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Abstract

Contextuality is a key concept in quantum theory. We reveal just how important
it is by demonstrating that quantum theory builds on contextuality in a fundamental
way: a number of key theorems in quantum foundations can be given a unified
presentation in the topos approach to quantum theory, which is based on contextuality
as the common underlying principle. We review existing results and complement
them by providing contextual reformulations for Stinespring’s and Bell’s theorem.

Both have a number of consequences that go far beyond the evident confirmation
of the unifying character of contextuality in quantum theory. Complete positivity of
quantum channels is already encoded in contexts, nonlocality arises from a notion
of composition of contexts, and quantum states can be singled out—among more
general non-signalling correlations over the composite context structure—by a notion
of time orientation in subsystems, thus solving a much discussed open problem
in quantum information theory. We also discuss nonlocal correlations under the
generalisation to orthomodular lattices and provide generalised Bell inequalities in

this setting.

The dominant role of contextuality in quantum foundations further supports a
recent hypothesis in quantum computation, which identifies contextuality as the
resource for the supposed quantum advantage over classical computers. In particular,
within the architecture of measurement-based quantum computation, the resource
character of nonlocality and contextuality exhibits rather clearly.

We study contextuality in this framework and generalise the strong link between
contextuality and computation observed in the qubit case to qudit systems. More
precisely, we provide new proofs of contextuality as well as a universal implementation
of computation in this setting, while emphasising the crucial role played by phase
relations between measurement eigenstates. Finally, we suggest a fine-grained measure
for contextuality in the form of the number of qubits required for implementation in

the non-adaptive, deterministic case.
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“I should have more faith,” he said; “I ought to know by this time that when a fact appears
opposed to a long train of deductions it invariably proves to be capable of bearing some other
interpretation.”

- Sir Arthur Conan Doyle
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Chapter 1

Introduction

Recent success of machine learning algorithms, which mimic the brain in the form of neuronal
networks, suggests that our cognitive abilities arise at least to some degree in a similar manner.
Maybe the greatest challenge to science is to decipher whether our conscious experience is
‘simply’ that—a complex network of physical neurons trained over years of sensual input—or
whether our perception of self rests on (fundamentally) different physics altogether [72]. A
conclusive answer to this and the possibly related ‘hard problem’ of consciousness [31] seems far
afield, yet certain aspects of the biological information processing in our brains undoubtedly
affect our thinking. Clearly, this extends to our ability ‘to do science’. One particularly limiting
factor resulting from this is that our perception bias makes original thought, which defies the
pattern recognition of physical processes relevant to our everyday experience, a true rarity. Few
instances of people overcoming the boundary of this ‘natural intuition’ have triggered profound
philosophical, scientific, and technological revolutions, and are among the greatest achievements

of mankind.

Surely, the invention of quantum theory deserves its place in this list. What is more, it is
also a special representative in that even a hundred years after its formulation, the scope of its
revolutionary content has arguably not been fully grasped yet. It might even require a further
substantial shift in perspective as debates on quantum foundations are still ongoing and with

them the discussion about how to change our image of reality.
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CHAPTER 1. INTRODUCTION

One feature of quantum theory with far-reaching consequences for our understanding of the
world is beautifully captured in the following adaptation of a parable by the Swiss mathematician

Ernst Specker (English translation largely taken from [107]).

At the Assyrian School of Prophets in Arba’ilu in the time of King Asarhaddon,
there taught a seer from Nineva. He was a distinguished representative of his faculty
(eclipses of the sun and moon) and aside from the heavenly bodies, his interest was
almost exclusively in his daughter. His teaching success was limited; the subject
proved to be dry and required a previous knowledge of mathematics which was scarcely
available. If he did not find the student interest which he desired in class, he did find it
elsewhere in overwhelming measure. His daughter had hardly reached a marriageable
age when he was flooded with requests for her hand from students and young graduates.
And though he did not believe that he would always have her by his side, she was in
any case still too young and her suitors in no way worthy. In order that the suitors
might convince themselves of their unworthiness, he promised them that she would be
wed to the one who could solve a prediction task that was posed to them.

Fach suitor was taken before a table on which stood four little boxes arranged
in a square, [each of which might or might not contain a gem/, and was asked to
predict which of the boxes contained a gem and which did not. But no matter how
many times they tried, it seemed impossible to succeed in this task. After each suitor
had made his prediction, he was ordered by the father to open any two boxes within
either a row or a column of the square arrangement. It always turned out that two
opened boxes disproved the suitor’s prediction. The daughter would have remained
unmarried until the father’s death, if not for the fact that, after the prediction of
the son of a prophet [whom she fancied], she quickly opened two boxes herself, and
the suitor’s prediction [for these two bozes| was found, in this case, to be correct.
Following the weak protest of her father that he had wanted two other boxes opened,
she tried to open the remaining two. But this proved impossible where upon the father
grudgingly admitted that the prediction, being unfalsified, was valid. [The daughter

and the suitor were married and lived happily ever after.]
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CHAPTER 1. INTRODUCTION

Assuming the seer was not merely a skilful trickster, Specker’s parable puts into question a
certain logical assumption that pervades physics well into the twentieth century. In order to
motivate exactly what this assumption is, note that we constantly interpret data by means of
inferring information about the world that we do not have direct access to.

A helpful illustration for this fact is the work of a famous detective trying to reconstruct a

crime scene in Sir Arthur Conan Doyle’s ‘Silver Blaze’ [51]:

“Is there any point to which you would wish to draw my attention?”
“To the curious incident of the dog in the night-time.”
“The dog did nothing in the night-time.”

“That was the curious incident.”

From the rather obvious inference ‘Silver Blaze was stolen from the stable in the night-time,
therefore there must have been a perpetrator’ and the masterly inference ‘the dog did not
bark in the night-time, therefore no-one unknown to the household approached the stable’ the
observant detective immediately arrives at the cunning conclusion ‘Silver Blaze was stolen by a
perpetrator, who was known to the household’ as a logical necessity.

More abstractly, and for the propositional logic underlying a physical system, the same line
of reasoning has that with implications A — B and B — C, the implication A — C' should also
hold. Since ordering statements by deduction (abduction in the novel) is so deeply ingrained
into our everyday lives, it is easy to overlook that this reasoning relies on the assumption
that statements can always be ordered in this way. This might seem obvious, however, this
assumption is not necessary. Specker points this out in the above parable, where implications
exist between neighbouring boxes only, yet not for all boxes together; for this reason, the
daughter cannot open the remaining boxes after the first two are opened. In other words,
the events relating to the information content of the boxes containing a gem or not are not
all simultaneously measurable. The inconspicuous assumption underlying classical deductive
reasoning therefore is that all statements about a system are simultaneously verifiable, and
implications between them can thus be related transitively as in the above example. Yet, the
situation in Specker’s parable is different—only certain subsets of statements about the system

can be simultaneously verified, and implications between them thus be composed transitively.
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CHAPTER 1. INTRODUCTION

But clearly, we can open four boxes and observe their content simultaneously, so why bother
with this mathematical curiosity? In fact, it turns out that quantum theory behaves very similar
to the boxes in Specker’s parable—both the original version with three boxes and our adaptation.
Similar only, since the exact scenarios do not exist, yet very similar ones do; for the version
above, increasing the number of boxes arranged in a square from four to nine constitutes a
similar example, which turns out to be quantum-realisable in the Mermin-Peres square (cf.
Fig. 3.1 (a)). This raises the question why nature does not behave by our intuition, yet at the
same time does not depart arbitrarily far from it. This question is an interesting one and has

been addressed e.g. in [107], where the original version of Specker’s parable is discussed.

On the other hand, since contextuality is likely not the only physical principle underlying
nature, another question is at least as pressing: how important is the idea behind Specker’s
parable on the structure of logical implications—subject to the equivalence relation defined
by simultaneous measurability—in nature, specifically, in quantum theory? Is it merely a
curious feature of the latter or does it underlie physics on a fundamental level? This latter
question has been brought to the forefront by Chris Isham and collaborators [23, 24, 75, 87], who

suggested to construct theories of physics from the collection of classical perspectives or ‘contexts’.

In Ch. 2 we review this idea in detail (cf. Sec. 2.1.2), collect several known results about the
structure of simultaneous measurability in quantum theory (cf. Sec. 2.3), and extend them to
nonlocality in composite systems (cf. Sec. 2.4). In particular, we provide inherently contextual
reformulations for Stinespring’s and Bell’s theorem, based on a notion of contextual composition
in place of the tensor product construction in the standard formalism. We also give a definition
of general non-signalling theories over orthomodular lattices and derive Bell inequalities in this

setting (cf. Sec. 2.5).

In accordance with previous results, our findings emphasise the crucial role played by con-
textuality. The emerging, alternative formulation of quantum theory heavily rests on the deep
insights by Specker and Isham, and thus suggests a potential shift in perspective on quantum

physics as a whole.
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CHAPTER 1. INTRODUCTION

This has far reaching consequences not only for quantum foundations, but also its applications
such as quantum computation. Contextuality has recently been suggested as the resource
responsible for the supposed advantage of quantum over classical computers. Clearly, the
fact that contextuality underlies quantum theory on a fundamental level, strongly supports
this hypothesis. Yet, more than that is needed in order to convert this resource into useful
computational power. We address this issue by studying contextuality in the particular computing
architecture known as measurement-based (quantum) computation in Ch. 3. More precisely,
we improve existing results on the resource character of contextuality (cf. Sec. 3.1), construct
many inherently contextual examples (cf. Sec. 3.2), and suggest a classification of contextuality
by means of the number of local subsystems required for the implementation of certain tasks in
this framework (cf. Sec. 3.3).

We end by discussing potential avenues for future research along various directions in Ch. 4.

15



Chapter 2

Contextuality in Foundations of

Quantum Theory

Quantum theory was developed in the beginning of the twentieth century by Planck, Einstein,
Bohr, Sommerfeld, de Broglie, and many others in an attempt to understand the emission
spectra of atoms. The theory was given a rigorous mathematical formulation only a few decades
later by Heisenberg, Schrodinger, Born, Dirac, Wigner, von Neumann, Jordan, Weyl, and many
more and has remained largely unchanged since then. We review important aspects of this
algebraic structure in Sec. 2.2 and discuss key results in foundations in this algebraic setting. In
particular, we will be concerned with the landmark theorems by Wigner, Gleason, Stinespring,
Bell, and Kochen & Specker. Most obviously, contextuality is the subject of the Kochen-Specker
theorem. Therefore, in Sec. 2.1.1 we give a detailed exposition of this theorem first, and discuss
its topos-based reformulation by Isham, Butterfield, and Hamilton [23, 24, 75, 87] as a prototype
for the reformulation of other theorems in foundations. For more background on the topos
approach to quantum theory and other closely related ideas we refer to [1—1, 33, 53, 56, 60, 61,

, 79, , 116]. A great benefit of this reformulation is that it gives a geometrical interpretation
of the former, based on a generalised state space in the form of the spectral presheaf, which

fundamentally builds on the concept of physical contextuality, which we define in Sec. 2.1.2.

In fact, physical contextuality and its mathematical embodiment in the form of presheaves
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CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

over the partial order of contexts prove more universal and lead to reformulations of other key
theorems, namely Gleason’s and Wigner’s theorem. We review those in Sec. 2.3 and highlight
their intimate relationship with contextuality. Measured by the significance of these theorems
for quantum foundations, it is surprising that their contextual nature has not been elaborated

on before, and should be seen as an important contribution to foundations in and of itself.

The connection between Bell’s theorem, locality, and contextuality has been recognised
before [0, 25, 57, 59, 92]. However, no contextual reformulation of the above type had previously
been known. In order to bridge this gap, first, we give a derivation of the crucial assumption of
factorisability in Bell’s theorem from the perspective of classical state spaces and argue that
it is naturally related to trivial physical contextuality in Sec. 2.4. In particular, we show how
contextuality fundamentally relates to composition of systems. To this end, we provide a notion
of composition based only on the context structure of a theory. Our key result is a reformulation
of Bell’s theorem in contextual form based on our notion of context composition and a choice of
time direction in subsystems. This reformulation can also be understood as a generalisation of

Gleason’s theorem to composite systems, strengthening a previous result in [145].

As a consequence of Bell’s theorem in contextual form we obtain a solution to a key problem
in quantum foundations and quantum information theory concerning the restrictiveness of the
no-signalling principle [15, , 125]. We show in detail that no-signalling constraints also arise
as marginalisation constraints between contexts in the Bell presheaf. As such we find that
no-signalling corresponds to our definition of composition of contexts and almost singles out
quantum theory over the context structure corresponding to local von Neumann algebras: it

only lacks a choice of time direction in subsystems.

Along the way we provide a reformulation of the more technical but nonetheless crucial
dilation theorem by Stinespring (cf. Sec. 2.3.4). In particular, we prove that completely positive
maps are naturally encoded on the level of contexts already. Both, Stinespring’s and Bell’s
theorem thus also prove to be very closely connected with contextuality in ways not recognised
previously. Finally, in Sec. 2.5 we discuss generalisations of our reformulation of Bell’s theorem
in contextual form by considering orthomodular lattices instead of projection lattices of von

Neumann algebras, and we consider correlations in such theories. Sec. 2.6 summarises.
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CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

2.1 The Kochen-Specker theorem and contextuality

This section serves two purposes, it is meant as an introduction to the Kochen-Specker theorem
and as a conceptual motivation for the notion of physical contextuality. First, in Sec. 2.1.1 we
review the key idea behind the Kochen-Specker theorem and highlight the role contextuality
plays in it. Second, in Sec. 2.1.2 we extract the physical principle inherent to contextuality and
argue how it reveals a principal difference between classical and quantum physics. We fill it with
mathematical content in Sec. 2.2, which will allow us to relate not only the Kochen-Specker

theorem to contextuality, but many more key components of quantum theory, too.

2.1.1 The Kochen-Specker argument

Following Bell’s seminal work [1%], Kochen and Specker further refined the constraint on hidden
variable models [101]. At least since the famous paper by Einstein, Podolski, and Rosen [5] there
had been an ongoing debate about the possibility to understand quantum theory as a high-level
description of a more fundamental theory, similar to thermodynamics, which Boltzmann gave a
statistical underpinning based on classical physics in the form of Newtonian mechanics. Bell’s
theorem (cf. Sec. 2.4.4) puts strong constraints on such an interpretation. However, while Bell
derives his conclusion in conjunction with a notion of locality, Kochen and Specker remove
this additional assumption and simply ask whether it is at all possible to ascribe a classical
state space to quantum theory. In particular, Kochen and Specker are concerned with the
concept of a ‘microstate’, which can be understood as a deterministic assignment of measurement
outcomes to all observables simultaneously. Importantly, microstates exist in classical systems as
a consequence of the fact that classical observables are all simultaneously measurable. Famously,
by the uncertainty principle observables are not simultaneously measurable in quantum theory,
however, this does not necessarily imply that no microstates of the aforementioned type exist.
Nevertheless, Kochen and Specker show that quantum theory does not admit microstates.
We present the key steps of their argument before changing perspective and pinpointing the

underlying notion of physical contextuality in Sec. 2.1.2.
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CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

Kochen and Specker ask whether quantum theory allows for an underlying ‘classical” de-
scription. To this end, they first set out to clarify what conditions should be met by a classical
interpretation of a theory. Note that two important ingredients to a physical theory are (i) a set
of observables O and (ii) a set of states ¥. In a classical theory, observables are modeled as
functions on some measurable space ¥: for every observable a € O, there exists a measurable
function f, : ¥ — R.! If moreover every such function is promoted to the status of an observable,

O has the structure of an algebra.

Forcing this model onto quantum theory, the probability of measuring a value in the interval

A C R with the observable a € O given a quantum state v is given by

Py (D) = py(fa(A)) -

Here, f1,, is the measure on the state space ¥ corresponding to 1. Clearly, any interpretation of

quantum theory should also reproduce quantum mechanical expectation values,

Ey(a) = / Qi (5) fuls) = (16, ) (2.1)

Yet, Eq. (2.1) by itself is not very restrictive, it allows for artificial state spaces such as the one
constructed in [101]. Let ¥ =R = {s: O — R} and set f,(s) = s(a) for all a € O. Then
the product measure f1y = [[,co Pay trivially reproduces quantum mechanical probabilities:
po(f (D)) = py({s | s(a) € A}) = Poy(A).

This example works since no functional relations between observables are taken into account.
However, whenever such relations exist on the level of the observables, it is natural to require
these to be at least partially reflected in their (functional) representation. Taken to the extreme,
one might thus require the full algebraic structure of quantum theory to be reflected in such a

representation:

fa+b:fa+fb fab:fa'fb f)\a:)‘fa (22)

IHere, ‘measurable’ is used in the mathematical sense.
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CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

To find such a representation means to give an algebra homomorphism @ — R* from the
algebra of quantum mechanical observables O to the algebra of real-valued functions on some
measure space ». This is easily seen to be impossible by an example due to Bell. Consider
the spin observables o, and o, with eigenvalues 41, as well as the spin observable o,, =
\%(% + 0.) corresponding to measuring the spin along the axis bisecting the measurement axes
of o, and o,. Requiring this algebraic relation to be reflected in a functional representation
fo X — R immediately yields a contradiction when evaluated on a microstate s € X:
Fons(5) = L (fon () + F.(5) = S (£1 +£1) £ 1 = £, (s).

It is here that Bell, Kochen, and Specker have a deep structural insight: there is no reason
to require algebraic constraints to be reflected between all quantum mechanical observables,
only when the measured values can be inferred from one another such relations should hold.
Since measured values can be inferred between simultaneously measurable observables, it is
natural to at least require algebraic constraints to be reflected in the spectra of such observables.
We call the set of measured values of an observable a € O its spectrum and denote it by sp(a).

In order to evaluate the relevant constraints in Eq. (2.2), Kochen and Specker therefore
introduce the notion of a partial algebra, i.e., an algebra with an equivalence relation called
‘stimultaneous measurability’” defined on it. Accordingly, a partial algebra homomorphism relaxes
the conditions of an algebra homomorphism in Eq. (2.2) to hold between simultaneously
measurable observables only [101]. Of special interest are partial algebra homomorphisms into

R.

Definition 1. Let O be a partial algebra representing the observables of a physical theory. A

valuation function (‘prediction function’ in [101]) v: O — R is a map such that:
(i) v(a) € sp(a) (spectrum rule)
(ii) v: O — R* is a partial algebra homomorphism

Clearly, if there exists a state space ¥ underlying a theory, then every state s € 3 defines
a valuation function v, : O — R by evaluation, vs(a) = f,(s). By ruling out the existence
of valuation functions in quantum theory, Kochen and Specker conclude that no classical

interpretation can be given for the latter, in particular, that no classical state space X exists.
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CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

In order to state the theorem, one only needs a minimum of projective geometry in three
dimensions—strictly less than the full mathematical apparatus of quantum theory. However, the
technical proof somewhat distracts from the important physical aspects and we therefore defer
the discussion of the theorem until after a thorough treatment of the mathematical background
in Sec. 2.2, which will also allow us to introduce substantial generalisations of the original result
in [101]. Instead, in the next section we focus on the conceptual idea underlying the argument

outlined in this section—the principle of physical contextuality.

2.1.2 Physical contextuality

The key ingredient to the argument in the last section is the restriction of the algebraic constraints

between observables in Eq. (2.2). Building on [75, 101], in [17] we conceptualise this as follows.

Definition 2. Let the observables of a physical system be given by a partial algebra O with
equivalence relation called simultaneous measurability. An equivalence class of observables that
are pairwise simultaneously measurable is called a (maximal) context. Moreover, O is called
physically contextual if not all its observables are simultaneously measurable, i.e., if O is not

itself a (mazximal) context.

Classical theories are not physically contextual by this definition, they contain a single
maximal context and we will sometimes call them single-context theories for this reason (cf.
[53]). Quantum theories, on the other hand, are a very special type of physically contextual
theories. Importantly, any theory with physical contextuality still has contexts, i.e., equivalence
classes of observables that are pairwise simultaneously measurable. In the extreme case, contexts
consist of a single observable. What is more, there is a natural notion of coarse-graining arising
from inclusion relations between subsets of equivalence classes called (non-maximal) contezts.
From an information-theoretic perspective, coarse-graining captures the loss of information
when going to smaller contexts. Contexts and their order relations therefore encode physical

contextuality [I—1, 23, 24, 47, 75, 87, .

Definition 3. Let the observables of a physical system be given by a partial algebra O. The

context category C(Q) is the partial order of (non-mazimal) contexts ordered by inclusion.
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Soon, we will assume contexts to carry additional structure, e.g., in quantum theory it is
natural to take contexts to correspond to unital, commutative C*-algebras or von Neumann
algebras. Yet, we emphasise that the importance of physical contextuality lies in the order
structure, which applies already at the level of mere sets. A related approach to contextuality
setting off at this level of generality is the sheaf-theoretic framework in [0].

We remark that contextuality is used with different meanings in the literature [20, 81, 85,

, , |. In order to clearly distinguish those from the one given in Def. 2 and Def. 3, we
call the latter ‘physical contextuality’. Notably, physical contextuality is inherently operational,
since it is based on the notion of simultaneous measurability, yet there is no need to introduce
‘contextual value assignments’, ‘counterfactual definiteness’ or other often convoluted concepts.?
Instead, we use our minimal version of (physical) contextuality mostly as a mathematical

(bookkeeping) tool in order to study its restrictiveness in quantum theory.

Physical contextuality is a conceptual principle and (mostly) independent of a mathematical
formalism. In order to study its role in quantum theory quantitatively, in the next section
we give the necessary mathematical background on (algebraic) quantum theory and make
the structure of physical contextuality explicit in this case. We will then see that physical
contextuality is not only at the heart of the Kochen-Specker theorem, but also of other key
theorems in quantum foundations, which obtain a natural reformulation in terms of the order

structure between contexts (cf. Sec. 2.3).

Instead, in order to make sense of probabilistic assignments and correlations in Bell’s theorem later on, we
will tacitly assume a notion of ‘statistical regularity’ [103], which in some form necessarily underlies any kind of
scientific study. Arguably, this is a much less problematic principle than ‘counterfactual definiteness’.
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2.2 Mathematical background

Throughout this chapter we will take the view of algebraic quantum theory. This framework
underlies not only quantum mechanics, but also quantum information theory and in large part
(algebraic) quantum field theory. The key ingredient is the algebraic structure on observables,
which are modelled mathematically by self-adjoint operators on a Hilbert space. The self-
adjoint operators play a twofold role, first, they underlie the measurement process, second,
they correspond to infinitesimal generators of time evolution. The latter aspect connects with
the theory of Lie algebras while the former is captured by the probability calculus inherent
to Jordan algebras. Both aspects are intricately interwoven into one multiplicative product
yielding the structure of an associative von Neumann or C*-algebra. We review this structure
in detail over the next sections. In particular, we make explicit the idea that quantum theory
arises via ‘local-to-global” extensions from classical physics, where ‘local’ means ‘within a single
context’ or ‘classical’ and ‘global’ refers to the collection of all contexts by means of physical
contextuality. As will become clear soon, the latter corresponds to non-trivial Jordan structure

and only indirectly to noncommutativity, which is often considered to be the essence of quantum.

We start with a general overview of algebraic quantum theory in Sec. 2.2.1 (for references,
see [96, 97, ) , ]). In Sec. 2.2.2 we give a rigorous definition of physical contextuality
within algebraic quantum theory. More precisely, we introduce some basic notions from category
theory (for more details, we refer to e.g. [104, |) in order to define the context category
and presheaves over the context category as the tools to study local-to-global problems, which

provide the basis for the reformulations of many key theorems in contextual form in Sec. 2.3.

In Sec. 2.2.3 we connect physical contextuality with the Jordan algebra aspect in von
Neumann algebras. The corresponding split of the associative product into a symmetric and an
antisymmetric part lies at the heart of the dichotomy of observables in quantum theory, whose
role will become particularly important in the study of Bell’s theorem in Sec. 2.4.4. Since the
relevant structures—Jordan algebras, order derivations, orientations etc.—are not well known
outside of small communities, we provide some necessary background on (only) those notions

needed for later theorems. Standard references with many more details include [¢, 39].
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2.2.1 Part I - Algebra of observables

Bounded operators on Hilbert space. A Hilbert space H is a vector space with inner product
(-,+) completed in the norm || - || = |(+, -)|*. Recall that a sesquilinear form (-,-) : V' x V — C on
a vector space V is called positive-definite if (x,z) > 0 for all z € V and (z,2) > 0 < x =0,
and is called conjugate-symmetric or Hermitian if (v,w) = (w,v) for all v,w € V. An inner
product is a positive-definite Hermitian form.?

Every Hilbert space is in particular a Banach space, i.e., a normed vector space complete
with respect to the induced norm topology. In finite dimension n € N, the prototypical Hilbert
space is H = C™ with inner product (v,w) = >\ v;w; for all v,w € C". A Hilbert space is
called separable if it has a countable orthonormal basis (v;)ien, i.e., a countable family of vectors
v; € H such that (v;,vj) = d;;, and for every v € H there exist unique complex numbers (¢;);en
such that v = Z;’Zl c;v;. In what follows, Hilbert spaces will be assumed separable.

A linear operator a : V' — W is a linear map between vector spaces V, W. A linear operator
between normed vector spaces V, W is called bounded if there exists 0 < K € R such that

llav||w < K||v||v for all v € V. The smallest such K is the operator norm of a, denoted

l|la]| := inf{K € R | ||av|| < K|[v|| Yv € V},* and a is bounded if ||a|| < oo.
Theorem. A linear operator between normed spaces is bounded if and only if it is continuous.

The set of bounded operators on Hilbert space H is denoted B(#) and forms a Banach
algebra, i.e., it is a vector space, which is complete in the topology induced by the operator
norm, and such that multiplication is continuous: ||ab|| < ||al|| - |[b|| for all a,b € B(H).

For the purposes of this thesis, it will be enough to consider bounded operators, more
precisely, observables will be mathematically represented by bounded self-adjoint operators on
some Hilbert space.® The latter property refers to a further symmetry of the Banach algebra
B(H): for a € B(H), define a* to be the operator such that (av, w) = (v, a*w) for all v,w € H.

a* is called the (Hilbert) adjoint of a and is provably unique. In finite dimensions the adjoint is

3We will follow the mathematical convention that sesquilinear forms are linear in the first (and conjugate
linear in the second) argument: VA1, Ao € C, Vo1, v9,w € H, (A1v + Aava, w) = A1 (v1,w) + A2(va, w).

4Note that the operator norm depends on the respective norms on V and W.

5We remark that unbounded operators such as position and momentum in quantum mechanics can be treated
by affiliating them with the von Neumann algebra of observables (cf. [96, 97]).
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given by transposition and complex conjugation, a* = af. The following properties of operators
a € B(H) are of special interest. An operator is called normal if aa* = a*a, a normal operator
is called unitary if aa* = a*a = 1 and self-adjoint if a = a*. A self-adjoint operator is called
positive if (av,v) > 0 for all v € H. We denote the set of positive operators by B(#H);. The
set of self-adjoint operators forms a real vector space denoted by B(H)s. C B(H), but not a
subalgebra since ab ¢ B(H)s, in general. Every operator a € B(H) has a unique decomposition,

a = ay + iaz, where a1, as € B(H)sa, namely a; = %(a +a*), ag = 5 (a—a*). It follows that a is

normal if and only if [a, as] = 0.

C*-algebras, von Neumann algebras. The map * : B(H) — B(H) makes B(H) into a
s-algebra: it defines an antilinear involution, i.e., for all a,b € B(H), A € C it holds (\a)* = \a*,
(a+b)* = a*+0b*, (ab)* = b*a*, and (a*)* = a. Since B(H) is also a Banach space, it is natural to
require compatibility with the norm as well. In fact, the C*-identity, ||a*al| = ||a*|| - ||a|| = ||a||?

for all @ € B(H), holds and makes B(H) into a C*-algebra.

Definition 4. A C*-algebra A is a Banach algebra over the field of complex numbers, together

with an antilinear involution * : A — A, which satisfies the C*-identity,

VYa € A: ||a|)? = ||a*al| .

The C*-algebra B(H) thus carries a natural topology induced by the operator norm || - ||
known as uniform operator topology. However, this topology is in general not the only topology
on B(H), several weaker topologies exist. For instance, a net (a;);e; converges to a in the strong
operator topology or strongly if and only if ||a;v — av|| — 0 for all v € H.% This is the topology
of pointwise convergence and generally weaker than the uniform operator topology. Of special
interest to us is the weak operator topology. A net (a;);c; converges to a in the weak operator
topology or weakly if and only if (v, a;w) — (v,aw) for all v,w € H. Requiring closure with

respect to the weak operator topology leads to the definition of a von Neumann algebra.

SA net f: 1 — X is a map from a directed set I to a topological space X. A directed set I is a non-empty
set with a preorder, i.e., a reflexive, transitive relation < such that every pair of elements has an upper bound
(cf. Sec. 2.2.2).
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Definition 5. A von Neumann algebra N is a unital subalgebra of B(H), i.e., a subalgebra

including the multiplicative identity in B(H), closed in the weak operator topology.

Every von Neumann algebra is in particular uniformly closed and thus a unital C*-algebra.
Note also that B(#) is a von Neumann algebra. Von Neumann algebras provide a natural

mathematical representation of physical quantities.

The algebra of physical quantities is modeled by

a (noncommutative) von Neumann algebra.

We remark that weakly closed operator algebras can also be characterized abstractly, without
reference to a Hilbert space, as follows: let X be a Banach space and denote by X* its continous

dual, i.e., the Banach space of bounded linear functionals ¢ : X — C (see below).

Definition 6. A W*-algebra N is a C*-algebra that is the dual of some Banach space X. The

latter is called the predual of N .

Nevertheless, by the Gelfand-Naimark representation theorem, Thm. 5 below, every von

Neumann algebra N arises as a subalgebra N' C B(H) for some Hilbert space H.

Linear functionals, states, and weights. A linear functional ¢ on a C*-algebra A is a

linear map ¢ : A — C. A linear functional ¢ is positive if ¢p(a) > 0 for all a € A..
Theorem 1. A linear functional ¢ is positive if and only if it is bounded and ||¢|| = ¢(1).

A state o is a positive (bounded) linear functional that is normalised, i.e., o(1) = 1. The set
of states on A is denoted S(.A) and forms a convex set since for every two states o, 09 € S(A)
and A € [0,1]: Aoy + (1 — N)oy € S(A). By the Krein-Milman theorem S(A) is the weakly
closed convex hull of its extreme points, which are called pure states and denoted E(A). A
non-zero linear functional on a commutative C*-algebra A is a pure state if and only if it is

multiplicative. The set of multiplicative linear functionals is called the Gelfand spectrum of A,

Sa:={0#£N: A Clinear | Va,b € A: Aab) = Ma)A(b)} = E(A) . (2.3)
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The Gelfand spectrum is a compact Hausdorff space relative to the weak* topology.

Finally, weights generalise linear functionals in (infinite-dimensional) von Neumann algebras.

Definition 7. Let N be a von Neumann algebra and N the set of positive elements of N'. An
additive, homogeneous map w : Ny — [0,00], i.e., w(a +b) = w(a) + w(b) and w(la) = Iw(a)
for all a,b € N., X € R, is called a weight on N .

A weight is called faithful if w(a) = 0 implies a = 0. A weight is called finite if w(1) < co. A
positive linear functional on N is a finite weight. If moreover w(a*a) = w(aa*) for all a € N,
then w is called a trace on N. Finally, a trace is called semi-finite if for all a € N, non-zero,

there exists b € Ny non-zero with w(b) < co and b < a.

Trace-class operators and normal states. There are some important subspaces of B(H)

arising as closed two-sided ideals. First, an operator a : ¥ — F' between Banach spaces is called

compact if for all D C E bounded, the closure a(D) is compact in F.

Theorem 2. Let Hi, Hs be Hilbert spaces. Fvery compact operator a : Hy — Ho s the norm

limit of finite linear sums Y ., ¢;(-,v;)w; with ¢; € C, v; € Hy, w; € Ha.

The space of compact operators on Hilbert space H is denoted () and can be further

refined as follows. Let (v;);en be an orthonormal basis of a (separable) Hilbert space H, and set

o0

Va € B(H); : tr(a) := ) (v;,av;) . (2.4)

i=1
Definition 8. The set L'(H) of trace-class operators on H is the linear span of
LYH); = {a € B(H); | tr(a) < oo} .
The set of Hilbert-Schmidt operators on H is given by

LXH) = {be B(H) | b'be L(H)} .

Note that in finite dimensions every operator is trace-class.

27



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

Lemma. L'(H) C L2(H) C K(H) define closed two-sided ideals in B(H).
We will encounter trace-class operators via normal states in Gleason’s theorem, Thm. 22.

Definition 9. A state o on a von Neumann algebra N is called normal or ultraweakly continuous
if o(a;) — o(a) for every monotone increasing net (a;);e; of operators in N with least upper

bound a. Equivalently, o(>_,pi) = >, 0(pi) for all families of orthogonal projections (p;)icr.

For every normal state 0 € S(N), N’ C B(H) there exists a trace-class operator p € L!(H)

such that o(a) = tr(pa) for all @ € N and vice versa.

Projections and spectral theorem. The set of projections in a C*-algebra A is the set of
self-adjoint, idempotent operators P(A) := {p € A, | p*> = p}. Projections play a particularly
important role for von Neumann algebras. Given a faithful representation in the bounded
operators on some Hilbert space H (cf. Thm. 5 below), the projections in a von Neumann
algebra P(N) are in bijective correspondence with closed subspaces of H. Since the latter are
naturally ordered by inclusion, this equips P(N') with a partial order, which is closely related
to contextuality (see Sec. 2.2.2 for more details). Algebraically, this order reads as follows: let
p,q € P(N), then p < ¢ if and only if pg = gp = p.

Moreover, the following two definitions will become important in the classification of von
Neumann algebras below. Two projections p,q € P(N) are called equivalent if there exists a
partial isometry u such that p = u*u and ¢ = uu*.” A projection p € P(N) is called finite if
there exists no other projection ¢ < p, ¢ € P(N), which is equivalent to p.

In contrast to general C*-algebras, von Neumann algebras contain many projections. More

precisely, let F' C B(H) and define the commutant of F,

F':={beB(H)|Va€eF:|ab =ab—ba=0}.

Besides the topological condition in Def. 5 and Def. 6, von Neumann algebras can further be

defined purely algebraically by means of von Neumann’s double commutant theorem.

"Recall that u € A is a partial isometry if u*u and wu* are both projections. As a map between Hilbert
spaces, u € N C B(H) is a partial isometry if it is an isometry on the complement of its kernel.
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Theorem 3. (von Neumann, double commutant theorem) Let H be a Hilbert space and
B(H) the algebra of bounded operators. Let N C B(H) be a *-subalgebra of B(H) containing

the identity. Then the following are equivalent:

(i) N is closed in the weak (strong) operator topology, i.e., N is a von Neumann algebra
(i) N = N = (N")’

Moreover, every von Neumann algebra A is generated by its projections N = P(N)".8
The latter follows from the spectral theorem—another important decomposition of self-adjoint

operators. In finite dimensions it reads
Va € M,(C) :(=B(C")): a= Z%‘Pi : (2.5)
i=1

Here, a; € R is an eigenvalue of a, i.e., av = av for some v € H = C*.? and p; € P(H)
denotes the projection onto the corresponding eigenspace. A straightforward generalisation of
Eq. (2.5) to infinite dimensions exists only for compact operators (cf. Thm. 2). General bounded
self-adjoint operators do not necessarily have eigenvalues in infinite dimensions. Instead, one
defines a spectral value \ € C of an operator a € A in a C*-algebra A to be such that a — A1
does not have a (two-sided) inverse in A. The collection of spectral values is called the spectrum
of a and denoted sp(a).

We also need the notion of operator-valued measure.

Definition 10. Let X be a compact Hausdorff space and o(X) its Borel o-algebra. Then
0:0(X)— B(H) is called a operator-valued measure if it is weakly finitely additive, i.e., for

any finite collection of disjoint Borel sets (B;)icr in the o-algebra o(X),

Vo,w e H: (0(UierBi)v, w) = Z(Q(Bi)v,u» .

iel

A special case are projection-valued (or spectral) measures ¢ : o(X) — P(H).

8Since projections correspond with measurement outcomes in experiments, this justifies the use of von
Neumann algebras from an operational perspective.
9Note that eigenvalues of self-adjoint operators are necessarily real.
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As a generalisation of Eq. (2.5) based on projection-valued measures, one then obtains.

Theorem 4. Let a € B(H)s.. There exists a projection-valued measure i, : o(R) — P(H) such

that
a= / A dpg(N)
R

The spectral theorem underlies the Borel functional calculus, i.e., we can apply functions
to operators as follows: let f : X — R by a bounded measurable function, then there exists a
unique bounded linear operator f(a) : H — H defined by f(a) = [ f(N)dpa(N).

Since every operator a € N is the unique sum of self-adjoint operators, a = a; + ias,
a1, as € Ny, and every self-adjoint operator has a spectral resolution by the spectral theorem,
it follows that P(N) generates N. In this sense, the study of von Neumann algebras can be
reduced to the study of its projections. Contextuality builds on this idea together with the

essential properties inherent to P(N) to be discussed in Sec. 2.2.2.

Type classification for von Neumann algebras. Since von Neumann algebras are

generated by their projections, their classification is in terms of projections also.

Definition 11. The center Z(N) of a von Neumann algebra is the von Neumann subalgebra of

those operators in N that commute with all other operators,
ZWN)={aeN|VbeN: [a,b =0}.

A von Neumann algebra N is called a factor if it has trivial center.

The building blocks of von Neumann algebras are factors, i.e., every von Neumann algebra has
a unique decomposition into factors N' = [ ff Ndp(z).'° In particular, the factor decomposition
is encoded in the central projections ZP = {p € Z(N) | p* = p}. Furthermore, the classification
of factors is intuitively given in terms of the ‘size’ of its projections. Since, up to rescaling for
every factor there exists a unique trace ‘measuring the size’ of its projections (cf. Eq. (2.4)),

this classification can equivalently be given in terms of the image under the trace.

10Tf A/ has finitely many factors, this simplifies to the direct sum N = D1 Ni-
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There are three types of factors, each with sub-types. A factor NV is of type Iif it contains a
minimal projection, i.e., Ip € P(N) such that ¢ < p for ¢ € P(N) implies ¢ = 0. Every such
factor is isomorphic to the algebra of bounded operators on some Hilbert space, and since there
exists a Hilbert space for every cardinal number, factors of this type are further distinguished
by the Hilbert space dimension: I,, n € (NU oo). These correspond with the matrix algebras
M,,(C). The size of the projections of a factor of type I, is given by the unique (standard) trace
tr(a) = > a; for a;; € M,(C), which for projections takes values {1,--- ,n}. A factor with
no minimal projection is of type [II, if it still contains a non-zero finite projection. One further
distinguishes between factors of type I and Il the former having a finite identity operator.
Accordingly, the trace takes values in [0, 1] or [0, oo, respectively. Finally, a factor is of type 111
if it contains no non-zero finite projection. Non-zero projections in such factors are therefore
necessarily infinite and, in fact, all non-zero projections have the same (infinite) ‘size’, i.e., the
trace takes values {0, 00} only. Factors of this type are often indexed by a real number, I11,

A € [0, 1], which relates to their Connes spectra [39].

Representation theory. We will mostly be concerned with von Neumann algebras. Yet,
many key structural theorems hold on the level of C*-algebras. Importantly, the Gelfand-
Naimark representation theorem proves that any C*-algebra has a faithful representation in
the bounded operators on some Hilbert space. Even in the most general case we may thus
consider observables as bounded self-adjoint operators on some Hilbert space. At the heart of

this theorem is the Gelfand-Naimark-Segal (GNS) construction.

Theorem 5. Let A be a C*-algebra and o a state on A. Then there is a x-representation m, of

A on a Hilbert space H, and a unit vector v, € H, such that o(a) = (v, T,(a)vy) for all a € A.

The Hilbert space constructed in the proof of this theorem arises from the pre-inner product
(a,b) := o(b*a) for all a,b € A. In particular, the direct sum over all pure states yields a faithful
representation 7 acting on the direct sum of Hilbert spaces H, by 7 (a)(@D, vs) = D, 7o (a)v,.'!

On the other hand, note that we directly obtain a faithful representation from Thm. 5 if we

are given a faithful, normal state, i.e., a faithful, normal, finite and normalised weight.

"This is the representation constructed in the Gelfand-Naimark representation theorem [36].
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Yet, some infinite-dimensional von Neumann algebras do not admit such states, in particular,
the finiteness condition fails. Nevertheless, one can show that every von Neumann algebra
possesses a faithful, normal, semi-finite weight. In order to deal with the infinite-dimensional
case, one therefore generalises the construction in Thm. 5 to weights by defining an inner
product from (z,y) := w(y*z) only for z,y € n¥ := {x € N | w(z*z) < oo}. The representation
obtained from this construction is called semi-cyclic and is sometimes denoted L?(N'). One can
show that it does not depend on the choice of faithful, normal, semi-finite weight.

We will use representations with respect to such weights in combination with the Riesz-Fréchet

theorem in order to identify states and linear functionals.

Theorem 6. Let H be a Hilbert space and ¢ € H*. Then there exists w € H such that

¢(v) = (v,w) for all v € H and [|wllz = |[¢]|2--

Importantly, by semi-finiteness of w, for every x € N there exists a monotone increasing
net (z;)ie; € Ny with limit z (in the strong operator topology), yet with w(z;) < oo for all
1 € I. It is thus sufficient to keep the correspondence under the Riesz-Fréchet theorem for finite

elements (and appropriate monotone increasing nets).

2.2.2 Part II - Context category and presheaves

Partial orders and lattices. We saw that the inclusion relations between closed subspaces of
a Hilbert space H make P(N) into a partial order for every von Neumann algebra ' C B(H).
Since partial orders will be crucial also for the mathematical representation of the context

category from Def. 3 in Sec. 2.1.2, we provide some more background on this structure here.
Definition 12. A partial order is a set P with a binary relation < that satisfies:
(i) Ype P: p<p (reflexivity)
(ii)) Vp,q,r € P: p<q and q X, then p X r (transitivity)
(iii) Vp,q € P: p<q and ¢ 2 p, then ¢ =p (antisymmetry)

A partial order is also an antisymmetric preorder, the latter being a set with a reflexive and

transitive relation. For two elements p, ¢ € P define the least upper bound or join, pVq := inf{r €
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P|p=r q=r}, and greatest lower bound or meet, p A\ q:=sup{r € P|r =<p, r < q}. Note
that joins and meets are unique if they exist. A partial order is a join-semilattice / meet-semilattice
if for any two elements p,q € P, pV q/p A q exists. Moreover, if P contains \/,.; pi/\;c; Ps
for any family of elements (p;);c; then P is called a complete join-semilattice/meet-semilattice.
A partial order is called a (complete) lattice if it is both a (complete) meet-semilattice and a
(complete) join-semilattice. It is bounded, if it contains a least element 0 and greatest element

1. A lattice L is called distributive if

Vp,q,r € L: pV(gAr)=(pVaqg) A(pVr) (distributivity) .

Furthermore, a notion of complement is given as follows: let P be a bounded lattice and p € P,
then any ¢ € P such that ¢ Vp =1 and ¢ Ap =0 is called a complement of p. A complemented
lattice is a lattice L with an orthocomplementation + : L — L, mapping every element p € P to
a complement p-. Complements need not be unique, however, they are unique for bounded

distributive lattices.
Theorem. A Boolean algebra (or lattice) is a bounded, orthocomplemented, distributive lattice.

Classical physics is built on Boolean logic and thus on distributive lattices. More general are

modular lattices, which satisfy:

Vp,q,r € Lip=r: pV(gAr)=(pVq Ar (modularity)

It is easy to see that the projections in a von Neumann algebra P(N') form a complemented
lattice: the least element 0 € P(N) corresponds to the zero projection, the greatest element
1 € P(N) corresponds to the identity projection, and the map + : P(N) — P(N) defined via
pt = 1—p defines an orthocomplementation. Yet, P(N) is distributive only if V" is commutative.

Nevertheless, L := P(N) satisfies a weakened notion of modularity.

Vp,q€ L,p=q: pV(p"Aq)=¢q (orthomodularity) (2.6)

Definition 13. A lattice is called orthomodular if Eq. (2.6) holds.
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Theorem 7. Let N be a von Neumann algebra. Then P(N) is a complete orthomodular lattice.

Despite not being a Boolean algebra, an orthomodular lattice L is a lattice built from
Boolean algebras, i.e., it can be obtained by pasting together Boolean lattices in a suitable
way [08, ]. An important consequence is that whenever p,q € L are orthogonal, p L q, i.e.,
g = p*, then there exists a Boolean sublattice B C L containing both elements p,q € B. This
foreshadows a general theme in this chapter: quantum theory can be understood as a collection
of classical perspectives (‘contexts’) with corresponding interrelations. To make this idea precise,
after introducing some basic notions from category theory, in the subsequent paragraphs we
define the notion of context in more detail and relate it to state spaces in classical physics.

Quantum theory will then emerge from gluing together multiple contexts in an appropriate sense.

Categories and functors. We review some basic categorical definitions (cf. [104, ,

D).

Definition 14. A category C is a collection of objects Ob(C) and a collection of arrows Arr(C)

with domains and codomains in Ob(C) such that:

1. for any arrows f,g € Arr(C) with f : A — B,g: B — C, there is an arrow go f € Arr(C)
such that go f : A — C,

2. composition of arrows is associative, i.e., for any arrows f,g,h € Arr(C) with f: A — B,

g:B—C,and h:C — D, it holds that ho (go f) =(hog)o f,

3. there is an identity arrow ids : A — A for every object A € Ob(C) such that for every
arrow f : A — B it holds that f o idqg = idg o f

The collection of all arrows from A to B is denoted Home(A, B) and is called the hom-set
between A and B.'?2 To each category C there exists an opposite category C°P with the same
objects, Ob(C°?) = Ob(C), but all arrows reversed, i.e., whenever A, B € Ob(C) and (f : A —
B) € Arr(C) then there exists an arrow (f : B — A) € Arr(CP).

12Note that hom-sets are not necessarily sets. If Home (4, B) is a set for all objects A4, B € Ob(C), C is called
locally small.
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Most if not all mathematical structures form categories in the appropriate sense. The
one most familiar is the category Set, whose objects are sets and whose arrows are functions.
Adding more structure to the objects leads to different categories, for instance, the category
Top has objects topological spaces (sets with a topology) and arrows continuous maps, whereas
the category Grp has as objects groups (sets with a group multiplication) and arrows group

homomorphisms. Another example for a category is a partial order.

Example 1. A partial order (P, =) forms a category with objects the elements in the set P,
Ob((P, X)) = P, and arrows (p — q) € Arr((P, <)) between elements p,q € P whenever
p = q. As = is reflexive we have p = p, which constitutes the identity arrow id, : p — p for
all p € P. Moreover, composition of arrows is associative by transitivity of the partial order,

p=2(¢=2r)=((p=q) = foralpqreP.

As with any structure defined in mathematics, of particular interest are the corresponding

maps. For categories maps are functors.
Definition 15. A (covariant) functor F': C — D between categories C,D is defined
1. on objects: for all C € Ob(C), there exists D € Ob(D) such that F(C) = D,

2. on arrows: for all (f : C — C") € Arr(C), there exists (F(f) : F(C) — F(C")) such that
Vf.g,90f € Arx(C) : F(go f) = F(g) o F(f) and VC € Ob(C) : F o ido = idp(c)-

A contravariant functor F' : C — D is a covariant functor F' : C°® — D, i.e., a functor, which
reverses the composition of arrows. Equivalently, a contravariant functor is a covariant functor

F:C — D. A presheaf is a contravariant functor, P : C — Set.

Example 2. Consider the covariant powerset functor P : Set — Set. To each set X, we assign
its power set X — P(X), where the powerset P(X) is the set of all subsets of X. On arrows it

maps functions to functions,

(f:X = Y)—P(f):S— {f(x) |z€S} VSePX). (2.7)

This construction preserves identity arrows and composition, it thus defines a (covariant) functor.
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A more relevant example for the study of presheaves over the partial order of contexts is the

following.

Example 3. Take the three element set {A, B,C}, which we think of as containing the three
edges of a triangle. Inclusion of subsets yields a partial order (P({A, B,C}), C), which also forms
a category. We can thus construct a presheaf A : (P({A, B,C}),C) — Set by assigning all
strict total orders over subsets S C P({A, B,C}). For instance, the subset {A, B} C {A, B,C'}
can be assigned two strict total orders A({A, B}) = {A < B, B < A}. A becomes a presheaf if

we restrict the sets of possible total orders accordingly, e.g.

A({AvB} - {A’B7C}) : A({A,B,C}) — A({A,B}), ({A,B,C}, <) = <{AvB}> < ’{A,B}) .

Functors can have a number of properties, a non-exhaustive list is the following. A functor
F :C — D is called faithful if for any two objects C,C" € Ob(C) the map Hom¢(C,C") —
Homqp(F(C), F(C")) is injective, full if the map Hom¢(C,C") — Homp(F(C), F(C")) is sur-
jective, and essentially surjective if every object D € Ob(D) is isomorphic to F(C') for some
C € Ob(C). Importantly, a faithful and full (‘fully faithful’), and essentially surjective functor
induces an equivalence of categories. The latter concept is more readily stated in terms of

natural isomorphisms involving a functor F': C — D and its ‘inverse’.

Definition 16. Let F,G : C — D be functors between categories C,D. A natural transformation

from F to G, n: F — G, is a family of morphisms such that
1. for every C € Ob(C), there exists a morphism ne = F(C) — G(C) between objects of D,
2. for every morphism (f : C' — C") € Arr(C), it holds that ner o F(f) = G(f) o ne.

Moreover, n is called a natural isomorphism if no is an isomorphism in D for every object
C € Ob(C).

Two categories C, D are called equivalent if there exist functors F': C — D and G : D — C
with natural isomorphisms n : GF — Ie and 9 : FG — Ip to the identity functors Ic on C

and Ip on D, respectively. One speaks of a duality of categories if F, G are contravariant functors.
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Contexts and classical (Stone/Gelfand) dualities. Let A be a von Neumann algebra.
By Thm. 7, P(N) is a complete orthomodular lattice—it is glued together from Boolean lattices.
The latter can be interpreted as classical state spaces as follows. Given a Boolean algebra
B, a state A of B is a homomorphism A : B — {0,1}. The set of all states of B is called
its spectrum, and denoted Q(B). Equipped with the Stone topology generated by the sets
Uy :={ X € Q(B) | A(b) =1} for b € B, Q is a compact, totally disconnected Hausdorff space,
called the Stone space of B.'> A compact, extremely disconnected Hausdorff space is called
Stonean. Stone duality lifts the correspondence between Boolean logic and topological spaces to

categorical equivalences.

Theorem 8. The category of totally (extremely) disconnected Hausdorff spaces and (open)
continuous maps, Stone (Stonean), is dually equivalent to the category of (complete) Boolean

algebras and lattice homomorphisms preserving 0,1, BA (cBA).!

On the other hand, recall the definition of the Gelfand spectrum for an abelian C*-algebra
Ain Eq. (2.3), 24 :={0# X : A — C linear | Va,b € A: A(ab) = A(a)A(b)}, equipped with
the weak* topology. The Gelfand transformation, G : A — C(X 4), defined by G(a) := (a :
Y4 — C,a(A) := A(a)) is an isometric *-isomorphism between C*-algebras and gives rise to the

categorical correspondence known as Gelfand duality.

Theorem 9. The category of unital, commutative C*-algebras and x-homomorphisms, ucC*, is

dually equivalent to the category of compact Hausdorff spaces and continuous maps, KHaus.

Recall that the elements in the Gelfand spectrum of a commutative C*-algebra are multi-
plicative states, which in turn correspond with pure states. It follows that given a commutative
C*-algebra, the set of its pure states corresponds with the points in the Hausdorff space dual.
In particular, every commutative von Neumann algebra thus constitutes such a classical state
space, which additionally comes with a Boolean logic inherited from its projections, since for N/
commutative, P(N') is a complete Boolean algebra. Conversely, every classical state space is a

commutative von Neumann algebra if a minimal notion of measurability is added. More precisely,

I3Recall that a topological space is totally disconnected if its only connected components are singletons, and is
extremely disconnected if the closure of every open subset is open.
4Here and throughout we mark categories in boldface.
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a Stonean space (2 is called Hyperstonean if it admits sufficiently many normal measures: for
any non-zero positive continuous function f : ) — R, there exists a positive normal measure p

with p(f) > 0. (See also [120] and Thm. 35 for more details on the relation with measurability.)

Theorem 10. The category of commutative von Neumann algebras and mormal, unital *-
homomorphisms, cvINA, is dually equivalent to the category of Hyperstonean spaces and open

maps, HStone.

Combining classical logic of Boolean algebras with measurability thus inevitably points to

the study of commutative von Neumann algebras. Succinctly,
Classical state spaces correspond with commutative von Neumann algebras.

In the quantum case, von Neumann algebras are generally noncommutative, nevertheless N

contains many commutative von Neumann subalgebras.

Definition 17. Let N be a von Neumann algebra representing the physical quantities of a

theory. A context is a commutative von Neumann subalgebra V-C N

Physically, a context is a set of simultaneously measurable observables (cf. Def. 2). Mathemat-
ically, contexts are modeled by commutative von Neumann subalgebras of the noncommutative
von Neumann algebra A describing the observables of a physical system. Every context provides

a singular, classical perspective onto the physical system represented by N.

Context category and coarse-graining. Let the algebra of physical quantities be modeled
by a von Neumann algebra N. The collection of all commutative von Neumann subalgebras
(‘contexts’) carries a natural notion of coarse-graining in the form of ordering contexts by

inclusion. This yields a partial order.

Definition 18. Let N be a von Neumann algebra. The context category V(N) is the partial

order of commutative von Neumann subalgebras V- C N ordered by inclusion,

V(N) := ({commutative von Neumann subalgebras of N'}, C) .

For N' = B(H) we use the shorthand V(H) := V(B(H)).
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The term ‘context category’ stems from the fact that every partial order defines a category
of its own. V(N) is a meet-semilattice with least element the trivial context, V° := {1} = Cl,
and maximal contexts the maximal abelian subalgebras of A/. A useful example to have in mind

is the following.

Example 4. Let H = C? and N' = B(H) = M3(C). Its context category V(H) := V(B(H)) has
three ‘layers’. The lowest layer contains only the trivial context VO := C1. It is contained in any
context generated by a single rank-1 projection p1 € P(H) such asV = {p1,1} = Cp1+C(1—py).
Finally, the ‘top layer’ contains the maximal contexts generated by three mutually orthogonal
rank-1 projections, V := {p1,p2, p3}"" = Cp; + Cpy + Cps.

Inclusion relations arise by coarse-graining: giwven a mazimal context V = {p1, pa, p3}”,
there are three subcontexts {p1, (p2 + p3)}" = {p1, 1} CV, {p2, (p1 + p3)}' = {p2, 1} C V, and

{ps, (p1 + p2)}" = {ps, 1} C V. Similarly, the trivial context arises by coarse-graining from

V={p,1}" via VO = {1} ={p+ (1 =p)}" C{p,(L =p)}' ={p, 1} =V.

Gluing of local data and global sections. A key ingredient to our programme are
presheaves over the context category, they collect classical information of a particular kind
locally, i.e., within contexts, together with the constraints describing how contexts are nested.
We would like to study how restrictive these constraints are to information accessible globally,
i.e., consistent across contexts. This naturally leads to (global) sections. We briefly review the
basic concept behind this definition and embed it into the general study of sheaves.

Note that there is a natural topology on partial orders called the Alexandrov topology.

Definition 19. Let P be a preorder. The upper (lower) Alexandrov topology T (1,) contains

the upper (lower) sets,

n={UCP|VeeUyeP:zy=yecU}.

The closed sets are the lower (upper) sets,

7={UCP|VeeUyeP:zr-ry=yeclU}.

39



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

P(N) with the upper (lower) Alexandrov topology 7+ (7;) thus becomes a topological space.
More generally, a presheaf P : P — C captures the idea of associating data to the open sets of a
topological space (elements in a partial order) in such a way that reflects the inclusion relations
between them.'® In particular, given an open set U C P and an open cover (U;);cr, i.e., U; open
and | J,.; U; = U, a (local) section of P over U corresponds to a collection of elements (vy,)ier,
v, € P(U;) that ‘fit together’ under restriction maps by means of functoriality, i.e., whenever
U; C Uj then vy, = P(U; C Uj)(yw,)- A global section is a section with U = P. We will mostly
be concerned with the existence of (global) sections of presheaves over V(N), P : V(N) — Set,

equipped with e.g. the lower Alexandrov topology 7.

Definition 20. Let P : V(N') — Set be a presheaf over the context category V(N') corresponding
to some von Neumann algebra N'. A global section of P is a collection of elements (P(V'))vev)

such that P(V C V)(P(V)) = P(V). The collection of global sections of P is denoted by I'(P).

Sections always exist locally, yet the existence of global sections depends on the type of
constraints imposed by the order structure in V(N'). To see how such constraints arise, we

return to our toy example, Ex. 3.

Example 5. Notice that A in Ex. 3 does have global sections, in fact, every strict total order
on {A, B,C} restricts to total orders on subsets. Yet, given strict total orders on a (covering)
collection of subsets, there does not always exist a global section that restricts to them. For
instance, the Penrose tribar (cf. Fig. 2.1) gives rise to local sections (A < B) € A({A, B}),
(B<C)e A({B,C}), and (C < A) € A({A,C}), which do not arise from a global section.

Recall that classical states correspond with elements in the Gelfand spectrum corresponding
to the abelian von Neumann algebra of physical quantities. A natural generalisation to noncom-
mutative von Neumann algebras suggests that quantum states should correspond with global
sections of some presheaf over the partial order of contexts. In Sec. 2.3 we will verify this hunch.
In fact, the language of presheaves over the context category will prove capable of capturing

many more aspects of quantum theory.

5 )
5Here and throughout we mark presheaves with an underscore.
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Figure 2.1: The Penrose tribar [122] can be viewed as a visualisation of three local sections
that do not combine into a global section. It captures the idea of structures that satisfy some
property locally but not necessarily globally.

2.2.3 Part III - Jordan algebras and orientations

We introduce an important classification of von Neumann algebras arising from the decomposi-
tion of its associative product into symmetric and antisymmetric component. Physically, this
relates to the dichotomic function of self-adjoint operators as measurements and generators
of time evolution in quantum theory. This section is mainly based on work in [1(] and more

generally in [2, 39], and serves as an introduction to Sec. 2.3.4 and Sec. 2.4.4.

Jordan algebras. The product on a von Neumann algebra A/ has the decomposition,
1 1 1 1
Va,b e N : ab = §(ab+ba) +§(ab—ba) =: §aob+§[a,b] :

The latter antisymmetric bracket [, -] is known as the commutator, it makes (N, [-,-]) into a Lie
algebra. Lie algebras also arise in classical physics from Poisson brackets between measurable
functions on a Poisson manifold. The former symmetric product is known as the anticommutator
or Jordan product and makes (N, o) into a (special) Jordan algebra (cf. Def. 22). Jordan
algebras arose out of an attempt to equip the observables in quantum theory with an algebraic
relation [93, 94]. Importantly, the associative product in a von Neumann algebra does not
close over its self-adjoint elements, i.e., ab ¢ N, for a,b € N, in general, but the Jordan
product does. The Jordan product is commutative by construction, however, it is generally
non-associative, a o (boc) # (aob)oc. (It is associative if and only if the associative product

is commutative.) Jordan algebras are less studied, partly because their classical counterpart
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is trivial, i.e., associative. Note that the symmetric, associative product in the algebra of
measurable functions on a Poisson manifold is given by pointwise multiplication. From this
point of view, the non-classical aspects of quantum theory are more appropriately described by
its non-trivial Jordan structure rather than noncommutativity, as is commonly stated. However,
despite some efforts [55] Jordan algebras have not found resonance with a wider audience in

physics. As we will see below, they are deeply intertwined with contextuality.

Definition 21. A Jordan algebra J is an algebra with a product o, which satisfiesaob="boa
and ao (boa®) = (aob)oa® foralla,be J.

Most Jordan algebras arise by symmetrisation of an associative algebra [111].

Definition 22. Let A be an associative algebra over a field F (not of characteristic 2). The

vector space A equipped with the bilinear operation o defined by
1
Va,be A: aob:= i(ab—l—ba)

is called the special Jordan algebra J(.A) associated with A.

Every Jordan algebra that does not arise in this way is called ezceptional. The latter have
been related to spin factors [3]. We will only be interested in special Jordan algebras J(N)
associated with von Neumann algebras A/, we will therefore drop the classifier special in what
follows.

A linear map between Jordan algebras ® : J(N7) — J(N>) is called a Jordan homomorphism
if for all a,b € J(N7): ®(aob) = ®(a)od(b). Recall that N = N, +iN, is the complexification
of J(N). A Jordan *-homomorphism is a linear map ® : Nj — N5 such that for all a € N;:

®(a*) = ®(a)*. The corresponding definitions for isomorphisms read accordingly.

Contextuality and Jordan algebras. In a deep result by Dye, Jordan x-isomorphisms
between Jordan algebras associated with von Neumann algebras have been related with auto-

morphisms of their projection lattices.
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Theorem 11. (Dye [52]) Let Ny, Na be von Neumann algebras with no direct summands of
type I. Every orthoisomorphism ¢ : P(N7) — P(N2) can be uniquely extended to a Jordan
x-1somorphism ® : N7 — N.

A reformulation of this result in terms of contexts arises by the close connection of the

projection lattice and the context category as observed in [70].

Theorem 12. (Harding-Navara [76]) Let N be a von Neumann algebra not isomorphic to
C @ C or to My(C). Then the context category V(N) of N determines the projection lattice
P(N) as an orthomodular lattice up to isomorphism. Conversely, the projection lattice P(N)

determines the poset V(N') up to isomorphism.

In fact, Harding and Navara’s proof holds for all orthomodular lattices, which contain no
maximal Boolean sublattices with only 4 elements (this is why the trivial cases N' = C & C or
N = M,(C) are excluded). The result shows that the context category, i.e., the collection of
contexts together with their nesting relations, encodes the same amount of information as the

projection lattice. This allows for a reformulation of Dye’s theorem in contextual form.

Theorem 13. (Doring-Harding [50]) Let N be a von Neumann algebra not isomorphic to
C & C or My(C). For every order automorphism ¢ : V(N') — V(N), there is a unique Jordan
x-automorphism ® : (N, -) = (N, ) such that (V) = ®[V] for all V € V(N).

The essence of this theorem is that the mere order structure between contexts is rich enough
to encode the algebra up to Jordan *x-isomorphism. Recall that this order structure is trivial
for classical systems, since there one only has a single (maximal) context. This is consistent
with the fact that the Jordan product is trivial for classical systems, i.e., it reduces to the
commutative (pointwise) multiplication of functions. Physical contextuality thus reflects the

additional algebraic structure in quantum theory inherent to the Jordan product. Succinctly,

Contextuality is Jordan structure.

In other words, quantum theory is different from classical theory by its non-trivial context
structure. This result sits somewhat opposite to the commonly recited doctrine that the essence

of quantum theory is the non-vanishing of the commutator.
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Contextuality and von Neumann algebras. It is an obvious question to ask whether
two algebras that are Jordan x-isomorphic are already isomorphic as von Neumann algebras. If
this was the case the same would necessarily hold for factors, yet this was shown not to be the

case in the seminal work by Connes.

Theorem 14. (Connes [38]) Two von Neumann algebras N1, N5 that are Jordan x-isomorphic

need not be isomorphic as von Neumann algebras.

Since V(N) encodes the same information as the Jordan algebra J(N) [50], contextuality
also contains strictly less information than the associative product on N'. The difference between

the former and the latter boils down to a choice of time direction on factors.

Order derivations, dynamical correspondences, and time orientations. The prod-
uct in a C*-algebra A contains more information than the associated Jordan product in J(.A).
For C*-algebras it is natural to consider unital Jordan-Banach algebras (JB-algebras), i.e.,
Banach algebras with a Jordan product. Moreover, for von Neumann algebras the additional
topological condition on weak-closure is captured by (unital) weakly-closed Jordan-Banach
algebras (JBW-algebras). Clearly, maps between such algebras ® : J(A;) — J(A2) lift to
maps between C*/von Neumann algebras if and only if they preserve commutators. This extra

information can be encoded more algebraically as shown by Connes, Alfsen, and Shultz [7, 10].

Definition 23. An order derivation 6 on a JB(W)-algebra J is a bounded linear operator such

that e (J,) C Jy for allt € R, i.c., t + e¥ is a one-parameter group of order automorphisms.

An order derivation 9 is called self-adjoint if 6 = ¢, for some a € J, where §, : A — A,
04(b) = aob. An order derivation ¢ is skew-adjoint if §(1) = 0. The set of skew order derivations
is denoted OD4(J). Every order derivation can be decomposed uniquely as the sum of a

self-adjoint and a skew-adjoint order derivation. Moreover, one has the following (cf. [7]).

Proposition 1. If 7(N) = (N, o) is the JBW-algebra associated with the self-adjoint part of

a von Neumann algebra N, then every order derivation on J(N') is of the form

0o : TN) = TN), 64(b) == %(ab+ba*)
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for some a € N'. An order derivation is self-adjoint if and only if 6 = &, for some self-adjoint

a € Ny and is skew-adjoint if and only if § = &;, = %[a, _]for some a € N,.

The importance of order derivations is that maps between Jordan algebras ® : J(N7) —
J(N>) lift to maps between von Neumann algebras if and only if they preserve skew order

derivations [10].

Proposition 2. A (normal) unital Jordan homomorphism ® : J(N1) — J(N2) corresponding
to von Neumann algebras N7, N3 extends to a (normal) unital homomorphism of von Neumann

algebras if and only if
Va € (M)sa, VEER: Do ellia = etiog) o P (2.8)

Proof. The proof is straightforward. First, by the exponential series expansion of e/, Eq. (2.8)
is equivalent to ® o 0;, = d;p(q) © P for all a € (N;)s,. Hence, if @ is a (normal) unital Jordan

homomorphism such that Eq. (2.8) holds, we have
Va,b € (M) : @%[a, b]) = (@ 0 6ia)(b) = (Jia(a) © P)(b) = 5[®(a), 2(b)] ,

so @ preserves all commutators between self-adjoint operators. Since any operator a € N; can
be decomposed uniquely as a = a; + iay for ay, as € (N})s, it easily follows that ® preserves
all commutators. Hence, it is a (normal) unital homomorphism ® : N7 — N3 of von Neumann

% is normal.)

algebras. (The statement for normal morphisms holds as e
Conversely, if ® : N7 — N, is a homomorphism of von Neumann algebras, then its restriction
to (M)sa is a Jordan homomorphism onto (N3)s, such that condition Eq. (2.8) holds. This

completes the proof. O

In order to encode the additional structure inherent to the antisymmetric part of the
associative product, i.e., the commutator, one thus needs skew order derivations. Prop. 1 defines
the latter for JBW-algebras in relation to a given von Neumann algebra A/. Independent of N/

and more generally for JB-algebras, one defines a dynamical correspondence'® 1) as a map into

16The name indicates the dual role of self-adjoint operators as observables and generators of dynamics (cf.

[14])-
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skew order derivations on J: ¢ : J — ODy(J) with & — 9, such that (i) [¢),,¢,] = —[0s, 0]
and (ii) ¥, (z) =0 for all z,y € J [7]. Similarly to skew order derivations in Prop. 2, dynamical

correspondences then classify associative products on unital JB(W)-algebras.

Theorem 15. (Alfsen-Shultz [7]) A unital JB-algebra A is (isomorphic to) the self-adjoint
part of a C*-algebra if and only if there exists a dynamical correspondence on A. In this case
each dynamical correspondence v on A determines a unique Jordan compatible C*-product such
that .b = %(ab —ba) for each pair a,b € A, and each Jordan compatible C*-product arises in

this way from a unique dynamical correspondence v on A. The same conclusions hold with

JBW in place of JB and von Neumann in place of C*.

Recall that by Thm. 14, two different von Neumann algebras can induce the same underlying
Jordan algebra. A Jordan compatible C*-product therefore means any associative product on
A, which reduces to the given Jordan product (and similarly for von Neumann algebras). By
Thm. 15 the different associative products on C*-algebras (von Neumann algebras) corresponding
to the same unital JB(W)-algebra are classified by dynamical correspondences. For von Neumann

algebras this can be further refined to factors by the following result in [3].

Theorem 16. Let x1, x2 be two associative products on J(N7) ~ J(N3) corresponding to von
Neumann algebras N, Na, respectively. Then %1, *o differ by a central projection p € Z(N;) ~

Z(N3), which is 1 on the abelian part of N1, No in the following sense:

va,bEJO\/’l)ﬁj(Ng) a*gb:p*la*lb—i—(l—p)*lb*la

For single factors this boils down to a choice of sign in the commutator a x b = +[a, b]. In
particular, a dynamical correspondence thus corresponds to a unique sign choice for commutators
in every factor. Moreover, by interpreting the parameter ¢ in Prop. 2 as time, this sign choice
corresponds with a choice of time direction in every factor.

Finally, these concepts can be lifted to the context category [16]. By Thm. 15 a von Neumann
algebra N <> (J(N), ¥ ) is a JBW-algebra J(N') together with the dynamical correspondence
encoding the time direction on A in every factor ¢»r. By Thm. 12 in [76], the JBW-algebra

J(N) is equivalently encoded in the context category V(N), hence, N <> (V(N), ) also.
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To make this precise, note that every one-parameter group of order automorphisms, t — et

for a € N, also defines a one-parameter group of order automorphisms of V(N),

etdia : YIN) — V(N)

V —s ezl et

We denote the group of order automorphisms of V(N), i.e., maps ¢ : V(N') — V(N) such that
o(V) < o(V) eV <V, by Aut(V(N)). The following definition appears in [40].

Definition 24. Let N be a von Neumann algebra and V(N') its context category. The map

¥V Naa X R — Aut(V(N))

(a,t) — etdia

is called the time orientation on order-automorphisms of V(N') induced by N'. When V(N) is

equipped with this time orientation, it is called the oriented context category of N, denoted

V(N).
Time orientations encode the forward time direction in a quantum system.

The equivalence N > (V(N'),¥y) for the context order V(N') according to Thm. 15 then

reads.

Theorem 17. (Doring [46]) Let N1, N2 be von Neumann algebras not isomorphic to C & C
and with no type Iy summands. There is a bijective correspondence between isomorphisms
® : N7 — Ny of von Neumann algebras and order isomorphisms ¢ : V(N7) — V(N2) that

preserve the orientations on V(N7) and V(N7) induced by N1 and Ns, respectively.

We have seen earlier that contextuality is Jordan structure associated with von Neumann
algebras. Thm. 17 completes this picture by adding time orientations: as one might expect, as a
dynamical concept time orientations relate to commutators (encoded by skew order derivations

as described above) and one-parameter families resulting from exponentiation.
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2.3 Contextuality and the fundamental theorems in
quantum theory

In this section we use the mathematical representation of physical contextuality and the
corresponding context category in quantum theory to provide reformulations of key theorems
in foundations. The value of these reformulations is twofold: (i) contextuality emerges as an
underlying physical principle, unifying many seemingly unrelated aspects in quantum theory;,
(ii) the key structural components of quantum theory arise from local-to-global obstructions
over suitable presheaves over the context category. This section gives a more detailed account
of the results presented in the recent preprint [17].

As motivated in Sec. 2.2.1, the algebra of physical observables is naturally modeled by some
noncommutative von Neumann algebra. We therefore strive for maximal generality within this
framework. A natural generalisation to orthomodular lattices is discussed in Sec. 2.5 for Bell’s

theorem, for which we define a suitable presheaf in Sec. 2.4.

2.3.1 The Kochen-Specker theorem

Continuing our discussion in Sec. 2.1.1, we first give the original statement of the Kochen-
Specker theorem. We have already discussed the essence of the argument, it remains to fill in
the technical details. Recall that observables in quantum theory are represented by bounded
self-adjoint operators O = B(H)s, on some Hilbert space H (cf. Sec. 2.2.1), and two observables
a,b € B(H)s, are simultaneously measurable if they commute [a,b] = 0. In finite dimensions,
a self-adjoint operator a is a Hermitian matrix, i.e., a € M, (C) and a* = a. By the spectral
theorem, Thm. 4, every Hermitian matrix has an eigenvalue decomposition a = " | a;p;, where
the eigenvalues make up the spectrum of the observable, sp(a) = {a1,--- ,a,}, and the p;’s are
the projections onto the corresponding eigenspaces. By Def. 1 every valuation function is a
partial algebra homomorphism, which restricts to a partial Boolean algebra homomorphism
v : P(C") — {0,1} for P(C"). In an impressive combinatorial effort involving a total of
117 vectors in R?, Kochen and Specker go on to prove that no such partial Boolean algebra

homomorphism exists whenever the dimensions of the Hilbert space is at least three.
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Theorem 18. (Kochen-Specker [101]) Let H be a Hilbert space, dim(H) > 3, and B(H)
represent the algebra of physical quantities of some quantum system. Then there exists no
valuation function as in Def. 1. In particular, there exists no classical state space for the

quantum system.

Figure 2.2: Geometrical visualisation taken from [136] of the 33 state vectors used in the proof
of the Kochen-Specker theorem due to Peres [123].

Following this cornerstone result from 1967, several improvements on the proof of the theorem
have been made, requiring less than the initially constructed 117 vectors. A geometrical proof
due to Peres requires 33 vectors arranged along vertices and edges of the cubes in Fig. 2.2. It
is not too hard to see that it is impossible to assign either 0 or 1 to every vector such that
their sum over any set of orthogonal vectors equals 1. This immediately implies that no partial
Boolean algebra homomorphism exists. The complexity of the argument can be further reduced
by relaxing the minimal Hilbert space dimension to four. For instance, it is straightforward to
see that the product constraints between spin—% observables in the famous Mermin-Peres square

(see Fig. 3.1 (a) in Ch. 3) lead to a similar obstruction.
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As mentioned in the introduction, the algebraic content of quantum theory has largely
survived unchanged. This holds even in quantum field theory, where infinite-dimensional
algebras and superselection rules can be imposed on the algebraic level by von Neumann
algebras (of type II and IIT) with non-trivial centre (cf. Sec. 2.2.1). It is thus interesting to
consider generalisations of Thm. 18, which hold not only for von Neumann algebras of type I,,,

n > 3, but for von Neumann algebras of arbitrary type. This has been done in [15].

Theorem 19. (Doring [45]) Let N be a von Neumann algebra not only consisting of summands
of type I, Is, which represents the algebra of physical quantities of some quantum system. Then
there exists no valuation function as in Def. 1. In particular, there exists no classical state space

for the quantum system.

The proof is based on Gleason’s theorem and in this sense generalises a similar proof to
Thm. 18 given by Bell in 1966 [158, 59].

In other words, there is no realist state space model for quantum theory, which assigns
spectral values to all observables at once and preserves the functional relations between them.
The power of Thm. 19 is that it relies on functional relations between simultaneously measurable
observables only. It is the achievement of Bell, Kochen, and Specker to realise that the necessary
algebraic constraints to be reflected in a classical, i.e., functional representation of quantum
mechanical observables on some state space need only hold between commuting observables in

order to show that such state spaces cannot exist.

Nonetheless, Isham, Butterfield, and Hamilton showed that this result can be given a
geometric interpretation by introducing a generalised state space in the form of a certain
presheaf over the partial order of contexts [23, 24, 75, 87]. While originally dealing with
observables and order relations between them directly, later work takes a more algebraic
viewpoint, which was further solidified in [I—1], and which is the one we will follow here.

Let A be a von Neumann algebra. As a consequence of the Borel functional calculus, two
operators a,b € N commute if and only if there exists another operator ¢ € A/ and Borel
functions f, g such that a = f(c), b = g(c). Functional constraints are thus entirely encoded

between commuting operators, i.e., in abelian subalgebras. Yet, they also relate noncommuting
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operators: given an observable a € N/ there might be noncommuting observables b, ¢ € A/ and
Borel functions h, k such that a = h(b) = k(c).

The physical interpretation of the latter condition is the following. Note that Borel functions
h, k are in general not injective and thus effectively ‘wash out’ some information. Under this
notion of coarse-graining, operators can be related even if they are not simultaneously measurable.
The algebraic constraints thus arise between commuting observables only, but are sensitive to the
ways a given operator can arise as the coarse-graining of different, potentially non-commuting
operators. This suggests the following structure: given a noncommutative algebra, consider all
abelian subalgebras and order them by coarse-graining. Mathematically, this coarse-graining
can be implemented by inclusion of abelian subalgebras resulting in the partial order of contexts
V(N) as defined in Sec. 2.2.2.

Moreover, note that the partial algebra homomorphism property in Def. 1 imposes constraints
on valuation functions for every inclusion relation in V(A). Since for any real Borel function f
it holds that sp(f(a)) = f(sp(a)) for all a € Ny, and sp(f(a)) = f(sp(a)) for all a € N, if f is
also continuous, for von Neumann algebras this reads as follows: v : N, — R is a valuation

function if it satisfies the spectrum rule and the functional composition principle,

Vf:V — V continuous,a € Ny, :  v(f(a)) = f(v(a)) . (2.9)

The partial algebra homomorphism condition in Def. 1 in general, and the functional composition
principle in particular, thus suggest to map contexts to value assignments in a functorial way
[23, 24, 75, 87]. First, note that in every context V € V(N), a valuation function A : V' — C
is an algebra homomorphism, equivalently, a character or multiplicative/pure state, i.e., an
element in the Gelfand spectrum Yy. We thus map every abelian subalgebra V € V(N) to its
Gelfand spectrum Xy. Second, the coarse-graining constraints between contexts iy, : VeV
correspond to non-injective, continuous functions f and can be imposed on elements in Gelfand

spectra by restriction: for A € ¥y, denote by Al the restriction of A to the algebra Vcv.

Definition 25. Let N be a von Neumann algebra with context category V(N'). The spectral
presheaf X(V(N)) of N over V(N) is the presheaf given
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(i) on objects: for all V € V(N), let ¥, := Xy, the Gelfand spectrum of V,
(i) on arrows: for all V,V € VIN), if V.CV, let Z(ipy) : By — D with X — A|p.
If N = B(H), we also write X(H) for S(V(B(H))).

The spectral presheaf was introduced in [37], it captures all constraints inherent to Def. 1,
in particular, those inherent to Eq. (2.9). X(V(N)) may thus be understood as a bookkeeping
device: it encodes all algebraic constraints to potential value assignments in V(N). Importantly,
note that a valuation function corresponds to a collection of characters (Ayv)vey, i.e., a global

section v € T'(X(N)). The Kochen-Specker theorem is therefore equivalent to the following

contextual reformulation [23, 24, 75, 87].

Theorem 20. (Kochen-Specker in contextual form) Let N be a von Neumann algebra not

only consisting of summands of type Iy, I. The spectral presheaf X(N') has no global sections.

Note that Thm. 20 holds for all von Neumann algebras (not only consisting of summands of
type I, I3) and thus incorporates the generalisation of the original Kochen-Specker theorem in

Thm. 19.

Thm. 20 is at first only a reformulation of Thm. 19, yet it adds a previously hidden
geometrical perspective. While value assignments do exist locally, i.e., in every context, the
algebraic constraints between simultaneously measurable observables, encoded in the coarse-
graining maps, obstruct the existence of such an assignment globally, i.e., over all contexts of
V(N). While the elements in X, are points in a compact Hausdorff space and thus naturally
give rise to the structure of a classical state space (cf. Thm. 9), there are no generalised points
of this type in the quantum case, formally, T'(X(N)) = 0.

The Kochen-Specker theorem is thus an example of a local-to-global-type obstruction to the
existence of global sections of a corresponding presheaf (noncommutative space), in this case the
spectral presheaf. We will see that many more theorems in the foundations of quantum theory

attain similar reformulations for suitable notions of presheaves over the context order V(N).
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2.3.2 Gleason’s theorem

Gleason’s theorem is another landmark result in quantum theory. It justifies the Born rule,

which originally had the status of an axiom, from purely mathematical considerations.

Theorem 21. (Gleason [66]) Let H be a Hilbert space and dim(H) > 3 finite. Then every
probability measure p : P(H) — [0, 1] over the projections on H corresponds to a density matriz

pu:H—H, p,>0,tr(p,) =1 such that u(p) = tr(p.p) for allp € P(H).

Here, a (finitely additive) probability measure is a map p : P(H) — [0, 1] such that u(p+q) =
w(p) + 1(q) whenever p,q € P(H), pg =0 and u(1) = 1. While the original argument was for
type I,, factors only, the validity of Thm. 21 was extended to arbitrary von Neumann algebras
in [34, 151] (cf. [109]). In this setting, p is further called completely (countably) additive if

(D i1 Pi) = D ier (pi) for every (countable) family of orthogonal projections (p;)icr-

Theorem 22. (Gleason-Christensen-Yaedon [34, 1) Let N be a von Neumann algebra
with no summand of type Iy and let p: P(N') — R be a finitely additive probability measure
on the projections of N'. There exists a unique state o, € S(N) such that p(p) = o,(p) for all
p € PN).

If o is also completely additive then o, is normal and of the form p(p) = o,(p) = tr(p.p)

for all p € P(N') and p,, a positive trace-class operator with tr(p,) = 1.

Recall that trace-class operators generalise density matrices to infinite dimensions. In
finite dimensions every state is of this form, however, in infinite dimensions only normal states
correspond to trace-class operators (cf. Sec. 2.2.1). Normal states satisfy o(\/,c; pi) = sup;c;o(p;)
for all families of pairwise orthogonal projections (p;);c; and are thus easily seen to correspond
to completely additive probability measures, i.e., u(\,;c; pi) = >_,c; #(pi). Succinctly, every
finitely additive measure bijectively corresponds to a state on N and every completely additive
measure bijectively corresponds to a normal state on N .17

For later reference we mention a further generalisation of Thm. 22, which is concerned
with the codomain of probability measures on P(N'). Rather than restricting measures to

be real-valued, a Gleason-type theorem holds even for Banach space-valued measures [39].

17Clearly, for N' C B(H) with H separable, countable additivity is sufficient.
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Let P(N) be the projection lattice of a von Neumann algebra A/, X a Banach space, and
p: P(N) — X amap such that (i) u(p + ¢) = p(p) + p(q) whenever p, ¢ € P(N), pg = 0 and
(i) sup{||p(p)|| : p € P(N)} < oco. Then p is said to be a finitely additive, X -valued measure
on P(N). Clearly, each bounded linear operator from A to X restricts to a finitely additive

X-valued measure, conversely:

Theorem 23. (Mackey-Gleason-Bunce-Wright [389]) Let N be a von Neumann algebra
with no direct summand of type Iy. Then for each Banach space X, each X-valued measure

p:PN) — X has a unique extension to a bounded linear operator ¢ : N' — X.

Note that when A/ = M(C) and X is one-dimensional, there exist examples of measures
that fail to extend to linear functionals.

Thm. 21 and its generalisations, Thm. 22 and Thm. 23, are remarkable for the following
reason: finite (complete) additivity imposes constraints between commuting projections only. On
the other hand, by the non-contextual assignment of probabilities to projections p € P(N), i.e.,
independent of which context p lies in, these constraints extend beyond commuting projections.
Similar to the Kochen-Specker theorem, the constraints thus arise solely within contexts and
via the inclusion relations between them. Yet, in contrast every context is no longer assigned its
Gelfand spectrum but instead the set of finitely (completely) additive probability measures over
it. Moreover, coarse-graining between probability distributions in different contexts is naturally

encoded by marginalisation. In close analogy with [19], we make the following definition.

Definition 26. Let N be a von Neumann algebra with context category V(N). The (normal)

probabilistic presheaf II of N over V(N) is the presheaf given

(i) on objects: for all V€ V(N), let

IO, = {pv : P(V) = [0,1] | pv is a finitely (completely) additive probability measure}

(i) on arrows: for all V,V € VN, if V. CV, let U(ipy) : Iy, — Iy with py — py|p.

Here, py |y denotes the marginalisation map, which sends iy : P(V)) — [0,1] to pg : P(V) —

[0, 1] for V C V. II can be seen as a generalisation of X, since Il contains all convex linear
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combinations of elements in X, in every context V € V(N), and the marginalisation maps
coincide with restriction in X between pure states.

In this reading, a finitely (completely) additive probability measure over the projections of
N is a collection of finitely (completely) additive probability measures over contexts (v )vevy,
i.e., a global section of the (normal) probabilistic presheaf II. Since every (normal) quantum
state, i.e., every positive linear functional of norm one, defines a finitely (completely) additive
probability measure over the projections of A, it corresponds with a global section of II.
However, it is not obvious that all global sections are of this form. Yet, by Gleason’s theorem
the obstructions in V(N) are such that the linear functionals in contexts uniquely extend to
linear functionals on all of A/. This yields a contextual reformulation of Thm. 22 as was first

noted in [15], and presented in similar form to here in [13, 18].

Theorem 24. (Gleason in contextual form (I)) Let N be a von Neumann algebra with no
summand of type I. There is a bijective correspondence between (normal) quantum states, i.e.,

states on N, and global sections of the (normal) probabilistic presheaf I of N over V(N).

There is an obvious generalisation of Def. 26 to Banach space-valued measures in Thm. 23.
What is more, the latter allows for a refinement of Gleason’s theorem in contextual form. In fact,
Gleason’s theorem proves something slightly stronger than what is captured by Thm. 24: not
only does every global section of the probabilistic presheaf (cf. Def. 26) assign a measure to every
context, but it relates measures across contexts in a particular way. To see this, consider that
we assign a ‘probability’ to every element p € P(N) with respect to every projection g € P(Vp)
for (at least) one (maximal) reference context Vy. More precisely, we require the measures iy
to decompose into measures over the elements in P(V;) themselves. Mathematically, this means
that we assign a set of measures py, in every context V € V(N), labelled by the projections in
the reference context ¢ € P(V}), and additive for orthogonal projections ¢, ¢ € P(Vp), ¢¢' = 0.

Comparing with Def. 26, probability measures in contexts then decompose as follows:

= Y e, YV EVN)

¢:€P (Vo)
4:9;=0,V; ¢;i=1
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We can impose this constraint in a somewhat suggestive way by writing py,, = v;pv; for all
¢ € P(Vy) and thus py = >, vfpv; = v*pv, where v € K for some appropriate Hilbert space
K and ¢ : P(V) — P(K) an embedding, in particular, ¢(0) = 0, ¢(1 —p) = 1 — ¢(p), and
op+p) =) + @) for all p,p’ € P(V), pp’ = 0. Crucially, the condition that ¢ preserves
orthogonality can be encoded locally by requiring additivity for all py,, ¢ € P(Vp). We thus

define the dilated probabilistic presheaf as follows.

Definition 27. Let N be a von Neumann algebra with context category V(N'). The (normal)

dilated probabilistic presheaf I of N over V(N')!® is the presheaf given

(i) on objects: for all V€ V(N), let

IO, = {py =v'evv v e K, oy : P(V) = P(K) (normal), and py (1) =1},

(ii) on arrows: for all V,V € VIN), if V.CV, let

U(iyy) : Oy — Iy with gy — pvly .

Theorem 25. (Gleason in contextual form (II)) Let N be a von Neumann algebra with
no summand of type Is. There is a bijective correspondence between (normal) quantum states,
i.e., states on N, and global sections of the (normal) dilated probabilistic presheaf I of N over
V(N).

Proof. It is easy to see that every (normal) state o € S(N) defines a finitely (completely)
additive global section v, € T'(II(V(N))) via its purification. Conversely, note that v = (uy =
v*ovv)vevyy € T(I(V(N))) defines a finitely (completely) additive map ¢ : P(N) — B(K).
By Thm. 23 ¢ uniquely extends to a bounded linear map ® : A" — B(K) such that ®|p) = ¢.

In particular, we thus obtain a (normal) state o, = v*®v € S(N) for some v € K. O

18Tn a slight abuse of notation we will use the same notation II(V(N)) for the probabilistic and the dilated
probabilistic presheaf of A" over V().

9Note that we can choose K independently of contexts, since every measure admits a dilation for dim(K) >
dim(N) (cf. Thm. 31). Importantly, this does not imply linearity, the latter requires Thm. 23 (see also [38]).
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Note that, in general, the dilated probabilistic presheaf encodes more constraints than the
probabilistic presheaf, since additivity not only holds with respect to the owverall probability
measure gy in Def. 26, but also with respect to the individual measures py, = vipv; (cf.
Def. 27). While this is not immediately obvious for local systems, for which, by Thm. 24 and
Thm. 25, probabilistic and dilated probabilistic presheaf have isomorphic global sections,?® this
correspondence breaks down for composite systems (cf. Sec. 2.3.4 and Sec. 2.4.4).

Thm. 24 (Thm. 25) is a reformulation of Gleason’s theorem similar to the reformulation of
the Kochen-Specker theorem by Isham and Butterfield in [87]. Its significance lies in the way it
orders the components in the proof of Thm. 21. II is a functor over the context category V(N)
similar to X, both theorems thus relate to (physical) contextuality in the same way, they classify
global sections of their respective presheaves over the partial order of abelian subalgebras in
V(N). Accordingly, both theorems answer a local-to-global problem. Thm. 20 asserts that
despite the existence of value assignments locally, no such assignments are possible globally.
The obstructions of V(N') on X are too restrictive. In contrast, for the probabilistic presheaf

such global assignments do exist and correspond with quantum states exactly.

2.3.3 Wigner’s theorem

One of the earliest cornerstone theorems in quantum theory is Wigner’s theorem, it classifies

the symmetries of a quantum system.

Theorem 26. (Wigner [147]) Let H be a Hilbert space, dim(H) > 2, and let P1(H) be the set
of rank-1 projections on H (equivalently, P1(H) is the projective Hilbert space). Every bijective
map

¢ Pi(H) — Pi(H), p+— »(p)

such that tr(¢(p), ©(q)) = tr(p, q) for all p,q € P1(H) (i.e., transition probabilities are preserved)

1s implemented by conjugation with a unitary or anti-unitary operator u,

Vp € Pi(H) : o(p) = upu™ .

20Note that we identify global sections 7,7’ € I'(II(V(N'))) whenever u], = /f(,/ for all V € V(N).
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The first step in reformulating Thm. 26 in terms of contexts is to realise that the automorphism
group Aut(P;(H)) is closely related to the automorphism group of P(#H). The former encodes

symmetries of transition probabilities as in Thm. 26, the latter is defined as follows.

Definition 28. Let N be a von Neumann algebra. The automorphism group Aut(P(N')) consists
of all bijective maps ¢ : P(N') — P(N) satisfying

(i) ¥p,q € PN) : (p<q) & (0p) < ¢(q))

(i) ¥p € PN) : (1 —p) =1-(p)
Different to most key theorems discussed in this dissertation, Wigner’s theorem holds already

in two dimensions instead of three. Nevertheless, the following equivalence once again requires

three dimensions [29].

Theorem 27. (Cassinelli [29]) Let N be a von Neumann algebra with no summand of type

I,. Then Aut(Py(N)) =~ Aut(P(N)).

Furthermore, by Thm. 12 automorphisms on the projection lattice P(N') correspond with
order automorphisms on the context category V(N). The latter are classified in terms of Jordan
x-automorphisms on N by Dye’s theorem in contextual form, Thm. 13. For convenience, we

restate it here.

Theorem 13. (Doring-Harding [50]) Let N be a von Neumann algebra not isomorphic to
C @ C or My(C). For every order automorphism ¢ : V(N') — V(N), there is a unique Jordan
x-automorphism ® : (N,-) = (N,-) such that (V) = ®[V] for all V € V(N).

In order to relate this back to Wigner’s original theorem, we need two more theorems on

Jordan #-homomorphisms. The first is the following standard result in [95].

Theorem 28. Let N1, Ny be von Neumann algebras and let ® : N1 — Ny be a Jordan -
isomorphism. Then there exists a central projection p € Z(N) such that ® acts as a *-

isomorphism on pNip and as a x-anti-isomorphism on (1 — p)N7(1 — p).

In words, a Jordan x-isomorphism acts on every factor either as a x-isomorphism or *-
anti-isomorphism. Clearly, the same applies to Jordan x-automorphisms. Finally, for factors

N = B(H) these correspond with unitaries and anti-unitaries by the following result (cf. [¢]).
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Proposition 3. Every x-automorphism ® : B(H) — B(H) is implemented by conjugation with
a unitary operator, and every x-anti-automorphism is implemented by conjugation with an

anti-unitary operator.
Putting the pieces together, we obtain the following reformulation of Wigner’s theorem [17].

Theorem 29. (Wigner in contextual form.) Let H be a Hilbert space and dim(#H) > 3.
Every order automorphism ¢ : V(H) — V(H) is implemented by conjugation with either a

unitary or anti-unitary operator u,

YW eVH): (V) =uVu".

Proof. By Thm. 13 ¢ uniquely extends to a Jordan s-automorphism and with Thm. 28 de-
composes into a sum of x-automorphisms and x-anti-automorphism over factors, equivalently,
central projections. Since N'= B(H) is a factor, the only central projections are 0,1. Hence,
N = IN1 @ ONO and ¢ acts non-trivially only on the first summand and either as a -
automorphism or x-anti-automorphism. By Prop. 3 the former corresponds to conjugation by a

unitary, the latter to conjugation by an anti-unitary operator. ]

Wigner’s theorem, thus arises as a special case of Dye’s theorem, namely for factors N' = B(H)
of type I, with 3 < n = dim(#). Similarly, Wigner’s theorem in contextual form, is a special
case of Dye’s theorem in contextual form, which lifts symmetries on the partial order of contexts
to Jordan *x-isomorphisms for arbitrary von Neumann algebras.

The contextual reformulation of Wigner’s theorem is given in terms of symmetries of the
partial order of contexts. In particular, we have not defined a corresponding presheaf as for the
Kochen-Specker theorem and Gleason’s theorem. Nevertheless, it is possible to define a presheaf,
which encodes the partial of contexts and nothing more. In terms of this presheaf, Wigner’s
theorem relates automorphisms on this presheaf with conjugation by unitary or anti-unitary
operators (for details, see [17]). Importantly, Wigner’s theorem in contextual (presheaf) form
places both unitary and anti-unitary operators on the same footing. In fact, we will find that

both need to be considered when we study states on composite systems in Sec. 2.4.4.
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2.3.4 Stinespring’s theorem

Stinespring’s theorem constitutes another cornerstone in mathematical quantum theory, it
classifies completely positive maps. Recall that a linear map ¢ : A — B(H) with A a C*-algebra
is called n-positive if id ® ¢ : A™ — B(H)™ is positive as an operator from the C*-algebra
of n x n-matrices with entries in A, A™ := M, (A), into B(H)™ := M,(B(H)). ¢ is called
completely positive if it is n-positive for all n € N. Clearly, every completely positive map is
positive, however, a positive map is generally not completely positive. Completely positive
maps play an important role in the study of quantum channels. The latter are defined as

trace-preserving, completely positive maps.

Theorem 30. (Stinespring [135]) Let A be a unital C*-algebra, H a Hilbert space, and

¢: A— B(H) a linear function. Then a necessary and sufficient condition that ¢ have the form

Vae A: ¢(a) =v"P(a)v,

where v : H — K is a bounded linear transformation from H to a Hilbert space K and ® is a

x-representation of A into operators on IC, is that ¢ be completely positive.

Stinespring proved his theorem as a noncommutative generalisation of Naimark’s dilation

theorem. The latter classifies positive operator-valued measures (cf. Def. 10).

Theorem 31. (Naimark [114]) Let ¢ be a positive B(H)-valued measure on a compact
Hausdorff space X. There exists a Hilbert space K, a bounded operator v : H — K, and

a self-adjoint, spectral P(K)-valued measure on X, ¢, such that

VBeo(X): o(B)=v"¢(B)v.

Being a noncommutative generalisation of Thm. 31, the contextual character of Stinespring’s
theorem is somewhat implicit. In order to extract this contextual aspect explicitly, note that
similar to Def. 18 of V(N), any noncommutative, unital C*-algebra A can be decomposed
into its abelian subalgebras ordered by inclusion, denoted analogously by V(A). (Complete)

Positivity of ¢ : A — B(H) implies, in particular, that the maps ¢|y : V — B(H) are positive
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in every context V' € V(A). Remarkably, for von Neumann algebras the other direction holds

true by Gleason’s theorem as we show in Thm. 34 below.

The proof consists of two parts. For the first part, note that oy := @|p() defines a
positive operator-valued measure in every context V € V(N). In particular, by Stone duality,
Thm. 8, every context V' € V(N) corresponds to an extremely disconnected compact Hausdorff
space. More precisely, P(V) is a complete Boolean algebra and there is a lattice isomorphism
ay : P(V) — Cl(Zy) into the (lattice of) clopen subsets of the Gelfand spectrum Xy defined
by ay(p) = {A € Zy | Mp) = 1}. Since the Borel o-algebra on ¥y has elements the
clopen subsets Cl(Xy) and for any finite, disjoint family of Borel (clopen) subsets of ¥y, B;,
it follows that oz(/l(Bi) € P(H) is a family of orthogonal projections, it is easily seen that
ovoay (UiBy) =X, pi) =, 0m) =, ov ooy (B;).2! Hence, the map gy o a;;' defines a
positive operator-valued measure on Yy, equivalently, since ay is an isomorphism, gy defines
a positive operator-valued measure on P (V). We can thus apply Naimark’s dilation theorem,
Thm. 31, in every abelian subalgebra V' € V(N\) to obtain Hilbert spaces Ky, projection-valued
measures py : P(N) — P(Ky), and bounded operators vy : H — Ky such that oy = v} pvoy.

Now note that every commutative von Neumann algebra V' € V(N) is isomorphic to the
algebra L>(X, 1) of bounded measurable functions on some (standard) measure space (X, p)
acting on the Hilbert space of square-integrable functions L?(X, 1) by multiplication (cf. Thm. 35
below).??> The positive operator-valued measures gy : P(V) — B(H) therefore give rise to the
linear map ¢y by setting ¢y (f) = va f(N)doy(A) for all f € L®(Xy) (cf. Thm. 4). Naimark’s
theorem, which lifts the positive operator-valued measures gy = vi,pyvy to spectral measures
¢y on Ky in every context, thus also lifts the positive linear maps ¢y = vy, ®yvy to C*-algebra
homomorphisms @y (f) = va F(N)dey(N). It follows that Naimark’s theorem is a special case
of Stinespring’s theorem for A abelian. Surprisingly, Stinespring’s theorem also arises from
Naimark’s theorem when applied to the entire context category, i.e., by choosing the dilations

oy in Thm. 31 consistently across contexts. To see this, we need another presheatf.

21The Borel g-algebra on Yy arises from any standard measure space (X, ) with L™ (X, 1) ~ V by removing
all sets of measure zero.

22Note that (X, i) is not unique, yet modulo sets of measure zero we recover the duality in Thm. 10 (see also
[120]). We sometimes use the abstract notation L>°(Xy ) to indicate any such measure space.
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Definition 29. Let N be a von Neumann algebra with no summand of type Iy and H a Hilbert
space. The POVM presheaf II* of N over V(N is the presheaf given

(i) on objects: for all V€ V(N), let

it = {oy =v'pyv | v:H = K,2 oy : P(V) = P(K)} ,

(ii) on arrows: for all V,V € VN, if V. C V, let

H(if/v> :EV — Ef/ with Yy —— SDV|V .

The POVM presheaf is a natural generalisation of the dilated probabilistic presheaf. In
fact, it is itself a special case of an even more general ‘measure presheaf’ for arbitrary Banach

space-valued measures corresponding to the generalised version of Gleason’s theorem, Thm. 23.

We would like to show that global sections of the POVM presheaf correspond with completely
positive maps. This is almost the case. Instead, we obtain decomposable maps, i.e., maps of
the form ¢ = v*®v with ® : ' — B(K) a Jordan x-homomorphism. Similar to completely
positive maps, which are characterised by Stinespring’s theorem, Thm. 30, decomposable maps

are characterised by a symmetrised positivity condition [137].

Theorem 32. (Stgrmer [137]) Let A be a C*-algebra and ® : A — B(H) linear. Then ® is

decomposable if and only if for alln € N, (a;;), (aj;) € M,(A)+ implies ®(a;j) € M, (B(H))+.

The next theorem proves that collections of spectral measures in contexts uniquely extend

to decomposable maps.

Theorem 33. Let N be a von Neumann algebra with no summand of type I, H a Hilbert
space, and HH(V(N)) the corresponding POVM presheaf of N over V(N'). There is a bijective

correspondence between global sections T(II*(V(N))) and decomposable maps ¢ : N' — B(H).

23Similarly to Def. 27, we may choose K independently of contexts, since by Thm. 31 a dilation exists e.g. for
dim(K) > dim(N)dim(H).

24 Alternatively, by the discussion preceding Def. 29 one may think of ¢y as a spectral measure on Ly .
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Proof. Clearly, every decomposable map ¢ : N' — B(H), ¢ = v*®Pv for v : H — K linear and
® : N — B(K) a Jordan *-homomorphism defines a global section v, € T'(IT*(V(N))) since
@lpy : P(N) — P(K) is an orthomorphism (a spectral measure in every context V € V(N)).

Conversely, a global section v = (gy = v*pyv)yeyy € (I (V(N))) defines an orthomor-
phism ¢ : P(N) — P(K), ie.,

Vp,q € PIN),pg=0: w(pelq) =0 and @(p+q) = @(p)+¢(q) -

This follows since ¢ = (pv)vey defines a family of embeddings (spectral measures), in
particular, there is an embedding ¢y with p,q € P(V). By Thm. 23 ¢ uniquely extends to a
bounded linear operator ® : N — B(K).

We therefore not only find that ¢ extends to a bounded linear operator ¢, : N'— B(H) by
Thm. 23, but we also obtain a globally defined dilation (¢, )|pnv) = v*pv with ¢ : P(N) — P(K)
an orthomorphism. The additional property that ®|p) = ¢ is an orthomorphism further
implies that ® defines a Jordan x-homomorphism (see also [38]). To see this, it is enough to show

that @ also preserves squares, i.e., for every a € N with spectral decomposition a = )", a;p;,
9(a?) = B3 alp) = 3 a20(p) = 0(a)*
Since {a,b} = 3(ab + ba) = 1[(a + b)*> — a* — b?], this implies
®({a,b}) = <I>(i[(a +b)* —a* = b)) = %[(‘P(a) +@(b))* — @(a)® — @(b)*] = {@(a), 2(0)} .

Finally, ®(a*) = ®(>_, @pi) = >, a®(p;)) = ®(a)*. Hence, ® in p, = v*®Pv is a Jordan

x-homomorphism. This completes the proof. L]

In order to meet the assumptions of Thm. 23 we restricted to von Neumann algebras.
Nevertheless most of the proof goes through for general C*-algebras, in particular, Naimark’s
theorem still holds for unital C*-algebras, which correspond to compact Hausdorff spaces by
Thm. 9. One might thus hope to obtain a similar correspondence between order homomorphisms

¢ : V(A;) = V(Ay) and Jordan *-homomorphisms @ : 7 (A;) — J(As3). This problem has been
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addressed in [74], where it is shown that every order isomorphism between the context categories
lifts to a unique quasilinear Jordan x-isomorphism. The problem of extending the refomulation
of Thm. 30 to C*-algebras thus reduces to the following problem: When does a quasilinear map
between C*-algebras extend to a linear map? For general C*-algebras, quasilinear maps are
strictly weaker than linear maps, yet under certain additional constraints quasilinearity and
linearity coincide [73]. Succinctly, a Gleason-type theorem is thus necessary for the reformulation
of Stinespring’s theorem over contexts.

Importantly, positive maps are more general than decomposable maps. In particular, without
extending additivity of the local B(#H)-valued measures in contexts to their spectral dilations in
Thm. 31, global sections of the probabilistic presheaf do not correspond with decomposable maps
only, but with general positive maps. In contrast, global sections of the dilated probabilistic
presheaf do correspond with decomposable maps, which allows us to rediscover Stinespring’s
theorem as follows. Recall that a Jordan *-homomorphism ® : J(N) — J(B(H)) lifts to a
homomorphism of von Neumann algebras ® : N'— B(H) if and only if it preserves orientations
by Thm. 17 in Sec. 2.2. In fact, there is a canonical choice of orientation for every global section
v € T(IT*(V(N))) such that the corresponding map ¢, in Thm. 33 is completely positive. This

is the content of the following reformulation of Stinespring’s theorem.

Theorem 34. (Stinespring in contextual form) Let N be a von Neumann algebra with no
summand of type I, H a Hilbert space, and II"* (V(N)) the corresponding POVM presheaf of
N over V(N). For every global section v € T(IT"*(V(N))) there exists a unique von Neumann
algebra N with V(N') ~ V(N), for which ¢, : N' = B(H) in Thm. 33 is completely positive.

Proof. Let v € T(I*(V(N))). By Thm. 33 there exists a unique decomposable map ¢, = v*®v
with v : H — K a bounded linear operator and ® : J(N) — J(B(K)) a Jordan *-homomorphism.
By Thm. 17 & becomes a homomorphism of von Neumann algebras if it also preserves orientations.
This is the case if we ‘pull back’ the orientation on B(K) (respectively, B(H) 2 v*®(B(H))v) to
J(N) by Kadison’s theorem, Thm. 28, yielding a von Neumann algebra N with 7 (N) ~ J(N)
and thus V(N) ~ V(N) by Thm. 13. Hence, by Thm. 16 and Thm. 17 we find:

O(ab) = d({a, b} + [a,8]) = {®(a), D(B)} + [®(a), D(B)] = B(a)B(D) Va,be N
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Clearly, ® in ¢, = v*®v becomes a *-homomorphism for this choice of orientation, which implies

that ¢, : N = B(H) is completely positive (cf. [135]). O

Stinespring’s theorem, Thm. 30, thus also obtains a natural interpretation over contexts:
we may view completely positive maps as global sections of the POVM presheaf over the
partial order of contexts in Def. 29, with real-valued measures in Def. 27 replaced by positive
operator-valued measures, locally dilated according to Naimark’s theorem.

In particular, note that Thm. 34 offers a new, alternative proof for Thm. 30, at least for
von Neumann algebras. In its original form, Thm. 30 has the following reading: it classifies
completely positive maps ¢ : A — B(H) from any C*-algebra A into the bounded operators on
some Hilbert space. There, the condition of complete positivity is a type of global condition on ¢.
Conversely, Thm. 34 allows for a different reading: viewing A as a partial order of commutative
subalgebras, ¢ is clearly positive (in every commutative subalgebra) and can be lifted, first, to
a spectral measure on some larger Hilbert space K locally by Naimark’s theorem and, second,
to a x-homomorphism under the canonical choice of commutators in ®(N) by Thm. 34. This
implies complete positivity globally. Succinctly, for von Neumann algebras (complete) positivity
is a type of local-to-global property similar to linearity in Gleason’s theorem and, in fact, a
consequence of the latter in the form of Thm. 23.

It appears to be an advantage of the contextual perspective in the topos formalism, that
positivity, dilations in contexts, and local time orientations are clearly differentiated, whereas
these concepts are somewhat convoluted in the standard formalism, in the form of complete
positivity. Note also that Thm. 34 is consistent with, and once again confirms the idea that
quantum phenomena arise from phenomena in contexts together with their order relations.

The next section is concerned with Bell’s theorem. The situation there is similar: let
H in Def. 29 be such that we can find a representation Ny C B(H) (c¢f. Thm. 5). As a
consequence, global sections of the (Bell) probabilistic presheaf over product contexts (cf.
Eq. (2.24) below) correspond with quantum states on the composite system, in the form of
completely positive maps, only if they also preserve commutators between von Neumann algebras
N1, Ny corresponding to subsystems. As we will see, from a physical perspective, this extra

structure imposes a consistency condition on time directions in subsystems.
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2.4 Contextuality and Bell’s theorem

Bell’s seminal paper [17] responds to a longstanding conjecture by Einstein, Podolsky, and
Rosen (EPR) [54], who claim quantum theory is only a statistical version of a more fundamental
theory, similar to the relation between thermodynamics and statistical mechanics. Besides
the probabilistic nature of quantum theory, this idea is motivated by certain nonlocal features
present in the quantum formalism, believed to be resolved within the more fundamental theory.

As a response to EPR’s thought experiment, Bell formalises EPR’s assumption of an
underlying space of hidden variables and derives a constraint for the maximal amount of
correlations possible in such theories under the additional assumption of locality.? However,
some quantum mechanically predicted and experimentally verified correlations [12, 65, ] do
not obey these constraints and thus cannot be reproduced by any local hidden variable model.

To give an example, we sketch a standard version of Bell’s theorem. The CHSH inequality,
named after Clauser, Horne, Shimony, and Holt, puts a bound on the outcome statistics of the
nonlocal, bipartite quantity ¢ := a x b+ a x V' +a’ x b — a’ x b’ with local observables a, a’
and b,V and corresponding outcomes A, A, B, B’ € {—1,1} [36].?° Assuming the existence of
valuation functions in a classical (hidden variable) theory, the expectation value after repeated
measurements is constrained by Eq(c) := Ex(c) < 2 (cf. Eq. (2.18)). Quantum correlations
can be strictly stronger than classical (single-context) correlations. In particular, local spin-
1/2 measurements a(a),a’(a’) and b(3),b'(5'), rotated by angles a« = 0, o' = 7 and 8 = 7,

2

' = —% evaluated on the Bell state |¢pT) = \%(!0@ + |11)), yield the expectation value

Eqm(c) := (¢7|c|¢™) = 2v/2, and by Tsirelson’s theorem exceed the classical bound maximally

[141],
ER®(c) < Em(c) < Em(c) . (2.10)

For later reference we have extended this inequality to the right by adding correlations in
general non-signalling theories such as those arising from PR-boxes [125] (cf. Fig. 2.4). For the

two-dimensional, bipartite case this leads to E2*(c) = 4 (see also Sec. 2.5.4).%

25For a discussion of the locality principles involved in Bell’s theorem see also [25, ]
26Note that ¢ is not an observable, but derives from the statistical average over repeated measurements [103].
2TWe give a precise definition for the term ‘general non-signalling theories’ in Sec. 2.5.
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As with the other theorems discussed in this article, we show that the essence in Bell’s
theorem is naturally encoded in the partial order of contexts, and we discuss the relation between
contextuality and locality in this setting. The connection between these concepts has been
highlighted before [0], here, we extend these results in several ways, in particular, we stress the
importance of composition in this unified framework. This section gives a more detailed account
of the results presented in the recent preprint [62].

We first recall the derivation of Bell’s theorem, which also underlies the CHSH inequality
above, emphasising the assumption of an underlying single-context state space, i.e., trivial
physical contextuality, in Sec. 2.4.1. In Sec. 2.4.3 we argue how this assumption generalises
to a multiple-context perspective after incorporating existing results on multipartite frame
functions in Sec. 2.4.2. Finally, we show how the latter allow to upper bound correlations in
theories that exhibit physical contextuality, i.e., for which not all observables are simultaneously
measurable. In particular, we show how quantum correlations arise from global sections over the
corresponding Bell presheaf in Sec. 2.4.4. Not surprisingly, the Bell presheaf is closely related to
the (dilated) probabilistic presheaf, but is adapted to bipartite (or multipartite) systems. We
finish with a discussion on correlations in general non-signalling theories, for which we give a

definition in the language of presheaves over contexts in Sec. 2.5.

2.4.1 Correlations in classical theories

Classical state spaces

In Sec. 2.1.2 we have introduced the notion of physical contextuality as the mere order structure
of contexts, i.e., collections of simultaneously measurable observables and their inclusion relations.
In classical theories all observables are simultaneously measurable, hence, from the perspective
of physical contextuality, they correspond to the trivial case of a single (maximal) context. In
this section we give a derivation of Bell’s theorem in the light of this assumption, in particular,
we discuss the crucial notion of composition from the viewpoint of trivial physical contextuality.

As before it will be enough to consider the kinematics of the theory and we therefore

start with a set of observables O. Observables a € O in classical theories are mathematically

67



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

represented by measurable functions f, : ¥ — R from some measure space (X, 1) to the real
numbers. Y is called the (single-context) state space of the theory. The elements s € 3 are
called microstates and every s € ¥ allows to assign truth values to propositions of the form

‘a € A’ (read ‘the observable a has a value within the Borel subset A C R’):

Lif s e f,71(A)
Oa € A,s) :== (2.11)

0 otherwise

We can therefore speak of the value of an observable vs(a) given the state s € ¥ in the intuitive

sense, i.e., through evaluation of the corresponding measurable function

vs(a) := fa(s) . (2.12)

Valuation functions vs : O — R in Eq. (2.12) are defined for all observables, in other words, every
observable has an intrinsic (sharp) value in every state.”® The observation that all observables
simultaneously take deterministic values justifies to model physical states by points in some
space X and observables by (measurable) functions f, : O — R in the first place. This reasoning
has to be revisited for non-classical theories, i.e., theories with non-trivial physical contextuality,
and we will do so in the sections to follow. Note also that by this argument observables play
the fundamental role, whereas states appear as a derived concept. This perspective will become
important later, when we go over from single to multiple-context state spaces.

It is natural to equip O with the structure of an algebra. In fact, by modeling observables as
functions we are automatically given a vector space structure as well as a product by pointwise
multiplication of functions.?” In fact, let (X, i) be a o-finite measure space, i.e., a measure space
with a o-finite measure p, then L>(X, 1) acts on the Hilbert space L?(X, 1) by multiplication
¥ — fi for allp € L3(X, pu) and f € L>=(X, ). If moreover X/N is a standard Borel space for

N :={AC X | u(A) =0}2 we obtain the following representation theorem (cf. [135]).

28The spectrum rule, vs(a) € sp(a) = Im(f,), is trivially satisfied. Note also that this does not imply
determinism (as not all properties of s need to be directly observable).

29Tn doing so, we include the ‘trivial’ observable e € O represented by the constant function f. = 1. This
observable simply asks the question ‘Is the system there?’, and the answer is always ‘yes’.

30We will sometimes call a measure (X, ) standard, if p is a o-finite measure and X modulo sets of measure
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Theorem 35. Every commutative von Neumann algebra on a separable Hilbert space is *-
isomorphic to 1°°(92), L>([0,1]), or L>([0,1]) & () for a countable set S, where p is the
counting or Lebesque measure, respectively. Conversely, for every standard measure space (X, ),

L>(X, p) is a von Neumann algebra on a separable Hilbert space.

With this analogy we will assume O to be a commutative von Neumann algebra, namely
the algebra of measurable functions on a (standard) measure space. It is straightforward to
extend the definition of valuation functions in Eq. (2.12) to this algebraic structure, namely for

all a,b € O, A € R, and s € 3 we set:

vs(a-b) = fo(s)- fo(s), wvs(a+0b):= fu(s)+ fo(s), wvs(Aa) := Afu(s) (2.13)

In other words, classical states s € Y correspond to algebra homomorphisms v, : O — R.
More generally, in the presence of physical contextuality, we may define generalised classical
states to be valuation functions, i.e., partial algebra homomorphisms for which Eq. (2.13) only
holds between algebras of simultaneously measurable observables, i.e., in contexts (cf. Def. 1).
Clearly, this motivates the generalisation to partial algebra homomorphisms encountered in
Sec. 2.1.1. Recall also that valuation functions play a central role in Thm. 19, which proves their
non-existence within the setting of general von Neumann algebras, thus ruling out a classical
state space picture. Bell’s theorem attains a similar reformulation as a no-go-result for such
classical states based on the additional assumption of composition. To see this in detail, in
the remainder of this section we give a derivation of factorisability for classical (single-context)
theories from composition defined by the canonical Cartesian product of state spaces.

Given two subsystems with (standard) measure spaces (X1, pi1), (X2, o), the product state
space is defined as the Cartesian product g9 := 31 X X9 with product o-algebra ogo generated
by elements By x By for By € g1, By € 09, and the product measure ji1g9 := 11 X o satisfies

the condition,

piga(Br X Ba) = p11(By) - pa(Bg) ! (2.14)

zero a standard Borel space.
31 A product measure always exists, it is unique if the individual measures are also o-finite (cf. Thm. 35). Note
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In a similar way we obtain composite state spaces with multiple subsystems. Correspondingly,
composite observables a € O are represented by measurable functions f, : ¥ — R on the
composite state space X = x' ;¥,;. Clearly, evaluation on elements s € ¥ still yields algebra
homomorphisms similarly to Eq. (2.13), hence, we obtain composite valuation functions vy :
O — R from the obvious generalisation of Eq. (2.12) to composite observables.

Importantly, the algebra of composite observables is generated by the algebras of its subsys-
tems.?? In order to obtain a generalisation of the truth values in Eq. (2.11), it is thus enough
to consider tuples a = (a1, -+ ,a,) € O with a; € O; for i € {1,--- ,n} as well as measurable
functions f, : ¥ — R™, £,(s) := X, fa,(s;) with s € 3 = xI_,3;. Namely, we define the truth

value of the proposition ‘a € A’ with Borel set A := x| A; as follows:

1if8€fa_1(A) 1if Sz‘Efa_il(Ai) \)
O(ae A, s) = =

0 otherwise 0 otherwise

H (a; € Aiysg)  (2.15)

Statistical mixtures and joint probability distributions

The spectrum rule, v(a) € sp(a), and functional composition principle in Eq. (2.9) are specific
to pure states, (classical) mixed states on the other hand are modeled as statistical averages by

means of normalised measures on state space p: X — R,

/ du(s)=1, VseX: u(s) >0. (2.16)

The probability for the event corresponding to the Borel set A C R, when measuring the

observable a € O of a system in the mixed state p, is then given by

w(A | a) = /{sEsz(a)EA} du(s) = /fal(A) du(s) = /Ed,u(s) O(a € A,s) . (2.17)

In the last step we have used the indicator function ©(a € A, s) in Eq. (2.11). For instance, the

probability for obtaining a particular outcome A corresponds to the Borel set A := {A}.

also that the Cartesian product extends to spaces with more structure, such as symplectic, Poisson manifolds etc.
32Here, ‘generated’ means under taking linear combinations, products, and pointwise limits.

70



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

Analogously, for product measures on a bipartite system we have by Eq. (2.14) and Eq. (2.15):

w(A,B|a,b)= / du(s) ©((a,b) € (A, B),s)

_ (2/2 dyy(s1) O(a € A, 31)) : (/Z dua(s2) ©(b € B, 82>)

= (Al a)- pa(B | b)

A general mixed state on the composite system is then a statistical mixture of product measures,

WA B | a,b) = / dX p(A) (A | @A) - (B | b, ) (2.18)

Note that u(A, B | a,b) is a special type of joint probability distribution, i.e., a normalised
measure on the composite system g : ¥ — R, p(s) > 0 for all s € &, and [, du(s) = 1. A joint
probability distribution is called factorisable if it is of the form in Eq. (2.18).

The locality principle in factorisability is simply the condition that local measures depend
on local outcomes and observables only. Clearly, by modeling the set of composite observables
via the Cartesian product this is almost automatic—neither outcome nor observable affect the
other factor in the product in Eq. (2.18).

The splitting of classical joint probability distributions according to factorisability thus
fundamentally stems from the existence of local (single-context) state spaces with composition
defined by the Cartesian product (cf. [13]). In other words, we have derived Eq. (2.18) from

two assumptions:
(i) trivial physical contextuality, i.e., a single (maximal) context (in each subsystem) and
(ii) the Cartesian product of state spaces as the state space of the composite system.

Since condition (ii) is entirely natural for single-context state spaces, Eq. (2.18) can also be read
as a consequence of just trivial physical contextuality.

Factorisability thus corresponds to composition given by the Cartesian product and by the
above argument also to (trivial) physical contextuality. This suggests an intimate relationship

between the underlying concepts:
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contextuality — composition — locality

Admittedly, for now especially the first relation is a rather bold conjecture based on the case of
trivial physical contextuality in classical systems only. However, in Sec. 2.4.3 we will see how
these concepts are in fact closely related also in the multiple-context setting.

In a first attempt to define a notion of composition, which is suitable for the context structure
in quantum systems and compatible with the more general (than factorisability) locality principle
known as ‘no-signalling’, in the next section we study the composition behaviour of frame

functions underlying the original proof of Gleason’s theorem.

2.4.2 Composition of frame functions and Gleason’s theorem

The content of this and the following sections is taken from [62].

Recall that measures on the projections of some Hilbert spaces H with dim(H) > 3 finite
are classified by Gleason’s theorem, Thm. 21. A closely related concept is that of frame
functions of weight W € R on the unit sphere S(H): f: S(H) — R where Z?Il flv)) =W
for all orthonormal bases (v;)}_; € ONB(#) with d := dim(#). In fact, Thm. 21 is a direct

consequence of the following theorem about frame functions [66].

Theorem 36. Let dim(H) > 3 finite. If f is a non-negative frame function of weight W € RT,
then there exists a density matriz p : H — H such that f(v) = Wtr(pp,) = W{v|p|v) for all
veSH)

Of course, we can apply Thm. 21 to composite quantum systems and consider frame functions
f:S(H) — R, where H = ®!"_;H, is the tensor product Hilbert space. However, in doing so we
no longer restrict to outcomes of local measurements only. From an operational perspective the
only outcomes accessible to local observers correspond to elements in o(H) :=={v; ® --- ® v, €
S(H) | v € S(H;)}. It is thus natural to consider unentangled frame functions with domain
o(H) € S(H) and constraints restricted to ONB(o(H)) € ONB(H) instead. This was studied

in [115].

33Here and below, we identify rank-1 projections and vectors via p, = |[v){v|, and occasionally switch between
the mathematical and the physically motivated Dirac notation of vectors v <» |v) (and dual vectors v* <> (v]).
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Theorem 37. (Wallach [145]) Let H = Q) Hi, dim(H;) > 3 finite for all i € {1,--- ,n},
n € N. If f:o0(H) — R is a non-negative, unentangled frame function, then there exists a

self-adjoint operator t : H — H such that f(v) = tr(tp,) = (v|t|v) for all v € o(H).

Note that in contrast to Thm. 21, Thm. 37 does not imply positivity of ¢.

A further restriction compared to ONB(o(#H)) are frame functions over product bases:
f:o(H) — R with Zjlljdle foj1®--®v;,,) =W, d; = dim(H,;) only on product
bases, S(H) == {(vj1 ® - ® vjmn)?ll”,'ff,’fle (vjm);l;:l € ONB(#,)}. Clearly, S(H) contains
many non-local states. But even unentangled bases cannot always be implemented with local
operations and classical communication only [19], suggesting product bases as the most natural
choice of constraints. Yet, it was shown that a similar result to Thm. 37 no longer holds for
frame functions over product bases (cf. Prop. 5 in [115]).

To gain some insight into what is ‘missing’, it is helpful to consider examples of frame
functions over product bases. Wallach gives a whole family of examples in [115], which are
easily seen to correspond to signalling distributions. We thus add more constraints in the form
of no-signalling: for i € {1,--- ,n} with (vjiyi)?le, (wki’i)i’;:l € ONB(H,;) and ay, , € S(H,) for

all [, € {1,--- ,d.}, r #1,

d; d;
S @, @) =D flan,, @w) (2.19)
Ji=1 k=1

where we use the shorthand z;, , ® v, ; == (T, 1 ® - @ @y,_, ;-1 QV},; Q Ty, i1 @D @@y, ). In
light of PR-boxes one might still expect such non-signalling frame functions to be more general
than quantum states. However, this turns out not to be the case. To show this we introduce yet
another choice of basis: let B € §(H), B’ € ONB(H) and set B’ ~ B if there exists a sequence of
unitaries (U™)N_, such that B = B, B™ = U™B™ !, BN = B’ and where every unitary U™ acts

non-trivially only on local subspaces of the form z7" . ® (UT,Jrv]”?l) with 27" . @vj",,

¥, U € B*.
Importantly, the equivalence relation ~ is independent of the choice of product basis B € S(H),
it only depends on the split of Hilbert space H = @ ;H; (cf. Fig. 2.3). This follows since any
d; X d;-unitary matrix can be written as a product of two-level unitaries. In particular, any

two bases related by local unitary transformations, i.e., unitaries acting on subsystems H;, are
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therefore related by ~. We call the elements in T(8(H)) := {B’ € ONB(H) | B' ~ B € f(H)}
twisted product bases.** Note that S(H) C T(B(H)) € ONB(c(H)). Clearly, the first inclusion
is strict already for local dimensions dim(H;) > 2. In fact, the latter inclusion is strict as well,

there are unentangled bases in dimension at most ten that do not correspond to twisted product

bases (cf. [102]).

Proposition 4. T(5(H)) € ONB(o(H))

Proof. Clearly, every twisted product basis is also an unentangled basis. The fact that the other
direction fails is non-trivial, but can be concluded from a counterexample to Keller’s tiling

conjecture [102]: for n > 10 construct the following tiling of R™ by cubes of length 2 such that

(a) the centers of all cubes are in Z",

(b) the tiling is 4Z™-periodic,

(¢) no two cubes have a complete facet in common.

More precisely, let C := {(z1, - ,2,) | =1 < z; <1 Vi € {1,---,n}} denote a cube (of
length 2). Then a tiling corresponds to 2" equivalence classes of translates of C' of the form
m + C' + 47" for

m= (my,---,my,) €Z", 0<m; <3. (2.20)

Next, consider the conditions: (i) m and m’ have some |m; —m)| = 2 and (ii) m and m’ differ
in two coordinate directions. Finally, denote by G, and G, two graphs, each of which has 4"
vertices labeled by the 4™ vectors in Eq. (2.20), where G,, has an edge between vertices m and
m’ if (i) holds, while G, has an edge between vertices m and m’ if (i) and (ii) hold.

Then a set S of 2" vectors of the form in Eq. (2.20) yields a 4Z"-periodic cube tiling if and
only if § forms a clique in G,,; it yields a 4Z™-periodic cube tiling with no two cubes having a
complete facet in common if and only if S forms a clique in G7.

We now translate this into a basis of H = (C?)®!°. Consider the qubit states |0), |1),

34Twisted product bases arise in a similar (but more complex) way to the set of rotations of a Rubik’s cube.
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|+) == \%(\O) +11)) and |—) := \/Li(|0> — |1)) and define the correspondence m; — [1(m;)) by:

First, note that [¢(S)) := {|¥(m1)) ® -+ - @ [¢p(m,,)) | m € S} forms a basis of (C*)®'%: there
are 20 vectors and it is easily seen that (¢)(m)[)(m’)) = 0 for m,m’ € S, m # m’ by condition
(i) above. Moreover, |1)(8S)) € o((C?)®!9) is an unentangled basis by construction. However, any
two vectors [1(m)), |¢(m’)) for m,m’ € S, m # m’ differ on at least two sites by condition
(ii). It follows that no two-dimensional subspace of the form ;" ® (v}, + v;?z) exists in [(S)).
Yet, any twisted product basis has at least one two-dimensional subspace of this form, hence,

|t)(S)) cannot be a twisted product basis. O

Thm. 37 fails for product bases, yet it already holds for frame functions over twisted product
bases. Since the latter contain strictly fewer conditions than unentangled frame functions, this

generalises Thm. 37.

Proposition 5. Let H = Q;_, Hi, dim(H;) > 3 finite for all i € {1,--- ,n}, n € N. If
f:o(H) = R is a non-negative frame function over twisted product bases, then there exists a

self-adjoint operator t : H — H such that f(v) = tr(tp,) = (v|t|v) for allv € o(H).

Proof. In the proof of Thm. 2 in [115] replace unentangled bases with twisted product bases
in the inductive hypothesis. The case n = 1 still holds by Thm. 21. Consider H = H; ® V,
V =P, H; with dim(#;) >3 forall 1 <i<n. If (Uj)?lzl € ONB(#,) is an orthonormal basis
of Hy and (u))%, € T(B(V)) is a twisted product basis for V, then (v; ® ufc);llkivl e T(B(H)) is
a twisted product basis for H. This follows since we can transform ufg for every j into a product

basis on V' by the assumption that u{: € T(B(V)), and the fact that applying local unitaries on

d;
Ji=1

subspaces > *'_, v; » @ v;,; for all i we can transform between product bases in S(V).

Since f is a twisted product frame function (of weight W € R™T), the function f,(u) =
f(v ® u) is a non-negative twisted product frame function on V' (of weight W, = W,, =
W — Z?;’gf;g:l flv; ® ui) € RT) for each v € H;. By the inductive hypothesis we thus find

fo(u) = (ulty (v)|u) for all u € o(V) with ty(v) : V — V self-adjoint.
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0)0+1) [0)j0—1) | [0+ 1)]2) 0)0+1) [0)j0-1) | [0+ 1)[2)
[1+2)|0) 1) 0-1)2) | = | [1+2)|0) [1)11) 0-1)|2)
=200 | B+ [2)E-2) -2 | 2L 2R
1

10)]0) 0)I1) 10)12) 10)10) 0)[1) 0+ 1)12)
|14 2)[0) D) 112) — | [1+2)|0) D) 0—1)[2)
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10)10) 0)I1) 10)12)
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Figure 2.3: The unentangled basis in the top left corner (cf. [19]) is transformed into a

product basis (bottom left corner) by successively applying local unitaries, e.g., in the first step
(12)11+2),2)[1=2)) — (12)[1), [2)[2)) where [z)|y) := |2) @ y) as well as [z +y) = J5(|z) £ |y)).

Conversely, let (u,), € T(B(V)) be a twisted product basis for V and (vf);h:l € ONB(H,)
for every k, then (Uf®uk)?fk’i‘{ € T(B(H)) is a twisted product basis for H (by a similar argument
as before) and by the inductive hypothesis we conclude f,(v) := f(v ® u) = (v|ty, (u)|v) for all
v € S(Hy) with ty, (u) : Hq1 — H; self-adjoint. The remainder of the proof is identical to the

one of Thm. 37. OJ

For instance, the unentangled basis in [19] is easily transformed into a product basis (cf.
Fig. 2.3) and is thus in particular a twisted product basis. For frame functions over product

bases consistency with such twisting operations is equivalent to no-signalling.

Lemma 1. Non-negative, non-signalling frame functions f : o(H) — R over product bases with
finite local dimension dim(H;) > 3 bijectively correspond to non-negative frame functions over

twisted product bases.

Proof. Let x;,, € S(H,) forall I, € {1,--- ,d.}, r # i and (vji,i);ljzl, (wki,i)?f:1 € ONB(H,;) such

that WlOg ’U17i><7}17i| + ”027,'><’U2,7;‘ = ’w17i><w17i’ + |w27i><w2ﬂ-| and Vj; i = Wiy i for 3 S ]z = kl S n.
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Then by no-signalling in Eq. (2.19),

dz’ di
F@,r ®v13) + f(@,0 @v2;) = Y f@,0 ®05,0) = Y f(@,0 @ 05,4)
Ji= Ji=3
d; d;
=" @ @wi) — > f(@0 @ W)
k=1 k;=3

= f(z,, @ wi,) + f(2,,r © wa,;).

As twisted product bases are generated from local unitaries acting on two-dimensional subspaces
of the form x;, , ® (vj, i + vy ), f is also a frame function over twisted product bases. Conversely,

for the latter Eq. (2.19) holds since it holds already for two-dimensional subspaces. ]

Theorem 38. Let H = Q. H;, dim(H;) > 3 finite for all i € {1,--- ,n}, n € N. If
f:0o(H) = R is a non-negative, non-signalling frame function over product bases, then there

exists a self-adjoint operator t : H — H such that f(v) = tr(tp,) = (v|t|v) for allv € o(H).

Proof. This follows immediately from Lm. 1 and Prop. 5. O

Note that our results only apply to finite local dimensions dim(#,;) > 3, this restriction in
Thm. 38 is due to Thm. 21, equivalently Thm. 36. Nevertheless, generalisations of Thm. 21 to
two dimensions exist based on (subsets of) positive operator-valued measures (POVMs) [22,

, ]. More precisely, non-negative frame functions f : E(H) — RT of weight W € R*
with domain E(H) the set of all effects, i.e., convex combinations of projections, and such that
Y icr f(E;) = W whenever )., E; = 1, correspond to density matrices: f(E) = Wtr(pE) for
all £ € £(H) and dim(H) > 2 finite.

Similarly, replacing o(#) by o(£(H)) (equivalently, projection-valued measures (PVMs)
by POVMs) in the otherwise analogous definitions of (twisted) product frame functions and

no-signalling in Eq. (2.19), one obtains a generalisation to systems with dimension dim(#;) = 2.

Theorem 39. Let H = Q. H;, dim(H;) > 2 finite for all i € {1,--- ,n}, n € N. If
f:0(E(H)) — R is a non-negative, non-signalling frame function over product POVMs, then

there exists a self-adjoint operator t : H — H such that f(E) = tr(tE) for all E € o(E(H)).
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Proof. By [22] frame functions over o(€(H)) correspond to quantum states for every H; in
H =@, H;. With this the inductive proof of Prop. 5 goes through also for dim(#) = 2. The
same holds for the correspondence of the no-signalling condition in Eq. (2.19) and constraints
on f arising from local transformations leaving convex combinations ), F; < 1 invariant in

Lm. 1. OJ

We thus find that no-signalling is almost enough to restrict frame functions (of weight 1)
over product bases to quantum states. To be precise, by Prop. 5 the correspondence is with
self-adjoint operators of unit trace, which are positive on product states.

We combined this result with earlier work in [115] and added the important distinction
between unentangled and twisted product basis frame functions, as no-signalling becomes
redundant in the latter case by Lm. 1 and Prop. 5. A more direct way to study non-signalling
probability distributions is by means of contextuality. In the next section we thus reformulate our
results in contextual form and show how no-signalling arises as a subset of the marginalisation

constraints over product contexts.

2.4.3 Contextuality, composition, and locality

Note that the derivation in Sec. 2.4.1 crucially depended on the assumption of an underlying
classical state space with composition defined in terms of the Cartesian product. In this section
we discuss alternative ways for composition, in particular, we motivate composition of systems
based on observables and their context order instead of state spaces. In the subsequent sections
we study the implications of this context structure for the spectral and the probabilistic presheaf.
In doing so we again consider general von Neumann algebras, in particular, we extend and

generalise the results on frame functions in the last section.

Composition via Cartesian products of state spaces. Recall that we defined com-
position of classical systems in terms of their state spaces, namely, via the product of the
corresponding measure spaces. On the other hand, observables in classical theories are repre-

sented by measurable functions and every measurable function on the composite state space can
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be approximated by suitable limits of linear combinations of indicator functions (cf. Eq. (2.15)).
In this sense, it does not matter whether we define composition in terms of states or observables
for classical systems.?

Taking classical systems to be represented by commutative von Neumann algebras N,

i = 1,2 with corresponding state spaces corresponding to the Gelfand spectra ¥; = X(N;) ~

['(Z(V(MN;))),% this equivalence reads,

L1z = X1 X Ty = T(EWV(M))) x DE(V M) = TEV M) x V(N))) - (2.21)

Here, the final equality is with respect to the context product in Eq. (2.24) below.

By the Kochen-Specker theorem in contextual form, Thm. 20, T'(X(V(N))) is empty whenever
N is a noncommutative von Neumann algebra (not only consisting of summands of type Iy, I5).
The equivalence in Eq. (2.21) thus breaks down for such algebras. Nevertheless, composition in
terms of state spaces can be carried over to quantum systems if we define the state space of
the composite system in terms of convex combinations of elements in the Cartesian product of

global sections of the probabilistic presheaves of subsystems instead:

Fl&g = COHV(El&g), 21&2 = F(E(N1)) X F(H(./\/Q))g7 (222)

Compare this with mixed states in classical theories, which are given by convex combinations
of elements in the Cartesian product of global sections of the spectral presheaf by factorisabil-
ity, Eq. (2.18). In fact, factorisability holds for any system—with or without local physical

contextuality—as long as composition is defined by means of Eq. (2.22).

Proposition 6. Let N7, N5y be possibly noncommutative von Neumann algebras and let the
set of states on the composite system I'1go be defined according to Eq. (2.22). Then all states

v € I'igo are factorisable and satisfy the Bell inequalities.

35 A similar duality holds even in the presence of physical contextuality for state spaces given by the non-empty
sets of global sections of spectral presheaves (cf. Prop. 8 in Sec. 2.5.2).

36Recall that by Thm. 10, the category of commutative von Neumann algebras is dually equivalent to the
category of Hyperstonean spaces, equivalently, standard measure spaces modulo set of measure zero by Thm. 35.

37In the context of generalised probabilistic theories, this construction is sometimes called the minimal tensor
product [91].
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Proof. Let v € I'1go. By definition, 7 is a convex combination of product states (y1,72) € Li1g2
with v, € T'(II(V;)) and v, € T(II(N2)). Hence, there exists a measure space (A, u,) with

measure /i, : A — R such that for all p € P(N;), ¢ € P(N2),

v(p, q) =/Aduw(>\) AR ERCICARY) =/Adu7(k) tr(pd,p) - tr(p,q) - (2.23)

The last equality follows by Gleason’s theorem in contextual form, Thm. 24. Eq. (2.23) is just

factorisability and the Bell inequalities thus necessarily hold. O

This argument is not restricted to states on von Neumann algebras, e.g. density matrices,
but holds for arbitrary locally stochastic models with composition defined by the Cartesian
product in Eq. (2.22). Every stochastic, factorisable model thus satisfies the Bell inequalities (cf.
[35]). Moreover, it is interesting to note that by [57, 58] the existence of the latter is equivalent
to the existence of a deterministic local hidden variable model of the composite system. In this
sense, even stochastic, factorisable models with local physical contextuality, yet composition
defined via Eq. (2.22), still correspond to single-context state spaces.

Succinctly, by Prop. 6 factorisability is a direct consequence of composition defined in terms
of the Cartesian product on state spaces. Yet, while this construction is natural for classical
theories (and as we will see in Sec. 2.5, also for generalised classical theories), this is no longer
the case for more general states arising as global sections of the Bell presheaf defined on the
composite system (cf. Eq. (2.24) below). Note that such theories are of great interest, since
Thm. 19 rules out valuation functions, equivalently, global sections of the spectral presheaf,
already in subsystems. We thus seek a unified notion of composition that relates to physical

contextuality and incorporates both the classical and the quantum case.

Composition via contexts. It is clear from Prop. 6 and the above argument on stochastic,
factorisable models (cf. [57, 58]) that Eq. (2.22) does not define composition for theories with
physical contextuality. Instead, we have seen that on the level of frame functions, twisted
product bases are a natural choice relating to no-signalling. In fact, there is a more direct way

to encode no-signalling using contextuality. Recall that at the core of contextuality lies the
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notion of simultaneous measurability: we say that a physical system is contextual if not all
its observables O can be measured simultaneously in every state. Clearly, classical systems
are non-contextual and compose by the Cartesian product. Yet, also contextual systems can
contain sets of simultaneously measurable observables called contexts. Shifting focus from states
to observables and their context order, we define a notion of composition of contexts by the
canonical product on partial orders, denoted Vg9 := (Vi X Vs, Cig2), and given by the Cartesian

product of elements V; x V, with order relations such that for all ‘71, Vi eV, ‘72, Vo € Vs

(Vi, V) < (Vi, V) = V1 <4 Vh and V, <5 Vi (2.24)

Accordingly, we define the spectral presheaf ¥, := X(Vig2) and the probabilistic presheaf
10,5 := I (Vig2) over this product context order.

Recall that in this setup a measure on the projection lattice u : P(H) — [0, 1] becomes
a collection of probability distributions (jyv)veym), one for every context. Moreover, non-
contextuality further constrains these across different contexts: let juy, p1yy be measures over
contexts V,V, V <V, then i is obtained from gy by marginalisation, denoted py = pv |-
Given the results on frame functions over product bases in [145], one might be sceptical whether
global sections over product contexts always correspond to quantum states. However, the
following lemma together with Lm. 1 shows that no-signalling is already contained in the

contextual constraints between product contexts.

Lemma 2. Global sections of the probabilistic presheaf (cf. Def. 26) over product contexts,
v € I'(IL(V(H1) x V(Hz))) with dim(H;) finite, bijectively correspond to non-negative frame

functions of weight 1 over twisted product bases, f : o(H) — R.

Proof. Clearly, a frame function over twisted product bases defines a global section on product
contexts by Y¢(puy, @ pu,) = f(v1 @ v2), Py = |v)(v| for all v; € o(H,;). Marginalisation between
contexts follows from the constraints on f between twisted product bases.

Conversely, a global section over product contexts V' € V(H;) x V(H,y) defines a map
[y 0(H) = R by fo(v,, @up,) :=v(p1 @ po) for all p; € P(H;). Moreover, it satisfies the

constraints encoded in twisted product bases, which for global sections arise from marginalisation
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between product contexts of the form (and by symmetry for i = 1 <» i = 2):

1% w
V= Vi x {p12,02.2, (P12 +p2,2)L}
W=V x{q12,¢2.2, (P12 +p2,2)L} \ /
7

V=V x {(pr2 + p22), (P12 + p22) "}

Here, we defined contexts via their projections pj,; = [v;,:)(Vjils Qi = Wk, i) (W, il
corresponding to product bases (Uji,i);'l::p (wki,i)Z:ﬂ € ONB(H;) such that Vi = {p11, "+ ,Pa, 1}

and p12 + P22 = qi2 + q22 (cf. proof of Lm. 1). []

The generalisation to the multipartite setting is analogous. Note that in going over to
contexts (equivalently from frame functions to measures) we achieve a type of trade-off: while
we do not consider contexts corresponding to twisted product bases directly, there are more
constraints between contexts that effectively contain the same information as frame functions
over twisted product bases. In particular, no-signalling is contained in the marginalisation maps
between product contexts. More precisely, by a similar argument to the one in Lm. 2, it is easy
to see that the following conditions, which correspond with the no-signalling condition on frame

functions in Eq. (2.19), are identical to those in Eq. (2.24) if one also demands transitivity:
(Vi,V2) Cos (V1. V2) = (Vi =V, Va S Vo) or (Vi C VA,V = V) (2.25)

We thus obtain the following reformulation of Thm. 38.

Theorem 40. For every global section of the probabilistic presheaf over product contexts v €
D(II(V(H1) x V(H2))) with 3 < dim(H;) finite, there exists a self-adjoint operator t : B(H,) ®

B(Hs) — R such that tr(t) = 1 and t(p; @ pa) > 0 for all py € P(H1), p2 € P(Ha).
Proof. This follows directly from Lm. 2 and Thm. 38. O

Thm. 40 (and Thm. 38) are very close to a bijective correspondence: for every global section
of the probabilistic presheaf over product contexts there exists a corresponding self-adjoint
operator t of unit trace. Moreover, note that if ¢ is positive and appropriately normalised, i.e., it

has unit partial traces, it defines a unique quantum state since local measurement statistics are
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sufficient to distinguish between arbitrary quantum states [119].2® However, the probabilistic
presheaf over product contexts is not quite enough to single out quantum states, since not all
operators in Thm. 40 correspond to quantum states (cf. [100]). In order to relate non-signalling
joint probability distributions over product contexts with quantum states, it will be crucial to

consider the dilated probabilistic presheaf over product contexts.

Definition 30. Let N1, Ny be von Neumann algebras with context categories V(N7), V(N3). The
(normal) Bell presheaf is the (normal) dilated probabilistic presheaf (cf. Def. 27) over product

contexts, I(V(Ny) x V(N2)), restricted to locally normalised measures, i.e., py|y, € 1. and

Mv’vl € HVQ fO’f‘ alV =V, xV; € V<N1) X V(./\/g)gg

Composition via tensor products. Before we explore the consequences of context
composition for the Bell presheaf in more detail, we end this section by mentioning a third way
of defining composition, which in fact is the standard composition in quantum theory. There,
the pure state space is the projective space P(H) corresponding to the Hilbert space H. Given
component systems with Hilbert spaces H;, Hs, the Hilbert space of the composite system has

Hilbert space H1 ® Hs and pure state space

]P)l&g = P(Hl ® Hg) .

Note that there are many more contexts for this kind of composition than for composition via
contexts described above: the poset V(H; ® H) contains many contexts that are not of the

form V; ® V5, which are the only contexts available in the poset Vigs. In fact, the functor

Viga — V(H1 @ Ha), V1, Va) — V1 ®@ Vs

is fully faithful, but not essentially surjective (surjective on objects). We say that Vg9 contains

only product (or twisted product) contexts (cf. [62]).

38This property of quantum theory is sometimes called local tomography [77].
39Note that the Bell presheaf assigns to every product context V = V; x Vi € V(N7) x V(N2) the set of all
dilations of joint probability distributions over V', in other words, all factorisable joint probability distributions.
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2.4.4 Bell’s theorem in contextual form

We combine the results obtained in the previous sections into a reformulation of Bell’s theorem
in terms of its restriction on state spaces. Recall that we defined composition in terms of
the order structure of observables, which encodes physical contextuality. While this shift of
perspective does not change the way systems compose in classical theories, it does change the
way systems compose in the quantum case, where composite systems are usually defined in
terms of the tensor product. In fact, composition of contexts yields a self-adjoint operator of
norm one and thus almost a quantum state in the finite-dimensional case by Thm. 40. Our
main theorem in this section provides the missing link to establish positivity of this operator
and thus the desired bijective correspondence between global sections of the Bell presheaf and
quantum states. As a consequence, we obtain a unified framework for composition and locality

by means of physical contextuality, valid in both classical and quantum physics.

In a nutshell, global sections of the Bell presheaf correspond with (quantum) states on algebras
with specific time orientations. Here, unlike in the local case, it is crucial to consider the dilated
probabilistic presheaf in Def. 27, since only global sections of the latter correspond with Jordan
x-homomorphisms, for which the consistency condition between local time orientations can be
expressed in terms of dynamical correspondences, which lift the Jordan *-homomorphisms to
s-homomorphisms (cf. Prop. 2). To make this explicit, we need the oriented context category
from Def. 24. (For more details, see Sec. 2.2.3 as well as [7, 16].) Global sections of the Bell

presheaf over the oriented context category need to be consistent with its inherent orientation.

Definition 31. Let N7, Ny be von Neumann algebras with no summand of type I and V(N7),
V(N3) the corresponding context categories with respective time orientations 1;1, 1;2. A global
section of the Bell presheaf v € T(IL(V1g2)) with Viga = V(N7) X V(N2) is called orientation-

preserving with respect to ¢ = ({1, ¥,) if
Va € BN,),t€R: &, 0@ = 2(0@) 6 (2.26)

where ®. is the Jordan x-homomorphism in Thm. 33.
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The set of orientation-preserving global sections with respect to 1 = (¢1,1s) is denoted

F(ﬂ(ﬂg)) = {y € '(LI(V1&2)) | v is orientation — preserving with respect to ¢} ,

P

where Vigs = (Viga, ) = (VINL), 1) x (VM) §s) = VML) x V(NG).

Being orientation-preserving is a property, which explicitly refers to composite systems.
Nevertheless, since C can also be interpreted as a Jordan and von Neumann algebra, every global
section v € T(IL(V(N))) trivially defines a Jordan and von Neumann algebra homomorphism
v : N — C also for single systems. The condition in Eq. (2.26) is trivially satisfied in this
case and vy therefore orientation-preserving. Note that Gleason’s theorem in contextual form,
Thm. 24 (Thm. 25), can therefore equivalently be phrased in terms of orientation-preserving

global sections.

We will also need to relate completely positive maps with self-adjoint operators. In finite
dimensions (and for single factors) this correspondence is established by the Choi-Jamiotkowski
isomorphism between completely positive maps ¢ : M,,(C) — M,,(C) and positive operators on

the tensor product M,,,(C) ~ M,,(C) ® M,(C) [32, 90].

Theorem 41. (Choi [32]) Let ¢ : M,,(C) — M,,(C) be a linear map. Then ¢ is completely
positive if and only if the (operator) matriz py : Myn(C) = Minn(C), pgp = > Eij @ ¢(Eiy) is

positive, where E;; denotes the matriz with entry 1 in position (i,7) and 0 otherwise.

In infinite dimensions and for general C*-algebras the correspondence between positive and
completely positive maps is slightly more complex. In particular, note that in finite dimensions
the trace defines a special type of completely positive map: ¢g : N1 — Na, ¢g := 1Ly tra,. In
infinite dimensions such a tracial state is neither guaranteed to exist nor is it unique if it does.
Instead, we need an alternative reference map ¢q as well as certain continuity conditions. We

refer to [16] for the definitions. Once such a reference map is given, a similar correspondence to

Thm. 41 holds.

Theorem 42. (Belavkin [16]) Let A be a C*-algebra and denote the space of bounded linear

operators on Hilbert space H by B(H). Let ¢, ¢o : A — B(H) be bounded completely positive
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maps and let K be a Hilbert space for a representation w: A — B(K) in which ¢q is spatial, i.e.,
¢o(a) =v'r(a)v, Vae A,

where v : H — K is a bounded operator.

1. ¢ is completely absolutely continuous with respect to ¢g if and only if it has a spatial
representation ¢(a) = v*m(a)v’ with w(a)v" = Om(a)v, where § is a densely defined
operator in the minimal H, commuting with 7(A) = {n(a) | a € A} on the lineal

D ={>2;m(a;)Fn;}.

2. ¢ is strongly completely absolutely continuous with respect to ¢g if and only if ¢ is spatial in
(m,H) and there exists a positive self-adjoint operator p, uniquely defined on D, affiliated

with the commutant m(A)" and such that Va € A:

1

d(a) = v pr(a)v = (p2v)"m(a)(p?0) (2.27)

3. ¢ is completely dominated by ¢q if and only if Eq. (2.27) holds and p is bounded.
We are now in the position to prove the following.

Theorem 43. Let Ny, Ny be von Neumann algebras with no summand of type Iy. There is a
bijective correspondence between the set of finitely (completely) additive, orientation-preserving
global sections of the Bell presheaf F(ﬂ(ﬂg;)), Vies i= m X V/(\./\E) and the set of (normal)
states S1g2 := S(N1®N3) on the spatial tensor product algebra Ni&NS.

Proof. Tt is not too to hard to see that every state o € S(NRN5) gives rise to an orientation-
preserving global section of the Bell presheaf 7, € T'(II(Vig2)).

For the other direction, we proceed in several steps. We first show that associated with every
global section there exists a linear operator on the tensor product algebra. This generalises
Thm. 37, which deals with finite dimensions and single factors only. We then prove positivity of
this operator from complete positivity of an associative map under the consistency condition be-

tween local time orientations. This step crucially hinges on the fact that we consider the dilated
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probabilistic presheaf. Finally, we establish the correspondence between positive self-adjoint

operators of norm one and states on the tensor product algebra.

Linearity. Fix a context V; € V(N;) and consider the corresponding partial order of

contexts under inclusion inherited from Vigs = V(N7) x V(N2) by restriction,

Viga(V1) == {Vi x Vo | Vo € V(N2)} .

In every context V = Vj x Vy € Vg9, the probability measure i, € I(Vig2)(V) corresponding

to the global section v can be written in terms of conditional probabilities as follows:

Vp e P(Vi),q € P(Va) © (P ) = 1y, (D), (q | p) = iy, ()13 (0) = iy, (p)os(q)  (2.28)

Here, (p,(_ | P))vevive) =: 75 € I(II(Viga(V1))) is a global section of the probabilistic
presheaf II(Vig2(V7)), which also depends on p € P(Vy). Since Vigo(Vi) = V(N3), by the
generalised version of Gleason’s theorem, Thm. 22, global sections correspond with quantum
states T'(IL(V(MN3))) = S(N2), in particular, +4 corresponds with a state of € Ay (dependent on

p). As Vi € V(N7) was arbitrary, Eq. (2.28) holds for all V' € Vg5 and, hence, for all p € P(N}).
Let p = p1 V pa = p1 + p2 with py, ps € P(N7) orthogonal, i.e., p1ps = 0. As v is additive,
i (P)os = iy, ()03 + py, (p2)os? .

It follows that the map ¢7(p) := py, (p)o satisfies,

o'(p) = 0" (p1) + 0" (p2)

for p = p1 V pa = p1 + p2 with p1,p2 € P(N;) orthogonal. Note that while Sy := S(N;) is a
Banach space (as a closed subspace of the continuous dual of A5) it is not a priori clear that
the image Sy under o7 : P(N;) — S is a Banach space. Consider therefore uy. (pi)75* in S;

where pr, — p in the weak operator topology on Aj. Note that by symmetry of Eq. (2.28) and
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for ¢ € P(N2) arbitrary, we have the identity

113, (px) 5" (q) = o (pr) iy, (@)

where the right hand side converges to of (p)uy,(¢) with of € S := S(N1) ~ T(II(V(M))) as S
is a Banach space. It follows that S} is also a Banach space and, by definition, S, only contains
bounded operators such that ¢7 is a finitely additive, Si-valued measure on P(N7). By Thm. 23
07 thus uniquely extends to a bounded linear operator ¢., : Ni — S}. Equivalently, we can
understand this as a bounded linear operator o7 : N7 ® Ny — C with ® the algebraic tensor

product by setting

(O Xa; ©b) =Y Nigy(a;)(bi), A eCneN. (2.29)
=1 i=1

We collect some important properties of ¢7. First, 07 is a bounded linear functional on AV ® Ns.
Second, summing over mutually orthogonal projections py € P(N;) with \/, pr = 1 on the first

subsystem, by additivity of ¢, we obtain
D @b =Y & m)b) = D it (o (b) = s (1)o3(b) = 03(b) =: 02(b) -
k k k

Hence, for o9(b) # 0 finite (complete) additivity implies o7 (_ | b) := @S—&ff’) e S ~T(II(V(M))),
2
and thus formally, 07(a,b) = o] (a | b) - 05 (b). It follows immediately that o7 is normalised since

o] and o3 are; alternatively, 07(1) = ¢,(1)(1) = py, (1)o3(1) = 1 since pf, and o3 are normalised.

Topology and tensor product. We need to show that ¢ extends to a bounded linear
functional on the spatial tensor product N7®@N,. Clearly, 07 can be extended to a linear
functional on NV ® N3 where ® denotes any topological tensor product between Banach spaces
(cf. [71]). However, in general this extension is not unique, i.e., given any cross norm on B(H)
and a (faithful) x-representation 7 : N7 ® Ny — B(H) on some Hilbert space, there can be
more than one linear functional on N; ® N5, which restricts to 7. In this case the bijective

correspondence between states and global sections is lost.
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However, this is not the case for the spatial tensor product N1&N; C B(H; ® Hsz), where Hy,
H, denote Hilbert spaces for which there exist faithful *-representations m; : N; — B(H;). To see
this, note that the operator ¢” can be written as a linear combination of states o1 € Sy, 02 € So,
e.g. by expanding a = > a;p; € Ny, b= 3, brgr in 07(a,b) = 3, asbeo (p; | ar) - 05 (qk)-
Furthermore, the spatial tensor product has the property that every product of states has a
unique extension to a state on the tensor product oyg49 = 01 - 02. (This is simply a consequence
of the fact that the tensor product on Hilbert spaces is unique up to isomorphism.) ¢, thus
uniquely extends to a linear functional on the spatial tensor product.

Now note that a linear functional ¢ on a C*-algebra is positive if and only if it is bounded
and ||¢|| = ¢(1), Thm. 1. Hence, if 07 is positive it follows that o7 is a state on the spatial tensor
product N;®AMNs. In the remainder of the proof we will thus show positivity of o7 : Ni@N; — C
by proving complete positivity of the related map ¢, : Nj — §2 and the correspondence between

these maps through Thm. 41 and Thm. 42.

GNS Representation. To this end it will be useful to work with a *-representation of N.
Note that every C*-algebra has a faithful representation in the bounded operators of some Hilbert
space B(Hz) by Thm. 5. Moreover, every von Neumann algebra possesses a faithful normal,
semi-finite weight wy and thus allows to construct a *-representation 72 : No — B(H3) using the
Gelfand-Naimark-Segal construction. The latter defines a Hilbert space by completion of the in-
ner product (a,b) = wo(b*a) for all a,b € N3 := {x € Ny | wo(z*x) < 0o}. We will use any such
faithful x-representation to translate between states and operators by means of the Riesz-Fréchet
theorem, Thm. 6: let ¢ € H3, then there exists y € Hy such that ¢(x) = (z,y) for all x € H,.
Moreover, the map sending y € Hs to ¢, is an isometric isomorphism. Based on this identification
we will use states and operators interchangeably in what follows.*? In particular, note that there
exists a unique bounded self-adjoint operator p¥ = Y7, ck(p], ® p3 ;) € Ni@N5, ¢, € C such
that 07(a,b) = (@b, ") = wiea(()* - (D)) = wiea(p” - (aBB)) = X, ca wilp] - a)-walpl -b)

for all a € N7, b € N>. In finite dimensions, p” is the operator ¢ in Thm. 37.

40Tn a slight abuse of notation we will also use the same symbol to denote maps g : D — B(H) resulting from
a corresponding map ¢ : D — N and a faithful representation 7 : N'— B(H) (i.e. ‘g=mog’).
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Complete positivity of ¢,. With these identifications, it is easily seen that o7 : P(N7) —
S5 corresponds to a map o7 : P(Ny) — B(H2)4. Moreover, by Def. 27 o7|pwy = v*pyv for
v: Hy — K and ¢y an embedding (spectral measure) in every context V € V(N), in particular,
it defines a global section of II"(V(N;)). By Thm. 33 ¢, is thus not only positive but also
decomposable, ie., ¢, = v*®.v for @, : Ni — B(K) a Jordan x-homomorphism. Finally,
since v is orientation-preserving with respect to the dynamical correspondences on N; and N;

(respectively, @, (N;) C B(K)), ®., extends to a x-homomorphism by Thm. 17.

We are left to show that the orientation on N, fixes the orientation on the von Neumann al-
gebra N, for which ®.(N;) C Ny C B(K) and which restricts to Ny under v, i.e., Ny = v*Njv.
To see this, note first that the argument reduces to factors since we can apply Thm. 33 to each
factor pNop independently, where p € ZP(N5) is a central projection in Ny. v therefore preserves
the factor decomposition on A5 by construction. Moreover, B(Hs) 2 Ny — NY C B(K) is an
embedding in every factor pNop, p € ZP(Ns), since the linear operator v from Thm. 33 is the
projection onto the subspace corresponding to Hs in . From this it follows that the dynamical

correspondence on N> determines a unique dynamical correspondence on Ny C B(K).

Positivity of o7. We need to relate complete positivity of ¢, to positivity of 7. In finite
dimensions this correspondence is established by Thm. 41. Explicitly, let N = B(C") = M,,(C),
Ny = B(C™) = M,,(C). Since ¢, is completely positive, py is positive by Thm. 41, where
(pg,)ij = O(Eij) is the image of ¢, under the Choi-Jamiotkowski isomorphism (cf. Thm. 41).
Finally, by the correspondence between states and density matrices in finite dimensions, we have
(p =0, tr(p) =1: Ni@N3 3 p) < (tr(p-_) € S(N1®N3)), in particular, pg <> 07 := tr(pg, -_).
In summary, positivity of o7 thus follows from complete positivity of ¢,. This proves Thm. 43

for finite-dimensional von Neumann algebras (with no summand of type I5).

In infinite dimensions, the trace can be replaced by the canonical reference map given by the
faithful weight w; : A; — C in the representation 7** : N7 — B(#1). This yields a completely
positive map ¢y = ly,wi = vimovg. Complete positivity of ¢y means szzl(%(aij)m, nj) >0
for all n; € Ha, n € N whenever a;; € M, (N;)+. Moreover, since w; is faithful, w;(z) = 0

implies # = 0. Hence, any sequence (a;;j ) € N; for which lim,, o szzl(qﬁo((aij)m)m, nj) =0
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necessarily converges as well, i.e., lim,,_,(a;;)m = 0. (More precisely, let a;; € M, (N7)4 be a
non-negative matrix. Then Y 7 (do(ai)ni 1) = >_7 -1 (mo(ai;)vomi, von;) = 0 for all n; € Hy
implies m(a;;) = 0, since 7y is faithful, which implies a;; = 0, since w; is faithful.) But then the
same also holds for any other completely positive map, i.e., lim,, 0 szzl(@,((aij)m)m, nj) =0
for all n; € Hs.

By definition ¢, is thus strongly completely absolutely continuous with respect to ¢q (cf.
[16]), hence, Thm. 42 applies and there exists a positive operator p,, =, cx (p’f’ﬁsw@p’;@)

such that ¢, = v{py movg. Note that this operator corresponds with ¢ in Eq. (2.29),

o”(a,b) = ¢,(a)(b)
= wa(dy(a) - b)

= wa((vgpg, mo(a)vo) - b)

= w2 (US (Z Ck P]f,¢w®ﬁlzc,¢w> 770(@”0) ‘b>
k

= Z Ck W1<p11€,¢7 ) a) : WQ(PS,% ) b) = (a®b, P%) .
k

In fact, since the latter is bounded, ¢, is also completely dominated by ¢o (cf. [16]). In
finite dimensions pg., in Thm. 41 is the (noncommutative) Radon-Nikodym derivative with re-

spect to the standard trace. Succinctly, o7 is positive and thus the unique state associated with ~.

Normality. Finally, we highlight that the arguments in the proof work for finitely additive
as well as completely additive global sections. In particular, Thm.. 33 extends to complete
additivity and normal Jordan s-homomorphisms. Hence, ¢” is normal whenever 7 is completely

additive and vice versa. This proves the theorem. ]

A few remarks are in order. First, without specifying time orientations explicitly, the only
information accessible on the level of contexts is the Jordan x-homomorphism aspect in @, in
particular, the mere context structure supports different time orientations. Conversely, every
global section of the Bell presheaf already corresponds with a quantum state for some choice of

time orientation.
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To see this, consider the partial order of composite contexts Vigo = Vi X Vs, for which
there exist N7, Ay von Neumann algebras with no summands of type I such that V; = V(N;),
Vs = V(N;). Combining Thm. 43 and Thm. 34, it is not too hard to see that every finitely
(completely) additive global section of the Bell presheaf v € I'(II(Vi¢2)) corresponds with a
(normal) state 07 € S1g9 on the spatial tensor product algebra /\71@./\7; for some von Neumann
algebras J(N}) € J(N1) and J(N3) ~ J(N2). Namely, we may choose an orientation on
J (N3) according to the orientation on B(K). By a similar argument as in Thm. 34, we can then
‘pull back’ this orientation to J(N7) by Kadison’s theorem, Thm. 28, which lifts the Jordan
«-homomorphism & : 7 (./\N/'l) —J (./\7;) to a x-homomorphism ® : A; — Ny. Hence, for every
global section there exists (at least) one corresponding completely positive map ¢, = v*®v,
which it turn corresponds with a state on the respective von Neumann algebras ./\71,./\7; by the
same arguments as in Thm. 43. (Yet, unlike in Thm. 34, there is no longer a canonical choice of

orientation on B(K).)

Second, we note that ¢, is completely positive only with respect to certain dynamical corre-
spondences and thus von Neumann algebras, namely those for which & preserves commutators.
In particular, one should not expect ¢, to be completely positive with respect to any choice
of dynamical correspondences 1, and 1y, for the following reason: let ¢ : A — B(H) be a
decomposable map, i.e., there exists a Hilbert space K, a bounded linear operator v : H — I,
and a Jordan x-homomorphism ® such that ¢ = v*®v. By Thm. 32 this is equivalent to the
condition that for every matrix with x;;, z;; € M, (A)+ also ¢(z;;) € M,,(B(H))+. On the other
hand, every Jordan x-isomorphism is the sum of a x-isomorphism and a x-anti-isomorphism

-
® = & + & by Thm. 28. In particular, we have the following:

Z(Qﬁ(xw)xl, T;) = Z(@(xij)vxi, VL) = Z(g(:p”)vxz, vz;) + Z(%(Lj)vxl, vx;) >0

%
Since @_{;, % are (anti-)x-isomorphisms, by Stinespring’s theorem the maps ¢ = v*gv and
— — -
¢ = v*®v satisfy the following conditions: z;; € M,(A); implies ¢ (z;;) € M,(B(H))+
F
and zj; € M,(A);+ implies ¢ (zj;) € M,(B(H))+. Now let ¢t be the partial transpose on

M, (A), then t(z;;) = zj. Generally, t(z;;) ¢ M,(A); for z;; € M,(A); and thus also
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Zij(?@ij)l"ia x;) = Z”(%(t(mﬂ))xz,x]) # 0. We therefore cannot conclude that z;; € M, (A)+
implies D 7 ((x;)wi, 75) >

—
time orientation on M, (A), we find that ¢ = ¢ + ¢ will generally not be completely positive

0. Noting that the partial transpose effectively changes the local

with respect to any dynamical correspondence. Note that this argument applies in particular
to the matrix py = 3_;; Eij ® ¢(Ey;) € My, (C) (cf. Thm. 41), and thus provides a link with
entanglement in the famous Peres-Horodecki criterion [81].

We also point out the interesting fact that while individual contexts arise from the ‘time-
less’ principle of simultaneous measurability, the order relations between contexts encode time
directions, which are distinguished by certain entangled states. A closer look at the interplay

between entanglement and time orientations will be postponed for later study.

Finally, we combine Thm. 43 and our earlier results to arrive at the following reformulation

of Bell’s theorem.

Theorem 44. (Bell’s theorem in contextual form) Let the observables of a physical system
be represented by von Neumann algebras Ny, Ny with no summand of type Iy. Then the local

state spaces S; = T'(IL(V(N;))), @ = 1,2 with IT in Def. 27 compose as

e~ o~

S(M@N2) ~ T(I(V(M) x V(M) -

Moreover, for N; abelian the pure state spaces ¥y = S(N;) =~ T(Z(V(N;))), i = 1,2 compose as

S x o = DE(VN) x VL)) .

Proof. The first assertion is Thm. 43. The second assertion follows from the derivation of Bell’s

inequality in Sec. 2.4.1 (see also Prop. 8 below). O

Thm. 44 subsumes the different types of composition in classical and quantum theory into a
single type of contextual composition. Furthermore, it incorporates the bounds on correlations—
such as those in Eq. (2.10) arising from the corresponding locality conditions in the form of

factorisability and no-signalling—in terms of the allowed state spaces. As a consequence, we
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obtain an immediate explanation for the bound on the right-hand side of Eq. (2.10), which
can be interpreted as a bound on correlations from generalised Bell inequalities based on the

assumption of no-signalling and context composition.

Bell’s original theorem can be understood as a consequence of a classical state space picture
with composition defined by the Cartesian product on the level of its pure state spaces. This
famously breaks down in quantum theory, which violates the inequalities bounding correlations in
such models. The same classical state spaces also arise from composing contexts (cf. Eq. (2.21)),

yvet the context order is trivial and easily remains unnoticed in classical theories.

Defining composition via contexts rather than states provides a unified notion for both
classical and quantum theories. This is surprising since the product of contexts Vigo = Vi X Vs
means a substantial reduction in the number of contexts compared to V(H; ® Hz). The latter
constrains global sections of the corresponding dilated probabilistic presheaf II(V(H; @ Ha))
to quantum states by Thm. 24, yet the Bell presheaf I1(V;g2) is only a sub-presheaf of the
former and it is a priori not clear whether general non-signalling distributions in the form of
global sections v € T'(I1(V1g2)) contain super-quantum correlations. Remarkably, Thm. 43 still
constrains global sections of the Bell presheaf to quantum states under the additional consistency
condition of being orientation-preserving. In fact, all global sections correspond with quantum

states for a suitable von Neumann algebra.

Note also that this sheds further light on a previous result in [15], where it was observed
that ‘locally quantum’, non-signalling correlations do not exceed quantum correlations. This
immediately follows for global sections of the Bell presheaf, which always correspond with

quantum states for suitably chosen time orientations in subsystems.

A similar result was also reported by Colbeck and Renner in [37]. There it is shown that
quantum theory is complete in the sense that no theory can contain more information if it agrees
with quantum mechanical predictions and obeys a notion of free choice. The latter is closely
related to our notion of composition, in particular, it also implies the no-signalling constraints in
Eq. (2.25). Consistent probability assignments thus arise as global sections of the Bell presheaf,
which are classified by Thm. 43.
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The correspondence between the notions of locality inherent to factorisability and no-
signalling, composition, and contextuality carries even further. Indeed, one might argue that
considering single-context theories is too restrictive to acknowledge the power of Bell’s theorem.
In fact, we will find that factorisability not only corresponds to single-context state spaces but
to all theories with ‘classical’ microstates in the form of global sections of a generalised spectral

presheaf. We will address this in more detail in Sec 2.5.
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2.5 General non-signalling theories

The setting of von Neumann algebras in the definition of the context category and presheaves
defined over it provides a framework general enough to encompass both classical and quantum
theories. One might nevertheless be interested in studying the principle of physical contextuality
in more general scenarios. For instance, one could argue to give up the algebraic structure in
von Neumann algebras globally, yet model every context by an abelian von Neumann algebra,
which suggests to study Hyperstonean spaces (cf. Thm. 10). This approach seems especially
interesting from the perspective that local structure is the only one directly accessible and,
together with the nesting relations between contexts, proves to be behind many results of the
theory as shown in Sec. 2.3 and Sec. 2.4. To accommodate for this, in the next section we
generalise the framework of presheaves over the context category considerably by allowing for

(Hyperstonean) orthomodular lattices (cf. Sec. 2.5.1).

In particular, we are interested in correlations in composite systems, for which we keep
the notion of context composition in Eq. (2.24). Recall that for von Neumann algebras this
leads to a genuinely different context structure for composite systems than given by the tensor
product. There are by far more contexts and more restriction maps in II(V(H; ® Hz)) than
in I(V(H1) x V(Hz)), and global sections of the latter probabilistic presheaf are thus a priori
less constrained than those of the former, which correspond with quantum states by Gleason’s
theorem in contextual form, Thm. 24. Remarkably, Thm. 44 shows that global sections of
the Bell presheaf essentially correspond with quantum states for von Neumann algebras (with
no summand of type I5), which suggests context composition as an alternative for the tensor
product. Clearly, for general orthomodular lattices the tensor product is no longer defined. Yet,
as we will see below, the definition of the probabilistic presheaf over product contexts can be

generalised and some aspects of Thm. 44 still apply in this case.

Note that alternative context structures have also been studied elsewhere [107, ]. In
[31] it was shown that a type of nonlocality persists under relaxation of the (non-contextual)
identification of non-maximal operators, the consequences for the underlying context structure

were explored in [63]. Other types of contextual structures have also been discussed in [26, 134].
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2.5.1 Presheaves over orthomodular lattices

In Def. 25 and Def. 26 we introduced the spectral and the probabilistic presheaf for von Neumann
algebras. [28] extends the former definition to orthomodular lattices and proves a generalised
Stone duality for complete orthomodular lattices. We review the main definitions and results
and extend them to the probabilistic presheaf.

In analogy to V(N) one defines a context category for orthomodular lattices (cf. Def. 13).

Definition 32. For an orthomodular lattice L, let B(L) denote the partial order of Boolean
sublattices of L, where the partial order on B(L) is given by inclusion. B(L) is also called the

context category of L.
It is straightforward to see that this lifts to a functor [28].

Proposition 7. There is a functor B : OML — Pos sending each orthomodular lattice L to
its context category B(L) and each homomorphism ¢ : L — M of orthomodular lattices to the

corresponding morphism ¢ : B(L) — B(M).

Recall that the spectral presheaf ¥ of A" over V(N') maps contexts into their Gelfand spectra
Yy locally. The relevant duality underlying this functorial mapping is Thm. 10, which applies
to the subcategory HStonean of Stonean in Thm. 8.

Given a general orthomodular lattice L € OML with context category B(L) consisting of
Boolean algebras, one cannot apply Gelfand duality. Nevertheless, one may still assign a context

its Stone space. Accordingly, [28] generalise the spectral presheaf to orthomodular lattices.

Definition 33. Let L be an orthomodular lattice with context category B(L). The spectral

presheaf ¥ of L over B(L) is the presheaf given

(1) on objects: for all B € Ob(B(L)), let X := Q(B), the Stone space of B.
Here, X5 denotes the component of 3(L) at B.

(ii) on arrows: for all B,B € B(L), if BC B, let X(igp) : X5 — X5 with A — |
Here, A5 denotes the restriction of A to the subalgebra B.
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Similarly, we would like to extend the notion of probabilistic presheaf to orthomodular lattices.
Note that for the spectral presheaf (L) over the orthomodular lattice L € OML we only give
up the structure between conterts, whereas the structure within contexts remains the same by
means of Stone duality. However, the same is no longer true for the probabilistic presheaf over
general orthomodular lattices, since Boolean sublattices do not necessarily correspond with
commutative von Neumann algebras.

In order to enforce the structure of commutative von Neumann algebras within contexts
we need to lift Stone duality to Thm. 10, i.e., restrict to Hyperstonean spaces. The latter are
in particular Stonean spaces and thus correspond with complete Boolean algebras by Thm. 8.
It is therefore natural to restrict to complete orthomodular lattices. Still, not every Stonean
space corresponds with a von Neumann algebra, one needs to further restrict to Hyperstonean
spaces. Correspondingly, we will call an orthomodular lattice L € OML Hyperstonean if its
Boolean subalgebras correspond not only to Stonean but to Hyperstonean spaces, and write
HOML for the category of Hyperstonean orthomodular lattices (with suitable morphisms,
preserving this extra structure). With this definition, the following generalisation of II from
V(N) to Hyperstonean orthomodular lattices is again only concerned with the constraints

between contexts.

Definition 34. Let L € HOML be a Hyperstonean orthomodular lattice with context category

B(L). The (normal) probabilistic presheaf II of L over B(L) is the presheaf given

(i) on objects: for all V € B(L),M let

IO, = {uyv : P(V) = [0,1] | pv is a finitely (completely) additive probability measure}

(i) on arrows: for all V,V € B(L), if V.CV, let U(igy) : Iy, — Iy with X — X

Analogously, we can also generalise the definition of the dilated probabilistic presheaf to
L € HOML. Note that while global sections of the probabilistic presheaf II(V(N)) correspond
to quantum states by Thm. 24, for L € HOML, I'(II(B(L))) might be the empty set (cf. [67]).

We write V € B(L) for L € HOML to indicate that, as with V(N) for A a von Neumann algebra, contexts
correspond with commutative von Neumann algebras since L is Hyperstonean.
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Importantly, [28] shows that the spectral presheaf is a complete invariant of the orthomodular
lattice, i.e., two orthomodular lattices L, Ly are isomorphic if and only if their respective spectral
presheaves are: Ly ~ Ly < X(B(Lq)) ~ X(B(Ls)). Since the probabilistic presheaf II(B(L))
over L € HOML contains more information than the spectral presheaf ¥(B(L)) and HOML is
a subcategory of OML, the same also holds for the former: Ly ~ Ly < II(B(L1)) ~ II(B(Ls)).

2.5.2 Generalised classical state spaces

In this section we explore the consequences of context composition for the (generalised) spectral
presheaf in Def. 33, as well as for the corresponding (classical) state spaces consisting of its
global sections. Recall that Bell’s theorem rules out factorisable hidden variable models, in
particular, those defined in Eq. (2.22). In fact, the Cartesian product construction in Eq. (2.22)
and factorisability are natural also for the generalised spectral presheaf. This follows as global
sections of the spectral presheaf over the composite context category Bigo := B(L1) x B(Lz) for

Ly, Ly € OML define valuation functions, which are easily seen to compose classically.

Proposition 8. Let Ly, Ly € OML be orthomodular lattices with respective context categories

B(L1), B(Ly) and spectral presheaves 3(B(L1)), X(B(Ls)). For global sections of the spectral

A=

presheaf over the composite context category the following correspondence holds,

[(Z(Big2)) ~ T(E(B(L1))) x T(Z(B(L2))) - (2.30)

Proof. Clearly, 71 - 72 € I'(E(Big2)) for all v € I'(Z(B(L1)), 72 € T'(E(B(L2)). Conversely, let
v € I'(X(Big2)), then v =y, - v, with 1y € E(B(L1))vi, 1, € Z(B(L2))v, for all contexts,
V = (V1,V3) € Bigz. From this it easily follows that 71 := (v )ner, € T(E(B(L1))) and
Y2 1= (V) veen, € I'(E(B(L2))) (cf. proofs to Thm. 45 and Thm. 43). O

With Prop. 6 and Prop. 8, Bell’s theorem provides a no-go-result for all classical state spaces
of the form in Eq. (2.22), with pure states given by valuation functions, equivalently, global
sections of the spectral presheaf for composite systems: the correlations in the outcome statistics
are constrained by factorisability and therefore cannot account for (all) those arising in quantum

mechanics.
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More generally, assume that the state space of the system corresponds with the global
sections of the probabilistic presheaf I'(IL(B(L))) with L € HOML. Note that I'(II(B(L))) is
in particular a convex set, the pure state space I'pue(IL(B(L))) therefore consists of all elements
that cannot be written in terms of proper convex linear combinations of other elements. Clearly,
the pure state space always contains global sections of the corresponding spectral presheaf
I'(E(B(L))) € Tpue(II(B(L))). Moreover, for classical, i.e., single-context theories equality holds.
By Prop. 8 the subset of the pure state space consisting of such microstates composes via the
Cartesian product. The latter thus applies not only to classical (single-context), but to all
theories for which I'(X(B(L))) = I'pue(IL(B(L))). Since the latter compose via the Cartesian

product, they satisfy factorisability and thus the Bell inequalities.

Clearly, this analysis breaks down for more general pure states v € I'pue(IL(B(L))), for
which factorisability is replaced by the no-signalling marginalisation constraints. Even more
drastically, this assumption breaks down if I'(3(L;)), I'(X(L2)) are empty. The latter is the
case in quantum theory, where L; = V(N7), Ly = V(N;) correspond to von Neumann algebras
(with no summand of type I5). Then we already know that valuation functions do not exist
by the Kochen-Specker theorem, Thm. 19, and it is natural to interpret Bell’s theorem as a
consequence of the impossibility of a pure state space consisting of microstates v € I'(X(B(L))).
In this reading Bell’s theorem becomes a special case of the Kochen-Specker theorem, locality
only plays a secondary role. The only exception are two-dimensional quantum systems, and by
Prop. 8 composite systems with subsystems of local dimension two. In this special case, Bell’s
theorem may be interpreted as a stronger no-go-result than the Kochen-Specker theorem ruling

out theories with state spaces arising from global sections of spectral presheaves.

The above analysis is concerned with the classical part of Bell’s theorem in Thm. 44, which
corresponds with the left-hand side of Eq. (2.10). In the next section we consider the right-hand
side of Eq. (2.10), yet in the setting of (Hyperstonean) orthomodular lattices. As shown before,
global sections of the probabilistic presheaf over product contexts are non-signalling, yet they no
longer restrict to quantum states since Gleason’s theorem does not apply to general orthomodular
lattices. Nevertheless, a generalised statistical version survives even in this case and allows to

compare correlations beyond those realised in classical and quantum theories.
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2.5.3 Bayes’ theorem and the Bell presheaf

In this section we comment on the implications of context composition on correlations arising
from global sections of the generalised Bell presheaf*? I1(Bgs) with Bigo := B(L;1) x B(Ls)
over (Hyperstonean) orthomodular lattices Ly, Ly € HOML. We will refer to theories with
state spaces given by global sections of the generalised Bell presheaf as general non-signalling
theories.*> The naming convention is justified since the marginalisation constraints between
product contexts are equivalently encoded by no-signalling (cf. Eq. (2.25)).

Recall that any joint distribution p(A, B) over events A, B corresponding to random variables
a, b satisfies a symmetric decomposition based on conditional probabilities x(A | B) underlying

Bayes’ theorem,

WA, B) = u(B | A) - u(A) = u(A | B)- p(B) . (2.31)

In particular, Eq. (2.31) holds for probability distributions in every product context V =
(V1, Vo) € Biga, yet there is a priori no reason why a similar decomposition should hold
simultaneously over all contexts. For quantum theory this is guaranteed by Thm. 43, i.e., context
composition and Gleason’s theorem. More precisely, let p be a composite density matrix over

Hilbert space H = H; ® Ha. Then for all p; € P(Hy), p2 € P(H2) it holds

p(p1,p2) = tr(p(p1 @ p2)) = tri(p1(p2)p1) - tra(pap2) =: pr(p1 | p2) - p2(p2) = p2(p2 | P1) - pr(p1)
(2.32)

where p1(ps) 1= tra(p(1 @ p2)), po := tri(p) and similarly py(p;) = tri(p(p1 ® 1)), p1 := tra(p).2

Note that Eq. (2.32) immediately rules out PR-box distributions. This is essentially a different
version of the argument in [15], which asserts that no-signalling and systems being ‘locally
quantum’ restrict correlations to be quantum. What is more, Bayes’ theorem becomes a type of

local-to-global property similar to but independent of linearity in Gleason’s theorem, Thm. 24.

42While of general interest, here we will not discuss the subtleties arising from restricting to the dilated
probabilistic presheaf in the generalisation of the Bell presheaf in Def. 30 to Hyperstonean orthomodular lattices.

43Note that this definition is different from the definition of general probabilistic theories given, e.g. in [134].

“For instance, the PR-box distribution arises as a global section of the Bell presheaf over the restricted
context order consisting of just four contexts corresponding to the four types of measurements Alice and Bob
can perform in a CHSH experiment (see also Ex. 6 in Sec. 2.5.4).

45Note that —21(P2) , =2 2(1) _ are the post-measurement states after a local measurement on either subsystem.
tra(p2p2)’ tri(pip1)
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Theorem 45. Let Ly, Lo € HOML be Hyperstonean orthomodular lattices and B(Ly), B(Ls)
their respective context categories. For all v € T'go := I'(IL(Big2)) with Bigs := B(L1) x B(Ls)
there exist (unique) v, € T(IL(B(L1))), 72 € T(I(B(Ls))) such that for all p; € Ly, ps € Lo:

Y(P1,p2) = 1 (p1 | p2) - Y2(p2) = (P2 | 1) - Y2(p1) (2.33)

Proof. The proof is a shortened version of Thm. 43. First, fix a context V; € B(L;) and consider

the corresponding partial order of contexts under inclusion inherited from Bygs,
31&2(‘/1) = {V1 x Vs ’ Vo€ B(L2)} .

The probability measure p], := 7y in the context V' = (Vi,Va) € Big2(V4) corresponding to the

global section 7 € I'ygo for py € P(V1), p2 € P(Vs) takes the form

piyr (p1, p2) = pay, (p1) - ey, (02 | 1) - (2.34)

It follows from context composition that v§* := uy, (_ | p1) € i, (p1) - TIL(B(L2))) for all
p1 € P(V1). As Vi € B(Ly) was arbitrary, Eq. (2.34) holds for all V' € By, in particular, for all
p1 € L. Furthermore, let p; = ¢; V ¢ with ¢y, ¢} € L; orthogonal, i.e., there exists V; € B(L;)

such that ¢, ¢, € P(V}) and ¢; < ¢-. As ~ is finitely additive we also have

1wy, (p1) - =l (1) - A8+ (gh) - st

It follows that the map ¢, : Ly — Ry - T(IL(B(L2))), p1 — i, (p1) - 75" satisfies ¢, (p1) =
dy(q1) + ¢4(qy) for p1 = @1 V q; with ¢1,¢q; € Ly orthogonal. Furthermore, let ¢} (p1) =
13- (p1) - 73" (p2) and note that for every set of mutually orthogonal ¢; € P(V1), Vi € B(L;) with
Vi =1¢€ Ly:

\/% g1) = 113, (1) - 13 (p2) = 73(p2) =: 72(p2)

Hence, for 72(p2) # 0 we have v1(_ | p2) = Wj(;’;i) € T'(II(B(Ly))) and thus ~v(p;,p2) =
¢y (p1)(p2) = &7, (p1) = 71(p1 | p2) - 72(p2). The other direction follows by symmetry. ]
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Importantly, while linearity is a local-to-global property special to von Neumann algebras,
the notion of Bayes’ theorem only requires context composition in Eq. (2.24) and therefore holds
in general non-signalling theories. Thm. 45 is thus a type of generalisation of the non-classical
aspect of Bell’s theorem in contextual form, Thm. 44, to Hyperstonean orthomodular lattices
Ly, Ly, € HOML. It classifies the possible states on the composite system in terms of the states
on subsystems. For von Neumann algebras, where L; = V(N;), the latter bijectively correspond
with states in S(N;) by Gleason’s theorem, Thm. 22. Yet, for more general orthomodular
lattices we do not have this additional structure, which allowed to derive the particular Bell
inequalities for quantum theory such as Eq. (2.10). Instead, in the next section we consider
correlations in generalised non-signalling theories in terms of global sections of the Bell presheaf

directly and discuss a way to quantify correlations in such theories.

2.5.4 Correlations in general non-signalling theories

While the setting of von Neumann algebras is very rich and applies to existing classical and
quantum frameworks, one might yet want to consider more general scenarios. In particular,
from a foundations and information-theoretic perspective it is interesting to study correlations
in general non-signalling theories, which by the definition in Sec. 2.5.1 arise by considering
global sections of the Bell presheaf over Hyperstonean orthomodular lattices with composition

of contexts as in Eq. (2.24). We discuss a familiar example in this setting.

Example 6. The PR-box distribution arises as a global section of the Bell presheaf ypr €
[D(IL(BYR))) over the partial order of contexts BLE, = B(Ly) x B(La), where Ly ~ Lo, L; =
{0.pi, (1=pi), ¢i- (1= q:), 1} as a set, and B(L;) consists of contexts Vy,, = {pi, 1}", Vg, = {@:, 1},

and V° = {1}" with only (non-trivial) order relations V2 C V,,,, V..

Clearly, the context structure in Ex. 6 is different to the context structure in V(N; @ N3),
which for noncommutative von Neumann algebras is also different to the (trivial) context
structure in classical theories. We therefore seek a way to compare correlations in theories with
different context categories. To this end we will define a ‘distance’ between global sections in

the respective theories and some given reference set of probability measures.
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Note first that by Thm. 35, in every context V € B(L) a distance on probability measures
pi, o € I, can be defined as A(pq, p2) := ||1 — p2l|1, where || - ||; denotes the L;-norm on

the space of measurable functions on some standard measure space isomorphic to V.46

We want to define a similar distance also over multiple contexts and thereby compare
correlations between theories based on different context structures. More precisely, we measure
the distance to some given collection of reference probability measures defined over measurement

outcomes of certain observables, denoted Y = (uy) Note that instead of writing the

Vev:
dependence on observables explicitly, we suggestively write a dependence on contexts V e V.
More precisely, we take every probability measure iy to correspond to the (smallest) context
V that contains all observables it is defined over. In particular, this implies that observables
within such contexts are simultaneously measurable. However, in general this does not fix the
context structure of a theory T' (necessarily containing all relevant simultaneously measurable
observables in the probability measures ¥ = (p)yy) uniquely. Correspondingly, there is

a map &7 : V- B(L)7, which embeds the abstract contexts V € V into the theory-specific

context order B(L)r. In order to make this clear, we consider two extreme cases.

On the one hand, assume that 7, defines a local section vy = (uy)yey of IL(B(L)7), i.e., the
map &7 - VB (L)7, which embeds observables into the theory-specific context structure B(L)r,
is one-to-one. Then 7y is attained in that theory if it extends to a global section v € II(B(L)r).
However, not every local section arises from a global section (cf. Ex. 5), hence, in general we
can only approximate 7. To to so we minimise the sum of distances in contexts given by the

Li-norm:

Ar (o) == inf Z Ay, pv)

vELWUB(L)T)) &7

On the other hand, the theory 7" might assign every probability measure in Yy = (i ).y to

the same context V' € B(L)r, i.e., the map &7 : V- B(L)r is many-to-one. In this case, we set

Ar(%) = il}[f Z A(’Y%Mg(f/)) . (2.35)

46For X countable this equals the total variation/statistical distance, A(u1, o) := SUP 4o (x)lH1(A) — p2(A)].
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The general case is a combination of these two, in fact, both arise from the same formula:

Ar(7p) = inf ) Z A(’Yg(f/)’/%(f/))

el (I(B(L)r

vey

Note that Ar(7) depends on the context structure of the underlying theory T' via the map
¢V — B(L)r, which embeds the implicit context structure in V into B(L)y. For a given
set of reference probability measures 7y = (p7 ).y We thus obtain inequalities of the form
Ar(Yo) < Ar(50) by comparing theories with different context structures with respect to the
values of their contextual distances to 7. Note that we have not yet assumed observables to
be composite, the argument therefore applies also to single systems and thus leads to genuine

contextuality inequalities.

2.5.5 Generalised Bell inequalities

In the following we are interested in the special case of Bell inequalities, i.e., we consider
composite context categories Bigs. Moreover, Bell inequalities compare quantum with classical
correlations. Classical theories contain a single (maximal) context, hence, & collapses the
implicit context structure Vin 7o to a single context as in the second extreme case discussed
in the last section. In order to obtain a non-trivial bound from Eq. (2.35) in this case, we
necessarily need to consider probability measures Yy = (f7) <y, Which are not simultaneously
satisfiable by a factorisable probability distribution. The simplest such case arises by comparing

probability measures over the outcomes of operators of the form {a x b,a x V/,a’ x b,a’ x b'}:

pin (A, B a,b) = py, (Al a) - py, (B1b),  py(A B [ a,V) = py, (Al a) - py, (B[ V),

pi (A B | a',b) = py, (A" | ') - g (B[ ), py (A, B" | d' V) # pg, (A" | d) - pi, (B | V)
(2.36)

Recall that every factorisable joint probability distribution is a convex mixture of product
measures (A, B | a,b) = u(A | a) - u(B | b), where u(A | a) is the marginal distribution
conditioned on local measurement settings a. Clearly, such distributions can at most satisfy

three out of the four conditions above. This is precisely what the CHSH inequality measures.
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Before we continue to apply our approach to the CHSH inequality explicitly, we slightly
generalise this scenario in terms of the choice of 7y as follows. Consider composite observables
of the form a; x b;, i € {1,--- ,n1}, j € {1,--- ,no}, where a;, b; are local observables on
the first, second subsystem, respectively. If we assume sufficiently many local measurement
outcomes, we can choose a collection of general non-signalling probability measures (similar
to the PR-box distribution) 7o = ™) = (14¢7)¢ep> which violates a maximal number of
constraints in factorisable probability distributions. More precisely, there are (n; — 1)(ng — 1)
product constraints of the form in Eq. (2.36), and violation of a product constraint as in
Eq. (2.36) contributes 2 to the overall distance (cf. Fig. 2.4). With respect to such a collection

Yus, €very factorisable probability distribution is subject to the following bound:

Aa(rig ™) = 2(n = 1)(ng — 1) (2.37)

Note that this is a non-trivial bound since Ans(%(g“””) = 0 and thus represents a Bell inequality.

More precisely, by their very definition, the distributions in v maximise the distance
to factorisable probability distributions, i.e., convex combinations of product measures by
Eq. (2.18). In contrast, global sections in general non-signalling theories are constrained only by

the generalised Bayes’ theorem in Thm. 45. In principle, they are more general than factorisable

distributions and may thus violate the constraint in Eq. (2.37).

We finish by considering the CHSH scenario from this viewpoint, i.e., we explicitly compute
the correlation terms Ar(ypr) in the classical, quantum, and PR-box case for the simplest
scenario, where ni,ny = 2 and therefore vpg := 1(13’2). For the latter the context structure
is very simple and given in Ex. 6, it consists of the four maximal contexts (Blgy)max =

{Vior X Vipoo Vipy X Vg, Vi XV, Vi X Vi, b The PR-box distribution defines a global section of

the corresponding probabilistic presheaf ypr € I(B},). Hence, Apg(vpr) = 0.

For the quantum case we have Yo <> p = [7) (Y|, 71 <> tra(p), 71(_ | pB) ¢ tra(ppp) and
similarly, 72 <> tri(p) and v2(_ | pa) <> tri(ppa). With the choice of parameters given at the

beginning of Sec. 2.4 one computes Agp(Vpr) = 4 — 2v/2 (cf. Fig. 2.4).
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pur(A, B | a,b) B=-1 B=1 B=-1 B=1
cd  gm ns ‘ cd gm ns|{c gm ns ‘ cl qm  1ns

" b Vo 2+V2/s 15| 0 2=V2/s 0 | 0 2-V2/3 0 |12 2+V2/5 1/
v Yo 24V2[g 15| 0 2=V2/s 0 | 0 2-V2/s 0 |12 2+V2/3 1/p
o b o 24V2/3 1/ 1 0 2=V2/s 0 |0 2-V2s 0 |12 2+V2/s 1/
v 2 2=V2/s 0 | 0 2+V2/3 12| 0 2+V2/3 1/2|1/2 2-V2/3 ()
Figure 2.4: Correlations in the CHSH experiment [30], which has as reference distribution the

non-signalling PR-box distribution 7y = vpr = %(é’g) [125]. The latter is attained over the

context structure Big,, and approximated by 7. over the trivial context structure in classical
theories as well as by yqm over the context category Vigs = V(N;) X V(Ns) in quantum theory.

This in turn violates the corresponding (single-context) state space correlation term: there,
the closest distribution to vpg is given by the distribution ya(+,+) = ya(—, =) = 3, Ya(+, —) =
Y(—,+) = 0 (cf. Fig. 2.4), which has distance A(7q,pr) = 2 in accordance with Eq. (2.37).

Note that ER**(c22) = 4 — Ap(y%?), where ¢%? = ab + ab' + a’b — a'l/ is the (statistical)
quantity in the CHSH experiment in Sec. 2.4. We thus rediscover the CHSH inequality in
Eq. (2.10) as multiple-context distances to the non-signalling distributions in 5 = 71(13’2) = VPR,

which are purposefully chosen to reveal any departure from the product constraints imposed by

factorisability.
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2.6 Summary

In this chapter we studied contextuality in foundations of quantum theory. We gave a precise
conceptual definition of this physical principle in the form of the partial order of contexts,
colloquially, the collection of nested classical perspectives onto a physical system, and poured it
into a rigorous mathematical formalism for the case of quantum theory. We highlighted that
many integral properties of quantum theory arise as local-to-global-type constraints in the form
of global sections of suitable presheaves over the context category, in particular, we provided
new reformulations for Stinespring’s and Bell’s theorem. Not only do these reformulations
solidify the unifying status of physical contextuality in quantum theory, but they come with
significant improvements over existing results. First, Stinespring’s theorem in contextual form
shows that complete positivity—a crucial property of quantum channels—arises from positivity,
dilations in contexts, and a canonical choice of time orientation. Second, Bell’s theorem in
contextual form unifies the two substantially different ways of composing systems in classical
and quantum theory. Our reformulation thus relates to both faces of Bell’s theorem: bounds on
classical as well as quantum correlations, as in the CHSH inequality, Eq. (2.10). In particular,
by defining composition via contexts rather than state spaces, we proved that global sections of
the Bell presheaf correspond with quantum states unambiguously. This means a generalisation
of Gleason’s theorem to composite systems over the oriented context category. Moreover,
by identifying no-signalling with the marginalisation constraints over the product context
category, we showed that previous attempts at deriving the state space of quantum theory from
no-signalling need to be complemented with a consistency condition on time orientations in
subsystems. Consequently, no-signalling singles out quantum states over the context structure

in quantum theory with appropriately chosen local time orientations.

Our results apply to general von Neumann algebras and thus to general algebraic quantum
theory. As a possible generalisation to quantum theory, we defined general non-signalling
theories by relaxing the context structure arising from von Neumann algebras to (Hyperstonean)
orthomodular lattices. We embedded Bell’s theorem into this setting and provided a method to

compare correlations in theories with different context structure.
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Concretely, we showed that the CHSH inequality arises from a multiple-context distance

measure between global sections in such theories.

This research is naturally associated with the topos approach to quantum theory initiated
by Isham, Butterfield, and Hamilton [23, 24, 75, 87] and further developed by Isham and Déring
[1—1]. It should therefore also be understood as a successful test of the underlying deep insight
to view a quantum system as the collection of its classical perspectives. Given its continued
success, it is natural to ask for avenues of future research in this field.

One that arises out of this work, especially out of the reformulation of Bell’s theorem over
the composite context category, is a rigorous definition of composition of systems in the topos
formalism in the form of a universal property for appropriately defined categorical objects. On
a broader level, it would be interesting to elaborate on the inherent geometrical character of
the formalism. Already suggested by Isham, the obstructions arising from contextuality via
order relations might have a geometric origin and as such should be classified by means of
geometrical invariants, e.g. by the study of Cech cohomology. Moreover, the clean separation of
the dichotomic function of self-adjoint operators as observables and generators of time evolution
suggests a further geometrisation of the generalised state spaces in the form of the spectral and
probabilistic presheaf. This could help close the gap between classical and quantum theory,
suggest ways for quantisation, and ultimately lead the way towards unification of quantum

theory with other inherently geometric theories in physics, most desirably, gravity.

Further avenues for future research outside the immediate scope of the topos approach arise
e.g. from the close resemblance of the proof techniques used in the reformulations of Stinespring’s
and Bell’s theorem with existing criteria for entanglement in quantum information theory [121],
in particular, separable states might correspond to global sections independent of local time
orientations in subsystems. Also, it remains for future study to relate the ‘contextual distance
measure’ between correlations in theories with different context structures to other approaches,
in particular, the setting of Hyperstonean orthomodular lattices seems a promising starting

point to cross-identify ideas in the topos and the graph-theoretic approach to contextuality.
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Chapter 3

Contextuality in Quantum

Computation

Quantum computation rests on the idea to process information by the laws of quantum rather
than classical theory. There are at least two aspects to this. First, a unit of information in
classical physics, known as a bit, has two possible configurations, and measurement (‘read-out’)
simply reveals this information. On the other hand, a quantum mechanical unit of information,
called a qubit, possesses a plethora of possible configurations. Measurement still reveals only
one of two possible outcomes, yet in general only with some probability. Second, in modern
computers classical information is processed in electrical circuits by performing logic gates
in a well-ordered manner. Quantum information can be processed in a similar computing
architecture, known as the circuit model of quantum computation. Yet, while likely the most
broadly used one to date, several alternative models of computation exist.

One that is special to quantum theory is called measurement-based quantum computation
(MBQC). This model builds on the quantum phenomenon called nonlocality, which exhibits in
correlations between space-like separated parties that cannot be reproduced by any classical
model according to Bell’s theorem. The responsible quantum states are called entangled and are
arguably at the heart of the mystery behind quantum mechanics. MBQC exploits such nonlocal
correlations by performing a series of local measurements on a (highly) entangled resource state,

and post-processing the resulting local measurement outcomes.
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This idea goes back to the groundbreaking work of Raussendorf, Briegel, and Browne [21,
, |, who also showed that for suitable resource states MBQC presents a universal model
for quantum computation. What is more, the framework is especially interesting for the study of
one of the key open questions in the field of quantum computation. While quantum computers
are believed to outperform classical computers, it is not clear how this advantage occurs and
what the underlying resource is. From a theoretical point of view, as well as for the technical
realisation of future quantum computers, a key challenge therefore is to identify structures in
quantum theory, which provide a provable quantum advantage, and to classify and quantify such
resources. In recent years, contextuality has been suggested to play this role [20, 42, 44, 85, 08,

, ], and since measurement-based quantum computation explicitly exploits contextuality

in the form of nonlocality in composite systems, this has led to a number of strong results on

the resource character of contextuality in this setting [(4, ) ) , ].

The goal of this chapter is to further study contextuality within this architecture. In
doing so, we prove a computational criterion for contextuality in general measurement-based
computation in Sec. 3.1, we construct new examples of contextual MBQC in Sec. 3.2, and
identify a possible resource measure for contextuality in the form of the number of qudits

required for implementation in Sec. 3.3.
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3.1 Contextuality in measurement-based computation

Following the broad objective to classify the resource for quantum advantage, we strive to classify
contextuality in the form of nonlocality within the hybrid quantum computing architecture
known as measurement-based computation (MBC). This framework is tailor-made for the study
of nonlocality and largely independent of a particular physical implementation. Even on such
abstract level, we prove a strong link between function computation and nonlocality, which

generalises a previous result in [126]. This result has also been published in [6].

In Sec. 3.2 we will specialise this to the quantum case and further refine the classification of
contextuality for measurement-based quantum computation (MBQC). Nevertheless, already in
this section we will at times consider guiding examples arising within the latter. In fact, an

illustrative example, which contains much of the general structure, is the following.

A prototypical example: the Anders-Browne NAND-gate

We discuss an example, which illustrates the close relation between contextuality and compu-
tation. Recall that contextuality in the form of nonlocality is at the heart of Bell’s theorem.
Nonlocal correlations arise, for instance, from the outcome statistics of local measurements
performed on certain entangled resource states (cf. Sec. 2.4). Interestingly, such correlations
can be expressed in a computational way, as was first realised in [10], where Mermin’s famous
proof of contextuality based on local measurements on a three qubit GHZ-state is turned into
the computation of a NAND-gate. We briefly review both, the original contextuality argument

by Mermin [112, 113] and the related computation due to Anders and Browne [10].

Consider the qubit operators in Fig. 3.1 (b) Oy, which all have eigenvalues +1. Note also
that the operators along any of the lines commute with each other, and thus define a context.
Now assume there was a value assignment v : Oy — {—1,1} for the operators in Fig. 3.1 (b),
then their eigenvalues are required to reflect the algebraic constraints on the level of operators
according to Def. 1. In particular, multiplying operators in contexts results in the identity for all

edges apart from the horizontal one, for which the product of operators yields negative identity.
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Y3
X1 Y, X1Y, / \

X1 Xo Xy — XiYo¥3-Y1.XoYs — V1Yo X

NSV

X, ¥ —— YiX, N
X3
XX YiYs 2172 Y, Xy
(a) Mermin-Peres square. (b) Mermin’s star.

Figure 3.1: Qubit operators (1;’s omitted) used in the contextuality proofs in (a) the Mermin-
Peres square, and (b) Mermin’s star [112, ]. In both cases, product constraints between
operators cannot be consistently reflected in local value assignments: multiplication of pre-
assigned values 1 to measurements in such assignments (nodes in the diagrams) across contexts
yields +1—every measurement appears in two contexts—whereas multiplication of operators in
contexts (edges in the diagrams) yields —1 in one and +1 in all other contexts (cf. Eq. (3.1)).

This immediately implies a contradiction:

I] vior=1#-1= 1] (IIMOO (3.1)

O€0 CeC(Op) \Oel

Note that the operators XXX, XYY, YXY, and YY X in the horizontal context share the
GHZ-eigenstate |gnz) = \%(\001) —]110))." We can use this to build a computation as follows.

Let i = (i1,12)T € Z% denote the input of the computation and consider a classical control
computer, which selects measurements on individual qubits according to My(cy = 0) = X} and
Mi(c, =1) =Y} for k € {1,2,3} and ¢ = (i) with linear functions /(i) = iy, lo(i) = 42, and
I3(1) = i1 @ ip. It is easy to see that these measurement settings define the global observables

M (i) in the context corresponding to the horizontal line in Fig. 3.1 (b):

M0,00)=X®X®X M(LON=Y®X®Y

M(0,1))=X®Y Y ML) =Y®Y ®X

'Here and throughout, we often omit the tensor product between product operators and product states.

113



CHAPTER 3. CONTEXTUALITY IN QUANTUM COMPUTATION

The resource state |{)guz) is an eigenvector of each global observable M (i) with corresponding
eigenvalues given by the sum of local measurement outcomes my, where my, denotes the measured
eigenvalue on qubit k in [¢guz). While the local measurement outcomes are individually random,
the global eigenvalues are deterministic and can be expressed in terms of the input as a Boolean
function o : Z% — Zs, o(i) = 22:1 my. The post-processed measurement outcomes of the local

X and Y measurements thus yield the NAND-gate as output function of the computation,
(=1)°0) = (—1)Zk=1me — (—1)NANDG) (3.2)

Why is this interesting? Note that the classical computer evaluates linear functions only, we may
therefore assume it to be capable of doing just that. On the other hand, the NAND-gate is clearly
a nonlinear function. Hence, if we exclude any type of communication between the measurement
sites until all measurements are performed (and assume a notion of ‘statistical regularity’ [103]),
we must conclude that what boosts the power of the classical computer is the quantum resource.
In essence, contextuality (nonlocality) acts as a resource that lifts the restricted complexity
class of the classical control computer to universal classical computation. As it turns out, the
relation between contextuality and computational advantage is not just a peculiarity of this
example. To see this, in the next section we introduce the hybrid computing architecture, which

underlies the above example yet generalises to arbitrarily correlated resources.

3.1.1 Definition of [d-MBC

In this section we will primarily be concerned with generalising the results in [126], which
are valid beyond the quantum case but are restricted to very simple systems only. For this
reason, we define measurement-based computation in a way that is independent of a physical
implementation, and specialise the framework to the quantum case only in Sec. 3.2, where we
discuss contextuality in measurement-based quantum computation in more detail. Our setup
fits within the computational framework first introduced in [10] and further refined in [120],
in order to study the computational power of correlated resources in general, which includes

measurement-based quantum computation as a special case.
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The Setup

A general measurement-based computation (MBC) consists of two components: a correlated
resource, and a control computer with restricted computational power. The correlated resource
consists of N local parties, each of which is allowed to exchange classical information with the
control computer once. No communication between parties is allowed during the computation,
and the correlations in their output are entirely due to interactions prior to the computation.
During the exchange with the control computer, each party receives an input from the control
computer (called the measurement setting), and returns an output (called the measurement
outcome). The control computer combines the local measurement outcomes to produce the
computational output.

We restrict the complexity of the classical control to Fy-linear side-processing, where Fy
denotes the finite field with d = p" elements for p prime and r € N. This greatly simplifies the
analysis of contextuality as a resource in MBC, but will have to be lifted in future study in

order to quantify any advantage of MBQC over universal classical computers.

Definition 35. A [d-MBC with classical input i € F} and classical output o(i) € F, consists

of N parties, each of which receives an input ¢ € Fy from the control computer, returns an

outcome my, € By, for k =1,... N, and is restricted to linear side-processing as follows:
1. the choice of measurement bases ¢ = (cy1,- - ,cn)T is related to the measurement outcomes
m and the Fy-valued classical input i = (iy,--- ,i,)7 € F} via
c=Tm+Ci modd, (3.3)

for some T € Maty(Fy) and C € Mat(N x n,Fy);

2. for a suitable ordering of parties 1,--- | N the matriz T in Eq. (3.3) is lower triangular

with vanishing diagonal. If T'= 0 the ld-MBQ is called non-adaptive or (temporally) flat;

3. the computational output o(i) € Fy is a linear function of the local measurement outcomes
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m = (mq,--- ,my)7 such that for my € Fq and Z € Mat(1 x N,F,),

o(i)=Zm+my mod d . (3.4)

In the above, Maty(F;) denotes the space of N x N matrices with entries in the finite
field Fy. Note that the setup does not specify the nature of the correlated resource or the
measurements performed on them. In later sections, we will specify the framework to the special
case of [d-MBQC, where the correlated resource is given by some entangled quantum state,
and measurements correspond with quantum operators. However, the contextuality thresholds
derived in this section hold on the level of general [d-MBC, and we thus defer a thorough

introduction of the particular quantum implementation to Sec. 3.2.

Non-contextuality in [d-MBC

We define the notion of contextuality and nonlocality considered in the framework of ld-MBC.
Similar to Ch. 2, we denote the set of observables by O, and consider it equipped with an
equivalence relation called simultaneous measurability. A context C' C O consists of a set of
simultaneously measurable observables, and we denote the set of all contexts by C. However,
contrary to the discussion in Ch. 2, a system is called contextual, if no non-contextual value
assignment, i.e., no valuation function as in Def. 1 exists.? In the special case of product
observables a = a; X ag, b = by X by, and ab = a1b; X agbs, the locally measurable observables aq
and by (ag and by) compose individually, and by similar reasoning as in Sec. 2.4.3 we require
local value assignments to do, too. Accordingly, a value assignment is a map v : O — R with

the following properties (cf. Def. 1):

(1) Ya € O: v(a) € sp(a), where sp(a) denotes the set of measurement outcomes of a

(17) YC € C,Ya,b,ab € C : v(a)v(b) = v(ab)

When no such local assignment exists, we say that the system is nonlocal.

2A system is sometimes called contextual, but not strongly contextual, if non-contextual value assignments
exist, yet are not compatible with quantum theory (cf. [6, ]). Here, we will not make this distinction.
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The connection with [d-MBC is as follows. Each input i € )] can be regarded as selecting a

context C'(i) (that is, a set of simultaneously measurable observables) through

CH) = {Mi(ar(d)),. .., My(en(i)), M{)} . (3.5)

We have included the global observable M (i) = M;(c1(i)) x Ma(ca(i)) X - -+ x My (cn(i)) in each
context as its measurement outcome is fixed in the deterministic case, and corresponds to the
computational output o(i) (that is inferred from outcomes of the local measurements). The task
of finding a non-contextual hidden variable model is to find (perhaps many) value assignments
to local observables that are consistent with the global value assignment. Since global value
assignments correspond with the computational output in MBC, certain computations may
not be compatible with non-contextual hidden variable models and thus constitute a proof of

contextuality and nonlocality.

3.1.2 Contextuality in [2-MBC

As with the general case of quantum computation, it is natural to study what resource lifts the
restricted classical control computer in [d-MBC to universal computation. In the simplest case
d = 2 (with Fy = Z,), the conditions under which an [2-MBC allows for the computation of
nonlinear Boolean functions—functions that would otherwise be beyond the capabilities of the

control computer—have been well characterised.

Theorem 46. (Raussendorf [126]) Let M be a 12-MBC, which deterministically evaluates a

Boolean function o : Zy — Zy. If o(i) is nonlinear in i € ZY, then M is contextual.

In other words, if a [2-MBC can be described by a non-contextual hidden variable model,
where measurement outcomes are pre-determined by value assignments, it is restricted to
computing linear functions. Thm. 46 thus establishes a strong connection between function
computation in the general computing architecture of [2-MBC and contextuality. Note also that
Thm. 46 holds even in the adaptive case (cf. Def. 35).

Contextuality thus acts as a resource in the setting of [2-MBC. This is true, in particular,

in any quantum implementation: if local measurements on a multi-qubit state can be used to
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evaluate nonlinear Boolean functions with only linear side-processing, then such computation
constitutes a proof of contextuality—the possible local measurement outcomes cannot all be
pre-assigned. Clearly, this generalises the computation of the NAND-gate on three qubits in

[10], which arises from the explicit proof of contextuality in Mermin’s star in Fig. 3.1 (b).

However, Thm. 46 restricts to the simplest type of local systems only, e.g. qubits in the
quantum case. The latter have unusual properties from the perspective of contextuality. Single
qubits are non-contextual by the Kochen-Specker theorem, Thm. 18, while entangled qubits
exhibit state-independent contextuality using only Pauli observables in contrast to its qudit
counterparts. It is therefore natural to ask whether Thm. 46 generalises to systems with size
d > 3, in particular, whether the interplay between contextuality and nonlinearity holds more
generally, or whether it crucially depends on some of the pathologies associated with qubit
contextuality. In fact, the general case is not so straightforward [$3], as we will see by considering
some explicit examples within the qudit stabiliser formalism in the next section. For instance,

certain nonlinear functions can be computed already within non-contextual [d-MBQC.

3.1.3 Examples from the qudit stabiliser formalism

In this section, we illustrate some of the subtleties involved in the case d > 3. We focus
on a particularly interesting case of measurement-based quantum computation, where local
measurements arise as gates in the qudit stabilizer formalism. Unlike the qubit case, the latter

is non-contextual (in the sense defined in Sec. 3.1.1).3

Contrary to what one might naively expect, we will see that local measurements arising in
the qudit stabilizer formalism possess a computational power that exceeds Fy-linear processing.
That is, nonlinear functions can be evaluated using a [d-MBQC that is entirely non-contextual, in
stark contrast to the qubit case. This demonstrates that the relationship between contextuality
and nonlinearity in the qubit case, more generally d = 2, is not the end of the story, and for

qudits, more generally d > 3, we need a finer functional constraint.

3An explicit non-contextual hidden variable model for the qudit stabilizer theory is given by the discrete
Wigner function defined in [70, 142].
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Sympletic structure of qudit stabilizer formalism

In this section we specify the setting of [d-MBQC in the qudit stabiliser formalism with d
prime, where measurements belong to the qudit Pauli group and are given by conjugation
My = U My, (0)U, ", ¢ € Zq with unitaries Uy, in the Clifford group. For details, see e.g. [11].

Recall that the Pauli group P?N over Zq is the group generated by N-fold tensor products
of individual elements from (X, Zy,wly), k € {1,--- , N} with X|q) = |¢ + 1), Z|¢) = wiq),
and w = e’d a d-th root of unity.

These qudit Pauli operators can be conveniently represented (up to phase) by Weyl operators.
A Weyl operator W, for v = (a,b)T € Z2" is defined as the N-fold tensor product of local
operators W, = 77%Z%X" where 72 = w and a,b € Z,. Weyl operators are generalised Pauli
operators with a particular choice of phase. Importantly, Weyl operators obey the defining
commutation relation,

W Wy = WV, W, | (3.6)

Oy 1In
where [v, w] = vigoyw for v, w € Z2" and symplectic matrix ooy =

—1y Opn
The Clifford group Cy(d) C U(CFN) of PPN is the group of unitary operators such that

VPVT € PN for all P € PYN, V € Cy(d). All (N-qudit) Clifford operators V' € Cy(d)
factorise,

V=UW, xez2V,

into a Weyl operator Wy and an element of the group of symplectic Clifford operators U € oCn(d).
The latter are defined as automorphisms on the set of Weyl operators, i.e., for all v € Z2V it
holds that UW,UT = Wy, for some w € Z2" | in fact, they preserve the underlying symplectic
structure,

UW, U™ = We,y, for some Cyy € Spyy(Za) - (3.7)
Here, the group Spyy(Z4) denotes the group of symplectic transformations, i.e., linear transfor-

mations C : ZZN — Zle such that CToonC = o9pn.

With these preliminaries on the symplectic structure of the qudit stabiliser formalism, we
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study the transformation properties of Pauli observables under Clifford operations for the

computational output of the corresponding (d-MBQC.

To this end, note that by the Weyl commutation relations in Eq. (3.6) and the fact that
symplectic operators preserve the symplectic inner product in Eq. (3.7), we obtain the following

relation for any Clifford unitary V' € Cy(d) acting on an individual qudit:*

Ve W, V= = (UW)* Wy (UWy)™
= (UW)*™ Weyx Weyy Wegys (W U1
= (Weyx -+ WC@X) WCf,v (Wfo}x e Wooyx)
_ W[CUX,CICJV]-"-[C%X,C;}V]-"- +[C[c]x,Cf]v] WCCV
U

c—1

= w jzo[x’C{JV]WCICJV (38)

The phase in Eq. (3.8) is state-independent, it only depends on the Weyl commutation
relations and the symplectic structure of the Clifford group. Yet, choosing local measurements

My (cx) = Vi*W,, V,” % we can already construct {d-MBQCs with linear and nonlinear output.

Example 1: Linear output

As a first example, we examine the very restrictive case, where the controlled unitary operators
in Eq. (3.8) are Pauli operators, i.e., V =Wy, U =1 € 0C;(d). Then the phase depends linearly

on the linear input function ¢ = [(i), in fact, we simply obtain a variant of Eq. (3.6),
WO, w0 = GOV (3.9)

From Eq. (3.9) we infer that conjugation of a Pauli operator by Pauli operators results at
most in multiplication of a phase, yet does not change the context. That is M (i) o« M (0) and
C(i) o< C(0) for all inputs, meaning the output o(i) is linearly related to o(0). As a result, we

are trivially restricted to non-contextuality.

4For clarity, we omit the subscript k labeling different qudit sites.
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Example 2: Quadratic output

The situation changes if we apply a non-trivial symplectic Clifford operator in Eq. (3.8). In
particular, we show how using control unitaries from the symplectic Clifford group oCy(d)

allows us to compute quadratic functions due to the underlying symplectic structure.
Note that the generalised phase gate S for d > 3 is an element of the symplectic Clifford

group,

d—1
S=> 7"la)al € oCi(d),

q=0
which up to phase acts on the generalised Pauli X = W,,v = (0,1)T by multiplication with

Pauli Z, S¥*XS—% = r=%*Zk X . Furthermore, consider the following state of N = 2d qudits,

T
L

) = )@+ 1)@ @|g+d—1)% .

-
QL

Il

o

L~

We fix all linear functions ¢, = (i) = I(i) to be the same, and note that we have the following

stabilizer relations,
2d

R (SOW,S7D) ) =), v=(0,1)T, (3.10)

k=1
where the parentheses (+); denote the subsystem on which the operator acts.

We can use Eq. (3.10) together with the symplectic structure of Weyl operators to implement
quadratic output functions through accumulated symplectic products: without loss of generality,
choose the first qudit and take V; = (SWy); for x = (0, —1)T in Eq. (3.10) such that [x, C¥v] = k,
while leaving V), = S for k > 2, hence,

I(i)—-1 NP
o) = Y [x.Clv] = w . (3.11)

Jj=0

Despite [ being a linear function, the output function o is quadratic due to the symplectic
structure of the Weyl group. In a similar vein, one obtains other nonlinear functions as well.
This raises at least two questions: (i) What functions can be computed in [d-MBC?, and (ii) Is
there a generalised contextuality threshold as in Thm. 46 for d > 37 We will address the former

in Sec. 3.2, and give an answer to the latter in the next section.
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3.1.4 Contextuality in [d-MBC

In this section we prove a generalisation of Thm. 46 to the case where d is a prime power.
Despite the conceptual differences between the qubit and qudit case, which we highlighted
in the previous section, we will provide a criterion for contextuality in [d-MBC, which only
involves the degree of the output function. In particular, it does not depend on the particular
implementation in quantum theory, but holds in full generality of non-adaptive, deterministic
ld-MBC. Before we state the theorem, we need to provide some background first.

Let F, be the finite field with d = p” (p prime and r € N) elements and denote by
OFa .= Fyl[zy,...,2,] the polynomial ring in n variables zy,...,z, € Fs. For a monomial
IT,—, =¥, ex € N is called the partial degree corresponding with xy, Y ,_, ey is called the
combined degree of [[_, x7*, and the degree of f € QF¢ is the greatest combined degree of all

its monomials, denoted deg(f). We need the following standard result (cf. [10g]).

Theorem 47. Let Fy be the finite field with d = p" (p prime and r € N) elements, and n € N.
Then every function f : F? — Fy is given by a polynomial f € QL4 of partial degree less or

equal to d — 1 in each variable.

Proof. Consider the Dirac delta function § : Fl; — Fy defined as

if x=
i(x) = ! 0 ) (3.12)

0 otherwise

We can represent ¢ as d(x) = [[;_,(1 — 2¢7"), which follows from Fermat’s little theorem for d
prime, and for general finite fields since every element in the multiplicative group F has order
a divisor of d — 1. We can therefore express any function f : F} — [F,; as a linear combination of

Dirac delta functions,

fx)=> Cly)(x—y), Cly)€eFq. O

yeFn
Note that Thm. 47 is not true over infinite fields, where the corresponding ring of functions

contains many non-polynomial in addition to polynomial functions.
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Next, we characterise subspaces of QF¢, which are invariant under pre- and post-composition
with linear functions. We consider two obvious cases: the space of all functions Q¢ and the

space of linear functions

Lyt ={leQy|vxeFy: I(x)=ao+ Y _az;, a; € Fy} .

Jj=1

Clearly, the former is a subspace invariant under arbitrary function composition by Thm. 47.
For the latter, note that any composition of linear functions results again in a linear function.
Aside from these two cases, there also exist other non-trivial subspaces stable under linear

pre- and post-composition. Define the following subspaces for 1 < D < n(d — 1),

QF¢(D) = <Hx,; | e €Fs, > e <D > : (3.13)
k=1 l

k=1

where (-); denotes the linear span. The function spaces Qf¢(D) depend on the field Fy, the
number of inputs n, and the maximal combined degree D. In other words, QF¢(D) contains all
polynomials f : F — Fy; with deg(f) < D. We prove a lemma, detailing the behaviour of these

subspaces under linear pre- and post-composition.

Lemma 3. QF4(D) is invariant under linear pre- and post-composition for all1 < D < n(d—1):
Ly* o 04(D) o Lyt = Q4(D)

Proof. Let f € Q4 be a polynomial of degree 1 < deg(f) = D < n(d—1). Clearly, fol € QF¢(D)
for all I € LE4 since evaluating a polynonomial of some degree on linear functions results in
a polynomial of at most that degree. Moreover, the same holds under post-composition with

linear functions and we thus find
L¥ o QF4(D) o LE C, QF4(D)

On the other hand, QF¢(D) is generated by L o QF¢(D) o LEe since the identity is a linear

function. This proves the lemma. ]
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We thus conclude that the subspaces closed under linear pre- and post-composition are
exactly QF4(D) for 1 < D < n(d — 1), in particular, QF4(1) = LE¢ and QF¢(n(d — 1)) = Q¥
With these preliminaries we prove the following generalisation of the contextuality threshold

in Thm. 46 [61]. A similar result was discussed in [33] from the perspective of Bell inequalities.

Theorem 48. Let M be a flat ld-MBC with d = p" (p prime and r € N), which deterministically

evaluates a function o : Fiy — F,. If deg(o) > d, then M is contextual.

Proof. Since M is non-contextual by assumption, measurement outcomes at local sites k €
{1,---, N} arise from functions my, : F; — Fy4. More precisely, there are maps ¢y : Fy — O,
which assign every control input ¢; € Fy a local measurement function. Measurement corresponds
with function evaluation (cf. Sec. 2.4.1) and yields definite outcomes since M is deterministic.

Including linear pre-processing I € LE¢ we thus have the following functional relations,

Moreover, the output function o in [d-MBC is determined from local measurement outcomes by
linear post-processing. Hence, the entire non-contextual computation has functional signature
as depicted in Fig. 3.2. By Lm. 3 it follows that the degree of o is constrained by the maximal
degree of the local functions ¢y, which by Thm. 47 is at most d — 1. Hence, o € Q]IFd(d —1) and

thus deg(o) < d — 1. This proves the theorem. O

Note that in the special case d = 2, the maps ¢y, : Zo — 7o are necessarily linear. Hence,
the corresponding subspace for the output functions in [2-MBC is simply the space of linear
functions QFd(1) = LE¢. Linearity and non-contextuality thus coincide and we recover Thm. 46
in the non-adaptive case. In particular, the nonlinear NAND-gate in the Anders-Browne example
in Sec. 3.1 constitutes a proof of contextuality, which is Mermin’s star (cf. Fig. 3.1 (b)).

In the general case d = p" with p prime and r € N, local measurement outcomes still arise by
evaluation of (measurement) functions ¢y, : F; — F,, yet such functions are not all linear, but
correspond with polynomials of degree less than d by Thm. 47. It follows that for qudits with

d > 3 certain nonlinear functions can be implemented already locally, such as the quadratic

124



CHAPTER 3. CONTEXTUALITY IN QUANTUM COMPUTATION

LFa — - Ly

Lﬁd ¢1 g — g
¢2:Fqg — Fq

Fg oi : o(i) = Sp_y Zrmu(i) € Fy

LEa

IFa On-1:Fqg— Fqy
N :Fqg—> Fq

Figure 3.2: Schematic of functional signatures in non-contextual ([d-MBC [64]. In a non-

contextual setting, local value assignments my, : Fl; — F, split into (classical) linear pre- and
post-processing and local (quantum) measurements ¢y. The same holds for the output function
0:F% = Ty, 0(i) = Son_, Zpmy(i) for some Z; € Fy. Any additional complexity arises from the
(quantum) measurements ¢y : Fg — Fy.

functions in the qudit stabiliser formalism in Sec. 3.1.3. Thm. 48 is thus in perfect agreement
with non-contextuality of the qudit stabiliser formalism.

Note that similarly to Thm. 46, also Thm. 48 is independent of the particular physical
implementation and thus holds in full generality of non-adaptive, deterministic [d-MBC. Apart
from the adaptive case, Thm. 46 therefore arises as a special case of Thm. 48 for d = 2, where
every function Zo — Zs is linear. The fact that Thm. 46 holds in the adaptive case also turns

out to be somewhat pathological. We spell this out in more detail in the next section.

3.1.5 Nonlocality, composition, and adaptivity

Unlike Thm. 46, Thm. 48 is restricted to the non-adaptive setting. That is, the measurement
settings for the k-th qudit depend only on the input i € F} and not previous measurement
outcomes at sites k&' < k.

From a computational perspective, the reason behind this restriction is that if we allowed
for temporal ordering, we would effectively also allow for composition of functions. Clearly, the
classification of function spaces Q5¢(D) breaks down in this case. Nevertheless, we do have
stability under composition for linear functions LE¢, which allows for temporal ordering in the
qubit case: composition of linear functions yields linear functions. On the other hand, nonlinear
functions ¢ : Fy — Fy will generally lift the control computer to universal computation in Qe

under composition.
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Nevertheless, the computational restriction to non-adaptivity in the derivation of the thresh-
old for contextuality in Thm. 48 should come as little surprise. Note that at the core of the
framework of [d-MBC lies the identification of locally-measurable systems, and the power of
correlations between these systems. Yet, nonlocal correlations are naturally ‘size-dependent’.
More precisely, if we coarse-grain the (d-MBC by grouping local systems together and allow for
nonlocal measurements on those, then we will also change the threshold on contextuality in
Thm. 48. A similar argument also applies under adaptivity, since the exchange of information
between local parties will generally allow for the implementation of nonlocal measurements
between those systems. While this is not the case for [2-MBC, where adaptivity still restricts to
LZ2 by Thm. 46, [2-MBC is nevertheless unstable under grouping systems together, e.g. nonlocal
measurements on two qubits do implement functions o : Z2 — Z,.

Succinctly, contextuality and nonlocality in (d-MBC are therefore not ‘scale invariant’ for
arbitrary d. This in turn means that deriving a threshold for contextuality in the adaptive
setting is harder and will usually be possible only if adaptivity is further restricted such as in

[2-MBC.

3.1.6 The probabilistic case

Note that Thm. 46 and Thm. 48 apply to the deterministic case only. In this section we relax
this restriction. For [2-MBC a probabilistic threshold for contextuality was given in [126]. More

precisely, a [2-MBC is said to evaluate a Boolean function f : ZJ — Z, with average success

probability P, if P = - iezy Prob(o(i) = f(i)). Moreover, define the average distance of a

Boolean function f : Z3 — Zy to the set linear functions LZ2 by

V) = g min {1 € 25| 1) # 101 (3.15)

Theorem 49. Let M be a l2-MBC, which probabilistically evaluates a nonlinear Boolean function

0: LYy — Lo with success probability P. If P > 1 — v(0), then M is contextual.

The optimal bound is attained for bent functions, which have maximal distance to the set of

linear functions, and for which M is contextual if P > () + ()2 [120].
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We also remark that the bound in Thm. 49 can be refined by means of the non-contextual
fraction. The latter arises in the sheaf-theoretic framework, which studies general empirical
models, i.e., sets of probability distributions for measurements grouped into contexts (for
details, see [0]). Any empirical model e has a convex decomposition into a contextual and a

non-contextual part
e = NCF(e)e+ (1 — NCF(e))e, NCF(e) € [0,1] .

Here, a non-contertual empirical model has NCF(e) = 1 and corresponds to a probability
distribution over pure states, i.e., valuation functions or global sections of the corresponding
event sheaf (cf. [6]). Correspondingly, an empirical model is called conteztual if NCF(e) < 1

and strongly contextual if NCF(e) = 0.

With these definitions, [5] prove the following bound on the average success probability,
P <1—NFC(e)r(o) .

Note that the non-contextual bound on the success probability in Thm. 49 crucially depends
on the distance of the output function to the closest linear function v(0). By Thm. 46 linear
functions are those realisable in the non-contextual case. We can relax Thm. 48 to the

probabilistic case in a similar way. First, we adjust the definition of the distance v to inputs in

finite fields,
v(f) =~ min [{i€FL| f() # g}, (3.16)

d" geait(a-1)
where the minimum is now taken over all polynomial functions of degree at most d — 1 for d a
prime power. Generalising the qubit case [120], we observe that non-contextuality bounds the
average success probability of any ld-MBC, which evaluates the output function o : F; — F,,
again by
P<1-v(o). (3.17)

A violation of this inequality thus yields a proof of nonlocality and generalises the results in [5,

], where only Boolean functions were considered [(1].
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Theorem 50. Let M be a ld-MBC with d = p" (p prime and r € N), which evaluates a function

o:F% —Fy, deg(o) > d with success probability P. If P > 1 —v(o), then M is conteztual.

Proof. This follows immediately from the above discussion and the arguments in Thm. 49 under

the generalisation of Eq. (3.15) to Eq. (3.16). O

Note that similar to the case d = 2, we achieve the optimal bound for functions that are

farthest from the set of non-contextual output functions Q¥e(d — 1).

3.1.7 Summary

In this section we found a computational threshold for contextuality in non-adaptive {d-MBC
with d a prime power. This generalises earlier results for d = 2 in [5, |. We have restricted to
prime powers since these correspond with the number of elements in finite fields, over which the
ring of functions in n variables coincides with the corresponding ring of polynomials by Thm. 47.
Still, many of our arguments do not require this simplification and apply more generally.

As with general measurement-based computation, [d-MBC harnesses contextuality in the
form of nonlocality: nonlocal correlations between spatially separated subsystems boost the
computational power of the classical control computer capable of linear side-processing only.
Thm. 48 can thus be understood as a computational version of Bell’s theorem [#3]: assuming local
(single qudit) measurements reveal outcomes as in a local hidden variable model, computation
is constrained to QF¢(d — 1) (for some success probability). However, note that in contrast to
the discussion in Sec. 2.4, MBC neglects non-contextual constraints at local sites.

In the next section we refine the results obtained in this section to the quantum case. Since
quantum states correspond with global sections of the probabilistic presheaf, they are also
subject to the coarse-graining constraints locally. The study of measurement-based quantum
computation is therefore not only concerned with nonlocality, but with contextuality more
generally. In order to study the role of contextuality as a resource in quantum computation,
we therefore seek a computational classification of contextuality in Id-MBQC. As we will see,
this classification crucially depends on certain local phase relations between eigenstates of local

measurement operators, and thus on the explicit structure of states in quantum theory.
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3.2 Contextuality in measurement-based quantum
computation

Def. 35 in the last section defines [d-MBC as a framework based on correlated resources,
independent of their physical implementation. In this section we are concerned with the
quantum version of this setup known as [d-MBQC, where the correlated resource is given by

some entangled quantum state.

3.2.1 Definition of [d-MBQC

We assume that the eigenvalues of local measurements M (cy) are of the form w™* for w = X
and my, € Zy. Importantly, we will restrict to d prime such that Zg ~ {w™ | m € Z} is again a
field. Note that operators M) are not Hermitian, but we use the terminology ‘measurement
of M}’ to denote a projective measurement in the eigenbasis of My, where we associate the
measurement outcome my € Zg with the eigenvalue w™+ (cf. [64, ]). For a given input
i€ Z!, a ‘global measurement’ M (i) is the tensor product of local measurements, and encodes
the computational output. For simplicity, we will mostly restrict to non-adaptive, deterministic
ld-MBQC. In this case, the product of all local measurements stabilizes the resource state,
and we assume that the control computer evaluates the output function o(i) by adding local

measurement outcomes,
N

o(i) = ka mod d .

k=1
As before, we investigate whether the quantum resource state increases the computational power

of the control computer, i.e., if the output function is of degree greater or equal to d by Thm 48.

In summary, we have the following definition for non-adaptive ld-MBQC (cf. Fig. 3.3).

Definition 36. A non-adaptive [d-MBQC with d prime, input string i € Z}, and output

o(i) € Zq, consists of the following components:

1. an N-qudit system each of local dimension d, where the overall resource state is represented

by [¢) € (CH)*7;
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2. a set of measurement settings ¢, = l(1) for some Zg-linear functions ly : Z1) — Zg,

independent of previous measurement outcomes;

3. a set of measurements My on each qudit, each with d possible eigenvalues w™*, where

my € Zq 15 the measurement outcome;

4. the computational output is the linear sum of local measurement outcomes m = {my,--- ,my} €
zy,
N
o(i) => m; modd.° (3.18)

k=1

. n = — Control computer

i€Zqs ., s o(i) € Zg

e

Ak A
()

[¥) e (CH®Y
Figure 3.3: Schematic of ld-MBQC [61].

We remark that with suitably chosen resource states, such as (qudit) cluster states, adaptive

[d-MBQC is universal for quantum computation [130, 152].

Phase relations in deterministic /2-MBQC

In this section we stress the importance of local phase relations between eigenstates of measure-
ment operators in the qubit case, which will serve as a guideline for the constructive proofs in

Sec. 3.2.2. We will further refine these phase relations in Sec. 3.3.3.

5Note that the measurement M)}, is only constrained on outcomes, in particular, we do not restrict to
conjugation of some reference measurement by unitaries arising as projective representations of Z4 such as in
the qudit stabiliser formalism (cf. Eq. (3.24)).

5Note that this no restriction to the corresponding setting in Def. 35 since any linear post-processing can be
encoded locally.
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Note that every local measurement My (cy) defines a basis of eigenstates. Expressed in terms

of the computational basis |¢) with ¢ € Z,, for qubits any basis is of the form:

o, 9) = sin()|0) + ™ cos(¢) 1) 10) = sin()|e, ) + cos(e)|e, J)

|0, 0) = cos()|0) — €™ sin(p)|1) 1) = e7™(cos() |, ¥) — sin()]p, 7))

Recall that in [d-MBQC the output function o(i) = @Y, m; arises as the parity of the individual
measurement outcomes on local qudits. For qubits there are two different parity states and o
encodes which of these two parities is obtained when measuring a given context. Henceforth, we
choose as resource state the N-qubit GHZ-state (cf. [110]),

1 N N 1 - N
¥) = 0"+ 1Y) = qug@k_ﬂqk =q). (3.19)

and set the default measurement operator for the input i = 0 to be the tensor product of

Pauli-X measurements with eigenvectors |+) = |7,0), |=) = [%,0). Clearly, |[¢) is a parity

+1-eigenstate of this operator, the contributions of opposite parity cancel. In a similar way, one

obtains the parity —1-eigenstate if the cancellations are such that contributions with positive

parity vanish. More precisely, for other inputs the local measurement operators correspond to

77Ti19k

different bases. In particular, for ¥ # 0 this results in the additional phase factor e for

|1)r in |¢). In the prototypical Anders-Browne example on three qubits this reads as follows,

) = —5000) + [111) "X 5 44) |+ =)+ | =) +] = )
Xyy %(|+ﬁ>+|+zi>+|—n>+y—ﬁ>)
v XY %(;¢+%>+yi—¢>+|2+i>+ i)
yrx %(|m‘—> + i) 4 |ii+) + [ii—)) .
Here, |i) and [i) correspond to the basis with ¢ = % and ¢ = 5. Note that this choice of

local bases solves the following set of linear equations 22:1 li(i1,19) - 9% = o(iy,i2), where

l1(i1,42) = i1, la(i1, i) = i9, I3(i1,12) = 11 D ig and o(i1,i9) =14 (i1 + 1) - (ix + 1).
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This example is illustrative in a number of ways as we show in Lm. 4 and Lm. 5 below. First,

note that for deterministic 12-MBQC it is enough to consider ¢ = 7.

Lemma 4. The eigenstates of local measurements in deterministic [2-MBQC on a GHZ-state

with N > 3 qubits are mutually unbiased with respect to the local basis of the resource state.

Proof. Note that the measurement operators M (i) = ®@_ My (c(i)) are such that [¢)) is a parity
eigenstate of M(i) for all i € Z3. For every input i € Z3, rewrite [¢) in the local eigenbases
corresponding to the My (ck(i)). This yields a superposition of product states [m) = @, |my),
where we denote every product state by the Boolean vector m € Z2 with my = 0 for |p, 9); and
my, = 1 for |¢, V), at site k. Clearly, the product state |m) has parity m = ®_ ;m;. Moreover,

the coefficient to the product state |m) reads

[Tom(er) + (=)™ T @™ () . (3.20)

where ®°(¢;) = sin(px) and ®'(pr) = cos(ypx), since both |0); and |1); can have non-zero
overlap with |my).” A parity eigenstate is on hand if all product states of some parity cancel.
We thus have % constraints from Eq. (3.20), both on absolute values and phases. Clearly, the

constraints on absolute values are satisfied for ¢ = 7. Moreover, for N > 3 all solutions are of

this form. First, for N > 3 odd, consider pairs of constraints in Eq. (3.20) of the same parity:

" () [T @™ (0w) + (—1)" @™ (o) [T @™ (sp1) = 0

k' £k k' £k
O™ () H O™ (o) 4 (1) D™ (i) H O™ (ppr) = 0
k' £k k' #k
. [Tir sk <I>mk’@1(apk/) (L 1\m @7k (o) Hk/;ﬁk@mk’(cpk/) . .
These imply Moo ) = (—1) T o) T Tl 7 (py) and thus |sin(e)| =
|cos(¢r)|, hence, ¢p = 7. For N even, similar constraints yield |®™* ()@ (pp)| =

| PP ()™ P ()] For N # 2 we thus again find ¢, = Z, since for another pair of con-

m, Pl
straints in Eq. (3.20) also [B™ (o)™ % ()| = |74 (i9,) ™ (ip1.)], hence, ool
(27 (o) _|2™K (py0)] ]
™R (o) @R P (ph)]

"Local measurements in the computational basis only change the resource state and can thus be neglected.
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We are thus left with the phase constraints arising from Eq. (3.20). Generalising the
Anders-Browne example above, let ¥ € RN, o0 : Z§ — Zy and 1(i) = Li, where i € Z% and

L € Mat(N X n,Zs,) arbitrary. Then any solution to the set of equations

Viezp: 1) -0

> k(i) = ofi) (3.21)

allows to construct a (2-MBQC. Namely, consider local measurement operators X () with
eigenstates [J) = |,9) and |J) = |5,4). The resource GHZ-state [¢) in Eq. (3.19) is then a
parity +1-eigenstate of the operator ®J_, X;,(0). On the other hand, [¢) is a parity —1-eigenstate
of all operators of the form ®{_, X () for local operators such that >°;" | 9y =1, e.g. Uy = =
for k€ {1,--- ,m} and ¥y =0 for k € {m+1,---, N}. Finding an [2-MBQC, which computes
the output function o, thus reduces to finding a set of (linear) functions l;, which satisfy the
phase constraints in Eq. (3.21). In Sec. 3.2.2 we will use this technique in order to construct
contextual examples—according to the threshold derived in Thm. 48—as well as a general

classification of computation in flat, deterministic [d-MBQC.

Measurement in deterministic ([d-MBQC

Recall that each party k € {1,---, N} performs one of d (qudit) measurements M;/(c;) deter-
mined by a single input ¢, € Z4. We require the Mj, to have (non-degenerate) eigenvalues of
the form w™* for my, € Zg4, from which it follows that M = 1. Moreover, by the argument in
Lm. 4, for deterministic /d-MBQC it is enough to consider local measurements with eigenstates

mutually unbiased with respect to a reference basis, e.g. the computational basis in the qudit

resource state [¢) = - ZZ;(I) ®@2_,lgr = q). Note that we find such operators in
d—1
X(f)la) = flg)la+1) with f:Zs—=UQ1), [[flo)=1. (3.22)
q=0

In fact, every non-degenerate local measurement operator with M¢ = 1 is of this form.

Lemma 5. Every local measurement operator M in deterministic ld-MBQC with d prime is of

the form M = X (f) in Eq. (3.22) for some function f : Zq — U(1) with Hg;é flq) =1.
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Proof. Let M € U(C?), M? =1 be non-degenerate, and denote its eigenvectors by |m), m € Zg.

By assumption, the corresponding basis is mutually unbiased with respect to [g), i.e., [(g|m)|* = %
for all ¢, m € Z,. Expressing the eigenvectors |m) of M in terms of the |¢)-basis thus yields
1 d—2
m) = —=(10) +w " FO)[1) +w > F(0) F(1)|2) + -+ +w I [ T] f(¢) | ld = 1))
Va
1 <d1 q—1
-2 (S T
\/El q=0 q'=0
for some f: Zys — U(1) with Hf}l;é flq) = 1. O
In the following, we will often consider operators with a reference phase 6,
X0, N)lg) =0 PNg+1), f:Zi—Za. (3.23)

The constraint in Eq. (3.23) then reads ¢ = x~ 24=0/(@)_ Note that the rotation operators
X(¢) = e ZZ;S |g+1)(q|+e"1=D?|0)(d—1]| defined in [105] for the construction of general proofs
of contextuality are of this type, namely for § = €*, y = e~? and f(q) = (¢ — (d—1)) (see also,
[110]). The inputs ¢; € Zq4 to the measurement devices thus specify My (cx) = X (0(ck), f(ck))
and are themselves determined in a linear way from the computational input i € Z]} according

to the setup in Def. 36.

Finally, we comment on the structure of measurement operators considered here compared
to those considered elsewhere [0, 120]. In particular, within the qudit stabiliser formalism (cf.

Sec. 3.1.3) the classical control is often modeled by means of unitary conjugation
My(cx) = UM (0)U, ", (3.24)

where U.* is a unitary projective representation of Z4 for d prime, and Mj(0) is some reference
Pauli operator. In this case the local phases 6 in Eq. (3.23) arise from the special Weyl

commutation relations in Eq. (3.6) and Eq. (3.8).
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3.2.2 Implementation of flat, deterministic [d-MBQC

In this section we employ the phase relations in Eq. (3.22) for computation in [d-MBQC by
means of Eq. (3.21). We begin with an explicit example on three qutrits, which is contextual by
the threshold in Thm. 48. Subsequently, we prove that any output function o : Z}; — Z, for d

prime can be constructed by explicitly implementing the d-function.

A contextual qutrit example

Consider first the following three operators of the form in Eq. (3.23) on a three-dimensional

system by their action on computational basis states |¢) for 0 < ¢ < 3 and w = e

M(0)|g) = X|q) == |g+ 1) M(1)|g) == 6,w” |g+1) M(2)|q) == 0w *|g+1)  (3.25)

Obviously, M(0) has order three. A quick computation shows that by choosing 6 = w and
03 = w? we also have M(1)3 =1, M(2)? = 1. Morecover, we sct 0,603 = w, e.g. 6, = e’5 and

0, = e'5". The eigenstates 6F) of M (k) with |67") = |2™°) for 6y = 1 are given as follows.

0 L 2 :L 0 1 2

167) = \/—<\0>+91|1>+9 12)) 0) \/—<!91>+\91>+!91>)

61) = %(\@ +010°[1) + 67w?]2)) 1) = \/_01 —=—(167) +wl|01) +w?|6}))
63) = 7(\0> +01w[1) + 67[2)) 2) = \/§—05w(|6?> +w?|0]) + wl67))
0 2 2 _L 0 1 2

163) = 7(\0>+92|1> Orw”[2)) 0) = \/5(!92>+\92>+!92>)

162) = %(\@ + 0ow°(1) + 63]2)) 1) = \/—92(!9°> +wlby) + w?[63))
2 _ 1 0 2|1 2
163) = 7(\0>+92w|1>+9 w[2)) 2) = \/§65w2(192>+w 163) + w|63))
0 _L 20 2l 72

|z7) = 7(\0>+\1>+\2>) !0>—\/§(! )+ lzh) +2%)

1 1 2 _L 29 4wl W22
|z7) = 7(\0>+WI1>+w!2>> !1>—\/§<| ) Fwlz’) +wz%)
2 1 2 _L 29 1 2l 4wl
|z%) = 7(\0>+WI1>+w|2>) |2>—\/§(| )+ wilzt) + wlz®))
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Combining local measurement operators in Eq. (3.25) to global measurements on the three-

qutrit resource GHZ-state

1

|¥) 7

(|000) + [111) + |222)) , (3.26)

allows to construct a contextual computation by Thm. 48.

Theorem 51. The 13-MBQC with local measurements My (cy, = l;(1)) as in Eq. (3.25), where
the input i = (i1,12)T € Z2 sets the measurements via Zsz-linear functions Iy (i) := i1, lo(i) := iy,

and l3(1) := —iy — 19, is contextual when evaluated on the resource state in Eq. (3.26).

Proof. Note that we have the following identities,

M(0) ® M(0) @ M(0)|g)** = |¢ + 1)%°,
M(1) @ M(1) ® M(1)|q)** = wlq + 1)*?,
M(2) @ M(2) ® M(2)|q)** = w?|q + 1)%%,

o(M(0) ® M(1) ® M(2)lg)** = 0162]q + 1) = wlg + 1)*° Vo € 8,

where we understand the permutation operator to act on the set of control inputs {cy, ca, c3}.

From this one readily computes the output function.

0((0,0)7) = 0 o((0,1)7) =1 0((0,2)7) =1
o((1,0)7) = 1 o((1,1)7) =1 o((1,2)T) =1
o((2,0)7) =1 o((2,1)7) =1 o((2,2)7) =2

In order to prove that this computation is contextual, we need to show that o is at least cubic

according to Thm. 48. We assume to the contrary and make the ansatz,

g(i) = 0‘12'% + aﬂg + Biria + i1 + Yata + 0 .

From ¢((0,0)T) = 0 we deduce § = 0. From ¢((0,1)7) =1, ¢((0,2)T) = 1 we get as + 72 = 1,
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a9 + 279 = 1, respectively, and thus ay = 1, 75 = 0. By symmetry, a; = 1, 73 = 0. Furthermore,
from ¢((1,1)7) = 1, we get 8 = 2, hence, g = i} + 3 + 2i1i2 = (i1 +i2)?. However, evaluation on
the remaining inputs, ¢((1,2)7) = ¢((2,1)T) =0# 1 =0((1,2)7) = o((2,1)7) and ¢((2,2)7) =
1#2=0((2,2)7), yields a contradiction, hence, o is not a quadratic function and must therefore

be contextual by Thm. 48. In fact, one easily verifies o(i) = 2i%iy + 24193 + i% + 13 + 114o. ]

Clearly, this example is reminiscent of the Anders-Browne example for qubits. However,
note that while the measurement operators in the qubit case can be implemented within the
stabiliser formalism, M (0), M (1), and M(2) in Eq. (3.25) cannot be part of the qutrit stabilizer
formalism, since the latter is non-contextual for d > 3.

Note also that while the NAND-gate has maximal degree and thus generates arbitrary
Boolean functions o : Z3 — Z, under linear pre- and post-composition, this is not the case for
the output function in Thm. 51. In fact, we will prove shortly that arbitrary functions can be
implemented in flat, deterministic ([d-MBQC, yet this requires certain number of qudits. In
particular, three qutrits are not sufficient to implement arbitrary functions o : Z2 — Zz. We

study this relation in more detail in Sec. 3.3.

The previous example is easily generalised to d prime, thus yielding an Anders-Browne-type

example for qudits of arbitrary prime dimension.
Theorem 52. There exists a contextual flat, deterministic ld-MBQC, d prime, on three qudits.

Proof. Define the following d operators of the form in Eq. (3.23) by their action on computational

basis states |q) for 0 < g <d—1and w = e’ as follows:
M0)|g) == Xl|g) =g+ 1),  M(c)|g) :=0(c)w™ |g+1), 1<c<d-—1 (3.27)

Note first that M (c)? = 1 if we set 0(c)? = w* and thus 0(c;)%0(c3)?0(d — ¢ — c3)? = 1. There is
more freedom in choosing #(c) and we set 6(c) = e“E . Similarly to the qutrit case in Thm. 51, we

also specify Zg-linear functions [y (i) := iy, l(i) := is, and I3(i) := —i; — iy for i = (iy,i2)7 € Z2,
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and take the resource state to be
| 4l
) =—7=) lo%.
W= 752l
The output function of this computation then has the following form:

0 if 41,49 =0

oi)=141 ifi,+i,<d (3.28)

2 ifig+ia>d

\

Again, by Thm. 48 this [d-MBQC is contextual if o(i) is at least of degree d. To prove this, note
that the number of monomials in iy, 45 of (combined) degree at most d — 1 is the same as the
number of constraints in Eq. (3.28) for i1 + iy < d — 1. The latter thus fix the former uniquely,
resulting in g = (i; + i2)%"! if the computation is non-contextual. However, g does not satisfy
the constraints for i; + is > d. Hence, the output function in o(i) must contain at least one

term of degree d or greater and is therefore contextual. O

Similarly to the output function in Thm. 51, it is not hard to see that o(i) in Eq. (3.28)
does not contain a term of maximal degree 2(d — 1) either. In order to prove that indeed every
output function can be implemented in flat, deterministic [d-MBQC, in the next two sections

we explicitly compute the n-dimensional d-function for qubits and qudits of prime dimension.

Implementation of the n-dimensional )-function on 2" — 1 qubits

In this section we give an explicit implementation for the computation of the n-dimensional

Dirac d-function

1 ifx=0
i(x) = x €7y (3.29)

0 elsewhere

for d = 2 as a flat, deterministic (2-MBQC. Clearly, this implies that any function o : Zj — Zo

can be implemented in flat, deterministic [2-MBQC. We make some preliminary remarks first.
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Note that for qubits the only non-trivial dependency on ¢ in M(c) = X (f(c)) from Eq. (3.22)

is linear and therefore yields operators of the form in Eq. (3.23):

M(0)|g) = 0x%g+1) =e™xqg+1), 6 =x" (3.30)

In particular, we have M(6)? =1 and the eigenstates of M (6) read:

9 = %um T emi?)1)) 0) = %um +107))
9 = ——(l0) — e™|1)) e gty — J07))

- =7

S

Similarly to the Pauli-Y operator in the Anders and Browne example, rewriting the resource

state in the basis M (#), we pick up the phase e~™ for every local |1) state in [¢)).

Theorem 53. The n-dimensional -function in Eq. (3.29) for d = 2 can be implemented on
N = 2" — 1 qubits within flat, deterministic [2-MBQC.

Proof. Consider the resource state in Eq. (3.19) for N = 2" — 1 as well as linear functions

la(i) = @?Zlajij s 0 7é ac Zg .

We prove that this indeed computes the desired function for a suitable 6, = # = ™ under the
measurement procedure 0 — A (0) and 1 — M () according to Eq. (3.30).

First, consider the case of the input string containing exactly one non-zero entry, e.g.
i=(1,0,---,0)7, and count the number of phases ¥ that we collect. As ¥ is independent of the
site, this is simply the number of functions that ¢; appears in. There is one function in which it

appears by itself, then n — 1 functions where it appears together with another input, (";1) in

which it appears together with two more inputs and so on. Overall the number of functions is

n—1
n—1 _on-1
i .
k=0
For inputs containing two non-zero entries, e.g. i = (1,1,0,---,0)7, we again count the number

of appearances of, in this case, 7; and 7,. Note that only those functions will contribute that
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contain exactly one, but not both of those entries, i.e.,

n—2
2\ [n—2
=2.2"2 =21,
W)
k=0

The general case with m non-zero entries reads as follows:

m — n—my m—1_on—m _ on—1
() & (") o=

=0

[

wl3

|

k=1

Hence, for all but the zero input we flip the overall parity in Eq. (3.19) if we set

ome 1
(€7m9>2 1:_1 — 19:%_’_[(7 2”*1[(:0 mod 2 . (331)

Finally, note that this setup computes the function o(i) = 06(i) + 1, hence, we obtain the

n-dimensional Dirac d-function by simple post-processing. O

Thm. 53 immediately implies the following.
Corollary 1. Any function o : Z§ — Zs can be computed within flat, deterministic 12-MBQC.

Proof. This follows directly from Thm. 53, and the fact that every function o : Z§ — Zs can be

written as a sum of n-dimensional J-functions, i.e., o(i) = 3, ey

C(G)o(i —j) for C(G) € Zo. O

Thm. 53 and Cor. 1 are a consequence—and, as we will see in Sec. 3.3.3, an alternative

proof—of an earlier result in [32].

Theorem 54. (Hoban-Campbell [82]) In order to implement the n-dimensional §-function

in flat, deterministic 12-MBQC' one requires 2" — 1 qubits.

Note that this is in stark contrast to the scaling behaviour under adaptive 12-MBQC (cf.
Sec. 3.1.5). For instance, the naive protocol using iterative NAND-gates requires a linear number

of adaptive steps in the degree deg(d) = n, and so does the number of qubits necessary.
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Implementation of the n-dimensional J-function on d" — 1 qudits

The construction in the last section can be generalised to systems of arbitrary prime dimension.
First, it is useful to review different parity states for qudits. To this end, consider the qutrit
example in Sec. 3.2.2 with resource state |¢)) = \/ig(|000) + |111) + |222)) again. We rewrite this

in the eigenbasis of the generalised X measurement with action X|q) = |¢ + 1):

(1000 + |111) + |222))

Sl

1
= 5 ((12°) + |2 + 2% + (12 + wla?) + w?a)®* + (12°) + ") +wla®)*?)
1
= § Z |xm1wm2xm3> + Z wZizlmk|xm1xm2xm3> + Z WZZzzl mk|$mlxm2$m3>
meZ] meZ} mezZ3
N % 37 (1 4 wie e 2Dk e g g
meZ3
1 m m m,
:g Z |m lx 23:. 3>
meZ3,

@2:1”’%:0

Hence, |¢) has parity @3_,m; = 0 in this representation. For deterministic {d-MBQC we need
to choose local measurements such that the resource state is a state of certain parity for every
input when rewritten in the corresponding local bases. For instance, note that in the qutrit
example in Thm. 51, any other choice of (local) measurements results in a similar decomposition

with the difference that we pick up some additional phase factors,
|¢> _ 1 Z (1 + 91’"105”%.)2%:1 e 0;2n1 9272n2w7n172n2+2 S mk)|um1um2um3>
9
meZg

Here, n; and ny denote the number of measurements M (1) and M(2), respectively, and
u™ € {xm (= 0y™), 07", 05" }. Given our choice of functions, we have n; +ny =0, ny = 3, or
no = 3, which reproduces the output function in Sec. 3.2.2.

By allowing for more general phase relations than in the local measurement operators in
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Eq. (3.27) acting on the N-qudit GHZ-state

d—

rw>=\iqu§|q _ Z Salt=q) | (3:32)

a similar line of reasoning proves the following.

Theorem 55. The n-dimensional §-function in Eq. (3.29) for d prime can be implemented on

N =d" — 1 qudits within flat, deterministic ld-MBQC.

Proof. The proof strategy is similar to the qubit case in Thm. 53, see App. 3.A for details. [

Note that the phase relations needed for this construction read

_ 2 (d—1) c
X =w E-n, 0(c) = X*Tlc = Wi (3.33)
In particular, for qubits we have w = e = —1. We thus recover the Anders-Browne example

1

forn =2 with y = —1,0 =0(1) = x 2 =i, and X(0) =Y, as well as the phase relation for the
n-dimensional qubit d-function in Thm. 53, where § = €™ = (—1)2"%1 as in Eq. (3.31).

Importantly, the factor 2 in Eq. (3.33) implies a crucial difference between the qubit and
qudit case: in general, the phase 6(c) is a d"™'-th root of unity, however, for d = 2, 0 is only a
d"-th root of unity by this additional factor. The contextual signature of the qubit stabiliser
formalism somehow resides in this phase, in particular, it implies that any quadratic function
can be computed within the qubit stabilizer formalism already. This is in contrast to the qudit
stabiliser formalism, which is non-contextual [6, 70].

Finally, recall that the n-dimensional d-function has polynomial representation §(x) =
[Tr_, (1 — 27" (cf. Eq. (3.12)), which contains a term of maximal degree. Hence, we have
constructed a (maximally) contextual example for qudits in arbitrary prime dimension according

to the threshold in Thm. 48. In particular, we have established the following.

Corollary 2. Any function o : Z; — Zq for d prime can be computed within flat, deterministic

1d-MBQC.

Proof. This follows directly from Thm. 55, and the fact that every function o : Z]} — Z,4 can be

written as a sum of n-dimensional d-functions, i.e., o(i) = Zjezg C(j)o(i—j) for C(j) € Zy. O
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Note that the number of qudits in the implementation of the J-function in Thm. 55 counts
d™ — 1, which generalises the qubit case, where 2" — 1 qubits are optimal by Thm. 54. As a
means to further distinguish contextuality beyond the threshold in Thm. 48, we explore the
question of optimality in more detail in the next section, i.e., we ask for the minimal number of

qudits required to implement a given function in flat, deterministic {d-MBQC.
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3.3 Towards a classification of contextuality in
[d-MBQC

In this section we study computation in flat, deterministic [d-MBQC from a resource-theoretic
perspective. In the last section we proved that any function o : Z; — Z, for d prime can be
computed within flat, deterministic [d-MBQC. However, depending on the type of function
computed, the number of qudits necessary for its implementation varies drastically. We therefore
further study the structure of contextuality by asking for the optimal number of qudits needed

to implement a function o : Z}] — Z, in flat, deterministic [d-MBQC.

Definition 37. Let o : Z)} — Zq, d prime. We call a flat ld-MBQC, which deterministically
implements o optimal, if no other flat [d-MBQC' exists, which deterministically implements o on

fewer qudits. The optimal number of qudits is denoted R(o).

Note first that we have the freedom to manipulate any output function o by invertible linear
transformations on the inputs via pre-processing. The resource cost R(0) should thus be an
invariant under affine transformations. For this reason we define an equivalence relation on all

functions with signature o : Z); — Z4 under affine transformations as follows:
0~ o <= IM € Mat(n x n,Zy), k(M) =n: o(i) = o(Mi) (3.34)

Furthermore, in Sec. 3.2.2 we have seen how the n-dimensional -function can be implemented
as a flat, deterministic I[d-MBQC on N = d" — 1 qudits. Hence, given an arbitrary function
o : Zj — Zg4, one way to implement it is by naively adding all terms in the sum o(i) =
Zjezg C(j)o(i—1j), C(j) € Zy. However, it is easy to see that the optimal number of qudits is
only subadditive in this as well as its polynomial representation. It follows that in contrast to
the computational bound in Thm. 48, which emerged from considering subspaces under linear
pre- and post-composition, there is more to contextuality beyond that threshold.

In order to gain some intuition for the actual behaviour of R(0), we first consider two specific
quadratic Boolean functions in Sec. 3.3.1. For the general case, we study the map between

different representations of functions in Sec. 3.3.2. In doing so we prove that our construction
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method for (2-MBQC in terms of the phase relations in Eq. (3.21) is generic (in the qubit
case), we reproduce some known bounds for R obtained in previous sections, and connect its

optimisation problem to known problems in circuit synthesis.

3.3.1 Examples

The computation of the NAND-gate in [10] requires three qubits and is optimal according to
Thm. 54. For the output function o : Zg — Lo, o(i) = 1142 + i3i4 one can thus easily construct
an [2-MBQC that requires six qubits. However, this function has an optimal cost of R = 5. To
see this consider local phases #; = 0 = —03 = —04 = 05 = i and linear functions:

ll<i) = il lg(i) = ig

I3(1) := i1 © iy D i3 Is(1) == 11 B iz B iy I5() := i1 ® i D is D iy

As before we may implement this computation as a flat [2-MBQC using the generalised GHZ-
state |¢) = \/L§(|O>5 + |1)®) as resource, and local observables given by ¢, = 0 : My(6; = 1),

cr =1 : My(6r = £i) (cf. Eq. (3.30)). A straightforward computation then yields the output:

(0,0,0,0)T — 0
(1,1,0,0)T —> 1

(0,0,1,1)7 —» 1

(1,0,0,0)T — 0
(0,1,0,0)T — 0

(0,0,1,0)T — 0

(1,0,0,1)T — 0
(0,1,1,0)T — 0

(1,0,1,0)T — 0

(1,1,1,0)T — 1
(1,1,0,1)T — 1

(1,0,1,1)T — 1

(1,1,1,1)T — 0 (0,0,0,1)T — 0 (0,1,0,1)T — 0 (0,1,1,1)T — 1

This is easily seen to reproduce the function o(i) = iyia + isis, since [[,_, 0% = (=1)°0).

As a second example, consider quadratic functions X5 (z) = - n} TirTip- These

i1<i,ij€{1,"
have been discussed in [32], where it was proven that R(X3) = n + 1. As with the first
example, this shows that R is subadditive (in its polynomial representation), which rules out a
straightforward computation, e.g. in terms of the d-functions in Sec. 3.2.2, which are provably

optimal. This additional complexity arises from an ambiguity in the representation of functions

in terms of Zg-linear functions over the reals instead of polynomials over finite fields.
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3.3.2 Polynomial vs Z;-linear function representation

In the discussion so far, we have encountered two representations for functions o : Z}; — Z,. In

the case d = 2, i.e., for Boolean functions f : Zi — Z,, they read

f(l’) = Z Ca (®;L:1aj$j) = Z Cy <H x?]> .

aczy bezy

The latter is the polynomial representation of Thm. 47 with coefficients Cy, € Zs, whereas the
former representation is based on Zs-linear functions with real coefficients C, € R. Both sets of
functions are linearly independent and generate the space of Boolean functions on bitstrings

x € Z4. Hence, there exists a corresponding transformation between the coefficients C,, Ch,.

Note that every Zs-linear function can be written in terms of monomials since

n

n - bj
e yay= (2@ =7 (3.35)

0#bezp j=1

where W (b) := ", b; denotes the Hamming weight of b € Z (cf. [52]). More generally, we

define I, := @_a;7;, fp = 2W(b)—1 [T, x?j for 0 # a,b € Z% and ly = fo := 1, as well as

(la, fo) := (=1)Zi= bt (lo, fo) == 1. (3.36)

We then have the following map F : R"™ — R" between representations f = Zaezg Cala =
Zbezg Cb(gmﬁfbf

VaeZy: F(la):= Y (la fo)fo (3.37)

bezy
F is a real-linear map, it can be represented as a matrix with entries Fi_ s, = (la, fo) = £1 (cf.
Eq. (3.36)). In fact, for fixed n and with appropriate normalisation factor N = 272, F is a
Hadamard transform and thus in particular unitary, from which it follows that (NF, 5 )""! =
NFpi. = NF . Clearly, this generalises Eq. (3.35) and provides an explicit transformation

between the two representations of Boolean functions underlying the [2-MBQC in Eq. (3.21).8

8Note the close relationship between F and the (multi-dimensional) discrete Fourier transform, as well as the
latter’s importance in existing quantum algorithms, e.g. Grover’s and Shor’s algorithm.
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Note that a similar construction can be given in the qudit case with d prime, too. It is
not hard to see that next to the set of monomials (by Thm. 47), also the set of d" functions
la := ®}_ja;x;, a € Zj generates the space of functions f : Zjj — Z4. In particular, note that

by the proof of Thm. 55, the Dirac J-function has the following representation:

n

i(x) = H(S(a:j) = Z d—Qn <€B ajxj> +1 (3.38)

j=1 aczy

We can thus construct a linear transformation between the coefficients Cy, € Z, over elements
H?Zl x?j , b € Z} in the polynomial representation, and the coefficients C, € R over elements [,

in the Zg-linear representation, similar to the case d = 2.

The transformation F has a number of consequences for the implementation of temporally-

flat, deterministic [d-MBQC, which we will exploit in the following sections.

3.3.3 Phase relations in flat, deterministic /[d-MBQC

Given the N-qubit GHZ-state in Eq. (3.19) and operators in Eq. (3.30), different choices of
local measurements simply translate into phase relations according to Eq. (3.21). The latter
is a representation of the output function o(i) in terms of Zs-linear functions l;(i). The local
phases 0, := e™* thus implement the coefficients 9, = C, € R under the mapping F*(o(i)).?

More generally for d prime, we have the following phase constraints.

Proposition 9. In flat, deterministic ld-MBQC' for d prime, and with local measurement
operators in Eq. (3.22) acting on a GHZ resource state, the output function arises from the

phase relations between the eigenbases of the local measurement operators as follows

11 < i fk(Ck)(q')> = w0 (3-39)

1<k<N \¢'=

Proof. We give the details in App. 3.B. ]

9The coeflicients 995, € R in the Zy-linear representation of the Boolean function o : 235 — Zsg are also known
as the Walsh spectrum of o.
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Note that Eq. (3.39) encodes constraints for every value of ¢ € Z,4, where the case ¢ = 0 is
trivially satisfied. This leaves a single constraint in the qubit case, which reads [ ], <y Ok (lk(i)) =
[licien i) — emiZii k@9) — e by Bq. (3.30),1° and reproduces Eq. (3.21) for qubits. We
thus find that our initial strategy of constructing explicit [2-MBQCs is generic. In particular,
the transformation formula in Eq. (3.37), which translates the polynomial representation of the
output function o : Z§ — Z, into an equivalent representation in terms of fractions ¥, applies to

12-MBQC via phases 6, = e™* = between the eigenbases of local measurement operators

1
Je(1)(0)
in Eq. (3.30). On the other hand, for qudits phase relations in Eq. (3.39) are more general than
the constraints in Eq. (3.21). For instance, note the quadratic dependency on linear functions
in the phase relations arising in the qudit stabiliser formalism (cf. Eq. (3.8) and Eq. (3.11)).
Eq. (3.37) has a number of consequences. For instance, the (polynomial) degree of the output
function o : Z§ — 7Z, places a lower bound on the coefficients miny ¥y < W required for
the implementation as [2-MBQC, from which it follows that only quadratic functions can be
computed within the qubit stabilizer formalism, where phases arise as powers of i = 0 = 67”%,

hence, ¥y > 5-;. In the next sections we show how Eq. (3.37) also allows us to bound the

2

number of qubits required for flat, deterministic [2-MBQC.

Optimal representation of functions in flat [2-MBQC

By means of the Hadamard transform in Eq. (3.37), given a polynomial output function, we
always find an implementation as (2-MBQC. As we will see in the next sections, for monomials
and other highly symmetric functions, this representation is optimal in the number of non-zero
coefficients of its Zs-linear representation (and thus in the number of qubits in the implementation
as (2-MBQC), whereas for more general functions this is not the case.

The ambiguity underlying such representations stems from the fact that given a Boolean
function f, we may always add even multiples of other Boolean functions. Clearly, this does
not change f in its polynomial representation in Thm. 47, however, it potentially changes the
representation in terms of Zs-linear functions and thus the implementation as [2-MBQC. For

instance, note that the representation of the output function o : Z3 — Zs,, o(i) = i1is + i3i4 in

1ONote that we set local reference measurements to correspond with the generalised Pauli-X operator, for
which 6 = 1, and whose eigenstates define the reference basis of Lm. 4.
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terms of Zs-linear functions in Sec. 3.3.1 arises by subtracting the ‘zero term’ z = 4i1igi3iy —
2i1iy(i3 +i4 — 1) € Z(0), i.e., it corresponds to the non-zero coefficients under F~*(o — z).

More generally, let f : Z3 — Zs be a Boolean function and define the linear space of zero
terms as

Z(f)=(2"glg: 25 = Zoy,n>m>1) . (3.40)
In addition to the linear equivalence relation in Eq. (3.34), we thus face the following problem.

Proposition 10. The minimal number of qubits R(o) required to implement a given polynomial
output function o : Zy — Zs in flat, deterministic 2-MBQC is the minimal number of non-zero
coefficients Cy of F1(0) in Eq. (5.37) under the equivalence relation o ~ o' <= o = 0+ z,

z € Z(0) of Eq. (3.40).
Proof. This follows immediately by the above discussion and the transformation in Eq. (3.37). [J

Importantly, Prop. 10 is responsible for the complexity of computing the optimal number of
qubits in flat, deterministic [2-MBQC. In particular, we find a rich structure of contextuality
beyond the mere distinction between contextual and non-contextual computation in Thm. 48.

Moreover, a similar relation also exists for d > 2, however, since F~! only applies to operators
with linear phase relations in Eq. (3.39), ld-MBQCs with fewer qudits than R(0) might exist in
that case.

It is interesting to note that similar minimisation problems to Prop. 10 also arise in circuit
synthesis, e.g. the minimal number of T-gates can be related to the minimal number of Z,-
linear functions with odd coefficients [27, 80]. Solving the latter further relates to minimum
distance decoding in punctured Reed-Muller codes, which seems hard in general [9]. While
our problem is slightly different—we are interested in all, not just odd terms in the Zs-linear
representation—numerical calculation suggests that a straightforward extrapolation from known
cases remains difficult.

Nevertheless, for certain functions the complexity of R under the equivalence relation in
Eq. (3.40) simplifies. In the final two sections, we identify two such cases, which allows us
to find the optimal implementation of monomials in MBQC, and provide an upper bound to

elementary symmetric functions.
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Optimal implementation of monomials as [2-MBQC

Given a general output function in its polynomial representation o(i), we may use the transfor-
mation F~ ! in Eq. (3.37) to obtain a representation in terms of Zy-linear functions and thus
study the minimal number of qubits required for implementation as flat, deterministic (2-MBQC.
In fact, for monomials the decomposition under F~! is already optimal since there are no zero

terms in Eq. (3.40), which could affect the minimisation in Prop. 10.

Theorem 56. In order to implement the monomial f : 7§ — Zs, f(x) = H?Zl xj in flat,

deterministic [2-MBQC one requires N = 2™ — 1 qubits.

Proof. Note that f has degree deg(f) = n = W(b) for b = (1)" := (1,---,1) € Z%, hence,
by Eq. (3.37) it has coefficient W = zn%l Explicitly, the coefficients in the Zs-linear

representation under the transformation 7! read:

n n 1

FA[Len "= A1) = Pl o)

1 1 )
V) 2_ (o lalla = oW (b)—1 > D)V er agay

acZLy acZy

Since these terms are all odd multiples of W, they can only be reduced by a zero term of
degree at least n, however, there are no such terms in Z(f), hence, the representation under
the transformation F~! is already optimal. Finally, note that the overlap with [, a = 0 can be

implemented by post-processing, leaving N = 2™ — 1 non-zero terms. ]

Note also that the n-dimensional J-function arises from monomials by linear pre-composition
in Eq. (3.34), hence, R(§) = 2" — 1, which reproduces the bound in Thm. 54.

A similar computation for qudits yields the representation in Eq. (3.38). Yet again, there the
map F ! only applies to measurement operators for which the phase constraints in Eq. (3.39)

depend linearly on the inputs, i.e., if there exist phases =(q) such that fi.(c)(q) = Zx(q)*. !

Note that the operators in Eq. (3.41) in the proof of Thm. 55 are of this form, namely fi(cx)(q) =
d—1_d—1

sz(q d)forlgqu—l.
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Elementary symmetric functions

While for monomials the transformation in Eq. (3.37) is already optimal in the number of
non-zero coefficients (and thus in the number of qubits in the implementation as [2-MBQC),
this is no longer the case for more general polynomials. Nevertheless, for certain symmetric
functions the minimisation problem for R in Prop. 10 under the equivalence relation in Eq. (3.40)
simplifies.

As an example of this case, we consider elementary symmetric functions,

i <<l
ij€{l,+,n}

Note that the multiple AND-function in [32] corresponds to the case k = 2. Plugging ¥} into
the transformation in Eq. (3.37) results in a total number of terms equal to Zl 1 ( ) However,

we can minimise this number by (at least) (7) — 1 as follows. We add the zero term z € Z(X}),

= (_2)n_kxl i Tp t (_Q)n_k_l Z Tiy Ty 0+ (—2) Z Liy * " Liggq

1< <fp—1 11 <-<ipy1
ije{l,-~',n} ije{lv“'vn}

n—k—1

S et Y e,

=0 1< <lpy
i;€{1,~ ,n}

By construction, 7 and z have the same (smallest) coefficient %%1, and we can thus compare

the coefficients in their representation based on Zs-linear functions l,, a € Zj. Clearly, X} + 2

E+z _(1

contains the term xy @ - - - @ x,, and thus C}}} a)=n = 2,6—1

For the terms of length &k < m < n,
the coefficients OWk(a):m contain contributions from all higher degree terms in the polynomial

representation of X7 + z:

sipe 1 (n—k)+(m—1) n—m n—m .
— -1 1— a1
Wia=m 2”“1< ) n—m-—1 + n—m-—2 +(=1)

1 — —-m
=—(- 1<"’f+<m1)< ( ))—0
ok—1 _
2 — l
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Hence, with respect to monomials of degree £k < m in X} + 2z, we have reduced the overall
number of non-zero coefficients by (Z) — 1. Note also that the coefficients of the remaining

monomials of degree 1 < m < k are non-zero since there, the above sum is truncated and reads

sodz 1 (n—k)+(m—1) n—m n—m nep [T —m
CWk(a):m—F(—l) 1— o 1 + b9 — e (=1) P

n—k

N O S (-1
ok —l ’

=0

thus leaving a total of Z;:ll (7) + 1 terms in the Zs-linear representation in general. Still,
numerical tests show that this number is only suboptimal, i.e., R(X}) < Z;:ll (7) + 1. Never-
theless, note the following: (i) R(X7) = >~ 11 ( ) + 1 = 2" — 1 reproduces the optimal number
of qubits within [2-MBQC for monomials in Thm. 56, (i) R(X}) = Yo} S () +1=n+1
reproduces the bound on qubits in Prop. 2 in [$2], and (iii) we find cases such as R(X7) > R(23)
despite deg(23) = 3 > 2 = deg(X1), which implies that—unlike the contextuality threshold in
Thm. 48—the (polynomial) degree alone is not sufficient to compare functions with respect
to their optimal representation in flat, deterministic [d-MBQC, thus confirming that the com-

putational classification of contextuality has a richer substructure beyond the non-contextual

case.
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3.4 Summary

In this chapter we have studied contextuality in measurement-based computation. Based on the
general framework in Def. 35 (cf. [10]), in Sec. 3.1 we first considered correlations in general
theories and proved a strict bound on the space of functions computable in non-contextual
measurement-based computation with Fg-linear side-processing (Id-MBC), which generalises a
previous result for d = 2 in [120].

In Sec. 3.2 we refined this bound by considering measurement-based quantum computation
(21, | with Zg-linear side-processing (Id-MBQC) explicitly. In particular, building on and
generalising results in [82, , |, we proved that any output function o : Z} — Z, can be
deterministically computed already in the non-adaptive case. We highlighted that a crucial
resource in this setting is the number of qudits required for implementation and linked it
to known hard problems in circuit synthesis. The key message is that (at least) for qubits,
any [2-MBQC implements a given function in terms of Zs-linear functions with real-valued
coefficients, which arise as phase relations between eigenvectors of local measurement operators.
For qudits, the same construction applies, yet represents a special case of [d-MBQC only, thus
potentially allowing for implementations requiring fewer than the number of non-zero terms
under the discrete Fourier transform in Eq. (3.37). Nevertheless, even for qudits contextuality
in (d-MBQC is closely related with the phase relations between local sites according to the more
general relation in Eq. (3.39). In this sense, the phase relations between measurement operators

in Eq. (3.22) fully classify flat, deterministic ld-MBQC.

We have considered measurement-based quantum computation since the resource character of
nonlocality and contextuality exhibits rather clearly in this quantum computing architecture. In
particular, the restriction on Zg-linear side-processing allows to state the quantum advantage in
terms of the clear-cut complexity-theoretic difference of Thm. 48. While interesting applications
might be found within this framework, the most interesting scenario will likely arise from

considering universal classical side-processing.
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3.A Proof of Theorem 55

We choose measurement operators of the form in Eq. (3.23) for prime dimension d as follows:

d—1

M(0)lg) == Xlq) = lg+1),  M(c)lg) :==0(c)x™ lg+1), 1<c<d—1 (3.41)

Then M(c)? = 1 if we set 6(c)¢ = x~(4~1¢. We find the following eigenstates

U
—

10(c)™) = (w™™0(c))?(x) T g), Ve € Zy

Y
I
[e=}

B}

with corresponding expressions in terms of computational basis states,

1 m
lq) = NTIOO W“qu 0(c)™), VeeZy. (3.42)

Consider the (d" — 1)-qudit resource state |¢) = f Z Lgyed =1 = f Zq Lot g, = q)

and assume that the output function o : Z]; — Z, is encoded in the phase relations as follows

H g(ck<i))qXCk(i)(q—1)qd‘l — o) (3.43)

1<k<dr—1

Rewriting [¢) in terms of the local measurement bases via Eq. (3.42) yields

= 1 d—1
1 wqu 9 c mp
Z; ( Vd O(ci(i))2xerla=ta H;O |0(cx(i)) >>
" d—1
=d =z w0 Z ®d _1wqu‘9(0k(i))mk>
=0 mezd"
o d—1
=d= $ W o) a1 g (o (1))

q=0 mEZd -1

154



CHAPTER 3. CONTEXTUALITY IN QUANTUM COMPUTATION

Hence, we need to show that we can satisfy the phase relations in Eq. (3.43) for o(i) = 4(i) by
choosing suitable linear functions c;(i) = Iy (i) € LZa.

Note that in contrast to the qubit case, the space of (local) functions with signature
f 24— 7Z4 contains d linearly independent elements. Out of those we only consider non-zero,
linear and homogeneous functions, i.e., la = ©}_,a;1; for 0 # a € Zy, for which we again count
appearances of entries in our choice of functions.

First, consider a single non-zero entry, e.g. i = (i1,0,---,0)T € Z}j. For every appearance of
the entry i;, there are functions with coefficients a; ranging over all of Z,, which results in the

local phase factor,

o(q) = ﬁ g(alil)qxam(q—l)qd’l _ quZf;é c(g—1)g*t _ qu@w—nqd*l |12 (3.44)
a1=0

where 6 := Hf;é 0(c). Furthermore, the number of functions with a; # 0 counts ?:_01 ("l_l) (d—
1)! = d* ', hence, the overall phase factor in Eq. (3.43) reads ¢(q)*" . Next, we consider
an input with two non-zero entries, e.g., i = (i1,42,0,---,0)T € Z. We need to be more
careful about the counting in this case as in contrast to the qubit case, where i; + iy = 0 for
i1,12 # 0, this does not hold for qudits. For functions with non-zero coefficients a;, as # 0 we
obtain the contribution @(ayi; + agiz), in particular, we need to count how many of these linear
combinations equate to 0 and thus do not add a phase. It is not hard to see that there are
(d—1)*>=(d—1) = (d—1)(d — 2) non-trivial combinations, hence, we end up with the following

overall phase factor in Eq. (3.43),

@(@)™ " (e(@)™ - (6(0) )" = (s(0))" " = d(@)™

The first two contributions are due to functions, where either a; = 0 or ay = 0, the third arises
from the functions with both ay, as # 0, out of which there are ((d — 1)(d — 2))* "~ (and where,
by symmetry, we can always group (d — 1) together to obtain the phase ¢(q) in Eq. (3.44)).

This argument now generalises to input strings i € Z}; with m non-zero entries as follows.

12Note that we are abusing notation slightly by using modulo-d arithmetic over phases with different periods.
However, as the functions are computed classically the input is always an element in Z,.
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Denote the number of non-zero linear combinations of the form @®,_;a;i; with I C {1,--- ,n},

|I| =m by g(m). Clearly, g(1) = (d — 1), more generally
gm)=(@d=1)" —g(m—1)=(d=1)" = (d=1)"" +g(m—-2) --- =Y (-1)'(d-1)"".

Now, there are d"~™ linear functions for every linear function with m non-zero entries 7, and

for each of those we have the following contribution:

> (TZ)W“) = ml (?) <§(—1)l(d— 1)k—l>

k=1 =0

—~

d—1) (g(d—nk(m;l))

=(d—1)d™*

In here, the first factor (d — 1) again results in the phase ¢(q) from Eq. (3.44), and we thus

obtain the overall phase factor

(B(@™ )" =p()™ (3.45)

Finally, we relate this phase factor to the local phases 6(c¢) and x. Since,

d-1 d g
c=0 c=0
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(d—1)2 _e(d—1)

we need to choose 0(c) for 1 < ¢ <d—1such that 0 =y~ 2 ,eg. 0(c):=x @ . Next, we

insert Eq. (3.46) into Eq. (3.44) and compute the overall phase factors:

1 if¢g=0
¢(q>dn—l _ (Xi(d*;)?q ) X(qil) d(dgl)qd—l)dn—l _ q
n—1 _ —
TR T i1 <g<d—
,dnil(dfl) o . . 7‘1”71(‘1*1) d __ qn—1 o
We may thus set x 2 = w, from which it follows that (x 2 )% =1, hence, ¢(q) =

w? as required. In summary, we obtain the output function

0 ifi=0
o(i) = (3.47)

1 ifi#0

from which we compute §(i) = (d — 1)o(i) + 1 by linear post-processing.

3.B Proof of Proposition 9

We choose measurement operators for prime dimension d as in Eq. (3.22), i.e.,
d—1

X(Hlay = f(@lg+1) with f:Zs—U1)st. [[fl@)=1,
q=0

where |¢) denotes the computational basis. Expressed in terms of this basis, the eigenstates

read:

d—2
jm) = % (\0> +w " FO)[1) + w P F0) F(1)[2) + - - 4w TI (H f(q’)) |d - 1>>

1 d—1 q—1
-2 (S )
q=0 q'=0
Conversely, the computational basis expressed in terms of eigenstates of X (f) reads

1 1 = o
!q>=ﬁ (mg}ow ym>> : (3.48)
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We also use the following N-qudit resource state,

1 d—1 . 1 d—1 N
V) = ﬁqz_;m = ﬁqz_;@)k_l‘(ﬁc =q) .

We would like to obtain the same parity state @5_;m; =1 (mod d) for all but the i = 0 input.

Rewriting |¢)) in terms of the local measurement bases via Eq. (3.48) yields

1 N qum
|¢>:ﬁz®kl<\/_nq/lofkck ZW | k)

ka

= d# ZW—QO(i) Z ®{€V:1wqu|mk>

q=0 mEZfiV

—d75 3 WA mr=e®) @N Iy

N
meZy

mEZfiV7
@N_ mi=o(i)

0
—d™ 42
= d 2 ( Z ®kN:1‘mk> )
if the output function o : Z]; — Z,4 is encoded in the phase relations as follows

[T ([T aeow) -

1<k<N
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Chapter 4

Conclusion and Outlook

Quantum theory is maybe our most successful theory of nature. Even though it has been
invented with rather specific problems in mind, its applicability now reaches far beyond its
initially intended purpose; it underlies not just atoms but all of quantum chemistry and it
survived the marriage with field theory and relativity in the formulation of the standard model.
The repeated accuracy of its predictions is staggering, to date we still only have few clues to
where possible amendments might lurk. One way of testing the scope of quantum theory further
might be by means of future quantum computers. The exponential scaling in simulations of
quantum systems is the main roadblock to extensive pharmaceutical progress, groundbreaking
innovation in material sciences, and possibly probing new physics. Together with a handful of
exciting quantum algorithms, such as Shor’s factorisation of large numbers, they have since

inspired a generation of researchers.

Shor’s algorithm suggests that certain computational tasks run more efficiently on a quantum
computer than on any classical computer. Assuming this is in fact the case, it is natural to
ask what powers a quantum computer. Motivated by the clear indications that (physical)
contextuality is a fundamental ingredient to quantum theory, in the latter part of this thesis
we studied contextuality in measurement-based quantum computation. We strengthened a
previous connection between contextuality and computation from qubit to qudit systems, and

constructed explicit contextual examples complementing well-known qubit ones. We gave a
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universal implementation method within this setup and found a natural resource measure in the
number of qubit systems required in the non-adaptive, deterministic case. As a common thread,
we emphasised that contextuality in quantum theory is closely intertwined with phase relations

between eigenstates of measurement operators.

A natural avenue for future research in this direction is to perform a thorough investigation of
the phase relations discussed here, compared to those arising in the cohomological classification of
contextuality such as in [127]. That contextuality might be given a geometrical explanation—as
an obstruction to global sections of corresponding presheaves—was first conjectured by Isham
within the topos formalism [1]. It has received increased attention in recent years, which led to
a number of different formalisms [, , , ]. Yet, none has so far been able to derive
complete invariants. We expect that a suitable abelian presheaf, whose group structure arises
naturally from the quantum formalism—in contrast to the very general sheaf-theoretic study of

cohomology in [5]—will allow to combine and refine existing results.

In Ch. 2 we demonstrated that quantum theory builds on contextuality in a fundamental way.
In fact, the mere order structure of contexts suffices to derive the quantum symmetries described
by Wigner’s theorem, the spectral presheaf encodes the Kochen-Specker theorem in the form of
a quantum state space without global sections, while global sections of the probabilistic presheaf
bijectively correspond with quantum states by Gleason’s theorem. To this list of illustrious
results in foundations we added Stinespring’s and Bell’s theorem: with respect to the former, we
showed that complete positivity, a key property of quantum channels, originates from dilations
in and time orientations on contexts, and with respect to the latter, that nonlocality in Bell’s
theorem emerges naturally from a notion of composition of contexts. As a corollary to this result,
we solved an outstanding problem in quantum information theory by providing a classification of
quantum correlations among all non-signalling correlations under the additional notion of time
orientations in subsystems. We remark that the close resemblance with entanglement criteria
in the reformulation of Bell’s theorem (in contextual form) should be read as a hint towards
treating this time-directional symmetry as a local, intrinsically relational symmetry principle

within the active research on emerging space-time structures from entanglement.
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In summary, (up to a choice of time direction) the full richness of quantum theory resides in
the mere order relations between observables imposed by the equivalence relation defined by
simultaneous measurability. This is a glaring confirmation of just how significant the idea behind
physical contextuality is, which was maybe first acknowledged by Niels Bohr, mathematically
captured by Ernst Specker and Simon Kochen, and raised to the status of a physical principle
in the topos approach to quantum theory by Chris Isham and collaborators. Probably the
most powerful workhorse in this programme is Gleason’s theorem, which proves that the linear
structure in quantum theory emerges from its context order in a very non-trivial way. It is
remarkable that physical contextuality is sufficient to recover this central aspect of quantum
theory, yet it begs the question why the context structure is of the particular form inherent
to (certain) Jordan algebras, thus excluding many more general orthomodular lattices and

examples such as Specker’s parable.

Possible attempts at resolving this problem might be the following. In the geometric
formalism [11, 99], the linear structure arises by complementing the (classical) symplectic form
with a (quantum) Riemannian metric. Their resemblance with Jordan and Lie algebra aspects
in the topos formalism is likely not a coincidence and deserves a more detailed study in the
future. Another result that recovers the quantum algebra from few algebraic principles including
a notion of composition is [09]. We expect that our notion of composition over contexts will
allow to strengthen this result and yield further insight into the linear structure underlying the

algebra of quantum mechanical observables.

Finally, the geometric nature of the topos formalism, the appearance of classical physics within
contexts, and the generality of von Neumann algebras provide a solid basis for incorporating
relativistic quantum mechanics, quantum field theories, and ultimately theories of gravity into

this programme.

This last endeavour is maybe the single most ambitious and most rewarding in all of physics.
It thus reminds of the introductory remarks and Specker’s parable [133]. It is certainly not clear
whether nature has set us an impossible task. But even if not, her contextual character seems
to urge us to acknowledge our own limitations in order to see beyond our singular perspectives

on reality. If we accept this, maybe the parable brings out a whole new interpretation.
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The Unknown,

The Grand Show,
The Choir Of The Stars
Interstellar
Theatre Play,

The Nebulae Curtain Falls
Imagination,
FEvolution,

A Species From The Vale
Walks In Wonder
In Search Of
The Source Of The Tale

[118]
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