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Abstract

This thesis explores the derivation of chiral current algebras from different gravita-
tional theories, including R'? gravity, AdS, gravity, and 3d conformal gravity. We
propose chiral boundary conditions consistent with the variational principle for 4d
asymptotically flat solutions yielding a chiral bms, asymptotic symmetry algebra.
This symmetry algebra was earlier discovered in the context of celestial conformal
field theory. It is an infinite-dimensional chiral extension of the Poincaré algebra and
includes a copy of Virasoro algebra, a copy of s[(2, R) current algebra, and a doublet
of commuting currents with conformal weight h = % Additionally, a novel non-chiral
infinite-dimensional symmetry algebra for R!? gravity is introduced through alterna-
tive non-chiral boundary conditions, considering the boundary metric in conformal

gauge.

Generalising the chiral boundary conditions of R'? gravity for AdS, gravity, we
derive chiral locally AdS, solutions in the Newman-Unti gauge consistent with vari-
ational principle whose asymptotic symmetry algebra we show, to be an infinite
dimensional chiral extension of s0(2,3). This symmetry algebra coincides with the
chiral bms, algebra in the flat space limit. We posit this symmetry algebra as the
chiral version of recently discovered A-bms, algebra. We postulate line integral
charges from the bulk AdS, gravity corresponding to this chiral symmetry algebra
and show that the charges obey the semi-classical limit of W-algebra that includes
a level k, sl(2,R) current algebra. The complete quantum version of this algebra
which we denote by W(2; (3/2)?,13) already existed in the literature in a different

context.

We also construct four inequivalent W-algebras based on exactly four inequivalent
embedding of 5[(2,R) in 50(2, 3). These algebras are denoted as W(2;2% 1), W(2,4),
W(2;22,1) and W(2;(3/2)2,13). We show the emergence of W(2;(3/2)2,13) and
W(2,4) algebras in the semi-classical limit from the asymptotic symmetries of
50(2,3) Chern-Simons theory formulation of 3d conformal gravity. The analogous
calculation for W(2;2% 1) already existed in the literature which can be extended
trivially for the case of W(2:22,1). The emergence of W(2; (3/2)2,13) algebra from
asymptotic symmetry analysis of three-dimensional gravitational Chern-Simons ac-
tion is also demonstrated in this thesis. This action describes 3d conformal gravity in
the second-order formulation and plays an important role in AdS, gravity. Charges
generating this symmetry algebra are calculated using the modified Lee-Wald co-

variant phase space formalism.



Finally, classical theories for scalar fields in arbitrary Carroll spacetimes, invariant
under Carrollian diffeomorphisms and Weyl transformations, are constructed. These
theories, upon gauge fixing, become Carrollian conformal field theories, with a clas-
sification provided for scalar field theories in three dimensions up to two derivative
orders. We show that only a specific case of these theories arises in the ultra-

relativistic limit of a covariant parent theory.
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Chapter 1

Synopsis

1.1 Introduction

Asymptotic symmetries play a crucial role in the study of holography. For instance,
before the seminal work of Maldacena [1] that conjectured the AdS/CFT corre-
spondence, it was shown by Brown and Henneaux [2] that the commutator algebra
of canonical charges that generate asymptotic symmetries of asymptotically locally
AdSj; configurations with Dirichlet boundary conditions is the sum of two commut-
ing copies of Virasaro algebra. It is also well known that these are global symmetries
of 2d conformal field theory (CFT) defined on the time-like boundary of such space-
times. They further calculated the central charge associated with the two copies of
Virasaro algebra to be ¢ = %, where [ is the AdS radius and G is Newton constant.
This work was the first validation of one of the expectations from the holographic
principle, which states that the global symmetries of the holographic dual boundary

theory are isomorphic to asymptotic symmetries of bulk gravitational theory.

Similarly, before the initial works on flat space holography, in the 1960s Bondi, van
der Burg, Metzner [3] and Sachs [4] showed the existence of an infinite dimensional
algebra of asymptotic symmetries for spacetimes that approach Minkowski space-
time near the boundary null infinity. Their analysis was done in a particular gauge
now famously known as Bondi gauge . This algebra, denoted by bms,, is a semi-
direct sum of Lorentz algebra and supertranslations (parametrized by an arbitrary
function defined on the sphere at the boundary). Though done in the context of
gravitational waves, this work later became the foundation of the flat space holog-

-

raphy program. In a series of seminal works by Strominger and collaborators [5]

, it was proved that the Ward identities of charges associated with bms, algebra

1



are equivalent to Weinberg soft theorems for gravitational theories. The connection
of this algebra with the soft theorems and memory effects have far-reaching conse-
quences on gravitational theories in asymptotically flat spacetimes, which include
imposing strict constraints on the infrared structure of the gravitational S-matrix.
The study of asymptotic symmetries has proved insightful in our search for dual
boundary theories in the context of flat space holography as well. There are two
candidates of dual holographic theories for 4d gravitational theories in asymptoti-
cally flat spacetimes, (i) celestial conformal field theory, a putative 2d theory defined
on the celestial sphere at null infinity [6] and (ii) Carrollian conformal field theory,
a 3d theory defined on null infinity akin to the traditional co-dimension one holog-
raphy like AdS/CFT correspondence [7]. These theories include bmsy symmetry

algebra as their global symmetries.

The asymptotic symmetries are known to be sensitive to the boundary conditions
imposed on the bulk configuration space. Therefore, it is important to study the
interplay of these boundary conditions with the asymptotic symmetry algebra as it
allows us to probe the features and properties of the boundary theory, and explore
the relationship between various physical bulk configurations and the corresponding
boundary theories. A prime example of such a case includes relaxing the Brown and
Henneaux boundary conditions for asymptotically locally AdS; spacetimes, such
that it breaks the symmetry between left-moving and right-moving sectors of the 2d
CFT and gives rise to 2d chiral CFT or 2d polyakov induced gravity in chiral gauge
at the boundary [8, 9, 10].

In the context of 4d asymptotically flat spacetime, one proposes boundary conditions

on the celestial sphere at null infinity where bms, gets enhanced as follows,

e Extended bms,, where Lorentz algebra is enhanced to two copies of Witt
algebra [11].

e Generalised bms,, where Lorentz algebra is enhanced to the algebra of diffeo-

morphisms on a celestial sphere (Diff (S?)) [12].

However, there has not been an attempt to consider chiral boundary conditions
for 4d flat space gravity along the lines of AdS;3 gravity [8, 9, 10]. This question
becomes important in light of the recent results in celestial CFT, where a sector
in the celestial CF'T holographically computes MHV graviton scattering amplitudes

[13, 14]. The complete symmetry algebra of such a sector includes one copy of the

3
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conformal primaries which is also a current algebra doublet. This symmetry algebra
is an infinite dimensional chiral extension of the Poincare algebra iso(1,3), which
will be referred to as the chiral bms, algebra. Then, a natural question, which will be
answered in the thesis is whether one can obtain such an algebra as the asymptotic

symmetry algebra of the 4d flat space R gravity.

The situation is different for AdS, gravity, where until recently, it was thought that
the symmetry algebra of asymptotically AdS; + 1 spacetimes for d > 3 is finite-
dimensional s0(2,d) for a class of boundary conditions. Compere and collaborators
in [15, 16], proposed new boundary conditions for generic asymptotically AdS, space-
times in Bondi gauge, where they uncover the symmetry algebra of residual gauge
transformations to be an infinite dimensional algebra, the A-bms,. The A-bms, and
its corresponding phase space in the flat space limit (A — 0) coincide with the
generalised bms, algebra and the phase space associated with it. This raises the

following questions, which we address in the thesis,

1. Is there a chiral extension of s0(2,3) algebra that in some appropriate flat

space limit reduces to the chiral bms,?
2. Can one obtain such a chiral A-bms, algebra from the AdS, gravity?

3. How many chiral extensions of s0(2,3) are possible, and is there a systematic

way to derive them?

4. Can one obtain all these chiral extensions as the asymptotic symmetry algebra

of 3d conformal gravity?

One of the two proposed duals of flat space gravity is a Carrollian conformal field
theory defined at null infinity, an example of a Carrollian manifold. Earlier ef-
forts to construct Carrollian conformal field theories have involved taking the ultra-
relativistic limit ¢ — 0 (¢ being the speed of light) of some parent relativistic confor-
mal theory [17, 18]. This is because a simple way to obtain flat Carrollian geometry
is to take ¢ — 0 limit of the Minkowski spacetime. Also, there have been few other
attempts to construct Carrollian conformal field theories over the years [19], how-
ever, none of these attempts were general enough to demonstrate all the features of
Carrollian manifolds as they did not include field theories defined on curved Car-
rollian manifolds. Hence, the question of constructing more general conformal field
theories intrinsically on a Carrollian manifold is an important one. We will address

this in the thesis by providing a systematic method to construct such field theories.



The thesis comprises two parts. In the first part, we concern ourselves with some
aspects of flat space holography. The following is a summary of the main results of
this part of the thesis:

° 5A[2 symmetry of R'? gravity: We propose chiral boundary conditions for
4d asymptotically flat solutions consistent with the variational principle. The
asymptotic symmetry algebra of such solutions is shown to be the chiral bms,.
We also construct boundary terms that lead to a well defined variational prin-
ciple. Six arbitrary holomorphic functions parametrize the resultant solutions,
which correspond to Goldstone modes associated with the spontaneous break-

ing of this symmetry algebra in the gravitational vacuum.

e Scalar Carollian conformal Field theories: We provide an explicit con-
struction of classes of conformal scalar field theories on Carrollian manifolds in
three dimensions using the geometrical covariant tensors of the Carroll geome-
try. These theories by construction have their symmetry algebra as Carrollian
conformal algebra cca:(f), a one parameter generalization of bmsy,, defined for

generic values of dynamical exponent z.

In the second part of the thesis we derive all the possible infinite dimensional chiral
extensions of s0(2, 3) algebra and their holographic realizations. We propose bound-
ary conditions for AdS, gravity that will give rise to one of these chiral extension of
50(2,3) as its asymptotic symmetry algebra. Furthermore, we will derive all these
chiral algebras in the semi-classical limit (large central charge ¢ or level x limit)
from the asymptotic symmetries of 3d conformal gravity by providing appropriate
boundary conditions. This analysis fills a gap in the literature where most of the
work done on the asymptotic symmetries of 3d conformal gravity except the one
in [20], did not include s0(2,3) algebra [21, 22, 23]. In the following, we provide a

summary of the main results of the second part of the thesis:

e A chiral W-algebra extension of s0(2,3) : We propose chiral boundary
conditions for AdS, gravity in Neumann-Unti gauge inspired by the chiral
boundary conditions of R'? gravity considered in the first part of the thesis
and, obtain the symmetry algebra for resultant solutions. The result is a W-
algebra, which coincides with chiral bms, algebra in the flat space limit. This
algebra is the chiral version of A-bms, algebra. The derivation of this algebra
from the AdS, gravity is in the semi-classical limit. The complete quantum

version of this algebra is very similar to a W-algebra that already existed in



the literature [24], but, in this thesis, we re-derive for so0(2,3) this quantum
algebra analogue of chiral bms, using the tools of 2d CFT and denote it by
W(2; (3/2)%, 1%).

e All chiral W-algebra extension of s0(2,3): We construct all the four infi-
nite dimensional chiral extensions of s0(2, 3) by showing that there are exactly
four inequivalent ways to embed the s[(2,R) in s0(2, 3). Each of these embed-
dings gives rise to a W-algebra. We use the associativity of operator product
expansions on the postulated operator product algebra for each of the four
cases to derive these algebras. The four resultant VW-algebras are denoted by,
W(2;22,1), W(2;22,1) , W(2,4), W(2; (3/2)2,13). The semi-classical limit of
W(2;2% 1) was known from the asymptotic symmetries of 3d conformal grav-
ity [20]. The W(2,4), W(2; (3/2)?,13) can be identified with those that existed

in the older literature in different contexts [24, 25].

e Chiral boundary conditions of 3d conformal gravity: Using the Chern
Simons theory formulation of 3d conformal gravity in its first order formula-
tion, we provide boundary conditions and gauge fixing of s0(2,3) gauge con-
nection compatible with variational principle. We then show that the symme-
try algebra of charges that generate residual gauge transformations of these
gauge connections form representations of W(2,4), W(2;(3/2)?,1%) algebras
in the semi-classical limit. The analogous calculation for W(2;22, 1) already
existed in the literature [20], which can be extended trivially for the case of
W(Q; 22.1). We also demonstrate that one can obtain some of these W alge-
bras as the asymptotic symmetry algebra for 3d conformal gravity directly in

its second-order formulation.

We now provide more details about these results, highlighting some of the key points

that form the crux of these results.

1.1.1 ;[2 symmetry of R!3 gravity

As mentioned in the introduction, the chiral bms, algebra of celestial CFT intro-
duced by the authors in [13] includes one copy of the sl(2, R) current algebra (with
generators J, , for a = 0,£1 and n € Z), one copy of Virasoro (L,, with n € Z) and
two h = % conformal primaries (with generators P, with s = j:% and r € Z + %)
The Ward identities of these operators P;, and .J,, are equivalent to leading and



sub-leading soft graviton theorems. The algebra of these generators is,

[Lma Ln] - (m - n>Lm+n ; [Ja,ma Jb,n] - (CL - b) Ja+b,m+n 3 [Lma Ja,n] =N Ja,m—i—m
1 1
[Ln7 Ps,r] = i(n - 27’)Ps’n+r s [Ja,ma Ps,r] = 5((1, - 25>Pa+s,m+r , [Ps,m PS'J“'] =0
(1.1)

with possible central terms, that remains undetermined. This algebra is different
from the classical bms, algebra of [3, 4, 26]. In this thesis, we present asymptot-
ically locally flat solutions in RY3 gravity consistent with the variational principle
and derive the asymptotic symmetry algebra of such solutions to be the chiral bmsy
in (1.1). One implements the asymptotically locally flatness by demanding that
R, — 0asr — oo where R, is the Riemann tensor of asymptotically locally
flat solutions of R'3 gravity, expanded in the radial coordinate 7 near the boundary.
We argue that to obtain the asymptotic symmetries of these asymptotically locally
flat solutions, one does not need to solve for the complete solution space. It is
sufficient to find the locally flat solutions that share the same boundary conditions
as these asymptotically locally flat solutions and study their asymptotic symme-
tries. Therefore, we analyse locally flat solutions, which are Ricci flat solutions with

vanishing Riemann tensor.

We first provide all locally flat solutions in the Neumann-Unti gauge with wu-
independent boundary metric on spatial part (35) of null infinity, where u is the
coordinate of null infinity. We then impose chiral boundary conditions on locally flat
solutions by taking the metric on ¥ of the null infinity (celestial sphere or celestial
plane) with coordinates (z, z) of the form: Qq(z,2)dz(dz + f(z,2)dz) (sometimes
called Polyakov or chiral gauge) and further impose additional conditions coming
from a well-defined variational principle. The topology of ¥5 was chosen to be ei-
ther R? (with Qg = 1) or §? (with Qg = 4(1 4+ 22)72? ). To impose a consistent and
correct variational principle, we also constructed appropriate set of boundary terms
(Gibbon Hawking type) and add them to Einstein Hilbert action. The resultant chi-
ral locally flat solutions are given in terms of six arbitrary holomorphic functions.
After this, we computed vector fields that keep us within this class of locally flat
solutions, and show that these vector fields close under the modified commutator,
namely the Courant bracket. The commutators of these vector fields at the bound-
ary obey chiral bms, algebra in eq (1.1). These vector fields result in the non-trivial
transformations of background fields in the solution space, which is same for either

choice of .



1.1.2 Constructing Carrollian CFTs

Carrollian conformal field theories are defined at the boundary of asymptotically
flat spacetimes which includes the null infinity, an example of a Carrollian manifold.
Therefore to better understand the properties of these field theories defined on such a
boundary, we provide an effective framework to construct such theories intrinsically

on a Carrollian manifold.

A three-dimensional Carrollian manifold as defined in [27], is a fibre bundle with a
two-dimensional base and one-dimensional fibre. We use the local coordinates x on
the base and ¢ on the fibre. There are three geometrical quantities that describe
a Carrollian manifold, metric on the base a;;(t,x), a 1-form b;(¢,x) (called the
Ehereshmann connection) and a scalar w(¢,x). One defines the following Carroll

diffeomorphisms, which keep this structure invariant,
t—t'(t,x), x— x'(x) (1.2)
Under these diffeomorphisms the geometrical data transform as,

ag;(t',x') = (J’l)ki (J’l)lj a(t,x), '(t,x)=J" wtx)
bt %) = (I (br(t,x) + T T w(t, %)) (1.3)

where J = %, J; = ji; and J'; = %;i are the Jacobian of Carroll diffeomorphisms.
In addition to the Carroll diffeomorphisms, one also defines Carroll-Weyl transfor-

mations on background geometrical quantities as follows,

a;;(t,x) = B(t,x) 2 a;(t,x), @(t,x)=B(tx)*w(tx),

bi(t,x) = B(t,x) " b;(t,x). (1.4)

where B(t,x) is an arbitrary function and z is the dynamical exponent. We work
with a real scalar field ®(¢,x) that transforms under Caroll diffeomorphisms and

Caroll-Weyl transformations as,

(', x)=d(t,x), P(t,x)=B(tx)°d(t,x) (1.5)

respectively, where § is the Weyl weight of the scalar field ®(¢,x). We then con-
struct the most general type of Carroll diffeomorphisms and Carroll-Weyl covariant
equation of motions as well as invariant actions on generic 3-dimensional Carrollian

manifolds for scalar fields up to two derivative order in both time (¢) and space (x)



coordinates for general values of z (dynamical exponent) and 0.

For this we start by listing invariants under Carroll diffeomorphisms involving the
geometrical quantities (a;j, b;, w) and the field ®(¢,x) and combining them into Weyl
covariant blocks. We also construct various Weyl covariant time and space deriva-
tives up to second order on the scalar fields that form building blocks of appropriate

Lagrangian densities. This results in the following,

e Two classes of diffeomorphic and Weyl covariant equations of motion, one with
two-time derivatives of the field (time-like), and the other with (up to) two

space derivatives (space-like). These exist for general values of z and ¢.

e For the special value of z = 1, one can combine time-like and space-like equa-

tions of motion with at least five real parameters.

e For z = 2, there are two classes of the equation of motion: one with second
order time-derivatives and the other with first-order time as well as second-

order space derivatives.

e The invariant actions exist only when ¢ = % for space-like action and 0 = 1—3%

for time-like action with both types of actions combining for z = 1.

e Having a stable monomial potential (®*") further restricts the value of z to be

determined by the degree of monomials.

e When one expands the equation of motion and action of a conformally coupled
scalar field in pseudo-Riemannian geometry as a polynomial in ¢, the speed
of light, using the Randers-Pappetrou parametrization of 3d metric, the co-
efficient of order O (C%) corresponds to the time-like equation/action and the
coefficient O (1) corresponds to the space-like equation/action mentioned in
the first point for z = 1 and 6 = 1 case with appropriate identification of

2
parameters.

e Gauge fixing the metric a;; and w using local symmetries leads to field theories
with Carrollian conformal algebra ccaé’z) worth of symmetries that have an
additional fluctuating two-component field b; along with the scalar field ®(¢, x).
For z = 1, this conformal algebra is isomorphic to the bms,. Alternatively, if
one gauge fixes b;, w and the determinant of a;;, then the global symmetries
of the field theories defined on the Carroll manifold is isomorphic to R x A,
where A is the algebra of volume-preserving diffeomorphisms on the sphere.

This algebra is also known to arise from AdS, gravity [15].
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1.1.3 A chiral W- algebra extension of so0(2,3)

The A-bms, algebra of [15, 16] mentioned in the introduction is a non-chiral exten-
sion of s0(2,3). The chiral boundary conditions that we use to obtain (1.1) in flat
space gravity were a subset of gbms, boundary conditions, therefore, we consider
such chiral boundary conditions suitably adapted to asymptotically locally AdS,
solutions and examine the asymptotic symmetry algebra that one obtains after im-

posing these boundary conditions.

Following the same arguments as that of flat space gravity, we derive the asymptotic
symmetries of locally AdS, solutions that share the same chiral boundary conditions
as asymptotically AdS, solutions. To this end, we solve for locally AdS,; equation
in the Neumann-Unti gauge and obtain a solution after imposing chiral boundary
conditions on the co-dimension-2 boundary of AdS, whose topology we take it to be
R2. We further impose boundary conditions obtained from a well defined variational
principle after adding the boundary terms we use in the case of RY? gravity. The
boundary conditions we use are a subset of those employed in [15, 16]. The resultant
chiral locally AdS, solutions that we obtained are in a specific form such that in the
flat space limit (I — oo, where [ is the AdS length), one obtains the chiral locally
flat solutions that we mentioned in section (1.1.1). Our chiral locally AdS, solutions

are given in terms of six holomorphic fields,

(T(2), Ju(2), Go(2)} where a € 0,41, s ¢ {—%, %}. (1.6)

We then compute vector fields that keep us within the same class of chiral locally
AdS, solutions and show that six holomorphic functions parametrize the vector
fields. The algebra of these vector fields is a Lie algebroid as the structure constant
depends on the fields J, , which in the flat space limit reduces to (1.1). Furthermore,

the variations of the fields (1.6) under these vector fields are computed.

One can write an expression for conjectured line integral charges that will generate
the correct variations of the currents in (1.6) due to large gauge transformations,
given the OPEs between various currents. The derivation of these charges from
the bulk is an open problem that won’t be addressed in this thesis. The operator
product expansions between these currents and the commutation relations obtained
from them obey a W-algebra. This W-algebra is similar to the semi-classical limit of
the one already existing in the literature, which is a N = 1 case of an infinite series
of W-algebra defined for 2N bosonic spin—% currents and spin-1 Kac-Moody current

for sp(2N) [24]. We re-derive this algebra in the context of the chiral extension of



50(2, 3) algebra for spin-1 sl(2,R) Kac-Moody current by imposing Jacobi identities
on the commutators of the modes of the chiral (quasi-) primaries. The resultant
algebra is,
[Lim, Lp] = (m —n) Lyyyn + 1—6277’L(m2 —1)0m4no0,
1
[Lma Ja,n} = —nJamin s [Lma PS,T] = 5(” - QT) Psnir,

/

1
[Ja,ma Jb,n} = _§K'm77ab 5m+n,0 + fabC Jc,m+n7 [Ja,na PS,T] = ps’,nJrr()\a)S s

1
[PS,T) Ps’,r’] = €ss’ [Oé (TQ B Z)é"'"'rlvo—i_ﬁ LT+7”+7 (JQ)T+T/]+5 (T - T,) Ja’r'H‘/()\a)sg’]"?)

6k (1 + 2K)
5+ 2k

where Nab = (3(12 - 1)6a+b,07 fabc = (CL - b)52+b7 (/\a)ss’ = %5g+5’7 (/\a)ss’ = nab(/\b)ss’u
Kk # —5/2, and 7 can be fixed to be any non-zero function of k by rescaling

1 1 1
with ¢ = — , = —17/{(3 +2k), f= 17(5 +2K), 6 = —57(3+ 2K)

the P, appropriately. (J?), are the modes of the normal ordered quasi-primary
n(J,Jp)(2). We denote this algebra by W(2; (3/2)?,1%) and show that in the semi-
classical limit with proper identification of parameters, this algebra matches with
the algebra obtained from bulk AdS, gravity. In a pure CFT calculation, we also
provide the expressions of 3-point and 4-point correlation functions of the currents in
(1.6) having the symmetry algebra 5.1, that obey crossing symmetry and conformal

invariance.

1.1.4  All chiral W- algebra extension of so(2, 3)

After uncovering the algebra (5.1), we show that there are four infinite dimensional
chiral extensions of s0(2, 3) based on exactly four inequivalent embedding of sl(2, R)
in s0(2,3). The steps that we use to construct all these chiral extensions of so(2, 3)

are as follows,

1. To start with, we show that there are exactly four ways to embed a copy of
s[(2,R) inside s0(2, 3)

2. Then we identify in each case a maximal sub-algebra h C s0(2,3) that com-

mutes with the s[(2,R) of the previous step.

3. The rest of the generators arrange themselves into finite dimensional irre-
ducible representations of the subalgebras s[(2,R) @ . These steps facilitate

writing so(2, 3) Lie algebra in four avatars.

10



4. We then postulate a quasi-primary chiral stress tensor 7'(z) with central charge

c for the s[(2,R) and a chiral current algebra of b at level .

5. To the generators in step three, we associate chiral fields that are both con-
formal primaries and the current algebra primaries of appropriate conformal

weights and current algebra representations.

6. We then use the s[(2, R) @b symmetries to give the general ansatz of the OPEs
among the additional chiral fields of the previous step with some unknown

parameters that are to be determined.

7. Lastly, to implement the associativity of OPEs, we impose Jacobi identities

on the commutators of the modes of the chiral (quasi-) primaries.

Going through these steps, we find that there are exactly four chiral WW- algebra

extensions of s0(2,3) that may be denoted as follows,

W(2;2%,1),W(2;22,1) ,W(2,4), W(2; (3/2)%,1%).

Out of these, W(2,4) was already well known in the literature [25]. It is associated
with the principal embedding of sl(2,R) in s0(2,3), where h = (). The algebra
W(2;(3/2)%1%) given in eq.(5.1) has h = sl(2,R). The algebra W(2;2% 1) has
h =so(1, 1) and may be called conformal bmss. Its semi-classical limit was found to
be the asymptotic symmetry algebra of a 3d conformal gravity in [20]. This algebra

is given as follows

(Lo Lo] = (M — 1) Lo + —1m(m? = 1) psnos [Loms P2 = (m — n) P°

12 mAn
[Lma Hn] =-"Nn Hm+n [Hma Hn] = Hm(strn,Oa [Hma Pff] - Prl;1+n ‘Eba
a
[P P = | Zm(m?® = Diino + (m = n) (8 Linin +7 (H)i )|
+ e [5 (m*+n* —mn —1) Hypyn + 0 Ay + w Zm+n} (1.8)
where a € {0, 1} and the non-zero components of 7% are n°® = —1,p!! = 1 and €%

is an antisymmetric tensor with €’ = 1. The values of the coefficients are,

2(k—1 2k — 1 —1
= 3,% </€ )07 /8 - _Eo-a Y= " g, 5 = _K/(H, )0-7
k+1 2 2(k+1) 2(k+1)
2 2 (6K> — 8 1
R o, c=— (6+ Al ) (1.9)
K+1 Kk+1
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A, X, are modes of the h = 3 composite normal ordered quasi primaries,

1 1 1
A(z):=(TH)(z) — 582]{(2), Y(z) = 2—((H2)H)(z) — 532]{(2) (1.10)
K
where T(z) is the field associated with Virasaro mode L,. The algebra W(2;22, 1)
has h = s0(2). It is closely related to W(2;2% 1) and has the same structure except
5% replaces 7% in (1.9) and other minor changes accompanied by the Euclidean

signature of the Killing form of current algebra §.

Since each of the four chiral W-algebras is an extension of the 3d conformal algebra
50(2, 3) one should expect to realise all of them as the asymptotic symmetry algebra
of 3d conformal gravity. To show this, we work with 3d conformal gravity in the
first order formalism, formulated as the Chern-Simons theory with so(2,3) gauge

algebra given by the following action,
k 2
sz—/ Tr(ANdA+ S AN AN A) (1.11)
Ar Jur 3
and go through the following standard steps,

e We start by considering one-form A in 3d written in one of the avatars of
50(2, 3) that matches with the global part of the W algebra that we are inter-

ested in deriving as the asymptotic symmetry algebra.

e We choose gauge and boundary conditions for A compatible with a well defined

variational principle and solve its equation of motion.

e One then obtains the set of residual gauge transformations that obey gauge
and boundary conditions of the connection 4. These residual gauge transfor-

mations induce the variation of fields in the connection.

e After calculating the charges that generate these residual gauge transforma-
tions, one writes down the commutators between the modes of the fields that

parametrize the gauge connection A.

Using the methodology described in the points above, we propose boundary condi-
tion of 50(2,3) gauge connection and obtain W(2,4), W(2; (3/2)?,1%) as the asymp-
totic symmetry algebra in the semi-classical limit. As mentioned before, the semi-
classical limit of W(2;2%,1) was shown as the asymptotic symmetry algebra of
$0(2,3) Chern-Simons theory previously in the literature [20]. The W(Q; 22.1) can

then be trivially derived from this result.

12



1.1.5 Chiral W-algebra from second-order formulation of 3d

conformal gravity

Over the years, the second-order formulation of three-dimensional conformal gravity

with the following action,

k 3 Apv o 2 o T

S = §/d T/ —ge* (F’;o 0.7, + gF’;\U | pr> (1.12)
has not garnered much attention, even though it is equivalent to so0(2,3) gauge
theory formulation of conformal gravity. k is the dimensionless coupling constant,
which is the level of the Chern-Simons action. The equation of motion for the
action defined in 1.12 is Cotton tensor vanishing condition C), = 0, where C,,, =
€,""Vy (Rpl, - %R gp,,). The Lagrangian density is invariant up to a total derivative
under diffeomorphisms as well as Weyl transformations. We provide chiral boundary
conditions for solutions to €}, = 0 that solve variational principle and show the

emergence of W(2; (3/2)?,1%)- algebra as the asymptotic symmetry algebra.

This action becomes relevant when one quantizes the AdS gravity using the Neu-
mann boundary condition where the holographic stress tensor 7;; = 0, and one
expects the boundary action to be an induced gravity action. One can add a bulk
Pontryagin term Spontryagin = k [ d*z /=g R%,., RP_ with an arbitrary cou-
pling constant to the bulk 4d action for negative cosmological constant. The Pon-
tryagin term is a total derivative, equivalent to Chern Simons Gravity action in eq
(1.12) at the boundary. In the large & limit, this action dominates the induced grav-
ity action at the boundary and thus becomes relevant for AdS; holography. One
solves the equation C,, = 0 after writing the metric in Fefferman Graham gauge
expansion as follows,

dsQ—ﬁdr2+T—2 (0)+£ (1)+£ @ ) da® da® (1.13)
_ 72 [2 Yab r Yab r2 Yab :

Further, we also impose the gauge condition to fix Weyl symmetry as follows,

0, (deigg)) =0 (1.14)

where det(g) is the determinant of the full metric in (1.13). The boundary coor-

dinates z* are light-cone coordinates with * € {x~,2"}. We choose the following

13



chiral boundary conditions that satisfy the variational principle,

1 N
2 4
The solution is,
Nz~ iNx—
gt =T (@)e (z4) + JF@h) e T = g (at) e (1.15)
o) = G2zt e 4 GV (o) e = G (at) e BT (1.16)
gil = T'(z%) + Terms containing function of J* and G* (1.17)

The complete solution is parameterized by {J* G*, T}, a € {0,£1},s € {+1} and
subleading terms are given in terms of these chiral currents. The residual gauge
transformations will induce a variation of these fields. The line integral charges
that generate these transformations are calculated by modified Lee-Wald covari-
ant phase space formalism, first proposed by Tachikawa [28] for Lagrangian densi-
ties that are not invariant under symmetry transformations. It turns out that the
O(r) divergences in diffeomorphism charges cancel the contribution from the Weyl
charges, and the resultant canonical charges are integrable. The algebra of charges
is W(2;(3/2)%,1?) in the semi-classical limit.

1.1.6 Conclusions

e We provide a general prescription to construct actions and equations of mo-
tions of Carrollian conformal field theories for scalars that one can extend to
other higher spin and fermionic Carrollian conformal field theories, which can

potentially describe flat space gravity /string theories holographically.

e We introduced novel chiral boundary conditions for classical gravity in four
dimensions without a cosmological constant ensuring asymptotic local flatness
near null infinities. The resultant locally flat solutions after imposing chiral
boundary conditions are complex in R gravity (real in R*»? gravity). These
complex solutions are ’condensates’ of soft gravitons with definite helicity,

determined by six holomorphic (anti-holomorphic) functions.

e The analysis of chiral locally AdS; solution and the emergence of
W(2;(3/2)%,13) algebra from the asymptotic symmetry algebra points to the

fact that by imposing appropriate bulk boundary conditions, one obtains a

14



topological sector in AdS, that can be holographically described by some co-

dimension two hologram.

e We found exactly four chiral W-algebra extensions of so(2, 3) Lie algebra and
show that these algebras in the semi-classical limit emerge as the asymptotic
symmetry algebras of 3d s0(2,3) Chern Simons gauge theory. Just as chiral
algebras of celestial CFT play a role in 4d flat space gravity, the relevance of
these chiral W-algebras in probing the infrared effects of the bulk AdS, gravity

needs to be understood better.

e We also show the emergence of W(2;(3/2)%,1%) algebra from the second order
formalism of 3d conformal gravity, which we argue to describe holographically

AdS, gravity for some specific bulk configurations and boundary conditions.

The proposed organization of the thesis

1. The first chapter will comprise a general introduction of asymptotic sym-
metries in the context of 4-dimensional asymptotically flat spacetime and
3-dimensional conformal gravity with past relevant results and important for-

mulae reviewed.

2. The second chapter will mainly analyze chiral boundary conditions for asymp-
totically flat spacetime in R'? gravity and obtain symmetry algebra for such

solutions.

3. The third chapter will deal with a general method for constructing Carrollian

conformal scalar field theories in 3 dimensions on a curved Carroll manifold.

4. The fourth chapter will discuss chiral boundary conditions for asymptotically
AdS, spacetime, obtaining symmetry algebra for such solutions and re-deriving

2d chiral W- algebra that governs such asymptotic symmetry algebra.

5. The fifth chapter will discuss the derivation of all chiral W-algebra extensions
of s0(2,3) and further derive these W-algebras as the asymptotic symmetry

algebra of 3d conformal gravity in the first-order and second-order formulation.

6. The sixth chapter will be the conclusion of the results and future directions.
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Chapter 2
Introduction

The starting point to answer several relevant questions in quantum gravitational
theories is to study the symmetries of these theories. One such class of symme-
tries are called asymptotic symmetries, which become prominent near the spacetime
boundaries and represent the physical symmetries of gravitational theories. They
are also called ‘large’ gauge transformations. Because of their origin and nature,
they play a crucial role in determining the gravitational dynamics in holography.
One of the most successful examples of holographic duality is AdS/CFT corre-
spondence. However, before the seminal work of Maldacena [1] that conjectured the
AdS/CFT correspondence, Brown and Henneaux showed in [2] that the commutator
algebra of canonical charges that generate asymptotic symmetries of asymptotically
locally AdS3 configurations with Dirichlet boundary conditions is the sum of two
commuting copies of Virasaro algebra. It is also well known that these are global
symmetries of 2d conformal field theory (CFT) defined on the time-like boundary
of such spacetimes. They further calculated the central charge associated with the
two copies of Virasaro algebra to be ¢ = %, where [ is the AdS radius and G is
the Newton constant. This work was the first validation of one of the expecta-
tions from AdS/CFT correspondence, which states that the global symmetries of
the holographic quantum field theory at the boundary are isomorphic to asymptotic
symmetries of corresponding bulk gravitational theory in asymptotically locally AdS
spacetimes. Understanding the symmetries on both sides of the correspondence is
vital for exploring the holographic duality and gaining insights into quantum grav-

itational theories.

Similarly, in the 1960s, Bondi, van der Burg, Metzner [3] and Sachs [4] showed

the existence of an infinite dimensional algebra of asymptotic symmetries for four-
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dimensional spacetimes that approach Minkowski spacetime near the boundary null
infinity. Their analysis was done in a particular gauge now famously known as the
Bondi gauge. This algebra, denoted by bms,, is a semi-direct sum of Lorentz alge-
bra and supertranslations (parameterised by an arbitrary function defined on the
sphere at the null infinity). It is an infinite dimensional extension of Poincare alge-
bra iso(1, 3) where translations enhance to supertranslations. The action of Lorentz
transformations on the sphere at null infinity is isomorphic to global conformal trans-
formations. In [29, 30, 11], Barnich and Troessaert showed that one can extend the
original bms, algebra further by considering local conformal transformations on the
sphere denoted by superrotations. Therefore, the resultant symmetry algebra gets
enhanced to a direct sum of supertranslations and two copies of Virasaro algebra.

This extension is known as extended bms, (ebms,) algebra.

Due to the connection of asymptotic symmetries and soft theorems, one has been
able to understand better the constraints imposed on S-matrix in the IR regime [31,
32]. In [33], Strominger established the invariance of S-matrix under the diagonal
element of the BMS group acting on the scattering data at the future and past
null infinity using the results of [34]. In the subsequent paper [35], the authors
showed that the Ward identity associated with the supertranslation symmetries was
equivalent to Weinberg leading soft graviton theorem [36, 37]. This leading soft
graviton theorem is a universal factorisation property of scattering amplitudes at
the tree level. It relates the S-matrix element of any quantum field theory including
gravity in the limit when the energy w of one of the graviton goes to zero, to the
S-matrix element without the soft graviton multiplied by the leading soft factor that
is proportional to O(w). This work [35] led to a renewed interest in the study of soft
graviton theorems [38, 39, 40, 41] and a plethora of work connecting the invariance
of S-matrix under these asymptotic symmetries via corresponding soft theorems
ensued [42, 43, 44, 45]. Notably, it was shown in [46] that the subleading universal
soft graviton theorem at tree level corresponding to O(1) pole in w [38] implies
the Ward identity of S-matrix associated with the Virasaro symmetry of ebmsy
algebra. However, as the superrotations include singular transformations on the
sphere, one could not establish this equivalence entirely the other way. To remedy
this Campliglia and Laddha in [47, 12] proposed a different extension of original
bms, called generalised bms, algebra (gbms,), where Lorentz algebra is enhanced
to the algebra of arbitrary diffeomorphisms on the sphere iff(S?) at null infinity.
For smooth vector fields in 9iff(S?), they showed that the Ward identity of S-matrix
associated with diff(S?) symmetry is equivalent to Cachazo-Strominger subleading

soft theorem [38]. Recently Freidel and collaborators proposed another extension of
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bms, called Weyl bms, algebra which includes local Weyl rescalings of the boundary
metric in addition to supertranslations and arbitrary diffeomorphisms of the sphere
metric [48].

This connection of asymptotic symmetries of gravitational theories in R"? gravity
with the soft graviton theorems of quantum field theory [36, 38, 39, 40, 41] has led to
the proposal of codimension-two holography for R%3 gravity called celestial holog-
raphy. In celestial holography, one rewrites four-dimensional scattering amplitudes
in boost eigenstates instead of momentum eigenstates that recast these scattering
amplitudes as the correlation functions of two-dimensional putative celestial confor-
mal field theory defined on the celestial sphere at null infinity [49, 50, 51, 52, 53].
This recasting uses the isomorphism between Lorentz algebra and s[(2, C) to classify
conformal states on the sphere [54, 55, 56, 57]. Written in the boost eigenstates, also
called conformal basis, one rewrites the soft theorems in R'® gravity as conformal
Ward identity with the insertion of soft currents on the celestial sphere. These soft
currents correspond to the choice of particular conformal dimension A in celestial
CFET [58, 52, 59]. Furthermore, one interprets the collinear limit between two opera-
tors on the amplitude side as OPEs between the corresponding conformal primaries
in the celestial CFT [60, 61, 62].

The developments in celestial CF'T have revealed more insights into the symmetries
of gravitational theories defined in R>? gravity from the boundary perspective. For
instance, in [13, 14], the authors showed that the leading and subleading soft graviton
theorems written in a conformal basis are equivalent to conformal Ward identity of
two commuting h = % currents and a sl(2, R) current algebra respectively defined on
the celestial sphere. This chiral symmetry algebra, which we will refer to as chiral
bmsy, describes a sector in celestial CF'T which holographically computes MHV
graviton scattering amplitude at tree level in R gravity [13, 14]. Later in [63],
using the OPE between two conformal primaries graviton operators, the authors
showed the existence of an infinite tower of symmetry generating currents defined
on the celestial sphere for positive helicity gravitons. They further speculate that
this infinite tower of symmetry-generating chiral currents with higher spin may have
links to the infinite number of soft theorems defined in the bulk R'? gravity [64, 65].
Later, Strominger in [66] demonstrated that this infinite tower of currents form a
closed algebra known as the wy o, algebra, with the chiral bms, algebra [13, 14] as

the sub-algebra within this wy, ., algebra.

To strengthen the case for flat space holography, one should be able to derive the
symmetries revealed by celestial CFT from the bulk RY3 gravity. As a first step,
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we note that a similar s[(2,R) current algebra appeared in the context of AdS;
gravity [10]. The authors in [10] considered boundary metric for asymptotically AdSs
solutions in chiral Polyakov gauge and showed the emergence of a sl(2,R) current
algebra from the asymptotic symmetries with the level £ given in terms of central
charge c of the Virasaro algebra. This suggests that considering chiral boundary
conditions in R gravity may lead to the derivation of chiral bms, algebra [13, 14].
We study this possibility with a positive conclusion in this thesis. See [67] for a
related later work where the authors have derived charges that form the canonical

representation of these w; . algebra using vacuum Einstein equations.

In a parallel development, the results of [68, 69] established the isomorphism be-
tween conformal Carroll algebra ccagz) for = 1 and bms, algebra that generated
interest in Carrollian conformal field theories. One defines such theories on the
Carroll manifolds, which are null and have richer structures [27, 70] compared to
(Pseudo) Riemannian manifolds. The examples of Carroll manifolds include one
of the boundaries of R gravity (null infinity) and the horizon of black holes [71].
The fact that the Carrollian conformal field theories defined at null infinity contain
bms, as their global symmetry algebra led to the expectation that these theories
are viable candidates for dual boundary theories to gravitational theories in R!3
gravity [72]. One can obtain Carroll algebra from the group contraction of Poincare
algebra by taking the ultra-relativistic limit (¢ — 0, where ¢ is the speed of light)
[73, 74]. Thus, earlier attempts to obtain field theories exhibiting Carrollian con-
formal symmetries involved taking the ultra-relativistic limit of parent relativistic
conformal field theories defined in Minkowski spacetime [72, 17]. Such theories were
defined on the flat Carrollian geometries and excluded the examples of general field
theories conformally coupled to the background Carroll geometries, which are not
necessarily flat [27]. The developments in [19, 75, 76], which involved construct-
ing some of the Carrollian fluid hydrodynamics equations directly on these curved
Carrollian manifolds, led to the construction of conformally coupled field theories
on general Carrollian manifolds [77, 78, 79, 80, 81, 82]. See [18, 83, 84, 85, 86] for
different approaches to the Carrollian CFTs.

Several works have explored the connections between Carrollian CF'Ts and celestial
CFTs [7, 87, 88, 89, 90, 91]. One of the differences between these two proposed
dual theories is that celestial CF'T is a proposal for codimension-two holography.
In contrast, Carrollian CF'T is the proposal for codimension-one holography akin to
AdS/CFT correspondence, and both address different aspects of flat space holog-
raphy. Celestial holography is better suited to study the scattering problem as
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it provides a better framework to examine the scattering amplitudes by rewriting
them as correlation functions on the celestial sphere. In Carrollian CF'T, due to the
incorporation of an extra u coordinate of boundary, the study of the evolution of dy-
namical data on null infinity is natural. In celestial CF'T, the momentum operators
act as weight-shifting operators of conformal primaries [53], whereas, in Carrollian
CF'T, the action of momentum operators is much more natural as they manifestly

act by shifting the u-coordinate of null infinity [13].

The boundary conditions play an integral role in the study of asymptotic sym-
metries. The symmetry algebra can be enhanced or restricted depending on the
boundary conditions. For example, in the derivation of the classical bms, algebra
and ebmsy, the boundary metric on a 2-dimensional celestial sphere was kept fixed
[3, 4, 92]. This boundary condition was relaxed to only holding the determinant
of the 2-dimensional boundary metric on the celestial sphere fixed while deriving
gbms, [47, 12]. Relaxation of this condition further leads to Weyl bms, algebra
[48]. The interplay between boundary conditions and asymptotic symmetries has
been documented very well in the AdS/CFT correspondence, especially in AdS;
(2, 8,9, 10, 93, 94]. The asymptotically locally AdS solutions to the Einstein equa-
tions near the boundary are given in terms of two independent data, (i) a bound-
ary metric and (ii) a holographic stress tensor which satisfies constraint equations
[95, 96]. This behaviour is unlike the flat case where an infinite number of free data
appear while solving Einstein equations [97, 98]. One can quantise gravity in the
bulk AdS spacetime in different ways by imposing different boundary conditions at
the AdS boundary [99, 100]. The following type of boundary conditions are the

most commonly imposed in AdS/CFT correspondence

e Dirichlet boundary condition, where one fixes the boundary metric [2, 101, 96].

e Neumann boundary condition, where one fixes the holographic stress tensor
to zero [99, 100].

e Mixed boundary conditions, where one fixes some components of boundary
metric and of the holographic stress tensor after adding a boundary action to

the bulk action that gives a finite contribution to the stress tensor [8, 99, 9, 10].
The symmetry algebra of asymptotically AdS,,; spacetimes for d > 3 with Dirichlet

boundary conditions is finite-dimensional s0(2, d), whereas, for Neumann boundary

conditions all the residual diffeomorphisms turn out to be pure gauge transforma-
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tions [99, 95].! This is because, according to [99], for Neumann boundary conditions
the boundary theory is an induced gravity for which codimension-two charges from
the bulk perspective and codimension-one charges from the boundary perspective go
to zero. Recently, Compere and collaborators in [15, 16] proposed boundary condi-
tions for generic asymptotically locally AdS, spacetimes in Bondi gauge, where they
uncover the symmetry algebra of residual gauge transformations to be an infinite
dimensional algebra, the A-bms,. The A-bms, and its corresponding phase space
in the flat space limit (A — 0) coincide with the generalised bms, algebra and the
phase space associated with it. To impose a well-defined variational principle, they
implement mixed boundary conditions, giving rise to reduced symmetry algebra,
which is a direct sum of R & A, where R denotes the abelian time translations and
A is the algebra of 2-dimensional area-preserving diffeomorphisms. These results in
AdS, gravity [15, 16, 99] and the derivation of chiral bms, algebra from RY3 gravity

that we will present in this thesis raises the following questions:

e Is there a chiral extension of s0(2,3) algebra that in some appropriate flat

space limit reduces to the chiral bms,?

e Can one obtain such a chiral extension of s0(2, 3) from the study of asymptotic
symmetries in AdS, gravity similar to the chiral extensions of s0(2,2) from
AdS; gravity [2, 10, 93]7?

e How many chiral extensions of s0(2,3) are possible, and is there a systematic

way to derive them?

We address these questions in this thesis and see how Neumann boundary conditions
[99] play a part in answering the first two questions. Ome such chiral extension
of s0(2,3) already existed in the literature namely, conformal bmss or Wi22,21)
[20]. It was obtained from the asymptotic symmetries of three-dimensional s0(2, 3)
Chern-Simons gauge theory which is equivalent to the first-order formulation of 3d
conformal gravity [103]. In the same way, we expect all the other chiral extensions of
50(2,3) that we will derive in this thesis to emerge from the asymptotic symmetries
of 3d conformal gravity in the semi-classical limit (large central charge ¢ or level &
limit). This analysis aims to fill the gap in the literature, where the previous works

on asymptotic symmetries of 3d conformal gravity except in [20], did not include

!Brown York charges corresponding to Neumann boundary conditions evaluate to zero since for
asymptotically AdS configurations, they are proportional to holographic stress tensor contracted
with boundary Killing field [102, 95].

2See Appendix (G) for all possible chiral extensions of s0(2,2).
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the global symmetry algebra so(2,3) [21, 22, 23]. See [104, 105, 106] for the role
played by 3d conformal gravity in AdS, gravity.?

The thesis comprises two parts. In the first part, we concern ourselves with some
aspects of flat space holography. The following is a summary of the main results of
this part of the thesis:

e sl, symmetry of R'® gravity: We propose chiral boundary conditions for
4d asymptotically flat solutions in Newman-Unti gauge consistent with the
variational principle. The asymptotic symmetry algebra of such solutions is
shown to be chiral bms, which was derived from the celestial CFT in [13, 14].
We also construct boundary terms which are suitable for boundaries near null
infinity that lead to a well-defined variational principle. We obtain chiral

currents that are predicted to exist from celestial CFT in R gravity [13, 14].

We also show the existence of a novel non-chiral infinite dimensional symmetry
algebra of RY3 gravity by proposing different non-chiral boundary conditions

where the boundary metric is considered in conformal gauge.

e Scalar Carollian conformal Field theories: To fully understand the prop-
erties of Carrollian CF'Ts, one needs to construct such theories intrinsically on
Carrollian manifolds. We address this by providing a systematic method to
construct such field theories. Specifically, we provide an explicit construction
of classes of conformal scalar field theories on Carrollian manifolds in three
dimensions using the geometrical covariant tensors of the Carroll geometry.
These theories by construction have their symmetry algebra as Carrollian con-
formal algebra ccag’z) [70], a one-parameter generalization of bms,, defined for
generic values of dynamical exponent z. We also show that based on the dif-
ferent ways of gauge fixing the background data using the local symmetries of
Carroll Weyl and Carroll Diff. invariant field theories, one obtains a different

set of residual symmetry algebra including generalised bms, algebra.

In the second part of the thesis, we present the results in AdS,; and 3d-conformal

gravity. The summary of the main results of this part of the thesis are:

e A chiral W-algebra extension of s0(2, 3) from AdS, gravity: We propose

chiral boundary conditions for AdS, gravity in Newman-Unti gauge inspired

3See [81, 107] for the analogous role played by 3d Carrollian conformal gravity for 4d flat space
gravity.
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by the chiral boundary conditions of R%3 gravity considered in the first part
of the thesis and, obtain the symmetry algebra for resultant solutions. This
symmetry algebra is an infinite dimensional chiral extension of s0(2, 3), which
coincides with the chiral bms, algebra in the flat space limit. We posit this

symmetry algebra as the chiral version of A-bms, algebra.

We propose line integral charges from the bulk AdS, gravity corresponding
to this chiral symmetry algebra and show that the charges themselves obey
a semi-classical limit of a W-algebra that includes a level k, s[(2,R) current
algebra. We then derive the complete quantum version of this W algebra using
the tools of 2d CFT such as the associativity of operator product algebra and
denote it by W(2; (3/2)%,13).

All chiral W-algebra extensions of s0(2,3): Using the same techniques of
2d CFT, we construct all four infinite dimensional chiral extensions of s0(2, 3)
by showing that there are exactly four inequivalent ways to embed the sl(2, R)
in 50(2,3). Each of these embeddings gives rise to a Wh-algebra. The four
resultant W-algebras are denoted by, W(2;22%,1), W(?; 22.1),W(2,4) and pre-
viously mentioned W(2; (3/2)?,13). The semi-classical limit of W(2;2% 1) was
known from the asymptotic symmetries of 3d conformal gravity [20]. The
W(2,4),W(2;(3/2)% 13) can be identified with those that existed in the older

literature in different contexts [24, 25].

W-algebras from 3d conformal gravity: In the Chern-Simons theory
formulation of 3d conformal gravity, we provide boundary conditions and
gauge fixing of s0(2,3) gauge connection compatible with variational princi-
ple. We then show that the symmetry algebra of charges that generate resid-
ual gauge transformations of these gauge connections form representations of
W(2,4),W(2;(3/2)% 13) algebras in the semi-classical limit. The analogous
calculation for W(2;2% 1) already existed in the literature [20], which can be
extended trivially for the case of W(2; 22, 1).

The gravitational Chern-Simons action equivalently describes the 3d conformal
gravity in its second-order formulation. After making the case for the impor-
tance of this action for AdS, gravity, we show the emergence of W(2; (3/2)%,1?)
algebra from the asymptotic symmetry analysis of the solutions to gravita-
tional Chern-Simons term. Furthermore, we calculate charges that generate
this symmetry algebra by the modified Lee-Wald covariant phase space for-
malism method defined for Lagrangian density like gravitational Chern-Simons

which we review in the next section.
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The organization of the thesis

1. We end this chapter by reviewing some of the preliminary concepts and

important results used in this thesis.

2. The second chapter will mainly analyze chiral boundary conditions for
asymptotically flat spacetime in R*? gravity and obtain symmetry algebra

for such solutions.

3. The third chapter will deal with a general method for constructing Car-
rollian conformal scalar field theories in 3 dimensions on a curved Carroll

manifold.

4. The fourth chapter will discuss chiral boundary conditions for asymp-
totically AdS, spacetime, obtaining symmetry algebra for such solutions
and deriving 2d chiral WW-algebra that governs such asymptotic symmetry

algebra.

5. The fifth chapter will discuss the derivation of all four chiral W-algebra
extensions of 50(2,3). In this chapter we further derive W(2; (3/2)?, 13)
and W(2,4) as the asymptotic symmetry algebra of 3d so(2,3) gauge
theory. We also show the emergence of W(2; (3/2)%,1%) from the second-
order formulation of 3d conformal gravity described by gravitational

Chern-Simons action.

6. The sixth chapter will discuss future directions.

2.1 Preliminaries

2.1.1 Review of asymptotic symmetries

In this section, we review some of the techniques associated with the asymptotic sym-
metries that will be useful for our analysis later. For a comprehensive review please
refer to [108, 109]. Gravity is a gauge theory with diffeomorphisms playing the role of
gauge transformations. This is also evident from the fact that the charges associated
with these diffeomorphisms vanish. To obtain non-trivial canonical charges associ-
ated with these theories one defines the charges on the codimension-two boundaries
of bulk space-time. This is because the physical gauge transformations associated
with these gravitational theories exist near the boundary and generate non-trivial

boundary dynamics. These are large gauge transformations that do not vanish at
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the boundary and give rise to non-zero charges. To find asymptotic symmetries of
these gravitational theories one starts by gauge fixing some of the components of the
metric using diffeomorphisms. This removes some of the gauge redundancies but
there is still some residual gauge freedom left. One then imposes non-trivial bound-
ary conditions on the fields and metric components of the gravitational theories near
the boundary of spacetimes and demands that the residual gauge transformations
preserve those boundary conditions. As defined in [108], there exist two defini-
tions of the asymptotic symmetry group. In the first definition, which is weaker,
the asymptotic symmetry group of gravitational theories are set of residual gauge
diffeomorphisms that preserve the boundary conditions. The second, which is a
stronger condition defines the asymptotic symmetries as a set of residual gauge
diffeomorphisms that preserve boundary conditions and have non-vanishing charges
associated with these diffeomorphisms. Therefore it is quite evident that the bound-

ary conditions play a huge role in determining the set of asymptotic symmetries.

We will work in four dimensions with the coordinates (r,u,z®) (a € {1,2}) suitable
for asymptotically flat spacetimes and gauge fix our metric in Newman-Unti gauge

[110] which is characterised by the following conditions
grr = 9Gra =0,  Gur = —L. (2.1)
The line element after gauge fixing is given by
ds?® = hyy du? — 2dudr + 2 gue du dz® + ggp dz® da?, (2.2)

where hy.y, Gua, gap are functions of (u,r, ) coordinates. The boundary topology is
¥y x R, where codimension-two hypersurface ¥y can be S? or R%2. This gauge is
different from the commonly used Bondi gauge which imposes the following gauge

fixing conditions on the metric,

Grr = Grz = Grz = 07 ar (M> =0. (23)

rd

As mentioned in [92], both ways of gauge fixing differ only by choice of radial coor-
dinates which does not impact the calculation of asymptotic symmetries and hence
asymptotic symmetry algebra in both of these gauges are found to be isomorphic
to each other. Apart from these gauge conditions, the following boundary condi-

tions are imposed which are not too stringent and allow for the possibility of some
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physical examples [5]
lim Guu = — 1+ O(T_l), Gua = O(1>7 Gab = T2’Vab + O(T>7 (24)

r—00

where 7, is a 2d fixed metric defined on the 5. Under any residual diffeomorphisms
the gauge conditions on metric component should be preserved, therefore to find
the diffeomorphisms that leave the form of asymptotically flat metric invariant,
we demand that under such transformations the Bondi gauge conditions (2.1) are

obeyed. This translates to
Legrr =0, Legra =0, Legur = 0. (2.5)
The Lie derivative of the metric tensor is
Leuw = 0567 G + 0,67 9o + 04E7 Guors (2.6)
and the vector field in the coordinate-dependent chart is written as follows,
& =E&"(u,r,x*) 0y + & (u,r, %) 0p + E(u, 1, %) 0,. (2.7)

Therefore solving (2.5) one obtains

£ =&"(u,x"), & =Y"(u,r%) — %) (u, xc)/ g*tdr,

£ = —ro,&" +/ Gua O E°. (2.8)

The asymptotic symmetries should also preserve boundary conditions (2.4), which
means that the corresponding Lie derivative of the metric component should obey
the same boundary conditions and fall-offs. For example, the Lie derivative of L¢ gy,
should fall off as O (%), which means all the higher order terms in r should go to
zero for this Lie derivative. This allows us to solve for various functions of the vector

fields and further reduce the dependence of functions on the number of coordinates

’Su<u7 <, 2) = 5%0)(27 Z) + ué?l)(za 2)7 5?0) = gle) (‘Tc>7 (29)

— 20" Yab + Da&{p) Yeb + Dv&{g) Yab = 0. (2.10)
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The equation (2.10) implies that £y = %Daf?o) and

Da&u0) + Dv&ao) = De&{o) Vab- (2.11)

This is the conformal killing equation for £ for metric v, defined on ¥, at null
infinity. D, is the covariant derivative associated with the metric 7, . The resultant
vector fields that preserve the Newman-Unti gauge (2.1) and boundary conditions

(2.4) to leading order i r are,

£ = (qa)(a:“) + gDc%)) Ou+ €y ()00 — 5 Dy () D+, (212)

with £ (z?) satisfying CKV equation (2.11). The --- in (2.12) denote subleading
terms that are determined in terms of {{{ (), {{p)(z%)}. Also if at some order in r,
there exists free data in the metric component in (2.2), then the variation of it would
be the coefficient of the Lie derivative of that metric component at the same order.
Now that we have our full set of vector fields that enable us to move in the space of
solutions, to check that they satisfy some Lie algebra, the Lie brackets between any

two of these vector fields should close under the Courant bracket (see for instance
[111])

(&1, &2l = &7 05 6o — €5 0561 — 0g, o + 0, &1 (2.13)

The last two extra terms in (2.13) are to take into account any background field
dependence of £. ¢, & means the variation of background field in & with respect

to the variation in &;. Calculating the bracket as in (2.13) we find:

Fu u Fc Fa r fa
[fl ) 52]M = (f(o) + 5 Dc€(0)> Ou + (f(o)) Oa — 5 D, 5(0) O+ -+ (2~14>
where
Au a u 1 u a a U 1 u a
5(0) = 51(0) aa 52 (0) + 5 51 (0) Da 52(0) - 52(0) (% fl 0y — 5 52 (0) Da 61(0), (215)
€y = 10 0 510y — E5(0) O €0y (2.16)

Considering the Lie bracket with §f(0) = 53(0) = 0 one can check that the resul-
tant 52‘0) = 0 and therefore they commute just like translations in Poincare algebra
iso(1,3). However here 5&)) is an arbitrary function defined on X5 and is a vector
field associated with supertranslations, which are angle-dependent translations in

the null direction v at null infinity. The vector field at the boundary when one set

27



5(“0) = ( is given as fbdry = %ch(co)au + 6?0)8“'

Global bms, algebra: When the vector fields 5?0) are restricted to the globally well-
defined transformations on X5 then their algebra obeys global conformal algebra
sl(2,C)/Z, which is isomorphic to Lorentz algebra so(1,3). The g (z?) for ex-
ample can be expanded in the natural basis of spherical harmonics Y}, which are
smooth functions on ¥y = S?. The normal translations are the special case of
supertranslations for [= 0 and [= 1 spherical harmonics. Therefore the resulting
algebra becomes the semi-direct sum of these smooth functions (supertranslations)

and global conformal transformations.

Extended bms, algebra: Taking a cue from the two-dimensional conformal field
theory, if the functions 5?0),{’?0) are allowed to be meromorphic functions with a
finite set of poles on S? or R? then they can be expanded in Laurent series if one
works in stereographic coordinates (z* € {z, z}) where the metric on ¥, takes the
form 7, dztda® = Q(z,2)dz dz.

The general solution of the conformal killing equation in (2.11) is £* = Y(z) and
& =Y (z). Now if we denote the vector field with components Y (z) = —2z"*1, o) =
0,Y(2) = 0 by Ly and Y(2) = ="+, &) = 0,Y(2) = 0 by L, the commutation

relation using (2.16) is,

(L, L] = (m —=n)Lynin, [LmyLn]=(m —n)Lpin, [Lm, L] =0. (2.17)

If one denotes supertranslation vector field with components Y (2) = Y (2) = 0, oy =

2™ Z" by T, , then the other commutators are given by,

n—+1 _ n+1
[LmTp,q] = ( 9 _p>Tp+l,q7 [anTp,q] = ( 5 _q)Tp,qH (2.18)

The extended bms, algebra is the direct sum of supertranslations and local conformal
translations which are also called superrotations [11]. These transformations allow

for singular transformations of the boundary metric.

Generalised bms, algebra: If one loosen the boundary conditions (2.4) to,
Guu = O(l) y Gab = TQ Gab + 0(1) (219)

where ¢, is an arbitrary metric independent of v on ¥5 with fixed determinant. The

vector fields associated with the residual gauge transformations that preserve these

28



boundary conditions (2.19) are,

u r
Sepm = (f?o) (=) + EDcffo))au + &0y (2)0a — 5 Doy (%) Oy + -+ (2.20)

with CKV condition dropped on 5?0)' The symmetry algebra is then the direct sum
of supertranslations and algebra of arbitrary diffeomorphisms on 3, 2iff(S?) with

the following transformation of the boundary metric,

0qab = —2 D¢ §(g) qab + Da b0y + Db Ea(0)- (2.21)

2.1.2 Current Algebra from Celestial CFT

The S-matrix elements of RY3 gravity can be recast as 2d conformal correlators,
called the celestial amplitudes [50, 49]. By taking conformal soft limits one can un-
cover Ward identities of various 2d conformal currents — referred to as the conformal
soft theorems. Here we review the existence of two current algebra symmetries of
the 2d celestial amplitudes that follow from the leading and subleading conformal
soft theorems for positive helicity soft graviton operators (see [13, 14] for notation
and more details). One starts with the leading order conformal soft theorem for an

outgoing positive helicity soft graviton operator Sy (z, 2)

n — —

<So+(2a5) H¢h¢,ﬁi('zi, 51)> = - (Z z : Z@ﬂ%) <H b, 1, (25 5@')>, (2.22)

where Py, 5, (2i, Zi) = Ori®n,+1/2.h,41/2(%, %), € = 1 for an outgoing (incoming)
particle. Also (hy, hi) = (%, %) where Ay and oy are the scaling dimension
and helicity of the k-th particle respectively. The RHS of equation (2.22) is a

polynomial in Z, so we can expand it around z = 0 and rewrite the equation as

<SS_(Z7 2) H ¢hi,ﬁi(zi7 §1>>

Rk
k=1 i=1 k=1 i=1
(2.23)
Now if we define two currents C'2(z) and C~2(z) in the following way,
SH(z,2) = C2(z) — 2C2(z) (2.24)
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then equation (2.23) implies separate Ward identities of these two currents given by,

<O%(z)H¢hi,gi(zz-,zi)>: (Zz ekPk> Hgbh Rz %) (2.25)

and

e Hllontena) - (Lo pan ) (Tanea) e

One can see from (2.25) and (2.26) that C'2(z) and C~2(z) are generators of in-

finitesimal supertranslations acting as:

0,10n5(2,2) = Z2P2(2) €P ¢y (2, 2), (2.27)

and

0y Oni(2:2) = PT2(2) €Pgy (2. 2) (2.28)

respectively. Next, we turn to the emergence of sl[(2,R) current algebra from the
celestial CF'T. For this one starts with the corresponding subleading conformal soft
graviton theorem (the holographic analogue of [38]) for a positive helicity outgoing

soft graviton operator Sy (2, z)

- “~ (z—z,)% [ 2h
S (z, z Ziy Zi)) = (2~ %) [ b } (z:,2)), (2.29
{ )Hqshh ) > A chshh . (2.29)
where S} (z, z) is given by
SiH(z,2) = iimoA GL(z,2). (2.30)
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One follows the same procedure as the leading conformal soft theorem above. Ex-

panding the RHS of (2.29) in powers of Z gives
i=1
- 225k + QBka n _ _ = Bk + Zk:ék‘ - -
= = (o (z ) +22 > ——= ([ [ on.n.(2:2))
k=1 i=1 k=1 i=1

Z — Zk Z — Zk

32 - 1 i n o
’ ;Z_Zk 0z, <l]:11:¢hi,hi(zzazz>>.

(2.31)

Using this one can define three currents J'(z) where ¢ = 0,41, which are the gen-
erators of s[(2,R) current algebra. In terms of these currents, we can write the soft

graviton operator Si (2, z) as,
SH(z,2) = —J'(2) +22J°%2) — 22T 1(2). (2.32)
The mode algebra of the currents J'(z) is
[T T3] = (= )Tt (2.33)

The symmetry algebra we have discussed has been obtained by analysing the corre-
lation functions between the primary operators of the 2d celestial field theory and
conformally soft gravitons. If a holographic duality exists between gravitational
theories in four-dimensional asymptotically flat spacetime and 2d celestial confor-
mal field theory then the bulk theory should also possess these symmetries. This

motivates us to search for these symmetries directly in the bulk R gravity.

2.1.3 An sl(2,R) current algebra from AdS; gravity

An sl(2,R) current algebra can be seen as the asymptotic symmetry algebra of
AdSj3 gravity by taking the boundary metric of asymptotically AdS3 geometries in
the Polyakov gauge [112]. Working in the Fefferman-Graham gauge the locally AdSs

geometries can be written as

At = 22 402 (4@ + Lo 1 L) gy (2.34)
lAdss = U 73 YGab 2 Gab i Yab T ax .
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along with

oy 1 o e 1 b 1
9% = 495?9(%928, V(o>9§b)=§3bﬁ’o7 and 9(53951)):53(0)' (2.35)

Choosing the chiral gravity gauge of Polyakov

ds* = (F(z,2)dz + dz) dz (2.36)

(0)

for the boundary metric g, the differential conditions impose the following equation:

z

1
(azgg? Fo. — 20 F) g2 = JOF . (2.37)
One also has
1
9 = K(2) + F* g + 5 [(0:F) + 2 F 92F +20.0:F]. (2.38)

) _ 0 as shown

Finally, the bulk variational problem can be satisfied by setting g¢;3
in [10]. This makes F'(z,Z) a polynomial of degree 2 in z. The residual bulk dif-
feomorphisms lead to one copy of s[(2,R) current algebra and one copy of Virasoro
algebra.* We will implement a similar procedure in R%? gravity and demonstrate

that an analogous s[(2,R) chiral current algebra emerges in this context as well.

2.1.4 Asymptotic symmetries of so0(2,3) gauge theory

The 3d conformal gravity theory was originally formulated in a first-order formalism
where the basic field is the vielbein e,* (i, v, -+ are spacetime indices and a,b, - - -

are local Lorentz indices.). The torsionless condition on the manifold is given by
[0ues + wibel] — [Dyef, + wibel | = 0. (2.39)

The spin connection is defined in terms of e,” and the Christoffel symbol associated
with the metric such that (2.39) is solved. In 3d one can construct a Lorentz vector
from a spin connection,

L o

wt =: 56(1 “Whe- (2.40)

4Strictly speaking the s[(2,R) current algebra is the correct one only when one is talking about
the Lorentizan AdSs theory. When dealing with Euclidean theory we should say the relevant
algebra is sl(2, C).
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The action associated with 3d conformal gravity is then [113, 114, 103]
v, a a 2 abc
S = P | Wpa (&,wp — O,w, ) + §€ Wya Wb Woe | - (2.41)
M
The equation of motion one gets after varying the action (2.41) with respect to e,
is
VW =V, W, =0, (2.42)
where W, = R, — igwR is a Schoutten tensor. V is the covariant derivative
for the Christoffel symbol associated with the metric g,,. The equation (2.42) is a

necessary and sufficient condition for the metric g,, to be conformally flat in three
dimensions. The LHS of (2.42) is also the definition of Cotton tensor in 3d.

Witten and Horne [103] showed that the equation of motion (2.42) associated with
the action (2.41) is equivalent to flat connection of s0(2,3) Chern-Simons gauge

theory given by the action
k 2
Ses=— [ Tr (ANdA+-ANANA]|, (2.43)
Ar Jur 3
where A is a s0(2, 3) Lie-algebra value one form gauge field given by,
Aydat = e, Py +wiJy + N, Ko+ ¢ D. (2.44)

P,, J,, K, and D are generators associated with three translations, three Lorentz
transformations, three special conformal transformations and a dilatation respec-

tively and obey the following s0(2, 3) algebra

[Paa Jb] = 6abcljca [Jaa Jb] = 6abcjca [Kaa Jb] = Eabc[(c7 [Paa D] = Paa
[Pa, Kb] = —€gbe J¢ + T]QbD, [Ka, D] = —Ka. (245)

The gauge choice considered to show such an equivalence was ¢ = 0 [103] as it
ensured that the vielbein e " are non-degenerate which was required by the conformal
gravity theory (2.41). The action (2.43) is also gauge equivalent to (2.41) up to a
boundary term with this gauge choice [23]. To find the asymptotic symmetries of
50(2,3) gauge theory we go through the following steps,

e We start by considering one-form A in 3d which takes value in s0(2, 3) algebra.

e Just like in Chern-Simons theory formulation of AdS3 gravity and its higher
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spin extensions [115, 116, 117], one can gauge away the radial dependence and
effectively work with a 2d gauge connection a at the boundary of the manifold.

If r is the radial coordinate then for a choice of b, one can define
a(z*)=b"'Ab—db b (2.46)

where 2 are the coordinates on 2d boundary manifold and b = f(r).

e From the flat connection condition of A, one obtain equations of motion for a
using da+aAa = 0. We further choose gauge and boundary conditions that are
compatible with a well-defined variational principle. The boundary conditions
should be such that the resultant background geometry should also include
global AdS; and flat RY? gravity solutions as well. These conditions allow
us to solve for constraints on various components of a arising from equations
of motion. The full solution space can then be obtained in terms of free

independent data.

e Then one consider gauge transformation parameter A which is a scalar and
also takes value in s0(2, 3) algebra and uses da = dA + [a, A] to obtain the set
of residual gauge transformations that do not spoil the gauge and boundary
conditions of the connection a. These residual gauge transformations in turn

induce variation of the free data in the connection.

e The canonical charges that generate these gauge transformations are given by
[118]

5Q = —% /Tr (6ALA). (2.47)

e One can write down the poison brackets between various free data in a such
that the variation of fields can be obtained as 05 f = {Qa, f}. The commutator
from Poisson brackets can be obtained after expanding the fields in terms of

the mode.

2.1.5 Charges using modified Lee-Wald covariant phase

space formalism

Here we will review the formalism to calculate the charges for Lagrangian density

that are not invariant under the symmetry transformations and will use the notation
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and formulae of [28, 119]. We consider Lagrangian density L(¢) (¢ denotes the
collection of various fields) as a D-form in D-dimensions and y as the collection of

symmetry parameters such that
0 L(¢) = Ly L(¢) +d=y, (2.48)

where =, is a (D — 1) form. In Wald’s derivation of the entropy formula [120, 121],

(2.48) is without the second term. The variation of L is given by,

0L =" Eyb6¢+dO(¢,59). (2.49)
¢

E, is the equations of motion associated with ¢ and © is a presymplectic potential

which is a D — 1 form. The on-shell Noether current is then given by

JE(¢) = ©"(¢,0,0) — X" L(¢) — Ek(0), (2.50)

which is conserved d,J¥(¢) ~ 0, where ~ is the symbol for on-shell equality. One

can construct K from this current such that

JH(6) = 0,K1(9). (251)

X

Consider the variation of presymplectic potential under symmetry transformation

s
5,07(6,00) = £,6(6,09) + TVX(0, 66). (2.52)

The Lee-Wald symplectic potential is given by,
WH(6,66,0,0) = = (00%(6,5,0) — 6,04(6,00) — O4(6.05,0)) . (253)

The presence of the last term in (2.53) is to compensate for the background de-
pendence of the symmetry parameter x. Using (2.50) and (2.51), the first term

becomes
60"(9, 0x0) = 00, K" (¢) + x"0L(¢) + ox* L(§) + 6Z4(9). (2.54)
The third term is given as

O*(¢, 05, 0) = O IG (0) + X" L(¢) + Z5, (9). (2.55)
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Substituting (2.54), (2.55) and (2.52) in (2.53) one gets,

WH(6,06,0,0) =~ = (00, IL(8) — DK +0ZU(6) — Zh(6) ~ (9, 60))
£ XFAO(6,50) — £,04(.50). (2.56)

Using Cartan’s magic formula £, = i, d + d i,
X'dO(¢,00) — L,0%(¢,6¢) =i, dO — (i, d+ di,)O = di,© (2.57)
and the theorem in [122], one can show that,
EL(0) — B, (0) — II(0, 09) ~ 0, 55". (2.58)
Therefore the final expression of (2.53) after substituting everything is,
w (¢, 60, 050) = 9,QY"(¢,60), (2.59)
where Q" is given by
v 1 v v 14 17
Q¢ = 15 0K (0) = K (0) +2€70"(6,00) + 347 (6,00) . (2.60)

(2.60) is the final expression for the surface charge for Lagrangian that is not invari-
ant under the symmetry transformations. It has to be integrated appropriately on

a codimension-two hypersurface.
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Chapter 3

A

sly symmetry of RS gravity

As mentioned in the introduction, the chiral bms, algebra of celestial CFT intro-
duced by the authors in [13, 14] includes one copy of the s[(2,R) current algebra
(with generators .J,, for a = 0,£1 and n € Z), one copy of Virasoro (L, with
n € Z) and two h = % conformal primaries (with generators P, with s = :i:% and
reZ+ %) The Ward identities of the currents associated with the operators P,
and J,, in celestial CFT are equivalent to leading and sub-leading soft graviton
theorems as was reviewed in section (2.1.2). The algebra that these generators obey

is,

[Lma Ln] = (m - n)Lern s [Ja,ma Jb,n] = (Cl - b) Ja+b,m+n 5 [Lma Ja,n] =N Ja,m+n7

1 1
[Ln7 Ps,r] = E(n - QT)PS,H-"-T > [Ja,ma Ps,r] = 5(& - 2S)Pa+s,m+7’ ) [Ps,ra Ps’m’] =0

(3.1)

with possible central terms, that remain undetermined.! This algebra is different
from the classical bms, algebra of [3, 4]. In this chapter, we will derive the 4d bulk
realisation of chiral bms, algebra and the currents associated with it. The sl(2,R)
current algebra like the one in (3.1) has already been derived from asymptotic sym-
metries of solutions in AdS; gravity [10]. We briefly reviewed this in (2.1.3). Taking
a cue from the boundary conditions imposed in [10], we apply them to the solutions
in RY3 gravity. We present asymptotically locally flat solutions in RY3 gravity con-
sistent with the variational principle and derive the asymptotic symmetry algebra
of such solutions to be the chiral bms, algebra. One implements the asymptotically

locally flatness by demanding that R*,,, — 0 as r — oo where R", is the Rie-

loa

!The computation of authors in [14] did not determine the value of central charge ¢ of the
Virasaro algebra.
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mann tensor of the asymptotically locally flat solutions of RY3 gravity, expanded in
the radial coordinate r near the boundary. To obtain the asymptotic symmetries of
these asymptotically locally flat solutions, one does not need to solve for the com-
plete solution space. It is sufficient to find the locally flat solutions that share the
same boundary conditions as these asymptotically locally flat solutions and study
their asymptotic symmetries. Therefore, we analyse locally flat solutions, which are

Ricci flat solutions with vanishing Riemann tensor.

The results of this chapter include,

e In Section (3.1), we provide all locally flat solutions (including complex ones)
with u-independent boundary metric on spatial part (232) of null infinity, where

u is the coordinate of null infinity.

e In Section (3.2) we impose a consistent and well-defined variational principle,
and construct an appropriate set of boundary terms (Gibbon Hawking type)

for the Einstein- Hilbert action.

e After choosing a chiral gauge for the metric on X5, in Section (3.3), we show
that the residual large diffeomorphisms generate chiral bms, algebra. In Sec-
tion (3.4), we consider the boundary metric in a conformal gauge and show
that the asymptotic symmetry algebra for the resultant solutions has a holo-
morphic and anti-holomorphic sector with each sector comprising of a Witt

algebra and two u(1)-type current algebras.

We provide a discussion of our results in Section (3.5). In the Appendix A, we carry
out the general analysis of asymptotic symmetries in the Newman-Unti gauge and
we present the analysis of the iso(1,3) gauge theory in the Appendix B, which is
relevant for the discussion of charges in the main body of the chapter. This chapter

is mostly based on the work [123].

3.1 A class of ALF spacetimes in four dimensions

We start with collecting some useful formulae towards the construction of asymp-
totically locally flat (ALF) solutions in R'® (or R*?) gravity. We work with the

coordinates (r,u, z, Z) suitable for the future null infinity and find it convenient to
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use the Newman-Unti gauge [92],

Grr = Grz = Grz = 0; Jur = —1. (32)

Let us write the remaining metric components g;; for i, j € {u, z, 2} in the following

form:
gij(r,u, 2, 2) ZT’Q ”gzj U, 2, Z) (3.3)

We seek Ricci flat metrics (R, = 0) which are also asymptotically locally flat. The
latter condition is implemented by demanding that R*,,, — 0 as r — oo [124].

The leading non-trivial conditions from solving R, = 0 for large r in a power series

in 1/r require that gg-])

is degenerate. Since we are interested in solutions for which
the metric 9((1(1)7) for a,b € {z, zZ} on the spatial manifold ¥, is non-degenerate we solve

this condition by assuming;:

0
g =g =gl =0. (3.4)
Then the next non-trivial condition implies that gq(ﬁt) = 18 (log det g( )) One

also finds the condition det (%) = $(tr4)?, for the 2 x 2 matrix 4 = = 95 ugﬁg).

Any 2 x 2 matrix that satisfies such relation has to have both its eigenvalues the
same — and therefore can only be proportional to the 2 x 2 identity matrix I5.
Thus we arrive at the following conditions: 8ugab A gab) YV oa,b € {z, z} with the
same A. This immediately leads to g((lb) (u,z,2) = Qu, z,2)qu(z, 2) where gqp is u
independent general 2 x 2 matrix. At O(1/r) from vanishing of R,. and R,; we
find g(l) gf}z) = 0. We will further restrict that the conformal factor 2 for the

boundary metric g((l?)) is independent of u which in turn implies gf}u) = 0. Further

one finds:
@ = R - —a " 3.5
Juu 0 0)gab ) ( : )

1 1 .
o2 = Valz2) + 508 — 5D (gidold) (36)
and
_ 1 .

g((j)) (U, Zs Z) = Dab(Zv Z) + Zgéi) g(g) gg) : (37)
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and so on, where V,(z, 2) and Dg(z, Z) are unconstrained u-independent 2d vector
and rank-2 symmetric tensor respectively. D, and R, are the covariant derivative
and Ricci scalar associated with the boundary metric 9((12) respectively. It turns out

that imposing vanishing of R¥,,, at order r implies
82 1) 1 ed (1) (0)
i [9ab — 5 \9©ed ) 9ar | =0 (38)
This means that one can determine the u-dependence of the trace-free part of 927)
completely and it is at most linear in u. Any such solution can be written as

y L/ a 0 1,0), 1),
gc(bb) ) (g(g)gid)> gf(zb) = géb )(z, Z) + (u — uo) gc(w )(z, z) (3.9)

where {g(gz’o)(z, zZ), gi})’l)

0 (1
(gc(Lb)a gc(l,b)

(z,2)} are traceless and symmetric. The remaining data in

as to satisty some further differential conditions. In particular:
h isf further diff ial diti I ticul
b o a0y o 1y o)
D\ Ou |0 = 5 \909ed ) Do | + 510950 | =0 (3.10)

The equation (3.10) is similar to (2.35) of AdSs gravity.

Further constraints arising from asymptotic flatness are: V,(z,z) = 0,
f)ugf{) (u,2,2) = 0. Along with &lggi) determined in terms of the data at order
r? and order r and differential conditions on D,,. More unconstrained data also
appears at O(r~!) and Ricci flat solutions can be systematically constructed order

(1)

by order in powers of r~!. It turns out that g&’)’) ga}) remains unconstrained and we

set it to zero.?

We now turn to analyse locally flat solutions which share boundary conditions with
our asymptotically locally flat solutions and find the asymptotic symmetries associ-
ated with them.

3.1.1 Classes of locally flat geometries

These form a subset of Ricci flat geometries discussed above which have vanishing

Riemann tensors. With our NU gauge and boundary conditions we find that any

2In [92] this condition follows from the constraints on the affine parameter r for the null geodesic
generator of u = const. null hypersurface.
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such locally flat solution can be written as polynomials in 7:

ds%F = gfu) du® — 2du dr + (7“2 g((l(l),) + ngj) + gé?) dz® dz® + 2 gffa) dx®du, (3.11)

where
2 _ 1 @ Lo @ laa® w0
guu - _§R07 gua = §D gba ) gab = Zgac g(())gdb 9 g(o) gab — O, (312)
1 10), - 1, _
g((zb) :g((zb )(Z’ Z)+U’gc(;; )(Z,Z>, (313)

along with the differential conditions:

|
Db0, g\ + 50uB0 =0, (3.14)
1 C C
D.g) — Dyg® + 1 (gé? 908 gy — a0 9o &LQEL)) = 0. (3.15)

We consider the boundary metric gff;) to be u- independent. The equation (3.14)

is one of the constraints on generalised bms, phase space, as derived in [125, 126].
When these differential conditions (3.14, 3.15) are solved for g((l?)) and gé})) then the
rest of the 4d metric components (gqﬁ), gq(fa), gg)) can be found using (3.12, 3.13).
The u-dependent part of the equation (3.15) is satisfied identically when we use
(3.14) and thus can be simplified to:

& c 1 Ci ) ) )
DuDegiy” = DyDg” + = gty (962 gl — gia” g&i”)} =0.  (3.16)

(3.16) are the generalisation of Christodolou Klainermann (CK) conditions for
boundary metric that is allowed by generalised bms, boundary conditions [127, 125,
126].

3.1.2 Complete set of solutions

It turns out that the equations (3.14, 3.15) can be solved completely which we turn

to now. To solve these equations first we take the boundary metric gc(fg) in the form

O _ g foos0E S ) 3.17
gab <%(1+ff) f ( )
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with determinant: —%2(1 — £f)? where (f, f, Q) are arbitrary functions of (z, z).
Then we further parameterise f(z,2) and f(z, z) as follows in terms of two other

independent functions ((z,z) and ((z, 2):

(9%(2, Z)

@C(z,z)’ flz2) =

f(z,2) = (3.18)

Notice that this parameterisation is not one-to-one: suppose ((z, 2) (((z, 2)) gives
rise to a given f(z,2) (f(z, 2)) then so does ¥({(z,2)) (¥/({(2,2))). Then the solu-
tions for gé})) components can be given explicitly in terms of the functions (f, f,)

and p = (9¢IC )_1/ ? and their derivatives.

To keep the expressions simple we drop all the coordinate dependencies (z,z) of
various functions and use . f(z,2) — 0f, 9:f(z, 2) — Of etc. We define:

o4 Px 3(0%)° N 3
{X(Z,Z),Z} - ax _5 (8)()2, {X(sz)az} - gx _5 <5X)27

00 30.00,0

Tab 0O 202 9 (319)
where a € {z,z}. Then components 9220) and g%’o) are given by:
gLV = ~a= _pff)2 [2(1 + £22)0%0 + 4f2 %]
o[ (U PP0f — (1= 20f = 7 OF - 10+ 7 0F +2207)
- (fff)g (L4 P70~ £+ 1) Dp) |
+ oo [(1_2%3 ((1+ 272) 0f — 202 Of + 2f°fof — 2f°5f)
Af ; 5 AfA+ 1) o5
(3.20)
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)

where v = v(z, Z) is also arbitrary. Next, the gg’l is given by

atz" = mfﬁeﬁg,[— 220F + L+ PPV OF + (Lt ) FOf + (1 —2ff - f2F*) Of
+ M[— 2f £ 0F + 22 0F + 2°FOf — (1 + %) of

b [ 2P e =20 (U £ s + 277

- o 0 PP+ P - 1P (G

* ulff)Q 2 0°F = 2f200f + f(1+2ff = 1) 9°F — (1+ £F%) 00

+ (1_1ff)3 — 22007 + 2 (1L+ 1) O - 5 (1 =317 =32+ 1*F) (01)?

— f+ P2 0F 0f + (1 + 27 0f Of = 2f (L+ £1) Of Of + 22 Of .
(3.21)

%’0) and g%’l) can be obtained from gg,o

by f ¢ f and 9 — 0 (with p, v and Q unchanged).?

The components g ) and gg’l) respectively

To summarise, a general locally flat metric solving equations (3.14, 3.15) is param-

eterised by the following arbitrary set of functions: (Q(z,2),((z, 2),((z, 2)) in gc(i)

(

and p, and v(z, 2) in gi})). The remaining components gzlg’l) and 9212,0) can be obtained

from the above ones using the tracelessness condition of 92;):

gty

= 7Y e ] (3.23)
We have generated this solution by starting with flat spacetime with metric ds3,, =
—2dudr + r*dzdz and making a finite coordinate transformation that keeps us
in the chosen gauge. A similar exercise was done in [128, 129] with a different
parameterisation of the boundary metric. We find our parameterisation better suited
for the problem at hand. The solution in [129] matches with our LF solution after

the following identifications, ® = % and G = (((z,2),((z, 2)).

3As commented above under (¢,¢) — (¥(¢),%(¢)) the functions (f, f) in (3.18) remain unaf-
fected, but we have

{G 2} = (0:07{(0), ¢} +{C. 2}, {C. 2} = (9:0* {w(0), ¢} + {¢, 2} (3.22)

Under this change, the resulting configurations remain LF solutions.
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3.1.3 Gauge fixing the boundary metric

As shown in the appendix (A), the residual diffecomorphisms that preserve the NU

gauge and the boundary conditions act as diffeomorphisms and Weyl transforma-

tlons on gab) These boundary diffeomorphisms can be used to gauge fix the 2d metric

gab down to one independent function. The most commonly used gauge choice for

2-dimensional metrics is the conformal gauge. In our language, this amounts to

setting f(z,2) = f(z,2) = 0 and letting  fluctuate. However, we are interested in

getting a symmetry algebra that includes sl(2,R) current algebra, so we choose the

boundary metric in the Polyakov gauge [112]:
f(z,2) =0o0r f(z,2) =0 with Q fixed to a given function.

Below we provide the solutions for this gauge.

Locally flat solutions in Polyakov gauge

To be specific, we choose f = 0. Then the components of g((l?)) reduce to

2 z 1
9t =Q(z,2) EVE) ) =0z, 2) f(z, 2), g0 = 59(2, z), a0 = .

Similarly the components gS,’O) and g&,’l) in (3.20, 3.21) reduce to:

WY = —{{(2,2), 2} + 7=2(9),

09/ = o 0:((2, %) 5. {agv(z,z;] |

o) = 12 g0~ {Q(2), 2} + FOLF — 5 (0F)° — 0.0:

0.z, 2) 0:Q(z, 2) 05
S sz n) - S0 )

+7..(Q) + f(2,2)*122(Q) — 2 f(2,2) 7.2(Q),
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90Nz, 2) = =2p (020 42 f2 020 — 2 f 0.0:0]

92
+2p af 0.0 =200 +2[p (Of —2F0-f) —2f0.p| 00, (3.28)
where p = + We also have to take
0:((2) 0z¢(2,2)

gt = f(z.2) g% (3.29)

L(lg) and gé})) the rest of the components can be found using the

Now that we know ¢
relations (3.12, 3.13). We will not be interested in general conformal factor §2(z, z)
when the boundary metric is in the Polyakov gauge. We will be interested in only
two choices Q = 1 for ¥y = R? and Q = 4 (1 + 22) 2 for 33 = S?. These choices

mean that the quantities 7., 755 vanish.

Restriction to g(l—) =0

ZZ

(1,1

In the next section, we will show that the solutions with vanishing g;z’ ) and g%’o)

also satisfy the variational principle. Anticipating that result we write down the
solutions with g,;l; = 0. In the cases for Q’s with 7,, = 75 = 0, we see from (3.26)
that

(2,%) = 282 Eiéz L u(z,2) = vy (2) + (2, 2) vy (2). (3.30)

N
~— [ —

% turns out to be a polynomial of degree two in Z:

Then f(z,2) = g

[\

= —(detg) Y Ja1(z) 2%, (3.31)

a=0

where det g := ¢1(2) g4(2) — g2(2) g3(z). For (3.31) to make sense we have to assume
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that det g # 0. Furthermore,

1,0) __ Q " ~ = " CH(Z) / ~ = /
o0 = =2y [ [vm(z) #8e02)vly(2) = G (0l )+ o2 o)
(3.34)

Since 9:C(2,2) = (detg)/(g3(2) z + g4(2))> we see that ¢'v”/v/Q is linear in Z.

Therefore we write gibo) as

gg 9=V [0—1/2(2) + 501/2(2)] , (3.35)
where
0_1/2(2) =

T W_[ga (ool = Sl (a)) + o) (1) = St |
Cipa(2) =

detgjc,_[gg ) (410 = Sl @)) + ) () - G|

We can equivalently write

1 0) =/Q(z,2) Z €..2 T2 8 (3.37)

r,se{—1/2,1/2}

4There is another interesting interpretation of the coefficients .J, of the powers of z in (3.31) as
follows. First, consider the 2 x 2 matrix

_( 51(2) g2(2)
8= < g;(z) gi(Z) ) (3:32)

with det g := g1(2) g4(2) — 92(2) g3(2) # 0 making g € GLy(C). Then define A(z) = g~ 1(2) d.9(z)
which is an element of the algebra gl,. Consider a 2 x 2 matrix representation of sly algebra
[t*,t’] = (a — b)t**® — for instance, in terms of the Pauli matrices, we can take t(9) = %03,

t&D = £(gy £i0y). Then it turns out that
Ja(2) = 210 Tt [t* A(2)] := 1ap J°(2) (3.33)
where the non-zero components of 74, are ny1 -1 = n—141 = 1/2 and 9o = —1. One also has

Tr[A(2)] = 5 detg@ det g and without loss of generality we may choose det g = 1. This makes
A(z) € sly and A(z) = J,(z)t*.
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with €11 =—€1_1= 1 and C,(z) = €,s C*(2). Finally, we have
1 . .
gl = =k(2) + 5 T (2) P (2) = 0.9 (2) + 20.J7V(z)
+ Mag f(z,2) — 0:0(2, 2) 0.f(2,2) — 2 f(2,2) 12(Q)  (3.38)

Oz, 2) Oz, 2)

where r(z) = {((2), z}.

Please note that we will be using a,b--- as the coordinate indices on Y5 where the
coordinates are z* € {z, z}, as well as component indices of the currents J%(z) and
Ny With a € {0,+1}. Now we will leave the Polyakov gauge solutions found in this
section in store until we learn to impose the variational problem — which will be

done in the next section.

3.2 Boundary terms and variational principle

We now turn to the variational problem among the configurations we have consid-
ered so far. To be precise we consider our configuration space to be all the four-
dimensional metrics g, that are in the NU gauge which asymptotically approach
the locally flat solutions. Then we will define our solution space to be a subset of

Ricci flat configurations, that also satisfy a variational principle 45 = 0.

The usual prescription of boundary terms consists of adding a Gibbons-Hawking
term and a set of possible counter terms to the standard Einstein Hilbert action

Sgg [102, 101]. There are two essential aspects required of such boundary terms:

1. The boundary action Spq, has to be consistent with at least the symmetries

that leave the gauge choice and the boundary surface invariant.

2. The variation of Sgg + Spay should be proportional to variations of metric data

on the boundary - but not its derivatives.

The standard Gibbons-Hawking term is invariant under the full set of 3d diffeomor-
phisms of the boundary [101]. In the context of AdS,; gravity in the Fefferman-
Graham gauge residual symmetries are the diffeomorphisms of the n-dimensional
subspace r = ry and thus adding the Gibbons-Hawking term and other counter

terms that are also invariant under the n-dimensional diffeomorphisms is justified.

In Appendix (A), we find 4d vector fields which leave our boundary conditions
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and NU gauge choice invariant. Now we pose this question in our context: what
are the subset of asymptotic symmetries of the class of geometries that leave our
3-dimensional r = ry hypersurface fixed? Generators of any such coordinate trans-
formations should have £" = 0. The vector fields should continue to solve (A.1, A.3,
A4).

The first consequence of the condition 9,67 = 0, is that (0, — guag™d) E* = 0
from (A.1). Since oy = &1y = Ou€" from (A.3), we also have 9,£* = 0 implying
Guag™0y € = 0. From (A.4) working in the gauge gi?g?f) = 0 we see that £}y =0
requires " to be a harmonic function in 2d. Since the harmonic equation is Weyl
invariant and in 2d every metric is Weyl equivalent to flat space the solutions to
0" = 0 are £"(2,2) = {)(2) + ) (2). Substituting this expression of " into
9,%0, " = 0 implies ¢,* Zf?z)(z) + g7 825?2)(2) = 0. This equation is background
dependent and a linear combination of holomorphic and anti-holomorphic functions
(0:(,)(2), 0:¢() (7)) and unless the coefficients (g.,*, g.*) are zero (and non-generic)
the only solutions are (9,{(’)(2) = 0,0:{%(2) = 0) which in turn implies 9,{" =

and this is what we work with. To summarise the subset of symmetries of our class
of geometries that leave r = ro invariant are: ({" = 0,£" = ), &* = () (2, z)) —
that is, rigid translations in u and arbitrary diffeomorphisms of (z, z).5 Now we seek

the boundary terms that respect at least these symmetries.

The bulk four-dimensional metrics in the NU gauge are of the form:

Guu -1 Gua 0 —1 0
g,uy - —1 0 0 ) g,uu = -1 guagua_guu gub (339>
Gau 0 Gab 0 gau gab

where g% is the inverse of gu, gu® = gurg®®, etc. We take the unit normal to the

r = ro surface as: n, = —L___§" and n* = —L-——¢"* such that n,nt = 1.
VI9ua9u® —Guu H VI9ua9u” —Guu
The induced metric on r = rq surface is:
o nov o Guu, Gua
Yij = Guv €; €5 = (3.40)
Gau YGab

5 Another way to arrive at the same conclusion is the following. We should have expected that
the residual transformations do not mix different orders of powers of . This in turn implies that
&% is independent of r (" is already independent of r). Then the last of (A.1) implies 9,&" is
zero, and the fact that £ should also vanish requires 9, = 0, thus making £* a constant and
£ = 5?0)(2', Z). These are the generators of the boundary coordinate transformations: (u — v’ =
u + ug,x* = 2'* = 2’*(x)). The Jacobian of such transformations is: %—75 =1

with the only non-trivial part J;' = qu;/:

ou' _ 9x'* _ 0
Y dzre T du
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with its inverse

iy 1 —1 g
N p— ) S , (3.41)
NQ( g N2g”—gu95>

with N? = — gy, + gau g5 and the usual completeness relation g" = n#n” + y7el'e’.

Thus the metric data in the line element
dsgdy = Guu du2 + 2 guadu dz"” + Gab dz*® dxb (342)

on the boundary is (guu, Gua, gap). The expected set of symmetries of the boundary
(u—= v =u+ ug, 2% — 2’ = 2’*(x)) is much smaller than the 3d diffeos in (u, x%).
Therefore, we expect much more freedom in the choice of the boundary terms.
The transformations of the components of the induced metric under the reduced

symmetry are:

. u Oxb
Gu'w (u/7 ' ) = guu(ua T )7 Gu'z'e (u/a l’/) - 8:L‘/aguxb <u7 .7})
Ox¢ Ox?
Gyprapd (Ul, l'/) = Oz ngcxd (u, l’) (343)

This enables us to classify the basic scalars under the boundary symmetries and

some of them are:

no derivatives :guu, 9°°GuaGub,

one derivative :9,Guus 9 GuaOuGubs JuadubOug™ 9" Oufaby D Gua,

two derivative :R[gas], Ouu, O2Guu 0D Guas Oug™Ouabs 9°° OuGuaOugus etc.
(3.44)

The integration measure invariant under our boundary symmetry (u,z®) — (u +

ug, 2'*(x)) is [ du [ d*x /o where o = det g,p, which can be used to integrate any

function of the scalars listed above to obtain a potential boundary term.

3.2.1 The boundary terms

Now we look for the potential Gibbons-Hawking-type terms we can construct con-

sistent with our boundary symmetries. The bulk action is the standard Einstein-
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Hilbert action

- 4
SEH = 167 G d T\ — R (345)

Then the variation of the action within our configuration space around a configura-

tion satisfying the Einstein equation R, = 0 is

1
— 4 iz K K — 3 — 1
5SEH 167 G/d T —3g4g (V (5F CV5FW€) 167TG/de ’ynuJ,
(3.46)

where J*® = g* oIy, — g~ oLy, OI%, = 59 (Vu0uw + Viu0guw — Vudg,,) which
leads to J* = g"¢°* (V40gux — V,0gsy). We will have to manipulate this term
carefully. Since our surface is defined by r = ro the unit normal is n, = Noj,
where N = \/% But we also have ¢"" = I where v = det(v;;) and g = detg,,
= /—7 = N /—g. This boundary term can be written explicitly for geometries
in the NU gauge with n, = \/1,77(5; and we find:

1 1
V=yn,J" = /000w + 5\/Eaabaraab ow + 5\/Ew 0,0%80 . + /o wo®d, 50,

0 0,0, 60 4 /o vV’ 0,004 + Or(\/T) V0 504, + /T V0 0,07 §Tge
1
—3 0 Va0 0r 000 — /T Vv 0% 0,00y,

0 0% 0,0, Uy — /0 1,0,0 Svy — 20,(v/7) v v, — 21/ T 10,00,
1
+ 5\/5 DuOap 00 + /7 0% D00

+ V0 (Dyd0e) (a“b v¢ —? ch) -0, (\/E U“bévb) ,
(3.47)

where we introduced the notation: w = guu, V4 = Gue and o4 = g along with
0% being the inverse of o, and v* = o%®v,. In this, we seek that those terms
with tangential derivatives (that is, derivatives w.r.t (u, z,Z)) on variations of the
boundary data (0w, dv,, dog,) have to be cancelled. The usual strategy involves
completing such terms into either total variations or total derivatives so that the

variations (derivatives) are moved away from the derivatives (variations) [130, 131].
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To do this one may use the following identities:

Vo 00w =16 (\/Earw) —Owwo (\/E) , (3.48)
Vo (w o® + v — vy, O'ab) 0,00 g

=9 [\/5 (w o® 4+ %’ — v, U“b) @aab} — O0pOgp 0 (\/E (w o® + v — v, a“b)) ,

(3.49)
— 20 0"0,0u, =6 [—2 \/Ev“&,va} + 20,0, 0 (\/Ev“) ,

3.50)
Vo o® 0,004 =0 [\/E o 6u0ab] — 0uOab 0 [\/E aab] , (3.51)
Vo (D,doy.) (a“b ¢ — v abc)
=0, [\/E (a“b v¢ —° ch) 5abc] — /0 b0y, [a“b Dgv° — abcDava] ) (3.52)

Using these and moving the total variations and total derivatives (in (z, Z) coordi-
nates) to the lhs we find:

V=t =6 (Vo dw) =6 [Vo (wo® + v*” — vv. o) 9,04)
+ 0 [2V/o v 0,v,] — 0 [Vo o Ouoaw) — 0a [V (U“b V¢ — v° abc) 60be] + 0a (Vo a“bévb)
(3.53)

=—0,wd [\/E] — 0,04 0 [\/3 (w o® + 2 — vu, U“b)]
+ %\/5 0%, Ow + %\/Ew 0,008 4
— VT 00,05 60" + 0, (VT) V0600 + VT V0 0,0 504 — %\/E’UC’UC 0,000
— V0 0% 0,04 60y — T 0,0,0" Svy, — 20,(\/T) v 6vg + 20,046 (Vo "]
+ %\/E 0y 00% — Dyoap [\/E U“b}
— /o 60, [U“b D v¢ — JbCDava] ) (3.54)
Note that there are no terms involving a tangential derivative of (dw, dv,, do,) on

the rhs. Thus the boundary action required to be added to the Einstein-Hilbert

action (3.45) in our context is,
(167G) Spay. = /dga:\/E [2 V400, — Opw — (w o® + v’ — v, U“b) 0,0, — ™ 8u0ab]

N / /0 0, (V" 0, — w) + 2 (v, — w) O, — 0] Vo
(3.55)
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and the total divergence term in §Sgg is (167G)~! times
Oa [Vo (60" — 0% 03,0 60™) ] (3.56)

that we ignore (this amounts to assuming that the geometry of 35 with coordinates
(z,Z) is either compact or, when it is not, the integrand falls off fast enough near

its asymptotes).

In summary, we have managed to find the boundary action (3.55) we sought such
that the variation of the total (bulk plus boundary) action is a linear combination

of (dw, dva, dosp) but not their derivatives:

(167TG) 5SEH+bdy. = /

r=

dud’z+/o [tw 80 4+, 6v% + 0 dw]
To
= / dud’z /o [—(t" + @) oy + 0V, + 0 dw] (3.57)
r=rq
where t* = g%gt.4, j* = 0%j,. The coefficients of (dw, dv?) are:

1
Sw:o=—=0"0,04,

S0 1 g = —0r0gp V° + Opg 4+ 0L 00 oq Vg, (3.58)

and the coefficient of §o? is :

1 1 1
tab = 587&) Oab + 5(7}2 - C«J) (araab - UCd a7“0'cd Uab) - § (auaab - UCdauUcd Uab)
1 1
+ (D(avb) — Oab DCUC) - §O-Cd87“0-cd VaUp + §Ucvd a7"0-cd Oab — Ucarvc Oabs
(3.59)
where v? = v,0% and D vy = %(Davb + Dyv,) and so on. Finally, we can now

substitute the boundary conditions we have and find the expressions in powers of
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1/r.

0= 2+ (giheld) + 5 {(9?17)92?) -3 (9?3)95?9?&92?)} o (3.60)
Jo = %2 o+~ [gqﬁi) (92‘5395?) 9% +g§b)9(0)gfw’] +oe (3.61)
tap = —r% [augéb) - (g( )gﬁi)> 9 =292 g% }
+ %gfi)gi? + (;9&) - % (953)9(5611)) gfw)) 9% + Dgyy — D92 g5y
+ 3 (995 o - ;augab + 0w (githald)) o ; (9963 Dugly) + 09 963 95
+ ; (gth0ts)) Ously) ~ ia (9?6395?) 9ut
+O(1)r). (3.62)

Substituting these expressions in (3.57), we find in large r — oo limit the variation

of the Lagrangian density is given by

1/ o
SLEmH by, = —277 /9@ 6g8) — r*\/ g [2 (9(61)9£d)> gl + 259(1)]
a 0
—7/90) (2092 + o2 568 8083 + (9<0)9§d)) 5g51) — 29{2) gt %)

— 5 (ot 0ut ot 502 — (stdh0uall)) (ot 50)) ] — \/o® 6o+ 00/, (3.6

where:

1 1. 1
0Ly =20g%) + —g'%) ( 5gcd> 3 (9(63931)) 09 + 590 ( 59ab)

2
_ % [Tr oM % Tr g™ Tr g® — Ty <g<1> Giglg® 96)
— %Tr 9T (9V g9 g0} ) + iTr (995 )> | 692 = (Pagiy, = D92 63)) datt
- }lTrg“) <8ug§i) — Du(Tr g™ )gab) 3g(s) %(&Lgab)ég Tr (0.9 (gab) 59‘”’))
+ 92 gt ogh, — 959 gh — 2052910 Og + 92 9l 0%
; (Tr < 90 )0ug g(o)ég ) —Tr (g(_o)aug( )> Tr <g(_0)5g(1)>> , (3.64)

with Trg(® g?b) ggb) and so on. As we will be taking the boundary r = rqg — oo we

will not need to keep terms that vanish in this limit.
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3.2.2 Conditions from variational principle
We first impose
dgu) = dgla) = dgis) = dgl) =0 (3.65)

for all configurations as these are part of the boundary conditions derived in Section

(3.1). Furthermore, since we consider the class of geometries that are locally flat we

restrict to the class (3.11) of geometries: gfL ) — 5 2+n =0forn=1,2.--. We
also impose the gauge conditions and Tr ¢! = 0 as Well Then we have
1
L=-2r6 (\/ g© gffu)) +74/9© [5 96 0ughe 95 5%} — Vg0 Lo+ O(1/r)
(3.66)
where,

oo/ \/7 P < i 59(0)) ( @9y — D2 gffi)) 39(s)
+ % (augﬁ)@?é’) — Tr(9ug®) (gib) 5930))) + 92 959l — % (ﬁ ( 9.9y, §5g<1>))
(3.67)

We just have to ensure that this quantity 6L, when integrated over the boundary
directions (u, z, z), vanishes in the r = ry — co. One more condition that we will

impose for all the cases below is:

5/d2z [\/g<0> ggg] —0 (3.68)
which when using the relation gq(ﬁ) = ——RO is equivalent to holding the Euler char-
acter of the metric on ¥, fixed under variations (see also [129]). Now we consider

special cases of boundary conditions that ensure 6.5 = 0.

Solutions with Dirichlet Boundary conditions

©) 2) ©)

In this case we take dg,,” = 0. Since gy is related to the Curvature of g,, as given

in (3.12) it follows that 69'2) = 0 and therefore § ( PN ) = 0. Using 5gab =0

in the rest of the terms leaves:

Lo =—Vg |g2) gihogly) — ; (Tr( 910)0ug™ g 159(”))} (3.69)
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The first term in the bracket is proportional to the variation of gfé’)g&) which is

held to zero. So the only non-trivial term in the variation of the Lagrangian is
proportional to g 5 gab , and the simplest (covariant and non-chiral) way to ensure
the vanishing of thls term is to set g(1 ) Thus, we conclude that the locally flat
solutions that satisfy the variational principle with fixed metric on the boundary ¥,
are given by the class of solutions in conformal gauge (3.106) with x(z) = k(2) =0
for Q corresponds to Xy being R? (Q = 1) or S (2 = 4(1 +22)72%) or H? (Q =
4(1—22)72).

There is a rather interesting consequence of this conclusion: The algebra of symme-
tries that enable us to move along the space of locally flat solutions, in this case, is
exactly bmsy [3, 4, 26], but do not allow for the bms, algebra to become the extended
bms, [111, 132].

3.2.3 Polyakov gauge solutions

Next, we turn to the non-Dirichlet boundary metrics on 5 and in particular restrict
to the chiral Polyakov gauge for the metric on Xy: f(z,2) = 0 with Q to be given a

function of (z, z). We will continue to impose the boundary conditions
690 = 5glt) = 59O — 541 — 5/d22\/ gORy = 0. (3.70)

In this gauge even though 5gzz # 0 we still have d4/det géb = 0. We will need to

ensure the remaining terms in (3.66, 3.67) also vanish.

1. From the O(r) term in §£ that is proportional to g Y5F we need to set
an g,

2. From the first term in O(r") terms we further need to impose 9212,0) = 0.

(1)

3. Then imposing the conditions g%’) 9., = 0 immediately implies g( ) =

4. Substituting gi? = gS; = 0 into g(ﬁ) = %‘gé? Q(O)de we find that g(ﬁ) =0.

5. Further in our gauge g(j 6gab =0, g(b 5gab =0, and Tr (g(o)aug 90 6g )
0.

6. Finally we need to check: Dggg ) =D, Dagaz . Using giz) = g%) =0 and (3.12)

U z

it is easy to see that this quantity also vanishes.
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To summarise the variational principle in the Polyakov gauge can be solved by

imposing:
(1L0) _ D — (3.71)

on the class of locally flat geometries we found in the previous section.

In anticipation of this result, we have already presented the solutions satisfying these
additional conditions in section (3.1.3). Here we present the locally flat solutions in
closed form for two cases: 2 =1 and Q =4 (1 + zz)~? that also are consistent with

our variational principle.
e Locally flat solutions €2 = 1:

dsyy, _ge = —2dudr + r*dzdz +1° (—ne J* 21+b) 422

1 2s5+1 1
fru (Eesmz B k(2) 5 1) Jb<z>+<1+a>nabz“8zﬂ) dz*

2 1 s
+ 2 (em 8;_ Ccr 255 + unabb(l—l—b)azJ“zb_l) dudz

+ 20 b (1 +b) J* 2" du®. (3.72)

e Locally flat solutions with Q =4 (1 + 2z)~%

47?2 472
ﬁdzdi— !
4

1
+ru [ — Kk(z) + §nabJan + (1 +a)ne 24 0,J°

dsipe_se = —2dudr + S N J* 2 d2?

(1+z2%)

2 1 2s+1

_ T 575 -1 a al zb+1 2
1523 <UESTC Z 2 4 nu[b—1)J*—20,J 2z )]dz
(=1 + nap (—2)' 7 %) du®— [em C™(=2) 7 +uned, ((—2)'° Jb)] du dz.

(3.73)

The solutions (3.72) and (3.73) are parameterised in terms of six holomorphic func-

tions
11
{J%(2),C%(2),k(2)} wherea €0,+1, s¢€ {—5, 5} (3.74)

where 7, is defined in (3.33) and €,y in (3.37). 7up, €s¢ can be used to lower and

raise the indices on J%(z) and C*(z) respectively. Now that we have obtained the
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locally flat solutions in the Polyakov gauge with the boundary conditions consistent
with the variational problem we turn to analysing the symmetry algebras of these

solution spaces in the next section.

3.3 Asymptotic symmetries

As reviewed in section (2.1.1), after obtaining our solution space, we will now look for
residual diffeomorphisms that keep us within the classes of solutions (3.72), (3.73).
This will involve deriving vector fields that do not spoil the Newman-Unti gauge
and other boundary conditions that we have imposed on our solution space. We will

then compute their commutator algebra.

3.3.1 The vector fields

From the general analysis of asymptotic symmetries done in (A.1-A.3), the first few
components of the vector fields that keep us within the class of (3.72, 3.73) are given
by,

o = Y(2), & =Y(22), € (u,z2) =& z)+%Dava, (3.75)
Sloy =~ ;D Ve, &y = —g(o) Db €, (3.76)
o) = ;9( 0) ISC) 9(0) Dy ¢&", (3.77)
€y = 5 0 DaDE" — 4 €l Da (yatl)) — 5 0u (€ ol ol (375)

In the above solution V¢ = (Y (z2),Y(z, 2)). So far, three functions parameterise our

vector fields,

{Y(2),Y(2,2), oy (2, 2) }- (3.79)

The rest of the sub-leading terms in r in the vector field are given in terms of (3.79).

(1)

Under the action of these vector fields the data ga(i) and g,,” transform as follows,

Ogw = Lvegly —20.€" g5, (3.80)
39%) = Lvegly) — 0, €"gY) + € 0ugly) + 9% g6 D. D€ — 2D, D 3.81
Gab Velap W& Gy 8" Ouby + ap 9(0 a&" b " (3.81)
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(1) (1,0) +

We now impose conditions coming from the variational principle: g7 = gz

wgttY = 0 as found in section (3.2.3) which will put constraints on (3.79). Consid-

ering 5g§? component in eq (3.81) and setting it to zero gives

398" + udgt! = —2D.D; (&0 + g D, V) =0 (3.82)

This requires setting D;D> 52“6) =0and D:D; D, V* = 0 separately.

e The equation D;D; 5?0) = () can be solved for fg‘o) and we obtain

Ny =R*: £y = P_1(z)+ 2 Pi(z)
u 2 —
D=5 =1 (P_%(z)+zp

(z)) (3.83)

e The equation D;D; D, V® = 0 allows us to solve for Y (z, 2) as

Y (2,2) = Y_1(2) + 2Yo(2) + 22 Yi(2) (3.84)

in either case of 5.

Therefore, the vector fields that keep us within our solution spaces are charac-
terised by six holomorphic functions: {Y(2),Y,(2), Ps(z)} where a € {0,£1}, s €
{—%, %} The sub-leading components of vector fields are then found in terms of
these leading order components following the general analysis done in (A). If these
holomorphic functions are allowed to have poles, then the supertranslation vector

field 5?0) for a specific choice of P;,

(1+ww) w Pi(z) = (1 +ww)

P 2(z—w) = 2 2(z—w)

() = -

N

becomes,

" l+ww (Z—w)
S0 =

. 3.85
z—w 142z ( )

The vector field in equation (3.85) was used in [133, 59] to show the equivalence
between supertranslation Ward identity and Weinberg leading soft theorem for pos-
itive helicity graviton localised at the reference direction (w,w) on the sphere. The

vector field in (3.85) induces transformation of g%’o) which is zero everywhere on
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the sphere except for z = w,

A (14 ww)
§gtb0 — _ 2D T 5O (4 ). _
o A~ ) (3.56)

In a similar spirit for the vector field in equation (3.84) the choice,

W 2w 1

Yo(z) = L Yo =— LY = (3.87)

coincides with the vector field used in [12] to show the equivalence between Diff(S?)
Ward identity and Cazchao-Strominger (CS) sub-leading soft theorem for positive
helicity graviton (the conjugate vector field give rise to Ward identity that is equiv-
alent to CS soft theorem for negative helicity graviton).® For this particular choice

of a vector field,
5gitt = 476 (2 — w) (3.88)
The singularity in (3.86) and (3.88) is similar to the one generated by superrotation

vector fields of the type

1
Y? = , (3.89)

Z—Ww

which change the sphere metric according to (3.80) at null infinity by adding singu-
larities at isolated points [134].

3.3.2 Algebra of vector fields

The full set of vector fields that enable us to move in the space of solutions (3.72,

3.73) are given by,

U u a a 1 ab U r a
£ = (5(0)+§DQV )c%—i— <V — 5, % Dy& )8a—§DaV O+, (3.90)
where V* and 52‘0) are given by (3.83, 3.84). The --- denote the subleading terms of
O(1/r) in the vector fields that are given in terms of £{g), V'*. We check that the Lie

brackets between any two of these vector fields close under the modified commutator

6 As mentioned in [133] this vector field acts as a kernel from which any smooth vector field can
be constructed and therefore Ward identity associated with any Diff(S?) vector field on the sphere
can be obtained from the Ward identity associated with this vector field.
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defined in (2.14). We find:

A U N N 1 A r N
[51,52]]\/[: (f%)‘l—gDaV“) Oy + (V“__rngDbfu) 6a—§DaVaﬁr+...

2
(3.91)
where
Fu a u 1 i a a i 1 i a
oy = V1" 0a &S o) + B &' o) Da Vs = V5" 0a &l (o) — 3 &2 0) Da V1" (3.92)
Ve=VPo, Ve — VLo, Ve (3.93)

and --- denote the subleading terms of O(1/r) in the resultant vector field.

e We denote the vector fields with Y'(z) = £f(2,2) = 0 and following (3.84),
Y(z,2) = —2"z%* by J,., for a € {0,41} and n € Z. The commutator of
these vector fields using (3.93) is then given by,

[ja,m ) x7b,n] = (CL - b) Jatbmn (3'94>

This can be recognised as the s[(2,R) current algebra.

e Denoting the vector field with ¥ = o) = 0 and Y(z) = —z""! by L, for
n € Z we find using (3.93):

[‘Cma ‘Cn] = (m - n) £m+n7 [‘Cm ) ja,n] =N ja,m—l—n (395)

The first of these is simply the Witt algebra.

e Finally denoting the vector field with Y =Y = 0 and

1

1
r+3

Z"tazsts

T for ¥, =52 .
T for %2 S* (3.96)

1 1
o) = —2""2 72 for ¥, =R?, £y = —

by Ps, where r € Z + % and s € {—%, %}, the remaining commutators work

out to be:

1 1
[£n7 Ps,r] = 5(” -2 T) Ps,n—i—rv [ja,na Ps,r] = E(a -2 S) Pa—i—s,n—i—r
[PS,Ta Ps’,r/] =0 (397)

Thus the final result for the algebra of vector fields that preserve our spaces of

locally flat solutions (3.72, 3.73) are (3.94, 3.95, 3.97). We refer to this algebra as
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chiral bms, algebra and it is identical to the symmetry algebra uncovered from the

analysis of conformal soft theorem in the celestial CFT by [13, 14].

3.3.3 Variations of fields in locally flat solutions

Our final set of locally flat solutions (both for 3 = R? or S?) are characterised by the
fields in (3.74). We compute the transformations of these fields under the symmetry
algebra found in the previous subsection. It turns out that the transformations
of the fields are identical for either of the solutions (3.72) and (3.73). So we will
demonstrate this for the case of 3y = R?. First we rewrite the field C" as (like in

[127, 125] for instance),

C7(2) = —202C(2) + (% n J(2) T (2) — W)) Cr(2)

+ gl (= 0J%2)C(2) — 2.J°(2) C*(2)). (3.98)

1 1 1
Here the non-zero structure constant g/, are given by: g(f% =g 12% =1,9' .=
1

g;_Q , = —1. We write explicitly the vector field (3.90) that preserves the form of

2
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our solutions (up to 1/r-order terms) as follows:

€U, 2,2) = €y 2 2

Pi(2) + g (s (14 b) Y°(2) 2 + 0.V (), (3.99)

€ (r u, 2, 2) = —g (s (1 + ) Y*(2) 2° + 0. (2))

+ 0 (L+0) J%2) 2" (— €5 (25 + 1) P(2) 55 4 un (1+0)0Y*(2)2"71)
6 (25 + 1) 0. PT(2)Z T + une (L+0)b0.Yz) 2"

1 2s5—1
— e BT (2P (2) + O7() uma (L B) b2 (VO (2) + 0.%(2)) | + -
(3.100)
2 2 1 25-1
E(ryu,2,2) =Y(2) + - {em S; Pr(2) 27T —ung (1+0)bY(2) Zb—l] e
(3.101)
_ 1 2s5—1
z 7) — a S1+b a =1+b T =
y Wy <, — Tlab a rs
E(ryu,z,2) =nep Y(2) 2 +—[2an(z)z €&s (2s+1) P (2) 2 2
r
$2650. P ()2 2 —u(2nam J(2) 2y (L+ 1) 1YF(2) 7
iy (14 5) D.Y(2) zb+a§Y(z))] T (3.102)

Under these residual diffeomorphisms, the variation of the fields (3.74) are

§J%2) = JU2) Y (2) + Y(2) 0 J*(2) + f*.J°(2) Y(2) — Y *(2),
§k(2) =Y (2) 0k(2) +2K(2) Y (2) + O* Y (2),
C"(2) =Y (2)0C"(2) — %QY(Z) C'(2)+ g." % Yz)C%(2) + P"(2). (3.103)
The values of the non-zero components of the structure constants f%,. = —f“, are

-1
f710:_17 f01,71:%7 11,0:1~

One expects that these d¢:{r(2), J*(z),C*(z)} are given by the Poisson brackets of
putative charges Q[¢] corresponding to the vector field £ with the fields. Assuming
this interpretation to be true, one can comment on the nature of these fields by
looking at their transformations (3.103). The triplet J%(z) transforms as a primary
of weight h = 1 under the left Virasaro transformation generator Q[Y(z)]. The
field k(z) transforms like a quasi primary of weight h = 2 with an inhomogeneous

term similar to the chiral stress tensor of a 2d CFT. The C*(z) are related to super-
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translation current and transform like the primary of weight h = —%.7 The fields
K(z), J%(2),C%(2) also transform as Kac-Moody primaries with j = 0,1, 1 respec-
tively under the s[(2,R) current algebra with C*(z) forming a doublet under the

current algebra which is also evident from looking at the commutation relation

1
[ja,m Ps,r] - i(a -2 S) ,Pa,-i—s,n-i-r

in (3.97).

3.3.4 Comments on the charges

The locally flat solutions that we have obtained parameterise the space of gravita-
tional vacua. The fields {x(z), J'(2),C"(2)} can be thought of as ‘Goldstone’ modes
associated with spontaneous symmetry breaking of chiral bms, symmetry. To con-
struct complete phase space we are required to construct soft charges that generate
symmetry transformation (3.103) on these fields. From what we have seen the fields
in the solutions behave like (quasi-) primaries under the chiral Virasoro generators
as well as the current algebra ones and thus one expects the charges, if they exist, to
be given more appropriately as line integrals as it is the norm for a chiral conformal
field theory. It is not clear how to obtain such line integral charges from the 4d
bulk perspective where the usual route of defining charges through covariant phase
space formalism [120, 135, 136] or the cohomological formalism [118, 137, 138] lead
to co-dimension two surface charges that are defined as integrals over the celestial

sphere S2.

In [129] charges for gravitational vacua exhibiting supertranslation and Diff(S?)
symmetry were constructed. It was shown that these co-dimension two charges

corresponding to supertranslations vanish but charges for superrotations which are

(1,0)
b

proportional to terms quadratic in g,

and their derivatives are in general non-
vanishing and conserved. These charges are evaluated to zero for our chiral solutions
in (3.72, 3.73). Therefore one needs to find an alternative prescription to calculate
charges that are line integrals and provide a representation of chiral bms, algebra

and generate correct symmetry transformation on solution space.

One such potential partial resolution to get the charges as line integrals is to switch to

the first-order formalism of gravity where these locally flat solutions can be written

"The field C"(z) in (3.98) will transform like & = £ conformal primary but continue to be a

doublet of current algebra. Refer to (B.18) for its transformation.
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as connections A, that take value in iso(1, 3) algebra. Please refer to (B) for details
of this calculation. Here we provide the inferences drawn from that calculation.
The condition of vanishing curvature for this connection (F),, = 0) is equivalent
to the local flatness condition that we imposed on our configuration space. Using
gauge transformation, one can gauge away the r dependence and get an effective 3d
flat connection. The sector within this 3d gauge connection parameterised by fields
{k(z), J'(2)} is independent of field C"(z) and finds a natural interpretation in terms
of 3d flat s[(2, C) Chern-Simons connection. The residual gauge transformations that
preserve the form of this connection are a subset of the asymptotic symmetries found

in the previous section (the s[(2,R) current algebra and the Witt algebra).®

The charges generating residual gauge transformations in a Chern-Simons theory

are line integral given by,

™

§Q = %/dw“ Tr(ASA,), (3.104)

where k is the level and A is the gauge parameter with 0A = dA + [A, A]. Using
the formula (3.104) the charges generating s[(2,R) current algebra and Virasaro

symmetry are given by

Q . ]{dz [Ny Y (2) J°(2) + Y (2)k(2)]. (3.105)

" 2mi
One can construct a consistent phase space with these currents (J%(2), x(z)) them-
selves and after deriving the OPEs between them one can show that the charges
(3.105) generate the correct variation of 6J%(z) and k(z) in (3.103) for some fixed

value of k.

The part of gauge connection that has the information about the mode C"(z) associ-
ated with supertranslation is gauged by the momentum generators (P, s) of Poincare
algebra and if one attempts to calculate charges associated with supertranslation us-
ing (3.104) one has to consider full iso(1, 3) gauge connection as 04, gets non-trivial
contribution from the commutators of sl(2, C) generators with P, ;.2 Since Poincare
algebra does not have a non-degenerate bi-linear invariant, therefore computation of
charges for currents associated with supertranslations is not possible using the for-

mula for charge in (3.104) and therefore one has to revisit some notions of covariant

8A similar computation was done in [139] where the Goldstone mode associated with Virasaro
transformation and Diff(S?) superrotation is described by two-dimensional Alekseev-Shatashvili
theory obtained after Hamiltonian reduction of 3d Chern-Simons theory that parameterised the
gravitational vacua associated with these symmetry transformations.

9The Poincare algebra in this basis is given in (B.2).
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phase space analysis for our solutions that can provide the full set of line integral

charge such that it reproduces the variations (3.103). This we leave to future works.

3.4 Locally flat solutions in Conformal gauge

In addition to the Polyakov gauge, one can parameterise the boundary metric (3.17)
in a conformal gauge. This gauge corresponds to setting f = f = 0, such that
gig) = @ This was the choice of the boundary metric that authors considered

n [111]. The variation of this conformal factor allows for Weyl rescaling of the

boundary metric gab The free data g ) and gab in this gauge is given by,

g =g =0, ¢ = %Q(Z,EL gty =0,

o =0+ 5 - S

T

o0 = 2 (32 5) - FEEDUED) o)

00— 9 <322C'(z,2) _%0=2) E)__C(z’z)> — gV C(z, %)
(3.106)

where C(z, 2) and €(z, 2) are arbitrary functions. To obtain the above solution from

the general solution of gé?, we redefined the field v(z, 2) in (3.86) as follows,

C(z,2)
Pz, 2)

v(z,2) =

(3.107)

where p = (8{55)_1/2. Because in conformal gauge f = f = 0, one has ((z,2) =
((z) and ((z,2) = ((z) and therefore we define

k(z) ={C(2), 2}, #(2) = {C(2), 2} (3.108)

{¢(2), 2} and {((2),z} are the Schwarzian derivatives defined in (3.19). Thus an

element of this space of solutions is specified by the functions

(5(2), &(2), C(z,2), Q= 2)). (3.109)
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The €(z, z) dependent terms in gzi’l) and g%’l) are simply the Schwarzian derivatives

a2

of Q(z, z) and they vanish by themselves if and only if (2, z) = iz The cases
of the boundary metric being R? corresponds to a = 3 — oo (that is, Q(z,z) = 1)
whereas the case of round unit S? corresponds to = 2 and 8 = 1, and o = 2
and 3 = —1 corresponds to the case of H?. The space of solutions (3.106) gets
constrained further by the imposition of a variational principle, which we turn to

next.

3.4.1 Imposing variational principle

In this case we have 5g£) = gég) Q716Q. To satisfy the variational problem, we
first look at (3.66), where in the first term we require that [}, d°2+/g® Ry is fixed.

This condition was already used to impose variational principle in previous sections.

) (0)

Using the tracelessness condition of 9[% w.r.t g, the left-over terms at O(r) in

(3.66) read:'

o9l =0, gtV =gV =0 (3.110)
Demanding gg’l) = g%’l) = 0 requires
() = EU=2) 300 F L 050z2)  3(0:0(z2))
= Q(Z’ 2) 2(9(2’5))2 ) - Q(Z,§> 2(9(272))2
(3.111)

However, for general €(z, Z) these equations cannot be imposed as the right-hand
side of k(z) (R(Z)) is not necessarily holomorphic (anti-holomorphic), and satisfying
these conditions imposes further conditions on €)(z, z). To obtain what these condi-
tions on §)(z, z) are, we start by noticing that the scalar curvature of the boundary

metric ds3,, = Q(z,2) dz dZ is

Ry = [0.Q(z,2) 0:z, 2) — Q(z,2) 0.0:(z, 2)] . (3.112)

Qz,2)3

10This choice is a “non-chiral” way of solving the variational problem. There may be other
“chiral” ways to do so that we do not consider.
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Let us note the following identities:

5 {839(2,2) 3(0.0(2,2))
“l Qz,2) 2(92(z,2))?

; [8§Q(z,5) 3(0:0(,2))
ok 200k09)

2
] + iQ(z, Z)0:Ro = 0. (3.113)

Thus to satisfy (3.111) we require that Ry in (3.112) is a constant. We need to
consider the cases of Ry = 0 and Ry # 0 separately.

e The case of Ry = 0 means
0.z, 2) 0:z, 2) = Q(z,2) 0,0:0 2, Z). (3.114)

Writing Q(z,2) = ¢?*2) this equation is equivalent to 9,0:¢(z, 2) = 0 which
is immediately solved by taking ¢(z, z) = ¢(2) + ¢(2). Thus we write

O(2.2) = F(2)F(2). (3.115)

e The case of Ry = r( for non-zero constant 7o: Again writing Q(z,2) = e?*%)

this reads:
0.0:0(2,7) + %Oe‘“z’g’ = 0. (3.116)

This is the well-known Liouville equation on the complex plane. And a general

solution is

4 2 r/ (=
Oz, 2) = 29 <Z>Jf<f)2 (3.117)
B+ f(2) f(2))
for which the curvature is ro = 23/a?. Whenever ry > 0 we set a = 3 = 1 (which
means we take o = 2) and for 7y < 0 we set « = —f3 = 1 (which corresponds to
o = —2)

Let us also note that as a consequence of the consistent variational problem, we

have 6 Ry = 0. This still leaves two terms proportional to g%’)augg) and D“gt(zi) in
(1,1) 2 _
b

(3.67). Since we impose g¢,, ' = 0 we immediately have d,g,, = 0 and we just have

to impose

Dag(Q) _ Dang(

au a

V0 — . (3.118)
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This condition restricts the choice of C'(z, z) in (3.11).

e For Q = f'(2)f'(Z), this equation can be solved in generality by writing:

_3f7() ()
27 )

_3/"(a) ")

) BEIEC O

R(2)

C(z2,2) = fo(2) + fo(2) + f(2) fi(2) + f(2) fu(2). (3.119)

o For Q= (4f/(2)/(2))/(1 + f(2)[(2))? we find:
3G R L 3 )

e T T M e T e
Oz.2) = fol2) + fol2) + 12 {j}j) f(fz)f 12, (3.120)

for arbitrary functions (fo(2), f1(2), fo(2), fi(2)). Thus in the conformal gauge,
the locally flat solutions that satisfy the variational problem are specified by
three holomorphic functions (f(z), fo(z), f1(z)) and three anti-holomorphic functions
f(2), fo(2), fi(2)). We now turn to obtain the set of residual gauge transformations

for this space of solution.

3.4.2 Residual gauge transformations

From (A.3), we write down,

gu(u,z’ 2) = g%)(zvz) + uS?l)(zv 2)7 5?0) = 5?0)(2,5),

T u a a u a 1 a 1 C u
5(0) = —5(1)7 5(1) = —g(é’)DbS ) 5(2) = —g(S)géc)g<3)Dd§ )

2
T 1 a u
£y = 39" Da Dig". (3.121)
Now imposing § gS,i) =0 gg) = ( one obtains,
&oy = {V*(2). VZ(9)}. (3.122)
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If we allow for Weyl rescaling of the boundary metric we have,
© _ . () I )
0oy =W3g » = 0Q(z,2) =w(z,2)Qz2). (3.123)

The O(r?) terms in dg,; gives,

o1 1
£y = §DaV — iw(z,z) (3.124)

where the covariant derivation D, is associated with the boundary metric in con-
formal gauge ds3, = Q(z,Z) dz dz. The resultant vector fields are parameterised by

the following functions

{(VZ(2), VZ(2),w(z,2), £y (2, 2) }- (3.125)

These vector fields constitute the vector fields of extended bms, algebra along with
abelian Weyl scaling w in [111].1" So far we haven’t imposed any conditions coming
from the variational problem on our vector field. As we will see imposing these
conditions will kill some of the extended bms, symmetries. We make a choice here
to work with Q = f/(2) f'(2) and for the other choice of  in (3.120), the calculation
is straightforward and for both choices of €2 the transformation of the fields are

identical just like in Polyakov gauge.

Now the first condition that we impose is that the vector field should obey ¢ gflé’l) = 0.

From (3.81), this give us the following constraint equation on w(z, z),
Lay = 9 98 DeDalty = 2 DaDy €y = 0 (3.126)

where fz‘l) is given in terms of w as in (3.124). The zz and zZZ component of L, can

be solved simultaneously for the following solution of w,

Vi(2) () (. VA ()
8 +0:V(2) + —=

+ay +as f(2) +as f(2) +aq f(2) f(2) (3.127)

w(z,z) =

When one fixes the conformal factor €2 = 1, this amounts to setting f(z) = 2, f(Z) =
z and therefore if we do not set the constant parameters {as, as,as,as} to zero,
we will get, from (3.123), non-zero variation for a fixed conformal factor which is

contradictory. Hence we set these constants to zero and therefore for Q = f/(2) f'(2),

HSee also the derivation of this vector field from the Weyl BMS group in [48].
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we finally get,

V) () )0 VL 2) [ (2) z
w(202) = T OV £+ 0V() (3.128)

From (3.128) and variation in (3.123) one can deduce the transformation of f(z)
and f(2), which are

5f(2) = VF0.f(2), 6F(2) = VZo: [(2). (3.129)
From the u-independent part of (3.81), we obtain the transformation of C(z, z) as
0C(2,2) = V*0.C(2,2) + VZ0:C(2, 2) + &y (2, 2). (3.130)

For the form of C(z,2) in (3.119), using (3.130) one can deduce &g, that will lead

to the correct variation of C(z, 2),

Eloy = bo(2) + bo(2) + f(2) bi(2) + f(2) bi(2). (3.131)

The resultant transformation of the fields in (3.119) are,

6fo(2) = VZ(2) 0 fo(2) + bo(2), 6f1(2) =V7Z(2)0: f1(Z) + b1 (2), (3.132)
0fo(z) = V3(2) 0. fo(z) + bo(2), 0fi(2) = V(2) 0. fi(2) + bi(2). (3.133)
Therefore the complete set of variations of the background fields induced by the

residual diffeomorphisms are given in (3.129), (3.132) and (3.133). The final vector

field is written as follows,

¢ = (ho(2) +bo(2) + f(2) b1(2) + f(2) h1(2)) Ou + V*(2) 0: + V*(2)0:

28b1( 28h1(z
e ) e (15

The -+ in (3.134) denote subleading terms in O(1/r). It is interesting to note

that because of the imposition of variational problem, the O(r) component in the

vector field along the radial direction r and the linear in u component of £" has
vanished. Just like the solution space in conformal gauge, the vector fields are also
parameterised by 3 holomorphic and 3 anti-holomorphic functions. As the boundary
vector fields in (3.134) have background dependence f(z), f(Z), one uses the Courant

bracket defined in (2.14) to obtain the commutation relations between them. These
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vector fields close under this bracket and form a Lie algebra

61,€0) = (Bo(=) + Bo(2) + F(2) 01(2) + F(2) Bu(2)) 0 + V() 0 + VE(2)0: + -

(3.135)
where Bo(2), bo(2), b1(2), B1(2), VZ(2), VZ(2) are,
Vi(2) = Vi O.Vs = V5 0.VE, V3(2) = Vio:Vy — Vi 0:V7, (3.136)
bo(z) = Vi 0. 02 — V5 0. b5, bi(2) = V0. b3 — Vi 9, b, (3.137)
ho(2) = VP 0:02 — Vi 0.5, bi(2) = V7. b2 — Vi 9. bl (3.138)
Let us define the following doublets,
h’y = {h0(2>7 hl(z)} Y € {07 1}
b, = {ho(2),1(2)},7 € {0,1} (3.139)

e We denote the vector field with VZ = b, =, =0 and V* = —z"! as L,, and
V=0, = 5«, =0and V? = —z""! as L,, for n € Z then the commutator of

the vector fields are,

Ly, L] = (n—m) Loy, [Ln,Ln| =(n—m)Lyin (3.140)

These are two copies of Witt algebra.

e If we denote the vector field VZ = V* = h, = 0 and h, = —2" as b, and
Vi=V*=h,=0and bh,(z) = —2" as b, for n € Z then the commutator of

vector fields are,

[b%m b,@’,m] = 07 [E'y,m Eﬁ,m} == 07 [Efy,n, hﬂ,m} = 0, (3141)
(L, Bym] = =M Bymin,  [Ln,bym] = =M By min (3.142)
[Ln ) Ev,m} =0 ) [I/n ) hv,m] =0 (3143)

The asymptotic symmetry algebra for the locally flat solutions in conformal gauge
consistent with the variational principle is given by (3.140), (3.141), (3.142), (3.143).
This symmetry algebra factorises into a holomorphic and anti-holomorphic sector

with each sector having a copy of Witt algebra and two abelian current algebras.
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3.5 Further Comments and Discussions

Our variational problem is defined for 4d FEinstein gravity with a specific set of
boundary terms we proposed in the text. We constructed boundary action which
is invariant under boundary-preserving diffeomorphisms in the NU gauge and is
adapted for the null infinity in the limit » — oco. The boundary preserving diffeos
are not three-dimensional unlike the AdS, case in the Fefferman-Graham gauge but
a smaller set of symmetries. It will be interesting to compare our boundary action
with those of [140] where the boundary action is constructed directly on the null
boundary of the spacetime. To ensure 45 = 0 for the allowed classical solutions we
have chosen to impose additional boundary conditions on the configurations that
already solve the bulk equations of motion.!? We would like to emphasise that even
in the case of Dirichlet boundary conditions (in which the metric on ¥ is held fixed)
there are additional conditions imposed by our variational principle and solving them
in a non-chiral fashion requires us to set ggi’l) = gS;l) = (0. Even though we did not
provide the details it can be seen easily that the residual large diffeomorphisms of
such Dirichlet class of solutions do not permit extension of the Lorentz algebra part
of the bms, into two copies of Witt algebra. Thus our boundary conditions would
not allow the extended bms, as the asymptotic symmetry algebra in the Dirichlet

case. It will be important to explore the consequences of this fact further.

Starting from our solution space we can generate three more classes of geometries
by T': u <» —v and/or P : z <> —1/Z — which are time-reversal and spatial parity
transformations respectively in the asymptotic flat spacetime (with ¥y = S%). We
suggest that one should think of these four classes of solutions as valid in four
different coordinate patches of the fully extended (locally flat) geometries. Then
these four patches are related to each other by the (P, T) transformations. One
can, in principle, patch together these solutions that are (C) PT invariant. Just as
there are four classes of solutions there are four corresponding chiral algebras. This
is similar to the two copies of bms, symmetry algebras in the context of Dirichlet
boundary conditions — one at the past null infinity and the other at the future null
infinity. Just as an appropriate combination was found by Strominger (see [5] for a
review) picked by the CPT invariance of the scattering amplitudes we expect that
an appropriate combination of the four copies of our current algebras to emerge as

the correct symmetry of the relevant scattering amplitudes.

121t is known that a consistent variational problem at null-infinities would not allow solutions rep-
resenting gravitational radiation at infinity. Our boundary conditions, however, are weak enough
to at least allow for a Schwarzchild black hole in the solution space.
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The locally flat (LF) solutions (3.72) and (3.73) that we worked with after imposing
chiral boundary conditions are complex in the R gravity (they are real however in
the R?? gravity as (z, z) will be light-cone coordinates (z*,27)).1* As a consequence
the vector fields generating the asymptotic symmetries of this class of geometries
are also complex. Since for LF solutions, the Riemann tensor vanishes, in principle
these solutions can all be obtained (in open patches) by the finite complex coor-
dinate transformation of metric 7, of the Minkowski spacetime R'®. Expanding
the LF solutions around 7, to the first order in the six holomorphic functions the
perturbation h,, can be written as pure diffeomorphisms with the same complex
vector fields that generate our asymptotic symmetries. In [59] it was shown that
the conformal basis for graviton wave-functions hﬁfa of definite helicity (where £
superscript denotes whether the graviton is incoming/out-going and the subscript a
denotes its helicity) in the soft limits A — 1, A — 0 become pure diffeomorphisms:
hivt = Vot + V¢t Near null infinity these vector fields (7, in the soft
limit become generators of supertranslation symmetry and Diff(S?) symmetry and
for positive helicity soft graviton take the form of (3.85), (3.87) respectively. The
conformal primary wave functions given in terms of these vector fields are then in-
terpreted as Goldstone modes of spontaneously broken asymptotic symmetries of
gravity theory.!® Similarly one can interpret our complex solutions as the ‘conden-
sates’ of soft gravitons of positive (negative) helicity if the solutions are characterised

by six holomorphic (anti-holomorphic) functions.

In this chapter, we used the definition of variational principle in the conventional
sense that implies stationarity of the action Sggtpdry. on the solutions. As argued in
[97], one modifies the definition of a well-defined variational principle in the presence
of radiation to allow for some presymplectic flux through the boundary. However, we
believe that even if we consider radiative solutions, then in the asymptotic regions
unaffected by the radiation (for instance, if a pulse of radiation reaches the boundary
during some finite interval in u, then sufficiently far away from this interval), the
solutions should approach one of the vacuum solutions. And these vacuum solutions,
we posit, have to be one of the classes of locally flat solutions for which the total
action is stationary. It will be interesting to see whether our symmetry analysis

still holds in the case of presymplectic flux, through the boundary, instead of the

13Gravity scattering amplitudes in such signature were explored recently by [141].

Even though the analysis in [59] was done in harmonic gauge, the boundary vector fields that
generate generalised BMS transformations at leading order are the same as that of Bondi gauge
and hence NU gauge.

150ur solution spaces contain one additional holomorphic function x(z) associated with the
vector field in (3.89) which is possibly the Goldstone mode of addition positive soft helicity mode
(related to the shadow transform of negative helicity graviton) with A = 2 in section 5.3.1 of [59]
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stationarity condition of the action.

A bigger symmetry algebra (w;io) than the one we uncovered in this chapter is
observed from the conformal soft limits of graviton operators in the celestial CF'T
[63, 66] recently. It will be interesting to explore whether our boundary conditions
can be generalised to incorporate these extended symmetries or not.'® Following
the analysis of [142, 143], one expects that the vector fields generating w; ., are
superleading in r as one approaches the boundary of spacetime. However, it can be
checked from eq. (A.2) that such behaviour for vector fields in the NU gauge does
not exist. Therefore, to extend the analysis of algebra in our present work to wy
algebra, one may have to work in a different gauge. In [59], the authors derived the
vector fields that generate arbitrary diffeomorphisms of the celestial sphere in har-
monic gauge. One can do a similar analysis as theirs by demanding less restrictive
boundary conditions that allow for metric perturbation around Minkowski space-
time to fall off as O(r™) for n > 2 and obtain vector fields that are superleading in r
near null infinity. It is plausible that imposing a variational problem for such config-
uration might further restrict the solution space, the residual gauge transformations
of which could map to wy,~. However, the interpretation of solutions with such
superleading behaviour in r near the null infinity from the spacetime perspective is

unclear as they do not obey the standard asymptotically flat boundary conditions.

We considered the metric on X5 in the Polyakov gauge. The other natural choice
is the conformal gauge in which we have found a class of locally flat solutions. The
asymptotic symmetry algebra completely factorises into a holomorphic and anti-
holomorphic sector. It is different from extended bms,, as the supertranslation cur-
rent reduces to two holomorphic and two anti-holomorphic currents with conformal
weight A = 0 and h = 0 under the left and right Virasaro transformations respec-
tively. The charges corresponding to this symmetry algebra and the significance of

such an algebra in the context of soft theorems are still under investigation.

The chiral gravity boundary conditions of [10] that gave rise to Polyakov’s chiral
5[(2,R) current algebra from the AdS5 gravity was generalised to the supersymmetric
context in [144]. Tt should be possible to generalise the boundary conditions used in
this chapter to 4d gravitational theories with supersymmetry to find supersymmetric
extensions of the chiral bms, algebra found here. Very recently such supersymmetric

extensions have been observed in the celestial amplitudes [145].

We have obtained our chiral algebra from the future null infinity. The generalised

16See [67] for the derivation of charges using vacuum Einstein equations that form the canonical
representation of these wii~ algebra.
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bms, has been shown to emerge from the asymptotic symmetry analysis around the
time-like infinity as well [146]. It will be interesting to analyse our problem from

the point of view of the time-like infinity.
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Chapter 4
Constructing Carrollian CFT's

In this chapter, we turn our attention to another proposed dual theory to asymp-
totically flat spacetimes in RY? gravity, which is a 3d conformal field theory defined
on null infinity, a quintessential example of Carrollian manifold. In particular, we
will consider the construction of such theories for scalar fields on a general Carroll
manifold. The Poincare algebra admits two interesting limiting algebras obtained
by Inonu-Wigner contraction where one takes the speed of light ¢ € [0, c0) to either
zero or infinity. When ¢ — oo one obtains the well-known Galilean algebra, and
when ¢ — 0 one ends up with the so-called Carrollian algebra [74, 73]. The former
case has played a very important role as it is relevant for a host of physical systems
in which typical velocities involved are very small compared to the speed of light,
such as Newtonian mechanics, many condensed matter systems etc. The Carroll
limit is relevant if the velocities involved are all very close to ¢ and it remained

unexplored for a long time until the last decade.

An important realisation of the Poincare algebra arises from the isometries of the

flat Minkowski spacetime with the standard line element:
ds* = —c*dt* + dx - dx

which is an example of a pseudo-Riemannian manifold, with non-degenerate
Lorentzian metric ¢,, = 7,,. If one takes either of the limits ¢ — oo (better
done on ¢g") or ¢ — 0 (done on g,,) one obtains a manifold with a degenerate met-
ric tensor. The geometries that realise Galilean or Carrollian algebras are therefore
not Riemannian manifolds but belong to a more general class of geometrical objects
called Newton-Cartan manifolds (for ¢ — oo case) and Carroll manifolds (for ¢ — 0

case) respectively (see, for instance, [70, 147, 148]).
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Just as the conformal algebra can be represented by conformal Killing vectors (CKV)

of (conformally) flat spacetimes, such as R x S?¢ with line element
ds® = —c? di* + dS;

or RY, the Galilean and Carrollian conformal algebras can be thought of as appro-
priately defined conformal algebras of (conformally) flat Galilei and Carroll space-
times. The conformal algebra of (any spacetime conformal to) Minkowski spacetime
My, is finite-dimensional for d > 2 and therefore obtaining the corresponding
Galilean or Carrollian conformal algebras via Inonu-Wigner contraction will nec-
essarily result in finite dimensional algebras for d > 2. However, if one defines
these algebras directly as conformal algebras of the corresponding Galilei and Car-
roll spacetimes one may get bigger algebras than those obtained by the contraction
procedure [72]. There is a more general notion of conformal symmetry even in the
flat Carroll spacetime Cy, 1, parameterised by z, the analogue of the dynamical expo-
nent of Galilean conformal transformations, which in turn is given by a non-negative
integer k by z = 2/k in [68, 69]. One obtains only the z = 1 (k = 2) case via the

contraction procedure.

Also as was shown in [69] the Carrollian conformal algebra ccaé’il for d = 2 and
z = 1 is the bms, algebra [3, 4], which is infinite dimensional. So if one wants
to describe some (d + 2)-dimensional gravitational theory with asymptotically flat
boundary conditions holographically then the holograms should be field theories on
I* with cca((f:l) as their global symmetries [11, 29]. This expectation has led to a
lot of work seeking field theories on null-manifolds which are Carrollian CFTs (see
for example [18, 17, 72]). The procedure followed there is typically to start with a
CFT on My, and take an ultra-relativistic limit. This has been a fruitful exercise

and has resulted in quite a lot of interesting examples with ccagfll) symmetries.

However, it is plausible that constructing field theories directly on a Carroll mani-
fold C441 gives rise to a more general class of theories than those obtained by taking
an ultra-relativistic limit of known CFTs on the parent pseudo-Riemannian mani-
fold Mg1 [19]. Such a construction was known in the context of Carollian Fluid
dynamics [75, 76]. The main aim of this chapter is to demonstrate that this expec-
tation is indeed realised. We will construct classical scalar field theories on generic
3-dimensional Carroll manifolds that are invariant under both diffeomorphisms and
Weyl transformations of the Carroll manifold. These theories can be put on any
given Carroll manifold — of which the interesting examples include null boundaries

of asymptotically flat spacetimes, horizons of black holes, boundaries of causal de-
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velopments, etc [71, 149]. Then the residual symmetries should, by construction,
make the resultant theory have ccaéz) as the symmetry algebra for generic values of
z. We will mainly concentrate on d = 2 for the most part (relegating the higher
dimensional case to Appendix C). We obtain a larger class of theories for scalar fields

going beyond what one obtains by the method of taking ultra-relativistic limit.

The results of this chapter include,

e In Section (4.1), we briefly review how one constructs a diffeomorphic and
Weyl invariant theory of a scalar field in the background of a generic (pseudo)

Riemann manifold.

e In Section (4.2) we repeat the steps of Section (4.1) to the case of scalar fields
®(t,x) in the background of a Carroll manifold. Specifically, we construct
two classes of diffeomorphic and Weyl covariant equations of motion, one with
two-time derivatives of the field (time-like), and the other with (up to) two
space derivatives (space-like). These exist for general values of z and conformal
dimension ¢ of ®(¢,x). We show that the invariant actions exist only when
0 = 5 for space-like action and ¢ = 1 — 3 for time-like action with both types

of actions combining for z = 1.

e In Section (4.3) we show how a subset of results of Section (4.2) can be re-
covered starting from when one expands the equation of motion and action of
a conformally coupled scalar field in pseudo-Riemannian geometry as a poly-
nomial in ¢, the speed of light, using the Randers-Pappetrou parametrization
of 3d metric [19]. We show that the coefficient of order O (%) corresponds

to the time-like equation/action and the coefficient O (1) corresponds to the

1

space-like equation/action mentioned in the second point for z =1 and § = 3

case with appropriate identification of parameters.

e In Section (4.4) we gauge fix our theories to recover and generalise the classical
scalar field theories with ccagz) algebra worth of symmetries. We also show
that alternative ways of gauge fixing lead to field theories with two distinct
symmetry algebras isomorphic to R@&.A and generalised bms, algebra for z = 1,

where A is the algebra of volume-preserving diffeomorphisms on the sphere.

We conclude with some comments and discussions in Section (4.5). The Appendix
C contains some details of the case of arbitrary dimensions. This chapter is based
on the [150].
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4.1 Conformally coupled scalar field - revisited

In this section, we (re) construct the well-known conformally coupled scalar field
equation of motion and its action in detail. This will provide us with the method
we follow in the later sections. The result we want to re-derive is the diffeomorphic
and Weyl invariant classical (free) scalar field theory in d = 2 + 1 dimensions in a

general background with metric g,,. This has the action:
241 1 v L
S=[dTx Vg g* (‘L(b&,qzﬂ—ng) (4.1)
and the equation of motion
1
"'V, V,¢ — gRgb =0. (4.2)

This action (4.1) is invariant and the equation of motion (4.2) is covariant under

the Weyl transformations:

G (2) = Zpoule), () = Bro(2) (1.3

where B is an arbitrary function of the coordinates, and diffeomorphisms:

dz® dz”®
G (@) = T ganl(), ¢(@) = $(a) (44)

where x — a#(z) is a coordinate transformation. Let us rederive this result (see
Wald [151] for instance). For this one starts with scalar (under diffeomorphisms in
(4.4)) combinations that are linear in ® and have (at most) two derivatives, namely,
R® and V,V#®. Their transformation properties under the Weyl transformations
G — B2 g,, and ® — B° ®, are

R® — B |[B*R+4B¢"V,V,B - 6" V,BV,B| 0,
GV, — B B2V, V,0 4 50 B¢V, VB 46 (0~ 2) gV, BV, B
+(26—-1)Bg¢""V,BV,® (4.5)
where ¢ is the Weyl weight of the scalar ®. For a linear combination of R ® and
[1® to be covariant all the inhomogeneous terms in the Weyl transformation of that

combination should cancel out. But in no linear combination the term containing
B ¢"V,B V,® on the right hand side of O® in (4.5) gets canceled. So its coefficient
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(26 — 1) has to vanish identically, giving us 6 = . Then the only linear combination

that transforms homogeneously is
1 5 1
9V, — SR B [nguvy@ - SRe (4.6)

showing that the equation (4.2) is the only covariant one. For the construction of

an action one notes:

1
¢V, bV,d — B {BQ ¢V, BV, P+ 1@ gV, BY, B+ BgV,P VVB]

(4.7)
which can be used along with the first line of (4.5) to show that
1 1
NG, [g“”vucb V,®+ SR @21 /g [ng#q) V.0 + <R @2}
(1)2
— "wo,B| . 4.
+0, |55 VaroB (49

So the action (4.1) is also invariant under (4.3, 4.4) and results in the equation of
motion (4.2). In the next section, we use the same procedure to construct analogous

equations of motion and actions for scalar fields on 3-dimensional Carroll manifolds.

4.2 Scalar field theories on Carroll Spacetimes

Let us first review some essential aspects of Carrollian geometries. We will follow
the notations and conventions of [27], [76] here. A Carroll spacetime is a fibre bundle
Cyqr1 with a d-dimensional base & and one-dimensional fibre. We work with local
coordinates x on the base and ¢ on the fibre. Then the Carroll spacetime is specified
by a non-degenerate d-dimensional metric a;;(¢,x) on the base S, the Ehresmann
connection 1-form b;(¢,x) and a scalar w(t,x).! Then one defines the Carroll dif-
feomorphisms as those that keep this structure invariant. In our coordinates, they
take the form:

t—t'(t,x), x—x(x). (4.9)

'There is another formulation of Carroll geometry in terms of 3d degenerate metric h, and a
vector field ¢* defined everywhere [68, 70, 69]. Refer to the works [84, 82, 152, 85] which use this
definition to construct Carrollian conformal field theories. Also, see the work [78] for a detailed
comparison between the two formulations.
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The Jacobian of these Carroll diffeomorphisms (¢, z°) — (¢(¢,x), 2"(x)) is the matrix

J(t,x) Ji(t,x) (4.10)
0 J7; |

ot g _ ot J.o— 027 b g
where J = 57, J; = 75, and J/; = 57+, with its inverse

( - J_I{’“(‘,]_l)ki ) (4.11)
0 (J 1)]

i

where (J~1)". is the inverse of the matrix J%;. Under these transformations the
j j

geometrical data (a;;, b;, w) of the Carroll spacetime transforms as:

a, (t,x) = a(t,x) (J )" (771

1
i (X)) =T w(t, x)

j?

bt %) = (b,-(t,x) e Jiw(t,x)> (J7Y), (4.12)

along with 9 = J~'0;, 0 = (J7')";(0; — J~' J; 9;). Now one can list the objects
that are covariant under the Carroll diffeomorphisms. At the first derivative order,

one has

1 a1 1
¢i = ;(&w +0bi), ;= 55" "oz, 0= aat Inva =7, fij=2(0uby +bidy)-
(4.13)

Because these are covariant one can raise and lower the indices using a;; and its

inverse a*. One also has the following differential operators

bi

A 1 A
8t - —815, @ = 32 + - (‘3,5 (414)
w w

that are covariant. Then the Carroll-Christoffel connection
~d L a4 A A
Yjk = 5@ (Ojau + Oy — Oaj) (4.15)

allows one to write down further sets of covariant objects. This connection trans-
forms under Carroll diffeomorphisms in the same manner as the usual Christoffel

connection in Riemannian geometry. We will define the Carroll tensors to transform
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as:

't x)=d(t,z), V' X)=J,;VI(tz), V/FI,x)=V(t,z)(J "),

i 39

ete.
(4.16)

Under the Carroll connection (4.15) a;; and a” are covariantly constant. Another
fact is that if one defines @taij = &aij — Arag; — ’y]"?aik and V;a = d,a" + At a4

A1a™ then the metric a;; and its inverse are covariantly constants under V; as well.

At the second derivative order, one can list the following invariant objects:

J

62, 9,0 = éate, AL R, aTV g, a e, (4.17)
where 7 is the Carroll Ricci scalar defined [76] as follows:
i = Oty — Oy + Ak — Vi Fig = Phigs 7= a9Fy5 (4.18)
Next, we consider Carroll Weyl transformations. Following [27] we define this as

dij(tﬁx) = (B(taX»izaij(t’X)? (IJ(t,X) = (B(tax))izw(tax%

bi(t,x) = (B(t,x))bi(t,x) (4.19)

where B(t,x) is an arbitrary function and z is a non-zero real number. We are now
ready to emulate the steps of Section (4.1) and construct equations of motion that
are covariant under the Carroll diffeomorphisms (4.9) and Weyl transformations
(4.19).
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4.2.1 Constructing equations of motion

For this, we first start by listing the transformation properties of our Carroll diffeo-
morphism invariants (4.17) under (4.19). One finds:
0 — B! [BH - 2&3} ,
0,0 —s B2 [32 00+ 2B0O,B—2(z—1)(8,B)? 2B ététB] ,
§i4l — B2+ [32 447 —2BOO,B +2(,B)?| ,
i — B2 +2Ba’V,0;B — 20" 0, B); B,
a"j@iqﬁj — B2 aij@iqu —zB aij@iéjB + Z(lijéiBéjB ,
aijgbi(ﬁj — B2 CLijQZSiQZSj —2zB ¢ZéZB + 22 (lijéiBéjB . (420)

Three combinations that transform homogeneously are:

2 ... 2 .
7+ —a”Vid)j — 82 (TA’ + —a”Vz«d)]) s
z z
ciai Lo 92isini Lo
ViV — 50 — B ('Yj%’ - 59 )

fijfij — B4_2Z fijfij . (421)

Now we are ready to include matter fields. Let us consider a real scalar field ®(¢, x)
for simplicity. We seek to construct equations of motion which are Carroll Weyl
invariant. For this we start by listing Carroll diffeomorphism invariants up to two

derivatives (on both sets of objects (a;j, b;,w) and @), and linear in ®:
®, 00, 0?0, 1A D 000, 7@, V6P, 6P, fi;fUD

O®, 09,0, ¢'6,®, 9,0,0, Viod  (4.22)

Defining that the scalar ® transforms as ® — B°® under Weyl transformations we
can find how the objects in (4.22) transform. We find:

H® —s B*HO-1 [B 50 +53,B|
5,6, — BO+22 [32 8,0, + (2 +20)BOBO® +5BOHB +6(5+ 2 — 1) (a}B)Q] ,
& H,d —s B [B%ﬁiéﬂ) Y OBOH OB —520HBIB — zBéi@[)éiB] ,

Vidid —s B [32 Vidid +8(5 — 1)0I BB +25 BOBH® + 5 B @Z&B] . (4.23)
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The simplest and only Weyl covariant object linear and homogeneous in ® at the

first derivative order is :

P + ge d — B (9,d + ge D). (4.24)

This combination was already known in [76] in the context of z = 1. At the second

derivative order, we find two such covariant objects:

o1 . .
OR0+ (= +20) 00,0+ [(z+5)92+2at9} o

— B2 <éfq> - %(2 +26)09,® + % [(z +0) 6% +2 &9} <I>) (4.25)

A 20 . 20 .
Vi + 2L g0 -2 i 2o | 0
z 2 2’2
e (@@@ﬂ;m@—g {f—i—fcbi@} @) . (426)

We found two distinct possibilities for the covariant equations of motion: one with
weight 2z + §, and the other with weight 2 + . We will refer to these as time-like

case and space-like case respectively.

These are not yet the full set of covariant combinations. At the linear order in ®, one
is free to consider linear combination of (4.25) with (%&f — 16%) ® and (4.26) with
(7 + 2a"V,¢;) ®. At the level of interactions we may consider linear combinations
of appropriate powers of ® multiplying {1, 7 + %aij@igbj? fi;1} added to (4.25) and
{1,447 — 162, f;; 7} added to (4.26).

In the interaction terms the powers of ® have to be chosen so that the combinations

have the right Weyl weights and the potentials are preferably polynomials in .

2240
B

(:= N,, — 1) is a positive integer then one can consider ®*5 along with (4.25).

This latter requirement constrains the data (z,d). For instance, whenever

Similarly in the space-like case one can add ®*5* whenever ZTH ((=N,, —1)is a
positive integer. Such terms are expected to contribute to the equations of motion

when there are monomial potential of the type &0 (&™) in the action for ®.

There are two special values of z, namely, z = 1 and z = 2, that have to be
treated more carefully because in these cases we can consider more general covariant

combinations.

e 2 = 1: We can consider constant linear combinations of the two quantities
(4.25) and (4.26) — for in this case the Weyl weights of both of these quantities
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become equal to 2 + 0. Furthermore precisely in this case the Weyl weights of
(&;&f — 36%) @, (f + %aij@iqﬁj) ® and f;; f¥ @, (which are all linear in @) also
become 2 + § and so can be added.

e z = 2: We can consider linear combinations of the first order time-derivative
object (4.24) with the space-like derivative object in (4.26) as both their Weyl
weights become equal to 2 + 0.

We can summarise our results so far for various types of Carroll diffeomorphic and

Weyl invariant equations of motion for a scalar field ® as follows:

e For z =1 we can take the covariant equation to be:
A9 1 A (5 2 A
ko | 020+ 5(1+20)0 0,2 + [(1 +8)0 +2at9} o

1Ry {@i&@wwa@— g [ —25¢'¢; ] @}

2495

+ {‘70 <’AVJ“YZ - 592) + 01 <72 + QCL”Vi(Iﬁj) + 02 fijflj] P+ AP =0.
(4.27)

This equation has five independent real parameters — since (Ko, K1, 09, 01, 02, )
are equivalent to a (kg, k1, 09,01, 092, \) for any non-zero real a. We may as-
sume that (kg, 1) # (0,0) so that we have a differential equation. Note also
that there is no reason to fix ¢ at this stage beyond the assumption that 2%‘5

is (preferably an odd) positive integer, whenever A # 0.

e For z = 2 we can take the covariant equation to be:

K3 {é@ + ge @] + 73 [@iéicp +6¢" 0P — g (r — gqsiqs,-) cp]
2 Ol 2iAT 1 2 1-2 ij 2496
+ 03 <r+a Vz¢j> S +ws | V% —59 D175 4 (Ng + s fiy fU) @5 =0,
(4.28)

with Weyl weight 2 + § and (at most) five independent parameters, and/or

. . 5 . 1
af<1>+(1+5)eat<1>+Z [(2+5)92+23t9} P + 0y (@;75—592) d

o (r + “ij@z‘%) OIE (N + o fi5f7) 95 =0,
(4.29)
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with Weyl weight § + 4 and (at most) four parameters.

e For general values of z we have the following two types of Carroll diffeomor-

phism and Weyl invariant equations of motion

1.
A9 1 ~ ) 2 A Y 1 2
.. 2 PN 2z
+ o ‘I’H%(Z_l)fijf” + Ko (er —a”vi@) QI 4 A @75 =0,
z
(4.30)
2.
cia 28 L. 8[. 20, 2
V’@Z(I)—{—?qb’@@— 5 |:7"— ?¢¢1:| ®+0'1 (r+;ajvigbj) P
+p fig f¥ P 4 gy (’AYZ:’AY‘]' - %92> QI 1\ 0% =0,
(4.31)

where we assume that the coefficient (ug, ko) and (p1,%1) are non-

vanishing only if the powers of ® multiplying them are positive integers.

Let us make some comments on the nature of interaction terms in the equations
(4.30, 4.31). In the next section, we will attempt to construct actions that produce
these equations. We will assume that the interaction terms can be obtained from
an action with a potential that is a polynomial in ® and bounded below. This
requires the potential to be a linear combination of positive integer powers of ®
with appropriate coefficients and the highest power (the degree of the polynomial)
being an even number. Further, we will assume that the Weyl scaling ¢ of & is

positive.
e In the time-like case let us denote the potential terms in (4.30) by
- 2 .
o fij f¥ Nt 4 g (72 * _aljvi@) o™t 4 g Mo (4.32)
2

e Then we have Ny, — N,y = 2, N,y — N,,y = 3(2— 1) and N, — Ny, = 3(2 —2).

0§
Therefore

1. for z <1 we have N, < N, < Ny,,
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2. for 1 <z <2 we have N,y < N,;, < N,,, and

3. for z > 2 we have N, < N, < N,.
Similarly
e for the space-like case let us denote the interaction terms in (4.31) by
py fii 7 ONm T gy (&;ﬁg‘ — %92) PN =l LN ML (4.33)

e Then we have Ny, —N,, = 2, N), — N, = 2(2—z) and N,;, —N,,, = 5(1—2).

Hence,

1. for z < 0 we have N,, < Ny, < N,,,
2. for 0 <z <1 we have N,, < N, < Ny,
3. for 1 < 2z <2 we have N, < N,, < N,,, and

4. for z > 2 we have N, < Ny, < N,,.

Therefore depending on the range of z the degree of the polynomial is different.
Demanding that the powers of ® are positive integers implies non-trivial constraints
on the set of values (z, d) can take. As we will see in the next section the existence of
actions implies further constraints on these data. So we postpone further discussion

of this aspect for later.

4.2.2 Constructing actions

Now that we have derived the most general two-derivative diffeomorphic and Weyl
covariant equations of motion for a single real? scalar field ® in the background
of generic Carroll geometry, we would like to turn to construct the corresponding
actions next. We should seek actions that produce each of the equations (4.27, 4.28,
4.29, 4.30, 4.31) as their Euler-Lagrange equations for the scalar field ®.

Note that our equations of motion in the absence of interactions are linear in ¢ and
have up to two derivatives on ®. If we are to be able to derive them from some

actions then they should be quadratic in ® and should contain up to two derivatives.

2For complex ® one has to replace the potentials to be appropriate real combinations, such as
|®|?" etc.
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Therefore let us again start by listing all such invariants — now counting derivatives

both on the background geometric quantities (a;;, b;, w) and on ®.

6d%, & 0O,,
A 0% 0707 090, 9,00% (9,2)% IO,
PO Vi B Gl 2 fifT D% D GO®, 5,000, PV, D.  (4.34)

We have already listed in (4.23) all the transformations required under the Carroll
Weyl transformations and we simply have to find the combinations of quantities in

(4.34) that transform homogeneously.

After a straightforward analysis using the results of the previous subsection, we find

the following combinations up to quadratic order in ® :

1. At first order in time-derivatives we have the unique combination with weight
2420
A o
d (0, + 50 D) (4.35)

2. At second order in time-derivatives we find three covariant combinations with
weight 2(z + §).

~ ) 2 ind 1
(8,@ + 56 c1>> , (mg — 592> o2, (4.36)
A z ~iAg 2 A 25 + AP

We will refer to these as time-like combinations.

3. At second order in space-derivatives we find three combinations with Weyl
weight 2(1 + §):

A ) A o . 2.
(0.0 +26:2)(0'0+26'), (7 + Vi) @2, (4.38)

. 5. Y S
DV0'P +2-0 ¢'0; 0 + ;(Vigzﬁz +- Pip") D2 (4.39)

We refer to these as space-like combinations.
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At higher orders in ® we can consider potentials with coefficients from any of

IS\

N . . 1
Vigh, A - 58" (4.40)

Now any candidate action has to be an integral over the coordinates (t,x) of our

Carroll manifold:
S = /dt d*x L . (4.41)

For the action to be invariant under diffeomorphisms the Lagrangian density should

transform as £ — L', such that
/dt &Ix L = /dt/dQX/ L. (4.42)

From (4.9) we have dt'd*x’ = Jdet J; dt d®x. So the Lagrangian density £ has
to transform as £ — £ = J~'det((J7')}) L — i.e, as a scalar density of weight
3, equal to the dimension of the manifold — under the relevant Carroll diffeomor-
phisms. The combinations we listed above in (4.35 - 4.39) are all scalars under
Carroll diffeomorphisms, even though they have non-trivial weights under Carroll
Weyl transformations. So to make them densities of suitable weights we need to
multiply them by w+/a as this is the only combination of the Carroll geometry

without derivatives and transforms as desired:

wva— J det((J7Y))) wa, (4.43)

where a is the determinant of the metric a,; on the base space. For instance
2 4 & A 0 iA 0 o
S = [ dtd*x wva |0;P0'D + 2= ¢ 0;P + — 0" @ (4.44)
z z

is a good action for a Carroll diffeomorphism invariant theory. However, for it to be
also a Weyl invariant theory the Lagrangian density £ has to be invariant by itself
(up to total-divergence terms) under (4.19). Let us check this for (4.44): the measure
transforms as w+/a — B2 *w+/a and the quantity in square-brackets transforms
as [--+] — B*[...] under the Weyl transformations (4.19). So demanding that
the Lagrangian density £ in (4.44) is Weyl invariant requires

2+25=2+z:>5=§. (4.45)
This conclusion is valid for all actions constructed using the space-like combinations
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with Weyl weight 2 + 26. Also § > 0 requires z > 0.

Similarly, if we use any of the Carroll diffeomorphism invariants and Carroll Weyl
covariant time-like combinations in (4.36) we need to fix the weight § of the scalar
such that:

2+z:22+2(5:>5:1—§. (4.46)

In this case, for 6 > 0 we need to have z < 2.

Note that this is unlike the conformally coupled scalar in the background of a
(pseudo) Riemann manifold where the Weyl weight of the scalar is fixed at the
level of the equation of motion itself (as reviewed in Section (4.1)), whereas, for
the scalar in Carroll geometry, it is fixed (even for a free scalar) at the level of the

existence of an action.

When we include interactions, we have to continue to impose the constraints (4.46)

in time-like case and (4.45) in the space-like case. So we have the potential :

e in the time-like case is (wy/a times)

1 g 1 2 . 1
o fig [ M0 4 ——— kg (r + —a”vz-cbj) Mo 4 ——Xg @™o (4.47)
N/J'O Ko < N)\O

with N, = 3 — 6, Ny, = 2 —2 and N, = § — 2. We further assume that
N, Nigs Nyy > 2. For N,y > 2 and N,,; > 2 we need § < 1 and N,, > 2
requires 6 < 1. Thus we can have all three terms in the potential only when
0<6§< % with N,, being the largest power. When % < 0 < 1 we can only

have \g non-zero and if § > 1 no potential is possible.

e In the space-like case it is (wy/a times)

1 y 1 o1 1
i3 N ind — Zg2 ) @Nm A @M 4.48
N fiif R (%’n 5 ) T (4.48)

with N, = 6—2, N, = 2 —2 and N,, = 2 4+ 2. We again assume that
Ny, Ny, Ny, > 2. For N, > 2 requires § > 1, for N, > 2 requires § < 1,
and for Ny, > 2 requires 6 > 0. So when we take 0 < § < % (which means
0 <z < 1) we need to set u; = 0, and we have Ny, as the largest power. When
% < 0 <1 we cannot have k; non-zero and the highest power of the potential
is again given by Nj,. When § > 1 we still have x; = 0 and the largest power

of ® in the potential will be N,,. Only when § = % all three terms are possible
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vdth<N&1::6.

To summarise in both time-like and space-like cases the different types of interactions
are possible depending on the values of § (determined in terms of z via (4.46, 4.45)).
When 0 < 9 < 1 the dominant power in the potential comes from the monomial
M@0 (A @MM1) in the time-like (space-like) case. When § > 1 no potential is
possible in the time-like case and in the space-like case the dominant power is given
by N, . Finally, we have to impose that the dominant power of the potential is

even.

e In the time-like case, whenever the potential is allowed the degree of the po-
tential is N,,. For the potential to be bounded below we require that N, is

even, i.e., Ny, = 2n,; for some n; > 1. Thus the data (z, ) are restricted to:

z z ng— 1 2
2 i —1 S | e+ 1

,ome>1. (4.49)

In this case the range of z is between 0 (when n; = 1) and 2 (when n; — 00).
The case of n; = 3 gives z = 1 with § = 1/2, and this is what one obtains by
taking the ultra-relativistic limit of conformally coupled scalar in 3 dimensions

— as we show in Section (4.3).

e In the space-like case when 0 < § < 1 we take N,, = 2n, for some n, > 2
(since when 0 < 6 <1 we have Ny, > 4). Then we have

2 1 2 1
z = & 5=
2 m.—1 S ne—1’

5=

ne > 2. (4.50)

This is the set of values assumed for z by Duval et al [69], where they denoted
k = ng — 1 with & > 1. In this case the range of z is between zero (when
ns — o0) and 2 (when ng, = 2) with the corresponding values of ¢ ranging

between 0 and 1. Again the special value z = 1 gives § = 1/2.

When 0 > 1 we need to take N,, = 2n, for some n, > 3 since N,,, = 6— %. At
the same time N, is bounded above by 6 and so the only non-trivial possibility

is n, = 3. But when n,, = 3 both z and ¢ are infinite which we do not consider.

So we conclude that the existence of (i) bounded and polynomial potentials and (ii)

invariant actions implies discrete and specific rational values for both z and ¢.
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Actions for Equations:

We now propose actions which produce (4.27 - 4.31) as their equations of motion.

e For the time-like case with z = 2 (1 — §) our action is

~ 2 o 1 .
S = /dt d*x wya [oq (8@ + ge cb) + By (7}% - —02> D2+ )\ <1>2+25} ,

2

which gives the equation of motion for ® to be:

—20 {équeét@— 35(5—2)9%% géwq)

. 1 2 4
v (332 - ) o+ 2n (5 1) @i =

e For the space-like case with z = 26 our action is
2 A 0 Ai o

S, = [ dit dx w+/a |as (aiq>+—¢i<1>) <a<1>+—¢<1>>
z z
2. .

+ B2 <7A’ + —Vz’¢l> D+ Ny CI)%?}
z
which gives rise to
~ A 1 . 1~ .
—2a [Dq) + o'V @ + Zﬁbz@‘b + iviﬁbl (p}

2 A . 1
+ 25, <r n —ving) o+ 2>\2(1 n 5) o2
z

(4.51)

(4.52)

(4.53)

(4.54)

It is easy to see that these equations are the same as (4.30 - 4.31) with appropriate

identifications of the coefficients.?

For the special case z = 1 we can consider linear combinations of (4.51), (4.53) with

(4.39), which can be seen to generate equations of the form (4.27).

The other special value of z, namely z = 2 needs some more attention. In this case,

we either have to consider a complex ® or two real fields ®; and ®,. To see this we

first note that in this case, we expect an action to reproduce an equation of motion of

the type (4.28) that includes (whenever k3 # 0) first-order time-derivatives. Using

30ne can easily incorporate other interaction terms into the actions to produce potential terms

in (4.30), (4.31) with non-constant coefficients as well whenever they are allowed.
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a single real scalar a candidate action that could have produced a first-order time-
derivative term is wy/a ® (57@ + 39 ®). But such an action does not lead to a
non-trivial equation of motion in z = 2 case (which in turn requires 6 = 1) since
wy/a® (0,® + 20 ®) = 9,(3/ad?) is a total derivative. A simple way to overcome
this is to consider wy/a ®* (étq) + %9 ®) for a complex ® with ®* being its complex

conjugate. We will not pursue this further here.

4.3 A Carroll CFT from a conformally coupled

scalar

Now we show that some special cases of the equations of motion and their corre-
sponding actions we derived in the last section arise in the ultra-relativistic limit of

the conformally coupled scalar reviewed in Section (4.1).

Our starting point is the diffeomorphic and Weyl invariant scalar field theory in 2+1
dimensional spacetime. The background metric is taken in the so-called Randers-

Papapetrou form (see for instance [76]), with the line element:
ds® = g datda’ = —*w?(dt — w™'b; da')? + a;; da’ da? (4.55)

where 2 = (t,x). This geometry in the ¢ — 0 limit is expected to produce a Carroll
geometry. Moreover, the subset of all diffeomorphisms that leave this metric form-
invariant is precisely the Carroll diffeomorphisms (4.9) and the quantities {a;;, b;, w}
transform under (4.9) as in (4.12).

It can be seen that the Ricci scalar of this geometry is
L ~ ~ . ) 02 ..
R= ¢ (92 + 4047 + 2 ate) n (r OV, — 2 qw) + S faf?. (4.56)

Consider the Weyl invariant Klein-Gordon scalar field equation on a general back-

ground in three dimensions:
ab 1
gV V@ — §R<I> =0. (4.57)

Using Randers-Papapetrou metric ansatz (4.55) one can reduce this equation to a

polynomial in ¢. This equation admits an expansion in terms of the combinations
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in (4.27 - 4.31) with (z,6) = (1, 3). In particular:

A 1
o —-—-RP
8
N P 04 (3621445 1 (sisi _ Lgo
=3 [at<1>+98t<1>+ 6 <39 +48t9> q’} 32 ('Yj%' 29
~ i 1 N i 1 ~ - 7
+ {D©+¢vi¢——(r—¢¢i)¢] +—< +2Vi¢) o
4 8
CQ ..
. fUP 4.

Notice that if we had set any of these terms at any given order in powers of ¢ to
zero, it would have given us a Carroll diffeomorphic and Weyl covariant equation.
We do not have to just restrict to the lowest order term (the leading term in the
ultra-relativistic limit — as was done in the previous works [70, 69, 68, 27, 75, 76,
18, 17, 72, 19]). However, if we took the linear combination exactly as in (4.58) we
can re-package the equation into a fully diffeomorphic and Weyl covariant equation

(4.57) in the pseudo-Riemannian space with metric (4.55).

Let us now turn to the action in this special case. For this, we start with the
Lagrangian density of the conformally coupled scalar to the background Randers-

Papapetrou metric (4.55) and again expand it in powers of ¢. This gives us:

5= / dt dx w/a {(é@f — (7 4 +200) @2}

— c/dt d*x wy/a {@1@ Vid + é(f —2Vid' — 2¢;¢") ‘1’21

03

- @ dt d2X W\/a fijfij (I)2 . (459)

If we put ay = % and 3, = —é (with A\; = 0) and use
0, (Vah ®?) = w/a [zecpétcp + (602 + 6,0) cp?} (4.60)

we see that the O(1/c) term of this action is a special case of (4.51) with (z,0) =

(1,1) up to a total derivative. Similarly noticing that
0; [wv/ad' @*) + 0, [Vabi¢' ®°] =w+/a [2 BPO,® + (¢ + Vi) @2} (4.61)

and setting ap = 1, 5y = é we can see that the O(c) term in this action is again a
special case of (4.53). Finally, the order ¢ term can be added for free again in this

case of z =1 and § = 1/2 as before.
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4.4 Gauge fixing and residual symmetries

So far we have been using both Carroll diffeomorphisms and Carroll Weyl symmetries
to constrain our theories. However, our main interest is in getting down to Carrollian
CFTs. For this, we need to fix the background spacetime geometry as much as
possible using the local symmetries. In the standard construction of CFTs in the
background of a (pseudo) Riemannian manifold one takes the background metric and
then uses the local symmetries in (d 4 1)-dimensional case ((d+ 1) diffeomorphisms
and 1 Weyl transformation) to fix (d + 2) components of the metric completely.
Furthermore, if one wants to get a conformal field theory with symmetry algebra
s0(2,d+1), then the background should be conformally flat. This condition requires
that the metric g,, should have vanishing Weyl tensor: W,,,» = 0 (or the Cotton

tensor C, = 0 in d = 2 case).

Turning now to the Carroll case we again have in a generic geometry, specified by
(aij, b;,w), as many as 3(d+1)(d+2) components which are all arbitrary functions of
(t,x). But the local symmetries have two functions (#'(¢,x), B(t,x)) of both space

and time and d functions (2//(x)) of space alone.

We are looking for 3-dimensional Carrollian CFTs with symmetry algebra ccuéz) that
contains the conformal algebra of the two-dimensional base space so(1,3) — so we
would like to be able to completely gauge fix a;; to some fixed time-independent
metric. One possibility is that we restrict to Carroll geometries where a;; is of the

form:
a;;(t,x) = eX(t’x)aZ(»?) (x), det a,(;?) (x) = fixed. (4.62)

Note that the choice of two-dimensional metric in (4.62) is the same as the choice of
boundary metric on codimension-two surface s in Newman-Unti gauge considered
in Chapter 3 for asymptotically locally flat solutions. In other words the metric a;; is
conformally time-independent. Then we will have two components in al(-?) (x) which
can be gauge fixed completely using the spatial diffeomorphisms alone. We can use
the temporal diffecomorphism and the Weyl symmetry to gauge fix x(¢,x) = 0 and
w(t,x) = 1. It turns out (as shown later on in this section) that this will be sufficient

to ensure that the residual symmetry algebra is ccaéz).4

Some examples of Carroll spacetimes include: Flat Carroll spacetime [70, 69, 68, 27]

“4For the choice of metric in (4.62), the complete set of Carrollian analogue of 3d Cotton tensor
do not go to zero as shown in [81] and one has to further impose some notion of conformal flatness
on the one-dimensional fibre of Carrollian manifold Coy 1.
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given by
a =0y, bi=b", w=1 (4.63)

where bgo) are constants. For this we have § = ¢; = 41 = f; = 4%, = 0. The
time-like action (4.51) is what people obtained by the ultra-relativistic limit of the
Klein-Gordon scalar in 3-dimensional Minkowski spacetime Ms,;. The space-like

action (4.53) becomes, for z = 2§
/ dt d®x [&-@&@ + A<I>2+%] . (4.64)

More general Carroll manifolds that include some of the interesting Carroll space-
times, such as null infinities, black hole horizons etc, and their conformal symmetries
are discussed in detail in [27]. To study the symmetries of the gauge fixed actions

one takes the vector field that generates Carroll diffeomorphism to be of the form:

€= f(t.x) 0+ E(x) 0,

Under the infinitesimal coordinate transformation
V=t+w  (f+Eb)+-, al=2"+&+--. (4.66)
the background data (a;;, b;,w) and matter field ¢ transform as:

Seaz; = —2f Aij — (Vi + V&) |
wl b = —Of — i €',
(Sgbi = —bi (Cb]fj + étf) + fij gj + (51 - ¢z) f7
5e® = —(f @ + £10,D) . (4.67)

Under the infinitesimal Weyl transformations with B = e?, we have

0oij = =20 Qjj, O = —20 W,

(So-bi = —ZO'bz', (qu) =00d. (468)

One first demands that the metric on the base a;; is invariant under the combined
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action (4.67, 4.68):
(55 + 5(;) Q5 = 0 (469)
and this leads to
1 e o 1 -
2f |:7ij — 59 %} + Vi + V& —Vilay; =0, o= _§(f9 +Vi€') . (4.70)

Now following [27] we will also choose to impose that the traceless symmetric tensor
Gij = Yij — %9 a;; (referred to as the Carroll shear) vanishes. This condition can be
solved for and it implies (4.62). Next we choose to impose (d¢ + d,) w = 0 and this

leads to

z Z, 2 2 i
(at_ée)f_§<vi_;¢i)§ =0,

along with @zfj + ﬁjfz - @kfk Q35 = 0. (471)

Finally noticing that these equations are Carroll Weyl invariant one chooses a;; to
be a completely time-independent fixed metric. This implies that 8 = 0 and the
Carroll Levi-Civita connection 47, reduces to the Christoffel connection for (now
time independent) a;;. One also chooses a fixed background value for w (say, w = 1)

without loss of generality. Then the residual symmetries have to satisfy

Vi€ + V& — Vitha;; =0,
z 2 ,
Onf = 5(Vi— )€ =0. (4.72)
z
One can integrate these equations completely and the result is given in terms of

{T(x),Y"(x} where " = Y"(x) are the conformal Killing vectors on a;; and T'(x) is

arbitrary:

ft,x) =T(x)+ g/ dt’ [ViYi(x) — %@' Y'(x)

= T(x) + %tViYi(x) — b(t, %)Y (x) (4.73)

where we have set w(t,x) = 1 and ¢; = 0;b;. So the Carrollian conformal Killing
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vector is

E=(f+€0:)0+E0,
- [T(x) + gt VYi(x)| 0+ Yi(x)0,. (4.74)

It is argued in [27] that the algebra of the Carrollian CKV does not depend on the
choice of w either. The fact that the b; dependence is cancelled out in the final
answer (4.74) is also general enough that we do not need to fix b; to define the
residual symmetries. Therefore the residual fields b;(¢,x) along with ® transform

under the Carrollian conformal transformations as:

Sbi = —b; (0,6 + 0f) + fi; € + (0 — ¢i) [ — 20y,
60 = —(f OB + 0P+ 00D, (4.75)

where we have to use a;; to be fixed and time-independent (for instance that of a
round S?), w = 1 (and hence ¢; = 9;b;), & = Y(x) and f(t,x) as in (4.73). These
form the symmetries of our theories by construction when we gauge fix as above.
This means that our ccagz) symmetric scalar field theories, after gauge fixing the
Carroll diffeomorphisms and Weyl symmetries would have the matter field ®(¢,x)
along with the geometric fields b;(¢,x) dynamical. Then the transformations (4.75)
are their symmetries and can be used to study the conserved currents and charges

etc. of our theories both at the classical level and beyond.

There are other interesting possibilities to gauge fix the local symmetries with ap-
parently different residual symmetry algebras - we discuss one such gauge now. Let
us consider restricting the background Carroll geometric data (a;j, b;, w) by imposing

¢; = 0. This condition can be solved as follows:
1 t
—(Ow+0b) =0 = bt x) = b\ (x) — 9, / dt’' w(t',x) (4.76)

If we further gauge fix w = 1 as in the previous gauge choice we conclude that
¢; = 0 implies that b; is independent of time. So we can use the spatial Carroll
diffeomorphisms to gauge fix b; = 0.° Finally, we can use the Weyl symmetry to
fix the determinant of a;j, say @ = 1, which in turn will imply ¢ = 0. So in this
gauge we have ¢, = 0 = b, = f;; = 0. Using (0¢ + 6,)b; = 0 leads to 0;f = 0.
From (d¢ + 6,)w = 0 we find 0 = —%&gf(t). This gauge leaves a;;(t,x) to fluctuate

subject to the condition a = 1 along with ®(¢,x). The condition a = 1 also implies

A weaker condition is to fix b; to be such that f;; = 0.
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o = —1V,£'. Since o ~ 8,f(t) the only consistent choices are f(t) = o+ ¢ and
Vi = %ﬂ, for constant o and B. One may further choose to set = 0 (though
this is not necessary in all the cases) as in [15]. Then one has £ = ad; + £'0; with
constant o and V;£ = 0, giving rise to an algebra isomorphic to R @ A4 where A is
the algebra of volume-preserving (smooth) diffeomorphisms of a;; (say R? or round
S%). In the 2 = 1 case, such an algebra has appeared recently [15] in a different

context.

If we allow for partial gauge fixing of the local symmetries of our theory and only
gauge fix the determinant of a;; to 1 and further gauge fix w = 1 like in the previous
paragraph with no further conditions on b;’s then in this case from (é¢ + d,)w = 0,

one obtains,
—Oif — & —2z0=0 (4.77)
and the determinant condition a* (0¢ + d,) a;; = 0 leads to,

o= —%(fe + Vi) (4.78)

As we are considering geometry with vanishing Carroll shear, the only time depen-
dence appearing in the metric is the conformal factor. Using Weyl symmetry to fix
the determinant of the metric implies that the metric is now time independent and
therefore one can set d;a;; = 0, which means that the Carroll Levi-Civita connection

reduces to the Christoffel connection. Solving for f in (4.4) one obtains,

2
= T(z) + %tvigi _pe (4.79)

f=T()+ = / dt’ {W’ = g@ﬁi]

This is similar to (4.73) except that the CKV condition on &' is dropped. So the re-
sultant vector field that generates Carroll diffeomorphisms for this particular partial

gauge fixing is of the form,
z . .
&= (T@) +5tvig) 0+ €0 (4.80)

with no further condition on &°. For z = 1, this vector field is identical to the bound-
ary vector field that forms the representation of generalised bms, symmetry algebra
[47, 153] where T'(z) is the supertranslations and &' are vector fields associated with

arbitrary diffeomorphisms on S?, namely, Diff(S?). Therefore we see that to ob-
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tain generalised bms, symmetry algebra from the residual gauge transformations of
Carrollian diffeomorphisms one has to resort to partial gauge fixing of background
geometric quantities because any attempt to gauge fix b;’s will eventually reduce
this symmetry algebra to R & A. We leave the determination of the exact nature of

field theories having generalised bms, global symmetries to future endeavours.

4.5 Further Comments and Discussions

We presented equations of motion for a scalar field coupled to a generic 3-dimensional
Carroll geometry that are Carroll diffeomorphic and Weyl covariant. Even though
we have demonstrated our methods most explicitly for 3-dimensional Carroll space-
times the generalisation to arbitrary (higher) dimensions is straightforward — see
the Appendix C for some technical details of this exercise. Also one can extend our
construction following similar methods to include Carroll like Maxwell, Yang-Mills
fields and other matter fields.

We have concentrated on classical theories in this chapter. It will be interesting to
explore the quantum aspects of our theories — including renormalisation, anomalies
etc. We need to compute the Noether charges for the symmetries and show that they
form ccagf) [19]. In particular, we will need to construct the soft charges — which may
lead to Ward identities of celestial amplitudes in connection with the soft graviton
theorems (see [134, 53, 6]). See [7, 88, 154, 87| that explore the connection between

Carrollian CFTs and Celestial CFT.

There are some features expected of holographic dual of flat space gravity [55, 56,
88, 154]. It will be interesting to see if these are borne out in theories of the type we
constructed here. In this connection, we anticipate that the existence of additional
fields, either b;(t,x) (or a;;(t,x) with a = 1) may play a useful role. For example, the
emergence of chiral bms, from this set-up would be extremely interesting to study
and constitute one of the future directions. One also expects such requirements to
impose further cuts on the spaces of classical theories we find, along with any other

possible quantum consistency conditions.

In this work, we concentrated on Carrollian theories. However, the same techniques
can be used for constructing the Galilean theories as well. There is a curious duality

between Carrollian and Galilean field theories [70]. It would be interesting to check

6See [81] for the construction of the Carrollian Chern Simons gravity actions and equations of
motion from the 3d Chern Simons gravity using the technique we provide in (4.3).

100



if such duality exists between our theories and the corresponding Galilean ones.

Eventually one would like to construct fully consistent (perhaps supersymmetric)
Carrollian CFTs which can potentially be useful to describe flat space gravity/string
theories holographically. We hope that our methods will lead to more avenues to

explore than the method of taking ultra-relativistic limits of known theories.
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Chapter 5

A chiral VW-algebra extension from

AdS, gravity

One of the main results of the first part of the thesis was the realisation of chiral
bms, algebra, uncovered in celestial CFT [13, 14] from the bulk asymptotic sym-
metries of RY gravity. In this part of the thesis motivated by the existence of
chiral bms, algebra defined in (3.1), we look for the chiral extensions of s0(2, 3) that
play a role in AdS, gravity. Until recently it was considered that the symmetry
algebra of asymptotically AdS;,; spacetimes for d > 3 is finite-dimensional so(2, d)
for a class of boundary conditions [155, 95].) As mentioned in the introduction,
in [15, 16], the authors proposed new boundary conditions for generic asymptoti-
cally AdS, spacetimes in Bondi gauge, where they uncover the symmetry algebra
of residual gauge transformations to be an infinite dimensional Lie algebroid,? the
A-bms,. Specifically, they fixed only part of the boundary metric using the residual
symmetries. The A-bms, and its corresponding phase space in the flat space limit
(A — 0) coincide with the generalised bms, algebra and the phase space associated
with it. To impose a well-defined variational principle, they further set part of the
holographic stress tensor to zero giving rise to reduced symmetry algebra which is
a direct sum of R @ A, where R denotes the abelian time translations and A is the

algebra of 2-dimensional area-preserving diffeomorphisms.?

In this chapter, we answer the following two very natural questions that arise due

!Special cases of infinite dimensional enhancement of symmetry algebra in the case of AdS,
were considered in [156, 157].

2In Lie algebroid, the structure constants are background field dependent [15].

3Note that such a symmetry algebra was also uncovered from the Carrollian CFT in Chapter
4.
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to the existence of chiral bms, in celestial CF'T and its realisation from flat space

RY3 gravity,

e Is there a chiral extension of s0(2,3) algebra that in some appropriate flat

space limit reduces to the chiral bms,?

e Can one obtain such a chiral version of A-bms, algebra from the AdS, gravity?

To obtain such a chiral extension of so0(2,3) from AdS, gravity, inspired by the
chiral boundary conditions that we used in Chapter 3, we propose chiral boundary

conditions for solutions in Newman-Unti gauge in AdS, gravity.

The boundary conditions that we employ in this chapter form the subset of Neu-
mann boundary conditions [99]. We consider locally AdS, solutions for which the
components associated with the holographic stress tensor go to zero and the bound-
ary metric is conformally flat [105].* Because the boundary metric is conformally
flat, these solutions are referred to as asymptotically AdS, solutions in the litera-
ture [95, 158]. We obtain an infinite-dimensional algebra of asymptotic symmetries
associated with these solutions after imposing chiral boundary conditions consistent
with a well-defined variational principle. We denote this algebra by chiral A-bmsy,.
Furthermore, the resultant chiral locally AdS, solutions that we obtained are in a
specific form such that in the flat space limit (I — oo, where [ is the AdS length),
one obtains chiral locally flat solutions derived in Chapter 3. The chiral A-bms, is a
Lie algebroid and in the flat space limit it reduces to the chiral bms, algebra (3.1).
The following are the results of this chapter:

e We obtain locally AdS, solutions parameterized by six holomorphic functions
{Jo(2),T(2),Gs(2)} a € {0,£1},s € {£5} with the algebra of the residual
diffeomorphisms being a Lie algebroid. These diffeomorphisms induce non-

trivial transformations on the holomorphic functions similar to currents in a
2d CF'T.

e We postulate a line integral charge as that of 2d chiral CFT and derive the op-
erator product expansions (OPEs) between the currents (of the previous para-
graph) such that they produce the same variations of these currents. These
OPEs (and the mode commutation relations obtained from them) give us the

semi-classical limit of a W-algebra.

4The necessary and sufficient condition for d = 3 boundary metric to be conformally flat is the
vanishing Cotton tensor.
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e We derive the quantum version of the aforementioned W-algebra in a 2d CFT
by imposing Jacobi identities on the commutators of the modes of the chiral
(quasi-) primaries, a method developed by Nahm et al. ([25] and references
therein) as an equivalent implementation of constraints from OPE associativity
[159].> We denote this algebra by W(2;(3/2)?,1%) and show that in the semi-
classical limit with proper identification of parameters, this algebra matches

with the chiral W-algebra symmetry of AdS, gravity alluded to above.

e The full commutator algebra of W(2; (3/2)?%,13) that we derive in this chapter

is given as follows,

C
[Lon, Ly] = (m —n) Ly + Em(m2 — 1)mino ;s

1
[Lm7 Ja,n] =N Ja,m+n7 [Lma Gs,r] = 5(” - 27”) Gs,nJrT s

/

1
[Ja,ma Jb,n] = _§Kmnab 5m+n,() + fabc Jc,m+na [Ja,na Gs,r] = Gs’,n—i—r()\a)s s

1
[Gs,m Gs’,r’] = €ss’ [Oé <T2 - Z) 5T+r’,0+ﬁ Lr+r’ +7 (‘]2)7"4—7" +5(T - r/)Ja,T-FT'()‘a)ss’

6k (14 2k) 1 1 1
S A = — k(342 — —~(5+2K), § = —=~(3+2
s 0 @ 4%( +2k), B 47( + 2k), 27( + 2r)

with c¢=

(5.1)

where 7, = (362 = Dasnor fur® = (@ = )8 Aew = 3080 (Ao =
Nap(A?)ssr, £ # —5/2, and v can be fixed to be any non-zero function of x by
rescaling the Gy, appropriately. Finally (J?), are the modes of the normal
ordered quasi-primary 7% (J,J,)(z). This algebra can be identified with the
N = 1 case of an infinite series of algebra defined for 2N bosonic Spin-%
currents and spin-1 Kac-Moody current for sp(2N) derived by Romans in a
different context [24]..

e We also write down all the 3 and 4-point functions of the currents in operator
product algebra (5.1) that can be shown to admit all the expected crossing

symmetries.

The rest of this chapter is organised as follows: In Section (5.1) we present the
calculations in locally AdS, solution and show the emergence of chiral A- bms, as
the asymptotic symmetry algebra after imposing chiral boundary conditions. We

then show that the algebra of charges that generate this symmetry algebra is a type

5See [160], [161] and also the comprehensive review [162] of everything to do with OPEs.
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of W-algebra. In Section (5.2) we derive the quantum version of this WW-algebra
from 2d CFT techniques. We implement the OPE associativity of operator product
algebra through the Jacobi Identities of modes of symmetry-generating currents of
this W-algebra. Section (5.3) contains the details of the 3 and 4-point functions of
the symmetry currents of our W-algebra. We conclude in Section (5.4). In Appendix
D, we provide the coordinate transformations that allow us to write the chiral locally
AdS, solutions in Fefferman-Graham gauge and Appendix F provide some details on
the imposition of the associativity constraints on 3 and 4-point correlation functions

of symmetry generating currents. This chapter is partly based on [163]

5.1 Locally AdS,; Solutions

To obtain a candidate chiral A-bms, algebra from AdS, gravity, it is sufficient to
analyse solutions to Einstien equations that are locally AdS, (LAdS,). Therefore we
consider LAdS, geometries, which in addition to being the solution to the Einstien

equation for negative cosmological constant in four dimensions,
3
E,uz/ — R;w + l_2 G = 0 (52)
also satisfies locally AdS, condition given by

1
A/.LVO’/\ = R,Lwcr)\ + Z_Q (g,uogzx)\ - gu)\gua) =0. (53>

Equation (5.3) implies equation of motion (5.2). Taking the flat space limit [ — oo
of these two equations we obtain the conditions for locally flat (LF) geometries
that were used in section (3.1.1). To obtain solutions satisfying the conditions (5.2)
and (5.3), we work in Newman-Unti (NU) gauge with coordinates (u,r,z,z). We
prefer this gauge over Fefferman-Graham (FG) gauge because it is straightforward
to compare LAdS, solution with the locally flat solutions of (3.72) and (3.73) in the
limit (I — oo). Using coordinate transformations one can map solutions in the NU
gauge to the solutions in the FG gauge as shown in the Appendix D. Recall that

this gauge is defined by imposing the following conditions on the metric g,,,,

9rr = Grz = Grz = O; Gur = —1. (54)
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The line element is then given by,
dsipgs = =2 dudr + g;j(r, 2*) da' da?, (5.5)

where r is the radial coordinate and i labels the boundary directions (u, z, z). The

metric components g;; for i, j € {u, z, z} are expanded in the following form:

gij(r,u, 2, %) Z?”Q ”gw u, 2, Z). (5.6)

Imposing the condition (5.3) one finds that the solution terminates at order O(1) in

power series expansion in r such that for LAdS, solutions in 4d we have,

2

Gij(ryu, z,2) = Z P2 gg)(u, 2, Z). (5.7)

n=0

We begin by solving Einstein equations £, = 0 for the solution ansatz (5.5) in
NU gauge at each order in 7 near the boundary (r — oo). From O(r?) term of the

component F,, one obtains the condition,

1
= Det (g%, (5.8)

Det (g-((-])) =7

1

where a € {z, z} labels the index on codimension-two hypersurface. This condition

is solved by taking gSSB to be of the form,

1
gfﬁ} = _l_2 + Vg U , (59)

where we define v, == g{% in this chapter and the indices {a, b} are lowered and

raised by boundary metric gl(l(l],) and g%’) respectively. The algebraic condition at

@) (%) in F,, gives the expression for gq(Lla) as follows,

gl = g&) v, (5.10)

Similarly the order O (%) term of E,,. and E,, can be solved respectively to obtain

gﬁlu) and gq(fa),

0 a 1) « a 1 a 1
gl = 5T Dv® — 2% v o + 3v7gll) — ﬁg(é’) 9%, (5.11)
Uy 1y m 1
9% = 2g§b)vb + 5 90) D.gly) — 5 9 Da gy, (5.12)
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where 0 = g“é’) f)ugg;) and D v® is the covariant derivative defined with respect to

the 2d boundary metric g b At O (r) in E,, we obtain the following condition that

will be used to solve for g( )

ab
L D s Diov — Data® 1 Lgs® _ g ,0f _ 1 Wm0 _
ﬁgab - aVp + Dy Vg — DU Yab + 5 9ab wIap | — ?90) 9ed Gap = Y-
(5.13)
The O(1) term in E,;, gives us the following condition,
O @, Bo 1 ) 1 W Lo ow, 1 a on o
Yab |:guu + 2 4[2 9ed g( 1) + 29( )augcd 4 g(O) Yab 0 92 g(O) v De 9ed
(& 1 a 1
+ v gé? + l_gg(é)) gtg,b) 2952” +35 5 g gab D v (d)DcUd
Loab g @, 1 @ 1 4
+ 177 90) 9ab Ouar, + 2900 — 5 9(0) Jab Diavs) =0 (5.14)

where Ry is the Ricci scalar of metric gi?)). Taking the trace of this equation allows

us to solve for gfﬁ),

R(O) 1 1) ab 1 ab (1) 1 a b (2

gﬁ) I + 12 gib 9a) — 5 5 9(0) OuGapy + 3 3 9(0) gab) 0 + 9( )Ue D, ggb Vv ga)
3 a 2 a 1 a

~ 5 9((?) géb) +29%) v — 1 ~ 900 )Qf;d) Dy v* Jrg(b) Dqvy. (5.15)

In order to obtain gc(i), we impose locally AdS condition of (5.3) which is easier to

implement in the form

det(g“) A, pe = 0, (5.16)

as the series expansion in 7 is a positive power with highest order 8. det(g“®)
is the determinant of full 4d metric in NU gauge. The O(r2) term of component
det (g(4d)) Aurur glVGS g(b) as fOHOVVS7

1 C
g% = Zgé? 98 9% (5.17)

The pullback of the metric in the Newman-Unti gauge at the boundary Z at r — oo

is given by,
1
dsyy = (_ﬁ + wﬂ) du? + 2v, dudz® + g0 da® da”. (5.18)

Some comments about our solution are in order,
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1. In the flat space limit the condition (5.8) implies that g;; is degenerate and

another way to solve it is to set g{% = v, = 0, as we did in (3.4).
2. The condition in equation (5.13) implies that gﬁ,) is not free data on the

boundary and is given in terms of v, and g(g) This is in contrast to the locally

flat solution where g ) is free data at the boundary null infinity. This can be

seen from taking the flat limit of (5.13) where the term proportional to g((lb)

drops out and after putting v, = 0 one is left with the condition constraining

the time dependence of the boundary metric g((lg). For a locally flat solution,

this equation implied that the boundary metric is conformally time-dependent,

(géb) = Qu, 2z, 2) qup(2, 2)) where we choose 2 to be u-independent such

that # = 0. For LAdS, solutions we do not have any such restriction on gg;).

3. We further set g%’) gé? = 0 as part of our gauge condition. This is standard
practice for solutions in NU and Bondi gauge and is equivalent to the condition
of fixing the origin of an affine parameter of the null geodesic [164]. The final

metric components are then given by,

0
gl(i") _5 + Dal)a + gc(l})) v Ub

1 1.
9% = 59((5))?}}’ +t3 90) D.g'),
(5.19)

1
8 = | Dat Dyva = D gl + 5008 — 0ua |

2) RO 1 (1) a

1 1 C a 1 a
Gl = =5 — 372 9 90 — 5 90 0.9l + gbs v Do gty + g% Davy

2

along with equations (5.9) and (5.10).

4. One can check that for v, = 0 and # = 0 in the limit [ — oo the metric
components coincide with those of locally flat solution in (3.12) except that

gg) is free data.

For LAdS, solution the boundary metric g((l?)) and v, are the free data on the bound-
ary,® in terms of which all other metric components are given. For our solution to
completely solve equations (5.2) and (5.3), the Cotton tensor of the boundary metric
(5.18) necessarily vanishes following the analysis of [105]. This imposes constraints

(0)

on boundary data g,,” and v,. We do not provide these constraints nor their general

solutions in this chapter as it is not needed for our analysis. We will solve the con-

5Note that {9((1(1)))7 v®} constitute only five independent metric components of 3d boundary metric.
The sixth component is fixed due to the condition (5.8).

108



straints only after imposing further boundary conditions on our free data { ggz), Va},

which we obtain after imposing a well-defined variational principle.

5.1.1 Variational principle

In this section, we will find boundary conditions for the fields in configuration space
motivated by the variational principle which will then allow us to completely solve
the constraint conditions on the free data. The action for the Einstien equation in

4d for non-zero cosmological constant is given by,

1 \ 6

The variation of this action gives an equation of motion and a boundary term which
depends on the normal derivative of the boundary metric. To solve the variational
principle one usually adds Gibbons Hawking term and various counter terms such
that in the end total variation of the action is only proportional to the boundary
component and not its derivative. Since we are working in Newman-Unti gauge we
use the boundary terms found in (3.55).” The boundary action that we add to the

Einstein-Hilbert action is,

Shdry = (167G) /o [2 Veo,V, — 0w — (w o® L VeVt — ey, aab) 0,0y — 0¥ 8uaab}
=V 0,(VV, —w)+2 [(VV, —w)d, — D] Vo
(5.21)

and the total divergence term in dSgpipary 18 (167G) ™! times
0o [Vo (6V* = V®04.60")] (5.22)

that we ignore (this amounts to assuming that the geometry of 35 with coordinates
(z,2) is either compact or, when it is not, the integrand falls off fast enough near its
asymptotes). Here V, = gua, W = Guu, 0ap = gap- Substituting the series expansion
of these components near the boundary Z, one obtains the following expansion of

"Normally the boundary action for AdSz,; gravity in Fefferman-Graham gauge [101, 102] or
the gauge used to describe ‘boosted black brane’ [165] is invariant under d-dimensional boundary
preserving diffeomorphisms. We expect the variational problem that gives rise to chiral symmetry
algebra in NU gauge to hold for these gauges as well.
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the variation of total Lagrangian density after adding boundary action,

ed (1
SLEHvbary = =272/ 9@ 6g8) — %1/ g© {2 (9ihols)) 690 + 259&9]
-y g© [2 59%) + g1(j,u) 9(0) 59(0) (9(0)9£d)) 59( ) — 29%)9(0)59217)

- % <g( )8ugz(,i) ) dgly) — (gfg)augéd)) (g(o) 59(0))] \/ﬁ 6Ly + O(1/r)

(5.23)

where:

6Ly = % (9(0 ) Sgin) + ;guu (9 5gab)

Lrl -1 (1) -1_.(2) 1) ,—-1_(2) -1
D) [éTr (g(o) g)Tr (g(o)g ) —Tr (g 808 g(o))

1 _ _ _ 1 12 2 c
- ng" (g((]; gW)Tr (g(l)g(oﬁg(l)g(&) + ZTY (g(l)g((ﬁ) ] dg — (D(agl(o)zl — DY gab) 58;

1 o1
- ;lTr(g(oﬁ g) <8ug§b — (Trg(”)gé?> o) + 5 (8ugab dgiy — Tr(9u.g™) (gab ogls ))
+ g2 gehog) — 292 gt sgir) + g2 gt gty
| ) ) )
-3 (Tr <g(0§8ug(1)g(0§5g ”) —Tr (g(oﬁaug(lv (g(o)ég )) (5.24)

with Tr (9(_0; g(2)> = g( )gc(bb and so on. The variation is calculated at r = rg

hypersurface and in the end, we take the limit ry — oo. The terms at O < ) for
")
n > 1 vanish in this limit and therefore one does not need to consider these terms

for our analysis.

Now we impose boundary conditions on the boundary data such that the total

variation in (5.23) is zero on the solution space.

1. For the terms at O(r?) and O(r?) to vanish one has to impose 59\ = 69 =
This condition implies that v, = dv, = 0 for our solution. It also states that
00 = 0 which is solved by keeping determinant of the 2d spatial boundary
metric fixed such that d4/det g(g) = 0. To impose such a condition we parame-
terize our boundary metric g( b) in chiral Polyakov gauge where we set gg—) =
and gz‘2 = Q(z, z) and 597 = 59(0) = 0. Q(z, 2) is the conformal factor of 2d
metric which is 2 5 for R? and (757 for S?. In rest of the analysis we work
with Q(z,2) = 3. Tt is stralghtforward to extend the solution for the case of
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S?. The line element of the resultant 2d boundary metric is given as follows,

ds?; = ¢ (u, 2, 2) dz* + dz dz (5.25)
These chiral boundary conditions on the boundary metric are similar to what
was imposed in (3.25) except now the boundary metric has u dependence as

well.

2. At order O(r) we impose one more condition which is,

5/d22 {\/ﬁRo] = 0. (5.26)

This condition was also used for locally flat case in Chapter 3. It corresponds

to holding the Euler character of metric 9((1(}))) fixed [129].
The above conditions along with g%’) g&) = 0 ensure that 6L gp4pay vanishes on the
solution space that shares the same boundary conditions. In literature the boundary
conditions v, = dv, = d4/det g((l?)) = 0 were also imposed in [15] where the symmetry
algebra of asymptotically locally AdS,; was found to be A-bms,. These conditions
were realised using the gauge freedom of the boundary diffeomorphisms and Weyl
scaling of boundary metric data. Instead of imposing chiral boundary conditions,

their treatment kept the boundary metric 922) general with determinant fixed.

Once we impose these boundary conditions on our configuration space we see that

0
g
completely by solving the following constraint equations that are obtained from the
O(r3) terms of det(g¥) A, .z, det(g¥?) Ay, and O(1°) terms of det(gU?) A,.,.

respectively,

is the only free data on the boundary. One can now easily solve (5.2) and (5.3)

0,029 =0, 9.029%) =120;0.9, (5.27)
1 [2
O |5 (0:02)" — g2 0290 + 0. 0: 91 — 05| = 0. (5.28)

It is important to keep track of the correct powers of [ in the solution because 9512)

should have no length dimension and hence any power of u should be accompanied
by % to make it dimensionless. Being careful about the correct scaling factor plays
an important role while taking the flat space limit. Since gi})) has length dimension

one and should also survive the flat space limit, we write down the solution in a way
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that it scales as v/G(G is the Newton constant) in the limit [ — 00.® Keeping these
in mind, the solution to the equations (5.27) and (5.28) is given by,

ggg) =T(u,2) +J1(2) + 22 Ji(2) + 2 (Jo(z) —

2
B uvVG 3G12(2) 01(2)  0Gi1)2(2)  Gija(2) Jo(2)
Pl z) == < 152 20 27(2) )
u? <GG1/2(2)2 N Jo(2) 04i(2)  3(0h(2))* | *i(2) )
l2 4[2 J1(2> 2]1(2) 4]1(2)2 2J1(Z)
Gaane wonee P CE) ()
_u 1/2 1% u 1\% t 5 t 5
WG AnnG) T v et )
(5.30)
where,
Ki(2) = % [21(2) (0G1y2(2) — 2G_1)2(2) J1(2))
+ G1y2(2) (2Jo(2) Ji(2) —30J1(2))], (5.31)
Ky(z) = —% (k(z) — % Jo(2)? = 0Jo(2) + 2 Ji(2) J_1(2))
3 Jll(Z)Q [3(0) — Jo(2) Ou(2)) — 2 J1(2) 8 i (=) — %}1@ Gia(2)7].

(5.32)

Let us discuss some of the properties of this solution,

1. As mentioned before the only free data is g,&?. Rest all other metric compo-

nents are obtained from g,&?.

2. The solution is parameterised by six holomorphic functions,

{Ja(2) ,K(2),Gs(2)} for a € {0,£1} and s e {£1/2}. (5.33)

3. As can be seen from the solution, function J;(z) appears in the denominator

at several places. However, the solution has a well-defined limit as J;(z) — 0

80ne can also use Planck length lpr.
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along with the other five functions in (5.33) such that the solution does not di-
verge. One gets back to the global AdS, solution when all the six holomorphic

functions approach zero value.

4. The solution has a well defined flat space limit (I — oc) such that,

1
dS%AdS;; - dS%F + O <l_2> _'_ tte (534)
where - - - indicate higher order terms in l% with,

dsip =— 2dudr + r*dzdz +r* (J,(z) 2'77) d2?

2s

+ru G VG Go(2) 25 + r(2) + %Jp(z)Jp(z) —(14p) 0. Jp(z)> e

2 1 s—1
+2 ( S; VGG, 27T — up(l—i—p)azJpEp_l) dudz

11
—2p(14p)J, 2" du?, pe{-1,0,1}, re {-3:3 (5.35)
The expression of ds? . coincides with the locally flat solution found in (3.72),
where the topology of the boundary metric at the boundary of flat space is R?

with the identification {J, = —J? ,k(2) = —k(2),Gs — % }.

Now that we have obtained LAdS; solution with chiral boundary conditions we
turn next to calculating its asymptotic symmetry algebra, i.e., a set of residual
diffeomorphisms that keep this solution within the same equivalence class. In the
process, we will derive the variations of the six holomorphic functions (5.33) due to

these diffeomorphisms.

5.1.2 Asymptotic symmetry algebra

We look for residual diffeomorphisms that take us from one LAdS, solution to an-
other without spoiling the gauge and boundary conditions of our initial solution.
To preserve the gauge conditions of the NU gauge the vector fields of the form £{#0,,
should satisty,

0,6 =0, 0u" 4+ 0,8" = gua 0:€*, 0uE" = gabargb (536>

From first of the equation in (5.36) we see that {" = £{(u, 2, Z). The other two

equations can further be solved in an asymptotic expansion around large-r. We
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expand " and &% near the boundary as follows,

f—Zrln’" u, 2, Z) 5—27"" (u,2,2), a€{zz} (5.37)

At each order in r the equations (5.36) are solved recursively to obtain the terms at
subleading order in r of £ and £’ in terms of leading coefficients £(o) and 520) and

52‘0). The first few terms are given by,

f(ro) = _aué%) +0v* 3(1556) ) 5{2) = gffa) 5?1) + 25?2) gqu),
£€n) = g?n—l) gvfz) , for n=34,---, (5.38)

a al U a 1 a 1) ¢ U
) = —9(0) 0&loy . ) = 59(5) 9h 96) Da &ty

Also demanding that the vector fields preserve the traceless condition of gg,) allows

us to solve for 56) which is given by,

, 1 u 1 a 1 1 u be (1 1 c U a 1
Sy = 5HE" = 180 De <9< )9§C)> — 70 (f g?o)géc)> + 70 0e €ty 9 9ur - (5:39)

Here &, and fp,) are unconstrained functions of (u, z,Z) and constitute boundary
vector fields that are obtained by the pullback of £ on the boundary

ébdry — giu(]) 8u + 5?0) 8a. (540)

The variation of free data g((l(;) and v, in terms of these components of boundary

vector fields are given by,

095 = &loyOu 9% + Les, 9% + 20D &by — 208 (90 5(0 —°0.€l),  (541)
(Sva = 5210) auva + ;Cg(co) Va + Vg (2 UC 86 gzLO) — au 5(0)) —|‘ gab ug?())

1 u u
- l_gaag(o) 9% + Oa £(0) v’ vy, (5.42)
Here EffO) gé?)) is the Lie derivative of boundary metric gg;) under boundary vector

field 5(00). Demanding that the transformation of free data at the boundary { gi?)) ,Va }
under (5.40) should obey the conditions obtained by solving variational principle will
give us constraints on these boundary vector fields. The conditions that we impose

are,

5g§ =0, 59(0) =0, dv, =0 (5.43)
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along with gég) =0, g(O) . From 592) = (0 one gets,

€ (1, 2,2) = Y*(u, 2) (5.44)
From dv, = 0 one gets the equation

a€ guu = _gab) 0 60) (545)

The z component of equation (5.45) can be solved to give

oy = flu,2) + giauYz(u, z). (5.46)

Imposing & gig) = 0 allows one to write £ as follows,

_ _ 12
Ey =Y (u,2) +2(20,f — 0.Y?*) + =720 Y”*. 5.47
(0) 9 u
Also, we have o) = —8ufz‘0). Note the explicit Z dependence of the boundary

vector fields. Using these expressions one finds that the z component of (5.45) is
a polynomial in z with the highest power of z as 2. Setting the coefficient of each

power of Z in dv, to zero separately one gets the following conditions,

Ea?’YZJrJl( )0Y*(u, 2) = (5.48)

02 f(u, 2) + Jo(2) 0,Y*(u, 2) — 0,0, Y*(u, 2)

;2 (20 J1(2) 0, Y (u, 2) — uv/G Crjal2) 9,Y7) = (5.49)
5 8u Y*(u,z) — %2(92 flu,2) +T(u, 2) 0, Y*(u,z) =0 (5.50)

where I'(u, z) was defined in equation (5.30). After completely determining z de-
pendence of these vector fields one can solve these differential conditions to obtain

the explicit u dependence. The solution to equation (5.48) is given by

\/@P sin (—QU\/ZT(Z)> sin? (u ZJI(Z))
Y*(u,2) =Y (2) + l1/2(2) O + Yi(2) e . (5.51)

As the order of the differential equation is three, the solution has three undetermined

integration functions {Y'(2), Py/2(2),Y1(2)}. Similarly to obtain f(u, z) one solves
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equation (5.49) to find

sin (Qu\/lr(z) cos <2u\/lr(z)
flu,2) = VG P_yja(2) + A0 Ly(u, z) + 7 Ly(u, 2)
+ ﬁ\/(gz)? (2 Ji1(2) (OP1j2(2) — Jo(2) Prj2(2)) 4+ G1y2 Yi(2) + Pij2 0J1(2))

u

G
+ 4J1(Z)2 (2 Jl(Z) (@Y1<Z) — l_2G1/2<Z)P1/2(2) — JO(Z)}/I(Z)> — Y'l(z) 8J1(2)>

+ 5 (0Y(2) +Yo(2))

(5.52)
where Ly (u,z), Ly(u, 2) are ,
Ln.2) = g2 [260a() Piste) + 5 () i) = 42
_ 4;/;% [G1/2(2)Yi(2) + 2 Pijo(2) 011 (2)] + %j(z) Yi(2) 0J1(z), (5.53)
Lo(u,z) = 4}/12) [2 Ji(2) Jo(2) Prja(2) — Gija(2) Yi(2) — Pija(2) 0J1(2) — %apl 12(2)
+ 4l+h(z) (2 Y1(2) 011(2) = 2G Ji(2) Grya(2) Prja(2)] + % Py ja(2) 041 ()

(5.54)

The solution has two undetermined integration functions P_;/5(2) and Yy(2). Now
that we know Y?(u, z) and f(u,z) in closed form, one can use them in equation
(5.50) to obtain Y* as follows,

YZ(u,2) =Y 1(2) + l%/du 0. flu,z) —2 /du (D(u, 2) + J-1(2)) OuY*(u, z) + L3(2)
(5.55)
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where L3(z) is given by,

ble) = \/2@1];1?1()2) =)+ s f((;)z 2(2) ff((;)g (S1(2) Jol2) + 011(2))
S Qé";i, [Jl(z)z Gap(2) + 5 Crpal2) O1(2) = 5 Crpa() i(2) JO(Z)]
3Ni(z) |2 Jo(2)0J1(2)  304(2)* O L(z) 8
8J1(Z)2 {53 O(Z) 3]1(2) - 2J1(Z)2 Jl(Z) - §J71(Z) Jl(z)
56GPG;1/(22()2)] 4J11(Z)2 (Sl_f G1y2(2) 0P ja(z) — 823/1(2’)) (5.56)

where Y_(z) is another integration function and the integral over u can be performed
easily to obtain the closed form. L3(z) is written in a way such that the flat space

limit of this vector field agrees with that of locally flat solutions in (3.99).

In conclusion, the boundary vector fields that generate residual diffeomorphisms on

the chiral LAdS, solution are parameterised by six holomorphic functions
{Yo(2),Y(2),Ps(2) } for ae{0,£1} and se {£1/2}.. (5.57)

The subleading terms in 112 as well as in r expansion are given in terms of these
six holomorphic free functions. The solution to equations (5.48, 5.49, 5.50) is con-
structed in such a way that it has a well-defined flat space limit and the behaviour is
smooth if J;(z) is taken to zero. Also one needs to take care of the length dimension
of vector fields. &% and &% is dimensionless but £“ has dimension one. In the flat
space limit £* gets scaled by v/G like we did for gi})). After taking care of these sub-
tleties one finds that in the large [ limit the components of boundary vector fields

behave as follows,

o) = VG (Po1j2(2) + 2 Pija(2)) + % (Yioy(2) + 0Y (2) +22Y1(2)) + -+ (5.58)

§oy=Y(E) +-- (5.59)
£y = You(2) +2Yo(2) + 22 Yi(2) + - -+ . (5.60)

where - - - denotes higher order terms in l% One observes that in this limit the leading
order terms in llQ expansion of the boundary vector field is equal to the boundary
vector field that was found in the context of locally flat solutions in (3.99) with
appropriate identification of Ps(z). If we now inspect (599 then we can deduce the

transformations of background fields (5.33) in terms of (5.57). We do the following
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redefinition on the fields:

Ti(z) = %Jl(z), Ja(z) - %J_l(z), Yi(z) — %Yl(z), Ya(z) = %Y_l(z).

These variations are then given by

0Ja(2) = 2l—2G (1a)* G(2) Po(2) + 0Ya(2) + £," Jo(2) Ye(2) + 0(Ju(2)Y (2)),
(5.61)
§k(2) = Y (2) 0 k(2) + 26(2) 0Y (2) — O* Y (2)
+ ZZ—QG (7%)* Jo(2) G4(2) Py(z) + ?’Z—QG e G, 0P, + g e 0G, Py, (5.62)

0Gs(2) = gGS(z) Y (2) + Y (2) 0G4(2) — 20° Py(2) + Py(2) (/{(2) + ln“b Jo(2) Jp(2)

2
+ Gy(2) (197, Ya(2) + 40Py (2) (1°)%, Ju(2) + 2 Pu(2) (7%)%, 0Ju(2). (5.63)

Here a,b,c.. € {—1,0,1} and 5,5’ € {—3,3} and f,* and (7%)", are structure

constants defined as,
c C T 1 T
fab = (CL - b) 5a+b ) (T&) s — 5(@ - 28) 5a+s‘ (564)

. . . / . .
The indices s, s' are raised and lowered by €** and e,y whereas indices a, b, c, .. are

raised and lowered by 7% and 74,. These are further defined as,

1
oy = =(1=36%) usno, 1= — 5+, (5.65)

1 — 3a?)
€oyr = 25 040, €5 = =25 5T, (5.66)

5.1.3 Algebra of vector fields
In the previous section, we derived full set of vector fields that enable us to move in

the class of LAdS, solutions. Now we check whether the Courant brackets defined in

(2.14) between any two of these vector fields close under the modified commutator

(&1, &l = & 0,8 — &5 05 &1 — 0g, & + 0g, &1 (5.67)
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Calculating the bracket as in eq (5.67) we find:
[G(PLYLY)), &(PEY2 YD) I = &) Ou+ € 0+ o) 0= + €y 0 + -+ (5.68)

where {f(uo) 75(20) ,5(50) ,5(0)} are functions of P, .Y ,Y, which are defined as follows:

~

2G

Y =Y'(2)0V*(z) = Y?(2) Y (2) — 5 €7 P (2) PI(2),
Vo= Y)Y = Y22 V) — VR YA() - o (r) PLOP?
+ 4l—2G (7)™ P2OP} + 4l—2G Ju(2) € P P2,
b= (), (P*Y2 - P2Y) +Y'OP? —Y?9P! + % PLoY? + % P2oY*

(5.69)

The vector fields on the L.H.S of (5.67) are parameterised by two sets of six holo-
morphic functions written down in (5.57) and under this modified commutator the
form of a resultant vector field on the R.H.S does not change and have the same
functional dependence on a combination of these two sets as written down in (5.69).
Note the dependence of Y on the background function J,. Using (5.69) one can

write down the commutators between various modes of (5.57) as follows,

e Denoting the parameter Y,(z) = —z" by J¢ for a € {—1,0,1} and n € Z.

The commutator of these is given by,
[T5, T = (a—b) Tt (5.70)

This can be recognised as the sl current algebra.

e Denoting the parameter Y (z) as Y (z) = —2""! by L, for n € Z we find:
(Lo, L] = (m=n) Lngn,  [Lm, T = =0T (5.71)

which are Witt algebra, with J(z) being h = 1 currents.

e Finally denoting the parameter P,(z) as P, (z) = —2"+2 where 1 € Z+ 5 and

s € {—%, %}, the remaining commutators work out to be:

1 1
[*Cna Ps,r] = 5(” -2 T) Ps,n—l—?"a [\77—?7 Ps,r] = 5(& -2 8) Pa—l—s,n—l—r =0 (572)
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2G 2G 4G
[Psmv Pw,t} = _<T - t) Js—i—w,t—H“ — 75 Esw ‘Cr—‘rt + l_2€sw (\Zﬁir+1t]a<z))

2 12
(5.73)

Thus the final result of the algebra of the vector fields that preserve our space of
locally AdS, solutions are (5.70, 5.71, 5.72, 5.73). This algebra is one of the main
results of this chapter. The symmetry algebra can be considered as the chiral version
of A-bmsy [15, 16] and is a Lie algebroid as indicated by the presence of background
field (J,(2)) dependent structure constant in the commutator of two P, ;. We denote
this algebra as chiral A-bms,. In the limit [ — co one can see that P,, commute

and resultant algebra becomes the chiral bms, (3.1).

5.1.4 Charges

If we perform the following redefinition of the field x(z) and introduce a new function
T(z) as follows,

T=k(z)— %nab Jo(2) Jp(2)

then the resultant transformations of the field T'(z) and G,(z) are,

6T(2) =Y (2)0T(2) +2T(2) Y (2) — 0*Y (2)
3G

/ G /
— 0™ J(2) 0Yy(2) + T €** Gg(2) OPy(2) + 2 €** 0G4(2) Py(2), (5.74)

0Gs(2) = g Gy(2)0Y (2) + Y (2) 0G4(2) — 20 Py(2) + Py(2) (T(z) + 7% J,(2) Jb(z)>

/

+ Gy (2) (195, Ya(2) + 40Py (2) (19)%, Jo(2) + 2 Py (2) (19, 8.J,(2). (5.75)

The variation of holomorphic functions {T'(z), J,(z), Gs(2)} in (5.61, 5.74, 5.75) is
very similar to the transformation of chiral currents in 2d CFT. For instance, un-
der Y (z), T(z) transforms like a conformal stress tensor of weight 2 of a 2d CFT.
Therefore, we treat it as a stress tensor and Y'(z) as the generator of Virasaro trans-
formations. Then under these Virasaro transformations J,(z) and G4(z) transform
as conformal primaries of weights 1 and % respectively. The transformation of J,(z)
under Y, and the form of structure constant (f,%) suggest that these are sl(2,R)
Kac-Moody currents at some (undetermined) level and therefore the parameters
Y.(z) generate this current algebra symmetry. The transformation of G4(z) under

this current algebra indicates that these G(z) are a doublet of current algebra pri-
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maries. To summarize, the background fields can be classified as a chiral stress
tensor T'(z), a triplet of s[(2,R) Kac Moody currents J,(z) and a doublet (h = 2)

of conformal primary as well as current algebra primaries G(2).

We now promote the fields in (5.33) to conformal operators and propose a line
integral charge just like in a 2d CFT that will induce the transformations (5.61,
5.74, 5.75). Once we propose such a charge, we derive the OPEs between various
operators in (5.33) that will give rise to these transformations. The conjectured line

integral charge is,

2G

ab ss’ dz
Q= § [TOYE) 1 L&) + e 6. Puto)| 55

271

(5.76)

Here we assume that the underlying symmetry algebra is at a fixed level of cen-
tral charge and current level.” The operator product expansions between various

operators in (5.33) are given by

 Ja(w) N 0Jy(w)

T Jalw) =0 T G wy
Ta(2) hfw) == - fafl,y - (55 i(ww>)
T T(w) == - e (iT—(Z)P ' (GZT_(%,
Ja(2) Gs(w) = — %
T(:) Gulw) =5 4 22

2(z—w)?  (z—w)’
@ GS(Z) Gsf(w) _ 4655/ _ €gg! T(w) €gg! J (w)

(z —w)3 (z —w) B (z —w)

0J,(w) N 2Ja(w)}

(5.77)

5 |-

~20 |

(z—w) (z—w)

These OPEs are obtained using standard 2d conformal field theory techniques. Next,

we write the operators T'(z), J,(z) and G4(2) in terms of their modes as

92 n(2), Gor— & Lrtiaz). (5.78)

271

L, = f{ ﬁz““:r(z), Jom =

271 271

9The derivation of the charge (5.76) and the value of the current algebra level and central charge
c in terms of dimensionless parameters of the bulk is an open problem.
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The OPEs (5.77) are then translated to the following commutators,

1
[Lon, Ln) = (m — 1) Ly — 5m(m2 — 1m0

1
[Lm7 Ja,n] =N Ja,m—‘rna [Lma Gs,r] - 5(” - 2’[") Gs,n—i—r

[Ja,ma Jb,n] = —M7MNab 5m+n,0 - fabC Jc,m—i—n 5 [Ja,n 5 Gs,’r] = _Gs’,n—i-r()\a)s

/

S

2G 1
Z_Q[Gs,raGs’,r’] = €gg’ |:2 (712 - Z) 6r+r’,0_ LrJrr’ - (J2)r+7" - (T - r/)Ja,r+r/(>\a)SS/
(5.79)
where we shifted the zero mode of L,, as,
1

The commutator algebra in (5.79) is another main result of this chapter in addition
to (5.70, 5.71, 5.72, 5.73). Under a suitable scaling of operator G, — %GS and
taking | — oo, the algebra (5.79) reduces to chiral bms, with non-zero central charge

and current level.

We have derived a charge algebra from the bulk AdS, gravity after postulating the
existence of line integral charges that generate the residual diffeomorphisms which
themselves obey the algebra (5.70, 5.71, 5.72, 5.73). This charge algebra is non-
linear as can be seen by the presence of (J?),,,» term on the RHS of commutator
[Gsr, Gy ] and is a semi-classical limit of a W-algebra at a specific value of central

charge and current level. The operator contents of this WW- algebra include,

1. Chiral stress tensor T'(z) with central charge c.
2. Spin-1 sl(2,R) current algebra primary J, for a € {—1,0,1} with level &.
3. A doublet of spin 2 chiral operators G,(z) for s € {—3,1}.
To validate our findings, in the next section, we will derive a complete quantum

version of the algebra (5.79) for finite central charge and current level using tools of

2d CFT such as associativity constraints.
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5.2 Derivation of VW-algebra

The problem of finding extensions of conformal symmetry of a 2d chiral CF'T to those
with an extended set of symmetry currents has a long history. Such algebras can be
described by the operator product expansions of the set of all the conformal primary
chiral fields involved. The singular parts of the OPE result in Lie brackets of the
modes with the regular parts forming the normal ordered products. These OPEs are
demanded to be consistent with conformal symmetry as well as to satisfy the OPE
associativity constraints [159]. One can implement the associativity constraints in
terms of modes ¢, in which each chiral quasi-primary ¢(z) with dimension hy is

written as

o(z) = Z z"hed, for hg € Zeg

neL
or

1
¢(Z> _ Z Z—r7h¢¢r for h¢ c Zzo + 5

TEZJr%

This procedure was laid out fully by Nahm et al. [25] (see also [161]) developing
further on earlier works such as [166]. Even though these techniques of construction
of new algebra are standard, we review them and show their working explicitly to
derive the W-algebra of our interest for the convenience of the readers. We briefly

list the relevant steps involved.

1. One starts by listing out all simple Virasoro primary fields.!? In our case these
are, the identity operator I (h = 0), the chiral stress tensor T'(z) (h = 2), the
s[(2,R) currents J,(z) (h = 1) and the current algebra primary doublet G(2)
(h =3/2).

2. Then one constructs all the quasi-primaries that are formed by considering
normal ordered products of simple primaries, that can appear on the right-
hand side of the OPE of simple primaries with dimensions up to 2h — 1 where
h is the largest conformal dimension in the set of simple primaries. In our
case, the highest dimension is that of T'(z) which has h = 2 and therefore we
only have to consider quadratic normal ordered quasi-primaries of dimension

up to 2.

3. Then one uses global conformal symmetry (and other symmetries postulated)

to solve for the structure constants that appear between simple primaries and

10A primary is said to be simple if the corresponding state is orthogonal (with overlap defined
using the BPZ duals) to those of all the normal ordered quasi-primaries [25].
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global descendants of quasi-primaries completely. However, those between

three simple primaries remain free parameters at this stage.

4. Finally one needs to impose the Jacobi identities on the corresponding com-
mutators of modes of the simple primaries. This, in principle, determines the

remaining structure constants.

The theorems of Nahm et al. [25] then guarantee that the resultant chiral algebra

satisfies all the necessary constraints of 2d chiral CFTs.

Normal ordered quasi-primaries of interest

We have already declared our set of simple primaries. Now we need the list of
relevant quasi-primaries that are normal ordered products between any two of these

primaries. In terms of the modes of a primary

Bin = jf B2 mihimrg () (5.81)

271

the normal ordered product is defined by

(Gipj)n = Z Ojn—kPik + Z Oi kDjn—k - (5.82)

k>—h; k<—h;

We need to consider normal ordered products such as
(ITT)(w), (TJa)(w), (TGs)(w), (Jadp)(w), (JoGs)(w), (GsGs)(w), (JadoJe)(w), ---

and their derivatives. Among these, there is exactly one chiral operator of dimension
h < 2and it is (J,J,)(w) which has h = 2. It is easy to see that the symmetric tensor
(J(aJy)(w) is a quasi-primary (whereas the anti-symmetric combination is not). This
quasi-primary belongs to a reducible representation of the sl(2,R) algebra generated
by the zero modes of J,(z); which can be decomposed into irreps by separating the
trace (constructed using the Killing form 7, of s[(2,R)) and the traceless parts. So

the only normal ordered quasi-primaries we need to consider are:

1

(J2)(w) := 0™ (Jadp)(w) and (Jdy)(w) gnab(ﬁ)(w)'

Note that these are a singlet (j = 0) and a quintuplet (j = 2) respectively of the
s[(2,R) algebra.
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5.2.1 The OPE Ansatz

To construct the algebra that we seek we can start with all the OPEs that are un-

ambiguously fixed already by the nature of the chiral operators we have postulated,
namely, one T'(z) (h = 2), one J,(2) (h =1) and one G4(2) (h = 3/2). These are:

T(2)T(w) ~ g(z —w) ™+ 2(2 — w) 2T (w) + (2 — w) " AT (w),
T(2)Jo(w) ~ (z — w) 2T, (w) + (2 — w) 0 J,(w),

T(2)Gs(w) ~ (3/2)(z — w) 2Gy(w) + (2 — w) 'OG (w) (5.83)
and, following the conventions of Polyakov in [112] for the s(2,R) current algebra

Jal2)Jb(w) ~ =Sz = w0) 7 + (2 = w0) 7 fu To(w),

/

Ja(2)Gs(w) ~ (2 —w) Gy (w)(Xa)" (5.84)

where a,b,--- = 0,£1 and s,5',--- = £1/2. The matrices \, form a 2 x 2 matrix

representation of s[(2, R) algebra which we take to be:
[)‘aa )‘b] = (a - b) /\a+b : (585)
We use the following explicit form of these matrices
S 1 / S
(Aa)’y = i(a — 2505,y - (5.86)

We define the s[(2,R) Killing form 7y, via Tr (A Ay) = %nab. Using the A, in (5.86)

we have
, 1
Tr(Aads) = (M)® ,(N)*, = 5(3a2 — 1)8atb0, (5.87)

which means 7., = (3a* — 1)d,15,0 along with its inverse 7% = (3a® — 1) 4150

There is a unique invariant tensor in the tensor product of two spinor (j = 1/2)
representations of (2, R), namely the antisymmetric €, and we define it such that
€ 1,1 =1 We can lower and raise the fundamental /spinor indices on (\,)*; using

€5 and its inverse %%, and the adjoint indices using 74, and its inverse n®. We will
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also need the matrices (A%) s = %0 (Ny)* s which have

a a 1 a
(/\ )ss’ =n b<)\b>ss’ - 5 S48 (588)

and so are symmetric. Some more useful identities satisfied by the matrices A\, are

/ ]. / 1 /
(M) )" " = =5 €M es = 70707,
s s 1 s 1 c s
(M)’ (N)°, = _Znabé o5 far(Ne)®, (5.89)
From these one also has 7%()\,)*.(\)°, = —(3/4)8%. One more identity that A,
matrices satisty is:
(/\G)S§€5'§ + ()‘a)sgeés’ + (Aa)ssleél% = 0. (590)

Ansatz for G4(2)Gy(w) OPE :

The only remaining OPE is that of G5(2)Gy(w) and using global conformal invari-
ance we can write the right-hand side in terms of the quasi-primaries of dimension
up to (and including) h = 2 and their global descendants. The list of such quasi-

primaries is

{1 Julw), Gu(w), T(w), ()W), (Jady)@) = (/3 w@)}  (591)

Apart from the (global) conformal symmetry, this OPE has to be consistent with
the s[(2, R) symmetry (the global part of the sl(2,R) current algebra) as well. From
the OPE of J,(z) with Gs(w) we know that the index s is a doublet (j = 1/2)
index of this s[(2,R). Therefore the quasi-primaries that can appear in the OPE
Gs(2)Gy(w) can only carry sl(2,R) indices of irreps in the tensor product of two
doublets, namely the singlet (j = 0) and the triplet (j = 1). Therefore, in our list
(5.91) of quasi-primaries neither G,(w) nor (JqJy))(w) —(1/3)na(J?)(w) can appear
as they correspond to j = 1/2 and j = 2 irreps of s[(2, R) respectively.

e The coefficients in front of the j = 0 quasi-primary operators
{I, T(w), (J?)(w)} have to be proportional to the Clebsch-Gordan (CG) coef-

ficients of % ® % — 0, namely €4y.
e The coefficient in front of the j = 1 quasi-primary operator J,(w) has to be
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proportional to the CG coefficients of % ® % — 1, namely (A%)sq.

Thus after using all the global symmetries we arrive at the ansatz:

G(2)Gy(w) = 2ae0(z—w) 2+ (2 —w)™? (A", 2 Ja(w) + (2 — w) J,/(w)]
e (z—w) " T(w) + 7 (2 —w) ™ eaw (J*) (w)
(5.92)

The parameters («, [, v, §) in (5.92) as well as the central charges (¢, x) in (5.83,
5.84) are to be constrained using OPE associativity, which we implement as Ja-
cobi identities of commutators of the modes of our simple primaries. Writing the

operators T'(2), J,(z) and G,(z) in terms of their modes as

dz

271

d d 1
Ln - j{_zzn—‘rlT(Z)u Ja,n - _Z.ZnJa(z)7 Gs,r - ZT+§G8(Z) (593)

271 271

withn € Z and r € Z + %, the OPEs (5.83, 5.84, 5.92) translate to:

1. Virasoro algebra:

[Lins La) = (1 = 1) Ly + 75m(m* = Ddning (5.94)

2. Virasoro primaries:

1
[Lm7 Ja,n] =N Ja,m+n7 [Lma Gs,r] = 5(” - 27") Gs,nJrr (595>

3. 5l(2,R) current algebra:

1
[Jams Jon] = =55 M et Omno + fab Jemin (5.96)

4. Current algebra primary:

/

[Jans Gsrl = Gor pyr(Xa)” (5.97)

S
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5. Commutator [G;,,Gy /]

1
[Gs,raGs’,r’] = €ss’ |:04 (T2 - Z) 6r+r’,0+ﬁ Lr+r/ +7 (JQ)rJrr’ +5(T - T/>JG,T+T'(>‘a)ss’
(5.98)

Finally, following [25] we have to impose the Jacobi identities on these commutation

relations. We turn to this next.

5.2.2 Imposing Jacobi Identities

Following our analysis of the imposition of Jacobi Identities, the details of which are
presented in Appendix E, the parameters («, 8,7, 9, ¢, k) must satisfy
-0
,y — O

c K K 1
a—6ﬂ+7§:0, a—5§:O, ﬁ—y(n+2)—§5:0, ﬂ—T

(5.99)

These are linear and homogeneous equations in the variables («, 3,7, 9). So for some

non-trivial solutions for («, 3,7, d) to exist the determinant of the coefficient matrix

O O ==

has to vanish. This gives ¢(2k 4 5) + 6k (2 4+ 1) = 0 which can be solved for ¢ (for
K # —5/2) as

6k (14 2k)
= BT 1
¢ o+ 2k (5.100)

When this holds, for generic values of k the coefficient matrix is of rank 3 and
so there exists one non-trivial solution, which can be written (taking 7 to be the

independent variable) as

1 1 1
o= —17/%(3 +2k), = 17(5 +2K), 6= —57(3 + 2K). (5.101)

This is our final result valid for generic values of k (# —5/2). The full commutator
algebra is (5.1) which we denoted by W(2;(3/2)%,1%). Some observations are in

order:
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e As mentioned in the introduction, a W-algebra identical to that of
W(2;(3/2)% 1%) already existed in the literature in a different context [24].
The current algebra in [24] was sp(2) which is isomorphic to sl(2, R).

e When ¢ # —% we have to set « = = = = 0, and the corresponding

algebra is a chiral extension of iso(1,3) with arbitrary ¢ and k.

This case corresponds to the algebra found in [13, 14] as the central

charges there remained undetermined.

e We may also consider the limit v — 0 in the non-trivial solution (5.101). This
corresponds to a contraction of the algebra (5.98) to the chiral extension of
iso(1,3), but with the relation (5.100) still in place.

The chiral bms, algebra obtained from the analysis of chiral boundary

conditions on R3 or R?? gravity appears to belong to this class.

e When v # 0 its value can be fixed to be any non-zero function of x by an ap-
propriate normalisation of the generators G5 ,. Then the algebra is determined

completely in terms of one parameter (say) .

Relation to so(2, 3)

The non-trivial solution (5.100, 5.101) makes the algebra in (5.94 - 5.98) like the
Wh-algebras of yesteryears, particularly close to the Bershadsky-Polyakov algebra
W§2) [167, 168]. Now we will argue that just as the WéQ) algebra is based on s[(3, R)
algebra, this new algebra is based on (and is an extension of) s0(2,3). For this, first

note that so(2,3) algebra can be written more suggestively as follows:

(L, L] = (m — n) Ly yn, [Zm,f)n] = (m —n) Lyn, [Lm,f,n] =0

1 - 1
[Lna Gs,r] = 5(77/ - QT) Gs,nJrra [er Gs,r] = 5(” - 23) Gn+S,T7

[Gs,ra Gs’,r’] =2 Epp/ Z_—13+5’ +2 €ss’ Lr+7“/ (5102)

for m,n---=0,%£1, r,s,--- = £1/2. Here one may think of L, and L,, to generate
either the s0(2,2) = sl(2,R) @ sl(2,R) subalgebra or so(1,3) = sl(2,C) & sl(2,C)°
subalgebra of 50(2,3). With the identification: L, = J,o and noticing that f,;,° =
(@ —b)d; ., the first two lines have the same form as those of our algebra (now
restricted to m,n--- = 0,1, r,s,--- = £1/2). To compare the [Gs,, Gy ] let us
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first take the large-x (the “classical”) limit in (5.98). In this limit, from (5.100,
5.101) we have'!

1 1
o= —rt B gan 6= R, e —6h . (5.103)

2

Further in this limit by choosing v — —= we arrive at

2
a—k -1, vy —-=, §32, c— —6k. (5.104)
K

Finally noticing that in (5.98) the first term proportional to « drops out when
restricted to r,7’ = £1/2. The term proportional to ¢, for r,7" = £1/2 can be

rewritten, using (r — r’) = —¢,» and (A\*),y = 0%, , as

1) (7’ — T/) Ja,r—‘rT’ ()‘a> — _Err’fls—i-S’ . (5105>

ss’

Therefore we conclude that the commutator (5.98) in the large- limit and restricted
to the global modes (r,r’,s,s" -+ = £1/2) reads

[Gs,ra Gs’,r’] =26 Es+s/ + 2659 Lr+r’ + 0(1/"{)

Thus the full algebra (5.1) is therefore an extension (and a deformation around

large-) of s0(2,3) algebra. This completes our analysis.

Comparison with the JV-algebra of AdS, gravity

In the large s-limit, the coefficients {a, 3,9, ¢} take the value as in (5.104). In this
limit the OPEs become,

Gs(2) Gy (w) = (jli_ﬁij)?; - e(sjzjauw)) - 6L()‘S(IZE—JUE)U})
+2 (Vi Z‘]"_(Z; + (22‘]_“(;”;2 (5-106)
T(:) T(w) = ——20 o 21w OT(w) (5-107)

(z-w?t (-w?  (z-w)

The rest of the other OPEs in this limit do not change. For the fixed value of k = 2
and ¢ = —12, these OPEs coincide with the OPEs in (5.77) (with the following
redefinition G4, — @GS) that were derived using the postulated line integral charge

1Tt is curious that in this classical limit, the Virasoro central charge approaches the same value
as in [10, 169, 170], namely ¢ = —6k.
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(5.76). Therefore the currents that form the representation of chiral A-bms, in AdS,
gravity obey a W-algebra which is the semi-classical limit of W(2; (3/2),1%) that

we derived in this section.

5.3 The 3 and 4-point functions of currents

We have seen in previous sections how one can use Jacobi identities on the commu-
tators of the modes of the chiral (quasi-) primaries to impose the associativity of
OPEs of the corresponding chiral operators. Following [171], one can equivalently
impose the associativity of Operator Product Algebra by demanding the conformal
invariance and crossing symmetry conditions of 3 and 4- point functions of symmetry
generating currents {7T'(z), J.(z),Gs(2)}. In this section, we present all the possi-
ble three-point and four-point correlation functions with the help of OPE relations
(5.83), (5.84) and (5.92), calculated using the method spelt out in [171]. Here we
also assume that one point function is zero for all the local operators. One demands

that these correlation functions follow two principles,

1. The n-point correlation function of primaries transform as follows under global

SL(2,R) conformal transformations z — 22t
? cz+d’

i i = ()7 (B e ) ot
(5.108)

with the condition ad — bc = 1 imposed on the parameters {a, b, c,d}.

2. Correlation functions should be invariant under the rearrangement of quasi-

primaries in the correlation function, i.e., permutation symmetry.

It can be shown that imposing the above two conditions on these correlation func-
tions also leads to the constraint equations (5.99). The details of this calculation
are outlined in Appendix F. Here we only list these correlation functions resulting

after imposing equations (5.99). The non-zero 2-point correlation functions are,

5 5 /r/ala2 2 « 68152
(T'(21) T'(22)) :—;4 , (Jay (21) Jup(22)) = =2 2 (Gs,(21) Goy(22)) = 3
12 12 12
(5.109)

where z;; = 2; — 2;.
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5.3.1 3-point functions

One expects the correlation functions to respect the global part of s[(2,R) current
algebra as well under J,(2) is a triplet and G4(z) is a doublet. Therefore any 3-
point correlator involving J,’s and G,’s should be given in terms of invariant tensors
carrying their representation indices of s[(2, R) and should vanish if no such invariant
tensors exist. This immediately leads to the expectation that any 3-point function
with one J,(z) or odd number of G4(z)’s vanishes. It is easy to verify that this is

indeed the case.

Now we list the remaining 3-point functions. The 3-point correlation functions of

the type (T'T'T) ,(JJJ) are:

(T T T() = s (o (20) Ju(22) oy (20)) = — 2220200

2 .2
212 13 %23 212 213 223

. (5.110)

These are invariant under the exchange of the insertion points (z;) and corresponding
indices (a;) and transform as (5.108) under global SL(2, R) conformal transformation

with h = 2 and h = 1 respectively. The correlation functions of the type (T'J.J) are:

(T'(21) Jay(22) Jug(23)) = (Jay (22) T(21) Jug(23)) = (Jay(22) Jug (23) T(21))

R Nasas
= — 5.111
EN (5-111)

The correlation function (5.111) is invariant under the permutation of the z; and
corresponding a; index as expected. The 3-point correlation functions that contain

two G's are given by,

(T(23) G, (21) Gy (22)) = (G, (21) T(23) G,y (22)) = (G, (21) G, (22) T(23))

3 S18
_ _0%Casr (5.112)

2,2
212 2137 %53
and

(Ja(23) G, (21) Gy (22)) = (Gy (21) Ju(28) Gy (22)) = (Gisy (21) Gy (22) Ja(23))

200 (Ag) s, 4
=——""2 (5.113)

5 -
213 223 212

These are invariant under (21, s1) <> (22, s2) interchange as expected.
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5.3.2 4-point functions

Eight types of 4-point functions contain one J, or odd number of G4 and they all
vanish as expected. This leaves us with seven types of 4-point functions that are

non-trivial and we provide their answers below.

The correlation function of four 7'(z)’s is given by,

T T T ) = (21 — Z2)5223 — z4)% l(l f x)? + (1$— x)}
" 4 (21 — 22)* (23 — 24)4 [1 + "+ m] , (5.114)

where z is the cross ratio defined as

(21 — 20)(23 — 1)
(21— 23)(22 — 21)

xTr =

This correlation function is expected to be invariant under each of the permutations
of z;. To see this it is sufficient to check that the answer is invariant under each
of the exchanges z; «» z4 (# — 2) and 2z <> 23 (x — 1 — ). The conformal
factor outside the bracket in (5.114) under these transformations compensates for

the changes inside the bracket such that the resultant answer is invariant.

The 4-point function with all J,(z) is given by

1
o (22) oo (22) T (3) e (200 = 3 (2 o (0) () (5:115)
where
) 1 ) x?
Ia1a2a3a4 (ZE) = Z Nayaz Nasay +x Nayaz MNasas + m Nayas Nasas | (5'116)
Lz (2 B .Z') a T a a
c(zfzzgagtm( ) = _5 {ﬁfma; fa5a3a4 - m fa1a35 fa5a2a4 +x fa1a45 fa5a2a3:| :

(5.117)

This correlator is expected to be invariant under the permutation of (z;,a;). For
this, it is sufficient to check that the answer (5.115) is independently invariant under
(x < % & a; > aq) and (x < 1—2 & a; <> az). One can use Jacobi identity for

the structure constants f,,°

fala'f fa5a3a4 - fa1a§5 fa5a2a4 + falajs fa5a2a3 =0 (5-118)
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to show that (5.115) is indeed invariant under these transformations.

The next non-trivial 4-point functions are

K x3 x x?

Joaasas P

(5.119)

224
T J, J,, Jy = —
(T(1) Jas(32) Joa(20) Jus (1)) = =55

This correlation function (5.119) is invariant under all the permutations of (z;, a;)
for the three J,,(z;) insertions. One can further show that the correlation func-
tions (JTJJ), (JJTJ) and (JJJT) are all equal to (5.119), thus establishing its

invariance under all the possible rearrangements of the four operators involved.

The correlation functions with two 7'(z)’s and two J,(z)’s such as (T'T'JJ), (JTTJ),
(JJTT), (TJJT),(JTJT) and (T JJT) are all equal to each other and given by,

(T(21) T(2) Juy (23) Ty (20)) = —2£2§4 B <:z:2 + fz 1)2) + ﬂ (5.120)

This expression (5.120) is invariant under (z1 > 22) and/or (23, a3) <> (24, aq).

The next non-trivial 4-point function is with two G and two T' given by,

() Ta) ) Gue) = 2350 (4 2 o )
(5.121)

The correlations obtained through permutations, such as (GTTG), (GGTT),
(GTGT), (TGTG), (TGGT) are all equal to (IT'TGG) in eq. (5.121) as required.
Next, we give the expression for (JJGG) type correlator:

(6%
e Torarsas 5.122
2%2234\71234 ( )

<Ja1 (Zl) ']ag (ZQ) Gs3 (Zg) GS4(Z4)> = —

2r — 12

.TZ a
ja1a25334 = €s354 Nayjas ("i + ﬁ) + fa1a2 : ()\a3>53 54 <

11—z

> (5.123)

1—=x

which can also be shown to be invariant under all permutations of the four operators

involved.

Finally, we present the correlation function involving four G4(z) operators. After
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imposing the constraints (5.99), one can write this correlation function as follows,

202 1
(G(62) Ge2) G20 G = 2o (20 = 2 0 (0))

212 %34
(5.124)
where
(1) 3 T
F51525354($) = €s159 €s3s4 (1 +z ) + €s154 Esas3 (CB + (1 + .I)?’) ’ (5'125)
2 3
2 2 v v
F§18)25:384(x) = Cs1s Coasa (QIj e (1 — iC>2 - (1 — 33)2)
x x3 3
s €ane . 5.126
614623($+1_x+(1_x)+(1_x)2) ( )

This correlator is expected to be invariant under all the permutations of the pairs

(zi,a;) which can be shown to be the case using the the following identity

€s153 €s9s4 T €sy54 €s053 T €s159 €s384 = 0. (5127)

This completes our verification of the expectation that the new algebra of the quasi-
primaries {7'(z), Ju(2), Gs(z)} does lead to 3 and 4-point correlation functions of

these currents that are invariant under appropriate permutations.

5.4 Further Comments and Discussions

In this chapter, we found an analogue of chiral bms, algebra for so(2, 3) Lie algebra.
This chiral extension of s0(2,3) which we denote as chiral A-bms, was found to
be the asymptotic symmetry algebra of locally AdS; solutions parameterised by
six holomorphic functions (7(2), J.(2), Gs(z)) for a = 0,£1 and s = £1/2 after
imposing chiral boundary conditions on codimension-two hypersurface consistent
with the well defined variational problem. We postulated line integral charge from
the bulk AdS, gravity that induces the variations of these holomorphic currents.
The charge algebra obeyed a symmetry algebra which turned out to be the semi-
classical limit of a W-algebra. To validate our findings we derive such a W-algebra
from 2d chiral CFT techniques. We show that there exists a one-parameter family of
chiral W-algebras generated by six chiral operators (T'(z), J,(2), G4(2)) for a = 0, +1
and s = £1/2 with dimensions (2, 1,3/2) which in semi-classical limit matches with
the W-algebra derived from AdS, gravity. This W-algebra is identical to the one
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derived by Romans [24]. In the K — oo limit it admits s0(2,3) as a subalgebra.
Just as s0(2, 3) admits a contraction to iso(1,3) our W-algebra (5.1) also admits a
contraction (y — 0 for finite k) to chiral bms, algebra that appeared in the studies
of graviton soft-theorems [13, 14].

Using the nomenclature of [172] we refer to this new algebra (5.1) as
W(2;,(3/2),13). Tt turns out this algebra is similar to the algebra found by Ro-
mans [24] in a different context. The spin-1 Kac-Moody current in [24] was sp(2) in
contrast to our s[(2, R) current algebra. Even though W(2;,(3/2)2,1%) has a chiral
primary G(z) of half-integer dimension, it is not a superconformal algebra such as
the one of Knizhnik [173]. The reason for this is that even though the current G, has
h = 3/2 it still has an integer spin defined by Ly — Jy. Our algebra (5.1) is more akin
to the Bershadsky-Polyakov algebra WéQ) — where by considering a twisted stress

tensor one can make G4(z) to appear bosonic (integral dimension).

The existence of line integral charges (5.76) from bulk AdS; gravity needs to be
understood better. Usual ways of calculating charges through covariant phase space
formalism [120, 135, 136] or the cohomological formalism [118, 137, 138] lead to co-
dimension two surface charges. The charges for asymptotically locally AdS, solution
as computed in [95, 99, 16] are proportional to holographic stress tensor which
vanishes for our locally AdS, solution. However, as shown by authors in [99], for the
Neumann boundary condition, the effective boundary theory is an induced gravity
theory for which it is expected that such codimension-two charges will vanish. In
that case, the calculation of this induced gravity action at the boundary can lead
to such line integral charges. For locally AdS, solution as shown by Skenderis
and Solodukhin in [105], the Weyl and diffeomorphism invariant boundary effective
action is zero therefore one needs to revisit the arguments of [105] and provide a
prescription to calculate such an effective action for locally AdS, configurations.
The possibility of adding other boundary terms to the bulk action may also provide
a solution for such a problem as will be touched upon in the next chapter where
one can add a Pontryagin term to the bulk Einstein-Hilbert action that gives rise

to Chern-Simons gravity action at the boundary.

Originally the (finite-k) W§2) algebra was realised in the constrained WZW model
with sl(3,R) algebra [167]. One expects that a similar realisation should exist for
the algebra presented here as well via Drinfeld-Sokolov reduction of s0(2,3) current
algebra (See for e.g [174, 175]). It will be interesting to exhibit this. Another chiral
We-algebra extension of s0(2,3) in the classical limit was obtained in [20] from the

asymptotic symmetry analysis of 3d conformal gravity. This algebra was called
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conformal bmss or W(2’272’1)-12

One should also study possible representations of the chiral algebra constructed
here. Using the usual notions of inner products and unitarity of 2d CFTs, one does
not expect the algebra W(2;,(3/2)%, 1) to admit unitary representations without
imposing further constraints. This is because sl(2,R) current algebra at non-zero
level does not admit any unitary representations, the algebra will contain negative
norm states as can be seen from the two-point function of (J,(z)J,(w)) in equation
(5.109). The authors in [169] alluded to this issue, where s[(2,R) current algebra
arises in the context of 2d Polyakov-induced gravity. There exist two possible sce-
narios to preserve unitarity in this case. One can impose constraints to remove the
negative normed states, which require setting some of the currents J,(z) to zero (see
for example [176]). Alternatively, one can set the level k of the current algebra to
zero. One example of level zero sly current algebra is [13], which appears in the

context of celestial holography.'?

Apart from the J,(z) of the s[(2,R) current algebra at non-zero level, one can check
that the action of the Gs(w) operators on the vacuum state will also generate states
with the negative norm. These additional negative normed states are similar to the
ones encountered in the case of Feigin-Semikhatov algebra W , which for n = 3 is
the Berdshasky-Polyakov algebra. In this case, one tries to give a less limiting notion
of unitarity to construct unitary representation for even n [178]. Alternatively, we
note that setting the level kK = 0 for current algebra will also make the two-point
function (G4(2)Gy (w)) vanishing (the parameter « in (5.109) goes to zero as can be
seen from the first equation of (5.101)) thus circumventing the problem of negative

normed states for this algebra. It will be interesting to explore these topics further.

12We will provide the derivation of the full quantum version of this algebra for finite ¢ and &
and other possible chiral W-algebra extensions of s0(2,3) in the next chapter.

13See also [177] where the authors have shown that level zero su(2) Kac-Moody conformal field
theory is topological.
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Chapter 6

All chiral YW-algebra extensions of
s0(2,3) algebra and their

holographic realisations

In the previous chapter, we showed that the charge algebra associated with chiral A-
bms, symmetry of AdS, gravity is a W-algebra. There, we also derived the complete
quantum version of this W-algebra from standard 2d chiral CFT techniques, which
we denoted by W(2;(3/2)?,1%). Now it becomes important to ask if this is the
only such chiral W-algebra extension of s0(2,3). In this chapter, we address this
question and show that W(2; (3/2)%,13) found in Chapter 5 is one of the four such
chiral Wh-algebras. We identify the remaining three explicitly completing the list.
The construction of these W-algebras rely on rewriting s0(2, 3) in four different ways

by following these simple steps:

1. To start with, we show that there are exactly four inequivalent ways to embed
a copy of s[(2,R) inside s0(2, 3).

2. Then we identify in each case the maximal sub-algebra h C so(2,3) that
commutes with the s[(2,R) of the first step.

3. The rest of the generators arrange themselves into finite dimensional irre-
ducible representations of the sub-algebra sl(2,R) @ h. These steps facilitate

writing so(2, 3) Lie algebra in four avatars.

The four inequivalent copies of s[(2, R) embedded into so(2, 3) have b as ), so(1, 1),
50(2) and sl(2,R). Each of these leads to, a chiral W-algebra extension. The

138



resultant algebra corresponding to the case with h = () can be identified to be
the W(2,4) algebra found long ago [179]. Another, corresponding to h = sl(2,R)
is W(2;(3/2)% 1%) that we derived in Chapter 5. We will complete this list by
constructing the remaining two, with h = so(1,1) and h = s0(2). The one with
h = so(1,1) may be called the conformal bms; whose semi-classical limit (that is,
valid only for large values of central charges ¢ and k) has been obtained from a 3d

conformal gravity computation by [20].

Furthermore, we will derive the semi-classical limit of W(2,4) and W(2; (3/2)?, 13)
from the asymptotic symmetries of 3d s0(2,3) Chern-Simons gauge theory which
is equivalent to 3d conformal gravity in the first order formulation as shown by
Witten and Horne in [103]. Using the standard methodology reviewed in (2.1.4),
we provide boundary conditions and gauge fixing of s0(2,3) gauge connection that
is compatible with variational principle and show that the symmetry algebra of
charges that generate residual gauge transformations of these gauge connections
form representations of W(2,4), W(2; (3/2)?,13) algebras in the semi-classical limit.
The analogous calculation for W(2; 22, 1) already existed in the literature [20], which
can be extended trivially for the case of W(2; 22.1). See [21, 22, 23] for previous
works on asymptotic symmetries of 3d conformal gravity which do not include global

conformal symmetry algebra so(2, 3).

We also consider 3d gravitational Chern-Simons action (6.153), an equivalent second-
order formulation of 3d conformal gravity. This action is usually added to the
Einstein-Hilbert action where the resultant theory describes a topologically massive
gravity [113, 114, 180, 181, 182]. However, this action alone has not been explored
much in comparison to the equivalent first-order formulation of conformal gravity
in the language of s0(2,3) gauge theory. In [21], the authors studied holography
for theory described by gravitational Chern Simons action. They proposed the
Dirichlet boundary conditions and showed the existence of two copies of Virasaro
algebra with abelian Weyl scaling as the asymptotic symmetry algebra when the
Weyl factor of the bulk metric is not kept fixed. In this chapter after providing
arguments for the potential role played by this gravitational Chern Simons action in
AdS, gravity, we analyse the asymptotic symmetries of such theory by considering
mixed boundary conditions on the configuration space such that the solutions satisfy
the variational principle. The treatment of [21] included the calculation of charges
using first-order formulation language. We further derive charges associated with
Weyl transformation and diffeomorphisms using the modified covariant phase space

formalism proposed by Tachikawa [28] as reviewed in (2.1.5) and show that the
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symmetry algebra that charges obey is semi-classical limit of W(2;(3/2)2, 13).

The rest of this chapter is organised as follows. In Section (6.1) we provide a simple
classification of all the inequivalent embedding of s(2, R) inside s0(2, 3). This results
in four different ways to write the algebra s0(2, 3) which makes the embedded s((2, R)
manifest. In Section (6.2) we provide a derivation of two novel W-algebra extension
of s0(2, 3) completing the list of such algebras along with the two already known from
[179] and (5.1) (See also [24]). In Section (6.3) and (6.4) we provide the derivation of
W(2;(3/2)% 13) and W(2,4) respectively from the asymptotic symmetries of s0(2, 3)
gauge theory. In Section (6.5), we discuss gravitational Chern-Simons (3d Weyl
gravity) action and its application in AdS;/CFTj3 holography and show that the set
of residual diffeomorphisms and Weyl symmetry form an infinite dimensional algebra
which is W(2; (3/2)%,13). We conclude with a discussion and future directions in
Section (6.6). In Appendix G we provide a similar derivation of chiral algebra
extensions of s0(2,2) and show that they are isomorphic to the Brown-Henneaux
algebra [2] and the conformal induced gravity algebra of Polyakov [112] as realised
in [10, 169]. This chapter will be partly based on [183].

6.1 Embedding sl(2,R) in so(2,3)

We are interested in promoting the algebra s0(2,3) to an infinite dimensional one
that contains at least one Virasoro algebra. Each such Virasoro can in turn be
thought of as an infinite dimensional extension of an s[(2,R) subalgebra of so(2, 3).
Therefore we would end up with a potentially distinct chiral YW-algebra extension of
50(2, 3) depending on which sl(2, R) C so(2, 3) is promoted to a Virasoro. Therefore
the first question to answer is: what are all the inequivalent embeddings of a copy
of s[(2,R) in the s0(2, 3) algebra?

This can be answered in any faithful matrix representation of the algebra so(2,3).
We choose to work with the matrix representation of s0(2, 3) when the representation
space is R*? (with the pseudo-Cartesian coordinates (g, z1, T2, T3, 14) where z°, 24
are time-like and the rest space-like) on which the so0(2, 3) algebra elements generate
linear homogeneous transformations z# — A*, 2" that preserve the line element
ds* = ndatde’, ie., {A € M5(R) : Ao A g0 = nap & det A = 1} where 7, =

diag(—1,1,1,1,—1).! Here the algebra of s0(2,3) is realised in terms of 5 x 5 real

! Another simple choice would have been to work with the 4 x 4 real matrix generators of the
sp(4,R) which is isomorphic to s0(2, 3).
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matrices M satisfying MTn +nM = 0. We will use the basis L,

(Luu)a/g - 55771/5 _637’/u57 M,V,Oé,ﬁ"' S {0717273’4} (61)
satisfying

[Luy, L“/V/] = T]W,/LV“/ + nyu’LuV’ — 77,u,u’Ll/l/’ — T]VV/LML/ . (62)
A general element in the Lie algebra is M = %w‘“’LW for " = —w"* € R, and

in the space of M we would like to identify choices of triplets (Lg, L+1) that form
s[(2,R) algebra

[Lim, L) = (m —n) Ly - (6.3)

We want all such possible choices that are not equivalent under the action of the
group O(2,3) which acts on M as M — A™'MA where the 5 x 5 real matrices A
satisfy ATnA = n.2 These realisations of L, will therefore be a five dimensional

representation of s((2, R).

Before proceeding further let us recall some known facts about finite-dimensional
representations of s[(2,R). The irreducible realisations of the sl[(2,R) are given in
terms of (25 + 1) x (2j + 1) dimensional real matrices, one for each j € ;N (along

with j = 0, the singlet). Their matrix elements may be written as:

(Lo)gp = POgpy (L1)gp = M4, 0) (P — 7)dgps1,
(Ll)qp - h(j? Q)_l(p +j)6q+1,p7 for p,q € {_]7 _.] + ]-7 e 7j - 17.]}
(6.4)

for any arbitrary non-zero choice of h(j,p) — which can be fixed by appropriate
actions of the group GL(2,R). The simplest choices of h(7, p) include: (i) h(j,p) =1
(or any other non-zero real number), (ii) h(j,p) = p%j, or h(j,p) =p+3j+1etc?
In all these cases the Ly is diagonal with rank 2j (2j + 1) for 2j is even (odd), and
with real eigenvalues. Its eigenvalues range over —j,--- , 7. The only input we will
take from here is that L is diagonalisable with real eigenvalues, whereas L., are

expected to be nilpotent (such that L% = 0 for some k).

2We do not require the det A = 1 condition to keep s0(2, 3) invariant under M — A1 MA.
3The choice h(j,p) = ,/p;#j;.1 is the one related to the discrete series unitary representations

of s[(2,R) when j is analytically continued using the replacement —j — h for positive h [184].
However, this choice of course does not keep L4 real.
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Next, we seek all possible candidates in the algebra so(2,3) in its vector represen-
tation (6.1) that can play the role of Ly. This requires us to consider the class of
all M that admits only real eigenvalues. We can take any such matrix M, using
the freedom of acting with the group O(2,3), to be a linear combination of any two
commuting boost generators (Log, Lps) for a # b. There are six such choices which

are all equivalent to each other under O(2,3). So we choose:
Lo=ALoy + N Ly (6.5)

for A\, N € R with real eigenvalues (0, £X,+)\"). One can independently make the
exchanges A <> —\, X' <> —X and X\ + X with appropriate O(2,3) transforma-
tions.* So we further choose A > X > 0. Now taking this as the general form
of Ly we can seek candidate L., such that they form the algebra (6.3) of s[(2,R).
There are, depending on the values of (A, \), further O(2,3) transformations that
leave Lo invariant and we can use these residual symmetries to put the candidate
L. into their simplest forms. This exercise can be carried out systematically and
straightforwardly. We find that, at the first instance, the existence of non-trivial
L.y with [Lo, L+1] = FL4; requires that (A, \') have to satisfy one of the following
conditions: (i) A =1, (ii) N =1, (iii) ' =1 — A and (iv) ' = A — 1. We can then
impose the last condition [Li, L_1] = 2L in each of these four cases. We simply list

the results of this straightforward analysis:

1. A =1 leads to three sub-cases (i) N =1, (ii) 0 < M < 1 and (iii) X' = 0.

(a) In the cases N =1 and 0 < X’ < 1 there is no solution for L.

(b) When A =1 and X =0, with Ly = Lo; the most general Ly are:

(C%Q + 0%3 — 0(2)4) Ly = ¢19(L12 — Loz) + c13(Lag — Los) + coa(L1a — Loa),

L_y = c19(Loa + L12) + c13(Los + Las) + coa(Loa + L14),
(6.6)

for ¢2y + ¢33 — &, # 0. It can be shown that the residual symmetries
(O(2,3) transformations that leave L, invariant) leave ci, + ¢33 — c3,
invariant up to a positive scale. Thus depending on the sign of ¢%, + c2; —
2, we can take (c12, 13, coa) to be either (1,0,0) or (0,0, 1) and these two

will be the only inequivalent choices in this case.

2. X'=1and X\ > 1 leads to two sub cases: (i) A =2 and (ii) A # 2.

4These matrices are A = diag(—1,1,—1,1,1), diag(1,1,—1,1,—1), A, = Sman respectively.
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(a) For A =2 and X =1 with Ly = 2Lg; + L34, we find:

boabas Ly = bas(Los — Loz + L1g — L14) + 3boa(Los + Loy),
L_y = bos(Los + Los) + (L13 + L1a) + bog(Laz — Loy). (6.7)

The residual symmetries can be used again to set byg = bpy = 1.

(b) For A > 1 and A # 2 leads to no solution.

3. N =1-Xwith § <X <1 (since X =0 is already considered) also leads to
two sub-cases: (i) A =1/2 and (i) 1/2 < A < 1.

(a) A =1/2 with Lo = £(Lo1 + Lsa) leads to a solution

4aps Ly = —Log + Loa — L1z + L4,
agy Ly = Loz + Loa — Lug — Lua, (6.8)

again we can use the residual symmetries of Ly to set agy = 1/2.

(b) 1/2 < A <1 — leads to no solution.

4. The final case is N’ = A — 1. This means A\ > 1. We have already covered the
cases of A = 1 and A = 2. So we restrict to A > 1 and not equal to 2. And

one can show that there is no solution in this case.

Thus we have arrived at the result that there are precisely four inequivalent em-
beddings of s[(2,R) into s0(2,3): (i) (A, X) = (1,0) with (c12,¢13,¢c04) = (1,0,0),
(ii) (A, N) = (1,0) with (c19,c13,c04) = (0,0,1), (iii)) (\,N) = (2,1), and (iv)
(A, N) = (1/2,1/2). As the next step, we will write down the algebra of s0(2, 3) from
the perspective of each of these embeddings. We choose to characterise these four
avatars of 50(2, 3) by their maximal subalgebras ) that commute with the embedded
sl(2,R).
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6.1.1 Four avatars of s0(2,3)
h=s0(1,1)

This case corresponds to (A, \') = (1,0) & (c12, 13, coa) = (1,0,0) with the genera-

tors

L_y= Lo+ L2, Lo= Lo1, Li=—Loa+ Lia, H = Lau,
P’ = —Loy— Ly, P)=1Ly, P’=—Los+ L,

Pl = Loz — L3, Fy =1Ly, P/ =—Los+ L3, (6.9)
satisfying
[Lm7 Ln] = (m - n)Lern )
[Lmv Pg] = (m o n)P#LJrn )
I:P1;’ZL7 Prl:] - _Uab(m - n)Lm+n - 6OLb'r]mn H,
[H, Py = Py e, (6.10)
for m,n,--- € {0,£1} and a,b,--- € {0,1}. Further ' = —€!® = 1, 7, =

a

diag(—1,1) = 7 and € = Nye®, and Ny = (3m? — 1)0pin = m2 +n% —mn — 1.

This avatar is related to the way s0(2, 3) is realised as the conformal algebra of R'2.
Clearly, in this case the subalgebra b that commutes with the subalgebra sl(2,R) is
generated by the boost generator H = L34 and hence is so(1,1).

h = s0(2)

This case corresponds to (A, \') = (1,0) & (c12, 13, c04) = (0,0, 1) with the genera-

tors

Lo= Lo1, Li= Loy — Lis, L_y= Los+ L1s, R = L3,
Py = —Lo3— Li3, Py =Ls, P = Los— Ly,
P2, = —Loy — Ly, Py = Lo, P{= Loy~ L (6.11)
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satisfying

]
n] m—+n?
[P;rlw P’rg] = 5ab(m - n)Lm+n + Eabnmn R,
[R, Py] =Py, (6.12)

for m,n,--- € {0,£1} and a,b,--- € {1,2}. Further ¢ = 1 = —¢?!. Contrary
to the previous case (h = so0(1,1)), the subalgebra b is generated by the rotation
generator Loz and hence is s0(2). Thus, even though this case is very similar, it is

not equivalent to the one with h = so(1,1).

This case corresponds to (A, \') = (2,1). The generators are

Lo = 2Lg; + L3y,
Ly = —Log + Loa + L1 — L14 + 3Lo3 + 3Ly,
L_y = Loz + Loy + Lig + L4 + Log — Loy, (6.13)

W_g = B(Los — Loa + L1 — L14),

W_y = B(Lo2 + L12),

3 2
W_, = 55(—L03 — Loy — L1z — L1y + g(LQS — L)),

3
Wy = 55(—[/01 +2L34),
3

W, = ﬂg(Loza — Loy — Lis + L1y + 2(Las + Loy)),
Wy = 35(Loz — L12),
W3 =98(—Los — Loa + L1z + La), (6.14)

satisfying

[Lm7 Ln] = (m - 77/) Lm+n7
[Lma Wn] = (Sm - n) Wm+n7
52
[Wm, Wn] = m A(m7 n)Lm—i-n +

B

10 B(m,n)W,,1n, (6.15)
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where

A(m,n) = (m —n) (3(m4 +nt) = 2mn(m — n)? — 39(m? + n?) + 20mn + 108),

B(m,n) = (m —n)(n*+m? —mn —7). (6.16)
We can fix 8 to be any non-zero real number by a residual O(2, 3) transformation —
and we choose = 10/+/1680 for later convenience. This avatar of so(2, 3) is special
as the corresponding embedding of s[(2,R) in it is what can be called the principal

embedding — as the rest of the generators form a single 5-dimensional irreducible

representation of s[(2, R).

h=sl(2,R)

This case corresponds to (A, \') = (1/2,1/2). The generators are

Lo = %(Lm + Las), L= %(Los + Los — L1z — L14),
L= %(—Los + Los — L1z + L1a), Jo= %(Lm — L),
J1= %(—Lo:s — L+ Los + Ly3), J1= %(Loza + Lia + Loa + L13),
Gii=a(—Lo+ Liz), G_11=0a(—Las — La),
Gy 1 =a(Ly — Lat), G_s s =a(lox + L), (6.17)
satisfying

[Lm, Ln] = (m — n)Lm+n, [t]aa Jb] = (CL — b):]a+b,
1 1
[Jaa Gsr] = 5(& - 25) Ga-‘,—s,ra [Lma Gsr] - §(m - 2T> Gs,m—‘r?‘a
(Gor, Gorr] = _2a2(err’ st+s'  €ssr Lytrr) (6.18)

where m,n,--- € {0,£1}, a,b,--- € {0,£1} and r,s,--- € {£1/2}, with e 11 = 1.

1
29
Again we can choose o to be any non-zero real number and we fix it to be unity.

=

This completes the exercise of finding the inequivalent embeddings of sl[(2,R) in-
side s0(2,3) and writing the s0(2, 3) algebra that makes the corresponding s((2, R)
manifest. Each such embedding is based on the identification of a sub-algebra
sl(2,R) & h C s0(2,3).°

SThese sub-algebras are also in one-to-one correspondence with the maximal sub-algebras of
50(2,3) listed in [185] that contain at least one copy of s[(2,R) in them.
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Next, we would like to promote each of these avatars (6.10, 6.12, 6.15, 6.18) of s0(2, 3)
into an infinite dimensional algebra that consists one copy of Virasoro algebra. We
will show in the next section that the first two avatars above admit minimal chiral
We-algebra extensions that are novel. The third avatar leads to the known W(2,4)

algebra, and the extension of the fourth one is what was done in Chapter 5.

6.2 The four VW-algebra extensions

We now would like to find the minimal infinite dimensional extensions of the four
avatars of s0(2,3) found in Section (6.1) such that they contain modes of a chiral

stress tensor. We implement the following set of rules for this:

e For every copy of s[(2,R) with generators L, (for n = 0,41) we postulate
a chiral quasi-primary stress tensor 7'(z) with dimension A = 2 and central

charge ¢, and modes L,, (for n € Z).

e For the generators of the subalgebra h we postulate a level-x current with
h=1.

e For every set of generators that form a non-trivial finite-dimensional rep-
resentation of s[(2,R) of dimension k we postulate a primary of dimension

h=3(k+1).

o We write down the most general OPEs among the chiral operators as obtained

above imposing the global symmetries at hand.

e Finally we fix the undermined coefficients in these OPEs using the OPE asso-
ciativity - implemented in terms of commutators of the modes and their Jacobi

identities explicitly.

Following these rules we consider one copy of a chiral stress tensor: 7'(z) — a quasi-
primary with h = 2 and central charge ¢ for each sl(2,R) subalgebra we identified

in the previous section with

c/2 N 2T (w) +6T(w)

T()T(w) ~ z—w) (z—w)? z—w

(6.19)

Then each of the four avatars of s0(2, 3) lead to the following sets of chiral operators.

1. In the h = so(1,1) case we have, along with T'(z),
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(a) An so(1,1) current H(z) which is a conformal primary with h = 1 and

level-.

H(w) N OH (w)

2

Y

(z —w) z—w

(6.20)

(b) A pair of chiral operators P*(z) that are conformal primaries with A = 2
as well as a doublet of so(1,1) current H(z).%

2P%(w)  0P%(w)
(z—w)? z—w '’
N Pb(w) &2

T(z)P*(w) ~

H(z)P*(w) (6.21)

This leaves the OPE P%(z) P’(w) to be determined. We will refer to the
resultant algebra to be W(2;22%,1).

2. In the h = s0(2) avatar we have, along with 7'(z),

(a) An so(2) current R(z) which is a conformal primary with ~ = 1 and

level-k.

R(w) OR(w)
(2 — w)? t e

(6.22)

(b) A pair of chiral operators P*(z) that are conformal primaries with A = 2

as well as a doublet of s0(2) current R(z).

2P%(w)  OP*(w)
(z—w)?  z—w '’
eabe(w)

T(z)P*(w) ~
R(z)P*(w) ~ (6.23)

The OPE P%(z)P’(w) will be determined later. We will refer to the
resultant algebra to be W(Q; 22.1).

3. In the case with h = () we have a stress tensor 7'(z) and

50ne could have postulated that P?(z) are only quasi-primaries at this stage. It turns out,
however, that consistency of the final algebra with associativity does not allow central terms in
T(2)P*(w) OPE and hence we preclude this.
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(a) A chiral operator W (z) that is a conformal primary of dimension h = 4.

AW (w) oW (w)

(z—w)2+ z—w

T(2)W(w) ~

(6.24)

The W (z)W (w) will be determined later. We will identify the resultant
algebra with the known W(2,4) algebra of [179].

4. In the case with h = sl(2,R) we have a T'(z) and
(a) A triplet J,(z) with a = 0, £1, which are conformal primaries with h = 1
T(2)Jo(w) ~ (2 —w) 2 Jo(w) + (z — w) 10, (w), (6.25)
and among themselves form a level-x sl(2, R) algebra,
Tu(2)Jy(w) ~ —gnab(z —w) 4 (2 — w) T (w) . (6.26)
(b) A pair G4(z) for s = +1/2 that are conformal primaries with A = 3/2
T()Gy(w) ~ (3/2)(z — ) 2Gy(w) + (2 — w)0G,(w)  (627)

as well as a doublet of s[(2, R) current algebra

!

Jo(2)Gs(w) ~ (2 — w) Gy (w)(Ny)* s (6.28)

where (\,)°,,
Chapter 5 and the OPE G4(z)Gy(w) was determined. The resultant algebra
is our W(2; (3/2)2,13).

= 2(a — 25')05, . This case was already dealt with by us in

We will now turn to obtaining the underdetermined OPEs in each of these cases. We
will provide only the essential details of the derivation of the first of these algebras

and the results for the remaining three.

6.2.1 W(2;2%,1)
In this case, the only undetermined OPE is that of P%(z)P’(w) and following the

conformal invariance one expects that all quasi-primaries of dimension up to three

and their global descendants can appear in the singular terms on the RHS. These
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quasi-primaries can also be composites (normal ordered products) of simple (quasi-)

primaries (7'(z), P%(2), H(z)).
One can construct the necessary quasi-primaries using the OPEs
c/2 2T (w) 0T (w)
T(2)T(w) ~
()T (w) (z—w)4+(z—w)2+z—w’

TG H ) ~ T+ T HET (W) ~ s,

Y

HEHW) ~
TP w) ~ o+ T pra)

H(2) P*(w) ~ % ~ P2 H (w).

(6.29)

The relevant composite quasi-primaries are as follows.

e At h = 2 we have only one normal-ordered composite quasi-primary (H?)(z)

with
O(H*)(w). (6.30)

T ) ~ s + o () ) +

(2 —w)

The corresponding Sugawara stress tensor o-(H?)(z) has ¢ = 1.
e At h = 3 we have two composite scalar quasi-primaries

A(2) = (TH)(z) — %82H(z),

S(2) = i((HQ)H)(z) - %621-](2). (6.31)

Their OPEs with T'(z) are given by

S Aw) 4+ ——aAw),

24c
T(2)S(w) ~ ﬁﬂ(w) + ﬁZ(w) o ! SO, (632

Note that the linear combination 3 A(z) — (2 4 ¢) ¥(z) is a primary.

e At h =3 we have a doublet of primaries (not just quasi-primaries)

[P°H](2) := (P*H)(2) + Zebaapb = (HP")(z) — %eb“apb (6.33)
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This is the full list of composite quasi-primaries that are covariant under so(1,1)
and dimension h < 3. In particular, let us note that there is no rank-2 symmetric
traceless tensor of so(1,1) with A < 3. There are other quasi-primaries of higher

dimensions that we will introduce as and when required.

We now make use of the global symmetries to constrain the OPE P%(z) P?(w).

e Since the two operators involved carry vector indices a, b, - -+ of so(1, 1) their
OPE should respect this symmetry. This means that the rhs can only involve

representations of so(1, 1) that can appear in the tensor product of two vectors.

e There are in general four independent components in a rank-2 tensor of

s0(1,1). Arranging them into covariant irreducible objects, there are

1. two singlets - with the CG coefficients being the symmetric tensor 1

b

and the anti-symmetric tensor €. These can be multiplied by so(1,1)

ivariants.

2. a symmetric traceless rank-2 tensor with two independent components.

e One consequence of these tensor structures is that we cannot have a covariant
rank-1 object (vector) on the rhs and that rules out (6.33). Also the fact that
there are no composite operators with h < 3 that are rank-2 traceless sym-

metric tensors leaves us with, in the increasing order of conformal dimensions
{I,H(2),T(z),(H*)(z),A,X} that can appear on the rhs.

e Another fact is that the OPE is expected to be invariant under the simulta-
neous exchange (a,z) <> (b,w). It is easy to see that this requires that the
terms containing 7%’ should have even dimensional operators, namely, (1, 7'(z))
(and their descendants) and terms containing €*® should have odd dimensional

operators, namely, (H(z),A(z),%(z)) and their descendants.

e The relative coefficients of a quasi-primary and its global conformal descen-
dants are fixed by the global conformal invariance. This leaves only six real

numbers to be undetermined.
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Thus we arrive at the following ansatz:

P(2) P (w) ~ n [oz (z—w) T+ B8(z —w)? <2T(w) + (2 —w) 3T(w)>
(= = w) 2 (2(H) (W) + (= = w)d(H)(w))|
R [5 (z —w)™? <6H(w) +3(z —w)0H (w) + (2 —w)? 82H(w)>

+o(z—w) A (w) +w(z— w)’lE(w)]
(6.34)
The undetermined real numbers («, 3,7, d,0,w) (that can depend on the central
charges (¢, k)) are to be determined by imposing the OPE associativity. This we
do using Jacobi identities in terms of modes (as in Chapter 5) following [25]. To

proceed further we need the mode expansions of these quasi-primaries. Using the
definition from [160, 161]

(AB)m= > AuBun+ > BuaA, (6.35)

n<—hag n>—hy

for the modes of normal ordered products we can write

(H) =Y HowHp+ Y HiH, . (6.36)

k>—1 k<-1

Similarly we have A(z) = Y, , 2= where

1
Ap= Y HowLp+ Y LpH, - S(n+1)(n+2)H, (6.37)

k>—2 k<-2

and X(z2) =) Zn_ where

neZ zn+3
- - 1
So= Y HyLp+ Y LiH, - S+ D (n+2)H, (6.38)
k>—2 k<-2
with L, = = (H?),.
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Jacobi identities

Let us convert all the OPEs into commutators of modes. The modes are

d d
L, = ]{—Z,Zn—HT(Z), Py = 7{ : HPY(2), H, —z "H(z (6.39)
0 2mi 0 2Tt

resulting in

1. Virasoro Algebra:

(Lins L] = (m — 1) Ly + 1—c2m(m2 — 1) im0 (6.40)

2. Virasoro Primaries

Ly, Prl = (m—n) Py, [Lm, Hy) = —nHpin (6.41)
3. s0(1,1), Current Algebra
[Hon, Hy) = KM dppino (6.42)
4. Current algebra primaries
[Hpn, Py = P (6.43)

5. Commutator [P%, P’

a
[Py qu;] = nab [gm(mQ = 1)dmino + (m — n) (5 Lypin +7 (HQ)m+n>]
+ € [(5 (m*+n* —mn —1) Hypyn + 0 Ay, + w Em+n]

(6.44)

It remains to simply determine the unknowns («, 3,7,0,0,w) in terms of ¢ and &
using the Jacobi identities. As in Chapter 5 we schematically denote the Jacobi
identity involving the modes of the operators A(z), B(z),C(z) as identity (ABC).
There are a total of 10 identities to be considered. The four identities (777,
(T'TH), (THH), (HHH) are automatically satisfied. Next there are three with
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one P* each: (TTP*), (I'HP®), (HHP®) — which can also be seen to be satisfied
identically.

The remaining three Jacobi identities contain at least two P?’s: (T'PP), (HPP)
and (PPP). These involve commutators between two P%’s. To impose these we

need the commutators of the modes of the simple primaries (L, Hy,, P%) with
(H?)n, An, Zy).

Commutators with (H?),

It is easy to see

(Lo (), = (m = 1) (H?)ps+ & m(m® = 1) Surino
[H,,, (H?),) = 26m Hyppyr, (6.45)

For [P, (H?),] we first note that the OPE between P%(z) and (H?)(w) can be

written in terms of quasi-primaries and their descendants as follows:

Pw) | oPw) L [PH)w)
(z—w)2+2(z—w) 2 z—w

P(2)(H?)(w) ~ (6.46)

where
3
[P°H](z) :== (P*H)(2) + ZebaaP“ (6.47)
is a primary. In obtaining this we used the identity: (HP%)(z) — (P*H)(z) —

6°0P%(z) = 0. Using this OPE we can immediately write the commutator of the

corresponding modes as

1
[Pas (H2),] o= =26 [P Hl i + 5 (m = ) P (6.48)
Commutators with A,
It is straightforward to find
1 2
[Limy, Ay] = (2m — n) Ay + E(C +2)m(m* — 1) Hppyn,
[Hyp, Ay] = £ Ly +m (H?) g - (6.49)

154



The next non-trivial commutator is [P%,A,]. For this again we write the corre-
sponding OPE P?%(z)A(w) in terms of quasi-primaries and their global descendants.
We find

Pe(2)A(w) ~ 26" P(w) + }l(z — w)OPb(w) +

iz_wZQ b’UJ
T (= = w)* 0" P'(w)

20

2[P*H](w)  20(P*H](w) ,[TP)(w) [0OP*H](w)

(z —w)? 3(z —w) — 3(z —w)

(6.50)

where the relevant composite quasi-primaries are

h=3 : [P"H|(z):= (P“H)(2) + Zeb“apb(z),

[HP"(2) := (HP")(z) — iebaapb(z),

h=4 : [HOP(z):= (HOP")(z) —2(P"OH)(z) — %82Pb(z)eba
= (OP*H)(z) — 2(P*0H)(z) — gaszeb“ = [0P"H](2),
h=4 : [TPY(z):=(TP"(z)— 1%82P“(z) = (P"T)(z) — 1%8213“(2) = [PT)(2).
(6.51)
Converting the OPE (6.50) into a commutator we find
1
[Py An] = — Gba[TPb]m—&-n + g[Hapa]m—i—n
- %(Gm2 +n® —3mn —4)e," P, + ;(Qm —n)[P*H]min - (6.52)
Commutators with X,
It is easy to see that
1 2
(L, 20 = 2m —n)X, + Zm(m — 1) Hypin,
H,, 5] = gm (H2) s (6.53)
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To find [P%, ¥, ] we again write the OPE:

P S (w) ~ —— 2

! [Pb(w) + %(z — )P (W) + —(x — w)282Pb(w)]

e~ P 30
+ %(Zg_w)z [[PaH] (w) + %(z — w)d[P*H] (w)] - zm(zl—w)[aPaH] (w)
- M Eba[[H HP|(w) + [P*HH](w) + [HP“H](w)} (6.54)

where the additional quasi-primaries with A = 4 are:

[HHP")(2) := (H*)P")(2) — eba%(Han)(z) - eb“g(Pbé)H)(z) - %BQPC‘(Z:) :
[HP*H|(2) := (HP“)H)(z) + Zeba(Han) — %eb“(Pb()H)(z) — 4—10(11 + 20)0* P,
(PUHH](2) := (PH)H)(=) + 46,*(P*OH)(2) — %(55 _17)32Pe, (6.55)

and we used the identities

(HP*)(z) — (P°H)(2) — "“0P"(2) =0,

1
(OP*H)(z) — (HOP")(z) + §eb“82pb(z) =0. (6.56)
Converting the OPE (6.54) into commutator modes we find:

a 1 a 1
[Ps.%,] = TP (6m? 4+ n? — 3mn — 4)Pf,’1+n + P
1

4k

(2m —n)[P*H]in
1
(0P Hn = 50" ([HHPb]mM 4 [HP H]pon + [PbHH]m+n>.

(6.57)

Result of Jacobi identities

We are ready to impose the (T'PP) and (HPP) identities. The computations are
straightforward and we find that (T'PP) identity requires

20 —cf—2ky=0, 240 —(2+c)o—3w=0. (6.58)
The (HPP) identity requires
B+30+2ky=0, a+6xkd=0,

3
26+ ko =0, 27—|—a—|—§w:0. (6.59)
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Finally, we need to impose (PPP) Jacobi identity. For this, first we write
[Pg, [P, Pyl as

(8+3) n™m =)k = m —n) P

1 w
. 2 2 . - et 2 2 . ab_ cpd
[5(m +n°—mn 1)—1—10 <U+4m) <6k + (m+n)* —3k(m+n) 4)}6 €d“Pyy ik
w 20
+ <2’£ + 3> (2k —m — n)e®[P Hpynik — 27(m — n)n®eq [P H]pminsk
a & o w a C
— O0€ b €d [Tpd]m+n+k + (g - @) € b[HaP ]ernJrk
w
- %e“bedc([HHPb]ernJrk - [HPYHlpsars + [PbHH]mmk) . (6.60)

The Jacobi identity to be imposed is
[P [P, P+ ((e. k) = (a,m) = (b,n) = ()
+ (e k) = (Bm) = (a,m) = (e, k)) =0, (6.61)

ab

The terms that contain €%¢;,O%, nyr and e?O°, +nyr can be dropped as they vanish

after summing over the cyclic permutations above. Then there are two types of

terms left which contain (i) P¢,,,.,, (i) [P°H]min+k-
1. Setting terms containing [P*H|,,1n+x to zero we find one condition
4k(y — o) — 3w = 0. (6.62)
2. Setting terms containing 5 ., to zero gives the last condition
428+ —20+0)+w=0. (6.63)
Thus the full set of conditions obtained from the Jacobi identities is (6.58, 6.59,

6.62, 6.63). Out of these eight only six equations are linearly independent. These

equations admit a non-trivial two-parameter solution.” Taking these parameters to

"There is of course the trivial solution: o = 3 =+ =6 = 0 = w = 0, for arbitrary ¢ and x.
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be (o, k) we find:

_ 3k%(k — 1) ety
k+1 2
2k — 1 k(k—1)
_ T s M)
Tk )7 20k + 1)
2 2(6K% -8 1
=" o, c=— (6x s ) (6.64)
k+1 Kk+1

This completes our derivation of the algebra ¥ (2;22,1). In the large-x limit these

become

K
a — 3k%0, B — —5% v = 0o,

5 — —ga, W= =20, ¢— —12k. (6.65)

By further taking o — % it can be seen that this ¥V algebra when restricted to the
modes of $0(2,3) is a deformation of (6.10) around the x — oo limit.

Relation between W(2;2% 1) and conformal bms; of [20]

Before we turn to the next case let us briefly demonstrate that the conformal bmss

algebra of [20] arises in the semiclassical limit of our W(2;22,1). For this we define
Pm=Po+P,, Kyn=P),—P, (6.66)

and re-write the commutator (6.44) in terms of P,, and K,. This results in, for

instance, the commutator [P, , ]

[Pm :Kn] = _% m(m2 - 1)5m+n,0 - 2(m - n) (ﬂ Lm+n + v (HQ)m+n)

— 28 (M2 4+ 0% —mn— 1) Hyon — 20 Apsn — 2w zmm} (6.67)

Next, we take the large-x limit which amounts to using (6.65). If one further replaces
¢ — 12¢, k - —¢ and 0 — 2/¢ one obtains the conformal bms; algebra as written

down in [20] after the following identifications

H, —iD,, Ly— T, (6.68)
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The normal ordered operators in this large-~ limit after regularisation become

() = =Y DupDyy A=Y Ty Dy S — —2% > Dun DDy
p p n,l

(6.69)

completing the identification with the non-linear terms of (6.67) with the expressions
in (2.2-2.4) of [20]. This makes it clear that the conformal bms; algebra of [20] is

only valid for large values of their central charge.

6.2.2 W(2:221)

Now we turn to the second way the s[(2, R) is embedded in s0(2, 3) where P* instead

of being a vector in s0(1,1) algebra is vector under so(2) algebra. This gives rise to

a different W-algebra extension which closely resembles W(2;22,1) algebra found

in the previous section. The structure of all the quasi-primaries and primaries are

expected to remain the same with some minor modifications (such as H(z) — R(z))

and therefore we provide only the result here.

1. Virasoro Algebra:

C
[Lin, L] = (m — n) Lypyn + Em(m2 — 1) Gmino

2. Virasoro Primaries

[Lm, B] = (m —n) P}

m—+n?

[Lm, Rn] =N Rm_l,_n

3. 50(2), Current Algebra
(R, Ry) = KM dpino
4. Current algebra primaries

[Rm, P] = €™ Py

m+n
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5. Commutator [P, P?]

a a a
[P Pl = 0 | Zm(m? = Ddnno+ (m = 1) (8 L +7 ()i ) |
+ e [5 (m?+n? —mn —1) Ry + 0 Apyn +w Em+n]

(6.74)

where A, and ¥, are the modes of those in (6.31) with H replaced by R.
As before we impose Jacobi identities to solve for unknown parameters in
the [Pg, P’] commutator. From Jacobi Identity (T'PP) we get the following

equations
20 —cf—-2yk=0, 24— (2+c)o—3w=0 (6.75)
The (RPP) Jacobi Identity demands
B+30+2vk=0, a—6Kkd=0,
2 —ko =0, 27—0—§w:0. (6.76)

In imposing the Jacobi Identity (PPP) we find similar structures that we saw

before resulting in the following equations,
4k (y+0)—3w=0, 4x 26—y —20+0)—w=0. (6.77)

These equations (6.75, 6.76, 6.77) with replacements v — —vy and k — —k
match with the equations (6.58, 6.59, 6.62, 6.63) obtained in so(1,1) case.
Hence we obtain the new algebra W(?; 22.1) where the parameters are given

by (6.64) after the replacements v — —v and k — —k.

6.2.3 W(2, 4)

Here we start with the third avatar of so(2,3) given by,

[Lmu Ln] - (m - n) Lm-i—nu [Lm7 Wn] = (Sm - ’I’L) Wm+n7

1
[Wma W'fl] - A(m7 ’I’L) Lm+n +

= = B(m,n) Wiin (6.78)

1
v/ 1680
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where A(m,n) and B(m,n) are as given in (6.16). Using the method that was
spelt out earlier, to obtain the infinite-dimensional extension of this algebra

we start with the following ansatz of [W,,, W,,],

(Wi, Wo| = aa(m,n) + B A(m,n) Ly + B(m,n) (Y Wipin + 3 Ain)
+(m—n) |lwApin+ 70 +o Qm+n] (6.79)

where,

3 m (m® — 14m* + 49m? — 36)
a(m,n) = =040 Simtn.0 (6.80)

The modes A,, are associated with the h = 4 quasi-primary
3 2
Az)=(TT) (=) — 1—08 T(2). (6.81)
The modes A,,, I',, , €2, are those of the following three h = 6 quasi-primaries:
1
A(2) = (TA) (2) — 2 *A(2)
2 1
I'(z) = (0°TT) (z) — O(OTT)(z) + 5 O*(TT)(z) — Ea“:F(z),
1
Q) = (TW)(z) — 682W(z) : (6.82)

To obtain equations constraining the parameters {«, 3,7, d,w, o, 7} in (6.79)
one imposes Jacobi identities as for the earlier cases. From the Jacobi identity

of (TWW) one gets the following equations,

1
a—420¢4 =0, 19605~ (22+5¢)6 =0, 147y~ (24 +c)o =0,
1
146 — 325(160 7 + 3w(15¢ + 164)) = 0,
737100 8 — 315(22 4+ 5¢) 6 — 5(29 + 70¢) k — 42(22 + 5c)w = 0. (6.83)

From imposing (WWW) Jacobi Identity one gets,

18900 3 — 88206 — 3157 (60 — 7o) + 957 + 1029w = 0. (6.84)
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The solution to these equations are as follows,

1960 3 20160(13 + 72¢) B
— 420 §— 0P =
@ ch, 22+ 5¢" © 7 7063 + 9532 + 2498 ¢ — 1496
252 (—524 + 19¢) 3 1687  , TOB(c® — 148¢2 — 3932¢ + 4704)
pr— O’ fr— pr—
14¢% + 129¢ — 68 ' Mtc ! 7063 + 953¢2 + 2498¢ — 1496

(6.85)

where [ is a free parameter, the value of which can be fixed. Choosing § = ﬁ
one can check that the above algebra is W(2,4) algebra as was written down
in [179)].

6.2.4 W(2;(3/2)%1%)

This case was dealt with in detail already by us recently in Chapter 5 motivated from
the algebra derived in the context of symmetries responsible for soft theorems in the
context of MHV graviton amplitudes in 4d flat spacetimes. For the convenience of

the readers we simply quote the result for the only non-trivial OPE

Go(2)Gy(w) =20 €59 (2 —w) > +6 (2 —w) 2 (N, [2 Ju(w) + (2 — w) J, (w)]

B gz — w) T (w) + 7 (2 — w) ! e (J2)(w),
(6.86)

which in terms of modes reads

1
[Gs,raGs/,T’] = 653/|:Oé (Tg a Z) 5T+7",0+/8 LT-H"’ +7 (‘]2)1“-1-7" +5(T - T,)JG7T+T/(>\G)55/

(6.87)

where (J?2),, are the modes of the normal ordered quasi-primary n°(.J,.J,)(2):

(J*)n =n™ [Z Jpn—tda + Z Ja,ka,n—k]

k>—1 k<-1
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The result of the imposition of the Jacobi identities is the following set of constraints

on the parameters («, 8,7, 9, ¢, K)

c K K 1 )
— = — = —0—- = — 2) — =0 = ——=0.
0= Btr5 =0, a=65 =0 B-7(k+2)—30=0, f-I1-==0
(6.88)
whose solution exists provided
6k (1 + 2K)
= 6.89
o+ 2K ( )

When this holds, for generic values of k (% —5/2) the solution can be written (taking
v to be the independent variable) as

1 1 1
a= —Z’)//{(B +2K), = 17(5 +2k), §= —57(3 + 2K). (6.90)
This is the final result valid for generic (k # —5/2) values of x [163].

This completes our exercise of finding all minimal chiral W-algebra extensions of
50(2,3).

6.3 W(2;(3/2)%1°) from s0(2,3) gauge theory

In this section, we show that the semi-classical limit of the W(2;(3/2)%,1%) is the
asymptotic symmetry algebra of the 3d conformal gravity — formulated as the Chern-
Simons gauge theory for the gauge algebra s0(2,3) — with a consistent set of bound-
ary conditions. The standard steps and methodology regarding the calculations in

50(2, 3) gauge theory was reviewed in (2.1.4).

We start with the Chern-Simons theory in 3d with gauge algebra so0(2, 3) written as
(6.18). The 3d gauge connection A = bdb™! + bab~! where b = ¢(Jo=lo) (/6 anq

a is a 2d connection whose coordinates are x¥. We write the gauge connection a as

a=AML, + A9 ], + oG, . (6.91)
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Then the 3d flatness conditions F =dA+ ANA=0 = da+aAha=0

9AY — ;AP 1 (m —n)ob, A AT 4 2e DR gr

r4r!

BiAY — ;A + (a — )5, , A A<." + 26,00 ge — 0,

s,T 1 r m s,r’ 1 s n s'r . .
8i®§’)+2(m 2r")6 AZ( )(I>§ )+2(a—23)6a+814 2ol )—(Z<—>j)20.

m-+r/ J
(6.92)
6.3.1 The constraints and a variational principle
The action is
S = i Tr(AAdA A ANANA 6.93
47r r( + ) ( ' )
whose variation is
0S5 = K Tr(2F AOA k/ Tr(AAOA 6.94
e r( ) 47 r( ) (6.94)

Around an on-shell (i.e., with F = 0) configuration under general variation 6.4

__k . Tr (A A 6A> (6.95)

on—shell 47

05

Using the traces Tr(Ly, Ln) = —mn, Tr(Jody) = —Nap and Tr(G 5,0) G (s ,11)) = d€sgr€ppr

this becomes

k
on— shell 87T

58 & [ (A6 AL — AT AT

=70

o (A6AY — AP 5A)

s (2058 — 20507) | 4 O(1 /1)
(6.96)
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We first impose the following constraints:®

AT =1, A9 =9, AP =1, A9 =y,

o) =) =) =9 =0,
A = A0 (6.97)

The constraints imposed on A™) and A™ in (6.97) are the same as those in [170]
for AdS;3 gravity. Then some of the equations of motion (flatness of A) lead to the
following additional constraints:

AP — 9D, 8L et AD, o~ o a0,

1) Lo 20 s g ()
AT =20 AY — el

1 _ _ _
AP = §aEA(+ '+ AP AD — et (6.98)

and the rest of the equations of motion lead to the following equations among the
remaining six fields (AS:), A(j), fl(g),f_l(j), q)(;") (I>(+’+)) :

9 —

1 _ _ _ _ o
SORAC) + (4000 +20. 40 —0,) A = 300D 0 1 0l o 00,

(6.99)
—(_ 1 | _
o_ {A& ) 1 a_AT) — §a_a+A<+ 1
0, [@ el 4 A0A0 4 ol el 4 A0 A 9 Al o,
(6.100)
9,0 — Ao o 209 AT —24M9 o) —ola 4D =0,
(6.101)

8The {4, —} subscript of one-forms { A(™) A(®) &("5)} denote the {z*, 2~} component respec-
tively. In the context of field (%) even though r,s € {—1/2,1/2}, we will denote it by {—, 4} for
notational simplicity.
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- R - T D
S [@”’“Ai '+ o )A(_+)] {—cpg St L A A 4 58&4& )
+ [@W)Ag—) + Ai”cp‘;ﬂ = 0.

(6.102)

Now we consider an arbitrary configuration that satisfies the constraints (6.97, 6.98)
and impose these constraints at the level of variations about such a configuration.
It is seen that the variation of the action around such configuration and variations
of fields gives:

58 __F 4d2/\dz[ASr_)éﬁ(“L)—A(+)5A(+_)—CI>S:’_)5‘1>(,+’+)+<I)(,+’+)(5<I>Sr_’_).

on—shell 4T r=rg - n

(6.103)

We will solve this in a chiral way by choosing”

AN =174, AM =0, o =0 (6.104)

which leads to the solutions with

AE;)(IL’i) J(_l)(aj+) oia” +J(O)($+> _i_J(l)(x—i-)eiz*
q)g:ﬁ) — G(—l/z)(er) 5 4 G(1/2)<x+) Sl

o 1 _ 1 1)) 2
ACY =Tty + 0,0 AT + (0 ALY) (6.105)

The residual gauge transformations that leave the constraints (6.97, 6.104) invariant

can be worked out easily. We write the gauge parameter as follows,
A=AML, + A9, + ACIG, (6.106)

where {A(™ A@ A1) are general function of z*. The gauge transformation of

the connection is given by,
0A; = 0N+ [A;, A]. (6.107)

The gauge parameter corresponding to the residual gauge transformations is ex-
pected to preserve the constraints (6.97, 6.104) and leave the connection A form-

invariant. We find that such a A can be written in terms of three free functions of

9The first of these requires adding a further boundary term which can be done easily as in [170].
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| {AC)A® AEDY as follows,

1 1
AD =49 A, AW = 5)\(0)<x+) _ ZA(i)(er’xi) , A =9 A,

1 - .
AP = §A(+") [J<—1>(x+) e 4 JW(gT) e } +0_A),
A = XD @) — g A 4 g A AT,
9 A — _{ [J(*l)(afi*)e*’iz_ . J(H)(x*)e“_} ’

_ 1- . .
9 A — — A0 [ TED(pH)e £ D (g e ] , (6.108)

which are further constrained to satisfy

PAT (zt 27) + AT (2t 27) = NO@T) =0,

- 1
O_AH =0, 9?2 A+ ¢ ZAH’_) =0. (6.109)
These constraints in (6.109) can be solved to obtain

A — A(_l)(x+) e 4 )\(0)(90+) + A(l)(sﬁ)e“*,
A = \(z),
AT = D ()57 4 (2 () es® (6.110)

Thus the residual gauge parameter is given in terms of the six chiral functions

{\(zT), M), x*(z7)} and they can be shown to produce the following variations:
1
0T =2T N + \T' + 5)\”’ +1i€” (3G, X5 + Glxs) + 2(\)"° TGy xs,
6Jo = N4+ f Ty he +4(Xa)"*GrXs,
3 1
0G5 = \G + §GSX — X4 —iAY)" (Ja A= X)) Gy — <Z77“bJan + T) Xs
+i(AY)", (2J X0 + T xy) - (6.111)

We also have

Tr (ASA_) = AV (e7@ 6] e 57W),
Tr (ASAL) = n™8J, Ny — 43 €5 x0G, — 20 6T
— 9,0 (A(l) (e 57D 4 e“"w(l))) . (6.112)
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Using the coordinates x* = ¢ & ¢ we have A, = A, + A_ and 9y = 04 + J_. The
charge is [180]
k 2
= —— doTr Ao
=5 | doTrinGA
k o ab - sr
L [n 5T Ny + 4i €7 0G, — 2\ 6T
2 Jo
+ 0, (z AW (e 5 g1 e@'faJ(l))) ] . (6.113)
Assuming that 6. (27) and A(V)(z) are periodic in ¢ — ¢ + 27 we will drop the

total derivative terms here in the second line. Before carrying on we will make the

following replacements

Aa = Ao+ Ja A

1
6T — 0T + §n“bJa 5y (6.114)
which changes the transformations (6.111) to
1 1
0T = 2T N + \T' + 5)\”’ + 1€ (3G, X% + Glxs) — §n“bJa)\§,,
0Ju = (NJo) + Xy 40 2 dy A + 4(Aa) " GrXss
3 1
0Gs = \G, + EGSX — Xy - (§n“bJan + T) Xs + 1A, (2L xo + o X + A Gr)

(6.115)

and §Q,, after replacements 07T — 6T + %n“bJa(SJb and A\, = A\, + J, A remains

form-invariant. Thus we see it is integrable and we write

27
Qn = 2 / dé (2>\T — TNy + i€ Gy Xs) . (6.116)
0

:277

Using the fact that this charge @, is expected to induce the change d5 f = {Qx, [},
one can read out brackets among (T(¢), J,(¢), G(¢)). This results in

P 1(0), )} = 2T(@) 8 — 6) + 60— 6) TW) + 35" (6 — 9),
P20, Jul0)} = Ju(0) 86— 0) + JL0) 56— 0), (6.117)
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ET(0), Gr()} = 5Go(9) 316 = 6) + Gy(0) 56 — ),
o ul0), )} = 8 ) 58— 6) s ' ),

_%{Ja(qﬁ)v Gr(d})} = i(Aa)ers(d}) 6(¢ - ¢)7

160160} = e (T + 570)) 00 =)+ S 800 9)
F O [L0) 50— 0+ 30w -0) . (G11Y

where all derivatives denoted by primes are with respect to the arguments. We use
the mode expansions

2T
T(6) = 3-S Tue™ = L= [ doT(0)e™

nel

1 ) 2T ‘
Ju(¢) = 7 > Jon €™ = Jom = /O dp Jo(p)e ™,

neL

2w
Gs() = % Y G = G = /0 dp Gy(p)e ™. (6.119)

TEZ-F%

Note that we have postulated anti-periodic boundary conditions for G,(¢) which
immediately follows from demanding that the gauge field component CI>S:’7) is pe-
riodic. Using the mode expansion of J,(¢) we can write the mode expansion of

n®J.(¢)Jy(¢) as follows:

1 ,
ab _ § : ab i(m+n)¢
n Ja(¢)Jb(¢) - 472 n Ja,mJb,ne

m,ne”
1 . i . |
S, 2 (Z ! bJ“’mJb’p_”) = g 2 e
m+n=pEZ \meEZ =
2T
— (JQ)p = 27r/ d¢n“bJa(<b)Jb(¢) o9 (6_120)
0
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Replacing the Poisson brackets {A, B} in terms of the Dirac brackets [A, B] using
{A, B} = —i[A,B] and L, — T Ly, Jon — %Ja,n and G, — \/%%GW we find

(L, Ln] = (m — 1) Ly + K n35m+n,07

1
[Lma Ja,n] = =N Jamins [Lma GS,T] = §(m - 2T>G8,m+r7

/

[Ja,ma Jb,n] = fabCJc,m—l—n + knnab5m+n,07 [Ja,ma Gs,r] = (Aa)s sGs’,m—l-m

1 1

1
sp Lt = 5 (P |+ L Oasr (0 =) o

k

—1 2
« [Gs,ra Gs’,r’] = €s¢' |T 57”-1—7”,0 -

(6.121)

Finally to compare with earlier results (5.1) we need to replace L, — L, + §5n,0
and set k = §. Then this algebra is seen to be in perfect agreement with the large-x
limit of the W(2, (3/2)?,13) algebra.

6.4 W(2,4) from so(2,3) gauge theory

In (6.15), the Lie algebra so(2,3) split into a s[(2,R) given by a set {Li, Lg, L1}
and a 7 dimensional vector multiplet under s[(2,R) denoted by W; where i €
{#£3,+2,£1}. We write this algebra again with « as an arbitrary parameter,

(Lo, Ln] = (m —n)Liyy, [Lin, W, = (3m —n)Win (6.122)
(Wi, W,] = &® A(m,n) Lyyin, — o B(m,n) Wi, (6.123)

which can be chosen to coincide (6.123) with the commutation relations in (6.15)
but for now we will keep it unfixed. From boundary terms in the variation of Chern-
Simons action (6.95), we choose to impose A_ = 0 at the boundary to solve the
variational problem. In what follows we will use the boundary conditions and gauge
fixing method used in [116, 117], where the asymptotic symmetries of 3d higher spin
gauge theories described by SL(N) x SL(N) Chern-Simons theories were evaluated
to be Wy algebras. One gauge fix A, as,

A, = fHr) o, f(r) (6.124)
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Then following the arguments of [116, 117], one can gauge fix A_ = 0 everywhere on-
shell and the resultant gauge connection A can be written in terms of 2d connection

a as follows,
A_=0, A, = ft(r)al@™) f(r). (6.125)
where a is given as
a=a"™ (") L, +w? @)W, (6.126)

We further gauge fix a according to the highest weight gauge used in [116, 117]. The

resultant a is then given by,
a=L +T(x )Ly +W(@T)W_s (6.127)

For different choices of T'(z™) and W(x™), a represents physically distinct solutions
to the equation of motion. To find the residual gauge transformations that do
not spoil the gauge and boundary conditions, we use the following form of gauge

parameter that takes value in s0(2,3) Lie algebra,

A= X" () L, + xD () Wi (6.128)
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Using the gauge transformation da = da+[a, A] one can solve for various components
of the gauge parameters (6.128) to find

A0 = _gA® AED = % 2T A + 21602 W x® + §2AM) |
NC PN % (6TX® + 824,

X2 = é (-6 x®oT —16 T ox® — 83X(3)) ,

YW = 214 (72 7?3 —720a W x® + 2207 0x® + 6 ¥ 9*T ()

+ 28T (z1) 0*x® + 84X(3)) ,

1
K= ( — 26472 0x® + 21600 W OY®) — 289X 9T — 50 9T 9%\

X (72000W — 60°T) — 8T (27 xWOT +5x¥) — a5x<3>> : (6.129)

1
Y = =0 (720 T3 X3 + 216\ (0T)? — 2880 a OW Ox® — 720 a x¥ 9*W

+ 54472 09X + 78 0°T 9* x® + 7120w (A — 22T v6(3) — 5 0*x¥)
+ 349D T +900T 83X( + 6y ot

+ T (96497 9x® + 276 v 02T + 50 9*yP) + 9© x(g)) |
(6.130)

In the expression (6.130), the functional dependence of fields on x™ is suppressed.
All the components of gauge parameter (6.128) are given in terms of two fields

AW (2F), xB)(2F)}. These residual gauge transformations will also induce variation
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on background fields {T'(z™), W(x™1)} given by,

1
6T = XNOT +20AT + 583)\4—1O8Oa2XaW+1440a2W8x,
(6.131)

24 1
W = AXOW +4WOIN+ x [€T28T— 280 (WT) + %8T@2T+ 3—§T83T

29 88

1 16
93 Lo 63 09 2 2 2
ad°W + 1208T] —1—8)([5T 56aTW+36(3T) +45T8T 5a0°W

49 70T
Px|-—=T? -6
} +0°x {45 aWV + 30

49T 0T 70°T
TR 9 W + I

7 7 1
o T 4 _T 5 - a7
—|—368 8x+90 8x+720(‘3x

Ly 2
+188T}+8x{

(6.132)

where we define A := X\, x® = y. Using the coordinates #* = ¢ £ ¢ we have
Ay = Ay + A_ and 0, = 01 +0_. The charges that generate the variations (6.131),
(6.132) are given by

k 27
jon =55 [ aoTr[nsAg

— Q= %/0 "o [207(8) M¢) + 720002 W(6) x(¢)] . (6.133)
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Using the charges (6.133) and variations (6.131), (6.132) induced by them, one can
find the Poisson bracket between fields {T'(¢), W(¢)},

12—’“{%)7 T()} =2T W) (W — ¢) + (v — ) T'(¥) + %5’”@ —¢),  (6.134)

10k

—{T(9), W)} = AW (6 — 9) + W' () 3(w = 9),

R ON(6), TW)} = AWW) 56 - 9) +3W ()56~ 9) (6.135)

360(;0‘2 R OW(6), W)} = 5(6 — &) {25—4# T —28a WT) + %T'T" + %T 7"

—aW" 4 T ] + %Mw —6) 00— 6) + 73_€'5<4>(¢ - ¢)

+8 (Y — o) {%T?’ —56aTW + %(TY + %TT” —5aW’ + %T]

+0" (¢ — ¢) [491T5T/ —9aW + %] +0" (¢ — ) {%Tﬂ —6aW + %] .
(6.136)

We use the following mode expansions,

2
T(¢) = %ZT,L e = L, = / dpT(p)e ™,

ne”L 0

2
W(p) = %an Mt = W, = /O dpW(¢)e ™. (6.137)

neL

Now the mode expansion {WW,,, W, } is calculated as follows,

o 2 T ime —iny360007 K
MW = gt [ o [ dwerimee v EEEE 0v() i)
(6.138)
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In RHS of (6.138), terms that are first order in fields are as follows,

T 27 27 ) ' 1
o —ime¢ _—iny . . 3 95
3600a2k/0 dgb/o dipe e {(5(1& ®) ( ad°W + 1203 T)
NWw—@<—&m#wwﬁ%yT>+MW¢-@<-%MWV+%@%)

7

@y [ 12)1 ) () _ s
+ 5O (4 @(6&W+mpT + 20T — 6) +

T$Ww—@}
(6.139)

Terms that have quadratic field dependence are given by,

T 2 2 ) 11
T —i(mptny) (-2 T 4 —* BT
3600a2k/0 d¢/0 dipe [5(;& ¢)(—2820(WT) + 808
19 5o s w — o) [ — 99 gop2 | 19 1o
+ 1208(T8 7))o (¢ — ¢) | =56 WT + 728 T? + 0 TO*T
49 (2) 2 49 (3) 2
+ %5 (¥ —¢)0(T7) + 4—55 (v—0)T (6.140)

Terms with cubic order in fields are as follows,

Y A - T e R LI
—— e e — - — — i
36002k J, 0 15 5

(6.141)
The full Poisson bracket after collecting all the terms is given by,
s s 1
Wi . W} = ) Tiw Limin — ok Tivw Wongn + a2k Tvw (LL)mn
7 1
o Tk a2 TV%W Z Z Lm+n—p7quLq + W TIFVW Z p2 Lern,pr
p q p

T g im?

+ ok ww (WL)min — mdww Om-+n,0- (6.142)
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where
2 )

=3 Wyl =2m / do W(S)T(¢)e™,

=Y Ly Ly =2 d e,
> : / 6 (6)T(6)%

(TOT) Zm Ly L = =21 / dp e~ P T ()0 T(9),

D) A A A T

m n 0

and

Tivw = 1296000 (3m° —5m*n+6m’n® —6m*n® + 5mn* —3n°),

Tww = ﬁ (m3 —2m*n+2mn® — n3) ,

Thw = 130000 (99m® — 293m® n + 293 mn® — 99n?),

TI%/W = ﬁ (m—n),

Tivw = 86411200 (m—=n),

Tww = ﬁ(m -n), dww = Wl()()()ﬂ (6.144)

To go from Poisson bracket to commutator one replaces i {W,,, W, } — [W,,, W,
with the following identifications,

T C
Lm — Lm7 Wm Wm ) k T Tan’
10k & 120
Ly Ln] = (m — 1) Lypsn + % M3 G0, (6.145)
(L, W] = (3m —n) Wiin, (6.146)
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1 1 1
(W, Wl = 152 Titw Limn + o Tovw Winin — 100k o2 Tivw (LL)msn

1 1
+ o0 szar 0w 2 2 Emenr-alola = qog g miew 2 Loy Ly
p

p q

1
10ak

k
TI%W (WL)pin + gdWW Om-4n,0- (6.147)

To compare (6.144) with the classical limit (large central charge ¢) of coefficients in
the W(2,4) algebra in (6.2.3), we redefine L,, as follows,

C
L, L, — —9, 14
— Y 0 (6 8)

which lead to the following changes in the mode expansions of the composite oper-
ators:

c 62

E Lm+n + — 5m—|—n,07

(LL)m+n — (LL)m+n - 242

3c 3c? c3
Z Z Lm+n—P—quLq - Z Z Lm—i—n—p—quLq - ﬂ (LL)m-HL + @Lm-i-n - @ 6m+n,07
p q p q

c
zp:pQ Lyin—pLp — zp:p2 Ly yn—pLyp — ﬁ(m + n)z Lppin,

C

Lmn Lmn_i
(W L)tn = (WL)min = 57

Wintn. (6.149)
Substituting these changes, the resultant commutator becomes,

[Wm ’ Wn] = 7~'I%/W Lptn + 7:VIV[//W Winn + 7:IéI\/W Amn + 7~'Igil/W Qimtn

+ Hw Amtn + Fiyw Dman + dww Smin,o (6.150)

where

Qn = (WL)m+n » Amgn = Z Z Linin—p—q Lp Ly,
p q

5 4
Tonin = (Z P* Linnp Lp = 75 (m + 1) (LL)mn + 9(LL)m+n> . (6.151)
p
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These expressions are the mode expansions of quasi-primaries defined in (6.82) in the

semi-classical limit of large central charge c. The final coefficients are,

1
G @(m —n) (3(m4 +nt) — 2mn(m — n)? — 39(m? + n?) + 20mn + 108),

w105

TWWZT%(m—n)(TLQ-FmQ—mn—ﬂ, TWW — — 5= 5

35 c?
- 7(m —n) - 57 (m —mn)
A
Trw = =g (Mt —mn = T) L Ry = T
-0 42 (m—n) - cm (m® — 14m* + 49m? — 36)
ww =\ dww = 20160 Om4n.0

(6.152)

where we fixed the value of a = 6—10\ / 1—75 These coefficients in large central charge c limit
match with the coefficients in (6.85).

6.5 Gravitational Chern Simon term

In the previous sections, we only focused on the 3d conformal gravity formulated as so(2, 3)
Chern-Simons gauge theory. However, there is also an equivalent second-order formulation
of three-dimensional conformal gravity given by the following action,
k 3 Apv p o 2 p 1O T
SCSG:§ d’xzv—Ge FM@LFWJrgFM_FWFVp (6.153)
where k is a dimensionless parameter, which is the level of the Chern-Simons action and
G is the determinant of the metric G,. The Christoffel symbol I' is the Levi-Civita

connection associated with the GG,,,. In our notation, the 3d Levi-Civita tensor e#1#2/3 on

a curved manifold is defined as follows,

A 1
€papiops = mfumzug , el — ﬁGMW“S (6.154)

where é#1H2H3 ig a pseudo-tensor defined as follows,

dazht A dah? A xhs = errs dol A dg? A dad = errs @By (6.155)
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that takes the value é°'? = 1 and is antisymmetric in all indices. Therefore the volume

element on the 3d manifold can be written as,
dz't A dzh? A dah® = /=G s @By = errns @iy (6.156)

The equation of motion derived from the action (6.153) is
1
Cuw =€,7"Vo (pr — 4Rgpy) = 0. (6.157)

The tensor C,,, is the Cotton tensor and the equation (6.157) is a sufficient and necessary
condition for G, to be conformally flat in 3 dimensions. The tensor S,, = R, — %ng

is the Schouten tensor. Under Weyl transformations
G — 6720ij

the Cotton tensor C), is invariant (but this is not true in general for d > 4). The La-
grangian density in (6.153) is invariant under diffeomorphisms and Weyl transformations
up to the total derivative, which plays an important role while calculating charges associ-

ated with these theories using modified covariant phase space formalism [28, 119].

This action becomes relevant when one quantizes the AdS4 gravity using the Neumann
boundary condition where the holographic stress tensor T;; = 0, and one expects the
boundary action to be an induced gravity action [99]. One can add a bulk Pontryagin
term to the action (6.153)

Spontryagin = k / 'z /=g R RZ,, (6.158)

with an arbitrary coupling constant. The Pontryagin term is a total derivative, equivalent
to Chern-Simons Gravity action (6.153) at the boundary. Therefore the variation of the
action after adding all the boundary terms, necessary counter terms and Pontryagin term
(6.158) will be given by,

5Shopal ~ / B (T + k) 59 (6.159)

ij

©)
ij
where 592-(](-)) # 0, one sets the modified holographic stress tensor to zero. However, in

where ¢’ is the induced metric at the boundary. For non-Dirichlet boundary conditions
the large k limit, the term proportional to 7% can be neglected, and we can solve the
variational principle by setting C% = 0, which means we look for only those solutions
whose boundary metric is conformally flat. Furthermore, if one calculates boundary ef-
fective action then the action (6.153) dominates the induced gravity action in the large-k

limit at the boundary and thus becomes relevant for AdSs holography. As alluded to in
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the conclusion of Chapter 5, for locally AdSy the induced effective action goes to zero
[105] and in that case addition of Pontryagin term will provide an effective gravitational
action at the boundary (6.153), that can be used to calculate the expectation value of the
symmetry generating currents in the bulk AdS, gravity. This can potentially also explain
the emergence of line integral charges from the bulk AdS4 gravity because the effective
action is a gravitational theory which will have its codimension-two charges making the
charges codimension-three from the bulk perspective. As it turns out we will see that the
charges we derive for the action (6.153) are similar to the conjectured charges from the
AdSy gravity (5.76).

Having dispensed with the motivations, we now turn to the analysis of 3d gravitational

Chern-Simons action leaving further implications on bulk AdS, gravity for future works.

6.5.1 Imposing variational principle

The variation of the action (6.153) yields,

k
08 =3 / Br—G MG, + / d*x /=y n, 0" (6.160)
where n, = —% 5}; is normal to time-like boundary r = r¢ and 7, is the induced metric

on this hypersurface. The boundary coordinates are labelled by z® € {z*,z~}. The

presymplectic potential is given by,

k k
Or = 5&#” L% 0T%, + 5 7V RPE 5G), (6.161)

The metric in the Fefferman-Graham gauge is,

12 12
ds* = ) dr? + 2 Jab dzda®. (6.162)

Using the relation

a— %/—G
the boundary term in (6.160) can be written as,
2 T QL) 2 k AATU p ~Aov ppr 5
d (~5,0") = — [ x5 [e %, 615, + & R, gAp}
2 éab b
= /d xk [2 Fg‘péfgb R 5gac:| (6.163)
where we set é"% = ¢% The first term can be expanded as follows,

T a Ci

e T TP, = eob [rgc §TC, +T¢ 6T, + rgddrglb} . (6.164)
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In the above expression, we have used I'},, = 0. Putting in the metric (6.162) the first
two terms in (6.164) have only r derivatives on the variation of the boundary metric. The

third term é* re, (5ng can be written as follows,

éabl—\ 61—\01) — |:a ( abred gdc(sgcb) + ab ( abrzc ng(sgde) _ ad (eabr\zc gcdégeb)}

+ € g% [~V T8y 6ge — VT 0gee + Vel 0ge). (6.165)

We can drop the total derivative terms and will only be left with the second line of (6.165).
Near the boundary, one expands the metric g;; in (6.162) as follows,

l2

I
g = o0 + gf})+— o4 (6.166)

Substituting this in (6.163) and expanding in r, one can check that at O(r) the first two
terms in (6.164) cancel the terms coming from the second term in (6.163), and therefore,
there is no divergent boundary term in the variation of the action when (6.163) is expanded

near the boundary. At O(1) we find the following terms,

ccb © aa L e (1) (0) o © b (L (0) aas (1)
<l2 ac 92) — 12 90)9ef dc (1 )) (59 —€ <4l2 Ydc 9(1)59(117)

~ab ~ ~
- 64 9%o) (D I, 09 + Dyle, 89ty — Defédégﬁg’) (6.167)

where D, is the covariant derivative associated with g(? and T is the Christoeffel con-

©) .

nection associated with it. We parameterise our boundary metric g,,” in Polyakov chiral

gauge such that the boundary line element is given as,
A8ty = — datda™ + g (a7, 27) (da™)? (6.168)

With this choice of boundary metric the first term in (6.167) becomes,

L s @ o L er () 500
Following [8, 10], one sets ga;r = g(_21 = —NT2 such that the first term in (6.169) becomes
Y o cagh ( )
8l2 5 93 dg

812
the prescription of [10], where one adds the following boundary term to the action (6.153)

which can be written as a total variation § ( > 5¢ 5i g((lb)) . To cancel this term we follow

S =k / LT g Q) with T = 8?& Y. (6.170)
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such that from the variation of the total action 6Sia = 0Scsg + 65’ the term

812 5a (5b 59(1)) drops out. The second term in (6.169) will go to zero from the gauge

choice (6.174). Now we come to the second term in (6.167) which becomes,

1 1
B3 (1 091 — g 5610 ) + 294 (12 091 = g 56110 ). (6.171)

There is a clear choice of boundary condition for which all of the above terms will go
M = 500
9-

to zero and that is g~ = 0. Also due to the chiral conditions imposed on the
boundary metric as in (6.168) all the terms in the second line of (6.167) will go to zero.

To summarise we solve the variational problem as follows,

e Parameterise the boundary metric in the Polyakov gauge as

1 _
gfz =3 ,g(,oz =0, g@r = gf}r(xﬂac ). (6.172)
e Fix the value of g() = —NT2 following [10] and add a boundary term S’ =

k[ d?x T gab) to the action (6.153).

e Impose the condition g(,lz = 0.

6.5.2 Solutions to conformal gravity

We solve the equation C,, = 0 near the boundary at each order in r after writing the

metric in Fefferman-Graham gauge as follows,

2 2
ds? l—dr + % (gib) W4 g+ l2 g2+ > dz® da® (6.173)

Further, we also impose the gauge condition to fix Weyl symmetry as follows,

o, (det(G)) =0 (6.174)

r2

where det(G) is the determinant of the full metric in (6.173). This condition fixes the

off-diagonal component of géb), gC(Lb), g( ) and so on. The expansion is similar to that of

(

[8, 10, 9] except for the presence of g ab) term. We start by imposing the chiral boundary

conditions that satisfy the variational principle,
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With these boundary conditions, one can solve for various metric components

2y N* (3 N? g
92 =0, g_l:T, gil:jgi_,

2 1
g8, =T(*) = 5% (-9 ) + 129202 o) + 512 0-0:.92). (6.175)

The free data that characterise the solutions are {gSLOJ)r, gSLlJ)r, T(x*)}, where gELOJ)r, gngJ)r sat-

isfies the following constraint equations.

N29 gl (at,27) + 22 gl) (at,27) = 0,
NQQS:J)r(x+,x_)+4l2 azgsrli(:n‘*',x_) =0. (6.176)

The solution to the constraint equations (6.176) are

g0 = (@M e T + S0ty + Tt e T = T at) e T (6.177)
g =G 2@ty e T 4 GVt e =G at) e T (6.178)

Thus the complete solution space for C,,, = 0 with boundary conditions (6.175) is param-
eterised by six chiral functions {J%(zT), G*(z "), k(z%)}, a € {0,£1} and s € {£1}.

Asymptotic symmetries

Since the 3d conformal gravity theory defined by the action (6.153) is diffeomorphic and
Weyl invariant, the asymptotic asymmetries associated with such a theory constitute resid-
ual diffeomorphisms and residual Weyl transformations that do not spoil the gauge and
boundary conditions. The variation of metric due to these residual gauge transformations

is
(SG;LV = v,ué.y + Vz/gu - QUG;W = 0. (6179)

Imposing the gauge condition G, = 0 leads to the determination of the Weyl parameter

o on the radial component of the vector field ¢ as,
T
oc=—-—>+40¢". (6.180)
r
We further expand the vector field component near the boundary as,

g =r? (o) (@) + &Ly (29) + oy (@) + -+
£ = el (") (6.181)

n=0
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From the gauge condition 0G,, = 0 at O(1), one gets

€l = 1" 9(5) & (s

From 0G__ =0 at O(r?) and O(r), one gets

é?(—)) = )‘(er) ’

N2

2

The equation (6.183) can be solved for §(_g) to find,

§lgy = X2 (@*) e T 4 x T (@) e
From 6G_ at O(r?) one obtains
1

§(-1) = ~5Dal(0)
The gauge condition §G,_ = 0 at the O (%) is given by

Sy = 11 0-E1),
Using this at 6G__ = 0 at O(1) one obtains the following constraint equation,

N? 0-€q) + 12 855(‘0) =0
which can be solved as
§0) = A (zh) e T 4+ 2O (z) + AW (zH) e T

&g + 2P 2L 5 = 0.

Therefore the final residual diffeomorphisms and Weyl parameters are,

£ = A@) +

iNxz—

A(xT) e T 4
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(6.182)

(6.183)

(6.184)

(6.185)

(6.186)

(6.187)

(6.188)



These induce the following variations on the background fields,

5J0 = NOJy + ONTg + O + 1 £ The — 41BN (M0)** Cs X,

1
5Cy = AIC, + gcs oA~ 0Px, — (T + 20 Julo)xs

+i (A% (20 Oxs + 0Ja Xs + Aa Cr)

1 1 /
ST = 2T ON+ \OT + 5331/ - in“bJa ONy — i 1PN e (3C,dxy +0Cs xs) -

(6.189)

These transformations are identical to (6.115) from the first order formulation of conformal

gravity for N = —l%.

6.5.3 Calculation of Charges

We now turn to calculate the charges that induce variations of the background field (6.189)
due to residual diffeomorphisms and Weyl symmetries. As mentioned before, the La-
grangian density is invariant up to the total derivative under the diffeomorphism param-
eter £ and the Weyl transformation g, — e=20 guv- To calculate the charges we use a
modified covariant phase space formalism proposed by Tachikawa [28] which we reviewed
in (2.1.5). The symmetry parameters for our theory are x € {£,o}. Let us calculate the
charges associated with the residual Weyl symmetry o. For this, we calculate the variation
of Lagrangian density under Weyl transformation

0oL = 0,0, (6.190)

where

[1]

k
ey = 2 M g8 900 Orgpu- (6.191)
The Noether current J# for Weyl transformation is given by

JM

ty =00, —EF (6.192)

(@) (o)
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It can be checked that J(“U ) is conserved on-shell. One can use Noether current to obtain
K" such that,

Tl 2 0K (6.193)

k
K() = —Zekﬂ”gm@gpa o (6.194)

Under Weyl transformation, the symplectic potential transforms as follows,

So0" =111 (6.195)

k
H/(LU) = 26)\“11( - 8,\051“&1, + 650' gaﬁﬁyéga,\ + 850' 3>\gup 5gﬂp

+20g0 gP’B FO‘AP 0gar — 0,00 Fpp)\ + 0700 Oxgup ng> ) (6.196)

Now the formula (2.58) states that one should be able to write 55’&) - E’(%U) - H‘(‘o) as a
total derivative on-shell. We find that up to order O(1) terms in r one can show that on
shell,

el - _TI* ~ 22
OEL, —Elh I~ 0,5 (6.197)
= —k e 950 g*P5g)s. (6.198)

Then the Weyl charge using the formula (2.60) is given by,

1
weo L MVA af
@) = T6m < ke 0g0 g 5g,\5> (6.199)

Note that the current K éff V) for Weyl transformation in (6.194) vanishes for the chiral pa-
rameterisation of the boundary metric (6.168). Therefore the contribution to the Weyl
charge is entirely from (6.198). The calculation of the charges for diffeomorphism symme-
tries has been carried out in [28, 119] in the context of topologically massive gravity. For

diffeomorphisms, the full charge is written as follows [28, 119],

v v 1
Kg = —2]{5 EAI’L (S)\aé-a - 4Ff\yﬁva§[3> 9

k AUV
ng =g e TS D¢, (6.200)

1
167QL" = —2k e” <5Spa§a — 50055 Vol + 8 R[O‘B(Sgp]a) . (6.201)
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Therefore the total charge becomes,

174 v AUV (6% ]' (6% (6% 1 (0%
167?@? + 1677@’(0_) = —2ketvP <6Spa§ — §5Fp5 Vol +¢° [ﬂégp]a + 58509 Bégp5> .

(6.202)

We integrate this charge on a constant ¢ surface at the boundary and use the coordinates
x* = ¢ £t to obtain,

27 27
1673Q = /0 do Q™ = /0 d¢% (Qt-Q). (6.203)

The Weyl charges Q’(‘:) cancel the divergent piece at O(r) from the diffeomorphism charges
Q’g ¥ and the resultant charge is given by

16m4Q = g / d¢ (2 ST ()X — n®8J, Ny — 401> N ¥ 6C, xs/) (6.204)

This charge is trivially integrable and therefore the final charge is

k /
Q= 30- /d¢ (2 Tz MNzT) =P T Xy — 4112 N ¥ O xs/> (6.205)
T
For N = —l%, this charge matches with that derived from the first-order formalism in
(6.116). The Poisson bracket between currents will be identical to (6.117) and (6.118)
after substituting N = —l%, and therefore to avoid redundancy, we do not write it here.

One can redefine Cy — \/% so that the resultant commutation relations are given by,

(Lo, Ln] = (0 —m) Lypan + gn?’ Smtn.0 (6.206)
Lo ] = =1 Japims [Lns Corl = 5 (m = 20)Conir (6.207)
aims Jo) = Faf e 5 mmabonin, Lo Cos] = (0 25) Coram

[(Cors Corpr] = €aw [(ﬂ - i) i — 1 Lrsr — o3 (),

2 O = (6.208)

For k = 4k and Cs, — G, this symmetry algebra matches with the semi-classical limit
of W(2,(3/2)%,13) in (5.1). This concludes our treatment of gravitational Chern-Simons
action and showing the chiral W(2, (3/2)2,13) symmetry of it.
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6.6 Further Comments and Discussions

In this chapter one of the questions we have answered is:
What are all the chiral W-algebra extensions of so(2,3)?

As the first step, we showed that there are exactly four ways to embed a copy of s[(2,R)
into s0(2, 3) algebra. Each such embedding results in a distinct chiral W-algebra extension
and we have constructed two new ones, and recovered the other two that are known from
[179] and (5.1) — thus completing the list of such chiral extension of s0(2, 3). One of our new
algebras (namely W(2;22, 1) with b = s0(1, 1)) is the conformal bmss whose semi-classical

version was first found in [20].

Just as the Ws algebra of Zamalodchikov [171] and the Wéz) algebra of Bershadsky-
Polyakov [168, 167] could be realised [116, 187, 117] in the Chern-Simons theory with
sI(3,R) gauge algebra, we realised in this chapter W(2,4) and W(2;(3/2)%,13) as the
asymptotic symmetry algebra of 3d conformal gravity written as s0(2,3) Chern Simons
gauge theory after proposing appropriate boundary conditions. The case of W(2;22,1) or

conformal bmss from 3d conformal gravity already existed in the literature [20].

Each extension we considered depends on the list of simple primaries [25] that are declared.
As we have seen there are primaries of higher dimensions in each chiral algebra and we
could probably have worked with other sets of primaries as the simple ones and these
might lead to other extensions s0(2,3). The choices we made of sets of simple primaries
are with minimal conformal dimensions, and therefore the extensions we considered are in
a sense minimal. It will be interesting to construct the non-minimal algebras as well (if

they exist) and study them.

As we have seen, in each of the four chiral WW-algebras we constructed, the constraints from
Jacobi identities admit trivial solutions as well where all the parameters vanish and central
charges are arbitrary. These trivial solutions do not correspond to extensions of so(2,3)
but instead of different contractions of it. For instance in the case of W(2;(3/2)%,13)
it corresponds to a chiral conformal algebra extension of iso(1,3) (is0(2,2)), namely the
Poincare algebra — which is the isometry algebra of R (R?2). In the other three cases,
the analogous chiral conformal extensions are of other 10-dimensional algebras that are
still contractions of s0(2,3). It will be interesting to identify spacetimes which admit
these contractions of s0(2,3) as their symmetry algebras and ask if the corresponding

infinite-dimensional chiral conformal algebra extensions have any important role in them.

Even though we aimed to construct chiral W-algebras it does not mean that we miss
out on algebras that are not chiral. As an example, we show in the Appendix G that if

we repeat the same exercise for s0(2,2) we end up with two chiral infinite dimensional
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algebras. One of them is indeed a chiral algebra which is an extension of CIG algebra of
Polyakov [112] as derived by [10]. The other can be identified with the non-chiral Brown-
Henneaux algebra though seen from the perspective of the diagonal Virasoro. It will be

interesting to explore this question for our extensions of s0(2, 3) as well.

Our chiral extensions of s0(2,3) should be thought of as the analogues of Polyakov’s
symmetries of chiral induced gravity [112] to three dimensions. Therefore, it is expected
that they may be realised as such. This leads us to predict that these symmetries should be
realised as asymptotic symmetries of AdS4 gravity just as the Polyakov symmetry algebra
was realised as the asymptotic symmetries of AdSs gravity in [10]. We demonstrated this
for W(2;(3/2)?,13) where in Chapter 5, we show the existence of this WW-algebra from
AdS, gravity. It is highly desirable to see other chiral extensions of s0(2, 3) emerging from
the symmetries of AdS, gravity.

The next step in analysing the algebras of this chapter and their utility in the context of
holography would be to construct their representations in terms of generalised primary op-
erators and study the Ward identities of their correlation functions. Once that is achieved
it will be important to provide a prescription to compute them holographically, either in
the 3d conformal gravity theories or AdSys-gravity theories along the lines of [188]. We

hope to address these in the near future.
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Chapter 7
Future Directions

The findings in the context of celestial conformal field theory (CFT) suggest the exis-
tence of a significantly larger infinite-dimensional w1~ symmetry algebra associated with
asymptotically flat spacetimes [189]. Notably, the chiral bms, that we derived from bulk
R3 gravity in Section 3 is identified as a constituent of this algebra. One of the future
directions is to investigate the potential extension of the chiral boundary conditions within
the framework of Einstein gravity in R or R?? to encompass this wi + symmetry alge-
bra. The prior analysis, conducted in Section 3, focused on vacuum solutions; hence, the
intent is to include excited state solutions (radiative solutions) that manifest these chiral
symmetry algebras. One way this is possible is due to the results of the reduced phase
space analysis of generalised bms, algebra for linearised gravity [126]. The constraints
(3.14), (3.16) that we obtained from locally flat conditions are a subset of the constraints
considered in [126] and one would like to extend the construction of phase space analysis
to the chiral radiative solutions following their analysis. Additionally, it will be interesting
to adapt the techniques of covariant phase space analysis for the derivation of the charges
associated with the chiral bms, algebra and wii., as we expect these charges to be line
integral just like the charges in 2d CFT.

In Section 4, we provided a general prescription to construct actions and equations of
motion of Carrollian conformal field theories for scalars that one can extend for the con-
struction of conformal coupled field theories with higher spin Carroll fields and Carroll
fermions [79, 80, 190, 191]. It will be interesting to investigate the possible duality between
the bulk 4d gravitational theories with non-Dirichlet boundary conditions and induced con-
formal Carrollian gravity theories on null infinity [81]. One expects that the gravitational
theory on the boundary will give rise to a line integral charge that will obey symmetry
algebra identical to chiral bms, algebra. Another interesting problem that we would like
to address in future is the emergence of chiral bms; and w4 algebra from the global

symmetries of field theories intrinsically defined on the Carrollian manifold. See [192],

190



where the scalar field coupled to 2d gravity in Polyakov gauge exhibit a hidden s[(2,R)

current algebra symmetry.

The analysis in Section 5 of chiral locally AdSs solutions and the emergence of
W(2;(3/2)%,13) algebra from the asymptotic symmetry algebra points to the fact that
by imposing appropriate bulk boundary conditions, one obtains a topological sector in
AdS,4 which is governed holographically by the symmetry algebra of 2d chiral CFT. These
preliminary computations suggest the possibility of a type of codimension-two holography
for AdS, gravity similar to the celestial holography of R'? gravity. Another interesting
open problem is the derivation of the postulated line integral charges that obey the sym-
metry algebra W(2;(3/2)2,13) directly from bulk AdS, gravity. Because W(2; (3/2)%,13)
contracts to chiral bms, algebra in flat space limit whose currents give rise to conformal
soft theorems, the connection of W(2;(3/2)?,13) algebra in probing the infrared effects of
AdS,4 needs to be understood better. For example, it will be interesting to link the works
[193, 194] addressing the correction to the soft factor in the presence of small cosmological
constant to W(2; (3/2)2,13) algebra.

In Section 6, we found exactly four chiral W-algebra extensions of so0(2,3) Lie algebra
and show that some of these algebras in the semi-classical limit emerge as the asymptotic
symmetry algebras of 3d so0(2,3) Chern-Simons gauge theory [20]. We also show the
emergence of W(2;(3/2)%,13) algebra from the second order formalism of 3d conformal
gravity, which we argue to describe holographically AdS, gravity for some specific bulk
configurations and boundary conditions. We would like to derive these W-algebra from the
asymptotic symmetries of AdS4 gravity and understand the relevance of these W-algebras

better from the perspective of AdSy holography.
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Appendix A

Residual symmetries in NU gauge

Here we consider vector fields £#0,, which leave our boundary conditions and gauge choice
invariant. First imposing the gauge conditions dg,, = dgrr = dgr« = 0 require that the

vector field components satisfy:
06" =0, 0u€" + 0r€" = gua 0rE", DaE" = gap0r€’ (A1)

These equations can again be solved in an asymptotic expansion around large-r. Expand-

ing £ and £% as
:Zrl_”é’( u,z,z), &= Zr 6oy (U, 2, 2) (A.2)
n=0

and imposing the conditions obtained from form-invariance of our class of geometries

( 0 _ (0) _ (1) _ (1)

Jua = Gui = Jua = guu = 0) leads to the following conditions on the first few coefficients:

§“(u, 2, 2) = {(0)(2, 2) + u &y (2,2), oy = &(0)(2,2)

T u a a u a 1 u
5(0) = —5(1)7 5(1) = —g(é’)DbS ) 5(2) = 29( )gl()c)g(o)Ddé’ (A.3)

and so on. At the leading order, there are four undetermined functions in these vector

fields: {52‘ (z,2), E(l)(z zZ), f(o)(z z)}. If we further assume that the variation of 900 )g((lb)

vanishes leads to determination of 5(1) as well to be:

£y = %Dfu 150D (g(())glgc)> 3u <5u 9?3)91%)) (A.4)

As in [92] we assume the gauge choice g?b) g(b) = 0 for the background geometries. This

choice of 5(1) also ensures that the transformed ¢(!) is also traceless and remains at most
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linear in u. Under such a diffeomorphism the data ggb)), g((l})) etc transform as follows:

598 = Leg, 9y — 20u" g (A.5)

which means that part of the bulk diffeomorphism acts as a diffeo and a Weyl transfor-

mation of 2d geometry 9((1(1];)' Then the data at O(r) transforms as:

698y = ~0uE"ly) +€" 0ugly) + € Degly) + gl Dig” + gf)) Dag?
+ W 0" — 2 DDy, (A.6)
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Appendix B

Locally Flat solution as iso(1,3)

gauge connection

The locally flat solutions of (3.72) and (3.73) can be written in the language of iso(1, 3)
gauge connection in the first-order formulation of gravity. For this we start with a 2d

gauge connection which takes value in Lie algebra iso(1, 3),
Aog =AM L, + AL, + 39 P, (B.1)

where L,,, and Ly, with m € {—1,0,1} are the s[(2,C) generators and P, s with {r,s} €
{—%, %} are momentum generators written in different basis. The commutators between
various operators are given by,

_ _ 1
[Lm y Ln] = (m - 7’L) Lern [Lcw Lb] = (a - b) La+b [Lma Ps,r] = i(m - 25)Ps+m,r

1
[Lm’ PS,T‘] = §(m — QT‘)PS,r+m, [Ps,r' 7Ps/77~/j| =0.
(B.2)

One can solve the equation of motion dAsg + Aag A Asg = 0 after imposing various gauge
and boundary conditions. Here we will only provide the solution to this equation that is
equivalent to the locally flat solution of (3.72) but the same method will extend to locally
flat solutions in (3.73). If the 2d coordinates on ¥y are (z,Zz) then various connection

components of Asy are given as,

ACY = A0 = 40 = 40—, (B.3)
@g—r’s) =0, forall r,se {—%, %}, (/2712 = (Z1/21/2) = (B.4)
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Rest all other non-zero components are

1

002 = L gz 5 801 Bo.g(s.z), (8.5)
AP = 4D = S92 1(a7), ATV = AT =, (56)
AY = A = 0:f(27), AT = —=f(.9) (B.7)

AW = = (= f(2,2) 02 f(2,2) — k(2) + 0. 2 (2, 7)) , (B.8)

where g(z,2) = C_y/5(2) + 2C2(2) and f(z,2) = J_1(z) + 2 Jo + 22 J1(2). This locally

flat 2d gauge connection is parameterized by six holomorphic fields,

11
{k(2),J%,C°} for a€{-1,0,1}, se€ {—5,5
just like the locally flat solutions. The function C'® can be written in terms of C*® using
(3.98). The 2d gauge connection can be dressed with u and r dependence using successive
gauge transformation such that one gets a resultant 4d gauge connection for bulk gravity

theory in coordinates {u,r, z,z}. We do the following operation on Ay,

Asq =bh"1 Asyq b+ 1dh (B.9)
where,
) (B.10)
and
Agg =" Az + 1 dy (B.11)
where,
B —e 33 (B.12)

The resultant 4d gauge connection can then be written in the form,
Aa=E") P g+ W™ Ly 4+ @™ Ly, (B.13)

where E(™) are the vielbeins and w™,&™ are the spin connection coefficient. Using viel-

beins one can recover the locally flat solution (3.72) as follows,

52 = €y ey B EO9),
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Therefore we have shown that one can recover exactly the complete locally flat solution
from the 2d gauge connection defined on R? by uplifting to 4d using the gauge transforma-
tions (B.10) and (B.12). One thing to note is that all the analysis has been done so far at
the level of the equation of motion. For 3d gauge connection A3y one can write down the
Chern Simons action that gives the equation of motion [115], however, we had to indirectly
get the 4d gauge connection since unlike 3d gravity there is no equivalent Chern Simons
formulation of Einstien gravity in 4d where the Einstien gravity action in 4d can be shown

equivalent to a BF-theory action with equation of motion dAsg + Agg A Asqg = 0.

We find the residual gauge transformations that preserve the gauge and boundary condi-
tions of our 2d gauge connection Asy. The transformation of Ay under these transforma-

tions is given by
d0Agq = dA + [Agg, A], (B.14)
where A is the gauge parameter which takes value in s0(2,3) Lie algebra as
A=A"Ly,+ A Lo+ A" P, (B.15)

Using (B.15) and the solution Ay in (B.14) one obtains various constraints on the gauge

parameter and also the transformation induced by them on the background fields are

5J%z) = OY Y (2) + 4. J%(2) Y(2) + O(J(2)Y (2)), (B.16)
5k(2) =Y (2) 0 k(2) + 2r(2) 0Y (2) — PP Y (2), (B.17)

0C"(2) = g C"(2)0Y (2) + Y (2)0C"(2) — 20 P"(z) + P"(2) <I<J(Z> + %nab J¢ Jb>
+ C%(2) ga" s Y2) +40P%(2) 94" 5 J(2) + 2 P%(2) g4 5 0J(2). (B.18)

Here we have appropriately identified our gauge parameters in (B.15) in terms of
{Y,,Y(2), P.}. Now we ask what type of charges generate such transformations. It is
difficult to find an answer in a conventional sense for iso(1,3) gauge connection because
of the way charges are computed in CS gauge theory. For instance, the expression for

charges in CS theory is given by,

k
Q=—— | Tr(AdAs). (B.19)
21 Jos
Because iso(1,3) has a degenerate bi-linear invariant i.e. (Tr(P,sPy ¢) = 0), one cannot
find line integral charges completely that generate transformation in §C,.. This issue was
also discussed before in Appendix of [139]. One way to calculate these charges is to get a

hint from the equation of motion dAsg + Aszq A Azq = 0 written down in component form
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as follows,

gAY — 9;,AP + (m —n)o?,,, AT A

(
m4+n<tg J

9 ALY — ;A + (a — b)s,, A AL

Ss,Tr 1
81'(1)5- )4 2(m 27')658

m~+r’

m) x (r',r 1
A 4 (m - 2,

m—+r

(m) g (s.7") : N
VA o7 — (i) =0.
(B.20)
In the case of iso(1, 3) flat connection the equation of motion split into two sectors where
equations governing A™ and A are independent of (%) and for equation determining

(%) A and A are needed. One can think of ®(™) as some matter field in the background
geometry defined by A and A. We consider the following matrix representation of L,,, L,

1 N 1
(Ly)', = —§(n —2r) bptrs, (Ln)', = —i(n —27) Sngr s (B.21)
and one define A and A in the matrix representation of sl(2,C) as follows,

(A5 = A" (L), (A)s = AP (L) (B.22)

Therefore instead of defining a single iso(1,3) Chern-Simons gauge action for these equa-
tions, one can think of these equations coming from two separate actions, one sl(2,C)
Chern Simons action which gives first two equations of (B.20) and another first-order ac-
tion for matter (%) in bi-adjoint representation of L,, and L,. The latter action is given
by

H ij rr’ r s,r! 8) 1 & N\’
Smatter = - /6]'“ P () (51' o) + (A, 00" + ) (4)) s) - (B.23)
The variation of Lagrangian under iso(1, 3) gauge transformation defined in (B.14) is,
1 iik rr! r s,r’ ,8) /& \r’
0L = 5 € [ak (Di 3! )A(m/)> — 2 A ((Ej) Lo L o) () )} (B.24)

The Lagrangian is only invariant up to the total derivative when the field strength Fj;

and F;; corresponding to (4;)", and (A;)", vanishes. Now to calculate charges we use the

cohomological formalism as reviewed in [186] and compute the term ‘Efr oA CI)(” )
5£ (7,7,,,,/) M . k (,,,,7,,,/)
W A®Z = %6” 5A®i(r,r’) Dj q)k (B25)

05— sy (1,87 4 89|

T o
o ij roglsr ms) s a1 T
— ey |@0A) e - o (64,)] (B.26)
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where S¥ is given by,

e 1 /
Sk — ¢k < A(r,r’) D; (I);T + @

: 5<1>(.’"”"’)> . (B.27)

) O
The term in (B.26) is total derivative only when the variation of the background field A
and A are held fixed and their equations of motion are satisfied. The variation of the

matter field using gauge transformation is given by,

50T = AT 4 (AT, AT p AT (AT — AT 0l oM R (B.2s)

s

where A and A are gauge parameter associated with s[(2, C) gauge connection in (6.106)

written as

(R = AT (L), (A)7y = AP (L)' (B.29)
From S*, we can define the surface charge two-form using the method in [186]
/ 0 0
k=12 ,5=-"1spir) Sk (a2 B.30
5@:7" 47T 7 86] (I)ET’T/) 8dl’] ( ':L')k? ) ( )
where S*(d%z);, = % SE €1 dz™ A dz™. Therefore,
B (r,r") (ryr') 3,0
k=-—0®, A d B.31
2 5o . (B.31)
For locally flat solution (B.8), the charge from (B.31) is given by,
1
Q_zfmaﬂmgg@ (B.32)

where one scales A(-1/21/2) 5 _\/2 A(=1/21/2) and then identifies, A(-1/21/2) = P_y/5(2)
and A(-1/2-1/2) = p| /2(2). So we have managed to derive the line integral charges associ-
ated with the supertranslation current but this assumes that the background geometry to
which these matter fields were coupled is fixed and does not vary. Additionally, it remains
undetermined the OPEs between the functions Cs(z) such that it will give the correct
variation 6C*(z) in (B.18) for the charges (B.32). We hope to give insights into these

issues in our future works.
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Appendix C

Carroll-Weyl and Carroll
Diffeomorphisms covariant blocks

in general dimensions

In this appendix, we provide some technical details of the extension of the d = 2 computa-
tions of this paper to general d. Let us start by providing the transformation properties of
various Carroll diffeomorphic quantities under Carroll Weyl transformations - generalising
those of (4.20).

6 — B! {B = détB] , 0% — B¥7? [329 —2B0d 0B+ d*(0,B)*
A4 — B2 [B%;ifyg' ~2B0O,B +d (a}B)Z]
# — B?# —d(d —1)a”V;BV;B +2(d - 1)a” BV,V,;B

aVi¢; — B*aV;¢; + 2(d — 1)a""V;BV;B — 2 Ba"V;V;B — B(d — 2)a” $;V,; B
a’ pip; — B%a ¢p; — 22Ba ;V ;B + 22a"V;BV ;B

The combinations that transform homogeneously are

2 o d—2)(d—1) ;;
P+ -(d=1)a"Vig; — =21 ig )a”qﬁzfﬁj
2 - —N(d—=1) ..
— (” ~(d=1)a"Vig; - Ll igd )a”@%')
Al AT 92 2| ~d ] 62
’Yj”)’f ~d — B? |:7ng - d} (C.1)
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Taking that the scalar ® transforms as ¢ — B°® under Weyl transformations various

expression transforms as follows

a';0;® — B°[B*a"¢;0;® + 6B a”$;0;B® — 62a""V;BV;B ® — 2Ba" 9; B);®]
Vid'® — B°[B?V;0'® + (6% — dd + §)aV;BV'B® + §BV,;V'B ®
+ (2426 - d)B;BI'®]

The simplest Weyl covariant object at first order derivative is

A 0 248 A g

0P + g9<1> — B*(0y® + gQ D) (C.2)
At second order we find:

A 1 A 1 A
1 ~
g(25+z)98t<1>+§

— B0 <3t2 + y

[2(2 +6)0% + 040 <1>]> (C:3)

Vo, + ¢'0;® 5 71" 22(2 d+20)p'p; | P
215 (igpy 27d+20) g5 Of 1 o 1
— B <V 0;® + p; ¢'0; P 591" 22(2 d+20)p'¢;| P ) (C.4)
For z = 1 the covariant equation can be written as,
Ao 1 - o1 2 A
i A (2 —d+ 296) iA, o 1 1 ig
+m[v (9z<1>+7z @' 0; P 5| a=1" 22(2 d+20)p'p; | D
B2 2 L d—2)(d—-1) .. -
+ [O’o <"3/JZ’A}/Z] — d> + 01 <f‘+ ;(d— 1)a”VZ~¢j — —( ig )a”(ﬁi(ﬁj) +O’2fijf”:|(1)
249
+Ad 5 =0

(C.5)

The analogous general d expressions of invariants in (4.35-4.39) that can be used to con-

struct actions are

®(0,P + gacb) (C.6)
A 2 d .~ d(z+20) -
N A 52 . .
(9;®)% 4 6 0DOD + Evﬁgqﬂ (C.8)
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At second order in space derivatives there are three more combinations with Weyl weight

2 + 294:

9 . —N(d-1) ..
Pt —(d = 1)a""Vig; — (digd)a”@@- P2
3. & A d i A §° i 2
0;90"® + 2;@¢ 0;P + ?¢ ¢; P

A —92(1 . o )
ovige - 1221 H0) (Z +9) ¢ 0;® + ngjq)? + %(2 —d+6)¢'¢; @

(C.9)

(C.10)

(C.11)

These can be used to construct Carroll diffeomorphic and Weyl invariant actions for general

d straightforwardly.
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Appendix D

LAdS, solution in

Fefferman-Graham gauge

In this appendix, we will find coordinate transformations that take our chiral LLAdSy
solution from the Newman-Unti gauge to the Fefferman Graham gauge. We use the road
map outlined in the appendix of [15] and would encourage readers to refer to it for a more
general analysis. We start by quickly reviewing some properties of asymptotically locally
AdS solution in Fefferman Graham gauge in 4d [95, 105]. The line element is written as

follows,

1

2
ds e

(l2 dp® + vij(t, p, 2, Z) da* dz?) . (D.1)
p is the radial coordinate near the boundary and ' for {i,j} € {t, z, z} are coordinates on
hypersurface that are orthogonal to p. These become boundary coordinates in the limit
p — 0. 7;; can further be expanded in power series of p,

Yis(t,p,2,2) =15 + Py + PP PP+ (D.2)

- indicate terms at higher order in p and %.(;7) for n € {0,1,2,3,---} are functions of
(t,2,%). Using this ansatz to solve for Einstien equation (5.2) one finds that the free data
are %Qj and 'yi(]:-)’). The equation of motion impose 72(]1 ) = 0 whereas 7-(2) is given in terms of

(0)

ij
7;; as follows,

1
W = (R - {RO4Y) (0.3
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%(jﬁ) at higher order are given in terms of %,(Q) and fyi(?’). There are some constraints on '71'(3)

that are given by,
ij 3 i (0
Y1 =0, D' =0 (D.4)

where D’ is covariant derivative with respect to three dimensional boundary metric 'yi((-)).

If one further impose the locally AdS condition as given in equation (5.3) one finds that

the expansion of +;; terminates at p* [105] and ’yl(f ) = 0 with fyi(;.l) given in terms of v(2)
and 79 as follows,
y_1 @ u. @
’Yi(' = 4%‘(k 7(0) 'Yl(j (D.5)

Now If we start with our chiral locally AdS, solution in Neumann Unti gauge with coor-

dinates {u,r, Z, Z} then we can do the following coordinate transformation to go to FG

gauge,
u="T(p,t,2z,2) — R(p,t,2, z) (D.6)
12
TRz D
Z = zs(p,t,z,2) (D.8)
7 = Zs(p,t, 2, %) (D.9)

These functions X* = {T, R, zs, Zs} are further expanded as power series expansion in p

near the boundary p — 0 as follows,

Xt =gt X, 0" (D.10)

n=1

with z# = {¢,0,2,z}. If we demand that the FG gauge conditions (D.1) are preserved

after doing the coordinate transformation (D.10) on the solution in NU gauge then one
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obtains the following form of the functions X*#,

2
Rpot,25) = — P (D.11)

112 p20(2)
[ arctan (2R(p’t’z’z) v Jl(z))

l

2 \/Jl(Z)

zs(p,t,2,2) = 2 (D.13)
R(p,t,z, %)

T(p,t,z,z) =t+ |R(p,t,2,2) —

(D.12)

5 [ arctan <2R(p’t’z’7) Jl(z))
BlptnE) =245 (\/501/2(2) —2t8J1(z)> -

4.J1(z) 2+/J1(2)
+Z(p, 2) (D.14)

where Z(p, 2) obeys the following differential condition,

20.R(p,t,2,2) | arctan <2R(p,t,z,;)\/r(z))
0 Z y 2 + i s Yy <y S N o
W Z(p, 2) (1412 p2 J1(2)) pl 71) ( )

This differential equation can be solved easily to give Z in the closed form. The solution

that we obtain after this exercise has only %'(j(')) as free data whose metric components are
given by

S G .1)

YO ZT(t,2) 4+ () + 2 i (2) + 2 <J0(z) - \/gtcl o(2) + ’;aJl(z)) (D.17)

9050 1

The rest of the solution can be constructed from this using equations (D.3, D.5). As

expected ’yi(?’) which is interpreted as a holographic stress tensor at the boundary which
(0)

sources the metric g;;” is zero for locally AdS, solutions [105].
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Appendix E

Computation of Jacobi identities

There are three species of modes {Ly,, Jon, Gsr} and so a total of ten classes of Jacobi
identities to impose. We choose to denote them schematically by (LLL), (LLJ), (LJJ),
(JJJ), etc. in a self-evident notation. Out of these, there are seven that involve at most

one G and they can all be checked easily to be satisfied without providing any constraints.

Next, two Jacobi identities have two G’s each: (LGG) and (JGG). To impose these we
need the commutators [Ly,, (J?),] and [(J?)m, Jon]. These can be computed easily using
the definition

N Jao)n = 0" | D Tom-idag+ Y JakTom—k (E.1)
k>—1 k<1

of (J?),, and repeatedly using (5.94 — 5.98). We find

[Luns (7)) = (m = 1) () = m(m® = Dino (B:2)

[(JQ)ma Jan] =n (5 +2) Jamin - (E.3)
We first impose the (LGG) Jacobi identity:
[Lma [Gs,ra Gs/,r/H + [GS/,T"7 [Lma Gs,r“ - [Gs,ra [Lma Gs’,r’“ =0. (E4)

For this we find:
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L4 [Lma [GS,T’a Gs/,r’H =

C
8w [(m =1 = 1) L+ mm® = 1)
K
+y €ss [(m -r-= T/) (J2)m+r+r’ - Zm(m2 —1) 5m+r+r’}

=0 (r — T/) (r+ T,) Ja,m+r+r’()‘a)88’
L4 [GS’,T’a [Lma Gs,r“ —
1 2 1 2
i(m - QT) |: —Ess! | O (m + T) - Z 6m+r+r/ + ﬁ Lm+r+r’ + (J )m+r+r’
6 (= =) a0
b _[Gs,ra [Lm; Gs’,r’“ =
1 / AV 1 2
_§(m —2r ) [Ess’ @ (m +7r ) - Z 5m+r+r’ + B Lm+T+T’ + (J )m+r+r’
+6 (r — 1" = m) Jomprir (/\a)ssr}
substituting these into (E.4) we find that the coefficient of €sg §pyypys is
1 9 c K
§m(m -1) ,86—75 -«
which vanishes (for generic values of m) only if
(E.5)

The coefficients of 8 Lyt rir7y 0 Jomtrir (A)ss, and ¥ €sgr (J?) gt vanish without fur-
ther conditions. Next we consider the (JGG) Jacobi identity:

[Ja,na [Gs,m Gs’,r’H + [Gs’,r’7 [Ja,n7 Gs,r“ - [GS,TW [Ja,na Gs/,r’H =0. (EG)

For this we find

o [Jun,|Gsr, Gy ]| evaluates to

K
€ss’ [6 - ’Y(Kv + 2)] n Ja,n+r+r’ + (T - 74,) o fachc,n+r+r/(Ab)ss/ - 5 n (Aa>ss’ n+r+r’,0
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o [Gy v, [Jan, Gsyr]] evaluates to (using ()\b)s/g()\a)gs = —i(sgesfs + %fadb()\d)s/s):

1
|:a (7’/2 — > (5n+r+fr/70 + B Ln+T+7" + v (Jz)n+r+7“’:| ()‘G)S’S

4
/ 1 L. by
+5(T —n—- 7‘) Zﬁss’ antrtr 5fad (A )ss’ Jb,n+r+r’

o —[Gsp,[Jan, Gy ]| evaluates to

1
- [a <7’2 - 4) Ontrtr 0+ B Lngrir + (J2)n+7"+rl] (Aa)ss’

1 1
—(5(7’ -—n—- TI) [_4Jb,n+r+r’ess’ + Qfadb(Ad)ss/ Jb,n—i—r-{—r’]

Substituting these back into (E.6) and collecting terms, the coefficients of L, i,1,,

(JZ)n—i-r—&-r’ and fabCJc,n—i-r—i-r’()\b)ss’ vanish.
o Coefficient of 0y, 1r4r7.0(Aa)ss

~d5nlr =) +a [(—}1) - (r2—1)] — = 1) [a -6 1]

which imposes

e Coeflicient of €5y Jy yipipr s
1., 1 , 1
n [ﬂ—fy(m+2)]+15(r —n—r)—i—zé(r—n—r):n B—fy(f@—l—Z)—i(S
which imposes
1
,877(E+2)f§620. (E.8)
The last Jacobi identity left is:
[Gs,ra [Gs’,r’a G§,f]] + [Gé,Fa [Gs,ra Gs/,r/]] - [Gs’,r’a [Gs,ra G§,FH =0. (EQ)

To impose this we further need the commutator [(J?),, Gs,]. Using the standard methods

we find two different expressions for this commutator, namely

3 1

() Gl =1 [(JaG i )tr M) s + (Gt T (M) +5 <7~ + 2) Gonsr  (E10)
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and
;3
[(J?)n, Gsr] = 20 (JaGs )nsr(Np)* , — Z(n + 1) Genpr - (E.11)

Taking the linear combination (E.11) +2 x (E.10) we arrive at:!

a 4 S/ 2 S/ 1
[(J?)n, Gsr]=1™ 3 (JoGs )ntr(Xp)® o+ 3 (GyJa)ntr(Ap) S]—4(n —2r)Gsptr - (E.12)

Using (E.12) along with the other commutators we find

[Gsﬂ«, [Gs’,r’7 Gg’f]] = €43 Gs,R |:— <5 + Z) (R — 37’) + Z(T’/ — f):|

2
o, , 4 2 a8
—5(7" —7) G R€sz — 3 (JuGs)r + 3 (GaJa)r| (A) s€s'5

where R = r 4+ 1’/ + 7. The left-hand side of the Jacobi identity (E.9) is obtained by
adding to the above expression two more terms that are obtained by cyclic permutations
of pairs of indices (s,7) — (s',7") = (3,7) — (s,7). Luckily the terms containing (J,G5)r,
and (GzJ,)r do not survive after this sum because of the identity (5.90). The rest are

proportional to G5 g and we find

€5 Go R [(g - T) (R— 37’)}

g=1=9 (E.13)

IThis particular linear combination dictated by the requirement that the right-hand side is
written in terms of modes of the quasi-primaries G5(z) and (J,Gs)(z) + (1/2)(GsJo)(2).
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Appendix F

Implementing the associativity of

3 and 4-point correlation functions

In this appendix, we will give the details of the computation of only those 3- and 4-point
correlation functions which after imposing associativity conditions defined in the main
body of the thesis give rise to constraint equations (5.99). If one calculates the three-point
function symbolically denoted by (GT'G) or (GGT) using (5.83), (5.84) and (5.92) one
finds,

€rry (—6a+ fc—37K) n 3a€rr,

4 21221322232

= Gry(21) Gry(22) T(23) (F.1)

Gry(21) T(23) Gry(22) =

2212 223

For these correlation functions to be equal to the correlation function in (5.112) one needs

to impose the condition,
6o+ 3y —cf = 0. (F.2)

The correlation function involving one J and two G such as (JGG) is given by,

_ 2C¥ ()‘G)rl'rg
(Ja(23) Gy (21) Gy (22)) = —m (F.3)

whereas the correlation functions (GJG) and (GGJ) are given by

200 (Ma),., o)y
\Grs (21 Jalzs) Gralea)) = = 213 (2’23 )2’1123 * (213)21232 L'l%s - 21%2} (9~ 2a)
= (Gr,(21) G,y (22) Ja(23)) (F.4)
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If these correlation functions have to be equal then one has to impose the condition,

6= (F.5)

The imposition of associativity on three-point correlation functions does not give any
more constraint equations; therefore, we move on to calculating the 4-point correlation

functions. Calculating the 4-point correlation functions with two J’s and two G’s we get,

2
(Jay (21) Jug (22) Girg (25) Gy (24)) = — Sra72 Mores (H . )

2%2 %34 2(1 —x)
. afalz%(Ag?))% T4 <2.TE — ;[2) (FG)
279 34 1—=x
(G (23) Jay (21) Juy (22) G (Z)>:_M /<;+$72
r3\ <3 a1 \~1 a2 \ <2 rq\~4 2%2 25)4 2(1 — JJ)
e <2x — x2> + o etz Frars (ﬁ +y(k+2) + 5)
2i9 25 1—2x 2234 274 75 2
(0k—2a) (1 1
- m 1 Naiag €rzry — B aras (Aa)rara
_ OMayag Erary ((Qa —0K) [223 (234 — m)] )
2 293 224 234 213 214 2a 212224
a3 (\ 20— 0k
+ (o )rr ( ) ) (213 234 + 214 224 + 213 224) (F.7)
2212 213 214 254 %3,
For (F.6) to be equal to (F.7), we need to impose the following two conditions,
)
—B+7(/{+2)+§:0, 20— 9k =0 (F.8)

The first of the two constraints above is a new one. Now we compute the four-point

correlation function that involves all the G fields. To compute it we require,

o w s J2(w)
Giy(2) : Ja Gy (w) :(Aa)sm[ 20, BT(w) 7 :J% )}

(z—w)t  (z—w)* (z—w)
2ay(w) B JT(w): v J JH(w) ~0(Aa)%, 1 Gey Gy (w)
+68152[(z—w)3+ c—w z—w } (z —w)
_ 4 (Aa)’3, ()‘b)5352 w 2 Jp(w) 8 (A\s155 [2 1 Jadp(w) : ) w) :
e [+ ]+ s [T wonto):]

(F.9)

210



€sy55 Ja(W) OJ%(w) €55
Gs,(2) 1 Gsy Ja(w) 1= (1;_7“])3 (2044—5 - (FH‘Q)W) + (2_710)212 (5 - (’ﬁ+2)7)
65182 2 6()\b)8182 fbg JC(w) 2’1{"77(112
—= :TJ, : : o : —=: a : —
+(Z_w) (B : TJo(w) : +v: J* Ja(w) : ) + o w) JpJa(w) : + G —w)?
A% G, G :
_ ( ) S1 2 3('11)) (FlO)
(z —w)
Using this one can write down the expression of (GGGG) compactly as follows,
1
(Gs,(21) Gsy(22) Gsy(23) Gy (2)) = 3 .3 [651 52€s3 54 F1(T) + €5) 55€55 54 F2(T)
%12 734
+ 651 54652 53 F3 (1’)] + F((SPSQ 53 S84 + Fg?)sz 53 S4 + Fg?)sz 53 84 (Fll)
where,
3 2$2
Fi(z) =402 (2423 - 7 R 2
1(x) = 4o < +x (1—x)3>+a5<1—x x — 2z e
- 23 . 3
(1—-2)2 1-z
3 2 3
F Y Pl a— ;1: i
2(7) @ ((1—x)3 )Jra ($ 1—l‘+(1—fl))2 11—z
2 3 2 a? a?
Fy(z) =40 (1+2°) —ad (:U—&—ac +(1—x)2+(1—x)2> (F.12)
3 B€s 55 €sos Bec vk 3K Y €sy54 €sos 1)
M — _OFtsissteasa (0 T T} O T Ts183 Ts28a —~(2 _ 2
5152 8354 213 224 Z§4 <Oé 6 * 2 ) 213 224 Z§4 IB ’Y( + I{) 2
A")s155 (Aa)sas 2 1
_ O ( 3)“6(55—204) <++3> + (r3, 23) <> (14, 24)
223 213 243 213 223 234
Corsa€sass (94— §g) (F.13)

2(293 224 23 212)
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@) B ) ) )
Fsl 898384 €s152€s3 84 (5’% - 20&) 22 P 2 + 9 2 .2 9 2 2
14 %24 %34 %33 214 224 Z34 233 R14 %54 234 %33
) 1) ) vy >
- 2 .2 2 2 2 2 3
2213223 254 25, 213223254234 2213254 234 253 2 223 224 23, 212

o o

T 9.2 2
2 213 223 294 234 4 213 223 2’%4 Z§4

B ) B v >+( 3a N 3Ky )<5 7+5)]
4213 233 234 z34 4213 z§4 294 213224233@%3 2 294 213 z§4 2 2

L 3a(B-3+3)
212 234 233 23,

:| +€81 s3€s2 54 |:(6K - 20‘)<

+ [(5 2a) ( i + i + g )
€ € R—2Q
515475253 2 233 Z294 2%4 Z34 4 Z14 233 z94 Z§4 4 Z14 233 234 Z34
3a 3Ky > ( v 5) ]
+ + B—=+= F.14
<Zl4223Z%4223 2 293 214 Z§4 2 2 ( )
1 1
r® = ok —2« +
$1°82 83 S4 €s153€s984 |7 ( ) 213 793 Zoa Z?g),4 2 213 294 2514

S Lk - <—B+g+v(2+fs)+ﬁ—g+5”

4
2 213 224 234 2

1 1
+6513365284 [7(55_2(1)( + >

214294 223 2y 4214 223 25,

3Ky

) )
- -8B+ 2 — =+ = F.1
21 22 2, < 5—1—24—7( +K)+ 5 2+2>} (F.15)

For (GGGG) to be crossing symmetry invariant all the I's have to vanish. From

F(z)sl sos3s4, ON€ gets the fourth constraint equation,

=0 (F.16)

Therefore we have managed to derive all the constraint equations in (5.99) from the
associativity of OPEs. If all these constraints are satisfied one can see that all the I'’s vanish

and the resultant four-point correlation function is invariant under crossing symmetry.
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Appendix G

Chiral conformal extensions of
50(2,2)

In this appendix, we construct the chiral conformal/)V-algebra extensions of s0(2,2). Re-
peating the steps of Section (6.1), we can take the Ly to belong to the Cartan sub-algebra
and we choose it such that the eigenvalues are real. Taking the generator to be L, for
wu,v € {0,1,2,3} we take

Lo=ALo1 + N Log (G.l)
We can using O(2,2) transformations
L. (\N) < (=\,X) using A = diag.(1,-1,1,1)

2. (MN) < (=N N) using A = diag.(1,1,—1,1)

3. (M) < (N, A) using Ay, = (—1)™0p4n3
So we can again choose A > X > 0. Then the existence of Ly; demands that (A, \') satisfy
one of the following four conditions: (i) A+ X =1, (ii)) A — X =1, (iii)) A+ N = —1, (iv)
A — XN = —1. Since we have already assumed X\ > X > 0 we need to consider only two

cases: (i) A+ X =1 and (ii) A — X' = 1. In each case we can solve the constraints to find

the following results:

L.A=1 & N=0.

Lo = Lo1, (b33 —b3y)L1 = bia(Loz — L12) + bo3(Loz — L13)
L_1 = b12(Loz2 + L12) + boz(Los + L13) (G.2)
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The residual O(2, 3) transformations (that keep these form-invariant) can be seen to
leave (b2; —b2,) invariant up to a positive scaling: (b2; —b3y) — €2(b3; — b%,). Using
the discrete elements of O(2, 3) we can change the signs of by and b2 independently.
Thus using these residual transformations we can choose (bg3, b12) to be either (1,0)
or (0,1).

2. A=1/2=X

1
Lo = §(L01 + Lo3), L1 = —a12(L02+ Loz — Li2 — L13),

1
L= T(Lm — Los + L12 — L13) (G.3)
a2

The residual transformations can be used to fix ajo = 1/2.

This analysis gives us three inequivalent embeddings of s[(2,R) in s0(2,2) — resulting in

three different avatars of so(2, 2).

1. b =0 with (bos, b12) = (1,0)

Ly = Lo3 — L13, Lo= Lo1, L_1= Lo3+ L3,
Py = Loo — L12, Py= Loz, P_1=—Lgs— L2. (G.4)

[Lim, Lp] = (m —n) Liyyn, = [P, Pol, [Lim, Pn] = (M —n) Py,

(G.5)
2. b =0 with (bo3, b12) = (0,1)
Ly = —Lo2+ L12, Lo= Lo1, L_1 = Lo+ L2,
Py = Lo3 — L13, Po=—La3, P_1= Lo3+ Li3. (G.6)
[Lm) Ln] = (m - n) Lm+n = [Pmy Pn]a [Lm’ Pn] = (m - n)Pm—i-nu
(G.7)
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3. b =sl(2,R)

1
L, = —§(L02 + Lo3s — L12 — L13),

1 1
L_y = —(Lo2 — Loz + L12 — L13), Lo = §(L01 + Lo3)

2
1
Ji = 5(—L02 + Loz + L12 — L13),
1 1
Jo = §(L01 — Lg3), L1 = §(L02 + Los + L12 + L3). (G.8)
(Luns L] = (1 — 1) Loy [ o] = (@ — ) Jasts [Loms Ja] = 0 (G.9)

Unlike in the s0(2,3) case the first two avatars above with h = (), even though cannot be
mapped to each other by any O(2,3) transformations nevertheless give rise to identical
algebras. So we have two distinct avatars of s0(2, 2) which can be extended to the following

chiral algebras:

1. b =sl(2,R)
C
[Lm) Ln] = (m — n)Lm+n + Em(m2 - 1)5m+n70,
1
[Ja,ma Jb,n] = (a - b)Ja+b,m+n - §R(a2 + b’ — ab — 1)m (5m+n70,
[L7’TL7 Ja,n] =N Ja,m+n (GlO)

The Jacobi identity imposes no constraints on ¢ and k.

2.h=0
(Lo, Ln] = (m — 1) Lpn + fm(m2 — 1)msn0s
¢
[Lim, P = (m —n)Ppin + Em(m2 — 1)0m+n,0s
[P, Pl = (m —n)Lyyin + ’ym(mQ — 1)0m+n,0 (G.11)

Imposing the Jacobi identity here leads to the condition that v = 5.

Thus we arrive at the result that there are exactly two chiral conformal algebra extensions
of §0(2,2). The first one is the CIG algebra [10, 169] (however, with no relation between
c and k) and the second can be mapped to the non-chiral Brown-Henneaux one (with no
relation between left and right Virasoro central charges) after appropriate redefinitions.
Specifically, if we take L, — ¢, + ¢, and P, — £, — £, we will recover two commuting
copies of Virasaro generated by /£, with central charge (¢ + &)/2 and /, with central

charge (¢ — ¢)/2 respectively. It is interesting that even though we started with chiral
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conformal /W-algebra extensions we seemed to get both chiral and non-chiral extensions

of 50(2,2) already known.
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