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1. Introduction

At the present time the theory of generalized functions has found substan-

tial applications in the theoretical physics and became a workaday tool

especially in the quantum physics (cf. for example [23], [25]). Laplace

transform (in short LT) of generalized functions has an important place in

this sense.

In order to see that the LT of generalized functions has some advantages

of the classical LT we give first well-known facts on classical LT.

Laplace transform was originally employed to justify the Heaviside op-

erational calculus [10]. Many papers have been published in this sense.

Let us mention only some of them [5], [6], [8],... Later on the Laplace

transform has been elaborated as a powerful mathematical theory (cf. [8]

and [25]), very useful in practice and many times applied in solving math-

ematical models but also used to give correct theoretical ground for some

phenomena in physics, especially in the quantum field theory (cf. [3], [4],

[23]).

Let f be locally integrable function defined on [0,∞) which satisfies the

inequality

(1) |f(x)| ≤ CeHx, x > x0 > 0,

with constants C and H (f being of exponential type). The classical LT of
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f is defined by the integral

(2)
∞∫
0

e−stf(t)dt = f̂(s) = L(f)(x), Re s > H.

In despite of the popularity, LT has the following three theoretical short-

comings (cf. [12]):

1. The function f must be of exponential type. In short, applications

of the LT call for some growth conditions of the originals (cf. (1)).

2. No simple characterisation of the set of images by the LT is known.

So we do not know to establish in an easy way whether or not a solution û

to an equation P (û) = 0, obtained applying LT to Q(u) = 0, is the LT of

a solution to Q(u) = 0.

3. The expression

(3) f(x) =
1

2πi

c+i∞∫
c−i∞

esxf̂(s)ds, c > H,

is the inversion formula for the LT only if we know that f̂(s) is the LT of

f. Also, it converges in general case only as Cauchy’s principal value. It

does not in general, converge absolutely. In short, we have not an easily

applicable inversion formula.

To overcome these difficulties mathematicians invented different founda-

tions and theories of Heaviside calculus. We can divide them in two groups

by their approach: analytic or algebraic. To the first group belong those

theories in which the LT is defined on a subspace of generalized functions,

continuous functionals on appropriate test function space (cf. [12], [19],

[24], [25], [27]), or other analytic approaches (cf. [2], [7]). The second

group contains theories which use algebraic approaches (cf. [16], [17]). Of

this group the most popular in applications has been Mikusinski’s operator

calculus.
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We shall treat the LT of generalized functions because it turned out to

be a useful tool in modern mathematics and also there are new important

results and ideas which are not known sufficiently by the general public.

It is a question of LT of Laplace hyperfunctions elaborated by H.Komatsu

(cf. [12], [13], [15]). His approach successfully overcomes all the three

shortcomings of the classical LT. Also it is a natural generalization of the

classical LT. Namely, if F (x), x ≥ 0, is a measurable function which satisfies

the exponential type condition (1), then it can be naturally embedded in the

space of Laplace hyperfunctions and the classical LT of f and the LT of the

Laplace hyperfunction defined by f, give the same function. Consequently,

in this case, one can use the table for the classical LT to realize the LT of

Laplace hyperfunctions.

2. LT of tempered distributions

We repeat some specific distributions and facts related to the space S ′ of

tempered distributions and to the Fourier transform of them (cf. [25]).

Let Γ be a closed convex acute cone in R
n, Γ∗ = {t; tx = t1x1 + ...+tnxn

≥ 0, ∀x ∈ Γ} and C = intΓ∗. Let K be a compact set in R
n.

By S ′(Γ + K) is denoted the space of tempered distributions with sup-

ports in the closed set Γ + K ⊂ R
n. Then S ′(Γ+) is

(4) S ′(Γ+) =
⋃

K∈Rn

S ′(Γ + K).

The set S ′(Γ+) forms an algebra that is associative and commutative if for

the operation of multiplication one takes the convolution, denoted by ∗.

Let ϕ ∈ S(Rn), then the Fourier transform F of ϕ is

F [ϕ](ξ) =
∫

Rn

eiξxϕ(x)dx.
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If f ∈ S ′(Rn), then, as we know,

(5) 〈F [f ](ξ), ϕ(ξ)〉 = 〈f(x),F [ϕ](x)〉.

Now we can use the Fourier transform to define the LT. If f ∈ S ′(Γ+),

then f ∈ S ′(Γ + K) for a K. The LT of f is by definition

(6) L(f)(z) = F [f(ξ)e−xξ](−y), y ∈ R
n, for each x ∈ C.

Let Uε be the ball Uε = {x; ‖x‖ < ε}. We introduce the function η(x) ∈
C∞(Rn) : η(x) = 1, x ∈ Γ + K + Uε and η(x) = 0, x �∈ Γ + K + U2ε, for an

ε > 0. Thus, for each x ∈ C and every ϕ ∈ S(Rn)

〈L(f)(x + iy), ϕ(y)〉 = 〈F [f(ξ)e−xξ](−y), ϕ(y)〉
= 〈η(ξ)f(ξ)e−xξ,

∫
Rn

e−iξyϕ(y)dy

=
∫

Rn
ϕ(y)〈f(ξ), η(ξ)e−zξ〉dy

〈〈f(ξ), η(ξ)e−(x+iy)ξ〉, ϕ(y)〉.

Since this is true for every ϕ ∈ S(Rn), it follows that

(7) L(f)(z) = 〈f(ξ), η(ξ)e−zξ〉, z ∈ C + iRn.

If Γ + K is also convex, as it is many times the case, then

(8) L(f)(z) = 〈f(ξ), e−zξ〉, z ∈ C + iRn.

If is easily seen that L(f)(z) in (7) does not depend on η with the looked

- for properties. Suppose that we have two such η, η1 and η2. Then

〈f(ξ), η1(ξ)e−zξ〉 − 〈f(ξ), η2(ξ)e−zξ〉
= 〈f(ξ), (η1(ξ) − η2(ξ))e−zξ〉 = 0, z ∈ C + iRn,

because (η1(ξ)− η2(ξ))e−zzξ = 0 for ξ ∈ Γ+K +Uε, where ε = min(ε1, ε2),

but suppf ⊂ Γ + K.

From all properties of L(f) we shall prove only its holomorphisity.
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Proposition 2.1. L(f)(z) is holomorphic in C + iRn.

Proof. It suffices to establish, by virtue of the Hartogs theorem, the

existence of all derivatives

∂L(f)(z)
∂zj

, j = 1, ..., n.

Let us do it for j = 1.

It is easily seen that in S(Rn)

(9) lim
h→0

η(ξ)
h

(
e−(z+he1)ξ − e−zξ

)
= η(ξ)ξe−zξ

for each z ∈ C + iRn, where e1 = (1, 0, ..., 0).

Now, for each z ∈ C + iRn, because of (9),

lim
h→0

(L(f)(z + he1) − L(f)(z))/h

= lim
h→0

(〈f(ξ), η(ξ)e−(z+he1)ξ〉 − 〈f(ξ), η(ξ)e−zξ〉)/h

= lim
h→0

〈f(ξ),
η(ξ)
h

(e−(z+he1)ξ − e−zξ)〉

= 〈(−ξ1)f(ξ), e−zξ〉.

The proof for any other j is just the same.

The space S ′(Rn) is a restricted subspace of distributions. For example,

et, t ∈ R does not define an element of S ′(R). Therefore we have to go to

a larger subspace of distributions.
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3. The space D′(Γ+, a) and the LT of their ele-

ments

We can enlarge the definition of the LT to a wider subspace of distributions

which contains tempered distributions, as well (cf. [19], [24]).

By D′(Γ+) is denoted the set of distributions with support in Γ+K, K

any compact set in R
n. D′(Γ+) is an algebra with composition as the mul-

tiplicative operation. Then D′(Γ + K, a) denotes the set of distributions

f ∈ D′(Γ + K) such that

(10) e−σtf(t) ∈ S ′(Γ + K), σ > a (σi > ai, i = 1, ..., n)

and

(11) D′(Γ+, a) =
⋃

K⊂Rn

D′(Γ + K, a), K compact set.

We give some properties of the spaces D′(Γ + K, a), a ∈ R
n.

Proposition 3.1. 1. If a ≤ b, then D′(Γ + K, a) ⊂ D′(Γ + K, b). Conse-

quently S ′(Γ + K) ⊂ D′(Γ + K, a), a ≥ 0.

2. If f ∈ D′(Γ+, a) and g ∈ D′(Γ+, b), a ≤ b, then:

a) f ∈ D′(Γ+, b), as well;

b) also f ∗ g ∈ D′(Γ+, b) and

c) fe−σt ∗ ge−σt = (f ∗ g)e−σt, σ > b.

3. D′(Γ+, a) is a convolution algebra.

4. If f ∈ D′(Γ + K, a), g =
∂

∂ti
δ(t), i ∈ N, then

f ∗ ∂

∂ti
δ(t) =

∂

∂ti
f ∈ D′(Γ + K, a).

Therefore, partial derivatives are inner operations in D′(Γ + K, a).
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Proof. Properties 1 and 2 a) are obvious. We start with the proof of

2 b) and 2 c). Suppose that suppf ⊂ Γ + K1 and suppg ⊂ Γ + K2, K1

and K2 are compact sets. Let ηi, i = 1, 2, be two functions belonging to

C∞(Rn), ηi(x) = 1, x ∈ Γ + Ki + Uεi and ηi(x) = 0, x �∈ Γ + Ki + U2εi (see

Section 2).

By definition of the convolution in S ′(Rn)

〈fe−σt ∗ ge−σt, ϕ〉 = 〈η1fe−σt ∗ η2ge−σt, ϕ〉
= 〈f(x) ∗ g(y), η1(x)η2(y)e−σ(x+y)ϕ(x + y)〉
= 〈(f ∗ g)(t)e−σt, ϕ(t)〉.

Since it is true for every ϕ ∈ S ′(Rn), we have 2 b) and 2 c). Also, by the

property of convolution supp(f ∗ g) ⊂ Γ + K1 + K2, K1 + K2 is compact

in R
n.

3 is a consequence of 2. Also 4 is a consequence of 2 and the property

of the δ distribution.

Now, we can define LT of f ∈ D′(Γ+, a) :

(12) L(f)(z) = F [f(t)e−xt](−y), x ∈ C + a, y ∈ R
n.

Since f(t)e−xt ∈ S ′(Γ+K) for a compact set K and η(t)e−((x−σ)+iy)t ∈
S(Rn), L(f)(z) can be written as

(13) L(f)(z) = 〈f(t)e−σt, η(t)e−((x−σ)+iy)t〉, x ∈ C + σ, σ > a.

The basic properties of the LT of elements of D′(Γ+, a) have been given

by

Proposition 3.2. Let Γ + K = R
n
+, what we have often in applications,

then f ∈ D′(Rn
+, a) if and only if L(f)(z) is holomorphic function in z ∈

R
n
+ + σ + iRn for σ > a and

(14) |L(f)(z)| ≤ M(ε, σ)eσx(1 + ‖z‖m), x > σ > a,
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for every ε > 0, x > σ > a, m = m(σ) ≥ 0, where M(ε, σ) depends only

on ε and σ.

We have also the inverse formula for the LT:

(15) f(t) = (2π)−neσtF [f̂(σ + iω)](t), for any σ > a.

Proof. The holomorphicity follows directly from Proposition 2.1. For

the inequality (14) see [24]. To prove (15) let us start with (6):

f̂(z) = F [f(ξ)e−xξ](−y)

= (2π)nF−1[η(ξ)f(ξ)e−xξ](y), y ∈ R
n, x ∈ R

n
+,

where η is given in Section 2. Applying, now, the Fourier transform, we

have

(16) η(x)f(x) = (2π)−nexσF [f̂(σ + iω)](x), σ > a.

Since (16) does not depend on the chosen η, suppf ∈ R
n
+.

Proposition 3.2. can be proved not only for D′(Rn
+, a) but for the general

case D′(Γ+, a), as well.

Proposition 3.3. If f ∈ D′(Γ+, a), then:

1. L
( ∂k1+...+kn

∂tk1
1 ...∂tkn

n

f
)
(z) = zk1

1 ...zkn
n L(f)(z),

k1, ..., kn ∈ N, z ∈ C + a + iRn.

2. L(f(t)eλt)(z) = L(f)(z − λ), z ∈ C + a + Reλ + iRn.

3. If also g ∈ D′(Γ+, a), then L(f ∗ g)(z) = L(f)(z)L(g)(z), z ∈ C +

a + iRn.

4. L(f(t − β))(z) = e−βzL(f)(z), β ≥ 0, z ∈ C + a + iRn.

5. L(δ(t − β))(z) = e−βz, z ∈ C + iRn, β ≥ 0.
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Proof. 1. follows by 4. in Proposition 3.1. and 5. follows from (13)

with σ = 0. For the proof of 3. see [24]. It remains to prove only 2. and 4.

By (12)

L(feλt)(z) = F [fe−(x−λ)t](−y) = L(f)(z − λ)

which gives 2.

We know that if f ∈ D′(Γ+, a), then f(t − β) ∈ D′(Γ+, a), too. Also

f(t − β) = f ∗ δ(t − β).

If we apply LT to this equality, we have by 3. and 5.

L(f(t − β))(z) = e−βzL(f)(z), x > a.

This completes the proof of Proposition 3.3.

With the space D′(Γ+, a) we have also restriction on the growth of

elements. For example, et2 , t ∈ R, can not define an element of D′(R+, a)

for any a ∈ R.

4. Hyperfunctions and the LT of hyperfunctions

We have seen, that the LT of functions and distributions have always called

for some growth conditions. This fact restricts the effectiveness of the LT

in applications. In this section we review the results of H.Komatsu (cf.

[12], [13], [15]) which do not require any growth condition.

Let ω be an open subset of R and U be a complex neighbourhood of ω

in C (ω is a closed subset of U, U an open set in C). Let O(U) denotes the

space of holomorphic functions defined on U.
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Definition 4.1. ([18]). The quotient space

(17) B(ω) = O(U \ ω)/O(U)

defines the space of hyperfunctions defined on ω.

If f ∈ B(ω), then there exists a function F ∈ O(U \ ω) such that

f is defined by the class [F ]; F1 belongs to the class [F ] if and only if

F1 ∈ O(U \ ω) and F − F1 ∈ O(U). F is called a defining function of f.

In the sense of vector space isomorphism, the definition of B(ω) do not

depend on the chosen complex neighbourhood U of ω.

Definition 4.2.

(18) B[a,∞) = O(C \ [a,∞))/O(C)

is the space of hyperfunctions with support in [a,∞).

If f ∈ B[a,∞), then there exists an F ∈ O(C \ [a,∞)) which defines a

class [F ] such that f = [F ] and f is also written in the form

f = F+(x + i0) − F−(x − i0),

F is a defining function of f. The space of real analytic functions A(R), the

space of continuous functions C(R), the space of locally integrable functions

Lloc(R) and distributions D′(R) are, in the sense of algebraic isomorphism,

subspaces of B(R). One can find in [11], Chapter 1, how to determine a

defining function F for an f which belongs to A(R), C(R),Lloc(R) or D′(R).

Conversely, if we have a defining function of a hyperfunction f, then

we can characterize the subspace of hyperfunctions to which it belongs (see

Theorem 2.4. in [15]).

Specially the following theorem is often used
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Theorem 4.1. (Theorem 1.3.2 in [11]). Let f be a continuous function.

Let F denotes a defining function of the hyperfunction lf defined by f. Then

F+(x + iε) − F−(x − iε) converges locally uniformly to f as ε → 0.

If f ∈ Lloc(0,∞), then F+(x + iε)−F−(x− iε) converges for almost all

x to f, when ε → 0.

To define Laplace hyperfunctions we need some definitions. Let O be

the radial compactification of C

(19) O = C ∪ S1
∞ = {reiβ; 0 ≤ r ≤ ∞, 0 ≤ β < 2π}

equipped with the natural topology.

We define now the space Oexp. For each open set V in O the space

Oexp(V ) is defined to be the space of all the holomorphic functions F (x)

on V ∩ C such that on each closed sector

Σ = {z ∈ C : α ≤ arg(z − b) ≤ β}

whose closure Σ0 in O is included in V, we have

|F (z)| ≤ ceH|z|, z ∈ Σ,

with constants H and c.

Definition 4.3. ([13]).

(20) Bexp
[a,∞] = Oexp(O \ [a,∞])/Oexp(O)

is the space of Laplace hyperfunctions with support in [a,∞].

A Laplace hyperfunction f with support in [a,∞], f ∈ Bexp
[a,∞], is repre-

sented by the class [F ], where F is a holomorphic function, F ∈ Oexp(O \
[a,∞]), or by

f(x) = F+(x + i0) − F−(x − i0).
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The next theorem gives an interesting relation between Bexp
[a,∞] and B[a,∞).

Theorem 4.2. (Theorem 2 in [13]). The restriction mapping: Oexp(O \
[a,∞]) → O(C \ [a,∞)) induces a natural mapping ρ :

(21) ρ : Bexp
[a,∞] → B[a,∞).

The mapping ρ is surjective but not injective. Its kernel equals Bexp
[∞]. Hence

we have the natural isomorphism:

(22) B[a,∞)
∼= Bexp

[a,∞]/Bexp
[∞].

More generally we can consider the space

(23) B[a,b) = O(U \ [a, b))/O(U),

U is a complex neighbourhood of [a, b), of hyperfunctions with support in

[a, b), −∞ < a < b ≤ ∞. The restriction mapping: Oexp(O \ [a,∞]) →
O(U \ [a, b)) induces a natural mapping ρ

ρ : Bexp
[a,∞] → B[a,b).

Theorem 4.3. The natural mapping ρ is a surjective mapping whose ker-

nel is identified with Bexp
[b,∞]. Hence we have the natural isomorphism

(24) B[a,b)
∼= Bexp

[a,∞]/Bexp
[b,∞].

Remark 1. It follows from Theorem 4.2 and Theorem 4.3 that every

locally integrable function, every distribution defined on [a, b), −∞ < a <

b ≤ ∞, can be extended to a Laplace hyperfunction with support in [a,∞].

First we define the LT of Laplace hyperfunctions.
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Definition 4.4. ([13]). Laplace transform f̂ ≡ Lf of an f = [F ] ∈ Bexp
[a,∞]

is defined by

(25) f̂(s) =
∫

C
e−szF (z)dz, s ∈ Ω,

where C is a path of integration composed of a ray from ∞eiα to a point

c < a and a ray from c to ∞eiβ with −π/2 < α < 0 < β < π/2.

We note that the domain Ω of f̂ depends on the choice of the defining

function F. Every such Ω is a complex neighbourhood of the set B ≡
{∞eiβ; |β| < π/2} in O.

For an f ∈ Bexp
[a,∞) all its Ω shrink, containing the set B. Then the

function f̂ should be regarded as the set of holomorphic functions such

that if Ω1 ⊂ Ω2 ⊂ Ω, then f̂(Ω1) can be analytically continuable to Ω2 and

this continuation is just f̂(Ω2).

Next theorem characterizes the LT and the space LBexp
[a,∞].

Theorem 4.4. (Theorem 1 in [13]). L is an isomorphism

(26) L : Bexp
[0,∞] → LBexp

[a,∞],

where LBexp
[a,∞] is the space of holomorphic functions f̂ of exponential type

defined on a neighbourhood Ω of the semi-circle S = {∞eiθ; |θ| < π/2} in

O such that

(27) limρ→∞
log |f̂(ρeiθ)|

ρ
≤ −a cos θ, |θ| < π/2.

If f̂ ∈ LBexp
[a,∞], then a defining function F of its inverse image is given

by

(28) F (z) =
1

2πi

∞∫
u

ezsf̂(s)ds, z ∈ C \ [a,∞),

455



where u is a fixed point in Ω and the path of integration is a convex curve

in Ω.

F belongs to Oexp(C \ [a,∞)) and

f(x) = F+(x + i0) − F−(x − i0).

In connection with (22) we have that L induces the isomorphisms:

(29) LB[a,∞)
∼= LBexp

[a,∞]/LBexp
[∞] or LB[a,b)

∼= LBexp
[a,∞]/LBexp

[b,∞].

Since every continuous function or locally integrable function on [a,∞)

is indentified with a hyperfunction in B[a,∞), its LT makes sense as a class

of holomorphic functions. But some classes of functions can be directly

imbedded into Bexp
[a,∞] using LT. Such a class is Cexp([0,∞)), the space of all

continuous functions f on [0,∞) satisfying

(30) |f(x)| ≤ CeHx, x ≥ 0.

If G ∈ Cexp([0,∞)), then its Laplace transform

ĝ(s) =
∞∫
0

e−sxG(x)dx, Res > H,

represents a holomorphic function which satisfies the estimate

|ĝ(s)| ≤ C

Res − H
, Res > H.

Because of (27) ĝ belongs to LBexp
[a,∞]. Hence, the inverse image of ĝ gives

by (28) the defining function F of f ∈ Bexp
[a,∞] and by Theorem 4.1 we

obtain that f extends G on [0,∞]. In this way the space Cexp([0,∞)) is

naturally imbedded in Bexp
[a,∞]. If G ∈ Cexp([0,∞)), then we denote by θG the

corresponding Laplace hyperfunction. (θ stands for the Heaviside function).

Similarly we can imbed measurable functions satisfying exponential type
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condition (30). A direct consequence is that the classical LT of an G ∈
Cexp

([0,∞)) and the LT of θG ∈ Bexp
[a,∞] coincide. This makes possible the use of

well elaborated classical theory of LT ([8], [26]).

We give some properties of the LT of Laplace hyperfunctions (see [13]).

For f ∈ Bexp
[a,∞]

(31) L(xneaxf(x))(s) =
(
− d

ds

)nLf(s − a), n ∈ N ∪ {0}, a ∈ C.

(32) L
( dn

dxn
f(x + c))(s) = snecsLf(s), n ∈ N ∪ {0}, c ∈ R.

(33) L(δ(α))(s) = sα, where δ(α) = δ(α)(x), α = 0, 1, 2, ... and

(34) δ(α) = x−α−1
+ /Γ(−α), α �= 0, 1, , 2, ..., α ∈ C.

We can define the convolution of Laplace hyperfunctions of two elements

f, g belonging to Bexp
[a,∞] without any restriction. Since f̂ · ĝ ∈ LBexp

[a,∞], the

convolution is defined by

(35) L(f ∗ g)(x) = f̂(s)ĝ(s).

Hence, f ∗ g ∈ Bexp
[a,∞].

If θf, θg ∈ θCexp
[0,∞), then

(36) θf ∗ θg = θ

t∫
0

f(t − τ)g(τ)dτ.
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5. A suggestion to develop applications of the LT

Komatsu’s results, as we have seen, overcome all the shortcomings of the

LT defined in different spaces. But he uses a very abstract space, hy-

perfunctions, and only in one dimension. Such an abstractness, from the

experience, can not be easily accepted by the great part of people working

in applications.

Komatsu’s basic idea can be used to elaborate LT of an larger space

than D′(Γ+, a), a ≥ 0 but not so large as hyperfunctions. We give an idea

to construct such a space, noted by D′∗(P, a).

Let P be the set

P =
n∏

i=1

[pi, qi), pi, qi ∈ R, pi < qi, i = 1, ..., n.

P is compact. Since R
n
+ is a closed convex and acute cone, D′(Rn

+ +

P , a), a ≥ 0 is well defined.

Let A be the vector space

A = {T ∈ D′(Rn
+ + P , a); suppT ⊂ ((Rn

+ + P ) \ P )}.

Now, we can define an equivalence relation in D′(Rn
+ + P , a); f ∼ g ⇐⇒

f − g ∈ A. Let us denote by B the quotient space

B = D′(Rn
+ + P , a)/A

and by

D′
∗(P, a) = {T ∈ D′(P ); ∃ T ∈ D′(Rn

+ + P , a), T |P = T},

where T |P is the restriction of T on P. Since D′ is not a flabby sheaf,

D′∗(P, a) �= D′(P ).
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It can be prove that D′∗(P, a) is algebraically isomorphic to B. Now,

the procedure to define the LT and to use this LT is just the same as for

the LT of hyperfunctions. In this way, for example, every f ∈ Lloc[0,∞),

should have LT, without any growth condition.

6. Applications

The LT of hyperfunctions can be successfully applied to linear equations

with derivatives, partial derivatives, fractional derivatives and convolutions

to find classical and generalized solutions, global or localized. We illustrate

Section 4. applying the LT to an equation which describes the dynamics

of a rod made of generalized Kelvin-Voight viscoelastic material (cf. [1],

[21] and [22]) in which the force F = ω + Aδ(t − t0), t0 > 0, where ω is a

constant and δ is the Dirac distribution, γ ∈ R and Q ∈ Lloc(R).

The quation is the following

(37) T (2)(t)+γT (β)(t)+ωT (t)+Aδ(t− t0)T (t) = Q(t), t > 0, 0 < β < 1.

With initial condition: T (0) = T0, T (1)(0) = T ′
0.

Since δ can be treated as a measure, (37) has a meaning if T ∈ C((0,∞))

because t0 > 0. Therefore we look for a solution to (37) belonging to

C([0,∞)), where δ(t − t0)T (t) = T (t0)δ(t − t0).

In (37) we have a singular coefficient Aδ(t − t0) therefore we localize

the solution on the interval (0, t0) supposing that there exists a solution

T ∈ C2((0, t0) ∩ C1([0, t0)), T (2) ∈ L1([0, t0)).

The first step will be to find the correspondent equation in B[0,t0). Let

H be the function H(t) = 1, t ∈ [0, t0) and H(t) = 0, t ∈ (−∞, 0)∪ [t0,∞).
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Multiplying (37) by H,

(38) HT (2)(t) + γHT (β)(t) + ωHT (t) = HQ(t), t ∈ R.

Let f = {HT} be the hyperfunction which corresponds to the contin-

uous function HT (t), t ≥ 0, and {T (2), 0 < t < t0} (in short {T (2)}) the

hyperfunction which correspond to the function T (2)(t), 0 < t < t0. The

Green formula gives the relation between D2{HT} and {T (2)} (D2{HT}
is the second derivative in the sense of hyperfunctions):

(39)
D2{HT} = {T (2)} + T (1)(0)δ(t) + T (0)δ(1)(t)

= {T (2)} + T ′
0δ(t) + T0δ

(1)(t).

With regards to T (β), we have by definition:

T (β)(t) =
1

Γ(1 − β)
d

dt

t∫
0

T (t − u)u−βdu, 0 < t, 0 < β < 1.

We can use (34), (36), (39) and the supposition T ∈ C([0.t0)) to prove:

(40)

{DβT} =
{ 1

Γ(1 − β)
d

dt

t∫
0

T (t − u)u−βdu, 0 < t < t0
}

=
1

Γ(1 − β)

{ d

dt
H(t)

t∫
0

T (t − u)u−βdu, 0 < t < t0
}

=
1

Γ(1 − β)

{ d

dt

t∫
0

H(u)T (u)(t − u)−βdu, 0 < t < t0
}

=
1

Γ(1 − β)
D{(HT ∗ u−β)} = δ(β) ∗ {HT} = Dβ{HT}.

In (39) and (40) we use the supposed properties of the solution T.
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In view of (39) and (40), to (38) with the initial condition T (0) =

T0, T (1)(0) = T ′
0 it corresponds in B[0,∞)

(41) D2{HT} + γDβ{HT} + ω{HT} = {HQ} + T ′
0δ(t) + T0δ

(1)(t).

Now, we can apply LT to (41)

(42) (s2 + γsβ + ω)L({HT})(s) = L({HQ})(s) + T ′
0 + T0s + L(W )(s),

where {HT} is an element of Bexp
[a,∞] which correspond to {HT} ∈ B[0,t0)

and W ∈ Bexp
[t0,∞].

Thus,

(43) L({HT})(s) =
1

s2 + γsβ + ω
(L({HQ})(s) + T ′

0 + T0s + L(W )(s))

We can prove that

g(s) =
1

s2 + γsβ + ω

has the following properties:

1. There exists a function G ∈ Cexp([0,∞)) such that L(G)(s) = g(s)

in the sense of the classical LT.

2. g(s) also satisfies conditions in Theorem 4.3. Consequently there

exists f ∈ Bexp
[0,∞] such that L(f)(s) = g(s). Thus f is defined by the function

G.

Now, (43) gives

{HT} = θG ∗ {HT} + θGT ′
0 + T0{G(1)} + θG ∗ W.

Since θG ∗ W ∈ Bexp
[t0,∞],

T (t) = (G ∗ Q)(t) + T ′
0G(t) + T0G

(1)(t), 0 < t < t0.

It can be proved that T ∈ C2((0, , t0)) ∩ C1([0, t0)) (cf. [21]).

461



If we consider equation (37) with t > 0, then we can prove that it has

no classical solutions. Namely, the solution T belongs to C([0,∞)), but it

has two first derivatives only in the sense of distributions because of the

singular coefficient in (37).

Let us analyze this case too.

Let {θT} be the hyperfunction belonging to B[0,∞) which corresponds

to the continuous function θ(t)T (t), t ∈ R. (θ is the Heaviside function).

The function (θT )t0(t) = θ(t)T (t), t ∈ R, t �= t0, is a locally integrable

function which defines the same hyperfunction {θT}. Then

{θT} = {(θT )t0} = {(θT )1} + {T2}, where (θT )1(t) = θ(t)T (t)|t∈[0,t0)

(the restriction of θT (t) on [0, t0)) and

(θT )1(t) = 0, t ∈ (−∞, 0) ∪ (t0,∞); T2(t) = T (t), t ∈ (t0,∞)

and

T2(t) = 0, t ∈ (−∞, t0).

(cf. Chapter I, §3 in [11]). By the results on (37) when 0 < t < t0, we can

suppose that (θT )1 ∈ C2((0, t0)) ∩ C1([0, t0)) and (39), (40) can be applied

to (θT )1. Hence,

D2{θT} = D2{(θT )1} + D2{T2}
= {T (2), 0 < t < t0} + D2{T2} + T ′

0δ(t) + T0δ
(1)(t)

= D2({T, 0 < t < t0} + {T2} + T ′
0δ(t) + T0δ

(1)(t)

= D2{(θT )t0 , t > 0} + T ′
0δ(t) + T0δ

(1)(t).

To (37) it corresponds now in B[0,∞)

D2{θT} + γDβ{θT} + ω{θT} = T0δ
(1)(t) + T ′

0δ(t)

−AT (t0)δ(t − t0) + {θQ}.

462



Applying LT to the last equation, we have instead of (43)

L({θT})(s) =
1

s2 + γsβ + ω
(L({θT})(s) + T0s + T ′

0

−AT (t0)e−t0s + L(W )(s)).

So that the sought solution with the supposed properties is

T (t) =
∞∫
0

G(t − u)Q(u)du + T0G
(1)(t) + T ′

0G(t)

−AT (t0)θ(t − t0)G(t − t0), t > 0.
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