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Abstract A pedagogical introduction to some of the main ideas and results of
field theories on quantized spacetimes is presented, with emphasis on what such
field theories may teach us about the problem of quantizing gravity. We examine
to what extent noncommutative gauge theories may be regarded as gauge theories
of gravity. UV/IR mixing is explained in detail and we describe its relations to
renormalization, to gravitational dynamics, and to deformed dispersion relations
in models of quantum spacetime of interest in string theory and in doubly spe-
cial relativity. We also discuss some potential experimental probes of spacetime
noncommutativity.
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1 Introduction

The validity of certain models or hypotheses in theoretical physics is sometimes
argued on the basis of length scales. In modern theoretical physics, physical phe-
nomena occur from down at the fundamental Planck scale

`P =
√

h̄G/c3 ' 1.6×10−33 cm (1.1)

Based on Plenary Lecture delivered at the XXIX Encontro Nacional de Fı́sica de Partı́culas e
Campos, São Lourenço, Brazil, September 22–26, 2008

R. J. Szabo Department of Mathematics Heriot-Watt University Colin Maclaurin Building, Ric-
carton Edinburgh EH14 4AS, UK R.J.Szabo@ma.hw.ac.uk · R. J. Szabo Maxwell Institute for
Mathematical Sciences Edinburgh, UK



2 R. J. Szabo

all the way up to the radius of the observable universe

`universe ' 4.4×1024 cm'
(

2.7×1061
)

`P. (1.2)

We know that quantum field theory works well in describing the pertinent physics
at least down to the LHC scale

`LHC ' 2×10−18 cm. (1.3)

What happens below this scale, but perhaps still in the regime above the Planck
scale, is a question that will not be answered satisfactorily by experiment for many
years to come. In the passing time, theoretical physicists may reap the pastures
of this unknown regime and speculate on the mathematical foundations that the
correct modification of quantum field theory might assume at such length scales.

Such is the speculative nature of the notion of “spacetime quantization”. In this
somewhat radical scenario, the local coordinates xµ are promoted to hermitean
operators satisfying spacetime noncommutativity commutator relations

[xµ ,xν ] = iθ
µν (1.4)

where θ µν is a real antisymmetric matrix of dimension (length)2. If this matrix
is constant, then the commutators (1.4) generate a Heisenberg algebra and imply
spacetime uncertainty relations

∆xµ
∆xν ≥ 1

2
|θ µν | . (1.5)

This is derived in the same standard way that one would derive Heisenberg’s un-
certainty principle from canonical commutation relations between coordinates xµ

and momenta pν in quantum mechanics. In this sense the dimensionful noncom-
mutativity parameters θ µν are analogous to Planck’s constant h̄ in the phase space
quantization relations

[xµ , pν ] = i h̄δ
µ

ν . (1.6)

In a quantum phase space, points no longer exist and are replaced with Planck
cells of size h̄. von Neumann thus dubbed the study of geometrical properties
of quantum mechanics as “pointless” geometry. In modern parlance of quantized
spacetime, this branch of mathematics has come to be known as “noncommuta-
tive geometry”. The points of a quantized spacetime become “fuzzy” and are re-
placed with cells whose size is set by the noncommutativity length scale `'

√
θ .

In general, the tensor θ µν can depend on the spacetime coordinates, and even
on the momenta (in which case the algebra of canonical commutation relations
is replaced with an algebra of pseudo-differential operators). We shall see some
explicit examples in what follows.

The proposal of spacetime quantization arises in two major problems of mod-
ern high-energy physics. The first is the problem of renormalization. Just as the
Heisenberg uncertainty principle enables one to avoid the ultraviolet catastrophe
in quantum mechanics, the replacement of points with spacetime cells is a means
in which to tame the ultraviolet divergences of quantum field theory, as an elegant
symmetry preserving alternative to lattice or cutoff regularizations. This turns out
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to be an extremely subtle issue and will be discussed in detail in the following. The
second is the problem of quantum gravity. It has been long suspected that classi-
cal general relativity breaks down at the Planck scale `P, where quantum gravita-
tional effects become important. In particular, the classical Riemannian geometry
of spacetime must be replaced by some other mathematical framework. Since, ac-
cording to Einstein’s theory, gravity affects spacetime geometry, quantum gravity
should quantize spacetime. The precise manner in which this quantization occurs
is of course not entirely understood and is one of the biggest challenges facing
modern theoretical physics. Noncommutative geometry may in this way provide
at least some guidance as to how to handle spacetime structure at very short dis-
tances.

In what follows we shall argue that these two fundamental problems are in fact
related to each other within a systematic and unified framework of field theory on
quantized spacetimes. This theoretical framework is called noncommutative field
theory and it may be a relevant physical model at scales in between `P and `LHC.
In fact, one of the main threads of research in this field has been related to stud-
ies of energetic cosmic rays, as we will discuss further below. In the following
we will study this relationship in some detail. These field theories provide fruitful
avenues of exploration for several reasons, that will be explained in more depth be-
low. Firstly, some quantum field theories are better behaved on noncommutative
spacetime than on ordinary spacetime. In fact, some are completely finite, even
non-perturbatively. In this manner spacetime noncommutativity presents an alter-
native to supersymmetry or string theory. Secondly, it is a useful arena for studying
physics beyond the standard model, and also for standard physics in strong exter-
nal fields. Thirdly, it sheds light on alternative lines of attack to addressing various
foundational issues in quantum field theory, for instance the renormalization and
axiomatic programmes. Finally, it naturally relates field theory to gravity. Since
the field theory may be easier to quantize, this may provide significant insights
into the problem of quantizing gravity.

This survey is intended for high-energy physicists who are non-specialists in
noncommutative field theory. As such, technical details are kept to a minimum and
we refer to various other literature throughout for the relevant formalisms. Founda-
tional aspects of noncommutative quantum field theory are treated in [1; 2]. Brief
reviews of the relationship between spacetime noncommutativity and quantum
gravity may be found in [3; 4]. A detailed overview of the renormalization pro-
gramme for noncommutative field theories is given in [5]. The connection between
spacetime noncommutativity and experimental signatures of Lorentz violation are
treated in [6]. The restoration of Lorentz symmetry is related to the problem of
renormalization of noncommutative field theories in [7]. The interplay between
noncommutative field theory and physics in strong magnetic fields is discussed
in [8]. There are many other topics in this vast field that are not touched upon in
this review. Furthermore, the bibliography is not meant to be exhaustive, and we
apologise in advance to those concerned for the omissions.

2 Spacetime quantization

In this section we will provide a (non-exhaustive) list of contexts in which non-
commutative spacetimes play a prominent role, particularly those which can be
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argued to arise in various approaches to quantum gravity, as well as the appli-
cations mentioned in Sect. 1. The aim is to set up some explicit models where
noncommutative geometry is naturally interlaced with the problem of quantizing
gravity, at least at a kinematical level. Later on we shall examine this relationship
from a more dynamical perspective.

2.1 Snyder’s spacetime

The idea of spacetime noncommutativity is in fact very old. It is usually attributed
to Heisenberg who proposed it in the late 1930s as a means of regulating the ul-
traviolet divergences which plague quantum field theory. Heisenberg suggested
this idea in a letter to Peierls, who actually applied it in a non-relativistic context
of electronic systems in external magnetic fields (we will come back to this ap-
plication later on). Peierls told Pauli about the idea, who then told Oppenheimer.
Oppenheimer gave the problem to his graduate student Snyder, whose is acredited
today with the original paper on noncommutative spacetime [9; 10].

In a suitable basis, the algebra underlying Snyder’s spacetime may be pre-
sented as a modification of the phase space canonical commutation relations given
by

[xµ ,xν ] = i`2 h̄−1 (xµ pν − xν pµ),

[xµ , pν ] = i h̄δ
µ

ν + i`2h̄−1 pµ pν , (2.1)[
pµ , pν

]
= 0.

This algebra involves a fundamental minimal length `, the scale of noncommuta-
tivity as in Sect. 1, such that the “classical” phase space of quantum mechanics
is recovered at ` = 0. The original motivation behind these relations was that the
introduction of the length scale ` is tantamount to regarding hadrons in quantum
field theory as extended objects, because at the time renormalization theory was
regarded as “a distasteful procedure” [9; 10]. The commutation relations (2.1) de-
scribe a discrete spacetime which is compatible with Lorentz invariance.

There is a natural way to derive the algebra (2.1) in 3+1-dimensions in terms
of a dimensional reduction from 4+1-dimensions as the angular momentum gen-
erators of the higher-dimensional Lorentz group SO(1,4) [11] (which clarifies at
least the first relation in (2.1)). In this way the generators of Snyder’s spacetime are
naturally interpreted as the generators which preserve a four-dimensional de Sitter
space inside five-dimensional Minkowski space, and are naturally invariant under
both five-dimensional and four-dimensional Lorentz transformations. This reduc-
tion is consistent with the fact that the phase space in this model contains a curved
momentum space, as signified by the momentum dependence on the right-hand
side of the commutation relations (2.1).

The death of Snyder’s spacetime, within the context in which it was proposed
at the time, was triggered by the eventual success of the renormalization pro-
gramme in quantum field theory. The historic overwhelmingly successful agree-
ment with experiment of the calculations of both the Lamb shift in hydrogen
and the anomalous magnetic moment of the electron from radiative corrections
in quantum electrodynamics put the more conventional regularization techniques



Quantum gravity, field theory and signatures of noncommutative spacetime 5

at the forefront of modern quantum field theory. However, this spacetime emerged
again more than half a century later in the somewhat unexpected and surprising
context of quantum gravity.

2.2 κ-Minkowski spacetime

The phase space commutation relations of the κ-Minkowski spacetime can be
written in the bicrossproduct basis as [12; 13]

[xµ ,xν ] =
i
κ

(xµ
ξ

ν − xν
ξ

µ) ,

[xµ , pν ] = i h̄δ
µ

ν +
i
κ

(pµ
ξν + pν ξ

µ) , (2.2)[
pµ , pν

]
= 0,

where the lightlike four-vector ξ µ has components ξ 0 = 1,ξ i = 0, and κ is a mass
scale. In the notation of Sect. 2.1, we identify κ ' h̄/` as a very large energy. In a
somewhat less covariant formulation than in (2.2), only commutators involving the
time components x0 = ct and p0 = E/c are deformed by the mass scale in (2.2).
In fact, this spacetime is equivalent to Snyder’s spacetime [14] through a mapping
between the generators of the algebras (2.1) and (2.2). This may seem surpris-
ing, given that the Snyder coordinates are determined by Lorentz transformations
preserving four-dimensional de Sitter space, rather than Minkowski space, but the
mapping is determined by highly non-local transformations involving, for exam-
ple, momentum-dependent redefinitions of the spacetime coordinates.

The κ-Minkowski algebra has been of interest lately as the noncommutative
spacetime underlying certain realizations of doubly special relativity [15; 16].
These modifications of special relativity contain, in addition to the speed of light
c, a second, short-distance observer-independent length scale, usually identified
as the Planck scale ` = `P. They have been proposed as a consistent description
of quantum gravity in flat spacetime, which are thereby amenable to phenomeno-
logical tests. In these models the effective spacetime metric, or alternatively the
Poincaré symmetry of flat Minkowski spacetime, is deformed by energy accord-
ing to the relations (2.2), reflecting again the curvature of momentum space. See
[17; 18] for an explicit canonical framework which reflects the deformed symme-
tries of doubly special relativity as a non-linear realization of the Lorentz group.

This noncommutative deformation of Minkowski space modifies the disper-
sion relations to [19; 20]

E2 = p2 c2−m2 c4
(

1− ξ · p
h̄κ

)2

. (2.3)

Thus the speed of a photon in κ-Minkowski spacetime depends on its energy E.
This is consistent because the dependence is through the small dimensionless com-
bination `P E. These predictions have been tested with some success against mea-
surements of astrophysical gamma-ray bursts as measured, for example, by the
GLAST and MAGIC telescopes [6]. In the low-energy limit κ → ∞, whereby the
algebra (2.2) reduces to the usual phase space commutation relations of ordinary
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Minkowski space, these results are all in agreement with the macroscopic predic-
tions of classical general relativity.

2.3 Three-dimensional quantum gravity

Perhaps the most precise dynamical realization of the connections between non-
commutative field theory and quantum gravity alluded to in Sect. 2.2 comes from
a non-perturbative model of quantum gravity in three spacetime dimensions [21].
One starts with a spin foam model of three-dimensional gravity coupled to spin-
less matter, and then integrates out the gravitational degrees of freedom in the
path integral to produce an effective action for the scalar fields. In this way one
finds that the effective interactions can be encoded in a scalar field theory on the
SO(1,2) Lie algebra noncommutative spacetime

[xµ , xν ] = i`ε
µνλ xλ ,

[xµ , pν ] = i
√

h̄2− `2 p2 δ
µ

ν − i`ε
µ

νλ pλ , (2.4)

[pµ , pν ] = 0.

The three-dimensional spacetime algebra (2.4) also arises in the context of Lorentz
covariant spacetime uncertainly relations [22] (such relations are discussed in
more detail below). This spacetime again has a κ-deformed Poincaré symmetry,
together with modified dispersion relations

E2 = p2 c2−
(

sinh(` h̄−1 mc2)
` h̄−1

)2

. (2.5)

This dispersion relation matches (2.3) at leading orders in the limit `→ 0.
Thus in this case, doubly special relativity arises in the low-energy limit of

quantum gravity. The mechanism behind this emergence is an effective noncom-
mutative quantum field theory. The properties of this noncommutative field theory
and its precise relationship to 2 + 1-dimensional gravity is currently under active
investigation. For example, certain properties of the (curved) momentum space
associated to (2.4) indicate that some modifications seem necessary. The period-
icity of the momentum space ruins unitarity of the noncommutative field theory,
while the absence of arbitrary negative energy means that it cannot correspond to
the momentum space of massive particles coupled to 2 + 1-dimensional gravity.
These problems are analysed in [23; 24], where it is proposed that an extension of
the momentum space of the noncommutative field theory to its universal covering
group may resolve these problems.

2.4 Spacetime uncertainty principle

Despite their appeal as direct relatives of quantum gravity and high-energy as-
trophysical processes, the models of noncommutative spacetime we have thus far
considered are far too complex to be useful for detailed direct study of the dy-
namics of quantum fields defined on them. They are best handled using Hopf
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algebraic techniques and methods of braided quantum field theory [25; 26]. We
seek a somewhat simpler setting which is amenable to the standard perturbative
methods of quantum field theory, but at the same time still captures the nature
of Planck scale physics. We will then be able to study to what extent the field
theoretic model captures the dynamics of gravitational interactions. The models
which we will discuss in detail in the remainder of this survey can be motivated
within the above context by the simple semi-classical argument of [27; 28]. This
argument is based on combining only fundamental postulates of general relativ-
ity with quantum mechanics, and it demonstrates that spacetime quantization, and
more generally noncommutative geometry, is expected to be a generic feature of
any theory of quantum gravity, consistent with what we observed in Sect. 2.3.

Suppose that we try to probe physics at the Planck scale `P. Then the Compton
wavelength of any probe must be smaller than `P. But this means that there is a
huge mass m≥ h̄/`P c concentrated in a tiny volume `3

P, and the energy density
is large enough that it forms a black hole. The event horizon has size determined
by the Schwarzschild radius which is of order m, and it thereby hides the mea-
surement we set out to make as no information can escape from the interior of the
black hole through its horizon. To avoid this problem, there must be a mechanism
in place which prevents the occurrence of such a gravitational collapse.

The mechanism proposed by [27; 28] is to introduce a fundamental length `,
that we may wish to identify with the Planck scale ` = `P, which limits both spatial
and temporal localization via the spacetime uncertainty relations

∆x0
∑

i
∆xi ≥ `2

P and ∑
i< j

∆xi
∆x j ≥ `2

P. (2.6)

Then, if we wish to make a measurement along, say, the jth direction of space, the
energy of our probe will spread out over a perpendicularly directed disk of radius
∆xi, such that the induced gravitational potential vanishes as we try to localize the
space coordinate x j, i.e. in the limit where ∆xi → ∞. A similar reasoning applies
to localization of the time coordinate x0. As indicated in Sect. 1, a concrete model
of quantum spacetime which fulfills these requirements, and which is good for
studying quantum field theory thereon, has the quantum phase space commutation
relations

[xµ ,xν ] = iθ
µν = constant,

[xµ , pν ] = i h̄δ
µ

ν , (2.7)[
pµ , pν

]
= 0,

with

θµν θ
µν = 0 and εµνλρ θ

µν
θ

λρ =−8`4
P. (2.8)

One of the main simplifications arising in this class of spacetimes is that their
momentum spaces are flat, in contrast to those considered earlier in this section.
Only the commutators between two spacetime coordinates are deformed.

In the original treatment of [27; 28], the constant noncommutativity param-
eters θ µν are treated as “dynamical” variables, in the sense that their constant
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values are allowed to vary subject to the constraints (2.8). This means that the al-
gebra of spacetime coordinates xµ is enlarged to include θ µν on an equal footing
as central elements, so that [

xµ ,θ νλ

]
= 0. (2.9)

In this enlarged algebra, the action of a Lorentz transformation on xµ can be com-
pensated in the commutation relations (2.7) by letting θ µν transform as a covariant
tensor of rank two under SO(1,3). In this way, the quantum spacetime is com-
patible with Lorentz invariance. However, in the following we will instead think
of θ µν as a fixed and arbitrary background tensor field, at the cost of breaking
Lorentz symmetry and the explicit uncertainty relations (2.6). Such a Lorentz vio-
lation could have experimental signatures, as we will discuss in Sect. 5. The moti-
vation behind this restriction comes from various physical contexts in which sys-
tems are subjected to strong external background fields, some examples of which
are discussed below. It also simplifies somewhat the analysis of the resulting non-
commutative quantum field theories.

2.5 Physics in strong magnetic fields

The simplest prototypical example whose dynamics induces a quantum space is
the Landau problem. The Landau problem considers the quantum mechanics of a
non-relativistic system of electrons

confined to a plane x = (x,y,0) and subjected to a uniform background magnetic
field of strength B which is applied in the direction perpendicular to the plane of
motion. The lagrangian for each electron is given by

Lm =
m
2

ẋ2− e
c

ẋ ·A, (2.10)

where

Ax =−B
2

y and Ay =
B
2

x (2.11)

are the non-zero components of the corresponding vector potential in the symmet-
ric gauge.

The quantization of this system is an elementary exercise in senior undergrad-
uate level quantum mechanics. One can map the Hamiltonian of this model onto
that of a harmonic oscillator, whose spectrum yields the Landau levels. The low-
est Landau level is the ground state of this harmonic oscillator. In the strong field
limit eB� m, the spacing between Landau levels becomes infinite and the spec-
trum projects onto the lowest Landau level. The lagrangian (2.10) in this regime
truncates to

L0 =−eB
2c

(ẋ y− ẏ x). (2.12)



Quantum gravity, field theory and signatures of noncommutative spacetime 9

This reduced Lagrangian is of first order in time derivatives. The phase space
therefore becomes degenerate and collapses onto the configuration space. Thus
canonical quantization gives a noncommutative space having the commutators

[x,y] = iθ with θ =
h̄ c
eB

. (2.13)

This observation can have many applications to systems which are subjected
to strong magnetic fields. As mentioned in Sect. 1, the first application was the fa-
mous Peierls substitution [29]. This utilizes the Schrödinger representation of the
Heisenberg commutation relations (2.13) to compute the first order energy shift
due to an impurity potential V (x,y) in perturbation theory of the lowest Landau
level of the electronic system. More recently, based on the analogy between the
canonical quantization of the Landau problem above and that of Chern–Simons
gauge theory [30], it has been used to motivate a noncommutative Chern–Simons
theory formulation of the fractional quantum Hall effect which has been shown
to provide a much better microscopic description of the dynamics than the com-
mutative effective field theory [31; 32; 33]. It may also be useful for studying
certain models of charged polymer growth in magnetic fields in terms of random
walks with self-avoiding interaction [34], and it may even find applications to the
description of bound states in non-abelian gauge theories, in particular to quark
confinement [35]. See [5; 8] for further discussion of these applications.

2.6 Noncommutative geometry in string theory

Our final example is the context in which noncommutative spaces arise in string
theory, which has been mostly responsible for the huge surge of activity in non-
commutative field theory over the past decade. Strings naturally come with a
length scale ` = `s, their intrinsic length

whose square is inversely proportional to the string tension and such that strings
reduce to point particles in the limit `s → 0. Together with the string coupling
constant, the string length `s dynamically determines the Planck scale of the target
spacetime in which the strings live.

It was realized from early analyses of very high-energy string scattering am-
plitudes [36; 37] that, in order to prevent gravitational collapse, the objects in
spacetime seen by strings must obey a modification of the Heisenberg uncertainty
relation given by

∆x≥ h̄
2

1
∆ p

+
`2

s

2h̄
∆ p. (2.14)

At low energies this agrees with the standard phase space quantization, but for
energies E � h̄ c/`s it implies that the extent of an observed object grows linearly
with its momentum. Varying the right-hand side of the uncertainty relation (2.14)
shows that it is minimized at ∆ p = h̄/`s, and substituting this back into (2.14)
shows that the minimum spatial resolution seen by a string probe is

(∆x)min = `s. (2.15)
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This simply means that strings cannot probe distances below their intrinsic size,
and this fact was used to suggest very early on that the concept of spacetime
changes its meaning below the Planck scale, due to the non-locality of string in-
teractions.

Via some basic kinematical conformal invariance arguments, it was subse-
quently realized that in fact the target space probed by strings must also be sub-
jected to spacetime uncertainty relations [38; 39]

∆x∆ t ≥ `2
P
c

, (2.16)

analogous to what was observed in Sect. 2.4. Relations such as these can be
derived dynamically by looking at non-perturbative degrees of freedom in string
theory. This was done by noting that sub-Planckian scales in string theory are
probed by D-branes [40], whose dynamics thus enable one to provide a micro-
scopic derivation of these and other modified uncertainty relations [41; 42; 43].
A D-brane is a boundary condition for open strings. We can regard D-branes as
hypersurfaces in spacetime

onto which the endpoints of open strings attach. The quantum dynamics of open
strings induce fields which live on the branes. These include, among many others,
Chan–Paton gauge fields Aµ , scalar fields Xm describing the location of the D-
brane in spacetime, and also fermion fields ψ in the supersymmetric case. In the
low-energy limit, the spacetime dynamics of the open strings are described by an
effective field theory living on the D-branes, which dynamically describes how the
shape and size of the D-brane fluctuates in spacetime. In particular, by considering
string theory with D-branes and certain background “magnetic” fields B induced
by the closed string sector, the low-energy limit is described by a field theory on
a noncommutative space [44; 45], via a mechanism analogous (though somewhat
more involved) to that described in Sect. 2.5. It is this D-brane field theory that we
will be interested in for the remainder of this survey.

The derivation just sketched is what led to the huge intensity of research start-
ing at the end of the last millenium, and has today developed into its own branch of
physics called “noncommutative field theory”. It gives an explicit realization of the
manner in which worldvolume field theories are altered by quantum gravitational
effects. Since the closed string sector induces the geometric fields of the target
spacetime, D-branes can interact gravitationally with one another by exchanging
closed strings. This couples the D-brane field theory to gravity, and will be one of
the ways in which field theories on quantized spaces are intimately connected to
gravity.

3 Field theory on quantized spacetimes

In this section we will describe some aspects of the perturbative dynamics of the
noncommutative quantum field theories we derived in the previous section. Later
on we will see how these novel features can be reinterpreted in the context of
quantizing gravity directly from noncommutative field theory, and also in terms
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of deformed dispersion relations such as (2.3) and (2.5). In this section we will
only consider scalar fields, deferring the discussion of gauge fields to the next
section. Henceforth, unless otherwise indicated, we shall work in Euclidean sig-
nature and with natural units in which h̄ = c = 1. We will always assume that the
antisymmetric matrix θ µν is invertible.

3.1 Formalism

Let us begin by describing the basic aspects of formulating noncommutative quan-
tum field theory, as a deformation of ordinary field theory (see [1; 2] for further
details). The noncommutative deformation is implemented by replacing the usual
pointwise product of a pair of fields φ and ψ by the “star-product”

φ(x)ψ(x) −→ (φ ?ψ)(x) = φ(x)ψ(x)+O(θ , ∂φ ∂ψ) . (3.1)

The star-product defines an associative but noncommutative multiplication on the
space of fields, which deforms the usual product that is recovered at θ = 0. We
will regard it as containing infinitely-many bi-derivative terms. There are several
ways to express the star-product, depending on the domain of fields used. For most
of our considerations below, we will use an integral representation of the star-
product, which makes it a non-local operation. The two representations coincide
on analytic fields. Here we shall only need its simplest incarnation. Denoting by φ̃

the Fourier transform of the field φ , the momentum space version of (3.1) modifies
the Fourier convolution product as

φ̃(k) ψ̃(q)−→ φ̃(k) ψ̃(q)e ik×q with k×q =
1
2

kµ θ
µν qν . (3.2)

An easy calculation shows that this definition gives the required commutation
relations

[xµ , xν ]? = xµ ? xν − xν ? xµ = iθ
µν . (3.3)

Given any ordinary field theory with action S, one obtains a noncommutative field
theory simply by replacing all products of fields occurring in S with star-products.
This deformation only affects the interactions of fields, owing to the identity∫

φ ?ψ =
∫

φ ψ (3.4)

which is straightforwardly derived via integration by parts. This property is par-
ticular to the relatively simple noncommutative spaces we have restricted to, and
it is another reflection of the flatness of momentum space (equivalently, the in-
variant line element ds2 is undeformed). It implies that the underlying free field
theory is unaltered by the effects of noncommutativity. This is one reason why the
quantum dynamics of these noncommutative field theories are tractable, at least in
perturbation theory.
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3.2 UV/IR mixing

Let us now describe the most notorious problem which arose in some of the first
studies of perturbative noncommutative field theory. Consider, for example, the
simplest instance of a real scalar λ φ ?n theory. The interaction vertices are given
by the Feynman rules

@
@

@

�
�

�

s
k1

k2

λ �
�

�

@
@

@

...

k3

kn

= λ e
i ∑

I<J
kI×kJ

,
(3.5)

with the usual momentum conservation k1 +k2 + · · ·+kn = 0 since the noncommu-
tative space (and the noncommutative field theory) is translationally invariant. The
phase factors in these interactions become effective at energies E with E

√
θ � 1.

In contrast to the commutative case, the vertex (3.5) depends on the ordering
of the momenta kI . However, it depends only on their cyclic ordering. In analogy
with how one handles the perturbative dynamics of multi-colour field theories, it is
convenient to represent each Feynman diagram by fattening its lines and making
the diagram into a ribbon graph. Then the set of all graphs comes with a notion of
planarity. Planar graphs are those which can be drawn on the plane without cross-
ing lines. They coincide with the ordinary graphs at θ = 0, times possible phase
factors depending only on the momenta of the external legs [46; 47]. This shows
that noncommutativity does not tame the ultraviolet divergences of quantum field
theory as originally hoped, at least for this simple class of noncommutative spaces,
and the noncommutative field theory contains at least the same divergences.

What is even worse is the behaviour of the non-planar graphs, those which
cannot be drawn on the plane without crossing lines. In these diagrams, the phase
factors of (3.5) depend on the virtual momenta of internal loops. Although these
phase factors succeed in damping out the high-energy behaviour of the graphs
through rapid oscillations and would seem to provide a natural ultraviolet cutoff
1/θ ·k, they become ineffective for vanishing momenta and the original ultraviolet
divergences reappear as infrared divergences. This phenomenon is called UV/IR
mixing [48]. It leads to severe problems when one-loop non-planar diagrams oc-
cur as subgraphs in two-loop and higher order graphs, giving uncontrollable diver-
gences which prevent the renormalization of higher orders in perturbation theory
[49]. In other words, the introduction of an ultraviolet cutoff Λ in the field theory
induces an effective infrared cutoff

Λ0 =
1

θ Λ
. (3.6)

This mixing prohibits the use of standard renormalization schemes, such as the
wilsonian approach, which require a clear separation of energy scales. It follows
that the field theory cannot be renormalized. This problem plagued noncommuta-
tive field theory for many years.

In order to understand how to overcome this serious problem, it is useful to
briefly look at the physics underlying the UV/IR mixing phenomenon. The mixing
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is due to the inherent non-locality of the quantum field theory. If φ and ψ are fields
which are both supported in a region of small size ∆ �

√
θ , then their star-product

φ ? ψ is non-zero in a large region of size θ/∆ . A drastic example of this occurs
when both fields are localized at a point, as then their interaction is supported on
all of space due to the identity

δ (x)?δ (x) =
1

det(π θ)
. (3.7)

This means that the quanta governing the interactions of noncommutative field
theory in the ultraviolet must also be non-local extended objects which are very
different from the pointlike quanta encountered in ordinary quantum field theory.

The nature of these new degrees of freedom can be understood via an elemen-
tary calculation using (3.3) and the Baker–Campbell–Hausdorff formula which
gives the identity

e ik·x ?φ(x)? e− ik·x = φ (xµ −θ
µν kν) . (3.8)

We interpret this to mean that the ultraviolet dynamics, in the regime E � θ−1/2,
of the fields behave as if they were supported on extended, rigid rods whose size
is proportional to their momentum. These are “dipoles” with dipole moment

∆xµ = θ
µν kν , (3.9)

and they interact by joining at their ends [50; 51]. This is analogous to the electron-
hole bound states in a strong magnetic field, as in the systems described in Sect. 2.5,
and it also agrees with the modified uncertainty relation (2.14) derived from string
theory. Thus in the ultraviolet the natural degrees of freedom are dipoles. On
the other hand, the infrared dynamics, in the regime E � θ−1/2 where the ef-
fects of noncommutativity are negligible, is mediated by the elementary quantum
fields φ themselves, with pointlike momenta kµ . This structure is in fact sug-
gested directly by the commutation relations (2.7), which lead to a noncommu-
tative spacetime at high energies and an almost commutative spacetime in the
infrared regime. Although completely different in their respective characteristics,
it has been suggested that there is a UV/IR “duality” relating the dynamics in the
two regimes [52]. Evidence for this duality is provided via perturbative calcula-
tions using explicit operators

Wk[φ ] =
∫

exp( i |k|φ(x)) (3.10)

which create the noncommutative dipole degrees of freedom.
This simple physical picture suggests that the origin of the UV/IR mixing

problem is associated with the asymmetry between extended and pointlike degrees
of freedom in the different regimes of the quantum field theory. One thereby seeks
a covariant version of the field theory which renders the ultraviolet and infrared
regimes indistinguishable [53], and hence makes the UV/IR “duality” above into
a true symmetry of the model. This covariantization turns the infrared degrees
of freedom into extended objects by replacing their pointlike momenta with the
“Landau” momenta

kµ 7−→ Kµ = kµ +Bµν xν , (3.11)
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analogously to the way in which the ultraviolet degrees of freedom extend into
dipoles. The additional non-degenerate constant antisymmetric matrix Bµν is in
general independent of θ µν and can be interpreted as a “magnetic” background.
Assuming that (xµ ,kν) form a canonical pair, the new momenta Kµ generate a
“noncommutative momentum space” with the commutation relations

[Kµ ,Kν ] = 2iBµν , (3.12)

in exactly the same in which noncommutative space arose in the Landau prob-
lem of Sect. 2.5 [8]. The covariant version of a noncommutative complex scalar
field theory thus consists in replacing the hamiltonian of the usual kinetic term
with the generalized Landau hamiltonian defined by the square of gauge covariant
derivatives in the magnetic background according to (3.11).

The real version of the duality covariant model is known as the Grosse–Wulkenhaar
model [54; 55]. Drawing on the mapping between the Landau hamiltonian and
the harmonic oscillator hamiltonian, one considers a real λ φ ?4

2d -theory in a back-
ground harmonic oscillator potential, defined by modifying the scalar field kinetic
term via the replacement

∂
2
µ 7−→ ∂

2
µ +

ω2

2
x̃2

µ with x̃µ = 2θ
−1
µν xν . (3.13)

One then shows [53] that the full quantum field theory is symmetric under sym-
plectic Fourier transformation of the fields which interchanges

kµ ↔ x̃µ . (3.14)

Modifying the noncommutative field theory in this way gives the new free propa-
gators the correct decay behaviour, due to the confining nature of the harmonic os-
cillator potential, that enables one to apply Wilsonian renormalization in a suitable
duality-invariant basis of fields. Note that while any confining potential could in
principle be used instead in (3.13) to give an effective infrared cutoff, the harmonic
oscillator potential is singled out as the unique one which induces the UV/IR du-
ality.

3.3 Renormalization

Let us now discuss some consequences of the UV/IR duality. The main success
of the duality covariant model is that it is renormalizable to all orders in the φ ?4

coupling constant λ [54; 55]. The proof is obtained by an exact mapping of the
field theory onto a (infinite-dimensional) matrix model, which naturally arises due
to the infinite degeneracy of Landau levels that provides a two-index basis set of
complete Landau wavefunctions for the expansion of the noncommutative fields.
The duality-invariant cutoff is then naturally taken to be the matrix size N, and
the Wilsonian approach can be applied to the truncated model as N varies. This
matrix model possesses several interesting characteristics [56; 57]. For example,
the N×N matrix model is related to an integrable KP-hierarchy and, for certain
choices of parameters, it is exactly solvable in the limit N → ∞ as the cutoff is
removed. This remarkable reformulation of noncommutative field theory without
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any reference to a background spacetime has no analog in ordinary quantum field
theory. It is the crux of many important investigations and will arise again in the
next section.

The point ω = 1 in parameter space is special and is called the self-dual point,
because there the quantum field theory is completely invariant under the UV/IR
duality (without any rescalings). This point corresponds to θ = 2B−1 where the
noncommutativity is induced by the magnetic background of Sect. 3.2, as it hap-
pens in the Landau problem (see (2.13)). At this point, a remarkable property is
found [58; 59]. The beta-functions for both the coupling constant λ and the os-
cillator parameter ω vanish to all orders of perturbation theory. This implies that
the renormalized coupling flows to a finite bare coupling. The novel mechanism at
work is that the wavefunction renormalization compensates exactly the coupling
constant renormalization, such that the interaction λ φ ?4 is invariant. In addition,
the renormalized oscillator parameter flows to the value ω = 1.

This boundedness of the renormalization group flow has the following remark-
able significance. To understand its implications, we need only recall that a particle
in the flow of a quadratic vector field goes to infinity in a finite time. A similar fea-
ture was discovered in the early days of quantum electrodynamics, where it was
observed that the coupling constant flows to infinity at very high, but finite, ener-
gies. Thus the high-energy perturbation series does not make sense, due to spuri-
ous poles that appear in a partial resummation of the expansion which is possible
in this energy regime. The non-perturbative degrees of freedom corresponding to
these poles is called the Landau ghost or renormalons. The Landau ghost also
plagues ordinary φ 4-theory in four dimensions, and it hinders a non-perturbative
definition of the quantum field theory. Were it not for the discovery of asymptotic
freedom in quantum chromodynamics, the Landau ghost might have disseminated
quantum field theory. What is remarkable is that also in the duality covariant non-
commutative field theory, there are no renormalons. But here the field theory is
not asymptotically free, rather it is asymptotically safe.

For these reasons, it is strongly believed that a non-perturbative completion of
these noncommutative quantum field theories is possible, and intense research on
this matter has been pursued over the past few years. See [5] and references therein
for a discussion of these matters. From these perspectives, the duality covariant
models may teach important lessons for the consistent treatment of ordinary quan-
tum field theories. This programme would require a proper understanding of the
meaning of the parameters θ and ω at observable energies, and also a thorough
understanding of how to pass to our physical 3+1-dimensional spacetime. The an-
alytic continuation of the duality covariant field theories to Minkowski signature
has been recently carried out in [60], but the renormalization of noncommutative
quantum field theory in Minkowski spacetime is still very much in its infancy. In
particular, a simple physical explanation of electric-type noncommutativity like
the lowest Landau level projection of Sect. 2.5 is currently lacking.

UV/IR mixing is also known to occur on more complicated noncommutative
spaces, such as the κ-deformed space discussed in Sect. 2.2 [61]. The precise
meaning of the duality covariance in these and other instances is not very well
understood, and it may be related to some of the well-known position-momentum
type quantum group dualities. The UV/IR duality has been interpreted recently in



16 R. J. Szabo

[62] in terms of metaplectic representations of the Heisenberg group, where the
Grosse–Wulkenhaar model on solvable symmetric spaces is formulated.

4 Noncommutative gauge theory of gravity

Gauge theories on quantized spacetime are of particular interest for a variety of
reasons. They enable one to attempt to formulate more realistic physical models
which may provide a means for comparing with measurable signatures of space-
time noncommutativity. This aspect will be discussed in the next section. They
are also the natural field theories that arise on D-branes subjected to external back-
grounds [45], in the context discussed in Sect. 2.6. Given their role in string theory,
it is natural to expect that they may canonically couple to gravitational degrees of
freedom, and hence their quantization may teach us something about quantum
gravity. This is the theme which we shall have in mind in this section. We will
see that the UV/IR mixing phenomenon of the previous section has a beautiful
gravitational avatar in this context.

4.1 Gauge interactions

The action for a U(N) gauge field Aµ(x) in noncommutative Yang–Mills theory is
given by

S =− 1
4g2

∫
TrF2

µν , (4.1)

with the field strength tensor

Fµν = ∂µ Aν −∂ν Aµ − i [Aµ ,Aν ]?
= ∂µ Aν −∂ν Aµ − i [Aµ ,Aν ]+O

(
θ , (∂A)2) . (4.2)

This model thus gives a modification of ordinary gauge theory by infinitely many
higher-derivative interaction terms. The gauge invariance in this model is mani-
fested by the invariance of (4.1) under the “star-gauge transformations”

Aµ 7−→ U ?Aµ ?U−1 + iU ?∂µU−1 with U ?U† = U† ?U = 1. (4.3)

It follows that the gauge symmetry of noncommutative Yang–Mills theory con-
tains an intricate mixing of both colour and spacetime transformations. It gener-
ates an infinite-dimensional unitary symmetry group isomorphic to U(∞), as will
become more apparent below when we consider a certain matrix model formula-
tion of this gauge theory. Geometrically, star-gauge transformations generate cer-
tain “deformed” canonical transformations with respect to the Poisson structure
induced by the noncommutativity matrix θ µν [63].

Let us briefly summarize some of the novel features of noncommutative gauge
theories that distinguish them from their commutative counterparts. Since the
group SU(N) does not close under the star-product, because det(φ ?ψ) 6= det(φ)?
det(ψ) in general, the U(1) sector cannot be decoupled from the SU(N) sector
[64]. The U(1) coupling constant flows, and its beta-function is found to agree
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precisely with the beta-function of planar (large N) SU(N) Yang–Mills theory [65]
(the reason for this coincidence will become evident below). Wilson loops have
been observed to display a phase structure [66; 67]. They obey the usual area law
for small area loops, where the effects of noncommutativity become negligible,
while large area loops acquire an imaginary Aharanov–Bohm phase with respect
to the magnetic field B = 1/θ (again in agreement with (2.13)). UV/IR mixing
is present but occurs through a logarithmic dependence [68] (in contrast to the
power-law dependence in scalar field theories) and only in the U(1) sector [64].
This produces a strange infrared behaviour of the “photon” in these gauge theo-
ries, which may be compared to the high-energy behaviour of gamma-ray bursts
analogously to what we described in Sect. 2.2. We will return to this point in the
next section. The duality covariant version of noncommutative gauge theory is not
presently known.

Let us also briefly mention a key tool for the analysis of noncommutative
Yang–Mills theory, the celebrated Seiberg–Witten map [45]. This transformation
provides a one-to-one correspondence between commutative and noncommuta-
tive gauge orbits of gauge fields Aµ , and is valid at length scales much longer than
the scale of noncommutativity

√
θ . When applied to the action (4.1), it defines

an ordinary gauge theory which is “dual” to noncommutative Yang–Mills theory.
The dual gauge theory is not a Yang–Mills theory, but contains many more higher
order gauge vertices. It has been utilized in a variety of contexts, and will play a
crucial role in our discussion later on. It has proved to be particularly useful for
producing “phenomenological” models which could test the existence of space-
time noncommutativity in nature, for example noncommutative extensions of the
standard model which can probe physics beyond the standard model [69]. We will
also return to this point in the next section.

4.2 Gravity in noncommutative gauge theories

It was realized early on that gravity is naturally contained in the dynamics of non-
commutative gauge theory, though the precise mechanism was not initially clear.
This is due to the spacetime transformation properties of the gauge symmetry in
these models. The key observation is that spacetime translations of noncommuta-
tive gauge fields are equivalent to gauge transformations. Using the identity (3.8),
the star-gauge transformation (4.3) by the star-unitary field

U(x) = e iθ
−1
µν aµ xν

(4.4)

is found to be

Aµ(x) 7−→ Aµ(x+a)−θ
−1
µν aν . (4.5)

The constant shift in (4.5) drops out of the noncommutative field strength tensor
(4.2), and hence the translational symmetry is a gauge symmetry [70]. This means
that noncommutative gauge theories provide “toy models” of general relativity,
and may possibly enable one to construct diffeomorphism invariant field theories.

The key to making this observation more precise is to be able to promote the
global translation symmetry to a local gauge symmetry, and to extend the gaug-
ing to the full Poincaré symmetry of four-dimensional spacetime. There have been
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various suggestions on how to obtain Utiyama–Kibble type gauge theories of grav-
ity along these lines. For example, certain dimensional reductions of noncommuta-
tive Yang–Mills theory from ten dimensions to four dimensions naturally induce
deformations of a Poincaré gauge theory of gravity, owing to the occurrence of
teleparallism in noncommutative gauge theory [3; 71]. General relativity on non-
commutative spacetime has also been constructed by gauging the twist-deformed
Poincaré symmetry [72]. Deformations of gravity can moreover be induced from a
noncommutative gauge theory with position-dependent noncommutativity θ µν(x)
using the Seiberg–Witten map [73]. We will shortly see how an analogous proce-
dure can be used to extract general relativity more precisely from the dynamics of
noncommutative gauge fields. Noncommutative gauge theories of gravity based
on the Lorentz group SL(2,C) with complex vierbein have been considered in
[74; 75].

4.3 Spacetime disappears

The crux of the identification of gravitational dynamics is the background inde-
pendent formulation of noncommutative gauge theory [45], which allows a refor-
mulation of the gauge dynamics without any reference to a background spacetime.
For this, we introduce the “covariant coordinates” [76]

Xµ = θ
−1
µν xν +Aµ , (4.6)

in terms of which the noncommutative field strength tensor (4.2) can be written as

Fµν =− i [Xµ ,Xν ]? +θ
−1
µν . (4.7)

This rewriting of the gauge fields again exploits the translation-generating prop-
erty (3.8) to write derivatives as inner automorphisms of the algebra of fields. We
may thus reformulate noncommutative Yang–Mills theory with action (4.1) en-
tirely using the operators Xµ which can be regarded now as abstract objects of an
infinite-dimensional matrix algebra, without any reference to a spacetime depen-
dence.

The noncommutative gauge theory thereby becomes a matrix model with ac-
tion

S =− 1
4g2 Tr

(
− i [Xµ ,Xν ]+θ

−1
µν

)2
, (4.8)

where the infinite-dimensional trace implicitly hides the integration over space-
time. This action actually arises in an independent context as a twisted reduced
model. It is the dimensional reduction of ordinary Yang–Mills theory to a point,
i.e. with gauge fields which do not depend on the spacetime coordinates, with
the constant shift θ−1

µν the “twist”. It is related to the IKKT matrix model for the
non-perturbative dynamics of Type IIB superstrings [77]. The equations of motion
derived by varying (4.8) are

[Xµ , [Xµ ,Xν ]] = 0. (4.9)
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In particular, the vacuum solution is given by matrices Xµ satisfying

[Xµ ,Xν ] =− iθ
−1
µν (4.10)

which gives the absolute minimum value of the action (4.8). This solution is ob-
tained from (4.6) with Aµ = 0, and so in this context noncommutative spacetime
arises as a dynamical effect in the matrix model, analogously to the way it did in
Sect. 2.3. The decomposition (4.6) then identifies the gauge field degrees of free-
dom as fluctuations around the original noncommutative spacetime coordinates
xµ .

The vacuum state is defined by a Heisenberg algebra (4.10), which has only
infinite-dimensional representions. To have a constructive definition of noncom-
mutative gauge theory, we would like to define the natural regularization (as in
Sect. 3.3) by cutting off the matrix rank at some finite value N. As formulated,
this is not possible because the vacuum equation (4.10) has no finite rank N×N
solutions about which we can expand to uncover the dynamics of our original
gauge theory. A non-perturbative definition was proposed in [78; 79; 80] based on
the simple observation that while the Heisenberg commutation relations (4.10) do
not admit any finite-dimensional representations, its “exponentiated version” (the
Weyl algebra) does for certain values of the noncommutativity parameter. Thus
instead of the hermitean degrees of freedom Xµ , one considers a unitary matrix
model involving N×N unitary matrices Uµ with action

S =− 1
4g2 ∑

µ 6=ν

e−2π iQµν /NTr
(
Uµ Uν U†

µ U†
ν

)
. (4.11)

The matrix model (4.8) is recovered by setting

Uµ = e iaXµ (4.12)

and expanding to leading orders in the lattice spacing a. This identifies the non-
commutativity parameter as

θ
−1
µν =

2π Qµν

N a2 . (4.13)

The non-trivial vacuum state is now given in terms of the well-known SU(N)
’t Hooft twist-eating solutions (N×N clock and shift matrices).

The matrix model with action (4.11) is known as the twisted Eguchi–Kawai
model. It can also be independently derived as the one-plaquette reduction of Wil-
son’s lattice gauge theory with background ’t Hooft flux Qµν (the “twist”). It was
originally proposed as a close relative of the planar N → ∞ limit of multi-colour
Yang–Mills theory, whose dynamics are more tractable both analytically and nu-
merically. In the present context, this same matrix model admits a concrete finite N
interpretation as a noncommutative version of lattice gauge theory, with the matrix
rank N giving the finite size of the lattice [78; 79; 80]. The automatic requirement
of a (periodic) lattice of finite size for N finite is a non-perturbative manifestation
of UV/IR mixing. The unitary matrix model has proven to be useful for numerical
studies of noncommutative gauge theory (see e.g. [81] and references therein).
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There are two distinct scaling limits of the matrix model (4.11) with N →
∞,a→ 0, which explains the intimate relationship between the noncommutative
and planar Yang–Mills theories that we noticed earlier. Taking the large N limit
first sends θ → ∞, and gives the ’t Hooft limit of large N Yang–Mills theory (the
limit θ → ∞ is also known to kill all non-planar graphs of the noncommutative
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field theory [2]). On the other hand, we can consider a special double-scaling
limit in which the combination

√
N a2 is kept finite. Then the noncommutativity

θ remains finite and one recovers noncommutative Yang–Mills theory.

4.4 Gravitational dynamics and UV/IR mixing

The precise origin of gravity in noncommutative gauge theory is through a process
of emergent gravity, as first observed in [82; 83; 84] and clarified in a systematic
manner in [85; 86]. One considers non-vacuum solutions

[X µ ,Xν ] = iθ
µν(x) (4.14)

of the equations of motion (4.9), with position dependent noncommutativity pa-
rameters. Via the Seiberg–Witten map, this describes a dynamical quantum space-
time. In this setting, gravity is related to the quantum fluctuations X µ of spacetime
at the Planck scale. Conversely, noncommutative field theory arises as field de-
pendent fluctuations of spacetime geometry determined by the Poisson bivector
θ µν(x) in (4.14). This observation can be used to clarify many of the novel fea-
tures of noncommutative gauge theory that we described in Sect. 4.1. For exam-
ple, the U(1) “photon” is really a graviton, which defines a non-trivial geometric
background coupled to SU(N) gauge fields. This provides a natural physical ex-
planation for the U(1)↔ SU(N) entanglement. The resulting gravitational theory
is similar to general relativity for weak curvature. It suggests a new approach to
the quantization and unification of gravity with gauge theory. In particular, the flat
space solution (4.10) is stable at one-loop order.

The formalism also provides a beautiful physical explanation of the UV/IR
mixing problem in noncommutative field theory. For this, consider the infrared
dynamics for momenta k in the regime

k < Λ < ΛNC =
1√
θ

. (4.15)

In [87], the one-loop effective action for noncommutative gauge fields coupled to
dynamical adjoint scalar fields is computed, involving a careful treatment of the
UV/IR mixing terms. By using well-known heat kernel expansions for scalar field
kinetic Laplacian operator, one arrives at an induced Einstein–Hilbert action of
the form

S =
∫ √

g
(
c1 Λ

4 + c2 Λ
2 R(g)+O(logΛ)

)
. (4.16)

Thus UV/IR mixing gives a non-renormalizable gravitational sector, with the ul-
traviolet cutoff Λ of the gauge theory related to the newtonian gravitational con-
stant G according to (4.16). This provides a concrete physical explanation for the
non-renormalizability of noncommutative field theories caused by UV/IR mixing.

The dipole quanta in the ultraviolet regime are in this case created by the open
Wilson line operators Tr(e ik·X ) [52; 88; 89], and the physical interpretation given
in Sect. 3.2 agrees with the way in which these operators are argued to couple
to gravitational degrees of freedom in string theory [90; 91; 92; 93]. The process
described here is similar to the mechanism of UV/IR mixing that occurs on a
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D-brane in a background B-field, which is related to tachyonic instabilities arising
from the exchange of closed string modes in the bulk [94; 95]. It is complementary
to the derivation of the newtonian force law [96] and supergravity graviton prop-
agators [97] from four-dimensional maximally supersymmetric noncommutative
Yang–Mills theory.

5 Signatures of spacetime noncommutativity

In this final section we will briefly indicate how spacetime noncommutativity may
be observed or measured explicitly in experiment. There are many proposals for
how this may be achieved, none of which are entirely conclusive. Of course, much
of the issue concerns the magnitude of the effects of noncommutativity, and the
hope is that there exist physical processes for which the effective scale of non-
commutativity lies within the present day experimental energy range (see Sect. 1).
Here we shall not attempt an exhaustive survey, but rather just highlight a selec-
tion of ideas which have been put forward, in order to give a flavour for some of
the main issues involved. In particular, we will connect UV/IR mixing with some
of the results of Sect. 2.

5.1 Violations of Lorentz invariance and causality

Noncommutative field theories provide examples of both Lorentz invariance and
causality violating models, thus destroying the two pillars of relativistic quantum
field theory. In four spacetime dimensions, the rank two antisymmetric tensor θ µν

provides a directionality

θ i = εi jk θ
jk (5.1)

in space. It follows that noncommutative field theory is not invariant under ro-
tations or boosts of localized field configurations within a fixed observer inertial
frame. In string theory, this symmetry breaking is due to the expectation value of
a background supergravity field. A notion of Lorentz invariance may be recovered
through a twist-deformation of the action of the Lorentz group generators on the
noncommutative fields [98; 99].

There is also no sharply localized light-cone (due to spacetime uncertainty
relations), so causality is violated and signals can travel faster than the speed of
light in quantized spacetime. A notion of localization of noncommutative quantum
fields on “light-wedges” has been recently developed in [100; 101]. Thus the spin-
statistics theorem and the CPT theorem do not (necessarily) hold in noncommu-
tative field theory. We can now try to find physically measurable processes which
would otherwise be forbidden by the usual rules of relativistic quantum field the-
ory. If observed in experiment, they would vindicate the need for noncommutative
field theory at high (but measurable) energies.

Let us now give a taste of some of the processes that one may attempt to
analyse. In non-abelian gauge theories, such as noncommutative deformations of
quantum chromodynamics or the standard model, the S-matrix for some processes
violates Lorentz invariance. For example, the Feynman diagram
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is not Lorentz invariant, because the propagator has a frame dependence on the
directionality θ

0
i = θ 0i [102]. This is reminescent of Yang’s theorem in the com-

mutative case, which forbids certain diagrams due to Lorentz symmetry viola-
tion (despite the Lorentz invariance of the local tree-level lagrangian). However,
such processes are allowed in Lorentz-violating theories such as noncommutative
gauge theory. If even a small amplitude for such a scattering process could be
observed, it would signal evidence for noncommutativity and put bounds on the
magnitude of the parameter θ . For example, a comparison of the leading terms in a
noncommutative deformation of the standard model with known Lorentz-violating
(but CPT symmetric) extensions of the standard model estimate [103]

θ ≤
(

10−25 cm
)2

. (5.2)

Other Lorentz-violating processes, which have been studied in the context of non-
commutative extensions of the standard model, include Z0 → γγ [104; 105] and
decays of quarkonia [106].

Violations of causality can be most readily observed by looking at signa-
tures for spin-statistics violation extracted from atomic transitions in quantum
electrodynamics. One can compare with experimental results that put limits on
the violation of the Pauli exclusion principle in nucleon systems, based on non-
observational transitions from states which are allowed to occupied levels which
are forbidden by the Pauli principle. For example, comparison with neutrino data
from Gran Sasso or Super-Kamiokande gives a strong bound [102]

θ ≤
(
10−24 cm

)2
. (5.3)

Some simpler analyses of atomic transitions in noncommutative quantum mechan-
ics can also be carried out, for instance of the Lamb shift in hydrogen [107], and
the leading corrections due to noncommutativity compared with experiment.

5.2 Dispersion relations and UV/IR mixing

The presence of UV/IR mixing terms in the one-loop effective actions of noncom-
mutative field theories leads to modified (photon or scalar) dispersion relations
analogous to those discussed in Sects. 2.2 and 2.3. They take the general form

E2 = p2 +m2 +∆M2
(

1
pθ

)
. (5.4)

One can compare these dispersion relations with experiments in the energy range

Λ0 < E < Λ =
1

θ Λ0
, (5.5)

where Λ0 is the phenomenological infrared scale. For example, a comparison
with observational data from blazars estimates the noncommutativity parameter
as [108; 109]

θ ≥
(
1013 `P

)2
=

(
10−20 cm

)2
. (5.6)
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Analogous estimates from cosmic microwave background radiation data can be
found in [110].
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