
4.92.1

A Beam Search Framework for
Quantum Circuit Mapping

Cheng Qiu, Pengcheng Zhu and Lihua Wei

Special Issue
Quantum Information: Working towards Applications

Edited by

Prof. Dr. Guilu Long, Dr. Kai Wen, Dr. Min Wang and Dr. Hai Wei

Article

https://doi.org/10.3390/e27030232

https://www.mdpi.com/journal/entropy
https://www.scopus.com/sourceid/13715
https://www.ncbi.nlm.nih.gov/pubmed/?term=1099-4300
https://www.mdpi.com/journal/entropy/stats
https://www.mdpi.com/journal/entropy/special_issues/53DRWCV559
https://www.mdpi.com
https://doi.org/10.3390/e27030232

Academic Editor: Giuliano Benenti

Received: 30 December 2024

Revised: 7 February 2025

Accepted: 21 February 2025

Published: 24 February 2025

Citation: Qiu, C.; Zhu, P.; Wei, L.

A Beam Search Framework for

Quantum Circuit Mapping. Entropy

2025, 27, 232. https://doi.org/

10.3390/e27030232

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

entropy

Article

A Beam Search Framework for Quantum Circuit Mapping

Cheng Qiu 1 , Pengcheng Zhu 2,3,∗ and Lihua Wei 2

1 School of Computer Science, Nanjing University of Information Science and Technology,

Nanjing 210000, China; suolioma@gmail.com
2 College of Information Engineering, Taizhou University, Taizhou 225300, China; angelirene@163.com
3 College of Information Engineering, Suqian University, Suqian 223800, China

* Correspondence: zhupcnt@tzu.edu.cn

Abstract: In the era of noisy intermediate-scale quantum (NISQ) computing, the limited

connectivity between qubits is one of the common physical limitations faced by current

quantum computing devices. Quantum circuit mapping methods transform quantum

circuits into equivalent circuits that satisfy physical connectivity constraints by remapping

logical qubits, making them executable. The optimization problem of quantum circuit map-

ping has NP-hard computational complexity, and existing heuristic mapping algorithms

still have significant potential for optimization in terms of the number of quantum gates

generated. To reduce the number of SWAP gates inserted during mapping, the solution

space of the mapping problem is represented as a tree structure, and the mapping process

is equivalent to traversing this tree structure. To effectively and efficiently complete the

search process, a beam search framework (BSF) is proposed for solving quantum circuit

mapping. By iteratively selecting, expanding, and making decisions, high-quality target

circuits are generated. Experimental results show that this method can significantly reduce

the number of inserted SWAP gates on medium to large circuits, achieving an average

reduction of 44% compared to baseline methods, and is applicable to circuits of various

sizes and complexities.

Keywords: quantum computing; quantum circuit mapping; noisy intermediate-scale

quantum computing; limited connectivity; beam search

1. Introduction

With IBM’s recent launch of the Condor superconducting quantum computer featuring

over 1000 qubits [1], Noisy Intermediate-Scale Quantum (NISQ) computing devices [2]

have attracted widespread attention in both academia and industry. However, these

quantum computing devices still have numerous shortcomings. Their core quantum

processing unit (QPU) supports only a limited set of quantum operations and is affected

by constraints on connectivity between qubits, as well as the relatively short coherence

times of physical qubits, which typically results in a high error rate during the execution

of quantum circuits. Current QPUs often cannot directly execute quantum circuits due to

limited connectivity between qubits, necessitating the design of quantum circuit mapping

methods [3,4] to remap qubits, thereby transforming them into equivalent quantum circuits

that fit the architecture of the physical device.

Quantum circuit mapping consists of two parts: the initial mapping of qubits and

the remapping. Since the initial mapping π0 can interfere with the remapping, the latter

becomes the primary focus. Existing qubit remapping methods can be classified into two

categories. The first category redefines the quantum circuit mapping problem as an opti-

mization problem and uses existing algorithms to solve it [5–11]. However, the quantum

Entropy 2025, 27, 232 https://doi.org/10.3390/e27030232

https://doi.org/10.3390/e27030232
https://doi.org/10.3390/e27030232
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0002-5710-7207
https://orcid.org/0000-0001-8145-6023
https://doi.org/10.3390/e27030232
https://www.mdpi.com/article/10.3390/e27030232?type=check_update&version=1

Entropy 2025, 27, 232 2 of 16

circuit mapping problem on NISQ devices has an NP-complete computational complexity.

While these methods can achieve better results for circuits of limited scale, they often lack

scalability and practicality when dealing with large-scale circuits. The second category

employs heuristic search, progressively transforming the initial circuit into a version suit-

able for the physical device [2,12–17]. Experimental results indicate that heuristic search

has advantages over the first category for large circuits and exhibits strong applicability

across circuits of various scales but still has shortcomings. Current heuristic search methods

struggle to balance search width and depth when addressing the tree-like solution space of

the quantum circuit mapping problem, leading to difficulties in maintaining good mapping

quality and efficiency for circuits of varying sizes and complexities.

Inspired by the recent significant success of beam search algorithms in natural lan-

guage text generation [18], this paper proposes a quantum circuit mapping method based

on a beam search framework (BSF), aiming to minimize the number of inserted SWAP

gates. The main contributions include: (1) the design of a multi-layer window approxi-

mation of a real effect value function to calculate the effect value of each inserted SWAP

gate node in the search tree, providing a basis for the search decision-making process and

(2) the construction of a quantum circuit mapping method based on the aforementioned

approximate real effect value function within the beam search framework, subdividing the

search process into selection, expansion, and decision phases. This method leverages the

characteristics of beam search to adjust the search width and depth, allowing the algorithm

to adapt to quantum circuits of different scales.

2. Preliminaries

2.1. Qubit

Classical computer bits have two states, usually represented as 0 and 1, serving as the

fundamental units of information. In contrast, a qubit also has two basic states, typically

represented as |0⟩ and |1⟩. Unlike classical bits, qubits can exist in a linear combination of

the two basic states, which can be expressed as |ψ⟩ = α|0⟩+ β|1⟩, where |α|2 + |β|2 = 1,

and the state vector is (α, β). Additionally, two or more qubits can become entangled,

forming a composite system. The state of a two-qubit system can be represented as

ψ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩, with its state vector being (α00, α01, α10, α11).

2.2. Quantum Operation

Quantum circuits consist of qubits and a sequence of quantum gates applied to the

qubits, collectively representing a quantum program. As shown in Figure 1, each horizontal

line in the quantum circuit represents a qubit, while the quantum gates applied to the

qubits are represented by different blocks along the lines.

HH

a.Hadamard gate b.CNOT gate c.SWAP gate

Figure 1. Hadamard, CNOT, SWAP.

From left to right in Figure 1 are the Hadamard gate, controlled NOT (CNOT) gate, and

SWAP gate. The squares represent single-qubit gates, while the vertical lines connecting

two qubits represent two-qubit gates. Barenco has demonstrated that any quantum circuit

can be represented using only single-qubit gates and CNOT gates [19]. Based on this, the

test quantum circuits in the test set contain only single-qubit gates and CNOT gates, and

Entropy 2025, 27, 232 3 of 16

through combinations of these gates, all the quantum gates supported by the IBM cloud

computing platform can be constructed.

2.3. NISQ Computing Architecture

Figure 2 shows the classical IBM Q Tokyo chip architecture [16], where the effective

time of the qubits averages around 50 µs, and the average error probabilities for single-

qubit gates, measurement gates, and CNOT gates are denoted as 4.43 × 10−3, 8.47 × 10−2,

and 3.00 × 10−2, respectively. As illustrated in Figure 2, two coupled physical qubits

are connected by bidirectional arrows. These qubits are arranged in a planar geometric

structure, and due to hardware connectivity constraints, a single qubit can only couple

with its neighboring qubits. For example, q0 is connected to q1 and q5, meaning that a

CNOT gate can be applied to the qubit pair {q0, q1} and {q0, q5}. However, q0 is not directly

connected to q6, so a CNOT gate cannot be directly applied to these two qubits.

0q 1q 2q 3q 4q

5q 6q 7q 8q 9q

10q 11q 12q 13q 14q

15q 16q 17q 18q 19q

Figure 2. IBM Q Tokyo quantum physical architecture.

2.4. Quantum Circuit Mapping

Due to the connectivity constraints between qubits in the quantum physical archi-

tecture, quantum programs must undergo quantum circuit mapping before execution

to convert logical quantum programs into hardware-compatible quantum circuits. The

connectivity constraints primarily affect the execution of two-qubit gates, while they have

no impact on the execution of single-qubit gates. Therefore, this study focuses solely

on addressing the connectivity constraint issues of two-qubit gates through quantum

circuit mapping.

The basic quantum circuit mapping process is as follows: Assuming the quantum

physical architecture is as shown in Figure 3, given an original quantum circuit diagram

to be processed, as indicated in part b of the figure, only the second CNOT gate can

be executed directly. The first CNOT gate cannot be executed immediately because its

corresponding logical qubits, v0 and v2, do not correspond to directly adjacent physical

qubits, q0 and q2, when mapped to the physical architecture. Therefore, a quantum circuit

mapping transformation is required.

Entropy 2025, 27, 232 4 of 16

0q

1q

2q
g

1 1v q→

2 2v q→

33v q→

00v q→

1 1v q→

2 2v q→

33v q→

00v q→

Front Layer

a.Initial Mapping and Architecture Graph b.Circuit Front Layer

0q

1q

2q

3q

Figure 3. Initial mapping, physical architecture, and circuit front layer: a simple mapping example.

Current mainstream mapping transformation methods involve inserting SWAP opera-

tions into the quantum circuit to exchange the states of the corresponding logical qubits

in the physical qubits. This approach allows for adjustments in the mapping state, en-

abling the execution of two-qubit gates that are originally constrained by connectivity

limitations. As shown in Figure 3, after inserting a SWAP gate between the logical qubits

v1 and v2 of the second CNOT gate, all two-qubit gates in the updated front layer satisfy

the connectivity constraints. After inserting the SWAP gate, the mapping π updates to

{v0 → q0, v1 → q2, v2 → q1, v3 → q3}, allowing all quantum gates in the front layer to

be executable.

3. A Beam Search Framework for Quantum Circuit Mapping

3.1. Basic Idea

The state of the quantum circuit is represented as nodes in a bundle search tree. A

single search in the beam search framework consists of three main processes: selection,

expansion, and decision. In the selection process, a certain number of nodes are chosen

from the current layer based on the effect values of each node, with the quantity determined

by the width of the bundle search. The expansion process applies all candidate SWAP

operations to the selected nodes, generating an equal number of expansion nodes, and

calculates the effect values of each SWAP operation using an approximate real effect value

function. The selection and expansion processes are repeated until the set search depth is

reached. The decision process compares the long-term effect values of the newly expanded

leaf nodes, then backtracks to the set of nodes generated during the first expansion. Ulti-

mately, a new node is selected as the root node for the next search, which is an ancestor of

the chosen leaf nodes.

The following explanation combines with Figure 4 to provide a detailed illustration.

The state of the quantum circuit s0 represented as the root node of the search tree after

removing the executable gates under the initial mapping, is treated as the current layer

(the blue box in Figure 4). Since the current layer contains only one node, the root node is

selected for expansion. The specific steps involve inserting all candidate SWAP gates into

the circuit of the root node and removing the quantum gates that become executable due

to the insertion of the SWAP gates. Assuming there are currently three candidate SWAP

gates, three nodes—let us call them s1, s2, and s3—are expanded, and the long-term effect

values for each corresponding node are calculated. At this point, the layer containing these

nodes is the current layer (the green box in Figure 4). If the search width is set to 2, the

two nodes with the highest values (the gray nodes s2 and s3 in Figure 4) are selected for

further expansion. This process is repeated until the set search depth is reached, which

we assume to be 4 in this case. During this phase, the long-term effect values of the leaf

nodes in the last layer (the red box in Figure 4) are compared, and node s′ is chosen for

backtracking. From the set of ancestor nodes generated during the first expansion (the

green box in Figure 4), node s2 is decided upon as the root node for the next search, as

Entropy 2025, 27, 232 5 of 16

shown in the (b) in Figure 4. This search process will continue to repeat until all quantum

gates in the circuit have been executed.

0s

2s 3s

's

a.Beam Search Tree b.Expansion

0s1s

Figure 4. Schematic diagram of the beam search framework.

3.2. Preprocessing

The preprocessing of the quantum circuit mapping algorithm based on the beam

search framework primarily includes the following operations:

Calculate the physical distance of double quantum gates: Given a quantum architec-

ture diagram AG, let D represent the distance matrix recording the shortest path lengths

between various physical qubits, where the distance between each pair of adjacent qubits

is 1. For a two-qubit gate, suppose we have AG, π, the two-qubit gate g(vi, vj), and the

corresponding logical qubits are vi and vj, where i ̸= j. In this case, the physical distance of

the two-qubit gate is the distance between the physical qubits qi and qj minus one, denoted

as dgate, which can be expressed as follows:

dgate = D[π(vi)][π(vj)]− 1 (1)

where π(vi) represents the physical qubit corresponding to the logical qubit under the

mapping π.

Quantum gate dependency graph (directed acyclic graph, DAG): Any quantum

circuit can be represented as a sequence of combinations of single quantum gates and

CNOT gates. Therefore, in this context, the term ’double quantum gate’ specifically refers

to the CNOT gate. Figure 5 illustrates a specific quantum gate dependency graph. To clearly

demonstrate the dependency relationships of CNOT gates on physical qubits within the

quantum circuit, a directed acyclic graph (DAG) is used to represent the dependency order

of these CNOT gates. Since single quantum gates operate only on single qubits and do not

create dependencies on other qubits, the circuit mapping algorithm does not consider the

influence of single quantum gates in its design. A CNOT gate can only be executed when

both corresponding physical qubits qi and qj have completed all preceding CNOT gates.

Quantum circuit layering: The layering of quantum circuits is achieved through the

quantum gate dependency graph, and based on this layered structure, the definition of

the front layer is proposed. The front layer is defined as a set of CNOT gates that have

no predecessor dependencies; there are no unexecuted predecessor CNOT gates in the

DAG, allowing these gates to be executed immediately on the hardware. Specifically, for

a CNOT gate CNOT(qi, qj), it can be included in the front layer when its corresponding

two qubits qi and qj and all previously executed quantum gates on them have completed

execution. As shown in the front layer of Figure 5, the CNOT gates g1 and g2 in the front

Entropy 2025, 27, 232 6 of 16

layer have no pending predecessor quantum gates in DAG; thus, they can be safely placed

in the front layer.

1g

2g

3g

4g

5g

6g

8g

7g

Front Layer

2q

3q

6q

5q

4q
4q 4q

3q

2q
1q

Figure 5. Quantum gate dependency graph represented by a directed acyclic graph (DAG).

Initial mapping of qubits: Due to the use of different initial mapping schemes,

varying results may be generated for different quantum circuits, and the optimal initial

mapping scheme applicable to all quantum circuits remains unclear. Therefore, to avoid

interference from the initial mapping of qubits on the quantum circuit mapping experiment,

this study adopts only the most basic initial mapping strategy. In this scheme, the specific

conditions of the CNOT gates in the front layer F are not considered; logical qubit vi is

mapped to physical qubit qi(i ≥ 1 and i ≤ n), n is the number of qubits. This initial

mapping does not take into account the details of the actual quantum circuit and its

physical architecture, thereby eliminating any potential impact on subsequent quantum

circuit mapping algorithms.

3.3. Approximate Real Effect Value Function

The cost function is the core of heuristic search algorithms [3,14], providing a basis for

action decisions by estimating the favorability of candidate operations for problem-solving.

Currently, existing heuristic quantum circuit mapping algorithms [3,14] generally use a

lookahead cost function, which approximates the potential improvement from applying a

SWAP gate by calculating the sum of the physical distances of all quantum gates within the

lookahead window, ultimately selecting the SWAP gate with the minimum cost function

value as the next action. However, the lookahead cost function only considers the direct

impact of the SWAP gate on the physical distances of subsequent quantum gates, without

further assessing the potential negative effects that this SWAP gate might introduce. For

example, if the currently inserted SWAP gate increases the physical distance of a certain

quantum gate within the lookahead window, the execution of that quantum gate may be

adversely affected. To address this issue, additional SWAP gates need to be introduced

in the subsequent mapping process to offset the negative effects of the aforementioned

SWAP gate. To improve the shortcomings of the existing lookahead cost function in current

mapping methods, this approach constructs a cost function that comprehensively considers

both the physical distances of quantum gates and the SWAP gates needed thereafter. To

distinguish it from the existing lookahead cost function, it is referred to as the ‘approximate

real effect value function’.

The calculation idea of the approximate real effect value function is as follows: when

evaluating the overall effect of a SWAP gate, the first step is to calculate the reduction in

the sum of the physical distances of all quantum gates within the lookahead window after

applying the SWAP gate, which serves as the numerator of the effect value function. Sec-

ondly, the number of subsequent SWAP gates that may be introduced within the lookahead

window after applying this SWAP gate is estimated, which serves as the denominator of

Entropy 2025, 27, 232 7 of 16

the effect value function. Next, the implementation details of this effect value function will

be explained in detail.

According to the previous definition of the physical distance for double quantum

gates, when dgate > 0, it implies that at least a number of SWAP gates equal to dgate must be

inserted to satisfy the connectivity constraints between two qubits in the physical quantum

architecture. Based on this, the effect value Hg of a double quantum gate g under the action

of candidate SWAP gates can be defined as follows:

Hg = D[π(g.vi)][π(g.vj)]− D[π1(g.vi)][π1(g.vj)] (2)

where π1 is the temporary mapping generated after applying the SWAP operation to π.

For all double quantum gates in the front layer F, the effect value of the front layer F under

the action of candidate SWAP gates can be obtained by summation, as follows:

HF = ∑
g∈F

Hg (3)

Since the range of change in physical distance for double quantum gates due to the

SWAP operation does not exceed 1, the range of Hg is −1, 0, 1. When Hg is positive, it

indicates that this SWAP operation helps to reduce the physical distance of the current

double quantum gate, making its execution more favorable. For HF, if its value is positive,

it is considered that the SWAP operation can effectively reduce the overall physical distance

of the front layer F, thereby facilitating the advancement of the front layer in the DAG. For

the quantum circuit state s = (π, PC, LC), there may be multiple candidate SWAP gates

that can be inserted, so each candidate SWAP operation needs to be evaluated. For those

SWAP operations with a negative HF, to avoid situations where the algorithm does not

converge, such operations are not considered.

For candidate SWAP gates, if their effect value HF is positive, subsequent operations

can continue. In this case, using the multi-layer window approach to calculate the approxi-

mate real effect value function, if a negative situation arises as the front layer advances, it

indicates that the initial candidate SWAP gate has a negative effect on the subsequent layer,

resulting in an increased physical distance for that layer. To eliminate this negative effect,

it is necessary to insert auxiliary SWAP gates identical to the original SWAP gate before

that subsequent layer. However, such an operation will also negate the positive effect

of the original candidate SWAP gate on the subsequent layer. Therefore, for subsequent

layers that are not affected by the negative effects of the original candidate SWAP gate, it

is necessary to insert auxiliary SWAP gates identical to the original candidate SWAP gate

before them to retain the positive effect of the original candidate SWAP gate.

The following is a detailed explanation in conjunction with Figure 6. In Figure 6, the

original candidate SWAP gate is represented in red, and the multi-layer window size is

set to 5, indicating that the front layer F needs to be advanced five times. First, Layer 1 is

considered the front layer of the DAG. Since HF has been calculated and is positive, there is

no need to insert auxiliary SWAP gates before it; the front layer F can be advanced directly

to the next layer in the DAG, which is Layer 2. Next, the effect value HF for this layer

is calculated. Assuming it is negative, an auxiliary SWAP gate identical to the original

candidate SWAP gate must be inserted before this layer, reverting the new mapping π′ back

to the original mapping π, and recalculating HF for this layer, resulting in 0. Subsequently,

the front layer F is advanced again, updating to Layer 3, and the effect value HF for this

layer is calculated, assuming it is 0. Since an auxiliary SWAP gate was previously added to

restore the mapping to π, eliminating the positive effect of the original candidate SWAP

gate on this layer, it is necessary to add another auxiliary SWAP gate identical to the original

Entropy 2025, 27, 232 8 of 16

SWAP gate before this layer to restore its positive value. These operations will continue to

be repeated until the window advancement is complete.

…
…

…
…

…
…

…
…

…
…

…
…

cost layers

Layer3Layer1 Layer2 Layer4

…
…

…
…

…
…
…
…

Layer5

Figure 6. Schematic diagram of the approximate real effect value function.

After calculating the effect values for each layer of the window layer, the effect value

of node s is obtained, expressed as follows:

VAL(s) =
1

added_swaps ∑
f∈layer

(H f · decay) (4)

Here, added_swaps represents the number of additional auxiliary SWAP gates added

during the multi-layer window calculation process. For each layer in the window, a weight

parameter is introduced to reduce the influence of subsequent layers, which will help

the algorithm select candidate SWAP gates with parallel execution capabilities, thereby

introducing a decay effect into the effect value function. The decay in Equation (4) refers to

the decay parameter, which has been repeatedly verified through multiple experiments,

with an adjustment to 0.7 yielding optimal results for the algorithm. Additionally, VAL(s)

is used to quantify the effect value of the new node s after applying the SWAP operation.

Clearly, as VAL(s) increases, the number of SWAP gates needed to reach the target state

will correspondingly decrease, thereby enhancing the superiority of node s.

3.4. Beam Search Framework

The beam search method, as a combinatorial optimization algorithm, is an improve-

ment over the greedy strategy. In the search process at each layer, this method retains

multiple candidate results instead of just the current optimal output. It does not search

the entire solution space but improves the algorithm’s computational speed by branching,

selecting, and eliminating within the solution space. It is known that the quantum circuit

mapping optimization problem is NP-hard, with a vast search space, making it extremely

difficult to find the optimal solution. Moreover, as a critical part of the quantum comput-

ing compilation process, the execution time of the algorithm must be strictly controlled.

Therefore, finding an approximately optimal solution has become a feasible approach.

Using the beam search method, with the goal of minimizing the number of inserted

SWAP gates, we start from the initial state s0 = (πini, PC0, LC0) to construct the beam

search decision tree. Here, πini represents the initial mapping, PC0 is the physical quantum

circuit applicable to the actual architecture, and LC0 is the logical quantum circuit to be

processed. The state s = (π, PC, LC) serves as a node in the tree, where PC represents the

physical circuit of the current node, and LC represents the logical circuit of the current

Entropy 2025, 27, 232 9 of 16

node. The effect value VAL(s) for each node is calculated using the approximate real effect

value function. Through this process, the minimum number of SWAP gates required to

reach the target node starget = (π, PC, LC) (where LC is empty, indicating the target node)

is computed.

Each node s in the beam search tree has three effect values for decision assessment: the

reward value REW(s, s′), the effect value VAL(s), and the long-term effect value VALlong(s).

The reward value REW(s, s′) indicates the extent to which the number of quantum gates

to be executed in the circuit decreases from the parent node s to the child node s′ after

inserting a SWAP gate. The effect value VAL(s) describes the pros and cons of inserting

a single SWAP gate in subsequent mapping tasks. The long-term effect value VALlong(s)

reflects the overall quality of the current circuit state at each node (which includes all

previously inserted SWAP gates) in the mapping task, serving as a basis for evaluation

and decision-making during selection and backtracking. By applying a SWAP operation to

node s, a new node is obtained, denoted as s′, with s as its parent node. Thus, the reward

value REW(s, s′) from node s to s′ can be defined, and its calculation function is as follows:

REW(s, s′) = num(s)− num(s′) (5)

Here, num(s) represents the number of double quantum gates in the logical circuit

of node s, so REW(s, s′) can also refer to the number of newly added executable gates in

the node s′ compared to the node s, with its value always being non-negative. Based on

the above definition of the nodes in the beam search tree, the beam search problem for

quantum circuits can be divided into three processes: selection, expansion, and decision, as

shown in Figure 7.

Selection Expansion Decision

Repeat until the search is finished

Figure 7. Schematic diagram of the beam search framework.

Selection: The selection process aims to find the optimal set of nodes in the beam

search tree for further expansion. Part a of Figure 5 details the specific process of selection.

For each layer of expanded nodes, a fixed number of nodes is selected as candidates

for further expansion. First, the root node is added to the set of nodes to be selected,

selection = s0. Before reaching the search depth set by the beam search, a certain number

of optimal nodes are selected from selection based on the long-term effect values of each

node. The specific quantity k is determined by the search width width and the number of

elements n in the set, specifically k = min(n, width). Through repeated experiments, it has

been found that setting the search width of the beam search tree to 8 yields optimal results

for the algorithm.

Entropy 2025, 27, 232 10 of 16

During the selection process, nodes are compared and ranked based on their long-term

effect values, with the specific calculation function detailed in the expansion process. In

each round of selection, the nodes with the highest long-term effect values are chosen to be

added to the set of nodes for expansion, expansion.

Expansion: The expansion process involves applying SWAP operations to all nodes in

the set of nodes for expansion, thereby generating the corresponding set of child nodes and

calculating the long-term effect value for each node corresponding to the SWAP operation.

The set of candidate SWAP operations for node s is denoted as SWAPs. For any SWAP

gate SWAP(vi, vj) in this set, the logical qubit vi corresponds to the physical qubit π−1(vi),

and vj corresponds to π−1(vj), both of which should be part of the front layer F involved

in node s. For a given node s, expansion can only be performed using the SWAP gates

from its corresponding SWAPs set, a strategy that has been widely used in quantum

circuit mapping.

By applying the candidate SWAP operations to s = (π, PC, LC), a new node s′ =

(π′, PC′, LC′) is obtained, where π′ is derived from π after the SWAP operation. Specifically,

this involves remapping the two logical qubits of SWAP(vi, vj) as vi → π−1(vj) and

vj → π−1(vi). The set LC′ is obtained by removing all executable gates in LC under the

new mapping π′, while PC′ is formed by adding SWAP(vi, vj) to PC and subsequently

removing the executable gates from LC. Next, the long-term effect value of the new node s′

is calculated, with the calculation function as follows:

VALlong(s
′) = VALlong(s) + REW(s, s′) + VAL(s′) (6)

Here, s represents the parent node of s′. VALlong(s) is the long-term effect value of the

parent node s; for the root node, which does not have a parent node, its long-term effect

value is 0. Using the aforementioned approximate real effect value function, the one-step

effect value VAL(s′) for node s′ can be calculated, while REW(s, s′) represents the reward

value obtained by applying the SWAP operation on the parent node s to derive the child

node s′. All newly expanded nodes are then added to the set of nodes for selection.

Decision: After repeatedly performing the selection and expansion processes for µ

rounds, a decision is made, where µ is the search depth of the beam search tree. Through

repeated experiments, it has been found that setting the search depth of the beam search

tree to 13 yields optimal results for the algorithm. Based on the long-term effect values

of each node in the current selection set, the leaf node with the highest long-term effect

value is chosen, and the search backtracks to the initial set of nodes expanded from the root

node to find the corresponding ancestor node. The SWAP operation corresponding to this

ancestor node is selected as the final choice in the decision-making process, representing

the long-term optimal SWAP operation for the root node state. This ancestor node is then

set as the new root node, initiating the next search. When the LC corresponding to the

new root node s0 = (π, PC, LC) is empty, it indicates that the quantum circuit mapping

has been completed, and its PC is the desired quantum circuit that satisfies the physical

quantum architecture AG.

3.5. Complexity Analysis of Proposed Algorithm

The time complexity of the approximate real effect value function is as follows: when

the value of the current layer HF is 0, if added_swaps is not 0, it indicates that the previously

inserted auxiliary SWAP gates have restored the mapping to the state before the original

alternative SWAP gates were inserted, ensuring that the subsequent layer’s value HF is

not negative. When encountering another layer with HF equal to 0, it can be inferred that

it was originally positive but has become 0 due to the influence of the auxiliary SWAP

gates. In this case, the same auxiliary SWAP gates need to be reinserted to restore it to

Entropy 2025, 27, 232 11 of 16

a positive value. In terms of algorithm complexity, since the values of each layer can be

fully computed after inserting the first SWAP gate, the time complexity of this effect value

function is O(k), where k is the window size.

In the worst-case scenario, the algorithm’s time complexity is given by O(|E| · |G| ·

d · w · k), where |G| is the number of two-qubit gates in the quantum circuit, which indi-

cates that in the worst case, inserting a SWAP gate can only execute one two-qubit gate.

|E| represents the number of qubits in the quantum physical architecture. In the worst case,

all SWAP gates applied to the qubits in the architecture diagram can serve as alternative

SWAP gates, d denotes the depth of the clustered search tree, w is the width of the clustered

search tree, and k represents the window size of the approximated real effect value function.

Although the algorithm may be unsolvable in terms of time in the worst case, a balance

can be achieved between algorithm performance and efficiency by adjusting d, w, and k.

The optimal case is O(1), meaning the circuit already meets the constraints of the physical

architecture and does not require mapping.

3.6. Practical Example

The following provides a practical example, where a simple quantum circuit is selected,

as shown in the Figure 8a, which contains five CNOT gates and six single-qubit gates.

It is assumed that this circuit will run on the physical architecture in Figure 3, with a

search depth set to 15 and a search width set to 8. The initial mapping π0 is defined

as v0 → q0, v1 → q1, . . . , vi → qi, First, as shown in Figure 8b, a clustered search tree

is constructed. The root node s0 contains the complete physical circuit PC, an empty

logical circuit LC, and its corresponding mapping π0. For the root node s0, its front

layer includes a CNOT(q0, q2). Since this CNOT gate cannot be executed directly under

the corresponding mapping at this node, an auxiliary SWAP is required to change its

mapping, allowing the circuit to proceed. For this node, the available SWAP gate set is

SWAP(q0, q1), SWAP(q1, q2), SWAP(q2, q3). Next, using the approximate real effect value

function from Section 3.2, the effect value of the SWAP(q1, q2) gate is calculated with a

window size set to 7. It can be observed that after inserting SWAP(q1, q2), the physical

distances of the first CNOT(q0, q2) and the fourth CNOT(q0, q2) both decrease by 1, while

the physical distance of the final CNOT(q0, q1) increases by 1, with no change in the

physical distances of the other CNOT gates. Therefore, an additional SWAP gate needs

to be added before the final CNOT(q0, q1). Given a decay parameter set to 0.7, the effect

value for SWAP(q1, q2) is calculated as 1 + 1 × 0.7 × 0.7. These SWAP gates are applied to

the circuit at the root node, resulting in the expansion of two new nodes. Each new node’s

mapping is obtained by applying the corresponding SWAP gates to the mapping of the

root node. The circuit is then advanced under the new mapping until no further execution

is possible. At this point, combining the previously calculated effect values of the SWAP

gates with the number of CNOT gates executed during the circuit advancement, the effect

values of the expanded nodes are calculated to be 1.74 and 3.49, respectively. Since the

number of expanded nodes is less than the search width, all expanded nodes are chosen

as candidate nodes. As the search depth has not yet been reached, further expansion of

the candidate nodes is performed, resulting in the expansion of four new nodes. Since

node s5 is obtained by adding another SWAP(q1, q2) to s2(SWAP(q1, q2)), as shown in the

Figure 8b, it has already executed all the gates in the circuit, thus completing the algorithm.

Entropy 2025, 27, 232 12 of 16

0q

1q

2q XX

HH TT

TT

TT TT

0q

1q

2q X

H T

T

T T

XX

HH

TTTT

TT

TT

0q

1q

2q X

H

TT

T

T

0q

1q

2q

0s0s

3s3s 4s4s3s 4s 5s 6s

1s1s 2s

0s

3s 4s 5s 6s

1s 2s

a.Circuit to be Processed

b.Processed Circuit

c.Beam Search Tree

Figure 8. Practical example.

4. Results

4.1. Experimental Setup

The quantum circuit mapping algorithm based on the beam search framework aims

to minimize the total number of inserted SWAP gates. Therefore, in the experiments, the

number of CNOT gates inserted during the quantum circuit mapping process is used

as an evaluation metric, which is three times the number of SWAP gates. The IBM Q

Tokyo architecture is chosen as the quantum physical architecture for the experiments.

This quantum computing platform is a commonly used testing platform in recent similar

studies and contains 20 qubits, as detailed in Figure 2. The experiments utilize quantum

circuits that are widely used as benchmarks in similar research; these benchmark circuits

consist of the quantum instruction set supported by IBM Q series quantum computers,

where double quantum gates only include CNOT gates, and the rest are single quantum

gates. The algorithm is implemented in Python 3.10, and the experiments are conducted

on a Lenovo Y9000P laptop equipped with an Intel Core i9-13900HX CPU (manufactured

by Intel Corporation, Santa Clara, CA, USA) and 16GB of memory (Samsung Electronics,

Suwon, Republic of Korea), running Windows 11 operating system.

To evaluate the performance of the algorithm, the SABRE algorithm proposed in refer-

ence [3] and the IBM basic mapping algorithm were chosen as comparison benchmarks.

The SABRE algorithm is a commonly used comparative algorithm in quantum circuit

mapping research, while the IBM basic mapping algorithm is the most widely used and

fundamental mapping algorithm in current quantum computing platforms. After multi-

ple tests, the quantum circuit mapping algorithm based on the beam search framework

finalized a set of optimal parameters, specifically as follows: the search width of the beam

search framework is set to 8, the search depth to 15, the decay parameter in the approximate

real effect value function is set to 0.7, and the window size for multi-layer calculations of

the effect value function is set to 7.

4.2. Comparison of Experimental Results

The quantum circuit mapping method based on beam search does not consider the

optimization of results based on the initial mapping. Therefore, it initially uses the same

identity mapping, mapping the ith logical qubit to the ith physical qubit. The experimental

results of the algorithm on multiple benchmark circuits are shown in Table 1. The first

two columns represent the names of the quantum circuits and the number of CNOT gates

included, while the next three columns display the number of CNOT gates inserted by the

SABRE algorithm, the IBM basic mapping algorithm, and our BSF algorithm, respectively.

To intuitively show the difference between this algorithm and the existing algorithms, the

following two columns present the reduction in the number of CNOT gates inserted by this

Entropy 2025, 27, 232 13 of 16

algorithm compared to the other two methods. This value is calculated by subtracting the

number of CNOT gates inserted by this algorithm from that of the other algorithms, and

then dividing by the number of gates inserted by the other algorithms. The last column of

Table 1 provides the runtime of this algorithm.

Table 1. IBM Q Tokyo comparison of experimental results.

Comparison

Circuit Name CNOT Gates SABRE IBM Basic BSF With SABRE With IBM Basic Running Time/s

graycode6_47 5 0 9 9 - 0 0.01
qft_13 156 78 201 123 −57.69 38.81 9.33
qft_16 240 126 609 207 −64.29 66.01 23.56

rd84_142 154 87 285 123 −41.38 56.84 3.78
adr4_197 1498 1137 2070 777 31.66 62.46 24.58
radd_250 1405 1092 1914 681 37.64 64.42 14.35

z4_268 1343 1044 1803 579 44.54 67.89 15.57
sym6_145 1701 1086 1590 1002 7.73 36.98 7.39

misex1_241 2100 1131 1938 720 36.34 62.85 16.75
rd73_252 2319 1845 3249 1296 29.76 60.11 35.72

cycle10_2_110 2648 2097 3609 1074 48.78 70.24 31.56
square_root_7 3089 2442 6906 1263 48.28 81.71 121.79

sqn_258 4459 3651 5679 2154 41 62.07 66
rd84_253 5960 5772 7761 2916 49.48 62.43 154.36
root_255 7493 6246 9387 3351 46.35 64.3 168.61
co14_215 7840 7635 10,218 4161 45.5 59.28 256.9
mlp4_245 8232 7533 10,740 3945 47.63 63.27 214.99
urf2_277 10,066 9978 13,413 5697 42.9 57.53 433.68
clip_206 14,772 14,337 19,752 6549 54.32 66.84 845.89

sym9_193 15,232 16,002 22,068 6183 61.36 71.98 552.73
9symml_195 15,232 16,002 22,068 6183 61.36 71.98 561.66

hwb8_113 30,372 28,623 41,697 12,675 55.72 69.6 2671.63
sym10_262 28,084 28,779 39,882 11,748 59.18 70.54 2127.07

As shown in Table 1, the quantum circuit mapping algorithm based on the bundle

search framework significantly reduces the number of additional CNOT gates inserted in

medium-sized (original CNOT gate count over 1000) and large circuits (original CNOT

gate count over 10,000) compared to the SABRE algorithm in reference [3], with an average

reduction exceeding 44%. However, it is somewhat lacking in small circuits. In contrast

to IBM’s basic mapping algorithm, this algorithm can significantly reduce the number of

additional CNOT gates inserted in small, medium, and large circuits, achieving an average

reduction of over 60%.

The disadvantage of this algorithm on small circuits may stem from the impact of the

initial mapping on the results. To explore the enhancement effect of the initial mapping on

algorithm performance, we adopted the initial mapping method from reference [3] and

presented the experimental results of the three algorithms on multiple benchmark circuits,

as shown in Table 2. The first column lists the names of the quantum circuits, while the

next three columns show the number of CNOT gates inserted by the SABRE algorithm with

the initial mapping, the algorithm without initial mapping (BSF), and the algorithm with

initial mapping (BSF’), respectively. The following two columns display the reductions in

the number of inserted CNOT gates of the algorithm compared to the other two methods

after applying the initial mapping. The last column of Table 2 provides the average runtime

of the algorithm.

Entropy 2025, 27, 232 14 of 16

Table 2. Comparison of experimental results after applying initial mapping.

Comparison

Circuit Name SABRE BSF BSF’ With SABRE With BSF Running Time/s

graycode6_47 0 9 0 - 100.00 0.00
qft_13 78 123 96 −23.08 21.95 6.28
qft_16 126 207 76 39.68 63.29 14.84

rd84_142 87 123 93 −6.90 24.39 2.86
adr4_197 1137 777 615 45.91 20.85 16.56
radd_250 1092 681 638 41.58 6.31 30.23

z4_268 1044 579 537 48.56 7.25 25.97
sym6_145 1086 1002 829 23.66 17.27 15.02

misex1_241 1131 720 483 57.29 32.92 26.77
rd73_252 1845 1296 1077 41.63 16.90 78.39

cycle10_2_110 2097 1074 1035 50.64 3.63 57.94
square_root_7 2442 1263 1104 54.79 12.59 151.33

sqn_258 3651 2154 1776 51.36 17.55 49.88
rd84_253 5772 2916 2796 51.56 4.12 127.59
root_255 6246 3351 3267 47.69 2.51 137.57
co14_215 7635 4161 3969 48.02 4.61 215.93
mlp4_245 7533 3945 3936 47.75 0.23 218.22
urf2_277 9978 5697 5295 46.93 7.06 548.78
clip_206 14,337 6549 6657 53.57 −1.65 885.76

sym9_193 16,002 6183 6372 60.18 −3.06 662.84
9symml_195 16,002 6183 6372 60.18 −3.06 657.97

hwb8_113 28,623 12,675 10,413 63.62 17.85 1587.14
sym10_262 28,779 11,748 10,074 65.00 14.25 1514.58

As shown in Table 2, after applying the initial mapping, this algorithm can reduce the

number of inserted CNOT gates by an additional 10% compared to the SABRE algorithm

for medium-sized and large circuits, based on the no-initial-mapping scenario. Although

the algorithm still struggles with some small circuits where it cannot effectively reduce

the number of inserted CNOT gates, significant improvements have been observed in

certain cases. By comparing the results of the algorithm before and after applying the initial

mapping, it can be confirmed that the initial mapping positively impacts the algorithm’s

performance, resulting in an average reduction of 16.86% in the number of inserted gates.

By applying the initial mapping, the discrepancies in results caused by the initial

mapping between different algorithms are eliminated. Compared to this algorithm, the

SABRE algorithm only considers the foresight in the initial mapping and cost function,

lacking the global perspective that this algorithm employs during the search process.

Therefore, in large test cases, as the logical circuit deepens, the influence of the initial

mapping gradually diminishes, allowing this algorithm to insert fewer CNOT gates to

generate the final circuit. To address the issue of excessive execution time for this algorithm

on certain large circuits, adjustments can be made to the width and depth of the bundle

search to achieve a balance between execution time and algorithm performance.

5. Conclusions

The quantum circuit mapping algorithm based on the bundle search framework pro-

posed in this study achieves efficient mapping of logical quantum circuits, allowing them

to overcome connectivity constraints of quantum physical architectures and successfully

deploy on specific quantum computing devices. This method significantly reduces the

number of basic gates required for quantum circuit mapping by introducing a multi-layer

window approximation of the true effect value function within the bundle search frame-

work. Experimental results show that for large circuits with over 10,000 CNOT gates, this

method can quickly generate mapping schemes with fewer inserted SWAP gates, demon-

Entropy 2025, 27, 232 15 of 16

strating generally superior performance compared to existing methods. However, it shows

some shortcomings on certain small circuits due to the lack of consideration for the impact

of initial mapping. Looking ahead, as the number of qubits in NISQ devices increases

dramatically, the scale of quantum circuits will also become increasingly large. Therefore,

this algorithm is of significant importance for enhancing the usability and computational

efficiency of NISQ computing devices. Future work will focus on designing suitable ini-

tial mappings for this algorithm and improving the effect value function to address the

algorithm’s shortcomings encountered during experimental processes.

Author Contributions: Conceptualization, P.Z. and C.Q.; methodology, C.Q.; software, C.Q.; vali-

dation, C.Q., P.Z. and L.W.; formal analysis, L.W.; investigation, P.Z.; resources, P.Z.; data curation,

C.Q.; writing—original draft preparation, C.Q.; writing—review and editing, P.Z.; visualization, C.Q.;

supervision, P.Z.; project administration, P.Z.; funding acquisition, P.Z. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation Of China [Grant

Number: 62072259], the Jiangsu Natural Science Foundation [Grant Number: BK20221411] and the

Suqian Science and Technology Foundation [Grant Number: H202117].

Institutional Review Board Statement: Not applicable. Ethical review and approval were not

required for this study on human participants in accordance with the local legislation and institu-

tional requirements.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Choi, C.Q. Ibm’s quantum leap: The company will take quantum tech past the 1,000-qubit mark in 2023. IEEE Spectr. 2023, 60,

46–47. [CrossRef]

2. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]

3. Li, G.; Ding, Y.; Xie, Y. Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and Operating Systems, Providence, RI, USA,

13–17 April 2019; pp. 1001–1014.

4. Li, S.; Zhou, X.; Feng, Y. Qubit mapping based on subgraph isomorphism and filtered depth-limited search. IEEE Trans. Comput.

2020, 70, 1777–1788. [CrossRef]

5. Booth, K.; Do, M.; Beck, J.; Rieffel, E.; Venturelli, D.; Frank, J. Comparing and integrating constraint programming and temporal

planning for quantum circuit compilation. In Proceedings of the Twenty-Eighth International Conference on Automated Planning

and Scheduling, Delft, The Netherlands, 24–29 June 2018; Volume 28, pp. 366–374.

6. De Almeida, A.A.A.; Dueck, G.W.; Da Silva, A.C.R. Finding optimal qubit permutations for IBM’s quantum computer architectures.

In Proceedings of the 32nd Symposium on Integrated Circuits and Systems Design, São Paulo, Brazil, 26–30 August 2019; pp. 1–6.

7. Murali, P.; Baker, J.M.; Javadi-Abhari, A.; Chong, F.T.; Martonosi, M. Noise-adaptive compiler mappings for noisy intermediate-

scale quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, Providence, RI, USA, 13–19 April 2019; pp. 1015–1029.

8. Saeedi, M.; Wille, R.; Drechsler, R. Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process.

2011, 10, 355–377. [CrossRef]

9. Siraichi, M.Y.; Santos, V.F.; Collange, C.; Pereira, F.M.Q. Qubit allocation as a combination of subgraph isomorphism and token

swapping. Proc. ACM Program. Lang. 2019, 3, 1–29. [CrossRef]

10. Venturelli, D.; Do, M.; Rieffel, E.; Frank, J. Compiling quantum circuits to realistic hardware architectures using temporal planners.

Quantum Sci. Technol. 2018, 3, 025004. [CrossRef]

11. Venturelli, D.; Do, M.; Rieffel, E.; Frank, J. Temporal planning for compilation of quantum approximate optimization circuits. In

Proceedings of the Scheduling and Planning Applications Workshop (SPARK), Pittsburgh, PA, USA, 19–23 June 2017; p. 58.

12. Botea, A.; Kishimoto, A.; Marinescu, R. On the complexity of quantum circuit compilation. In Proceedings of the International

Symposium on Combinatorial Search, Stockholm, Sweden, 14–15 July 2018; Volume 9, pp. 138–142.

http://doi.org/10.1109/MSPEC.2023.10006669
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1109/TC.2020.3023247
http://dx.doi.org/10.1007/s11128-010-0201-2
http://dx.doi.org/10.1145/3360546
http://dx.doi.org/10.1088/2058-9565/aaa331

Entropy 2025, 27, 232 16 of 16

13. Siraichi, M.Y.; Santos, V.F.; Collange, C.; Pereira, F.M.Q. Qubit allocation. In Proceedings of the 2018 International Symposium on

Code Generation and Optimization, Vienna, Austria, 24–28 February 2018; pp. 113–125.

14. Zhou, X.; Feng, Y.; Li, S. A Monte Carlo tree search framework for quantum circuit transformation. In Proceedings of the 39th

International Conference on Computer-Aided Design, Virtual, 2–5 November 2020; pp. 1–7.

15. Paler, A. On the influence of initial qubit placement during NISQ circuit compilation. In Quantum Technology and Optimization

Problems, Proceedings of the First International Workshop, QTOP 2019, Munich, Germany, 18 March 2019; Proceedings 1; Springer

International Publishing: Cham, Switzerland, 2019; pp. 207–217.

16. Zhou, X.; Li, S.; Feng, Y. Quantum circuit transformation based on simulated annealing and heuristic search. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4683–4694. [CrossRef]

17. Zulehner, A.; Paler, A.; Wille, R. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2018, 38, 1226–1236. [CrossRef]

18. Freitag, M.; Al-Onaizan, Y. Beam search strategies for neural machine translation. arXiv 2017, arXiv:1702.01806.

19. Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.A.; Weinfurter, H. Elementary

gates for quantum computation. Phys. Rev. A 1995, 52, 3457. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCAD.2020.2969647
http://dx.doi.org/10.1109/TCAD.2018.2846658
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://www.ncbi.nlm.nih.gov/pubmed/9912645

	Introduction
	Preliminaries
	Qubit
	Quantum Operation
	NISQ Computing Architecture
	Quantum Circuit Mapping

	A Beam Search Framework for Quantum Circuit Mapping
	Basic Idea
	Preprocessing
	Approximate Real Effect Value Function
	Beam Search Framework
	Complexity Analysis of Proposed Algorithm
	Practical Example

	Results
	Experimental Setup
	Comparison of Experimental Results

	Conclusions
	References

