we postulate a level-κ current with

h = 1.

• For every set of generators that form a non-trivial finite-dimensional rep-

resentation of sl(2,R) of dimension k we postulate a primary of dimension

h = 1
2
(k + 1).

• We write down the most general OPEs among the chiral operators as obtained

above imposing the global symmetries at hand.

• Finally we fix the undermined coefficients in these OPEs using the OPE asso-

ciativity - implemented in terms of commutators of the modes and their Jacobi

identities explicitly.

Following these rules we consider one copy of a chiral stress tensor: T (z) – a quasi-

primary with h = 2 and central charge c for each sl(2,R) subalgebra we identified

in the previous section with

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
. (6.19)

Then each of the four avatars of so(2, 3) lead to the following sets of chiral operators.

1. In the h = so(1, 1) case we have, along with T (z),
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(a) An so(1, 1) current H(z) which is a conformal primary with h = 1 and

level-κ.

T (z)H(w) ∼ H(w)

(z − w)2
+
∂H(w)

z − w
,

H(z)H(w) ∼ κ

(z − w)2
. (6.20)

(b) A pair of chiral operators P a(z) that are conformal primaries with h = 2

as well as a doublet of so(1, 1) current H(z).6

T (z)P a(w) ∼ 2P a(w)

(z − w)2
+
∂P a(w)

z − w
,

H(z)P a(w) ∼ P b(w) ϵb
a

z − w
. (6.21)

This leaves the OPE P a(z)P b(w) to be determined. We will refer to the

resultant algebra to be W(2; 22, 1).

2. In the h = so(2) avatar we have, along with T (z),

(a) An so(2) current R(z) which is a conformal primary with h = 1 and

level-κ.

T (z)R(w) ∼ R(w)

(z − w)2
+
∂R(w)

z − w
,

R(z)R(w) ∼ κ

(z − w)2
. (6.22)

(b) A pair of chiral operators P a(z) that are conformal primaries with h = 2

as well as a doublet of so(2) current R(z).

T (z)P a(w) ∼ 2P a(w)

(z − w)2
+
∂P a(w)

z − w
,

R(z)P a(w) ∼ ϵabP b(w)

z − w
. (6.23)

The OPE P a(z)P b(w) will be determined later. We will refer to the

resultant algebra to be W̃(2; 22, 1).

3. In the case with h = ∅ we have a stress tensor T (z) and

6One could have postulated that P a(z) are only quasi-primaries at this stage. It turns out,
however, that consistency of the final algebra with associativity does not allow central terms in
T (z)P a(w) OPE and hence we preclude this.
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(a) A chiral operator W (z) that is a conformal primary of dimension h = 4.

T (z)W (w) ∼ 4W (w)

(z − w)2
+
∂W (w)

z − w
(6.24)

The W (z)W (w) will be determined later. We will identify the resultant

algebra with the known W(2, 4) algebra of [179].

4. In the case with h = sl(2,R) we have a T (z) and

(a) A triplet Ja(z) with a = 0,±1, which are conformal primaries with h = 1

T (z)Ja(w) ∼ (z − w)−2Ja(w) + (z − w)−1∂Ja(w) , (6.25)

and among themselves form a level-κ sl(2,R) algebra,

Ja(z)Jb(w) ∼ −κ
2
ηab(z − w)−2 + (z − w)−1fab

cJc(w) . (6.26)

(b) A pair Gs(z) for s = ±1/2 that are conformal primaries with h = 3/2

T (z)Gs(w) ∼ (3/2)(z − w)−2Gs(w) + (z − w)−1∂Gs(w) (6.27)

as well as a doublet of sl(2,R) current algebra

Ja(z)Gs(w) ∼ (z − w)−1Gs′(w)(λa)
s′

s (6.28)

where (λa)
s
s′ = 1

2
(a − 2s′)δsa+s′ . This case was already dealt with by us in

Chapter 5 and the OPE Gs(z)Gs′(w) was determined. The resultant algebra

is our W(2; (3/2)2, 13).

We will now turn to obtaining the underdetermined OPEs in each of these cases. We

will provide only the essential details of the derivation of the first of these algebras

and the results for the remaining three.

6.2.1 W(2; 22, 1)

In this case, the only undetermined OPE is that of P a(z)P b(w) and following the

conformal invariance one expects that all quasi-primaries of dimension up to three

and their global descendants can appear in the singular terms on the RHS. These
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quasi-primaries can also be composites (normal ordered products) of simple (quasi-)

primaries (T (z), P a(z), H(z)).

One can construct the necessary quasi-primaries using the OPEs

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
,

T (z)H(w) ∼ H(w)

(z − w)2
+
∂H(w)

z − w
, H(z)T (w) ∼ H(w)

(z − w)2
,

H(z)H(w) ∼ κ

(z − w)2
,

T (z)P a(w) ∼ 2P a(w)

(z − w)2
+
∂P a(w)

z − w
∼ P a(z)T (w),

H(z)P a(w) ∼ P b(w) ϵb
a

z − w
∼ −P a(z)H(w) . (6.29)

The relevant composite quasi-primaries are as follows.

• At h = 2 we have only one normal-ordered composite quasi-primary (H2)(z)

with

T (z)(H2)(w) ∼ κ

(z − w)4
+

2

(z − w)2
(H2)(w) +

1

(z − w)
∂(H2)(w) . (6.30)

The corresponding Sugawara stress tensor 1
2κ
(H2)(z) has c = 1.

• At h = 3 we have two composite scalar quasi-primaries

Λ(z) := (TH)(z)− 1

2
∂2H(z),

Σ(z) :=
1

2κ
((H2)H)(z)− 1

2
∂2H(z). (6.31)

Their OPEs with T (z) are given by

T (z)Λ(w) ∼ 2 + c

2(z − w)4
H(w) +

3

(z − w)2
Λ(w) +

1

(z − w)
∂Λ(w) ,

T (z)Σ(w) ∼ 3

2(z − w)4
H(w) +

3

(z − w)2
Σ(w) +

1

(z − w)
∂Σ(w) . (6.32)

Note that the linear combination 3Λ(z)− (2 + c) Σ(z) is a primary.

• At h = 3 we have a doublet of primaries (not just quasi-primaries)

[P aH](z) := (P aH)(z) +
3

4
ϵb
a∂P b = (HP a)(z)− 1

4
ϵb
a∂P b (6.33)
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This is the full list of composite quasi-primaries that are covariant under so(1, 1)

and dimension h ≤ 3. In particular, let us note that there is no rank-2 symmetric

traceless tensor of so(1, 1) with h ≤ 3. There are other quasi-primaries of higher

dimensions that we will introduce as and when required.

We now make use of the global symmetries to constrain the OPE P a(z)P b(w).

• Since the two operators involved carry vector indices a, b, · · · of so(1, 1) their

OPE should respect this symmetry. This means that the rhs can only involve

representations of so(1, 1) that can appear in the tensor product of two vectors.

• There are in general four independent components in a rank-2 tensor of

so(1, 1). Arranging them into covariant irreducible objects, there are

1. two singlets - with the CG coefficients being the symmetric tensor ηab

and the anti-symmetric tensor ϵab. These can be multiplied by so(1, 1)

invariants.

2. a symmetric traceless rank-2 tensor with two independent components.

• One consequence of these tensor structures is that we cannot have a covariant

rank-1 object (vector) on the rhs and that rules out (6.33). Also the fact that

there are no composite operators with h ≤ 3 that are rank-2 traceless sym-

metric tensors leaves us with, in the increasing order of conformal dimensions

{I,H(z), T (z), (H2)(z),Λ,Σ} that can appear on the rhs.

• Another fact is that the OPE is expected to be invariant under the simulta-

neous exchange (a, z) ↔ (b, w). It is easy to see that this requires that the

terms containing ηab should have even dimensional operators, namely, (I, T (z))

(and their descendants) and terms containing ϵab should have odd dimensional

operators, namely, (H(z),Λ(z),Σ(z)) and their descendants.

• The relative coefficients of a quasi-primary and its global conformal descen-

dants are fixed by the global conformal invariance. This leaves only six real

numbers to be undetermined.
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Thus we arrive at the following ansatz:

P a(z)P b(w) ∼ ηab
[
α (z − w)−4 I + β (z − w)−2

(
2T (w) + (z − w) ∂T (w)

)

+ γ(z − w)−2
(
2(H2)(w) + (z − w)∂(H2)(w)

)]

+ ϵab
[
δ (z − w)−3

(
6H(w) + 3 (z − w)∂H(w) + (z − w)2 ∂2H(w)

)

+ σ (z − w)−1Λ(w) + ω (z − w)−1Σ(w)
]

(6.34)

The undetermined real numbers (α, β, γ, δ, σ, ω) (that can depend on the central

charges (c, κ)) are to be determined by imposing the OPE associativity. This we

do using Jacobi identities in terms of modes (as in Chapter 5) following [25]. To

proceed further we need the mode expansions of these quasi-primaries. Using the

definition from [160, 161]

(AB)m =
∑

n≤−hA

AnBm−n +
∑

n>−hA

Bm−nAn (6.35)

for the modes of normal ordered products we can write

(H2)n =
∑
k>−1

Hn−kHk +
∑
k≤−1

HkHn−k . (6.36)

Similarly we have Λ(z) =
∑

n∈Z
Λn

zn+3 where

Λn =
∑
k>−2

Hn−kLk +
∑
k≤−2

LkHn−k −
1

2
(n+ 1)(n+ 2)Hn (6.37)

and Σ(z) =
∑

n∈Z
Σn

zn+3 where

Σn =
∑
k>−2

Hn−kL̃k +
∑
k≤−2

L̃kHn−k −
1

2
(n+ 1)(n+ 2)Hn (6.38)

with L̃n = 1
2κ
(H2)n.
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Jacobi identities

Let us convert all the OPEs into commutators of modes. The modes are

Ln =

∮
0

dz

2πi
zn+1T (z), P a

n =

∮
0

dz

2πi
zn+1P a(z), Hn =

∮
0

dz

2πi
znH(z) (6.39)

resulting in

1. Virasoro Algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n,0 (6.40)

2. Virasoro Primaries

[Lm, P
a
n ] = (m− n)P a

m+n, [Lm, Hn] = −nHm+n (6.41)

3. so(1, 1)κ Current Algebra

[Hm, Hn] = κmδm+n,0 (6.42)

4. Current algebra primaries

[Hm, P
a
n ] = P b

m+n ϵb
a (6.43)

5. Commutator [P a
m, P

b
n]

[P a
m, P

b
n] = ηab

[α
6
m(m2 − 1)δm+n,0 + (m− n)

(
β Lm+n + γ (H2)m+n

)]

+ ϵab
[
δ (m2 + n2 −mn− 1)Hm+n + σΛm+n + ωΣm+n

]

(6.44)

It remains to simply determine the unknowns (α, β, γ, δ, σ, ω) in terms of c and κ

using the Jacobi identities. As in Chapter 5 we schematically denote the Jacobi

identity involving the modes of the operators A(z), B(z), C(z) as identity (ABC).

There are a total of 10 identities to be considered. The four identities (TTT ),

(TTH), (THH), (HHH) are automatically satisfied. Next there are three with
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one P a each: (TTP a), (THP a), (HHP a) – which can also be seen to be satisfied

identically.

The remaining three Jacobi identities contain at least two P a
n ’s: (TPP ), (HPP )

and (PPP ). These involve commutators between two P a
m’s. To impose these we

need the commutators of the modes of the simple primaries (Lm, Hm, P
a
m) with

((H2)n,Λn,Σn).

Commutators with (H2)n

It is easy to see

[Lm, (H
2)n] = (m− n) (H2)m+n +

κ

6
m(m2 − 1) δm+n,0 ,

[Hm, (H
2)n] = 2κmHm+n . (6.45)

For [P a
m, (H

2)n] we first note that the OPE between P a(z) and (H2)(w) can be

written in terms of quasi-primaries and their descendants as follows:

P a(z)(H2)(w) ∼ P a(w)

(z − w)2
+

∂P a(w)

2(z − w)
− 2ϵb

a [P
bH](w)

z − w
(6.46)

where

[P aH](z) := (P aH)(z) +
3

4
ϵb
a∂P a (6.47)

is a primary. In obtaining this we used the identity: (HP a)(z) − (P aH)(z) −
ϵb
a∂P b(z) = 0. Using this OPE we can immediately write the commutator of the

corresponding modes as

[P a
m, (H

2)n] := −2ϵb
a[P bH]m+n +

1

2
(m− n)P a

m+n . (6.48)

Commutators with Λn

It is straightforward to find

[Lm,Λn] = (2m− n)Λm+n +
1

12
(c+ 2)m(m2 − 1)Hm+n,

[Hm,Λn] = κmLm+n +m (H2)m+n . (6.49)
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The next non-trivial commutator is [P a
m,Λn]. For this again we write the corre-

sponding OPE P a(z)Λ(w) in terms of quasi-primaries and their global descendants.

We find

P a(z)Λ(w) ∼ −2ϵb
a

(z − w)3

[
P b(w) +

1

4
(z − w)∂P b(w) +

1

20
(z − w)2∂2P b(w)

]

+
2[P aH](w)

(z − w)2
+

2∂[P aH](w)

3(z − w)
− ϵb

a [TP
b](w)

z − w
+

[∂P aH](w)

3(z − w)

(6.50)

where the relevant composite quasi-primaries are

h = 3 : [P aH](z) := (P aH)(z) +
3

4
ϵb
a∂P b(z),

[HP a](z) := (HP a)(z)− 1

4
ϵb
a∂P b(z),

h = 4 : [H∂P a](z) := (H∂P a)(z)− 2 (P a∂H)(z)− 11

10
∂2P b(z)ϵb

a

= (∂P aH)(z)− 2(P a∂H)(z)− 3

5
∂2P bϵb

a := [∂P aH](z),

h = 4 : [TP a](z) := (TP a)(z)− 3

10
∂2P a(z) = (P aT )(z)− 3

10
∂2P a(z) := [P aT ](z).

(6.51)

Converting the OPE (6.50) into a commutator we find

[P a
m,Λn] = − ϵb

a[TP b]m+n +
1

3
[H∂P a]m+n

− 1

10
(6m2 + n2 − 3mn− 4)ϵb

aP b
m+n +

2

3
(2m− n)[P aH]m+n . (6.52)

Commutators with Σn

It is easy to see that

[Lm,Σn] = (2m− n)Σm+n +
1

4
m(m2 − 1)Hm+n,

[Hm,Σn] =
3

2
m (H2)m+n . (6.53)
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To find [P a
m,Σn] we again write the OPE:

P a(z)Σ(w) ∼ −ϵba

2κ(z − w)3

[
P b(w) +

1

4
(z − w)∂P b(w) +

1

20
(z − w)2∂2P b(w)

]
+

3

2κ(z − w)2

[
[P aH](w) +

1

3
(z − w)∂[P aH](w)

]
− 1

4κ(z − w)
[∂P aH](w)

− 1

2κ(z − w)
ϵb
a
[
[HHP b](w) + [P aHH](w) + [HP aH](w)

]
(6.54)

where the additional quasi-primaries with h = 4 are:

[HHP a](z) := ((H2)P a)(z)− ϵb
a 3

4
(H∂P b)(z)− ϵb

a 3

2
(P b∂H)(z)− 27

40
∂2P a(z) ,

[HP aH](z) := ((HP a)H)(z) +
5

4
ϵb
a(H∂P b)− 1

2
ϵb
a(P b∂H)(z)− 1

40
(11 + 20κ)∂2P a,

[P aHH](z) := ((P aH)H)(z) + 4ϵb
a(P b∂H)(z)− 1

10
(5κ− 17)∂2P a, (6.55)

and we used the identities

(HP a)(z)− (P aH)(z)− ϵb
a∂P b(z) = 0 ,

(∂P aH)(z)− (H∂P a)(z) +
1

2
ϵb
a∂2P b(z) = 0 . (6.56)

Converting the OPE (6.54) into commutator modes we find:

[P a
m,Σn] = − 1

40κ
ϵb
a(6m2 + n2 − 3mn− 4)P b

m+n +
1

2κ
(2m− n)[P aH]m+n

− 1

4κ
[∂P aH]m+n −

1

2κ
ϵb
a
(
[HHP b]m+n + [HP bH]m+n + [P bHH]m+n

)
.

(6.57)

Result of Jacobi identities

We are ready to impose the (TPP ) and (HPP ) identities. The computations are

straightforward and we find that (TPP ) identity requires

2α− cβ − 2κ γ = 0, 24δ − (2 + c)σ − 3ω = 0 . (6.58)

The (HPP ) identity requires

β + 3δ + 2κ γ = 0, α+ 6κ δ = 0 ,

2β + κσ = 0, 2γ + σ +
3

2
ω = 0 . (6.59)
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Finally, we need to impose (PPP ) Jacobi identity. For this, first we write

[P c
k , [P

a
m, P

b
n]] as(

β +
γ

2

)
ηab(m− n)(k −m− n)P cm+n+k

−
[
δ (m2 + n2 −mn− 1) +

1

10

(
σ +

ω

4κ

)(
6k2 + (m+ n)2 − 3k(m+ n)− 4

)]
ϵabϵd

cP dm+n+k

+

(
ω

2κ
+

2σ

3

)
(2k −m− n)ϵab[P cH]m+n+k − 2γ(m− n)ηabϵd

c[P dH]m+n+k

− σϵab ϵd
c[TP d]m+n+k +

(σ
3
− ω

4κ

)
ϵab[H∂P c]m+n+k

− ω

2κ
ϵabϵd

c
(
[HHP b]m+n+k + [HP bH]m+n+k + [P bHH]m+n+k

)
. (6.60)

The Jacobi identity to be imposed is

[P c
k , [P

a
m, P

b
n]] +

(
(c, k) → (a,m) → (b, n) → (c, k)

)
+
(
(c, k) → (b, n) → (a,m) → (c, k)

)
= 0. (6.61)

The terms that contain ϵabϵd
cOd

m+n+k and ϵ
abOc

m+n+k can be dropped as they vanish

after summing over the cyclic permutations above. Then there are two types of

terms left which contain (i) P c
k+m+n, (ii) [P

cH]m+n+k.

1. Setting terms containing [P aH]m+n+k to zero we find one condition

4κ(γ − σ)− 3ω = 0. (6.62)

2. Setting terms containing P a
m+n+k to zero gives the last condition

4κ(2β + γ − 2δ + σ) + ω = 0. (6.63)

Thus the full set of conditions obtained from the Jacobi identities is (6.58, 6.59,

6.62, 6.63). Out of these eight only six equations are linearly independent. These

equations admit a non-trivial two-parameter solution.7 Taking these parameters to

7There is of course the trivial solution: α = β = γ = δ = σ = ω = 0, for arbitrary c and κ.
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be (σ, κ) we find:

α =
3κ2(κ− 1)

κ+ 1
σ, β = −κ

2
σ,

γ =
2κ− 1

2(κ+ 1)
σ, δ = −κ(κ− 1)

2(κ+ 1)
σ,

ω = − 2κ

κ+ 1
σ, c = −2 (6κ2 − 8κ+ 1)

κ+ 1
. (6.64)

This completes our derivation of the algebra W(2; 22, 1). In the large-κ limit these

become

α → 3κ2σ, β → −κ
2
σ, γ → σ,

δ → −κ
2
σ, ω → −2σ, c→ −12κ . (6.65)

By further taking σ → 2
κ
it can be seen that this W algebra when restricted to the

modes of so(2, 3) is a deformation of (6.10) around the κ→ ∞ limit.

Relation between W(2; 22, 1) and conformal bms3 of [20]

Before we turn to the next case let us briefly demonstrate that the conformal bms3

algebra of [20] arises in the semiclassical limit of our W(2; 22, 1). For this we define

Pm = P 0
m + P 1

m , Km = P 0
m − P 1

m (6.66)

and re-write the commutator (6.44) in terms of Pm and Kn. This results in, for

instance, the commutator [Pm ,Kn]

[Pm ,Kn] = −α
3
m(m2 − 1)δm+n,0 − 2(m− n)

(
β Lm+n + γ (H2)m+n

)
− 2 δ (m2 + n2 −mn− 1)Hm+n − 2σΛm+n − 2ωΣm+n

]
(6.67)

Next, we take the large-κ limit which amounts to using (6.65). If one further replaces

c → 12 c̃, κ → −c̃ and σ → 2/c̃ one obtains the conformal bms3 algebra as written

down in [20] after the following identifications

Hp → iDp , Ln → Jn. (6.68)
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The normal ordered operators in this large-κ limit after regularisation become

(H2)m → −
∑
p

Dm−pDp , Λm → i
∑
p

Jm−pDp , Σm → − i

2c̃

∑
n,l

Dm−n−lDnDl

(6.69)

completing the identification with the non-linear terms of (6.67) with the expressions

in (2.2–2.4) of [20]. This makes it clear that the conformal bms3 algebra of [20] is

only valid for large values of their central charge.

6.2.2 W̃(2; 22, 1)

Now we turn to the second way the sl(2,R) is embedded in so(2, 3) where P a instead

of being a vector in so(1, 1) algebra is vector under so(2) algebra. This gives rise to

a different W-algebra extension which closely resembles W(2; 22, 1) algebra found

in the previous section. The structure of all the quasi-primaries and primaries are

expected to remain the same with some minor modifications (such as H(z) → R(z))

and therefore we provide only the result here.

1. Virasoro Algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n,0 (6.70)

2. Virasoro Primaries

[Lm, P
a
n ] = (m− n)P a

m+n, [Lm, Rn] = −nRm+n (6.71)

3. so(2)κ Current Algebra

[Rm, Rn] = κmδm+n,0 (6.72)

4. Current algebra primaries

[Rm, P
a
n ] = ϵabP b

m+n (6.73)
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5. Commutator [P a
m, P

b
n]

[P a
m, P

b
n] = δab

[α
6
m(m2 − 1)δm+n,0 + (m− n)

(
β Lm+n + γ (R2)m+n

)]

+ ϵab
[
δ (m2 + n2 −mn− 1)Rm+n + σΛm+n + ωΣm+n

]

(6.74)

where Λm and Σm are the modes of those in (6.31) with H replaced by R.

As before we impose Jacobi identities to solve for unknown parameters in

the
[
P a
m, P

b
n

]
commutator. From Jacobi Identity (TPP ) we get the following

equations

2α− c β − 2γ κ = 0, 24 δ − (2 + c)σ − 3ω = 0 (6.75)

The (RPP ) Jacobi Identity demands

β + 3 δ + 2 γ κ = 0, α− 6κ δ = 0,

2 β − κσ = 0, 2γ − σ − 3

2
ω = 0. (6.76)

In imposing the Jacobi Identity (PPP ) we find similar structures that we saw

before resulting in the following equations,

4κ (γ + σ)− 3ω = 0, 4κ (2β − γ − 2 δ + σ)− ω = 0. (6.77)

These equations (6.75, 6.76, 6.77) with replacements γ → −γ and κ → −κ
match with the equations (6.58, 6.59, 6.62, 6.63) obtained in so(1, 1) case.

Hence we obtain the new algebra W̃(2; 22, 1) where the parameters are given

by (6.64) after the replacements γ → −γ and κ→ −κ.

6.2.3 W(2, 4)

Here we start with the third avatar of so(2, 3) given by,

[Lm, Ln] = (m− n)Lm+n, [Lm,Wn] = (3m− n)Wm+n,

[Wm,Wn] =
1

1680
A(m,n)Lm+n +

1√
1680

B(m,n)Wm+n (6.78)
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where A(m,n) and B(m,n) are as given in (6.16). Using the method that was

spelt out earlier, to obtain the infinite-dimensional extension of this algebra

we start with the following ansatz of [Wm,Wn],

[Wm,Wn] = α α̃(m,n) + β A(m,n)Lm+n +B(m,n) (γ Wm+n + δ Λm+n)

+ (m− n)
[
ω∆m+n + τ Γm+n + σΩm+n

]
(6.79)

where,

α̃(m,n) =
m (m6 − 14m4 + 49m2 − 36)

5040
δm+n,0 (6.80)

The modes Λm are associated with the h = 4 quasi-primary

Λ(z) = (TT ) (z)− 3

10
∂2T (z). (6.81)

The modes ∆m,Γm ,Ωm are those of the following three h = 6 quasi-primaries:

∆(z) = (T Λ) (z)− 1

6
∂2Λ(z),

Γ(z) =
(
∂2TT

)
(z)− ∂(∂TT )(z) +

2

9
∂2(TT )(z)− 1

42
∂4T (z),

Ω(z) = (TW )(z)− 1

6
∂2W (z) . (6.82)

To obtain equations constraining the parameters {α, β, γ, δ, ω, σ, τ} in (6.79)

one imposes Jacobi identities as for the earlier cases. From the Jacobi identity

of (TWW ) one gets the following equations,

α− 420 c β = 0, 1960 β − (22 + 5c) δ = 0, 14 γ − 1

12
(24 + c)σ = 0,

14δ − 1

180
(160 τ + 3ω(15c+ 164)) = 0,

737100 β − 315(22 + 5c) δ − 5(29 + 70c)κ− 42(22 + 5c)ω = 0 . (6.83)

From imposing (WWW ) Jacobi Identity one gets,

18900 β − 8820 δ − 315 γ (60 γ − 7σ) + 95 τ + 1029ω = 0. (6.84)
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The solution to these equations are as follows,

α = 420 c β , δ =
1960 β

22 + 5c
, ω =

20160(13 + 72 c) β

70c3 + 953c2 + 2498 c− 1496
,

τ =
252 (−524 + 19c) β

14c2 + 129c− 68
, σ =

168 γ

24 + c
, γ2 =

70 β(c3 − 148c2 − 3932c+ 4704)

70c3 + 953c2 + 2498c− 1496
(6.85)

where β is a free parameter, the value of which can be fixed. Choosing β = 1
1680

one can check that the above algebra is W(2, 4) algebra as was written down

in [179].

6.2.4 W(2; (3/2)2, 13)

This case was dealt with in detail already by us recently in Chapter 5 motivated from

the algebra derived in the context of symmetries responsible for soft theorems in the

context of MHV graviton amplitudes in 4d flat spacetimes. For the convenience of

the readers we simply quote the result for the only non-trivial OPE

Gs(z)Gs′(w) = 2α ϵss′(z − w)−3 + δ (z − w)−2 (λa)ss′ [2 Ja(w) + (z − w) Ja
′(w)]

+ β ϵss′(z − w)−1 T (w) + γ (z − w)−1 ϵss′(J
2)(w) ,

(6.86)

which in terms of modes reads

[Gs,r,Gs′,r′ ]=ϵss′

[
α

(
r2 − 1

4

)
δr+r′,0+β Lr+r′+γ (J

2)r+r′

]
+δ(r − r′)Ja,r+r′(λ

a)ss′

(6.87)

where (J2)n are the modes of the normal ordered quasi-primary ηab(JaJb)(z):

(J2)n = ηab

[∑
k>−1

Jb,n−kJa,k +
∑
k≤−1

Ja,kJb,n−k

]
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The result of the imposition of the Jacobi identities is the following set of constraints

on the parameters (α, β, γ, δ, c, κ)

α− c

6
β + γ

κ

2
= 0, α− δ

κ

2
= 0, β − γ (κ+ 2)− 1

2
δ = 0, β − γ − δ

2
= 0 .

(6.88)

whose solution exists provided

c = −6κ (1 + 2κ)

5 + 2κ
. (6.89)

When this holds, for generic values of κ ( ̸= −5/2) the solution can be written (taking

γ to be the independent variable) as

α = −1

4
γκ(3 + 2κ), β =

1

4
γ(5 + 2κ), δ = −1

2
γ(3 + 2κ) . (6.90)

This is the final result valid for generic (κ ̸= −5/2) values of κ [163].

This completes our exercise of finding all minimal chiral W-algebra extensions of

so(2, 3).

6.3 W(2; (3/2)2, 13) from so(2, 3) gauge theory

In this section, we show that the semi-classical limit of the W(2; (3/2)2, 13) is the

asymptotic symmetry algebra of the 3d conformal gravity – formulated as the Chern-

Simons gauge theory for the gauge algebra so(2, 3) – with a consistent set of bound-

ary conditions. The standard steps and methodology regarding the calculations in

so(2, 3) gauge theory was reviewed in (2.1.4).

We start with the Chern-Simons theory in 3d with gauge algebra so(2, 3) written as

(6.18). The 3d gauge connection A = b db−1 + bab−1 where b = e(J0−L0) ln(r/ℓ) and

a is a 2d connection whose coordinates are x±. We write the gauge connection a as

a = A(m)Lm + Ā(a)Ja + Φ(s,r)Gs,r. (6.91)

163



Then the 3d flatness conditions F = dA+A ∧A = 0 =⇒ da+ a ∧ a = 0

∂iA
(p)
j − ∂jA

(p)
i + (m− n)δpm+nA

(m)
i A

(n)
j + 2ϵss′Φ

(s,r)
i Φ

(s′,r′)
j δpr+r′ = 0,

∂iĀ
(c)
j − ∂jĀ

(c)
i + (a− b)δca+bĀ

(a)
i Ā

(b)
j + 2ϵrr′Φ

(s,r)
i Φ

(s′,r′)
j δcs+s′ = 0,

∂iΦ
(s,r)
j +

1

2
(m− 2r′)δrm+r′A

(m)
i Φ

(s,r′)
j +

1

2
(a− 2s′)δsa+s′Ā

(a)
i Φ

(s′,r)
j − (i↔ j) = 0.

(6.92)

6.3.1 The constraints and a variational principle

The action is

S =
k

4π

∫
M

Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
(6.93)

whose variation is

δS =
k

4π

∫
Tr
(
2F ∧ δA

)
− k

4π

∫
∂M

Tr
(
A ∧ δA

)
(6.94)

Around an on-shell (i.e., with F = 0) configuration under general variation δA

δS
∣∣∣
on−shell

= − k

4π

∫
∂M

Tr
(
A ∧ δA

)
(6.95)

Using the traces Tr(LmLn) = −ηmn, Tr(JaJb) = −ηab and Tr(G(s,r)G(s′,r′)) = 4ϵss′ϵrr′

this becomes

δS
∣∣∣
on−shell

=
k

8π

∫
r=r0

d2x
[
ηmn

(
A

(m)
− δA

(n)
+ − A

(m)
+ δA

(n)
−

)
+ ηab

(
Ā

(a)
− δĀ

(b)
+ − Ā

(a)
+ δĀ

(b)
−

)
− 4 ϵss′ϵrr′

(
Φ

(s,r)
− δΦ

(s′,r′)
+ − Φ

(s,r)
+ δΦ

(s′,r′)
−

) ]
+O(1/r0)

(6.96)
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We first impose the following constraints:8

A
(−)
− = 1, A

(0)
− = 0, Ā

(+)
+ = 1, Ā

(0)
− = 0,

Φ
(+,−)
+ = Φ

(+,−)
− = Φ

(−,−)
− = Φ

(−,+)
− = 0 ,

Ā
(0)
+ = A

(0)
+ . (6.97)

The constraints imposed on A(m) and Ā(m) in (6.97) are the same as those in [170]

for AdS3 gravity. Then some of the equations of motion (flatness of A) lead to the

following additional constraints:

A
(0)
+ = ∂−A

(−)
+ , Φ

(+,+)
+ = Φ

(+,+)
− A

(−)
+ , Φ

(−,+)
+ = ∂−Φ

(−,−)
+ ,

Ā
(−)
− =

1

2
∂−Ā

(0)
+ − Φ

(−,−)
+ Φ

(+,+)
− ,

A
(+)
+ =

1

2
∂2−A

(−)
+ + A

(−)
+ A

(+)
− − Φ

(−,−)
+ Φ

(+,+)
− (6.98)

and the rest of the equations of motion lead to the following equations among the

remaining six fields (A
(−)
+ , A

(+)
− , Ā

(−)
+ , Ā

(+)
− ,Φ

(−,−)
+ ,Φ

(+,+)
− ) :

1

2
∂3−A

(−)
+ +

(
A

(−)
+ ∂− + 2∂−A

(−)
+ − ∂+

)
A

(+)
− = 3Φ

(+,+)
− ∂−Φ

(−,−)
+ + Φ

(−,−)
+ ∂−Φ

(+,+)
− ,

(6.99)

∂−

[
Ā

(−)
+ − 1

4

(
∂−A

(−)
+

)2
− 1

2
∂−∂+A

(−)
+

]
+ ∂+

[
Φ

(−,−)
+ Φ

(+,+)
− + Ā

(+)
− Ā

(−)
+

]
+
[
Φ

(−,−)
+ Φ

(+,+)
− + Ā

(+)
− Ā

(−)
+

]
∂−A

(−)
+ = 0,

(6.100)

∂+Φ
(+,+)
− − A

(−)
+ ∂−Φ

(+,+)
− − 2Φ

(+,+)
− ∂−A

(−)
+ − 2Ā

(+)
− ∂−Φ

(−,−)
+ − Φ

(−,−)
+ ∂−Ā

(+)
− = 0,

(6.101)

8The {+,−} subscript of one-forms {A(m), Ā(a),Φ(r,s)} denote the {x+, x−} component respec-
tively. In the context of field Φ(r,s) even though r, s ∈ {−1/2, 1/2}, we will denote it by {−,+} for
notational simplicity.
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∂2−Φ
(−,−)
+ −

[
Φ

(+,+)
− A

(−)
+ + Φ

(−,−)
+ Ā

(+)
−

] [
−Φ

(−,−)
+ Φ

(+,+)
− + Ā

(+)
− Ā

(−)
+ +

1

2
∂2−A

(−)
+

]
+
[
Φ

(+,+)
− Ā

(−)
+ + A

(+)
+ Φ

(−,−)
+

]
= 0.

(6.102)

Now we consider an arbitrary configuration that satisfies the constraints (6.97, 6.98)

and impose these constraints at the level of variations about such a configuration.

It is seen that the variation of the action around such configuration and variations

of fields gives:

δS
∣∣∣
on−shell

= − k

4π

∫
r=r0

4 dz̄ ∧ dz
[
Ā

(−)
+ δĀ

(+)
− −A(+)

− δA
(−)
+ −Φ

(−,−)
+ δΦ

(+,+)
− +Φ

(+,+)
− δΦ

(−,−)
+

]
.

(6.103)

We will solve this in a chiral way by choosing9

A
(+)
− = 1/4, Ā

(+)
− = 0, Φ

(+,+)
− = 0 (6.104)

which leads to the solutions with

A
(−)
+ (x±) = J (−1)(x+) e−ix

−
+ J (0)(x+) + J (1)(x+)eix

−

Φ
(−,−)
+ = G(−1/2)(x+) e−

i
2
x− +G(1/2)(x+) e

i
2
x−

Ā
(−1)
+ = T (x+) +

1

2
∂+∂−A

(−1)
+ +

1

4

(
∂−A

(−1)
+

)2
. (6.105)

The residual gauge transformations that leave the constraints (6.97, 6.104) invariant

can be worked out easily. We write the gauge parameter as follows,

Λ = Λ(m)Lm + Λ̄(a)Ja + Λ(s,r)Gs,r, (6.106)

where {Λ(m), Λ̄(a),Λ(s,r)} are general function of x±. The gauge transformation of

the connection is given by,

δAi = ∂iΛ + [Ai,Λ] . (6.107)

The gauge parameter corresponding to the residual gauge transformations is ex-

pected to preserve the constraints (6.97, 6.104) and leave the connection A form-

invariant. We find that such a Λ can be written in terms of three free functions of

9The first of these requires adding a further boundary term which can be done easily as in [170].
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x± , {Λ(−), Λ̄(+),Λ(+,−)} as follows,

Λ(0) = −4 ∂−Λ
(−), Λ(1) =

1

2
λ(0)(x+)− 1

4
Λ(−)(x+, x−) , Λ(+,+) = ∂−Λ

(+,−),

Λ(−,+) =
1

2
Λ(+,−)

[
J (−1)(x+) e−ix

−
+ J (1)(x+) eix

−
]
+ ∂−Λ

(−,−),

Λ(−,−) = λ̄(1)Φ
(−,−)
+ − ∂+Λ

(+,−) + ∂−Λ
(+,−)A

(−)
+ ,

∂−Λ̄
(0) = −Λ̄(+)

[
J (−1)(x+)e−ix

−
+ J (+1)(x+)eix

−
]
,

∂−Λ̄
(−) = −1

2
Λ̄(0)

[
J (−1)(x+)e−ix

−
+ J (+1)(x+)eix

−
]
, (6.108)

which are further constrained to satisfy

∂2−Λ
(−)(x+, x−) + Λ(−)(x+, x−)− λ(0)(x+) = 0,

∂−Λ̄
(+) = 0 , ∂2− Λ(+,−) +

1

4
Λ(+,−) = 0. (6.109)

These constraints in (6.109) can be solved to obtain

Λ(−) = λ(−1)(x+) e−ix
−
+ λ(0)(x+) + λ(1)(x+)eix

−
,

Λ̄(+) = λ(x+),

Λ(+,−) = χ(−1/2)(x+)e−
i
2
x− + χ(1/2)(x+)e

i
2
x− . (6.110)

Thus the residual gauge parameter is given in terms of the six chiral functions

{λa(x+), λ(x+), χs(x+)} and they can be shown to produce the following variations:

δT = 2T λ′ + λT ′ +
1

2
λ′′′ + iϵrs(3Grχ

′
s +G′

rχs) + 2(λa)rsJaGrχs,

δJa = λ′a + i f bcaJbλc + 4(λa)
rsGrχs,

δGs = λG′
s +

3

2
Gsλ

′ − χ′′
s − i(λa)rs(Ja λ− λa)Gr −

(
1

4
ηabJaJb + T

)
χs

+ i(λa)rs (2Ja χ
′
r + J ′

a χr) . (6.111)

We also have

Tr (ΛδA−) = λ(1) (e−ix
−
δJ (−1) + eix

−
δJ (1)),

Tr (ΛδA+) = ηabδJaλb − 4i ϵrsχsδGr − 2λ δT

− ∂+∂−

(
λ(1) (e−ix

−
δJ (−1) + eix

−
δJ (1))

)
. (6.112)
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Using the coordinates x± = ϕ± t we have Aϕ = A+ +A− and ∂ϕ = ∂+ + ∂−. The

charge is [186]

/δQΛ = − k

2π

∫ 2π

0

dϕTr [Λ δAϕ]

= − k

2π

∫ 2π

0

dϕ
[
ηabδJaλb + 4i ϵsrχsδGr − 2λ δT

+ ∂ϕ

(
i λ(1) (e−ix

−
δJ (−1) − eix

−
δJ (1))

) ]
. (6.113)

Assuming that δJ (±1)(x+) and λ(1)(x+) are periodic in ϕ→ ϕ+2π we will drop the

total derivative terms here in the second line. Before carrying on we will make the

following replacements

λa → λa + Ja λ

δT → δT +
1

2
ηabJa δJb (6.114)

which changes the transformations (6.111) to

δT = 2T λ′ + λT ′ +
1

2
λ′′′ + iϵrs(3Grχ

′
s +G′

rχs)−
1

2
ηabJaλ

′
b,

δJa = (λ Ja)
′ + λ′a + i f bcaJb λc + 4(λa)

rsGrχs,

δGs = λG′
s +

3

2
Gsλ

′ − χ′′
s −

(
1

2
ηabJaJb + T

)
χs + i(λa)rs (2Ja χ

′
r + J ′

a χr + λaGr) .

(6.115)

and /δQΛ, after replacements δT → δT + 1
2
ηabJaδJb and λa → λa + Ja λ remains

form-invariant. Thus we see it is integrable and we write

QΛ =
k

2π

∫ 2π

0

dϕ
(
2λT − ηabJaλb + 4i ϵrsGr χs

)
. (6.116)

Using the fact that this charge QΛ is expected to induce the change δΛf = {QΛ, f},
one can read out brackets among (T (ϕ), Ja(ϕ), Gr(ϕ)). This results in

k

π
{T (ϕ), T (ψ)} = 2T (ψ) δ′(ψ − ϕ) + δ(ψ − ϕ)T ′(ψ) +

1

2
δ
′′′
(ψ − ϕ),

k

π
{T (ϕ), Ja(ψ)} = Ja(ψ) δ

′(ψ − ϕ) + J ′
a(ψ) δ(ψ − ϕ), (6.117)
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k

π
{T (ϕ), Gr(ψ)} =

3

2
Gr(ψ) δ

′(ψ − ϕ) +G′
r(ψ) δ(ψ − ϕ),

− k

2π
{Ja(ϕ), Jb(ψ)} = ifab

cJc(ψ) δ(ψ − ϕ) + ηab δ
′(ψ − ϕ),

− k

2π
{Ja(ϕ), Gr(ψ)} = i(λa)

s
rGs(ψ) δ(ψ − ϕ),

−k
π
{Gr(ϕ), Gs(ψ)} =

i

2
ϵrs

(
T (ψ) +

1

2
J2(ψ)

)
δ(ψ − ϕ) +

i

2
ϵrs δ

′′(ψ − ϕ)

+ (λa)rs

[
Ja(ψ) δ

′(ψ − ϕ) +
1

2
J ′
a(ψ) δ(ψ − ϕ)

]
, (6.118)

where all derivatives denoted by primes are with respect to the arguments. We use

the mode expansions

T (ϕ) =
1

2π

∑
n∈Z

Tn e
inϕ ⇐⇒ Ln =

∫ 2π

0

dϕT (ϕ)e−inϕ,

Ja(ϕ) =
1

2π

∑
n∈Z

Ja,n e
inϕ ⇐⇒ Ja,n =

∫ 2π

0

dϕ Ja(ϕ)e
−inϕ,

Gs(ϕ) =
1

2π

∑
r∈Z+ 1

2

Gs,r e
irϕ ⇐⇒ Gs,r =

∫ 2π

0

dϕGs(ϕ)e
−irϕ . (6.119)

Note that we have postulated anti-periodic boundary conditions for Gr(ϕ) which

immediately follows from demanding that the gauge field component Φ
(−,−)
+ is pe-

riodic. Using the mode expansion of Ja(ϕ) we can write the mode expansion of

ηabJa(ϕ)Jb(ϕ) as follows:

ηabJa(ϕ)Jb(ϕ) =
1

4π2

∑
m,n∈Z

ηabJa,mJb,n e
i(m+n)ϕ

=
1

4π2

∑
m+n=p∈Z

(∑
m∈Z

ηabJa,mJb,p−m

)
eipϕ :=

1

4π2

∑
p∈Z

(J2)p e
ipϕ

=⇒ (J2)p = 2π

∫ 2π

0

dϕ ηabJa(ϕ)Jb(ϕ) e
−ipϕ. (6.120)
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Replacing the Poisson brackets {A,B} in terms of the Dirac brackets [A,B] using

{A,B} = −i[A,B] and Ln → π
k
Ln, Ja,n → 2π

k
Ja,n and Gs,r → π√

−αkGs,r we find

[Lm, Ln] = (m− n)Lm+n + k n3δm+n,0,

[Lm, Ja,n] = −nJa,m+n, [Lm, Gs,r] =
1

2
(m− 2r)Gs,m+r,

[Ja,m, Jb,n] = fab
cJc,m+n + k n ηabδm+n,0, [Ja,m, Gs,r] = (λa)

s′

sGs′,m+r,

α−1[Gs,r, Gs′,r′ ] = ϵss′

[
r2δr+r′,0 −

1

2k
Lr+r′ −

1

2k2
(J2)r+r′

]
+

1

k
(λa)ss′(r − r′)Ja,r+r′ .

(6.121)

Finally to compare with earlier results (5.1) we need to replace Ln → Ln + k
2
δn,0

and set k = κ
2
. Then this algebra is seen to be in perfect agreement with the large-κ

limit of the W(2, (3/2)2, 13) algebra.

6.4 W(2, 4) from so(2, 3) gauge theory

In (6.15), the Lie algebra so(2, 3) split into a sl(2,R) given by a set {L1, L0, L1}
and a 7 dimensional vector multiplet under sl(2,R) denoted by Wi where i ∈
{±3,±2,±1}. We write this algebra again with α as an arbitrary parameter,

[
Lm , Ln

]
= (m− n)Lm+n ,

[
Lm ,Wn

]
= (3m− n)Wm+n (6.122)[

Wm,Wn

]
= α2A(m,n)Lm+n − αB(m,n)Wm+n (6.123)

which can be chosen to coincide (6.123) with the commutation relations in (6.15)

but for now we will keep it unfixed. From boundary terms in the variation of Chern-

Simons action (6.95), we choose to impose A− = 0 at the boundary to solve the

variational problem. In what follows we will use the boundary conditions and gauge

fixing method used in [116, 117], where the asymptotic symmetries of 3d higher spin

gauge theories described by SL(N)×SL(N) Chern-Simons theories were evaluated

to be WN algebras. One gauge fix Ar as,

Ar = f−1(r) ∂r f(r) (6.124)
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Then following the arguments of [116, 117], one can gauge fix A− = 0 everywhere on-

shell and the resultant gauge connection A can be written in terms of 2d connection

a as follows,

A− = 0 , A+ = f−1(r) a(x+) f(r). (6.125)

where a is given as

a = a(m)(x+)Lm + w(i)(x+)Wi (6.126)

We further gauge fix a according to the highest weight gauge used in [116, 117]. The

resultant a is then given by,

a = L1 + T (x+)L−1 +W(x+)W−3 (6.127)

For different choices of T (x+) and W(x+), a represents physically distinct solutions

to the equation of motion. To find the residual gauge transformations that do

not spoil the gauge and boundary conditions, we use the following form of gauge

parameter that takes value in so(2, 3) Lie algebra,

Λ = λ(m)(x+)Lm + χ(i)(x+)Wi. (6.128)
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Using the gauge transformation δa = da+[a,Λ] one can solve for various components

of the gauge parameters (6.128) to find

λ(0) = −∂λ(1) , λ(−1) =
1

2

(
2T λ(1) + 2160α2W χ(3) + ∂2λ(1)

)
,

χ(2) = −∂χ(3) , χ(−3) =
1

2

(
6Tχ(3) + ∂2χ(3)

)
,

χ(−2) =
1

6

(
−6χ(3) ∂T − 16T ∂χ(3) − ∂3χ(3)

)
,

χ(1) =
1

24

(
72T 2 χ(3) − 720αW χ(3) + 22 ∂T ∂χ(3) + 6χ(3) ∂2T (x+)

+ 28T (x+) ∂2χ(3) + ∂4χ(3)

)
,

χ(0) =
1

120

(
− 264T 2 ∂χ(3) + 2160αW ∂χ(3) − 28 ∂χ(3) ∂2T − 50 ∂T ∂2χ(3)

+ χ(3)
(
720α ∂W − 6 ∂3 T

)
− 8T

(
27χ(3)∂T + 5χ(3)

)
− ∂5χ(3)

)
, (6.129)

χ(−1) =
1

720

(
720T 3 χ(3) + 216χ(3) (∂T )2 − 2880α ∂W ∂χ(3) − 720αχ(3) ∂2W

+ 544T 2 ∂2χ(3) + 78 ∂2T ∂2 χ(3) + 720W
(
λ(1) − 22αT χ6(3)− 5α ∂2χ(3)

)
+ 34 ∂χ(3)∂3T + 90 ∂T ∂3χ(3) + 6χ(3) ∂4T

+ T
(
964 ∂T ∂χ(3) + 276χ(3) ∂2T + 50 ∂4χ(3)

)
+ ∂(6)χ(3)

)
.

(6.130)

In the expression (6.130), the functional dependence of fields on x+ is suppressed.

All the components of gauge parameter (6.128) are given in terms of two fields

{λ(1)(x+), χ(3)(x+)}. These residual gauge transformations will also induce variation
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on background fields {T (x+),W(x+)} given by,

δT = λ ∂T + 2 ∂λT +
1

2
∂3 λ+ 1080α2 χ∂W + 1440α2W ∂χ,

(6.131)

δW = λ ∂W + 4W ∂λ+ χ

[
24

5
T 2 ∂T − 28α ∂ (WT ) +

59

60
∂T∂2T +

13

30
T ∂3T

− α ∂3W +
1

120
∂5T

]
+ ∂χ

[
16

5
T 3 − 56αT W +

59

36
(∂T )2 +

88

45
T ∂2T − 5α ∂2W

+
1

18
∂4T

]
+ ∂2χ

[
49T ∂T

15
− 9α∂W +

7 ∂3T

45

]
+ ∂3χ

[
49

45
T 2 − 6αW +

7 ∂2T

30

]
+

7

36
∂T ∂4χ+

7

90
T ∂5χ+

1

720
∂7χ

(6.132)

where we define λ(1) := λ , χ(3) = χ. Using the coordinates x± = ϕ ± t we have

Aϕ = A++A− and ∂ϕ = ∂++∂−. The charges that generate the variations (6.131),

(6.132) are given by

/δQΛ = − k

2π

∫ 2π

0

dϕTr [Λ δAϕ]

=⇒ Q =
k

2π

∫ 2π

0

dϕ
[
20T (ϕ)λ(ϕ) + 7200α2W(ϕ)χ(ϕ)

]
. (6.133)
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Using the charges (6.133) and variations (6.131), (6.132) induced by them, one can

find the Poisson bracket between fields {T (ϕ),W(ϕ)},

10 k

π
{T (ϕ), T (ψ)} = 2T (ψ) δ′(ψ − ϕ) + δ(ψ − ϕ)T ′(ψ) +

1

2
δ
′′′
(ψ − ϕ), (6.134)

10 k

π
{T (ϕ),W(ψ)} = 4W(ψ) δ′(ψ − ϕ) +W ′

(ψ) δ(ψ − ϕ),

10 k

π
{W(ϕ), T (ψ)} = 4W(ψ) δ′(ψ − ϕ) + 3W ′

(ψ) δ(ψ − ϕ), (6.135)

3600α2 k

π
{W(ϕ),W(ψ)} = δ(ψ − ϕ)

[
24

5
T 2 T

′ − 28α (WT )
′
+

59

60
T

′
T

′′
+

13

30
T T

′′′

− αW ′′′
+

1

120
T

′′′′′
]
+

7T

90
δ(5)(ψ − ϕ) +

1

720
δ(7)(ψ − ϕ) +

7T
′

36
δ(4)(ψ − ϕ)

+ δ
′
(ψ − ϕ)

[
16

5
T 3 − 56αT W +

59

36
(T

′
)2 +

88

45
T T

′′ − 5αW ′′
+

1

18
T

′′′′
]

+ δ
′′
(ψ − ϕ)

[
49T T

′

15
− 9αW ′

+
7T

′′′

45

]
+ δ

′′′
(ψ − ϕ)

[
49

45
T 2 − 6αW +

7T
′′

30

]
.

(6.136)

We use the following mode expansions,

T (ϕ) =
1

2π

∑
n∈Z

Tn e
inϕ ⇐⇒ Ln =

∫ 2π

0

dϕT (ϕ)e−inϕ,

W(ϕ) =
1

2π

∑
n∈Z

Wn e
inϕ ⇐⇒ Wn =

∫ 2π

0

dϕW(ϕ)e−inϕ. (6.137)

Now the mode expansion {Wm,Wn} is calculated as follows,

{Wm,Wn} =
π

3600α2 k

∫ 2π

0

dϕ

∫ 2π

0

dψe−imϕe−i nψ
3600α2 k

π
{W(ϕ),W(ψ)}

(6.138)
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In RHS of (6.138), terms that are first order in fields are as follows,

π

3600α2 k

∫ 2π

0

dϕ

∫ 2π

0

dψe−imϕe−i nψ
[
δ(ψ − ϕ)

(
−α ∂3W +

1

120
∂5T

)
δ(1)(ψ − ϕ)

(
−5α ∂2W +

1

18
∂4T

)
+ δ(2)(ψ − ϕ)

(
−9α ∂W +

7

45
∂3T

)
+ δ(3)(ψ − ϕ)

(
−6αW +

7

30
∂2T

)
+

7

36
∂T δ(4)(ψ − ϕ) +

7

90
T δ(5)(ψ − ϕ)

]
.

(6.139)

Terms that have quadratic field dependence are given by,

π

3600α2 k

∫ 2π

0

dϕ

∫ 2π

0

dψe−i(mϕ+nψ)
[
δ(ψ − ϕ)

(
− 28α∂(WT ) +

11

80
∂3T 2

+
19

120
∂(T∂2T )

)
δ(1)(ψ − ϕ)

(
−56αWT +

59

72
∂2T 2 +

19

60
T∂2T

)
+

49

30
δ(2)(ψ − ϕ) ∂(T 2) +

49

45
δ(3)(ψ − ϕ)T 2

]
(6.140)

Terms with cubic order in fields are as follows,

π

3600α2 k

∫ 2π

0

dϕ

∫ 2π

0

dψe−imϕe−i nψ
[
24

15
δ(ψ − ϕ)∂(T 3) +

16

5
δ(1)(ψ − ϕ)T 3

]
.

(6.141)

The full Poisson bracket after collecting all the terms is given by,

{Wm ,Wn} = − i π

k α2
τLWW Lm+n −

i π

α k
τWWW Wm+n +

i

α2 k
τΛWW (LL)m+n

− i

π k α2
τ∆WW

∑
p

∑
q

Lm+n−p−qLpLq +
i

α2 k
τΓWW

∑
p

p2 Lm+n−pLp

+
i

α k
τΩWW (WL)m+n −

i π2

α2 k
dWW δm+n,0. (6.142)
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where

(WL)p =
∑
m

Wp−mLm = 2π

∫ 2π

0

dϕW(ϕ)T (ϕ)e−ipϕ,

(LL)p =
∑
m

Lp−mLm = 2π

∫ 2π

0

dϕ (ϕ)T (ϕ)2e−ipϕ,

(T∂2T )p =
∑
m

m2 Lp−m Lm = −2π

∫
dϕ e−ipϕ T (ϕ)∂2 T (ϕ),

(T 3)p =
∑
m

∑
n

Lp−n−mLn Lm = 4π2

∫ 2π

0

T 3(ϕ) e−ipϕ dϕ, (6.143)

and

τLWW =
1

1296000

(
3m5 − 5m4 n+ 6m3 n2 − 6m2 n3 + 5mn4 − 3n5

)
,

τWWW =
1

3600

(
m3 − 2m2 n+ 2mn2 − n3

)
,

τΛWW =
1

5184000

(
99m3 − 293m2 n+ 293mn2 − 99n3

)
,

τ∆WW =
1

9000
(m− n) ,

τΓWW =
19

864000
(m− n) ,

τΩWW =
7

1800
(m− n), dWW =

1

1296000
n7. (6.144)

To go from Poisson bracket to commutator one replaces i {Wm,Wn} → [Wm,Wn]

with the following identifications,

Lm → π

10 k
Lm, Wm → π

k
Wm , k → − c

120
,

[Lm Ln] = (m− n)Lm+n +
c

12
m3 δm+n,0, (6.145)

[LmWn] = (3m− n)Wm+n, (6.146)
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[Wm ,Wn] =
1

10α2
τLWW Lm+n +

1

α
τWWW Wm+n −

1

100 k α2
τΛWW (LL)m+n

+
1

1000 k2 α2
τ∆WW

∑
p

∑
q

Lm+n−p−qLpLq −
1

100α2 k
τΓWW

∑
p

p2 Lm+n−pLp

− 1

10α k
τΩWW (WL)m+n +

k

α2
dWW δm+n,0. (6.147)

To compare (6.144) with the classical limit (large central charge c) of coefficients in

the W(2, 4) algebra in (6.2.3), we redefine Ln as follows,

Ln → Ln −
c

24
δn,0 (6.148)

which lead to the following changes in the mode expansions of the composite oper-

ators:

(LL)m+n → (LL)m+n −
c

12
Lm+n +

c2

242
δm+n,0,

∑
p

∑
q

Lm+n−p−qLpLq →
∑
p

∑
q

Lm+n−p−qLpLq −
3c

24
(LL)m+n +

3c2

242
Lm+n −

c3

243
δm+n,0,

∑
p

p2 Lm+n−pLp →
∑
p

p2 Lm+n−pLp −
c

24
(m+ n)2 Lm+n,

(WL)m+n → (WL)m+n −
c

24
Wm+n. (6.149)

Substituting these changes, the resultant commutator becomes,

[Wm ,Wn] = τ̃LWW Lm+n + τ̃WWW Wm+n + τ̃ΛWW Λm+n + τ̃ΩWW Ωm+n

+ τ̃∆WW ∆m+n + τ̃ΓWW Γm+n + d̃WW δm+n,0 (6.150)

where

Ωm+n = (WL)m+n , ∆m+n =
∑
p

∑
q

Lm+n−p−q Lp Lq,

Γm+n =

(∑
p

p2 Lm+n−p Lp −
5

18
(m+ n)2 (LL)m+n +

4

9
(LL)m+n

)
. (6.151)
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These expressions are the mode expansions of quasi-primaries defined in (6.82) in the

semi-classical limit of large central charge c. The final coefficients are,

τ̃LWW =
1

1680
(m− n)

(
3(m4 + n4)− 2mn(m− n)2 − 39(m2 + n2) + 20mn+ 108

)
,

τ̃WWW =

√
105

420
(m− n)(n2 +m2 −mn− 7) , τ̃∆WW =

432 (m− n)

35 c2
,

τ̃ΛWW =
7(m− n)

30 c

(
m2 + n2 −mn− 7

)
, τ̃ΓWW =

57 (m− n)

280 c
,

τ̃ΩWW =

√
42

5
× (m− n)

c
, d̃WW =

cm (m6 − 14m4 + 49m2 − 36)

20160
δm+n,0

(6.152)

where we fixed the value of α = 1
60

√
7
15 . These coefficients in large central charge c limit

match with the coefficients in (6.85).

6.5 Gravitational Chern Simon term

In the previous sections, we only focused on the 3d conformal gravity formulated as so(2, 3)

Chern-Simons gauge theory. However, there is also an equivalent second-order formulation

of three-dimensional conformal gravity given by the following action,

SCSG =
k

2

∫
d3x

√
−Gϵλµν

(
Γρλσ ∂µΓ

σ
ρν +

2

3
Γρλσ Γ

σ
µτ Γ

τ
νρ

)
(6.153)

where k is a dimensionless parameter, which is the level of the Chern-Simons action and

G is the determinant of the metric Gµν . The Christoffel symbol Γ is the Levi-Civita

connection associated with the Gµν . In our notation, the 3d Levi-Civita tensor ϵµ1µ2µ3 on

a curved manifold is defined as follows,

ϵµ1µ2µ3 =
√
−G ϵ̂µ1µ2µ3 , ϵµ1µ2µ3 =

1√
−G

ϵ̂µ1µ2µ3 (6.154)

where ϵ̂µ1µ2µ3 is a pseudo-tensor defined as follows,

dxµ1 ∧ dxµ2 ∧ xµ3 = ϵ̂µ1µ2µ3 dx1 ∧ dx2 ∧ dx3 = ϵ̂µ1µ2µ3 d3x (6.155)
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that takes the value ϵ̂012 = 1 and is antisymmetric in all indices. Therefore the volume

element on the 3d manifold can be written as,

dxµ1 ∧ dxµ2 ∧ dxµ3 =
√
−Gϵµ1µ2µ3d3x = ϵ̂µ1µ2µ3 d3x. (6.156)

The equation of motion derived from the action (6.153) is

Cµν = ϵ σρ
µ ∇σ

(
Rρν −

1

4
Rgρν

)
= 0. (6.157)

The tensor Cµν is the Cotton tensor and the equation (6.157) is a sufficient and necessary

condition for Gµν to be conformally flat in 3 dimensions. The tensor Sµν = Rµν − 1
4 Rgµν

is the Schouten tensor. Under Weyl transformations

Gµν → e−2σGµν

the Cotton tensor Cµν is invariant (but this is not true in general for d ≥ 4). The La-

grangian density in (6.153) is invariant under diffeomorphisms and Weyl transformations

up to the total derivative, which plays an important role while calculating charges associ-

ated with these theories using modified covariant phase space formalism [28, 119].

This action becomes relevant when one quantizes the AdS4 gravity using the Neumann

boundary condition where the holographic stress tensor Tij = 0, and one expects the

boundary action to be an induced gravity action [99]. One can add a bulk Pontryagin

term to the action (6.153)

Spontryagin = k

∫
d4x

√
−gϵµνσλRαβµν Rβασν (6.158)

with an arbitrary coupling constant. The Pontryagin term is a total derivative, equivalent

to Chern-Simons Gravity action (6.153) at the boundary. Therefore the variation of the

action after adding all the boundary terms, necessary counter terms and Pontryagin term

(6.158) will be given by,

δStotal ∼
∫
d3x (T ij + k Cij) δg

(0)
ij (6.159)

where g
(0)
ij is the induced metric at the boundary. For non-Dirichlet boundary conditions

where δg
(0)
ij ̸= 0, one sets the modified holographic stress tensor to zero. However, in

the large k limit, the term proportional to T ij can be neglected, and we can solve the

variational principle by setting Cij = 0, which means we look for only those solutions

whose boundary metric is conformally flat. Furthermore, if one calculates boundary ef-

fective action then the action (6.153) dominates the induced gravity action in the large-k

limit at the boundary and thus becomes relevant for AdS4 holography. As alluded to in
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the conclusion of Chapter 5, for locally AdS4 the induced effective action goes to zero

[105] and in that case addition of Pontryagin term will provide an effective gravitational

action at the boundary (6.153), that can be used to calculate the expectation value of the

symmetry generating currents in the bulk AdS4 gravity. This can potentially also explain

the emergence of line integral charges from the bulk AdS4 gravity because the effective

action is a gravitational theory which will have its codimension-two charges making the

charges codimension-three from the bulk perspective. As it turns out we will see that the

charges we derive for the action (6.153) are similar to the conjectured charges from the

AdS4 gravity (5.76).

Having dispensed with the motivations, we now turn to the analysis of 3d gravitational

Chern-Simons action leaving further implications on bulk AdS4 gravity for future works.

6.5.1 Imposing variational principle

The variation of the action (6.153) yields,

δS =
k

2

∫
d3x

√
−GCµνδGµν +

∫
d2x

√
−γ nµΘµ (6.160)

where nµ = − l
r δ

r
µ is normal to time-like boundary r = r0 and γab is the induced metric

on this hypersurface. The boundary coordinates are labelled by xa ∈ {x+, x−}. The

presymplectic potential is given by,

Θµ =
k

2
ϵλµν Γαλρ δΓ

ρ
αν +

k

2
ϵλσν Rρµνσ δGλρ (6.161)

The metric in the Fefferman-Graham gauge is,

ds2 =
l2

r2
dr2 +

l2

r2
gab dx

adxb. (6.162)

Using the relation
√
−γ =

r

l

√
−G

the boundary term in (6.160) can be written as,∫
d2x

(
−δrµΘµ

)
= −

∫
d2x

k

2

[
ϵ̂λrν Γαλρ δΓ

ρ
αν + ϵ̂λσν Rρrνσ δgλρ

]
=

∫
d2x k

[
ϵ̂ab

2
ΓαaρδΓ

ρ
αb − ϵ̂abRcrrb δgac

]
(6.163)

where we set ϵ̂rab = ϵ̂ab The first term can be expanded as follows,

ϵ̂ab ΓαaρδΓ
ρ
αb = ϵ̂ab

[
Γrac δΓ

c
rb + Γcar δΓ

r
cb + ΓcadδΓ

d
cb

]
. (6.164)
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In the above expression, we have used Γrar = 0. Putting in the metric (6.162) the first

two terms in (6.164) have only r derivatives on the variation of the boundary metric. The

third term ϵ̂ab Γcad δΓ
d
cb can be written as follows,

ϵ̂ab Γcad δΓ
d
cb =

[
∂e

(
ϵabΓead g

dcδgcb

)
+ ∂b

(
ϵabΓeac g

cdδgde

)
− ∂d

(
ϵabΓeac g

cdδgeb

)]
+ ϵab gde [−∇cΓ

c
ad δgeb −∇bΓ

c
ad δgce + ∇eΓ

c
ad δgcb] . (6.165)

We can drop the total derivative terms and will only be left with the second line of (6.165).

Near the boundary, one expands the metric gij in (6.162) as follows,

gij = g
(0)
ij +

l

r
g
(1)
ij +

l2

r2
g
(2)
ij + · · · (6.166)

Substituting this in (6.163) and expanding in r, one can check that at O(r) the first two

terms in (6.164) cancel the terms coming from the second term in (6.163), and therefore,

there is no divergent boundary term in the variation of the action when (6.163) is expanded

near the boundary. At O(1) we find the following terms,

ϵ̂cb
(
1

l2
g
(0)
dc g

ad
(2) −

1

4l2
gef(0)g

(1)
ef g

(0)
dc g

ad
(1)

)
δg

(0)
ab − ϵ̂cb

(
1

4l2
g
(0)
dc g

ad
(1)δg

(1)
ab

)
− ϵ̂ab

4
ged(0)

(
DcΓ̃

c
ad δg

(0)
eb +DbΓ̃

c
ae δg

(0)
cd −DeΓ̃

c
adδg

(0)
cb

)
(6.167)

where Da is the covariant derivative associated with g
(0)
ab and Γ̃ is the Christoeffel con-

nection associated with it. We parameterise our boundary metric g
(0)
ab in Polyakov chiral

gauge such that the boundary line element is given as,

ds2bdry = − dx+dx− + g
(0)
++(x

+, x−)(dx+)2 (6.168)

With this choice of boundary metric the first term in (6.167) becomes,

1

2l2
g++
(2) δg

(0)
++ +

1

8l2
gef(0)g

(1)
ef g

++
(1) δg

(0)
++ (6.169)

Following [8, 10], one sets g++
(2) = g

(2)
−− = −N2

4 such that the first term in (6.169) becomes

−N
2

8l2
δa+δ

b
+ δg

(0)
ab

which can be written as a total variation δ
(
−N2

8l2
δa+δ

b
+ g

(0)
ab

)
. To cancel this term we follow

the prescription of [10], where one adds the following boundary term to the action (6.153)

S′ = k

∫
d2x T ab g

(0)
ab ,with T ab =

N2

8l2
δa+ δ

b
+. (6.170)
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such that from the variation of the total action δStotal = δSCSG + δS′ the term

−N2

8l2
δa+δ

b
+ δg

(0)
ab drops out. The second term in (6.169) will go to zero from the gauge

choice (6.174). Now we come to the second term in (6.167) which becomes,

1

2l2

(
g
(1)
++ δg

(1)
−− − g

(1)
−− δg

(1)
++

)
+

1

l2
g
(0)
++

(
g
(1)
+− δg

(1)
−− − g

(1)
−− δg

(1)
+−

)
. (6.171)

There is a clear choice of boundary condition for which all of the above terms will go

to zero and that is g
(1)
−− = δg

(1)
−− = 0. Also due to the chiral conditions imposed on the

boundary metric as in (6.168) all the terms in the second line of (6.167) will go to zero.

To summarise we solve the variational problem as follows,

• Parameterise the boundary metric in the Polyakov gauge as

g
(0)
+− = −1

2
, g

(0)
−− = 0 , g

(0)
++ = g

(0)
++(x

+, x−). (6.172)

• Fix the value of g
(2)
−− = −N2

4 following [10] and add a boundary term S′ =

k
∫
d2x T ab g

(0)
ab to the action (6.153).

• Impose the condition g
(1)
−− = 0.

6.5.2 Solutions to conformal gravity

We solve the equation Cµν = 0 near the boundary at each order in r after writing the

metric in Fefferman-Graham gauge as follows,

ds2 =
l2

r2
dr2 +

r2

l2

(
g
(0)
ab +

l

r
g
(1)
ab +

l2

r2
g
(2)
ab + · · ·

)
dxa dxb (6.173)

Further, we also impose the gauge condition to fix Weyl symmetry as follows,

∂r

(
det(G)

r2

)
= 0 (6.174)

where det(G) is the determinant of the full metric in (6.173). This condition fixes the

off-diagonal component of g
(0)
ab , g

(1)
ab , g

(2)
ab and so on. The expansion is similar to that of

[8, 10, 9] except for the presence of g
(1)
ab term. We start by imposing the chiral boundary

conditions that satisfy the variational principle,

g
(0)
−− = 0 , g

(0)
+− = −1

2
, g

(1)
−− = 0 , g

(2)
−− = −N

2

4
.
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With these boundary conditions, one can solve for various metric components

g
(1)
−− = 0 , g

(2)
−+ =

N2

4
, g

(3)
+− =

N2

4
g
(1)
+−,

g
(2)
++ = T (x+)− 1

2
l2
(
∂−g

(0)
++

)2
+ l2 g

(0)
++∂

2
− g

(0)
++ +

1

2
l2 ∂−∂+g

(0)
++. (6.175)

The free data that characterise the solutions are {g(0)++, g
(1)
++, T (x

+)}, where g(0)++, g
(1)
++ sat-

isfies the following constraint equations.

N2 ∂−g
(0)
++(x

+, x−) + l2 ∂3−g
(0)
++(x

+, x−) = 0,

N2 g
(1)
++(x

+, x−) + 4 l2 ∂2−g
(1)
++(x

+, x−) = 0. (6.176)

The solution to the constraint equations (6.176) are

g
(0)
++ = J−(x+) e−

i N x−
l + J0(x+) + J+(x+) e

i N x−
l = Ja(x+) ea

i N x−
l , (6.177)

g
(1)
++ = G−1/2(x+) e−

i N x−
2 l +G1/2(x+) e

i N x−
2 l = Gs(x+) es

i N x−
l . (6.178)

Thus the complete solution space for Cµν = 0 with boundary conditions (6.175) is param-

eterised by six chiral functions {Ja(x+), Gs(x+), κ(x+)} , a ∈ {0,±1} and s ∈ {±1
2}.

Asymptotic symmetries

Since the 3d conformal gravity theory defined by the action (6.153) is diffeomorphic and

Weyl invariant, the asymptotic asymmetries associated with such a theory constitute resid-

ual diffeomorphisms and residual Weyl transformations that do not spoil the gauge and

boundary conditions. The variation of metric due to these residual gauge transformations

is

δGµν = ∇µξν +∇νξµ − 2σGµν = 0. (6.179)

Imposing the gauge condition δGrr = 0 leads to the determination of the Weyl parameter

σ on the radial component of the vector field ξ as,

σ = −ξ
r

r
+ ∂rξ

r. (6.180)

We further expand the vector field component near the boundary as,

ξr = r2 ξr(−2)(x
a) + r ξr(−1)(x

a) + ξr(0)(x
a) + · · ·

ξa =
∑
n=0

r−nξa(0)(x
b) (6.181)
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From the gauge condition δGra = 0 at O(1), one gets

ξa(1) = l4 gab(0) ∂bξ
r
(−2). (6.182)

From δG−− = 0 at O(r2) and O(r), one gets

ξ+(0) = λ(x+) ,
N2

2
ξr(−2) + 2 l2 ∂2−ξ

r
(−2) = 0. (6.183)

The equation (6.183) can be solved for ξr(−2) to find,

ξr(−2) = χ1/2(x+) e
i N x−

2l + χ−1/2(x+) e−
i N x−

2l . (6.184)

From δG+− at O(r2) one obtains

ξr(−1) = −1

2
Daξ

a
(0). (6.185)

The gauge condition δGr− = 0 at the O
(
1
r

)
is given by

ξ+(2) = −l4 ∂−ξr(−1). (6.186)

Using this at δG−− = 0 at O(1) one obtains the following constraint equation,

N2 ∂−ξ
−
(0) + l2 ∂3−ξ

−
(0) = 0 (6.187)

which can be solved as

ξ−(0) = λ(−1)(x+) e
i N x−

l + λ(0)(x+) + λ(1)(x+) e−
i N x−

l . (6.188)

Therefore the final residual diffeomorphisms and Weyl parameters are,

ξ+ = λ(x+) + · · · , ξ− = λa(x+) ea
i N x−

l + · · · a ∈ {±1, 0},

ξr = r2 χs(x
+) es

i N x−
l + · · · s ∈ {±1

2
},

σ = r χs(x
+) es

i N x−
l + · · · .
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These induce the following variations on the background fields,

δJa = λ∂Ja + ∂λJa + ∂λa + i fa
bc Jbλc − 4 l3N (λa)

ss′ Cs χs′ ,

δCs = λ∂Cs +
3

2
Cs ∂λ− ∂2χs − (T +

1

2
ηab JaJb)χs

+ i (λa)s
′

s (2 Ja ∂χs′ + ∂Ja χs′ + λaCs′) ,

δT = 2T ∂λ+ λ∂T +
1

2
∂3Y − 1

2
ηabJa ∂λb − i l3N ϵss

′
(3Cs ∂χs′ + ∂Cs χs′) .

(6.189)

These transformations are identical to (6.115) from the first order formulation of conformal

gravity for N = − 1
l3
.

6.5.3 Calculation of Charges

We now turn to calculate the charges that induce variations of the background field (6.189)

due to residual diffeomorphisms and Weyl symmetries. As mentioned before, the La-

grangian density is invariant up to the total derivative under the diffeomorphism param-

eter ξ and the Weyl transformation gµν → e−2σ gµν . To calculate the charges we use a

modified covariant phase space formalism proposed by Tachikawa [28] which we reviewed

in (2.1.5). The symmetry parameters for our theory are χ ∈ {ξ, σ}. Let us calculate the

charges associated with the residual Weyl symmetry σ. For this, we calculate the variation

of Lagrangian density under Weyl transformation

δσL = ∂µΞ
µ
(σ) (6.190)

where

Ξµ(σ) =
k

2
ϵλµνgαβ ∂ασ ∂λgβν . (6.191)

The Noether current Jµ for Weyl transformation is given by

Jµ(σ) = θµ(σ) − Ξµ(σ) (6.192)
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It can be checked that Jµ(σ) is conserved on-shell. One can use Noether current to obtain

Kµν such that,

Jµ(σ) ≃ ∂µK
µν
(σ) (6.193)

Kµν
(σ) = −k

4
ϵλµνgρα∂λgρα σ (6.194)

Under Weyl transformation, the symplectic potential transforms as follows,

δσθ
µ = Πµ(σ), (6.195)

Πµ(σ) =
k

2
ϵλµν

(
− ∂λσδΓ

α
αν + ∂βσ g

αβ∂νδgαλ + ∂βσ ∂λgνρ δg
βρ

+ 2 ∂βσ g
ρβ Γαλρ δgαν − ∂νδσ Γ

ρ
ρλ + ∂τδσ ∂λgνρ g

ρτ

)
. (6.196)

Now the formula (2.58) states that one should be able to write δΞµ(σ) − Ξµ(δσ) − Πµ(σ) as a

total derivative on-shell. We find that up to order O(1) terms in r one can show that on

shell,

δΞµ(σ) − Ξµ(δσ) −Πµ(σ) ≃ ∂νΣ
µν
(σ) (6.197)

= −k ϵµνλ∂βσ gαβδgλβ. (6.198)

Then the Weyl charge using the formula (2.60) is given by,

Qµν(σ) =
1

16π

(
−k ϵµνλ∂βσ gαβδgλβ

)
(6.199)

Note that the current Kµν
(σ) for Weyl transformation in (6.194) vanishes for the chiral pa-

rameterisation of the boundary metric (6.168). Therefore the contribution to the Weyl

charge is entirely from (6.198). The calculation of the charges for diffeomorphism symme-

tries has been carried out in [28, 119] in the context of topologically massive gravity. For

diffeomorphisms, the full charge is written as follows [28, 119],

Kµν
ξ = −2k ϵ̂λµν

(
Sλαξ

α − 1

4
Γαλβ∇αξ

β

)
,

Σµνξ =
k

2
ϵ̂λµν δΓβλα∂βξ

α, (6.200)

16πQµνξ = −2 k ϵ̂µνρ
(
δSραξ

α − 1

2
δΓαρβ∇αξ

β + ξβ Rα[βδgρ]α

)
. (6.201)

186



Therefore the total charge becomes,

16πQµνξ + 16πQµν(σ) = −2 k ϵ̂µνρ
(
δSραξ

α − 1

2
δΓαρβ∇αξ

β + ξβ Rα[βδgρ]α +
1

2
∂βσ g

αβδgρβ

)
.

(6.202)

We integrate this charge on a constant t surface at the boundary and use the coordinates

x± = ϕ± t to obtain,

16π�δQ =

∫ 2π

0
dϕ Qrt =

∫ 2π

0
dϕ

1

2

(
Qr+ −Qr−

)
. (6.203)

The Weyl charges Qµν(σ) cancel the divergent piece at O(r) from the diffeomorphism charges

Qµν
ξ and the resultant charge is given by

16π�δQ =
k

2

∫
dϕ
(
2 δT (x+)λ− ηabδJa λb − 4 i l3N ϵss

′
δCs χs′

)
(6.204)

This charge is trivially integrable and therefore the final charge is

Q =
k

32π

∫
dϕ
(
2T (x+)λ(x+)− ηab Ja λb − 4 i l3N ϵss

′
Cs χs′

)
(6.205)

For N = − 1
l3
, this charge matches with that derived from the first-order formalism in

(6.116). The Poisson bracket between currents will be identical to (6.117) and (6.118)

after substituting N = − 1
l3

and therefore to avoid redundancy, we do not write it here.

One can redefine Cs → Cs√
l3N

so that the resultant commutation relations are given by,

[Lm, Ln] = (n−m)Lm+n +
k

8
n3 δm+n,0 (6.206)

[Lm, Ja,n] = −nJa,n+m, [Lm, Cs,r] =
1

2
(m− 2r)Cs,m+r (6.207)

[Ja,m, Jb,n] = f c
abJc +

k

8
n ηabδm+n,0 , [Ja,m , Cs,r] =

1

2
(a− 2s)Cs+a,r+m[

Cs,r′ , Cs′,r′
]
= ϵss′

[(
r2 − 1

4

)
δr+r′ −

4

k
Lr+r′ −

32

k2
(
J2
)
r+r′

]
+

8

k
(λa)ss′ (r − r′)Ja,r+r′ (6.208)

For k = 4κ and Cs,r → Gs,r this symmetry algebra matches with the semi-classical limit

of W(2, (3/2)2, 13) in (5.1). This concludes our treatment of gravitational Chern-Simons

action and showing the chiral W(2, (3/2)2, 13) symmetry of it.
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6.6 Further Comments and Discussions

In this chapter one of the questions we have answered is:

What are all the chiral W-algebra extensions of so(2, 3)?

As the first step, we showed that there are exactly four ways to embed a copy of sl(2,R)
into so(2, 3) algebra. Each such embedding results in a distinct chiral W-algebra extension

and we have constructed two new ones, and recovered the other two that are known from

[179] and (5.1) – thus completing the list of such chiral extension of so(2, 3). One of our new

algebras (namely W(2; 22, 1) with h = so(1, 1)) is the conformal bms3 whose semi-classical

version was first found in [20].

Just as the W3 algebra of Zamalodchikov [171] and the W
(2)
3 algebra of Bershadsky-

Polyakov [168, 167] could be realised [116, 187, 117] in the Chern-Simons theory with

sl(3,R) gauge algebra, we realised in this chapter W(2, 4) and W(2; (3/2)2, 13) as the

asymptotic symmetry algebra of 3d conformal gravity written as so(2, 3) Chern Simons

gauge theory after proposing appropriate boundary conditions. The case of W(2; 22, 1) or

conformal bms3 from 3d conformal gravity already existed in the literature [20].

Each extension we considered depends on the list of simple primaries [25] that are declared.

As we have seen there are primaries of higher dimensions in each chiral algebra and we

could probably have worked with other sets of primaries as the simple ones and these

might lead to other extensions so(2, 3). The choices we made of sets of simple primaries

are with minimal conformal dimensions, and therefore the extensions we considered are in

a sense minimal. It will be interesting to construct the non-minimal algebras as well (if

they exist) and study them.

As we have seen, in each of the four chiral W-algebras we constructed, the constraints from

Jacobi identities admit trivial solutions as well where all the parameters vanish and central

charges are arbitrary. These trivial solutions do not correspond to extensions of so(2, 3)

but instead of different contractions of it. For instance in the case of W(2; (3/2)2, 13)

it corresponds to a chiral conformal algebra extension of iso(1, 3) (iso(2, 2)), namely the

Poincare algebra – which is the isometry algebra of R1,3 (R2,2). In the other three cases,

the analogous chiral conformal extensions are of other 10-dimensional algebras that are

still contractions of so(2, 3). It will be interesting to identify spacetimes which admit

these contractions of so(2, 3) as their symmetry algebras and ask if the corresponding

infinite-dimensional chiral conformal algebra extensions have any important role in them.

Even though we aimed to construct chiral W-algebras it does not mean that we miss

out on algebras that are not chiral. As an example, we show in the Appendix G that if

we repeat the same exercise for so(2, 2) we end up with two chiral infinite dimensional
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algebras. One of them is indeed a chiral algebra which is an extension of CIG algebra of

Polyakov [112] as derived by [10]. The other can be identified with the non-chiral Brown-

Henneaux algebra though seen from the perspective of the diagonal Virasoro. It will be

interesting to explore this question for our extensions of so(2, 3) as well.

Our chiral extensions of so(2, 3) should be thought of as the analogues of Polyakov’s

symmetries of chiral induced gravity [112] to three dimensions. Therefore, it is expected

that they may be realised as such. This leads us to predict that these symmetries should be

realised as asymptotic symmetries of AdS4 gravity just as the Polyakov symmetry algebra

was realised as the asymptotic symmetries of AdS3 gravity in [10]. We demonstrated this

for W(2; (3/2)2, 13) where in Chapter 5, we show the existence of this W-algebra from

AdS4 gravity. It is highly desirable to see other chiral extensions of so(2, 3) emerging from

the symmetries of AdS4 gravity.

The next step in analysing the algebras of this chapter and their utility in the context of

holography would be to construct their representations in terms of generalised primary op-

erators and study the Ward identities of their correlation functions. Once that is achieved

it will be important to provide a prescription to compute them holographically, either in

the 3d conformal gravity theories or AdS4-gravity theories along the lines of [188]. We

hope to address these in the near future.
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Chapter 7

Future Directions

The findings in the context of celestial conformal field theory (CFT) suggest the exis-

tence of a significantly larger infinite-dimensional w1+∞ symmetry algebra associated with

asymptotically flat spacetimes [189]. Notably, the chiral bms4 that we derived from bulk

R1,3 gravity in Section 3 is identified as a constituent of this algebra. One of the future

directions is to investigate the potential extension of the chiral boundary conditions within

the framework of Einstein gravity in R1,3 or R2,2 to encompass this w1+∞ symmetry alge-

bra. The prior analysis, conducted in Section 3, focused on vacuum solutions; hence, the

intent is to include excited state solutions (radiative solutions) that manifest these chiral

symmetry algebras. One way this is possible is due to the results of the reduced phase

space analysis of generalised bms4 algebra for linearised gravity [126]. The constraints

(3.14), (3.16) that we obtained from locally flat conditions are a subset of the constraints

considered in [126] and one would like to extend the construction of phase space analysis

to the chiral radiative solutions following their analysis. Additionally, it will be interesting

to adapt the techniques of covariant phase space analysis for the derivation of the charges

associated with the chiral bms4 algebra and w1+∞ as we expect these charges to be line

integral just like the charges in 2d CFT.

In Section 4, we provided a general prescription to construct actions and equations of

motion of Carrollian conformal field theories for scalars that one can extend for the con-

struction of conformal coupled field theories with higher spin Carroll fields and Carroll

fermions [79, 80, 190, 191]. It will be interesting to investigate the possible duality between

the bulk 4d gravitational theories with non-Dirichlet boundary conditions and induced con-

formal Carrollian gravity theories on null infinity [81]. One expects that the gravitational

theory on the boundary will give rise to a line integral charge that will obey symmetry

algebra identical to chiral bms4 algebra. Another interesting problem that we would like

to address in future is the emergence of chiral bms4 and w1+∞ algebra from the global

symmetries of field theories intrinsically defined on the Carrollian manifold. See [192],
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where the scalar field coupled to 2d gravity in Polyakov gauge exhibit a hidden sl(2,R)
current algebra symmetry.

The analysis in Section 5 of chiral locally AdS4 solutions and the emergence of

W(2; (3/2)2, 13) algebra from the asymptotic symmetry algebra points to the fact that

by imposing appropriate bulk boundary conditions, one obtains a topological sector in

AdS4 which is governed holographically by the symmetry algebra of 2d chiral CFT. These

preliminary computations suggest the possibility of a type of codimension-two holography

for AdS4 gravity similar to the celestial holography of R1,3 gravity. Another interesting

open problem is the derivation of the postulated line integral charges that obey the sym-

metry algebra W(2; (3/2)2, 13) directly from bulk AdS4 gravity. Because W(2; (3/2)2, 13)

contracts to chiral bms4 algebra in flat space limit whose currents give rise to conformal

soft theorems, the connection of W(2; (3/2)2, 13) algebra in probing the infrared effects of

AdS4 needs to be understood better. For example, it will be interesting to link the works

[193, 194] addressing the correction to the soft factor in the presence of small cosmological

constant to W(2; (3/2)2, 13) algebra.

In Section 6, we found exactly four chiral W-algebra extensions of so(2, 3) Lie algebra

and show that some of these algebras in the semi-classical limit emerge as the asymptotic

symmetry algebras of 3d so(2, 3) Chern-Simons gauge theory [20]. We also show the

emergence of W(2; (3/2)2, 13) algebra from the second order formalism of 3d conformal

gravity, which we argue to describe holographically AdS4 gravity for some specific bulk

configurations and boundary conditions. We would like to derive theseW-algebra from the

asymptotic symmetries of AdS4 gravity and understand the relevance of these W-algebras

better from the perspective of AdS4 holography.
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Appendix A

Residual symmetries in NU gauge

Here we consider vector fields ξµ∂µ which leave our boundary conditions and gauge choice

invariant. First imposing the gauge conditions δgru = δgrr = δgra = 0 require that the

vector field components satisfy:

∂rξ
u = 0, ∂uξ

u + ∂rξ
r = gua ∂rξ

a, ∂aξ
u = gab∂rξ

b (A.1)

These equations can again be solved in an asymptotic expansion around large-r. Expand-

ing ξr and ξa as

ξr =
∞∑
n=0

r1−nξr(n)(u, z, z̄), ξa =
∞∑
n=0

r−nξa(n)(u, z, z̄) (A.2)

and imposing the conditions obtained from form-invariance of our class of geometries

(g
(0)
ua = g

(0)
uu = g

(1)
ua = g

(1)
uu = 0) leads to the following conditions on the first few coefficients:

ξu(u, z, z̄) = ξu(0)(z, z̄) + u ξu(1)(z, z̄), ξa(0) = ξa(0)(z, z̄)

ξr(0) = −ξu(1), ξa(1) = −gab(0)Dbξ
u, ξa(2) =

1

2
gab(0)g

(1)
bc g

cd
(0)Ddξ

u (A.3)

and so on. At the leading order, there are four undetermined functions in these vector

fields: {ξu(0)(z, z̄), ξ
u
(1)(z, z̄), ξ

a
(0)(z, z̄)}. If we further assume that the variation of gab(0)g

(1)
ab

vanishes leads to determination of ξr(1) as well to be:

ξr(1) =
1

2
□ ξu − 1

4
ξa(0)Da

(
gbc(0)g

(1)
bc

)
− 1

4
∂u

(
ξu gbc(0)g

(1)
bc

)
(A.4)

As in [92] we assume the gauge choice gab(0)g
(1)
ab = 0 for the background geometries. This

choice of ξr(1) also ensures that the transformed g(1) is also traceless and remains at most
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linear in u. Under such a diffeomorphism the data g
(0)
ab , g

(1)
ab etc transform as follows:

δg
(0)
ab = Lξa

(0)
g
(0)
ab − 2 ∂uξ

u g
(0)
ab (A.5)

which means that part of the bulk diffeomorphism acts as a diffeo and a Weyl transfor-

mation of 2d geometry g
(0)
ab . Then the data at O(r) transforms as:

δg
(1)
ab = −∂uξug(1)ab + ξu ∂ug

(1)
ab + ξcDcg

(1)
ab + g(1)ac Dbξ

c + g
(1)
bc Daξ

c

+ g
(0)
ab □ξu − 2DaDbξ

u. (A.6)
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Appendix B

Locally Flat solution as iso(1,3)

gauge connection

The locally flat solutions of (3.72) and (3.73) can be written in the language of iso(1, 3)

gauge connection in the first-order formulation of gravity. For this we start with a 2d

gauge connection which takes value in Lie algebra iso(1, 3),

A2d = A(m) Lm + Ā(m) L̄m +Φ(r,s) Pr,s (B.1)

where Lm and L̄m with m ∈ {−1, 0, 1} are the sl(2,C) generators and Pr,s with {r, s} ∈
{−1

2 ,
1
2} are momentum generators written in different basis. The commutators between

various operators are given by,

[Lm , Ln] = (m− n)Lm+n

[
L̄a, L̄b

]
= (a− b) L̄a+b [Lm, Ps,r] =

1

2
(m− 2s)Ps+m,r[

L̄m, Ps,r
]
=

1

2
(m− 2r)Ps,r+m ,

[
Ps,r , Ps′,r′

]
= 0.

(B.2)

One can solve the equation of motion dA2d +A2d ∧A2d = 0 after imposing various gauge

and boundary conditions. Here we will only provide the solution to this equation that is

equivalent to the locally flat solution of (3.72) but the same method will extend to locally

flat solutions in (3.73). If the 2d coordinates on Σ2 are (z, z̄) then various connection

components of A2d are given as,

A
(−1)
z̄ = A

(0)
z̄ = Ā

(0)
z̄ = Ā

(1)
z̄ = 0, (B.3)

Φ
(r,s)
z̄ = 0 , for all r, s ∈ {−1

2
,
1

2
} , Φ(−1/2,−1/2)

z = Φ(−1/2,1/2)
z = 0. (B.4)
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Rest all other non-zero components are

Φ(1/2,−1/2)
z =

1√
2
g(z, z̄) , Φ(1/2,1/2)

z = −
√
2 ∂z̄ g(z, z̄), (B.5)

A
(1)
z̄ = Ā(1)

z =
1√
2
∂2z̄ f(z, z̄) , A(−1)

z = Ā
(−1)
z̄ = − 1√

2
, (B.6)

A(0)
z = Ā

(0)
z̄ = ∂z̄f(z, z̄) , Ā(−1)

z =
1√
2
f(z, z̄), (B.7)

A(1)
z =

1√
2

(
−f(z, z̄) ∂2z̄ f(z, z̄)− κ(z) + ∂z ∂

2
z̄ f(z, z̄)

)
, (B.8)

where g(z, z̄) = C−1/2(z) + z̄ C1/2(z) and f(z, z̄) = J−1(z) + z̄ J0 + z̄2 J1(z). This locally

flat 2d gauge connection is parameterized by six holomorphic fields,

{κ(z) , Ja , Cs} for a ∈ {−1, 0, 1} , s ∈ {−1

2
,
1

2
}

just like the locally flat solutions. The function Cs can be written in terms of Cs using

(3.98). The 2d gauge connection can be dressed with u and r dependence using successive

gauge transformation such that one gets a resultant 4d gauge connection for bulk gravity

theory in coordinates {u, r, z, z̄}. We do the following operation on A2d,

A3d = h−1A2d h+ h−1d h (B.9)

where,

h = e
u

(
P− 1

2 ,− 1
2
−2 J1(z)P 1

2 , 12

)
(B.10)

and

A4d = h′
−1A3d h

′ + h′
−1
d h′ (B.11)

where,

h′ = e
r P 1

2 , 12 . (B.12)

The resultant 4d gauge connection can then be written in the form,

A4d = E(r,s) Pr,s + ωm Lm + ω̄m L̄m (B.13)

where E(r,s) are the vielbeins and ωm, ω̄m are the spin connection coefficient. Using viel-

beins one can recover the locally flat solution (3.72) as follows,

ds2LF = ϵrs ϵr′s′ E
(s′,r)E(r′,s).
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Therefore we have shown that one can recover exactly the complete locally flat solution

from the 2d gauge connection defined on R2 by uplifting to 4d using the gauge transforma-

tions (B.10) and (B.12). One thing to note is that all the analysis has been done so far at

the level of the equation of motion. For 3d gauge connection A3d one can write down the

Chern Simons action that gives the equation of motion [115], however, we had to indirectly

get the 4d gauge connection since unlike 3d gravity there is no equivalent Chern Simons

formulation of Einstien gravity in 4d where the Einstien gravity action in 4d can be shown

equivalent to a BF-theory action with equation of motion dA4d +A4d ∧ A4d = 0.

We find the residual gauge transformations that preserve the gauge and boundary condi-

tions of our 2d gauge connection A2d. The transformation of A2d under these transforma-

tions is given by

δA2d = dΛ + [A2d,Λ] , (B.14)

where Λ is the gauge parameter which takes value in so(2, 3) Lie algebra as

Λ = Λm Lm + Λ̄a L̄a + Λ(r,s) Pr,s. (B.15)

Using (B.15) and the solution A2d in (B.14) one obtains various constraints on the gauge

parameter and also the transformation induced by them on the background fields are

δJa(z) = ∂Y a(z) + fabc J
b(z)Y c(z) + ∂(Ja(z)Y (z)), (B.16)

δκ(z) = Y (z) ∂ κ(z) + 2κ(z) ∂Y (z)− ∂3 Y (z), (B.17)

δCr(z) =
3

2
Cr(z) ∂Y (z) + Y (z) ∂Cr(z)− 2 ∂2 P r(z) + P r(z)

(
κ(z) +

1

2
ηab J

a Jb
)

+ Cs(z) ga
r
s Y

a(z) + 4 ∂P s(z) ga
r
s J

a(z) + 2P s(z) ga
r
s ∂J

a(z). (B.18)

Here we have appropriately identified our gauge parameters in (B.15) in terms of

{Ya, Y (z), Pr}. Now we ask what type of charges generate such transformations. It is

difficult to find an answer in a conventional sense for iso(1, 3) gauge connection because

of the way charges are computed in CS gauge theory. For instance, the expression for

charges in CS theory is given by,

Q = − k

2π

∫
∂Σ

Tr (Λ δA3d). (B.19)

Because iso(1, 3) has a degenerate bi-linear invariant i.e. (Tr(Pr,s Pr′,s′) = 0), one cannot

find line integral charges completely that generate transformation in δCr. This issue was

also discussed before in Appendix of [139]. One way to calculate these charges is to get a

hint from the equation of motion dA3d+A3d ∧A3d = 0 written down in component form

196



as follows,

∂iA
(p)
j − ∂jA

(p)
i + (m− n)δpm+nA

(m)
i A

(n)
j = 0,

∂iĀ
(c)
j − ∂jĀ

(c)
i + (a− b)δca+bĀ

(a)
i Ā

(b)
j = 0,

∂iΦ
(s,r)
j +

1

2
(m− 2r′)δsm+r′A

(m)
i Φ

(r′,r)
j +

1

2
(m− 2r′)δrm+r′Ā

(m)
i Φ

(s,r′)
j − (i↔ j) = 0.

(B.20)

In the case of iso(1, 3) flat connection the equation of motion split into two sectors where

equations governing A(m) and Ā(m) are independent of Φ(r,s) and for equation determining

Φ(r,s), A and Ā are needed. One can think of Φ(r,s) as some matter field in the background

geometry defined by A and Ā. We consider the following matrix representation of Ln, L̄n

(Ln)
r
s = −1

2
(n− 2r) δn+r,s ,

(
L̄n
)r
s
= −1

2
(n− 2r) δn+r,s, (B.21)

and one define A and Ā in the matrix representation of sl(2,C) as follows,

(Aj)
r
s = A

(m)
i (Lm)

r
s , (Āj)

r
s = Ā

(m)
i (L̄m)

r
s. (B.22)

Therefore instead of defining a single iso(1, 3) Chern-Simons gauge action for these equa-

tions, one can think of these equations coming from two separate actions, one sl(2,C)
Chern Simons action which gives first two equations of (B.20) and another first-order ac-

tion for matter Φ(r,s) in bi-adjoint representation of Ln and L̄n. The latter action is given

by

Smatter =
µ

4π

∫
ϵijk Φi(r,r′)

(
∂ j Φ

(r,r′)
k + (Aj)

r
sΦ

(s,r′)
k +Φ

(r,s)
k (Āj)

r′
s

)
. (B.23)

The variation of Lagrangian under iso(1, 3) gauge transformation defined in (B.14) is,

δL =
1

2
ϵijk

[
∂k

(
DiΦ

(r,r′)
j Λ(r,r′)

)
− 2Λ(r,r′)

(
(Fij)

r
sΦ

(s,r′)
k +Φ

(r,s)
k (F̄ij)

r′
s

)]
. (B.24)

The Lagrangian is only invariant up to the total derivative when the field strength Fij

and F̄ij corresponding to (Aj)
r
s and (Āj)

r
s vanishes. Now to calculate charges we use the

cohomological formalism as reviewed in [186] and compute the term δL
δΦ

(r,r′)
i

δΛΦ
(r,r′)
i

δL
δΦ

(r,r′)
i

δΛΦ
(r,r′)
i =

µ

2π
ϵijk δΛΦi(r,r′) Dj Φ

(r,r′)
k (B.25)

=
µ

2π

[
∂k S

k − ϵijk Λ(r,r′)

(
(Fij)

r
sΦ

(s,r′)
k +Φ

(r,s)
k (F̄ij)

r′
s

)]
− µ

2π
ϵijk Φi(r,r′)

[
(δAj)

r
sΦ

(s,r′)
k − Φ

(r,s)
k (δĀj)

r′
s

]
(B.26)
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where Sk is given by,

Sk = ϵijk
(
1

2
Λ(r,r′)DiΦ

r r′
j +Φi(r,r′)δΦ

(r,r′)
j

)
. (B.27)

The term in (B.26) is total derivative only when the variation of the background field A

and Ā are held fixed and their equations of motion are satisfied. The variation of the

matter field using gauge transformation is given by,

δΦ
(r,r′)
i = ∂iΛ

(r,r′) + (Ai)
r
s Λ

(s,r′) + Λ(r,s) (Āi)
r′
s − Λ̃rsΦ

(s,r′)
i − Φ

(r,s)
i

˜̄Λr
′
s, (B.28)

where Λ̃ and Λ are gauge parameter associated with sl(2,C) gauge connection in (6.106)

written as

(Λ̃)rs = Λ(m) (Lm)
r
s , (

˜̄Λ)rs = Λ̄(m) (L̄m)
r
s. (B.29)

From Sk, we can define the surface charge two-form using the method in [186]

k = I2
δΦrr′

i

S =
µ

4π
δΦ

(r,r′)
i

∂

∂∂j Φ
(r,r′)
i

∂

∂ dxj

(
Sk(d2x)k

)
, (B.30)

where Sk(d2x)k =
1
2 S

k ϵkmn dx
m ∧ dxn. Therefore,

k =
µ

2π
δΦ

(r,r′)
i Λ(r,r′)dxi (B.31)

For locally flat solution (B.8), the charge from (B.31) is given by,

Q =
1

2

∫
dz ϵrsCr(z)Ps(z) (B.32)

where one scales Λ(−1/2,1/2) → −
√
2Λ(−1/2,1/2) and then identifies, Λ(−1/2,1/2) = P−1/2(z)

and Λ(−1/2,−1/2) = P1/2(z). So we have managed to derive the line integral charges associ-

ated with the supertranslation current but this assumes that the background geometry to

which these matter fields were coupled is fixed and does not vary. Additionally, it remains

undetermined the OPEs between the functions Cs(z) such that it will give the correct

variation δCs(z) in (B.18) for the charges (B.32). We hope to give insights into these

issues in our future works.
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Appendix C

Carroll-Weyl and Carroll

Diffeomorphisms covariant blocks

in general dimensions

In this appendix, we provide some technical details of the extension of the d = 2 computa-

tions of this paper to general d. Let us start by providing the transformation properties of

various Carroll diffeomorphic quantities under Carroll Weyl transformations - generalising

those of (4.20).

θ −→ Bz−1

[
B θ − d ∂̂tB

]
, θ2 −→ B2z−2

[
B2θ − 2Bθ d ∂̂tB + d2(∂̂tB)2

]
γ̂ij γ̂

j
i −→ B2z−2

[
B2γ̂ij γ̂

j
i − 2B θ∂̂tB + d (∂̂tB)2

]
r̂ −→ B2 r̂ − d(d− 1)aij∇̂iB ∇̂jB + 2(d− 1)aijB ∇̂i∇̂jB

aij∇̂iϕj −→ B2 aij∇̂iϕj + z(d− 1)aij∇̂iB ∇̂jB − z B aij∇̂i∇̂jB −B(d− 2)aijϕi∇̂jB

aijϕiϕj −→ B2aijϕiϕj − 2zBaijϕi∇̂jB + z2aij∇̂iB ∇̂jB

The combinations that transform homogeneously are

r̂ +
2

z
(d− 1)aij∇̂iϕj −

(d− 2)(d− 1)

z2
aijϕiϕj

−→ B2

(
r̂ +

2

z
(d− 1)aij∇̂iϕj −

(d− 2)(d− 1)

z2
aijϕiϕj

)
γ̂ij γ̂

j
i −

θ2

d
−→ B2z

[
γ̂ij γ̂

j
i −

θ2

d

]
(C.1)
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Taking that the scalar Φ transforms as ϕ → BδΦ under Weyl transformations various

expression transforms as follows

aijϕi∂̂jΦ −→ Bδ
[
B2 aijϕj ∂̂iΦ+ δB aijϕi∂̂jB Φ− δzaij∇̂iB∇̂jB Φ− zBaij ∂̂iB∂̂jΦ

]
∇̂i∂̂

iΦ −→ Bδ
[
B2∇̂i∂̂

iΦ+ (δ2 − dδ + δ)aij∇̂iB∇̂iB Φ+ δB∇̂i∇̂iB Φ

+ (2 + 2δ − d)B ∂̂iB ∂̂
iΦ
]

The simplest Weyl covariant object at first order derivative is

∂̂tΦ+
δ

d
θΦ −→ Bz+δ(∂̂tΦ+

δ

d
θΦ) (C.2)

At second order we find:

∂̂2tΦ+
1

d
(2δ + z) θ ∂̂tΦ+

δ

d

[
1

d
(z + δ) θ2 + ∂̂tθ

]
Φ

−→ B2z+δ

(
∂̂2t +

1

d
(2δ + z) θ ∂̂tΦ+

δ

d

[
1

d
(z + δ) θ2 + ∂̂tθΦ

])
(C.3)

∇̂i∂̂iΦ+
(2− d+ 2δ)

z
ϕi∂̂iΦ− δ

2

[
1

d− 1
r̂ − 1

z2
(2− d+ 2δ)ϕiϕi

]
Φ

−→ B2+δ

(
∇̂i∂̂iΦ+

(2− d+ 2δ)

z
ϕi∂̂iΦ− δ

2

[
1

d− 1
r̂ − 1

z2
(2− d+ 2δ)ϕiϕi

]
Φ

)
(C.4)

For z = 1 the covariant equation can be written as,

κ0

[
∂̂2tΦ+

1

d
(2δ + z) θ ∂̂tΦ+

δ

d

[
1

d
(z + δ) θ2 + ∂̂tθ

]
Φ

]
+ κ1

[
∇̂i∂̂iΦ+

(2− d+ 2δ)

z
ϕi∂̂iΦ− δ

2

[
1

d− 1
r̂ − 1

z2
(2− d+ 2δ)ϕiϕi

]
Φ

]
+

[
σ0

(
γ̂ij γ̂

j
i −

θ2

d

)
+ σ1

(
r̂ +

2

z
(d− 1)aij∇̂iϕj −

(d− 2)(d− 1)

z2
aijϕiϕj

)
+ σ2fijf

ij

]
Φ

+ λΦ
2+δ
δ = 0

(C.5)

The analogous general d expressions of invariants in (4.35-4.39) that can be used to con-

struct actions are

Φ(∂̂tΦ+
δ

d
θΦ) (C.6)(

∂̂tθ +
z

2
γ̂ij γ̂

j
i

)
Φ2 +

d

δ
Φ∂̂2tΦ− d(z + 2δ)

2δ2
(∂̂tΦ)

2 (C.7)

(∂̂tΦ)
2 + δ θΦ∂̂tΦ+

δ2

d
γij γ̂

j
iΦ

2 (C.8)
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At second order in space derivatives there are three more combinations with Weyl weight

2 + 2δ: [
r̂ +

2

z
(d− 1)aij∇̂iϕj −

(d− 2)(d− 1)

z2
aijϕiϕj

]
Φ2 (C.9)

∂̂iΦ∂̂
iΦ+ 2

δ

z
Φϕi∂̂iΦ+

δ2

z2
ϕiϕiΦ

2 (C.10)

Φ∇̂i∂̂iΦ− d− 2(1 + δ)

z
Φϕi∂̂iΦ+

δ

z
∇̂iϕjΦ

2 +
δ

z2
(2− d+ δ)ϕiϕiΦ

2 (C.11)

These can be used to construct Carroll diffeomorphic andWeyl invariant actions for general

d straightforwardly.
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Appendix D

LAdS4 solution in

Fefferman-Graham gauge

In this appendix, we will find coordinate transformations that take our chiral LAdS4

solution from the Newman-Unti gauge to the Fefferman Graham gauge. We use the road

map outlined in the appendix of [15] and would encourage readers to refer to it for a more

general analysis. We start by quickly reviewing some properties of asymptotically locally

AdS solution in Fefferman Graham gauge in 4d [95, 105]. The line element is written as

follows,

ds2 =
1

ρ2
(
l2 dρ2 + γij(t, ρ, z, z̄) dx

i dxj
)
. (D.1)

ρ is the radial coordinate near the boundary and xi for {i, j} ∈ {t, z, z̄} are coordinates on

hypersurface that are orthogonal to ρ. These become boundary coordinates in the limit

ρ→ 0. γij can further be expanded in power series of ρ,

γij(t, ρ, z, z̄) = γ
(0)
ij + ρ γ

(1)
ij + ρ2γ

(2)
ij + ρ3 γ

(3)
ij + · · · (D.2)

· · · indicate terms at higher order in ρ and γ
(n)
ij for n ∈ {0, 1, 2, 3, · · · } are functions of

(t, z, z̄). Using this ansatz to solve for Einstien equation (5.2) one finds that the free data

are γ0ij and γ
(3)
ij . The equation of motion impose γ

(1)
ij = 0 whereas γ

(2)
ij is given in terms of

γ
(0)
ij as follows,

γ
(2)
ij = −l2

(
R

(0)
ij − 1

4
R(0) γ

(0)
ij

)
(D.3)
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γ
(n)
ij at higher order are given in terms of γ

(0)
ij and γ

(3)
ij . There are some constraints on γ

(3)
ij

that are given by,

γij(0) γ
(3)
ij = 0, Di γ

(0)
ij = 0 (D.4)

where Di is covariant derivative with respect to three dimensional boundary metric γ
(0)
ij .

If one further impose the locally AdS condition as given in equation (5.3) one finds that

the expansion of γij terminates at ρ4 [105] and γ
(3)
ij = 0 with γ

(4)
ij given in terms of γ(2)

and γ(0) as follows,

γ
(4)
ij =

1

4
γ
(2)
ik γkl(0) γ

(2)
lj (D.5)

Now If we start with our chiral locally AdS4 solution in Neumann Unti gauge with coor-

dinates {u, r, Z, Z̄} then we can do the following coordinate transformation to go to FG

gauge,

u = T (ρ, t, z, z̄)−R(ρ, t, z, z̄) (D.6)

r = − l2

R(ρ, t, z, z̄)
(D.7)

Z = zs(ρ, t, z, z̄) (D.8)

Z̄ = z̄s(ρ, t, z, z̄) (D.9)

These functions Xµ = {T,R, zs, z̄s} are further expanded as power series expansion in ρ

near the boundary ρ→ 0 as follows,

Xµ = xµ +
∑
n=1

Xµ
(n) ρ

n (D.10)

with xµ = {t, 0, z, z̄}. If we demand that the FG gauge conditions (D.1) are preserved

after doing the coordinate transformation (D.10) on the solution in NU gauge then one
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obtains the following form of the functions Xµ,

R(ρ, t, z, z̄) =
l2 ρ

1− l2 ρ2 J1(z)
(D.11)

T (ρ, t, z, z̄) = t+

R(ρ, t, z, z̄)− l arctan

(
2R(ρ,t,z,z̄)

√
J1(z)

l

)
2
√
J1(z)

 (D.12)

zs(ρ, t, z, z̄) = z (D.13)

z̄s(ρ, t, z, z̄) = z̄ +
2

l2

(√
GC1/2(z)− 2 t ∂J1(z)

)R(ρ, t, z, z̄)4 J1(z)
−
l arctan

(
2R(ρ,t,z,z̄)

√
J1(z)

l

)
2
√
J1(z)


+Z̄(ρ, z) (D.14)

where Z̄(ρ, z) obeys the following differential condition,

∂ρZ̄(ρ, z) +
2 ∂zR(ρ, t, z, z̄)

(1 + l2 ρ2 J1(z))

1− 1

ρ l

arctan

(
2R(ρ,t,z,z̄)

√
J1(z)

l

)
√
J1(z)

 = 0 (D.15)

This differential equation can be solved easily to give Z̄ in the closed form. The solution

that we obtain after this exercise has only γ
(0)
ij as free data whose metric components are

given by

γ
(0)
tt = − 1

l2
, γ

(0)
tz = γ

(0)
tz̄ = 0 (D.16)

γ(0)zz = Γ(t, z) + J−1(z) + z̄2 J1(z) + z̄

(
J0(z)−

√
Gt

l2
C1/2(z) +

t2

l2
∂J1(z)

)
(D.17)

γ
(0)
z̄z̄ = 0 , γ

(0)
z z̄ =

1

2
(D.18)

The rest of the solution can be constructed from this using equations (D.3, D.5). As

expected γ
(3)
ij which is interpreted as a holographic stress tensor at the boundary which

sources the metric g
(0)
ij is zero for locally AdS4 solutions [105].
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Appendix E

Computation of Jacobi identities

There are three species of modes {Lm, Ja,n, Gs,r} and so a total of ten classes of Jacobi

identities to impose. We choose to denote them schematically by (LLL), (LLJ), (LJJ),

(JJJ), etc. in a self-evident notation. Out of these, there are seven that involve at most

one G and they can all be checked easily to be satisfied without providing any constraints.

Next, two Jacobi identities have two G’s each: (LGG) and (JGG). To impose these we

need the commutators [Lm, (J
2)n] and [(J2)m, Ja,n]. These can be computed easily using

the definition

ηab(JaJb)n = ηab

∑
k>−1

Jb,n−kJa,k +
∑
k≤−1

Ja,kJb,n−k

 (E.1)

of (J2)n and repeatedly using (5.94 – 5.98). We find

[Lm, (J
2)n] = (m− n) (J2)m+n −

κ

4
m(m2 − 1)δm+n,0 , (E.2)

[(J2)m, Ja,n] = n (κ+ 2) Ja,m+n . (E.3)

We first impose the (LGG) Jacobi identity:

[Lm, [Gs,r, Gs′,r′ ]] + [Gs′,r′ , [Lm, Gs,r]]− [Gs,r, [Lm, Gs′,r′ ]] = 0 . (E.4)

For this we find:
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• [Lm, [Gs,r, Gs′,r′ ]] =

β ϵss′
[
(m− r − r′)Lm+r+r′ +

c

12
m(m2 − 1) δm+r+r′

]
+γ ϵss′

[
(m− r − r′) (J2)m+r+r′ −

κ

4
m(m2 − 1) δm+r+r′

]
−δ (r − r′) (r + r′) Ja,m+r+r′(λ

a)ss′

• [Gs′,r′ , [Lm, Gs,r]] =

1

2
(m− 2r)

[
− ϵss′

(
α

(
(m+ r)2 − 1

4

)
δm+r+r′ + β Lm+r+r′ + γ (J2)m+r+r′

)
+ δ (r′ − r −m) Ja,m+r+r′ (λ

a)s′s

]
• −[Gs,r, [Lm, Gs′,r′ ]] =

−1

2
(m− 2r′)

[
ϵss′

(
α

(
(m+ r′)2 − 1

4

)
δm+r+r′ + β Lm+r+r′ + γ (J2)m+r+r′

)
+δ (r − r′ −m) Ja,m+r+r′ (λ

a)ss′
]

substituting these into (E.4) we find that the coefficient of ϵss′ δm+r+r′ is

1

2
m(m2 − 1)

[
β
c

6
− γ

κ

2
− α

]
which vanishes (for generic values of m) only if

α =
c

6
β − γ

κ

2
. (E.5)

The coefficients of β Lm+r+r′ , δ Ja,m+r+r′(λ
a)ss′ , and γ ϵss′ (J

2)m+r+r′ vanish without fur-

ther conditions. Next we consider the (JGG) Jacobi identity:

[Ja,n, [Gs,r, Gs′,r′ ]] + [Gs′,r′ , [Ja,n, Gs,r]]− [Gs,r, [Ja,n, Gs′,r′ ]] = 0 . (E.6)

For this we find

• [Ja,n, [Gs,r, Gs′,r′ ]] evaluates to

ϵss′ [β − γ(κ+ 2)] nJa,n+r+r′ + (r − r′) δ
[
fab

cJc,n+r+r′(λ
b)ss′ −

κ

2
n (λa)ss′δn+r+r′,0

]
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• [Gs′,r′ , [Ja,n, Gs,r]] evaluates to (using (λb)s′s̃(λa)
s̃
s = −1

4δ
b
aϵs′s +

1
2fad

b(λd)s′s):[
α

(
r′2 − 1

4

)
δn+r+r′,0 + β Ln+r+r′ + γ (J2)n+r+r′

]
(λa)s′s

+δ(r′ − n− r)

[
1

4
ϵss′Ja,n+r+r′ +

1

2
fad

b(λd)ss′Jb,n+r+r′

]

• −[Gs,r, [Ja,n, Gs′,r′ ]] evaluates to

−
[
α

(
r2 − 1

4

)
δn+r+r′,0 + β Ln+r+r′ + γ (J2)n+r+r′

]
(λa)ss′

−δ(r − n− r′)

[
−1

4
Jb,n+r+r′ϵss′ +

1

2
fad

b(λd)ss′Jb,n+r+r′

]

Substituting these back into (E.6) and collecting terms, the coefficients of Ln+r+r′ ,

(J2)n+r+r′ and fab
cJc,n+r+r′(λ

b)ss′ vanish.

• Coefficient of δn+r+r′,0(λa)ss′

−δ κ
2
n(r − r′) + α

[(
r′2 − 1

4

)
−
(
r2 − 1

4

)]
= −n(r′ − r)

[
α− δ

κ

2

]
which imposes

α− δ
κ

2
= 0 . (E.7)

• Coefficient of ϵss′ Ja,n+r+r′ is

n [β − γ(κ+ 2)] +
1

4
δ(r′ − n− r) +

1

4
δ(r − n− r′) = n

[
β − γ(κ+ 2)− 1

2
δ

]
which imposes

β − γ (κ+ 2)− 1

2
δ = 0 . (E.8)

The last Jacobi identity left is:

[Gs,r, [Gs′,r′ , Gs̃,r̃]] + [Gs̃,r̃, [Gs,r, Gs′,r′ ]]− [Gs′,r′ , [Gs,r, Gs̃,r̃]] = 0 . (E.9)

To impose this we further need the commutator [(J2)n, Gs,r]. Using the standard methods

we find two different expressions for this commutator, namely

[(J2)n, Gs,r]=η
ab
[
(JaGs′)n+r(λb)

s′

s + (Gs′Jb)n+r(λa)
s′

s

]
+
3

4

(
r +

1

2

)
Gs,n+r (E.10)
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and

[(J2)n, Gs,r]= 2ηab(JaGs′)n+r(λb)
s′

s −
3

4
(n+ 1)Gs,n+r . (E.11)

Taking the linear combination (E.11) +2 × (E.10) we arrive at:1

[(J2)n, Gs,r]=η
ab

[
4

3
(JaGs′)n+r(λb)

s′

s +
2

3
(Gs′Ja)n+r(λb)

s′

s

]
− 1

4
(n− 2r)Gs,n+r . (E.12)

Using (E.12) along with the other commutators we find

[Gs,r, [Gs′,r′ , Gs̃,r̃]] = ϵs′s̃Gs,R

[
−
(
β

2
+
γ

4

)
(R− 3r) +

δ

4
(r′ − r̃)

]
−δ
2
(r′ − r̃)Gs′,Rϵss̃ − γ

[
4

3
(JaGŝ)R +

2

3
(GŝJa)R

]
(λa)ŝsϵs′s̃

where R = r + r′ + r̃. The left-hand side of the Jacobi identity (E.9) is obtained by

adding to the above expression two more terms that are obtained by cyclic permutations

of pairs of indices (s, r) → (s′, r′) → (s̃, r̃) → (s, r). Luckily the terms containing (JaGŝ)R,

and (GŝJa)R do not survive after this sum because of the identity (5.90). The rest are

proportional to Gs,R and we find

ϵs′s̃Gs,R

[(
β

2
− γ − δ

4

)
(R− 3r)

]
+ ϵs̃sGs′,R

[(
β

2
− γ − δ

4

)
(R− 3r′)

]
+ ϵss′ Gs̃,R

[(
β

2
− γ − δ

4

)
(R− 3r̃)

]
.

This can vanish, for generic values of the floating indices, only if

β =
γ − δ

2
. (E.13)

1This particular linear combination dictated by the requirement that the right-hand side is
written in terms of modes of the quasi-primaries Gs(z) and (JaGs)(z) + (1/2)(GsJa)(z).
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Appendix F

Implementing the associativity of

3 and 4-point correlation functions

In this appendix, we will give the details of the computation of only those 3- and 4-point

correlation functions which after imposing associativity conditions defined in the main

body of the thesis give rise to constraint equations (5.99). If one calculates the three-point

function symbolically denoted by ⟨GTG⟩ or ⟨GGT ⟩ using (5.83), (5.84) and (5.92) one

finds,

Gr1(z1)T (z3)Gr2(z2) =
ϵr1r2 (−6α+ β c− 3 γ κ)

2 z12 z234
+

3α ϵr1r2
z12z132z232

= Gr1(z1)Gr2(z2)T (z3) (F.1)

For these correlation functions to be equal to the correlation function in (5.112) one needs

to impose the condition,

6α+ 3γκ− cβ = 0. (F.2)

The correlation function involving one J and two G such as ⟨JGG⟩ is given by,

⟨Ja(z3)Gr1(z1)Gr2(z2)⟩ = −
2α (λa)r1r2
z13 z23 z122

(F.3)

whereas the correlation functions ⟨GJG⟩ and ⟨GGJ⟩ are given by

⟨Gr1(z1) Ja(z3)Gr2(z2)⟩ = −
2α (λa)r1r2
z13 z23 z122

+
(λa)r1r2
z13 z23

[
1

z223
− 1

z212

]
(δκ− 2α)

= ⟨Gr1(z1)Gr2(z2) Ja(z3)⟩ (F.4)
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If these correlation functions have to be equal then one has to impose the condition,

δ =
2α

κ
(F.5)

The imposition of associativity on three-point correlation functions does not give any

more constraint equations; therefore, we move on to calculating the 4-point correlation

functions. Calculating the 4-point correlation functions with two J ’s and two G’s we get,

⟨Ja1(z1) Ja2(z2)Gr3(z3)Gr4(z4)⟩ = −α ϵr3 r4 ηa1a2
z212 z

3
34

(
κ+

x2

2(1− x)

)
−
α f a3

a1a2 (λa3)r3 r4
z212 z

3
34

(
2x− x2

1− x

)
(F.6)

⟨Gr3(z3) Ja1(z1) Ja2(z2)Gr4(z4)⟩ = −α ϵr3 r4 ηa1a2
z212 z

3
34

(
κ+

x2

2(1− x)

)
−
α f a3

a1a2 (λa3)r3 r4
z212 z

3
34

(
2x− x2

1− x

)
+
κ ηa1a2 ϵr3r4
2 z34 z214 z

2
24

(
−β + γ(κ+ 2) +

δ

2

)
− (δ κ− 2α)

z13 z12 z324

(
1

4
ηa1a2 ϵr3r4 −

1

2
f a3
a1a2 (λa)r3r4

)
− αηa1a2 ϵr3r4

2 z23 z24 z34 z13 z14

(
(2α− δ κ)

2α

[
z23 (z34 − z12)

z12z24

])
+
f a3
a1a2 (λa3)r3r4 (2α− δ κ)

2 z12 z13 z14 z224 z
2
34

(z13 z34 + z14 z24 + z13 z24) (F.7)

For (F.6) to be equal to (F.7), we need to impose the following two conditions,

−β + γ(κ+ 2) +
δ

2
= 0 , 2α− δκ = 0 (F.8)

The first of the two constraints above is a new one. Now we compute the four-point

correlation function that involves all the G fields. To compute it we require,

Gs1(z) : JaGs2(w) := (λa)s1 s2

[
2α

(z − w)4
+

β T (w)

(z − w)2
+
γ : J2(w) :

(z − w)2

]
+ ϵs1s2

[
2αJa(w)

(z − w)3
+
β : JaT (w) :

z − w
+
γ : Ja J

2(w) :

z − w

]
−
δ (λa)

s3
s1 : Gs3 Gs2(w) :

(z − w)

−
δ (λa)

s3
s1 (λ

b)s3s2
(z − w)2

[
∂Jb(w) +

2 Jb(w)

(z − w)

]
+
δ (λb)s1s2
(z − w)

[
2 : JaJb(w) :

(z − w)
+ : Ja ∂Jb(w) :

]
(F.9)
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Gs1(z) : Gs2 Ja(w) :=
ϵs1s2 Ja(w)

(z − w)3
(
2α+ β − (κ+ 2) γ

)
+
∂Ja(w) ϵs1s2
(z − w)2

(
β − (κ+ 2) γ

)
+

ϵs1s2
(z − w)

(
β : TJa(w) : +γ : J2 Ja(w) :

)
+
δ(λb)s1s2
(z − w)2

[
: JbJa(w) : +

f c
ba Jc(w)

(z − w)
− 2κ ηab

(z − w)2

]
−

(λa)
s3
s1 : Gs2 Gs3(w) :

(z − w)
(F.10)

Using this one can write down the expression of ⟨GGGG⟩ compactly as follows,

⟨Gs1(z1)Gs2(z2)Gs3(z3)Gs4(z4)⟩ =
1

z312 z
3
34

[
ϵs1 s2ϵs3 s4F1(x) + ϵs1 s3ϵs2 s4F2(x)

+ ϵs1 s4ϵs2 s3F3(x)
]
+ Γ(1)

s1 s2 s3 s4 + Γ(2)
s1 s2 s3 s4 + Γ(3)

s1 s2 s3 s4 (F.11)

where,

F1(x) = 4α2

(
2 + x3 − x3

(1− x)3

)
+ α δ

(
x

1− x
− x− 2x2 − 2x2

(1− x)2

− x3

(1− x)2
+

x3

1− x

)
F2(x) = 4α2

(
x3

(1− x)3
− 1

)
+ α δ

(
x2 − x

1− x
+

x2

(1− x)2
− x3

1− x

)
F3(x) = 4α2

(
1 + x3

)
− α δ

(
x+ x2 +

x2

(1− x)2
+

x3

(1− x)2

)
(F.12)

Γ(1)
s1 s2 s3 s4 = −3βϵs1s3 ϵs2s4

z13 z24 z434

(
α− β c

6
+
γ κ

2

)
− 3κ γ ϵs1s3 ϵs2s4

z13 z24 z434

(
β − γ(2 + κ)− δ

2

)
− (λa)s1s3 (λa)s2s4

z23 z13 z343
δ (δ κ− 2α)

(
2

z13
+

1

z23
+

3

z34

)
+ (r3, z3) ↔ (r4, z4)

+
ϵs1 s2ϵs3 s4

2(z23 z24 z334 z12)
γ (2α− δ κ) (F.13)
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Γ(2)
s1 s2 s3 s4 = ϵs1 s2ϵs3 s4

[
(δ κ− 2α)

(
δ

z214 z24 z34 z
2
23

+
δ

2 z14 z24 z234 z
2
23

+
δ

2 z14 z224 z34 z
2
23

− δ

2 z13 z23 z224 z
2
34

+
δ

z213 z23 z
2
24 z34

+
δ

2 z13z224 z34 z
2
23

− γ

2 z23 z24 z334 z12

)
+

3α
(
β − γ

2 + δ
2

)
z12 z34 z223 z

2
24

]
+ ϵs1 s3ϵs2 s4

[
(δ κ− 2α)

(
− δ

2 z213 z23 z
2
24 z34

+
δ

4 z13 z23 z224 z
2
34

− δ

4 z13 z223 z
2
24 z34

− γ

4 z13 z434 z24

)
+

(
3α

z13z24z223z
2
43

+
3κ γ

2 z24 z13 z434

) (
β − γ

2
+
δ

2

)]
+ ϵs1 s4ϵs2 s3

[
(δ κ− 2α)

(
δ

2 z223 z24 z
2
14 z34

+
δ

4 z14 z223 z24 z
2
34

+
δ

4 z14 z223 z
2
24 z34

)
+

(
3α

z14z23z224z
2
43

+
3κ γ

2 z23 z14 z434

) (
β − γ

2
+
δ

2

)]
(F.14)

Γ(3)
s1 s2 s3 s4 = ϵs1 s3ϵs2 s4

[
γ (δ κ− 2α)

(
1

z13 z23 z24 z334
+

1

2 z13 z24 z434

)
− 3κ γ

2 z13 z24 z434

(
−β +

δ

2
+ γ(2 + κ) + β − γ

2
+
δ

2

)]
+ ϵs1 s3ϵs2 s4

[
γ (δ κ− 2α)

(
1

z14 z24 z23 z343
+

1

4 z14 z23 z434

)
− 3κ γ

2 z14 z23 z434

(
−β +

δ

2
+ γ(2 + κ) + β − γ

2
+
δ

2

)]
(F.15)

For ⟨GGGG⟩ to be crossing symmetry invariant all the Γ′s have to vanish. From

Γ(2)
s1s2s3s4 , one gets the fourth constraint equation,

β − γ

2
+
δ

2
= 0 (F.16)

Therefore we have managed to derive all the constraint equations in (5.99) from the

associativity of OPEs. If all these constraints are satisfied one can see that all the Γ’s vanish

and the resultant four-point correlation function is invariant under crossing symmetry.

212



Appendix G

Chiral conformal extensions of

so(2, 2)

In this appendix, we construct the chiral conformal/W-algebra extensions of so(2, 2). Re-

peating the steps of Section (6.1), we can take the L0 to belong to the Cartan sub-algebra

and we choose it such that the eigenvalues are real. Taking the generator to be Lµν for

µ, ν ∈ {0, 1, 2, 3} we take

L0 = λL01 + λ′ L23 (G.1)

We can using O(2, 2) transformations

1. (λ, λ′) ↔ (−λ, λ′) using Λ = diag.(1,−1, 1, 1)

2. (λ, λ′) ↔ (−λ, λ′) using Λ = diag.(1, 1,−1, 1)

3. (λ, λ′) ↔ (λ′, λ) using Λmn = (−1)mδm+n,3

So we can again choose λ ≥ λ′ ≥ 0. Then the existence of L±1 demands that (λ, λ′) satisfy

one of the following four conditions: (i) λ+ λ′ = 1, (ii) λ− λ′ = 1, (iii) λ+ λ′ = −1, (iv)

λ − λ′ = −1. Since we have already assumed λ ≥ λ′ ≥ 0 we need to consider only two

cases: (i) λ+ λ′ = 1 and (ii) λ− λ′ = 1. In each case we can solve the constraints to find

the following results:

1. λ = 1 & λ′ = 0.

L0 = L01, (b203 − b212)L1 = b12(L02 − L12) + b03(L03 − L13)

L−1 = b12(L02 + L12) + b03(L03 + L13) (G.2)

213



The residual O(2, 3) transformations (that keep these form-invariant) can be seen to

leave (b203− b212) invariant up to a positive scaling: (b203− b212) → eβ(b203− b212). Using
the discrete elements of O(2, 3) we can change the signs of b03 and b12 independently.

Thus using these residual transformations we can choose (b03, b12) to be either (1, 0)

or (0, 1).

2. λ = 1/2 = λ′

L0 =
1

2
(L01 + L23), L1 = −a12(L02 + L03 − L12 − L13),

L−1 =
1

4a12
(L02 − L03 + L12 − L13) (G.3)

The residual transformations can be used to fix a12 = 1/2.

This analysis gives us three inequivalent embeddings of sl(2,R) in so(2, 2) – resulting in

three different avatars of so(2, 2).

1. h = ∅ with (b03, b12) = (1, 0)

L1 = L03 − L13, L0 = L01, L−1 = L03 + L13,

P1 = L02 − L12, P0 = L23, P−1 = −L02 − L12. (G.4)

[Lm, Ln] = (m− n)Lm+n = [Pm, Pn], [Lm, Pn] = (m− n)Pm+n,

(G.5)

2. h = ∅ with (b03, b12) = (0, 1)

L1 = −L02 + L12, L0 = L01, L−1 = L02 + L12,

P1 = L03 − L13, P0 = −L23, P−1 = L03 + L13. (G.6)

[Lm, Ln] = (m− n)Lm+n = [Pm, Pn], [Lm, Pn] = (m− n)Pm+n,

(G.7)
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3. h = sl(2,R)

L1 = −1

2
(L02 + L03 − L12 − L13),

L−1 =
1

2
(L02 − L03 + L12 − L13), L0 =

1

2
(L01 + L23)

J1 =
1

2
(−L02 + L03 + L12 − L13),

J0 =
1

2
(L01 − L03), L−1 =

1

2
(L02 + L03 + L12 + L13). (G.8)

[Lm, Ln] = (m− n)Lm+n, [Ja, Jb] = (a− b)Ja+b, [Lm, Ja] = 0 (G.9)

Unlike in the so(2, 3) case the first two avatars above with h = ∅, even though cannot be

mapped to each other by any O(2, 3) transformations nevertheless give rise to identical

algebras. So we have two distinct avatars of so(2, 2) which can be extended to the following

chiral algebras:

1. h = sl(2,R)

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Ja,m, Jb,n] = (a− b)Ja+b,m+n −
1

2
κ(a2 + b2 − ab− 1)mδm+n,0,

[Lm, Ja,n] = −nJa,m+n (G.10)

The Jacobi identity imposes no constraints on c and κ.

2. h = ∅

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Lm, Pn] = (m− n)Pm+n +
c̃

12
m(m2 − 1)δm+n,0,

[Pm, Pn] = (m− n)Lm+n + γ m(m2 − 1)δm+n,0 (G.11)

Imposing the Jacobi identity here leads to the condition that γ = c
12 .

Thus we arrive at the result that there are exactly two chiral conformal algebra extensions

of so(2, 2). The first one is the CIG algebra [10, 169] (however, with no relation between

c and κ) and the second can be mapped to the non-chiral Brown-Henneaux one (with no

relation between left and right Virasoro central charges) after appropriate redefinitions.

Specifically, if we take Ln → ℓn + ℓ̄n and Pn → ℓn − ℓ̄n we will recover two commuting

copies of Virasaro generated by ℓn with central charge (c + c̃)/2 and ℓ̄n with central

charge (c − c̃)/2 respectively. It is interesting that even though we started with chiral
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conformal/W-algebra extensions we seemed to get both chiral and non-chiral extensions

of so(2, 2) already known.
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1965.

[75] Luca Ciambelli, Charles Marteau, Anastasios C. Petkou, P. Marios Petropoulos, and

Konstantinos Siampos. Flat holography and Carrollian fluids. JHEP, 07:165, 2018.

[76] Luca Ciambelli, Charles Marteau, Anastasios C. Petkou, P. Marios Petropoulos, and

Konstantinos Siampos. Covariant Galilean versus Carrollian hydrodynamics from

relativistic fluids. Class. Quant. Grav., 35(16):165001, 2018.

[77] David Rivera-Betancour and Matthieu Vilatte. Revisiting the Carrollian scalar field.

Phys. Rev. D, 106(8):085004, 2022.

[78] Stefano Baiguera, Gerben Oling, Watse Sybesma, and Benjamin T. Søgaard. Con-

formal Carroll scalars with boosts. SciPost Phys., 14(4):086, 2023.

[79] Aritra Banerjee, Sudipta Dutta, and Saikat Mondal. Carroll fermions in two dimen-

sions. Phys. Rev. D, 107(12):125020, 2023.

[80] Arjun Bagchi, Aritra Banerjee, Rudranil Basu, Minhajul Islam, and Saikat Mondal.

Magic fermions: Carroll and flat bands. JHEP, 03:227, 2023.

[81] Olivera Miskovic, Rodrigo Olea, P. Marios Petropoulos, David Rivera-Betancour,

and Konstantinos Siampos. Chern-Simons action and the Carrollian Cotton tensors.

JHEP, 12:130, 2023.

[82] Luca Ciambelli. Dynamics of Carrollian Scalar Fields. arxiv: 2311.04113, 11 2023.

[83] Kinjal Banerjee, Rudranil Basu, Aditya Mehra, Akhila Mohan, and Aditya Sharma.

Interacting Conformal Carrollian Theories: Cues from Electrodynamics. Phys. Rev.

D, 103(10):105001, 2021.

[84] Arjun Bagchi, Aritra Banerjee, Sudipta Dutta, Kedar S. Kolekar, and Punit Sharma.

Carroll covariant scalar fields in two dimensions. JHEP, 01:072, 2023.

[85] Bin Chen, Reiko Liu, Haowei Sun, and Yu-fan Zheng. Constructing Carrollian field

theories from null reduction. JHEP, 11:170, 2023.

[86] Xavier Bekaert, Andrea Campoleoni, and Simon Pekar. Carrollian conformal scalar

as flat-space singleton. Phys. Lett. B, 838:137734, 2023.

[87] Laura Donnay. Celestial holography: An asymptotic symmetry perspective.

arXiv:2310.12922, 10 2023.

[88] Lionel Mason, Romain Ruzziconi, and Akshay Yelleshpur Srikant. Carrollian Am-

plitudes and Celestial Symmetries. arXiv: 2312.10138, 12 2023.

222



[89] Amartya Saha. Carrollian approach to 1 + 3D flat holography. JHEP, 06:051, 2023.

[90] Amartya Saha. w1+∞ and Carrollian Holography. arXiv: 2308.03673, 8 2023.

[91] Arjun Bagchi, Shamik Banerjee, Rudranil Basu, and Sudipta Dutta. Scattering

Amplitudes: Celestial and Carrollian. Phys. Rev. Lett., 128(24):241601, 2022.

[92] Glenn Barnich and Pierre-Henry Lambert. A Note on the Newman-Unti group and

the BMS charge algebra in terms of Newman-Penrose coefficients. Adv. Math. Phys.,

2012:197385, 2012.

[93] Luis Apolo and Massimo Porrati. Free boundary conditions and the AdS3/CFT2

correspondence. JHEP, 03:116, 2014.

[94] Daniel Grumiller and Max Riegler. Most general AdS3 boundary conditions. JHEP,

10:023, 2016.

[95] Donald Marolf, William Kelly, and Sebastian Fischetti. Conserved Charges in

Asymptotically (Locally) AdS Spacetimes, pages 381–407. Springer Nature, 2014.

[96] Sebastian de Haro, Sergey N. Solodukhin, and Kostas Skenderis. Holographic re-

construction of space-time and renormalization in the AdS / CFT correspondence.

Commun. Math. Phys., 217:595–622, 2001.

[97] Adrien Fiorucci. Leaky covariant phase spaces: Theory and application to Λ-BMS

symmetry. PhD thesis, Brussels U., Intl. Solvay Inst., Brussels, 2021.
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