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We derive a general equation for the evolution of the curvature perturbation on comoving
slices Rc in the presence of anisotropy and non-adiabaticity in the energy-momentum
tensor of matter fields. The equation is obtained by manipulating the perturbed Einstein
equations in the comoving slicing. It could be used to study the evolution of perturbations
for a system with an anisotropic energy-momentum tensor, such as in the presence of a
vector field or in the presence of non-adiabaticity, such as in a multi-field system.
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1. Introduction

The theory of cosmological perturbations is very useful to study the early stages

of the Universe, especially during inflation, that is, an exponential expansion phase

which the standard cosmological model hypothesizes to explain observations such

as anisotropies in the cosmic microwave background radiation (CMB). One quan-

tity which is particularly important in this context is the curvature perturbation

on comoving slices, Rc. In slow-roll single field inflationary models this quantity

is conserved on super-horizon scales,1,2 which has important implications on the

relation between primordial perturbations and late-time observables such as CMB

anisotropies. For a globally adiabatic system in a single field model this quantity

may not be conserved.3 Other possible causes of super-horizon evolution could be

the presence of anisotropy or non-adiabaticity in the energy-momentum tensor. We

derive the equations for the curvature perturbation on comoving slices, Rc, includ-

ing these two terms showing that they act, as expected, as source terms which are

relevant also on super-horizon scales. Our approach is quite generic and can be

applied to any system which can be described by an energy-momentum tensor of

the form we use, not only to a multi-scalar fields system.

The derivation is based on manipulating the Einstein equations in order to

obtain an equation involving only Rc, the anisotropy and non-adiabatic pressure

and background quantities. The equation can be used to study phenomenologically

the effects of anisotropy and non-adiabaticity without assuming any specific model.
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One useful application could be to study models which violate the non-

Gaussianity consistency relation4 that was derived in fact based on the assumption

of the conservation of the comoving curvatue perturbation on superhorizon scales.

2. Evolution of comoving curvature perturbations

The Einstein equations in a spatially flat Friedmann-Lemâıtre-Robertson-Walker

(FLRW) background are

3H2 = a2 ρ , (1)

2(H′ −H2) = −a2 (ρ+ P ) . (2)

Here a prime denotes a derivative with respect to the conformal time η andH stands

for the conformal Hubble parameter defined by H = a′/a. ρ and P represent the

background energy density and pressure of the matter field respectively. We use

the units in which 8πG = c = 1.

Scalar perturbations on a spatially flat FLRW metric can be written as

ds2 = a2
[
−(1 + 2A)dη2 + 2∂iBdxidη +

{
(1 + 2C)δij + 2∂i∂jE

}
dxidxj

]
, (3)

where the Latin indices run from 1 to 3. The corresponding energy-momentum

tensor takes the form:

T 0
0 = −(ρ+ δρ) , T 0

i =
ρ+ P

a
ui , T ij = (P + δP )δij + Πi

j , (4)

where

ui = a ∂i(v +B) , Πi
j = δik∂k∂jΠ− 1

3

(3)

Δ Πδij , Πi
i = 0 . (5)

In the above equations Πi
j is the anisotropic stress component of the energy-

momentum tensor, v is the velocity potential, Π is the anisotropy potential and

we have defined
(3)

Δ≡ δij∂i∂j .
The curvature perturbation on comoving slices Rc is a gauge-invariant quantity

defined as the curvature perturbation C evaluated on the hypersurfaces in which

v + B vanish. The spatial Fourier expansion of the linearly perturbed Einstein

equations on comoving slices5 takes the form :

2k2(Rc −Hσc) = a2δρc , (6)

R′
c −HAc = 0 , (7)

2(H′ −H2)Ac = a2
[
δPc − (2k2/3)Πc

]
, (8)

σ′
c + 2Hσc −Ac −Rc = a2Πc , (9)

where σ = E′ −B is the scalar shear.

In general we can decompose the pressure perturbation as

δPc = c2s(η)δρc + Γc , (10)
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where we can interpret cs and Γc as the adiabatic sound speed and the non-adiabatic

part of the pressure respectively. For a minimally coupled scalar field model cs = 1

and Γc is zero, but in general one would expect that Γc could be non-vanishing.

Our goal is to derive an equation for Rc in the presence of both anisotropic stress

Πi
j and non-adiabatic pressure Γc.

First we use Eq. (7) to express Ac in terms of Rc,

Ac =
R′
c

H . (11)

We substitute this Ac and δPc given in Eq. (10) into Eq. (8), and solve it for δρc :

δρc =
H (2k2Πc − 3Γc

)− 3(ρ+ P )R′
c

3Hc2s
. (12)

We then insert this into Eq. (6) to get an expression for σc :

σc =
Rc
H −

a2
[
H(2k2Πc − 3Γc)− 3(ρ+ P )R′

c

]
6k2H2c2s

. (13)

Finally we substitute Ac and σc given by Eqs. (11) and (13), respectively, into

Eq. (9) to obtain

R′′
c +

(z2)′

z2
R′
c − c2s

(3)

Δ Rc +
H

ρ+ P
Yc = 0 , (14)

where we have defined

z2 ≡ a4(ρ+ P )

c2sH2
, (15)

Yc ≡
[
log

(
a4

Hc2s

)]′(
2

3

(3)

Δ Πc + Γc

)
+ 2Hc2s

(3)

Δ Πc +
2

3

(3)

Δ Π′
c + Γ′

c . (16)

As expected, for adiabatic (Γc = 0) and isotropic perturbations (Πc = 0) the above

equation takes the well-known form :

R′′
c +

(z2)′

z2
R′
c − c2s

(3)

Δ Rc = 0 . (17)

3. Curvature perturbation for scalar fields

Given the generality of the form of the energy momentum tensor used in the deriva-

tion of Eq. (14) it can be applied to a wide class of physical scenarios, including

multi-field systems. Let us consider the case of two minimally coupled scalar fields

with Lagrangian

L = −
2∑

n=1

Xn − 2V (Φ1,Φ2) , (18)
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where Xn = gμν∂μΦn∂νΦn and Φn(xμ) = φn(η) + δφn(xμ). The perturbed energy-

momentum tensor, without gauge fixing, is given by

δρ =
φ′1δφ

′
1 + φ′2δφ

′
2 −A(φ′1

2 + φ′2
2)

a2
+ V1δφ1 + V2δφ2 ,

δP =
φ′1δφ

′
1 + φ′2δφ

′
2 −A(φ′1

2 + φ′2
2)

a2
− V1δφ1 − V2δφ2 ,

Π = 0 , δT 0
i = ∂i

(
−φ

′
1δφ1 + φ′2δφ2

a2

)
, (19)

where we denote the partial derivatives as Vn = (∂V/∂Φn)(φ1, φ2).

The field perturbations transform under an infinitesimal time translation η →
η + δη

δ̃φ1 = δφ1 − φ′1δη , δ̃φ2 = δφ2 − φ′2δη . (20)

The time translation δηc necessary to define the comoving slices can be found by

imposing the condition (δT 0
i)c ∝ φ′1δφ̃1 + φ′2δφ̃2 = 0, giving

δηc =
φ′1δφ1 + φ′2δφ2
φ′12 + φ′22

. (21)

The comoving curvature perturbation for the two scalar fields system is given by

Rc = C −Hδηc = C −Hφ
′
1δφ1 + φ′2δφ2
φ′12 + φ′22

. (22)

The gauge invariant field perturbations in the comoving slices now can be defined

U1 = δφ1 − φ′1
φ′1δφ1 + φ′2δφ2
φ′12 + φ′22

, (23)

U2 = δφ2 − φ′2
φ′1δφ1 + φ′2δφ2
φ′12 + φ′22

, (24)

and similarly for the pressure and energy perturbations in the comoving slices we

get

δρc =
φ′1U

′
1 + φ′2U

′
2 −Ac(φ′12 + φ′2

2)

a2
+ V1U1 + V2U2 , (25)

δPc =
φ′1U

′
1 + φ′2U

′
2 −Ac(φ′12 + φ′2

2)

a2
− V1U1 − V2U2 . (26)

Note that all the above quantities are gauge invariant by construction.

Combining Eqs. (23), (24) and the background field equations of motion we find

φ′1U ′
1 + φ′2U ′

2

a2
= V1U1 + V2U2 = −φ

′
1
2 + φ′22

4a2
Θ , (27)

where we have defined the function Θ according to

Θ =

[
∂

∂η

(
φ′12 − φ′22
φ′12 + φ′22

)](
δφ1
φ′1
− δφ2

φ′2

)
. (28)
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Assuming a classical field trajectory parameterized as φ2 = φ2(φ1) we can write Θ

in this form

Θ = −4
d2φ2
dφ21

[(
dφ2
dφ1

)2

+ 1

]−2(
dφ2
dφ1

δφ1 − δφ2
)
. (29)

From the above expression we can see that in order for Θ to be different from zero

the trajectory has to have non vanishing second derivative, i.e. there must be some

turn in the field space.

After replacing Eqs. (7) and (27) into Eqs. (25) and (26) we get

δρc = −φ
′
1
2 + φ′22

a2H R′
c −

φ′12 + φ′22

2a2
Θ , (30)

δPc = −φ
′
1
2 + φ′22

a2H R′
c . (31)

It follows from Eqs. (30) and (31) that

δPc = δρc +
φ′1

2 + φ′2
2

2a2
Θ , (32)

and comparing this with Eq. (10) we obtain the sound speed and the entropy per-

turbations

c2s(η) = 1 , Γc =
φ′1

2 + φ′2
2

2a2
Θ . (33)

From these relations we get

R′′
c + 2

z′

z
R′
c−

(3)

Δ Rc = − a2H
(φ′12 + φ′22)

Yc , (34)

where

z2 =
a2(φ′12 + φ′22)

H2
, (35)

Yc =

[
log

(
a4

H
)]′

Γc + Γ′
c . (36)

Eq. (34) is in agreement with Ref. [6], confirming that Eq. (14) is general and

can also be applied to multi-field systems once the entropy has been appropriately

defined. In general in order to use Eq. (14) it is first necessary to compute the

energy momentum tensor in the comoving slices with a procedure similar to the one

shown above for two fields.

4. Conclusions

We have derived a general equation for the evolution of the comoving curvature

perturbation by taking into account the effects of anisotropy and non-adiabaticity

in the energy-momentum tensor. The equation can be applied to multi-field sys-

tems. This approach does not require the decomposition of field perturbations in
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components parallel and perpendicular to the classical field trajectory, but is based

just on the fundamental definition of non-adiabatic pressure. In the future it will

be interesting to apply the equation to more complex systems where both entropy

and anisotropy are present.
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