Article

A Beam Search Framework for
Quantum Circuit Mapping

Cheng Qiu, Pengcheng Zhu and Lihua Wei

Special Issue
Quantum Information: Working towards Applications
Edited by

Prof. Dr. Guilu Long, Dr. Kai Wen, Dr. Min Wang and Dr. Hai Wei

https://www.mdpi.com/journal/entropy
https://www.scopus.com/sourceid/13715
https://www.ncbi.nlm.nih.gov/pubmed/?term=1099-4300
https://www.mdpi.com/journal/entropy/stats
https://www.mdpi.com/journal/entropy/special_issues/53DRWCV559
https://www.mdpi.com
https://doi.org/10.3390/e27030232

Article

A Beam Search Framework for Quantum Circuit Mapping

Cheng Qiu ¥, Pengcheng Zhu 23* (¥ and Lihua Wei 2

check for
updates

Academic Editor: Giuliano Benenti

Received: 30 December 2024
Revised: 7 February 2025
Accepted: 21 February 2025
Published: 24 February 2025

Citation: Qiu, C.; Zhu, P.; Wei, L.
A Beam Search Framework for
Quantum Circuit Mapping. Entropy
2025,27,232. https://doi.org/
10.3390/ 27030232

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

School of Computer Science, Nanjing University of Information Science and Technology,

Nanjing 210000, China; suolioma@gmail.com

College of Information Engineering, Taizhou University, Taizhou 225300, China; angelirene@163.com
College of Information Engineering, Sugian University, Suqgian 223800, China

Correspondence: zhupcent@tzu.edu.cn

Abstract: In the era of noisy intermediate-scale quantum (NISQ) computing, the limited
connectivity between qubits is one of the common physical limitations faced by current
quantum computing devices. Quantum circuit mapping methods transform quantum
circuits into equivalent circuits that satisfy physical connectivity constraints by remapping
logical qubits, making them executable. The optimization problem of quantum circuit map-
ping has NP-hard computational complexity, and existing heuristic mapping algorithms
still have significant potential for optimization in terms of the number of quantum gates
generated. To reduce the number of SWAP gates inserted during mapping, the solution
space of the mapping problem is represented as a tree structure, and the mapping process
is equivalent to traversing this tree structure. To effectively and efficiently complete the
search process, a beam search framework (BSF) is proposed for solving quantum circuit
mapping. By iteratively selecting, expanding, and making decisions, high-quality target
circuits are generated. Experimental results show that this method can significantly reduce
the number of inserted SWAP gates on medium to large circuits, achieving an average
reduction of 44% compared to baseline methods, and is applicable to circuits of various
sizes and complexities.

Keywords: quantum computing; quantum circuit mapping; noisy intermediate-scale
quantum computing; limited connectivity; beam search

1. Introduction

With IBM’s recent launch of the Condor superconducting quantum computer featuring
over 1000 qubits [1], Noisy Intermediate-Scale Quantum (NISQ) computing devices [2]
have attracted widespread attention in both academia and industry. However, these
quantum computing devices still have numerous shortcomings. Their core quantum
processing unit (QPU) supports only a limited set of quantum operations and is affected
by constraints on connectivity between qubits, as well as the relatively short coherence
times of physical qubits, which typically results in a high error rate during the execution
of quantum circuits. Current QPUs often cannot directly execute quantum circuits due to
limited connectivity between qubits, necessitating the design of quantum circuit mapping
methods [3,4] to remap qubits, thereby transforming them into equivalent quantum circuits
that fit the architecture of the physical device.

Quantum circuit mapping consists of two parts: the initial mapping of qubits and
the remapping. Since the initial mapping 77y can interfere with the remapping, the latter
becomes the primary focus. Existing qubit remapping methods can be classified into two
categories. The first category redefines the quantum circuit mapping problem as an opti-
mization problem and uses existing algorithms to solve it [5-11]. However, the quantum

Entropy 2025, 27, 232

https:/ /doi.org/10.3390/e27030232

https://doi.org/10.3390/e27030232
https://doi.org/10.3390/e27030232
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0002-5710-7207
https://orcid.org/0000-0001-8145-6023
https://doi.org/10.3390/e27030232
https://www.mdpi.com/article/10.3390/e27030232?type=check_update&version=1

Entropy 2025, 27, 232

20f 16

circuit mapping problem on NISQ devices has an NP-complete computational complexity.
While these methods can achieve better results for circuits of limited scale, they often lack
scalability and practicality when dealing with large-scale circuits. The second category
employs heuristic search, progressively transforming the initial circuit into a version suit-
able for the physical device [2,12-17]. Experimental results indicate that heuristic search
has advantages over the first category for large circuits and exhibits strong applicability
across circuits of various scales but still has shortcomings. Current heuristic search methods
struggle to balance search width and depth when addressing the tree-like solution space of
the quantum circuit mapping problem, leading to difficulties in maintaining good mapping
quality and efficiency for circuits of varying sizes and complexities.

Inspired by the recent significant success of beam search algorithms in natural lan-
guage text generation [18], this paper proposes a quantum circuit mapping method based
on a beam search framework (BSF), aiming to minimize the number of inserted SWAP
gates. The main contributions include: (1) the design of a multi-layer window approxi-
mation of a real effect value function to calculate the effect value of each inserted SWAP
gate node in the search tree, providing a basis for the search decision-making process and
(2) the construction of a quantum circuit mapping method based on the aforementioned
approximate real effect value function within the beam search framework, subdividing the
search process into selection, expansion, and decision phases. This method leverages the
characteristics of beam search to adjust the search width and depth, allowing the algorithm
to adapt to quantum circuits of different scales.

2. Preliminaries
2.1. Qubit

Classical computer bits have two states, usually represented as 0 and 1, serving as the
fundamental units of information. In contrast, a qubit also has two basic states, typically
represented as |0) and |1). Unlike classical bits, qubits can exist in a linear combination of
the two basic states, which can be expressed as |¢) = «|0) + B|1), where |«|2 + |8]* = 1,
and the state vector is (a,). Additionally, two or more qubits can become entangled,
forming a composite system. The state of a two-qubit system can be represented as
P = w0p|00) + ap1|01) + w19]|10) + aq1|11), with its state vector being (xgo, o1, ¥10, 411)-

2.2. Quantum Operation

Quantum circuits consist of qubits and a sequence of quantum gates applied to the
qubits, collectively representing a quantum program. As shown in Figure 1, each horizontal
line in the quantum circuit represents a qubit, while the quantum gates applied to the
qubits are represented by different blocks along the lines.

TvE 1

U
a.Hadamard gate b.CNOT gate = c.SWAP gate

Figure 1. Hadamard, CNOT, SWAP.

From left to right in Figure 1 are the Hadamard gate, controlled NOT (CNOT) gate, and
SWAP gate. The squares represent single-qubit gates, while the vertical lines connecting
two qubits represent two-qubit gates. Barenco has demonstrated that any quantum circuit
can be represented using only single-qubit gates and CNOT gates [19]. Based on this, the
test quantum circuits in the test set contain only single-qubit gates and CNOT gates, and

Entropy 2025, 27, 232

30f16

through combinations of these gates, all the quantum gates supported by the IBM cloud
computing platform can be constructed.

2.3. NISQ Computing Architecture

Figure 2 shows the classical IBM Q Tokyo chip architecture [16], where the effective
time of the qubits averages around 50 ps, and the average error probabilities for single-
qubit gates, measurement gates, and CNOT gates are denoted as 4.43 x 1073, 8.47 x 1072,
and 3.00 x 1072, respectively. As illustrated in Figure 2, two coupled physical qubits
are connected by bidirectional arrows. These qubits are arranged in a planar geometric
structure, and due to hardware connectivity constraints, a single qubit can only couple
with its neighboring qubits. For example, qq is connected to g; and g5, meaning that a
CNOT gate can be applied to the qubit pair {qo, 71 } and {qo, g5 }. However, g is not directly
connected to g6, so a CNOT gate cannot be directly applied to these two qubits.

Figure 2. IBM Q Tokyo quantum physical architecture.

2.4. Quantum Circuit Mapping

Due to the connectivity constraints between qubits in the quantum physical archi-
tecture, quantum programs must undergo quantum circuit mapping before execution
to convert logical quantum programs into hardware-compatible quantum circuits. The
connectivity constraints primarily affect the execution of two-qubit gates, while they have
no impact on the execution of single-qubit gates. Therefore, this study focuses solely
on addressing the connectivity constraint issues of two-qubit gates through quantum
circuit mapping.

The basic quantum circuit mapping process is as follows: Assuming the quantum
physical architecture is as shown in Figure 3, given an original quantum circuit diagram
to be processed, as indicated in part b of the figure, only the second CNOT gate can
be executed directly. The first CNOT gate cannot be executed immediately because its
corresponding logical qubits, vy and v;, do not correspond to directly adjacent physical
qubits, gg and g2, when mapped to the physical architecture. Therefore, a quantum circuit
mapping transformation is required.

Entropy 2025, 27, 232

40f16

W (0 e —fres
Vi >4 @ a i :
woe @ DD
=4 (o) Fom e

a.Initial Mapping and Architecture Graph b.Circuit Front Layer

Figure 3. Initial mapping, physical architecture, and circuit front layer: a simple mapping example.

Current mainstream mapping transformation methods involve inserting SWAP opera-
tions into the quantum circuit to exchange the states of the corresponding logical qubits
in the physical qubits. This approach allows for adjustments in the mapping state, en-
abling the execution of two-qubit gates that are originally constrained by connectivity
limitations. As shown in Figure 3, after inserting a SWAP gate between the logical qubits
v1 and v, of the second CNOT gate, all two-qubit gates in the updated front layer satisfy
the connectivity constraints. After inserting the SWAP gate, the mapping 7t updates to
{vo = q0,v1 = q2,v2 — q1,v3 — g3}, allowing all quantum gates in the front layer to
be executable.

3. A Beam Search Framework for Quantum Circuit Mapping
3.1. Basic Idea

The state of the quantum circuit is represented as nodes in a bundle search tree. A
single search in the beam search framework consists of three main processes: selection,
expansion, and decision. In the selection process, a certain number of nodes are chosen
from the current layer based on the effect values of each node, with the quantity determined
by the width of the bundle search. The expansion process applies all candidate SWAP
operations to the selected nodes, generating an equal number of expansion nodes, and
calculates the effect values of each SWAP operation using an approximate real effect value
function. The selection and expansion processes are repeated until the set search depth is
reached. The decision process compares the long-term effect values of the newly expanded
leaf nodes, then backtracks to the set of nodes generated during the first expansion. Ulti-
mately, a new node is selected as the root node for the next search, which is an ancestor of
the chosen leaf nodes.

The following explanation combines with Figure 4 to provide a detailed illustration.
The state of the quantum circuit sy represented as the root node of the search tree after
removing the executable gates under the initial mapping, is treated as the current layer
(the blue box in Figure 4). Since the current layer contains only one node, the root node is
selected for expansion. The specific steps involve inserting all candidate SWAP gates into
the circuit of the root node and removing the quantum gates that become executable due
to the insertion of the SWAP gates. Assuming there are currently three candidate SWAP
gates, three nodes—let us call them s1, 55, and s3—are expanded, and the long-term effect
values for each corresponding node are calculated. At this point, the layer containing these
nodes is the current layer (the green box in Figure 4). If the search width is set to 2, the
two nodes with the highest values (the gray nodes s, and s3 in Figure 4) are selected for
further expansion. This process is repeated until the set search depth is reached, which
we assume to be 4 in this case. During this phase, the long-term effect values of the leaf
nodes in the last layer (the red box in Figure 4) are compared, and node s’ is chosen for
backtracking. From the set of ancestor nodes generated during the first expansion (the
green box in Figure 4), node s; is decided upon as the root node for the next search, as

Entropy 2025, 27, 232

50f16

shown in the (b) in Figure 4. This search process will continue to repeat until all quantum
gates in the circuit have been executed.

a.Beam Search Tree b.Expansion

Figure 4. Schematic diagram of the beam search framework.

3.2. Preprocessing

The preprocessing of the quantum circuit mapping algorithm based on the beam
search framework primarily includes the following operations:

Calculate the physical distance of double quantum gates: Given a quantum architec-
ture diagram AG, let D represent the distance matrix recording the shortest path lengths
between various physical qubits, where the distance between each pair of adjacent qubits
is 1. For a two-qubit gate, suppose we have AG, 7, the two-qubit gate g(v;, v;), and the
corresponding logical qubits are v; and v;, where i # j. In this case, the physical distance of
the two-qubit gate is the distance between the physical qubits g; and g; minus one, denoted
as dgate, which can be expressed as follows:

dgate = D[7t(v;)][7t(v;)] — 1 1)

where 77(v;) represents the physical qubit corresponding to the logical qubit under the
mapping 7t.

Quantum gate dependency graph (directed acyclic graph, DAG): Any quantum
circuit can be represented as a sequence of combinations of single quantum gates and
CNOT gates. Therefore, in this context, the term ‘double quantum gate’ specifically refers
to the CNOT gate. Figure 5 illustrates a specific quantum gate dependency graph. To clearly
demonstrate the dependency relationships of CNOT gates on physical qubits within the
quantum circuit, a directed acyclic graph (DAG) is used to represent the dependency order
of these CNOT gates. Since single quantum gates operate only on single qubits and do not
create dependencies on other qubits, the circuit mapping algorithm does not consider the
influence of single quantum gates in its design. A CNOT gate can only be executed when
both corresponding physical qubits g; and g; have completed all preceding CNOT gates.

Quantum circuit layering: The layering of quantum circuits is achieved through the
quantum gate dependency graph, and based on this layered structure, the definition of
the front layer is proposed. The front layer is defined as a set of CNOT gates that have
no predecessor dependencies; there are no unexecuted predecessor CNOT gates in the
DAG, allowing these gates to be executed immediately on the hardware. Specifically, for
a CNOT gate CNOT(g;, g;), it can be included in the front layer when its corresponding
two qubits ¢g; and g; and all previously executed quantum gates on them have completed
execution. As shown in the front layer of Figure 5, the CNOT gates g; and g» in the front

Entropy 2025, 27, 232

6 of 16

layer have no pending predecessor quantum gates in DAG; thus, they can be safely placed
in the front layer.

e B8N

1 g, ¥ & g ——
ek g % 1 g, -
Lo ; 4s

Front Layer

Figure 5. Quantum gate dependency graph represented by a directed acyclic graph (DAG).

Initial mapping of qubits: Due to the use of different initial mapping schemes,
varying results may be generated for different quantum circuits, and the optimal initial
mapping scheme applicable to all quantum circuits remains unclear. Therefore, to avoid
interference from the initial mapping of qubits on the quantum circuit mapping experiment,
this study adopts only the most basic initial mapping strategy. In this scheme, the specific
conditions of the CNOT gates in the front layer F are not considered; logical qubit v; is
mapped to physical qubit g;(i > 1 and i < n), n is the number of qubits. This initial
mapping does not take into account the details of the actual quantum circuit and its
physical architecture, thereby eliminating any potential impact on subsequent quantum
circuit mapping algorithms.

3.3. Approximate Real Effect Value Function

The cost function is the core of heuristic search algorithms [3,14], providing a basis for
action decisions by estimating the favorability of candidate operations for problem-solving.
Currently, existing heuristic quantum circuit mapping algorithms [3,14] generally use a
lookahead cost function, which approximates the potential improvement from applying a
SWAP gate by calculating the sum of the physical distances of all quantum gates within the
lookahead window, ultimately selecting the SWAP gate with the minimum cost function
value as the next action. However, the lookahead cost function only considers the direct
impact of the SWAP gate on the physical distances of subsequent quantum gates, without
further assessing the potential negative effects that this SWAP gate might introduce. For
example, if the currently inserted SWAP gate increases the physical distance of a certain
quantum gate within the lookahead window, the execution of that quantum gate may be
adversely affected. To address this issue, additional SWAP gates need to be introduced
in the subsequent mapping process to offset the negative effects of the aforementioned
SWAP gate. To improve the shortcomings of the existing lookahead cost function in current
mapping methods, this approach constructs a cost function that comprehensively considers
both the physical distances of quantum gates and the SWAP gates needed thereafter. To
distinguish it from the existing lookahead cost function, it is referred to as the ‘approximate
real effect value function’.

The calculation idea of the approximate real effect value function is as follows: when
evaluating the overall effect of a SWAP gate, the first step is to calculate the reduction in
the sum of the physical distances of all quantum gates within the lookahead window after
applying the SWAP gate, which serves as the numerator of the effect value function. Sec-
ondly, the number of subsequent SWAP gates that may be introduced within the lookahead
window after applying this SWAP gate is estimated, which serves as the denominator of

Entropy 2025, 27, 232

7 of 16

the effect value function. Next, the implementation details of this effect value function will
be explained in detail.

According to the previous definition of the physical distance for double quantum
gates, when dgate > 0, it implies that at least a number of SWAP gates equal to dgqte must be
inserted to satisfy the connectivity constraints between two qubits in the physical quantum
architecture. Based on this, the effect value H¢ of a double quantum gate ¢ under the action
of candidate SWAP gates can be defined as follows:

Hg = D[n(8.03)][7t(g-07)] — D[m1(g-v;)][1(8-9;)] 0

where 1 is the temporary mapping generated after applying the SWAP operation to 7.
For all double quantum gates in the front layer F, the effect value of the front layer F under
the action of candidate SWAP gates can be obtained by summation, as follows:

Hp=)_ H, ®)
g€cF

Since the range of change in physical distance for double quantum gates due to the
SWAP operation does not exceed 1, the range of Hg is —1,0,1. When Hj is positive, it
indicates that this SWAP operation helps to reduce the physical distance of the current
double quantum gate, making its execution more favorable. For HF, if its value is positive,
it is considered that the SWAP operation can effectively reduce the overall physical distance
of the front layer F, thereby facilitating the advancement of the front layer in the DAG. For
the quantum circuit state s = (7r, PC,LC), there may be multiple candidate SWAP gates
that can be inserted, so each candidate SWAP operation needs to be evaluated. For those
SWAP operations with a negative Hf, to avoid situations where the algorithm does not
converge, such operations are not considered.

For candidate SWAP gates, if their effect value Hr is positive, subsequent operations
can continue. In this case, using the multi-layer window approach to calculate the approxi-
mate real effect value function, if a negative situation arises as the front layer advances, it
indicates that the initial candidate SWAP gate has a negative effect on the subsequent layer,
resulting in an increased physical distance for that layer. To eliminate this negative effect,
it is necessary to insert auxiliary SWAP gates identical to the original SWAP gate before
that subsequent layer. However, such an operation will also negate the positive effect
of the original candidate SWAP gate on the subsequent layer. Therefore, for subsequent
layers that are not affected by the negative effects of the original candidate SWAP gate, it
is necessary to insert auxiliary SWAP gates identical to the original candidate SWAP gate
before them to retain the positive effect of the original candidate SWAP gate.

The following is a detailed explanation in conjunction with Figure 6. In Figure 6, the
original candidate SWAP gate is represented in red, and the multi-layer window size is
set to 5, indicating that the front layer F needs to be advanced five times. First, Layer 1 is
considered the front layer of the DAG. Since Hr has been calculated and is positive, there is
no need to insert auxiliary SWAP gates before it; the front layer F can be advanced directly
to the next layer in the DAG, which is Layer 2. Next, the effect value Hy for this layer
is calculated. Assuming it is negative, an auxiliary SWAP gate identical to the original
candidate SWAP gate must be inserted before this layer, reverting the new mapping 7’ back
to the original mapping 7r, and recalculating Hp for this layer, resulting in 0. Subsequently,
the front layer F is advanced again, updating to Layer 3, and the effect value Hy for this
layer is calculated, assuming it is 0. Since an auxiliary SWAP gate was previously added to
restore the mapping to 77, eliminating the positive effect of the original candidate SWAP
gate on this layer, it is necessary to add another auxiliary SWAP gate identical to the original

Entropy 2025, 27, 232

8 of 16

SWAP gate before this layer to restore its positive value. These operations will continue to
be repeated until the window advancement is complete.

A N T] N
I IN AT IR T
L | | Lo !
S| (R | It >
R | ! o
|:1_J‘ 1 —t
x| | N
| x| : ::
| |
| |

cost layers
Figure 6. Schematic diagram of the approximate real effect value function.

After calculating the effect values for each layer of the window layer, the effect value
of node s is obtained, expressed as follows:

1

VAL(S) - mfeg/er(k[f . decay) (4)

Here, added_swaps represents the number of additional auxiliary SWAP gates added
during the multi-layer window calculation process. For each layer in the window, a weight
parameter is introduced to reduce the influence of subsequent layers, which will help
the algorithm select candidate SWAP gates with parallel execution capabilities, thereby
introducing a decay effect into the effect value function. The decay in Equation (4) refers to
the decay parameter, which has been repeatedly verified through multiple experiments,
with an adjustment to 0.7 yielding optimal results for the algorithm. Additionally, VAL(s)
is used to quantify the effect value of the new node s after applying the SWAP operation.
Clearly, as VAL(s) increases, the number of SWAP gates needed to reach the target state
will correspondingly decrease, thereby enhancing the superiority of node s.

3.4. Beam Search Framework

The beam search method, as a combinatorial optimization algorithm, is an improve-
ment over the greedy strategy. In the search process at each layer, this method retains
multiple candidate results instead of just the current optimal output. It does not search
the entire solution space but improves the algorithm’s computational speed by branching,
selecting, and eliminating within the solution space. It is known that the quantum circuit
mapping optimization problem is NP-hard, with a vast search space, making it extremely
difficult to find the optimal solution. Moreover, as a critical part of the quantum comput-
ing compilation process, the execution time of the algorithm must be strictly controlled.
Therefore, finding an approximately optimal solution has become a feasible approach.

Using the beam search method, with the goal of minimizing the number of inserted
SWAP gates, we start from the initial state sy = (77;,;, PCp, LCp) to construct the beam
search decision tree. Here, 77;,,; represents the initial mapping, PCy is the physical quantum
circuit applicable to the actual architecture, and LCj is the logical quantum circuit to be
processed. The state s = (71?, PC, LC) serves as a node in the tree, where PC represents the
physical circuit of the current node, and LC represents the logical circuit of the current

Entropy 2025, 27, 232

90of 16

node. The effect value VAL(s) for each node is calculated using the approximate real effect
value function. Through this process, the minimum number of SWAP gates required to
reach the target node stgrget = (7, PC, LC) (where LC is empty, indicating the target node)
is computed.

Each node s in the beam search tree has three effect values for decision assessment: the
reward value REW(s, s'), the effect value VAL(s), and the long-term effect value VALj, (s)-
The reward value REW(s,s’) indicates the extent to which the number of quantum gates
to be executed in the circuit decreases from the parent node s to the child node s’ after
inserting a SWAP gate. The effect value VAL(s) describes the pros and cons of inserting
a single SWAP gate in subsequent mapping tasks. The long-term effect value VAL (s)
reflects the overall quality of the current circuit state at each node (which includes all
previously inserted SWAP gates) in the mapping task, serving as a basis for evaluation
and decision-making during selection and backtracking. By applying a SWAP operation to
node s, a new node is obtained, denoted as s’, with s as its parent node. Thus, the reward
value REW(s, s’) from node s to s’ can be defined, and its calculation function is as follows:

REW(s,s') = num(s) — num(s') (5)

Here, num(s) represents the number of double quantum gates in the logical circuit
of node s, so REW(s,s’) can also refer to the number of newly added executable gates in
the node s’ compared to the node s, with its value always being non-negative. Based on
the above definition of the nodes in the beam search tree, the beam search problem for
quantum circuits can be divided into three processes: selection, expansion, and decision, as
shown in Figure 7.

Repeal until the search is finished

Selection Expansnon Decision

LV

Figure 7. Schematic diagram of the beam search framework.

Selection: The selection process aims to find the optimal set of nodes in the beam
search tree for further expansion. Part a of Figure 5 details the specific process of selection.
For each layer of expanded nodes, a fixed number of nodes is selected as candidates
for further expansion. First, the root node is added to the set of nodes to be selected,
selection = sg. Before reaching the search depth set by the beam search, a certain number
of optimal nodes are selected from selection based on the long-term effect values of each
node. The specific quantity k is determined by the search width width and the number of
elements 7 in the set, specifically k = min(n, width). Through repeated experiments, it has
been found that setting the search width of the beam search tree to 8 yields optimal results
for the algorithm.

Entropy 2025, 27, 232

10 of 16

During the selection process, nodes are compared and ranked based on their long-term
effect values, with the specific calculation function detailed in the expansion process. In
each round of selection, the nodes with the highest long-term effect values are chosen to be
added to the set of nodes for expansion, expansion.

Expansion: The expansion process involves applying SWAP operations to all nodes in
the set of nodes for expansion, thereby generating the corresponding set of child nodes and
calculating the long-term effect value for each node corresponding to the SWAP operation.
The set of candidate SWAP operations for node s is denoted as SWAPs. For any SWAP
gate SWAP(v;, vj) in this set, the logical qubit v; corresponds to the physical qubit 777! (v;),
and v; corresponds to (v i), both of which should be part of the front layer F involved
in node s. For a given node s, expansion can only be performed using the SWAP gates
from its corresponding SWAPs set, a strategy that has been widely used in quantum
circuit mapping.

By applying the candidate SWAP operations to s = (71, PC,LC), a new node s’ =
(n/,PC’, LC") is obtained, where 7’ is derived from 7t after the SWAP operation. Specifically,
this involves remapping the two logical qubits of SWAP(v;,vj) as v; — 7 '(v;) and
v; — 7=1(v;). The set LC’ is obtained by removing all executable gates in LC under the
new mapping 7/, while PC’ is formed by adding SWAP(v;,v;) to PC and subsequently
removing the executable gates from LC. Next, the long-term effect value of the new node s’
is calculated, with the calculation function as follows:

VALjgng(s') = VALjpg(s) + REW(s,s') + VAL(s') (6)

Here, s represents the parent node of s". VALj,,,4(s) is the long-term effect value of the
parent node s; for the root node, which does not have a parent node, its long-term effect
value is 0. Using the aforementioned approximate real effect value function, the one-step
effect value VAL(s") for node s’ can be calculated, while REW (s, s") represents the reward
value obtained by applying the SWAP operation on the parent node s to derive the child
node s’. All newly expanded nodes are then added to the set of nodes for selection.

Decision: After repeatedly performing the selection and expansion processes for y
rounds, a decision is made, where y is the search depth of the beam search tree. Through
repeated experiments, it has been found that setting the search depth of the beam search
tree to 13 yields optimal results for the algorithm. Based on the long-term effect values
of each node in the current selection set, the leaf node with the highest long-term effect
value is chosen, and the search backtracks to the initial set of nodes expanded from the root
node to find the corresponding ancestor node. The SWAP operation corresponding to this
ancestor node is selected as the final choice in the decision-making process, representing
the long-term optimal SWAP operation for the root node state. This ancestor node is then
set as the new root node, initiating the next search. When the LC corresponding to the
new root node sy = (71, PC, LC) is empty, it indicates that the quantum circuit mapping
has been completed, and its PC is the desired quantum circuit that satisfies the physical
quantum architecture AG.

3.5. Complexity Analysis of Proposed Algorithm

The time complexity of the approximate real effect value function is as follows: when
the value of the current layer Hr is 0, if added_swaps is not 0, it indicates that the previously
inserted auxiliary SWAP gates have restored the mapping to the state before the original
alternative SWAP gates were inserted, ensuring that the subsequent layer’s value Hf is
not negative. When encountering another layer with Hg equal to 0, it can be inferred that
it was originally positive but has become 0 due to the influence of the auxiliary SWAP
gates. In this case, the same auxiliary SWAP gates need to be reinserted to restore it to

Entropy 2025, 27, 232

11 of 16

a positive value. In terms of algorithm complexity, since the values of each layer can be
fully computed after inserting the first SWAP gate, the time complexity of this effect value
function is O(k), where k is the window size.

In the worst-case scenario, the algorithm’s time complexity is given by O(|E| - |G| -
d-w - k), where |G| is the number of two-qubit gates in the quantum circuit, which indi-
cates that in the worst case, inserting a SWAP gate can only execute one two-qubit gate.
|E| represents the number of qubits in the quantum physical architecture. In the worst case,
all SWAP gates applied to the qubits in the architecture diagram can serve as alternative
SWAP gates, d denotes the depth of the clustered search tree, w is the width of the clustered
search tree, and k represents the window size of the approximated real effect value function.
Although the algorithm may be unsolvable in terms of time in the worst case, a balance
can be achieved between algorithm performance and efficiency by adjusting d, w, and k.
The optimal case is O(1), meaning the circuit already meets the constraints of the physical
architecture and does not require mapping.

3.6. Practical Example

The following provides a practical example, where a simple quantum circuit is selected,
as shown in the Figure 8a, which contains five CNOT gates and six single-qubit gates.
It is assumed that this circuit will run on the physical architecture in Figure 3, with a
search depth set to 15 and a search width set to 8. The initial mapping g is defined
as vg — 40,91 = q1,...,v; — ¢, First, as shown in Figure 8b, a clustered search tree
is constructed. The root node sy contains the complete physical circuit PC, an empty
logical circuit LC, and its corresponding mapping 7. For the root node s, its front
layer includes a CNOT(qo, q2)- Since this CNOT gate cannot be executed directly under
the corresponding mapping at this node, an auxiliary SWAP is required to change its
mapping, allowing the circuit to proceed. For this node, the available SWAP gate set is
SWAP(q0,q1), SWAP(q1,q2), SWAP(q2, q3). Next, using the approximate real effect value
function from Section 3.2, the effect value of the SWAP(q1,42) gate is calculated with a
window size set to 7. It can be observed that after inserting SWAP(q1, 42), the physical
distances of the first CNOT (40, 42) and the fourth CNOT(40, 42) both decrease by 1, while
the physical distance of the final CNOT(40,41) increases by 1, with no change in the
physical distances of the other CNOT gates. Therefore, an additional SWAP gate needs
to be added before the final CNOT(40, g41). Given a decay parameter set to 0.7, the effect
value for SWAP(q1, g2) is calculated as 1+ 1 x 0.7 x 0.7. These SWAP gates are applied to
the circuit at the root node, resulting in the expansion of two new nodes. Each new node’s
mapping is obtained by applying the corresponding SWAP gates to the mapping of the
root node. The circuit is then advanced under the new mapping until no further execution
is possible. At this point, combining the previously calculated effect values of the SWAP
gates with the number of CNOT gates executed during the circuit advancement, the effect
values of the expanded nodes are calculated to be 1.74 and 3.49, respectively. Since the
number of expanded nodes is less than the search width, all expanded nodes are chosen
as candidate nodes. As the search depth has not yet been reached, further expansion of
the candidate nodes is performed, resulting in the expansion of four new nodes. Since
node ss is obtained by adding another SWAP (g1, 42) to s(SWAP(q1, 42)), as shown in the
Figure 8b, it has already executed all the gates in the circuit, thus completing the algorithm.

Entropy 2025, 27, 232 12 0f 16

()

‘ N M
! N2 RN AN U ° e

) 7 M

qu U L] 1

a.Circuit to be Processed ° ° e o
VA

c.Beam Search Tree

N] N T+

@ N LT] UL
M D
qu N2 B EaN

b.Processed Circuit

Figure 8. Practical example.

4. Results
4.1. Experimental Setup

The quantum circuit mapping algorithm based on the beam search framework aims
to minimize the total number of inserted SWAP gates. Therefore, in the experiments, the
number of CNOT gates inserted during the quantum circuit mapping process is used
as an evaluation metric, which is three times the number of SWAP gates. The IBM Q
Tokyo architecture is chosen as the quantum physical architecture for the experiments.
This quantum computing platform is a commonly used testing platform in recent similar
studies and contains 20 qubits, as detailed in Figure 2. The experiments utilize quantum
circuits that are widely used as benchmarks in similar research; these benchmark circuits
consist of the quantum instruction set supported by IBM Q series quantum computers,
where double quantum gates only include CNOT gates, and the rest are single quantum
gates. The algorithm is implemented in Python 3.10, and the experiments are conducted
on a Lenovo Y9000P laptop equipped with an Intel Core i9-13900HX CPU (manufactured
by Intel Corporation, Santa Clara, CA, USA) and 16GB of memory (Samsung Electronics,
Suwon, Republic of Korea), running Windows 11 operating system.

To evaluate the performance of the algorithm, the SABRE algorithm proposed in refer-
ence [3] and the IBM basic mapping algorithm were chosen as comparison benchmarks.
The SABRE algorithm is a commonly used comparative algorithm in quantum circuit
mapping research, while the IBM basic mapping algorithm is the most widely used and
fundamental mapping algorithm in current quantum computing platforms. After multi-
ple tests, the quantum circuit mapping algorithm based on the beam search framework
finalized a set of optimal parameters, specifically as follows: the search width of the beam
search framework is set to 8, the search depth to 15, the decay parameter in the approximate
real effect value function is set to 0.7, and the window size for multi-layer calculations of
the effect value function is set to 7.

4.2. Comparison of Experimental Results

The quantum circuit mapping method based on beam search does not consider the
optimization of results based on the initial mapping. Therefore, it initially uses the same
identity mapping, mapping the ith logical qubit to the ith physical qubit. The experimental
results of the algorithm on multiple benchmark circuits are shown in Table 1. The first
two columns represent the names of the quantum circuits and the number of CNOT gates
included, while the next three columns display the number of CNOT gates inserted by the
SABRE algorithm, the IBM basic mapping algorithm, and our BSF algorithm, respectively.
To intuitively show the difference between this algorithm and the existing algorithms, the
following two columns present the reduction in the number of CNOT gates inserted by this

Entropy 2025, 27, 232

13 of 16

algorithm compared to the other two methods. This value is calculated by subtracting the
number of CNOT gates inserted by this algorithm from that of the other algorithms, and
then dividing by the number of gates inserted by the other algorithms. The last column of
Table 1 provides the runtime of this algorithm.

Table 1. IBM Q Tokyo comparison of experimental results.

Circuit Name

Comparison

CNOT Gates SABRE IBMBasic BSF With SABRE With IBM Basic Running Time/s

graycode6_47
qft_13
qft_16
rd84_142
adr4_197
radd_250
z4_268
sym6_145
misex1_241
rd73_252
cycle10_2_110
square_root_7
sqn_258
rd84_253
root_255
col4_215
mlp4_245
urf2_277
clip_206
sym9_193
9symml_195
hwb8_113
sym10_262

5 0 9 9 - 0 0.01
156 78 201 123 —57.69 38.81 9.33
240 126 609 207 —64.29 66.01 23.56
154 87 285 123 —41.38 56.84 3.78

1498 1137 2070 777 31.66 62.46 24.58
1405 1092 1914 681 37.64 64.42 14.35
1343 1044 1803 579 44.54 67.89 15.57
1701 1086 1590 1002 7.73 36.98 7.39
2100 1131 1938 720 36.34 62.85 16.75
2319 1845 3249 1296 29.76 60.11 35.72
2648 2097 3609 1074 48.78 70.24 31.56
3089 2442 6906 1263 48.28 81.71 121.79
4459 3651 5679 2154 41 62.07 66
5960 5772 7761 2916 49.48 62.43 154.36
7493 6246 9387 3351 46.35 64.3 168.61
7840 7635 10,218 4161 45.5 59.28 256.9
8232 7533 10,740 3945 47.63 63.27 214.99
10,066 9978 13,413 5697 429 57.53 433.68
14,772 14,337 19,752 6549 54.32 66.84 845.89
15,232 16,002 22,068 6183 61.36 71.98 552.73
15,232 16,002 22,068 6183 61.36 71.98 561.66
30,372 28,623 41,697 12,675 55.72 69.6 2671.63
28,084 28,779 39,882 11,748 59.18 70.54 2127.07

As shown in Table 1, the quantum circuit mapping algorithm based on the bundle
search framework significantly reduces the number of additional CNOT gates inserted in
medium-sized (original CNOT gate count over 1000) and large circuits (original CNOT
gate count over 10,000) compared to the SABRE algorithm in reference [3], with an average
reduction exceeding 44%. However, it is somewhat lacking in small circuits. In contrast
to IBM’s basic mapping algorithm, this algorithm can significantly reduce the number of
additional CNOT gates inserted in small, medium, and large circuits, achieving an average
reduction of over 60%.

The disadvantage of this algorithm on small circuits may stem from the impact of the
initial mapping on the results. To explore the enhancement effect of the initial mapping on
algorithm performance, we adopted the initial mapping method from reference [3] and
presented the experimental results of the three algorithms on multiple benchmark circuits,
as shown in Table 2. The first column lists the names of the quantum circuits, while the
next three columns show the number of CNOT gates inserted by the SABRE algorithm with
the initial mapping, the algorithm without initial mapping (BSF), and the algorithm with
initial mapping (BSF’), respectively. The following two columns display the reductions in
the number of inserted CNOT gates of the algorithm compared to the other two methods
after applying the initial mapping. The last column of Table 2 provides the average runtime
of the algorithm.

Entropy 2025, 27, 232 14 of 16
Table 2. Comparison of experimental results after applying initial mapping.
Comparison
Circuit Name SABRE BSF BSF' With SABRE With BSF Running Time/s
graycode6_47 0 9 0 - 100.00 0.00
qft_13 78 123 96 —23.08 21.95 6.28
qft_16 126 207 76 39.68 63.29 14.84
rd84_142 87 123 93 —6.90 24.39 2.86
adr4_197 1137 777 615 45.91 20.85 16.56
radd_250 1092 681 638 41.58 6.31 30.23
z4_268 1044 579 537 48.56 7.25 25.97
sym6_145 1086 1002 829 23.66 17.27 15.02
misex1_241 1131 720 483 57.29 32.92 26.77
rd73_252 1845 1296 1077 41.63 16.90 78.39
cycle10_2_110 2097 1074 1035 50.64 3.63 57.94
square_root_7 2442 1263 1104 54.79 12.59 151.33
sqn_258 3651 2154 1776 51.36 17.55 49.88
rd84_253 5772 2916 2796 51.56 4.12 127.59
root_255 6246 3351 3267 47.69 2.51 137.57
col4_215 7635 4161 3969 48.02 4.61 215.93
mlp4_245 7533 3945 3936 47.75 0.23 218.22
urf2_277 9978 5697 5295 46.93 7.06 548.78
clip_206 14,337 6549 6657 53.57 —1.65 885.76
sym9_193 16,002 6183 6372 60.18 —3.06 662.84
9symml_195 16,002 6183 6372 60.18 —3.06 657.97
hwb8_113 28,623 12,675 10,413 63.62 17.85 1587.14
sym10_262 28,779 11,748 10,074 65.00 14.25 1514.58

As shown in Table 2, after applying the initial mapping, this algorithm can reduce the
number of inserted CNOT gates by an additional 10% compared to the SABRE algorithm
for medium-sized and large circuits, based on the no-initial-mapping scenario. Although
the algorithm still struggles with some small circuits where it cannot effectively reduce
the number of inserted CNOT gates, significant improvements have been observed in
certain cases. By comparing the results of the algorithm before and after applying the initial
mapping, it can be confirmed that the initial mapping positively impacts the algorithm'’s
performance, resulting in an average reduction of 16.86% in the number of inserted gates.

By applying the initial mapping, the discrepancies in results caused by the initial
mapping between different algorithms are eliminated. Compared to this algorithm, the
SABRE algorithm only considers the foresight in the initial mapping and cost function,
lacking the global perspective that this algorithm employs during the search process.
Therefore, in large test cases, as the logical circuit deepens, the influence of the initial
mapping gradually diminishes, allowing this algorithm to insert fewer CNOT gates to
generate the final circuit. To address the issue of excessive execution time for this algorithm
on certain large circuits, adjustments can be made to the width and depth of the bundle
search to achieve a balance between execution time and algorithm performance.

5. Conclusions

The quantum circuit mapping algorithm based on the bundle search framework pro-
posed in this study achieves efficient mapping of logical quantum circuits, allowing them
to overcome connectivity constraints of quantum physical architectures and successfully
deploy on specific quantum computing devices. This method significantly reduces the
number of basic gates required for quantum circuit mapping by introducing a multi-layer
window approximation of the true effect value function within the bundle search frame-
work. Experimental results show that for large circuits with over 10,000 CNOT gates, this
method can quickly generate mapping schemes with fewer inserted SWAP gates, demon-

Entropy 2025, 27, 232 15 of 16

strating generally superior performance compared to existing methods. However, it shows
some shortcomings on certain small circuits due to the lack of consideration for the impact
of initial mapping. Looking ahead, as the number of qubits in NISQ devices increases
dramatically, the scale of quantum circuits will also become increasingly large. Therefore,
this algorithm is of significant importance for enhancing the usability and computational
efficiency of NISQ computing devices. Future work will focus on designing suitable ini-
tial mappings for this algorithm and improving the effect value function to address the
algorithm’s shortcomings encountered during experimental processes.

Author Contributions: Conceptualization, P.Z. and C.Q.; methodology, C.Q.; software, C.Q.; vali-
dation, C.Q., P.Z. and L.W.,; formal analysis, L.W.; investigation, P.Z.; resources, P.Z.; data curation,
C.Q.; writing—original draft preparation, C.Q.; writing—review and editing, P.Z.; visualization, C.Q.;
supervision, P.Z.; project administration, P.Z.; funding acquisition, P.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation Of China [Grant
Number: 62072259], the Jiangsu Natural Science Foundation [Grant Number: BK20221411] and the
Sugian Science and Technology Foundation [Grant Number: H202117].

Institutional Review Board Statement: Not applicable. Ethical review and approval were not
required for this study on human participants in accordance with the local legislation and institu-
tional requirements.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Choi, C.Q. Ibm’s quantum leap: The company will take quantum tech past the 1,000-qubit mark in 2023. IEEE Spectr. 2023, 60,
46-47. [CrossRef]

2. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]

3. Li, G; Ding, Y;; Xie, Y. Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems, Providence, RI, USA,
13-17 April 2019; pp. 1001-1014.

4. L1i,S,; Zhou, X,; Feng, Y. Qubit mapping based on subgraph isomorphism and filtered depth-limited search. IEEE Trans. Comput.
2020, 70, 1777-1788. [CrossRef]

5. Booth, K.; Do, M.; Beck, J.; Rieffel, E.; Venturelli, D.; Frank, J. Comparing and integrating constraint programming and temporal
planning for quantum circuit compilation. In Proceedings of the Twenty-Eighth International Conference on Automated Planning
and Scheduling, Delft, The Netherlands, 24-29 June 2018; Volume 28, pp. 366-374.

6. De Almeida, A.A.A.; Dueck, G.W.; Da Silva, A.C.R. Finding optimal qubit permutations for IBM’s quantum computer architectures.
In Proceedings of the 32nd Symposium on Integrated Circuits and Systems Design, Sdo Paulo, Brazil, 26-30 August 2019; pp. 1-6.

7. Murali, P; Baker,].M.; Javadi-Abhari, A.; Chong, ET.; Martonosi, M. Noise-adaptive compiler mappings for noisy intermediate-
scale quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Providence, RI, USA, 13-19 April 2019; pp. 1015-1029.

8. Saeedi, M.; Wille, R.; Drechsler, R. Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process.
2011, 10, 355-377. [CrossRef]

9. Siraichi, M.Y.; Santos, V.E.; Collange, C.; Pereira, EM.Q. Qubit allocation as a combination of subgraph isomorphism and token
swapping. Proc. ACM Program. Lang. 2019, 3, 1-29. [CrossRef]

10. Venturelli, D.; Do, M.; Rieffel, E.; Frank,]J. Compiling quantum circuits to realistic hardware architectures using temporal planners.
Quantum Sci. Technol. 2018, 3, 025004. [CrossRef]

11. Venturelli, D.; Do, M.; Rieffel, E.; Frank, J. Temporal planning for compilation of quantum approximate optimization circuits. In
Proceedings of the Scheduling and Planning Applications Workshop (SPARK), Pittsburgh, PA, USA, 19-23 June 2017; p. 58.

12. Botea, A.; Kishimoto, A.; Marinescu, R. On the complexity of quantum circuit compilation. In Proceedings of the International

Symposium on Combinatorial Search, Stockholm, Sweden, 14-15 July 2018; Volume 9, pp. 138-142.

http://doi.org/10.1109/MSPEC.2023.10006669
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1109/TC.2020.3023247
http://dx.doi.org/10.1007/s11128-010-0201-2
http://dx.doi.org/10.1145/3360546
http://dx.doi.org/10.1088/2058-9565/aaa331

Entropy 2025, 27, 232 16 of 16

13.

14.

15.

16.

17.

18.
19.

Siraichi, M.Y.; Santos, V.E,; Collange, C.; Pereira, EM.Q. Qubit allocation. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization, Vienna, Austria, 24-28 February 2018; pp. 113-125.

Zhou, X; Feng, Y.; Li, S. A Monte Carlo tree search framework for quantum circuit transformation. In Proceedings of the 39th
International Conference on Computer-Aided Design, Virtual, 2-5 November 2020; pp. 1-7.

Paler, A. On the influence of initial qubit placement during NISQ circuit compilation. In Quantum Technology and Optimization
Problems, Proceedings of the First International Workshop, QTOP 2019, Munich, Germany, 18 March 2019; Proceedings 1; Springer
International Publishing: Cham, Switzerland, 2019; pp. 207-217.

Zhou, X,; Li, S.; Feng, Y. Quantum circuit transformation based on simulated annealing and heuristic search. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4683-4694. [CrossRef]

Zulehner, A.; Paler, A.; Wille, R. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2018, 38, 1226-1236. [CrossRef]

Freitag, M.; Al-Onaizan, Y. Beam search strategies for neural machine translation. arXiv 2017, arXiv:1702.01806.

Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.A.; Weinfurter, H. Elementary
gates for quantum computation. Phys. Rev. A 1995, 52, 3457. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCAD.2020.2969647
http://dx.doi.org/10.1109/TCAD.2018.2846658
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://www.ncbi.nlm.nih.gov/pubmed/9912645

	Introduction
	Preliminaries
	Qubit
	Quantum Operation
	NISQ Computing Architecture
	Quantum Circuit Mapping

	A Beam Search Framework for Quantum Circuit Mapping
	Basic Idea
	Preprocessing
	Approximate Real Effect Value Function
	Beam Search Framework
	Complexity Analysis of Proposed Algorithm
	Practical Example

	Results
	Experimental Setup
	Comparison of Experimental Results

	Conclusions
	References

