
Non-linear Massive Gravity

Lāsma Alberte

Fakultät für Physik

LMU München

München,

Juni 2013





Non-linear Massive Gravity

Lāsma Alberte

Dissertation

an der Fakultät für Physik

der Ludwig-Maximilians-Universität

München

vorgelegt von

Lāsma Alberte

aus Riga, Lettland

München,

Juni 2013

mailto:lasma.alberte@physik.uni-muenchen.de
http://www.theorie.physik.uni-muenchen.de/cosmology/index.html
http://www.uni-muenchen.de/index.html
mailto:lasma.alberte@physik.uni-muenchen.de


1. Reviewer: Prof. Dr. Viatcheslav Mukhanov

2. Reviewer: Prof. Dr. Georgi Dvali

Day of the defense: 15th of July 2013



Non-linear Massive Gravity

Lāsma Alberte

Fakultät für Physik

LMU München

Zusammenfassung

Massive Gravitation ist ein theoretisches Modell, welches Gravitation auf kosmolo-

gischen Längenskalen modifiziert, und das so eine dynamische Erklärung für die

beobachtete Beschleunigung der Expansion des Universums liefern könnte. In

dieser Arbeit untersuchen wir verschiedene theoretische Probleme der massiven

Gravitation, die wichtig bezüglich der Konsistenz und phänomenologischen Via-

bilität der Theorie sind.

Es ist bekannt, dass die Vorhersagen der massiven Gravitation auf linearer

Ordnung den Vorhersagen der allgemeinen Relativitätstheorie widersprechen. Dies

ist jedoch ein Artefakt, das vom Zusammenbruch der perturbativen Entwicklung

im masselosen Limes verursacht wird. In unserer Arbeit untersuchen wir dieses

Problem in der Diffeomorphismen-invarianten Formulierung der massiven Gravita-

tion, in der der Graviton-Massenterm mit vier skalare Feldern ausgedrückt wird.

Wir bestimmen die sogenannte Vainshtein-Skala, unterhalb derer sich die skalaren

Moden des massiven Gravitons nichtperturbativ verhalten, für eine große Klasse

möglicher Massenterme. Wir finden die asymptotischen Lösungen des sphärisch

symmetrischen Gravitationsfeldes inner- und außerhalb des Vainshtein-Radiuses

und zeigen, dass massive Gravitation sich unterhalb dieser Skala kontinuierlich

der Allgemeinen Relativitätstheorie annähert. Außerdem bestimmen wir die resul-

tierenden Korrekturen zum Newton-Potential.

Im Allgemeinen propagiert in jeder Theorie mit einer nichtlinearen Erweiterung

des quadratischen Graviton-Massenterms ein Boulware–Deser Geist. Die einzige

solche Theorie, in der der Geist im Hochenergie-Entkopplungslimes nicht propagiert,

ist das de Rham–Gabadadze–Tolley Modell. Hier zeigen wir, dass der Geist selbst

in dieser Theorie außerhalb des Entkopplungslimes in vierter Ordnung Störungs-

theorie erscheint. Wir argumentieren dann jedoch, dass der Geist in der voll nicht-

linearen Theorie vermeiden werden kann, wenn nicht alle Skalarfelder unabhängige

Freiheitsgrade darstellen. In dieser Hinsicht untersuchen wir das einfache Beispiel

(1 + 1)-dimensionaler massiver Gravitation und finden, dass diese Theorie eine

Eichsymmetrie enthält, die die Anzahl der Freiheitsgrade reduziert.
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Schließlich verallgemeinern wir den Diffeomorphismen-invarianten Formalismus

massiver Gravitation auf allgemeine gekrümmte Hintergründe. Wir finden, dass auf

bestimmten Hintergründen die resultierende allgemein kovariante massive Gravi-

tation eine Symmetrie im Konfigurationsraum der skalaren Felder aufweist. Die

Symmetrietransformationen der skalaren Felder sind durch die Isometrien der Ref-

erenzmetrik gegeben. Insbesondere untersuchen wir massive Gravitation auf de

Sitter-Raum in diesem Formalismus. Wir bestätigen das bekannte Ergebnis, dass,

im Falle einer Gravitonmasse im Verhältnis zur kosmologischen Konstante von

m2 = 2Λ/3, die Theorie teilweise masselos ist. Dadurch propagieren in diesem Fall

nur vier Freiheitsgrade.
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Massive gravity is a particular theoretical model that modifies gravity on cosmo-

logical scales and therefore could provide a dynamical explanation for the observed

accelerated expansion of our Universe. In this thesis we investigate various theoreti-

cal problems of massive gravity, important for its consistency and phenomenological

viability.

It is known that the predictions from the linearized massive gravity contra-

dict the predictions of General Relativity. It is, however, an artifact due to the

breakdown of the perturbative expansion in the massless limit. In our work we

investigate this problem in the diffeomorphism invariant formulation of massive

gravity in which the graviton mass term is written in terms of four scalar fields.

We determine the so-called Vainshtein scale below which the scalar modes of the

massive graviton enter the non-perturbative regime for a wide class of non-linear

mass terms. We find the asymptotic solutions of the spherically symmetric gravita-

tional field below and above the Vainshtein radius, and show that massive gravity

goes smoothly to the General Relativity below this scale. We also determine the

corresponding corrections to the Newton potential.

In general, any non-linear extension of the quadratic graviton mass term prop-

agates the Boulware–Deser ghost. The only theory in which the ghost is not prop-

agating in the high energy decoupling limit, is the de Rham–Gabadadze–Tolley

theory. Here we show that the ghost arises in the fourth order of perturbations

in this theory away from the decoupling limit. However, we further argue that

the ghost can be avoided in the full non-linear theory if not all four scalar fields

propagate independent degrees of freedom. In particular, we investigate the simple

example of (1 + 1)-dimensional massive gravity and find that the theory exhibits a

gauge symmetry, which reduces the number of degrees of freedom.

We also generalize the diffeomorphism invariant formalism of massive gravity

to arbitrary curved backgrounds. We find that, given a specific background metric,

the resulting generally covariant massive gravity exhibits an internal symmetry in

the configuration space of the scalar fields. The symmetry transformations of the

scalar fields are given by the isometries of the reference metric. In particular, we
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investigate massive gravity on de Sitter space in this formalism. We confirm the

known result that, in the case when the graviton mass is related to the cosmological

constant as m2 = 2Λ/3, the theory is partially massless and propagates only four

degrees of freedom.
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1

Introduction

1.1 Dark energy and Cosmological Constant Prob-

lem

The advances in precision cosmology since the late 1990s provide us with very

precise measurements of the cosmological parameters governing the evolution and

the present state of our Universe. In particular, the energy content of the Universe

is firmly established by observations. It is known that the usual baryonic matter

contribute only a small fraction of the total energy density today, while roughly

95% of the overall energy density is in the form of ‘dark’ components. The dark

component is composed of dark matter, a very weakly interacting form of matter

with negligible pressure (≈ 25%), and dark energy, a non-clustering form of energy

density with negative pressure (≈ 70%). The best fit model for the observational

data based on the recent measurements by the Planck experiment gives the values

Ωm = 0.314 ± 0.020 and ΩΛ = 0.686 ± 0.020 for the respective contributions to

the current energy density of cold dark matter (CDM) together with baryons, and

dark energy [1].

The discovery of dark energy was made by measurements of the luminosity-

redshift dependence of type IA supernovae which allowed to see that the expansion

of the Universe is accelerating and thus has to be driven by an energy component

with negative pressure [2, 3]. Since then the existence of dark energy has been

further confirmed by the measurements of the anisotropies of the cosmic microwave

background (CMB) [1, 4] and measurements of galaxy clustering [5]. The model
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1. INTRODUCTION

that provides the so far best fit of all observational data is the ΛCDM model

which assumes that the dark energy component is a vacuum energy density or

cosmological constant Λ, which has the equation of state p = −ε.
One of the most serious shortcomings of the ΛCDM model is the cosmological

constant problem. This problem was known in quantum field theory even before

the discovery of dark energy and relies in the fact that anything that contributes

to the vacuum energy density behaves as a cosmological constant. In particular,

by summing up the zero-point energies of all modes of a free scalar field up to

an ultraviolet wavenumber cutoff ΛUV yields a vacuum energy density ∼ Λ4
UV.

If we impose the ultraviolet cutoff to be of the order of Planck scale then we

obtain a vacuum energy density of order M4
Pl ∼ 1076 GeV4. Before the discovery

of the accelerated expansion of the Universe the cosmological constant problem

was formulated as: “Why does the observed cosmological constant equal to zero?”

After the discovery of dark energy, corresponding to a cosmological constant of

order 10−120M4
Pl, the cosmological constant problem is reformulated as: “Why is

the observed cosmological constant so small?”

1.2 Infrared modifications of gravity

There are two conceptually different ways to address the cosmological constant

problem: degravitation and self-acceleration. Both of them rely on the idea of

modifying gravity on cosmological scales. In the degravitation approach the vac-

uum energy keeps its huge natural value, but the gravity is modified in infrared so

that this large wavelength source gravitates very weakly [6, 7, 8]. In the meantime,

the short wavelength sources such as matter and radiation gravitate normally. In

[6] the graviton propagator is modified non-locally so that the effective Newton’s

constant becomes wavelength dependent and for long-wavelength sources is tiny.

In such case the Newton’s constant acts as a high-pass filter by shutting off the

gravitational effects (such as curvature) of the vacuum energy.

For the self-acceleration approach, the vacuum energy is instead postulated

to be equal to zero, and the gravity is modified in infrared, leading to a dynamic

cosmic acceleration at late times [9]. An infrared modification of gravity, in general,

invokes new dynamical degrees of freedom which become strongly coupled in the

vicinity of a classical source. It is natural for the scenarios of such modifications to

2



1.3 Massive gravity

introduce additional degrees of freedom of the gravitational field itself. The first

successful realization of such a scenario is the Dvali–Gabadadze–Porrati (DGP)

brane-world model, which consists of a 4D brane embedded in a 5D Minkowski

space [10]. This theory admits a self-accelerating solution with a constant Hubble

parameter in the absence of an external matter source [11, 12]. From the point of

view of a four-dimensional observer the effective 4D Friedmann equation receives

an additional contribution in the form of a cosmological constant which dominates

at late times. Unfortunately, the self-accelerating branch of the DGP model is

plagued by negative energy ghost-like states [13, 14]. A comprehensive review on

the DGP model and other infrared modifications of gravity can be found in [15].

1.3 Massive gravity

In this thesis we focus on massive gravity – a particular theoretical model of infrared

modification of gravity which attempts to provide a dynamical explanation for the

late time acceleration of our Universe. Studying massive gravity is also motivated

by such a fundamental question like whether it is at all possible to consistently

modify the Einstein’s General Relativity (GR) so that to give a tiny mass to the

graviton. Here we give a brief overview of massive gravity pointing out the main

consistency problems in historical order. The solutions and current state of these

issues will be presented in detail in the main body of the thesis.

The quadratic graviton mass term was proposed already in 1939 by Fierz and

Pauli (FP) who found the unique mass term which ensures a unitary propagation

at quadratic level [16]. For the metric perturbations around Minkowski background

hµν ≡ gµν − ηµν it takes the form

LFP =
m2

8

∫
d4x

(
h2 − hµνhµν

)
, (1.1)

where hµν = ηµαηνβhαβ. In 1970, it was observed by van Dam, Veltman, and

Zakharov (vDVZ) that in linearized Fierz–Pauli massive gravity there is no contin-

uous transition to the General Relativity in the limit of vanishing graviton mass.

This effect is known today as the vDVZ discontinuity. It was shown that the

helicity-0 component of massive graviton remains coupled to the trace of the energy-

momentum tensor of external matter sources even in the limit when graviton mass

3



1. INTRODUCTION

is sent to zero. Hence, the naive predictions of the linearized Fierz–Pauli theory

contradict with the Solar System observations related to the motion of massive

objects, like the precession of the Mercury perihelion. In the meantime, the pre-

dictions for the light bending by the Sun coincide with General Relativity since the

energy-momentum tensor of light is traceless.

It was, however, pointed out by Vainshtein in 1972 that the discontinuity should

not persist in the full non-linear theory [17]. The reason for this is that around

heavy sources the perturbative expansion in terms of the Newton’s constant is

singular in the limit of vanishing mass. Therefore the next-to-leading order terms

become relevant in this limit, and the truncated theory cannot be trusted anymore.

Vainshtein also pointed out that around a static spherically symmetric source of

mass M the linear regime breaks down at the distance RV = (M/(M2
Plm

4))1/5. It

was suggested that the scalar mode of the massive graviton decouples by entering

the non-perturbative regime at distances r < RV , and General Relativity is restored

in the vicinity of the source. This is known as the Vainshtein mechanism, and RV

is the so-called Vainshtein radius. Although Vainshtein argued that there exist two

different expansion regimes above and below Vainshtein radius, his argument does

not give a real proof of the fact that General Relativity is indeed restored. It was

almost immediately pointed out by Boulware and Deser in 1973 that it is necessary

to show that a global solution of the non-linear theory exist which matches both

asymptotic regimes [18]. That such a solution does exist for a certain non-linear

massive gravity theory was shown only in 2009 by Babichev et al. [19, 20, 21].

In the same paper Boulware and Deser also pointed out that a general non-linear

theory of massive gravity propagates six degrees of freedom [18]. This contradicts

the well-known fact that a massive spin-2 particle propagates five degrees of freedom

according to the representations of the Poincaré group. Moreover, it was shown

that this sixth mode inevitably propagates negative norm states, and is therefore

called the Boulware–Deser (BD) ghost. For a long time this was thought to be a no-

go theorem for massive gravity since it forbids a successful implementation of the

Vainshtein mechanism for which the presence of the non-linear interaction terms

is crucial. An important step in understanding the ghost problem and the closely

related strong coupling problem of massive gravity was made by Arkani-Hamed et

al. in 2002 [22]. They implemented the effective field theory view point for the

theory of a massive spin-2 field. The general covariance of General Relativity is

4



1.3 Massive gravity

broken in massive gravity by the graviton mass term. By analogy to the effective

theory of massive spin-1 fields it was shown how the general covariance can be

restored by introducing four additional fields, the so-called Stückelberg fields. 1

This method allows for a better understanding of the origin of the BD ghost, as

well as makes it easy to determine the strong coupling scale of the effective field

theory. Since the Stückelberg fields can be viewed as the analogue of the Goldstone

bosons in gauge theories, it makes it possible to separate the relevant interactions

at different energy scales. In particular, an appropriate decoupling limit capturing

the leading interactions of the longitudinal modes of the massive graviton was

proposed in this language. As a result, both the BD ghost and the strong coupling

of the non-linear effective theory was traced to arise due to the higher derivative

interaction terms of the helicity-0 mode of the graviton. The strong coupling scale

of the particular massive gravity theory investigated in [22] was shown to be a

disappointingly low scale Λ5 ≡ (m4MPl)
1/5 ∼ (1011 km)−1. The authors pointed

out a procedure of how an order-by-order addition of higher interactions would

raise the strong coupling scale of massive gravity to the highest possible scale

Λ3 = (m2MPl)
1/3 ∼ (103 km)−1.

The order-by-order construction of the non-linear theory of massive gravity with

a higher cutoff scale was performed in [27] up to the quintic order in hµν . Moreover,

it was shown that the remaining scalar-tensor interaction terms in the decoupling

limit contain at most two time derivatives and are thus free of the Boulware–

Deser ghost. This theory was resummed in terms of infinite series by de Rham,

Gabadadze, and Tolley (dRGT) in 2010 and up to now is the only potentially

healthy non-linear massive gravity theory [28].

In [18] it was also pointed out that any massive gravity theory contains a given

reference metric fµν as an absolute, non-dynamical object. The most natural choice

of the reference metric is the Minkowski metric, which is employed also in the dRGT

theory. However, around any other background the quadratic Fierz–Pauli theory

propagates the Boulware–Deser ghost [18, 29]. This makes it impossible to use

a theory, constructed with a Minkowski reference metric to describe a massive

graviton, propagating five degrees of freedom with equal mass around an arbitrary

curved background. Instead, the reference metric fµν has to be chosen to coincide

1In [22], however, the set of the four fields was mistakenly said to form a vector field. That
the four Stückelberg fields are actually four space-time scalars was clarified in [23, 24, 25, 26].

5



1. INTRODUCTION

with the preferred background metric. In particular, for applications in cosmology

the homogeneous and isotropic Friedmann-Robertson-Walker (FRW) backgrounds

are of great importance. The quadratic massive gravity on the maximally symmet-

ric de Sitter background was first studied in 1986 by Higuchi [30]. It was found that

this theory has the interesting feature that the propagated number of degrees of

freedom can vary throughout the parameter space of the graviton mass m and the

cosmological constant Λ. More precisely, the scalar mode of the massive graviton

ceases to propagate at the special point m2 = 2Λ/3 leaving only four propagating

degrees of freedom [30, 31]. The reason for this phenomenon is that at this point

in the parameter space the theory enjoys an additional gauge symmetry reducing

the number of degrees of freedom [32, 33]. This theory is referred to as partially

massless, and the existence of the gauge symmetry bounds the value of the cos-

mological constant to the value of the graviton mass. If the additional symmetry

could be extended to the full non-linear theory, the partially massless gravity could

reduce the problem of a small cosmological constant to a less severe problem of a

small graviton mass [34]. It is therefore a very interesting and open subject which

we will discuss in a later chapter.

1.4 Classicalization

Another interesting topic we would like to mention briefly in this thesis is the

ultraviolet (UV) completion of non-renormalizable derivatively coupled effective

field theories. In such theories the self-coupling of the degrees of freedom grow

with the inverse wave-length. Quantum mechanically the coupling of these quanta

becomes strong at the center of mass energies larger than the inverse of the cutoff

length L∗. Thus the scattering of two highly energetic particles violate perturbative

unitarity. The standard Wilsonian approach to UV-completion is based on the

existence of weakly coupled degrees of freedom at all scales. The strong coupling

is then considered to be an artifact of missing weakly coupled degrees of freedom.

Recently an alternative concept of non-Wilsonian self completion was proposed by

Dvali et al. in [35], and further investigated in [36, 37, 38, 39]. According to this

point of view a given theory may self-complete without the need of new weakly

coupled degrees of freedom. Instead their role is played by a multi-particle state

composed of soft original quanta. This phenomenon is termed classicalization, and

6



1.5 Summary

theories which are expected to exhibit this behavior we term classicalizing theories.

One of the simplest examples of a classicalizing theory is the scalar Dirac-Born-

Infeld (DBI) theory, as suggested in [37]. The idea of classicalization suggests that

the scattering process of two highly energetic particles is dominated by production

of a state with many soft quanta of wave-length r∗. This length scale r∗ can be

understood classically as the shortest distance down to which a spherical wave can

propagate freely before being rescattered by self-interaction. The defining property

of classicalizing theories is that the r∗ grows with the energy.

In our work [40] we have attempted to check the conjecture that high energy

scatterings should be dominated by multi-particle production in classicalizing the-

ories. In particular, we apply a semiclassical technique in order to calculate the

total transition rate from an initial few particle state to a state with large number

of particles in the DBI theory. We find that for a fixed above-cutoff total energy

E > L−1
∗ in the final state, the scattering process with large number of particles

in the final state N is exponentially suppressed. Unexpectedly, the semiclassical

method gives exponentially large cross section for small particle numbers in the

final state N < Ncrit = (EL∗)4/3. Interestingly, we see that this transition happens

for the particles of wavelength λ ∼ Ncrit/E which coincides with the r∗ radius

predicted by Dvali et al. [35, 37]. Since the topic of classicalization is not di-

rectly related to the main subject of this thesis, we will not discuss this part of

our research in greater detail here. The corresponding paper [40] can be found in

appendix E.

1.5 Summary

In this thesis we investigate the various theoretical aspects of massive gravity. The

subsequent chapters give a more detailed account on the consistency problems in

massive gravity introduced above and their solutions. The chapter 2 is devoted

to the construction of the dRGT theory of massive gravity since it is the theo-

retical framework of the rest of the thesis. The further chapters contain a review

of the recent developments in the most important theoretical topics in massive

gravity. We shall also accordingly present the main results obtained in our papers

[41, 42, 43, 44]. In particular, in chapter 3 the different interpretations of the Vain-

shtein mechanism in massive gravity are discussed, and our results based on the

7



1. INTRODUCTION

publication [41] are presented. We determine the Vainshtein radius in non-linear

massive gravity theories with different strong coupling scales and argue in which

energy region the classical non-linear regime is reliable. We also calculate the corre-

sponding corrections to the Newton’s potential within the Vainshtein region around

static spherically symmetric sources. The appearance of the Boulware–Deser ghost

in the perturbative expansion of the dRGT massive gravity is investigated in chap-

ter 4. In particular, we show how ghost-like terms appear in the fourth order of the

dRGT theory away from the decoupling limit. Although the mass of the ghost is

shown to be lighter than the corresponding quartic order strong coupling scale, we

argue how this problem can be avoided by adding higher order interaction terms.

We also present the arguments for the absence of the BD ghost in Stückelberg

formalism available in the literature. To illustrate the absence of the ghost degree

of freedom we perform a full Hamiltonian analysis in the simple example of (1+1)-

dimensional dRGT massive gravity. Our results presented in this chapter are based

on our findings in [42, 43]. The chapter 5 is devoted to massive gravity on curved

backgrounds, and presents our results obtained in [44]. We first discuss how the

general covariance can be restored in massive gravity around arbitrary background

and how the dRGT theory should be adjusted in this case. We then demonstrate

that the resulting diffeomorphism invariant theory exhibits different internal sym-

metries in the scalar field space and thus corresponds to a theory fundamentally

different from the original dRGT theory. As an example, we show how to construct

the generally covariant massive gravity on de Sitter space. As a consistency check

we recover the previously known results concerning the partial masslessness of the

de Sitter massive gravity. Chapter 6 provides a short summary of our results and

the current state of the dRGT massive gravity. The full versions of our papers

[40, 41, 42, 43, 44] are attached in the appendices A,B,C,D,E respectively.

8



2

Construction of the dRGT

massive gravity

2.1 Stückelberg trick for massive gravity

The unique quadratic graviton mass term which ensures unitary propagation of

the graviton is the Fierz–Pauli (FP) mass term, and for metric fluctuations around

Minkowski background hµν ≡ gµν − ηµν it takes the form [16]

LFP =
m2M2

Pl

8

(
h2 − hµνhµν

)
. (2.1)

When added to the Einstein-Hilbert action this mass term breaks the diffeomor-

phism invariance of General Relativity due to the explicit dependence on the back-

ground reference metric ηµν = diag (+,−,−,−). The general covariance can be

restored by the so-called Stückelberg trick which relies on the idea of introducing

four scalar fields φA, A = 0, 1, 2, 3 corresponding to the four broken diffeomorphism

transformations [22, 23, 24, 25, 26]. The mass term for metric perturbations is then

built from various combinations of the variables [23, 26]

h̄AB = gµν∂µφ
A∂νφ

B − ηAB, (2.2)

where ηAB is the Minkowski metric in the configuration space of the scalar fields.

This composite field is a scalar with respect to diffeomorphism transformations.

On Minkowski background the scalar fields φA acquire vacuum expectation values

9



2. CONSTRUCTION OF THE DRGT MASSIVE GRAVITY

proportional to Cartesian spacetime coordinates φA0 = xµδAµ . The diffeomorphism

invariance is thus spontaneously broken and the scalar field perturbations χA ≡
φA − φA0 induce four additional degrees of freedom. In combination with the two

degrees of freedom of the massless graviton the theory in general propagates six

degrees of freedom. Five of them constitute the five degrees of freedom of a massive

spin-2 particle in agreement with the Poincaré invariance. The sixth degree of

freedom is ghost-like and is the famous Boulware–Deser ghost [18]. In quadratic

order the ghost is canceled by the special choice of the Fierz–Pauli mass term as

given below.

In unitary gauge, when χA = 0, the variables h̄AB are equal to metric per-

turbations since h̄AB = δAµ δ
B
ν h

µν . Thus the diffeomorphism invariance of General

Relativity is restored by replacing hµν → h̄AB in the FP mass term (2.1). This

leads to the following action of the scalar fields:

Sφ =
m2M2

Pl

8

∫
d4x
√−g

(
h̄2 − h̄ABh̄BA

)
, (2.3)

which around the symmetry breaking background gives the quadratic FP mass

term for metric perturbations. Since the field h̄AB ≡ h̄ACηBC transforms as a scalar

under general coordinate transformations, this Lagrangian is manifestly diffeomor-

phism invariant. Moreover, since the Latin indices in the action are contracted,

it is invariant also under the isometries of the metric ηAB, namely the Lorentz

transformations ΛA
B in the scalar field space. Hence the scalar field indices A, B

are raised and lowered with ηAB.

It is important to notice that due to the definition (5.2) the above action con-

tains terms up to the sixth order in perturbations hµν and χA. It is therefore

the simplest diffeomorphism invariant non-linear graviton mass term, which in

quadratic order gives the FP mass term for metric perturbations. Henceforth, we

will refer to (2.3) as the non-linear Fierz–Pauli mass term.

2.2 Effective field theory for massive gravitons

From the field theoretic point of view massive gravity can be regarded as an effective

field theory for an interacting massive spin-2 particle. As any effective field theory,

also massive gravity is not valid up to arbitrary large energy scales, but has a UV

10



2.2 Effective field theory for massive gravitons

cutoff, which as we will see below depends on the exact form of the non-linear

completion of the quadratic Fierz–Pauli mass term. In this section we shall follow

closely the work of Arkani-Hamed et al. in which massive gravity was discussed in

the effective field theory framework for the first time [22].

2.2.1 Fierz–Pauli mass term

We shall start by discussing the effective theory of graviton in flat Minkowski space

with the quadratic Fierz–Pauli mass term given in (2.1). As discussed in the pre-

vious section the diffeomorphism invariance, broken by the mass term, is restored

by introducing the four Stückelberg fields corresponding to the four coordinate

transformations. As in [22] we define a spacetime tensor

Hµν = gµν − ηAB∂µφA∂νφB (2.4)

which, similarly to h̄AB, around the Minkowski background reduces to the metric

perturbations hµν in the unitary gauge where φA = δAµ x
µ. In distinction from

(5.2), here the Stückelberg trick is implemented by parametrizing the absolute

background metric ηµν as

ηµν → ∂µφ
A∂νφ

BηAB (2.5)

Thus, Hµν is a spacetime tensor and its indices are raised and lowered with the

spacetime metric gµν . In the meantime h̄AB is a spacetime scalar and its indices

are moved with the Minkowski metric ηAB. The traces of the fields Hµν and h̄AB

are defined as

[H] = gµνHµν ,
[
H2
]

= gµνgαβHµαHνβ, . . . (2.6)
[
h̄
]

= h̄ABηAB,
[
h̄
]2

= h̄ABh̄
B
A = h̄AC h̄BDηBCηAD. (2.7)

and coincide up to a sign
[
h̄n
]

= (−1)n [Hn] [45]. The diffeomorphism invariant

Fierz–Pauli theory of massive graviton is then given by the action

S = −1

2
M2

Pl

∫
d4x
√−gR +

m2M2
Pl

8

∫
d4x
√−g

(
[H]2 −

[
H2
])
. (2.8)

11



2. CONSTRUCTION OF THE DRGT MASSIVE GRAVITY

Since this mass term is equivalent to (2.3) we shall also refer to this as the non-

linear Fierz–Pauli massive gravity. The Stückelberg (or, alternatively, also called

Goldstone) formulation turns out to be very useful to illuminate the interactions of

the longitudinal helicity-1 and helicity-0 components of the massive graviton. To

see this we expand the scalar fields as φA = xµδAµ + χA, where χA under spacetime

diffeomorphisms transform as perturbations of scalar fields. Hence, (2.8) describes

a massless graviton hµν together with a set of fields χA. If the spacetime metric

is expanded around the Minkowski background the theory given by (2.8) enjoys

a global spacetime Lorentz symmetry. Under this symmetry the field χµ ≡ δµAχ
A

transforms as a vector. By having this in mind one can decompose χµ into the

transverse helicity-1 and helicity-0 modes. In turn, the scalar perturbations χA are

decomposed as

χA = δAµχ
µ ≡ δAµ η

µνχν ≡ δAµ η
µν(Aν + ∂νπ). (2.9)

We note that the fields Aν and π in this decomposition are not well-defined from

the point of view of the spacetime diffeomorphisms. Moreover, this decomposition

involves time derivative of the field π and might lead to the appearance of additional

time derivatives in the action. More precisely, the spacetime tensor Hµν defined in

(2.4) now becomes

Hµν = hµν+∂µAν + ∂νAµ + 2∂µ∂νπ − ∂µAα∂νAα−
−∂µAα∂ν∂απ − ∂µ∂απ∂νAα − ∂µ∂απ∂ν∂απ, (2.10)

and it is apparent that the field π here involves second order derivatives. However,

there is an accidental U(1) symmetry of Hµν , given as Aµ → Aµ+∂µΛ, π → π−Λ.

Hence, the field π is pure gauge and can be set back to zero. Therefore, the total

number of degrees of freedom propagated by χA and {Aµ, π} should be the same.

In the rest of this chapter we will formally work with the decomposition (2.9),

(2.10) ignoring the fact that Aµ is not a spacetime vector. In our work [41], we

have, however, shown that all the results obtained in this chapter can also be found

working in terms of the well-defined fields χA with no use of the splitting (2.9).

The field Hµν in (2.10) coincides1 with the helicity decomposition of a spin-2

1Up to a term needed for the diagonalization of the kinetic terms, for details see [46].
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2.2 Effective field theory for massive gravitons

field into a helicity-2, helicity-1 and helicity-0 modes. The fields Aµ and π are

analogous to the Goldstone fields in gauge theories carrying the degrees of freedom

of the broken diffeomorphism invariance. In analogy to the equivalence theorem in

gauge theories [47], the dynamics of the longitudinal vector and scalar polarizations

of the massive graviton are described by the dynamics of the fields Aµ and π, at

energies much higher than the graviton mass.

In what follows we shall focus on the strongest interactions that cause the

breakdown of perturbative unitarity. At energies much higher than the graviton

mass these are the interactions of the longitudinal graviton modes or, equivalently,

the interactions of the Goldstone fields Aµ and π defined in (2.9). The field Aµ

has a kinetic term (mMPl)
2(∂νAµ − ∂µAν)2 whereas the field π acquires a kinetic

term only through the mixing with the graviton m2M2
Pl (h�π − hµν∂µ∂νπ). The

scalar and tensor sector can be un-mixed by a field redefinition of the graviton

hµν → hµν−ηµνm2π. After doing this, in order to focus on the strongest interactions

we set hµν = 0 in the expansion of the action (2.8). The leading interactions are

schematically

Lπ ⊃ −
3

4
π�π +

(∂2π)3

m4MPl

+
(∂2π)4

(m3MPl)2
+
∂2π∂A∂A

m2MPl

, (2.11)

where we have canonically normalized the fields by replacing

Aµ →
Aµ

mMPl

, π → π

m2MPl

. (2.12)

The lowest strong coupling scale is that of the cubic self-interactions of the π

field and is Λ5 ≡ (m4MPl)
1/5. This is a very low scale which for the graviton

mass of the order of the Hubble scale m ∼ (1028 cm)−1 corresponds to the scale

Λ5 ∼ 10−20 eV ∼ (1011 km)−1. Hence this effective theory of massive gravity

breaks down below the distances slightly larger than the size of the Solar System

(∼ 4.5 · 109 km). Around heavy sources the effective theory of massive gravity

breaks down at even larger distances. This means that the effective theory (2.8)

cannot describe gravity within our Solar System. Moreover, the presence of the

higher order derivative terms in (2.11) implies ghosts and violations of unitarity in

the non-linear Fierz–Pauli theory (2.8). Hence, this theory besides of having a very

low UV cutoff is plagued by the Boulware–Deser ghost and is not a satisfactory

13



2. CONSTRUCTION OF THE DRGT MASSIVE GRAVITY

non-linear massive gravity theory.

2.2.2 Non-linear graviton mass term and quantum correc-

tions

It was pointed out in [22], that by adding to the Fierz–Pauli mass term higher

order interactions in hµν the self-interaction terms for π could be canceled. In-

deed, after Stückelberg-alizing the theory via the substitution hµν → Hµν the

cubic self-interactions of π can be canceled by tuning the coefficients in front of the

H3 terms in the graviton mass potential. After order-by-order elimination of the

self-interactions of the longitudinal helicity-0 graviton mode, the strongest interac-

tions are of the form (∂A)p(∂2π)q. After canonical normalization one sees that the

interactions become strongly coupled at the scale [22]

(mp+2q−2Mp+q−2
Pl )

1
3q+2p−4 . (2.13)

Due to the U(1) symmetry of Hµν the field ∂A can only appear in the graviton

mass term in the anti-symmetric combination Fµν . Hence, there are no interaction

terms with a single ∂A and (∂2π)q, i.e. p ≥ 2. The highest possible cutoff scale

can therefore be achieved in the full non-linear theory when all the infinitely many

expansion terms are known, i.e. when q → ∞. This corresponds to the scale

Λ3 = (m2MPl)
1/3. At this scale infinitely many operators are generated in the ef-

fective field theory at quantum level. One therefore has to include all the operators

consistent with the symmetries. In unitary gauge it means that one should include

operators of the form

cp,q∂
qhp (2.14)

where the coefficients cp,q give the strength of interactions. In order to establish

the size of the coefficients cp,q we write down the allowed structure of the operators

for the longitudinal helicity-0 mode of the graviton π. Due to the shift symmetry

of the Stückelberg fields φA, the helicity-0 field always appears with two derivatives

and hence the allowed operators are of the form [22, 48]

∂q(∂2πc)p

Λ3p+q−4
3

, (2.15)
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2.3 Decoupling limit: raising the cutoff and avoiding the ghosts

where the superscript c indicates that we mean the canoncially normalized field

πc = Λ3
3π. In Lagrangian the field π arises from different powers of Hµν ⊃ ∂µ∂νπ.

In unitary gauge Hµν = hµν , and thus by substituting ∂2πc → Λ3
3h in the operators

(2.15) one can determine the size of the coefficients cp,q in (2.14) to be

cp,q ∼ Λ4−q
3 = (m2MPl)

(4−q)/3. (2.16)

The quantum operators (2.14) involve also a general quadratic mass terms for h

with q = 0, p = 2, which would disturb the special form of the Fierz–Pauli mass

term. However, the coefficient in front of these quadratic quantum operators,

c2,0 = (m2MPl)
4/3, is much smaller than the Fierz–Pauli coefficient m2M2

Pl, and

the unitary violating effect hits in only above the strong coupling cutoff Λ3 [22].

The same holds also for all the further specific choices of the coefficients in front of

the higher order interaction terms. Hence, the effect from the quantum operators

not of the special form is small, and the special choices made for the coefficients

in the non-linear potential are therefore said to be technically natural. We thus

have a reasonable effective theory for a massive graviton below the energy cutoff

Λ3. Although it is a higher energy scale than the initial Λ5, it is still quite low,

i.e. Λ3 ∼ 10−10 eV ∼ (103 km)−1. Hence a UV completion describing the short

distance physics as successfully as General Relativity is needed for the effective field

theory of massive gravity. The transition to General Relativity in the presence of

spherically symmetric static sources is maintained via the Vainshtein mechanism

[17] which will be the subject of the next chapter.

2.3 Decoupling limit: raising the cutoff and avoid-

ing the ghosts

The explicit construction of the above mentioned non-linear theory of massive grav-

ity with the strong coupling scale given by Λ3 was done by de Rham, Gabadadze,

and Tolley (dRGT). The non-linear potential of the massive graviton U(g,H) up

to quintic order in Hµν was found by an explicit order-by-order construction in

the decoupling limit [27]. The full non-linear resummation of the theory was later

found in [28]. Here we shall briefly present the main steps and resulting formulae.
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2. CONSTRUCTION OF THE DRGT MASSIVE GRAVITY

The most general diffeomorphism invariant Lagrangian of a massive spin-2 field

can be written as infinite series in the tensor field Hµν defined in (2.4) and takes

the form

L = −1

2
M2

Pl

√−gR− M2
Plm

2

8

√−g [U2(g,H) + U3(g,H) + U4(g,H) + . . .] (2.17)

where the most general potential terms Un at the n-th order in the field Hµν read1

U2(g,H) =
[
H2
]
− [H]2 ,

U3(g,H) = c1

[
H3
]

+ c3 [H]
[
H2
]

+ c3 [H] ,

U4(g,H) = d1

[
H4
]

+ d2 [H]
[
H3
]

+ d3

[
H2
] [
H2
]

+ d4 [H]2
[
H2
]

+ d5 [H]4 ,

...

The square brackets here represent the traces as in (2.6), and ci, di are arbitrary

coefficients, which need to be determined. In what follows we shall focus only on

the interactions of the helicity-0 and helicity-2 modes by setting the vector modes

of the field to zero. The expansion (2.10) of the tensor field Hµν in terms of the

canonically normalized modes hµν → hµν/MPl and π → π/Λ3
3 then becomes

Hµν =
hµν
MPl

+
2

Λ3
3

∂µ∂νπ −
∂µ∂

απ∂ν∂απ

Λ6
3

. (2.18)

The self-interactions of the helicity-0 mode π at the n-th order in non-linearities

are schematically of the form

L(n)
π ∼

(∂2π)n

Mn−2
Pl m2(n−1)

. (2.19)

The corresponding energy scale below which the different interaction terms are

suppressed grows with the order of interactions as Λ5 = (MPlm
4)1/5, Λ4 =

(MPlm
3)1/4, Λ11/3 = (M3

Plm
8)1/11, etc. As discussed in the previous section the

highest possible strong coupling scale in non-linear massive gravity is achieved in

the absence of all the self-interactions of π and is the Λ3 = (MPlm
2)1/3. In [27]

it was shown that it is possible to fix, order-by-order, the coefficients ci, di in the

1When written in terms of the field h̄AB the odd coefficients ci need to be taken of the opposite
sign since

[
h̄n
]

= (−1)n [Hn].
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2.3 Decoupling limit: raising the cutoff and avoiding the ghosts

potentials U3, U4 so that the interactions (2.19) form a total derivative at the corre-

sponding order. By doing so the energy cutoff scale at which the leading helicity-0

self-interactions arise is raised. At each order n there is a unique combination, L
(n)
tot ,

giving a total derivative. Written in terms of Πµν ≡ ∂µ∂νπ, the total derivative

combinations are

L
(0)
tot = 1, L

(1)
tot = 〈Π〉 , (2.20)

L
(2)
tot = 〈Π〉2 −

〈
Π2
〉
, (2.21)

L
(3)
tot = 〈Π〉3 − 3 〈Π〉

〈
Π2
〉

+ 2
〈
Π3
〉
, (2.22)

L
(4)
tot = 〈Π〉4 − 6

〈
Π2
〉
〈Π〉2 + 8

〈
Π3
〉
〈Π〉+ 3

〈
Π2
〉2 − 6

〈
Π4
〉
, (2.23)

where 〈Π〉 = ηµνΠµν , 〈Π2〉 = ηµνηαβΠµαΠνβ, etc. Equivalently these terms can be

written as the contractions with the totally antisymmetric tensors as [49, 50]

L
(2)
tot =

1

2
εµ1µ2αβεν1ν2αβΠµ1ν1Πµ2ν2 , (2.24)

L
(3)
tot = εµ1µ2µ3αεν1ν2ν3αΠµ1ν1Πµ2ν2Πµ3ν3 , (2.25)

L
(4)
tot = εµ1µ2µ3µ4εν1ν2ν3ν4Πµ1ν1Πµ2ν2Πµ3ν3Πµ4ν4 , (2.26)

where εµ1µ2µ3µ4 is the Levi-Cvita tensor in Minkowski space. In four spacetime

dimensions, all the higher order terms vanish identically due to the antisymmetry

properties of the Levi-Civita tensor, giving L
(n>4)
tot ≡ 0. By tuning the potential so

that at each order the interactions of π form a total derivative, all the dangerous

self-interactions of π at energy scale below Λ3 disappear. Hence, in the final theory

the high energy behavior of the helicity-0 mode of the graviton is captured in the

following decoupling limit

m→ 0, MPl →∞, Λ3 = fixed. (2.27)

It was found in [27] that up to the quartic order the strong interactions arising at
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2. CONSTRUCTION OF THE DRGT MASSIVE GRAVITY

the scales Λ < Λ3 can be removed by the following choice of coefficients

c1 = 2c3 +
1

2
, c2 = −3c3 −

1

2
, (2.28)

d1 = −6d5 +
1

16
(24c3 + 5), d2 = 8d5 −

1

4
(6c3 + 1), (2.29)

d3 = 3d5 −
1

16
(12c3 + 1), d4 = −6d5 +

3

4
c3. (2.30)

One then arrives at the following exact decoupling limit Lagrangian

LDL = L
(2)
h + Lhπ, (2.31)

where L
(2)
h is the quadratic Einstein-Hilbert term

L
(2)
h =

1

4

[
1

2
∂λh

µν∂λhµν −
1

2
∂λh

µ
µ∂

λhνν − ∂λhλν∂µhµν + ∂νhλλ∂
µhµν

]
, (2.32)

and Lhπ describes the interactions between the helicity-2 and helicity-0 modes of

the graviton. As a result of the above choice of coefficients Lhπ is given by

Lhπ =
1

2
hµν

(
X(1)
µν +

1

Λ3
3

X(2)
µν +

1

Λ6
3

X(3)
µν

)
, (2.33)

where

X(1)
µν =

1

2

∂L
(2)
tot

∂Πµν
, X(2)

µν =
1

6
(6c3 − 1)

∂L
(3)
tot

∂Πµν
, X(3)

µν = −1

4
(c3 + 8d5)

∂L
(4)
tot

∂Πµν
.

We notice that

X(n)
µν ∝

∂L
(n+1)
tot

∂Πµν
, (2.34)

and in combination with the earlier remark that in four dimensions L
(n>4)
tot ≡ 0, we

conclude that the fifth and higher order interactions vanish in the decoupling limit,

i.e. X
(n>3)
µν ≡ 0. Hence the decoupling limit interaction term (2.33) is exact.

One can check that the interaction terms X
(n)
µν are conserved, i.e. that ∂µX

(n)
µν =

0. Moreover, each of the components of X
(n)
µν bears no more than two time deriva-

tives. This ensures that there are no ghost instabilities arising in the decoupling

limit of the non-linear massive gravity. Hence, by the above construction one has

achieved the following. First, by tuning the non-linear interactions of Hµν up to
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2.4 Resummation

quartic order so that all the scalar self-interactions enter the Lagrangian only in the

combinations of total derivatives the UV cutoff is raised to Λ11/3 = (m8M3
Pl)

1/11.

Moreover, the resulting decoupling limit action describing the interactions of the

helicity-2 and helicity-0 modes of the massive graviton is ghost-free due to the

cancelation of the dangerous higher order derivative interaction terms.

2.4 Resummation

In [28] the non-linear massive gravity potential U(g,H) was resummed in terms of

the field

Kµ
ν = δµν −

√
δµν −Hµ

ν = −
∞∑

n=1

dn [Hn]µν ≡ δµν −
√
gµλfλν , (2.35)

where fµν ≡ ∂µφ
A∂νφ

BηAB, and the polynomial coefficients are given by the coef-

ficients of the Taylor expansion of the square root
√

1− x in the powers of x by

dn =
(2n)!

(1− 2n)(n!)222n
. (2.36)

The square root matrix is defined so that
(√

g−1f
)µ
λ

(√
g−1f

)λ
ν

= gµλfλν . The

resulting full non-linear action for massive gravity takes the form

LdRGT = −1

2
M2

Pl

√−g
(
R−m2 U(g,K)

)
(2.37)

where the potential U(g,K) = U2 + α3U3 + α4U4 is expressed in terms of the field

Kµ
ν as

U2(g,K) = [K]2 −
[
K2
]
, (2.38)

U3(g,K) = [K]3 − 3 [K]
[
K2
]

+ 2
[
K3
]
, (2.39)

U4(g,K) = [K]4 − 6
[
K2
]

[K]2 + 8
[
K3
]

[K] + 3
[
K2
]2 − 6

[
K4
]
, (2.40)

with the coefficients α3 = −2c3, α4 = −4d5.

The potentials U2,3,4(g,K) are given by the characteristic polynomials of the

matrix Kµ
ν and can therefore be rewritten in terms of the eigenvalues of Kµ

ν . Al-

ternatively the dRGT potential of massive graviton can be expressed through the
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2. CONSTRUCTION OF THE DRGT MASSIVE GRAVITY

characteristic polynomials of the square root matrix
√
g−1f which is sometimes

simpler for calculations [50]. In any case, the Lagrangian (2.37) with the poten-

tial given in (2.38)-(2.40) defines the so-called dRGT massive gravity. It is the

only known non-linear completion of massive gravity which is ghost-free in the de-

coupling limit and which has the strong coupling scale Λ3 = (m2MPl)
1/3. In the

following chapters we shall discuss how the agreement with General Relativity is

restored in the vicinity of massive sources, whether the Boulware–Deser ghost is

absent also away from the decoupling limit, and how this theory can be generalized

for arbitrary curved backgrounds. Since most of our discussion will be perturbative

then instead of the full non-linear theory we shall often use the expansion in terms

of powers of Hµν given in (2.17) with the choice of coefficients (2.28)-(2.30).
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3

Vainshtein mechanism

In 1970 van Dam, Veltman, and Zakharov (vDVZ) made an observation which ini-

tially appeared to be a no-go theorem for massive gravity due to its incompatibility

with well-established Solar System tests of gravity [51, 52]. They noticed that in

the linearized massive gravity the helicity-0 mode of the massive graviton does not

decouple from the matter in the zero mass limit, but instead remains coupled to

the trace of the stress-energy tensor. Due to this effect the predictions of massive

gravity for such well-tested gravitational effects as the bending of light by the Sun

or the precession of the Mercury perihelion differ from the predictions of General

Relativity. This occurence is known as the vDVZ discontinuity. It was, however,

shown by Vainshtein that this discontinuity is an artifact of the perturbative ex-

pansion, since around heavy sources the expansion becomes singular in the limit

of vanishing graviton mass [17]. Vainshtein showed that below a certain distance

from the massive body, the so-called Vainshtein radius RV , the classical non-linear

terms become important. In turn, the scalar mode of graviton, propagating the

apparent “fifth force”, enters the non-perturbative regime and decouples. It was

therefore conjectured that due to this behavior in the vicinity of heavy sources, i.e.

below the Vainshtein radius, the General Relativity is restored. This is known as

the Vainshtein mechanism and is the subject of this chapter.

3.1 vDVZ discontinuity

It easy to see the manifestation of the vDVZ discontinuity at the linear level by

comparing the tree-level propagators of the massive and massless graviton. The
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3. VAINSHTEIN MECHANISM

propagator of the massless graviton in momentum space takes the form

Dµν,λσ =
1

2

ηµληνσ + ηµσηνλ − ηµνηλσ
k2 + iε

(3.1)

while the propagator for Fierz–Pauli massive graviton of mass m is given by

D
(m)
µν,λσ =

1

2

η̃µλη̃νσ + η̃µση̃νλ − 2
3
η̃µν η̃λσ

k2 −m2 + iε
. (3.2)

Here kµ is the four-momentum, and η̃µν ≡ ηµν − kµkν/m2. Since the graviton is

coupled to conserved matter sources with kµT
µν = 0 then we can replace η̃µν →

ηµν . We are interested in the interaction potential between two static massive

sources, described by their energy-momentum tensors T 00
(1) = M1δ

(3)(x − x1) and

T 00
(2) = M2δ

(3)(x − x2) in the cases of massive and massless graviton. In quantum

scattering theory the interaction potential between two sources is given by the

Fourier transform of the scattering amplitude for the graviton exchange between

these two probes:

V (r) ∼
∫
d3x d3x′ d3k T µν(1)(x)Dµν,λσ(k)T λσ(2) (x′)eik

i(x−x′)i , (3.3)

where r = |~x1− ~x2|, and we have set M2
Pl = (8πGN)−1 ≡ 1. From the two different

numerical coefficients in (3.1), (3.2) it is easy to see that there is an additional

coupling of the massive graviton to the trace of the energy-momentum tensor.

This results in different expressions for the interaction potentials in the two cases

V (r)m=0 ∼ −
M1M2

r
, (3.4)

V (r)m6=0 ∼ −
4

3

M1M2

r
e−mr. (3.5)

This leads to different predictions for the motion of massive bodies in gravitational

potential in massless and massive gravity.

In our work [41] we have shown how the same results for the gravitational

potential can be derived in a purely classical way. For this we use the method

usually applied in the theory of cosmological perturbations and classify the metric

perturbations according to the irreducible representations of the three-dimensional

rotation group [53]. The gravitational interaction between two massive bodies is
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3.1 vDVZ discontinuity

then entirely due to the static gravitational potentials φ and ψ defined as the scalar

metric perturbations in the Newtonian (longitudinal) gauge, where the line element

is

ds2 = (1 + 2φ)dt2 − (1− 2ψ)δikdx
idxk. (3.6)

The ocurrence of the vDVZ discontinuity can then be seen in the Fierz–Pauli mas-

sive gravity written through the diffeomorphism invariant variables h̄AB = gµν∂µφ
A∂νφB−

δAB introduced in the previous chapter. We consider the Fierz–Pauli action

S = −1

2

∫
d4x
√−gR +

m2

8

∫
d4x
√−g

[
h̄2 − h̄ABh̄BA

]
(3.7)

and expand it up to the second order in perturbations in the presence of a static

spherically symmetric matter source

(2)δSmatter = −1

2
hµνT

µν = −φT 00. (3.8)

It is clear that the discontinuity is entirely due to the scalar interactions. At

quadratic level in the action the scalar, vector and tensor perturbations decouple

and can be analyzed separately. We therefore extract the part of the perturbations

of the scalar fields χA ≡ φA − xµδAµ , which transforms as a scalar under the three-

dimensional spatial rotations, by

χ0 = χ0, χi = π,i (3.9)

and focus only on the scalar part of the action. For the detailed calculations please

see [41], attached in the appendix A. After eliminating the redundant fields χ0 and

π, the relevant equations of motion for the scalar components of the graviton are

∆(φ+ ψ) = 3m2ψ + T 00, 2ψ − φ = 0. (3.10)

The latter equation gives a relation between the gravitational potentials φ and ψ

which is by order one different from what is known in the Einstein theory where for

an adiabatic matter distribution both potentials are equal in the longitudinal gauge.

The combination of both equations (3.10) for a spherically symmetric matter source
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3. VAINSHTEIN MECHANISM

of mass M gives the potential

φ = −4

3

GNM

r
e−mr, (3.11)

where we have restored the Newton’s constant GN . The exponential Yukawa-type

suppression factor in the potential accounts for the finite range of the gravity due

to the graviton mass. The prefactor 4/3 coincides with the result (3.5) obtained

in quantum theory. It shows that at distances much shorter than the inverse of

the graviton mass the gravitational potential φ has increased by a factor of 4/3 in

comparison to the Newton potential φN = −GNM/r. This additional contribution

survives even in the limit of vanishing graviton mass and would modify, for example,

the motion of planets in comparison to what we know from General Relativity.

In the meantime the bending of light is determined by the combination ψ + φ

of the gravitational potentials which in General Relativity equals to 2φN . It is

straightforward to check that this combination of static potentials is not changed

in massive gravity. Hence the bending of light is described equally in massive and

massless gravity. If the effect of the graviton mass would appear for both motion

of light and motion of massive objects then one could solve it by simply redefining

the Newton’s constant. This is not possible in the case of massive gravity since it

would then disturb the predictions for the bending of light. This is a purely classical

manifest indication of the van Dam, Veltman, Zakharov discontinuity [51, 52].

3.2 Vainshtein mechanism in decoupling limit

One way to understand how the Vainshtein mechanism works is to focus on the

helicity-0 mode of the graviton since this is the mode which remains coupled to

matter in the limit of vanishing graviton mass. We start by considering the non-

linear Fierz–Pauli action (3.7). The dRGT non-linear completion of massive gravity

will be considered in the next section. In analogy to the Goldstone equivalence

theorem for massive gauge bosons, at high energies the physics of the longitudinal

graviton modes is governed by the physics of the Goldstone modes [47]. As we

clarified in chapter 2 the scale at which the strongest scalar self-interactions arise in

(3.7) is Λ5 = (m4MPl)
1/5. We therefore focus on the interactions of the longitudinal
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3.2 Vainshtein mechanism in decoupling limit

helicity-0 mode by taking the decoupling limit

m→ 0, MPl →∞, T µν →∞, T µν

MPl

, Λ5 = fixed. (3.12)

The decoupling limit Lagrangian in terms of the canonically normalized field πc =

m2MPlπ takes the form

Lπ = −
{

3

4
πc�πc − 1

2Λ5
5

[
(�πc)3 − (�πc)(∂µ∂νπc)2

]
− 1

2

1

MPl

πcT

}
(3.13)

where T = ηµνT
µν is the trace of the energy momentum tensor. Henceforth we

drop the superscript of the field πc and keep in mind that we are working with the

canonically normalized field. In the presence of a massive spherically symmetric

static source with energy momentum tensor T 00 = Mδ(3)(x), the field π develops

a background profile π0 ∼ −M/r.

By comparing the quadratic and cubic kinetic terms of π in the Lagrangian

(3.13) we see that on the background configuration π0 the non-linear terms become

comparable with the quadratic terms at the scale

RV =

(
M

m4M2
Pl

)1/5

. (3.14)

This coincides with the Vainshtein radius found in [17]. In order to understand

whether in the non-linear Vainshtein regime below r < RV the theory (3.13) can

give reliable predictions, we shall study the stability of the background profile π0.

To do the stability analysis of the perturbations around this solution we expand

the action (3.13) in terms of δπ = π − π0. Schematically it takes the form

Lδπ = (∂δπ)2 − (∂2π0)

Λ5
5

(∂2δπ)2, (3.15)

and one sees that the fluctuation δπ acquires a four derivative kinetic term. Such

a term indicates that there are two scalar degrees of freedom propagating, and one

of them is necessarily a ghost. The inverse mass of the ghost is estimated as the

factor in front of the four derivative term, i.e.

m2
ghost ∼

Λ5
5

∂2π0(x)
, (3.16)
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3. VAINSHTEIN MECHANISM

and it is coordinate dependent. In the absence of source when π0 = 0, the ghost

becomes infinitely heavy and decouples. On a non-trivial background the ghost

is however propagating. Since we are considering an effective field theory with a

strong coupling cutoff Λ5 then the ghost is not harmful until the moment when its

mass drops below Λ5. This happens at the radius

rghost ∼
1

Λ5

(
M

MPl

)1/3

, (3.17)

which is much larger than the Vainshtein radius (3.14), i.e rghost � RV . We will

comment on the implications of this later.

The presence of the additional ghost degree of freedom provides an interesting

interpretation of the Vainshtein mechanism proposed in [54]. It was notices that the

Lagrangian for the strongly coupled scalar mode π can be rewritten as a system of

two fields that classically can be treated perturbatively, but one of them is a ghost.

This is done by appropriately modifying the Lagrangian (3.13) and by substituting

π = ϕ− ψ. The result is an action schematically of the form

Lπ = −1

2
ϕ�ϕ+

1

2
ψ�ψ − O(1)ψ3/2Λ

5/2
5 − 1

MPl

ϕT +
1

MPl

ψT, (3.18)

where φ is the healthy scalar mode and ψ is the ghost mode. As before, one can

trust this Lagrangian perturbatively within the Vainshtein region as long as the

mass of the ghost does not drop below the strong coupling scale Λ5. By studying

the equations of motion of the two fields below and above the Vainshtein radius RV

one finds the different asymptotic solutions for the helicity-0 mode of the graviton

π/MPl:

π/MPl ∼
GNM

r
+ O(1)

M2

M4
Plm

4

1

r6
=
GNM

r

(
1 + O

(
RV

r

)5
)
, r � RV ; (3.19)

π/MPl ∼ O(1)m2

√
M

M2
Pl

r3/2 = O(1)
GNM

r

(
r

RV

)5/2

, r � RV . (3.20)

We see that within the Vainshtein radius the helicity-0 mode is suppressed by a

factor of (r/RV )5/2 in comparison to the Newton potential. This is due to the fact

that at the leading order the ghost field ψ cancels the contribution of the scalar ϕ
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3.3 Smooth limit to General Relativity in Λ3 theories

and thus screens the “fifth force” within the Vainshtein region.

Since we are working in the effective field theory one should take care how the

scale at which the quantum corrections hit in changes in the presence of heavy

sources. In flat space the effective field theory is valid up to the energy scale

Λ5 while afterwards the quantum corrections have to be taken into account. In

decoupling limit the corrections take the form

∼ ∂q(∂2π)p

Λ3p+q−4
5

(3.21)

and around heavy sources they become comparable to the kinetic term (∂π)2 at

the scale [48]:

rp,q ∼
(
M

MPl

) p−2
3p+q−4 1

Λ5

(3.22)

The highest value of this distance equals rquantum ∼ (M/MPl)
1/3 · 1/Λ5 which co-

incides with the scale (3.17) below which the ghost mass is lighter than the cutoff

scale. Hence the ghost screening mechanism for interpreting the Vainshtein mech-

anism is not reliable and is spoiled by the quantum corrections. Therefore, in

principle, the calculations of [54] for the corrections to the longitudinal graviton

mode due to the classical non-linearities within the Vainshtein regime (3.19) cannot

be trusted.

3.3 Smooth limit to General Relativity in Λ3 the-

ories

The energy cutoff scale at which the effective field theory becomes strongly cou-

pled can be raised by adding higher order interaction terms in hµν such that after

performing the Stückelberg trick the highest order self-interactions of the helicity-0

mode π vanish. The strong coupling scale is then set by the remaining highest

interaction terms and is the Λ3 = (m2MPl)
1/3 scale. The construction of the non-

linear dRGT theory [28], in which this cutoff scale is achieved, was discussed in

detail in the previous chapter. The purpose of this section is to see how General

Relativity is restored in Λ3 theories, as well as to find the corrections to the grav-

itational potential within the Vainshtein radius and to see what are the relevant
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3. VAINSHTEIN MECHANISM

scales for which these calculations are reliable.

In order to see how the General Relativity is restored within the Vainshtein

radius we decompose the metric and scalar field perturbations in the irreducible

representations of the three-dimensional rotation group. The four scalar fields

describing the scalar metric perturbations of the metric and scalar fields are defined

in equations (3.6) and (3.9) respectivley. We start by expending the Fierz–Pauli

action (3.7) up to cubic order in scalar perturbations. We then look for the static

solutions of the equations of motion. By doing so we use ∂2π � 1 as our expansion

parameter and neglect the cubic terms such as φ(∆π)2, ψ(∆π)2 in comparison to

φ∆π, ψ∆π. That this is a good expansion parameter both within and outside

Vainshtein radius is an assumption and was checked to hold in both cases in our

work [41]. We also neglect the cubic in gravitational potentials φ3, φψ2, . . . over

the quadratic terms like φ2 etc., as well as the subdominant terms like φ2∆π over

φ∆π etc. We do so because the gravitational potentials we are considering are

always much smaller than unity. In other words, the only higher order corrections

we consider come purely from the scalar field perturbations χ0 and π. Moreover,

we also set χ0 = 0 due to its linear equation of motion. For all the details see our

paper [41] in appendix A. The resulting leading cubic order action is

(3)δS =

∫
d4x

[
−ψ∆ψ + φ (2∆ψ −∆π) + 2ψ∆π − 1

MPl

φT 00

+ 3m2ψ(ψ − φ) +
1

2

1

m4MPl

(∆ππ,ikπ,ik − π,kiπ,ijπ,jk)
]

(3.23)

where we have rewritten everything in terms of the canonically normalized fields

φ → φ/MPl, ψ → ψ/MPl and π → π/(m2MPl). We see that the strong coupling

scale in the Lagrangian is the Λ5 = (m4MPl)
1/5 scale and arises from the cubic

self-interaction of the π field. It is important to stress that the approximation we

are working in is not equivalent to the decoupling limit in which the first term in

the second line of the above equation would be absent due to the limit m → 0.

This term is however crucial in finding the exact form of the Yukawa-type potential

φ in equation (3.11) and to demonstrate how the General Relativity is restored in

the limit m→ 0 via the Vainshtein mechanism.

By analyzing the equation of motion for π we find that around a spherically

symmetric static source the solution for π can be found in two different regimes.
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3.3 Smooth limit to General Relativity in Λ3 theories

The crossover scale is found to be RV = (M/m4M2
Pl)

1/5
and coincides with Vain-

shtein radius [17]. The resulting first-order solutions for the gravitational potential

are

ψ − φ = −ψ
[

1− O

((
RV

r

)5
)]

, r � RV , (3.24)

ψ − φ = O(1)ψ

(
r

RV

)5/2

, r � RV . (3.25)

We see that outside the Vainshtein radius we obtain φ = ψ/2 in agreement with

the linearized result (3.10). Inside the Vainshtein radius we recover the General

Relativity relation ψ = φ up to corrections of order ψ(r/RV )5/2. Moreover, the

equation of motion for the gravitational potential φ can be solved for r � RV and

one can show that the Newton potential is recovered up to the corrections

δφ

φ
∼
(

r

RV

)5/2

. (3.26)

The strong coupling scale of massive gravity can be raised by adding higher

order terms in hµν in the potential. So for example the cubic self-interaction term

in the Fierz–Pauli action can be removed by adding the cubic Lagrangian L
(3)
φ ∝

h̄ABh̄
B
C h̄

C
A − h̄ABh̄BAh̄. This in turn modifies not only the cutoff scale of the effective

field theory but it also diminishes the Vainshtein scale. For the Lagrangian in which

the highest order self-interaction terms are of the order (∂2π)n the Vainshtein scale

is determined as

RV = (Mn−2m2(1−n)M
2(2−n)
Pl )

1
3n−4 . (3.27)

The corresponding corrections to the Newton potential are given by

δφ

φ
∼
(

r

RV

) 3n−4
n−1

. (3.28)

The limit when n → ∞ corresponds to the Λ3 energy cutoff when all the higher

order self-interactions are cancelled. The correposnding Vainshtein scale is

R
(Λ3)
V = (M/m2M2

Pl)
1/3 =

1

Λ3

(
M

MPl

)1/3

(3.29)
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and the corrections to the gravitational potential are given by

δφΛ3

φ
∼
(

r

RV

)3

. (3.30)

It is interesting to note that these corrections are different from the corrections in

the DGP theory [55, 56] and in the decoupling limit of the dRGT theory [48].

In the light of the discussion on the quantum corrections and ghosts in the

previous section, one should check whether our classical results for the non-linear

corrections around heavy sources are reliable. Again, we perform these estimates

in the decoupling limit. By construction, in dRGT theory there are no higher order

derivative terms in this limit so the only potentially dangerous scale of the theory

is the scale at at which the quantum corrections around heavy sources become

important. In order to find this scale we will use the decoupling limit Lagrangian

given in chapter 2 in equations (2.31)-(2.33). This Lagrangian does not contain a

normal kinetic term for the scalar mode π. The kinetic term is acquired through

the kinetic mixing of the helicity-0 and helicity-2 modes of the graviton hµνX
(1)
µν

and can be disentagled by performing the transformation hµν → hµν − ηµνm
2π.

Due to the shift symmetry of the Stückelberg scalar fields φA, we expect that

only quantum operators with at least two derivatives of the field π, suppressed by

the cutoff scale Λ3, are present. The form of these operators is given in (2.15).

By comparing these operators with the kinetic term (∂π)2 we find that in the

presence of a heavy source, both terms become comparable at the radius r ∼(
M
MPl

)1/3
1

Λ3
. This length scale coincides with the Vainshtein radius (3.29) at which

the classical non-linearities hit in. If this indeed would be the right scale, at which

the quantum effects become important, then our classical demonstration of how GR

is restored in the limit of vanishing graviton mass would again be unreliable due

to quantum effects. However, it was found in [27], that a further transformation of

the canonically normalized field hµν can be made in order to eliminate the cubic

hππ couplings as hµν → hµν+ 2(6c3−1)

Λ3
3

∂µπ∂νπ. The scalar self-interactions of π after

these transformations are given solely by the Galileon terms of the form [57]

∼ (∂π)2(∂2π)p

Λ3p
3

. (3.31)

These are the terms responsible for the classical non-linear effects in the Λ3 theory
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since all other self-interaction terms are removed by construction. Comparison to

the quantum operators show that the quantum operators (2.15) are suppressed

in comparison to the Galileon terms by the powers of ∂/Λ3. Hence the quantum

effects become important at the scales rquantum ∼ 1
Λ3

[48]. This length scale is

way below the Vainshtein radius which means that one can trust the classical

Vainshtein mechanism in the region 1/Λ3 � r � RV . Hence we have shown that

in this region a reliable smooth limit from massive gravity to General Relativity

exists, and General Relativity is restored up to corrections given in (3.30).

Another important question to address is whether a continuous global spher-

ically symmetric solution of the non-linear theory matching the two asymptotic

regions below and above Vainshtein radius exists. The first modified gravity model

where such a transition was demonstrated is the DGP model [55]. In the non-linear

Fierz–Pauli Λ5 theory, an everywhere non-singular asymptotically flat solution was

found numerically in both decoupling limit in [19] and in the full-theory in [20, 21].

In the dRGT theory the Vainshtein mechanism was investigated numerically in

[58, 59, 60]. The numerical findings for the corrections to the Newton potential

within the Vainshtein regime confirms our analytic result (3.30).
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4

Boulware–Deser ghost

The Boulware–Deser ghost is usually associated with the helicity-0 mode of the

massive graviton. More precisely, in a general non-linear polynomial graviton mass

term the helicity-0 mode receives higher derivative self-interactions. According to

the Ostrogradsky’s argument the appearance of higher derivatives requires addi-

tional initial data for the complete formulation of the Cauchy problem. Moreover it

can be shown that the additional initial data corresponds to a ghost degree of free-

dom. In order to see the self-interactions of the scalar mode of the massive graviton,

the Stückelberg decomposition of the metric perturbations introduced in chapter 2

proves to be particularly useful. This decomposition allows to determine the scale at

which the self-interactions become important and the effective field theory becomes

strongly coupled. Due to the presence of higher derivatives in the self-interactions

of the helicity-0 mode, it was believed that by tuning the graviton mass term so

that these interactions vanish would not only raise the cutoff scale of the effective

theory, but also eliminate the BD ghost. In [27], a non-linear massive gravity ac-

tion was found which evades the non-linear self-interactions of the helicity-0 mode

of graviton up to the fifth order in the composite field h̄AB ≡ gµν∂µφ
A∂νφB − δAB

(or, equivalently, in the tensor field Hµν defined in (2.4)). In the decoupling limit

(DL) which is used to focus on the longitudinal modes of the massive graviton it

was shown that the remaining action contains at most two derivatives and is thus

free of the BD ghost. However, the decoupling limit is only the high-energy limit

of the effective field theory of massive graviton and only captures the dynamics of

the helicity-0 and helicity-1 graviton modes. The decoupling limit (2.27) therefore

reflects only the gravitational interactions high above the graviton mass scale. In
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4. BOULWARE–DESER GHOST

our work [42] we have investigated the appearance of the higher derivative terms

in this non-linear action for massive gravity away from the decoupling limit. Con-

trary to the claims of [27] we have found that the higher derivatives reappear in the

fourth order of perturbations away from the DL, when the vector modes, neglected

in [27], are also taken into account.

4.1 Appearance of ghost-like terms

We consider perturbations around the Minkowski background

gµν = ηµν + hµν , φA = xA + χA, (4.1)

so that the field h̄AB can be expanded as

h̄AB = hAB + ∂AχB + ∂Bχ
A + ∂Cχ

A∂CχB

+ hAC∂
CχB + hCB∂Cχ

A + hCD∂
DχB∂Cχ

A. (4.2)

This is an exact expression, and the field h̄AB is diffeomorphism invariant. In order

to see how the higher order derivatives of the scalar components of the metric and

scalar fields appear it is instructive to start with the simplest action giving the

quadratic Fierz-Pauli mass term for the metric perturbations:

S = −1

2

∫
d4x
√−gR +

m2

8

∫
d4x
√−g

[
h̄2 − h̄ABh̄BA

]
. (4.3)

This action has been investigated in great detail in numerous works and is known

to have higher derivative self-interactions of the helicity-0 mode of the graviton

even in the decoupling limit. We choose to work in the Newtonian gauge where

the metric takes the form [61]

ds2 = (1 + 2φ) dt2 + 2Sidtdx
i −
[
(1− 2ψ) δik + h̃ik

]
dxidxk, (4.4)

where Si,i = h̃ij,i = h̃ii = 0. As in previous chapter, we only consider the pertur-

bations of the scalar fields that transform as scalars under the three-dimensional

rotation group, i.e. χ0 and χi = π,i. The ghost can then be easily traced as the

dynamical degree of freedom of the field χ0. In [41] we have shown that among the
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4.1 Appearance of ghost-like terms

four linear equations of motion, obtained by variation of the quadratic action with

respect to the four scalar perturbations φ, ψ, χ0, π, there are two linear constraint

equations:

π =
2∆− 3m2

m2∆
ψ, (4.5)

χ0 = −2∆ + 3m2

m2∆
ψ̇. (4.6)

Moreover the field φ enters the action as a Lagrange multiplier. As a result, at

quadratic level the action (4.3) for the scalar perturbations can be expressed entirely

in terms of the metric perturbation ψ as

δ2S = −3

∫
d4x

[
ψ(∂2

t −∆ +m2)ψ
]
. (4.7)

It is interesting to note that on the Minkowski background the field χ0 is not

propagating. This occurs due to the accidental U(1) symmetry for the set of the

scalar fields χA which behave as components of a vector field around Minkowski

background [26]. This makes the scalar field χ0 to be non-dynamical. However, this

symmetry is not preserved on a background which slightly deviates from Minkowski.

Therefore, χ0 starts to propagate in the cubic order, and the ghost reappears. To

see this we consider only the terms involving χ̇0 in the cubic order action. We

neglect the third order terms linear in χ̇0 since they only change the constraint

equations (4.5),(4.6) to second order in perturbations. Nevertheless, the cubic

action also contains a term proportional to (χ̇0)2:

δ3S =
m2

4

∫
d4x

[
h̄ii
(
χ̇0
)2

+ ...
]
, (4.8)

which induces the propagation of χ0 on the background for which h̄ii = 6ψ+3∆π+

O(h2) 6= 0. To see that, due to the appearance of the term (χ̇0)2, at non-linear

level there appears an extra ghost degree of freedom, we express this cubic term

entirely in terms of the gravitational potential ψ:

δ3S =

∫
d4x

[
∆ψ

(
2∆ + 3m2

m2∆
ψ̈

)2

+ ...

]
. (4.9)
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Let us further expand the field ψ around some background configuration ψ0 as

ψ = ψ0 + δψ and combine the above action with the quadratic action (4.7). By

retaining the terms up to second order in δψ we find

δS = −3

∫
d4x

{
δψ
(
∂2
t −∆ +m2

)
δψ +

1

m2
ghost

[
(
∂2
t δψ

)2
+ 2

ψ̈0

∆ψ0

(∆δψ)
(
∂2
t δψ

)
]

+ ...

}
,

where

m2
ghost = − 3m4

4∆ψ0

. (4.10)

Let us take for the background field the scalar mode of gravitational wave with

the wave-number k ∼ m, for which ψ̈0 ∼ ∆ψ0 ∼ m2ψ0 and m2
ghost ∼ m2/ψ0. By

considering, in turn, perturbations δψ with wave-numbers m2
ghost � k2 � m2 and

skipping subdominant terms, we can rewrite the action above as

δS ≈ − 3

m2
ghost

∫
d4x δψ

(
∂2
t + ...

) (
∂2
t +m2

ghost + ...
)
δψ. (4.11)

The perturbation propagator is given then by

m2
ghost

∂2
(
∂2 +m2

ghost

) ' 1

∂2
− 1

∂2 +m2
ghost

, (4.12)

and it describes the scalar mode of the graviton together with the Boulware–Deser

ghost of mass mghost ∼ m/
√
ψ0. Under the assumptions made this estimate coin-

cides with the ghost mass (3.16) established in [62]. Indeed, the expression

m2
ghost ∼

Λ5
5

∂2π0

∼ m4

∂2π0

, (4.13)

where we have set M2
Pl ≡ 1, coincides with (4.10) under the assumption that the

background configurations π0 ∼ ψ0. For strong enough background the ghost

becomes light with the mass m < mghost < Λ5, and, hence, the non-linear ghost

appears even below the strong coupling scale of the theory.
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Let us now consider the quartic action proposed by de Rham et al. [27]

Sφ =
m2
g

8

∫
d4x
√−g

[
h̄2 − h̄2

AB +
1

2

(
h̄3
AB − h̄h̄2

AB

)
− 5

16
h̄4
AB +

1

4
h̄h̄3

AB +
1

16

(
h̄2
AB

)2

+c3

(
2h̄3

AB − 3h̄h̄2
AB + h̄3 +

3

4

(
2h̄3

ABh̄− 2h̄4
AB +

(
h̄2
AB

)2 − h̄2
ABh̄

2
))

+d5

(
6h̄4

AB − 8h̄3
ABh̄− 3

(
h̄2
AB

)2
+ 6h̄2

ABh̄
2 − h̄4

)]
, (4.14)

where c3 and d5 are arbitrary coefficients introduced in chapter 2. This action

corresponds to the strong coupling scale Λ = m8/11 and is ghost free in the de-

coupling limit. Moreover, due to the total derivative structure of the decoupling

limit, higher order terms in h̄AB do not contribute to the decoupling limit action

[27]. As before we shall trace all fourth order terms in perturbations which contain

time derivatives of χ0. By expanding the action (4.14) and inserting the linear

constraint equations (4.5),(4.6) one obtains the relevant action

δ3Sφ + δ4Sφ =
m2
g

8

∫
d4x

[
F (δg, χ) χ̇0 +

1

2

(
χ̇i + Si + g0i + χ0

,i

)2 (
χ̇0
)2

+ ...

]
.

One sees immediately that the special form of the action (4.14) leads to the can-

cellations of all the third and fourth order terms (χ̇0)
3
, (χ̇0)

4
. This is in agreement

with the decoupling limit construction as a result of which all the cubic and quartic

self-interaction terms of the helicity-0 mode of the graviton are cancelled in (4.14).

The function F (δg, χ) depends on terms of second and third order in perturbations,

but does not depend on χ̇0. This term does not induce dynamics of χ0 and can be

neglected. We also note that the third order terms containing (χ̇0)2 vanish. Hence,

the ghost does not appear in the third order, but only reappears in the fourth or-

der in perturbations. It is also easy to check that after skipping the vector modes

the ghost disappears in the decoupling limit (m2 → 0) [42]. After decomposing

χi = π,i + χ̃i and performing the same manipulations as above for the action (4.8),

we find that the action (4.14), along with the scalar mode of the graviton, also

describes a ghost of mass

m2
ghost = −12m2

(
˙̃χi0 + Si −

6

∆
ψ̇0,i

)−2

, (4.15)
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4. BOULWARE–DESER GHOST

provided that the ghost mass satisfies the condition ∂2
tm

2
ghost � 1. Here χ̃i is

the vector mode of the perturbations of the scalar fields with χ̃i,i = 0, and χ̃i0, ψ0

describe the background configuration around which the ghost propagates. In the

background of a scalar gravitational wave ψ0 with k ∼ m, the ghost mass simplifies

to

m2
ghost ∼

m2

ψ2
0

∼ Λ11/4

ψ2
0

, (4.16)

where we have substituted the strong coupling scale Λ = m8/11. If the time de-

pendent background fields are strong enough the mass of this ghost is smaller than

the strong coupling scale of the action (4.14). Thus we have shown that in the full

theory away from the decoupling limit the non-linear ghost survives in the fourth

order of perturbation theory. The same observation was also made in the vierbein

formulation of massive gravity in [63].

It is, however, important to make a couple of remarks on the conclusion that

the action (4.14) propagates a ghost in the fourth order in perturbation theory.

In particular, we wish to understand whether it implies that the Boulware–Deser

ghost is also present in the full non-linear dRGT theory (2.37). It is therefore

necessary to see at which scales the ghost (4.15) propagates. For weak background

fields, i.e. for ψ0 � 1, the ghost propagates above the cutoff Λ. This implies that in

order to draw conclusions about the full dRGT theory with cutoff Λ3 > Λ, all the

higher order terms in h̄AB have to be taken into account. The contribution of these

terms can become important at the same scale as where the ghost propagates and

can, thus, change the conclusion. On other hand, for strong enough background

fields, i.e. for ψ0 > m/Λ = (m/MPl)
3/11 the mass of the ghost becomes lighter than

the cutoff Λ = m8/11. Notice that the background can still satisfy ψ0 � 1, and,

hence, the perturbative expansion is still valid. In this case, however, one can still

argue that there might exist a non-linear field redefinition such that the ghost is

moved from the quartic order to some higher order [46]. In this case we cannot

make any conclusive statement about the violation of unitarity in the full theory

until we have computed the Lagrangian to sufficiently high order. As we will see,

there are indications that this is what actually happens in the dRGT theory.
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4.2 Absence of the ghost in unitary gauge

4.2 Absence of the ghost in unitary gauge

The question of the propagation of the sixth degree of freedom can also be ad-

dressed in the unitary gauge, in which the perturbations of the scalar fields are

set to zero, i.e. χA ≡ 0, and all degrees of freedom are propagated by the metric

perturbations. The counting of degrees of freedom in unitary gauge is done in the

Hamilton formalism following Dirac [64]. For this it is convenient to introduce the

ADM variables as [65]

gµν =



− 1
N2

N i

N2

N i

N2 γij − N iNj

N2


 . (4.17)

It is known that in General Relativity the lapse N and the shift N i are non-

dynamical. The reason for this is that N and N i enter the Einstein-Hilbert action

with no time derivatives, and thus their conjugated momenta are identically zero.

This leaves γij and its conjugated momenta πij as the only dynamical fields prop-

agating at most 12 phase space degrees of freedom. Moreover, the lapse and shift

appear in the Hamiltonian linearly as Lagrange multipliers and thus generate 4

constraints, H0 and Hi, on the components of γij and πij. These constraints are

first-class constraints and are well-understood in GR: the constraints Hi generate

the spatial diffeomorphisms, while the Hamiltonian constraint H0 generates the

dynamics [66]. Hence, there are in total 12 − 4 × 2(first-class) = 4 phase space

degrees of freedom, corresponding to the two polarizations of the massless gravi-

ton. Alternatively, a similar observation can be made by considering the quadratic

Einstein-Hilbert Lagrangian for the metric perturbations hµν ≡ gµν − ηµν . This

Lagrangian does not contain time derivatives of the components h00 and h0i. How-

ever, only h00 enters the quadratic action as a Lagrange multiplier, whereas the

equations of motion for the h0i components allow to express h0i in terms of hik. Af-

ter integrating out h0i, the only propagating degrees of freedom are the transverse

traceless modes of the spatial metric perturbations hik, carrying two independent

degrees of freedom.

In massive gravity, with some general non-linear graviton mass term of the form

of potential U(g, h̄), the lapse and shift enter the Lagrangian in polynomial form

with no time derivatives. It was, however, pointed out in [18] (and later in [62])
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4. BOULWARE–DESER GHOST

that, in general, N and Ni appear non-linearly in the Lagrangian. In this case

their equations of motion are not constraint equations, but instead are used in

order to express themselves in terms of the dynamical fields γij, π
ij. Hence, the

total number of phase space degrees of freedom is 12, leading to the propagation

of six physical degrees of freedom in massive gravity. How this problem is avoided

in the quadratic Fierz-Pauli mass term is easy to understand by writing out the

mass term explicitly:

h2 − hµνhµν = h2
ii − hikhik + 2h0ih0i − 2h00hii. (4.18)

One sees that the h00 component enters linearly meaning that the Hamiltonian

constraint, present in the quadratic Einstein-Hilbert action, is preserved in this

case. This removes one of the six degrees of freedom, leaving five degrees of freedom

describing a massive spin-2 particle. For a non-linear mass term this is not anymore

the case.

It was suggested in [28] that the terms appearing in the dRGT mass term,

which are non-linear in lapse N , can be absorbed by an appropriate redefinition of

the shift variable Ni. In other words, the terms non-linear in lapse, were suggested

to disappear after integration over the shift, leaving the Lagrangian linear in lapse

N and hence preserving the Hamiltonian constraint. This procedure of keeping

the lapse as a Lagrange multiplier up to quartic order in non-linearities was done

in [28]. The full-nonlinear ADM analysis in the unitary gauge was performed in

[67]. The existence of the Hamiltonian constraint can also be understood as due to

the fact that the four Nµ = {N, γijN j} equations of motion depend only on three

independent functions ni. The functions ni can be found by demanding that (i)

after the change of the shift variables N i → ni the action is linear in the lapse

N ; and (ii) the equations of motion for ni are independent of N thus allowing to

integrate out ni [67]. The new shift-like variables were found to satisfy

N i = (δij +NDi
j)n

j, (4.19)

where the matrix D is to be determined from the matrix equation

(√
1− nT In

)
D =

√
(γ−1 −DnnTDT ) I. (4.20)
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4.3 Absence of ghost in Stückelberg formulation

Here n denotes the column vector ni, nT stands for its transpose, and I is the

identity matrix. After this change of the shift variables the Lagrangian becomes

linear in N and, hence, the Hamiltonian constraint C arises (for the precise form of

the constraint please see [67]). Since this is a second-class constraint, then in order

to eliminate one physical degree of freedom, existence of a secondary constraint

arising from the preservation of the Hamiltonian constraint in time, C(2) = dC/dt,

is a necessary condition. The existence of the secondary constraint was initially

doubted in [68], but was later confirmed in [69]. This pair of the two second-class

constraints eliminate the Boulware–Deser ghost from the dRGT massive gravity.

Several other proofs for the absence of ghost are available in the literature, but will

not be discussed here [70, 71, 72].

4.3 Absence of ghost in Stückelberg formulation

Although the proof of the absence of Boulware–Deser ghost in unitary gauge pro-

vides a clear way to count the number of degrees of freedom in dRGT massive

gravity, it has several disadvantages. First, in this approach the energy scale of

the interactions of the different helicity modes is not transparent. This was one

of the main reasons why the Stückelberg trick was applied to the effective field

theory of massive gravity [22]. It not only restores the diffeomorphism invariance

in the graviton mass term but also allows to determine the strong coupling scale

of the effective theory. Another reason to search for alternative proofs for the ab-

sence of ghosts in dRGT massive gravity is that the redefinition of the shifts is

non-linear, and cannot be written explicitly. In this case the coupling to matter

becomes obscure, and the physical interpretation of this degeneracy in the lapse

and shift variables is not clear. This suggests, in fact, that one should look for an

alternative reformulation of the theory in terms of the new non-linearly redefined

shift variables. This is still an open problem. Moreover, the Hamiltonian analysis

in the unitary gauge does not provide an explanation for the appearance of the

ghost-like terms in the fourth order in perturbations found in our work [42].

In our work [44], we therefore discuss how the absence of the sixth degree of

freedom in the dRGT massive gravity would manifest itself in the Stückelberg

formulation. We take the point of view that dRGT massive gravity is a theory of

Stückelberg scalar fields φA coupled to the Einstein-Hilbert gravity. It is clear that
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4. BOULWARE–DESER GHOST

the dRGT action written in Stückelberg formulation is reparametrization invariant

and that the scalar fields are coupled to gravity minimally, i.e. only through the

terms gµν∂µφ
A∂νφ

B. It is therefore legitimate to count the number of degrees

of freedom propagated by the scalar field action and the Einstein-Hilbert action

separately. In such a diffeomorphism invariant theory of gravity and minimally

coupled scalar fields, the Hamiltonian vanishes on the constraint surface, and both

the lapse and the shift enter the Hamiltonian linearly [44]. In (d+ 1)-dimensional

spacetime, this implies the appearance of in total 2(d + 1) first-class constraints1,

which can be used to reduce the number of gravitational degrees of freedom to

(d− 2)(d+ 1)/2. The dynamics of the scalar fields is then generated by the usual

Hamiltonian of the scalar field action alone, contained in the Hamiltonian constraint

of the full theory. Therefore, the scalar field dynamics in such a theory can be

considered separately from gravity. Then naively one would expect that the number

of degrees of freedom propagated by any dRGT-type massive gravity in (d + 1)-

dimensional space-time (with d ≥ 2) equals to

# d.o.f. =
1

2
(d− 2)(d+ 1) +N (4.21)

where the first term accounts for the degrees of freedom propagated by the mass-

less graviton, and the second term is just the number of scalar fields N . This

naive counting demonstrates why, in (3+1)-dimensional space-time, a general non-

linear massive gravity theory with four Stückelberg fields propagates six degrees of

freedom.

As we discussed above, it has been demonstrated that in the dRGT subclass of

massive gravity theories, in unitary gauge at most five degrees of freedom propagate

due to the special structure of the graviton mass term [28, 67]. In Stückelberg

language it is clear that, in order for the assertion to be true, the scalar field

Lagrangian Lφ = 1/2 · m2M2
Pl U(g, h̄) with U given in (2.38)-(2.40), has to have

a very special structure such that it propagates less degrees of freedom than the

number of fields. It was therefore suggested in [73] that in the non-linear dRGT

massive gravity the four Stückelberg fields do not correspond to four independent

degrees of freedom. This can be seen from the vanishing of the determinant of the

1Including the constraints due to the absence of the time derivatives of the lapse and the
shift, i.e. that the conjugated momenta πµ ≡ 0.
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4.4 (1+1)-dimensional dRGT gravity

kinetic (Hessian) matrix of the scalar field Lagrangian

AAB ≡
∂2Lφ

∂φ̇A∂φ̇B
. (4.22)

Hence the equations of motion of the scalar fields are not independent from each

other, and there exists (at least) one combination of the equations of motion which

gives a constraint equation relating the canonical momenta of the scalar fields. As

a result, in dRGT massive gravity the four scalar fields propagate at most three

degrees of freedom. That this conjecture is true has so far been checked explicitly

only for the so-called minimal dRGT action introduced in [50] with a special choice

of coefficients α3, α4. The full Hamiltonian analysis in this case was performed

with the help of introducing additional auxiliary fields in [74]. Later the analysis

was done also in the presence of the Stückelberg fields only [75]. In both works, an

additional primary second-class constraint, relating the conjugated momenta of the

four scalar fields was found, thus confirming the assertion of only three independent

degrees of freedom. An interesting and still open problem is the elimination of the

redundant scalar field from the dRGT action. However, the conjugated momenta

are non-linear functions of the temporal and spatial derivatives of the scalar fields.

This obstacle makes the implementation of the primary constraint in the action

of the scalar fields non-trivial. Moreover, it has been recently claimed that this

diagonalization of the action of the scalar fields would lead to second order time

derivatives on the space-time metric [76]. If true, it would imply that the Boulware–

Deser ghost remains present in the dRGT action. However, this hypothesis needs

further investigation.

4.4 (1+1)-dimensional dRGT gravity

An illustrative example of the absence of ghost in the Stückelberg language is

the (1 + 1)-dimensional dRGT gravity. This case is somewhat degenerate since

in (1 + 1) dimensions the massive graviton propagates no degrees of freedom. It

therefore needs to be shown that the two Stückelberg scalar fields propagate no

degrees of freedom. We have studied this case in great detail in our work [44].

For simplicity we present here the analysis on the Minkowski background. The
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4. BOULWARE–DESER GHOST

Lagrangian density in this case takes the form

Lφ = 2

√
ψ̇+ + ψ′+

√
ψ̇− − ψ′ (4.23)

where ψ± ≡ φ0±φ1. It is easy to see that the two conjugated momenta π± are not

independent and satisfy the primary constraint

C0 ≡ π+ −
1

π−
= 0. (4.24)

For the consistency of the Hamiltonian equations of motion with the Lagrangian

equations of motion one has to impose the secondary constraint, namely that the

primary constraint C0 is preserved in time:

C1 ≡
1

2

d

dt
C0 = −

(
1

π−

)′
= 0. (4.25)

The extended Hamiltonian for the system of the two scalar fields then reads

HE = π−ψ
′
− −

1

π−
ψ′+ + u0C0 + u1C1 (4.26)

where u0, u1 are arbitrary functions of space-time coordinates, i.e. they are the

Lagrange multipliers. One can check that both constraints are first-class constraints

and generate transformations of the canonical fields

δψ+ = ε0, δψ− =
1

π2
−

(ε0 − ε′1), (4.27)

leaving the conjugated momenta unchanged. In order to find the symmetry of

the original scalar field action (4.23), one rewrites the above transformations by

expressing the conjugated momentum π− according to its definition. By demanding

that the action (4.23) remains invariant under the above transformation we find

a relation between the gauge parameters ε0, ε1. The resulting gauge symmetry of

the Lagrangian is

ψ− 7→ ψ− −
1

2
(ε′ + ε̇)

ψ̇− − ψ′−
ψ̇+ + ψ′+

, (4.28)

ψ+ 7→ ψ+ +
1

2
(ε′ − ε̇) . (4.29)
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4.4 (1+1)-dimensional dRGT gravity

Since the above transformation involves both, the gauge parameter ε and its time

derivative, then the number of degrees of freedom in the theory are reduced by two

which coincides with the total number of first-class constraints [77]. Another way

to see that there are no propagating degrees of freedom is by performing the gauge

fixing in the extended action SE =
∫
d2x

[
π+ψ̇+ + π−ψ̇− −HE

]
. The equations

of motion which can be derived from this action are different from those derived

from (4.23). This is so due to the fact that we have introduced an additional

Lagrange multiplier u1 for the secondary constraint. However, the evolution of

gauge invariant variables can be equally well described by both actions. Since there

are two constraints on the momenta and two gauge symmetries on the canonical

fields it is evident that the action SE is pure gauge and propagates no degrees of

freedom.

The same analysis can be done in an arbitrary curved space-time. As before

there exist two first-class constraints which generate a gauge symmetry. In dis-

tinction from the Minkowski background, the symmetry transformations of the

Lagrangian (analogous to (4.28),(4.29)) cannot be written in a local form. It does

not, however, change the counting of degrees of freedom since the gauge fixing can

be done in the first order action as described above. For details please see our pa-

per [44], attached in appendix C. The Hamiltonian analysis in (1 + 1)-dimensional

case was previously also done in [73, 78]. However, in both references the dRGT

action was rewritten with the help of additional Lagrange multipliers. As a result

the gauge symmetry revealed in our work remained hidden.
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5

Massive gravity on curved

background

It is known for a long time that the quadratic Fierz–Pauli mass term for the metric

perturbations around Minkowski background propagates a ghost around any other

background [18, 29]. In general a graviton mass term always involves an arbitrary

reference metric ĝµν as an absolute, non-dynamical object. This reference metric

is most naturally chosen to coincide with the background metric so that the FP

mass term for the metric perturbations on this background hµν ≡ gµν − ĝµν can be

written as

LFP = hµνhαβ (ĝµν ĝαβ − ĝµαĝνβ) . (5.1)

As in the case for Minkowski background this mass term breaks the diffeomorphism

invariance of general relativity due to the explicit dependence on the absolute

background metric ĝµν . We show in [43] that the above mass term can be regarded

as the gauge fixed version of the full diffeomorphism invariant graviton mass term.

In this chapter we restore the general covariance by introducing the four scalar

fields corresponding to the four broken coordinate transformations. We show that

these scalar fields preserve a given symmetry in the configuration space of the

scalar fields. This symmetry needs to be postulated by hand in dependence on the

chosen spacetime metric. We therefore conclude that for each chosen background

metric such a construction of the four scalar fields corresponds to different generally

covariant massive gravity theory with different internal symmetries.
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5.1 Arbitrary reference metric

5.1.1 Minkowski background

As already presented in earlier chapters, in order to give mass to graviton in a

diffeomorphism invariant way on Minkowski space we employ four scalar fields

φA, A = 0, 1, 2, 3. In addition we introduce a Lorentz transformation ΛA
B in the

scalar field space. Hence the scalar field indices A, B are raised and lowered with

the Minkowski metric ηAB, and the transformation φA → ΛA
Bφ

B is the isometry of

ηAB. We then build the mass term for metric perturbations from the combinations

of the variables

h̄AB = gµν∂µφ
A∂νφ

B − ηAB. (5.2)

This field transforms as a scalar under the spacetime diffeomorphisms and as a

tensor under the Lorentz transformations in the internal space of the scalar fields.

In the unitary gauge where φA = xµδAµ the field h̄AB = hµνδAµ δ
B
ν equals the metric

perturbations. It is therefore almost trivial to write the generally covariant form of

the Fierz–Pauli mass term by replacing the metric perturbations through their dif-

feomorphism invariant version as hµν → h̄AB. The most simple generally covariant

Fierz–Pauli mass term is

Sφ =

∫
d4x
√−g

(
h̄2 − h̄ABh̄BA

)
. (5.3)

Higher order terms in h̄AB can be added to the action in order to solve the problems

of very low strong coupling scale and Boulware–Deser ghost as discussed in previ-

ous chapters. The full non-linear dRGT theory of massive gravity is obtained by

resummation of all the infinite number of terms in terms of the tensor field

Kµ
ν = δµν −

√
gµν∂µφA∂νφBηAB. (5.4)

The dRGT theory (2.37) constructed in terms of the field Kµ
ν admits the back-

ground solution

ĝµν = ηµν , φ̂A = xµδAµ , (5.5)

around which the metric perturbations have a Fierz–Pauli mass term and propagate

five degrees of freedom.
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5.1.2 Arbitrary background

Besides the solution (5.5) the dRGT theory admits various other exact cosmological

solutions (for recent reviews see [79, 80, 81]). However, the metric perturbations

around the various solutions of massive gravity, in general, do not have a mass

term of the Fierz–Pauli form. This can be understood if one considers an arbitrary

background solution for the metric gµν = ĝµν and scalar fields φA = φ̂A. The tensor

field Kµ
ν can then be splitted as Kµ

ν = K̂µ
ν + δKµ

ν where

K̂µ
ν = δµν −

√
ĝµλ∂λφ̂A∂νφ̂BηAB (5.6)

and δKµ
ν denotes a perturbation. For the Minkowski solution (5.5) the background

value of Kµ
ν vanishes, and to linear order δKµ

ν = −1
2
hµν . After substituting this in

the action (2.37), from the quadratic potential U2(g,K) = [K]2 − [K2] one obtains

a FP mass term for the metric perturbations. However for solutions of dRGT

theory with K̂µ
ν 6= 0 also the cubic and quartic potentials U3,U4 in Kµ

ν contribute

to the quadratic terms in metric perturbations. For the simplest example when

K̂µ
ν = f(t)δµν this gives

Sφ =

∫
d4x
√−g

[
a(t) + b(t)U2(δK) + O

(
(δK)3

)]
, (5.7)

where a(t) and b(t) depend on f(t), α3 and α4. One sees that for this specific

solution the Fierz–Pauli structure for the quadratic perturbations is preserved.

However, such a simple spatially flat isotropic and homogeneous solution does not

exist in the dRGT theory [82]. For background solutions K̂µ
ν not proportional to

δµν the Fierz–Pauli structure of the mass term for metric perturbations is lost. This

statement has been confirmed for some specific background solutions by detailed

analysis of metric perturbations in [83, 84, 85, 86, 87, 88, 89, 90]. We therefore

conjecture that the form of the FP mass term is most likely preserved only for the

solutions with K̂µ
ν = 0. It is easy to see that this is equivalent to the condition

that the background value of h̄AB vanishes. This translates into an equation for

the background of the scalar fields φ̂A:

ĝµν(x)
∂φ̂A

∂xµ
∂φ̂B

∂xν
= ηAB, (5.8)
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which states that given a curved background ĝµν , the scalar fields φ̂A have to be a

coordinate transformation from the flat Minkowski metric ηAB to the curved metric

ĝµν . Such a coordinate transformation, valid at each point of the spacetime, does

not exist. We therefore conclude that in dRGT theory the only background, around

which the metric fluctuations have a Fierz–Pauli mass term is the Minkowski back-

ground.

In order to generalize the dRGT around some arbitrary fixed background ĝµν

in a diffeomorphism invariant way we generalize the diffeomorphism invariant vari-

ables h̄AB as

h̄ABcurved ≡ gµν(x)∂µφ
A∂νφ

B − f̄AB(φ), (5.9)

where f̄AB(φ) is a set of scalar functions, depending on the four scalar fields φA. If

the functional dependence of f̄AB is set by the desired background metric as

f̄AB(φ) ≡ ĝµν(φ)δAµ δ
B
ν (5.10)

then the background value of h̄ABcurved vanishes for φ̂A = xµδAν . The f̄AB(φ) can be

interpreted as the metric in the configuration space of the scalar fields, so that the

Latin indices are raised and lowered as

φB ≡ f̄ABφ
A. (5.11)

We then obtain the Fierz–Pauli mass term for metric perturbations around the

curved background ĝµν by substituting hµν → h̄ABcurved in the FP mass term. More-

over, the resulting action is invariant under the isometry transformations of f̄AB(φ).

This is analogous to massive gravity with the Minkowski scalar field metric ηAB,

where the mass term is invariant under the Lorentz transformations of the scalar

fields φA → ΛA
Bφ

B. It is now straightforward to generalize the nonlinear dRGT

theory (2.37) written in terms of the flat space fields Kµ
ν defined in (5.4) by simply

redefining

Kµ
ν = δµν −

√
gµλ∂λφA∂νφB f̄AB. (5.12)

Depending of the choice of f̄AB(φ), the dRGT potential U(g,K) describes a graviton

with Fierz–Pauli mass term around flat or curved background. Instead of f̄AB(φ)

in the literature one often uses the so-called reference metric fµν(x) [91]. This can
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5.2 Massive graviton in de Sitter space

be defined in terms of the metric in the internal space of the scalar fields as

fµν =
∂φA

∂xµ
∂φB

∂xν
f̄AB(φ). (5.13)

The reference metric fµν is said to be flat if f̄AB = ηAB. In unitary gauge when

φA = xµδAµ both metrics coincide. However, the advantage of using f̄AB(φ) is that

the definition of a flat reference metric is unambiguously given by f̄AB = ηAB. The

reference metric fµν can also be made dynamical by adding to the dRGT theory an

Einstein-Hilbert kinetic term for fµν . These bimetric theories first proposed in [92]

possess various interesting cosmological solutions and form an independent active

field of research.

5.2 Massive graviton in de Sitter space

As an example we consider the Einstein action with cosmological constant and the

generally covariant FP mass term

S = −1

2

∫
d4x
√−g (R + 2Λ) +

m2

8

∫
d4x
√−g

(
h̄2 − h̄ABh̄BA

)
(5.14)

where the scalar field tensor h̄AB is defined as (5.9). In absence of the graviton

mass term the background solution obtained from the Einstein-Hilbert action is

de Sitter universe. We write the spatially flat de Sitter universe in terms of the

conformal time η as ĝµν = a−2(η)ηµν with a(η) = −1/(Hη), where the Hubble

scale H2 = Λ/3 is set by the cosmological constant. Hence the scalar field metric is

given by f̄AB = (Hφ0)2ηAB, and the diffeomorphism invariant FP mass term can

be written explicitly as

Sφ =
m2

8

∫
d4x
√−g

{
gµνgαβ∂µφ

A∂νφ
B∂αφ

C∂βφ
D [ηABηCD − ηBCηAD]−

− 6(Hφ0)2gµν∂µφ
A∂νφ

BηAB + 12(Hφ0)4
}
. (5.15)

By construction this action gives rise to the quadratic Fierz–Pauli mass term for

metric perturbations around de Sitter background. To see this we consider metric
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5. MASSIVE GRAVITY ON CURVED BACKGROUND

and scalar field perturbations

gµν = a−2 (η) (ηµν + hµν) , φA = xA + χA. (5.16)

In this case h̄AB takes the exact form

h̄AB =a−2(η)

{
ηAB − a−2 (φ0)

a−2(η)
ηAB + hAB + ∂µχ

BηµA + ∂µχ
AηµB+

+ hBµ∂µχ
A + hAµ∂µχ

B + ∂µχ
A∂νχ

Bηµν + ∂µχ
A∂νχ

Bhµν
}
. (5.17)

As in our previous work [41] we decompose the metric and scalar field perturba-

tions according to the irreducible representations of the spatial rotation group and

expand the action (5.14) up to second order in perturbations. We find that there

are five dynamical degrees of freedom - two tensor modes, two vector modes and

one scalar mode. They all satisfy the same equation of motion and thus have the

same dispersion relation. Written in conformal time the equation of motion reads

(
∂2
η + 2H∂η −∆

)
q +m2a2q = 0, (5.18)

where we collectively denote the degrees of freedom of massive graviton as q =

{qs, qv, qt}, and H = a′/a, ′ ≡ ∂η. When written in terms of the physical time the

equation of motion turns into

¨̃q − ∆

a2
q̃ +m2

eff q̃ = 0, (5.19)

where q̃ = a3/2q, and the effective mass is defined as m2
eff = m2− 9

4
H2, in agreement

with the earlier work [31]. For the precise expressions of the propagating degrees

of freedom see our paper [43].

5.3 Partially massless graviton

The properties of massive graviton in de Sitter universe have been first studied

in unitary gauge in [30, 31]. It has been shown that for a specific choice of the

graviton mass parameter m and cosmological constant Λ the helicity-0 mode of

the massive graviton ceases to be dynamical at quadratic level. For the graviton
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5.3 Partially massless graviton

masses below this value, i.e. m2 < 2Λ/3, the theory allows the propagation of

the states with negative norm. The unitarily allowed region for massive graviton

in de Sitter space is therefore restricted to m2 ≥ 2Λ/3. This is known as the

Higuchi bound [30]. The theory at the special point when m2 = 2Λ/3 is dubbed

as “partially massless” and has been studied in both earlier and recent literature

[32, 33, 34, 43, 93, 94, 95, 96, 97]. At this point the quadratic massive gravity on

de Sitter space acquires an additional symmetry which removes the scalar degree

of freedom leaving the graviton with only four propagating modes. Around the

de Sitter background ĝµν = a2(η)ηµν written in conformal time, the symmetry

transformation on the metric perturbations defined as gµν = a2(η) (ηµν + hµν) takes

the form1

δhµν = a−2

[
∇̂µ∇̂να +

m2

2
αĝµν

]
, (5.20)

where ∇̂µ is the covariant derivative with respect to the background metric ĝµν , and

α is the transformations parameter. For the scalar metric perturbations defined as

h00 = 2φ , h0i = B,i , hij = 2ψδij + 2E,ij

the transformation laws read

δφ =
1

2a2

(
α′′ −Hα′ + H2α

)
,

δB =
1

a2
(α′ −Hα) ,

δψ = − 1

2a2

(
Hα′ + H2α

)
,

δE =
α

2a2
,

where we have used the relation H2 = (ma)2/2 valid at the special point when

m2 = 2Λ/3. The full set of linear equations for the scalar metric components

can be found in our work [43]. At the partially massless point all the equations

are invariant under the above transformations and can be shown to propagate no

dynamical degrees of freedom in the scalar sector. A similar analysis was later

performed also in [95].

1The form of the transformation remains the same also for the metric perturbations around
the de Sitter background written in physical time. Additional care should be taken when defining
the metric perturbations.
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5. MASSIVE GRAVITY ON CURVED BACKGROUND

The possibility of generalizing the symmetry transformation (5.20) to a non-

linear gauge symmetry of the full dRGT theory with de Sitter reference metric

is appealing for various reasons [34]. First, the existence of a non-linear gauge

symmetry in the partially massless gravity would allow one to fix the form of the

low-energy form of the theory. Second, in partially massless gravity the value of

the cosmological constant is related to the graviton mass by the gauge symmetry

as Λ = 3m2/2. This would imply that the quantum corrections to the value

of the cosmological constant would arise due to the quantum corrections to the

graviton mass. As was discussed in chapter 2 a small graviton mass of order

m2 �M2
Pl receives relatively small quantum corrections and is therefore considered

to be technically natural. This would provide a technically natural solution to the

cosmological constant problem. Third, in the so called “candidate theory”, which

is the dRGT theory with the special choice of coefficients [93]:

α3 = −1

2
, α4 =

1

8
, (5.21)

the helicity-0 component of the massive graviton vanishes completely from the

scalar-tensor sector. If the scalar mode would vanish from the full non-linear theory,

then it would mean that the theory would have a higher cutoff scale Λ2 ∼ (mMPl)
1/2

than the dRGT theory where the cutoff is set by Λ3 ∼ (m2MPl)
1/3. Unfortunately,

although the generalization of (5.20) leaving the cubic order action invariant was

found in [34], it was also shown that the symmetry cannot be generalized to the

quartic order action. Therefore it seems that no fully non-linear partially mass-

less gravity exists. However, further investigations in this direction, for example,

by allowing for a more general form of the non-linear gauge transformation, are

possible.
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Summary and Outlook

Since massive gravity modifies the Einstein’s General Relativity it is extremely

constrained by the requirements of observational viability. The main reason for

this is that till today General Relativity remains the standard theory of gravity

satisfying all the observational tests performed on Earth, in Solar System and other

astrophysical systems. It is the recent discovery of dark matter and the late-time

accelerated expansion of our Universe that has led to the speculations that General

Relativity might not be the correct description of our Universe on cosmological

scales. Massive gravity is known to weaken the gravitational force between massive

bodies on the distances larger than the inverse scale of the graviton mass. In order

to be compatible with observations the graviton mass therefore cannot be much

less than the inverse size of the Universe, i.e. m ∼ 10−28 cm. Since this estimate

also coincides with the characteristic scale of the present day value of cosmological

constant, massive gravity is thought to be able to provide a dynamical explanation

for the dark energy.

In this thesis, however, we focus on the theoretical consistency of massive grav-

ity. The reason for this is that although the quadratic Fierz–Pauli mass term was

found already in 1939, the theory of massive gravity has been constantly plagued

by different theoretical problems. Most of these problems have been properly un-

derstood only recently. The only candidate for a consistent model of non-linear

massive gravity today is the dRGT theory [28]. In our research we have investi-

gated the most fundamental aspects of massive gravity – the van Dam-Veltman-

Zakharov discontinuity, the Vainshtein mechanism, the Boulware–Deser ghost, and

the generalization to arbitrary curved backgrounds.
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In particular, we restore the diffeomorphism invariance of massive gravity by in-

troducing four scalar fields corresponding to the four broken diffeomorphism trans-

formations. In this framework we demonstrate how the vDVZ discontinuity mani-

fests itself in a purely classical form without any reference to the scattering theory.

We also show how the General Relativity is restored in the limit of vanishing gravi-

ton mass even from the Fierz–Pauli massive gravity, once the general covariance is

reintroduced. This happens via the Vainshtein mechanism due to the non-linear

interactions of the scalar perturbations of the metric and scalar fields. We find that

below the Vainshtein scale RV the scalar perturbations enter the non-perturbative

regime and decouple. Thus in the vicinity of massive spherically symmetric sources

the General Relativity is restored. In our framework we have determined the cor-

responding Vainshtein scale for a wide range of non-linear massive gravity theories.

We have also found the asymptotic solutions for the spherically symmetric grav-

itational field below and above the Vainshtein radius. Moreover, we have found

the corrections to the Newton potential below the Vainshtein radius for different

models of massive gravity, including the dRGT massive gravity. To conclude, we

believe that the Vainshtein mechanism works in massive gravity and that the Gen-

eral Relativity is restored in the vicinity of massive sources. The numerical studies

of global static spherically symmetric solutions in dRGT massive gravity show the

existence of asymptotically flat solutions that match to the solutions which exhibit

the Vainhstein mechanism in the vicinity of the source [60]. However, other recent

works claim that only the static spherically symmetric solutions with cosmological

asymptotics are stable [98, 99]. Moreover, some of the existent analytic black hole

solutions exhibit curvature singularities on the horizon [98, 100, 101]. A further

analysis and search for exact static spherically symmetric solutions is therefore of

great importance in order to test the Vainshtein mechanism. Recent reviews on

the Vainshtein mechanism and spherically symmetric solutions in massive gravity

can be found in [80, 81, 102].

Another important problem we have studied in this thesis is the Boulware–Deser

ghost in massive gravity. We have investigated the propagating scalar degrees of

freedom in the dRGT theory, which is known to be ghost-free in the decoupling limit

in the absence of the vector modes. We have shown that an additional propagating

ghost-like scalar mode arises in the fourth order perturbation theory away from

the decoupling limit. Moreover, we find that for strong enough bakcground fields
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the mass of this mode can become smaller than the cutoff scale Λ = m8/11 of

the fourth order dRGT theory. However, since there have appeared several non-

perturbative proofs for the absence of the ghost in the full non-linear theory [67, 75],

we have reconsidered this question. In particular, we have explored the claim of

[73] that not all four Stückelberg scalar fields correspond to independent degrees

of freedom in the dRGT theory. For this we have pointed out the obvious facts

that the theory is diffeomorphism invariant and that the scalar fields are coupled

to gravity only minimally, i.e. only through the combinations gµν∂µφ
A∂νφ

B. This

allows us to analyze the dynamics of the scalar sector separately from gravity which

considerably simplifies the task. We have performed the full Hamiltonian analysis

in the case of the (1 + 1)-dimensional massive gravity where there are only two

scalar fields. In this special case we have found that the theory exhibits a gauge

symmetry which reduces the number of degrees of freedom propagated by scalar

fields to zero. This coincides with the previous works on this topic and, in addition,

reveals the gauge symmetry of the theory not found previously. The analysis of

the (3+1)-dimensional case, however, was left for future work. An interesting and

important open problem is to see what are the actual dynamical degrees of freedom

of the dRGT theory. In the case of the absence of the Boulware–Deser ghost in

the full non-linear theory it should, in principle, be possible to rewrite the theory

in terms of these dynamical variables only.

We have also addressed the question of how massive gravity can be general-

ized to arbitrary curved backgrounds in a diffeomorphism invariant way. We have

shown how this can be done for an arbitrary given background metric by the use

of the four scalar fields. Similarly as in the case of the Minkowski background

we introduce a reference metric in the internal space of the scalar fields, fAB(φ).

This internal metric coincides with the chosen background metric of the space-

time. As a result there is an additional symmetry in the configuration space of

the scalar fields given by the isometry transformations of the scalar field reference

metric. Hence, the resulting diffeomorphism invariant massive gravity theory is

invariant under different symmetry transformations of the scalar fields depending

on the chosen background metric. As a specific example, we analyze the quadratic

perturbations in the Fierz–Pauli massive gravity with de Sitter reference metric in

this formalism. We show how the previously known properties of de Sitter massive

gravity are recovered from the diffeomorphism invariant approach. In particular,
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6. SUMMARY AND OUTLOOK

we show that at the special point when the mass of the graviton is related to the

cosmological constant as m2 = 2Λ/3, the linearized theory propagates only four

degrees of freedom. This occurs due to an additional gauge symmetry, present at

the linearized level. If this symmetry would persist in the full non-linear theory, it

would provide a natural bound between the value of the cosmological constant and

the graviton mass. Since this relation would be imposed by the gauge symmetry,

such a possibility is very interesting. Further investigations in this direction are

therefore needed.

In conclusion, we would like to point out that not all of the results of our works

[40, 41, 42, 43, 44] were presented in detail in this thesis. A more detailed summary

of the obtained results can be find in the conclusions of the corresponding publica-

tions attached in the appendices A,B,C,D,E. We would also like to make a remark

concerning the fact whether the dRGT massive gravity can, indeed, provide an ex-

planation for the dark energy. It has been shown that the theory admits isotropic

self-accelerating solutions in the vacuum, in which the size of the cosmological con-

stant is bound to the value of the graviton mass [58, 82, 89, 103, 104, 105]. However,

the cosmological perturbations around these solutions exhibit instabilities [79, 80].

Instead it has been suggested that anisotropic cosmological solutions need to be

considered. Hence, the question about cosmological solutions in massive gravity is

still open and demands further investigations. Another still unsolved problem of

the dRGT theory is the recent claim that the theory allows for superluminal prop-

agation with respect to the spacetime metric [106]. Whether the acausal behavior

persists in all the parameter space of the theory, and whether the model has better

causal properties with respect to the reference metric fµν , are questions that still

need to be clarified.
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1 Introduction

In the recent paper [1] we (A.Ch.,V.M) have proposed a Higgs mechanism for gravity. In

our model the graviton becomes massive as a result of spontaneous symmetry breaking,

where four scalar fields acquire non-vanishing expectation values. As a result, three out

of four degrees of freedom of scalar fields are absorbed producing a massive graviton with

five degrees of freedom, while one degree of freedom remains strongly coupled. Our model

is explicitly diffeomorphism invariant and, in distinction from bigravity theories, it is sim-

ply given by General Relativity supplemented with the action of four extra scalar fields.

Therefore it is completely analogous to the standard Higgs mechanism used to give masses

to the gauge fields, where masses are acquired as a result of the interaction with external

classical scalar fields. For instance, in the standard electroweak theory one also uses four

(real) scalar fields to give masses to three vector bosons, and one remaining degree of free-

dom becomes a Higgs boson. However, in distinction from electroweak theory, in our case

the analogue of the Higgs boson remains strongly coupled and hence completely decouples

from gravity and other matter.

The theory with four scalar fields was exploited before by several authors (see [15–

17] and references therein). In our case we have found the Lagrangian which resolved

the problems that faced finding a consistent theory for massive gravitons. On one hand

the model produces a graviton mass term with explicitly invariant form even for finite

diffeomorphisms, and on the other hand, keeps the dangerous mode which could produce

a ghost, in the strong coupling regime where it is completely harmless. In the linear order

the mass term is of the Fierz-Pauli form [2], which is uniquely fixed by the requirements

of the absence of extra scalar degree of freedom. The analysis by Deser and Boulware [3]

however lead to the conclusion that in the massive theory the extra scalar degree of freedom

reappears at nonlinear level and does not decouple, thus making massive gravity to be an

ill-behaved theory. In distinction from [3], where diffeomorphism invariance is explicitly
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spoiled, our theory is diffeomorphism invariant and therefore the g0α components of the

metric remain always the Lagrange multipliers, while as we will show later, the scalar

fields are always in the strong coupling regime above so called Vainshtein energy scale.

This corresponds to extremely small energy and therefore the possible ghost is irrelevant.

There were many interesting attempts to extend massive gravity beyond the linear

approximation in a way where one can avoid the extra mode and ghost, also at the nonlinear

level (see, for instance, [13, 18, 19, 21, 23, 24] and references there). In particular, in the

recent interesting papers [23, 24] an extension of the Fierz-Pauli action was found for which

the ghosts are absent even at nonlinear level in the decoupling limit.

The main purpose of this paper is to investigate the existence of a smooth limit of our

model to Einstein gravity, when the mass of the graviton vanishes. It was noticed long

ago by van Dam, Veltman and Zakharov [4, 5] that in linearized massive gravity the extra

scalar mode of the graviton did not disappear and remained coupled to matter even in the

limit of a vanishing graviton mass. In turn, this spoils predictions of General Relativity

either for the perihelion precession or deflection of starlight. This effect is known as the

van Dam-Veltman-Zakharov (vDVZ) discontinuity and was first thought to be a no-go the-

orem for massive theories of gravity [4, 5]. However, it was pointed out by Vainshtein that

the discontinuity could be an artifact due to the breakdown of the perturbation theory of

massive gravity in the massless limit [6]. He has shown that in the case of gravitational

field produced by a source of massM0 the nonlinear corrections become important at scales

r < RV ≡M
1/5
0 m

−4/5
g (in Planck units) and conjectured that in the strong coupling regime

General Relativity is restored. When the mass of the graviton mg vanishes the Vainshtein

radius RV grows and becomes infinite, thus providing a continuous limit to General Rel-

ativity in case the Vainshtein conjecture is correct. At distances r ≪ RV , around a static

spherically symmetric massive source of mass M0 the full non-linear strongly coupled mas-

sive gravity has to be considered in order to recover the Einstein theory, which makes the

proof of the Vainshtein conjecture non trivial. The question of continuous matching of the

solutions below and above the Vainshtein radius have been extensively addressed in recent

literature. The first model where such a transition was demonstrated is Dvali-Gabadadze-

Porrati (DGP) model which imitates many features of massive gravity [13, 20]. There was

a claim that in the bigravity version of massive graviton the corresponding solutions do

not match [7], but it was recently shown that this claim is not justified [8–10].

In this paper we will find the Vainshtein scale and will prove Vainshtein conjecture

in the Higgs model of massive gravity in the case when the gravitational field is produce

by a source of mass M0. Moreover, we will find how the concrete value of the Vainshtein

scale depends on the nonlinear extension of the Pauli Fierz term, or in other words on the

interactions of scalar fields used to produce massive gravity. As a result we will determine

possible Vainshtein scales for a wide class of Higgs gravity models. We will also derive in

our model the leading corrections to the gravitational potential within Vainshtein scale,

which are similar, but not identical to this type of correction obtained in the framework of

the DGP model in [20–22].

Finally, we will discuss the implications of our results obtained in classical theory when

extended to quantum theory. In particular we argue that in quantum theory there must be
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a cutoff scale at energies m
4/5
g , above which the scalar fields enter strong coupling regime

and completely decouple from gravity and other matter. Because this scale is extremely

small for the realistic mass of the graviton it makes the problem of ghost which could

appear only below this scale completely irrelevant. For the scalar and vector modes of the

massive graviton the cutoff scale is an analog of the Planckian scale for the tensor graviton

modes, which also become strongly coupled above Planck scale. The obtained cutoff scale

is in agreement with results of [11, 12, 20].

2 Higgs for graviton: basics

We employ four scalar fields φA, A = 0, 1, 2, 3 to play the role of Higgs fields. These will

acquire a vacuum expectation value proportional to the space-time coordinates, thus giving

mass to the graviton. Let us introduce the “composite metric”

HAB = gµν∂µφ
A∂νφ

B , (2.1)

which is scalar with respect to diffeomorphism transformations. The field indices A,B, · · · ,
are raised and lowered with the Minkowski metric ηAB . The diffeomorphism invariant

action which will be used as our model, is given by

S = −1

2

∫
d4x

√−gR+
M2

8

∫
d4x

√−g


3
((

1

4
H

)2

− v2

)2

− v2H̃A
BH̃

B
A


 , (2.2)

where

H̃A
B = HA

B − 1

4
δABH, (2.3)

is the traceless part of the “composite metric” and where we have set 8πG = 1. The

parameter v controls the symmetry breaking scale. As will be seen later, the induced mass

of the graviton is equal to mg = Mv2 and hence when v → 0 gravity becomes massless.

It is clear that in this limit the only surviving term in action (2.2) is Einstein gravity

and M2H4 for the four scalar fields, which are in the regime of strong coupling and do

not possess linear propagators. In the phase with restored symmetry the total number of

degrees of freedom is six: two of them describe massless graviton and four correspond to

scalar fields which are decoupled from gravity at linear level.

We show next that when the symmetry is broken, three out of four scalar fields are

“eaten” and produce the massive graviton with five degrees of freedom, while the “sur-

viving” degree of freedom will remain strongly coupled. In case when v 6= 0, the unique

Minkowski vacuum solution of the equations of motion, gµν = ηµν , corresponds to the

fields, which linearly grow with coordinates, that is, φA =
√
vδAβ x

β. Let us consider

perturbations around Minkowski background,

gµν = ηµν + hµν , φA =
√
v
(
xA + χA

)
(2.4)

and define

h̄AB ≡ 1

v
HA

B − δAB = hAB + ∂AχB + ∂Bχ
A (2.5)

+ ∂Cχ
A∂CχB + hAC∂

CχB + hCB∂Cχ
A + hCD∂

DχB∂Cχ
A,
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where indices are moved with the Minkowski metric, in particular, χB = ηBCχ
C and

hAB = ηBCδ
A
µ δ

C
ν h

µν . We point out that we have included a factor
√
v as coefficient of χA

to obtain simpler expressions. In reality in all our results that will subsequently follow we

have to make the replacement

χA → χA 1√
v
=

(
M

mg

)1
4

χA.

This, however, will not effect most of our conclusions, and we will thus comment on it only

when necessary. With the help of the expressions

H = v
(
h̄+ 4

)
, H̃A

BH̃
B
A = v2

(
h̄ABh̄

B
A − 1

4
h̄2
)
,

we can rewrite the action for the scalar fields in the following form

Sφ =
M2v4

8

∫
d4x

√−g
[
h̄2 − h̄ABh̄

B
A +

3

42
h̄3 +

3

44
h̄4
]
. (2.6)

We would like to stress that we did not use any approximations to derive (2.6), and h̄AB
are diffeomorphism invariant combinations of the scalar fields and metric up to an arbi-

trary order.

3 Physical degrees of freedom of the massive graviton

We consider now small perturbations of the metric and scalar fields and neglect higher

order terms. In this case

h̄AB = hAB + ∂AχB + ∂Bχ
A +O(h2, χ2), (3.1)

and in the leading order, action (2.6) describes Fierz-Pauli massive gravity, where the mass

of the graviton is equal to mg =Mv2. However, we have to stress that in distinction from

the Fierz-Pauli theory our model does not break diffeomorphism invariance and coincides

with this theory only in the unitary gauge where all χA = 0. In turn, imposing these gauge

conditions completely fixes the coordinate system making the interpretation of the results

rather obscure. If one would try to treat χA as Stückelberg “vector” field and consider

the diffeomorphism transformations for the vectors rather than some obscure “fictitious”

symmetries, then one unavoidably would conclude that the “vector components” must be

treated as the perturbations of four scalar fields with nonzero background values, thus

arriving at our model. As we will see in the next section the difference between the

noncovariant Fierz-Pauli approach and our model becomes even more dramatic at higher

orders. However, we first study the linearized theory using Lorentz-violating approach to

explicitly reveal the true physical degrees of freedom of the massive graviton. Namely, we

use the method usually applied in cosmological perturbation theory and classify the metric

perturbations according to the irreducible representations of the spatial rotation group [25].

The h00 component of the metric behaves as a scalar under these rotations and hence

h00 = 2φ, (3.2)
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where φ is a 3-scalar. The space-time components h0i can be decomposed into a sum of

the spatial gradient of some 3-scalar B and a vector Si with zero divergence:

h0i = B,i + Si, (3.3)

where B,i = ∂B/∂xi = ∂iB and ∂iSi = 0.

In a similar way hij can be written as

hij = 2ψδij + 2E,ij + Fi,j + Fj,i + h̃ij , (3.4)

where ∂iFi = 0 and ∂ih̃ij = 0 = h̃ii. The irreducible tensor perturbations h̃ij have two

independent components and describe the graviton with two degrees of freedom in a dif-

feomorphism invariant way. The scalar perturbations are characterized by the four scalar

functions φ,ψ,B, and E. In empty space they vanish and are induced entirely by matter,

which in our case are the scalar fields. The vector perturbations of the metric Si and Fi are

also due to the matter inhomogeneities The matter perturbations can also be decomposed

into scalar and vector parts:

χ0 = χ0, χi = χ̃i + π,i (3.5)

where ∂iχ̃
i = 0. In the linear approximation, scalar, vector and tensor perturbations are

decoupled and can be analyzed separately.

Scalar perturbations. Up to first order in perturbations we have hαβ = −ηανηβµhµν
and using the definition of h̄AB in (2.5) we find that in the leading order approximation

(S)h̄00 = −2φ+ 2χ̇0, (S)h̄0i = −B,i − π̇,i + χ0
,i,

(S)h̄ik = 2ψδik + 2E,ik + 2π,ik. (3.6)

Substituting these expressions in (2.6), keeping only second order terms, and expanding

the Einstein action up to second order in metric perturbations we obtain the following

action for the scalar perturbations:

(S)δ2S =

∫
d4x

{
−3ψ̇2 + ψ,iψ,i + φ

[
2∆ψ −m2

g(3ψ +∆(E + π))
]

+ 2ψ̇∆
(
B − Ė

)
+m2

g

[
3ψ
(
ψ + χ̇0

)
+
(
2ψ + χ̇0

)
∆(E + π)

+
1

4

(
χ0 −B − π̇

)
,i

(
χ0 −B − π̇

)
,i

]}
, (3.7)

where m2
g =M2v4 and the dot denotes derivative with respect to time. We see that φ is a

Lagrangian multiplier which implies the constraint

∆ψ =
m2

g

2
(3ψ +∆(E + π)). (3.8)

Another constraint is obtained by variation with respect to B:

ψ̇ = −
m2

g

4

(
χ0 −B − π̇

)
. (3.9)

– 5 –



J
H
E
P
1
2
(
2
0
1
0
)
0
2
3

To simplify further the calculations we select the longitudinal gauge B = E = 0, which

when used in conjunction with (3.8), simplifies the action (3.7) to

(S)δ2S =

∫
d4x

[
−3ψ̇2 + ψ,iψ,i

+m2
g

(
3ψ
(
ψ + χ̇0

)
+
(
2ψ + χ̇0

)
∆π +

1

4

(
χ0 − π̇

)
,i

(
χ0 − π̇

)
,i

)]
.

Using constraints (3.8) and (3.9) with B = E = 0, imply

m2
g∆π =

(
2∆ − 3m2

g

)
ψ (3.10)

m2
g∆χ

0 = −
(
2∆ + 3m2

g

)
ψ̇ (3.11)

which can be inverted to express π and χ0 in terms of ψ:

π =

(
2

m2
g

− 3

∆

)
ψ, (3.12)

χ0 = −
(

2

m2
g

+
3

∆

)
ψ̇ (3.13)

Substituting these relations in the action above we obtain

(S)δ2S =

∫
d4x

[
−3ψ̇2 + ψ,iψ,i +m2

g

(
6

m2
g

ψ̇2 − 4

m2
g

ψ,iψ,i − 3ψ2

)]

= −3

∫
d4x

[
ψ
(
∂2t −∆+m2

g

)
ψ
]
. (3.14)

Note that the potential ψ is gauge invariant with respect to infinitesimal diffeomorphism

transformations: xα → x̃α = xα + ξα. Therefore the derived result does not depend on

the particular gauge we used to simplify the calculations of the action. First of all we see

that the scalar mode which was non-propagating in the absence of the scalar fields has

become dynamical. The variable u =
√
6ψ is the canonical quantization variable for the

scalar degree of freedom of metric perturbations. It is entirely induced by perturbation of

the scalar fields π and χ0. In the linear approximation we have to be careful in taking the

limit mg → 0 because of the inverse mass dependence in the relations (3.12) and (3.13). In

reality we have to consider instead equations (3.10) and (3.11) which implies that ψ = 0

as in the vacuum case. Thus the famous vDVZ discontinuity [4, 5] is not present. In

addition, as mentioned before, when taking the limit mg → 0 we have to replace the fields

π and χ0 with
(

M
mg

) 1
4
π and

(
M
mg

) 1
4
χ0 but this leads to the same result that ψ = 0.

We note, however, that in the mg → 0 the Higgs action reduces to the M2H4 term, and

there are higher order non-linear contributions to ψ. In the next section we will show that

above a certain energy scale the scalar mode ceases to propagate and becomes confined due

to nonlinear corrections to the equations. As a result the vDVZ discontinuity is avoided

completely and we obtain a smooth limit to General Relativity when symmetry is restored

and the graviton becomes massless.
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Vector perturbations. For the vector perturbations

(V )h̄0i = −Si − ˙̃χi, (V )h̄ik = Fi,k + Fk,i + χ̃k
,i + χ̃i

,k. (3.15)

Up to second order in perturbations the action for the vector modes is

(V )δ2S =
1

4

∫
d4x

[(
Ḟi − Si

)
,k

(
Ḟi − Si

)
,k

+m2
g

((
˙̃χi + Si

) (
˙̃χi + Si

)
−
(
Fi + χ̃i

)
,k

(
Fi + χ̃i

)
,k

)]
. (3.16)

Variation of this action with respect to Si gives the constraint equation

∆
(
Ḟi − Si

)
= −m2

g

(
˙̃χi + Si

)
,

which allows us to express Si as

Si =
1

∆−m2
g

(
∆Ḟi +m2

g
˙̃χi
)
. (3.17)

Substituting this expression into (3.16) we obtain

(V )δ2S = −1

2

∫
d4x

m2
g∆

2
(
∆−m2

g

) [(Fi + χ̃i
) (
∂2t −∆+m2

g

) (
Fi + χ̃i

)]
. (3.18)

In the limit mg → 0 the action for the vector modes vanishes even after replacing χ̃i →
(

M
mg

) 1
4
χ̃i. The canonical gauge invariant quantization variable in this case is the 3-vector

V i =

√
m2

g∆

2(∆ −m2
g)

(
Fi + χ̃i

)
, (3.19)

which describes two physical degrees of freedom as this vector satisfies an extra condition

∂iV
i = 0.

Tensor perturbations. For the tensor perturbations the result is straightforward

(T )δ2S = −1

8

∫
d4x

[
h̃ij
(
∂2t −∆+m2

g

)
h̃ij

]
. (3.20)

This action describes the pure gravitational degrees of freedom which have become massive.

Because h̃ij satisfies four extra conditions ∂ih̃ij = 0 = h̃ii the tensor perturbations have

two physical degrees of freedom.

Thus, we have decomposed the massive graviton with five degrees of freedom into

physical gauge invariant components: a scalar part ψ (with one degree of freedom), a

vector part V i (2 degrees of freedom) and a tensor part h̃ij (2 degrees of freedom). After

quantization they acquire their independent gauge invariant propagators.

The metric components are the subject of minimal vacuum quantum fluctuations. In

particular, the amplitude of the vacuum fluctuations of ψ and h̃ij at scales λ≪ 1/mg are

about

ψ ∼ h̃ij ∼
1

λ
,
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in Planck units. They become of the order of one at the Planck scale lPl ≃ 10−33 cm

where non perturbative quantum gravity becomes important. The amplitude of the vector

vacuum metric fluctuations is much smaller. In fact, for λ≪ 1/mg, their amplitude in the

gauge Si = 0 is scale independent and is equal to

(V )hij ∼ Fi,j ∼ m.

These results are valid only in linearized theory. While the result for the tensor fluctuations

remains the same, we will show in what follows that the scalar and vector modes reach the

strong coupling regime at the energy scale which is much below the Planck scale.

4 Vainshtein scale and continuous limit

Let us first consider how the static interaction between two massive bodies is modified

in the Higgs model with massive graviton. In quantum field theory this interaction is

interpreted as due to the exchange by gravitons with corresponding quantum propagators.

This interpretation is very obscure from the physical point of view because the Newtonian

force is not directly related to the propagation of gravitons. It is, however, the price to be

paid in order to preserve explicit Lorentz invariance of the theory. In our approach one

does not need to go to quantum theory to answer this question. The interaction is entirely

due to the static potentials φ and ψ which are present due to the massive body. Let us

take the Newtonian gauge [25], where B = E = 0 so that the metric takes the form

ds2 = (1 + 2φ) dt2 − (1− 2ψ) δikdx
idxk (4.1)

First we have to derive the equations that this metric should satisfy in massive gravity. We

consider only static solutions so all time derivatives vanish and action (3.7) simplifies to

(S)δ2S =

∫
d4x

{
ψ,iψ,i + φ

[
2∆ψ −m2

g(3ψ +∆π)− T 00
]

+m2
g

[
3ψ2 + 2ψ∆π +

1

4
χ0
,iχ

0
,i

]}
. (4.2)

We have added a term which describes the interaction with an external source of matter for

which only the T 00 component of the energy momentum tensor does not vanish. Varying

this action with respect to φ,ψ, χ0 and π we arrive to the following equations:

∆ψ =
m2

g

2
(3ψ +∆π) +

T 00

2
, ∆

(
ψ − φ−m2

gπ
)
= 0, (4.3)

∆χ0 = 0, ∆(2ψ − φ) = 0. (4.4)

It immediately follows from (4.4) that χ0 = 0 and ψ = φ/2, while equations (4.3) simplify

to

∆ (φ+ ψ) = 3m2
gψ + T 00, (4.5)

or taking into account that ψ = φ/2 we obtain

(
∆−m2

g

)
φ =

4

3

(
T 00

2

)
. (4.6)
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For the central source of mass M0 the solution of this equation is

φ = −4

3

M0

r
e−mgr =

4

3
φNe

−mgr, (4.7)

where φN = −M0/r is the Newtonian gravitational potential. At scales r ≪ 1/mg the

metric takes the form

ds2 =

(
1 +

4

3
(2φN )

)
dt2 −

(
1− 4

3
φN

)
δikdx

idxk. (4.8)

The bending of light is determined by the φ+ψ combination of the metric components. In

General Relativity, where ψ = φN , this combination is equal to 2φN . In the case of massive

gravity

φ+ ψ =
4

3
φN +

2

3
φN = 2φN , (4.9)

i.e. we obtain the same prediction for the bending of light. However, the gravitational

potential φ which, for instance, determines the motion of planets has increased by factor

4/3 compared to the Newtonian potential, independently of the mass of the graviton.

This extra contribution survives even in the limit of zero mass. If one would redefine the

gravitational constant to get the correct Newtonian potential then obviously the bending

of light would be wrong. This is a manifestation of vDVZ discontinuity, which in quantum

field theory is interpreted as due to the propagation of the extra scalar mode in addition to

the two tensor degrees of freedom. Because this scalar mode is coupled to the trace of the

matter the result remains unchanged for photons, but changes by the corresponding factor

for non-relativistic matter. Note that we have re-derived this result in a purely classical

theory without any reference to the tensor degrees of freedom or the “true” graviton.

The paradox with vDVZ discontinuity, which implies that the graviton must be strictly

massless was resolved when Vainshtein found a new scale RV in massive gravity and sug-

gested that for r < RV the scalar mode decouples and General Relativity is restored.

We will now show how this happens in our theory, and prove that General Relativity is

smoothly restored below the Vainshtein scale. For that we will need to consider the higher

order corrections to the action (4.2). First of all we notice that because the gravitational

potentials with which we are dealing are always much smaller than unity, we can safely

ignore the terms of order φ3, φψ2 etc. compared to φ2, . . . because they cannot change the

solutions of the equations drastically. We will also ignore the terms φ2 (∆π) compared to

φ (∆π) etc. because they are subdominant. Therefore, the only contribution to the higher

order corrections which we will take into account will come purely from the matter scalar

fields. In addition we will skip all terms with χ0 since they vanish in the leading order.

Hence, the only relevant terms of the third order, which should be added to the action (4.2)

are:

(S)δ3S = m2
g

∫
d4x

[
1

2
(∆ππ,ikπ,ik − π,kiπ,ijπ,jk) +

3

16
(∆π)3 − 1

2
(φ+ 2ψ) π,ikπ,ik

+2ψ (∆π)2 +
9

16
(3ψ − φ) (∆π)2 +O

(
ψ3, ψ2φ,ψ2∆π, φψ∆π . . .

)]
. (4.10)
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These third order corrections modify the equations obtained by variation with respect to

ψ and π in the following way:

∆
(
ψ − φ−m2

gπ
)
+m2

g

[
3

2
(φ− 2ψ) +

1

2
π,ikπ,ik −

59

64
(∆π)2

]
= 0, (4.11)

and

∆ (2ψ − φ) + (∆ππ,ik),ik +
1

2
∆ (π,ikπ,ik)−

3

2
(π,ijπ,jk),ik

+
9

16
∆ (∆π)2 +O (φ,ikπ,ik,∆ψ∆π, . . .) = 0. (4.12)

Equation (4.12) is the main equation where non-linearities begin to play an important role

allowing us to avoid the condition ∆ (2ψ − φ) = 0, and thus resolve the problem of vDVZ

discontinuity. In fact, this condition means that the scalar perturbations of the curvature

must vanish, δR = 0, and this was the main obstacle leading to the troubles with restoring

General Relativity in the limit of vanishing graviton mass in the paper [3]. Assuming that

π,ik, ∆π ≪ 1 (this assumption will be checked a posteriori), and keeping only the leading

terms in equations (4.11) and (4.12) we obtain

∆
(
ψ − φ−m2

gπ
)
= 0, ∆(2ψ − φ) + ∂6π2 = 0, (4.13)

where by ∂6π2 we denoted all quadratic π terms in (4.12). Using the first equation in (4.13)

to solve for ∆φ, the second one simplifies to

∆
(
ψ +m2

gπ
)
+ ∂6π2 = 0. (4.14)

Taking into account that ∆ ∼ ∂2 and estimating ∂6π2 in spherically symmetric field as

O (1) π2/r6, this equation becomes

ψ +m2
gπ +O (1) r−4π2 ≃ 0, (4.15)

The behavior of π as a function of r crucially depends on whether the second or third term

in this equation is dominating. To estimate the scale when both terms are comparable,

which is called the Vainshtein scale RV , we set

m2
gπ ∼ O (1) r−4π2 ∼ ψ,

and from here find that

− ψ|r=RV
= m4

gR
4
V . (4.16)

In the case of a gravitational field produced by the mass M0 in the vacuum ψ ≃ − M0/r,

the Vainshtein scale is equal to

RV ≃
(
M0

m4
g

)1/5

. (4.17)
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For r ≫ RV the last term in (4.15) is small compared to the second one and we obtain

π =
ψ

m2
g

[
−1 +O

((
RV

r

)5
)]

. (4.18)

In this limit the quadratic terms in the second equation in (4.13) are negligible and from

the first equation in (4.13) we find that

ψ − φ = −ψ
[
1−O

((
RV

r

)5
)]

. (4.19)

This implies that in the leading order ψ = φ/2 in complete agreement with the result which

we have obtained above in linearized massive gravity. It is easy to check that the condition

∂2π ≪ 1 which we have used to simplify equations (4.11) and (4.12) is also satisfied. In

fact,

∂2π ∼ − ψ

r2m2
g

∼ M0

r5m4
g

r2m2
g ∼

(
RV

r

)5( r

1/mg

)2

, (4.20)

and hence ∂2π ≪ 1 for all r > RV if RV ≪ 1/mg.

At scales smaller than Vainshtein radius, that is for r ≪ RV the third term in (4.15)

is larger than the second one and hence

π ≃ O (1) r2
√

−ψ
[
1 +O (1)

m2
gr

2

√−ψ + . . .

]

≃ O (1)
ψ

m2
g

(
r

RV

)5/2
[
1 +O (1)

(
r

RV

)5/2

+ . . .

]
. (4.21)

Using this expression in the first equation of (4.13) we then find that in the leading order

ψ − φ = O (1)ψ

(
r

RV

)5/2

+ . . . (4.22)

For r ≪ RV we find that ψ = φ up to corrections of order ψ (r/RV )
5/2 . Because of ∂2π ∼√−ψ the condition ∂2π ≪ 1 is always satisfied. The dominating quadratic corrections to

equation (4.5) is of order m2
gψ ∼ m2

g

(
∂2π

)2
so they change only the mass term which is

irrelevant within the Vainshtein scale. Taking into account that ψ = φ for r ≪ RV and

neglecting the mass term, equation (4.5) in the leading order is reduced to

∆φ =
T 00

2
, (4.23)

and thus General Relativity is restored within Vainshtein scales up to the corrections

δφ

φ
∼
(

r

RV

)5/2

, (4.24)

which are much smaller than the corresponding corrections in DGP model [22]. One could

ask whether any higher order corrections would be able to spoil the obtained results? The
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most dangerous of these corrections in every next order will come as the corrections to the

previous order multiplied by ∂2π ≪ 1. Therefore they are completely negligible.

We now consider the implementation of our results derived classically in quantum field

theory. In the explicitly Lorentz invariant approach the change of the interaction strength

at scales exceeding the Vainshtein scale is interpreted as due to exchange by the scalar mode

ψ of the massive graviton in addition to the two tensor modes of the massless graviton. As

we will argue, this scalar mode becomes strongly coupled below Vainshtein scale and as a

result completely decouples from the gravity and matter entering the confinement regime.

This is similar to QCD, where the “soft” modes do not participate in the interactions of

highly energetic quarks below the confinement scale. Although for quantum fluctuations

one cannot neglect the time derivatives as in the static case, we can, however, estimate

the time derivatives to be of the same order of magnitude as spatial derivatives and use

the formulae derived for the static case. Keeping in mind that the amplitude of the scalar

quantum fluctuations at the length scale λ is about ψ ≃ 1/λ from (4.16) we obtain that at

scales smaller than

Λs ≃ m−4/5
g ,

these scalar modes should be in the strong coupling regime, where nonlinear corrections

cannot be neglected. Note that the metric fluctuations which are of order ψ ∼ m
4/5
g still

remain small at this scale. In distinction from the case when gravitational field is produced

by an external source the estimate ∂2π ∼ √−ψ is not justified for quantum fluctuations

for λ ≪ Λs. However, assuming that at the scales which are just a bit smaller than Λs

one can still use this estimate to find that the last term in action (3.7), which is of order

∂4π2 ∼ ψ, becomes dominant compared to the terms of order ψ3/2 and ψ2. As a result

the scalar mode ψ loses its linear propagator and decouples, entering the strong coupling

regime where nonlinear corrections will prevent its unbounded growth for every λ < Λs

as mg → 0. As a result the terms proportional to m2
g in the action (3.7) will vanish and

General Relativity is smoothly restored in this limit. A similar thing happens with the

vector modes. Therefore in the limit mg → 0 only the tensor modes h̃ik with two degrees

of freedom survive. They enter the strong coupling regime at the Planckian scale. The

energy scale Λ−1
s should be taken as a cutoff scale for the scalar mode ψ of graviton in

all diagrams where this scalar mode participates. Above this scale our scalar fields π and

χ0 which were producing the extra degrees of freedom for the massive graviton are also

in the confined regime and the symmetry is restored. These strongly coupled fields are

completely decoupled from gravity and the rest of the matter. In the case when the mass

of the graviton is of the order of present Hubble scale the cutoff scale is extremely small of

order 10−18 eV. At higher energies the ghost, even if it would exist, completely decouples.

Therefore the question about ghosts at the nonlinear level becomes irrelevant.

5 How universal is the Vainshtein scale?

The expression (4.17) for the Vainshtein scale was derived first in the case of Fierz-Pauli

mass term which is unique in four dimensions, because only in this case there are no ghosts

propagating at the linear level. We have obtained the same result in our Higgs model with
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the action (2.2). It is natural to ask whether it is the unique universal scale for all models

with Fierz-Pauli mass term or it depends on a particular nonlinear extension of this term.

Let us show that in our theory the Vainshtein scale, in fact, depends on the nonlinear

completion of the theory and determine all possible extensions of the model which lead to

different Vainshtein scales. With this purpose we first consider instead of (2.2) the following

action for the scalar fields

Sφ =
M2

8

∫
d4x

√−g
[
12

(
H

4
− 1

)2

+ 43β

(
H

4
− 1

)3

− H̃A
BH̃

B
A +O

(
(H − 4)4

)]
(5.1)

where without loss of generality we have set the parameter of the symmetry breaking to

unity. The terms O
(
(H − 4)4

)
must be taken in such a way as to avoid the appearance of

other vacua, besides H = 4. One can easily verify that there are infinitely many extensions

of the required type. This action, when rewritten in terms of h̄AB variables defined in (2.5),

with v = 1, takes the form

Sφ =
m2

g

8

∫
d4x

√−g
[
h̄2 − h̄ABh̄

B
A + βh̄3 +O

(
h̄4
)]
, (5.2)

where m2
g = M2. For β ≫ 1, the main contribution to the cubic action (4.10) is of order

β (∆π)3 and the second equation in (4.13) is modified to

∆ (2ψ − φ) + 3β∆(∆π)2 = 0. (5.3)

Then using the first equation in (4.13) and considering the spherically symmetric case we

find

ψ +m2
gπ +O (1) βr−4π2 ≃ 0, (5.4)

and correspondingly the Vainshtein scale in this case is

RV ≃
(
βM0

m4
g

)1/5

. (5.5)

Thus, we see that taking large enough β in action (5.1) we can obtain an arbitrarily large

Vainshtein scale for given masses of the source M0 and the graviton mg.

Next we would like to address the question whether one can obtain a smaller Vainshtein

scale compared to (4.17). For that let us first consider the action

Sφ =
M2

8

∫
d4x

√−g
[
−6

(
H

4
− 1

)2(H
4

− 3

)
− 1

2
H̃A

BH̃
B
A+

+
1

2
H̃A

BH̃
B
C H̃

C
A − 1

8
HH̃A

BH̃
B
A +O

(
(H − 4)4

)
,

]
(5.6)

where the terms O
(
(H − 4)4

)
are taken in such a way as to avoid the vacuum at H = 12.

Rewritten in terms of h̄AB , action (5.6) becomes

Sφ =
m2

g

8

∫
d4x

√−g
[
h̄2 − h̄ABh̄

B
A +

1

2

(
h̄ABh̄

B
C h̄

C
A − h̄ABh̄

B
A h̄
)
+O

(
h̄4
)]
, (5.7)
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where m2
g =M2. It is clear that in the lowest order it reproduces the Fierz-Pauli term, but

in higher orders it is quite different from (2.6). The action (5.7) concides with the action

first derived in [23, 24] from the requirement of the absense of ghost in decoupling regime

up to the third order. If we consider the case of the static gravitational field we find that

in the third order the action does not contain terms of the form ∂6π3. Hence, by keeping

only the leading terms we find that the second equation in (4.13) will be modified to

∆ (2ψ − φ) + ∂8π3 = 0. (5.8)

Considering the spherically symmetric case and using the first equation in (4.13), which is

still valid up to the leading order, we find that equation (4.15) has to be replaced by

ψ +m2
gπ +O (1) r−6π3 ≃ 0. (5.9)

The Vainshtein scale will be determined by the condition that all three terms in this

equation become comparable, that is,

ψ ∼ m2
gπ ∼ r−6π3 (5.10)

and hence the expression determining this scale is

− ψ|r=RV
= m3

gR
3
V . (5.11)

In particular, in the case of static field produced by mass M0, we have

RV ≃
(
M0

m3
g

)1/4

. (5.12)

To obtain the correction to the Newtonian potential at r ≪ RV we note that at these scales

π ∼ r2ψ1/3 and use of the first equation in (4.13) leads to

δφ

φ
∼
(

r

RV

)8/3

. (5.13)

If we set the mass of the source in (5.12) to be equal to the Planck mass, the corre-

sponding cutoff scale in quantum theory for the decoupling of the scalar mode is obtained:

Λs = m
−3/4
g .

In principle, there are enough different combinations of h̄AB which can be added to the

action (5.7) to remove all the terms of the form
(
∂2π

)k
for all k < n, so that the first

survived terms of this structure are
(
∂2π

)n.
. Notice that such action is unique up to the

order h̄n. In this case, the Vainshtein scale is determined by the condition

− ψ|r=RV
= (mgRV )

2(n−1)
n−2 . (5.14)

In the case of static gravitational field due to a massive source M0 this yields

RV =
(
Mn−2

0 m2(1−n)
g

) 1
3n−4

(5.15)
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and the correction to the gravitational potential for r ≪ RV is of order

δφ

φ
∼
(

r

RV

) 3n−4
n−1

(5.16)

in agreement with [26]. In the limit when n→ ∞ the Vainshtein scale is RV =M
1/3
0 m

−2/3
g .

It coincides with the corresponding scale in the DGP model. However, the corrections to

the gravitational potential which decay as (r/RV )
3 seem different. In this limit the theory

is unambiguous, but one could write it only as an infinite series. In turn this indicates that

such theory is most probably nonlocal. Moreover, because ∂2π → 1 we completely lose

control of higher order corrections and hence the results become completely unreliable.

6 Conclusions

We have addressed the most fundamental question of all theories of massive gravity -

can massive gravity be a consistent theory not contradicting to current experimental and

theoretical knowledge? In this paper we have treated gravity mostly as a classical field

theory and have explicitly investigated the issue of a smooth limit of massive gravity to

General Relativity. With this purpose we first determined the physical degrees of freedom

of the massive graviton generated via Higgs mechanism. This was done in the framework of

irreducible representations of the three dimensional rotation group, where the five degrees

of freedom of the graviton are described in terms of a tensor mode with two degrees of

freedom and vector and scalar perturbations due to the scalar fields. The propagator for

each of these five constituents of massive gravity was derived separately. In the linear

approximation the origin of the well-known vDVZ discontinuity at the zero mass limit was

traced to the constraint equations and it was shown how the scalar and vector modes of

metric perturbations become non-dynamical in this limit.

It has been suggested long ago that the linear perturbation theory of massive gravity

fails at length scales below the Vainshtein scale and one has to consider the full nonlinear

theory to recover General Relativity below this scale. We have determined the Vainshtein

scale in Higgs gravity, with Fierz-Pauli mass term, and found the explicit solution for

the spherically symmetric gravitational field. We have shown that the massive gravity

solution outside the Vainshtein scale smoothly goes to the General Relativity solution in

the region deep inside the Vainshtein scale. Thus the classical results and predictions of

General Relativity are recovered inside the Vainshtein scale and at distances exceeding the

Vainshtein radius, massive gravity strongly differs from Einstein theory. This means that

the scalar mode of massive graviton decouples at Vainshtein scale and enters the strong

coupling regime. In the limit of vanishing mass, when Vainshtein radius becomes infinite,

the symmetry is restored and our theory is reduced to General Relativity with four scalar

fields which are confined and thus decoupled from gravity and other matter. Based on

these results we have argued that in quantum theory there is a cutoff energy scale above

which the scalar fields responsible for the scalar and vector modes of the massive graviton

are strongly coupled and confined and hence harmless. For the realistic graviton mass
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this scale is extremely low. Therefore, the question about extra scalar mode and ghost

instability seems to be irrelevant in our model.

We have found how the Vainshtein scale depends on the particular Higgs model or,

in other words, on the nonlinear extension of the Fierz-Pauli mass term. In particular,

we have shown that for given masses of the graviton and source, the Vainshtein length

scale depends on the Lagrangian of the scalar fields and can be made arbitrary large.

On the other hand, we have also constructed Lagrangians, which produce smaller scales

compared to the standard one. However, the smallest possible scale seems to be larger

than M
1/3
0 m

−2/3
g .

Finally, we have calculated the corrections to General Relativity within the Vainshtein

scale which could, in principle, be interesting from experimental point of view.
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1 Introduction

In [1, 2] we have devised a Higgs mechanism for massive gravity and demonstrated how this

theory goes smoothly to General Relativity below the Vainshtein radius [3], thus resolving

the problem of van Dam, Veltman and Zakharov discontinuity [4, 5]. This result, obtained

in Higgs massive gravity, is in agreement with the results derived in bigravity theories

in [6–8]. Moreover, we have found that the corresponding Vainshtein scale depends on

the nonlinear extension of the Fierz-Pauli term [9]. In particular, it was shown that the

Vainshtein scale can be changed within the range M
1/3
0 m

−2/3
g < RV < M

1/5
0 m

−4/5
g , where

M0 andmg are, respectively, the mass of the external source and the mass of the graviton in

Planck units. The class of actions which lead to different Vainshtein scales RV coincide with

the actions derived in [10, 11]. These were obtained from the requirement of absence of the

nonlinear ghost [12] in the corresponding order of perturbation theory, in the decoupling

limit when both the graviton mass and the gravitational constant simultaneously vanish in

such a way that the appropriate Vainshtein scale is kept fixed. Moreover, there is a unique

action (up to total derivatives), corresponding toR∞
V =M

1/3
0 m

−2/3
g , in the decoupling limit,

for which the Boulware-Deser ghost does not appear at all below Vainshtein energy scale

up to an arbitrary order in perturbation theory [10, 11]. Therefore, a natural interesting

question arises as to whether this result could be sustained if we consider instead of the

decoupling limit (which is not physical), the full nonlinear theory of massive gravity. The

answer to this question will also help us understand whether there is any deep connection

between the absence of nonlinear ghost at a certain order in perturbation theory and the

corresponding value of the Vainshtein scale.

The main purpose of this note is to show that in the theories considered in [10, 11]

away from the decoupling limit the nonlinear ghost inevitably arises in the fourth order of
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the perturbative expansion. The Vainshtein scale value becomes therefore unrelated to the

absence of ghost if one does not consider the unrealistic decoupling limit of massive gravity.

The inevitable appearance of nonlinear ghost in “Lorentz invariant” massive gravity

theories agrees with an independent argument of [13, 14] based on helicity decomposition.

Furthermore we argue that the nonlinear ghost can easily be avoided in General Rel-

ativity with only three scalar fields, which imitate “Lorentz violating” massive gravity

around Minkowski background. This agrees with the results of the papers [15, 16] where

Lorentz-violating graviton mass terms have been introduced by hand from the very begin-

ning. Therefore in the theories considered in [15, 16] it was not so simple to keep under

control such quite exotic phenomena like different maximal velocities for different particle

species, superluminal propagation of particles, and violation of the no-hair theorems for the

black hole solutions (see [17, 18] and references therein). On the other hand our approach

allows us to preselect theories as General Relativity with three scalar fields which imitate

Lorentz violating gravity but do not lead to dangerous consequences.

2 Higgs massive gravity

We employ four scalar fields φA, A = 0, 1, 2, 3, to play the role of Higgs fields. They will

acquire a vacuum expectation value proportional to the space-time coordinates φA = δAβ x
β

giving mass to the graviton. Let us consider perturbations around Minkowski background,

gµν = ηµν + hµν , φA = xA + χA (2.1)

and define

h̄AB ≡ ηBCg
µν∂µφ

A∂νφ
C − δAB = hAB + ∂AχB + ∂Bχ

A

+ ∂Cχ
A∂CχB + hAC∂

CχB + hCB∂Cχ
A + hCD∂

DχB∂Cχ
A, (2.2)

where indices are moved with the Minkowski metric ηAB = (1,−1,−1,−1), in particular,

χB = ηBCχ
C and hAB = ηBCδ

A
µ δ

C
ν h

µν . After introducing the diffeomorphism invariant

variable h̄AB it becomes almost trivial to write the terms that produce massive gravity. In

the unitary gauge where χA = 0, we have h̄AB = hAB = ηBCδ
A
µ δ

C
ν h

µν , and hence the Fierz-

Pauli term for the graviton mass around broken symmetry background can immediately

be obtained from the quadratic term of the following action for the scalar fields

Sφ =
m2

g

8

∫
d4x

√−g
[
h̄2 − h̄ABh̄

B
A +O

(
h̄3, . . .

)]
. (2.3)

where by O
(
h̄3, . . .

)
we denote the terms which are of the third and higher orders in h̄AB .

In distinction from the Fierz-Pauli action which was introduced by explicit spoiling of

the diffeomorphism invariance, our action is manifestly diffeomorphism invariant and only

coincides, to leading order, with the Fierz-Pauli action, in the unitary gauge where all

perturbations of the scalar fields are set to zero.
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3 Boulware-Deser nonlinear ghost

One could, in principle, skip all higher order terms and consider the action

S = −1

2

∫
d4x

√−gR+
m2

g

8

∫
d4x

√−g
[
h̄2 − h̄ABh̄

B
A

]
, (3.1)

where we set 8πG = 1, as an exact action for massive gravity. The problem then is either

the presence of a ghost around the trivial background φA = 0 or the appearance of nonlinear

ghost in the broken symmetry phase. To trace the latter one it is convenient to work in

some gauge where the scalar field perturbations are not equal to zero. A good choice is the

Newtonian gauge in which the metric gµν takes the form [19]

ds2 = (1 + 2φ) dt2 + 2Sidtdx
i −
[
(1− 2ψ) δik + h̃ik

]
dxidxk, (3.2)

where Si,i = 0 and h̃ij,i = h̃ii = 0. Then the ghost can easily be traced as a dynamical

degree of freedom of the scalar field χ0. The field χ0 enters only the h̄00 and h̄i0 components,

which can be written explicitly as

h̄00 = g00 − 1 + 2g00χ̇0 + g00
(
χ̇0
)2

+ 2g0iχ0
,i + 2g0iχ̇0χ0

,i + gikχ0
,iχ

0
,k, (3.3)

and

h̄i0 = g0i + g00χ̇i + gikχ0
,k +

(
g0i+g00χ̇i+gk0χi

,k

)
χ̇0+gk0χi

,k+g
lkχi

,lχ
0
,k+g

0kχ0
,kχ̇

i. (3.4)

Let us consider only the scalar mode of the massive graviton for which χi = π,i. It was

shown in [2] that by using constraints one can express the linear perturbations of the scalar

fields in terms of the metric potential ψ as

π =
2∆− 3m2

g

m2
g∆

ψ (3.5)

χ0 = −
2∆ + 3m2

g

m2
g∆

ψ̇. (3.6)

Then the action (3.1) up to second order in perturbations simplifies to

(S)δ2S = −3

∫
d4x

[
ψ
(
∂2t −∆+m2

g

)
ψ
]
. (3.7)

The nonlinear ghost appears in the third order in metric and scalar field perturbations.

This is due to the fact that the accidental U(1) symmetry, which makes the scalar field

χ0 to be the Lagrange multiplier around Minkowski background, is not preserved on a

background slightly deviating from Minkowski space [1]. To prove this it is enough to

consider only the third order terms in the action (3.1) which involve the powers of χ̇0. By

substituting (3.3) and (3.4) into (3.1) we obtain

δ3S=
m2

g

2

∫
d4x

{[(
g00 − 1 +

√−g
)
h̄ii+

(
g0i+χ̇i−χ0

,i

) (
g0i+χ̇i

)]
χ̇0+

1

2
h̄ii
(
χ̇0
)2
+. . .

}
,

(3.8)
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where by dots we have denoted all other terms not containing time derivatives of χ0. The

term, linear in χ̇0, does not induce dynamics for the mode χ0 and simply modifies the

constraint equations to second order in perturbations. However, the term proportional to(
χ̇0
)2

induces the propagation of χ0 on the background deviating from Minkowski space

for which h̄ii 6= 0. Thus at nonlinear level there appears an extra scalar degree of freedom

which is a ghost. To see this let us express the relevant term in (3.8) entirely in terms of

the gravitational potential ψ. Taking into account that, to linear order, h̄ii = 6ψ+2∆π and

using constraint equations (3.5) and (3.6) we find

δ3S =
m2

g

4

∫
d4x

[
h̄ii
(
χ̇0
)2

+ . . .
]
=

∫
d4x


∆ψ

(
2∆ + 3m2

g

m2
g∆

ψ̈

)2

+ . . .


 . (3.9)

By considering inhomogeneities with ∆ψ ≫ m2
gψ and combining this contribution to the

action (3.7) we obtain

δS = −3

∫
d4x

[
ψ
(
∂2t −∆+m2

g

)
ψ − 4

3m4
g

∆ψ
(
ψ̈
)2

+ . . .

]
. (3.10)

Let us assume that there is a background field ψb and consider small perturbations around

this background, that is, ψ = ψb+ δψ. Expanding (3.10) to second order in δψ we find that

the behavior of linear perturbations is determined by the action

δS = −3

∫
d4x

{
δψ
(
∂2t −∆+m2

g

)
δψ +

1

m2
Gh

[
(
∂2t δψ

)2
+ 2

ψ̈b

∆ψb
(∆δψ)

(
∂2t δψ

)
]
+ . . .

}
,

(3.11)

where

m2
Gh = −

3m4
g

4∆ψb
, (3.12)

Let us take for the background field the scalar mode of gravitational wave with the wave-

number k ∼ mg, for which ψ̈b ∼ ∆ψb ∼ m2
gψb and m2

Gh ∼ m2
g/ψb. By considering pertur-

bations δψ with wave-numbers m2
Gh ≫ k2 ≫ m2

g and skipping subdominant terms we can

rewrite the action above as

δS ≈ − 3

m2
Gh

∫
d4xδψ

(
∂2t + . . .

) (
∂2t +m2

Gh + . . .
)
δψ. (3.13)

The perturbation propagator is given then by

1

∂2
(
∂2 +m2

Gh

) ≃ 1

m2
Gh

(
1

∂2
− 1

∂2 +m2
Gh

)
, (3.14)

and it obviously describes the scalar mode of the graviton together with non-perturbative

Boulware-Deser ghost of mass mGh ∼ mg/
√
ψb. It is clear that when ψb vanishes the mass

mGh becomes infinite and ghost disappears. We have argued in [2] that at energies above

Vainshtein scale Λ5 = m
4/5
g the linearized consideration above breaks down and the scalar

fields enter the strong coupling regime. Therefore, ifmGh would be larger than Λ5 then this
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ghost would not be essential. However, in strong enough background mg < mGh < Λ5 and

therefore the nonlinear ghost appears below the Vainshtein scale, where the perturbative

expansion is trustable.

Thus, the action (3.1) considered as describing massive gravity has two problems with

ghosts: first, there is a linear ghost around the trivial background φA = 0, and second,

there is nonlinear ghost around broken symmetry background.

The first ghost is dangerous, because it leads to a strong instability. However, as we

have shown in [1], it can be easily avoided by adding to the action (3.1) third and higher

order terms in h̄. This modification is ambiguous and there is a whole class of theories

which reproduce the Fierz-Pauli theory in the lowest order, avoiding linear ghosts around

trivial background.

The nonlinear ghost exists only at scales below the Vainshtein energy scale which for

the realistic graviton mass is extremely low, about 10−20eV . The existence of ghost would

allow, for example, a process where ghost-photon pairs are spontaneously produced from

the vacuum due to the gravitational interactions [20]. The energies of such photons would

be of the order of cutoff scale Λ. The measurements of the differential photon flux in

the diffuse gamma ray emission lead to the bound Λ ≤ 3MeV [21]. Therefore, taking into

account that the Vainshtein scale serves as the cutoff scale in Lorentz violating background,

where the nonlinear ghost propagates, we conclude that this ghost is completely harmless.

Nevertheless, some interesting questions remain. One could inquire whether there is any

nonlinear extension of the action (3.1) which is free of the Boulware-Deser ghost and how

the absence of the ghost in the corresponding order of a perturbative expansion is related

with the concrete value of the Vainshtein scale?

4 Ghost in nonlinear extensions of massive gravity

Contrary to [13, 22, 23], it was claimed recently in [10, 11], that there is a unique ghost free

nonlinear extension of massive gravity and that this extension is related with Λ3 = m
2/3
g

Vainshtein scale. This claim was proved in [10, 11] in the decoupling limit neglecting the

vector modes of the graviton. The decoupling limit, while simplifying the calculations, is

not physically justified. Therefore, we will determine whether the nonlinear ghost really

disappears away from the decoupling limit. The Lagrangian in [10, 11] is expressed in

terms of the invariants built out of

Hµν = gµν − ηAB∂µφ
A∂νφ

B. (4.1)

It is easy to see (as was also noted in [24]) that the invariants built out of Hµν , up to sign,

coincide with the invariants made of h̄AB , in particular,

gµνHµν = −h̄, HµνH
µν = h̄ABh̄

B
A , . . . (4.2)
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Let us consider the action [10, 11]:

Sφ =
m2

g

8

∫
d4x

√−g
[
h̄2 − h̄2AB +

1

2

(
h̄3AB − h̄h̄2AB

)
− 5

16
h̄4AB +

1

4
h̄h̄3AB +

1

16

(
h̄2AB

)2

+c3

(
2h̄3AB − 3h̄h̄2AB + h̄3 +

3

4

(
2h̄3ABh̄− 2h̄4AB +

(
h̄2AB

)2 − h̄2ABh̄
2
))

+d5

(
6h̄4AB − 8h̄3AB h̄− 3

(
h̄2AB

)2
+ 6h̄2ABh̄

2 − h̄4
)]
, (4.3)

where c3 and d5 are arbitrary coefficients and we have introduced the shortcut notations

h̄2AB = h̄ABh̄
B
A , h̄3AB = h̄ABh̄

B
C h̄

C
A, h̄4AB = h̄ABh̄

B
C h̄

C
Dh̄

D
A .

It was proved [10, 11] that this theory is ghost free to fourth order in perturbations in the

decoupling limit. The action above corresponds to the Vainshtein scale Λ = m
8/11
g [2]. Let

us investigate whether the ghost really disappears in non-decoupling limit. For this purpose

we have to trace all fourth order terms in perturbations which contain time derivatives of χ0.

As we have noticed above, the time derivatives of χ0 come only from h̄00 and h̄
i
0 components.

Therefore the only terms in (4.3), which survive and could be relevant for a possible ghost

are the following

Sφ =
m2

g

8

∫
d4x

√−g
[(

2h̄00 −
1

2

(
h̄00
)2

+
1

4

(
h̄00
)3
)
h̄ii −

1

4

(
2h̄00 −

1

2

(
h̄00
)2
)
h̄2ik

+2h̄i0h̄
i
0 −

1

2
h̄00h̄

i
0h̄

i
0 +

1

4

(
h̄00
)2
h̄i0h̄

i
0 +

3

2
c3

(
2h̄00 −

1

2

(
h̄00
)2
)((

h̄ii
)2 − h̄2ik

)
+ . . .

]
.

(4.4)

We have skipped here the terms which are linear in χ̇0 because they only modify the

constraints without inducing the dynamics for χ0.We would like to stress that the particular

choice of action (4.3) has lead to nontrivial cancellations of many terms which could have

caused the appearance of a ghost. In particular, all contributions which induce the terms

proportional to
(
χ̇0
)2
,
(
χ̇0
)3
,
(
χ̇0
)4

are canceled in the d5, term in (4.3). Further nontrivial

cancellations happen when we substitute (3.3) and (3.4) in (4.4), and the final result is

δ3Sφ + δ4Sφ =
m2

g

8

∫
d4x

[
F (δg, χ) χ̇0 +

1

2

(
χ̇i + Si + g0i + χ0

,i

)2 (
χ̇0
)2

+ . . .

]
, (4.5)

where we denote by dots the terms which do not depend on χ̇0. Note that the third

and fourth powers of χ̇0 are cancelled. The function F (δg, χ) is some rather long and

complicated expression which depends on terms of second and third order in perturbations

but does not depend on χ̇0. Because this term does not induce the dynamics of χ0, but

simply modifies the constraints, we do not need the explicit form of F. Note that the third

order terms with second and third powers of χ̇0 are canceled and hence the ghost does not

appear in the third order even if we do not consider the decoupling limit. However, in the

fourth order in perturbations the nonlinear ghost survives. It is easy to see that this ghost

disappears in the decoupling limit in agreement with [10, 11]. In fact, after skipping the
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vector modes, we have χi = π,i , Si = 0 and considering the decoupling limit (m2
g → 0)

we obtain from (3.5) and (3.6) that χ0 → −π̇ and hence the second term in (4.5) vanishes.

However, without taking this limit, action (4.5) becomes

δ3Sφ + δ4Sφ =
m2

g

16

∫
d4x

[(
˙̃χi + Si +

(
π̇ + χ0

)
,i

)2 (
χ̇0
)2

+ . . .

]

=
m2

g

16

∫
d4x



(
˙̃χi + Si −

6

∆
ψ̇,i

)2
(
2∆ + 3m2

g

m2
g∆

ψ̈

)2

+ . . .


 (4.6)

where we have taken into account that χi = π,i + χ̃i and χ̃i is a vector mode of graviton.

Considering small perturbations δψ with wave-numbers k2 ≫ m2
g around some background

ψb and χ̃i
b we find as in the previous considerations (see (3.10)–(3.12)) that this action

describes along with the scalar mode of graviton also a ghost of mass

m2
Gh = −12m2

g

(
˙̃χi
b + Si −

6

∆
ψ̇b,i

)−2

(4.7)

provided thatm2
Gh satisfies the condition ∂2tm

−2
Gh ≪ 1. In the background of the scalar grav-

itational wave ψb with k
2 ≃ m2

g we have mGh ∼ mg/ψb. If the time dependent background

fields are strong enough the mass of this ghost is smaller than the Vainshtein scale and can

be even as small as the graviton mass. Thus, if one does not consider the decoupling limit

of the theory the action (4.3) has a nonlinear ghost in the fourth order of perturbation

theory. This ghost cannot be removed by adding fifth and higher order terms and it is

inevitable in the theories considered in [10, 11].

5 Can we avoid the nonlinear ghost?

The theory described by action (4.3) could be a unique candidate for a ghost free massive

gravity (to fourth order in perturbations) because it is the only theory which does not have

a ghost in the decoupling limit [10, 11]. It’s higher order extension which removes ghost

to an arbitrary order is also uniquely determined by the requirement of the absence of

ghost in decoupling limit. Thus the theory satisfies the necessary condition to be a ghost

free theory. However, this condition is not sufficient to avoid ghost in the full fourth order

nonlinear theory. Unfortunately, as we have shown, the theory considered above inevitably

has an unremovable nonlinear ghost beginning with the fourth order in perturbations. One

can wonder whether there is any way of avoiding this no-go theorem? It is clear that using

the variables Hµν defined in (4.1) one is forced to use only the invariants present in (4.3)

because otherwise the fundamental diffeomorphism invariance of the theory will be spoiled.

On the other hand in our approach the variables HAB are scalars under diffeomorphism

transformations. The “internal Lorentz invariance” under scalar fields transformations

φA → φ̃A = φBΛA
B was simply used to imitate massive gravity with Fierz-Pauli term.

However, we are not obliged to preserve this fake Lorentz invariance. In fact, there is

nothing wrong from the point of view of symmetries to consider for instance the Lagrangian

Sφ =
m2

g

8

∫
d4x

√−g
(
gµν∂µφ

0∂νφ
0 − 1

)2
=
m2

g

8

∫
d4x

√−g
(
h̄00
)2

(5.1)
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which is diffeomorphism and Lorentz invariant and simply describes the scalar field φ0

with an unusual kinetic term similar to k-inflation [25, 26]. Therefore, without spoiling

any fundamental invariances we could modify the action above by adding to it terms of

the form
(
h̄0i
)2
h̄00,

(
h̄0i
)2
, etc. It is easy to verify that the only terms in (4.4) responsible

for the ghost are

δSGhost ≡
m2

g

8

∫
d4x

[
2h̄i0h̄

i
0 −

1

2
h̄i0h̄

i
0h̄

0
0 +

1

4
h̄i0h̄

i
0

(
h̄00
)2
]
. (5.2)

Therefore subtracting these terms from action (4.3) removes the ghost in the fourth order.

In turn this also inevitably modifies the quadratic part of the action and instead of Fierz-

Pauli term we obtain

Sφ =
m2

g

8

∫
d4x

√−g
[
h̄2 − h̄ABh̄

B
A − 2h̄i0h̄

i
0 +O

(
h̄3, . . .

)]

=
m2

g

8

∫
d4x

√−g
[(
h̄ii
)2 − h̄ikh̄

k
i + 2h̄00h̄

i
i +O

(
h̄3, . . .

)]
. (5.3)

As a result both scalar and vector modes of the graviton disappear and the action above

describes the massive transverse graviton with two degrees of freedom. Note that this

result does not contradict Wigner’s theorem about the number of degrees of freedom of

massive particle with spin-two because in this case the scalar fields background in the bro-

ken symmetry phase is not Lorentz invariant. Nevertheless, we would like to stress that

in Higgs gravity which produces the massive graviton with two degrees of freedom there is

no violation of the fundamental space time Lorentz invariance in distinction from [15, 16]

where the spacetime Lorentz invariance is violated explicitly by adding distinct mass terms

for time and spatial components of the metric perturbations hµν like m2
0h

2
00, m

2
2h

2
ij , . . . .

However, effectively the graviton mass term (5.3) could be identified with the theory con-

sidered in [15] withm2
0 = m2

1 = 0 andm2
2 = m2

3 = m2
4 = m2

g. Although this configuration of

mass parameters was not conisdered there, the authors would arrive at the same conclusion

regarding the number of degrees of freedom of the massive graviton. The effective violation

of the spacetime Lorentz invariance in our approach is simply due to the existence of a back-

ground scalar field in Minkowski space in a way similar to the violation of this invariance by

the cosmic microwave background radiation in our universe. In the case when we had im-

posed the extra “Lorentz invariance” in the configuration space of the scalar fields we were

able to imitate the space-time Lorentz invariance for the graviton mass term simply via re-

definition of the scalar fields in the unitary gauge. However, in general when this invariance

is absent any scalar fields background violates space-time Lorentz invariance explicitly.

The “Lorentz violating” procedure of removing the nonlinear ghost in Higgs gravity

can be extended to any higher orders in the theory considered in [10, 11]. However, if we

allow the “Lorentz violating” terms then there is no need anymore for such extension. We

can simply consider

Sφ =
m2

g

8

∫
d4x

√−g
[(
h̄ii
)2 − h̄ikh̄

k
i

]
, (5.4)

as an exact action of massive gravity on a Lorentz violating background. It is obvious that

this action depends only on three scalar fields and does not have any linear and nonlinear
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ghosts around any background. The transverse gravitational degrees of freedom h̃ik become

massive and one could wonder how it will modify the usual Newtonian interaction between

massive objects. To answer this question let us consider a static gravitational field produced

by a matter for which only T 00 component of the energy-momentum tensor does not vanish.

The metric in this case can be written as

ds2 = (1 + 2φ) dt2 − (1− 2ψ) δikdx
idxk, (5.5)

and the action for static perturbations derived in [2] (see formulae (28) and (36) there) in

the case of (5.4) simplifies to

(S)δS =

∫
d4x

{
ψ,iψ,i + φ

[
2∆ψ − T 00

]
+
m2

g

2

[
6ψ2 + 4ψ∆π +

+(∆ππ,ikπ,ik − π,kiπ,ijπ,jk)− 2ψ
(
π,ikπ,ik − 2 (∆π)2

)]

+O
(
ψ3, ψ2φ,ψ2∆π, φψ∆π . . .

)}
(5.6)

Varying this action with respect to φ, ψ and π, and assuming that ∆π ≪ 1 we obtain the

following equations

∆ψ =
T 00

2
, ∆

(
ψ − φ−m2

gπ
)
− 3m2

gψ = 0, (5.7)

∆ψ +
1

2
(∆ππ,ik),ik +

1

4
∆ (π,ikπ,ik)−

3

4
(π,ijπ,jk),ik = 0. (5.8)

For consistency, we have to include the higher order terms in ∆π because otherwise the

first equation in (5.7) would contradict to the equation (5.8). The reason is that the scalar

fields in this case are always in strong coupling regime. In particular, given ψ which is

induced by the matter source according to Poisson equation and remains unmodified at

all, we obtain from (5.8) the following estimate for induced scalar fields

∂∂π ∼ ∆π ∼
√
ψ. (5.9)

Then considering the spherically symmetric source of mass M0 from the second equation

in (5.7) one derives

ψ − φ ≃ O (1)ψ

(
r

RV

)5/2

. (5.10)

At distances much smaller than Vainshtein radius RV =
(
M0/m

4
g

)1/5
we have ψ = φ with

high accuracy and thus we recover General Relativity with corrections which are the same

as in the case of Fierz-Pauli mass term (see [2]). However, for r ≫ RV the gravitational

potential φ grows as r3/2, while ψ decays exactly as in Newtonian theory. This is due to

the fact that the contribution of the energy of the field π, induced by the external source

of the matter, becomes comparable with the energy of this source at the scales larger

than the Vainshtein radius. To find a solution in this range we have to solve exactly the

complete nonlinear system of equations. However it is obvious that at distances larger than

Vainshtein radius we do not reproduce the results of massive gravity with the Fierz-Pauli
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mass term (see [2]). For the realistic graviton mass, Vainshtein radius for the Sun is huge

and before we cross it the contribution of the other mass sources in the universe become

important. Smearing the matter distribution and considering the homogeneous universe

we find that for mg ≃ H0, where H0 is the present value of the Hubble constant, the

Vainshtein radius in this case is of order of horizon scale H−1
0 . Therefore massive gravity

with action (5.4) is in agreement with experiment. An interesting question that needs

investigation is to determine how General Relativity will be modified on the horizon scale

(a question which could be relevant for the dark energy problem).

6 How dangerous are ghosts?

It is clear that the linear ghost around trivial background with φA = 0 is extremely dan-

gerous because it leads to a catastrophic instability of the vacuum and drastically reduces

the lifetimes of the particles. We have shown in [1] how this ghost can be easily avoided.

In distinction from it the nonlinear ghost seems to be unavoidable in all Lorentz invariant

versions of massive gravity. This nonlinear ghost inevitably arises at latest in the fourth

order of perturbation theory on a background which slightly deviates from the Minkowski

space. How dangerous is this ghost? There exist different opinions on this subject. The

main reason why those who think that it is catastrophic is the integration over the Lorentz

boosts in order to insure Lorentz invariant cutoff. Leaving the question of the need to

integrate over boosts aside we note however that anyway the nonlinear ghost appears only

on the background which deviates from the Minkowski space. In turn this background

selects the preferable coordinate system where we have a Lorentz violating cutoff on the

energy scale below which the ghost exists. This cutoff is the corresponding Vainshtein

energy scale, which is extremely low, of order of 10−20 eV for the realistic graviton mass.

It is clear that the ghost with such energies is completely harmless from the point of view

of agreement with experiments [20]. Therefore we believe that the nonlinear ghost in any

theory of massive gravity is irrelevant. In such case one could wonder if we can avoid the

requirement that the only possible Lorentz invariant graviton mass term is the Fierz-Pauli

one? To answer this question let us consider the theory with the action

Sφ =
m2

g

8

∫
d4x

√−g
[
h̄2 − h̄ABh̄

B
A + αh̄2 +O

(
h̄3, . . .

)]
. (6.1)

It is easy to see that if α is different from zero then already at quadratic order in the

action there appears the term α
(
χ̇0
)2

which inevitably leads to a dangerous linear ghost.

Moreover, for α ∼ O (1) the Vainshtein scale disappears in this theory. This can be easily

seen if we rewrite equations (31), (39) and (41) from our previous paper [2] taking into

account the relevant contributions from αh̄2 term in action (6.1)

∆ (φ+ ψ) +
α

3α + 2
∆(φ− ψ) = T 00 +m2

g × (. . .) , (6.2)

(2ψ − φ) +
α

α+ 1
(ψ +∆π) + ∂4π2 = 0, (6.3)

(1 + 2α)ψ +
(3α+ 2) (α+ 1)

2
m2

gπ + α∆π + ∂4π2 = 0. (6.4)
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The nonlinear Vainshtein scale was determined before by the requirement that in equa-

tion (6.4) the linear term in π is equal to the last non-linear term. However, we now

have also an extra linear term in this equation which is always larger than the non-linear

term if ∆π ≪ 1. Hence the non-linear term in this equation is negligible and we always

remain in the week coupling regime. By considering the scales for which k2 ≫ m2
g it follows

from (6.4) that

∆π = −(1 + 2α)

α
ψ. (6.5)

Substituting this expression in (6.3) we find that up to the leading order ψ = φ and hence

as it follows from (6.2) curiously enough General Relativity is restored (at least in the lead-

ing approximation) without having problem with vDVZ discontinuity [4, 5]. Nevertheless

the above theory is unacceptable because of the linear ghost which exists at all scales up

to the Planckian one.

7 Conclusions

We have investigated the problem of the non-linear Boulware-Deser ghost in massive grav-

ity. In particular, we have used the gravity Higgs mechanism to study whether the unique

theory proposed in [10, 11] remains ghost free away from the decoupling regime. Although

we have confirmed the result of [10, 11] in decoupling limit, we unfortunately find by

explicit calculations that a non-linear unremovable ghost reappears in this theory below

Vainshtein energy scale in fourth order of perturbation theory away from the decoupling

limit. At the same time, as was shown in [1, 2], the theories considered in [10, 11], can

discretely change the Vainshtein scale within the range M
1/3
0 m

−2/3
g < RV < M

1/5
0 m

−4/5
g .

Thus, the claim that massive gravity with Vainshtein scale M
1/3
0 m

−2/3
g is ghost free is not

confirmed in the full theory and moreover the nonlinear ghost problem does not seem to

be directly related to the concrete value of the Vainshtein scale.

Higgs massive gravity [1, 2] is equivalent to the formulation in [10, 11] provided one

preserves the “internal Lorentz invariance” in the space of the scalar field configurations.

We have argued that in Higgs gravity, in distinction from [10, 11], the ghost can be can-

celled because the diffeomorphism invariance of the variables h̄AB allows to add appropriate

counterterms to cancel the undesired negative energy mode in the action (5.3). This how-

ever can only be done if we abandon the Lorentz invariance in the scalar field configuration

space without violating the fundamental space-time Lorentz invariance and diffeomorphism

invariance of the action in distinction from the Lorentz-violating actions of massive gravity

considered in [15, 16]. As a result the propagators for the scalar and vector modes of the

massive graviton vanish and the action (5.3) describes a massive graviton with two physical

degrees of freedom.

To summarize, we have shown that even for the simplest action, which at leading

order reproduces the Fierz-Pauli mass term and ignoring the higher order terms in h̄AB , the

Boulware-Deser ghost will arise in third order of perturbation theory. Moving away from

the decoupling limit, while keeping the contributions of the vector modes in the action, we

have established the existence of the ghost state. We calculated the mass of the ghost mode
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mGh in the short wavelength approximation for perturbations around some locally Lorentz

violating background. Moreover, with strong enough background fields it is possible to

make the negative energy mode as light as needed within the interval mg < mGh < Λ5.

However, as was argued in [2], above the Vainshtein energy scale Λ5 the scalar metric

perturbations ψ as well as the scalar field perturbations χA are in the strong coupling

regime and possess no propagator. Therefore, the ghost is propagating on the locally

nontrivial background only below the Vainshtein energy scale which for a graviton mass of

the order of the present Hubble scale is extremely low and hence the ghost is harmless.

Further, we have shown that by adding terms of higher order in h̄AB to the action with

the choice of coefficients corresponding to the Vainshtein scale Λ = m
8/11
g the nonlinear

ghost disappears from the third order of perturbations. However, away from the decoupling

limit the Boulware-Deser ghost, although harmless, appears at the fourth order of pertur-

bation theory and cannot be removed by adding higher order terms to the Lagrangian.

This allows us to conclude that the value of the Vainshtein scale which tells us up to which

energy scale a perturbation theory of a given order is trustable and the presence of the

nonlinear ghost in the theory are two separate issues which do not have to be correlated.
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1 Introduction

The observation of the accelerated expansion of our universe is the driving motivation for

various infrared modifications of general relativity. One of the theoretically most natural

infrared modification would be to give a small mass to the graviton. Since the early discov-

ery of the quadratic Fierz-Pauli mass term for metric perturbations in [1], there has been

an ongoing search for a healthy non-linear completion of massive gravity. The construction

of the non-linear graviton mass term is based on the use of an auxiliary non-dynamical

reference metric, which as an absolute object would break the diffeomorphism invariance

of general relativity. The diffeomorphism invariance can be restored by introducing four

Stückelberg scalars, corresponding to the four coordinate transformations [2–4]. However,

a generic theory of four Stückelberg scalars together with the two degrees of freedom of

massless graviton propagates six degrees of freedom in total. It is one degree of freedom

too much in comparison to the five degrees of freedom expected from the massive spin-2

representations of the Poincaré group. Moreover, the additional degree of freedom is sick

and represents the (in)famous Boulware-Deser (BD) ghost [5].

After an order-by-order construction of a non-linear theory which is ghost-free in the

decoupling limit in [6], a full resummed theory of non-linear massive gravity was proposed

– 1 –



by de Rham, Gabadadze, and Tolley (dRGT) [7]. In unitary gauge this theory has been

shown to propagate five degrees of freedom [8, 9]. The Hamiltonian analysis of the full

diffeomorphism invariant theory including the four Stückelberg fields also seems to confirm

the expectation that the dRGT theory propagates at most five degrees of freedom [10–12]

(for recent counterarguments see [13]). However, the canonical analysis of dRGT theory

in the presence of the four scalar fields is intricate, and in the existent literature it is often

obscured either by mixing the gravitational and scalar degrees of freedom or by introduction

of new auxiliary fields.

In the present paper we take a different point of view and treat dRGT massive gravity

as a theory of Stückelberg scalar fields φA coupled to the Einstein-Hilbert gravity. Since

the theory is reparametrization invariant, and the scalars are coupled to gravity minimally,

we shall count the degrees of freedom propagated by the metric and by the scalar fields

separately. Hence the absence of the sixth mode in dRGT theory should manifest itself as

the feature of the scalar fields Lagrangian alone.

Motivated by these considerations we study the dynamics of the Stückelberg scalar

fields given by the dRGT mass term [7]. We observe that, if seen as a particular scalar field

theory, the dRGT scalar field Lagrangian allows for an arbitrary number of scalar fields in

it. In particular, the number of scalar fields N can be chosen to be less than the space-time

dimension d+1 without affecting the diffeomorphism nor the space-time Lorentz invariance

of the theory. We dub the dRGT theories of gravity with reduced number N < d + 1 of

Stückelberg scalar fields as “reduced massive gravity”.

The simplest particular cases of such dRGT inspired scalar theories include, for d = 0,

the action of a massive relativistic particle in N dimensions and, for N = 1, the single

“k-essence” field with DBI-like action [14]. Another “simple” choice is arbitrary N fields

in 1 + 1 dimensions, and gives the action of a relativistic string in N -dimensional target

space-time. In the case N = 3, with three scalar fields living in a configuration space

diffeomorphic to R3, the reduced dRGT action can be regarded as a particular effective

field theory of homogeneous solid [15]. The degree of symmetry of the solid depends on

the isometries of the metric fAB(φ) in the internal space of scalar fields. If the metric is

symmetric under the SO(3) group, and the action contains only the term, invariant under

the volume preserving diffeomorphisms, then it describes a perfect fluid. The case with

the number of scalar fields N ≥ d+ 1 has been recently discussed in [16, 17] as a theory of

multiple Galileon fields covariantly coupled to the dRGT massive gravity.

In general, the solutions of the reduced massive gravity theories are expected to break

Lorentz and rotational symmetries and lead to anisotropic cosmologies. The pattern of such

breaking is determined by the number of scalar fields and the signature and isometries of

the reference metric. The connection of reduced massive gravity theories to the Lorentz

violating massive gravity theories will be discussed in more detail in the main body of the

paper. Another possible application of reduced massive gravity theories could be found in

modeling the translational symmetry breaking and momentum dissipation in holography.

In particular, in [18] the conductivity in the boundary theory was calculated in the presence

of a Lorentz violating graviton mass term in the bulk, that originated from the dRGT-like

action with two Stückelberg fields and Euclidean reference metric. The models discussed
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in our paper could be further used in holographic constructions.

In this paper we consider the case of reduced massive gravity with two Stückelberg

fields. It is the simplest case with several scalar fields involved, in which we can write the

Hamiltonian and constraint structure explicitly. We perform the full Hamiltonian analysis

of the scalar field sector and find that, in distinction from the dRGT massive gravity the

determinant of the kinetic matrix does not vanish. Hence the scalar field Lagrangian in

general propagates two degrees of freedom. We formulate the condition for the scalar field

configurations on which the determinant vanishes and investigate the different regions in the

phase space of scalar fields. We show that on the singular surface, where the determinant

of the kinetic matrix vanishes, the theory is equivalent to 1+1-dimensional massive gravity

and thus has no dynamical degrees of freedom. We also show that the regular solutions

away but in close vicinity of the singular surface approach the singular surface but can

never reach it in finite time. At the same time any perturbation of the singular solution

drives the system away from this singular surface. In quantum theory the vanishing of the

determinant signals the strong coupling regime for the scalar fields, and the dynamics in

the vicinity of the singular surface are highly affected by quantum corrections. Whether

or not the two dynamical degrees of freedom away from the singular surface contain ghost

modes might depend on the particular choice of the reference metric in the configuration

space of the scalar fields. We do not address this question in the present paper, but leave

it for future studies.

The paper is organized as follows. In section 2 we recall the formulation of dRGT mas-

sive gravity. In section 3 we formulate the theory of reduced massive gravity and perform

the Hamiltonian analysis away from the singularity surface. In section 4 we consider the

behaviour of the system on the singular surface, and show that it is equivalent to 1 + 1

dimensional massive gravity. We perform the canonical analysis in this case and find the

gauge symmetry of the scalar fields, eliminating both scalar degrees of freedom. Section 5

is devoted to conclusions.

2 Non-linear massive gravity in Stückelberg formulation

The non-linear massive gravity action can be written in terms of the variables

Kµν = δµν −
(√

g−1f
)µ
ν
, (2.1)

where gµν is the inverse space-time metric, and fµν is an auxiliary reference metric. The

full dRGT action is given by

LEH +m2Lφ =
M2
P

2

√−gR+m2√−g
4∑

n=0

α̃nen(K) , (2.2)

where the characteristic polynomials en(X) of a 4× 4 matrix X are

e0(X) = 1 , e1(X) = [X] , e2(X) =
1

2

(
[X]2 − [X2]

)
,

e3(X) =
1

6

(
[X]3 − 3[X][X2] + 2[X3]

)
, e4(X) = detX .
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The squared brackets denote the traces, and the coefficients α̃n are arbitrary. It is also

possible to rewrite the mass term in terms of the characteristic polynomials of the square

root matrix
(√

Ω
)µ
ν
≡
(√

g−1f
)µ
ν

as

Lφ =
√−g

4∑

k=0

β̃kek(
√

Ω) , (2.3)

with the coefficients β̃k given by

β̃k =

4∑

n=k

(−1)k

(
4− k
n− k

)
α̃n . (2.4)

The characteristic polynomials of an n×n matrix X can be rewritten as the characteristic

polynomials of its eigenvalues λi as en(X) = en(λi) [19, 20], where

e0(λi) = 1 , e1(λi) =
∑

i

λi = [X] ,

e2(λi) =
∑

i<j

λiλj ,

...

en(λi) = λ1λ2 . . . λn = detX .

Since here the matrix X =
√

Ω is a square root matrix, we note that its eigenvalues are,

by definition, equal to the square root
√
λi of the eigenvalues of the matrix Ω. Hence the

mass term (2.3) can be rewritten in terms of the eigenvalues of the matrix Ωµ
ν , without the

need of finding the explicit expression of the square root matrix itself, as

Lφ =
√−g

4∑

k=0

β̃kek(
√
λi) . (2.5)

Since the mass term (2.3) explicitly depends on the auxiliary metric fµν it breaks the dif-

feomorphism invariance of general relativity. It can be fully restored by introducing four

Stückelberg scalar fields φA, A = 0, 1, 2, 3, corresponding to the four coordinate transfor-

mations as fµν = ∂µφ
A∂νφ

BηAB [3]. In addition, in this parametrization the auxiliary

metric is invariant under the Lorentz transformations ΛAB in the scalar field space [4].

Hence the scalar field indices A, B are raised and lowered with the Minkowski metric

ηAB = diag ( − + + + ). In this case the reference metric fµν is said to be ‘flat’ since it

is simply a coordinate transformation from the flat Minkowski metric ηAB. An arbitrary

‘curved’ reference metric fµν can be obtained by replacing the flat metric ηAB with some

arbitrary scalar field metric fAB(φ) [21]. Then the Lorentz transformations in the scalar

field configuration space are replaced by the isometries of the metric fAB(φ).

The Stückelberg formulation of the massive gravity allows for an equivalent form of

the mass term (2.3) by introducing a diffeomorphism invariant matrix

IAB ≡ gµν∂µφA∂νφCfBC . (2.6)
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Since the traces and eigenvalues of the matrices IAB and Ωµ
ν = gµρ∂ρφ

A∂νφ
BfAB are equal

then the mass term (2.5) can be equivalently written in terms of the eigenvalues of IAB .

This rewriting makes manifest that any non-linear massive gravity theory can be viewed

as a theory of a number of scalar fields minimally coupled to gravity.

3 Reduced massive gravity

In the present paper we adopt the point of view that the mass term Lagrangian Lφ used

in the non-linear dRGT massive gravity is a Lagrangian describing four Stückelberg scalar

fields coupled to gravity. The motivation of restricting the number of scalar fields to the

number of space-time dimension in the context of non-linear massive gravity is that around

the background solution gµν = ηµν , φ
A = xµδAµ the metric perturbations have a Lorentz

invariant mass term of the Fierz-Pauli form at the quadratic level. However, if seen as

describing a theory of scalar fields, the action

Lφ =
√−g

4∑

n=0

αnen(I−
√
I), IAB ≡ gµν∂µφA∂νφCfBC(φ) (3.1)

describes just some particular theory of derivatively coupled scalar fields, and depends only

on their first derivatives. This theory is diffeomorphism invariant even when the number

of scalar fields is not equal to the space-time dimension. Therefore from the scalar field

theory point of view the number of scalar fields N can be chosen arbitrary, both less or

greater than d+1. In the case N 6= d+1 the matrices IAB and Ωµ
ν have different dimensions,

N×N and (d+1)×(d+1) respectively. Nevertheless, the non-vanishing eigenvalues of these

matrices are equal, and both formulations (2.2) and (3.1) of the action are still equivalent,

even though the formulation in terms of the smaller matrix is evidently simpler.1

In this work we focus on the case of two scalar fields φA = {φ0, φ1} in 3+1 dimensions

as the simplest non-trivial case inspired by the dRGT massive gravity. Using the diffeo-

morphism invariant variables IAB proves to be particularly useful for this setup since the

matrix IAB is a 2× 2 matrix in this case whereas Ωµ
ν in a (3 + 1)-dimensional space-time is

a 4× 4 matrix. The action of the scalar fields in any d ≥ 1 then takes the simple form

Lφ =
√−g

(
α0 + α1Tr(I−

√
I) + α2 det(I−

√
I)
)
, (3.2)

where we have used the fact that for any 2 × 2 matrix X the polynomials e3,4(X) vanish.

In the case α0 = α1 = 0 and for the scalar field metric taken to be the Minkowski metric

ηAB, the full theory L = LEH +m2Lφ has the solution

gµν = ηµν , φ0 = x0, φ1 = x1. (3.3)

The quadratic action for the perturbations

hµν ≡ gµν − ηµν , χA ≡
(
φ0 − x0

)
δA0 +

(
φ1 − x1

)
δA1 (3.4)

1The coefficients α̃n, αn in (2.2) and (3.1) respectively coincide only when the number of fields equals

the space-time dimension, i.e. when N = d+ 1.
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then reads

L(2)φ = 2
[
(h01)2 − h00h11

]
+4hAB

[
ηAB∂Cχ

C − ∂AχB
]
+2
[
(∂Aχ

A)2 − ∂AχB∂BχA
]
, (3.5)

and the indices A,B = 0, 1. In 1 + 1 space-time dimensions this action coincides with

the action for metric and scalar field perturbations around the Minkowski background in

massive gravity. However, in 3 + 1 space-time dimensions, this corresponds to a Lorentz-

violating Fierz-Pauli-type mass term for metric perturbations. A thorough analysis of

Lorentz-violating graviton mass terms, preserving the Euclidean symmetry of the three-

dimensional space was carried out in [22] (see also an earlier work [23]). In our case, the

symmetry of the three-dimensional rotations is in general not preserved by the ground state

of the theory. Therefore, the possible mass terms of our theory go beyond the considerations

of [22]. Out of their investigated mass terms, only the mass term with m2 = m3 6=
0, m0,1,4 = 0 can be obtained in reduced massive gravity (if the number of scalars N = 3).

However, the stability analysis of [22] does not directly apply to our case since the number

of Goldstone fields is different.

A particular instance when the (3+1)-dimensional dRGT theory of massive gravity

reduces to the special case of two Stückelberg fields is the case of a degenerate refer-

ence metric. To see this one can consider the spherically symmetric ansatz φ0 = f(t, r),

φi = g(t, r), i = 1, 2, 3.2 For the flat auxiliary metric fµν = ∂µφ
A∂νφ

BηAB in spherical co-

ordinates, this gives a matrix with the only non-zero entries in the upper-left 2× 2 matrix,

and it can be easily reparametrized by using only two Stückelberg fields. This illustrates

our point that the reduced massive gravity with the number of scalar fields N less than

the space-time dimension is equivalent to dRGT theory with a degenerate reference metric

fµν (or fAB equivalently). However, the spherically symmetric ansatz given above reduces

to the degenerate reference metric only in the absence of perturbations.

3.1 Number of degrees of freedom

We would now like to estimate the total number of degrees of freedom propagated by the

full non-linear theory of gravity and two scalar fields. For this we will use the Dirac’s

approach to the Hamiltonian analysis of constrained systems [24, 25].

As was already mentioned, due to the fact that the action (3.2) is reparametrization

invariant and that the scalar fields are coupled to gravity minimally, i.e. only through the

terms gµν∂µφ
A∂νφ

B, it is legitimate to count the number of degrees of freedom propagated

by the scalar field action and the Einstein-Hilbert action separately. In such a diffeomor-

phism invariant theory of gravity and minimally coupled scalar fields, the Hamiltonian

vanishes on the constraint surface, and both the lapse and the shift enter the Hamiltonian

linearly. This implies the appearance of in total 2(d+ 1) first-class constraints, which can

be used to reduce the number of gravitational degrees of freedom to d(d+ 1)/2− 2(d+ 1).

The dynamics of the scalar fields then shall be generated by the usual Hamiltonian of the

scalar field action alone, contained in the Hamiltonian constraint of the full theory. There-

fore, the scalar field dynamics in such a theory can be considered separately from gravity.

2We note that this is not the ansatz usually studied in the context of the spherically symmetric solutions

of dRGT theory. Instead the common ansatz is φ0 = g(t, r), φi = f(r, t)xi/r.
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Then naively one would expect that the number of degrees of freedom propagated by any

dRGT-type massive gravity in (d+ 1)-dimensional space-time (with d ≥ 2) equals to

# d.o.f. =
1

2
(d− 2)(d+ 1) +N (3.6)

where the first term accounts for the degrees of freedom propagated by the massless gravi-

ton, and the second term is just the number of scalar fields. This naive counting demon-

strates why, in (3+1)-dimensional space-time, a general non-linear massive gravity theory

with four Stückelberg fields propagates six degrees of freedom. It has been demonstrated

that in the dRGT subclass of massive gravity theories at most five degrees of freedom prop-

agate due to the special structure of the graviton mass term (2.2) [7, 8]. In Stückelberg

language it is clear that, in order for the assertion to be true, the scalar field Lagrangian

(2.3) has to have a very special structure such that it propagates less degrees of freedom

than the number of fields. In other words, in the non-linear dRGT massive gravity the four

Stückelberg fields do not correspond to four independent degrees of freedom [10] (see also

[11, 12]). This can be seen from the vanishing of the determinant of the kinetic (Hessian)

matrix of the scalar field Lagrangian

AAB ≡
∂2Lφ

∂φ̇A∂φ̇B
. (3.7)

Hence the equations of motion of the scalar fields are not independent from each other, and

there exists (at least) one combination of the equations of motion which gives a constraint

equation relating the canonical momenta of the scalar fields. As a result, in dRGT massive

gravity the scalar fields propagate at most N − 1 = 3 degrees of freedom.

Our ultimate goal is to find the constraint structure of the scalar field part of the full

dRGT massive gravity while keeping the space-time metric arbitrary. In this paper we

start with the case of the reduced massive gravity (3.2) with two scalar fields. For this

we explicitly calculate the determinant of the kinetic matrix of the theory. Curiously, we

show that the naive expectation, that also in the case of two scalar fields the determinant

vanishes and the theory propagates N − 1 = 1 degree of freedom, is not met. Instead we

find that, in general, the determinant is not equal to zero, and thus there are two dynamical

degrees of freedom in the scalar field sector.

3.2 Determinant of the kinetic matrix

In the case of two scalar fields, the only non-vanishing characteristic polynomials of the

square root matrix can be explicitly expressed in terms of the Tr I and det I as

e0(
√
I) = 1 , e1(

√
I) = Tr

√
I =

(
Tr I + 2

√
det I

)1/2
, (3.8)

e2(
√
I) = det

√
I =
√

det I . (3.9)

Then the scalar field action (3.2) reads

Lφ =
√−g

[
β0 + β1

(
Tr I + 2

√
det I

)1/2
+ β2
√

det I
]
. (3.10)
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Since the β0 term does not affect the dynamics of the scalar fields, in what follows we set

β0 = 0. We also note that in dRGT massive gravity case, where the number of scalar fields

N coincides with the number of space-time dimensions, the highest order term with βN is

usually dropped since it is a total derivative. In the reduced massive gravity, however, the

term with βN=2 does contribute to the dynamics of the scalars and, in general, cannot be

neglected.

In order to separate the time derivatives of the scalar fields while keeping the space-

time metric arbitrary, we employ the ADM formalism [26]. In ADM variables for the metric

components

gµν =


−

1
N2

N i

N2

N i

N2 γ
ij − N iNj

N2


 (3.11)

the matrix IAB can be expressed as

IAB =
(
−DφADφC + SAC

)
fBC , (3.12)

where D ≡ 1
N

(
∂0 −N i∂i

)
, and the matrix SAC ≡ γij∂iφA∂jφC depends only on the spatial

derivatives of the scalar fields. The canonical momenta conjugated to the scalar fields are

given by

πA ≡
1

N

∂Lφ
∂DφA

= −√γ


 β1(

Tr I + 2
√

det I
)1/2

[
DφA +

1√
det I

(S fAB − SAB)DφB
]

+

+
β2√
det I

(S fAB − SAB)DφB


 . (3.13)

Here S ≡ TrSAB , and the Tr I and det I also depend on the time derivatives DφA as

Tr I ≡ Tr IAB = S −DφADφA ,
det I ≡ det IAB = detS −DφADφB (S fAB − SAB) ,

where detS ≡ detSAB = det f detSAB. The determinant of the kinetic matrix is given by

detAAB = −det g
detS

(det I)2


 β21(

Tr I + 2
√

det I
)2
[√

det I IAB(3SδBA − 2SBA ) −

− IAB (Tr I + 2S) (SBA − SδBA )− 2S detS
]
+

+
β1β2(

Tr I + 2
√

det I
)3/2

[√
det I (S TrI + 4 detS)−

−
(
2SIAB + SABTr I

) (
SBA − SδBA

)
− 2S detS

]
+ β22 detS

)
. (3.14)
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This expression is valid for any choice of the scalar field metric fAB(φ) as long as it does

not involve the time derivatives of the scalar fields. The determinant depends on temporal

(contained within the matrix IAB) and spatial derivatives of the scalar fields. In general it

has a non-zero value which depends on the choice of initial conditions. The only special case

when the determinant vanishes identically is if we are considering a two-dimensional space-

time where the matrix SAB = γ11∂1φ
A∂1φ

B is a matrix of rank one, and detS ≡ 0. This

case corresponds to the two-dimensional massive gravity and our findings are in agreement

with the previous work by de Rham et al. [10]. If the detS factor appears also in the

theory with four scalar fields, then the full dRGT massive gravity in 3 + 1 dimensions also

has the identically vanishing kinetic matrix, and thus at most five degrees of freedom in

total.

We thus conclude that in general the action (3.10) describes two independent dynamic

fields. However, on the surface detS = 0 in the configuration space, the Lagrangian

equations of motion are degenerate and determine the second time derivative only for one

independent combination of fields. In the theory of partial differential equations the solu-

tions that entirely belong to the detS = 0 subspace are called singular solutions (cf. [27]).

In other words, singular solutions of a system of differential equations are the solutions

which belong to the surface where the number of independent highest time derivatives is

less than the number of the fields. Such solutions in general are the envelopes of families

of regular solutions of the system, and at each fixed moment of time coincide with some

regular solution (or the whole family of regular solutions). It means that the initial condi-

tions on this surface do not specify a unique solution since there are other solutions of the

theory which are touching the detS = 0 surface at the initial moment of time. We note

that this discussion holds only classically. In the full quantum theory the vanishing of the

determinant of the kinetic matrix signals that the scalar fields are infinitely strongly cou-

pled, and the quantum effects are crucial for the dynamics of the system near the singular

surface.

It is interesting to note that the trivial solution (3.3) with φA = xA is on the surface

detS = 0. However, any perturbations around this solution defined as χA = φA − xA

will no longer be on the singular surface and will propagate two degrees of freedom. In

order to understand the dynamics of such field perturbations it is instructive to study the

behaviour of the system in a close vicinity of the singular surface. Note that for β2 6= 0 the

condition detS = 0 is also a necessary condition for detA = 0. Therefore in our discussion

of singular solution we will focus on the singular surface detS = 0. Although in general

the determinant of the kinetic matrix could vanish also in some other regions of the phase

space.

3.3 Hamiltonian analysis away from detS = 0

For any initial conditions away from the surface detS = 0 the expression (3.13) for momenta

is invertible, and the system contains two propagating degrees of freedom. In order to

qualitatively understand the dynamics of the system in the vicinity of the singular surface

we fix the scalar fields metric to be flat fAB = ηAB and construct the Hamiltonian for the

limiting cases, when only one of the terms in Lagrangian (3.10) is present.
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First, we consider the case when β2 = 0 and β1 = 1. The action with only β1 term

present, in the case of four scalar fields, was already studied as a special case of the dRGT

theory and is named as “minimal non-linear massive gravity”. Our Hamiltonian is in

agreement with the previous results (cf. [12]). The expression (3.13) for the momenta can

be inverted to give

DφA = −

[
Tr I + 2

√
det I

]1/2

√
γ
(

1 + S√
det I + detS

det I

)
(
πA +

1√
det I

SABπB

)
. (3.15)

It still does not allow to express the velocities in the terms of momenta completely, but it

turns out to be enough in order to obtain the Hamiltonian in terms of SAB and πA. After

some algebra and with the help of the relation detS
det I = 1+γ−1πAπA, the Hamiltonian takes

the following form:

H = −N√γ
(
S + γ−1 πAπBSAB + 2

√
detS (1 + γ−1 πAπA)

)1/2

+N i ∂iφ
AπA . (3.16)

This Hamiltonian has the form H = N H0 + N iHi, linear in the ADM lapse and shift,

as it should be in any minimally coupled theory where the scalar fields enter the action

only through different combinations of gµν∂µφ
A∂νφ

B. When considered together with

gravity, H0 and Hi simply contribute to the Hamiltonian constraint and to the generators

of spatial diffeomorphisms respectively. Doing so does not change the dynamics in the

scalar field sector, and merely reflects the reparametrization invariance of the action. We

therefore feel free to consider the scalar fields separately from gravity. At last, we note

also that the scalar fields Hamiltonian H0 can be written as a trace of the square root

matrix H0 = −Tr
√
SAC
(
δCB + γ−1 πC πB

)
, very similar to the structure of the Lagrangian

Lφ =
√−gTr

√
I.

In the case when β1 = 0 and β2 = 1 the velocities can be expressed as

DφA = −
√

det I√
γ detS

SABπB . (3.17)

Using the relation detS
det I = 1 + SABπAπB

γ detS one can obtain the scalar fields Hamiltonian as

H0 = −√γ
√

detS + γ−1 πAπBSAB ≡ −
√
γ det

√
SAC

(
δCB +

SCDπ
D πB

γ detS

)
. (3.18)

The form of this Hamiltonian is also similar to the form of the original Lagrangian,

Lφ =
√−g det

√
I, and can be written as a determinant of some square root matrix.

In order to look at the dynamics we focus on the former case with β2 = 0. The

equations of motion for the scalar fields in Hamiltonian form read

DφA =
1

H0

(
detS√

detS (1 + γ−1 πAπA)
πA + SABπB

)
, (3.19)

π̇A − ∂i
(
N i πA

)
= ∂i

(
γ N

H0

[
ηAB + γ−1 πA πB +

√
detS (1 + γ−1 πAπA) S−1AB

]
∂iφB

)
,

(3.20)

– 10 –



where the inverse of the spatial derivative matrix is S−1AB = (SηAB − SAB)/ detS. These

equations of motion describe the evolution of the scalar fields φA and their conjugated

momenta πA for any initial conditions with detS 6= 0. In general one expects that all the

regular solutions, i.e. the solutions specified with the initial conditions with detS 6= 0, are

tangential to the surface detS = 0 at some point of time. In other words, the singular

solutions, for which detS = 0 at any time, are the envelopes of the families of regular

solutions. Choosing the conditions in vicinity of the singular surface and following the

infinitesimal evolution in time, one can study the phase portrait of the system near the

singular surface and the way regular solutions are connected to the singular ones. We also

note that the Hamiltonian (3.16) cannot be used to study the singular solutions themselves

since it relies on the assumption detS 6= 0. The solutions with detS = 0 shall therefore be

studied separately.

3.4 Time evolution in the vicinity of the singular surface

In order to illustrate the behaviour of regular solutions in the vicinity of the detS = 0

surface let us choose some initial conditions that are infinitesimally close to the known

trivial solution φ0 = t, φ1 = x1, but have non-vanishing detS and its time derivative.

Simplest way to write such initial conditions is to provide a small x2 (or x3) dependence

to the φ0:

φ0(t0) = t0 + ε0 x
2 , φ̇0(t0) = 1 + ε̇0 x

2 , φ1(t0) = x1 , φ̇1(t0) = 0 , (3.21)

where ε0, and ε̇0 are arbitrary constants, vanishing in the case of the critical solution

φA = xA. Since detS = −ε20 and d
dt detS = −2ε̇0ε0, these constants characterize the

displacement from the singular surface and its time derivative at the initial moment. Using

the Hamiltonian equation (3.20) for the momenta one can follow the infinitesimal evolution

of fields φA in time. Moreover it happens to be possible to find an exact solution in the

case of initial conditions (3.21). It can be obtained by promoting the x2 dependence of the

initial conditions to be valid at all times. By plugging the ansatz φ0(t) = ξ(t) + ε(t)x2 into

the equations of motion (3.20) one obtains two equations for the functions ξ(t) and ε(t)

ξ̈(t) = 2 ξ̇(t)
ε̇(t)

ε(t)
, ε̈(t) = 2

ε̇(t)2

ε(t)
. (3.22)

The general solution for the fields φA(t) is given by

φ0(t) =
ξ̇0 (t− t0) + ε0 x

2

1− ε̇0
ε0

(t− t0)
+ ξ0 , φ1(t) = x1 . (3.23)

It happens that this family of solutions never approaches the singular trivial solution φ0 = t

independently of how close are the initial conditions to it, i.e. how small is ε0. Instead,

the solutions (3.23) are asymptotically approaching a different set of singular solutions

φ0 = ξ̇0
ε0
ε̇0

+ ξ0 = const in the limit t → ±∞. Therefore, for any given constant there is

a three parameter subfamily of regular solutions that approach it in the t → ±∞ limit.

Figure 1 illustrates this behaviour for the singular solution φ0 = 0. For simplicity we
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t

Φ
0

regular solutions

singular solution

Figure 1. Some members of the family of regular solutions (3.23) (solid), which approach given

singular solution φ0 = 0 (dashed) in the limit t→ ±∞.

have suppressed the x2 dependence of the regular solutions, and each line on the figure 1

corresponds to the one parameter family of solutions, which are different from each other

by the constant rescaling of ε(t). From the solution (3.23) one can see that detS ∝ 1
t2

,

and therefore the detS = 0 surface cannot be reached along the discussed trajectory at

any finite time. Note that apart from the solutions that start at the finite distance from

the detS = 0 surface and approach it in the future there exist solutions that start as a

small perturbations of the singular solution and leave the detS = 0 surface. We would also

like to remark that all the solutions with a given x2 dependence have a singularity at the

finite time t = t0 + ε0
ε̇0

. Hopefully there are other solutions in this theory that are free of

singularities.

4 The singular surface with detS = 0

In this section we discuss the most general scalar field configurations which satisfy the

condition detS = 0 and show that the dynamics of the scalar fields in this subspace are

equivalent to the dynamics of scalar fields in the case of 1 + 1 space-time dimensions. To

see this we first discuss the 1 + 1 dimensional case separately.

4.1 1+1 dimensions: massive gravity

In 1 + 1 dimensions the scalar field Lagrangian (3.10) reduces to

Lφ = β1
√−g

(
Tr I + 2

√
det I

)1/2
, (4.1)

since the β2 term is a total derivative term. The above Lagrangian coincides with the

dRGT mass term and was previously analyzed in [10, 28]. Here we shall follow a different

approach of Hamiltonian analysis which enables us to find the gauge symmetry of the scalar

field action. We show that the scalar field action of non-linear massive gravity propagates

no degrees of freedom in 1 + 1 dimensions, in agreement with [10, 28].
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We first note that in this case the determinant of the matrix IAB is a full square

det IAB =
det f

det g

(
1

2
ε̄AB ε̄

µν∂µφ
A∂νφ

B

)2

, (4.2)

where the bared Levi-Civita tensors ε̄µν , ε̄AB denote the flat space antisymmetric tensors

defined as ε̄01 = −ε̄10 = 1, etc. in every coordinate frame. In this section for simplicity

we will consider the flat Minkowski scalar field metric fAB = ηAB for which the factor

det f = −1. The scalar field action then becomes (up to a constant factor)

Lφ = 2
N√
γ11

[
Dψ+ +

√
γ11ψ′+

]1/2 [
Dψ− −

√
γ11ψ′−

]1/2
, (4.3)

where ψ± ≡ φ0 ± φ1, D ≡ (∂0 − N1∂1)/N , and ψ′± ≡ ∂1ψ±. In the following we perform

the full Hamiltonian analysis of this system according to the constraint analysis proposed

by Dirac and extended by Henneaux et al. [24, 25].

4.2 Minkowski background

We start with the case of a flat Minkowski background metric gµν = ηµν since the gener-

alization to an arbitrary background is straightforward, as we shall see below.

4.2.1 Constraint algebra

In flat space the Lagrangian takes the simple form

Lφ = 2

√
ψ̇+ + ψ′+

√
ψ̇− − ψ′− , (4.4)

and the conjugated momenta to the fields ψ± are

π+ =

√
ψ̇− − ψ′−√
ψ̇+ + ψ′+

, π− =

√
ψ̇+ + ψ′+√
ψ̇− − ψ′−

. (4.5)

It is obvious that the momenta are not independent. Instead, they satisfy the primary

constraint

C0 ≡ π+ −
1

π−
= 0 . (4.6)

The total Hamiltonian density of the theory is obtained by adding the primary constraint

to the Hamiltonian as

HT = π+ψ̇+ + π−ψ̇− − Lφ + u0C0

= π−ψ′− −
1

π−
ψ′+ + u0C0 , (4.7)

where the Lagrange multiplier u0 = u0(t, x) is an arbitrary function of the space-time

coordinates. For the analysis of the dynamics of the system we define the equal-time

Poisson bracket as

{f(x), g(x′)} =

∫
dz

(
δf(x)

δψi(z)

δg(x′)
δπi(z)

− δg(x′)
δψi(z)

δf(x)

δπi(z)

)
. (4.8)
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The time evolution of a functional f(t, x) = f(t, x, ψi(t, x), πi(t, x)) is then given by

d

dt
f(t, x) =

∂f(t, x)

∂t
+

∫
dx′{f(t, x),HT (t, x′)} . (4.9)

For the consistency of the Hamiltonian equations of motion with the Lagrangian equations

of motion one has to impose an additional constraint to the system, namely that the

primary constraint is preserved in time. This in general leads either to secondary (and

tertiary, . . . ) constraints or determines the arbitrary function u0(t, x) [24]. In our case we

obtain a secondary constraint

d

dt
C0(t, x) = −2

(
1

π−

)′
≡ 2C1(t, x) . (4.10)

It is straightforward to check that the time evolution of C1 does not imply any new con-

straints since

d

dt
C1(t, x) =

∫
dx′{C1(t, x),HT (t, x′)} = −

(
1

π−

)′′
= C′1 (4.11)

is a spatial derivative of the secondary constraint itself. Since both constraints mutually

commute, i.e. {C0(x), C0(x′)} = {C0(x), C1(x′)} = {C1(x), C1(x′)} = 0, and since there are

no further constraints, we conclude that the constraint algebra is closed and our system

has two first class constraints. C0 is a primary first-class constraint and C1 is a secondary

first-class constraint.

4.2.2 Gauge symmetry

The existence of first-class constraints indicates that there is a gauge symmetry in our

theory. The purpose of this section is therefore to identify the gauge symmetries of the

original Lagrangian (4.4) and find the number of degrees of freedom described by it.

Since the total Hamiltonian (4.7) contains an arbitrary function of space-time coordi-

nates u0, a given set of initial conditions for the canonical variables ψi, πi after some time

interval will evolve to different values of the canonical variables for different choices of u0.

Any two such set of values describe the same physical state related by a gauge transforma-

tion. In order to find the generators of the transformation one considers the evolution of

a given set of initial data over a finite time interval. This is reached by multiple Poisson

brackets of the canonical variables and total Hamiltonian, each of them transforming the

system infinitesimally. Hence after a finite time interval two different sets of canonical vari-

ables obtained from the same initial data will differ by a gauge transformation generated

by all first-class constraints. It is therefore why all the first-class constraints should be

put on the same footing and the Hamiltonian should be extended by adding to it also the

secondary (and tertiary, . . . ) first-class constraints [24]. This makes the full symmetry of

the theory manifest. In our case the extended Hamiltonian looks like

HE = π−ψ′− −
1

π−
ψ′+ + u0C0 + u1C1 , (4.12)
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where we have introduced another arbitrary function u1(t, x). Under the transformations

generated by the two constraints the canonical variables q =
{
ψi, πi

}
transform according

to the law

q 7→ q + δq , δq(x) =

{
q(x),

∫
dx′
[
ε0(x

′)C0(x
′) + ε1(x

′)C1(x
′)
]}

. (4.13)

This for the transformations of the canonical fields gives

δψ+ = ε0 , δψ− =
1

π2−
(ε0 − ε′1) , (4.14)

while the conjugated momenta stay unchanged. The corresponding extended first order

action

SE =

∫
d2x

[
π+ψ̇+ + π−ψ̇− −HE

]
(4.15)

is invariant under the above gauge transformations if also the Lagrange multipliers u0, u1
transform. Their transformation laws are not of any need in the present work, therefore we

shall not give their explicit form and instead refer the reader to [25]. Due to the fact that

in (4.15) we have introduced an additional arbitrary function u1, the equations of motion

which can be derived from (4.15) do not coincide with the equations of motion following

from the action ST =
∫
d2x

(
πiψ̇

i −HT
)

or equivalently from the original action (4.4).

Moreover, the original Lagrangian is not invariant under the gauge transformations (4.14).

The reason for this is that the extended Hamiltonian formalism introduces an additional

redundancy in the description. However, the time evolution of the gauge invariant fields can

be equally well described by both the total Hamiltonian HT and the extended Hamiltonian

HE .

In order to obtain the symmetry of the original scalar field action, one can rewrite the

transformations (4.14) by expressing the conjugated momenta according to their definitions

(4.5) and demand that the action remains unchanged. This leads to the following relation

between the gauge parameters

ε0 =
1

2

(
ε′1 − ε̇1

)
. (4.16)

Hence the gauge symmetry of the Lagrangian is

ψ− 7→ ψ− −
1

2
(ε′ + ε̇)

ψ̇− − ψ′−
ψ̇+ + ψ′+

, (4.17)

ψ+ 7→ ψ+ +
1

2
(ε′ − ε̇) . (4.18)

Since the above symmetry transformation involves both, the gauge parameter ε and its time

derivative, then the number of degrees of freedom in the theory are reduced by two which

coincides with the total number of first class constraints [25]. It is so, because the gauge

parameter and its time derivatives are independent functions in the sense of independent

initial data which can be chosen arbitrarily at the initial moment of time. 3 Another way

3A familiar example where exactly the same approach of counting the degrees of freedom can be applied

is electrodynamics. There the gauge transformation of the vector field Aµ → Aµ + ∂µλ also involves both

the gauge parameter λ and its time derivative. The constraint analysis of the theory also shows that there

is one primary and one secondary first-class constraint removing two out of four degrees of freedom.
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to see that there are no propagating degrees of freedom is by performing the gauge fixing

in the extended action (4.15). Since there are two constraints on the momenta and two

gauge symmetries (4.14) on the canonical fields it is evident that the action is pure gauge

and propagates no degrees of freedom. The same conclusion could have been drawn also

from the analysis of the Lagrangian equations of motion.

4.3 Arbitrary background

The scalar field action in an arbitrary curved 1 + 1 dimensional space-time can be written

as

Sφ = 2

∫
d2x
√
γ11

[
ψ̇+ + a+ψ

′
+

]1/2 [
ψ̇− − a−ψ′−

]1/2
, (4.19)

where we have introduced the notations a± = N
√
γ11∓N1. The conjugated momenta are

defined as

π+ =
√
γ11

√
ψ̇− − a−ψ′−√
ψ̇+ + a+ψ′+

, π− =
√
γ11

√
ψ̇+ + a+ψ′+√
ψ̇− − a−ψ′−

, (4.20)

and the Hamiltonian analysis of the system can be carried out in complete analogy to the

case of Minkowski background. The extended Hamiltonian and the closed set of constraints

can be found to be

HE = a−π−ψ′− − a+
γ11
π−

ψ′+ + u0C0 + u1C1 , (4.21)

with C0 = π+ −
γ11
π−

, C1 = −
(

1

π−

)′
. (4.22)

As before the constraints C0 and C1 are first class constraints and generate the gauge

transformations of the canonical variables ψ± 7→ ψ± + δψ± with

δψ+ = ε0 , δψ− =
1

π2−
(γ11ε0 − ε′1) . (4.23)

By inserting them in the Lagrangian (4.19) one obtains the following condition on the

gauge variables

ε′0γ11(a+ + a−)− ε0
(
∂0 − a−∂1 − 2a′−

)
γ11 +

(
∂0 − a−∂1 − 2a′−

)
ε′1 = 0 , (4.24)

under which the Lagrangian remains invariant under the transformations (4.23). This

condition can be rewritten in metric components by using the relations γ11 = g00 det g,

γ11(a+ + a−) = 2
√−g, and

a± =
1

g00
(
ε01 ± g01

)
, ∂0 ± a±∂1 =

1

g00
(
g0µ ± ε0µ

)
∂µ , (4.25)

where the only non-zero components of the Levi-Civita tensor are ε01 = −ε10 = −(
√−g)−1.

Unfortunately, for generic background metric it is impossible to solve (4.24) for ε0 in local

form. The gauge transformation is therefore in general non-local.
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4.4 3+1 dimensions

For the two scalar fields in 3+1 dimensions the determinant of the matrix of spatial deriva-

tives SAB ≡ γij∂iφA∂jφB reads

detSAB =
[
εijk∂jφ

0∂kφ
1
]
γil

[
εlmn∂mφ

0∂nφ
1
]
. (4.26)

Hence the condition detS = 0 translates into requirement that the norm of the cross

product of the spatial gradients of the scalar fields φ0 and φ1 vanishes. In other words it

means that both gradients of the scalar fields have to lie along the same spatial direction

and thus can be used to parametrize only one spatial direction. Therefore the most general

scalar field configuration satisfying detS = 0 can be parametrized as

φ0 = φ0(t, f(t, xi)) , (4.27)

φ1 = φ1(t, f(t, xi)) , (4.28)

where f(t, xi) is an arbitrary function of space-time coordinates.

In order to see that this ansatz for the scalar fields makes the dynamics of the 3 + 1

dimensional theory equivalent to the dynamics of the 1 + 1 dimensional theory it is useful

to introduce the short hand notations N = Ñ , N i∂if − ∂0f = Ñf , ∂if∂jfγ
ij = γ̃ff .

In terms of these variables the 3 + 1 dimensional field IAB takes the form

IAB ≡ gµν∂µφA∂νφB = − 1

Ñ2

(
∂t − Ñf∂f

)
φA
(
∂t − Ñf∂f

)
φB + γ̃ff∂fφ

A∂fφ
B

= IAB(2) ≡ g̃µ̃ν̃∂µ̃φA∂ν̃φB , (4.29)

where the tilded indices take the values µ̃ = 0, f . We recognize the tilded variables

Ñ , Ñf , γ̃ff as the ADM variables of an effective 1 + 1 dimensional metric g̃µ̃ν̃ . Indeed, for

the components of the effective metric

g̃00 = gtt , g̃0f = gti∂if + gtt∂tf ,

g̃ff = gtt∂tf∂tf + 2gti∂tf∂if + gij∂if∂jf ,

they satisfy

g̃00 = − 1

Ñ2
, g̃0f =

Ñf

Ñ2
, g̃ff = γ̃ff −

(
Ñf

Ñ

)2

. (4.30)

As in the 1 + 1 dimensional case, the determinant det I can be rewritten as a full square

det I ≡ det IAB =
det f

det g̃

[
1

2
ε̄AB ε̄

µ̃ν̃∂µ̃φ
A∂ν̃φ

B

]2
(4.31)

with (det g̃)−1 = −γ̃ff/Ñ2, and ε̄µ̃ν̃ , ε̄AB denoting the flat space antisymmetric tensors.

Hence all the terms in the Lagrangian containing the scalar fields can be rewritten in terms

of an effective two-dimensional metric g̃µ̃ν̃ . We would like to emphasize that this rewriting

is merely cosmetic and has the meaning only as the simplification of notations in the scalar

field action.
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In order to simplify the analysis of the equations of motion of the scalars, we rewrite

the integration measure of the Lagrangian density in another coordinate system {x̃µ},
where x̃0 = t, x̃1 = f(t, xi), and x̃2 = x̃2(xµ), x̃3 = x̃3(xµ) some arbitrary non-degenerate

coordinate transformations. In this case the metric components transform according to the

usual transformation laws, and the components g̃00, g̃01, g̃11 coincide with the components

of the effective 1+1 dimensional metric g̃µ̃ν̃ , µ̃ = {0, f} given above. Hence the Lagrangian

of the scalar fields can be rewritten in terms of the metric g̃µν as

Sφ = 2

∫
dx̃2 dx̃3

∫
dt df

√
−g̃ 1

Ñ

[
ψ̇+ + ã+∂fψ+

]1/2 [
ψ̇− − ã−∂fψ−

]1/2
(4.32)

where ã± = Ñ
√
γ̃ff ∓ Ñf . The variables Ñ , Ñf , γ̃ff , used for notational simplicity only,

can be expressed in terms of the metric g̃µν as in (4.30). By comparing this action with

(4.19) one sees that the only difference is the volume factor and the prefactor
√−g̃/Ñ 6=√

γ11, which depends on all four space-time coordinates. Under the assumption that the

volume spanned by x̃2, x̃3 is finite, the Hamiltonian analysis of the scalar field dynamics

coincides with that in section 4.3.

We thus conclude that the ansatz for the scalar fields (4.27), (4.28) such that the

condition detS = 0 is satisfied leads to a theory which is equivalent to the 1+1 dimensional

case and thus propagates no degrees of freedom. In Hamiltonian language, on this subspace

of the scalar field configurations the theory has two first class constraints.

5 Conclusions

Any diffeomorphism invariant formulation of massive gravity inevitably contains a number

of scalar fields minimally coupled to the dynamical metric field and can be viewed as just

some particular scalar field theory coupled to general relativity. Therefore we argue that

the Hamiltonian structure and the counting of degrees of freedom can be done for gravity

and scalar fields separately. In other words, the absence of the sixth degree of freedom in

the dRGT non-linear massive gravity [7] can be seen as a feature of the scalar field action,

and can be studied in the scalar field theory given by the dRGT mass term.

While the full dRGT scalar action contains the number of fields equal to the space-time

dimension, in this paper we have focused on the reduced case with two scalar fields, which

coincides with the full theory only in 1+1 dimensions. We have calculated the determinant

of the kinetic matrix ∂2Lφ/∂φ̇A∂φ̇B of the non-linear theory and have found that in d > 1

dimensions it does not vanish for generic initial conditions. Thus in more than 1 + 1

dimensions both of the fields are, in general, propagating. However there exists a subspace

of the configuration space where the Hessian is vanishing. It corresponds to the case where

the coordinate transformation represented by the scalar fields φA(xi) is singular on any

two-dimensional space-like surface, or, equivalently, when both of the fields depend only

on one independent space-like direction. In this case the scalars effectively live on the 1+1

dimensional space-time, and the theory is equivalent to the 1+1 dimensional dRGT massive

gravity, where there is only single spatial direction available. For the latter constrained

theory the full Hamiltonian analysis reveals two first-class constraints which generate one
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gauge transformation that leaves the action invariant. Since the transformation involves

two independent parameters, then after fixing the gauge the theory does not contain any

degrees of freedom. This is in agreement with the previous findings in the 1+1 dimensional

dRGT massive gravity [10, 28]. For the theory in more than 1+1 dimensions the effectively

1 + 1 dimensional solutions with vanishing Hessian correspond to the so-called singular

solutions. On such a singular solution at each moment in time there exist infinitely many

other regular solutions of the theory which are tangential to the singular solution, i.e.

with coinciding φA(xi) and φ̇A(xi). Therefore, there is no choice of initial conditions that

uniquely specifies such a solution, and any perturbation in the initial conditions leads to

the regular solution with two degrees of freedom and non-vanishing Hessian. We note that

our findings do not allow us to draw conclusions about the behaviour of the dRGT-like

theories with more than two scalar fields, but the proposed method can be extended to

include arbitrary number of scalar fields.
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We investigate generally covariant theories which admit a Fierz–Pauli mass term for
metric perturbations around an arbitrary curved background. For this we restore the
general covariance of the Fierz–Pauli mass term by introducing four scalar fields which
preserve a certain internal symmetry in their configuration space. It is then apparent
that for each given spacetime metric this construction corresponds to a completely differ-
ent generally covariant massive gravity theory with different symmetries. The proposed
approach is verified by explicit analysis of the physical degrees of freedom of massive
graviton on de Sitter space.

Keyword : Massive gravity.

1. Introduction

The first successful attempt to modify the quadratic Einstein–Hilbert action in

order to describe a massive spin-2 particle in Minkowski space was made by Fierz

and Pauli.1 They found that there exists a unique quadratic graviton mass term

which gives unitary evolution of massive spin-2 field with five degrees of freedom,

consistent with Poincaré invariance. Much later this quadratic model of massive

gravity was found to be inconsistent with observations and the need of its nonlin-

ear extension was established.2–4 It was only recently that a nonlinear completion of

massive gravity which is ghost-free at least in the decoupling limit was proposed by

de Rham, Gabadadze and Tolley (dRGT).5,6 It is also known that the Fierz–Pauli

(FP) mass term explicitly breaks diffeomorphism invariance of general relativity

which however can be restored by introducing four scalar fields.7–9 Then the gravi-

ton acquires mass around a symmetry breaking background of the scalar fields via

the gravitational Higgs mechanism.7

The objective of this paper is a detailed discussion of the possibility of having

a consistent diffeomorphism invariant theory of a massive graviton on arbitrary
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curved background. We first note that there is no unambiguous definition of a

mass of a particle in a curved spacetime which is not Poincaré invariant. Since

any spacetime can locally be approximated by Minkowski spacetime, one would

however expect that a massive graviton in curved space has the same number of

degrees of freedom as a massive graviton in flat space. We will therefore assume

that a massive spin-2 particle on arbitrary background propagates five degrees of

freedom with equal dispersion relations.

One way of addressing the question about a massive gravity theory on arbitrary

backgrounds is to investigate the nonflat metric solutions in dRGT gravity. Since

the metric perturbations around Minkowski space in this theory have a FP mass

term, then one could expect that also a spin-2 particle on a non-Minkowski solution

of dRGT gravity has five degrees of freedom, all of which have the same mass. There

have been numerous attempts to this problem and several spherically symmetric

cosmological solutions have been found in the nonlinear theory.10–17 However, met-

ric perturbations around these nontrivial background solutions do not, in general,

have a mass term of the FP form. In Refs. 14 and 18, metric perturbations around

the self-accelerating solutions of dRGT gravity were investigated. It was shown that

only the transverse traceless tensor metric perturbations satisfy the equation of a

minimally coupled massive scalar field. The scalar and vector part of the quadratic

action was shown to coincide with the corresponding action in general relativity

giving no additional dynamical degrees of freedom. This behavior is quite different

from the massive graviton on Minkowski space which has in total five and not two

massive degrees of freedom.

Another approach to generalizing massive gravity on curved backgrounds is the

bimetric theories where an additional spin-2 field is introduced.19–21 The spheri-

cally symmetric solutions and Friedmann–Robertson–Walker (FRW) solutions in

bigravity formulation were studied in Refs. 22–25. However, bimetric theories have

a different scope from the single spin-2 field massive gravity theory discussed in the

present work.

In this paper, we shall adopt the convention that a massive gravity on some

curved background is a theory such that the metric perturbations around this back-

ground have a mass term of FP form. Since the FP mass term explicitly depends on

the background metric, it breaks the diffeomorphism invariance of general relativ-

ity and can only be regarded as the gauge fixed version of the underlying generally

covariant theory. It is nevertheless important to know how the general covariance is

maintained even if it is often enough to work in one particular gauge with no gauge

redundancy in description. We will first reason that in dRGT theory the only space-

time in which the graviton has a FP mass term is the Minkowski space. Therefore

one has to look for another generally covariant theory describing FP massive gravi-

tons on curved backgrounds. For this we will generalize the Higgs mechanism for

gravity, as introduced in Ref. 7, to arbitrary curved spacetime. In the usual Higgs

gravity on flat space the graviton mass term is built out of the diffeomorphism

invariant combinations of the scalar fields h̄AB = gµν∂µφ
A∂νφ

B − ηAB.7 Here we
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modify the variables h̄AB to be suitable for cosmological backgrounds by replacing

the Minkowski metric ηAB in the definition of h̄AB by some scalar functions f̄AB(φ).

In the internal space of the scalar fields the set of the functions f̄AB(φ) acts as a

metric.

We then demonstrate how our approach works for the special case of de Sitter

spacetime. The properties of massive graviton in de Sitter universe have been stud-

ied previously in a theory where the diffeomorphism invariance is explicitly broken

by the FP mass term.26,27 It has been shown that this quadratic theory possesses a

couple of properties distinctive from the massive gravity on Minkowski background.

In particular, the helicity-0 component of the graviton seems to become nondynam-

ical for a specific choice of the mass parameter m and cosmological constant Λ.26,27

For graviton masses below this value, i.e. m2 < 2Λ/3, the theory admits negative

norm states. The unitarily allowed region for massive graviton in de Sitter space is

therefore restricted to m2 ≥ 2Λ/3, and is known as the Higuchi bound. Generaliza-

tion of this bound to arbitrary FRW universe has been found in Refs. 28–31 (for

extension to Lorentz violating graviton mass terms see Ref. 32). This motivates us

to verify that the same results can be obtained from the diffeomorphism invariant

Higgs massive gravity on de Sitter space proposed in this paper.

A consistent description of massive graviton on FRW spacetime is of particular

interest also from the phenomenological point of view. Conventionally a spatially

flat FRW spacetime is used to approximate various stages of the history of the

universe. A nonvanishing graviton mass inevitably modifies the evolution of cos-

mological perturbations and could thus leave observable imprints in the cosmic

microwave background (CMB) spectrum. The analysis of the effects of massive ten-

sor perturbations under the assumption that the scalar and vector perturbations of

the metric coincide with general relativity was done in Ref. 33. It was shown that

in the graviton mass range between 10−30 and 10−27 eV the characteristic feature

of massive tensor perturbations for the CMB is a plateau in the B-mode spectrum

for multipoles l ≤ 100. For even larger graviton masses m � 10−27 eV the tensor

perturbations are strongly suppressed. Thus nondetection of the B-mode signal in

the near future could serve as a hint towards a nonvanishing graviton mass. In this

paper, we introduce a diffeomorphism invariant model of massive gravity on arbi-

trary curved background with five massive gravitational degrees of freedom which

could also affect the evolution of scalar density perturbations. This theory thus pro-

vides a theoretical framework for studying the effects of a nonvanishing graviton

mass to the CMB spectra, and therefore deserves a further investigation which is,

however, beyond the scope of the present work.

The paper is organized as follows: in Sec. 2, we discuss how the diffeomorphism

invariance of massive gravity can be maintained on arbitrary background.We review

the gravitational Higgs mechanism in Minkowski space and discuss the nonlinear

dRGT completion of the quadratic FP mass term. We briefly comment on the

nonlinear cosmological solutions in this theory and argue that the dRGT gravity
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cannot simultaneously admit a curved background solution for the metric and a FP

mass term for metric perturbations. We point out the crucial points of failure and

with this knowledge we generalize the gravitational Higgs mechanism to arbitrary

curved spacetimes. In Sec. 3, we work out in detail the proposed model for de Sitter

universe and recover the results obtained in previous literature.26,27 We conclude

in Sec. 4.

2. Diffeomorphism Invariant Massive Gravity

Let us consider the Einstein–Hilbert action with some matter Lagrangian Lm and

FP mass term

S = −1

2

∫
d4x

√−gR+

∫
d4x

√−gLm(gµν , ψ) + SFP, (1)

where ψ denotes a set of matter fields and we have set 8πG ≡ 1. The FP mass term

for metric perturbations hµν ≡ gµν − (0)gµν can be written as

SFP =
m2

8

∫
d4x

√−g hαβhµν((0)gµν (0)gαβ − (0)g(0)µαgνβ), (2)

where the background metric (0)gµν(x) satisfies the Einstein equations and is deter-

mined by the matter Lagrangian Lm. In this section, we will generalize the FP

mass term in a diffeomorphism invariant way for arbitrary background. We will

show that the resulting generally covariant theory is different for each background

metric (0)gµν .

2.1. On Minkowski background

In order to give mass to graviton in a diffeomorphism invariant way we employ four

scalar fields φA, A = 0, 1, 2, 3 and introduce a Lorentz transformation ΛA
B in the

scalar field space. Hence the scalar field indices A,B are raised and lowered with

the Minkowski metric ηAB = diag(+1,−1,−1,−1). We then build the mass term

for metric perturbations from the combinations of the variables

h̄AB = HAB − ηAB where HAB = gµν∂µφ
A∂νφ

B (3)

is a composite field space tensor.7 On Minkowski background the scalar fields φA

acquire vacuum expectation values proportional to Cartesian spacetime coordinates
(0)φA = xµδAµ . The diffeomorphism invariance is thus spontaneously broken and

the scalar field perturbations χA ≡ φA − (0)φA induce four additional degrees of

freedom. In combination with the two degrees of freedom of the massless graviton

the scalar field perturbations constitute the five degrees of freedom of a massive

spin-2 particle and a ghost. The ghost in quadratic order is canceled by the choice

of the FP mass term.

In unitary gauge, when χA = 0, the variables h̄AB are equal to metric per-

turbations since h̄AB = δAµ δ
B
ν h

µν . Thus the diffeomorphism invariance of general
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relativity is restored by replacing hµν → h̄AB in the FP mass term. This leads

to the following action of the scalar fields which around the symmetry breaking

background gives the FP mass term for metric perturbations:

Sφ =
m2

8

∫
d4x

√−g(h̄2 − h̄ABh̄
B
A). (4)

Since the field h̄AB transforms as a scalar under general coordinate transformations,

this Lagrangian is manifestly diffeomorphism invariant. Moreover, as the Latin

indices in the action are contracted, it is invariant also under the isometries of the

metric ηAB, namely the Lorentz transformations ΛA
B introduced above.

It is known that the action (4) propagates the Boulware–Deser ghost in cubic

order in perturbations and have to be supplemented with higher-order terms in

h̄AB. It was shown by dRGT in Refs. 5 and 6 that the massive gravity potential,

which in Minkowski space is ghost-free in decoupling limit, can be resummed in

terms of a new field

Kµ
ν = δµν −

√
gµλ∂λφA∂νφBηAB. (5)

The nonlinear dRGT massive gravity can thus be written in a closed nonperturba-

tive form asa

SdRGT = SGR + Sφ = −1

2

∫
d4x

√−gR+
m2

2

∫
d4x

√−g([K]2 − [K2]). (6)

By construction this theory admits the solution

gµν = ηµν and φA = xµδAµ (7)

around which the metric perturbations have a quadratic FP mass term. Other

so called empty space solutions of the model (6) have been studied in numerous

papers.10–15 More solutions have been found in the presence of external matter

sources described by some Lagrangian density Lm in Refs. 15–17.

The metric perturbations around the various solutions of dRGT theory, in gen-

eral, do not have a mass term of the FP form. This can be understood by considering

some arbitrary background solution for the metric (0)gµν and scalar fields (0)φA.

The tensor field Kµ
ν can then be splitted as Kµ

ν = (0)Kµ
ν + δKµ

ν with

(0)Kµ
ν = δµν −

√
(0)gµλ∂λ(0)φA∂ν(0)φBηAB (8)

and δKµ
ν denoting a perturbation. For the solution (7) the background value of Kµ

ν

vanishes and δKµ
ν = − 1

2h
µ
ν +O(δφ, h2, . . .). After substituting this in the action (6)

one obtains a FP mass term for the metric perturbations. However for solutions of

dRGT theory with (0)Kµ
ν �= 0 the quadratic potential of (6) gives not only terms

aAlso special combinations of cubic and quartic terms in Kµ
ν can be added to this action. We shall

keep this in mind, but here we skip them in order not to clutter the notations. For the additional
terms see Ref. 5.
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quadratic in δKµ
ν but also zeroth- and first-order terms like ((0)Kµ

µ)
2 and (0)Kν

µδKµ
ν .

This implies that also the additional cubic and quartic terms in Kµ
ν contribute to

the quadratic terms in metric perturbations. Therefore, the FP structure of the

mass term for metric perturbations is most probably lost. A fully general proof of

this statement is still lacking, but for some specific background solutions it has been

confirmed by detailed analysis of metric perturbations in Refs. 14 and 18. In other

words the form of the FP mass term is most likely preserved only for the solutions

with (0)Kµ
ν = 0.

Another general feature of the dRGT theory is the appearance of an effec-

tive energy–momentum tensor of the scalar fields, T
(φ)
µν , arising from the mass

term:

T (φ)
µν ≡ 2√−g

δSφ

δgµν
= −m

2

2
gµν([K]2 − [K2]) +

m2

2
Kα

β

δKλ
ρ

δgµν
[δβαδ

ρ
λ − δραδ

β
λ ]. (9)

The contributions from the mass term thus inevitably modify the background solu-

tions of general relativity (GR) which in the absence of graviton mass term is

determined by the matter stress energy tensor. Even such important GR solutions

as Schwarzschild metric and spatially flat FRW metric are not solutions of dRGT

theory if (0)Kµ
ν �= 0. Therefore, in order to recover GR from the action (6), the

effect of the energy–momentum tensor due to (0)Kµ
ν �= 0 should be negligible at

least in Vainshtein regime. Basing on these observations we claim that the dRGT

theory can be interpreted as a phenomenologically viable modification of gravity,

such that the metric perturbations around a given background have a Fierz–Pauli

mass term, only around the solutions with (0)Kµ
ν = 0.

It is easy to see that this is equivalent to the condition (0)h̄AB = 0. In this

case the quadratic mass term for metric perturbations is determined by the action

quadratic in h̄AB with no need to specify the nonlinear completion of the theory.

We will therefore consider only the generally covariant quadratic action (4) and

require that (0)h̄AB = 0 for some non-Minkowski background metric (0)gµν �= ηµν .

This translates into an equation for the background values of the scalar fields
(0)φA:

(0)gµν(x)
∂(0)φA

∂xµ
∂(0)φB

∂xν
= ηAB . (10)

By identifying x̃µ ≡ (0)φAδµA this can be interpreted as a metric transformation

law under general coordinate transformations xµ → x̃µ such that the transformed

metric is g̃µν = δµAδ
ν
Bη

AB. Such a coordinate transformation which transforms

a curved spacetime into a flat spacetime does not exist. Therefore, for arbitrary

curved metric (0)gµν there is no solution for the scalar fields (0)φA such that (10) is

satisfied at every point of the spacetime. Hence, in order to describe a FP massive

graviton on a curved background one has to modify the diffeomorphism invariant

variables h̄AB so that the requirement (0)h̄AB = 0 is fulfilled.
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2.2. On curved spacetimes

In this section, we will generalize the diffeomorphism invariant field space variables

h̄AB so that in the unitary gauge when φA = xµδAµ the field h̄AB would coincide

with the metric perturbations hµν ≡ gµν − (0)gµν around an arbitrary background

metric (0)gµν . In analogy to the definition (3) we generalize h̄AB as

h̄AB ≡ HAB − f̄AB(φ) (11)

with some arbitrary scalar function f̄AB(φ). Independently of the function f̄AB

this variable is invariant under spacetime diffeomorphisms for f̄AB depends only

on the four scalar fields φA. We then notice that if the functional dependence of

f̄AB(·) is set by the solution of Einstein equations as f̄AB(·) ≡ (0)gµν(·)δAµ δBν then

the background value of h̄AB vanishes. For example, if (0)gµν(x) = a−2(η)ηµν is

the Friedmann metric, written by using the conformal time x0 ≡ η, then f̄AB(φ) =

a−2(φ0)ηAB . We have simply replaced the spacetime coordinate x0 with the scalar

field φ0.

Hence, given the background solution of the Einstein equations (0)gµν(x) it is

straightforward to write down the quadratic FP mass term for metric perturbations

around this background in a diffeomorphism invariant way. For this one simply has

to perform the substitution hµν → h̄AB in the FP mass term (2), where the latter

is defined as

h̄AB
curved ≡ gµν(x)∂µφ

A∂νφ
B − f̄AB(φ), f̄AB(φ) ≡ (0)gµν(φ)δAµ δ

B
ν . (12)

The scalar fields then admit the solution (0)φA = xµδAµ and on the scalar field

background the diffeomorphism invariance is spontaneously broken giving mass to

the graviton. However the condition f̄AB ≡ (0)gµνδAµ δ
B
ν has to be imposed by hand

depending on the matter content of the initial theory without the graviton mass

term.

We note that the only distinction between the definition of h̄AB in flat space-

time (3) and the generalized definition (11) in curved spacetime is that we have

replaced the Minkowski metric ηAB → f̄AB(φ). Hence the “distances” in the scalar

field space are now measured by the metric f̄AB, and the scalar field space indices

have to be raised and lowered as

φB ≡ f̄ABφ
A. (13)

In particular, h̄AB ≡ f̄BC h̄
AC . There is however a crucial difference between the

Higgs mechanism for gravity on curved background presented in this paper and

massive gravity with a general reference metric investigated in Refs. 21 and 34.

In these works the dRGT graviton mass term has been rewritten in terms of the

square root of a matrix gµλfλν , where g
µν is the physical metric of the spacetime

and fµν is an auxiliary reference metric. The metric fµν explicitly depends on the

spacetime coordinates, and setting fµν = ηµν is equivalent to going to the unitary

gauge in dRGT picture. We can relate the auxiliary reference metric fµν to the
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metric f̄AB(φ) in the scalar field space by the parametrization

fµν = f̄AB(φ)
∂φA

∂xµ
∂φB

∂xν
. (14)

In Ref. 21 dynamics of the reference metric fµν is invoked by adding to the

Lagrangian a standard Einstein–Hilbert kinetic term for the metric fµν . This gives

rise to a bimetric theory of two spin-2 fields, one massive and one massless. In

our work the spacetime tensor field fµν becomes a dynamical object since it is a

function of the scalar fields φA. The scalar field metric f̄AB = f̄AB(φ) is however

simply a set of functions of the scalar fields φA and should not be interpreted as an

independent spin-2 field.

In the case when the background spacetime is flat the definition (12) reduces

to (3). The diffeomorphism invariant FP mass term on a curved background can be

written as before in Eq. (4) with h̄AB defined in (12). The resulting FP mass term

(2) is invariant under the isometries of the metric f̄AB on the configuration space

of the scalar fields.

To summarize, given a certain matter Lagrangian Lm and a corresponding solu-

tion of Einstein equations (0)gµν(x) in a specific coordinate frame {xµ}, it is always
possible to construct a diffeomorphism invariant FP mass term (4) with (12). When

setting the scalar field perturbations χA ≡ φA − (0)φA to zero one recovers the FP

mass term around the solution (0)φA = xµδAµ . Moreover, it is straightforward to

make use of the nonlinear dRGT completion written in terms of the flat space

fields Kµ
ν by simply substituting Kµ

ν = δµν −
√
gµλ∂λφA∂νφB f̄AB. The resulting

nonlinear theory for metric perturbations hµν = gµν − (0)gµν should possess the

same properties. However, for every given background the diffeomorphism invari-

ant FP Lagrangian corresponds to a different theory for the four scalar fields. It

is therefore not possible to have a unique massive gravity theory such that met-

ric perturbations around any arbitrary background would have a FP mass term.

Instead one can choose and fix one particular theory such that around one particular

background the metric perturbations have mass term of the FP form.

3. Massive Gravity in de Sitter Universe

In the second part of this paper, we work out in detail the Higgs massive gravity

model for curved backgrounds presented in previous section in the special case of

de Sitter universe. We write the diffeomorphism invariant Lagrangian explicitly in

terms of the scalar fields. In unitary gauge we reproduce the results obtained in

previous studies of theories where the general covariance is broken explicitly by the

FP mass term.26,27

We consider the Einstein action with cosmological constant and generally covari-

ant FP mass term

S = −1

2

∫
d4x

√−g (R+ 2Λ) +
m2

8

∫
d4x

√−g(h̄2 − h̄ABh̄
B
A), (15)
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where the scalar field tensor h̄AB is defined as

h̄AB = gµν(x)
∂φA

∂xµ
∂φB

∂xν
− f̄AB(φA). (16)

In spatially flat de Sitter universe the background metric can be written as (0)gµν =

a−2(η)ηµν with a(η) = −1/(Hη), where the Hubble scale H2 = Λ/3 is set by

the cosmological constant. Hence the scalar field metric entering in (16) is given

by f̄AB = (Hφ0)2ηAB and the diffeomorphism invariant FP mass term can be

written as

SFP =
m2

8

∫
d4x

√−g{gµνgαβ∂µφA∂νφB∂αφC∂βφD[ηABηCD − ηBCηAD]

− 6(Hφ0)2gµν∂µφ
A∂νφ

BηAB + 12(Hφ0)4}. (17)

We see that this mass term has a very specific dependence on the scalar field φ0

which we introduced by hand after setting f̄AB = a−2(φ0)ηAB . This breaks the

translational invariance of φ0, whereas the flat space massive gravity, discussed in

Sec. 2.1, is invariant under the shifts of the scalar fields. It is therefore clear that

massive gravity on de Sitter spacetime and massive gravity on Minkowski spacetime

are two fundamentally different theories.

In order to show that the Lagrangian (15) describes a spin-2 particle with five

degrees of freedom on de Sitter background let us consider perturbations around

the backgrounds

gµν = a−2(η)(ηµν + hµν), φA = xA + χA. (18)

Then h̄AB takes the exact form

h̄AB = a−2(η)

{
ηAB − a−2(φ0)

a−2(η)
ηAB + hAB + ∂µχ

BηµA + ∂µχ
AηµB

+ hBµ∂µχ
A + hAµ∂µχ

B + ∂µχ
A∂νχ

Bηµν + ∂µχ
A∂νχ

Bhµν
}
. (19)

Here additional care must be taken since the Latin and Greek indices are raised

with f̄AB and gµν , respectively, in particular h̄AB ≡ f̄BC h̄
AC = a2(φ0)ηBC h̄

AC .

Meanwhile the Greek indices of the metric perturbations hµν are raised and lowered

with the Minkowski metric ηµν . In order to find the explicit perturbative expansion

of h̄AB we have to evaluate the ratio a2(φ0)a−2(η). On the scalar field background

φ0 = η and a2(φ0)a−2(η) = 1, but due to perturbations of the scalar fields this

ratio deviates from one. For small scalar field perturbations χ0 = φ0 − η the scale

factor a2(φ0) can be expanded up to second-order in χ0 as

a2(φ0) = a2(η) + 2aa′χ0 + 3(a′)2(χ0)2, (20)

where the scale factor and its derivatives are evaluated at φ0 = η. Hence for h̄AB one

obtains

h̄AB = hAB + ∂Bχ
A + ∂µχ

CηAµηBC + 2
a′

a
χ0δAB +O(h2, χ2). (21)
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The linearized transformation laws under infinitesimal diffeomorphisms xµ → xµ+

ξµ are

hAB ≡ hµνδAµ δ
C
ν ηBC →

[
hµν + ηµα∂αξ

ν + ηνα∂νξ
α + 2

a′

a
ξ0
]
δAµ δ

C
ν ηBC ,

χA → χA − ξA (22)

and hence h̄AB in (21) is indeed gauge invariant. It is therefore always possible to go

to unitary gauge where χA = 0, h̄AB = hµνδAµ δ
C
ν ηBC , and the action (15) reduces

to the FP action (2). In what follows we will consider only small metric and scalar

field fluctuations and neglect higher-order terms in (21).

As in our previous work, we will classify the metric perturbations according to

the irreducible representations of the spatial rotation group35,36:

h00 = 2φ, (23)

h0i = B,i + Si, (24)

hik = 2ψδik + 2E,ik + Fi,k + Fk,i + h̃ik (25)

with B,i ≡ ∂B/∂xi and Si
,i = Fi

,i = h̃,iik = h̃ii = 0. The fields φ, ψ,E,B and

the fields Si, Fi describe scalar and vector metric perturbations, respectively. In

empty space scalar and vector perturbations are nondynamical, and the dynamics

of hµν is fully characterized by the transverse traceless tensor field h̃ik. It has two

independent degrees of freedom corresponding to the massless graviton. However, in

the presence of matter inhomogeneities the propagation of scalar and vector metric

perturbations can be induced. We also decompose the scalar field perturbations

into scalar and vector parts as

χ0 = χ0, χi = χi
⊥ + π,i (26)

with χi
⊥,i = 0.

The equations of motion for metric perturbations in de Sitter universe in the

presence of any matter perturbations δT µ
ν follow from the linearized Einstein equa-

tions.35 In the absence of any additional external matter sources the effective

energy–momentum tensor arises only due to the mass term and can be obtained by

varying the scalar field part of the action (15):

T (φ)
µν =

m2

2
h̄AB∂µφ

C∂νφ
D
[
f̄AB f̄CD − f̄ADf̄BC

]
− m2

8
gµν [h̄

2 − h̄ABh̄
B
A ]. (27)

In general Tµν can be split into a background and perturbations as Tµν =
(0)Tµν + δTµν . For arbitrary FRW spacetime the expression for δTµν would depend

on the coordinate frame. However the linearized stress tensor due to the FP mass

term on de Sitter universe is gauge invariant. The reason for this is that by con-

struction there are no zeroth-order contributions to this energy–momentum tensor

and it is nonvanishing only at perturbative level, hence T
(φ)
µν ≡ δT

(φ)
µν . The only con-

tribution to the background energy tensor comes from the cosmological constant
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(0)Tµν = Ληµν , implying the equation of state p = −ρ. At quadratic level in the

action the scalar, vector and tensor perturbations decouple from each other and

can be analyzed separately.

3.1. Scalar perturbations

Up to linear order in perturbations the scalar part of the variables h̄AB can be

determined from the expression (21) as

(S)h̄00 = −2φ+ 2(χ0)′ + 2
a′

a
χ0,

(S)h̄0i = −B,i + χ0
,i − (π′),i,

(S)h̄ik = 2ψδik + 2E,ik + 2π,ik + 2
a′

a
χ0δik,

where ′ ≡ ∂/∂η. The explicit expressions for the scalar components of the energy–

momentum tensor are

(S)T00 = m2a2
[
3
a′

a
χ0 + 3ψ +∆E +∆π

]
, (28)

(S)T0i = −m
2

2
a2[−B,i + χ0

,i − (π′),i], (29)

(S)Tik = −m
2

2
a2

[(
−2φ+ 2(χ0)′ + 6

a′

a
χ0 + 4ψ + 2∆E + 2∆π

)
δik

− 2(E + π),ik

]
. (30)

Although (S)Tµν is itself gauge invariant, each of the perturbations φ, ψ,E,B, χ0, π

on the right-hand side of the above equations separately is not gauge invariant.

Under infinitesimal coordinate transformations xµ → x̃µ = xµ+ ξµ, with the scalar

components of the diffeomorphism (S)ξα ≡ (ξ0, ∂iζ), the perturbations transform

as:

φ→ φ̃ = φ− 1

a
(aξ0)′, ψ → ψ̃ = ψ +

a′

a
ξ0,

E → Ẽ = E + ζ, B → B̃ = B + ζ′ − ξ0,

χ0 → χ̃0 = χ0 − ξ0, π → π̃ = π − ζ.

(31)

Since we are free to choose the two functions ξ0 and ζ, we can impose two gauge con-

ditions on scalar perturbations. This corresponds to choosing a specific coordinate

system. We can always switch from one coordinate system to another by performing

a further coordinate transformation. Here we will study the linearized equations of

motion in unitary gauge where χ̃0 = π̃ = 0. This gauge can be obtained from (31)

by a diffeomorphism (S)ξα = (χ0, ∂iπ). We denote the perturbations in this gauge

by tilded variables. The linearized Einstein equations for scalar perturbations then
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become

∆Ψ− 3H(Ψ′ +HΦ) =
1

2
m2a2(3Ψ− 3H(B̃ − Ẽ′) + ∆Ẽ), (32)

Ψ′ +HΦ =
1

4
m2a2B̃, (33)

Ψ− Φ = m2a2Ẽ, (34)

Ψ′′ +H(2Ψ + Φ)′ + 3H2Φ +
1

2
∆(Φ−Ψ)

= −1

2
m2a2(2Ψ− Φ− 3H(B̃ − Ẽ′)− (B̃ − Ẽ′)′ +∆Ẽ), (35)

where H = a′/a and on both sides of the equations we have expressed the met-

ric perturbations φ̃, ψ̃ with the gauge invariant scalar perturbations Φ and Ψ

defined as

Φ = φ− 1

a
[a(B − E′)]′, Ψ = ψ +

a′

a
(B − E′). (36)

Equations (33) and (34) are nondynamical and can be used as constraints. After

eliminating the gauge-dependent metric perturbations B̃ and Ẽ Eqs. (32) and (35)

can be brought in the form

�g(a
−2[Ψ + Φ]) +m2a2(a−2[Ψ + Φ]) = 0, (37)

∆

2
(Ψ + Φ) +

3

2
H(Ψ′ +Φ′) = 3Ψ

(
m2a2

2
−H2

)
, (38)

where �g ≡ ∂2η +2H∂η−∆ denotes the covariant d’Alambertian in de Sitter space.

In order to determine the number of degrees of freedom propagated by this

system of equations together with their dispersion relations, we calculate the deter-

minant of this system in Fourier representation. As a result we obtain

Det = 3

(
m2a2

2
−H2

)
(−ω2 + 2H2 − 2Hiω + k2 +m2a2) (39)

with conformal time frequency ω and 3-momentum k. The second bracket cor-

responds to the equation of motion (37). It is therefore clear that the four

Eqs. (32)–(35) describe only one massive scalar degree of freedom corresponding

to the helicity-0 component of a massive spin-2 particle. In the special case when

H2 = m2a2

2 , or equivalently 2Λ/3 = m2, the determinant vanishes identically. In

other words, in this case Eq. (38) establishes a relation between the scalar mode

a−2(Φ+Ψ) and its time derivative. This reduces the order of the equation of motion

(37). Hence the scalar mode ceases to be dynamical and the massive graviton has

only vector and tensor degrees of freedom in agreement with Refs. 26 and 27. This

is due to the fact that, when H2 = m2a2

2 , the fields Ψ and Φ enter Eqs. (37) and (38)

in the combination Φ+Ψ only while Ψ−Φ remains arbitrary. However this result is

most likely valid only at the linear level as we have suppressed higher-order terms
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which would otherwise contribute to the Eq. (38). The special value of the graviton

mass m2 = 2Λ/3 corresponds to the so called Higuchi bound.26,27 If the graviton

mass is smaller, i.e. m2 < 2Λ/3, then the sign in the helicity-0 mode propagator

flips with respect to the helicity-1 and helicity-2 modes. Hence below the Higuchi

bound the graviton on de Sitter background is unstable and propagates a ghost.

In order to find the effective mass of the canonical variables we rewrite the

Eq. (37) with respect to the physical time t. By defining the helicity zero component

of the metric perturbation as q̃s ≡ a−1/2[Ψ + Φ] the equation of motion becomes

¨̃qs −
∆

a2
q̃s +m2

eff q̃s = 0. (40)

This allows to describe the dynamics of the scalar perturbations as if they would

propagate in Minkowski space with a Laplacian taken with respect to the physical

space coordinates axi. The effective mass is m2
eff = m2 − 9

4H
2, in agreement with

Ref. 27.

3.2. Vector perturbations

The vector components of h̄AB in linear order are equal to

(V )h̄0i = −Si − (χi
⊥)

′, (V )h̄ik = Fi,k + Fk,i + χi
⊥,k + χk

⊥,i (41)

with S,i
i = F ,i

i = χ,i
⊥i = 0. Under infinitesimal coordinate transformation xµ →

x̃µ = xµ + ξµ with the vector components of the diffeomorphism (V )ξµ = (0, ξi⊥),
ξi⊥,i = 0, the perturbations transform as

Si → S̃i = Si + (ξi⊥)
′, Fi → F̃i = Fi + ξi⊥, χi

⊥ → χ̃i
⊥ = χi

⊥ − (ξi⊥)
′. (42)

As for scalar perturbations we will work in the unitary gauge where χ̃i
⊥ = 0. This

gauge can be obtained from (42) by a diffeomorphism (V )ξµ = (0, χi
⊥). In order to

find the variables of vector perturbations which satisfy equation of motion of the

form (40) it is convenient to consider the action and find the canonically normalized

variables. In unitary gauge the quadratic action becomes

δ(2)S = −1

2

∫
d4xa2

(
1

2
F ′
i∆F

′
i − Si∆F

′
i +

1

2
Si∆Si

)

+
m2

4

∫
d4xa4(SiSi + Fi∆Fi). (43)

Variation with respect to the field Si gives a constraint equation which allows to

express

Si =
∆F ′

i

∆−m2a2
. (44)
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After substitution of this constraint and transformation to physical time dtphys =

adη, and a field redefinition Fi → q ≡
√
−∆a3/2Fi the action becomesb

δ(2)S =
1

4

∫
d4x

m2

(
m2 − ∆

a2

)
[
q̇2 − 3Hqq̇ + q

(
∆

a2
−m2 +

9

4
H2

)
q

]
. (45)

We further add a total time derivative +2
∫
d4xHqq̇ to the action and define the

conjugated momenta as p ≡ ∂L
∂q̇ . By using the definition of p the action can be put

in the form

S =
1

2

∫
d4x




2pq̇ −


2p



−∆

a2
+m2

m2


 p−Hp



−8

∆

a2
+ 5m2

m2


q

+
1

2
q


m2 + 4H2

−4
∆

a2
+m2

m2


q








(46)

in agreement with Ref. 27. By another field redefinition

q√
2
≡ 3Hq̃v + 2p̃v

2m
,

p√
2
≡ 4Hp̃v − (m2 − 6H2)q̃v

2m
(47)

we arrive at the diagonal form of the action

S =

∫
d4x

{
p̃v ˙̃qv −

[
1

2
p̃2v +

1

2
q̃v

(
−∆

a2
+m2 − 9

4
H2

)
q̃v

]}
. (48)

This action describes two dynamical degrees of freedom of vector perturbations. The

equation of motion for the canonically normalized vector modes q̃v then coincides

with the equation for the scalar modes and is

¨̃qv −
∆

a2
q̃v +m2

eff q̃v = 0 (49)

with the effective mass m2
eff = m2 − 9

4H
2.

3.3. Tensor perturbations

The linearized Einstein equation for tensor perturbations is

h̃′′ij + 2Hh̃′ij −∆h̃ij = −16πGδT i
j (50)

which with (T )h̄ik = h̃ik and (T )Tik = m2a2

2 h̃ik immediately yields

h̃′′ij + 2Hh̃′ij −∆h̃ij +m2a2h̃ij = 0. (51)

bThe spatial index i is suppressed in the definition of the new variable q as the indices of vector
perturbations Fi can only be contracted in an obvious way, i.e. FiFi. We keep in mind, however,
that the variable q has two independent components.
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After field redefinition h̃ij → q̃t ≡ a3/2h̃ij and transformation to physical time

the above equation takes the form

¨̃qt −
∆

a2
q̃t +m2

eff q̃t = 0 (52)

with effective mass m2
eff = m2 − 9

4H
2 which coincides with the effective mass of

scalar and vector modes of the graviton. Hence we conclude that all canonically

normalized helicity-0,±1,±2 modes of massive graviton on de Sitter universe satisfy

wave equation for a massive scalar field of the form (52) with the same effective

mass. In other words, all five degrees of freedom have the same dispersion relations.

4. Conclusions

In this paper, we have investigated the diffeomorphism invariant theories of massive

gravity on curved backgrounds. With this we understand theories for which the

metric perturbations in some curved spacetime have a quadratic FP-like mass term

and thus propagate in total five degrees of freedom with equal dispersion relations.

We have argued that Minkowski metric is the only solution of the nonlinear

dRGT massive gravity around which the metric perturbations have a mass term of

FP form. Therefore we have generalized the gravitational Higgs mechanism7 and

restored the diffeomorphism invariance of the quadratic FP mass term for metric

perturbations around arbitrary curved background. Our approach involves a set of

scalar functions f̄AB(φ) which act as a metric on the internal space of the scalar

fields φA. The functional dependence of f̄AB is determined by the background

solution of the Einstein equations as f̄AB = (0)gµνδAµ δ
B
ν . This condition has to be

imposed by hand and therefore the generally covariant FP action takes a differ-

ent form depending on the external matter content of the theory. Moreover each

massive gravity action has distinct symmetries in the scalar field space, namely,

the isometries of the scalar field metric f̄AB. In other words for each background

metric this mechanism corresponds to a different diffeomorphism invariant theory.

In our model the scalar fields φA enter the action not only through their derivatives,

but also through f̄AB(φ) which involves explicit dependence on φA. Hence the shift

symmetry of scalar fields present in the dRGT theory is broken. This stresses clearly

that the theories are fundamentally different. We therefore conclude that there does

not exist one single theory of massive gravity such that the metric perturbations

around any arbitrary background have a FP mass term. Instead we have shown

that one can construct by hand an infinite number of massive gravity theories, each

of them corresponding to one particular background metric.

In the second part of this work we have demonstrated how our approach works

for de Sitter universe explicitly by investigating the equations of motion for metric

perturbations in the unitary gauge. As expected we find that one scalar, two vector

and two tensor modes are propagating constituting the five degrees of freedom of

massive graviton with the same effective mass m2
eff = m2 − 9

4H
2.
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It has been suggested that certain derivatively coupled nonrenormalizable scalar field theories might

restore the perturbative unitarity of high-energy hard scatterings by classicalization, i.e., formation of

multiparticle states of soft quanta [2]. Here we apply the semiclassical method of calculating the multi-

particle production rates to the scalar Dirac-Born-Infeld theory, which is suggested to classicalize. We find

that the semiclassical method is applicable for the energies in the final state above the cutoff scale of the

theory, L�1� . We encounter that the cross section of the process 2 ! N ceases to be exponentially suppressed

for the particle number in the final state N smaller than a critical particle number Ncrit � ðEL�Þ4=3.
It coincides with the typical particle number produced in two-particle collisions at high energies predicted

by classicalization arguments.

DOI: 10.1103/PhysRevD.86.105008 PACS numbers: 03.65.Sq, 11.15.Kc, 11.90.+t, 03.70.+k

I. INTRODUCTION

A traditional approach to field theory proposes that
the fundamental field theories at high energies (allowing
for predictive calculations) are the renormalizable ones.1

A nonrenormalizable effective theory at a lower energy
may have two different kinds of behavior at high energy.
It can either complete itself at UV by additional weakly
coupled perturbative degrees of freedom (Wilsonian com-
pletion) and become a renormalizable theory, or it can
match to a strongly coupled phase of an asymptotically
free theory. A well-known example for the Wilsonian UV
completion is the four-fermion theory of weak interactions
at low energy becoming a gauge theory with the Higgs
mechanism above the Fermi scale. Alternatively, the effec-
tive theory describing baryons and mesons at low energy
is completed at high energies by the asymptotically free
QCD with gluons and quarks. Recently, an alternative
mechanism, termed ‘‘classicalization,’’ was suggested in
Ref. [2] for theories with nonrenormalizable derivative
self-couplings. This mechanism may work in such a fun-
damental theory as gravity [3,4].

The simplest example of a classicalizing theory is a
scalar theory with a leading nonlinear derivative interac-
tion of the form

L4�ð@��@��Þ2: (1)

A particularly convenient example of a scalar field theory
with such a leading interaction term is given by the
Dirac-Born-Infeld (DBI)-type action

S ¼ �2
Z

d4x
1

2L4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2L

4�ð@��Þ2
q

; (2)

with �2 ¼ �1. According to the standard picture, the
perturbative unitarity in such theories is violated at ener-
gies above the cutoff L�1� due to the derivative self-
interactions of the scalar field. Instead, it was suggested
in Refs. [2,5] that in such theories a transcutoff scattering
process of two particles is dominated by low momentum
transfer�r�1� , where the length scale r�ðEÞ depends on the
energy and r�ðEÞ � L�. As a result, the leading contribu-
tion to the scattering process of two hard particles with
high center-of-mass energy E � L�1� comes from the
production of a multiparticle quantum state of N � Er�
soft particles. This state is called ‘‘classicalon,’’ and in the
semiclassical limit

L� ! 0; N ! 1; r� ¼ fixed;

it should correspond to a classical configuration of size r�,
which is a solution of the theory [6]. The length scale r�ðEÞ
is called the ‘‘classicalization radius.’’ In this way, the
theory self-unitarizes by prohibiting the probing of small
distances r � L� in high-energy scattering processes.
The focus of the present work is the semiclassical cal-

culability of multiparticle production in such theories. For
the convenience of calculations, we will focus on the scalar
DBI action [Eq. (2)]. In conventional weakly coupled
scalar field theories with a dimensionless coupling constant
g, it is known that the perturbative methods fail to describe
the scattering amplitudes for processes with a large particle
number N in the final state. This happens when the multi-
plicity of the final state N becomes of the order of the
inverse coupling constant 1=g2. Therefore, in the limit
when g ! 0 and N � 1=g2, nonperturbative methods are
used to calculate the cross sections of multiparticle pro-
ductions from a few (hard) initial particles. However, in

*lasma.alberte@physik.lmu.de
†Fedor.Bezrukov@uconn.edu
1Another option may be asymptotic safety, corresponding to

theories with a nontrivial renormalization group fixed point in
the UV, proposed in Ref. [1]. However, there are no reliable
calculations for such theories in most cases at present.
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the scalar DBI action [Eq. (2)], which is the main focus of
interest in the present paper, the coupling constant L� has
the dimension of length. The above estimate of the critical
multiplicity of the final state does not immediately general-
ize to theories with dimensionful couplings. One of the side
results of this paper is that we modify the semiclassical
technique for the calculation of the multiparticle cross sec-
tions developed in Refs. [7–11] so that it can be applied also
to theories with dimensionful coupling constants. We will
then use this semiclassical technique to calculate the multi-
particle production rates for the theory of Eq. (2), which
might exhibit the classicalization phenomena. This method
is very similar to the method used to calculate high-energy
instanton-like transitions in the electroweak theory (for
details, see Refs. [7,8,12,13]). Using the coherent state
formalism [14] allows one to reduce the problem of calcu-
lating the cross section to solving a classical boundary
value problem for the scalar field. A distinctive feature of
the multiparticle processes from instanton transitions is that
the field configuration saturating the scattering cross section
is singular at the origin [9]. This approach of singular
solutions has been previously applied to the ��4 theory in
Refs. [9–11]. It has successfully reproduced all the results
known from perturbative tree-level calculations, as well as
the exponentiated part of the leading loop contributions [9].
For a review of multiparticle processes and semiclassical
analysis in generic scalar field theories, see Ref. [15].

The purpose of this paper is to apply this semiclassical
technique to calculate the transition rate of the process
few ! N in the scalar DBI theory, which was suggested
to classicalize in Ref. [2]. The paper is organized as follows:
In Sec. II, we review the semiclassical method used for the
calculation of the multiparticle cross sections, and we briefly
present the previous results for the ��4 theory in Sec. III.
We apply the technique to the DBI theory in Sec. IV.We first
discuss the semiclassical limit for this theory and find that to
any given energy E, one can associate a length scale r�ðEÞ
such that it remains constant in the semiclassical limit. We

show that this length scale is r� ¼ L�ðL�EÞ1=3 and that it
coincides with the classicalization radius of Refs. [2,5]. We
then report the results for the scattering cross section. For
a fixed above-cutoff total energy E> L�1� in the final state,
we find that the scattering processes with a large number of

particles in the final state N >Ncrit � ðEL�Þ4=3 are expo-
nentially suppressed. For particle numbers N <Ncrit, the
exponent of the scattering cross section becomes positive.
We thus see an emergent critical length scale rcrit � Ncrit=E
which also coincides with the classicalization radius r�.
We conclude in Sec. V.

II. SEMICLASSICAL FORMALISM

Here we briefly reproduce the derivation of the semiclas-
sical approach to calculating the multiparticle production
rates of Refs. [9,10]. For further details on the formalism of
Sec. II A, see Ref. [9]; for Sec. II B, see Ref. [10].

A. Generic boundary value problem

The total scattering cross section from an initial few-
particle state to all possible final states with given total
energy E and particle number N can be calculated as

�ðE;NÞ ¼ X
f

jhfjPEPNŜ Â j0ij2; (3)

where the operator Â creates an initial state from the

vacuum (see the discussion on the next page), Ŝ is the S
matrix, and PE and PN are the projection operators to states
with energy E and number of particles N, respectively. The
sum runs over all final states jfi. By using the coherent
state formalism [14], Eq. (3) can be written as [7]

�ðE;NÞ¼
Z
db�kdbkd�d�D�D�0

�exp

�
�
Z
dkb�kbkei!k�þi�þiE�þiN�

þBið0;�iÞþBfðb�k;�fÞþB�
i ð0;�0

iÞþB�
fðbk;�0

fÞ
þiS½�	�iS½�0	þJ�ð0ÞþJ�0ð0Þ

�
; (4)

where J is some arbitrary number defining the initial few-

particle state as jii � Âj0i ¼ eJ�ð0Þj0i, and the boundary
terms are

Bið0; �Þ ¼ � 1

2

Z
dk!k�iðkÞ�ið�kÞ;

Bfðb�k; �fÞ ¼ � 1

2

Z
dkb�kb��ke

2i!kTf

þ
Z

dk
ffiffiffiffiffiffiffiffiffi
2!k

p
b�k�fðkÞei!kTf

� 1

2

Z
dk!k�fðkÞ�fð�kÞ:

Here !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, Tf denotes some final moment of

time, and �iðkÞ and �fðkÞ are the spatial Fourier trans-

formations of the field in the initial and final asymptotic
regions. The complex variables bk characterize a set of
coherent states jfbgi, which are eigenstates of the annihi-

lation operators b̂k: i.e., b̂kjfbgi ¼ bkjfbgi for all k.
According to Ref. [8], the integral in Eq. (4) is of the

saddle-point type for any scalar field theory with some
dimensionless coupling constant g, provided that the
constant J � 1=g, and that under the change of variables
� ¼ �=g the action has the following property:

Sð�; gÞ ¼ Sð�=g; gÞ ¼ 1

g2
sð�Þ: (5)

In this case, after the change of variables � ¼ �=g and
ðb; b�Þ ¼ 1=gð�;��Þ, the transition rate of Eq. (4) takes the
form

�ðE;NÞ �
Z

db�kdbkd�d�D�D�0 expW; (6)

LASMA ALBERTE AND FEDOR BEZRUKOV PHYSICAL REVIEW D 86, 105008 (2012)

105008-2



withW ¼ ð1=g2ÞF, where F depends on�,�0, �, ��, gJ,
g2E, g2N, but does not explicitly depend on g. For the sake
of clarity, it is useful to define a new set of variables
j � gJ, " � g2E, n � g2N such that in the semiclassical
limit g ! 0, they stay fixed. We will refer to these quan-
tities as ‘‘semiclassical variables.’’ In the limit g ! 0, j, ",
n ¼ fixed, the integral of Eq. (4) can be taken in the saddle-
point approximation. We note here that the semiclassical
parameter g emerges naturally in the conventional scalar
field theories with a dimensionless coupling constant g. We
will see in Sec. IV that this is not the case in theories with
dimensionful couplings. In such theories, the semiclassical
parameter has to be introduced by hand by demanding that
the requirement of Eq. (5) be satisfied.

Here we have to remark that the few-particle initial state

is chosen to be of the form jii ¼ eJ�ð0Þj0i in order to
formally avoid the fact that an initial hard particle state is
not semiclassical.2 In Ref. [8], it was suggested that the
few-particle initial state can be recovered by first evaluat-
ing the integral in saddle-point approximation in the limit
j � gJ ¼ fixed, and then taking the limit j ! 0. The
assertion is that in this limit one recovers an initial state
with a small number of particles. It is, however, not
obvious that this limit indeed reproduces the amplitude
for the process with a few-particle initial state. For the
��4 theory a direct semiclassical calculation of the tree-
level amplitudes and the exponentiated leading loop
corrections was done in Ref. [9]. Comparison with the
perturbative calculations confirmed the hypothesis about
the correct form of the initial state (for perturbative calcu-
lations, see e.g., Refs. [16,18]). We will assume that this is
also true for the theory at hand, keeping in mind that this
check should, in principle, be repeated.

Thus, the dominant contribution to the scattering cross
section [Eq. (4)] is given by the saddle-point field configu-
ration. The classical field equations and boundary condi-
tions for the field � are obtained by varying the exponent
of Eq. (4) with respect to �, �iðkÞ, �fðkÞ and bk. The

explicit form of the boundary conditions can be found in
Ref. [9]. Here we write the boundary value problem for the
scalar field � in a simplified form:

	S

	�
¼ iJ	ð4ÞðxÞ; (7)

�iðkÞ ¼ a��kffiffiffiffiffiffiffiffiffi
2!k

p ei!kt; t ! �1; (8)

�fðkÞ¼ 1ffiffiffiffiffiffiffiffiffi
2!k

p ðbke!kT�
�i!ktþb��ke
i!ktÞ; t!þ1;

(9)

where we have assumed that the integration variables � and
� in Eq. (4) are purely imaginary and have substituted
T � i� and 
 � �i� [9]. The complex variables
ak and bk characterize the spatial Fourier components of
the initial and final field asymptotics, respectively. This
result is independent on the exact form of the nonlinear
scalar field interaction terms in the Lagrangian, as long as
the action satisfies the condition of Eq. (5) and one can
assume that nonlinearities can be neglected for asymptotic
solutions in 3þ 1 dimensions.
There are two more saddle-point equations obtained by

the variation of the exponent in Eq. (4) with respect to the
parameters T and 
:

E ¼
Z

dk!kb
�
kbke

!kT�
; (10)

N ¼
Z

dkb�kbke
!kT�
: (11)

This gives the physical interpretation of E and N as the
energy and the number of particles in the final asymptotics.
Due to the presence of a 	-functional source located at the
coordinate origin x� ¼ 0, the energy of the system has a
discontinuity at the point t ¼ 0. This can be seen easily
from the boundary conditions [Eqs. (8) and (9)], since at
times t < 0, the field � has only positive frequency modes
and the energy vanishes; while at times t > 0, the energy is
determined by Eq. (10). Another expression for the energy
in the final state can be obtained from the Lagrangian

E ¼
Z t¼0�

t¼0þ
dt

d

dt

Z
dx

�
@L

@ _�
_��L

�

¼ �iJ
Z t¼0�

t¼0þ
dt _�ðt; 0Þ	ðtÞ ¼ �iJ _�ð0Þ: (12)

Let us discuss the limitations of the allowed field configu-
rations � after taking the limit J ! 0. One sees that for the

energy jump to stay finite in this limit, the derivative _�ð0Þ
has to go to infinity. Hence, the field has a singularity at the
point t ¼ x ¼ 0. Therefore, in order to evaluate the scatter-
ing cross section for the process few ! N, one has to find
the solution for the boundary value problem [Eqs. (7)–(9)]
which is singular at x� ¼ 0 but regular elsewhere in
Minkowski space-time. A more detailed discussion about
the limit J ! 0 and the correct choice of the singular
solution can be found in Ref. [9]. Henceforth, we will not
mention the source J anymore. We will, nevertheless, keep
in mind that the condition that we are only looking for
singular field configurations arises from the limit to the
few-particle initial state, which is equivalent to the limit of
a vanishing source.
As a result, the scattering cross section is saturated by

the saddle point of the integral in Eq. (4) and has the
following form:

�ðE;NÞ � eWðE;NÞ; (13)

2In principle, a different initial state can be chosen. However,
perturbative calculations for the ��4 theory suggest that differ-
ent choices of the initial state do not change the exponent of the
scattering cross section [16]. The same is true also for generic
scalar field theories with canonical kinetic terms [17].
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where

WðE;NÞ ¼ 1

g2
Fðn; "Þ ¼ ET � N
� 2 ImS½�	: (14)

The saddle-point relations between 
 and T, and between E
andN can be obtained by variation of the exponent [Eq. (14)]
with respect to T and 
:

2
@ImS

@T
¼ E; �2

@ImS

@

¼ N: (15)

Hence, the problemof calculating the scattering cross section
for multiparticle production [Eq. (3)] is reduced to solving
the classical boundary value problem for the field� stated in
Eqs. (7)–(9). Due to the requirement of a few-particle initial
state, only the solution singular at the origin x� ¼ 0 needs to
be considered. After substituting this solution in Eq. (14) and
using Eq. (15) in order to eliminate the unphysical parame-
ters T and 
, one arrives at an expression for the scattering
cross section �ðE;NÞ.

B. Euclidean version of the boundary value
problem for tree-level contributions

In general, solving Eqs. (7)–(9) for the singular field
configuration is a complicated problem which can have
more than one possible solution. However, the process
of solving the boundary value problem for the field � is
greatly simplified if the condition n ¼ g2N � 1 is
imposed [9]. Then one needs to find only the initial
Euclidean part of the solution. In this case, the resulting
‘‘saddle-point value’’ of the Euclidean action is

ImS½�	 ¼ SE½�	 ¼ 1

2
e�


Z
dka�kaka!kT � 1

2
e�
IðTÞ;

(16)

where the last equality defines the function IðTÞ, and ak are
the Fourier components of the initial field asymptotics
[Eq. (8)] rewritten as

�ðkÞ ¼ a�kffiffiffiffiffiffiffiffiffi
2!k

p e�!k�; (17)

for � ¼ �it ! þ1. The saddle-point equations [Eq. (15)]
then allow us to express the parameters T and 
 in terms of
the average energy � ¼ E=N (considering massless parti-
cles) and particle number N as

� ¼ I0ðTÞ
IðTÞ ; 
 ¼ � lnN þ lnIðTÞ: (18)

Finally, for the scattering cross section we obtain [9,11]

�ðE;NÞ ¼ expðN lng2N � N þ Nfð�ÞÞ; (19)

fð�Þ ¼ �Tð�Þ � lng2IðTÞ; (20)

where by writing T ¼ Tð�Þ we stress that T should be
expressed through � by solving Eq. (18). The energy

dependence of the scattering cross section is contained in
the function fð�Þ.
To summarize, this semiclassical approach allows one to

determine the exponent of the scattering cross section for
the multiparticle process few ! N; see Ref. [11]. To do
this, one first has to find a set of solutions of the Euclidean
equations of motion 	SE=	� ¼ 0, singular on the surface
�sðxÞ 
 0, �sð0Þ ¼ 0, with initial asymptotics [Eq. (17)].
Then one has to extremize the integral IðTÞ for some fixed
value of T over all values of ak (or, equivalently, extremize
over the singularity surfaces). Finally, from Eq. (18), one
obtains the value of � corresponding to the given T (equiva-
lent to extremization over T for a given �) and uses
Eqs. (19) and (20) to calculate the cross section. This
method applies to any scalar field theory with a dimen-
sionless parameter g such that under the change of varia-
bles� ¼ �=g, the action transforms as in Eq. (5). Then, in
the semiclassical limit

g2 ! 0; " � g2E ¼ fixed;

n � g2N ¼ fixed � 1;
(21)

the scattering cross section for the multiparticle process with
the total energyE and the particle numberN in the final state
can be obtained as described above. We note that the condi-
tion n � 1 is not essential for the applicability of the saddle-
point approximation [Eqs. (3)–(5)]. This condition allowed
us to simplify the original boundary value problem to a
solution of only the Euclidean part of Eqs. (3)–(5), leading
to the simple prescription described in Eqs. (16)–(20); see
Ref. [9]. The terms of order Oðn2 ¼ g4N2Þ in the exponent
of the scattering cross section arise only from loop correc-
tions. It means that this approximation is equivalent to con-
sidering only the tree-level contribution to the scattering
cross section.
Note also that, if we perform extremization over

only a subclass of the singularity surfaces (e.g., only
Oð4Þ-symmetric ones), then the resulting cross section
provides a lower bound on the cross section, analogously
to a Rayleigh-Ritz extremization procedure; see Ref. [11]
for the detailed proof.

III. ��4 THEORY

The semiclassical approach to the calculation of the
cross section for the process few ! N for large N was
previously applied in Refs. [9,11,19] to the ��4 theory
with the action

S ¼
Z

d4x

�
1

2
ð@��Þ2 � �

4
�4

�
: (22)

In this Lagrangian, the coupling constant � is dimension-
less, and thus the dimensionless saddle-point parameter
is simply g2 ¼ �. Indeed, it is straightforward to check
that the action satisfies the condition of Eq. (5). Thus, the
multiparticle scattering cross section in the limit of
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Eq. (21) can be evaluated semiclassically by using
Eqs. (19) and (20), with g2 ¼ �. The saddle-point value
of the Euclidean action [Eq. (16)] for the Oð4Þ-symmetric
case can be found analytically [9,19]. In the more compli-
cated case of the massive ��4 theory, the saddle point has
been found numerically in Ref. [11]. As expected, in the
high-energy region it was shown to reproduce the results of
the massless case.

In the massless ��4 theory, the function fð�Þ, and con-
sequently also the scattering cross section, is independent
of energy; i.e., it is simply a constant,3 fð�Þ ¼ lnð1=8�2Þ.
The scattering cross section as a function of particle num-
ber N in the final state for any value of energy E is then

�ðE;NÞ ¼ �ðNÞ ¼ exp

�
N ln

�
�N

8e�2

��
: (23)

In terms of the semiclassical variable n � �N, this
becomes

�ðnÞ ¼ exp
1

�

�
n ln

�
n

8e�2

��
: (24)

Figure 1 shows the exponent of the scattering cross section.
We see that the multiparticle production is exponentially

suppressed till the particle number reaches the critical value
n ¼ 8e�2 � 215, above which the exponent in Eq. (24)
becomes positive. This means that the result obtained in the
saddle-point approximation cannot be trusted beyond this
point. However, we know that the result for the scattering
cross section was obtained in the limit n � 1, and hence the
loop contributions become important in the region where the
values of the semiclassical variable n > 1. The positivity of
the exponent for the semiclassical particle number values
n > 8e�2 is thus well outside the validity region of our
tree-level approximation.

IV. SCALAR DBI THEORY

Let us now consider the following Euclidean DBI-type
action:

SE ¼ �2
Z

d4x
1

2L4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2L

4�ð@��Þ2
q

; (25)

where all the quantities are dimensionful; i.e., ½�	 ¼ L�1,
and the coupling constant has the dimension of length
½L�	 ¼ L. The parameter �2 can take values of �1. In
order to make use of the semiclassical approach described
in previous sections, one has to introduce a dimensionless
parameter, which would play the role of the saddle-point
expansion parameter g. For this we perform the following
rescaling of the scalar fields:� ! �=g, where the parame-
ter g is arbitrary. The action transforms as

SEð�=gÞ ¼ �2
1

g2

Z
d4x

1

2l4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2l

4ð@��Þ2
q

¼ 1

g2
sð�; l4Þ; (26)

where

l4 � L4�
g2

: (27)

We see that the parameter 1=g2 factors out in front of the
action sð�; l4Þ, and the action becomes dependent on the
new parameter l4. It is useful to separate the parameters of
the theory into two groups: the physical and semiclassical.
The physical parameters of the theory are the dimensionful
coupling constant L� and the energy and particle number in
the final state—E and N, respectively. The semiclassical
variables were introduced in Sec. II as quantities which
remain fixed in the semiclassical limit, when g ! 0.
Besides the semiclassical energy " � g2E and semiclassi-
cal particle number n � g2N, in DBI theory, there is an
additional quantity which has to stay constant in the limit
g ! 0. We see this from the action of Eq. (26), since it
explicitly depends on the new parameter l4. It is clear that,
in order to evaluate the action in saddle-point approxima-
tion, the l4 also has to remain fixed. The corresponding
limit [Eq. (21)], in which the tree-level multiparticle scat-
tering cross section in DBI theory can be evaluated in
saddle-point approximation, is then

g ! 0; " � g2E ¼ fixed; l4 � L4�
g2

¼ fixed;

n � g2N ¼ fixed � 1:
(28)

The conditions ", n, l4 ¼ fixed define the region of appli-
cability of the saddle-point approximation to the scattering
problem, whereas the condition n � 1 is needed in order
to simplify calculations by neglecting the possible loop
contributions.

1 10 100
n

500 000

0

500 000

1

4

g2 10 4

Loop contributions
  ln( (n))

FIG. 1 (color online). The scattering cross section for multi-
particle production in ��4 theory, depending on the semiclassi-
cal particle number n � �N, evaluated for � ¼ g2 ¼ 10�4. For
the values n > 1, the loop contributions have to be taken into
account.

3This numerical value of the function fð�Þ coincides with that
given by Son [9], but might differ from other authors, e.g.,
Ref. [11], due to the alternative definition of fð�Þ in Eq. (20).
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There are two interesting features of the semiclassical
limit of the scalar DBI theory. First, we observe that the

product EL� ¼ "l=g3=2 becomes large in the limit g ! 0,
corresponding to the interesting case of energies exceeding
the cutoff scale, i.e., E> L�1� . The second observation is
that it is possible to introduce a length scale associated with
a given energy such that this length remains constant in the
semiclassical limit. Indeed, by setting r�ðEÞ ¼ E
L1þ
�
and replacing physical variables with the semiclassical
ones, we obtain the condition

r�ðEÞ ¼ "
l1þ
g�2ð1�3
Þ ¼ fixed ) 
 ¼ 1

3
: (29)

This determines the parameter 
 uniquely, and we obtain

that r� ¼ L�ðEL�Þ1=3. Hence, the semiclassical length
scale coincides with the classicalization radius introduced
in Ref. [2].

Let us present the results for the scattering cross section
of the process few ! N. For simplicity we limit the
extremization procedure to theOð4Þ-symmetric singularity
surfaces of the classical solution. As we will see, in DBI
theory the derivative of the field is singular, in distinction
from the ��4 theory where the field itself was singular.
Nevertheless, the previous conditions for the finiteness of
the energy [Eq. (12)] are still satisfied for the singularity
in the first derivative.4 The equation of motion obtained
by varying the action [Eq. (26)], in terms of the four-
dimensional radial coordinate �, is

@�

2
64�3

@��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2l

4ð@��Þ2
q

3
75 ¼ 0; (30)

and hence

d�

d�
¼ R3

sffiffiffi
2

p
l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6 þ �2R

6
s

p : (31)

For �2 ¼ �1, the derivative becomes singular at the singu-
larity radius � ¼ Rs. In order to obtain the solution, which is
singular at the coordinate origin � ¼ jxj ¼ 0, one has to
choose another coordinate system where the Euclidean time
coordinate is shifted as � ! �þ Rs, so that

�2 ¼ ð�þ RsÞ2 þ x2: (32)

For �2 ¼ þ1, the derivative is regular everywhere. Hence,
due to the lack of a singular Oð4Þ-symmetric Euclidean
solution, the semiclassical method for calculation of multi-
particle scattering cross sections cannot be restricted to this
subclass of solutions in this case. Instead, for the �2 ¼ þ1
branch of the DBI theories, some more generic subclass of
singularity surfaces should be considered,which is, however,

beyond the scope of the present work. Henceforth, we will
therefore investigate the �2 ¼ �1 case.
It is interesting to note that according to a recent paper

by Dvali et al. [6], the classicalization at all UV energy
scales should occur in the �2 ¼ þ1 case. For the �2 ¼ �1
case, the classicalization, if present at all, is expected to
happen in some finite energy range E� <E< �! [6,20].
The ‘‘declassicalization’’ scale �! is model dependent and,
in general, depends on the scale at which some new weakly
coupled degrees of freedom should be integrated in, and
the theory is UV completed in the usual Wilsonian sense.
After setting �2 ¼ �1, the solution of the equation of

motion [Eq. (31)] for �ð�Þ is

�ð�Þ ¼ 1ffiffiffi
2

p
l2

Z � d�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�0
Rs

�
6 � 1

r : (33)

In the asymptotic region � ! 1, the integral can be
approximately taken as

�ð�Þ ¼ �R3
sffiffiffi

2
p

l2
1

2�2
; (34)

and the Fourier components have the following asymp-
totics at � ! 1:

�ð�;kÞ ¼ a�kffiffiffiffiffiffiffiffiffi
2!k

p e�!k�; where !k ¼ jkj and

a�k ¼ R3
s

2l2

ffiffiffiffiffiffiffiffiffi
�

2!k

s
e�!kRs : (35)

The saddle-point value of the Euclidean action IðTÞ in
Eq. (16) is then

IðTÞ ¼ R6
s

L4�

�2

2

1

ð2Rs � TÞ2 : (36)

After extremizing the function IðTÞ over all Rs, we obtain
for the function fð�Þ the following expression:

fð�Þ ¼ 4þ ln
23

�236
þ 4 lnð�Þ; (37)

where we have used g2 ¼ L4�=l4. In distinction from the
��4 case, this function grows with the energy density
� � E=N as shown in Fig. 2.
After substituting this expression of fð�Þ in Eq. (19), we

find the tree-level scattering cross section

�ðE;NÞ ¼ exp

�
3N ln

Ncrit

N

�
¼

�
Ncrit

N

�
3N
; (38)

where we have defined the ‘‘critical particle number’’ in
the final state Ncrit as

N3
crit � c3ðL�EÞ4; c3 ¼ ð2eÞ3

�236
: (39)

We see that for fixed total energy E, the scattering process
few ! N is only suppressed for N >Ncrit. The notion of

4In the truncated DBI theory with only the L4�ð@��@��Þ2 self-
interaction term, the singularity appears in the second derivative
of �. In order to apply the semiclassical technique to this case,
the initial state should be chosen as jii ¼ expðJ _�ð0ÞÞj0i.
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the critical particle number allows one to define a ‘‘critical
length scale’’ such that for given energy E, it satisfies

r�1
crit �

E

Ncrit

;) rcrit ¼ cL�ðL�EÞ1=3: (40)

In other words, r�1
crit corresponds to the maximal allowed

energy per particle and coincides with the classicalization
radius r� defined in Refs. [2,5]. Hence, we have shown that
the classicalization radius r� emerges as the critical length
scale at which the behavior of the scattering cross section
drastically changes.

We will discuss the behavior of the transition rate in
dependence of the particle number N in the final state for
fixed energy E in two separate energy regions.

A. Strong coupling region: E > L�1�
It is useful to rewrite the expression for the scattering

cross section [Eq. (38)] in terms of the semiclassical var-
iables defined above:

�ð"; nÞ ¼ exp
1

g2

�
3n ln

�
cð"lÞ4=3

n

��
: (41)

We see that the functional dependence of the cross section
is very different from the ��4 theory in Eq. (24). In ��4

theory, the scattering is exponentially suppressed for small
values of the semiclassical particle number n. Meanwhile,
in DBI theory, the exponent of the scattering cross section

becomes positive for small values of n < cð"lÞ4=3, and thus
the expression in Eq. (41) cannot be trusted for these values
of n. A comparison of the dependence of the scattering
cross section on the semiclassical particle number n in DBI
theory and in ��4 theory is shown in Fig. 3.

We recall here that a similar breakdown of the saddle-
point approximation is observed in ��4 theory for large
values of n. However, that is an artifact of the tree-level
approximation n � 1, since we have neglected all terms of
orderOðn2Þ. The behavior of the scattering cross section at
larger values of n is changed by the loop contributions [9].
The same logic also applies to the DBI theory, but as is
shown in Fig. 3, the higher-order corrections become rele-
vant only at values of n > 1. Hence the breakdown of the

semiclassical approach cannot be cured by adding higher-
order corrections to the exponent of the scattering cross
section [Eq. (41)].
In terms of the physical particle number, this means that

the semiclassical method does not allow us to make con-
clusive statements about the scattering cross sections for

the processes where few initial particles scatter into N <

Ncrit ¼ cðEL�Þ4=3 particles with the total energy E> L�1� .
Remarkably, the saddle-point method gives a reliable result
for the transition rates to final states with a particle number
larger than the critical. In this region, the scattering pro-
cesses are exponentially suppressed. The scattering cross
section as a function of the physical particle number in the
final state is shown in Fig. 4. We note that with perturbative
methods, this energy region is completely unaccessible.
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FIG. 3 (color online). The exponent of the scattering cross
section as a function of the semiclassical particle number in
the final state n for DBI theory with �2 ¼ �1 evaluated at
different values of the parameters "l ¼ EL�g3=2. The numerical
value of the semiclassical parameter g2 ¼ 10�4, and hence the
parameter region "l > g3=2 ¼ 10�3 corresponds to the high-
energy region EL� > 1. For values of n > 1, the loop contribu-
tions have to be taken into account.
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FIG. 2 (color online). Function fð�Þ for ��4, and DBI theory
evaluated at g2 ¼ � ¼ 10�4.
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FIG. 4 (color online). The exponent of the scattering cross
section as a function of the physical particle number in the final
state N for DBI theory with �2 ¼ �1 evaluated at energy EL� ¼
500 � 1. The numerical value of the semiclassical parameter
g2 ¼ 10�4. The saddle-point method breaks down for N <
Ncrit ¼ cðEL�Þ4=3, while the loop contributions become impor-
tant at g2N � 1. The region in which the semiclassical method
gives a reliable result is shaded green.
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It is therefore interesting to find that there exists a region
for large particle numbers in the final state N >Ncrit where
the nonrenormalizable theory behaves semiclassically. The
energy per particle in the final state of Ncrit particles equals

r�1
crit ¼ ½cL�ðL�EÞ1=3	�1 � L�1� and thus the final state is

composed of very soft particles, as suggested by the clas-
sicalization arguments in Refs. [2,5]. For even larger par-
ticle numbers, the energy per particle further decreases.

B. Perturbative region: E & L�1�
The region of the physical particle numbers where the

exponent of the scattering cross section is positive has no
physical meaning as soon as the critical particle number

Ncrit ¼ cðEL�Þ4=3 becomes less than 1. In this case, the
scattering process is exponentially suppressed for all
physically reasonable values of the particle number in
the final state N > 1. This happens for low energies

ðEL�Þ< c�3=4 ¼ 2:57. Strictly speaking, this requirement
translates into a condition on the semiclassical parameters

EL� ¼ "l=g3=2 < c�3=4 which is not satisfied in the semi-
classical limit when g ! 0 (however, for some numerically
small values of the parameters g and "l, the condition can
still be fulfilled). Nevertheless, the obtained result is physi-
cally reasonable, since the exponent of the scattering pro-
cess is negative. Hence, formally the semiclassical method
can also be applied for the energy values which are below
the nonrenormalizability cutoff. However, the obtained
results should be compared with results from perturbative
calculations. The perturbative check for the exponentiation
of the scattering amplitude for 2 ! N transitions in ��4

theory was done in Refs. [16,18]. The same procedure
could be applied also to DBI theory.

V. CONCLUSIONS

We have applied the semiclassical approach to the calcu-
lation of the scattering cross sections for multiparticle pro-
duction from a few-particle initial state in a classicalizing
theory. A reliable result is obtained in two parameter regions
for the energyE andparticle numberN in the final state. First,
exponential suppression is observed below the energy cutoff
E & L�1� for any number of particles N > 1. This corre-
sponds to the parameter region also accessible with pertur-
bative methods. The second range of parameters leading to
trustable results lies above the energy cutoff E> L�1� but is
restricted to large particle numbers N >Ncrit only. This
result is obtained in the region where the theory is strongly
coupled and perturbation theory cannot be used. No infor-
mation about hard high-energy scattering processes, few !
N <Ncrit, is obtained from the semiclassical approach.

Let us discuss how robust is the failure of the applied
semiclassical procedure at E> L�1� , N <Ncrit. First, we
limited the analysis here to theOð4Þ-symmetric singularity
surfaces, while at least in the case of the ��4 theory it
is known that the true extremum of the boundary value
problem is reached on a generic surface [11]. However, this
in general should lead to even larger cross sections,
and thus should not resolve the breakdown of the saddle-
point approximation. Another option can be that the
Oð4Þ-symmetric family of the semiclassical solutions
passed through a bifurcation point at the typical energy
E� L�1� , making it an irrelevant subclass of the classical
solutions at high energies. Another promising reason may
be related to the fact that the limit of the vanishing source
j ! 0, leading to the singular solutions, no longer com-
mutes properly with the semiclassical limit and is not
imitating a few-particle initial state (the conjecture is
checked by explicit comparison with the perturbation
theory only in the normal renormalizable theories; see
Refs. [16,17]). In this regard, an alternative approach to
using the initial expression [Eq. (3)] may prove valuable.
However, previous attempts to get a real-time classical
solution corresponding to the high-energy spherical colli-
sions led to the development of singularities at high ener-
gies [21–24]. Hence it is not clear if nonsingular relevant
semiclassical solutions exist. Thus, further study of the
real-time solutions is needed to get a useful insight into
the classicalization phenomena.
We therefore do not have conclusive statements about

the presence or absence of the classicalization phenomena,
since this demands a better understanding of hard scatter-
ing processes with a small particle number in both the
initial and final states. The critical behavior of transcutoff
multiparticle production was observed at the number of
particles which corresponds to Ncrit very soft particles with

the energy per particle given as r�1� ¼ ½L�ðEL�Þ1=3	�1.
This coincides with the inverse of the classicalization
radius introduced in Refs. [2,5]. With this, we have shown
the emergence of this critical length scale in the semiclas-
sical approach, which is conceptually completely different
from the classical perturbative estimates of Ref. [5].
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