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We derive a general equation for the evolution of the curvature perturbation on comoving
slices R¢ in the presence of anisotropy and non-adiabaticity in the energy-momentum
tensor of matter fields. The equation is obtained by manipulating the perturbed Einstein
equations in the comoving slicing. It could be used to study the evolution of perturbations
for a system with an anisotropic energy-momentum tensor, such as in the presence of a
vector field or in the presence of non-adiabaticity, such as in a multi-field system.
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1. Introduction

The theory of cosmological perturbations is very useful to study the early stages
of the Universe, especially during inflation, that is, an exponential expansion phase
which the standard cosmological model hypothesizes to explain observations such
as anisotropies in the cosmic microwave background radiation (CMB). One quan-
tity which is particularly important in this context is the curvature perturbation
on comoving slices, R.. In slow-roll single field inflationary models this quantity
is conserved on super-horizon scales,? which has important implications on the
relation between primordial perturbations and late-time observables such as CMB
anisotropies. For a globally adiabatic system in a single field model this quantity
may not be conserved.? Other possible causes of super-horizon evolution could be
the presence of anisotropy or non-adiabaticity in the energy-momentum tensor. We
derive the equations for the curvature perturbation on comoving slices, R, includ-
ing these two terms showing that they act, as expected, as source terms which are
relevant also on super-horizon scales. Our approach is quite generic and can be
applied to any system which can be described by an energy-momentum tensor of
the form we use, not only to a multi-scalar fields system.

The derivation is based on manipulating the Einstein equations in order to
obtain an equation involving only R., the anisotropy and non-adiabatic pressure
and background quantities. The equation can be used to study phenomenologically
the effects of anisotropy and non-adiabaticity without assuming any specific model.
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One useful application could be to study models which violate the non-
Gaussianity consistency relation® that was derived in fact based on the assumption
of the conservation of the comoving curvatue perturbation on superhorizon scales.

2. Evolution of comoving curvature perturbations

The Einstein equations in a spatially flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) background are

3H? =a’p, (1)

2(H' —H*) = —a’(p+ P). (2)

Here a prime denotes a derivative with respect to the conformal time n and H stands
for the conformal Hubble parameter defined by H = a’/a. p and P represent the
background energy density and pressure of the matter field respectively. We use

the units in which 87G =c¢ = 1.
Scalar perturbations on a spatially flat FLRW metric can be written as

ds? = a® [~ (1 + 24)ds? + 20, Bda’dn + {(1 + 2C)6; + 261-8]-E}d:vidwj} RNE)

where the Latin indices run from 1 to 3. The corresponding energy-momentum
tensor takes the form:

p+P

TOO = —(p+5p), TOZ‘ = o U Tij = (P—|—6P)§ZJ +Hij, (4)
where
Uy :aai(v—i—B), sz :(SZ’“&k@jH— 5 XH(V]-, I, = 0. (5)

In the above equations II’; is the anisotropic stress component of the energy-
momentum tensor, v is the velocity potential, II is the anisotropy potential and

@
we have defined 3; 0%0,;0;.

The curvature perturbation on comoving slices R, is a gauge-invariant quantity
defined as the curvature perturbation C' evaluated on the hypersurfaces in which
v 4+ B vanish. The spatial Fourier expansion of the linearly perturbed Einstein
equations on comoving slices® takes the form :

2k2(Rc —Hoe) = a25pm (
R, —HA. =0, (7
2H — HY) A = a? [5Pc ~ (2k2/3)1L] (
o) +2Ho. — Ae — R, = a?I1,., (
where 0 = F’ — B is the scalar shear.

In general we can decompose the pressure perturbation as

0P, = 03(77)5% +Te, (10)
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where we can interpret cs and I'. as the adiabatic sound speed and the non-adiabatic
part of the pressure respectively. For a minimally coupled scalar field model ¢, = 1
and I'. is zero, but in general one would expect that I'. could be non-vanishing.
Our goal is to derive an equation for R, in the presence of both anisotropic stress
II'; and non-adiabatic pressure I'...
First we use Eq. (7) to express A. in terms of R,
!/
= Re . (11)
H

We substitute this A. and JP, given in Eq. (10) into Eq. (8), and solve it for dp, :

Ac

H (2k*11. — 3T) — 3(p+ P)R.,

0pe = 3Hc2 (12)
We then insert this into Eq. (6) to get an expression for o, :
R, O[HEIPT—3T) = 3(p+ PR,
O = — — (13)

H 6k2H2c2

Finally we substitute A. and o. given by Eqs. (11) and (13), respectively, into
Eq. (9) to obtain

CERR Ty —o, (14)

2\/
R//+(2)R/
C p+P

z2 ¢

where we have defined

Z2fa4(P+P)

e o)

4 /
2 2
Y, {log(a )] <§gHC+FC>+2Hc§gﬂc+§gﬂ’c+ﬁc. (16)

2
He?

As expected, for adiabatic (I'. = 0) and isotropic perturbations (II. = 0) the above
equation takes the well-known form :

2\/
R+ m 2 Rpo 0. (17)
V4

2 c s

3. Curvature perturbation for scalar fields

Given the generality of the form of the energy momentum tensor used in the deriva-
tion of Eq. (14) it can be applied to a wide class of physical scenarios, including
multi-field systems. Let us consider the case of two minimally coupled scalar fields
with Lagrangian

L==) X,—2V(®,P), (18)

n=1
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where X,, = ¢"70,,2,,0,®,, and ®,(z") = ¢,,(n) + 0@, (x"). The perturbed energy-
momentum tensor, without gauge fixing, is given by

_ 81061 + 500 — A(d1* + ¢5%)

5p ” + Vidp1 + Vadoa,
V] IS A /2 /2
WZ%MNW%ZJM1+%)fwm—wML
rS )
TN DY LR (19)

where we denote the partial derivatives as V,, = (9V/0®,,)(¢1, P2).
The field perturbations transform under an infinitesimal time translation n —
1+ 0m

51 =061 — $\0n ,  da = S — dyon). (20)

The time translation 7. necessary toAgleﬁne the comoving slices can be found by
imposing the condition (67°;). o< ¢} 5¢1 + ¢hdps = 0, giving

d10d1 + Phoda
S = AL T TR0 21
T T gy (21)
The comoving curvature perturbation for the two scalar fields system is given by
01061 + 9406
Re=C—-Hén.=C —-H—F7F+—"="=. 22
! 2 + B2 (22)
The gauge invariant field perturbations in the comoving slices now can be defined
G1061 + 0406
Uy =6¢) — ¢) ——s—272 23
1 1 1 ¢/12 + (b/zg ( )
@101 + Phop2
Uy = d¢pg — ph———2_"= 24
TR g gl 24

and similarly for the pressure and energy perturbations in the comoving slices we
get

_ 60U+ 505 — Ac(61* + ¢5%)

0pe 5

- + ViU + VaUs, (25)
! /U/_Ac /2 /2
(5Pc=¢1 1+ 65U, (¢ +¢2)—V1U1—V2U2- (26)

a2

Note that all the above quantities are gauge invariant by construction.
Combining Egs. (23), (24) and the background field equations of motion we find

LU LU /2 /2
(bl 1—2¢2 2:‘/1U1+‘/2U2:— 1 +¢2 @7

a 4a?

(27)

where we have defined the function © according to

o (- )] (am a¢2>
o2 001 _ 992 28
[3n<¢’12+¢’22 s (28)
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-2

Assuming a classical field trajectory parameterized as ¢o = ¢2(¢1) we can write ©
d
(2601~ 600). (29)

in this form
d*¢y (d¢2)2
©=-4 — +1
dg7 l a6 a6

From the above expression we can see that in order for © to be different from zero
the trajectory has to have non vanishing second derivative, i.e. there must be some
turn in the field space.

After replacing Eqgs. (7) and (27) into Eqgs. (25) and (26) we get

O+ 5%, 917+ 0
0pe = — R, — o, 30
p a2H C 20/2 ( )
$°+ 5%,
0P, = ———F7-+—=—R,. 1
a2H RC (3 )
It follows from Eqs. (30) and (31) that
/2 /2
+ &
6P. = dp. + +—52-0, 32
Pec+ 902 (32)
and comparing this with Eq. (10) we obtain the sound speed and the entropy per-
turbations
/2 /2
200\ _ 9t
c;(n) =1, .= T@. (33)
From these relations we get
! @) a*H
RI42ER AR =—— 27y 34
S TR CRETS oy
where
a2 (¢/ 2 + ¢/ 2)
=2 7 27, (35)
a\1'
Y. = |l — || T.+T%. 36
o (5 )] Tt (36)

Eq. (34) is in agreement with Ref. [6], confirming that Eq. (14) is general and
can also be applied to multi-field systems once the entropy has been appropriately
defined. In general in order to use Eq. (14) it is first necessary to compute the
energy momentum tensor in the comoving slices with a procedure similar to the one
shown above for two fields.

4. Conclusions

We have derived a general equation for the evolution of the comoving curvature
perturbation by taking into account the effects of anisotropy and non-adiabaticity
in the energy-momentum tensor. The equation can be applied to multi-field sys-
tems. This approach does not require the decomposition of field perturbations in
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components parallel and perpendicular to the classical field trajectory, but is based
just on the fundamental definition of non-adiabatic pressure. In the future it will
be interesting to apply the equation to more complex systems where both entropy
and anisotropy are present.
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