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Abstract

Contextuality is a key concept in quantum theory. We reveal just how important

it is by demonstrating that quantum theory builds on contextuality in a fundamental

way: a number of key theorems in quantum foundations can be given a unified

presentation in the topos approach to quantum theory, which is based on contextuality

as the common underlying principle. We review existing results and complement

them by providing contextual reformulations for Stinespring’s and Bell’s theorem.

Both have a number of consequences that go far beyond the evident confirmation

of the unifying character of contextuality in quantum theory. Complete positivity of

quantum channels is already encoded in contexts, nonlocality arises from a notion

of composition of contexts, and quantum states can be singled out—among more

general non-signalling correlations over the composite context structure—by a notion

of time orientation in subsystems, thus solving a much discussed open problem

in quantum information theory. We also discuss nonlocal correlations under the

generalisation to orthomodular lattices and provide generalised Bell inequalities in

this setting.

The dominant role of contextuality in quantum foundations further supports a

recent hypothesis in quantum computation, which identifies contextuality as the

resource for the supposed quantum advantage over classical computers. In particular,

within the architecture of measurement-based quantum computation, the resource

character of nonlocality and contextuality exhibits rather clearly.

We study contextuality in this framework and generalise the strong link between

contextuality and computation observed in the qubit case to qudit systems. More

precisely, we provide new proofs of contextuality as well as a universal implementation

of computation in this setting, while emphasising the crucial role played by phase

relations between measurement eigenstates. Finally, we suggest a fine-grained measure

for contextuality in the form of the number of qubits required for implementation in

the non-adaptive, deterministic case.
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“I should have more faith,” he said; “I ought to know by this time that when a fact appears
opposed to a long train of deductions it invariably proves to be capable of bearing some other

interpretation.”

- Sir Arthur Conan Doyle
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Chapter 1

Introduction

Recent success of machine learning algorithms, which mimic the brain in the form of neuronal

networks, suggests that our cognitive abilities arise at least to some degree in a similar manner.

Maybe the greatest challenge to science is to decipher whether our conscious experience is

‘simply’ that—a complex network of physical neurons trained over years of sensual input—or

whether our perception of self rests on (fundamentally) di↵erent physics altogether [72]. A

conclusive answer to this and the possibly related ‘hard problem’ of consciousness [31] seems far

afield, yet certain aspects of the biological information processing in our brains undoubtedly

a↵ect our thinking. Clearly, this extends to our ability ‘to do science’. One particularly limiting

factor resulting from this is that our perception bias makes original thought, which defies the

pattern recognition of physical processes relevant to our everyday experience, a true rarity. Few

instances of people overcoming the boundary of this ‘natural intuition’ have triggered profound

philosophical, scientific, and technological revolutions, and are among the greatest achievements

of mankind.

Surely, the invention of quantum theory deserves its place in this list. What is more, it is

also a special representative in that even a hundred years after its formulation, the scope of its

revolutionary content has arguably not been fully grasped yet. It might even require a further

substantial shift in perspective as debates on quantum foundations are still ongoing and with

them the discussion about how to change our image of reality.
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CHAPTER 1. INTRODUCTION

One feature of quantum theory with far-reaching consequences for our understanding of the

world is beautifully captured in the following adaptation of a parable by the Swiss mathematician

Ernst Specker (English translation largely taken from [107]).

At the Assyrian School of Prophets in Arba’ilu in the time of King Asarhaddon,

there taught a seer from Nineva. He was a distinguished representative of his faculty

(eclipses of the sun and moon) and aside from the heavenly bodies, his interest was

almost exclusively in his daughter. His teaching success was limited; the subject

proved to be dry and required a previous knowledge of mathematics which was scarcely

available. If he did not find the student interest which he desired in class, he did find it

elsewhere in overwhelming measure. His daughter had hardly reached a marriageable

age when he was flooded with requests for her hand from students and young graduates.

And though he did not believe that he would always have her by his side, she was in

any case still too young and her suitors in no way worthy. In order that the suitors

might convince themselves of their unworthiness, he promised them that she would be

wed to the one who could solve a prediction task that was posed to them.

Each suitor was taken before a table on which stood four little boxes arranged

in a square, [each of which might or might not contain a gem], and was asked to

predict which of the boxes contained a gem and which did not. But no matter how

many times they tried, it seemed impossible to succeed in this task. After each suitor

had made his prediction, he was ordered by the father to open any two boxes within

either a row or a column of the square arrangement. It always turned out that two

opened boxes disproved the suitor’s prediction. The daughter would have remained

unmarried until the father’s death, if not for the fact that, after the prediction of

the son of a prophet [whom she fancied], she quickly opened two boxes herself, and

the suitor’s prediction [for these two boxes] was found, in this case, to be correct.

Following the weak protest of her father that he had wanted two other boxes opened,

she tried to open the remaining two. But this proved impossible where upon the father

grudgingly admitted that the prediction, being unfalsified, was valid. [The daughter

and the suitor were married and lived happily ever after.]

12



CHAPTER 1. INTRODUCTION

Assuming the seer was not merely a skilful trickster, Specker’s parable puts into question a

certain logical assumption that pervades physics well into the twentieth century. In order to

motivate exactly what this assumption is, note that we constantly interpret data by means of

inferring information about the world that we do not have direct access to.

A helpful illustration for this fact is the work of a famous detective trying to reconstruct a

crime scene in Sir Arthur Conan Doyle’s ‘Silver Blaze’ [51]:

“Is there any point to which you would wish to draw my attention?”

“To the curious incident of the dog in the night-time.”

“The dog did nothing in the night-time.”

“That was the curious incident.”

From the rather obvious inference ‘Silver Blaze was stolen from the stable in the night-time,

therefore there must have been a perpetrator’ and the masterly inference ‘the dog did not

bark in the night-time, therefore no-one unknown to the household approached the stable’ the

observant detective immediately arrives at the cunning conclusion ‘Silver Blaze was stolen by a

perpetrator, who was known to the household’ as a logical necessity.

More abstractly, and for the propositional logic underlying a physical system, the same line

of reasoning has that with implications A! B and B ! C, the implication A! C should also

hold. Since ordering statements by deduction (abduction in the novel) is so deeply ingrained

into our everyday lives, it is easy to overlook that this reasoning relies on the assumption

that statements can always be ordered in this way. This might seem obvious, however, this

assumption is not necessary. Specker points this out in the above parable, where implications

exist between neighbouring boxes only, yet not for all boxes together; for this reason, the

daughter cannot open the remaining boxes after the first two are opened. In other words,

the events relating to the information content of the boxes containing a gem or not are not

all simultaneously measurable. The inconspicuous assumption underlying classical deductive

reasoning therefore is that all statements about a system are simultaneously verifiable, and

implications between them can thus be related transitively as in the above example. Yet, the

situation in Specker’s parable is di↵erent—only certain subsets of statements about the system

can be simultaneously verified, and implications between them thus be composed transitively.

13



CHAPTER 1. INTRODUCTION

But clearly, we can open four boxes and observe their content simultaneously, so why bother

with this mathematical curiosity? In fact, it turns out that quantum theory behaves very similar

to the boxes in Specker’s parable—both the original version with three boxes and our adaptation.

Similar only, since the exact scenarios do not exist, yet very similar ones do; for the version

above, increasing the number of boxes arranged in a square from four to nine constitutes a

similar example, which turns out to be quantum-realisable in the Mermin-Peres square (cf.

Fig. 3.1 (a)). This raises the question why nature does not behave by our intuition, yet at the

same time does not depart arbitrarily far from it. This question is an interesting one and has

been addressed e.g. in [107], where the original version of Specker’s parable is discussed.

On the other hand, since contextuality is likely not the only physical principle underlying

nature, another question is at least as pressing: how important is the idea behind Specker’s

parable on the structure of logical implications—subject to the equivalence relation defined

by simultaneous measurability—in nature, specifically, in quantum theory? Is it merely a

curious feature of the latter or does it underlie physics on a fundamental level? This latter

question has been brought to the forefront by Chris Isham and collaborators [23, 24, 75, 87], who

suggested to construct theories of physics from the collection of classical perspectives or ‘contexts’.

In Ch. 2 we review this idea in detail (cf. Sec. 2.1.2), collect several known results about the

structure of simultaneous measurability in quantum theory (cf. Sec. 2.3), and extend them to

nonlocality in composite systems (cf. Sec. 2.4). In particular, we provide inherently contextual

reformulations for Stinespring’s and Bell’s theorem, based on a notion of contextual composition

in place of the tensor product construction in the standard formalism. We also give a definition

of general non-signalling theories over orthomodular lattices and derive Bell inequalities in this

setting (cf. Sec. 2.5).

In accordance with previous results, our findings emphasise the crucial role played by con-

textuality. The emerging, alternative formulation of quantum theory heavily rests on the deep

insights by Specker and Isham, and thus suggests a potential shift in perspective on quantum

physics as a whole.
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CHAPTER 1. INTRODUCTION

This has far reaching consequences not only for quantum foundations, but also its applications

such as quantum computation. Contextuality has recently been suggested as the resource

responsible for the supposed advantage of quantum over classical computers. Clearly, the

fact that contextuality underlies quantum theory on a fundamental level, strongly supports

this hypothesis. Yet, more than that is needed in order to convert this resource into useful

computational power. We address this issue by studying contextuality in the particular computing

architecture known as measurement-based (quantum) computation in Ch. 3. More precisely,

we improve existing results on the resource character of contextuality (cf. Sec. 3.1), construct

many inherently contextual examples (cf. Sec. 3.2), and suggest a classification of contextuality

by means of the number of local subsystems required for the implementation of certain tasks in

this framework (cf. Sec. 3.3).

We end by discussing potential avenues for future research along various directions in Ch. 4.
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Chapter 2

Contextuality in Foundations of

Quantum Theory

Quantum theory was developed in the beginning of the twentieth century by Planck, Einstein,

Bohr, Sommerfeld, de Broglie, and many others in an attempt to understand the emission

spectra of atoms. The theory was given a rigorous mathematical formulation only a few decades

later by Heisenberg, Schrödinger, Born, Dirac, Wigner, von Neumann, Jordan, Weyl, and many

more and has remained largely unchanged since then. We review important aspects of this

algebraic structure in Sec. 2.2 and discuss key results in foundations in this algebraic setting. In

particular, we will be concerned with the landmark theorems by Wigner, Gleason, Stinespring,

Bell, and Kochen & Specker. Most obviously, contextuality is the subject of the Kochen-Specker

theorem. Therefore, in Sec. 2.1.1 we give a detailed exposition of this theorem first, and discuss

its topos-based reformulation by Isham, Butterfield, and Hamilton [23, 24, 75, 87] as a prototype

for the reformulation of other theorems in foundations. For more background on the topos

approach to quantum theory and other closely related ideas we refer to [1–4, 33, 53, 56, 60, 61,

78, 79, 115, 116]. A great benefit of this reformulation is that it gives a geometrical interpretation

of the former, based on a generalised state space in the form of the spectral presheaf, which

fundamentally builds on the concept of physical contextuality, which we define in Sec. 2.1.2.

In fact, physical contextuality and its mathematical embodiment in the form of presheaves

16



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

over the partial order of contexts prove more universal and lead to reformulations of other key

theorems, namely Gleason’s and Wigner’s theorem. We review those in Sec. 2.3 and highlight

their intimate relationship with contextuality. Measured by the significance of these theorems

for quantum foundations, it is surprising that their contextual nature has not been elaborated

on before, and should be seen as an important contribution to foundations in and of itself.

The connection between Bell’s theorem, locality, and contextuality has been recognised

before [6, 25, 57, 59, 92]. However, no contextual reformulation of the above type had previously

been known. In order to bridge this gap, first, we give a derivation of the crucial assumption of

factorisability in Bell’s theorem from the perspective of classical state spaces and argue that

it is naturally related to trivial physical contextuality in Sec. 2.4. In particular, we show how

contextuality fundamentally relates to composition of systems. To this end, we provide a notion

of composition based only on the context structure of a theory. Our key result is a reformulation

of Bell’s theorem in contextual form based on our notion of context composition and a choice of

time direction in subsystems. This reformulation can also be understood as a generalisation of

Gleason’s theorem to composite systems, strengthening a previous result in [145].

As a consequence of Bell’s theorem in contextual form we obtain a solution to a key problem

in quantum foundations and quantum information theory concerning the restrictiveness of the

no-signalling principle [15, 121, 125]. We show in detail that no-signalling constraints also arise

as marginalisation constraints between contexts in the Bell presheaf. As such we find that

no-signalling corresponds to our definition of composition of contexts and almost singles out

quantum theory over the context structure corresponding to local von Neumann algebras: it

only lacks a choice of time direction in subsystems.

Along the way we provide a reformulation of the more technical but nonetheless crucial

dilation theorem by Stinespring (cf. Sec. 2.3.4). In particular, we prove that completely positive

maps are naturally encoded on the level of contexts already. Both, Stinespring’s and Bell’s

theorem thus also prove to be very closely connected with contextuality in ways not recognised

previously. Finally, in Sec. 2.5 we discuss generalisations of our reformulation of Bell’s theorem

in contextual form by considering orthomodular lattices instead of projection lattices of von

Neumann algebras, and we consider correlations in such theories. Sec. 2.6 summarises.
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CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

2.1 The Kochen-Specker theorem and contextuality

This section serves two purposes, it is meant as an introduction to the Kochen-Specker theorem

and as a conceptual motivation for the notion of physical contextuality. First, in Sec. 2.1.1 we

review the key idea behind the Kochen-Specker theorem and highlight the role contextuality

plays in it. Second, in Sec. 2.1.2 we extract the physical principle inherent to contextuality and

argue how it reveals a principal di↵erence between classical and quantum physics. We fill it with

mathematical content in Sec. 2.2, which will allow us to relate not only the Kochen-Specker

theorem to contextuality, but many more key components of quantum theory, too.

2.1.1 The Kochen-Specker argument

Following Bell’s seminal work [18], Kochen and Specker further refined the constraint on hidden

variable models [101]. At least since the famous paper by Einstein, Podolski, and Rosen [54] there

had been an ongoing debate about the possibility to understand quantum theory as a high-level

description of a more fundamental theory, similar to thermodynamics, which Boltzmann gave a

statistical underpinning based on classical physics in the form of Newtonian mechanics. Bell’s

theorem (cf. Sec. 2.4.4) puts strong constraints on such an interpretation. However, while Bell

derives his conclusion in conjunction with a notion of locality, Kochen and Specker remove

this additional assumption and simply ask whether it is at all possible to ascribe a classical

state space to quantum theory. In particular, Kochen and Specker are concerned with the

concept of a ‘microstate’, which can be understood as a deterministic assignment of measurement

outcomes to all observables simultaneously. Importantly, microstates exist in classical systems as

a consequence of the fact that classical observables are all simultaneously measurable. Famously,

by the uncertainty principle observables are not simultaneously measurable in quantum theory,

however, this does not necessarily imply that no microstates of the aforementioned type exist.

Nevertheless, Kochen and Specker show that quantum theory does not admit microstates.

We present the key steps of their argument before changing perspective and pinpointing the

underlying notion of physical contextuality in Sec. 2.1.2.
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CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

Kochen and Specker ask whether quantum theory allows for an underlying ‘classical’ de-

scription. To this end, they first set out to clarify what conditions should be met by a classical

interpretation of a theory. Note that two important ingredients to a physical theory are (i) a set

of observables O and (ii) a set of states ⌃. In a classical theory, observables are modeled as

functions on some measurable space ⌃: for every observable a 2 O, there exists a measurable

function fa : ⌃! R.1 If moreover every such function is promoted to the status of an observable,

O has the structure of an algebra.

Forcing this model onto quantum theory, the probability of measuring a value in the interval

� ⇢ R with the observable a 2 O given a quantum state  is given by

Pa, (�) = µ (f
�1

a
(�)) .

Here, µ is the measure on the state space ⌃ corresponding to  . Clearly, any interpretation of

quantum theory should also reproduce quantum mechanical expectation values,

E (a) =
Z

⌃

dµ (s)fa(s) = h , a i . (2.1)

Yet, Eq. (2.1) by itself is not very restrictive, it allows for artificial state spaces such as the one

constructed in [101]. Let ⌃ = RO = {s : O ! R} and set fa(s) = s(a) for all a 2 O. Then

the product measure µ =
Q

a2O Pa, trivially reproduces quantum mechanical probabilities:

µ (f�1

a
(�)) = µ ({s | s(a) 2 �}) = Pa, (�).

This example works since no functional relations between observables are taken into account.

However, whenever such relations exist on the level of the observables, it is natural to require

these to be at least partially reflected in their (functional) representation. Taken to the extreme,

one might thus require the full algebraic structure of quantum theory to be reflected in such a

representation:

fa+b = fa + fb fab = fa · fb f�a = �fa (2.2)

1Here, ‘measurable’ is used in the mathematical sense.
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CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

To find such a representation means to give an algebra homomorphism O ! R⌃ from the

algebra of quantum mechanical observables O to the algebra of real-valued functions on some

measure space ⌃. This is easily seen to be impossible by an example due to Bell. Consider

the spin observables �x and �z with eigenvalues ±1, as well as the spin observable �xz :=

1p
2
(�x + �z) corresponding to measuring the spin along the axis bisecting the measurement axes

of �x and �z. Requiring this algebraic relation to be reflected in a functional representation

f� : ⌃ ! R immediately yields a contradiction when evaluated on a microstate s 2 ⌃:

f�xz(s) =
1p
2
(f�x(s) + f�z(s)) =

1p
2
(±1 +±1) 6= ±1 = f�xz(s).

It is here that Bell, Kochen, and Specker have a deep structural insight: there is no reason

to require algebraic constraints to be reflected between all quantum mechanical observables,

only when the measured values can be inferred from one another such relations should hold.

Since measured values can be inferred between simultaneously measurable observables, it is

natural to at least require algebraic constraints to be reflected in the spectra of such observables.

We call the set of measured values of an observable a 2 O its spectrum and denote it by sp(a).

In order to evaluate the relevant constraints in Eq. (2.2), Kochen and Specker therefore

introduce the notion of a partial algebra, i.e., an algebra with an equivalence relation called

‘simultaneous measurability’ defined on it. Accordingly, a partial algebra homomorphism relaxes

the conditions of an algebra homomorphism in Eq. (2.2) to hold between simultaneously

measurable observables only [101]. Of special interest are partial algebra homomorphisms into

R.

Definition 1. Let O be a partial algebra representing the observables of a physical theory. A

valuation function (‘prediction function’ in [101]) v : O ! R is a map such that:

(i) v(a) 2 sp(a) (spectrum rule)

(ii) v : O ! R⌃ is a partial algebra homomorphism

Clearly, if there exists a state space ⌃ underlying a theory, then every state s 2 ⌃ defines

a valuation function vs : O ! R by evaluation, vs(a) = fa(s). By ruling out the existence

of valuation functions in quantum theory, Kochen and Specker conclude that no classical

interpretation can be given for the latter, in particular, that no classical state space ⌃ exists.
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In order to state the theorem, one only needs a minimum of projective geometry in three

dimensions—strictly less than the full mathematical apparatus of quantum theory. However, the

technical proof somewhat distracts from the important physical aspects and we therefore defer

the discussion of the theorem until after a thorough treatment of the mathematical background

in Sec. 2.2, which will also allow us to introduce substantial generalisations of the original result

in [101]. Instead, in the next section we focus on the conceptual idea underlying the argument

outlined in this section—the principle of physical contextuality.

2.1.2 Physical contextuality

The key ingredient to the argument in the last section is the restriction of the algebraic constraints

between observables in Eq. (2.2). Building on [75, 101], in [47] we conceptualise this as follows.

Definition 2. Let the observables of a physical system be given by a partial algebra O with

equivalence relation called simultaneous measurability. An equivalence class of observables that

are pairwise simultaneously measurable is called a (maximal) context. Moreover, O is called

physically contextual if not all its observables are simultaneously measurable, i.e., if O is not

itself a (maximal) context.

Classical theories are not physically contextual by this definition, they contain a single

maximal context and we will sometimes call them single-context theories for this reason (cf.

[53]). Quantum theories, on the other hand, are a very special type of physically contextual

theories. Importantly, any theory with physical contextuality still has contexts, i.e., equivalence

classes of observables that are pairwise simultaneously measurable. In the extreme case, contexts

consist of a single observable. What is more, there is a natural notion of coarse-graining arising

from inclusion relations between subsets of equivalence classes called (non-maximal) contexts.

From an information-theoretic perspective, coarse-graining captures the loss of information

when going to smaller contexts. Contexts and their order relations therefore encode physical

contextuality [1–4, 23, 24, 47, 75, 87, 101].

Definition 3. Let the observables of a physical system be given by a partial algebra O. The

context category C(O) is the partial order of (non-maximal) contexts ordered by inclusion.
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Soon, we will assume contexts to carry additional structure, e.g., in quantum theory it is

natural to take contexts to correspond to unital, commutative C⇤-algebras or von Neumann

algebras. Yet, we emphasise that the importance of physical contextuality lies in the order

structure, which applies already at the level of mere sets. A related approach to contextuality

setting o↵ at this level of generality is the sheaf-theoretic framework in [6].

We remark that contextuality is used with di↵erent meanings in the literature [26, 81, 85,

101, 126, 134]. In order to clearly distinguish those from the one given in Def. 2 and Def. 3, we

call the latter ‘physical contextuality’. Notably, physical contextuality is inherently operational,

since it is based on the notion of simultaneous measurability, yet there is no need to introduce

‘contextual value assignments’, ‘counterfactual definiteness’ or other often convoluted concepts.2

Instead, we use our minimal version of (physical) contextuality mostly as a mathematical

(bookkeeping) tool in order to study its restrictiveness in quantum theory.

Physical contextuality is a conceptual principle and (mostly) independent of a mathematical

formalism. In order to study its role in quantum theory quantitatively, in the next section

we give the necessary mathematical background on (algebraic) quantum theory and make

the structure of physical contextuality explicit in this case. We will then see that physical

contextuality is not only at the heart of the Kochen-Specker theorem, but also of other key

theorems in quantum foundations, which obtain a natural reformulation in terms of the order

structure between contexts (cf. Sec. 2.3).

2Instead, in order to make sense of probabilistic assignments and correlations in Bell’s theorem later on, we
will tacitly assume a notion of ‘statistical regularity’ [103], which in some form necessarily underlies any kind of
scientific study. Arguably, this is a much less problematic principle than ‘counterfactual definiteness’.
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2.2 Mathematical background

Throughout this chapter we will take the view of algebraic quantum theory. This framework

underlies not only quantum mechanics, but also quantum information theory and in large part

(algebraic) quantum field theory. The key ingredient is the algebraic structure on observables,

which are modelled mathematically by self-adjoint operators on a Hilbert space. The self-

adjoint operators play a twofold role, first, they underlie the measurement process, second,

they correspond to infinitesimal generators of time evolution. The latter aspect connects with

the theory of Lie algebras while the former is captured by the probability calculus inherent

to Jordan algebras. Both aspects are intricately interwoven into one multiplicative product

yielding the structure of an associative von Neumann or C⇤-algebra. We review this structure

in detail over the next sections. In particular, we make explicit the idea that quantum theory

arises via ‘local-to-global’ extensions from classical physics, where ‘local’ means ‘within a single

context’ or ‘classical’ and ‘global’ refers to the collection of all contexts by means of physical

contextuality. As will become clear soon, the latter corresponds to non-trivial Jordan structure

and only indirectly to noncommutativity, which is often considered to be the essence of quantum.

We start with a general overview of algebraic quantum theory in Sec. 2.2.1 (for references,

see [96, 97, 138, 139, 144]). In Sec. 2.2.2 we give a rigorous definition of physical contextuality

within algebraic quantum theory. More precisely, we introduce some basic notions from category

theory (for more details, we refer to e.g. [104, 106]) in order to define the context category

and presheaves over the context category as the tools to study local-to-global problems, which

provide the basis for the reformulations of many key theorems in contextual form in Sec. 2.3.

In Sec. 2.2.3 we connect physical contextuality with the Jordan algebra aspect in von

Neumann algebras. The corresponding split of the associative product into a symmetric and an

antisymmetric part lies at the heart of the dichotomy of observables in quantum theory, whose

role will become particularly important in the study of Bell’s theorem in Sec. 2.4.4. Since the

relevant structures—Jordan algebras, order derivations, orientations etc.—are not well known

outside of small communities, we provide some necessary background on (only) those notions

needed for later theorems. Standard references with many more details include [8, 39].
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2.2.1 Part I - Algebra of observables

Bounded operators on Hilbert space. A Hilbert space H is a vector space with inner product

(·, ·) completed in the norm || · || = |(·, ·)|2. Recall that a sesquilinear form (·, ·) : V ⇥ V ! C on

a vector space V is called positive-definite if (x, x) � 0 for all x 2 V and (x, x) � 0, x = 0,

and is called conjugate-symmetric or Hermitian if (v, w) = (w, v) for all v, w 2 V . An inner

product is a positive-definite Hermitian form.3

Every Hilbert space is in particular a Banach space, i.e., a normed vector space complete

with respect to the induced norm topology. In finite dimension n 2 N, the prototypical Hilbert

space is H = Cn with inner product (v, w) =
P

n

i=1
viwi for all v, w 2 Cn. A Hilbert space is

called separable if it has a countable orthonormal basis (vi)i2N, i.e., a countable family of vectors

vi 2 H such that (vi, vj) = �ij , and for every v 2 H there exist unique complex numbers (ci)i2N

such that v =
P1

i=1
civi. In what follows, Hilbert spaces will be assumed separable.

A linear operator a : V ! W is a linear map between vector spaces V,W . A linear operator

between normed vector spaces V,W is called bounded if there exists 0  K 2 R such that

||av||W < K||v||V for all v 2 V . The smallest such K is the operator norm of a, denoted

||a|| := inf{K 2 R | ||av||  K||v|| 8v 2 V },4 and a is bounded if ||a|| <1.

Theorem. A linear operator between normed spaces is bounded if and only if it is continuous.

The set of bounded operators on Hilbert space H is denoted B(H) and forms a Banach

algebra, i.e., it is a vector space, which is complete in the topology induced by the operator

norm, and such that multiplication is continuous: ||ab||  ||a|| · ||b|| for all a, b 2 B(H).

For the purposes of this thesis, it will be enough to consider bounded operators, more

precisely, observables will be mathematically represented by bounded self-adjoint operators on

some Hilbert space.5 The latter property refers to a further symmetry of the Banach algebra

B(H): for a 2 B(H), define a⇤ to be the operator such that (av, w) = (v, a⇤w) for all v, w 2 H.

a⇤ is called the (Hilbert) adjoint of a and is provably unique. In finite dimensions the adjoint is

3We will follow the mathematical convention that sesquilinear forms are linear in the first (and conjugate
linear in the second) argument: 8�1,�2 2 C, 8v1, v2, w 2 H, (�1v + �2v2, w) = �1(v1, w) + �2(v2, w).

4Note that the operator norm depends on the respective norms on V and W .
5We remark that unbounded operators such as position and momentum in quantum mechanics can be treated

by a�liating them with the von Neumann algebra of observables (cf. [96, 97]).
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given by transposition and complex conjugation, a⇤ = at. The following properties of operators

a 2 B(H) are of special interest. An operator is called normal if aa⇤ = a⇤a, a normal operator

is called unitary if aa⇤ = a⇤a = 1 and self-adjoint if a = a⇤. A self-adjoint operator is called

positive if (av, v) � 0 for all v 2 H. We denote the set of positive operators by B(H)+. The

set of self-adjoint operators forms a real vector space denoted by B(H)sa ⇢ B(H), but not a

subalgebra since ab /2 B(H)sa in general. Every operator a 2 B(H) has a unique decomposition,

a = a1 + ia2, where a1, a2 2 B(H)sa, namely a1 =
1

2
(a+ a⇤), a2 =

�i

2
(a� a⇤). It follows that a is

normal if and only if [a1, a2] = 0.

C⇤-algebras, von Neumann algebras. The map ⇤ : B(H) ! B(H) makes B(H) into a

⇤-algebra: it defines an antilinear involution, i.e., for all a, b 2 B(H), � 2 C it holds (�a)⇤ = �a⇤,

(a+b)⇤ = a⇤+b⇤, (ab)⇤ = b⇤a⇤, and (a⇤)⇤ = a. Since B(H) is also a Banach space, it is natural to

require compatibility with the norm as well. In fact, the C⇤-identity, ||a⇤a|| = ||a⇤|| · ||a|| = ||a||2

for all a 2 B(H), holds and makes B(H) into a C⇤-algebra.

Definition 4. A C⇤-algebra A is a Banach algebra over the field of complex numbers, together

with an antilinear involution ⇤ : A! A, which satisfies the C⇤-identity,

8a 2 A : ||a||2 = ||a⇤a|| .

The C⇤-algebra B(H) thus carries a natural topology induced by the operator norm || · ||

known as uniform operator topology. However, this topology is in general not the only topology

on B(H), several weaker topologies exist. For instance, a net (ai)i2I converges to a in the strong

operator topology or strongly if and only if ||aiv � av||! 0 for all v 2 H.6 This is the topology

of pointwise convergence and generally weaker than the uniform operator topology. Of special

interest to us is the weak operator topology. A net (ai)i2I converges to a in the weak operator

topology or weakly if and only if (v, aiw) ! (v, aw) for all v, w 2 H. Requiring closure with

respect to the weak operator topology leads to the definition of a von Neumann algebra.

6A net f : I ! X is a map from a directed set I to a topological space X. A directed set I is a non-empty
set with a preorder, i.e., a reflexive, transitive relation  such that every pair of elements has an upper bound
(cf. Sec. 2.2.2).

25



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

Definition 5. A von Neumann algebra N is a unital subalgebra of B(H), i.e., a subalgebra

including the multiplicative identity in B(H), closed in the weak operator topology.

Every von Neumann algebra is in particular uniformly closed and thus a unital C⇤-algebra.

Note also that B(H) is a von Neumann algebra. Von Neumann algebras provide a natural

mathematical representation of physical quantities.

The algebra of physical quantities is modeled by

a (noncommutative) von Neumann algebra.

We remark that weakly closed operator algebras can also be characterized abstractly, without

reference to a Hilbert space, as follows: let X be a Banach space and denote by X⇤ its continous

dual, i.e., the Banach space of bounded linear functionals � : X ! C (see below).

Definition 6. A W ⇤-algebra N is a C⇤-algebra that is the dual of some Banach space X. The

latter is called the predual of N .

Nevertheless, by the Gelfand-Naimark representation theorem, Thm. 5 below, every von

Neumann algebra N arises as a subalgebra N ✓ B(H) for some Hilbert space H.

Linear functionals, states, and weights. A linear functional � on a C⇤-algebra A is a

linear map � : A! C. A linear functional � is positive if �(a) � 0 for all a 2 A+.

Theorem 1. A linear functional � is positive if and only if it is bounded and ||�|| = �(1).

A state � is a positive (bounded) linear functional that is normalised, i.e., �(1) = 1. The set

of states on A is denoted S(A) and forms a convex set since for every two states �1, �2 2 S(A)

and � 2 [0, 1]: ��1 + (1 � �)�2 2 S(A). By the Krein-Milman theorem S(A) is the weakly

closed convex hull of its extreme points, which are called pure states and denoted E(A). A

non-zero linear functional on a commutative C⇤-algebra A is a pure state if and only if it is

multiplicative. The set of multiplicative linear functionals is called the Gelfand spectrum of A,

⌃A := {0 6= � : A! C linear | 8a, b 2 A : �(ab) = �(a)�(b)} = E(A) . (2.3)
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The Gelfand spectrum is a compact Hausdor↵ space relative to the weak⇤ topology.

Finally, weights generalise linear functionals in (infinite-dimensional) von Neumann algebras.

Definition 7. Let N be a von Neumann algebra and N+ the set of positive elements of N . An

additive, homogeneous map ! : N+ ! [0,1], i.e., !(a+ b) = !(a) + !(b) and !(�a) = �!(a)

for all a, b 2 N+, � 2 R, is called a weight on N .

A weight is called faithful if !(a) = 0 implies a = 0. A weight is called finite if !(1) <1. A

positive linear functional on N is a finite weight. If moreover !(a⇤a) = !(aa⇤) for all a 2 N ,

then ! is called a trace on N . Finally, a trace is called semi-finite if for all a 2 N+ non-zero,

there exists b 2 N+ non-zero with !(b)  1 and b  a.

Trace-class operators and normal states. There are some important subspaces of B(H)

arising as closed two-sided ideals. First, an operator a : E ! F between Banach spaces is called

compact if for all D ✓ E bounded, the closure a(D) is compact in F .

Theorem 2. Let H1,H2 be Hilbert spaces. Every compact operator a : H1 ! H2 is the norm

limit of finite linear sums
P

n

i=1
ci(·, vi)wi with ci 2 C, vi 2 H1, wi 2 H2.

The space of compact operators on Hilbert space H is denoted K(H) and can be further

refined as follows. Let (vi)i2N be an orthonormal basis of a (separable) Hilbert space H, and set

8a 2 B(H)+ : tr(a) :=
1X

i=1

(vi, avi) . (2.4)

Definition 8. The set L1(H) of trace-class operators on H is the linear span of

L1(H)+ := {a 2 B(H)+ | tr(a) <1} .

The set of Hilbert-Schmidt operators on H is given by

L2(H) := {b 2 B(H) | b⇤b 2 L1(H)} .

Note that in finite dimensions every operator is trace-class.
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Lemma. L1(H) ⇢ L2(H) ⇢ K(H) define closed two-sided ideals in B(H).

We will encounter trace-class operators via normal states in Gleason’s theorem, Thm. 22.

Definition 9. A state � on a von Neumann algebra N is called normal or ultraweakly continuous

if �(ai) ! �(a) for every monotone increasing net (ai)i2I of operators in N with least upper

bound a. Equivalently, �(
P

i
pi) =

P
i
�(pi) for all families of orthogonal projections (pi)i2I .

For every normal state � 2 S(N ), N ✓ B(H) there exists a trace-class operator ⇢ 2 L1(H)

such that �(a) = tr(⇢a) for all a 2 N and vice versa.

Projections and spectral theorem. The set of projections in a C⇤-algebra A is the set of

self-adjoint, idempotent operators P(A) := {p 2 Asa | p2 = p}. Projections play a particularly

important role for von Neumann algebras. Given a faithful representation in the bounded

operators on some Hilbert space H (cf. Thm. 5 below), the projections in a von Neumann

algebra P(N ) are in bijective correspondence with closed subspaces of H. Since the latter are

naturally ordered by inclusion, this equips P(N ) with a partial order, which is closely related

to contextuality (see Sec. 2.2.2 for more details). Algebraically, this order reads as follows: let

p, q 2 P(N ), then p  q if and only if pq = qp = p.

Moreover, the following two definitions will become important in the classification of von

Neumann algebras below. Two projections p, q 2 P(N ) are called equivalent if there exists a

partial isometry u such that p = u⇤u and q = uu⇤.7 A projection p 2 P(N ) is called finite if

there exists no other projection q < p, q 2 P(N ), which is equivalent to p.

In contrast to general C⇤-algebras, von Neumann algebras contain many projections. More

precisely, let F ✓ B(H) and define the commutant of F ,

F 0 := {b 2 B(H) | 8a 2 F : [a, b] = ab� ba = 0} .

Besides the topological condition in Def. 5 and Def. 6, von Neumann algebras can further be

defined purely algebraically by means of von Neumann’s double commutant theorem.

7Recall that u 2 N is a partial isometry if u⇤u and uu⇤ are both projections. As a map between Hilbert
spaces, u 2 N ✓ B(H) is a partial isometry if it is an isometry on the complement of its kernel.
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Theorem 3. (von Neumann, double commutant theorem) Let H be a Hilbert space and

B(H) the algebra of bounded operators. Let N ✓ B(H) be a ⇤-subalgebra of B(H) containing

the identity. Then the following are equivalent:

(i) N is closed in the weak (strong) operator topology, i.e., N is a von Neumann algebra

(ii) N = N 00 = (N 0)0

Moreover, every von Neumann algebra N is generated by its projections N = P(N )00.8

The latter follows from the spectral theorem—another important decomposition of self-adjoint

operators. In finite dimensions it reads

8a 2Mn(C) (:= B(Cn)) : a =
nX

i=1

aipi . (2.5)

Here, ai 2 R is an eigenvalue of a, i.e., av = aiv for some v 2 H = Cn,9 and pi 2 P(H)

denotes the projection onto the corresponding eigenspace. A straightforward generalisation of

Eq. (2.5) to infinite dimensions exists only for compact operators (cf. Thm. 2). General bounded

self-adjoint operators do not necessarily have eigenvalues in infinite dimensions. Instead, one

defines a spectral value � 2 C of an operator a 2 A in a C⇤-algebra A to be such that a� �1

does not have a (two-sided) inverse in A. The collection of spectral values is called the spectrum

of a and denoted sp(a).

We also need the notion of operator-valued measure.

Definition 10. Let X be a compact Hausdor↵ space and �(X) its Borel �-algebra. Then

% : �(X)! B(H) is called a operator-valued measure if it is weakly finitely additive, i.e., for

any finite collection of disjoint Borel sets (Bi)i2I in the �-algebra �(X),

8v, w 2 H : h%([i2IBi)v, wi =
X

i2I

h%(Bi)v, wi .

A special case are projection-valued (or spectral) measures % : �(X)! P(H).

8Since projections correspond with measurement outcomes in experiments, this justifies the use of von
Neumann algebras from an operational perspective.

9Note that eigenvalues of self-adjoint operators are necessarily real.
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As a generalisation of Eq. (2.5) based on projection-valued measures, one then obtains.

Theorem 4. Let a 2 B(H)sa. There exists a projection-valued measure µa : �(R)! P(H) such

that

a =

Z

R
� dµa(�) .

The spectral theorem underlies the Borel functional calculus, i.e., we can apply functions

to operators as follows: let f : X ! R by a bounded measurable function, then there exists a

unique bounded linear operator f(a) : H! H defined by f(a) =
R
R f(�)dµa(�).

Since every operator a 2 N is the unique sum of self-adjoint operators, a = a1 + ia2,

a1, a2 2 Nsa, and every self-adjoint operator has a spectral resolution by the spectral theorem,

it follows that P(N ) generates N . In this sense, the study of von Neumann algebras can be

reduced to the study of its projections. Contextuality builds on this idea together with the

essential properties inherent to P(N ) to be discussed in Sec. 2.2.2.

Type classification for von Neumann algebras. Since von Neumann algebras are

generated by their projections, their classification is in terms of projections also.

Definition 11. The center Z(N ) of a von Neumann algebra is the von Neumann subalgebra of

those operators in N that commute with all other operators,

Z(N ) := {a 2 N | 8b 2 N : [a, b] = 0} .

A von Neumann algebra N is called a factor if it has trivial center.

The building blocks of von Neumann algebras are factors, i.e., every von Neumann algebra has

a unique decomposition into factors N =
R �
X
Nxdµ(x).10 In particular, the factor decomposition

is encoded in the central projections ZP := {p 2 Z(N ) | p2 = p}. Furthermore, the classification

of factors is intuitively given in terms of the ‘size’ of its projections. Since, up to rescaling for

every factor there exists a unique trace ‘measuring the size’ of its projections (cf. Eq. (2.4)),

this classification can equivalently be given in terms of the image under the trace.

10If N has finitely many factors, this simplifies to the direct sum N =
L

i2I Ni.
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There are three types of factors, each with sub-types. A factor N is of type I if it contains a

minimal projection, i.e., 9p 2 P(N ) such that q < p for q 2 P(N ) implies q = 0. Every such

factor is isomorphic to the algebra of bounded operators on some Hilbert space, and since there

exists a Hilbert space for every cardinal number, factors of this type are further distinguished

by the Hilbert space dimension: In, n 2 (N [1). These correspond with the matrix algebras

Mn(C). The size of the projections of a factor of type In is given by the unique (standard) trace

tr(a) =
P

n

i=1
aii for aij 2Mn(C), which for projections takes values {1, · · · , n}. A factor with

no minimal projection is of type II, if it still contains a non-zero finite projection. One further

distinguishes between factors of type II1 and II1, the former having a finite identity operator.

Accordingly, the trace takes values in [0, 1] or [0,1], respectively. Finally, a factor is of type III

if it contains no non-zero finite projection. Non-zero projections in such factors are therefore

necessarily infinite and, in fact, all non-zero projections have the same (infinite) ‘size’, i.e., the

trace takes values {0,1} only. Factors of this type are often indexed by a real number, III�,

� 2 [0, 1], which relates to their Connes spectra [39].

Representation theory. We will mostly be concerned with von Neumann algebras. Yet,

many key structural theorems hold on the level of C⇤-algebras. Importantly, the Gelfand-

Naimark representation theorem proves that any C⇤-algebra has a faithful representation in

the bounded operators on some Hilbert space. Even in the most general case we may thus

consider observables as bounded self-adjoint operators on some Hilbert space. At the heart of

this theorem is the Gelfand-Naimark-Segal (GNS) construction.

Theorem 5. Let A be a C⇤-algebra and � a state on A. Then there is a ⇤-representation ⇡� of

A on a Hilbert space H� and a unit vector v� 2 H� such that �(a) = (v�, ⇡�(a)v�) for all a 2 A.

The Hilbert space constructed in the proof of this theorem arises from the pre-inner product

(a, b) := �(b⇤a) for all a, b 2 A. In particular, the direct sum over all pure states yields a faithful

representation ⇡ acting on the direct sum of Hilbert spaces H� by ⇡(a)(
L

�
v�) =

L
�
⇡�(a)v�.11

On the other hand, note that we directly obtain a faithful representation from Thm. 5 if we

are given a faithful, normal state, i.e., a faithful, normal, finite and normalised weight.

11This is the representation constructed in the Gelfand-Naimark representation theorem [86].
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Yet, some infinite-dimensional von Neumann algebras do not admit such states, in particular,

the finiteness condition fails. Nevertheless, one can show that every von Neumann algebra

possesses a faithful, normal, semi-finite weight. In order to deal with the infinite-dimensional

case, one therefore generalises the construction in Thm. 5 to weights by defining an inner

product from (x, y) := !(y⇤x) only for x, y 2 n! := {x 2 N | !(x⇤x) <1}. The representation

obtained from this construction is called semi-cyclic and is sometimes denoted L2(N ). One can

show that it does not depend on the choice of faithful, normal, semi-finite weight.

We will use representations with respect to such weights in combination with the Riesz-Fréchet

theorem in order to identify states and linear functionals.

Theorem 6. Let H be a Hilbert space and � 2 H⇤. Then there exists w 2 H such that

�(v) = (v, w) for all v 2 H and ||w||H = ||�||H⇤.

Importantly, by semi-finiteness of !, for every x 2 N+ there exists a monotone increasing

net (xi)i2I 2 N+ with limit x (in the strong operator topology), yet with !(xi) < 1 for all

i 2 I. It is thus su�cient to keep the correspondence under the Riesz-Fréchet theorem for finite

elements (and appropriate monotone increasing nets).

2.2.2 Part II - Context category and presheaves

Partial orders and lattices. We saw that the inclusion relations between closed subspaces of

a Hilbert space H make P(N ) into a partial order for every von Neumann algebra N ✓ B(H).

Since partial orders will be crucial also for the mathematical representation of the context

category from Def. 3 in Sec. 2.1.2, we provide some more background on this structure here.

Definition 12. A partial order is a set P with a binary relation � that satisfies:

(i) 8p 2 P : p � p (reflexivity)

(ii) 8p, q, r 2 P : p � q and q � r, then p � r (transitivity)

(iii) 8p, q 2 P : p � q and q � p, then q = p (antisymmetry)

A partial order is also an antisymmetric preorder, the latter being a set with a reflexive and

transitive relation. For two elements p, q 2 P define the least upper bound or join, p_q := inf{r 2
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P | p � r, q � r}, and greatest lower bound or meet, p ^ q := sup{r 2 P | r � p, r � q}. Note

that joins and meets are unique if they exist. A partial order is a join-semilattice/meet-semilattice

if for any two elements p, q 2 P , p _ q/p ^ q exists. Moreover, if P contains
W

i2I pi/
V

i2I pi

for any family of elements (pi)i2I then P is called a complete join-semilattice/meet-semilattice.

A partial order is called a (complete) lattice if it is both a (complete) meet-semilattice and a

(complete) join-semilattice. It is bounded, if it contains a least element 0 and greatest element

1. A lattice L is called distributive if

8p, q, r 2 L : p _ (q ^ r) = (p _ q) ^ (p _ r) (distributivity) .

Furthermore, a notion of complement is given as follows: let P be a bounded lattice and p 2 P ,

then any q 2 P such that q _ p = 1 and q ^ p = 0 is called a complement of p. A complemented

lattice is a lattice L with an orthocomplementation ? : L! L, mapping every element p 2 P to

a complement p?. Complements need not be unique, however, they are unique for bounded

distributive lattices.

Theorem. A Boolean algebra (or lattice) is a bounded, orthocomplemented, distributive lattice.

Classical physics is built on Boolean logic and thus on distributive lattices. More general are

modular lattices, which satisfy:

8p, q, r 2 L, p � r : p _ (q ^ r) = (p _ q) ^ r (modularity)

It is easy to see that the projections in a von Neumann algebra P(N ) form a complemented

lattice: the least element 0 2 P(N ) corresponds to the zero projection, the greatest element

1 2 P(N ) corresponds to the identity projection, and the map ? : P(N )! P(N ) defined via

p? = 1�p defines an orthocomplementation. Yet, P(N ) is distributive only if N is commutative.

Nevertheless, L := P(N ) satisfies a weakened notion of modularity.

8p, q 2 L, p � q : p _ (p? ^ q) = q (orthomodularity) (2.6)

Definition 13. A lattice is called orthomodular if Eq. (2.6) holds.
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Theorem 7. Let N be a von Neumann algebra. Then P(N ) is a complete orthomodular lattice.

Despite not being a Boolean algebra, an orthomodular lattice L is a lattice built from

Boolean algebras, i.e., it can be obtained by pasting together Boolean lattices in a suitable

way [68, 117]. An important consequence is that whenever p, q 2 L are orthogonal, p ? q, i.e.,

q � p?, then there exists a Boolean sublattice B ✓ L containing both elements p, q 2 B. This

foreshadows a general theme in this chapter: quantum theory can be understood as a collection

of classical perspectives (‘contexts’) with corresponding interrelations. To make this idea precise,

after introducing some basic notions from category theory, in the subsequent paragraphs we

define the notion of context in more detail and relate it to state spaces in classical physics.

Quantum theory will then emerge from gluing together multiple contexts in an appropriate sense.

Categories and functors. We review some basic categorical definitions (cf. [104, 106,

124]).

Definition 14. A category C is a collection of objects Ob(C) and a collection of arrows Arr(C)

with domains and codomains in Ob(C) such that:

1. for any arrows f, g 2 Arr(C) with f : A! B, g : B ! C, there is an arrow g � f 2 Arr(C)

such that g � f : A! C,

2. composition of arrows is associative, i.e., for any arrows f, g, h 2 Arr(C) with f : A! B,

g : B ! C, and h : C ! D, it holds that h � (g � f) = (h � g) � f ,

3. there is an identity arrow idA : A ! A for every object A 2 Ob(C) such that for every

arrow f : A! B it holds that f � idA = idB � f

The collection of all arrows from A to B is denoted HomC(A,B) and is called the hom-set

between A and B.12 To each category C there exists an opposite category Cop with the same

objects, Ob(Cop) = Ob(C), but all arrows reversed, i.e., whenever A,B 2 Ob(C) and (f : A!

B) 2 Arr(C) then there exists an arrow (f : B ! A) 2 Arr(Cop).

12Note that hom-sets are not necessarily sets. If HomC(A,B) is a set for all objects A,B 2 Ob(C), C is called
locally small.
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Most if not all mathematical structures form categories in the appropriate sense. The

one most familiar is the category Set, whose objects are sets and whose arrows are functions.

Adding more structure to the objects leads to di↵erent categories, for instance, the category

Top has objects topological spaces (sets with a topology) and arrows continuous maps, whereas

the category Grp has as objects groups (sets with a group multiplication) and arrows group

homomorphisms. Another example for a category is a partial order.

Example 1. A partial order (P,�) forms a category with objects the elements in the set P ,

Ob((P,�)) = P , and arrows (p ! q) 2 Arr((P,�)) between elements p, q 2 P whenever

p � q. As � is reflexive we have p � p, which constitutes the identity arrow idp : p ! p for

all p 2 P . Moreover, composition of arrows is associative by transitivity of the partial order,

p � (q � r) = (p � q) � r for all p, q, r 2 P .

As with any structure defined in mathematics, of particular interest are the corresponding

maps. For categories maps are functors.

Definition 15. A (covariant) functor F : C ! D between categories C,D is defined

1. on objects: for all C 2 Ob(C), there exists D 2 Ob(D) such that F (C) = D,

2. on arrows: for all (f : C ! C 0) 2 Arr(C), there exists (F (f) : F (C)! F (C 0)) such that

8f, g, g � f 2 Arr(C) : F (g � f) = F (g) � F (f) and 8C 2 Ob(C) : F � idC = idF (C).

A contravariant functor F 0 : C ! D is a covariant functor F : Cop ! D, i.e., a functor, which

reverses the composition of arrows. Equivalently, a contravariant functor is a covariant functor

F : C ! Dop. A presheaf is a contravariant functor, P : C ! Set.

Example 2. Consider the covariant powerset functor P : Set! Set. To each set X, we assign

its power set X 7! P(X), where the powerset P(X) is the set of all subsets of X. On arrows it

maps functions to functions,

(f : X ! Y ) 7�! P(f) : S ! {f(x) | x 2 S} 8S 2 P(X) . (2.7)

This construction preserves identity arrows and composition, it thus defines a (covariant) functor.
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A more relevant example for the study of presheaves over the partial order of contexts is the

following.

Example 3. Take the three element set {A,B,C}, which we think of as containing the three

edges of a triangle. Inclusion of subsets yields a partial order (P({A,B,C}),✓), which also forms

a category. We can thus construct a presheaf � : (P({A,B,C}),✓) ! Set by assigning all

strict total orders over subsets S ✓ P({A,B,C}). For instance, the subset {A,B} ✓ {A,B,C}

can be assigned two strict total orders �({A,B}) = {A < B,B < A}. � becomes a presheaf if

we restrict the sets of possible total orders accordingly, e.g.

�({A,B} ✓ {A,B,C}) : �({A,B,C})! �({A,B}), ({A,B,C}, <) 7! ({A,B}, < |{A,B}) .

Functors can have a number of properties, a non-exhaustive list is the following. A functor

F : C ! D is called faithful if for any two objects C,C 0 2 Ob(C) the map HomC(C,C 0) !

HomD(F (C), F (C 0)) is injective, full if the map HomC(C,C 0) ! HomD(F (C), F (C 0)) is sur-

jective, and essentially surjective if every object D 2 Ob(D) is isomorphic to F (C) for some

C 2 Ob(C). Importantly, a faithful and full (‘fully faithful’), and essentially surjective functor

induces an equivalence of categories. The latter concept is more readily stated in terms of

natural isomorphisms involving a functor F : C ! D and its ‘inverse’.

Definition 16. Let F,G : C ! D be functors between categories C,D. A natural transformation

from F to G, ⌘ : F ! G, is a family of morphisms such that

1. for every C 2 Ob(C), there exists a morphism ⌘C : F (C)! G(C) between objects of D,

2. for every morphism (f : C ! C 0) 2 Arr(C), it holds that ⌘C0 � F (f) = G(f) � ⌘C.

Moreover, ⌘ is called a natural isomorphism if ⌘C is an isomorphism in D for every object

C 2 Ob(C).

Two categories C,D are called equivalent if there exist functors F : C ! D and G : D ! C

with natural isomorphisms ⌘ : GF ! IC and # : FG ! ID to the identity functors IC on C

and ID on D, respectively. One speaks of a duality of categories if F,G are contravariant functors.
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Contexts and classical (Stone/Gelfand) dualities. Let N be a von Neumann algebra.

By Thm. 7, P(N ) is a complete orthomodular lattice—it is glued together from Boolean lattices.

The latter can be interpreted as classical state spaces as follows. Given a Boolean algebra

B, a state � of B is a homomorphism � : B ! {0, 1}. The set of all states of B is called

its spectrum, and denoted ⌦(B). Equipped with the Stone topology generated by the sets

Ub := {� 2 ⌦(B) | �(b) = 1} for b 2 B, ⌦ is a compact, totally disconnected Hausdor↵ space,

called the Stone space of B.13 A compact, extremely disconnected Hausdor↵ space is called

Stonean. Stone duality lifts the correspondence between Boolean logic and topological spaces to

categorical equivalences.

Theorem 8. The category of totally (extremely) disconnected Hausdor↵ spaces and (open)

continuous maps, Stone (Stonean), is dually equivalent to the category of (complete) Boolean

algebras and lattice homomorphisms preserving 0, 1, BA (cBA).14

On the other hand, recall the definition of the Gelfand spectrum for an abelian C⇤-algebra

A in Eq. (2.3), ⌃A := {0 6= � : A ! C linear | 8a, b 2 A : �(ab) = �(a)�(b)}, equipped with

the weak⇤ topology. The Gelfand transformation, G : A ! C(⌃A), defined by G(a) := (a :

⌃A ! C, a(�) := �(a)) is an isometric ⇤-isomorphism between C⇤-algebras and gives rise to the

categorical correspondence known as Gelfand duality.

Theorem 9. The category of unital, commutative C⇤-algebras and ⇤-homomorphisms, ucC⇤, is

dually equivalent to the category of compact Hausdor↵ spaces and continuous maps, KHaus.

Recall that the elements in the Gelfand spectrum of a commutative C⇤-algebra are multi-

plicative states, which in turn correspond with pure states. It follows that given a commutative

C⇤-algebra, the set of its pure states corresponds with the points in the Hausdor↵ space dual.

In particular, every commutative von Neumann algebra thus constitutes such a classical state

space, which additionally comes with a Boolean logic inherited from its projections, since for N

commutative, P(N ) is a complete Boolean algebra. Conversely, every classical state space is a

commutative von Neumann algebra if a minimal notion of measurability is added. More precisely,

13Recall that a topological space is totally disconnected if its only connected components are singletons, and is
extremely disconnected if the closure of every open subset is open.

14Here and throughout we mark categories in boldface.
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a Stonean space ⌦ is called Hyperstonean if it admits su�ciently many normal measures: for

any non-zero positive continuous function f : ⌦! R, there exists a positive normal measure µ

with µ(f) > 0. (See also [120] and Thm. 35 for more details on the relation with measurability.)

Theorem 10. The category of commutative von Neumann algebras and normal, unital ⇤-

homomorphisms, cvNA, is dually equivalent to the category of Hyperstonean spaces and open

maps, HStone.

Combining classical logic of Boolean algebras with measurability thus inevitably points to

the study of commutative von Neumann algebras. Succinctly,

Classical state spaces correspond with commutative von Neumann algebras.

In the quantum case, von Neumann algebras are generally noncommutative, nevertheless N

contains many commutative von Neumann subalgebras.

Definition 17. Let N be a von Neumann algebra representing the physical quantities of a

theory. A context is a commutative von Neumann subalgebra V ✓ N .

Physically, a context is a set of simultaneously measurable observables (cf. Def. 2). Mathemat-

ically, contexts are modeled by commutative von Neumann subalgebras of the noncommutative

von Neumann algebra N describing the observables of a physical system. Every context provides

a singular, classical perspective onto the physical system represented by N .

Context category and coarse-graining. Let the algebra of physical quantities be modeled

by a von Neumann algebra N . The collection of all commutative von Neumann subalgebras

(‘contexts’) carries a natural notion of coarse-graining in the form of ordering contexts by

inclusion. This yields a partial order.

Definition 18. Let N be a von Neumann algebra. The context category V(N ) is the partial

order of commutative von Neumann subalgebras V ✓ N ordered by inclusion,

V(N ) := ({commutative von Neumann subalgebras of N},⇢) .

For N = B(H) we use the shorthand V(H) := V(B(H)).
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The term ‘context category’ stems from the fact that every partial order defines a category

of its own. V(N ) is a meet-semilattice with least element the trivial context, V 0 := {1}00 = C1,

and maximal contexts the maximal abelian subalgebras of N . A useful example to have in mind

is the following.

Example 4. Let H = C3 and N = B(H) = M3(C). Its context category V(H) := V(B(H)) has

three ‘layers’. The lowest layer contains only the trivial context V 0 := C1. It is contained in any

context generated by a single rank-1 projection p1 2 P(H) such as V := {p1, 1}00 = Cp1+C(1�p1).

Finally, the ‘top layer’ contains the maximal contexts generated by three mutually orthogonal

rank-1 projections, V := {p1, p2, p3}00 = Cp1 + Cp2 + Cp3.

Inclusion relations arise by coarse-graining: given a maximal context V := {p1, p2, p3}00,

there are three subcontexts {p1, (p2 + p3)}00 = {p1, 1}00 ⇢ V , {p2, (p1 + p3)}00 = {p2, 1}00 ⇢ V , and

{p3, (p1 + p2)}00 = {p3, 1}00 ⇢ V . Similarly, the trivial context arises by coarse-graining from

V = {p, 1}00 via V 0 = {1}00 = {p+ (1� p)}00 ✓ {p, (1� p)}00 = {p, 1}00 = V .

Gluing of local data and global sections. A key ingredient to our programme are

presheaves over the context category, they collect classical information of a particular kind

locally, i.e., within contexts, together with the constraints describing how contexts are nested.

We would like to study how restrictive these constraints are to information accessible globally,

i.e., consistent across contexts. This naturally leads to (global) sections. We briefly review the

basic concept behind this definition and embed it into the general study of sheaves.

Note that there is a natural topology on partial orders called the Alexandrov topology.

Definition 19. Let P be a preorder. The upper (lower) Alexandrov topology ⌧" (⌧#) contains

the upper (lower) sets,

⌧" = {U ✓ P | 8x 2 U, y 2 P : x � y ) y 2 U} .

The closed sets are the lower (upper) sets,

⌧# = {U ✓ P | 8x 2 U, y 2 P : x ⌫ y ) y 2 U} .
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P(N ) with the upper (lower) Alexandrov topology ⌧" (⌧#) thus becomes a topological space.

More generally, a presheaf P : P ! C captures the idea of associating data to the open sets of a

topological space (elements in a partial order) in such a way that reflects the inclusion relations

between them.15 In particular, given an open set U ✓ P and an open cover (Ui)i2I , i.e., Ui open

and
S

i2I Ui = U , a (local) section of P over U corresponds to a collection of elements (�Ui)i2I ,

�Ui 2 P (Ui) that ‘fit together’ under restriction maps by means of functoriality, i.e., whenever

Ui ✓ Uj then �Ui = P (Ui ✓ Uj)(�Uj). A global section is a section with U = P . We will mostly

be concerned with the existence of (global) sections of presheaves over V(N ), P : V(N )! Set,

equipped with e.g. the lower Alexandrov topology ⌧#.

Definition 20. Let P : V(N )! Set be a presheaf over the context category V(N ) corresponding

to some von Neumann algebra N . A global section of P is a collection of elements (P (V ))V 2V(N )

such that P (Ṽ ✓ V )(P (V )) = P (Ṽ ). The collection of global sections of P is denoted by �(P ).

Sections always exist locally, yet the existence of global sections depends on the type of

constraints imposed by the order structure in V(N ). To see how such constraints arise, we

return to our toy example, Ex. 3.

Example 5. Notice that � in Ex. 3 does have global sections, in fact, every strict total order

on {A,B,C} restricts to total orders on subsets. Yet, given strict total orders on a (covering)

collection of subsets, there does not always exist a global section that restricts to them. For

instance, the Penrose tribar (cf. Fig. 2.1) gives rise to local sections (A < B) 2 �({A,B}),

(B < C) 2 �({B,C}), and (C < A) 2 �({A,C}), which do not arise from a global section.

Recall that classical states correspond with elements in the Gelfand spectrum corresponding

to the abelian von Neumann algebra of physical quantities. A natural generalisation to noncom-

mutative von Neumann algebras suggests that quantum states should correspond with global

sections of some presheaf over the partial order of contexts. In Sec. 2.3 we will verify this hunch.

In fact, the language of presheaves over the context category will prove capable of capturing

many more aspects of quantum theory.

15Here and throughout we mark presheaves with an underscore.
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Figure 2.1: The Penrose tribar [122] can be viewed as a visualisation of three local sections
that do not combine into a global section. It captures the idea of structures that satisfy some
property locally but not necessarily globally.

2.2.3 Part III - Jordan algebras and orientations

We introduce an important classification of von Neumann algebras arising from the decomposi-

tion of its associative product into symmetric and antisymmetric component. Physically, this

relates to the dichotomic function of self-adjoint operators as measurements and generators

of time evolution in quantum theory. This section is mainly based on work in [46] and more

generally in [8, 39], and serves as an introduction to Sec. 2.3.4 and Sec. 2.4.4.

Jordan algebras. The product on a von Neumann algebra N has the decomposition,

8a, b 2 N : ab =
1

2
(ab+ ba) +

1

2
(ab� ba) =:

1

2
a � b+ 1

2
[a, b] .

The latter antisymmetric bracket [·, ·] is known as the commutator, it makes (N , [·, ·]) into a Lie

algebra. Lie algebras also arise in classical physics from Poisson brackets between measurable

functions on a Poisson manifold. The former symmetric product is known as the anticommutator

or Jordan product and makes (N , �) into a (special) Jordan algebra (cf. Def. 22). Jordan

algebras arose out of an attempt to equip the observables in quantum theory with an algebraic

relation [93, 94]. Importantly, the associative product in a von Neumann algebra does not

close over its self-adjoint elements, i.e., ab /2 Nsa for a, b 2 Nsa in general, but the Jordan

product does. The Jordan product is commutative by construction, however, it is generally

non-associative, a � (b � c) 6= (a � b) � c. (It is associative if and only if the associative product

is commutative.) Jordan algebras are less studied, partly because their classical counterpart
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is trivial, i.e., associative. Note that the symmetric, associative product in the algebra of

measurable functions on a Poisson manifold is given by pointwise multiplication. From this

point of view, the non-classical aspects of quantum theory are more appropriately described by

its non-trivial Jordan structure rather than noncommutativity, as is commonly stated. However,

despite some e↵orts [55] Jordan algebras have not found resonance with a wider audience in

physics. As we will see below, they are deeply intertwined with contextuality.

Definition 21. A Jordan algebra J is an algebra with a product �, which satisfies a � b = b � a

and a � (b � a2) = (a � b) � a2 for all a, b 2 J .

Most Jordan algebras arise by symmetrisation of an associative algebra [111].

Definition 22. Let A be an associative algebra over a field F (not of characteristic 2). The

vector space A equipped with the bilinear operation � defined by

8a, b 2 A : a � b := 1

2
(ab+ ba)

is called the special Jordan algebra J (A) associated with A.

Every Jordan algebra that does not arise in this way is called exceptional. The latter have

been related to spin factors [8]. We will only be interested in special Jordan algebras J (N )

associated with von Neumann algebras N , we will therefore drop the classifier special in what

follows.

A linear map between Jordan algebras � : J (N1)! J (N2) is called a Jordan homomorphism

if for all a, b 2 J (N1): �(a�b) = �(a)��(b). Recall that N = Nsa+ iNsa is the complexification

of J (N ). A Jordan ⇤-homomorphism is a linear map � : N1 ! N2 such that for all a 2 N1:

�(a⇤) = �(a)⇤. The corresponding definitions for isomorphisms read accordingly.

Contextuality and Jordan algebras. In a deep result by Dye, Jordan ⇤-isomorphisms

between Jordan algebras associated with von Neumann algebras have been related with auto-

morphisms of their projection lattices.
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Theorem 11. (Dye [52]) Let N1, N2 be von Neumann algebras with no direct summands of

type I2. Every orthoisomorphism ' : P(N1) ! P(N2) can be uniquely extended to a Jordan

⇤-isomorphism � : N1 ! N2.

A reformulation of this result in terms of contexts arises by the close connection of the

projection lattice and the context category as observed in [76].

Theorem 12. (Harding-Navara [76]) Let N be a von Neumann algebra not isomorphic to

C � C or to M2(C). Then the context category V(N ) of N determines the projection lattice

P(N ) as an orthomodular lattice up to isomorphism. Conversely, the projection lattice P(N )

determines the poset V(N ) up to isomorphism.

In fact, Harding and Navara’s proof holds for all orthomodular lattices, which contain no

maximal Boolean sublattices with only 4 elements (this is why the trivial cases N = C� C or

N = M2(C) are excluded). The result shows that the context category, i.e., the collection of

contexts together with their nesting relations, encodes the same amount of information as the

projection lattice. This allows for a reformulation of Dye’s theorem in contextual form.

Theorem 13. (Döring-Harding [50]) Let N be a von Neumann algebra not isomorphic to

C� C or M2(C). For every order automorphism ' : V(N )! V(N ), there is a unique Jordan

⇤-automorphism � : (N , ·)! (N , ·) such that '(V ) = �[V ] for all V 2 V(N ).

The essence of this theorem is that the mere order structure between contexts is rich enough

to encode the algebra up to Jordan ⇤-isomorphism. Recall that this order structure is trivial

for classical systems, since there one only has a single (maximal) context. This is consistent

with the fact that the Jordan product is trivial for classical systems, i.e., it reduces to the

commutative (pointwise) multiplication of functions. Physical contextuality thus reflects the

additional algebraic structure in quantum theory inherent to the Jordan product. Succinctly,

Contextuality is Jordan structure.

In other words, quantum theory is di↵erent from classical theory by its non-trivial context

structure. This result sits somewhat opposite to the commonly recited doctrine that the essence

of quantum theory is the non-vanishing of the commutator.

43



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

Contextuality and von Neumann algebras. It is an obvious question to ask whether

two algebras that are Jordan ⇤-isomorphic are already isomorphic as von Neumann algebras. If

this was the case the same would necessarily hold for factors, yet this was shown not to be the

case in the seminal work by Connes.

Theorem 14. (Connes [38]) Two von Neumann algebras N1, N2 that are Jordan ⇤-isomorphic

need not be isomorphic as von Neumann algebras.

Since V(N ) encodes the same information as the Jordan algebra J (N ) [50], contextuality

also contains strictly less information than the associative product on N . The di↵erence between

the former and the latter boils down to a choice of time direction on factors.

Order derivations, dynamical correspondences, and time orientations. The prod-

uct in a C⇤-algebra A contains more information than the associated Jordan product in J (A).

For C⇤-algebras it is natural to consider unital Jordan-Banach algebras (JB-algebras), i.e.,

Banach algebras with a Jordan product. Moreover, for von Neumann algebras the additional

topological condition on weak-closure is captured by (unital) weakly-closed Jordan-Banach

algebras (JBW-algebras). Clearly, maps between such algebras � : J (A1) ! J (A2) lift to

maps between C⇤/von Neumann algebras if and only if they preserve commutators. This extra

information can be encoded more algebraically as shown by Connes, Alfsen, and Shultz [7, 40].

Definition 23. An order derivation � on a JB(W)-algebra J is a bounded linear operator such

that et�(J+) ✓ J+ for all t 2 R, i.e., t 7! et� is a one-parameter group of order automorphisms.

An order derivation � is called self-adjoint if � = �a for some a 2 J , where �a : A ! A,

�a(b) = a � b. An order derivation � is skew-adjoint if �(1) = 0. The set of skew order derivations

is denoted ODs(J ). Every order derivation can be decomposed uniquely as the sum of a

self-adjoint and a skew-adjoint order derivation. Moreover, one has the following (cf. [7]).

Proposition 1. If J (N ) = (Nsa, �) is the JBW-algebra associated with the self-adjoint part of

a von Neumann algebra N , then every order derivation on J (N ) is of the form

�a : J (N )! J (N ), �a(b) :=
1

2
(ab+ ba⇤)
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for some a 2 N . An order derivation is self-adjoint if and only if � = �a for some self-adjoint

a 2 Nsa and is skew-adjoint if and only if � = �ia =
i

2
[a, ]for some a 2 Nsa.

The importance of order derivations is that maps between Jordan algebras � : J (N1) !

J (N2) lift to maps between von Neumann algebras if and only if they preserve skew order

derivations [46].

Proposition 2. A (normal) unital Jordan homomorphism � : J (N1)! J (N2) corresponding

to von Neumann algebras N1, N2 extends to a (normal) unital homomorphism of von Neumann

algebras if and only if

8a 2 (N1)sa, 8t 2 R : � � et�ia = et�i�(a) � � . (2.8)

Proof. The proof is straightforward. First, by the exponential series expansion of et�ia , Eq. (2.8)

is equivalent to � � �ia = �i�(a) � � for all a 2 (N1)sa. Hence, if � is a (normal) unital Jordan

homomorphism such that Eq. (2.8) holds, we have

8a, b 2 (N1)sa : �(
i

2
[a, b]) = (� � �ia)(b) = (�i�(a) � �)(b) =

i

2
[�(a),�(b)] ,

so � preserves all commutators between self-adjoint operators. Since any operator a 2 N1 can

be decomposed uniquely as a = a1 + ia2 for a1, a2 2 (N1)sa, it easily follows that � preserves

all commutators. Hence, it is a (normal) unital homomorphism � : N1 ! N2 of von Neumann

algebras. (The statement for normal morphisms holds as et� is normal.)

Conversely, if � : N1 ! N2 is a homomorphism of von Neumann algebras, then its restriction

to (N1)sa is a Jordan homomorphism onto (N2)sa such that condition Eq. (2.8) holds. This

completes the proof.

In order to encode the additional structure inherent to the antisymmetric part of the

associative product, i.e., the commutator, one thus needs skew order derivations. Prop. 1 defines

the latter for JBW-algebras in relation to a given von Neumann algebra N . Independent of N

and more generally for JB-algebras, one defines a dynamical correspondence16  as a map into

16The name indicates the dual role of self-adjoint operators as observables and generators of dynamics (cf.
[14]).
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skew order derivations on J :  : J �! ODs(J ) with x 7�!  x such that (i) [ x, y] = �[�x, �y]

and (ii)  x(x) = 0 for all x, y 2 J [7]. Similarly to skew order derivations in Prop. 2, dynamical

correspondences then classify associative products on unital JB(W)-algebras.

Theorem 15. (Alfsen-Shultz [7]) A unital JB-algebra A is (isomorphic to) the self-adjoint

part of a C⇤-algebra if and only if there exists a dynamical correspondence on A. In this case

each dynamical correspondence  on A determines a unique Jordan compatible C⇤-product such

that  ab =
i

2
(ab� ba) for each pair a, b 2 A, and each Jordan compatible C⇤-product arises in

this way from a unique dynamical correspondence  on A. The same conclusions hold with

JBW in place of JB and von Neumann in place of C⇤.

Recall that by Thm. 14, two di↵erent von Neumann algebras can induce the same underlying

Jordan algebra. A Jordan compatible C⇤-product therefore means any associative product on

A, which reduces to the given Jordan product (and similarly for von Neumann algebras). By

Thm. 15 the di↵erent associative products on C⇤-algebras (von Neumann algebras) corresponding

to the same unital JB(W)-algebra are classified by dynamical correspondences. For von Neumann

algebras this can be further refined to factors by the following result in [8].

Theorem 16. Let ?1, ?2 be two associative products on J (N1) ' J (N2) corresponding to von

Neumann algebras N1, N2, respectively. Then ?1, ?2 di↵er by a central projection p 2 Z(N1) '

Z(N2), which is 1 on the abelian part of N1,N2 in the following sense:

8a, b 2 J (N1) ' J (N2) : a ?2 b = p ?1 a ?1 b+ (1� p) ?1 b ?1 a

For single factors this boils down to a choice of sign in the commutator a ? b = ±[a, b]. In

particular, a dynamical correspondence thus corresponds to a unique sign choice for commutators

in every factor. Moreover, by interpreting the parameter t in Prop. 2 as time, this sign choice

corresponds with a choice of time direction in every factor.

Finally, these concepts can be lifted to the context category [46]. By Thm. 15 a von Neumann

algebra N $ (J (N ), N ) is a JBW-algebra J (N ) together with the dynamical correspondence

encoding the time direction on N in every factor  N . By Thm. 12 in [76], the JBW-algebra

J (N ) is equivalently encoded in the context category V(N ), hence, N $ (V(N ), N ) also.
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To make this precise, note that every one-parameter group of order automorphisms, t 7! et�ia

for a 2 Nsa, also defines a one-parameter group of order automorphisms of V(N ),

get�ia : V(N ) �! V(N )

V 7�! e
i
2 taV e

�i
2 ta .

We denote the group of order automorphisms of V(N ), i.e., maps ' : V(N )! V(N ) such that

'(Ṽ )  '(V ), Ṽ  V , by Aut(V(N )). The following definition appears in [46].

Definition 24. Let N be a von Neumann algebra and V(N ) its context category. The map

e : Nsa ⇥ R �! Aut(V(N ))

(a, t) 7�!get�ia

is called the time orientation on order-automorphisms of V(N ) induced by N . When V(N ) is

equipped with this time orientation, it is called the oriented context category of N , denoted

V̂(N ).

Time orientations encode the forward time direction in a quantum system.

The equivalence N $ (V(N ), N ) for the context order V(N ) according to Thm. 15 then

reads.

Theorem 17. (Döring [46]) Let N1,N2 be von Neumann algebras not isomorphic to C� C

and with no type I2 summands. There is a bijective correspondence between isomorphisms

� : N1 ! N2 of von Neumann algebras and order isomorphisms ' : V(N1) ! V(N2) that

preserve the orientations on V(N1) and V(N1) induced by N1 and N2, respectively.

We have seen earlier that contextuality is Jordan structure associated with von Neumann

algebras. Thm. 17 completes this picture by adding time orientations: as one might expect, as a

dynamical concept time orientations relate to commutators (encoded by skew order derivations

as described above) and one-parameter families resulting from exponentiation.
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2.3 Contextuality and the fundamental theorems in

quantum theory

In this section we use the mathematical representation of physical contextuality and the

corresponding context category in quantum theory to provide reformulations of key theorems

in foundations. The value of these reformulations is twofold: (i) contextuality emerges as an

underlying physical principle, unifying many seemingly unrelated aspects in quantum theory,

(ii) the key structural components of quantum theory arise from local-to-global obstructions

over suitable presheaves over the context category. This section gives a more detailed account

of the results presented in the recent preprint [47].

As motivated in Sec. 2.2.1, the algebra of physical observables is naturally modeled by some

noncommutative von Neumann algebra. We therefore strive for maximal generality within this

framework. A natural generalisation to orthomodular lattices is discussed in Sec. 2.5 for Bell’s

theorem, for which we define a suitable presheaf in Sec. 2.4.

2.3.1 The Kochen-Specker theorem

Continuing our discussion in Sec. 2.1.1, we first give the original statement of the Kochen-

Specker theorem. We have already discussed the essence of the argument, it remains to fill in

the technical details. Recall that observables in quantum theory are represented by bounded

self-adjoint operators O = B(H)sa on some Hilbert space H (cf. Sec. 2.2.1), and two observables

a, b 2 B(H)sa are simultaneously measurable if they commute [a, b] = 0. In finite dimensions,

a self-adjoint operator a is a Hermitian matrix, i.e., a 2 Mn(C) and a⇤ = a. By the spectral

theorem, Thm. 4, every Hermitian matrix has an eigenvalue decomposition a =
P

n

i=1
aipi, where

the eigenvalues make up the spectrum of the observable, sp(a) = {a1, · · · , an}, and the pi’s are

the projections onto the corresponding eigenspaces. By Def. 1 every valuation function is a

partial algebra homomorphism, which restricts to a partial Boolean algebra homomorphism

v : P(Cn) ! {0, 1} for P(Cn). In an impressive combinatorial e↵ort involving a total of

117 vectors in R3, Kochen and Specker go on to prove that no such partial Boolean algebra

homomorphism exists whenever the dimensions of the Hilbert space is at least three.
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Theorem 18. (Kochen-Specker [101]) Let H be a Hilbert space, dim(H) � 3, and B(H)

represent the algebra of physical quantities of some quantum system. Then there exists no

valuation function as in Def. 1. In particular, there exists no classical state space for the

quantum system.

Figure 2.2: Geometrical visualisation taken from [136] of the 33 state vectors used in the proof
of the Kochen-Specker theorem due to Peres [123].

Following this cornerstone result from 1967, several improvements on the proof of the theorem

have been made, requiring less than the initially constructed 117 vectors. A geometrical proof

due to Peres requires 33 vectors arranged along vertices and edges of the cubes in Fig. 2.2. It

is not too hard to see that it is impossible to assign either 0 or 1 to every vector such that

their sum over any set of orthogonal vectors equals 1. This immediately implies that no partial

Boolean algebra homomorphism exists. The complexity of the argument can be further reduced

by relaxing the minimal Hilbert space dimension to four. For instance, it is straightforward to

see that the product constraints between spin-1
2
observables in the famous Mermin-Peres square

(see Fig. 3.1 (a) in Ch. 3) lead to a similar obstruction.
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As mentioned in the introduction, the algebraic content of quantum theory has largely

survived unchanged. This holds even in quantum field theory, where infinite-dimensional

algebras and superselection rules can be imposed on the algebraic level by von Neumann

algebras (of type II and III) with non-trivial centre (cf. Sec. 2.2.1). It is thus interesting to

consider generalisations of Thm. 18, which hold not only for von Neumann algebras of type In,

n � 3, but for von Neumann algebras of arbitrary type. This has been done in [45].

Theorem 19. (Döring [45]) Let N be a von Neumann algebra not only consisting of summands

of type I1, I2, which represents the algebra of physical quantities of some quantum system. Then

there exists no valuation function as in Def. 1. In particular, there exists no classical state space

for the quantum system.

The proof is based on Gleason’s theorem and in this sense generalises a similar proof to

Thm. 18 given by Bell in 1966 [18, 59].

In other words, there is no realist state space model for quantum theory, which assigns

spectral values to all observables at once and preserves the functional relations between them.

The power of Thm. 19 is that it relies on functional relations between simultaneously measurable

observables only. It is the achievement of Bell, Kochen, and Specker to realise that the necessary

algebraic constraints to be reflected in a classical, i.e., functional representation of quantum

mechanical observables on some state space need only hold between commuting observables in

order to show that such state spaces cannot exist.

Nonetheless, Isham, Butterfield, and Hamilton showed that this result can be given a

geometric interpretation by introducing a generalised state space in the form of a certain

presheaf over the partial order of contexts [23, 24, 75, 87]. While originally dealing with

observables and order relations between them directly, later work takes a more algebraic

viewpoint, which was further solidified in [1–4], and which is the one we will follow here.

Let N be a von Neumann algebra. As a consequence of the Borel functional calculus, two

operators a, b 2 N commute if and only if there exists another operator c 2 N and Borel

functions f, g such that a = f(c), b = g(c). Functional constraints are thus entirely encoded

between commuting operators, i.e., in abelian subalgebras. Yet, they also relate noncommuting
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operators: given an observable a 2 N there might be noncommuting observables b, c 2 N and

Borel functions h, k such that a = h(b) = k(c).

The physical interpretation of the latter condition is the following. Note that Borel functions

h, k are in general not injective and thus e↵ectively ‘wash out’ some information. Under this

notion of coarse-graining, operators can be related even if they are not simultaneously measurable.

The algebraic constraints thus arise between commuting observables only, but are sensitive to the

ways a given operator can arise as the coarse-graining of di↵erent, potentially non-commuting

operators. This suggests the following structure: given a noncommutative algebra, consider all

abelian subalgebras and order them by coarse-graining. Mathematically, this coarse-graining

can be implemented by inclusion of abelian subalgebras resulting in the partial order of contexts

V(N ) as defined in Sec. 2.2.2.

Moreover, note that the partial algebra homomorphism property in Def. 1 imposes constraints

on valuation functions for every inclusion relation in V(N ). Since for any real Borel function f

it holds that sp(f(a)) = f(sp(a)) for all a 2 Nsa, and sp(f(a)) = f(sp(a)) for all a 2 Nsa if f is

also continuous, for von Neumann algebras this reads as follows: v : Nsa ! R is a valuation

function if it satisfies the spectrum rule and the functional composition principle,

8f : V ! V continuous, a 2 Nsa : v(f(a)) = f(v(a)) . (2.9)

The partial algebra homomorphism condition in Def. 1 in general, and the functional composition

principle in particular, thus suggest to map contexts to value assignments in a functorial way

[23, 24, 75, 87]. First, note that in every context V 2 V(N ), a valuation function � : V ! C

is an algebra homomorphism, equivalently, a character or multiplicative/pure state, i.e., an

element in the Gelfand spectrum ⌃V . We thus map every abelian subalgebra V 2 V(N ) to its

Gelfand spectrum ⌃V . Second, the coarse-graining constraints between contexts i
Ṽ V

: Ṽ ,! V

correspond to non-injective, continuous functions f and can be imposed on elements in Gelfand

spectra by restriction: for � 2 ⌃V , denote by �|
Ṽ
the restriction of � to the algebra Ṽ ⇢ V .

Definition 25. Let N be a von Neumann algebra with context category V(N ). The spectral

presheaf ⌃(V(N )) of N over V(N ) is the presheaf given
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(i) on objects: for all V 2 V(N ), let ⌃
V
:= ⌃V , the Gelfand spectrum of V ,

(ii) on arrows: for all V, Ṽ 2 V(N ), if Ṽ ✓ V , let ⌃(i
Ṽ V

) : ⌃
V
�! ⌃

Ṽ
with � 7�! �|

Ṽ
.

If N = B(H), we also write ⌃(H) for ⌃(V(B(H))).

The spectral presheaf was introduced in [87], it captures all constraints inherent to Def. 1,

in particular, those inherent to Eq. (2.9). ⌃(V(N )) may thus be understood as a bookkeeping

device: it encodes all algebraic constraints to potential value assignments in V(N ). Importantly,

note that a valuation function corresponds to a collection of characters (�V )V 2V(N ), i.e., a global

section � 2 �(⌃(N )). The Kochen-Specker theorem is therefore equivalent to the following

contextual reformulation [23, 24, 75, 87].

Theorem 20. (Kochen-Specker in contextual form) Let N be a von Neumann algebra not

only consisting of summands of type I1, I2. The spectral presheaf ⌃(N ) has no global sections.

Note that Thm. 20 holds for all von Neumann algebras (not only consisting of summands of

type I1, I2) and thus incorporates the generalisation of the original Kochen-Specker theorem in

Thm. 19.

Thm. 20 is at first only a reformulation of Thm. 19, yet it adds a previously hidden

geometrical perspective. While value assignments do exist locally, i.e., in every context, the

algebraic constraints between simultaneously measurable observables, encoded in the coarse-

graining maps, obstruct the existence of such an assignment globally, i.e., over all contexts of

V(N ). While the elements in ⌃
V
are points in a compact Hausdor↵ space and thus naturally

give rise to the structure of a classical state space (cf. Thm. 9), there are no generalised points

of this type in the quantum case, formally, �(⌃(N )) = ;.

The Kochen-Specker theorem is thus an example of a local-to-global -type obstruction to the

existence of global sections of a corresponding presheaf (noncommutative space), in this case the

spectral presheaf. We will see that many more theorems in the foundations of quantum theory

attain similar reformulations for suitable notions of presheaves over the context order V(N ).
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2.3.2 Gleason’s theorem

Gleason’s theorem is another landmark result in quantum theory. It justifies the Born rule,

which originally had the status of an axiom, from purely mathematical considerations.

Theorem 21. (Gleason [66]) Let H be a Hilbert space and dim(H) � 3 finite. Then every

probability measure µ : P(H)! [0, 1] over the projections on H corresponds to a density matrix

⇢µ : H! H, ⇢µ � 0, tr(⇢µ) = 1 such that µ(p) = tr(⇢µp) for all p 2 P(H).

Here, a (finitely additive) probability measure is a map µ : P(H)! [0, 1] such that µ(p+q) =

µ(p) + µ(q) whenever p, q 2 P(H), pq = 0 and µ(1) = 1. While the original argument was for

type In factors only, the validity of Thm. 21 was extended to arbitrary von Neumann algebras

in [34, 151] (cf. [109]). In this setting, µ is further called completely (countably) additive if

µ(
P

i2I pi) =
P

i2I µ(pi) for every (countable) family of orthogonal projections (pi)i2I .

Theorem 22. (Gleason-Christensen-Yaedon [34, 151]) Let N be a von Neumann algebra

with no summand of type I2 and let µ : P(N ) ! R be a finitely additive probability measure

on the projections of N . There exists a unique state �µ 2 S(N ) such that µ(p) = �µ(p) for all

p 2 P(N ).

If µ is also completely additive then �µ is normal and of the form µ(p) = �µ(p) = tr(⇢µp)

for all p 2 P(N ) and ⇢µ a positive trace-class operator with tr(⇢µ) = 1.

Recall that trace-class operators generalise density matrices to infinite dimensions. In

finite dimensions every state is of this form, however, in infinite dimensions only normal states

correspond to trace-class operators (cf. Sec. 2.2.1). Normal states satisfy �(
W

i2I pi) = sup
i2I�(pi)

for all families of pairwise orthogonal projections (pi)i2I and are thus easily seen to correspond

to completely additive probability measures, i.e., µ(
W

i2I pi) =
P

i2I µ(pi). Succinctly, every

finitely additive measure bijectively corresponds to a state on N and every completely additive

measure bijectively corresponds to a normal state on N .17

For later reference we mention a further generalisation of Thm. 22, which is concerned

with the codomain of probability measures on P(N ). Rather than restricting measures to

be real-valued, a Gleason-type theorem holds even for Banach space-valued measures [89].

17Clearly, for N ✓ B(H) with H separable, countable additivity is su�cient.
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Let P(N ) be the projection lattice of a von Neumann algebra N , X a Banach space, and

µ : P(N )! X a map such that (i) µ(p+ q) = µ(p) + µ(q) whenever p, q 2 P(N ), pq = 0 and

(ii) sup{||µ(p)|| : p 2 P(N )} <1. Then µ is said to be a finitely additive, X-valued measure

on P(N ). Clearly, each bounded linear operator from N to X restricts to a finitely additive

X-valued measure, conversely:

Theorem 23. (Mackey-Gleason-Bunce-Wright [89]) Let N be a von Neumann algebra

with no direct summand of type I2. Then for each Banach space X, each X-valued measure

µ : P(N )! X has a unique extension to a bounded linear operator � : N ! X.

Note that when N = M2(C) and X is one-dimensional, there exist examples of measures

that fail to extend to linear functionals.

Thm. 21 and its generalisations, Thm. 22 and Thm. 23, are remarkable for the following

reason: finite (complete) additivity imposes constraints between commuting projections only. On

the other hand, by the non-contextual assignment of probabilities to projections p 2 P(N ), i.e.,

independent of which context p lies in, these constraints extend beyond commuting projections.

Similar to the Kochen-Specker theorem, the constraints thus arise solely within contexts and

via the inclusion relations between them. Yet, in contrast every context is no longer assigned its

Gelfand spectrum but instead the set of finitely (completely) additive probability measures over

it. Moreover, coarse-graining between probability distributions in di↵erent contexts is naturally

encoded by marginalisation. In close analogy with [49], we make the following definition.

Definition 26. Let N be a von Neumann algebra with context category V(N ). The (normal)

probabilistic presheaf ⇧ of N over V(N ) is the presheaf given

(i) on objects: for all V 2 V(N ), let

⇧
V
:= {µV : P(V )! [0, 1] | µV is a finitely (completely) additive probability measure} ,

(ii) on arrows: for all V, Ṽ 2 V(N ), if Ṽ ✓ V , let ⇧(i
Ṽ V

) : ⇧
V
�! ⇧

Ṽ
with µV 7�! µV |Ṽ .

Here, µV |Ṽ denotes the marginalisation map, which sends µV : P(V )! [0, 1] to µ
Ṽ
: P(Ṽ )!

[0, 1] for Ṽ ✓ V . ⇧ can be seen as a generalisation of ⌃, since ⇧
V
contains all convex linear
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combinations of elements in ⌃
V
in every context V 2 V(N ), and the marginalisation maps

coincide with restriction in ⌃ between pure states.

In this reading, a finitely (completely) additive probability measure over the projections of

N is a collection of finitely (completely) additive probability measures over contexts (µV )V 2V(N ),

i.e., a global section of the (normal) probabilistic presheaf ⇧. Since every (normal) quantum

state, i.e., every positive linear functional of norm one, defines a finitely (completely) additive

probability measure over the projections of N , it corresponds with a global section of ⇧.

However, it is not obvious that all global sections are of this form. Yet, by Gleason’s theorem

the obstructions in V(N ) are such that the linear functionals in contexts uniquely extend to

linear functionals on all of N . This yields a contextual reformulation of Thm. 22 as was first

noted in [45], and presented in similar form to here in [43, 48].

Theorem 24. (Gleason in contextual form (I)) Let N be a von Neumann algebra with no

summand of type I2. There is a bijective correspondence between (normal) quantum states, i.e.,

states on N , and global sections of the (normal) probabilistic presheaf ⇧ of N over V(N ).

There is an obvious generalisation of Def. 26 to Banach space-valued measures in Thm. 23.

What is more, the latter allows for a refinement of Gleason’s theorem in contextual form. In fact,

Gleason’s theorem proves something slightly stronger than what is captured by Thm. 24: not

only does every global section of the probabilistic presheaf (cf. Def. 26) assign a measure to every

context, but it relates measures across contexts in a particular way. To see this, consider that

we assign a ‘probability’ to every element p 2 P(N ) with respect to every projection q 2 P(V0)

for (at least) one (maximal) reference context V0. More precisely, we require the measures µV

to decompose into measures over the elements in P(V0) themselves. Mathematically, this means

that we assign a set of measures µV,q in every context V 2 V(N ), labelled by the projections in

the reference context q 2 P(V0), and additive for orthogonal projections q, q0 2 P(V0), qq0 = 0.

Comparing with Def. 26, probability measures in contexts then decompose as follows:

µV =
X

qi2P(V0)

qiqj=0,
W

i qi=1

µV,qi , 8V 2 V(N )
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We can impose this constraint in a somewhat suggestive way by writing µV,qi = v⇤
i
'vi for all

qi 2 P(V0) and thus µV =
P

i
v⇤
i
'vi = v⇤'v, where v 2 K for some appropriate Hilbert space

K and ' : P(V ) ,! P(K) an embedding, in particular, '(0) = 0, '(1 � p) = 1 � '(p), and

'(p+ p0) = '(p) + '(p0) for all p, p0 2 P(V ), pp0 = 0. Crucially, the condition that ' preserves

orthogonality can be encoded locally by requiring additivity for all µV,q, q 2 P(V0). We thus

define the dilated probabilistic presheaf as follows.

Definition 27. Let N be a von Neumann algebra with context category V(N ). The (normal)

dilated probabilistic presheaf ⇧ of N over V(N )18 is the presheaf given

(i) on objects: for all V 2 V(N ), let

⇧
V
:= {µV = v⇤'V v | v 2 K, 19 'V : P(V ) ,! P(K) (normal), and µV (1) = 1} ,

(ii) on arrows: for all V, Ṽ 2 V(N ), if Ṽ ✓ V , let

⇧(i
Ṽ V

) : ⇧
V
�! ⇧

Ṽ
with 'V 7�! 'V |Ṽ .

Theorem 25. (Gleason in contextual form (II)) Let N be a von Neumann algebra with

no summand of type I2. There is a bijective correspondence between (normal) quantum states,

i.e., states on N , and global sections of the (normal) dilated probabilistic presheaf ⇧ of N over

V(N ).

Proof. It is easy to see that every (normal) state � 2 S(N ) defines a finitely (completely)

additive global section �� 2 �(⇧(V(N ))) via its purification. Conversely, note that � = (µV =

v⇤'V v)V 2V(N ) 2 �(⇧(V(N ))) defines a finitely (completely) additive map ' : P(N ) ! B(K).

By Thm. 23 ' uniquely extends to a bounded linear map � : N ! B(K) such that �|P(N ) = '.

In particular, we thus obtain a (normal) state �� = v⇤�v 2 S(N ) for some v 2 K.

18In a slight abuse of notation we will use the same notation ⇧(V(N )) for the probabilistic and the dilated
probabilistic presheaf of N over V(N ).

19Note that we can choose K independently of contexts, since every measure admits a dilation for dim(K) �
dim(N ) (cf. Thm. 31). Importantly, this does not imply linearity, the latter requires Thm. 23 (see also [88]).
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Note that, in general, the dilated probabilistic presheaf encodes more constraints than the

probabilistic presheaf, since additivity not only holds with respect to the overall probability

measure µV in Def. 26, but also with respect to the individual measures µV,qi = v⇤
i
'vi (cf.

Def. 27). While this is not immediately obvious for local systems, for which, by Thm. 24 and

Thm. 25, probabilistic and dilated probabilistic presheaf have isomorphic global sections,20 this

correspondence breaks down for composite systems (cf. Sec. 2.3.4 and Sec. 2.4.4).

Thm. 24 (Thm. 25) is a reformulation of Gleason’s theorem similar to the reformulation of

the Kochen-Specker theorem by Isham and Butterfield in [87]. Its significance lies in the way it

orders the components in the proof of Thm. 21. ⇧ is a functor over the context category V(N )

similar to ⌃, both theorems thus relate to (physical) contextuality in the same way, they classify

global sections of their respective presheaves over the partial order of abelian subalgebras in

V(N ). Accordingly, both theorems answer a local-to-global problem. Thm. 20 asserts that

despite the existence of value assignments locally, no such assignments are possible globally.

The obstructions of V(N ) on ⌃ are too restrictive. In contrast, for the probabilistic presheaf

such global assignments do exist and correspond with quantum states exactly.

2.3.3 Wigner’s theorem

One of the earliest cornerstone theorems in quantum theory is Wigner’s theorem, it classifies

the symmetries of a quantum system.

Theorem 26. (Wigner [147]) Let H be a Hilbert space, dim(H) � 2, and let P1(H) be the set

of rank-1 projections on H (equivalently, P1(H) is the projective Hilbert space). Every bijective

map

' : P1(H) �! P1(H), p 7�! '(p)

such that tr('(p),'(q)) = tr(p, q) for all p, q 2 P1(H) (i.e., transition probabilities are preserved)

is implemented by conjugation with a unitary or anti-unitary operator u,

8p 2 P1(H) : '(p) = upu⇤ .

20Note that we identify global sections �, �0 2 �(⇧(V(N ))) whenever µ�
V = µ�0

V for all V 2 V(N ).
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The first step in reformulating Thm. 26 in terms of contexts is to realise that the automorphism

group Aut(P1(H)) is closely related to the automorphism group of P(H). The former encodes

symmetries of transition probabilities as in Thm. 26, the latter is defined as follows.

Definition 28. Let N be a von Neumann algebra. The automorphism group Aut(P(N )) consists

of all bijective maps ' : P(N )! P(N ) satisfying

(i) 8p, q 2 P(N ) : (p  q), ('(p)  '(q))

(ii) 8p 2 P(N ) : '(1� p) = 1� '(p)

Di↵erent to most key theorems discussed in this dissertation, Wigner’s theorem holds already

in two dimensions instead of three. Nevertheless, the following equivalence once again requires

three dimensions [29].

Theorem 27. (Cassinelli [29]) Let N be a von Neumann algebra with no summand of type

I2. Then Aut(P1(N )) ' Aut(P(N )).

Furthermore, by Thm. 12 automorphisms on the projection lattice P(N ) correspond with

order automorphisms on the context category V(N ). The latter are classified in terms of Jordan

⇤-automorphisms on N by Dye’s theorem in contextual form, Thm. 13. For convenience, we

restate it here.

Theorem 13. (Döring-Harding [50]) Let N be a von Neumann algebra not isomorphic to

C� C or M2(C). For every order automorphism ' : V(N )! V(N ), there is a unique Jordan

⇤-automorphism � : (N , ·)! (N , ·) such that '(V ) = �[V ] for all V 2 V(N ).

In order to relate this back to Wigner’s original theorem, we need two more theorems on

Jordan ⇤-homomorphisms. The first is the following standard result in [95].

Theorem 28. Let N1,N2 be von Neumann algebras and let � : N1 ! N2 be a Jordan ⇤-

isomorphism. Then there exists a central projection p 2 Z(N ) such that � acts as a ⇤-

isomorphism on pN1p and as a ⇤-anti-isomorphism on (1� p)N1(1� p).

In words, a Jordan ⇤-isomorphism acts on every factor either as a ⇤-isomorphism or ⇤-

anti-isomorphism. Clearly, the same applies to Jordan ⇤-automorphisms. Finally, for factors

N = B(H) these correspond with unitaries and anti-unitaries by the following result (cf. [8]).
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Proposition 3. Every ⇤-automorphism � : B(H)! B(H) is implemented by conjugation with

a unitary operator, and every ⇤-anti-automorphism is implemented by conjugation with an

anti-unitary operator.

Putting the pieces together, we obtain the following reformulation of Wigner’s theorem [47].

Theorem 29. (Wigner in contextual form.) Let H be a Hilbert space and dim(H) � 3.

Every order automorphism ' : V(H) ! V(H) is implemented by conjugation with either a

unitary or anti-unitary operator u,

8V 2 V(H) : '(V ) = uV u⇤ .

Proof. By Thm. 13 ' uniquely extends to a Jordan ⇤-automorphism and with Thm. 28 de-

composes into a sum of ⇤-automorphisms and ⇤-anti-automorphism over factors, equivalently,

central projections. Since N = B(H) is a factor, the only central projections are 0, 1. Hence,

N = 1N1 � 0N0 and ' acts non-trivially only on the first summand and either as a ⇤-

automorphism or ⇤-anti-automorphism. By Prop. 3 the former corresponds to conjugation by a

unitary, the latter to conjugation by an anti-unitary operator.

Wigner’s theorem, thus arises as a special case of Dye’s theorem, namely for factorsN = B(H)

of type In with 3  n = dim(H). Similarly, Wigner’s theorem in contextual form, is a special

case of Dye’s theorem in contextual form, which lifts symmetries on the partial order of contexts

to Jordan ⇤-isomorphisms for arbitrary von Neumann algebras.

The contextual reformulation of Wigner’s theorem is given in terms of symmetries of the

partial order of contexts. In particular, we have not defined a corresponding presheaf as for the

Kochen-Specker theorem and Gleason’s theorem. Nevertheless, it is possible to define a presheaf,

which encodes the partial of contexts and nothing more. In terms of this presheaf, Wigner’s

theorem relates automorphisms on this presheaf with conjugation by unitary or anti-unitary

operators (for details, see [47]). Importantly, Wigner’s theorem in contextual (presheaf) form

places both unitary and anti-unitary operators on the same footing. In fact, we will find that

both need to be considered when we study states on composite systems in Sec. 2.4.4.

59



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

2.3.4 Stinespring’s theorem

Stinespring’s theorem constitutes another cornerstone in mathematical quantum theory, it

classifies completely positive maps. Recall that a linear map � : A! B(H) with A a C⇤-algebra

is called n-positive if id ⌦ � : A(n) ! B(H)(n) is positive as an operator from the C⇤-algebra

of n ⇥ n-matrices with entries in A, A(n) := Mn(A), into B(H)(n) := Mn(B(H)). � is called

completely positive if it is n-positive for all n 2 N. Clearly, every completely positive map is

positive, however, a positive map is generally not completely positive. Completely positive

maps play an important role in the study of quantum channels. The latter are defined as

trace-preserving, completely positive maps.

Theorem 30. (Stinespring [135]) Let A be a unital C⇤-algebra, H a Hilbert space, and

� : A! B(H) a linear function. Then a necessary and su�cient condition that � have the form

8a 2 A : �(a) = v⇤�(a)v ,

where v : H ! K is a bounded linear transformation from H to a Hilbert space K and � is a

⇤-representation of A into operators on K, is that � be completely positive.

Stinespring proved his theorem as a noncommutative generalisation of Naimark’s dilation

theorem. The latter classifies positive operator-valued measures (cf. Def. 10).

Theorem 31. (Naimark [114]) Let % be a positive B(H)-valued measure on a compact

Hausdor↵ space X. There exists a Hilbert space K, a bounded operator v : H ! K, and

a self-adjoint, spectral P(K)-valued measure on X, ', such that

8B 2 �(X) : %(B) = v⇤'(B)v .

Being a noncommutative generalisation of Thm. 31, the contextual character of Stinespring’s

theorem is somewhat implicit. In order to extract this contextual aspect explicitly, note that

similar to Def. 18 of V(N ), any noncommutative, unital C⇤-algebra A can be decomposed

into its abelian subalgebras ordered by inclusion, denoted analogously by V(A). (Complete)

Positivity of � : A! B(H) implies, in particular, that the maps �|V : V ! B(H) are positive
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in every context V 2 V(A). Remarkably, for von Neumann algebras the other direction holds

true by Gleason’s theorem as we show in Thm. 34 below.

The proof consists of two parts. For the first part, note that %V := �|P(V ) defines a

positive operator-valued measure in every context V 2 V(N ). In particular, by Stone duality,

Thm. 8, every context V 2 V(N ) corresponds to an extremely disconnected compact Hausdor↵

space. More precisely, P(V ) is a complete Boolean algebra and there is a lattice isomorphism

↵V : P(V )! Cl(⌃V ) into the (lattice of) clopen subsets of the Gelfand spectrum ⌃V defined

by ↵V (p) = {� 2 ⌃V | �(p) = 1}. Since the Borel �-algebra on ⌃V has elements the

clopen subsets Cl(⌃V ) and for any finite, disjoint family of Borel (clopen) subsets of ⌃V , Bi,

it follows that ↵�1

V
(Bi) 2 P(H) is a family of orthogonal projections, it is easily seen that

%V � ↵�1

V
([iBi) = �(

P
i
pi) =

P
i
�(pi) =

P
i
%V � ↵�1

V
(Bi).21 Hence, the map %V � ↵�1

V
defines a

positive operator-valued measure on ⌃V , equivalently, since ↵V is an isomorphism, %V defines

a positive operator-valued measure on P(V ). We can thus apply Naimark’s dilation theorem,

Thm. 31, in every abelian subalgebra V 2 V(N ) to obtain Hilbert spaces KV , projection-valued

measures 'V : P(N )! P(KV ), and bounded operators vV : H! KV such that %V = v⇤
V
'V vV .

Now note that every commutative von Neumann algebra V 2 V(N ) is isomorphic to the

algebra L1(X,µ) of bounded measurable functions on some (standard) measure space (X,µ)

acting on the Hilbert space of square-integrable functions L2(X,µ) by multiplication (cf. Thm. 35

below).22 The positive operator-valued measures %V : P(V )! B(H) therefore give rise to the

linear map �V by setting �V (f) =
R
⌃V

f(�)d%V (�) for all f 2 L1(⌃V ) (cf. Thm. 4). Naimark’s

theorem, which lifts the positive operator-valued measures %V = v⇤
V
'V vV to spectral measures

'V on KV in every context, thus also lifts the positive linear maps �V = v⇤
V

�V vV to C⇤-algebra

homomorphisms �V (f) =
R
⌃V

f(�)d'V (�). It follows that Naimark’s theorem is a special case

of Stinespring’s theorem for A abelian. Surprisingly, Stinespring’s theorem also arises from

Naimark’s theorem when applied to the entire context category, i.e., by choosing the dilations

'V in Thm. 31 consistently across contexts. To see this, we need another presheaf.

21The Borel �-algebra on ⌃V arises from any standard measure space (X,µ) with L1(X,µ) ' V by removing
all sets of measure zero.

22Note that (X,µ) is not unique, yet modulo sets of measure zero we recover the duality in Thm. 10 (see also
[120]). We sometimes use the abstract notation L1(⌃V ) to indicate any such measure space.
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Definition 29. Let N be a von Neumann algebra with no summand of type I2 and H a Hilbert

space. The POVM presheaf ⇧H of N over V(N ) is the presheaf given

(i) on objects: for all V 2 V(N ), let

⇧H
V
:= {%V = v⇤'V v | v : H! K, 23 'V : P(V ) ,! P(K)} , 24

(ii) on arrows: for all V, Ṽ 2 V(N ), if Ṽ ✓ V , let

⇧(i
Ṽ V

) : ⇧
V
�! ⇧

Ṽ
with 'V 7�! 'V |Ṽ .

The POVM presheaf is a natural generalisation of the dilated probabilistic presheaf. In

fact, it is itself a special case of an even more general ‘measure presheaf’ for arbitrary Banach

space-valued measures corresponding to the generalised version of Gleason’s theorem, Thm. 23.

We would like to show that global sections of the POVM presheaf correspond with completely

positive maps. This is almost the case. Instead, we obtain decomposable maps, i.e., maps of

the form � = v⇤�v with � : N ! B(K) a Jordan ⇤-homomorphism. Similar to completely

positive maps, which are characterised by Stinespring’s theorem, Thm. 30, decomposable maps

are characterised by a symmetrised positivity condition [137].

Theorem 32. (Størmer [137]) Let A be a C⇤-algebra and � : A! B(H) linear. Then � is

decomposable if and only if for all n 2 N, (aij), (aji) 2Mn(A)+ implies �(aij) 2Mn(B(H))+.

The next theorem proves that collections of spectral measures in contexts uniquely extend

to decomposable maps.

Theorem 33. Let N be a von Neumann algebra with no summand of type I2, H a Hilbert

space, and ⇧H(V(N )) the corresponding POVM presheaf of N over V(N ). There is a bijective

correspondence between global sections �(⇧H(V(N ))) and decomposable maps � : N ! B(H).

23Similarly to Def. 27, we may choose K independently of contexts, since by Thm. 31 a dilation exists e.g. for
dim(K) � dim(N )dim(H).

24Alternatively, by the discussion preceding Def. 29 one may think of 'V as a spectral measure on ⌃V .
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Proof. Clearly, every decomposable map � : N ! B(H), � = v⇤�v for v : H ! K linear and

� : N ! B(K) a Jordan ⇤-homomorphism defines a global section �� 2 �(⇧H(V(N ))) since

�|P(N ) : P(N )! P(K) is an orthomorphism (a spectral measure in every context V 2 V(N )).

Conversely, a global section � = (%V = v⇤'V v)V 2V N 2 �(⇧H(V(N ))) defines an orthomor-

phism ' : P(N )! P(K), i.e.,

8p, q 2 P(N ), pq = 0 : '(p)'(q) = 0 and '(p+ q) = '(p) + '(q) .

This follows since ' = ('V )V 2V(N ) defines a family of embeddings (spectral measures), in

particular, there is an embedding 'V with p, q 2 P(V ). By Thm. 23 ' uniquely extends to a

bounded linear operator � : N ! B(K).

We therefore not only find that % extends to a bounded linear operator �� : N ! B(H) by

Thm. 23, but we also obtain a globally defined dilation (��)|P(N ) = v⇤'v with ' : P(N )! P(K)

an orthomorphism. The additional property that �|P(N ) = ' is an orthomorphism further

implies that � defines a Jordan ⇤-homomorphism (see also [88]). To see this, it is enough to show

that � also preserves squares, i.e., for every a 2 N with spectral decomposition a =
P

i
aipi,

�(a2) = �(
X

i

a2
i
pi) =

X

i

a2
i
�(pi) = �(a)2 .

Since {a, b} = 1

2
(ab+ ba) = 1

4
[(a+ b)2 � a2 � b2], this implies

�({a, b}) = �(
1

4
[(a+ b)2 � a2 � b2]) =

1

4
[(�(a) + �(b))2 � �(a)2 � �(b)2] = {�(a),�(b)} .

Finally, �(a⇤) = �(
P

i
aipi) =

P
i
ai�(pi) = �(a)⇤. Hence, � in ⇢� = v⇤�v is a Jordan

⇤-homomorphism. This completes the proof.

In order to meet the assumptions of Thm. 23 we restricted to von Neumann algebras.

Nevertheless most of the proof goes through for general C⇤-algebras, in particular, Naimark’s

theorem still holds for unital C⇤-algebras, which correspond to compact Hausdor↵ spaces by

Thm. 9. One might thus hope to obtain a similar correspondence between order homomorphisms

' : V(A1)! V(A2) and Jordan ⇤-homomorphisms � : J (A1)! J (A2). This problem has been
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addressed in [74], where it is shown that every order isomorphism between the context categories

lifts to a unique quasilinear Jordan ⇤-isomorphism. The problem of extending the refomulation

of Thm. 30 to C⇤-algebras thus reduces to the following problem: When does a quasilinear map

between C⇤-algebras extend to a linear map? For general C⇤-algebras, quasilinear maps are

strictly weaker than linear maps, yet under certain additional constraints quasilinearity and

linearity coincide [73]. Succinctly, a Gleason-type theorem is thus necessary for the reformulation

of Stinespring’s theorem over contexts.

Importantly, positive maps are more general than decomposable maps. In particular, without

extending additivity of the local B(H)-valued measures in contexts to their spectral dilations in

Thm. 31, global sections of the probabilistic presheaf do not correspond with decomposable maps

only, but with general positive maps. In contrast, global sections of the dilated probabilistic

presheaf do correspond with decomposable maps, which allows us to rediscover Stinespring’s

theorem as follows. Recall that a Jordan ⇤-homomorphism � : J (N ) ! J (B(H)) lifts to a

homomorphism of von Neumann algebras � : N ! B(H) if and only if it preserves orientations

by Thm. 17 in Sec. 2.2. In fact, there is a canonical choice of orientation for every global section

� 2 �(⇧H(V(N ))) such that the corresponding map �� in Thm. 33 is completely positive. This

is the content of the following reformulation of Stinespring’s theorem.

Theorem 34. (Stinespring in contextual form) Let N be a von Neumann algebra with no

summand of type I2, H a Hilbert space, and ⇧H(V(N )) the corresponding POVM presheaf of

N over V(N ). For every global section � 2 �(⇧H(V(N ))) there exists a unique von Neumann

algebra eN with V( eN ) ' V(N ), for which �� : eN ! B(H) in Thm. 33 is completely positive.

Proof. Let � 2 �(⇧H(V(N ))). By Thm. 33 there exists a unique decomposable map �� = v⇤�v

with v : H! K a bounded linear operator and � : J (N )! J (B(K)) a Jordan ⇤-homomorphism.

By Thm. 17 � becomes a homomorphism of von Neumann algebras if it also preserves orientations.

This is the case if we ‘pull back’ the orientation on B(K) (respectively, B(H) ◆ v⇤�(B(H))v) to

J (N ) by Kadison’s theorem, Thm. 28, yielding a von Neumann algebra eN with J ( eN ) ' J (N )

and thus V( eN ) ' V(N ) by Thm. 13. Hence, by Thm. 16 and Thm. 17 we find:

�(ab) = �({a, b}+ [a, b]) = {�(a),�(b)}+ [�(a),�(b)] = �(a)�(b) 8a, b 2 eN
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Clearly, � in �� = v⇤�v becomes a ⇤-homomorphism for this choice of orientation, which implies

that �� : eN ! B(H) is completely positive (cf. [135]).

Stinespring’s theorem, Thm. 30, thus also obtains a natural interpretation over contexts:

we may view completely positive maps as global sections of the POVM presheaf over the

partial order of contexts in Def. 29, with real-valued measures in Def. 27 replaced by positive

operator-valued measures, locally dilated according to Naimark’s theorem.

In particular, note that Thm. 34 o↵ers a new, alternative proof for Thm. 30, at least for

von Neumann algebras. In its original form, Thm. 30 has the following reading: it classifies

completely positive maps � : A! B(H) from any C⇤-algebra A into the bounded operators on

some Hilbert space. There, the condition of complete positivity is a type of global condition on �.

Conversely, Thm. 34 allows for a di↵erent reading: viewing A as a partial order of commutative

subalgebras, � is clearly positive (in every commutative subalgebra) and can be lifted, first, to

a spectral measure on some larger Hilbert space K locally by Naimark’s theorem and, second,

to a ⇤-homomorphism under the canonical choice of commutators in �(N ) by Thm. 34. This

implies complete positivity globally. Succinctly, for von Neumann algebras (complete) positivity

is a type of local-to-global property similar to linearity in Gleason’s theorem and, in fact, a

consequence of the latter in the form of Thm. 23.

It appears to be an advantage of the contextual perspective in the topos formalism, that

positivity, dilations in contexts, and local time orientations are clearly di↵erentiated, whereas

these concepts are somewhat convoluted in the standard formalism, in the form of complete

positivity. Note also that Thm. 34 is consistent with, and once again confirms the idea that

quantum phenomena arise from phenomena in contexts together with their order relations.

The next section is concerned with Bell’s theorem. The situation there is similar: let

H in Def. 29 be such that we can find a representation N2 ✓ B(H) (cf. Thm. 5). As a

consequence, global sections of the (Bell) probabilistic presheaf over product contexts (cf.

Eq. (2.24) below) correspond with quantum states on the composite system, in the form of

completely positive maps, only if they also preserve commutators between von Neumann algebras

N1,N2 corresponding to subsystems. As we will see, from a physical perspective, this extra

structure imposes a consistency condition on time directions in subsystems.
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2.4 Contextuality and Bell’s theorem

Bell’s seminal paper [17] responds to a longstanding conjecture by Einstein, Podolsky, and

Rosen (EPR) [54], who claim quantum theory is only a statistical version of a more fundamental

theory, similar to the relation between thermodynamics and statistical mechanics. Besides

the probabilistic nature of quantum theory, this idea is motivated by certain nonlocal features

present in the quantum formalism, believed to be resolved within the more fundamental theory.

As a response to EPR’s thought experiment, Bell formalises EPR’s assumption of an

underlying space of hidden variables and derives a constraint for the maximal amount of

correlations possible in such theories under the additional assumption of locality.25 However,

some quantum mechanically predicted and experimentally verified correlations [12, 65, 132] do

not obey these constraints and thus cannot be reproduced by any local hidden variable model.

To give an example, we sketch a standard version of Bell’s theorem. The CHSH inequality,

named after Clauser, Horne, Shimony, and Holt, puts a bound on the outcome statistics of the

nonlocal, bipartite quantity c := a ⇥ b + a ⇥ b0 + a0 ⇥ b � a0 ⇥ b0 with local observables a, a0

and b, b0 and corresponding outcomes A,A0, B,B0 2 {�1, 1} [36].26 Assuming the existence of

valuation functions in a classical (hidden variable) theory, the expectation value after repeated

measurements is constrained by Ecl(c) := E⌃(c)  2 (cf. Eq. (2.18)). Quantum correlations

can be strictly stronger than classical (single-context) correlations. In particular, local spin-

1/2 measurements a(↵), a0(↵0) and b(�), b0(�0), rotated by angles ↵ = 0, ↵0 = ⇡

2
and � = ⇡

4
,

�0 = �⇡

4
evaluated on the Bell state |�+i = 1p

2
(|00i + |11i), yield the expectation value

Eqm(c) := h�+|c|�+i = 2
p
2, and by Tsirelson’s theorem exceed the classical bound maximally

[141],

Emax

cl
(c) < Emax

qm
(c) < Emax

ns
(c) . (2.10)

For later reference we have extended this inequality to the right by adding correlations in

general non-signalling theories such as those arising from PR-boxes [125] (cf. Fig. 2.4). For the

two-dimensional, bipartite case this leads to Emax

ns
(c) = 4 (see also Sec. 2.5.4).27

25For a discussion of the locality principles involved in Bell’s theorem see also [25, 148]
26Note that c is not an observable, but derives from the statistical average over repeated measurements [103].
27We give a precise definition for the term ‘general non-signalling theories’ in Sec. 2.5.
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As with the other theorems discussed in this article, we show that the essence in Bell’s

theorem is naturally encoded in the partial order of contexts, and we discuss the relation between

contextuality and locality in this setting. The connection between these concepts has been

highlighted before [6], here, we extend these results in several ways, in particular, we stress the

importance of composition in this unified framework. This section gives a more detailed account

of the results presented in the recent preprint [62].

We first recall the derivation of Bell’s theorem, which also underlies the CHSH inequality

above, emphasising the assumption of an underlying single-context state space, i.e., trivial

physical contextuality, in Sec. 2.4.1. In Sec. 2.4.3 we argue how this assumption generalises

to a multiple-context perspective after incorporating existing results on multipartite frame

functions in Sec. 2.4.2. Finally, we show how the latter allow to upper bound correlations in

theories that exhibit physical contextuality, i.e., for which not all observables are simultaneously

measurable. In particular, we show how quantum correlations arise from global sections over the

corresponding Bell presheaf in Sec. 2.4.4. Not surprisingly, the Bell presheaf is closely related to

the (dilated) probabilistic presheaf, but is adapted to bipartite (or multipartite) systems. We

finish with a discussion on correlations in general non-signalling theories, for which we give a

definition in the language of presheaves over contexts in Sec. 2.5.

2.4.1 Correlations in classical theories

Classical state spaces

In Sec. 2.1.2 we have introduced the notion of physical contextuality as the mere order structure

of contexts, i.e., collections of simultaneously measurable observables and their inclusion relations.

In classical theories all observables are simultaneously measurable, hence, from the perspective

of physical contextuality, they correspond to the trivial case of a single (maximal) context. In

this section we give a derivation of Bell’s theorem in the light of this assumption, in particular,

we discuss the crucial notion of composition from the viewpoint of trivial physical contextuality.

As before it will be enough to consider the kinematics of the theory and we therefore

start with a set of observables O. Observables a 2 O in classical theories are mathematically
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represented by measurable functions fa : ⌃ ! R from some measure space (⌃, µ) to the real

numbers. ⌃ is called the (single-context) state space of the theory. The elements s 2 ⌃ are

called microstates and every s 2 ⌃ allows to assign truth values to propositions of the form

‘a 2 �’ (read ‘the observable a has a value within the Borel subset � ⇢ R’ ):

⇥(a 2 �, s) :=

8
>><

>>:

1 if s 2 f�1

a
(�)

0 otherwise

(2.11)

We can therefore speak of the value of an observable vs(a) given the state s 2 ⌃ in the intuitive

sense, i.e., through evaluation of the corresponding measurable function

vs(a) := fa(s) . (2.12)

Valuation functions vs : O ! R in Eq. (2.12) are defined for all observables, in other words, every

observable has an intrinsic (sharp) value in every state.28 The observation that all observables

simultaneously take deterministic values justifies to model physical states by points in some

space ⌃ and observables by (measurable) functions fa : O ! R in the first place. This reasoning

has to be revisited for non-classical theories, i.e., theories with non-trivial physical contextuality,

and we will do so in the sections to follow. Note also that by this argument observables play

the fundamental role, whereas states appear as a derived concept. This perspective will become

important later, when we go over from single to multiple-context state spaces.

It is natural to equip O with the structure of an algebra. In fact, by modeling observables as

functions we are automatically given a vector space structure as well as a product by pointwise

multiplication of functions.29 In fact, let (X,µ) be a �-finite measure space, i.e., a measure space

with a �-finite measure µ, then L1(X,µ) acts on the Hilbert space L2(X,µ) by multiplication

 ! f for all  2 L2(X,µ) and f 2 L1(X,µ). If moreover X/N is a standard Borel space for

N := {A ⇢ X | µ(A) = 0},30 we obtain the following representation theorem (cf. [138]).

28The spectrum rule, vs(a) 2 sp(a) = Im(fa), is trivially satisfied. Note also that this does not imply
determinism (as not all properties of s need to be directly observable).

29In doing so, we include the ‘trivial’ observable e 2 O represented by the constant function fe = 1. This
observable simply asks the question ‘Is the system there?’, and the answer is always ‘yes’.

30We will sometimes call a measure (X,µ) standard, if µ is a �-finite measure and X modulo sets of measure
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Theorem 35. Every commutative von Neumann algebra on a separable Hilbert space is ⇤-

isomorphic to l1(⌦), L1([0, 1]), or L1([0, 1]) � l1(⌦) for a countable set ⌦, where µ is the

counting or Lebesgue measure, respectively. Conversely, for every standard measure space (X,µ),

L1(X,µ) is a von Neumann algebra on a separable Hilbert space.

With this analogy we will assume O to be a commutative von Neumann algebra, namely

the algebra of measurable functions on a (standard) measure space. It is straightforward to

extend the definition of valuation functions in Eq. (2.12) to this algebraic structure, namely for

all a, b 2 O, � 2 R, and s 2 ⌃ we set:

vs(a · b) := fa(s) · fb(s), vs(a+ b) := fa(s) + fb(s), vs(�a) := �fa(s) (2.13)

In other words, classical states s 2 ⌃ correspond to algebra homomorphisms vs : O ! R.

More generally, in the presence of physical contextuality, we may define generalised classical

states to be valuation functions, i.e., partial algebra homomorphisms for which Eq. (2.13) only

holds between algebras of simultaneously measurable observables, i.e., in contexts (cf. Def. 1).

Clearly, this motivates the generalisation to partial algebra homomorphisms encountered in

Sec. 2.1.1. Recall also that valuation functions play a central role in Thm. 19, which proves their

non-existence within the setting of general von Neumann algebras, thus ruling out a classical

state space picture. Bell’s theorem attains a similar reformulation as a no-go-result for such

classical states based on the additional assumption of composition. To see this in detail, in

the remainder of this section we give a derivation of factorisability for classical (single-context)

theories from composition defined by the canonical Cartesian product of state spaces.

Given two subsystems with (standard) measure spaces (⌃1, µ1), (⌃2, µ2), the product state

space is defined as the Cartesian product ⌃1&2 := ⌃1⇥⌃2 with product �-algebra �1&2 generated

by elements B1 ⇥ B2 for B1 2 �1, B2 2 �2, and the product measure µ1&2 := µ1 ⇥ µ2 satisfies

the condition,

µ1&2(B1 ⇥ B2) = µ1(B1) · µ2(B2) .31 (2.14)

zero a standard Borel space.
31A product measure always exists, it is unique if the individual measures are also �-finite (cf. Thm. 35). Note
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In a similar way we obtain composite state spaces with multiple subsystems. Correspondingly,

composite observables a 2 O are represented by measurable functions fa : ⌃ ! R on the

composite state space ⌃ = ⇥n

i=1
⌃i. Clearly, evaluation on elements s 2 ⌃ still yields algebra

homomorphisms similarly to Eq. (2.13), hence, we obtain composite valuation functions vs :

O ! R from the obvious generalisation of Eq. (2.12) to composite observables.

Importantly, the algebra of composite observables is generated by the algebras of its subsys-

tems.32 In order to obtain a generalisation of the truth values in Eq. (2.11), it is thus enough

to consider tuples a = (a1, · · · , an) 2 O with ai 2 Oi for i 2 {1, · · · , n} as well as measurable

functions fa : ⌃! Rn, fa(s) := ⇥n

i=1
fai(si) with s 2 ⌃ = ⇥n

i=1
⌃i. Namely, we define the truth

value of the proposition ‘a 2 �’ with Borel set � := ⇥n

i=1
�i as follows:

⇥(a 2 �, s) :=

8
>><

>>:

1 if s 2 f�1

a (�)

0 otherwise

=

8
>><

>>:

1 if si 2 f�1

ai
(�i) 8i

0 otherwise

=
nY

i=1

⇥(ai 2 �i, si) (2.15)

Statistical mixtures and joint probability distributions

The spectrum rule, v(a) 2 sp(a), and functional composition principle in Eq. (2.9) are specific

to pure states, (classical) mixed states on the other hand are modeled as statistical averages by

means of normalised measures on state space µ : ⌃! R,

Z

⌃

dµ(s) = 1, 8s 2 ⌃ : µ(s) � 0 . (2.16)

The probability for the event corresponding to the Borel set � ⇢ R, when measuring the

observable a 2 O of a system in the mixed state µ, is then given by

µ(� | a) =
Z

{s2⌃|vs(a)2�}
dµ(s) =

Z

f
�1
a (�)

dµ(s) =

Z

⌃

dµ(s) ⇥(a 2 �, s) . (2.17)

In the last step we have used the indicator function ⇥(a 2 �, s) in Eq. (2.11). For instance, the

probability for obtaining a particular outcome A corresponds to the Borel set � := {A}.

also that the Cartesian product extends to spaces with more structure, such as symplectic, Poisson manifolds etc.
32Here, ‘generated’ means under taking linear combinations, products, and pointwise limits.
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Analogously, for product measures on a bipartite system we have by Eq. (2.14) and Eq. (2.15):

µ(A,B | a, b) =
Z

⌃

dµ(s) ⇥((a, b) 2 (A,B), s)

=

✓Z

⌃1

dµ1(s1) ⇥(a 2 A, s1)

◆
·
✓Z

⌃2

dµ2(s2) ⇥(b 2 B, s2)

◆

= µ1(A | a) · µ2(B | b)

A general mixed state on the composite system is then a statistical mixture of product measures,

µ(A,B | a, b) =
Z

⇤

d� p(�) µ1(A | a,�) · µ2(B | b,�) . (2.18)

Note that µ(A,B | a, b) is a special type of joint probability distribution, i.e., a normalised

measure on the composite system µ : ⌃! R, µ(s) � 0 for all s 2 ⌃, and
R
⌃
dµ(s) = 1. A joint

probability distribution is called factorisable if it is of the form in Eq. (2.18).

The locality principle in factorisability is simply the condition that local measures depend

on local outcomes and observables only. Clearly, by modeling the set of composite observables

via the Cartesian product this is almost automatic—neither outcome nor observable a↵ect the

other factor in the product in Eq. (2.18).

The splitting of classical joint probability distributions according to factorisability thus

fundamentally stems from the existence of local (single-context) state spaces with composition

defined by the Cartesian product (cf. [13]). In other words, we have derived Eq. (2.18) from

two assumptions:

(i) trivial physical contextuality, i.e., a single (maximal) context (in each subsystem) and

(ii) the Cartesian product of state spaces as the state space of the composite system.

Since condition (ii) is entirely natural for single-context state spaces, Eq. (2.18) can also be read

as a consequence of just trivial physical contextuality.

Factorisability thus corresponds to composition given by the Cartesian product and by the

above argument also to (trivial) physical contextuality. This suggests an intimate relationship

between the underlying concepts:
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contextuality �! composition �! locality

Admittedly, for now especially the first relation is a rather bold conjecture based on the case of

trivial physical contextuality in classical systems only. However, in Sec. 2.4.3 we will see how

these concepts are in fact closely related also in the multiple-context setting.

In a first attempt to define a notion of composition, which is suitable for the context structure

in quantum systems and compatible with the more general (than factorisability) locality principle

known as ‘no-signalling’, in the next section we study the composition behaviour of frame

functions underlying the original proof of Gleason’s theorem.

2.4.2 Composition of frame functions and Gleason’s theorem

The content of this and the following sections is taken from [62].

Recall that measures on the projections of some Hilbert spaces H with dim(H) � 3 finite

are classified by Gleason’s theorem, Thm. 21. A closely related concept is that of frame

functions of weight W 2 R on the unit sphere S(H): f : S(H) ! R where
P

d

j=1
f(vj) = W

for all orthonormal bases (vj)dj=1
2 ONB(H) with d := dim(H). In fact, Thm. 21 is a direct

consequence of the following theorem about frame functions [66].

Theorem 36. Let dim(H) � 3 finite. If f is a non-negative frame function of weight W 2 R+,

then there exists a density matrix ⇢ : H ! H such that f(v) = W tr(⇢pv) = W hv|⇢|vi for all

v 2 S(H).33

Of course, we can apply Thm. 21 to composite quantum systems and consider frame functions

f : S(H)! R, where H = ⌦n

i=1
Hi is the tensor product Hilbert space. However, in doing so we

no longer restrict to outcomes of local measurements only. From an operational perspective the

only outcomes accessible to local observers correspond to elements in �(H) := {v1 ⌦ · · ·⌦ vn 2

S(H) | vi 2 S(Hi)}. It is thus natural to consider unentangled frame functions with domain

�(H) ( S(H) and constraints restricted to ONB(�(H)) ( ONB(H) instead. This was studied

in [145].

33Here and below, we identify rank-1 projections and vectors via pv = |vihv|, and occasionally switch between
the mathematical and the physically motivated Dirac notation of vectors v $ |vi (and dual vectors v⇤ $ hv|).
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Theorem 37. (Wallach [145]) Let H =
N

n

i=1
Hi, dim(Hi) � 3 finite for all i 2 {1, · · · , n},

n 2 N. If f : �(H) ! R is a non-negative, unentangled frame function, then there exists a

self-adjoint operator t : H! H such that f(v) = tr(tpv) = hv|t|vi for all v 2 �(H).

Note that in contrast to Thm. 21, Thm. 37 does not imply positivity of t.

A further restriction compared to ONB(�(H)) are frame functions over product bases:

f : �(H) ! R with
P

d1,··· ,dn
j1,··· ,jn=1

f(vj1,1 ⌦ · · · ⌦ vjn,n) = W , di := dim(Hi) only on product

bases, �(H) := {(vj1,1 ⌦ · · · ⌦ vjn,n)
d1,··· ,dn
j1,··· ,jn=1

| (vji,i)
di
ji=1
2 ONB(Hi)}. Clearly, S(H) contains

many non-local states. But even unentangled bases cannot always be implemented with local

operations and classical communication only [19], suggesting product bases as the most natural

choice of constraints. Yet, it was shown that a similar result to Thm. 37 no longer holds for

frame functions over product bases (cf. Prop. 5 in [145]).

To gain some insight into what is ‘missing’, it is helpful to consider examples of frame

functions over product bases. Wallach gives a whole family of examples in [145], which are

easily seen to correspond to signalling distributions. We thus add more constraints in the form

of no-signalling : for i 2 {1, · · · , n} with (vji,i)
di
ji=1

, (wki,i)
di
ki=1
2 ONB(Hi) and xlr,r 2 S(Hr) for

all lr 2 {1, · · · , dr}, r 6= i,

diX

ji=1

f(xlr,r ⌦ vji,i) =
diX

ki=1

f(xlr,r ⌦ wki,i) , (2.19)

where we use the shorthand xlr,r⌦ vji,i := (xl1,1⌦ · · ·⌦xli�1,i�1⌦ vji,i⌦xli+1,i+1⌦ · · ·⌦xln,n). In

light of PR-boxes one might still expect such non-signalling frame functions to be more general

than quantum states. However, this turns out not to be the case. To show this we introduce yet

another choice of basis: let B 2 �(H), B0 2 ONB(H) and set B0 ⇠ B if there exists a sequence of

unitaries (Um)N
m=1

such that B0 = B, Bm = UmBm�1, BN = B0 and where every unitary Um acts

non-trivially only on local subspaces of the form xm

lr,r
⌦(vm

ji,i
+vm

j0i,i
) with xm

lr,r
⌦vm

ji,i
, xm

lr,r
⌦vm

j0i,i
2 Bk.

Importantly, the equivalence relation ⇠ is independent of the choice of product basis B 2 �(H),

it only depends on the split of Hilbert space H = ⌦n

i=1
Hi (cf. Fig. 2.3). This follows since any

di ⇥ di-unitary matrix can be written as a product of two-level unitaries. In particular, any

two bases related by local unitary transformations, i.e., unitaries acting on subsystems Hi, are
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therefore related by ⇠. We call the elements in T (�(H)) := {B0 2 ONB(H) | B0 ⇠ B 2 �(H)}

twisted product bases.34 Note that �(H) ( T (�(H)) ✓ ONB(�(H)). Clearly, the first inclusion

is strict already for local dimensions dim(Hi) � 2. In fact, the latter inclusion is strict as well,

there are unentangled bases in dimension at most ten that do not correspond to twisted product

bases (cf. [102]).

Proposition 4. T (�(H)) ( ONB(�(H))

Proof. Clearly, every twisted product basis is also an unentangled basis. The fact that the other

direction fails is non-trivial, but can be concluded from a counterexample to Keller’s tiling

conjecture [102]: for n � 10 construct the following tiling of Rn by cubes of length 2 such that

(a) the centers of all cubes are in Zn,

(b) the tiling is 4Zn-periodic,

(c) no two cubes have a complete facet in common.

More precisely, let C := {(x1, · · · , xn) | �1  xi  1 8i 2 {1, · · · , n}} denote a cube (of

length 2). Then a tiling corresponds to 2n equivalence classes of translates of C of the form

m+ C + 4Zn for

m = (m1, · · · ,mn) 2 Zn, 0  mi  3 . (2.20)

Next, consider the conditions: (i) m and m0 have some |mi �m0
i
| = 2 and (ii) m and m0 di↵er

in two coordinate directions. Finally, denote by Gn and G⇤
n
two graphs, each of which has 4n

vertices labeled by the 4n vectors in Eq. (2.20), where Gn has an edge between vertices m and

m0 if (i) holds, while G⇤
n
has an edge between vertices m and m0 if (i) and (ii) hold.

Then a set S of 2n vectors of the form in Eq. (2.20) yields a 4Zn-periodic cube tiling if and

only if S forms a clique in Gn; it yields a 4Zn-periodic cube tiling with no two cubes having a

complete facet in common if and only if S forms a clique in G⇤
n
.

We now translate this into a basis of H = (C2)⌦10. Consider the qubit states |0i, |1i,

34Twisted product bases arise in a similar (but more complex) way to the set of rotations of a Rubik’s cube.
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|+i := 1p
2
(|0i+ |1i) and |�i := 1p

2
(|0i � |1i) and define the correspondence mi 7! | (mi)i by:

| (mi = 0)i = |0ii | (mi = 1)i = |+ii

| (mi = 2)i = |1ii | (mi = 3)i = |�ii

First, note that | (S)i := {| (m1)i ⌦ · · ·⌦ | (mn)i | m 2 S} forms a basis of (C2)⌦10: there

are 210 vectors and it is easily seen that h (m)| (m0)i = 0 for m,m0 2 S, m 6= m0 by condition

(i) above. Moreover, | (S)i 2 �((C2)⌦10) is an unentangled basis by construction. However, any

two vectors | (m)i, | (m0)i for m,m0 2 S, m 6= m0 di↵er on at least two sites by condition

(ii). It follows that no two-dimensional subspace of the form xm

lr,r
⌦ (vm

ji,i
+ vm

j0i,i
) exists in | (S)i.

Yet, any twisted product basis has at least one two-dimensional subspace of this form, hence,

| (S)i cannot be a twisted product basis.

Thm. 37 fails for product bases, yet it already holds for frame functions over twisted product

bases. Since the latter contain strictly fewer conditions than unentangled frame functions, this

generalises Thm. 37.

Proposition 5. Let H =
N

n

i=1
Hi, dim(Hi) � 3 finite for all i 2 {1, · · · , n}, n 2 N. If

f : �(H)! R is a non-negative frame function over twisted product bases, then there exists a

self-adjoint operator t : H! H such that f(v) = tr(tpv) = hv|t|vi for all v 2 �(H).

Proof. In the proof of Thm. 2 in [145] replace unentangled bases with twisted product bases

in the inductive hypothesis. The case n = 1 still holds by Thm. 21. Consider H = H1 ⌦ V ,

V = ⌦n

i=2
Hi with dim(Hi) � 3 for all 1  i  n. If (vj)

d1
j=1
2 ONB(H1) is an orthonormal basis

of H1 and (uj

k
)dV
k=1
2 T (�(V )) is a twisted product basis for V , then (vj ⌦ uj

k
)d1,dV
j,k=1

2 T (�(H)) is

a twisted product basis for H. This follows since we can transform uj

k
for every j into a product

basis on V by the assumption that uj

k
2 T (�(V )), and the fact that applying local unitaries on

subspaces
P

di

ji=1
vjr,r ⌦ vji,i for all i we can transform between product bases in �(V ).

Since f is a twisted product frame function (of weight W 2 R+), the function fv(u) =

f(v ⌦ u) is a non-negative twisted product frame function on V (of weight Wv = Wv1 =

W �
P

d1,dV

j=2,k=1
f(vj ⌦ uj

k
) 2 R+) for each v 2 H1. By the inductive hypothesis we thus find

fv(u) = hu|tV (v)|ui for all u 2 �(V ) with tV (v) : V ! V self-adjoint.
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|0i|0 + 1i |0i|0� 1i |0 + 1i|2i |0i|0 + 1i |0i|0� 1i |0 + 1i|2i

|1 + 2i|0i |1i|1i |0� 1i|2i ! |1 + 2i|0i |1i|1i |0� 1i|2i

|1� 2i|0i |2i|1 + 2i |2i|1� 2i |1� 2i|0i |2i|1i |2i|2i

#
|0i|0i |0i|1i |0i|2i |0i|0i |0i|1i |0 + 1i|2i

|1 + 2i|0i |1i|1i |1i|2i  |1 + 2i|0i |1i|1i |0� 1i|2i

|1� 2i|0i |2i|1i |2i|2i |1� 2i|0i |2i|1i |2i|2i

#
|0i|0i |0i|1i |0i|2i

|1i|0i |1i|1i |1i|2i = {|0i, |1i, |2i}T ⌦ {|0i, |1i, |2i}

|2i|0i |2i|1i |2i|2i

Figure 2.3: The unentangled basis in the top left corner (cf. [19]) is transformed into a
product basis (bottom left corner) by successively applying local unitaries, e.g., in the first step
(|2i|1+2i, |2i|1�2i)! (|2i|1i, |2i|2i) where |xi|yi := |xi⌦ |yi as well as |x±yi := 1p

2
(|xi±|yi).

Conversely, let (uk)
dV
k=1
2 T (�(V )) be a twisted product basis for V and (vk

j
)d1
j=1
2 ONB(H1)

for every k, then (vk
j
⌦uk)

d1,dV
j,k=1

2 T (�(H)) is a twisted product basis for H (by a similar argument

as before) and by the inductive hypothesis we conclude fu(v) := f(v ⌦ u) = hv|tH1(u)|vi for all

v 2 S(H1) with tH1(u) : H1 ! H1 self-adjoint. The remainder of the proof is identical to the

one of Thm. 37.

For instance, the unentangled basis in [19] is easily transformed into a product basis (cf.

Fig. 2.3) and is thus in particular a twisted product basis. For frame functions over product

bases consistency with such twisting operations is equivalent to no-signalling.

Lemma 1. Non-negative, non-signalling frame functions f : �(H)! R over product bases with

finite local dimension dim(Hi) � 3 bijectively correspond to non-negative frame functions over

twisted product bases.

Proof. Let xlr,r 2 S(Hr) for all lr 2 {1, · · · , dr}, r 6= i and (vji,i)
di
ji=1

, (wki,i)
di
ji=1
2 ONB(Hi) such

that w.l.o.g. |v1,iihv1,i|+ |v2,iihv2,i| = |w1,iihw1,i|+ |w2,iihw2,i| and vji,i = wki,i for 3  ji = ki  n.
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Then by no-signalling in Eq. (2.19),

f(xlr,r ⌦ v1,i) + f(xlr,r ⌦ v2,i) =
diX

ji=1

f(xlr,r ⌦ vji,i)�
diX

ji=3

f(xlr,r ⌦ vji,i)

=
diX

ki=1

f(xlr,r ⌦ wki,i)�
diX

ki=3

f(xlr,r ⌦ wki,i)

= f(xlr,r ⌦ w1,i) + f(xlr,r ⌦ w2,i).

As twisted product bases are generated from local unitaries acting on two-dimensional subspaces

of the form xlr,r⌦ (vji,i+ vj0i,i), f is also a frame function over twisted product bases. Conversely,

for the latter Eq. (2.19) holds since it holds already for two-dimensional subspaces.

Theorem 38. Let H =
N

n

i=1
Hi, dim(Hi) � 3 finite for all i 2 {1, · · · , n}, n 2 N. If

f : �(H)! R is a non-negative, non-signalling frame function over product bases, then there

exists a self-adjoint operator t : H! H such that f(v) = tr(tpv) = hv|t|vi for all v 2 �(H).

Proof. This follows immediately from Lm. 1 and Prop. 5.

Note that our results only apply to finite local dimensions dim(Hi) � 3, this restriction in

Thm. 38 is due to Thm. 21, equivalently Thm. 36. Nevertheless, generalisations of Thm. 21 to

two dimensions exist based on (subsets of) positive operator-valued measures (POVMs) [22,

30, 150]. More precisely, non-negative frame functions f : E(H) ! R+ of weight W 2 R+

with domain E(H) the set of all e↵ects, i.e., convex combinations of projections, and such that
P

i2I f(Ei) = W whenever
P

i2I Ei = 1, correspond to density matrices: f(E) = W tr(⇢E) for

all E 2 E(H) and dim(H) � 2 finite.

Similarly, replacing �(H) by �(E(H)) (equivalently, projection-valued measures (PVMs)

by POVMs) in the otherwise analogous definitions of (twisted) product frame functions and

no-signalling in Eq. (2.19), one obtains a generalisation to systems with dimension dim(Hi) = 2.

Theorem 39. Let H =
N

n

i=1
Hi, dim(Hi) � 2 finite for all i 2 {1, · · · , n}, n 2 N. If

f : �(E(H))! R is a non-negative, non-signalling frame function over product POVMs, then

there exists a self-adjoint operator t : H! H such that f(E) = tr(tE) for all E 2 �(E(H)).
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Proof. By [22] frame functions over �(E(H)) correspond to quantum states for every Hi in

H =
N

n

i=1
Hi. With this the inductive proof of Prop. 5 goes through also for dim(H) = 2. The

same holds for the correspondence of the no-signalling condition in Eq. (2.19) and constraints

on f arising from local transformations leaving convex combinations
P

i
Ei  1 invariant in

Lm. 1.

We thus find that no-signalling is almost enough to restrict frame functions (of weight 1)

over product bases to quantum states. To be precise, by Prop. 5 the correspondence is with

self-adjoint operators of unit trace, which are positive on product states.

We combined this result with earlier work in [145] and added the important distinction

between unentangled and twisted product basis frame functions, as no-signalling becomes

redundant in the latter case by Lm. 1 and Prop. 5. A more direct way to study non-signalling

probability distributions is by means of contextuality. In the next section we thus reformulate our

results in contextual form and show how no-signalling arises as a subset of the marginalisation

constraints over product contexts.

2.4.3 Contextuality, composition, and locality

Note that the derivation in Sec. 2.4.1 crucially depended on the assumption of an underlying

classical state space with composition defined in terms of the Cartesian product. In this section

we discuss alternative ways for composition, in particular, we motivate composition of systems

based on observables and their context order instead of state spaces. In the subsequent sections

we study the implications of this context structure for the spectral and the probabilistic presheaf.

In doing so we again consider general von Neumann algebras, in particular, we extend and

generalise the results on frame functions in the last section.

Composition via Cartesian products of state spaces. Recall that we defined com-

position of classical systems in terms of their state spaces, namely, via the product of the

corresponding measure spaces. On the other hand, observables in classical theories are repre-

sented by measurable functions and every measurable function on the composite state space can
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be approximated by suitable limits of linear combinations of indicator functions (cf. Eq. (2.15)).

In this sense, it does not matter whether we define composition in terms of states or observables

for classical systems.35

Taking classical systems to be represented by commutative von Neumann algebras Ni,

i = 1, 2 with corresponding state spaces corresponding to the Gelfand spectra ⌃i = ⌃(Ni) '

�(⌃(V(Ni))),36 this equivalence reads,

⌃1&2 = ⌃1 ⇥ ⌃2 = �(⌃(V(N1)))⇥ �(⌃(V(N2))) = �(⌃(V(N1)⇥ V(N2))) . (2.21)

Here, the final equality is with respect to the context product in Eq. (2.24) below.

By the Kochen-Specker theorem in contextual form, Thm. 20, �(⌃(V(N ))) is empty whenever

N is a noncommutative von Neumann algebra (not only consisting of summands of type I1, I2).

The equivalence in Eq. (2.21) thus breaks down for such algebras. Nevertheless, composition in

terms of state spaces can be carried over to quantum systems if we define the state space of

the composite system in terms of convex combinations of elements in the Cartesian product of

global sections of the probabilistic presheaves of subsystems instead:

�1&2 := Conv(⌃1&2), ⌃1&2 := �(⇧(N1))⇥ �(⇧(N2))37 (2.22)

Compare this with mixed states in classical theories, which are given by convex combinations

of elements in the Cartesian product of global sections of the spectral presheaf by factorisabil-

ity, Eq. (2.18). In fact, factorisability holds for any system—with or without local physical

contextuality—as long as composition is defined by means of Eq. (2.22).

Proposition 6. Let N1, N2 be possibly noncommutative von Neumann algebras and let the

set of states on the composite system �1&2 be defined according to Eq. (2.22). Then all states

� 2 �1&2 are factorisable and satisfy the Bell inequalities.

35A similar duality holds even in the presence of physical contextuality for state spaces given by the non-empty
sets of global sections of spectral presheaves (cf. Prop. 8 in Sec. 2.5.2).

36Recall that by Thm. 10, the category of commutative von Neumann algebras is dually equivalent to the
category of Hyperstonean spaces, equivalently, standard measure spaces modulo set of measure zero by Thm. 35.

37In the context of generalised probabilistic theories, this construction is sometimes called the minimal tensor
product [91].
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Proof. Let � 2 �1&2. By definition, � is a convex combination of product states (�1, �2) 2 ⌃1&2

with �1 2 �(⇧(N1)) and �2 2 �(⇧(N2)). Hence, there exists a measure space (⇤, µ�) with

measure µ� : ⇤! R+

0
such that for all p 2 P(N1), q 2 P(N2),

�(p, q) =

Z

⇤

dµ�(�) �1(p | �) · �2(q | �) =
Z

⇤

dµ�(�) tr(⇢�
�1
p) · tr(⇢�

�2
q) . (2.23)

The last equality follows by Gleason’s theorem in contextual form, Thm. 24. Eq. (2.23) is just

factorisability and the Bell inequalities thus necessarily hold.

This argument is not restricted to states on von Neumann algebras, e.g. density matrices,

but holds for arbitrary locally stochastic models with composition defined by the Cartesian

product in Eq. (2.22). Every stochastic, factorisable model thus satisfies the Bell inequalities (cf.

[35]). Moreover, it is interesting to note that by [57, 58] the existence of the latter is equivalent

to the existence of a deterministic local hidden variable model of the composite system. In this

sense, even stochastic, factorisable models with local physical contextuality, yet composition

defined via Eq. (2.22), still correspond to single-context state spaces.

Succinctly, by Prop. 6 factorisability is a direct consequence of composition defined in terms

of the Cartesian product on state spaces. Yet, while this construction is natural for classical

theories (and as we will see in Sec. 2.5, also for generalised classical theories), this is no longer

the case for more general states arising as global sections of the Bell presheaf defined on the

composite system (cf. Eq. (2.24) below). Note that such theories are of great interest, since

Thm. 19 rules out valuation functions, equivalently, global sections of the spectral presheaf,

already in subsystems. We thus seek a unified notion of composition that relates to physical

contextuality and incorporates both the classical and the quantum case.

Composition via contexts. It is clear from Prop. 6 and the above argument on stochastic,

factorisable models (cf. [57, 58]) that Eq. (2.22) does not define composition for theories with

physical contextuality. Instead, we have seen that on the level of frame functions, twisted

product bases are a natural choice relating to no-signalling. In fact, there is a more direct way

to encode no-signalling using contextuality. Recall that at the core of contextuality lies the
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notion of simultaneous measurability : we say that a physical system is contextual if not all

its observables O can be measured simultaneously in every state. Clearly, classical systems

are non-contextual and compose by the Cartesian product. Yet, also contextual systems can

contain sets of simultaneously measurable observables called contexts. Shifting focus from states

to observables and their context order, we define a notion of composition of contexts by the

canonical product on partial orders, denoted V1&2 := (V1⇥V2,✓1&2), and given by the Cartesian

product of elements V1 ⇥ V2 with order relations such that for all Ṽ1, V1 2 V1, Ṽ2, V2 2 V2:

(Ṽ1, Ṽ2)  (V1, V2) :() Ṽ1 1 V1 and Ṽ2 2 V2 (2.24)

Accordingly, we define the spectral presheaf ⌃
1&2

:= ⌃(V1&2) and the probabilistic presheaf

⇧
1&2

:= ⇧(V1&2) over this product context order.

Recall that in this setup a measure on the projection lattice µ : P(H) ! [0, 1] becomes

a collection of probability distributions (µV )V 2V(H), one for every context. Moreover, non-

contextuality further constrains these across di↵erent contexts: let µ
Ṽ
, µV be measures over

contexts Ṽ , V , Ṽ  V , then µ
Ṽ
is obtained from µV by marginalisation, denoted µ

Ṽ
= µV |Ṽ .

Given the results on frame functions over product bases in [145], one might be sceptical whether

global sections over product contexts always correspond to quantum states. However, the

following lemma together with Lm. 1 shows that no-signalling is already contained in the

contextual constraints between product contexts.

Lemma 2. Global sections of the probabilistic presheaf (cf. Def. 26) over product contexts,

� 2 �(⇧(V(H1) ⇥ V(H2))) with dim(Hi) finite, bijectively correspond to non-negative frame

functions of weight 1 over twisted product bases, f : �(H)! R.

Proof. Clearly, a frame function over twisted product bases defines a global section on product

contexts by �f (pv1 ⌦ pv2) = f(v1 ⌦ v2), pv = |vihv| for all vi 2 �(Hi). Marginalisation between

contexts follows from the constraints on f between twisted product bases.

Conversely, a global section over product contexts V 2 V(H1) ⇥ V(H2) defines a map

f� : �(H) ! R+

0
by f�(vp1 ⌦ vp2) := �(p1 ⌦ p2) for all pi 2 P(Hi). Moreover, it satisfies the

constraints encoded in twisted product bases, which for global sections arise from marginalisation
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between product contexts of the form (and by symmetry for i = 1$ i = 2):

V := V1 ⇥ {p1,2, p2,2, (p1,2 + p2,2)
?}

W := V1 ⇥ {q1,2, q2,2, (p1,2 + p2,2)
?}

Ṽ := V1 ⇥ {(p1,2 + p2,2), (p1,2 + p2,2)
?}

V W

Ṽ

Here, we defined contexts via their projections pji,i := |vji,iihvji,i|, qki,i := |wki,iihwki,i|

corresponding to product bases (vji,i)
di
ji=1

, (wki,i)
di
ki=1
2 ONB(Hi) such that V1 = {p1,1, · · · , pd1,1}

and p1,2 + p2,2 = q1,2 + q2,2 (cf. proof of Lm. 1).

The generalisation to the multipartite setting is analogous. Note that in going over to

contexts (equivalently from frame functions to measures) we achieve a type of trade-o↵: while

we do not consider contexts corresponding to twisted product bases directly, there are more

constraints between contexts that e↵ectively contain the same information as frame functions

over twisted product bases. In particular, no-signalling is contained in the marginalisation maps

between product contexts. More precisely, by a similar argument to the one in Lm. 2, it is easy

to see that the following conditions, which correspond with the no-signalling condition on frame

functions in Eq. (2.19), are identical to those in Eq. (2.24) if one also demands transitivity:

(Ṽ1, Ṽ2) ✓ns (V1, V2) :() (Ṽ1 = V1, Ṽ2 ✓ V2) or (Ṽ1 ✓ V1, Ṽ2 = V2) (2.25)

We thus obtain the following reformulation of Thm. 38.

Theorem 40. For every global section of the probabilistic presheaf over product contexts � 2

�(⇧(V(H1)⇥ V(H2))) with 3  dim(Hi) finite, there exists a self-adjoint operator t : B(H1)⌦

B(H2)! R such that tr(t) = 1 and t(p1 ⌦ p2) � 0 for all p1 2 P(H1), p2 2 P(H2).

Proof. This follows directly from Lm. 2 and Thm. 38.

Thm. 40 (and Thm. 38) are very close to a bijective correspondence: for every global section

of the probabilistic presheaf over product contexts there exists a corresponding self-adjoint

operator t of unit trace. Moreover, note that if t is positive and appropriately normalised, i.e., it

has unit partial traces, it defines a unique quantum state since local measurement statistics are
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su�cient to distinguish between arbitrary quantum states [149].38 However, the probabilistic

presheaf over product contexts is not quite enough to single out quantum states, since not all

operators in Thm. 40 correspond to quantum states (cf. [100]). In order to relate non-signalling

joint probability distributions over product contexts with quantum states, it will be crucial to

consider the dilated probabilistic presheaf over product contexts.

Definition 30. Let N1,N2 be von Neumann algebras with context categories V(N1),V(N2). The

(normal) Bell presheaf is the (normal) dilated probabilistic presheaf (cf. Def. 27) over product

contexts, ⇧(V(N1) ⇥ V(N2)), restricted to locally normalised measures, i.e., µV |V2 2 ⇧
V1

and

µV |V1 2 ⇧
V2

for all V = V1 ⇥ V2 2 V(N1)⇥ V(N2).39

Composition via tensor products. Before we explore the consequences of context

composition for the Bell presheaf in more detail, we end this section by mentioning a third way

of defining composition, which in fact is the standard composition in quantum theory. There,

the pure state space is the projective space P(H) corresponding to the Hilbert space H. Given

component systems with Hilbert spaces H1,H2, the Hilbert space of the composite system has

Hilbert space H1 ⌦H2 and pure state space

P1&2 := P(H1 ⌦H2) .

Note that there are many more contexts for this kind of composition than for composition via

contexts described above: the poset V(H1 ⌦H2) contains many contexts that are not of the

form V1 ⌦ V2, which are the only contexts available in the poset V1&2. In fact, the functor

V1&2 �! V(H1 ⌦H2), (V1, V2) 7�! V1 ⌦ V2

is fully faithful, but not essentially surjective (surjective on objects). We say that V1&2 contains

only product (or twisted product) contexts (cf. [62]).

38This property of quantum theory is sometimes called local tomography [77].
39Note that the Bell presheaf assigns to every product context V = V1 ⇥ V2 2 V(N1)⇥ V(N2) the set of all

dilations of joint probability distributions over V , in other words, all factorisable joint probability distributions.

83



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

2.4.4 Bell’s theorem in contextual form

We combine the results obtained in the previous sections into a reformulation of Bell’s theorem

in terms of its restriction on state spaces. Recall that we defined composition in terms of

the order structure of observables, which encodes physical contextuality. While this shift of

perspective does not change the way systems compose in classical theories, it does change the

way systems compose in the quantum case, where composite systems are usually defined in

terms of the tensor product. In fact, composition of contexts yields a self-adjoint operator of

norm one and thus almost a quantum state in the finite-dimensional case by Thm. 40. Our

main theorem in this section provides the missing link to establish positivity of this operator

and thus the desired bijective correspondence between global sections of the Bell presheaf and

quantum states. As a consequence, we obtain a unified framework for composition and locality

by means of physical contextuality, valid in both classical and quantum physics.

In a nutshell, global sections of the Bell presheaf correspond with (quantum) states on algebras

with specific time orientations. Here, unlike in the local case, it is crucial to consider the dilated

probabilistic presheaf in Def. 27, since only global sections of the latter correspond with Jordan

⇤-homomorphisms, for which the consistency condition between local time orientations can be

expressed in terms of dynamical correspondences, which lift the Jordan ⇤-homomorphisms to

⇤-homomorphisms (cf. Prop. 2). To make this explicit, we need the oriented context category

from Def. 24. (For more details, see Sec. 2.2.3 as well as [7, 46].) Global sections of the Bell

presheaf over the oriented context category need to be consistent with its inherent orientation.

Definition 31. Let N1, N2 be von Neumann algebras with no summand of type I2 and V(N1),

V(N2) the corresponding context categories with respective time orientations  ̃1,  ̃2. A global

section of the Bell presheaf � 2 �(⇧(V1&2)) with V1&2 = V(N1)⇥ V(N2) is called orientation-

preserving with respect to  ̃ = ( ̃1,  ̃2) if

8a 2 B(N1), t 2 R : �� � et 1(a) = et 2(��(a)) � �� , (2.26)

where �� is the Jordan ⇤-homomorphism in Thm. 33.
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The set of orientation-preserving global sections with respect to  = ( 1, 2) is denoted

�(⇧(gV1&2)) := {� 2 �(⇧(V1&2)) | � is orientation� preserving with respect to  } ,

where gV1&2 := (V1&2,  ̃) = (V(N1),  ̃1)⇥ (V(N2),  ̃2) = V̂(N1)⇥ V̂(N2).

Being orientation-preserving is a property, which explicitly refers to composite systems.

Nevertheless, since C can also be interpreted as a Jordan and von Neumann algebra, every global

section � 2 �(⇧(V(N ))) trivially defines a Jordan and von Neumann algebra homomorphism

� : N ! C also for single systems. The condition in Eq. (2.26) is trivially satisfied in this

case and � therefore orientation-preserving. Note that Gleason’s theorem in contextual form,

Thm. 24 (Thm. 25), can therefore equivalently be phrased in terms of orientation-preserving

global sections.

We will also need to relate completely positive maps with self-adjoint operators. In finite

dimensions (and for single factors) this correspondence is established by the Choi-Jamio lkowski

isomorphism between completely positive maps � : Mn(C)!Mm(C) and positive operators on

the tensor product Mmn(C) 'Mm(C)⌦Mn(C) [32, 90].

Theorem 41. (Choi [32]) Let � : Mn(C) ! Mm(C) be a linear map. Then � is completely

positive if and only if the (operator) matrix ⇢� : Mmn(C)!Mmn(C), ⇢� =
P

ij
Eij ⌦ �(Eij) is

positive, where Eij denotes the matrix with entry 1 in position (i, j) and 0 otherwise.

In infinite dimensions and for general C⇤-algebras the correspondence between positive and

completely positive maps is slightly more complex. In particular, note that in finite dimensions

the trace defines a special type of completely positive map: �0 : N1 ! N2, �0 := 1N2trN1 . In

infinite dimensions such a tracial state is neither guaranteed to exist nor is it unique if it does.

Instead, we need an alternative reference map �0 as well as certain continuity conditions. We

refer to [16] for the definitions. Once such a reference map is given, a similar correspondence to

Thm. 41 holds.

Theorem 42. (Belavkin [16]) Let A be a C⇤-algebra and denote the space of bounded linear

operators on Hilbert space H by B(H). Let �,�0 : A ! B(H) be bounded completely positive
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maps and let K be a Hilbert space for a representation ⇡ : A! B(K) in which �0 is spatial, i.e.,

�0(a) = v⇤⇡(a)v, 8a 2 A ,

where v : H! K is a bounded operator.

1. � is completely absolutely continuous with respect to �0 if and only if it has a spatial

representation �(a) = v0⇤⇡(a)v0 with ⇡(a)v0 = ✓⇡(a)v, where ✓ is a densely defined

operator in the minimal H, commuting with ⇡(A) = {⇡(a) | a 2 A} on the lineal

D = {
P

j
⇡(aj)F⌘j}.

2. � is strongly completely absolutely continuous with respect to �0 if and only if � is spatial in

(⇡,H) and there exists a positive self-adjoint operator ⇢, uniquely defined on D, a�liated

with the commutant ⇡(A)0 and such that 8a 2 A:

�(a) = v⇤⇢⇡(a)v = (⇢
1
2v)⇤⇡(a)(⇢

1
2v) , (2.27)

3. � is completely dominated by �0 if and only if Eq. (2.27) holds and ⇢ is bounded.

We are now in the position to prove the following.

Theorem 43. Let N1, N2 be von Neumann algebras with no summand of type I2. There is a

bijective correspondence between the set of finitely (completely) additive, orientation-preserving

global sections of the Bell presheaf �(⇧(gV1&2)), gV1&2 := V̂(N1)⇥ V̂(N2) and the set of (normal)

states S1&2 := S(N1⌦̄N2) on the spatial tensor product algebra N1⌦̄N2.

Proof. It is not too to hard to see that every state � 2 S(N1⌦̄N2) gives rise to an orientation-

preserving global section of the Bell presheaf �� 2 �(⇧(gV1&2)).

For the other direction, we proceed in several steps. We first show that associated with every

global section there exists a linear operator on the tensor product algebra. This generalises

Thm. 37, which deals with finite dimensions and single factors only. We then prove positivity of

this operator from complete positivity of an associative map under the consistency condition be-

tween local time orientations. This step crucially hinges on the fact that we consider the dilated
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probabilistic presheaf. Finally, we establish the correspondence between positive self-adjoint

operators of norm one and states on the tensor product algebra.

Linearity. Fix a context V1 2 V(N1) and consider the corresponding partial order of

contexts under inclusion inherited from V1&2 = V(N1)⇥ V(N2) by restriction,

V1&2(V1) := {V1 ⇥ V2 | V2 2 V(N2)} .

In every context V = V1 ⇥ V2 2 V1&2, the probability measure µ�
V
2 ⇧(V1&2)(V ) corresponding

to the global section � can be written in terms of conditional probabilities as follows:

8p 2 P(V1), q 2 P(V2) : µ�
V
(p, q) = µ�

V1
(p)µ�

V2
(q | p) = µ�

V1
(p)�p

2
(q) = µ�

V1
(p)�p

2
(q) (2.28)

Here, (µ�
V2
( | p))V22V(N2) =: �p

2
2 �(⇧(V1&2(V1))) is a global section of the probabilistic

presheaf ⇧(V1&2(V1)), which also depends on p 2 P(V1). Since V1&2(V1) ⇠= V(N2), by the

generalised version of Gleason’s theorem, Thm. 22, global sections correspond with quantum

states �(⇧(V(N2))) ⇠= S(N2), in particular, �p
2
corresponds with a state �p

2
2 N2 (dependent on

p). As V1 2 V(N1) was arbitrary, Eq. (2.28) holds for all V 2 V1&2 and, hence, for all p 2 P(N1).

Let p = p1 _ p2 = p1 + p2 with p1, p2 2 P(N1) orthogonal, i.e., p1p2 = 0. As � is additive,

µ�
V1
(p)�p

2
= µ�

V1
(p1)�

p1
2

+ µ�
V1
(p2)�

p2
2

.

It follows that the map %�(p) := µ�
V1
(p)�p

2
satisfies,

%�(p) = %�(p1) + %�(p2)

for p = p1 _ p2 = p1 + p2 with p1, p2 2 P(N1) orthogonal. Note that while S2 := S(N2) is a

Banach space (as a closed subspace of the continuous dual of N2) it is not a priori clear that

the image S 0
2
under %� : P(N1) ! S 0

2
is a Banach space. Consider therefore µ�

V1
(pk)�

pk
2

in S 0
2

where pk ! p in the weak operator topology on N1. Note that by symmetry of Eq. (2.28) and
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for q 2 P(N2) arbitrary, we have the identity

µ�
V1
(pk)�

pk
2
(q) = �q

1
(pk)µ

�

V2
(q) ,

where the right hand side converges to �q

1
(p)µ�

V2
(q) with �q

1
2 S1 := S(N1) ' �(⇧(V(N1))) as S1

is a Banach space. It follows that S 0
2
is also a Banach space and, by definition, S 0

2
only contains

bounded operators such that %� is a finitely additive, S 0
2
-valued measure on P(N1). By Thm. 23

%� thus uniquely extends to a bounded linear operator �� : N1 ! S 0
2
. Equivalently, we can

understand this as a bounded linear operator �� : N1 �N2 ! C with � the algebraic tensor

product by setting

��(
nX

i=1

�iai � bi) =
nX

i=1

�i��(ai)(bi), �i 2 C, n 2 N . (2.29)

We collect some important properties of �� . First, �� is a bounded linear functional on N1�N2.

Second, summing over mutually orthogonal projections pk 2 P(N1) with
W

k
pk = 1 on the first

subsystem, by additivity of �� we obtain

X

k

��(pk � b) =
X

k

��(pk)(b) =
X

k

µ�
V1
(pk)�

pk
2
(b) = µ�

V1
(1)�1

2
(b) = �1

2
(b) =: �2(b) .

Hence, for �2(b) 6= 0 finite (complete) additivity implies ��
1
( | b) := ��( )(b)

�1
2(b)

2 S1 ' �(⇧(V(N1))),

and thus formally, ��(a, b) = ��
1
(a | b) · ��

2
(b). It follows immediately that �� is normalised since

��
1
and ��

2
are; alternatively, ��(1) = ��(1)(1) = µ�

V1
(1)�1

2
(1) = 1 since µ�

V1
and �1

2
are normalised.

Topology and tensor product. We need to show that �� extends to a bounded linear

functional on the spatial tensor product N1⌦̄N2. Clearly, �� can be extended to a linear

functional on N1 ⌦N2 where ⌦ denotes any topological tensor product between Banach spaces

(cf. [71]). However, in general this extension is not unique, i.e., given any cross norm on B(H)

and a (faithful) ⇤-representation ⇡ : N1 � N2 ! B(H) on some Hilbert space, there can be

more than one linear functional on N1 ⌦N2, which restricts to ��. In this case the bijective

correspondence between states and global sections is lost.
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However, this is not the case for the spatial tensor product N1⌦̄N2 ✓ B(H1⌦H2), where H1,

H2 denote Hilbert spaces for which there exist faithful ⇤-representations ⇡i : Ni ! B(Hi). To see

this, note that the operator �� can be written as a linear combination of states �1 2 S1, �2 2 S2,

e.g. by expanding a =
P

j
ajpj 2 N1, b =

P
k
bkqk in ��(a, b) =

P
jk
ajbk�

�

1
(pj | qk) · ��2 (qk).

Furthermore, the spatial tensor product has the property that every product of states has a

unique extension to a state on the tensor product �1&2 = �1 · �2. (This is simply a consequence

of the fact that the tensor product on Hilbert spaces is unique up to isomorphism.) �� thus

uniquely extends to a linear functional on the spatial tensor product.

Now note that a linear functional � on a C⇤-algebra is positive if and only if it is bounded

and ||�|| = �(1), Thm. 1. Hence, if �� is positive it follows that �� is a state on the spatial tensor

product N1⌦̄N2. In the remainder of the proof we will thus show positivity of �� : N1⌦̄N2 ! C

by proving complete positivity of the related map �� : N1 ! eS2 and the correspondence between

these maps through Thm. 41 and Thm. 42.

GNS Representation. To this end it will be useful to work with a ⇤-representation of N2.

Note that every C⇤-algebra has a faithful representation in the bounded operators of some Hilbert

space B(H2) by Thm. 5. Moreover, every von Neumann algebra possesses a faithful normal,

semi-finite weight w2 and thus allows to construct a ⇤-representation ⇡w2 : N2 ! B(H2) using the

Gelfand-Naimark-Segal construction. The latter defines a Hilbert space by completion of the in-

ner product (a, b) = w2(b⇤a) for all a, b 2 N !

2
:= {x 2 N2 | !2(x⇤x) <1}. We will use any such

faithful ⇤-representation to translate between states and operators by means of the Riesz-Fréchet

theorem, Thm. 6: let � 2 H⇤
2
, then there exists y 2 H2 such that �(x) = (x, y) for all x 2 H2.

Moreover, the map sending y 2 H2 to �y is an isometric isomorphism. Based on this identification

we will use states and operators interchangeably in what follows.40 In particular, note that there

exists a unique bounded self-adjoint operator ⇢� =
P

k
ck(⇢

�

1,k
⌦ ⇢�

2,k
) 2 N1⌦̄N2, ck 2 C such

that ��(a, b) = (a⌦̄b, ⇢�) = !1&2((⇢�)⇤ · (a⌦̄b)) = !1&2(⇢� · (a⌦̄b)) =
P

k
ck !1(⇢

�

1,k
·a) ·!2(⇢

�

2,k
· b)

for all a 2 N1, b 2 N2. In finite dimensions, ⇢� is the operator t in Thm. 37.

40In a slight abuse of notation we will also use the same symbol to denote maps g : D ! B(H) resulting from
a corresponding map g : D ! N and a faithful representation ⇡ : N ! B(H) (i.e. ‘g = ⇡ � g’).

89



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

Complete positivity of ��. With these identifications, it is easily seen that %� : P(N1)!

S 0
2
corresponds to a map %� : P(N1) ! B(H2)+. Moreover, by Def. 27 %�|P(V ) = v⇤'V v for

v : H2 ! K and 'V an embedding (spectral measure) in every context V 2 V(N ), in particular,

it defines a global section of ⇧H2(V(N1)). By Thm. 33 �� is thus not only positive but also

decomposable, i.e., �� = v⇤��v for �� : N1 ! B(K) a Jordan ⇤-homomorphism. Finally,

since � is orientation-preserving with respect to the dynamical correspondences on N1 and N2

(respectively, ��(N1) ✓ B(K)), �� extends to a ⇤-homomorphism by Thm. 17.

We are left to show that the orientation on N2 fixes the orientation on the von Neumann al-

gebra N v

2
, for which ��(N1) ✓ N v

2
✓ B(K) and which restricts to N2 under v, i.e., N2 = v⇤N v

2
v.

To see this, note first that the argument reduces to factors since we can apply Thm. 33 to each

factor pN2p independently, where p 2 ZP(N2) is a central projection in N2. v therefore preserves

the factor decomposition on N2 by construction. Moreover, B(H2) ◆ N2 ,! N v

2
✓ B(K) is an

embedding in every factor pN2p, p 2 ZP(N2), since the linear operator v from Thm. 33 is the

projection onto the subspace corresponding to H2 in K. From this it follows that the dynamical

correspondence on N2 determines a unique dynamical correspondence on N v

2
✓ B(K).

Positivity of ��. We need to relate complete positivity of �� to positivity of ��. In finite

dimensions this correspondence is established by Thm. 41. Explicitly, let N1 = B(Cn) = Mn(C),

N2 = B(Cm) = Mm(C). Since �� is completely positive, ⇢�� is positive by Thm. 41, where

(⇢��)ij = ��(Eij) is the image of �� under the Choi-Jamio lkowski isomorphism (cf. Thm. 41).

Finally, by the correspondence between states and density matrices in finite dimensions, we have

(⇢ � 0, tr(⇢) = 1: N1⌦N2 3 ⇢)$ (tr(⇢· ) 2 S(N1⌦N2)), in particular, ⇢�� $ �� := tr(⇢�� · ).

In summary, positivity of �� thus follows from complete positivity of �� . This proves Thm. 43

for finite-dimensional von Neumann algebras (with no summand of type I2).

In infinite dimensions, the trace can be replaced by the canonical reference map given by the

faithful weight !1 : N1 ! C in the representation ⇡w1 : N1 ! B(H1). This yields a completely

positive map �0 = 1N2!1 = v⇤
0
⇡0v0. Complete positivity of �0 means

P
n

i,j=1
(�0(aij)⌘i, ⌘j) � 0

for all ⌘i 2 H2, n 2 N whenever aij 2 Mn(N1)+. Moreover, since !1 is faithful, !1(x) = 0

implies x = 0. Hence, any sequence (aij)m 2 N1 for which limm!1
P

n

i,j=1
(�0((aij)m)⌘i, ⌘j) = 0
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necessarily converges as well, i.e., limm!1(aij)m = 0. (More precisely, let aij 2Mn(N1)+ be a

non-negative matrix. Then
P

n

i,j=1
(�0(aij)⌘i, ⌘j) =

P
n

i,j=1
(⇡0(aij)v0⌘i, v0⌘j) = 0 for all ⌘i 2 H2

implies ⇡0(aij) = 0, since ⇡0 is faithful, which implies aij = 0, since !1 is faithful.) But then the

same also holds for any other completely positive map, i.e., limm!1
P

n

i,j=1
(��((aij)m)⌘i, ⌘j) = 0

for all ⌘i 2 H2.

By definition �� is thus strongly completely absolutely continuous with respect to �0 (cf.

[16]), hence, Thm. 42 applies and there exists a positive operator ⇢�� =
P

k
ck
⇣
⇢k
1,��
⌦̄⇢k

2,��

⌘

such that �� = v⇤
0
⇢��⇡0v0. Note that this operator corresponds with �� in Eq. (2.29),

��(a, b) = ��(a)(b)

= !2(��(a) · b)

= !2((v
⇤
0
⇢��⇡0(a)v0) · b)

= !2

  
v⇤
0

 
X

k

ck ⇢
k

1,��
⌦̄⇢k

2,��

!
⇡0(a)v0

!
· b
!

=
X

k

ck !1(⇢
k

1,��
· a) · !2(⇢

k

2,��
· b) = (a⌦̄b, ⇢�� ) .

In fact, since the latter is bounded, �� is also completely dominated by �0 (cf. [16]). In

finite dimensions ⇢�� in Thm. 41 is the (noncommutative) Radon-Nikodym derivative with re-

spect to the standard trace. Succinctly, �� is positive and thus the unique state associated with �.

Normality. Finally, we highlight that the arguments in the proof work for finitely additive

as well as completely additive global sections. In particular, Thm.. 33 extends to complete

additivity and normal Jordan ⇤-homomorphisms. Hence, �� is normal whenever � is completely

additive and vice versa. This proves the theorem.

A few remarks are in order. First, without specifying time orientations explicitly, the only

information accessible on the level of contexts is the Jordan ⇤-homomorphism aspect in �� , in

particular, the mere context structure supports di↵erent time orientations. Conversely, every

global section of the Bell presheaf already corresponds with a quantum state for some choice of

time orientation.
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To see this, consider the partial order of composite contexts V1&2 = V1 ⇥ V2, for which

there exist N1, N2 von Neumann algebras with no summands of type I2 such that V1 = V(N1),

V2 = V(N2). Combining Thm. 43 and Thm. 34, it is not too hard to see that every finitely

(completely) additive global section of the Bell presheaf � 2 �(⇧(V1&2)) corresponds with a

(normal) state �� 2 S1&2 on the spatial tensor product algebra fN1⌦̄fN2 for some von Neumann

algebras J (fN1) ✓ J (N1) and J (fN2) ' J (N2). Namely, we may choose an orientation on

J (N2) according to the orientation on B(K). By a similar argument as in Thm. 34, we can then

‘pull back’ this orientation to J (N1) by Kadison’s theorem, Thm. 28, which lifts the Jordan

⇤-homomorphism � : J (fN1)! J (fN2) to a ⇤-homomorphism � : fN1 ! fN2. Hence, for every

global section there exists (at least) one corresponding completely positive map �� = v⇤�v,

which it turn corresponds with a state on the respective von Neumann algebras fN1,fN2 by the

same arguments as in Thm. 43. (Yet, unlike in Thm. 34, there is no longer a canonical choice of

orientation on B(K).)

Second, we note that �� is completely positive only with respect to certain dynamical corre-

spondences and thus von Neumann algebras, namely those for which � preserves commutators.

In particular, one should not expect �� to be completely positive with respect to any choice

of dynamical correspondences  N1 and  N2 for the following reason: let � : A ! B(H) be a

decomposable map, i.e., there exists a Hilbert space K, a bounded linear operator v : H! K,

and a Jordan ⇤-homomorphism � such that � = v⇤�v. By Thm. 32 this is equivalent to the

condition that for every matrix with xij, xji 2Mn(A)+ also �(xij) 2Mn(B(H))+. On the other

hand, every Jordan ⇤-isomorphism is the sum of a ⇤-isomorphism and a ⇤-anti-isomorphism

� =
�!
� +

 �
� by Thm. 28. In particular, we have the following:

nX

ij

(�(xij)xi, xj) =
nX

ij

(�(xij)vxi, vxj) =
nX

ik

(
�!
� (xij)vxi, vxj) +

nX

ik

(
 �
� (xij)vxi, vxj) � 0

Since
�!
� ,
 �
� are (anti-)⇤-isomorphisms, by Stinespring’s theorem the maps

�!
� = v⇤

�!
� v and

 �
� = v⇤

 �
� v satisfy the following conditions: xij 2 Mn(A)+ implies

�!
� (xij) 2 Mn(B(H))+

and xji 2 Mn(A)+ implies
 �
� (xji) 2 Mn(B(H))+. Now let t be the partial transpose on

Mn(A), then t(xij) = xji. Generally, t(xij) /2 Mn(A)+ for xij 2 Mn(A)+ and thus also
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P
ij
(
 �
� (xij)xi, xj) =

P
ij
(
 �
� (t(xji))xi, xj) ⇤ 0. We therefore cannot conclude that xij 2Mn(A)+

implies
P

n

ij
(�(xij)xi, xj) � 0. Noting that the partial transpose e↵ectively changes the local

time orientation on Mn(A), we find that � =
�!
� +
 �
� will generally not be completely positive

with respect to any dynamical correspondence. Note that this argument applies in particular

to the matrix ⇢� =
P

ij
Eij ⌦ �(Eij) 2 Mmn(C) (cf. Thm. 41), and thus provides a link with

entanglement in the famous Peres-Horodecki criterion [84].

We also point out the interesting fact that while individual contexts arise from the ‘time-

less’ principle of simultaneous measurability, the order relations between contexts encode time

directions, which are distinguished by certain entangled states. A closer look at the interplay

between entanglement and time orientations will be postponed for later study.

Finally, we combine Thm. 43 and our earlier results to arrive at the following reformulation

of Bell’s theorem.

Theorem 44. (Bell’s theorem in contextual form) Let the observables of a physical system

be represented by von Neumann algebras N1, N2 with no summand of type I2. Then the local

state spaces Si = �(⇧(V(Ni))), i = 1, 2 with ⇧ in Def. 27 compose as

S(N1⌦̄N2) ' �(⇧(V̂(N1)⇥ V̂(N2))) .

Moreover, for Ni abelian the pure state spaces ⌃i = ⌃(Ni) ' �(⌃(V(Ni))), i = 1, 2 compose as

⌃1 ⇥ ⌃2 ' �(⌃(V(N1)⇥ V(N2))) .

Proof. The first assertion is Thm. 43. The second assertion follows from the derivation of Bell’s

inequality in Sec. 2.4.1 (see also Prop. 8 below).

Thm. 44 subsumes the di↵erent types of composition in classical and quantum theory into a

single type of contextual composition. Furthermore, it incorporates the bounds on correlations—

such as those in Eq. (2.10) arising from the corresponding locality conditions in the form of

factorisability and no-signalling—in terms of the allowed state spaces. As a consequence, we
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obtain an immediate explanation for the bound on the right-hand side of Eq. (2.10), which

can be interpreted as a bound on correlations from generalised Bell inequalities based on the

assumption of no-signalling and context composition.

Bell’s original theorem can be understood as a consequence of a classical state space picture

with composition defined by the Cartesian product on the level of its pure state spaces. This

famously breaks down in quantum theory, which violates the inequalities bounding correlations in

such models. The same classical state spaces also arise from composing contexts (cf. Eq. (2.21)),

yet the context order is trivial and easily remains unnoticed in classical theories.

Defining composition via contexts rather than states provides a unified notion for both

classical and quantum theories. This is surprising since the product of contexts V1&2 = V1 ⇥ V2

means a substantial reduction in the number of contexts compared to V(H1 ⌦H2). The latter

constrains global sections of the corresponding dilated probabilistic presheaf ⇧(V(H1 ⌦H2))

to quantum states by Thm. 24, yet the Bell presheaf ⇧(V1&2) is only a sub-presheaf of the

former and it is a priori not clear whether general non-signalling distributions in the form of

global sections � 2 �(⇧(V1&2)) contain super-quantum correlations. Remarkably, Thm. 43 still

constrains global sections of the Bell presheaf to quantum states under the additional consistency

condition of being orientation-preserving. In fact, all global sections correspond with quantum

states for a suitable von Neumann algebra.

Note also that this sheds further light on a previous result in [15], where it was observed

that ‘locally quantum’, non-signalling correlations do not exceed quantum correlations. This

immediately follows for global sections of the Bell presheaf, which always correspond with

quantum states for suitably chosen time orientations in subsystems.

A similar result was also reported by Colbeck and Renner in [37]. There it is shown that

quantum theory is complete in the sense that no theory can contain more information if it agrees

with quantum mechanical predictions and obeys a notion of free choice. The latter is closely

related to our notion of composition, in particular, it also implies the no-signalling constraints in

Eq. (2.25). Consistent probability assignments thus arise as global sections of the Bell presheaf,

which are classified by Thm. 43.
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The correspondence between the notions of locality inherent to factorisability and no-

signalling, composition, and contextuality carries even further. Indeed, one might argue that

considering single-context theories is too restrictive to acknowledge the power of Bell’s theorem.

In fact, we will find that factorisability not only corresponds to single-context state spaces but

to all theories with ‘classical’ microstates in the form of global sections of a generalised spectral

presheaf. We will address this in more detail in Sec 2.5.
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2.5 General non-signalling theories

The setting of von Neumann algebras in the definition of the context category and presheaves

defined over it provides a framework general enough to encompass both classical and quantum

theories. One might nevertheless be interested in studying the principle of physical contextuality

in more general scenarios. For instance, one could argue to give up the algebraic structure in

von Neumann algebras globally, yet model every context by an abelian von Neumann algebra,

which suggests to study Hyperstonean spaces (cf. Thm. 10). This approach seems especially

interesting from the perspective that local structure is the only one directly accessible and,

together with the nesting relations between contexts, proves to be behind many results of the

theory as shown in Sec. 2.3 and Sec. 2.4. To accommodate for this, in the next section we

generalise the framework of presheaves over the context category considerably by allowing for

(Hyperstonean) orthomodular lattices (cf. Sec. 2.5.1).

In particular, we are interested in correlations in composite systems, for which we keep

the notion of context composition in Eq. (2.24). Recall that for von Neumann algebras this

leads to a genuinely di↵erent context structure for composite systems than given by the tensor

product. There are by far more contexts and more restriction maps in ⇧(V(H1 ⌦H2)) than

in ⇧(V(H1)⇥ V(H2)), and global sections of the latter probabilistic presheaf are thus a priori

less constrained than those of the former, which correspond with quantum states by Gleason’s

theorem in contextual form, Thm. 24. Remarkably, Thm. 44 shows that global sections of

the Bell presheaf essentially correspond with quantum states for von Neumann algebras (with

no summand of type I2), which suggests context composition as an alternative for the tensor

product. Clearly, for general orthomodular lattices the tensor product is no longer defined. Yet,

as we will see below, the definition of the probabilistic presheaf over product contexts can be

generalised and some aspects of Thm. 44 still apply in this case.

Note that alternative context structures have also been studied elsewhere [107, 133]. In

[81] it was shown that a type of nonlocality persists under relaxation of the (non-contextual)

identification of non-maximal operators, the consequences for the underlying context structure

were explored in [63]. Other types of contextual structures have also been discussed in [26, 134].

96



CHAPTER 2. CONTEXTUALITY IN FOUNDATIONS OF QUANTUM THEORY

2.5.1 Presheaves over orthomodular lattices

In Def. 25 and Def. 26 we introduced the spectral and the probabilistic presheaf for von Neumann

algebras. [28] extends the former definition to orthomodular lattices and proves a generalised

Stone duality for complete orthomodular lattices. We review the main definitions and results

and extend them to the probabilistic presheaf.

In analogy to V(N ) one defines a context category for orthomodular lattices (cf. Def. 13).

Definition 32. For an orthomodular lattice L, let B(L) denote the partial order of Boolean

sublattices of L, where the partial order on B(L) is given by inclusion. B(L) is also called the

context category of L.

It is straightforward to see that this lifts to a functor [28].

Proposition 7. There is a functor B : OML! Pos sending each orthomodular lattice L to

its context category B(L) and each homomorphism ' : L!M of orthomodular lattices to the

corresponding morphism � : B(L)! B(M).

Recall that the spectral presheaf ⌃ of N over V(N ) maps contexts into their Gelfand spectra

⌃V locally. The relevant duality underlying this functorial mapping is Thm. 10, which applies

to the subcategory HStonean of Stonean in Thm. 8.

Given a general orthomodular lattice L 2 OML with context category B(L) consisting of

Boolean algebras, one cannot apply Gelfand duality. Nevertheless, one may still assign a context

its Stone space. Accordingly, [28] generalise the spectral presheaf to orthomodular lattices.

Definition 33. Let L be an orthomodular lattice with context category B(L). The spectral

presheaf ⌃ of L over B(L) is the presheaf given

(i) on objects: for all B 2 Ob(B(L)), let ⌃
B
:= ⌦(B), the Stone space of B.

Here, ⌃
B
denotes the component of ⌃(L) at B.

(ii) on arrows: for all B, B̃ 2 B(L), if B̃ ✓ B, let ⌃(i
B̃B

) : ⌃
B
�! ⌃

B̃
with � 7�! �|

B̃
.

Here, �|
B̃
denotes the restriction of � to the subalgebra B̃.
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Similarly, we would like to extend the notion of probabilistic presheaf to orthomodular lattices.

Note that for the spectral presheaf ⌃(L) over the orthomodular lattice L 2 OML we only give

up the structure between contexts, whereas the structure within contexts remains the same by

means of Stone duality. However, the same is no longer true for the probabilistic presheaf over

general orthomodular lattices, since Boolean sublattices do not necessarily correspond with

commutative von Neumann algebras.

In order to enforce the structure of commutative von Neumann algebras within contexts

we need to lift Stone duality to Thm. 10, i.e., restrict to Hyperstonean spaces. The latter are

in particular Stonean spaces and thus correspond with complete Boolean algebras by Thm. 8.

It is therefore natural to restrict to complete orthomodular lattices. Still, not every Stonean

space corresponds with a von Neumann algebra, one needs to further restrict to Hyperstonean

spaces. Correspondingly, we will call an orthomodular lattice L 2 OML Hyperstonean if its

Boolean subalgebras correspond not only to Stonean but to Hyperstonean spaces, and write

HOML for the category of Hyperstonean orthomodular lattices (with suitable morphisms,

preserving this extra structure). With this definition, the following generalisation of ⇧ from

V(N ) to Hyperstonean orthomodular lattices is again only concerned with the constraints

between contexts.

Definition 34. Let L 2 HOML be a Hyperstonean orthomodular lattice with context category

B(L). The (normal) probabilistic presheaf ⇧ of L over B(L) is the presheaf given

(i) on objects: for all V 2 B(L),41 let

⇧
V
:= {µV : P(V )! [0, 1] | µV is a finitely (completely) additive probability measure} ,

(ii) on arrows: for all V, Ṽ 2 B(L), if Ṽ ✓ V , let ⇧(i
Ṽ V

) : ⇧
V
�! ⇧

Ṽ
with � 7�! �|

Ṽ
.

Analogously, we can also generalise the definition of the dilated probabilistic presheaf to

L 2 HOML. Note that while global sections of the probabilistic presheaf ⇧(V(N )) correspond

to quantum states by Thm. 24, for L 2 HOML, �(⇧(B(L))) might be the empty set (cf. [67]).

41We write V 2 B(L) for L 2 HOML to indicate that, as with V(N ) for N a von Neumann algebra, contexts
correspond with commutative von Neumann algebras since L is Hyperstonean.
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Importantly, [28] shows that the spectral presheaf is a complete invariant of the orthomodular

lattice, i.e., two orthomodular lattices L1, L2 are isomorphic if and only if their respective spectral

presheaves are: L1 ⇠ L2 , ⌃(B(L1)) ⇠ ⌃(B(L2)). Since the probabilistic presheaf ⇧(B(L))

over L 2 HOML contains more information than the spectral presheaf ⌃(B(L)) and HOML is

a subcategory of OML, the same also holds for the former: L1 ⇠ L2 , ⇧(B(L1)) ⇠ ⇧(B(L2)).

2.5.2 Generalised classical state spaces

In this section we explore the consequences of context composition for the (generalised) spectral

presheaf in Def. 33, as well as for the corresponding (classical) state spaces consisting of its

global sections. Recall that Bell’s theorem rules out factorisable hidden variable models, in

particular, those defined in Eq. (2.22). In fact, the Cartesian product construction in Eq. (2.22)

and factorisability are natural also for the generalised spectral presheaf. This follows as global

sections of the spectral presheaf over the composite context category B1&2 := B(L1)⇥ B(L2) for

L1, L2 2 OML define valuation functions, which are easily seen to compose classically.

Proposition 8. Let L1, L2 2 OML be orthomodular lattices with respective context categories

B(L1), B(L2) and spectral presheaves ⌃(B(L1)), ⌃(B(L2)). For global sections of the spectral

presheaf over the composite context category the following correspondence holds,

�(⌃(B1&2)) ' �(⌃(B(L1)))⇥ �(⌃(B(L2))) . (2.30)

Proof. Clearly, �1 · �2 2 �(⌃(B1&2)) for all �1 2 �(⌃(B(L1)), �2 2 �(⌃(B(L2)). Conversely, let

� 2 �(⌃(B1&2)), then �V = �V1 · �V2 with �V1 2 ⌃(B(L1))V1 , �V2 2 ⌃(B(L2))V2 for all contexts,

V = (V1, V2) 2 B1&2. From this it easily follows that �1 := (�V1)V12V1 2 �(⌃(B(L1))) and

�2 := (�V2)V22V2 2 �(⌃(B(L2))) (cf. proofs to Thm. 45 and Thm. 43).

With Prop. 6 and Prop. 8, Bell’s theorem provides a no-go-result for all classical state spaces

of the form in Eq. (2.22), with pure states given by valuation functions, equivalently, global

sections of the spectral presheaf for composite systems: the correlations in the outcome statistics

are constrained by factorisability and therefore cannot account for (all) those arising in quantum

mechanics.
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More generally, assume that the state space of the system corresponds with the global

sections of the probabilistic presheaf �(⇧(B(L))) with L 2 HOML. Note that �(⇧(B(L))) is

in particular a convex set, the pure state space �pure(⇧(B(L))) therefore consists of all elements

that cannot be written in terms of proper convex linear combinations of other elements. Clearly,

the pure state space always contains global sections of the corresponding spectral presheaf

�(⌃(B(L))) ✓ �pure(⇧(B(L))). Moreover, for classical, i.e., single-context theories equality holds.

By Prop. 8 the subset of the pure state space consisting of such microstates composes via the

Cartesian product. The latter thus applies not only to classical (single-context), but to all

theories for which �(⌃(B(L))) = �pure(⇧(B(L))). Since the latter compose via the Cartesian

product, they satisfy factorisability and thus the Bell inequalities.

Clearly, this analysis breaks down for more general pure states � 2 �pure(⇧(B(L))), for

which factorisability is replaced by the no-signalling marginalisation constraints. Even more

drastically, this assumption breaks down if �(⌃(L1)), �(⌃(L2)) are empty. The latter is the

case in quantum theory, where L1 = V(N1), L2 = V(N2) correspond to von Neumann algebras

(with no summand of type I2). Then we already know that valuation functions do not exist

by the Kochen-Specker theorem, Thm. 19, and it is natural to interpret Bell’s theorem as a

consequence of the impossibility of a pure state space consisting of microstates � 2 �(⌃(B(L))).

In this reading Bell’s theorem becomes a special case of the Kochen-Specker theorem, locality

only plays a secondary role. The only exception are two-dimensional quantum systems, and by

Prop. 8 composite systems with subsystems of local dimension two. In this special case, Bell’s

theorem may be interpreted as a stronger no-go-result than the Kochen-Specker theorem ruling

out theories with state spaces arising from global sections of spectral presheaves.

The above analysis is concerned with the classical part of Bell’s theorem in Thm. 44, which

corresponds with the left-hand side of Eq. (2.10). In the next section we consider the right-hand

side of Eq. (2.10), yet in the setting of (Hyperstonean) orthomodular lattices. As shown before,

global sections of the probabilistic presheaf over product contexts are non-signalling, yet they no

longer restrict to quantum states since Gleason’s theorem does not apply to general orthomodular

lattices. Nevertheless, a generalised statistical version survives even in this case and allows to

compare correlations beyond those realised in classical and quantum theories.
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2.5.3 Bayes’ theorem and the Bell presheaf

In this section we comment on the implications of context composition on correlations arising

from global sections of the generalised Bell presheaf42 ⇧(B1&2) with B1&2 := B(L1) ⇥ B(L2)

over (Hyperstonean) orthomodular lattices L1, L2 2 HOML. We will refer to theories with

state spaces given by global sections of the generalised Bell presheaf as general non-signalling

theories.43 The naming convention is justified since the marginalisation constraints between

product contexts are equivalently encoded by no-signalling (cf. Eq. (2.25)).44

Recall that any joint distribution µ(A,B) over events A,B corresponding to random variables

a, b satisfies a symmetric decomposition based on conditional probabilities µ(A | B) underlying

Bayes’ theorem,

µ(A,B) = µ(B | A) · µ(A) = µ(A | B) · µ(B) . (2.31)

In particular, Eq. (2.31) holds for probability distributions in every product context V =

(V1, V2) 2 B1&2, yet there is a priori no reason why a similar decomposition should hold

simultaneously over all contexts. For quantum theory this is guaranteed by Thm. 43, i.e., context

composition and Gleason’s theorem. More precisely, let ⇢ be a composite density matrix over

Hilbert space H = H1 ⌦H2. Then for all p1 2 P(H1), p2 2 P(H2) it holds

⇢(p1, p2) = tr(⇢(p1 ⌦ p2)) = tr1(⇢1(p2)p1) · tr2(⇢2p2) =: ⇢1(p1 | p2) · ⇢2(p2) = ⇢2(p2 | p1) · ⇢1(p1) ,

(2.32)

where ⇢1(p2) := tr2(⇢(1⌦ p2)), ⇢2 := tr1(⇢) and similarly ⇢2(p1) := tr1(⇢(p1 ⌦ 1)), ⇢1 := tr2(⇢).45

Note that Eq. (2.32) immediately rules out PR-box distributions. This is essentially a di↵erent

version of the argument in [15], which asserts that no-signalling and systems being ‘locally

quantum’ restrict correlations to be quantum. What is more, Bayes’ theorem becomes a type of

local-to-global property similar to but independent of linearity in Gleason’s theorem, Thm. 24.

42While of general interest, here we will not discuss the subtleties arising from restricting to the dilated
probabilistic presheaf in the generalisation of the Bell presheaf in Def. 30 to Hyperstonean orthomodular lattices.

43Note that this definition is di↵erent from the definition of general probabilistic theories given, e.g. in [134].
44For instance, the PR-box distribution arises as a global section of the Bell presheaf over the restricted

context order consisting of just four contexts corresponding to the four types of measurements Alice and Bob
can perform in a CHSH experiment (see also Ex. 6 in Sec. 2.5.4).

45Note that ⇢1(p2)
tr2(⇢2p2)

, ⇢2(p1)
tr1(⇢1p1)

are the post-measurement states after a local measurement on either subsystem.
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Theorem 45. Let L1, L2 2 HOML be Hyperstonean orthomodular lattices and B(L1), B(L2)

their respective context categories. For all � 2 �1&2 := �(⇧(B1&2)) with B1&2 := B(L1)⇥ B(L2)

there exist (unique) �1 2 �(⇧(B(L1))), �2 2 �(⇧(B(L2))) such that for all p1 2 L1, p2 2 L2:

�(p1, p2) = �1(p1 | p2) · �2(p2) = �1(p2 | p1) · �2(p1) (2.33)

Proof. The proof is a shortened version of Thm. 43. First, fix a context V1 2 B(L1) and consider

the corresponding partial order of contexts under inclusion inherited from B1&2,

B1&2(V1) := {V1 ⇥ V2 | V2 2 B(L2)} .

The probability measure µ�
V
:= �V in the context V = (V1, V2) 2 B1&2(V1) corresponding to the

global section � 2 �1&2 for p1 2 P(V1), p2 2 P(V2) takes the form

µ�
V
(p1, p2) = µ�

V1
(p1) · µ�V2

(p2 | p1) . (2.34)

It follows from context composition that �p1
2

:= µ�
V2
( | p1) 2 µ�

V1
(p1) · �(⇧(B(L2))) for all

p1 2 P(V1). As V1 2 B(L1) was arbitrary, Eq. (2.34) holds for all V 2 B1&2, in particular, for all

p1 2 L1. Furthermore, let p1 = q1 _ q0
1
with q1, q01 2 L1 orthogonal, i.e., there exists V1 2 B(L1)

such that q1, q01 2 P(V1) and q1  q0?
1
. As � is finitely additive we also have

µ�
V1
(p1) · �p12 = µ�

V1
(q1) · �q12 + µ�

V1
(q0

1
) · �q

0
1

2
.

It follows that the map �� : L1 �! R+

0
· �(⇧(B(L2))), p1 7�! µ�

V1
(p1) · �p12 satisfies ��(p1) =

��(q1) + ��(q01) for p1 = q1 _ q0
1
with q1, q01 2 L1 orthogonal. Furthermore, let ��

p2
(p1) :=

µ�
V1
(p1) · �p12 (p2) and note that for every set of mutually orthogonal qi

1
2 P(V1), V1 2 B(L1) with

W
i
qi
1
= 1 2 L1:

_

i

��
p2
(qi

1
) = µ�

V1
(1) · �1

2
(p2) = �1

2
(p2) =: �2(p2)

Hence, for �2(p2) 6= 0 we have �1( | p2) :=
�
�
p2

�2(p2)
2 �(⇧(B(L1))) and thus �(p1, p2) =

��(p1)(p2) = ��
p2
(p1) = �1(p1 | p2) · �2(p2). The other direction follows by symmetry.
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Importantly, while linearity is a local-to-global property special to von Neumann algebras,

the notion of Bayes’ theorem only requires context composition in Eq. (2.24) and therefore holds

in general non-signalling theories. Thm. 45 is thus a type of generalisation of the non-classical

aspect of Bell’s theorem in contextual form, Thm. 44, to Hyperstonean orthomodular lattices

L1, L2 2 HOML. It classifies the possible states on the composite system in terms of the states

on subsystems. For von Neumann algebras, where Li = V(Ni), the latter bijectively correspond

with states in S(Ni) by Gleason’s theorem, Thm. 22. Yet, for more general orthomodular

lattices we do not have this additional structure, which allowed to derive the particular Bell

inequalities for quantum theory such as Eq. (2.10). Instead, in the next section we consider

correlations in generalised non-signalling theories in terms of global sections of the Bell presheaf

directly and discuss a way to quantify correlations in such theories.

2.5.4 Correlations in general non-signalling theories

While the setting of von Neumann algebras is very rich and applies to existing classical and

quantum frameworks, one might yet want to consider more general scenarios. In particular,

from a foundations and information-theoretic perspective it is interesting to study correlations

in general non-signalling theories, which by the definition in Sec. 2.5.1 arise by considering

global sections of the Bell presheaf over Hyperstonean orthomodular lattices with composition

of contexts as in Eq. (2.24). We discuss a familiar example in this setting.

Example 6. The PR-box distribution arises as a global section of the Bell presheaf �PR 2

�(⇧(BPR

1&2
)) over the partial order of contexts BPR

1&2
= B(L1) ⇥ B(L2), where L1 ' L2, Li =

{0, pi, (1�pi), qi, (1�qi), 1} as a set, and B(Li) consists of contexts Vpi = {pi, 1}00, Vqi = {qi, 1}00,

and V 0

i
= {1}00 with only (non-trivial) order relations V 0

i
⇢ Vpi , Vqi.

Clearly, the context structure in Ex. 6 is di↵erent to the context structure in V(N1 ⌦N2),

which for noncommutative von Neumann algebras is also di↵erent to the (trivial) context

structure in classical theories. We therefore seek a way to compare correlations in theories with

di↵erent context categories. To this end we will define a ‘distance’ between global sections in

the respective theories and some given reference set of probability measures.
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Note first that by Thm. 35, in every context V 2 B(L) a distance on probability measures

µ1, µ2 2 ⇧
V
can be defined as �(µ1, µ2) := ||µ1 � µ2||1, where || · ||1 denotes the L1-norm on

the space of measurable functions on some standard measure space isomorphic to V .46

We want to define a similar distance also over multiple contexts and thereby compare

correlations between theories based on di↵erent context structures. More precisely, we measure

the distance to some given collection of reference probability measures defined over measurement

outcomes of certain observables, denoted e�0 = (µ
Ṽ
)
Ṽ 2eV . Note that instead of writing the

dependence on observables explicitly, we suggestively write a dependence on contexts Ṽ 2 eV .

More precisely, we take every probability measure µ
Ṽ
to correspond to the (smallest) context

Ṽ that contains all observables it is defined over. In particular, this implies that observables

within such contexts are simultaneously measurable. However, in general this does not fix the

context structure of a theory T (necessarily containing all relevant simultaneously measurable

observables in the probability measures e�0 = (µ
Ṽ
)
Ṽ 2eV) uniquely. Correspondingly, there is

a map ⇠T : eV ! B(L)T , which embeds the abstract contexts Ṽ 2 eV into the theory-specific

context order B(L)T . In order to make this clear, we consider two extreme cases.

On the one hand, assume that e�0 defines a local section �0 = (µV )V 2V of ⇧(B(L)T ), i.e., the

map ⇠T : eV ! B(L)T , which embeds observables into the theory-specific context structure B(L)T ,

is one-to-one. Then �0 is attained in that theory if it extends to a global section � 2 ⇧(B(L)T ).

However, not every local section arises from a global section (cf. Ex. 5), hence, in general we

can only approximate �0. To to so we minimise the sum of distances in contexts given by the

L1-norm:

�T (e�0) := inf
�2�(⇧(B(L)T ))

X

V 2V

�(�V , µV )

On the other hand, the theory T might assign every probability measure in e�0 = (µ
Ṽ
)
Ṽ 2eV to

the same context V 2 B(L)T , i.e., the map ⇠T : eV ! B(L)T is many-to-one. In this case, we set

�T (e�0) = inf
�2⇧V

X

Ṽ 2eV

�(�V , µ⇠(Ṽ )
) . (2.35)

46For X countable this equals the total variation/statistical distance, �(µ1, µ2) := supA2�(X)|µ1(A)� µ2(A)|.
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The general case is a combination of these two, in fact, both arise from the same formula:

�T (e�0) := inf
�2�(⇧(B(L)T ))

X

Ṽ 2eV

�(�
⇠(Ṽ )

, µ
⇠(Ṽ )

)

Note that �T (e�0) depends on the context structure of the underlying theory T via the map

⇠T : eV ! B(L)T , which embeds the implicit context structure in eV into B(L)T . For a given

set of reference probability measures e�0 = (µ
Ṽ
)
Ṽ 2eV we thus obtain inequalities of the form

�T (e�0)  �T 0(e�0) by comparing theories with di↵erent context structures with respect to the

values of their contextual distances to e�0. Note that we have not yet assumed observables to

be composite, the argument therefore applies also to single systems and thus leads to genuine

contextuality inequalities.

2.5.5 Generalised Bell inequalities

In the following we are interested in the special case of Bell inequalities, i.e., we consider

composite context categories B1&2. Moreover, Bell inequalities compare quantum with classical

correlations. Classical theories contain a single (maximal) context, hence, ⇠cl collapses the

implicit context structure eV in e�0 to a single context as in the second extreme case discussed

in the last section. In order to obtain a non-trivial bound from Eq. (2.35) in this case, we

necessarily need to consider probability measures e�0 = (µ
Ṽ
)
Ṽ 2eV , which are not simultaneously

satisfiable by a factorisable probability distribution. The simplest such case arises by comparing

probability measures over the outcomes of operators of the form {a⇥ b, a⇥ b0, a0 ⇥ b, a0 ⇥ b0}:

µ
Ṽ1
(A,B | a, b) = µ

Ṽ1
(A | a) · µ

Ṽ1
(B | b), µ

Ṽ2
(A,B0 | a, b0) = µ

Ṽ2
(A | a) · µ

Ṽ2
(B0 | b0),

µ
Ṽ3
(A0, B | a0, b) = µ

Ṽ3
(A0 | a0) · µ

Ṽ3
(B | b), µ

Ṽ4
(A0, B0 | a0, b0) 6= µ

Ṽ4
(A0 | a0) · µ

Ṽ4
(B0 | b0)

(2.36)

Recall that every factorisable joint probability distribution is a convex mixture of product

measures µ(A,B | a, b) = µ(A | a) · µ(B | b), where µ(A | a) is the marginal distribution

conditioned on local measurement settings a. Clearly, such distributions can at most satisfy

three out of the four conditions above. This is precisely what the CHSH inequality measures.
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Before we continue to apply our approach to the CHSH inequality explicitly, we slightly

generalise this scenario in terms of the choice of e�0 as follows. Consider composite observables

of the form ai ⇥ bj, i 2 {1, · · · , n1}, j 2 {1, · · · , n2}, where ai, bj are local observables on

the first, second subsystem, respectively. If we assume su�ciently many local measurement

outcomes, we can choose a collection of general non-signalling probability measures (similar

to the PR-box distribution) e�0 = �(n1,n2)
ns = (µ

Ṽ
)
Ṽ 2eV , which violates a maximal number of

constraints in factorisable probability distributions. More precisely, there are (n1 � 1)(n2 � 1)

product constraints of the form in Eq. (2.36), and violation of a product constraint as in

Eq. (2.36) contributes 2 to the overall distance (cf. Fig. 2.4). With respect to such a collection

�ns, every factorisable probability distribution is subject to the following bound:

�cl(�
(n1,n2)
ns

) = 2(n1 � 1)(n2 � 1) (2.37)

Note that this is a non-trivial bound since �ns(�
(n1,n2)
ns ) = 0 and thus represents a Bell inequality.

More precisely, by their very definition, the distributions in �(n1,n2)
ns maximise the distance

to factorisable probability distributions, i.e., convex combinations of product measures by

Eq. (2.18). In contrast, global sections in general non-signalling theories are constrained only by

the generalised Bayes’ theorem in Thm. 45. In principle, they are more general than factorisable

distributions and may thus violate the constraint in Eq. (2.37).

We finish by considering the CHSH scenario from this viewpoint, i.e., we explicitly compute

the correlation terms �T (�PR) in the classical, quantum, and PR-box case for the simplest

scenario, where n1, n2 = 2 and therefore �PR := �(2,2)ns . For the latter the context structure

is very simple and given in Ex. 6, it consists of the four maximal contexts (BPR

1&2
)max =

{Vp1 ⇥ Vp2 , Vp1 ⇥ Vq2 , Vq1 ⇥ Vp2 , Vq1 ⇥ Vq2}. The PR-box distribution defines a global section of

the corresponding probabilistic presheaf �PR 2 ⇧(BPR

1&2
). Hence, �PR(�PR) = 0.

For the quantum case we have �qm $ ⇢ = | +ih +|, �1 $ tr2(⇢), �1( | pB)$ tr2(⇢pB) and

similarly, �2 $ tr1(⇢) and �2( | pA)$ tr1(⇢pA). With the choice of parameters given at the

beginning of Sec. 2.4 one computes �qm(�PR) = 4� 2
p
2 (cf. Fig. 2.4).
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µT (A,B | a, b)
A = �1 A = 1

B = �1 B = 1 B = �1 B = 1
cl qm ns cl qm ns cl qm ns cl qm ns

a
b 1/2 2+

p
2/8 1/2 0 2�

p
2/8 0 0 2�

p
2/8 0 1/2 2+

p
2/8 1/2

b0 1/2 2+
p
2/8 1/2 0 2�

p
2/8 0 0 2�

p
2/8 0 1/2 2+

p
2/8 1/2

a0
b 1/2 2+

p
2/8 1/2 0 2�

p
2/8 0 0 2�

p
2/8 0 1/2 2+

p
2/8 1/2

b0 1/2 2�
p
2/8 0 0 2+

p
2/8 1/2 0 2+

p
2/8 1/2 1/2 2�

p
2/8 0

Figure 2.4: Correlations in the CHSH experiment [36], which has as reference distribution the

non-signalling PR-box distribution e�0 = �PR = �(2,2)ns [125]. The latter is attained over the
context structure BPR

1&2
, and approximated by �cl over the trivial context structure in classical

theories as well as by �qm over the context category V1&2 = V(N1)⇥ V(N2) in quantum theory.

This in turn violates the corresponding (single-context) state space correlation term: there,

the closest distribution to �PR is given by the distribution �cl(+,+) = �cl(�,�) = 1

2
, �cl(+,�) =

�cl(�,+) = 0 (cf. Fig. 2.4), which has distance �(�cl, �PR) = 2 in accordance with Eq. (2.37).

Note that Emax

T
(c2,2

ns
) = 4 � �T (�2,2ns

), where c2,2
ns

= ab + ab0 + a0b � a0b0 is the (statistical)

quantity in the CHSH experiment in Sec. 2.4. We thus rediscover the CHSH inequality in

Eq. (2.10) as multiple-context distances to the non-signalling distributions in e�0 = �(2,2)ns = �PR,

which are purposefully chosen to reveal any departure from the product constraints imposed by

factorisability.
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2.6 Summary

In this chapter we studied contextuality in foundations of quantum theory. We gave a precise

conceptual definition of this physical principle in the form of the partial order of contexts,

colloquially, the collection of nested classical perspectives onto a physical system, and poured it

into a rigorous mathematical formalism for the case of quantum theory. We highlighted that

many integral properties of quantum theory arise as local-to-global -type constraints in the form

of global sections of suitable presheaves over the context category, in particular, we provided

new reformulations for Stinespring’s and Bell’s theorem. Not only do these reformulations

solidify the unifying status of physical contextuality in quantum theory, but they come with

significant improvements over existing results. First, Stinespring’s theorem in contextual form

shows that complete positivity—a crucial property of quantum channels—arises from positivity,

dilations in contexts, and a canonical choice of time orientation. Second, Bell’s theorem in

contextual form unifies the two substantially di↵erent ways of composing systems in classical

and quantum theory. Our reformulation thus relates to both faces of Bell’s theorem: bounds on

classical as well as quantum correlations, as in the CHSH inequality, Eq. (2.10). In particular,

by defining composition via contexts rather than state spaces, we proved that global sections of

the Bell presheaf correspond with quantum states unambiguously. This means a generalisation

of Gleason’s theorem to composite systems over the oriented context category. Moreover,

by identifying no-signalling with the marginalisation constraints over the product context

category, we showed that previous attempts at deriving the state space of quantum theory from

no-signalling need to be complemented with a consistency condition on time orientations in

subsystems. Consequently, no-signalling singles out quantum states over the context structure

in quantum theory with appropriately chosen local time orientations.

Our results apply to general von Neumann algebras and thus to general algebraic quantum

theory. As a possible generalisation to quantum theory, we defined general non-signalling

theories by relaxing the context structure arising from von Neumann algebras to (Hyperstonean)

orthomodular lattices. We embedded Bell’s theorem into this setting and provided a method to

compare correlations in theories with di↵erent context structure.
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Concretely, we showed that the CHSH inequality arises from a multiple-context distance

measure between global sections in such theories.

This research is naturally associated with the topos approach to quantum theory initiated

by Isham, Butterfield, and Hamilton [23, 24, 75, 87] and further developed by Isham and Döring

[1–4]. It should therefore also be understood as a successful test of the underlying deep insight

to view a quantum system as the collection of its classical perspectives. Given its continued

success, it is natural to ask for avenues of future research in this field.

One that arises out of this work, especially out of the reformulation of Bell’s theorem over

the composite context category, is a rigorous definition of composition of systems in the topos

formalism in the form of a universal property for appropriately defined categorical objects. On

a broader level, it would be interesting to elaborate on the inherent geometrical character of

the formalism. Already suggested by Isham, the obstructions arising from contextuality via

order relations might have a geometric origin and as such should be classified by means of

geometrical invariants, e.g. by the study of Čech cohomology. Moreover, the clean separation of

the dichotomic function of self-adjoint operators as observables and generators of time evolution

suggests a further geometrisation of the generalised state spaces in the form of the spectral and

probabilistic presheaf. This could help close the gap between classical and quantum theory,

suggest ways for quantisation, and ultimately lead the way towards unification of quantum

theory with other inherently geometric theories in physics, most desirably, gravity.

Further avenues for future research outside the immediate scope of the topos approach arise

e.g. from the close resemblance of the proof techniques used in the reformulations of Stinespring’s

and Bell’s theorem with existing criteria for entanglement in quantum information theory [121],

in particular, separable states might correspond to global sections independent of local time

orientations in subsystems. Also, it remains for future study to relate the ‘contextual distance

measure’ between correlations in theories with di↵erent context structures to other approaches,

in particular, the setting of Hyperstonean orthomodular lattices seems a promising starting

point to cross-identify ideas in the topos and the graph-theoretic approach to contextuality.
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Chapter 3

Contextuality in Quantum

Computation

Quantum computation rests on the idea to process information by the laws of quantum rather

than classical theory. There are at least two aspects to this. First, a unit of information in

classical physics, known as a bit, has two possible configurations, and measurement (‘read-out’)

simply reveals this information. On the other hand, a quantum mechanical unit of information,

called a qubit, possesses a plethora of possible configurations. Measurement still reveals only

one of two possible outcomes, yet in general only with some probability. Second, in modern

computers classical information is processed in electrical circuits by performing logic gates

in a well-ordered manner. Quantum information can be processed in a similar computing

architecture, known as the circuit model of quantum computation. Yet, while likely the most

broadly used one to date, several alternative models of computation exist.

One that is special to quantum theory is called measurement-based quantum computation

(MBQC). This model builds on the quantum phenomenon called nonlocality, which exhibits in

correlations between space-like separated parties that cannot be reproduced by any classical

model according to Bell’s theorem. The responsible quantum states are called entangled and are

arguably at the heart of the mystery behind quantum mechanics. MBQC exploits such nonlocal

correlations by performing a series of local measurements on a (highly) entangled resource state,

and post-processing the resulting local measurement outcomes.
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This idea goes back to the groundbreaking work of Raussendorf, Briegel, and Browne [21,

128, 130], who also showed that for suitable resource states MBQC presents a universal model

for quantum computation. What is more, the framework is especially interesting for the study of

one of the key open questions in the field of quantum computation. While quantum computers

are believed to outperform classical computers, it is not clear how this advantage occurs and

what the underlying resource is. From a theoretical point of view, as well as for the technical

realisation of future quantum computers, a key challenge therefore is to identify structures in

quantum theory, which provide a provable quantum advantage, and to classify and quantify such

resources. In recent years, contextuality has been suggested to play this role [20, 42, 44, 85, 98,

110, 126], and since measurement-based quantum computation explicitly exploits contextuality

in the form of nonlocality in composite systems, this has led to a number of strong results on

the resource character of contextuality in this setting [64, 119, 127, 129, 143].

The goal of this chapter is to further study contextuality within this architecture. In

doing so, we prove a computational criterion for contextuality in general measurement-based

computation in Sec. 3.1, we construct new examples of contextual MBQC in Sec. 3.2, and

identify a possible resource measure for contextuality in the form of the number of qudits

required for implementation in Sec. 3.3.
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3.1 Contextuality in measurement-based computation

Following the broad objective to classify the resource for quantum advantage, we strive to classify

contextuality in the form of nonlocality within the hybrid quantum computing architecture

known as measurement-based computation (MBC). This framework is tailor-made for the study

of nonlocality and largely independent of a particular physical implementation. Even on such

abstract level, we prove a strong link between function computation and nonlocality, which

generalises a previous result in [126]. This result has also been published in [64].

In Sec. 3.2 we will specialise this to the quantum case and further refine the classification of

contextuality for measurement-based quantum computation (MBQC). Nevertheless, already in

this section we will at times consider guiding examples arising within the latter. In fact, an

illustrative example, which contains much of the general structure, is the following.

A prototypical example: the Anders-Browne NAND-gate

We discuss an example, which illustrates the close relation between contextuality and compu-

tation. Recall that contextuality in the form of nonlocality is at the heart of Bell’s theorem.

Nonlocal correlations arise, for instance, from the outcome statistics of local measurements

performed on certain entangled resource states (cf. Sec. 2.4). Interestingly, such correlations

can be expressed in a computational way, as was first realised in [10], where Mermin’s famous

proof of contextuality based on local measurements on a three qubit GHZ-state is turned into

the computation of a NAND-gate. We briefly review both, the original contextuality argument

by Mermin [112, 113] and the related computation due to Anders and Browne [10].

Consider the qubit operators in Fig. 3.1 (b) OM , which all have eigenvalues ±1. Note also

that the operators along any of the lines commute with each other, and thus define a context.

Now assume there was a value assignment v : OM ! {�1, 1} for the operators in Fig. 3.1 (b),

then their eigenvalues are required to reflect the algebraic constraints on the level of operators

according to Def. 1. In particular, multiplying operators in contexts results in the identity for all

edges apart from the horizontal one, for which the product of operators yields negative identity.
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X1 Y2 X1Y2

X2 Y1 Y1X2

X1X2 Y1Y2 Z1Z2

(a) Mermin-Peres square.

Y3

X1X2X3 X1Y2Y3 Y1X2Y3 Y1Y2X3

X1 Y1

X3

Y2 X2

(b) Mermin’s star.

Figure 3.1: Qubit operators (1k’s omitted) used in the contextuality proofs in (a) the Mermin-
Peres square, and (b) Mermin’s star [112, 113]. In both cases, product constraints between
operators cannot be consistently reflected in local value assignments: multiplication of pre-
assigned values ±1 to measurements in such assignments (nodes in the diagrams) across contexts
yields +1—every measurement appears in two contexts—whereas multiplication of operators in
contexts (edges in the diagrams) yields �1 in one and +1 in all other contexts (cf. Eq. (3.1)).

This immediately implies a contradiction:

Y

O2OM

v(O)2 = 1 6= �1 =
Y

C2C(OM )

 
Y

O2C

v(O)

!
(3.1)

Note that the operators XXX, XY Y , Y XY , and Y Y X in the horizontal context share the

GHZ-eigenstate | GHZi = 1p
2
(|001i � |110i).1 We can use this to build a computation as follows.

Let i = (i1, i2)| 2 Z2

2
denote the input of the computation and consider a classical control

computer, which selects measurements on individual qubits according to Mk(ck = 0) = Xk and

Mk(ck = 1) = Yk for k 2 {1, 2, 3} and ck = lk(i) with linear functions l1(i) = i1, l2(i) = i2, and

l3(i) = i1 � i2. It is easy to see that these measurement settings define the global observables

M(i) in the context corresponding to the horizontal line in Fig. 3.1 (b):

M((0, 0)|) = X ⌦X ⌦X M((1, 0)|) = Y ⌦X ⌦ Y

M((0, 1)|) = X ⌦ Y ⌦ Y M((1, 1)|) = Y ⌦ Y ⌦X

1Here and throughout, we often omit the tensor product between product operators and product states.
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The resource state | GHZi is an eigenvector of each global observable M(i) with corresponding

eigenvalues given by the sum of local measurement outcomes mk, where mk denotes the measured

eigenvalue on qubit k in | GHZi. While the local measurement outcomes are individually random,

the global eigenvalues are deterministic and can be expressed in terms of the input as a Boolean

function o : Z2

2
! Z2, o(i) =

P
3

k=1
mk. The post-processed measurement outcomes of the local

X and Y measurements thus yield the NAND-gate as output function of the computation,

(�1)o(i) = (�1)
P3

k=1 mk = (�1)NAND(i) . (3.2)

Why is this interesting? Note that the classical computer evaluates linear functions only, we may

therefore assume it to be capable of doing just that. On the other hand, the NAND-gate is clearly

a nonlinear function. Hence, if we exclude any type of communication between the measurement

sites until all measurements are performed (and assume a notion of ‘statistical regularity’ [103]),

we must conclude that what boosts the power of the classical computer is the quantum resource.

In essence, contextuality (nonlocality) acts as a resource that lifts the restricted complexity

class of the classical control computer to universal classical computation. As it turns out, the

relation between contextuality and computational advantage is not just a peculiarity of this

example. To see this, in the next section we introduce the hybrid computing architecture, which

underlies the above example yet generalises to arbitrarily correlated resources.

3.1.1 Definition of ld-MBC

In this section we will primarily be concerned with generalising the results in [126], which

are valid beyond the quantum case but are restricted to very simple systems only. For this

reason, we define measurement-based computation in a way that is independent of a physical

implementation, and specialise the framework to the quantum case only in Sec. 3.2, where we

discuss contextuality in measurement-based quantum computation in more detail. Our setup

fits within the computational framework first introduced in [10] and further refined in [126],

in order to study the computational power of correlated resources in general, which includes

measurement-based quantum computation as a special case.
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The Setup

A general measurement-based computation (MBC) consists of two components: a correlated

resource, and a control computer with restricted computational power. The correlated resource

consists of N local parties, each of which is allowed to exchange classical information with the

control computer once. No communication between parties is allowed during the computation,

and the correlations in their output are entirely due to interactions prior to the computation.

During the exchange with the control computer, each party receives an input from the control

computer (called the measurement setting), and returns an output (called the measurement

outcome). The control computer combines the local measurement outcomes to produce the

computational output.

We restrict the complexity of the classical control to Fd-linear side-processing, where Fd

denotes the finite field with d = pr elements for p prime and r 2 N. This greatly simplifies the

analysis of contextuality as a resource in MBC, but will have to be lifted in future study in

order to quantify any advantage of MBQC over universal classical computers.

Definition 35. A ld-MBC with classical input i 2 Fn

d
and classical output o(i) 2 Fd consists

of N parties, each of which receives an input ck 2 Fd from the control computer, returns an

outcome mk 2 Fd, for k = 1, . . . N , and is restricted to linear side-processing as follows:

1. the choice of measurement bases c = (c1, · · · , cN )| is related to the measurement outcomes

m and the Fd-valued classical input i = (i1, · · · , in)| 2 Fn

d
via

c = Tm+ Ci mod d , (3.3)

for some T 2 MatN(Fd) and C 2 Mat(N ⇥ n,Fd);

2. for a suitable ordering of parties 1, · · · , N the matrix T in Eq. (3.3) is lower triangular

with vanishing diagonal. If T = 0 the ld-MBQ is called non-adaptive or (temporally) flat;

3. the computational output o(i) 2 Fd is a linear function of the local measurement outcomes
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m = (m1, · · · ,mN)| such that for m0 2 Fd and Z 2 Mat(1⇥N,Fd),

o(i) = Zm+m0 mod d . (3.4)

In the above, MatN(Fd) denotes the space of N ⇥ N matrices with entries in the finite

field Fd. Note that the setup does not specify the nature of the correlated resource or the

measurements performed on them. In later sections, we will specify the framework to the special

case of ld-MBQC, where the correlated resource is given by some entangled quantum state,

and measurements correspond with quantum operators. However, the contextuality thresholds

derived in this section hold on the level of general ld-MBC, and we thus defer a thorough

introduction of the particular quantum implementation to Sec. 3.2.

Non-contextuality in ld-MBC

We define the notion of contextuality and nonlocality considered in the framework of ld-MBC.

Similar to Ch. 2, we denote the set of observables by O, and consider it equipped with an

equivalence relation called simultaneous measurability. A context C ✓ O consists of a set of

simultaneously measurable observables, and we denote the set of all contexts by C. However,

contrary to the discussion in Ch. 2, a system is called contextual, if no non-contextual value

assignment, i.e., no valuation function as in Def. 1 exists.2 In the special case of product

observables a = a1⇥ a2, b = b1⇥ b2, and ab = a1b1⇥ a2b2, the locally measurable observables a1

and b1 (a2 and b2) compose individually, and by similar reasoning as in Sec. 2.4.3 we require

local value assignments to do, too. Accordingly, a value assignment is a map v : O ! R with

the following properties (cf. Def. 1):

(i) 8a 2 O : v(a) 2 sp(a), where sp(a) denotes the set of measurement outcomes of a

(ii) 8C 2 C, 8a, b, ab 2 C : v(a)v(b) = v(ab)

When no such local assignment exists, we say that the system is nonlocal.

2A system is sometimes called contextual, but not strongly contextual, if non-contextual value assignments
exist, yet are not compatible with quantum theory (cf. [6, 126]). Here, we will not make this distinction.
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The connection with ld-MBC is as follows. Each input i 2 Fn

d
can be regarded as selecting a

context C(i) (that is, a set of simultaneously measurable observables) through

C(i) = {M1(c1(i)), . . . ,MN(cN(i)),M(i)} . (3.5)

We have included the global observable M(i) = M1(c1(i))⇥M2(c2(i))⇥ · · ·⇥MN (cN (i)) in each

context as its measurement outcome is fixed in the deterministic case, and corresponds to the

computational output o(i) (that is inferred from outcomes of the local measurements). The task

of finding a non-contextual hidden variable model is to find (perhaps many) value assignments

to local observables that are consistent with the global value assignment. Since global value

assignments correspond with the computational output in MBC, certain computations may

not be compatible with non-contextual hidden variable models and thus constitute a proof of

contextuality and nonlocality.

3.1.2 Contextuality in l2-MBC

As with the general case of quantum computation, it is natural to study what resource lifts the

restricted classical control computer in ld-MBC to universal computation. In the simplest case

d = 2 (with F2 = Z2), the conditions under which an l2-MBC allows for the computation of

nonlinear Boolean functions—functions that would otherwise be beyond the capabilities of the

control computer—have been well characterised.

Theorem 46. (Raussendorf [126]) Let M be a l2-MBC, which deterministically evaluates a

Boolean function o : Zn

2
�! Z2. If o(i) is nonlinear in i 2 Zn

2
, then M is contextual.

In other words, if a l2-MBC can be described by a non-contextual hidden variable model,

where measurement outcomes are pre-determined by value assignments, it is restricted to

computing linear functions. Thm. 46 thus establishes a strong connection between function

computation in the general computing architecture of l2-MBC and contextuality. Note also that

Thm. 46 holds even in the adaptive case (cf. Def. 35).

Contextuality thus acts as a resource in the setting of l2-MBC. This is true, in particular,

in any quantum implementation: if local measurements on a multi-qubit state can be used to
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evaluate nonlinear Boolean functions with only linear side-processing, then such computation

constitutes a proof of contextuality—the possible local measurement outcomes cannot all be

pre-assigned. Clearly, this generalises the computation of the NAND-gate on three qubits in

[10], which arises from the explicit proof of contextuality in Mermin’s star in Fig. 3.1 (b).

However, Thm. 46 restricts to the simplest type of local systems only, e.g. qubits in the

quantum case. The latter have unusual properties from the perspective of contextuality. Single

qubits are non-contextual by the Kochen-Specker theorem, Thm. 18, while entangled qubits

exhibit state-independent contextuality using only Pauli observables in contrast to its qudit

counterparts. It is therefore natural to ask whether Thm. 46 generalises to systems with size

d � 3, in particular, whether the interplay between contextuality and nonlinearity holds more

generally, or whether it crucially depends on some of the pathologies associated with qubit

contextuality. In fact, the general case is not so straightforward [83], as we will see by considering

some explicit examples within the qudit stabiliser formalism in the next section. For instance,

certain nonlinear functions can be computed already within non-contextual ld-MBQC.

3.1.3 Examples from the qudit stabiliser formalism

In this section, we illustrate some of the subtleties involved in the case d � 3. We focus

on a particularly interesting case of measurement-based quantum computation, where local

measurements arise as gates in the qudit stabilizer formalism. Unlike the qubit case, the latter

is non-contextual (in the sense defined in Sec. 3.1.1).3

Contrary to what one might naively expect, we will see that local measurements arising in

the qudit stabilizer formalism possess a computational power that exceeds Fd-linear processing.

That is, nonlinear functions can be evaluated using a ld-MBQC that is entirely non-contextual, in

stark contrast to the qubit case. This demonstrates that the relationship between contextuality

and nonlinearity in the qubit case, more generally d = 2, is not the end of the story, and for

qudits, more generally d � 3, we need a finer functional constraint.

3An explicit non-contextual hidden variable model for the qudit stabilizer theory is given by the discrete
Wigner function defined in [70, 142].
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Sympletic structure of qudit stabilizer formalism

In this section we specify the setting of ld-MBQC in the qudit stabiliser formalism with d

prime, where measurements belong to the qudit Pauli group and are given by conjugation

Mk = U ck
k
Mk(0)U

�ck
k

, ck 2 Zd with unitaries Uk in the Cli↵ord group. For details, see e.g. [41].

Recall that the Pauli group P⌦N

d
over Zd is the group generated by N -fold tensor products

of individual elements from hXk, Zk,!1ki, k 2 {1, · · · , N} with X|qi = |q + 1i, Z|qi = !q|qi,

and ! = e
2⇡i
d a d-th root of unity.

These qudit Pauli operators can be conveniently represented (up to phase) by Weyl operators.

A Weyl operator Wv for v = (a,b)| 2 Z2N

d
is defined as the N -fold tensor product of local

operators Wa,b = ⌧�abZaXb, where ⌧ 2 = ! and a, b 2 Zd. Weyl operators are generalised Pauli

operators with a particular choice of phase. Importantly, Weyl operators obey the defining

commutation relation,

WvWw = ![v,w]WwWv , (3.6)

where [v,w] = v|�2Nw for v,w 2 Z2N

d
and symplectic matrix �2N =

2

64
0N 1N

�1N 0N

3

75.

The Cli↵ord group CN(d) ⇢ U(C⌦N

d
) of P⌦N

d
is the group of unitary operators such that

V PV † 2 P⌦N

d
for all P 2 P⌦N

d
, V 2 CN(d). All (N -qudit) Cli↵ord operators V 2 CN(d)

factorise,

V = UWx, x 2 Z2N

d
,

into a Weyl operatorWx and an element of the group of symplectic Cli↵ord operators U 2 �CN (d).

The latter are defined as automorphisms on the set of Weyl operators, i.e., for all v 2 Z2N

d
it

holds that UWvU † = Ww for some w 2 Z2N

d
, in fact, they preserve the underlying symplectic

structure,

UWvU
�1 = WCUv, for some CU 2 Sp

2N
(Zd) . (3.7)

Here, the group Sp
2N

(Zd) denotes the group of symplectic transformations, i.e., linear transfor-

mations C : Z2N

d
�! Z2N

d
such that C|�2NC = �2N .

With these preliminaries on the symplectic structure of the qudit stabiliser formalism, we
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study the transformation properties of Pauli observables under Cli↵ord operations for the

computational output of the corresponding ld-MBQC.

To this end, note that by the Weyl commutation relations in Eq. (3.6) and the fact that

symplectic operators preserve the symplectic inner product in Eq. (3.7), we obtain the following

relation for any Cli↵ord unitary V 2 CN(d) acting on an individual qudit:4

V c Wv V �c = (UWx)
c Wv (UWx)

�c

= (UWx)
c�1 WCUx WCUv W�CUx (W�xU

�1)c�1

= (WCUx · · · WCc
Ux) WCc

Uv (W�Cc
Ux · · · W�CUx)

= ![CUx,Cc
Uv]+[C2

Ux,Cc
Uv]+ ··· +[Cc

Ux,Cc
Uv]WCc

Uv

= !
Pc�1

j=0[x,C
j
Uv]WCc

Uv (3.8)

The phase in Eq. (3.8) is state-independent, it only depends on the Weyl commutation

relations and the symplectic structure of the Cli↵ord group. Yet, choosing local measurements

Mk(ck) = V ck
k
Wvk

V �ck
k

we can already construct ld-MBQCs with linear and nonlinear output.

Example 1: Linear output

As a first example, we examine the very restrictive case, where the controlled unitary operators

in Eq. (3.8) are Pauli operators, i.e., V = Wx, U = 1 2 �C1(d). Then the phase depends linearly

on the linear input function c = l(i), in fact, we simply obtain a variant of Eq. (3.6),

W l(i)
x WvW

�l(i)
x = !l(i)[x,v]Wv . (3.9)

From Eq. (3.9) we infer that conjugation of a Pauli operator by Pauli operators results at

most in multiplication of a phase, yet does not change the context. That is M(i) /M(0) and

C(i) / C(0) for all inputs, meaning the output o(i) is linearly related to o(0). As a result, we

are trivially restricted to non-contextuality.

4For clarity, we omit the subscript k labeling di↵erent qudit sites.
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Example 2: Quadratic output

The situation changes if we apply a non-trivial symplectic Cli↵ord operator in Eq. (3.8). In

particular, we show how using control unitaries from the symplectic Cli↵ord group �CN(d)

allows us to compute quadratic functions due to the underlying symplectic structure.

Note that the generalised phase gate S for d � 3 is an element of the symplectic Cli↵ord

group,

S =
d�1X

q=0

⌧ q
2 |qihq| 2 �C1(d) ,

which up to phase acts on the generalised Pauli X = Wv,v = (0, 1)| by multiplication with

Pauli Z, SkXS�k = ⌧�kZkX. Furthermore, consider the following state of N = 2d qudits,

| i = 1p
d

d�1X

q=0

|qi⌦2 ⌦ |q + 1i⌦2 ⌦ · · ·⌦ |q + d� 1i⌦2 .

We fix all linear functions ck = lk(i) = l(i) to be the same, and note that we have the following

stabilizer relations,
2dO

k=1

�
Sl(i)WvS

�l(i)
�
k
| i = | i, v = (0, 1)| , (3.10)

where the parentheses (·)k denote the subsystem on which the operator acts.

We can use Eq. (3.10) together with the symplectic structure of Weyl operators to implement

quadratic output functions through accumulated symplectic products: without loss of generality,

choose the first qudit and take V1 = (SWx)1 for x = (0,�1)| in Eq. (3.10) such that [x, Ck

S
v] = k,

while leaving Vk = Sk for k � 2, hence,

o(i) =
l(i)�1X

j=0

[x, Cj

S
v] =

l(i)(l(i)� 1)

2
. (3.11)

Despite l being a linear function, the output function o is quadratic due to the symplectic

structure of the Weyl group. In a similar vein, one obtains other nonlinear functions as well.

This raises at least two questions: (i) What functions can be computed in ld-MBC?, and (ii) Is

there a generalised contextuality threshold as in Thm. 46 for d � 3? We will address the former

in Sec. 3.2, and give an answer to the latter in the next section.
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3.1.4 Contextuality in ld-MBC

In this section we prove a generalisation of Thm. 46 to the case where d is a prime power.

Despite the conceptual di↵erences between the qubit and qudit case, which we highlighted

in the previous section, we will provide a criterion for contextuality in ld-MBC, which only

involves the degree of the output function. In particular, it does not depend on the particular

implementation in quantum theory, but holds in full generality of non-adaptive, deterministic

ld-MBC. Before we state the theorem, we need to provide some background first.

Let Fd be the finite field with d = pr (p prime and r 2 N) elements and denote by

⌦Fd
n

:= Fd[x1, . . . , xn] the polynomial ring in n variables x1, . . . , xn 2 Fd. For a monomial
Q

n

k=1
xek
k
, ek 2 N is called the partial degree corresponding with xk,

P
n

k=1
ek is called the

combined degree of
Q

n

k=1
xek
k
, and the degree of f 2 ⌦Fd

n
is the greatest combined degree of all

its monomials, denoted deg(f). We need the following standard result (cf. [108]).

Theorem 47. Let Fd be the finite field with d = pr (p prime and r 2 N) elements, and n 2 N.

Then every function f : Fn

d
�! Fd is given by a polynomial f 2 ⌦Fd

n
of partial degree less or

equal to d� 1 in each variable.

Proof. Consider the Dirac delta function � : Fn

d
! Fd defined as

�(x) =

8
>><

>>:

1 if x = 0

0 otherwise

. (3.12)

We can represent � as �(x) =
Q

n

j=1
(1� xd�1

j
), which follows from Fermat’s little theorem for d

prime, and for general finite fields since every element in the multiplicative group F⇥
d
has order

a divisor of d� 1. We can therefore express any function f : Fn

d
! Fd as a linear combination of

Dirac delta functions,

f(x) =
X

y2Fn
d

C(y)�(x� y) , C(y) 2 Fd .

Note that Thm. 47 is not true over infinite fields, where the corresponding ring of functions

contains many non-polynomial in addition to polynomial functions.
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Next, we characterise subspaces of ⌦Fd
n
, which are invariant under pre- and post-composition

with linear functions. We consider two obvious cases: the space of all functions ⌦Fd
n

and the

space of linear functions

LFd
n

:= {l 2 ⌦Fd
n

| 8x 2 Fn

d
: l(x) = a0 +

nX

j=1

ajxj, aj 2 Fd} .

Clearly, the former is a subspace invariant under arbitrary function composition by Thm. 47.

For the latter, note that any composition of linear functions results again in a linear function.

Aside from these two cases, there also exist other non-trivial subspaces stable under linear

pre- and post-composition. Define the following subspaces for 1  D  n(d� 1),

⌦Fd
n
(D) :=

*
nY

k=1

xek
k

| ek 2 Fd,
nX

k=1

ek  D

+

l

, (3.13)

where h·il denotes the linear span. The function spaces ⌦Fd
n
(D) depend on the field Fd, the

number of inputs n, and the maximal combined degree D. In other words, ⌦Fd
n
(D) contains all

polynomials f : Fn

d
! Fd with deg(f)  D. We prove a lemma, detailing the behaviour of these

subspaces under linear pre- and post-composition.

Lemma 3. ⌦Fd
n
(D) is invariant under linear pre- and post-composition for all 1  D  n(d�1):

LFd
1
� ⌦Fd

n
(D) � LFd

n
= ⌦Fd

n
(D)

Proof. Let f 2 ⌦Fd
n

be a polynomial of degree 1  deg(f) = D  n(d�1). Clearly, f �l 2 ⌦Fd
n
(D)

for all l 2 LFd
n

since evaluating a polynonomial of some degree on linear functions results in

a polynomial of at most that degree. Moreover, the same holds under post-composition with

linear functions and we thus find

LFd
1
� ⌦Fd

n
(D) � LFd

n
✓l ⌦Fd

n
(D) .

On the other hand, ⌦Fd
n
(D) is generated by LFd

1
� ⌦Fd

n
(D) � LFd

n
since the identity is a linear

function. This proves the lemma.
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We thus conclude that the subspaces closed under linear pre- and post-composition are

exactly ⌦Fd
n
(D) for 1  D  n(d� 1), in particular, ⌦Fd

n
(1) = LFd

n
and ⌦Fd

n
(n(d� 1)) = ⌦Fd

n
.

With these preliminaries we prove the following generalisation of the contextuality threshold

in Thm. 46 [64]. A similar result was discussed in [83] from the perspective of Bell inequalities.

Theorem 48. Let M be a flat ld-MBC with d = pr (p prime and r 2 N), which deterministically

evaluates a function o : Fn

d
! Fd. If deg(o) � d, then M is contextual.

Proof. Since M is non-contextual by assumption, measurement outcomes at local sites k 2

{1, · · · , N} arise from functions mk : Fd ! Fd. More precisely, there are maps �k : Fd ! O,

which assign every control input ck 2 Fd a local measurement function. Measurement corresponds

with function evaluation (cf. Sec. 2.4.1) and yields definite outcomes since M is deterministic.

Including linear pre-processing lk 2 LFd
n

we thus have the following functional relations,

mk = �k � lk 8k 2 {1, · · · , N} . (3.14)

Moreover, the output function o in ld-MBC is determined from local measurement outcomes by

linear post-processing. Hence, the entire non-contextual computation has functional signature

as depicted in Fig. 3.2. By Lm. 3 it follows that the degree of o is constrained by the maximal

degree of the local functions �k, which by Thm. 47 is at most d� 1. Hence, o 2 ⌦Fd
1
(d� 1) and

thus deg(o)  d� 1. This proves the theorem.

Note that in the special case d = 2, the maps �k : Z2 ! Z2 are necessarily linear. Hence,

the corresponding subspace for the output functions in l2-MBC is simply the space of linear

functions ⌦Fd
n
(1) = LFd

n
. Linearity and non-contextuality thus coincide and we recover Thm. 46

in the non-adaptive case. In particular, the nonlinear NAND-gate in the Anders-Browne example

in Sec. 3.1 constitutes a proof of contextuality, which is Mermin’s star (cf. Fig. 3.1 (b)).

In the general case d = pr with p prime and r 2 N, local measurement outcomes still arise by

evaluation of (measurement) functions �k : Fd �! Fd, yet such functions are not all linear, but

correspond with polynomials of degree less than d by Thm. 47. It follows that for qudits with

d � 3 certain nonlinear functions can be implemented already locally, such as the quadratic
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„1 : Fd ›Ñ Fd

„2 : Fd ›Ñ Fd

...Fn
d Q i opiq “ ∞N

k“1 Zkmkpiq P Fd

„N´1 : Fd ›Ñ Fd

„N : Fd ›Ñ Fd

LFd
n

LFd
n

LFd
n

LFd
n

LFd
N

Figure 3.2: Schematic of functional signatures in non-contextual ld-MBC [64]. In a non-
contextual setting, local value assignments mk : Fn

d
! Fd split into (classical) linear pre- and

post-processing and local (quantum) measurements �k. The same holds for the output function
o : Fn

d
! Fd, o(i) =

P
N

k=1
Zkmk(i) for some Zk 2 Fd. Any additional complexity arises from the

(quantum) measurements �k : Fd ! Fd.

functions in the qudit stabiliser formalism in Sec. 3.1.3. Thm. 48 is thus in perfect agreement

with non-contextuality of the qudit stabiliser formalism.

Note that similarly to Thm. 46, also Thm. 48 is independent of the particular physical

implementation and thus holds in full generality of non-adaptive, deterministic ld-MBC. Apart

from the adaptive case, Thm. 46 therefore arises as a special case of Thm. 48 for d = 2, where

every function Z2 ! Z2 is linear. The fact that Thm. 46 holds in the adaptive case also turns

out to be somewhat pathological. We spell this out in more detail in the next section.

3.1.5 Nonlocality, composition, and adaptivity

Unlike Thm. 46, Thm. 48 is restricted to the non-adaptive setting. That is, the measurement

settings for the k-th qudit depend only on the input i 2 Fn

d
and not previous measurement

outcomes at sites k0 < k.

From a computational perspective, the reason behind this restriction is that if we allowed

for temporal ordering, we would e↵ectively also allow for composition of functions. Clearly, the

classification of function spaces ⌦Fd
n
(D) breaks down in this case. Nevertheless, we do have

stability under composition for linear functions LFd
n
, which allows for temporal ordering in the

qubit case: composition of linear functions yields linear functions. On the other hand, nonlinear

functions � : Fd �! Fd will generally lift the control computer to universal computation in ⌦Fd
n

under composition.
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Nevertheless, the computational restriction to non-adaptivity in the derivation of the thresh-

old for contextuality in Thm. 48 should come as little surprise. Note that at the core of the

framework of ld-MBC lies the identification of locally-measurable systems, and the power of

correlations between these systems. Yet, nonlocal correlations are naturally ‘size-dependent’.

More precisely, if we coarse-grain the ld-MBC by grouping local systems together and allow for

nonlocal measurements on those, then we will also change the threshold on contextuality in

Thm. 48. A similar argument also applies under adaptivity, since the exchange of information

between local parties will generally allow for the implementation of nonlocal measurements

between those systems. While this is not the case for l2-MBC, where adaptivity still restricts to

LZ2
n

by Thm. 46, l2-MBC is nevertheless unstable under grouping systems together, e.g. nonlocal

measurements on two qubits do implement functions o : Z2

2
! Z2.

Succinctly, contextuality and nonlocality in ld-MBC are therefore not ‘scale invariant’ for

arbitrary d. This in turn means that deriving a threshold for contextuality in the adaptive

setting is harder and will usually be possible only if adaptivity is further restricted such as in

l2-MBC.

3.1.6 The probabilistic case

Note that Thm. 46 and Thm. 48 apply to the deterministic case only. In this section we relax

this restriction. For l2-MBC a probabilistic threshold for contextuality was given in [126]. More

precisely, a l2-MBC is said to evaluate a Boolean function f : Zn

2
! Z2 with average success

probability P , if P = 1

2n

P
i2Zn

2
Prob(o(i) = f(i)). Moreover, define the average distance of a

Boolean function f : Zn

2
! Z2 to the set linear functions LZ2

n
by

⌫(f) :=
1

2n
min
l2LZ2

n

|{i 2 Zn

2
| f(i) 6= l(i)}| . (3.15)

Theorem 49. Let M be a l2-MBC, which probabilistically evaluates a nonlinear Boolean function

o : Zn

2
! Z2 with success probability P . If P > 1� ⌫(o), then M is contextual.

The optimal bound is attained for bent functions, which have maximal distance to the set of

linear functions, and for which M is contextual if P > (1
2
) + (1

2
)
n
2+1 [126].
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We also remark that the bound in Thm. 49 can be refined by means of the non-contextual

fraction. The latter arises in the sheaf-theoretic framework, which studies general empirical

models, i.e., sets of probability distributions for measurements grouped into contexts (for

details, see [6]). Any empirical model e has a convex decomposition into a contextual and a

non-contextual part

e = NCF(e)e+ (1� NCF(e))e, NCF(e) 2 [0, 1] .

Here, a non-contextual empirical model has NCF(e) = 1 and corresponds to a probability

distribution over pure states, i.e., valuation functions or global sections of the corresponding

event sheaf (cf. [6]). Correspondingly, an empirical model is called contextual if NCF(e) < 1

and strongly contextual if NCF(e) = 0.

With these definitions, [5] prove the following bound on the average success probability,

P  1� NFC(e)⌫(o) .

Note that the non-contextual bound on the success probability in Thm. 49 crucially depends

on the distance of the output function to the closest linear function ⌫(o). By Thm. 46 linear

functions are those realisable in the non-contextual case. We can relax Thm. 48 to the

probabilistic case in a similar way. First, we adjust the definition of the distance ⌫ to inputs in

finite fields,

⌫(f) :=
1

dn
min

g2⌦Fd
n (d�1)

|{i 2 Fn

d
| f(i) 6= g(i)}| , (3.16)

where the minimum is now taken over all polynomial functions of degree at most d� 1 for d a

prime power. Generalising the qubit case [126], we observe that non-contextuality bounds the

average success probability of any ld-MBC, which evaluates the output function o : Fn

d
! Fd,

again by

P  1� ⌫(o) . (3.17)

A violation of this inequality thus yields a proof of nonlocality and generalises the results in [5,

126], where only Boolean functions were considered [64].
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Theorem 50. Let M be a ld-MBC with d = pr (p prime and r 2 N), which evaluates a function

o : Fn

d
! Fd, deg(o) � d with success probability P . If P > 1� ⌫(o), then M is contextual.

Proof. This follows immediately from the above discussion and the arguments in Thm. 49 under

the generalisation of Eq. (3.15) to Eq. (3.16).

Note that similar to the case d = 2, we achieve the optimal bound for functions that are

farthest from the set of non-contextual output functions ⌦Fd
n
(d� 1).

3.1.7 Summary

In this section we found a computational threshold for contextuality in non-adaptive ld-MBC

with d a prime power. This generalises earlier results for d = 2 in [5, 126]. We have restricted to

prime powers since these correspond with the number of elements in finite fields, over which the

ring of functions in n variables coincides with the corresponding ring of polynomials by Thm. 47.

Still, many of our arguments do not require this simplification and apply more generally.

As with general measurement-based computation, ld-MBC harnesses contextuality in the

form of nonlocality: nonlocal correlations between spatially separated subsystems boost the

computational power of the classical control computer capable of linear side-processing only.

Thm. 48 can thus be understood as a computational version of Bell’s theorem [83]: assuming local

(single qudit) measurements reveal outcomes as in a local hidden variable model, computation

is constrained to ⌦Fd
n
(d� 1) (for some success probability). However, note that in contrast to

the discussion in Sec. 2.4, MBC neglects non-contextual constraints at local sites.

In the next section we refine the results obtained in this section to the quantum case. Since

quantum states correspond with global sections of the probabilistic presheaf, they are also

subject to the coarse-graining constraints locally. The study of measurement-based quantum

computation is therefore not only concerned with nonlocality, but with contextuality more

generally. In order to study the role of contextuality as a resource in quantum computation,

we therefore seek a computational classification of contextuality in ld-MBQC. As we will see,

this classification crucially depends on certain local phase relations between eigenstates of local

measurement operators, and thus on the explicit structure of states in quantum theory.
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3.2 Contextuality in measurement-based quantum

computation

Def. 35 in the last section defines ld-MBC as a framework based on correlated resources,

independent of their physical implementation. In this section we are concerned with the

quantum version of this setup known as ld-MBQC, where the correlated resource is given by

some entangled quantum state.

3.2.1 Definition of ld-MBQC

We assume that the eigenvalues of local measurements Mk(ck) are of the form !mk for ! = e
2⇡i
d

and mk 2 Zd. Importantly, we will restrict to d prime such that Zd ' {!m | m 2 Z} is again a

field. Note that operators Mk are not Hermitian, but we use the terminology ‘measurement

of Mk’ to denote a projective measurement in the eigenbasis of Mk, where we associate the

measurement outcome mk 2 Zd with the eigenvalue !mk (cf. [64, 127]). For a given input

i 2 Zn

d
, a ‘global measurement’ M(i) is the tensor product of local measurements, and encodes

the computational output. For simplicity, we will mostly restrict to non-adaptive, deterministic

ld-MBQC. In this case, the product of all local measurements stabilizes the resource state,

and we assume that the control computer evaluates the output function o(i) by adding local

measurement outcomes,

o(i) =
NX

k=1

mk mod d .

As before, we investigate whether the quantum resource state increases the computational power

of the control computer, i.e., if the output function is of degree greater or equal to d by Thm 48.

In summary, we have the following definition for non-adaptive ld-MBQC (cf. Fig. 3.3).

Definition 36. A non-adaptive ld-MBQC with d prime, input string i 2 Zn

d
, and output

o(i) 2 Zd, consists of the following components:

1. an N -qudit system each of local dimension d, where the overall resource state is represented

by | i 2 (Cd)⌦N ;
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2. a set of measurement settings ck = lk(i) for some Zd-linear functions lk : Zn

d
! Zd,

independent of previous measurement outcomes;

3. a set of measurements Mk on each qudit, each with d possible eigenvalues !mk , where

mk 2 Zd is the measurement outcome;5

4. the computational output is the linear sum of local measurement outcomes m = {m1, · · · ,mN} 2

ZN

d
,

o(i) =
NX

k=1

mk mod d .6 (3.18)

c1 m1 c2 m2 cN mN. . .

M M MM1 M2 MN

..
.i P Zn

d

|Ây P pCdqbN

Control computer
opiq P Zd

Figure 3.3: Schematic of ld-MBQC [64].

We remark that with suitably chosen resource states, such as (qudit) cluster states, adaptive

ld-MBQC is universal for quantum computation [130, 152].

Phase relations in deterministic l2-MBQC

In this section we stress the importance of local phase relations between eigenstates of measure-

ment operators in the qubit case, which will serve as a guideline for the constructive proofs in

Sec. 3.2.2. We will further refine these phase relations in Sec. 3.3.3.

5Note that the measurement Mk is only constrained on outcomes, in particular, we do not restrict to
conjugation of some reference measurement by unitaries arising as projective representations of Zd such as in
the qudit stabiliser formalism (cf. Eq. (3.24)).

6Note that this no restriction to the corresponding setting in Def. 35 since any linear post-processing can be
encoded locally.
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Note that every local measurement Mk(ck) defines a basis of eigenstates. Expressed in terms

of the computational basis |qi with q 2 Z2, for qubits any basis is of the form:

|',#i = sin(')|0i+ e⇡i# cos(')|1i |0i = sin(')|',#i+ cos(')|',#i

|',#i = cos(')|0i � e⇡i# sin(')|1i |1i = e�⇡i#(cos(')|',#i � sin(')|',#i)

Recall that in ld-MBQC the output function o(i) = �N

k=1
mk arises as the parity of the individual

measurement outcomes on local qudits. For qubits there are two di↵erent parity states and o

encodes which of these two parities is obtained when measuring a given context. Henceforth, we

choose as resource state the N -qubit GHZ-state (cf. [146]),

| i = 1p
2
(|0iN + |1iN) = 1p

2

1X

q=0

⌦N

k=1
|qk = qi , (3.19)

and set the default measurement operator for the input i = 0 to be the tensor product of

Pauli-X measurements with eigenvectors |+i = |⇡
4
, 0i, |�i = |⇡

4
, 0i. Clearly, | i is a parity

+1-eigenstate of this operator, the contributions of opposite parity cancel. In a similar way, one

obtains the parity �1-eigenstate if the cancellations are such that contributions with positive

parity vanish. More precisely, for other inputs the local measurement operators correspond to

di↵erent bases. In particular, for #k 6= 0 this results in the additional phase factor e�⇡i#k for

|1ik in | i. In the prototypical Anders-Browne example on three qubits this reads as follows,

| i = 1p
2
(|000i+ |111i) XXX

=
1

2
(|+++i+ |+��i+ |�+�i+ |��+i)

XY Y
=

1

2
(|+ īii+ |+ īii+ |� iii+ |� ī̄ii)

Y XY
=

1

2
(|i+ īi+ |i� ii+ |̄i+ ii+ |̄i� īi)

Y Y X
=

1

2
(|ii�i+ |īi+i+ |̄ii+i+ |̄īi�i) .

Here, |ii and |̄ii correspond to the basis with ' = ⇡

4
and # = 1

2
. Note that this choice of

local bases solves the following set of linear equations
P

3

k=1
lk(i1, i2) · #k = o(i1, i2), where

l1(i1, i2) = i1, l2(i1, i2) = i2, l3(i1, i2) = i1 � i2 and o(i1, i2) = 1 + (i1 + 1) · (i2 + 1).
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This example is illustrative in a number of ways as we show in Lm. 4 and Lm. 5 below. First,

note that for deterministic l2-MBQC it is enough to consider ' = ⇡

4
.

Lemma 4. The eigenstates of local measurements in deterministic l2-MBQC on a GHZ-state

with N � 3 qubits are mutually unbiased with respect to the local basis of the resource state.

Proof. Note that the measurement operators M(i) = ⌦N

k=1
Mk(ck(i)) are such that | i is a parity

eigenstate of M(i) for all i 2 Zn

2
. For every input i 2 Zn

2
, rewrite | i in the local eigenbases

corresponding to the Mk(ck(i)). This yields a superposition of product states |mi = ⌦N

k=1
|mki,

where we denote every product state by the Boolean vector m 2 ZN

2
with mk = 0 for |',#ik and

mk = 1 for |',#ik at site k. Clearly, the product state |mi has parity m = �N

k=1
mk. Moreover,

the coe�cient to the product state |mi reads

NY

k=1

�mk('k) + (�1)m
NY

k=1

�mk�1('k) , (3.20)

where �0('k) = sin('k) and �1('k) = cos('k), since both |0ik and |1ik can have non-zero

overlap with |mki.7 A parity eigenstate is on hand if all product states of some parity cancel.

We thus have 2
N

2
constraints from Eq. (3.20), both on absolute values and phases. Clearly, the

constraints on absolute values are satisfied for ' = ⇡

4
. Moreover, for N � 3 all solutions are of

this form. First, for N � 3 odd, consider pairs of constraints in Eq. (3.20) of the same parity:

�mk('k)
Y

k0 6=k

�mk0 ('k0) + (�1)m�mk�1('k)
Y

k0 6=k

�mk0�1('k0) = 0

�mk('k)
Y

k0 6=k

�mk0�1('k0) + (�1)m�mk�1('k)
Y

k0 6=k

�mk0 ('k0) = 0

These imply
Q

k0 6=k �
mk0�1

('k0 )Q
k0 6=k �

mk0 ('k0 )
= �(�1)m �

mk ('k)

�
mk�1

('k)
=

Q
k0 6=k �

mk0 ('k0 )Q
k0 6=k �

mk0�1
('k0 )

and thus | sin('k)| =

| cos('k)|, hence, 'k = ⇡

4
. For N even, similar constraints yield |�mk('k)�mk0 ('k0)| =

|�mk�1('k)�mk0�1('k0)|. For N 6= 2 we thus again find 'k = ⇡

4
, since for another pair of con-

straints in Eq. (3.20) also |�mk('k)�mk0�1('k0)| = |�mk�1('k)�mk0 ('k0)|, hence, |�mk0�1
('k0 )|

|�mk0 ('k0 )|
=

|�mk ('k)|
|�mk�1

('k)|
= |�mk0 ('k0 )|

|�mk0�1
('k0 )|

.

7Local measurements in the computational basis only change the resource state and can thus be neglected.

132



CHAPTER 3. CONTEXTUALITY IN QUANTUM COMPUTATION

We are thus left with the phase constraints arising from Eq. (3.20). Generalising the

Anders-Browne example above, let # 2 RN , o : Zn

2
! Z2 and l(i) = Li, where i 2 Zn

2
and

L 2 Mat(N ⇥ n,Z2) arbitrary. Then any solution to the set of equations

8i 2 Zn

2
: l(i) · # =

NX

k=1

lk(i)#k = o(i) (3.21)

allows to construct a l2-MBQC. Namely, consider local measurement operators X(#) with

eigenstates |#i = |⇡
4
,#i and |#i = |⇡

4
,#i. The resource GHZ-state | i in Eq. (3.19) is then a

parity +1-eigenstate of the operator ⌦N

k=1
Xk(0). On the other hand, | i is a parity �1-eigenstate

of all operators of the form ⌦N

k=1
X(#k) for local operators such that

P
m

k=1
#k = 1, e.g. #k = 1

m

for k 2 {1, · · · ,m} and #k = 0 for k 2 {m+ 1, · · · , N}. Finding an l2-MBQC, which computes

the output function o, thus reduces to finding a set of (linear) functions lk, which satisfy the

phase constraints in Eq. (3.21). In Sec. 3.2.2 we will use this technique in order to construct

contextual examples—according to the threshold derived in Thm. 48—as well as a general

classification of computation in flat, deterministic ld-MBQC.

Measurement in deterministic ld-MBQC

Recall that each party k 2 {1, · · · , N} performs one of d (qudit) measurements Mk(ck) deter-

mined by a single input ck 2 Zd. We require the Mk to have (non-degenerate) eigenvalues of

the form !mk for mk 2 Zd, from which it follows that Md

k
= 1. Moreover, by the argument in

Lm. 4, for deterministic ld-MBQC it is enough to consider local measurements with eigenstates

mutually unbiased with respect to a reference basis, e.g. the computational basis in the qudit

resource state | i = 1p
d

P
d�1

q=0
⌦N

k=1
|qk = qi. Note that we find such operators in

X(f)|qi = f(q)|q + 1i with f : Zd ! U(1),
d�1Y

q=0

f(q) = 1 . (3.22)

In fact, every non-degenerate local measurement operator with Md

k
= 1 is of this form.

Lemma 5. Every local measurement operator M in deterministic ld-MBQC with d prime is of

the form M = X(f) in Eq. (3.22) for some function f : Zd ! U(1) with
Q

d�1

q=0
f(q) = 1.
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Proof. Let M 2 U(Cd), Md = 1 be non-degenerate, and denote its eigenvectors by |mi, m 2 Zd.

By assumption, the corresponding basis is mutually unbiased with respect to |qi, i.e., |hq|mi|2 = 1

d

for all q,m 2 Zd. Expressing the eigenvectors |mi of M in terms of the |qi-basis thus yields

|mi = 1p
d
(|0i+ !�mf(0)|1i+ !�2mf(0)f(1)|2i+ · · ·+ !�(d�1)m

 
d�2Y

q0=0

f(q0)

!
|d� 1i)

=
1p
d

 
d�1X

q=0

!�qm

q�1Y

q0=0

f(q0)|qi
!

for some f : Zd ! U(1) with
Q

d�1

q=0
f(q) = 1.

In the following, we will often consider operators with a reference phase ✓,

X(✓, f)|qi = ✓�f(q)|q + 1i, f : Zd ! Zd . (3.23)

The constraint in Eq. (3.23) then reads ✓d = ��
Pd�1

q=0 f(q). Note that the rotation operators

X(�) = ei�
P

d�2

q=0
|q+1ihq|+ei(1�d)�|0ihd�1| defined in [105] for the construction of general proofs

of contextuality are of this type, namely for ✓ = ei�, � = e�id� and f(q) = �(q� (d�1)) (see also,

[140]). The inputs ck 2 Zd to the measurement devices thus specify Mk(ck) = X(✓(ck), f(ck))

and are themselves determined in a linear way from the computational input i 2 Zn

d
according

to the setup in Def. 36.

Finally, we comment on the structure of measurement operators considered here compared

to those considered elsewhere [64, 126]. In particular, within the qudit stabiliser formalism (cf.

Sec. 3.1.3) the classical control is often modeled by means of unitary conjugation

Mk(ck) = U ck
k
Mk(0)U

�ck
k

, (3.24)

where U ck
k

is a unitary projective representation of Zd for d prime, and Mk(0) is some reference

Pauli operator. In this case the local phases ✓ in Eq. (3.23) arise from the special Weyl

commutation relations in Eq. (3.6) and Eq. (3.8).
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3.2.2 Implementation of flat, deterministic ld-MBQC

In this section we employ the phase relations in Eq. (3.22) for computation in ld-MBQC by

means of Eq. (3.21). We begin with an explicit example on three qutrits, which is contextual by

the threshold in Thm. 48. Subsequently, we prove that any output function o : Zn

d
! Zd for d

prime can be constructed by explicitly implementing the �-function.

A contextual qutrit example

Consider first the following three operators of the form in Eq. (3.23) on a three-dimensional

system by their action on computational basis states |qi for 0  q < 3 and ! = e
2⇡i
3 :

M(0)|qi = X|qi := |q + 1i M(1)|qi := ✓1!
q
2 |q + 1i M(2)|qi := ✓2!

�q
2 |q + 1i (3.25)

Obviously, M(0) has order three. A quick computation shows that by choosing ✓3
1
= ! and

✓3
2
= !2 we also have M(1)3 = 1, M(2)3 = 1. Moreover, we set ✓1✓2 = !, e.g. ✓1 = e

2⇡i
9 and

✓2 = e
4⇡i
9 . The eigenstates |✓mk

k
i of M(k) with |✓m0

0
i = |xm0i for ✓0 = 1 are given as follows.

|✓0
1
i = 1p

3
(|0i+ ✓1|1i+ ✓2

1
!|2i) |0i = 1p

3
(|✓0

1
i+ |✓1

1
i+ |✓2

1
i)

|✓1
1
i = 1p

3
(|0i+ ✓1!

2|1i+ ✓2
1
!2|2i) |1i = 1p

3✓1
(|✓0

1
i+ !|✓1

1
i+ !2|✓2

1
i)

|✓2
1
i = 1p

3
(|0i+ ✓1!|1i+ ✓2

1
|2i) |2i = 1p

3✓2
1
!
(|✓0

1
i+ !2|✓1

1
i+ !|✓2

1
i)

|✓0
2
i = 1p

3
(|0i+ ✓2|1i+ ✓2

2
!2|2i) |0i = 1p

3
(|✓0

2
i+ |✓1

2
i+ |✓2

2
i)

|✓1
2
i = 1p

3
(|0i+ ✓2!

2|1i+ ✓2
2
|2i) |1i = 1p

3✓2
(|✓0

2
i+ !|✓1

2
i+ !2|✓2

2
i)

|✓2
2
i = 1p

3
(|0i+ ✓2!|1i+ ✓2

2
!|2i) |2i = 1p

3✓2
2
!2

(|✓0
2
i+ !2|✓1

2
i+ !|✓2

2
i)

|x0i = 1p
3
(|0i+ |1i+ |2i) |0i = 1p

3
(|x0i+ |x1i+ |x2i)

|x1i = 1p
3
(|0i+ !2|1i+ !|2i) |1i = 1p

3
(|x0i+ !|x1i+ !2|x2i)

|x2i = 1p
3
(|0i+ !|1i+ !2|2i) |2i = 1p

3
(|x0i+ !2|x1i+ !|x2i)
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Combining local measurement operators in Eq. (3.25) to global measurements on the three-

qutrit resource GHZ-state

| i = 1p
3
(|000i+ |111i+ |222i) , (3.26)

allows to construct a contextual computation by Thm. 48.

Theorem 51. The l3-MBQC with local measurements Mk(ck = lk(i)) as in Eq. (3.25), where

the input i = (i1, i2)| 2 Z2

3
sets the measurements via Z3-linear functions l1(i) := i1, l2(i) := i2,

and l3(i) := �i1 � i2, is contextual when evaluated on the resource state in Eq. (3.26).

Proof. Note that we have the following identities,

M(0)⌦M(0)⌦M(0)|qi⌦3 = |q + 1i⌦3,

M(1)⌦M(1)⌦M(1)|qi⌦3 = !|q + 1i⌦3,

M(2)⌦M(2)⌦M(2)|qi⌦3 = !2|q + 1i⌦3,

�(M(0)⌦M(1)⌦M(2))|qi⌦3 = ✓1✓2|q + 1i⌦3 = !|q + 1i⌦3 8� 2 S3 ,

where we understand the permutation operator to act on the set of control inputs {c1, c2, c3}.

From this one readily computes the output function.

o((0, 0)|) = 0 o((0, 1)|) = 1 o((0, 2)|) = 1

o((1, 0)|) = 1 o((1, 1)|) = 1 o((1, 2)|) = 1

o((2, 0)|) = 1 o((2, 1)|) = 1 o((2, 2)|) = 2

In order to prove that this computation is contextual, we need to show that o is at least cubic

according to Thm. 48. We assume to the contrary and make the ansatz,

g(i) = ↵1i
2

1
+ ↵2i

2

2
+ �i1i2 + �1i1 + �2i2 + � .

From g((0, 0)|) = 0 we deduce � = 0. From g((0, 1)|) = 1, g((0, 2)|) = 1 we get ↵2 + �2 = 1,
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↵2 + 2�2 = 1, respectively, and thus ↵2 = 1, �2 = 0. By symmetry, ↵1 = 1, �1 = 0. Furthermore,

from g((1, 1)|) = 1, we get � = 2, hence, g = i2
1
+ i2

2
+ 2i1i2 = (i1 + i2)2. However, evaluation on

the remaining inputs, g((1, 2)|) = g((2, 1)|) = 0 6= 1 = o((1, 2)|) = o((2, 1)|) and g((2, 2)|) =

1 6= 2 = o((2, 2)|), yields a contradiction, hence, o is not a quadratic function and must therefore

be contextual by Thm. 48. In fact, one easily verifies o(i) = 2i2
1
i2 + 2i1i22 + i2

1
+ i2

2
+ i1i2.

Clearly, this example is reminiscent of the Anders-Browne example for qubits. However,

note that while the measurement operators in the qubit case can be implemented within the

stabiliser formalism, M(0), M(1), and M(2) in Eq. (3.25) cannot be part of the qutrit stabilizer

formalism, since the latter is non-contextual for d � 3.

Note also that while the NAND-gate has maximal degree and thus generates arbitrary

Boolean functions o : Z2

2
! Z2 under linear pre- and post-composition, this is not the case for

the output function in Thm. 51. In fact, we will prove shortly that arbitrary functions can be

implemented in flat, deterministic ld-MBQC, yet this requires certain number of qudits. In

particular, three qutrits are not su�cient to implement arbitrary functions o : Z2

3
! Z3. We

study this relation in more detail in Sec. 3.3.

The previous example is easily generalised to d prime, thus yielding an Anders-Browne-type

example for qudits of arbitrary prime dimension.

Theorem 52. There exists a contextual flat, deterministic ld-MBQC, d prime, on three qudits.

Proof. Define the following d operators of the form in Eq. (3.23) by their action on computational

basis states |qi for 0  q  d� 1 and ! = e
2⇡i
d as follows:

M(0)|qi := X|qi = |q + 1i, M(c)|qi := ✓(c)!cq
d�1 |q + 1i, 1  c  d� 1 (3.27)

Note first that M(c)d = 1 if we set ✓(c)d = !c and thus ✓(c1)d✓(c2)d✓(d� c1� c2)d = 1. There is

more freedom in choosing ✓(c) and we set ✓(c) = e
c2⇡i
d2 . Similarly to the qutrit case in Thm. 51, we

also specify Zd-linear functions l1(i) := i1, l2(i) := i2, and l3(i) := �i1 � i2 for i = (i1, i2)| 2 Z2

d
,
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and take the resource state to be

| i = 1p
d

d�1X

q=0

|qi⌦3 .

The output function of this computation then has the following form:

o(i) =

8
>>>>>><

>>>>>>:

0 if i1, i2 = 0

1 if i1 + i2  d

2 if i1 + i2 > d

(3.28)

Again, by Thm. 48 this ld-MBQC is contextual if o(i) is at least of degree d. To prove this, note

that the number of monomials in i1, i2 of (combined) degree at most d� 1 is the same as the

number of constraints in Eq. (3.28) for i1 + i2  d� 1. The latter thus fix the former uniquely,

resulting in g = (i1 + i2)d�1 if the computation is non-contextual. However, g does not satisfy

the constraints for i1 + i2 � d. Hence, the output function in o(i) must contain at least one

term of degree d or greater and is therefore contextual.

Similarly to the output function in Thm. 51, it is not hard to see that o(i) in Eq. (3.28)

does not contain a term of maximal degree 2(d� 1) either. In order to prove that indeed every

output function can be implemented in flat, deterministic ld-MBQC, in the next two sections

we explicitly compute the n-dimensional �-function for qubits and qudits of prime dimension.

Implementation of the n-dimensional �-function on 2n � 1 qubits

In this section we give an explicit implementation for the computation of the n-dimensional

Dirac �-function

�(x) :=

8
>><

>>:

1 if x = 0

0 elsewhere

x 2 Zn

d
(3.29)

for d = 2 as a flat, deterministic l2-MBQC. Clearly, this implies that any function o : Zn

2
! Z2

can be implemented in flat, deterministic l2-MBQC. We make some preliminary remarks first.
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Note that for qubits the only non-trivial dependency on c in M(c) = X(f(c)) from Eq. (3.22)

is linear and therefore yields operators of the form in Eq. (3.23):

M(✓)|qi := ✓�q|q + 1i = e⇡i#�q|q + 1i, ✓2 = ��1 (3.30)

In particular, we have M(✓)2 = 1 and the eigenstates of M(✓) read:

|#+i = 1p
2
(|0i+ e⇡i#|1i) |0i = 1p

2
(|#+i+ |#�i)

|#�i = 1p
2
(|0i � e⇡i#|1i) |1i = 1p

2
e�⇡i#(|#+i � |#�i)

Similarly to the Pauli-Y operator in the Anders and Browne example, rewriting the resource

state in the basis M(✓), we pick up the phase e�⇡i# for every local |1i state in | i.

Theorem 53. The n-dimensional �-function in Eq. (3.29) for d = 2 can be implemented on

N = 2n � 1 qubits within flat, deterministic l2-MBQC.

Proof. Consider the resource state in Eq. (3.19) for N = 2n � 1 as well as linear functions

la(i) := �n

j=1
ajij , 0 6= a 2 Zn

2
.

We prove that this indeed computes the desired function for a suitable ✓k = ✓ = e⇡i# under the

measurement procedure 0!M(0) and 1!M(✓) according to Eq. (3.30).

First, consider the case of the input string containing exactly one non-zero entry, e.g.

i = (1, 0, · · · , 0)|, and count the number of phases # that we collect. As # is independent of the

site, this is simply the number of functions that i1 appears in. There is one function in which it

appears by itself, then n� 1 functions where it appears together with another input,
�
n�1

2

�
in

which it appears together with two more inputs and so on. Overall the number of functions is

n�1X

k=0

✓
n� 1

k

◆
= 2n�1 .

For inputs containing two non-zero entries, e.g. i = (1, 1, 0, · · · , 0)|, we again count the number

of appearances of, in this case, i1 and i2. Note that only those functions will contribute that
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contain exactly one, but not both of those entries, i.e.,

n�2X

k=0

✓
2

1

◆✓
n� 2

k

◆
= 2 · 2n�2 = 2n�1 .

The general case with m non-zero entries reads as follows:

dm2 eX

k=1

✓
m

2k � 1

◆ n�mX

l=0

✓
n�m

l

◆
= 2m�1 · 2n�m = 2n�1

Hence, for all but the zero input we flip the overall parity in Eq. (3.19) if we set

(e⇡i#)2
n�1

= �1 () # =
1

2n�1
+K, 2n�1K = 0 mod 2 . (3.31)

Finally, note that this setup computes the function o(i) = �(i) + 1, hence, we obtain the

n-dimensional Dirac �-function by simple post-processing.

Thm. 53 immediately implies the following.

Corollary 1. Any function o : Zn

2
! Z2 can be computed within flat, deterministic l2-MBQC.

Proof. This follows directly from Thm. 53, and the fact that every function o : Zn

2
! Z2 can be

written as a sum of n-dimensional �-functions, i.e., o(i) =
P

j2Zn
2
C(j)�(i� j) for C(j) 2 Z2.

Thm. 53 and Cor. 1 are a consequence—and, as we will see in Sec. 3.3.3, an alternative

proof—of an earlier result in [82].

Theorem 54. (Hoban-Campbell [82]) In order to implement the n-dimensional �-function

in flat, deterministic l2-MBQC one requires 2n � 1 qubits.

Note that this is in stark contrast to the scaling behaviour under adaptive l2-MBQC (cf.

Sec. 3.1.5). For instance, the naive protocol using iterative NAND-gates requires a linear number

of adaptive steps in the degree deg(�) = n, and so does the number of qubits necessary.
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Implementation of the n-dimensional �-function on dn � 1 qudits

The construction in the last section can be generalised to systems of arbitrary prime dimension.

First, it is useful to review di↵erent parity states for qudits. To this end, consider the qutrit

example in Sec. 3.2.2 with resource state | i = 1p
3
(|000i+ |111i+ |222i) again. We rewrite this

in the eigenbasis of the generalised X measurement with action X|qi = |q + 1i:

| i = 1p
3
(|000i+ |111i+ |222i)

=
1

9

�
(|x0i+ |x1i+ |x2i)⌦3 + (|x0i+ !|x1i+ !2|x2i)⌦3 + (|x0i+ !2|x1i+ !|x2i)⌦3

�

=
1

9

0

@
X

m2Z3
3

|xm1xm2xm3i+
X

m2Z3
3

!
P3

k=1 mk |xm1xm2xm3i+
X

m2Z3
3

!2
P3

k=1 mk |xm1xm2xm3i

1

A

=
1

9

0

@
X

m2Z3
3

(1 + !
P3

k=1 mk + !2
P3

k=1 mk)|xm1xm2xm3i

1

A

=
1

3

0

BBB@
X

m2Z3
3,

�3
k=1mk=0

|xm1xm2xm3i

1

CCCA

Hence, | i has parity �3

k=1
mk = 0 in this representation. For deterministic ld-MBQC we need

to choose local measurements such that the resource state is a state of certain parity for every

input when rewritten in the corresponding local bases. For instance, note that in the qutrit

example in Thm. 51, any other choice of (local) measurements results in a similar decomposition

with the di↵erence that we pick up some additional phase factors,

| i = 1

9

0

@
X

m2Z3
3

(1 + ✓�n1
1

✓�n2
2

!
P3

k=1 mk + ✓�2n1
1

✓�2n2
2

!�n1�2n2+2
P3

k=1 mk)|um1um2um3i

1

A .

Here, n1 and n2 denote the number of measurements M(1) and M(2), respectively, and

umk 2 {xmk(= ✓mk
0

), ✓mk
1

, ✓mk
2

}. Given our choice of functions, we have n1 + n2 = 0, n1 = 3, or

n2 = 3, which reproduces the output function in Sec. 3.2.2.

By allowing for more general phase relations than in the local measurement operators in

141



CHAPTER 3. CONTEXTUALITY IN QUANTUM COMPUTATION

Eq. (3.27) acting on the N -qudit GHZ-state

| i = 1p
d

d�1X

q=0

|qiN =
1p
d

d�1X

q=0

⌦N

k=1
|qk = qi , (3.32)

a similar line of reasoning proves the following.

Theorem 55. The n-dimensional �-function in Eq. (3.29) for d prime can be implemented on

N = dn � 1 qudits within flat, deterministic ld-MBQC.

Proof. The proof strategy is similar to the qubit case in Thm. 53, see App. 3.A for details.

Note that the phase relations needed for this construction read

� = !
� 2

dn�1(d�1) , ✓(c) = �� (d�1)
d c = !

2c
dn . (3.33)

In particular, for qubits we have ! = e
2⇡i
2 = �1. We thus recover the Anders-Browne example

for n = 2 with � = �1, ✓ = ✓(1) = �� 1
2 = i, and X(✓) = Y , as well as the phase relation for the

n-dimensional qubit �-function in Thm. 53, where ✓ = e⇡i# = (�1)
1

2n�1 as in Eq. (3.31).

Importantly, the factor 2 in Eq. (3.33) implies a crucial di↵erence between the qubit and

qudit case: in general, the phase ✓(c) is a dn+1-th root of unity, however, for d = 2, ✓ is only a

dn-th root of unity by this additional factor. The contextual signature of the qubit stabiliser

formalism somehow resides in this phase, in particular, it implies that any quadratic function

can be computed within the qubit stabilizer formalism already. This is in contrast to the qudit

stabiliser formalism, which is non-contextual [64, 70].

Finally, recall that the n-dimensional �-function has polynomial representation �(x) =
Q

n

k=1
(1 � xp�1

k
) (cf. Eq. (3.12)), which contains a term of maximal degree. Hence, we have

constructed a (maximally) contextual example for qudits in arbitrary prime dimension according

to the threshold in Thm. 48. In particular, we have established the following.

Corollary 2. Any function o : Zn

d
! Zd for d prime can be computed within flat, deterministic

ld-MBQC.

Proof. This follows directly from Thm. 55, and the fact that every function o : Zn

d
! Zd can be

written as a sum of n-dimensional �-functions, i.e., o(i) =
P

j2Zn
d
C(j)�(i� j) for C(j) 2 Zd.
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Note that the number of qudits in the implementation of the �-function in Thm. 55 counts

dn � 1, which generalises the qubit case, where 2n � 1 qubits are optimal by Thm. 54. As a

means to further distinguish contextuality beyond the threshold in Thm. 48, we explore the

question of optimality in more detail in the next section, i.e., we ask for the minimal number of

qudits required to implement a given function in flat, deterministic ld-MBQC.
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3.3 Towards a classification of contextuality in

ld-MBQC

In this section we study computation in flat, deterministic ld-MBQC from a resource-theoretic

perspective. In the last section we proved that any function o : Zn

d
! Zd for d prime can be

computed within flat, deterministic ld-MBQC. However, depending on the type of function

computed, the number of qudits necessary for its implementation varies drastically. We therefore

further study the structure of contextuality by asking for the optimal number of qudits needed

to implement a function o : Zn

d
! Zd in flat, deterministic ld-MBQC.

Definition 37. Let o : Zn

d
! Zd, d prime. We call a flat ld-MBQC, which deterministically

implements o optimal, if no other flat ld-MBQC exists, which deterministically implements o on

fewer qudits. The optimal number of qudits is denoted R(o).

Note first that we have the freedom to manipulate any output function o by invertible linear

transformations on the inputs via pre-processing. The resource cost R(o) should thus be an

invariant under a�ne transformations. For this reason we define an equivalence relation on all

functions with signature o : Zn

d
! Zd under a�ne transformations as follows:

o ⇠ o0 :() 9M 2 Mat(n⇥ n,Zd), rk(M) = n : o0(i) = o(M i) (3.34)

Furthermore, in Sec. 3.2.2 we have seen how the n-dimensional �-function can be implemented

as a flat, deterministic ld-MBQC on N = dn � 1 qudits. Hence, given an arbitrary function

o : Zn

d
! Zd, one way to implement it is by naively adding all terms in the sum o(i) =

P
j2Zn

d
C(j)�(i� j), C(j) 2 Zd. However, it is easy to see that the optimal number of qudits is

only subadditive in this as well as its polynomial representation. It follows that in contrast to

the computational bound in Thm. 48, which emerged from considering subspaces under linear

pre- and post-composition, there is more to contextuality beyond that threshold.

In order to gain some intuition for the actual behaviour of R(o), we first consider two specific

quadratic Boolean functions in Sec. 3.3.1. For the general case, we study the map between

di↵erent representations of functions in Sec. 3.3.2. In doing so we prove that our construction
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method for l2-MBQC in terms of the phase relations in Eq. (3.21) is generic (in the qubit

case), we reproduce some known bounds for R obtained in previous sections, and connect its

optimisation problem to known problems in circuit synthesis.

3.3.1 Examples

The computation of the NAND-gate in [10] requires three qubits and is optimal according to

Thm. 54. For the output function o : Z4

2
! Z2, o(i) = i1i2 + i3i4 one can thus easily construct

an l2-MBQC that requires six qubits. However, this function has an optimal cost of R = 5. To

see this consider local phases ✓1 = ✓2 = �✓3 = �✓4 = ✓5 = i and linear functions:

l1(i) := i1 l2(i) := i2

l3(i) := i1 � i2 � i3 l4(i) := i1 � i2 � i4 l5(i) := i1 � i2 � i3 � i4

As before we may implement this computation as a flat l2-MBQC using the generalised GHZ-

state | i = 1p
2
(|0i5 + |1i5) as resource, and local observables given by ck = 0 : Mk(✓k = 1),

ck = 1 : Mk(✓k = ±i) (cf. Eq. (3.30)). A straightforward computation then yields the output:

(0, 0, 0, 0)| �! 0 (1, 0, 0, 0)| �! 0 (1, 0, 0, 1)| �! 0 (1, 1, 1, 0)| �! 1

(1, 1, 0, 0)| �! 1 (0, 1, 0, 0)| �! 0 (0, 1, 1, 0)| �! 0 (1, 1, 0, 1)| �! 1

(0, 0, 1, 1)| �! 1 (0, 0, 1, 0)| �! 0 (1, 0, 1, 0)| �! 0 (1, 0, 1, 1)| �! 1

(1, 1, 1, 1)| �! 0 (0, 0, 0, 1)| �! 0 (0, 1, 0, 1)| �! 0 (0, 1, 1, 1)| �! 1

This is easily seen to reproduce the function o(i) = i1i2 + i3i4, since
Q

5

k=1
✓lk(i) = (�1)o(i).

As a second example, consider quadratic functions ⌃n

2
(x) =

P
i1<i2,ij2{1,··· ,n} xi1xi2 . These

have been discussed in [82], where it was proven that R(⌃n

2
) = n + 1. As with the first

example, this shows that R is subadditive (in its polynomial representation), which rules out a

straightforward computation, e.g. in terms of the �-functions in Sec. 3.2.2, which are provably

optimal. This additional complexity arises from an ambiguity in the representation of functions

in terms of Zd-linear functions over the reals instead of polynomials over finite fields.
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3.3.2 Polynomial vs Zd-linear function representation

In the discussion so far, we have encountered two representations for functions o : Zn

d
! Zd. In

the case d = 2, i.e., for Boolean functions f : Zn

2
! Z2, they read

f(x) =
X

a2Zn
2

Ca

�
�n

j=1
ajxj

�
=
X

b2Zn
2

Cb

 
nY

j=1

x
bj

j

!
.

The latter is the polynomial representation of Thm. 47 with coe�cients Cb 2 Z2, whereas the

former representation is based on Z2-linear functions with real coe�cients Ca 2 R. Both sets of

functions are linearly independent and generate the space of Boolean functions on bitstrings

x 2 Zn

2
. Hence, there exists a corresponding transformation between the coe�cients Ca, Cb.

Note that every Z2-linear function can be written in terms of monomials since

�n

j=1
xj =

X

0 6=b2Zn
2

(�2)W (b)�1

nY

j=1

x
bj

j
, (3.35)

where W (b) :=
P

n

j=1
bj denotes the Hamming weight of b 2 Zn

2
(cf. [82]). More generally, we

define la := �n

j=1
ajxj, fb := 2W (b)�1

Q
n

j=1
x
bj

j
for 0 6= a,b 2 Zn

2
and l0 = f0 := 1, as well as

hla, fbi := (�1)
Pn

j=1 ajbj�1 , hl0, f0i := 1 . (3.36)

We then have the following map F : Rn ! Rn between representations f =
P

a2Zn
2
Cala =

P
b2Zn

2
Cb(

1

2W (b)�1fb):

8a 2 Zn

2
: F(la) :=

X

b2Zn
2

hla, fbifb (3.37)

F is a real-linear map, it can be represented as a matrix with entries Flafb
= hla, fbi = ±1 (cf.

Eq. (3.36)). In fact, for fixed n and with appropriate normalisation factor N = 2�
n
2 , F is a

Hadamard transform and thus in particular unitary, from which it follows that (NFlafb
)�1 =

NFfbla
= NFlafb

. Clearly, this generalises Eq. (3.35) and provides an explicit transformation

between the two representations of Boolean functions underlying the l2-MBQC in Eq. (3.21).8

8Note the close relationship between F and the (multi-dimensional) discrete Fourier transform, as well as the
latter’s importance in existing quantum algorithms, e.g. Grover’s and Shor’s algorithm.
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Note that a similar construction can be given in the qudit case with d prime, too. It is

not hard to see that next to the set of monomials (by Thm. 47), also the set of dn functions

la := �n

j=1
ajxj, a 2 Zn

d
generates the space of functions f : Zn

d
! Zd. In particular, note that

by the proof of Thm. 55, the Dirac �-function has the following representation:

�(x) =
nY

j=1

�(xj) =
X

a2Zn
d

2

dn

 
nM

j=1

ajxj

!
+ 1 (3.38)

We can thus construct a linear transformation between the coe�cients Cb 2 Zd over elements
Q

n

j=1
x
bj

j
, b 2 Zn

2
in the polynomial representation, and the coe�cients Ca 2 R over elements la

in the Zd-linear representation, similar to the case d = 2.

The transformation F has a number of consequences for the implementation of temporally-

flat, deterministic ld-MBQC, which we will exploit in the following sections.

3.3.3 Phase relations in flat, deterministic ld-MBQC

Given the N -qubit GHZ-state in Eq. (3.19) and operators in Eq. (3.30), di↵erent choices of

local measurements simply translate into phase relations according to Eq. (3.21). The latter

is a representation of the output function o(i) in terms of Z2-linear functions lk(i). The local

phases ✓k := e⇡i#k thus implement the coe�cients #k = Ca 2 R under the mapping F�1(o(i)).9

More generally for d prime, we have the following phase constraints.

Proposition 9. In flat, deterministic ld-MBQC for d prime, and with local measurement

operators in Eq. (3.22) acting on a GHZ resource state, the output function arises from the

phase relations between the eigenbases of the local measurement operators as follows

Y

1kN

 
q�1Y

q0=0

fk(ck)(q
0)

!
= !qo(i) . (3.39)

Proof. We give the details in App. 3.B.

9The coe�cients #k 2 R in the Z2-linear representation of the Boolean function o : Zn
2 ! Z2 are also known

as the Walsh spectrum of o.
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Note that Eq. (3.39) encodes constraints for every value of q 2 Zd, where the case q = 0 is

trivially satisfied. This leaves a single constraint in the qubit case, which reads
Q

1kN
✓k(lk(i)) =

Q
1kN

✓lk(i)
k

= e⇡i(
PN

k=1 lk(i)#k) = !o(i) by Eq. (3.30),10 and reproduces Eq. (3.21) for qubits. We

thus find that our initial strategy of constructing explicit l2-MBQCs is generic. In particular,

the transformation formula in Eq. (3.37), which translates the polynomial representation of the

output function o : Zn

2
! Z2 into an equivalent representation in terms of fractions #k, applies to

l2-MBQC via phases ✓k = e⇡i#k = 1

fk(1)(0)
between the eigenbases of local measurement operators

in Eq. (3.30). On the other hand, for qudits phase relations in Eq. (3.39) are more general than

the constraints in Eq. (3.21). For instance, note the quadratic dependency on linear functions

in the phase relations arising in the qudit stabiliser formalism (cf. Eq. (3.8) and Eq. (3.11)).

Eq. (3.37) has a number of consequences. For instance, the (polynomial) degree of the output

function o : Zn

2
! Z2 places a lower bound on the coe�cients mink #k  1

2deg(o)�1 required for

the implementation as l2-MBQC, from which it follows that only quadratic functions can be

computed within the qubit stabilizer formalism, where phases arise as powers of i = ✓ = e⇡i
1
2 ,

hence, #k � 1

22�1 . In the next sections we show how Eq. (3.37) also allows us to bound the

number of qubits required for flat, deterministic l2-MBQC.

Optimal representation of functions in flat l2-MBQC

By means of the Hadamard transform in Eq. (3.37), given a polynomial output function, we

always find an implementation as l2-MBQC. As we will see in the next sections, for monomials

and other highly symmetric functions, this representation is optimal in the number of non-zero

coe�cients of its Z2-linear representation (and thus in the number of qubits in the implementation

as l2-MBQC), whereas for more general functions this is not the case.

The ambiguity underlying such representations stems from the fact that given a Boolean

function f , we may always add even multiples of other Boolean functions. Clearly, this does

not change f in its polynomial representation in Thm. 47, however, it potentially changes the

representation in terms of Z2-linear functions and thus the implementation as l2-MBQC. For

instance, note that the representation of the output function o : Z4

2
! Z2, o(i) = i1i2 + i3i4 in

10Note that we set local reference measurements to correspond with the generalised Pauli-X operator, for
which ✓ = 1, and whose eigenstates define the reference basis of Lm. 4.
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terms of Z2-linear functions in Sec. 3.3.1 arises by subtracting the ‘zero term’ z = 4i1i2i3i4 �

2i1i2(i3 + i4 � 1) 2 Z(o), i.e., it corresponds to the non-zero coe�cients under F�1(o� z).

More generally, let f : Zn

2
! Z2 be a Boolean function and define the linear space of zero

terms as

Z(f) = h2mg | g : Zn

2
! Z2, n � m � 1i . (3.40)

In addition to the linear equivalence relation in Eq. (3.34), we thus face the following problem.

Proposition 10. The minimal number of qubits R(o) required to implement a given polynomial

output function o : Zn

2
! Z2 in flat, deterministic l2-MBQC is the minimal number of non-zero

coe�cients Ca of F�1(o) in Eq. (3.37) under the equivalence relation o ⇠ o0 () o0 = o + z,

z 2 Z(o) of Eq. (3.40).

Proof. This follows immediately by the above discussion and the transformation in Eq. (3.37).

Importantly, Prop. 10 is responsible for the complexity of computing the optimal number of

qubits in flat, deterministic l2-MBQC. In particular, we find a rich structure of contextuality

beyond the mere distinction between contextual and non-contextual computation in Thm. 48.

Moreover, a similar relation also exists for d > 2, however, since F�1 only applies to operators

with linear phase relations in Eq. (3.39), ld-MBQCs with fewer qudits than R(o) might exist in

that case.

It is interesting to note that similar minimisation problems to Prop. 10 also arise in circuit

synthesis, e.g. the minimal number of T -gates can be related to the minimal number of Z2-

linear functions with odd coe�cients [27, 80]. Solving the latter further relates to minimum

distance decoding in punctured Reed-Muller codes, which seems hard in general [9]. While

our problem is slightly di↵erent—we are interested in all, not just odd terms in the Z2-linear

representation—numerical calculation suggests that a straightforward extrapolation from known

cases remains di�cult.

Nevertheless, for certain functions the complexity of R under the equivalence relation in

Eq. (3.40) simplifies. In the final two sections, we identify two such cases, which allows us

to find the optimal implementation of monomials in MBQC, and provide an upper bound to

elementary symmetric functions.
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Optimal implementation of monomials as l2-MBQC

Given a general output function in its polynomial representation o(i), we may use the transfor-

mation F�1 in Eq. (3.37) to obtain a representation in terms of Z2-linear functions and thus

study the minimal number of qubits required for implementation as flat, deterministic l2-MBQC.

In fact, for monomials the decomposition under F�1 is already optimal since there are no zero

terms in Eq. (3.40), which could a↵ect the minimisation in Prop. 10.

Theorem 56. In order to implement the monomial f : Zn

2
! Z2, f(x) =

Q
n

j=1
xj in flat,

deterministic l2-MBQC one requires N = 2n � 1 qubits.

Proof. Note that f has degree deg(f) = n = W (b) for b = (1)n := (1, · · · , 1) 2 Zn

2
, hence,

by Eq. (3.37) it has coe�cient 1

2W (b)�1 = 1

2n�1 . Explicitly, the coe�cients in the Z2-linear

representation under the transformation F�1 read:

F�1(
nY

j=1

xj)
b=(1)

n

= F(
nY

j=1

x
bj

j
) = F(

1

2W (b)�1
fb)

=
1

2W (b)�1

X

a2Zn
2

hfb, laila =
1

2W (b)�1

X

a2Zn
2

(�1)1�W (a) �n

j=1
ajxj

Since these terms are all odd multiples of 1

2W (b)�1 , they can only be reduced by a zero term of

degree at least n, however, there are no such terms in Z(f), hence, the representation under

the transformation F�1 is already optimal. Finally, note that the overlap with la, a = 0 can be

implemented by post-processing, leaving N = 2n � 1 non-zero terms.

Note also that the n-dimensional �-function arises from monomials by linear pre-composition

in Eq. (3.34), hence, R(�) = 2n � 1, which reproduces the bound in Thm. 54.

A similar computation for qudits yields the representation in Eq. (3.38). Yet again, there the

map F�1 only applies to measurement operators for which the phase constraints in Eq. (3.39)

depend linearly on the inputs, i.e., if there exist phases ⌅k(q) such that fk(ck)(q) = ⌅k(q)ck .11

11Note that the operators in Eq. (3.41) in the proof of Thm. 55 are of this form, namely fk(ck)(q) =

�
ck(q

d�1� d�1
d )

k for 1  q  d� 1.
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Elementary symmetric functions

While for monomials the transformation in Eq. (3.37) is already optimal in the number of

non-zero coe�cients (and thus in the number of qubits in the implementation as l2-MBQC),

this is no longer the case for more general polynomials. Nevertheless, for certain symmetric

functions the minimisation problem for R in Prop. 10 under the equivalence relation in Eq. (3.40)

simplifies.

As an example of this case, we consider elementary symmetric functions,

⌃n

k
(x) =

X

i1<···<ik
ij2{1,··· ,n}

xi1 · · · xik
, k  n .

Note that the multiple AND-function in [82] corresponds to the case k = 2. Plugging ⌃n

k
into

the transformation in Eq. (3.37) results in a total number of terms equal to
P

k

l=1

�
n

l

�
. However,

we can minimise this number by (at least)
�
n

k

�
� 1 as follows. We add the zero term z 2 Z(⌃n

k
),

z = (�2)n�kx1 · · · xn + (�2)n�k�1
X

i1<···<in�1
ij2{1,··· ,n}

xi1 · · · xin�1 + · · ·+ (�2)
X

i1<···<ik+1
ij2{1,··· ,n}

xi1 · · · xik+1

=
n�k�1X

l=0

(�2)n�k�l
X

i1<···<in�l
ij2{1,··· ,n}

xi1 · · · xin�l
.

By construction, ⌃n

k
and z have the same (smallest) coe�cient 1

2k�1 , and we can thus compare

the coe�cients in their representation based on Z2-linear functions la, a 2 Zn

2
. Clearly, ⌃n

k
+ z

contains the term x1� · · ·� xn and thus C
⌃

n
k+z

W (a)=n
= (�1)

k�1

2k�1 . For the terms of length k  m < n,

the coe�cients C
⌃

n
k+z

W (a)=m
contain contributions from all higher degree terms in the polynomial

representation of ⌃n

k
+ z:

C
⌃

n
k+z

W (a)=m
=

1

2k�1
(�1)(n�k)+(m�1)

✓
1�

✓
n�m

n�m� 1

◆
+

✓
n�m

n�m� 2

◆
� · · ·+ (�1)n�m

◆

=
1

2k�1
(�1)(n�k)+(m�1)

 
n�mX

l=0

(�1)l
✓

n�m

n�m� l

◆!
= 0
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Hence, with respect to monomials of degree k  m in ⌃n

k
+ z, we have reduced the overall

number of non-zero coe�cients by
�
n

k

�
� 1. Note also that the coe�cients of the remaining

monomials of degree 1  m < k are non-zero since there, the above sum is truncated and reads

C
⌃

n
k+z

W (a)=m
=

1

2k�1
(�1)(n�k)+(m�1)

✓
1�

✓
n�m

n�m� 1

◆
+

✓
n�m

n�m� 2

◆
� · · ·+ (�1)n�k

✓
n�m

k �m

◆◆

=
1

2k�1
(�1)(n�k)+(m�1)

 
n�kX

l=0

(�1)l
✓

n�m

n�m� l

◆!
,

thus leaving a total of
P

k�1

l=1

�
n

l

�
+ 1 terms in the Z2-linear representation in general. Still,

numerical tests show that this number is only suboptimal, i.e., R(⌃n

k
) 

P
k�1

l=1

�
n

l

�
+ 1. Never-

theless, note the following: (i) R(⌃n

n
) =

P
n�1

l=1

�
n

l

�
+ 1 = 2n � 1 reproduces the optimal number

of qubits within l2-MBQC for monomials in Thm. 56, (ii) R(⌃n

2
) =

P
2�1

l=1

�
n

l

�
+ 1 = n + 1

reproduces the bound on qubits in Prop. 2 in [82], and (iii) we find cases such as R(⌃7

2
) > R(⌃3

3
)

despite deg(⌃3

3
) = 3 > 2 = deg(⌃7

2
), which implies that—unlike the contextuality threshold in

Thm. 48—the (polynomial) degree alone is not su�cient to compare functions with respect

to their optimal representation in flat, deterministic ld-MBQC, thus confirming that the com-

putational classification of contextuality has a richer substructure beyond the non-contextual

case.

152



CHAPTER 3. CONTEXTUALITY IN QUANTUM COMPUTATION

3.4 Summary

In this chapter we have studied contextuality in measurement-based computation. Based on the

general framework in Def. 35 (cf. [10]), in Sec. 3.1 we first considered correlations in general

theories and proved a strict bound on the space of functions computable in non-contextual

measurement-based computation with Fd-linear side-processing (ld-MBC), which generalises a

previous result for d = 2 in [126].

In Sec. 3.2 we refined this bound by considering measurement-based quantum computation

[21, 128] with Zd-linear side-processing (ld-MBQC) explicitly. In particular, building on and

generalising results in [82, 126, 146], we proved that any output function o : Zn

d
! Zd can be

deterministically computed already in the non-adaptive case. We highlighted that a crucial

resource in this setting is the number of qudits required for implementation and linked it

to known hard problems in circuit synthesis. The key message is that (at least) for qubits,

any l2-MBQC implements a given function in terms of Z2-linear functions with real-valued

coe�cients, which arise as phase relations between eigenvectors of local measurement operators.

For qudits, the same construction applies, yet represents a special case of ld-MBQC only, thus

potentially allowing for implementations requiring fewer than the number of non-zero terms

under the discrete Fourier transform in Eq. (3.37). Nevertheless, even for qudits contextuality

in ld-MBQC is closely related with the phase relations between local sites according to the more

general relation in Eq. (3.39). In this sense, the phase relations between measurement operators

in Eq. (3.22) fully classify flat, deterministic ld-MBQC.

We have considered measurement-based quantum computation since the resource character of

nonlocality and contextuality exhibits rather clearly in this quantum computing architecture. In

particular, the restriction on Zd-linear side-processing allows to state the quantum advantage in

terms of the clear-cut complexity-theoretic di↵erence of Thm. 48. While interesting applications

might be found within this framework, the most interesting scenario will likely arise from

considering universal classical side-processing.
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3.A Proof of Theorem 55

We choose measurement operators of the form in Eq. (3.23) for prime dimension d as follows:

M(0)|qi := X|qi = |q + 1i, M(c)|qi := ✓(c)�cq
d�1 |q + 1i, 1  c  d� 1 (3.41)

Then M(c)d = 1 if we set ✓(c)d = ��(d�1)c. We find the following eigenstates

|✓(c)mi = 1p
d

d�1X

q=0

(!�m✓(c))q(�c)(q�1)q
d�1 |qi, 8c 2 Zd

with corresponding expressions in terms of computational basis states,

|qi = 1p
d

1

✓(c)q�c(q�1)qd�1

d�1X

m=0

!qm|✓(c)mi, 8c 2 Zd . (3.42)

Consider the (dn � 1)-qudit resource state | i = 1p
d

P
d�1

q=0
|qi⌦d

n�1 = 1p
d

P
d�1

q=0
⌦d

n�1

k=1
|qk = qi

and assume that the output function o : Zn

d
! Zd is encoded in the phase relations as follows

Y

1kdn�1

✓(ck(i))
q�ck(i)(q�1)q

d�1
= !qo(i) . (3.43)

Rewriting | i in terms of the local measurement bases via Eq. (3.42) yields

| i = 1p
d

d�1X

q=0

⌦d
n�1

k=1

 
1p
d

1

✓(ck(i))q�ck(i)(q�1)qd�1

d�1X

mk=0

!qmk |✓(ck(i))mki
!

= d
�dn

2

d�1X

q=0

!�qo(i)

0

@
X

m2Zdn�1
d

⌦d
n�1

k=1
!qmk |✓(ck(i))mki

1

A

= d
�dn

2

d�1X

q=0

0

@
X

m2Zdn�1
d

!q(
Pdn�1

k=1 mk�o(i)) ⌦d
n�1

k=1
|✓(ck(i))mki

1

A

= d
�dn+2

2

0

BBBB@

X

m2Zdn�1
d ,

�dn�1
k=1 mk=o(i)

⌦d
n�1

k=1
|✓(ck(i))mki

1

CCCCA
.
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Hence, we need to show that we can satisfy the phase relations in Eq. (3.43) for o(i) = �(i) by

choosing suitable linear functions ck(i) = lk(i) 2 LZd
n
.

Note that in contrast to the qubit case, the space of (local) functions with signature

f : Zd ! Zd contains d linearly independent elements. Out of those we only consider non-zero,

linear and homogeneous functions, i.e., la = �n

j=1
ajij for 0 6= a 2 Zn

d
, for which we again count

appearances of entries in our choice of functions.

First, consider a single non-zero entry, e.g. i = (i1, 0, · · · , 0)| 2 Zn

d
. For every appearance of

the entry i1, there are functions with coe�cients a1 ranging over all of Zd, which results in the

local phase factor,

�(q) :=
d�1Y

a1=0

✓(a1i1)
q�a1i1(q�1)q

d�1
= ✓q�

Pd�1
c=0 c(q�1)q

d�1
= ✓q�

d(d�1)
2 (q�1)q

d�1
, 12 (3.44)

where ✓ :=
Q

d�1

c=0
✓(c). Furthermore, the number of functions with a1 6= 0 counts

P
n�1

l=0

�
n�1

l

�
(d�

1)l = dn�1, hence, the overall phase factor in Eq. (3.43) reads �(q)d
n�1

. Next, we consider

an input with two non-zero entries, e.g., i = (i1, i2, 0, · · · , 0)| 2 Zn

d
. We need to be more

careful about the counting in this case as in contrast to the qubit case, where i1 + i2 = 0 for

i1, i2 6= 0, this does not hold for qudits. For functions with non-zero coe�cients a1, a2 6= 0 we

obtain the contribution ✓(a1i1 + a2i2), in particular, we need to count how many of these linear

combinations equate to 0 and thus do not add a phase. It is not hard to see that there are

(d� 1)2� (d� 1) = (d� 1)(d� 2) non-trivial combinations, hence, we end up with the following

overall phase factor in Eq. (3.43),

(�(q))d
n�2 · (�(q))dn�2 · (�(q)d�2)d

n�2
= (�(q)d)d

n�2
= �(q)d

n�1
.

The first two contributions are due to functions, where either a1 = 0 or a2 = 0, the third arises

from the functions with both a1, a2 6= 0, out of which there are ((d� 1)(d� 2))d
n�2

(and where,

by symmetry, we can always group (d � 1) together to obtain the phase �(q) in Eq. (3.44)).

This argument now generalises to input strings i 2 Zn

d
with m non-zero entries as follows.

12Note that we are abusing notation slightly by using modulo-d arithmetic over phases with di↵erent periods.
However, as the functions are computed classically the input is always an element in Zd.
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Denote the number of non-zero linear combinations of the form �j=Iajij with I ✓ {1, · · · , n},

|I| = m by g(m). Clearly, g(1) = (d� 1), more generally

g(m) = (d� 1)m � g(m� 1) = (d� 1)m � (d� 1)m�1 + g(m� 2) · · · =
m�1X

l=0

(�1)l(d� 1)m�l .

Now, there are dn�m linear functions for every linear function with m non-zero entries ik, and

for each of those we have the following contribution:

mX

k=1

✓
m

k

◆
g(k) =

mX

k=1

✓
m

k

◆ k�1X

l=0

(�1)l(d� 1)k�l

!

=

✓
m

m

◆�
(d� 1)m � (d� 1)m�1 + (d� 1)m�2 � (d� 1)m�3 + · · ·

�

+

✓
m

m� 1

◆�
(d� 1)m�1 � (d� 1)m�2 + (d� 1)m�3 � · · ·

�

+

✓
m

m� 2

◆�
(d� 1)m�2 � (d� 1)m�3 + · · ·

�

...

=
m�1X

k=0

(�1)k(d� 1)m�k

 
kX

l=0

(�1)l
✓

m

m� l

◆!

=
m�1X

k=0

(�1)k(d� 1)m�k

✓
(�1)k

✓
m� 1

k

◆◆

= (d� 1)

 
m�1X

k=0

(d� 1)k
✓
m� 1

k

◆!

= (d� 1)dm�1

In here, the first factor (d � 1) again results in the phase �(q) from Eq. (3.44), and we thus

obtain the overall phase factor

(�(q)d
m�1

)d
n�m

= �(q)d
n�1

. (3.45)

Finally, we relate this phase factor to the local phases ✓(c) and �. Since,

✓d =

 
d�1Y

c=0

✓(c)

!d

=
d�1Y

c=0

��(d�1)c = ��(d�1)
Pd�1

c=0 c = �� d(d�1)2

2 , (3.46)
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we need to choose ✓(c) for 1  c  d� 1 such that ✓ = �� (d�1)2

2 , e.g. ✓(c) := �� c(d�1)
d . Next, we

insert Eq. (3.46) into Eq. (3.44) and compute the overall phase factors:

�(q)d
n�1

= (�� (d�1)2

2 q · �(q�1)
d(d�1)

2 q
d�1

)d
n�1

=

8
>><

>>:

1 if q = 0

�� dn�1d(d�1)
2 (��d

n�1 (d�1)
2 )q if 1  q  d� 1

We may thus set �� dn�1(d�1)
2 = !, from which it follows that (�� dn�1(d�1)

2 )d = 1, hence, �(q)d
n�1

=

!q as required. In summary, we obtain the output function

o(i) =

8
>><

>>:

0 if i = 0

1 if i 6= 0

, (3.47)

from which we compute �(i) = (d� 1)o(i) + 1 by linear post-processing.

3.B Proof of Proposition 9

We choose measurement operators for prime dimension d as in Eq. (3.22), i.e.,

X(f)|qi = f(q)|q + 1i with f : Zd ! U(1) s.t.
d�1Y

q=0

f(q) = 1 ,

where |qi denotes the computational basis. Expressed in terms of this basis, the eigenstates

read:

|mi = 1p
d

 
|0i+ !�mf(0)|1i+ !�2mf(0)f(1)|2i+ · · ·+ !�(d�1)m

 
d�2Y

q0=0

f(q0)

!
|d� 1i

!

=
1p
d

 
d�1X

q=0

!�qm

q�1Y

q0=0

f(q0)|qi
!

Conversely, the computational basis expressed in terms of eigenstates of X(f) reads

|qi = 1p
d

 
1

Q
q�1

q0=0
f(q0)

d�1X

m=0

!qm|mi
!

. (3.48)
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We also use the following N -qudit resource state,

| i = 1p
d

d�1X

q=0

|qi⌦N =
1p
d

d�1X

q=0

⌦N

k=1
|qk = qi .

We would like to obtain the same parity state �N

k=1
mk = 1 (mod d) for all but the i = 0 input.

Rewriting | i in terms of the local measurement bases via Eq. (3.48) yields

| i = 1p
d

d�1X

q=0

⌦N

k=1

 
1p
d

1
Q

q�1

q0=0
fk(ck)(q0)

d�1X

mk=0

!qmk |mki
!

= d
�dn

2

d�1X

q=0

!�qo(i)

0

@
X

m2ZN
d

⌦N

k=1
!qmk |mki

1

A

= d
�dn

2

d�1X

q=0

0

@
X

m2ZN
d

!q(
PN

k=1 mk�o(i)) ⌦N

k=1
|mki

1

A

= d
�dn+2

2

0

BBB@
X

m2ZN
d ,

�N
k=1mk=o(i)

⌦N

k=1
|mki

1

CCCA
,

if the output function o : Zn

d
! Zd is encoded in the phase relations as follows

Y

1kN

 
q�1Y

q0=0

fk(ck)(q
0)

!
= !qo(i) .
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Chapter 4

Conclusion and Outlook

Quantum theory is maybe our most successful theory of nature. Even though it has been

invented with rather specific problems in mind, its applicability now reaches far beyond its

initially intended purpose; it underlies not just atoms but all of quantum chemistry and it

survived the marriage with field theory and relativity in the formulation of the standard model.

The repeated accuracy of its predictions is staggering, to date we still only have few clues to

where possible amendments might lurk. One way of testing the scope of quantum theory further

might be by means of future quantum computers. The exponential scaling in simulations of

quantum systems is the main roadblock to extensive pharmaceutical progress, groundbreaking

innovation in material sciences, and possibly probing new physics. Together with a handful of

exciting quantum algorithms, such as Shor’s factorisation of large numbers, they have since

inspired a generation of researchers.

Shor’s algorithm suggests that certain computational tasks run more e�ciently on a quantum

computer than on any classical computer. Assuming this is in fact the case, it is natural to

ask what powers a quantum computer. Motivated by the clear indications that (physical)

contextuality is a fundamental ingredient to quantum theory, in the latter part of this thesis

we studied contextuality in measurement-based quantum computation. We strengthened a

previous connection between contextuality and computation from qubit to qudit systems, and

constructed explicit contextual examples complementing well-known qubit ones. We gave a
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universal implementation method within this setup and found a natural resource measure in the

number of qubit systems required in the non-adaptive, deterministic case. As a common thread,

we emphasised that contextuality in quantum theory is closely intertwined with phase relations

between eigenstates of measurement operators.

A natural avenue for future research in this direction is to perform a thorough investigation of

the phase relations discussed here, compared to those arising in the cohomological classification of

contextuality such as in [127]. That contextuality might be given a geometrical explanation—as

an obstruction to global sections of corresponding presheaves—was first conjectured by Isham

within the topos formalism [1]. It has received increased attention in recent years, which led to

a number of di↵erent formalisms [5, 119, 127, 131]. Yet, none has so far been able to derive

complete invariants. We expect that a suitable abelian presheaf, whose group structure arises

naturally from the quantum formalism—in contrast to the very general sheaf-theoretic study of

cohomology in [5]—will allow to combine and refine existing results.

In Ch. 2 we demonstrated that quantum theory builds on contextuality in a fundamental way.

In fact, the mere order structure of contexts su�ces to derive the quantum symmetries described

by Wigner’s theorem, the spectral presheaf encodes the Kochen-Specker theorem in the form of

a quantum state space without global sections, while global sections of the probabilistic presheaf

bijectively correspond with quantum states by Gleason’s theorem. To this list of illustrious

results in foundations we added Stinespring’s and Bell’s theorem: with respect to the former, we

showed that complete positivity, a key property of quantum channels, originates from dilations

in and time orientations on contexts, and with respect to the latter, that nonlocality in Bell’s

theorem emerges naturally from a notion of composition of contexts. As a corollary to this result,

we solved an outstanding problem in quantum information theory by providing a classification of

quantum correlations among all non-signalling correlations under the additional notion of time

orientations in subsystems. We remark that the close resemblance with entanglement criteria

in the reformulation of Bell’s theorem (in contextual form) should be read as a hint towards

treating this time-directional symmetry as a local, intrinsically relational symmetry principle

within the active research on emerging space-time structures from entanglement.

160



CHAPTER 4. CONCLUSION AND OUTLOOK

In summary, (up to a choice of time direction) the full richness of quantum theory resides in

the mere order relations between observables imposed by the equivalence relation defined by

simultaneous measurability. This is a glaring confirmation of just how significant the idea behind

physical contextuality is, which was maybe first acknowledged by Niels Bohr, mathematically

captured by Ernst Specker and Simon Kochen, and raised to the status of a physical principle

in the topos approach to quantum theory by Chris Isham and collaborators. Probably the

most powerful workhorse in this programme is Gleason’s theorem, which proves that the linear

structure in quantum theory emerges from its context order in a very non-trivial way. It is

remarkable that physical contextuality is su�cient to recover this central aspect of quantum

theory, yet it begs the question why the context structure is of the particular form inherent

to (certain) Jordan algebras, thus excluding many more general orthomodular lattices and

examples such as Specker’s parable.

Possible attempts at resolving this problem might be the following. In the geometric

formalism [11, 99], the linear structure arises by complementing the (classical) symplectic form

with a (quantum) Riemannian metric. Their resemblance with Jordan and Lie algebra aspects

in the topos formalism is likely not a coincidence and deserves a more detailed study in the

future. Another result that recovers the quantum algebra from few algebraic principles including

a notion of composition is [69]. We expect that our notion of composition over contexts will

allow to strengthen this result and yield further insight into the linear structure underlying the

algebra of quantum mechanical observables.

Finally, the geometric nature of the topos formalism, the appearance of classical physics within

contexts, and the generality of von Neumann algebras provide a solid basis for incorporating

relativistic quantum mechanics, quantum field theories, and ultimately theories of gravity into

this programme.

This last endeavour is maybe the single most ambitious and most rewarding in all of physics.

It thus reminds of the introductory remarks and Specker’s parable [133]. It is certainly not clear

whether nature has set us an impossible task. But even if not, her contextual character seems

to urge us to acknowledge our own limitations in order to see beyond our singular perspectives

on reality. If we accept this, maybe the parable brings out a whole new interpretation.
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The Unknown,

The Grand Show,

The Choir Of The Stars

Interstellar

Theatre Play,

The Nebulae Curtain Falls

Imagination,

Evolution,

A Species From The Vale

Walks In Wonder

In Search Of

The Source Of The Tale

[118]
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