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Abstract

The production of lepton pairs via the Drell-Yan (DY) mechanism of electroweak vector boson exchange
is one of the most accurately measured processes in high-energy proton-proton collisions at the Large
Hadron Collider (LHC). It provides key insights into proton structure, precision electroweak observ-
ables, and possible extensions of the Standard Model of Particle Physics. In the region of small trans-
verse momenta of the lepton pair, important strong-interaction effects arise due to the non-perturbative
physics of Quantum Chromodynamics (QCD), the quantum field theory describing the interactions
of quarks and gluons (partons). The DY transverse momentum cross section can be described in
QCD as a convolution of partonic scattering functions, calculable in perturbation theory, and transverse
momentum-dependent (TMD) parton densities, evolving with the energy scale according to parton-
branching evolution equations, and including non-perturbative distributions of the intrinsic transverse
momenta k7 of the partons. In this thesis, we apply existing computer codes for the scattering functions
and the TMD parton-branching evolution as well as non-perturbative parameterizations for intrinsic-kr
distributions to obtain theoretical results for DY cross sections. We compare our results with experimen-
tal measurements of DY transverse momentum spectra carried out recently at the LHC over a wide range
of lepton-pair invariant masses. We find good agreement of theory with experiment and perform fits of
non-perturbative intrinsic-k7 parameters to experimental data. In particular, we study the interplay of
this parameter with the resolution scale used in the branching evolution for soft-gluon radiation. Our
results are consistent with average values of intrinsic-k7 on the order of 1 GeV, and mild dependence on
the invariant mass.
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Introduction

The study of elementary particles focuses on the smallest components of the universe and their inter-
actions. These tiny particles and fundamental forces are encapsulated within a framework called the
Standard Model, which comprises several theories based on quantum field theory and relies on gauge
symmetries associated with Lie groups. The primary focus of this research is the strong interaction,
with its associated theory being quantum chromodynamics (QCD). The Large Hadron Collider at CERN
plays a crucial role in exploring these concepts. Specifically, we will examine high-energy hadron colli-
sions, which often involve protons accelerated to extremely high speeds before colliding and interacting
with each other. The information gathered from observing these processes will help us understand how
quarks and the strong force work within these protons.

In Chapter 1, we will introduce some general definitions that form the building blocks of particle physics.
This chapter initially covers the types of particles that exist, the fundamental forces, and introduces
properties that differentiate the particles. Once this is done, we will introduce an important concept, the
Feynman diagrams, which will provide us with a good visualization of these interactions. After that,
there will be a brief section about the machinery at CERN. Finally, we will delve into the details of the
strong force, which will serve as a foundation for the theory-intensive part of the thesis.

In Chapter 2, which is also an introductory chapter, we aim to establish a solid, albeit basic, understand-
ing of quantum chromodynamics (QCD). We’ll discuss how to account for color charge mathematically
and derive Feynman rules for strongly interacting Feynman diagrams. Subsequently, we’ll examine an
important experiment, deep inelastic scattering, where we derive the structure functions that provide
insights into the internal structure of hadrons.

Despite being the most accurate theory for describing the strong interaction, QCD is challenging be-
cause particle interactions inside hadrons occur in a regime where direct perturbative calculations often
fail. Fortunately, we can utilize the collinear factorization theorem, which will also be briefly explained
in Chapter 2. This theorem combines two kinds of objects: one that describes the high-energy as-
pect, and another that covers the low-energy, large-distance, or long-timescale aspect. The latter is the
collinear parton distribution function (PDF), which describes how partons are distributed within a given
hadron. These functions depend on the fraction of the longitudinal momentum of the hadron that is car-
ried by the parton, as well as on the energy scale. We will also address transverse momentum in Chapter
3. Before that, however, we will introduce the strong coupling using the renormalization scheme.

Chapter 3 will delve into an algorithm that incorporates the transverse momentum of partons, utilizing
transverse momentum-dependent parton distribution functions (TMD PDFs) and corresponding TMD
factorization theorem. These TMD PDFs also account for the transverse momentum of the parton. The
dependence of PDFs on the energy scale is calculated with evolution equations. The DGLAP equation
handles this for collinear PDFs, but a new formulation is needed for TMD PDFs, which will be derived
in Chapter 3 and will depend on the intrinsic-k7, which is the non-perturbative transverse momentum
parameter. As previously stated, hadron collisions are very important, and we will be examining a spe-
cific process in Chapter 4, namely the Drell-Yan process, which is a hadronic collision that produces a
lepton pair. The idea here is to start with a straightforward example to calculate the cross-section, and
then apply more complex perturbative QCD corrections to the Drell-Yan process to derive an expression
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that matches the DGLAP evolution equation. To conclude this section, we will delve into the more
phenomenological part of the thesis and discuss the method and program used to calculate the Drell-Yan
transverse momentum (pr) using the transverse momentum distribution dataset obtained by the CMS
detector at CERN.

Finally, in chapter 5 we will investigate the dependence of our theoretical predictions for the DY trans-
verse momentum on the non-perturbative intrinsic-k7 parameter, and we will compare our results with
experimental measurements by performing fits of the intrinsic-k7 parameter to data. The focus here is
to examine the influence of varying the range of pr on various g; values while adjusting the mass of
the lepton pair and observing the results. These g, values are directly related to the intrinsic-k7, where
kr represents the transverse momentum of a parton, and g, is a parameter that provides a measure of
the average sideways motion of the partons. This study has been done before with a fixed or constant
resolution scale, which is a function defining the threshold at which parton emissions in a parton shower
are considered significant enough to resolve during the evolution of the parton shower. In this study we
want to try the same calculations, but this time we will be using a dynamical resolution scale that will
be dependent on the minimum transverse momentum needed for transmission of particle.
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1 Fundamentals of Particle Physics

In this thesis, we delve into the realm of particle physics, the branch of physics concerned with the study
of fundamental particles and the forces governing the universe. A fundamental (or elementary) particle
is one that cannot be subdivided into smaller entities; these particles are the most basic constituents of
matter and energy. The theoretical framework that categorizes these fundamental particles and describes
the interactions between them is known as the Standard Model of particle physics. The model covers
three main forces: electromagnetism, weak nuclear force, and strong nuclear force, but it leaves out
gravity. This is because we don’t fully understand how gravity fits in with the other forces yet. So, we
won’t be talking about gravity in this thesis either.

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)

mass | =2.2 MeVic? =1.28 GeVlc? =173.1 GeVic?

=125.11 GeVic?

charge | % % % 0 o
e PN 0 « (C P @ |- H
up charm top gluon I higgs

=4.7 MeVic? =96 MeVic? =4.18 GeVic?
s s s
% d % S % b

down strange bottom photon

e

=0.511 MeV/c2 =105.66 MeV/c? =1.7768 GeVic? =91.19 Gevic?
-1 -1 -1
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electron muon tau Z boson
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<1.0eVic2 <0.17 MeVic? <18.2 MeVic2
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electron muon tau W boson
neutrino neutrino neutrino

Figure 1.1: Simplified diagram of the Standard Model: This chart categorizes the fundamental particles
into quarks, leptons, and bosons, showing their basic properties [1].

With these fundamental forces, particles can interact with each other and to conceptualize the inter-
actions between particles, one might use the analogy of two individuals exchanging letters, where the
exchange is facilitated by a postman representing one of the fundamental forces. The nature of the letter
(or the force being conveyed) determines which type of interaction is occurring. The mediating particles,
or gauge bosons, act as the carriers of these forces, as summarized below,

Interaction Mediating Particle
Electromagnetic Photon ()
Weak W/Z-boson (WH, W79
Strong Gluons

Table 1.1: Overview of fundamental forces in, detailing the types of interactions (Electromagnetic,
Weak, Strong) and their corresponding mediating particles (Photon, W/Z Bosons, Gluons),
essential for particle interactions.
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CHAPTER 1. FUNDAMENTALS OF PARTICLE PHYSICS

Table 1.1 gives a quick look at the main interactions and the particles involved in them. The fundamen-
tal particles known as fermions can be categorized into two groups: quarks and leptons. Quarks form
protons, neutrons, and other hadrons, while leptons include electrons and neutrinos. Quarks are divided
into six flavors (or types), while leptons are divided into three flavors based on their properties, which
we’ll discuss later. A key difference between quarks and leptons is that quarks interact with the strong
nuclear force, while leptons do not.

The distinction between bosons and fermions can be understood through their spin, a fundamental prop-
erty further elaborated upon later. Bosons possess integer spins (0, 1, 2, ...), whereas fermions have
half-integer spins (1/2, 3/2, 5/2, ...). Delving deeper, quantum mechanics teaches us that swapping the
positions of two identical particles can result in two scenarios [2],

{IV/> =y
W) =—-|w)

This behavior underpins a more general principle distinguishing the two: the Pauli Exclusion Principle,
which asserts that no two fermions can occupy the same quantum state simultaneously. This principle
explains, for instance, why an atomic orbital can host only two electrons, each with an opposite spin.
In contrast, bosons are not subject to this principle, allowing an unlimited number of bosons to share a
quantum state. This characteristic enables phenomena such as Bose-Einstein condensates (which is a
whole other topic) [2].

(1.1)

The final particle we have yet to discuss is the Higgs boson. This particle is associated with the Higgs
field, which essentially explains how fundamental particles acquire mass. The principle is straight-
forward: particles that interact more intensely with the Higgs field end up being more massive. This
overview of the Higgs boson is quite brief, and delving deeper into this topic would take us into com-
plex theories and mathematics beyond the scope of this thesis.

1.1 Exploring Particle Properties

To distinguish among these more specific particles, we rely on properties that help identify them,

* In particle physics, the electronvolt (eV) is the standard unit of energy, defined as the energy
gained by an electron when it moves through an electric potential difference of one volt. Masses
are measured in GeV/c2, stemming from Einstein’s equation E = mc?, where 1GeV = 10°eV =
1.6 x 10719 Joule. The only particle that doesn’t have mass is the photon [3].

* Electric charge: Charges are measured in units equivalent to the charge of a proton, which is
positive and denoted by +1. An electron has a charge of —1 while neutrally charged particles,
like neutrinos, have a charge of 0. Quarks possess fractional charges, such as the up quark with a
—1—%. In SI units, the electric charge of the proton is 1.6 x 10~!° Coulombs [4].

* Spin: This intrinsic angular momentum differentiates particles further. While analogies often
depict particles as spinning spheres, spin is a complex quantum mechanical attribute not indicative
of physical spinning. Fermions (quarks and leptons) have a spin of 1/2, while bosons (force
carriers) have a spin of 1.

* Flavor: This characteristic helps differentiate between types of elementary particles. Particles
with the same flavor are mostly identical but can vary in mass. Flavor is crucial when discussing
quarks and leptons. There are six quark flavors: Up (u), Down (d), Charm (c), Strange (s), Top (t),
and Bottom (b); and three lepton flavors: Electron (e), Muon (1) and Tau (7). Flavor-changing
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events can occur through weak interactions, allowing particles to switch from one flavor to another

[5].

Having outlined some fundamental particle properties, we can now delve into the concept of antimatter.
Each type of particle has a corresponding antiparticle, typically denoted with a bar over the particle’s
symbol (for instance, the antielectron or positron is represented as &). These antiparticles possess the
same mass and spin as their particle counterparts but have opposite electric charges. In the case of
neutral particles, they are considered to be their own antiparticles.

1.2 Feynman Diagrams

An essential tool developed by physicist Dr. Richard Feynman is the Feynman diagram. These diagrams
visually represent the mathematical expressions that describe the behavior and interactions of subatomic
particles. Due to the complexity of these interactions, Feynman diagrams provide a way to simplify and
visualize what would otherwise be complicated and abstract equations [6].
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Figure 1.2: A selection of Feynman diagrams illustrating various fundamental interactions among parti-
cles, including electromagnetic, strong, and weak processes [6].

Figure 1.2 showcases various examples. In these diagrams, solid lines represent fermions (leptons and
quarks), while the fundamental bosons are illustrated by different types of lines: wavy lines for photons,
curly lines for gluons, and dashed lines for Z- and W-bosons. The direction of particle movement is
typically from left to right. Arrows on the lines indicate the direction associated with a positive fermion
number, with arrows on antiparticle lines pointing in the opposite direction. This convention is based on
the interpretation of an antiparticle’s wave function with negative energy as a particle’s wave function
with positive energy moving backward in time.

The Feynman rules, which we will apply later, offer a method to calculate scattering amplitudes using

these diagrams. In simplified terms, a coupling factor is assigned to each vertex (interaction point), and
propagator factors are applied to internal lines. For instance, in Quantum Electrodynamics (QED)—the
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CHAPTER 1. FUNDAMENTALS OF PARTICLE PHYSICS

theory describing particle interactions via electromagnetic forces—the coupling constant is defined as

(6], )
e

o=
4nhe

At each vertex, a factor of v/« is included in the scattering amplitude calculation. This factor essentially
represents the probability of particles scattering or interacting during a collision. To construct diagrams
for collisions involving electromagnetic interactions, one starts with a basic diagram like the one shown
in Figure 1.2a. Because only incoming and outgoing particles are directly observable, numerous dia-
grams might represent the same physical process. Figure 1.2a depicts some of these possibilities for
electron-positron scattering. The total scattering amplitude is the sum of these individual amplitudes.
Given that the coupling constant ¢ diagrams featuring many vertices contribute insignificantly. The
probability of a transition is determined by squaring the total amplitude, which can be expressed as a
series expansion in a. Terms of higher order in this series correspond to the Born expansion of the
scattering probability [6].

(1.2)

These theoretical frameworks lead us to the experimental domain of particle physics, where data is
gathered through recreating these collisions at CERN in Switzerland.

1.3 CERN'’s Particle Accelerators

Having covered the foundational concepts of particle physics, let’s delve into the experimental discovery
of these particles and the pivotal role of CERN in this scientific endeavor. CERN’s main goal is to probe
the universe’s composition, understand its workings, and uncover its origins. This is accomplished by
accelerating particles to speeds approaching 99.999999% of the speed of light, using sophisticated par-
ticle accelerators. Within such high-speed collisions, for example between protons, the quarks inside
interact via the fundamental forces, generating new particles in the process. The detection and identifi-
cation of these particles, along with the discovery of new ones, are key steps in answering the profound
questions CERN seeks to address. A notable milestone was the identification of the Higgs Boson in
2012 [?], a discovery made through the data from colliding protons.

Figure 1.3 provides a glimpse into the assortment of particle accelerators at CERN, along with the
various experiments and detectors in use. The journey of a particle bundle set for collision starts at the
Proton Synchrotron (PS), where it undergoes initial acceleration up to 26 GeV !. From there, it moves to
the Super Proton Synchrotron (SPS), which can boost it up to 450 GeV. This bundle is eventually split
into two, with each half being sent in opposite directions within the Large Hadron Collider (LHC) to
collide [7].

The Large Hadron Collider (LHC) stands as the world’s most potent and largest particle accelerator.
Encompassing a 27-kilometer circular tunnel buried underground, the LHC is equipped with four major
detectors placed around the tunnel to capture the outcomes of particle collisions, which are,

* ATLAS (A Toroidal LHC ApparatuS): A versatile detector designed for a broad range of
physics investigations, including the search for the Higgs boson and the exploration of funda-
mental forces and particles [7].

* CMS (Compact Muon Solenoid): Another general-purpose detector with a specific emphasis on
precise measurements of particles, particularly focusing on the properties of muons. CMS played
a vital role in the discovery of the Higgs boson [7].

'With the relativistic kinetic energy given by Eyi, = e — mc?, we can find the speed of the particle.
1-2

2
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* ALICE (A Large Ion Collider Experiment): Specialized in the study of heavy-ion collisions,
ALICE contributes to our understanding of quark-gluon plasma, a state of matter believed to have
existed in the early universe [7].

* LHCDb (Large Hadron Collider beauty): With a primary focus on investigating the asymmetry
between matter and antimatter, LHCb examines the properties of particles containing the beauty
(b) quark [7].

ALICE

-~ 1976 (7 k)

HiRadMat

Figure 1.3: Detailed schematic of the CERN particle physics laboratory, showing major experiments and
accelerators such as the Large Hadron Collider (LHC), ATLAS, CMS, and other facilities
[9].

The focus of this study is specifically on the Drell-Yan process at a collision energy of 13 TeV, which
we will explore in detail in the forthcoming chapters. The Drell-Yan process is characterized by the
annihilation of a quark and an antiquark, leading to the creation of either a virtual photon or a Z boson.
This intermediate boson then decays into a lepton and its corresponding antilepton. The electroweak
interaction, a theory that merges the electromagnetic and weak nuclear forces, plays a crucial role in
mediating this process. However, the initial quark-antiquark annihilation falls under the domain of the
strong force, necessitating the application of quantum chromodynamics (QCD) to fully describe the
interaction [8, p.301].

1.4 Strong Nuclear Force

The strong nuclear force, also known as the strong interaction, is a fundamental force of nature that
binds quarks and gluons together to form protons, neutrons, and other hadrons. This force operates over
a very short range, limited to the dimensions of atomic nuclei, and is powerful enough to overcome the
electrostatic repulsion between positively charged protons within nuclei. Gluons, the exchange particles
of the strong force, mediate this interaction.

A unique feature of the strong force is that it intensifies as quarks approach each other, a property
known as confinement. This ensures quarks are always found in groups, forming color-neutral particles,
rather than existing in isolation [10].

Color charge, a concept exclusive to the strong force, describes the quantum property of quarks and

comes in three varieties: red, green, and blue, with corresponding anti-colors for antiquarks (anti-red,
anti-green, and anti-blue). The formation of particles requires that quarks combine to create a color-
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CHAPTER 1. FUNDAMENTALS OF PARTICLE PHYSICS

neutral entity, analogous to how mixing red, green, and blue light yields white light.

Gluons differ from photons, the mediators of the electromagnetic force, in that gluons carry a color
charge. This enables them to not only interact with quarks but also to exchange color charge among
them. With the ability to bear combinations of color and anti-color, gluons can manifest in eight distinct
color-anti-color pairings, facilitating a complex interplay of strong force interactions within hadrons [5].

Hadrons play a crucial role in our research, particularly in the Drell-Yan process, where these parti-
cles are collided with each other. Composed of quarks, hadrons are categorized into two primary types

(51,

* Baryons: These hadrons are made of three quarks. Protons, with two up quarks and one down
quark, and neutrons, composed of two down quarks and one up quark, are prime examples of
baryons.

* Mesons: In contrast to baryons, mesons comprise a quark and an antiquark pair. Mesons are
inherently unstable and typically have a much shorter lifespan than baryons.

The theoretical framework governing the strong force is known as Quantum Chromodynamics (QCD).
QCD enables the prediction of various phenomena stemming from hadron collisions, such as those
observed at the Large Hadron Collider (LHC). Nonetheless, modeling these interactions precisely is
challenging due to the complex nature of particle interactions within hadrons, where straightforward
perturbative QCD calculations are often not feasible. To analyze the Drell-Yan process, we rely on
Quantum Chromodynamics (QCD) to offer a theoretical foundation. This thesis will focus on under-
standing how the Drell-Yan process varies with different lepton masses. We will systematically derive
the required QCD expressions to support our analysis.

University of Antwerp
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2 Quantum Chromodynamics

This chapter is mostly based on reference[13],[16].

The Drell-Yan process involves a high-energy collision between two hadrons, which are particles made
of quarks bound by the strong force. These collisions happen at very high speeds, close to the speed
of light, and produce many new particles, including pairs of leptons. Due to the high velocities and the
tiny scale of the particles, we need to use both special relativity and quantum theory to understand these
events.

Quantum field theory (QFT) is the framework that integrates quantum mechanics, special relativity,
and classical field theory. Within this framework, Quantum Chromodynamics (QCD) specifically deals
with the strong interaction. While these theories are crucial for comprehending phenomena like the
Drell-Yan process, this thesis will aim to explain only the necessary concepts and derivations for our
analysis, considering my limited expertise in quantum field theory [11].

Another important theory, Quantum Electrodynamics (QED), focuses on the electromagnetic interac-
tions among electrons, positrons, and other charged particles, using principles from quantum mechanics
and special relativity. The force carriers in QED are photons, unlike the gluons in QCD. QED is a gauge
field theory based on the U(1) Lie group [5], which means,

* A gauge theory models the behavior of fields, which are mathematical constructs representing
physical properties. These theories are characterized by local symmetry, meaning the equations
describing the fields remain consistent under certain local changes .

* A group in mathematics is a collection of elements with an operation (like multiplication or
addition) that combines any two elements to produce another element within the same group.
The unitary group U(1) consists of all complex matrices that, when multiplied by their complex
conjugate, yield the identity matrix. In QED, the U(1) symmetry ensures the theory’s equations
do not change under transformations related to electric charge conservation [12].

QED is simpler than QCD, mainly because it deals with only one type of charge, associated with the
U(1) gauge group. This forms the basis of a gauge field theory. QCD, however, is based on the SU(3)
gauge group, which accounts for the symmetry of color charge in three different ’colors’. The presence
of three color charges in QCD, as opposed to the single electric charge in QED, significantly increases
the theory’s complexity [5].

Another key difference is in the group properties. U(1) is an abelian group, meaning its elements
commute with each other. On the other hand, SU(3) is a non-abelian group, where the elements do
not commute, adding further complexity to the theory. It’s interesting to note the dimensionality of
SU(3), which is 8-dimensional. This dimensionality aligns with the earlier discussion on the different
quark-antiquark configurations a gluon can carry [5], [12].

With these distinctions in mind, we can view the gauge symmetry of the strong interaction in QCD

as an extension of the principles found in QED. Therefore, throughout this study, we will navigate
between both theories to deepen our understanding of Quantum Chromodynamics.
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CHAPTER 2. QUANTUM CHROMODYNAMICS

2.1 Quantum Chromodynamics: An Introductory Guide

Quantum Chromodynamics (QCD) is based on the existence of N = 3 colored spin-% particles, known

as quarks, across six different flavors. Corresponding to the SU(3) group, represented by 3 x 3 complex
matrices,there are N> — 1 = 8 gauge bosons, or gluons, denoted by Aj;. Each gauge boson interacts
uniquely with a specific type of charge, and these interactions are represented by matrices,

T%a=1,..,N*—1 2.1)
These matrices obey specific commutation relations,
[T“, Tb] _ jpabere 2.2)

In QCD, the structure constants f*¢ are antisymmetric in all their indices. The charge quantum number
in QCD, referred to as color, is represented by the matrices 7¢. This establishes QCD as a theory with
multiple vector particles (the eight gluons) and non-commuting charges, making it a non-abelian theory.

Similar to how the angular momentum (which is better known for physicist) operators J' serve as gen-
erators of the rotation group, the matrices 7 are the generators of the color symmetry group in QCD.
Quarks belong to what is called the fundamental representation, which has the dimensionality n = N
and is represented by y; where i = 1,2,3 (or, in a more general SU(N) group, fori=1,2,...,N). The
generators in the matrix representation are provided by,

a 1 a
T~ A 2.3)

where A4 are the 8 Gell-Mann [14] 3 x 3 matrices,

010 0 —i 0 1 0 0
Al=11 0 o], A*=1|i 0 o], A*=|0 -1 of,
0 0 0] 0 0 0 0 0 0
0 0 1] [0 0 —i] 0 0 0
A*=10 0 o], A’=1[0 0 o, A®=|0 0 1/, (2.4)
1 0 0] i 0 0 010
0 0 0 L Jr oo
AT=10 0 —i|, A®=—1]0 1 0
0 i 0 V310 0 —2

The adjoint representation in QCD has a dimensionality of N> — 1, where gluons are represented as Al
with a = 1,...,8. The matrix representation of the generators in the adjoint representation is uniquely
characterized by the structure constants,

(T%) — —if** (2.5)

For quark behavior analysis, we use the Dirac equation, a fundamental relativistic quantum wave equa-
tion. Initially described in QED for the spin-1/2 charged particles, this equation is given by,

(iny* 9y —mc) y =0 (2.6)

Where y* are 4 x 4 gamma matrices or Dirac matrices with 4 = 0,...,3 (£ = 0 is the time component),

Y= [(’) ° } @)
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VZ[O o'

i 0]’ i=1,2,3 2.8)

In these formulas 7 is the 2x2 identity matrix , and ¢’ denote the Pauli matrices. These gamma matrices
are crucial for describing the behavior of relativistic fermions and maintain invariance under Lorentz
transformations. The term dj, signifies the spacetime derivative, where u =0, ...,3.

In the context of the Dirac equation, ¥ is not merely a complex wave function but a 4-component
vector, or bispinor , which consists of two spinors [15], 1

Wi
L)
= 2.9
y " (2.9)
Y

This leads to the division of y into two parts,

Y = M (2.10)

s = m 2.11)

A spinor is represented by two complex numbers, indicating that y in the Dirac equation is composed
of four complex numbers at each spacetime point. The components y; and ¥, correspond to the states
of spin-up and spin-down electrons, respectively, whereas Y3 and yy represent spin-up and spin-down
positrons. This structure integrates both matter (electron, y4) and antimatter (positron, Yg) components
within each bispinor. For our purposes, it’s sufficient to recognize Y as a bispinor made up of complex
numbers, without further exploration into the visualization of spinors [15].

In QED, the electron-photon interaction is described by modifying the derivative dj, to include the
interaction term, as follows,

Where e is the electric charge, and A, represents the photon field.

In QCD, the modification of d; to include the gluon interactions is not represented by a single term
but rather a sum of terms corresponding to each of the gluons. Each term incorporates a color-charge
matrix,

Here, g; is the strong-interaction coupling constant, a;; are the gluon fields and T“ are the color-charge
matrices.

To connect the initial and final states in a scattering process, we employ the S-matrix, or scattering
matrix. The construction of such a matrix utilizes the Feynman rules associated with a Feynman dia-
gram [5]. For QED, these rules can be derived using perturbation theory. To extend these rules to QCD,
we apply the same principles but incorporate the additional complexity of the color matrix.

2.1.1 Feynman Rules

We will analyze a scattering process ¢; + ¢ — @3 + ¢4 within the framework of QED using time-
dependent perturbation theory. Our goal is to express physical cross-sections in terms of invariant

INote that using gamma matrices is a way to formulate the dirac equation to satisfy commutation rules. It is totally possible
to use other means to describe the dirac equation and which means the way we interpert Y can change too.
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CHAPTER 2. QUANTUM CHROMODYNAMICS

scattering matrix elements (derive these Feynman rules). Perturbation theory, as encapsulated in the
Feynman rules, facilitates the computation of S-matrix elements.

Figure 2.1: Feynman diagram illustrating a four-particle scattering process ¢ + ¢ — ¢3 + ¢4 in QED.
The diagram shows the exchange of momentum between the particles, represented by Py, P,
Pz, and Py, as they interact via a central virtual particle [13].

Consider a relativistic, spin-1/2 system, incorporating the electromagnetic interaction into the Dirac
equation as follows,

(id —eAd —m)p =0 (2.14)
Where 4 = y*A u (the same for ). Here, the interaction potential is represented by,

V=—ey'y'A, (2.15)

Using first-order perturbation theory, we derive,

o = —i / Prdt 7V o,
= ie/d“x@f}/“(piAﬂ

With ¢ the final state of the particles and ¢; the initial states of the particles. This leads to a j-A
interaction form,

o = —i/d“xj“AH (2.16)

with the current j* defined as,
JH = ety ¢ (2.17)

We express the initial and final states using plane-wave solutions,

O = Nyu(pr)e P~ (2.18)

where N, = \/#7 for k =1,2,3,4. Substituting these plane-wave solutions, we obtain,

1 1
o = (2m)* 8Py — Py | —— | IT; | —— , 2.1
(27)" 6% (Pr — P)ILy TG [ZEiV]///f (2.19)

Here, we encounter the scattering matrix element .#; which is given by,

Y
Mii = —eﬁ(ps)}’uu(m)%eﬁ(m)?’vu(m) (2.20)
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This formulation provides a precise representation of the scattering matrix elements, which are crucial
for calculating the physical cross-sections of the scattering process being studied. The corresponding
Feynman rule for the spin-1/2 transition vertex is then given by figure 2.2.

P p

yd o

m ie v

Figure 2.2: Feynman diagram illustrating the vertex interaction between an electron and a photon, sym-
bolizing the fundamental electron-photon interaction in QED. This diagram depicts the elec-
tron (labeled by momentum p) emitting or absorbing a photon (i), with the vertex factor
represented by iey* [13].

In a manner similar to the electron-photon interaction in QED, we can derive the Feynman rule for the
quark-quark-gluon coupling in QCD, which has a comparable structure but includes the complexities of
color charges as seen in figure 2.3.

j" /k ) l’l’ a
\% 8 7 (T )jk
a

Figure 2.3: Feynman diagram for the quark-quark-gluon coupling in QCD. The gluon (labeled by u,a)
interacts with quarks (labeled by j, k), highlighting the color indices and the gluon’s influ-
ence on quark dynamics within hadrons [13].

For internal particle lines, the Feynman rules for propagators are specified in figure 2.4.

q jk i (g+m)
- g 2 2
j k q -m*< +i €
b . ouv
W q A% Ba -8 (Feynman
[ e " eV e ey
a b q 2 ,ie gauge)

Figure 2.4: Feynman diagrams illustrating the propagators for quarks and gluons, fundamental com-
ponents in quantum field calculations. The top diagram shows the quark propagator with
momenta ¢ and indices j and k, represented by the formula next to it. The bottom diagram
presents the gluon propagator involving gluon fields p and v with color indices a and b,
depicted by the expression next to it, highlighting the gauge-dependent nature of gluon in-
teractions in QCD [13].
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The quark-gluon interaction is not the sole interaction in QCD. Due to the nature of color charges in
QCD and the presence of multiple vector particles, gluons, these particles are capable of self-interaction.
This self-interaction is a result of how color charges behave uniquely within QCD. Unlike in electro-
magnetism, where the system remains unchanged under a specific transformation of the four-potential
Ay by a four-gradient,

Ay = Ay + i 2.21)

In QCD, the gauge freedom is extended to include not just a four-gradient modification but also a rotation
in the color indices,

AG — AS 4 Oy A — g fAPAS, (2.22)

The non-zero structure constants f%* modify the field strength tensor F*¥ in QCD compared to its QED
counterpart. While in QED, it is defined as,

Fuy = a,uAv - avA;L (2.23)
In QCD, it includes an additional term,
Ffy = 0uAS — 0, AL + go f AL AS, (2.24)

This extra term in Fj,, leads to gluon self-interactions in the construction of a gauge-invariant kinetic
energy term for gluons by squaring Fj,. The squaring of Fj, introduces both cubic and quartic gluon
self-interaction terms. The cubic term, involving derivative couplings, is proportional to gs X f, and the
quartic term, lacking derivatives, is proportional to g2 x £ and lacks derivatives.

The Feynman rules for these interactions are illustrated on figure 2.5.

“’{’ILF/;’C s fﬂbc (g"" (k-p)®
k25 +g VP (p-q) "
P.Z +g p“(qfk)vi
v, Db
u,a v,b _I.g:fﬂbedee (gllpgvo_gllcgvp)
+ permutations
p,c c.d

Figure 2.5: Feynman diagrams depicting gluon self-interactions and their coupling with quarks. The top
diagram illustrates the three-gluon vertex with momentum and color labels, accompanied by
the corresponding mathematical expression involving the structure constants f%¢ and metric
tensors g"V. The bottom diagram shows the four-gluon vertex, highlighting the symmetrical
nature of gluon interactions in non-abelian gauge theories like QCD with coefficients that
ensure gauge invariance [13].

This structure ensures that the coupling constant g in the gauge boson self-interaction vertices matches
the g, in the quark-gluon interaction vertex, a crucial aspect for maintaining non-abelian gauge invari-
ance.
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2.2 Deep Inelastic Scattering

Having delved into foundational Quantum Chromodynamics (QCD) concepts, we now turn to Deep
Inelastic Scattering (DIS), a pivotal experimental approach that reveals the internal composition of
hadrons. Through DIS, where high-energy electrons scatter off quarks within hadrons, we gain access
to structure functions. These functions are vital as they encode the distributions of quarks and gluons,
thereby mapping the internal dynamics of hadrons. The structure functions will serve as foundational
elements for the equations required to describe the Drell-Yan process.

Consinder directing a high-energy electron beam at a hadron and analyzing the scattering patterns,
we can study the interactions between the electrons and the quarks inside the hadrons. This process
is mediated by the exchange of virtual photons, which, unlike real photons, do not satisfy the mass shell
condition ¢g> = 0 or in simpler terms, the four-momentum is not conserved, allowing them to reveal
details about the internal structure of the target particles.

The invariant mass W of the outgoing system is determined by the equation,
W? = (pn+4)° =My +2py-q+¢° (2.25)

Where My and py are the mass and four-momentum of the nucleus. It follows that ¢* is negative, thus
we define Q% = —¢°.

Replay : e-proton scattering

4 ) continuous curve scales
F () elastic e-(valence) e-valence quark scatt.
~ l quark

~

scattering
dashed curve (higher Qz) :
includes e-sea quark scattering

scaling

elastic s
violation

Figure 2.6: Schematic representation of electron-proton scattering, showing the structure function F,(x)
as a function of Bjorken x (represents the momentum fraction of a parton). The graph delin-
eates different scattering regimes, the elastic scattering at x = 1, and the inelastic scattering
showing both valence and sea quark contributions. The continuous curve represents valence
quark scattering, while the dashed curve at higher Q% includes sea quark scattering, illustrat-
ing scaling violations due to QCD effects [16].

Instead of delving into the detailed derivation, let’s summarize and discuss the results of the experiment
that guide us to the next part of our discussion. As Q7 increases, we initially observe ’nuclear’ scaling
with a peak at xy = 1 (situation where probing photon interacts with a single constituent quark or gluon),
which then transitions to violations of this scaling (deviates from the expected value). Subsequently,
’proton’ scaling emerges with a peak at x ~ 1/3. If quarks had substructures, further increases in Q2
would lead to another cycle of scaling violations followed by a new scaling regime. However, historical
data does not support this repetitive pattern. Instead, scaling violations are observed, but these are
attributed to the quantum field theory of quarks and gluons (QCD) with the coupling constant &, (which
we will be seeing more of it in depth later on). The probing photon reveals the proton as being composed
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CHAPTER 2. QUANTUM CHROMODYNAMICS

of three valence quarks and an indefinite number of gg pairs from the sea quarks, which arise from gluons
(g — gq. This dynamic is illustrated in figure 2.6. When the photon probes a quark carrying a fraction
& of the proton’s momentum p, and assuming the quarks are nearly massless, we find,

(Ep+q)=mi~0 (2.26)
leading to

Q2
2pq

&~ X (2.27)
Therefore, as Q? increases, more partons (quarks and gluons) become visible, each holding a smaller
fraction £ = x of the proton’s momentum. This results in QCD scaling violations, depicted by the dashed
line in figure 2.6, where the distribution of partons’ momentum within the proton changes with Q.

2.2.1 The Structure Functions

Let’s delve into a specific process: the Deep Inelastic Scattering (DIS) process ep — eX, depicted in
figure 2.7(a). We discuss the neutral current (NC) DIS mediated by ¥ and Z exchange, as well as the
charged-current (CC) DIS mediated by W exchange, as shown in the second diagram (c).

Here, *deep’ implies Q% >> M? (mass of the proton), and ’inelastic’ implies W2 = (p + ¢q)> >> M>.
The NC cross-section takes the form,

do do  2myoh’ wV
T W Y L Wiy (2.28)
J
(a) NC (b) CC
k. ® kY
k kK -~ g
i w R
Tr bt | __\_\\ X ;_ x
| =—— h} p——— | S— __:,‘3

Ty N P \_/

Figure 2.7: Illustration of Deep Inelastic Scattering (DIS) processes. (a) Neutral Current (NC) DIS me-
diated by photon () and Z boson exchange, involving an electron scattering off a quark. (b)
Charged Current (CC) DIS mediated by W boson exchange, where an electron is converted
into a neutrino [16].

L*V is the tensor from the leptonic vertex known in terms of k (four-momentum of the incoming elec-
tron) and k' (four-momentum of the outgoing electron), and W,y is the unknown tensor describing the
hadronic vertex. Although W,y is unknown, it must be constructed from the 4-momenta p, ¢, and the
metric tensor gyy. For unpolarized DIS, there are three tensor forms satisfying the requirements of
current conservation g* Wy, = ¢g"W,,, = 0. In this case, the general form is,

quqv 5 pupv 2 . qapﬁ 2
Wy =1 — —— | F —F —i€ —F 2.29
uv < 8uv+ e ) 1(x,07) + pq 2(x,0%) —1i uvaﬁzp'q 3(x,07) ( )
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And here we find the observable structure functions that we were looking for! We can write a more
general form of this equation by doing some algebraic manipulations,

do 27wc

dxd Q2 X0

where (with y the fraction of the lepton’s energy lost in the nucleus frame),

(Y B+ Y _xF;—y*F)] (2.30)

Yi=1+(1—y)> and F =F —2xF. (2.31)

These functions, denoted by F;(x, 0%), where i = 1,2,3 are functions of two scalar variables x and Q?
which can be constructed from p and g. They provide information about how partons (quarks and
gluons) are distributed within hadrons. In DIS, the cross section is expressed in terms of these structure
functions, which encode information about the momentum distribution of quarks and gluons inside the
proton. The reduced cross section, denoted by Oreq(x, QZ), is a combination of these structure functions
and is often used in the analysis of experimental data. Let’s expand the structure function to a more
mathematical function that quantitavely describe the probablity density of finding a specific type of
parton with a given momentum fraction x inside the hadron, called the parton distribution function.

2.2.2 The Quark Parton Model

The basic idea of the QPM is that in the DIS process, the virtual photon interacts with one of the quark
constituents of the proton, see figure 2.8. We view the process from a frame in which the proton is
moving very fast so that the relativistic time dillation slows down the rate with which the quarks interact
with each other. Thus the struck quark appears essentially free during the short time that it interacts
with the photon. As a result, the ep interaction may be written as an incoherent sum (of probabilities)
of scattering from single free quarks,

do 1 dé,
0~ ;/0 d& f4(8) (ddeE) (2.32)

where f, (&) is the probability of finding the quark q in the proton carrying a fraction & of its momentum.

w>

Figure 2.8: Diagram showing the interaction of an electron with a quark within a proton, emphasizing
the quark’s momentum transfer (§) during the collision [16].

The QPM formula can be written as,

djdgz e Z/ d& fy(&)eg [1+(1-y)*] §(x—&). (2.33)
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If we rewrite the QPM formula in the form,

do 27wc

dde2 X0t Z/ ds f4(8 e Xo(x—8), (2.34)

and compare it with the general structure function formula, we obtain,
1
F, =2xF| = Z/o d& fq(é)x'e,%S(x— &)= Zef]qu(x). (2.35)
q q

The first equality, known as the Callan-Gross relation, holds because quarks have spin % If the quarks
had spin 0, then F; would have been 0. Note that in the QPM, the structure functions are independent
of 07, exhibiting scaling behavior. The collective distribution of quarks and gluons are called, parton
distribution functions (PDFs), denoted as f,(x), describe the probability of finding a quark or gluon car-
rying a fraction x of the proton’s momentum when probed at a certain energy scale Q, like we explained
earlier.

2.2.3 QCD Analysis of DIS Structure Functions

The structure function F»(x, Q?) is analyzed in this section through a factorization formula that integrates
QCD corrections to address the complex dynamics of parton interactions at higher energy scales (this
is the range that interests us). High-energy (short-distance) interactions are treated using perturbative
methods, exploiting the property of asymptotic freedom in QCD where the coupling constant becomes
weaker at high energies (this will be coming back later). This allows for precise calculations of the
scattering processes involving quarks and gluons. On the other hand, low-energy (long-distance) inter-
actions are inherently non-perturbative and thus more challenging to compute. These interactions often
involve the binding dynamics of quarks and gluons within the proton, encapsulated by Parton Distri-
bution Functions (PDFs). Factorization in DIS effectively separates the perturbative components from
the non-perturbative elements, enabling a clear analysis of hard scattering processes. This separation is
essential, particularly in high-energy collisions, where we examine interactions at scales where partons
behave almost freely due to the high momentum transfer.

The comprehensive collinear factorization formula for the structure function F; is given by [8],

Fy(x,0%) :xzej/l d;g(g,gz) {5 (1 - g) %chS <g) + }

—i—xZe/ gg){%CMs(g)Jr...}. (2.36)

In this formula,

 xrepresents the Bjorken scaling variable, indicating the fraction of the proton’s momentum carried
by the struck parton.

+ (7 is the momentum transfer in the interaction, serving as the scale at which the structure is
probed.

* The sum }, ; denote summations over quark and antiquark flavors.
* ¢, 1s the electric charge of the quark flavor g.

* g(&,Q?) is the parton distribution function, describing the probability of finding a parton with a
momentum fraction £ at the scale Q7.
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* The delta function §(1 — %) represents the leading-order contribution.

|

. %‘ICL?TS(%) reflects higher-order corrections in the Modified Minimal Subtraction scheme (MS) 2.

The MS scheme regularization method used in quantum field theory that simplifies calculations
by subtracting only the divergent parts of loop integrals, along with a specific set of finite terms
defined by the dimensional regularization technique.

This extended formulation allows for a more accurate prediction and analysis of the structure function
across different kinematic ranges.

Later, we will explore how the structure function F,, obtained from Deep Inelastic Scattering (DIS) ex-
periments, measures the probability of finding a parton carrying a fraction x of the proton’s momentum
at a specific momentum transfer scale Q2. Due to its dependence on Q?, we can use this experimentally
derived information to calculate the behavior of partons inside a hadron. This calculation involves an
evolution equation that we will derive later.

Let’s summarize our progress so far: We began with a brief introduction to Quantum Chromodynamics
(QCD) and proceeded to discuss a specific experimental framework, Deep Inelastic Scattering (DIS).
In the context of DIS, we explored structure functions and subsequently derived Parton Distribution
Functions (PDFs). This framework allows us to describe the internal structure of hadrons quantitatively.
However, our current understanding does not extend to detailed interactions and evolution of these in-
ternal structures through time. The next steps will exaclty involve deriving these evolution equation, but
first, it is imperative to grasp some foundational concepts such as renormalization and the running of the
QCD coupling constant, which has been alluded to previously.

2.3 Renormalization

Up to this point, our discussion has centered on tree-level effects, specifically considering Feynman
diagrams without loop contributions. However, loop corrections become relevant at higher orders in
perturbation theory. Such corrections to the processes introduce new complexities that require a system-
atic approach to address.

In the following sections, we will explore loop effects. The theoretical framework that encompasses
these effects is known as renormalization. We aim to provide an introductory overview of renormal-
ization and its physical interpretations, which we will further clarify with an example involving the
renormalization of the electric charge.

Figure 2.9: Feynman diagram depicting loop corrections in a particle interaction. This diagram illus-
trates the inclusion of higher order effects in perturbation theory [13].

2Extra information about this scheme can be found in [17, p-3-4]
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2.3.1 Basic Principles of Renormalization

A clear indication that renormalization is necessary emerges when evaluating Feynman diagrams with
loops, which often result in integrals that are divergent in the ultraviolet (high-momentum) region.
Renormalization gives meaning to these ultraviolet divergences. For a Feynman graph with a loop

integral of the form,
N(k)
d*k——= 2.37
/ D(k) (2.37)

we assess the degree of divergence by examining the powers of the momentum &,
D = (powers of k in N +4) — (powers of k in D) (2.38)

If D > 0, the integral is ultraviolet divergent. A theory is termed ‘renormalizable’ if it contains only a
finite number of such divergent amplitudes. QED, for instance, has three divergent amplitudes. QCD,
while more complex, still possesses only a finite number. In renormalizable theories, all divergent Feyn-
man graphs include these few fundamental divergent amplitudes as their components.

Renormalizability ensures that we can systematically address the ultraviolet divergences. By adjusting
the magnitudes of certain parameters and the properties of particles within the theory, these divergences
can be absorbed. For a given quantity, which we will denote as ¢, the renormalization scaling is applied
as follows,

(@) '\N\.NW
) +

(c)

Figure 2.10: Examples of fundamental divergent Feynman diagrams. renormalization. (a) shows a loop
with a single external momentum, illustrating a typical ultraviolet divergence. (b) and (c)
depict self-energy and vertex correction diagrams, respectively, each fundamental to the
renormalization process in theories like QED and QCD, where adjustments of parameters
absorb these divergences [13].

O— =29 (2.39)

Here, ¢g represents the renormalized quantity, ¢ is the original quantity, and Z is a renormalization con-
stant that compensates for the divergence. Although Z may itself be divergent or unobservable, when
the adjustments are made and the predictions of the theory are expressed in terms of renormalized quan-
tities, all physical observables are rendered finite and free from divergence.

This results in a description of the renormalization process, which we can outline as a series of steps:

* Use a method to deal with the troublesome divergences. Examples include setting a cut-off limit
(A) on the ultraviolet region or using dimensional regularization.
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* To get rid of the divergences, make specific changes to parameters and wave functions. In the case
of QED, this involves tweaking the electromagnetic potential (A), the electron wave function (y)
and mass (m), and the coupling constant (e). The adjustments look like this,

A= Ay = VZ3A (2.40)

V=W =Vhy (241
Zy

m— moy = Z—Zm (2.42)

e—ep= Z (2.43)

e
2on\/Z3

Here, Z3 and Z, are constants for the photon and electron wave function, Z; is the vertex constant,
and Z,, is the electron mass constant.

» After these adjustments, all the physical predictions become calculable and clearly defined in
terms of these adjusted quantities, with no more divergences.

Theories that successfully yield finite predictions for physical quantities through this program are called
renormalizable theories!

Before going to a specific example, we can point out that gauge invariance adds significant constraints
to renormalization, establishing relationships among the divergent amplitudes and, consequently, the
renormalization constants. Let’s take QED as an example. Gauge invariance implies the following re-
lation between the electron-photon vertex I';, dotted into the photon momentum ¢ and the electron
propagators S,

¢'Tu=5"(p+9) -5 (p) (2.44)

This equation, illustrated in the figure below, is referred to as the Ward identity and holds true to all
orders.

q-A&—= @ - 0

p P p+q p

Figure 2.11: This diagram shows the application of the Ward identity, depicting how the photon’s mo-
mentum g* interacts with the electron propagators. The equality demonstrates that gauge
invariance maintains the conservation of current, crucial for ensuring physical observables
are gauge-independent [13].

Using the renormalization constants Z; and Z, defined by the rescalings from earlier,

1
no_
=27+ (2.45)
_ L
we have | |
74=7 (prd—m)—(p—m)] (2.47)
Thus in the abelian case (QED),
Z=2 (2.48)
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As a result, the rescaling relation defining the renormalized coupling in QED becomes,
e’ =73¢} (2.49)

The renormalization of the electric charge is determined solely by the renormalization constant Zs,
which is associated with the photon wave function. This renormalization is independent of any factors
related to the electron.

In contrast, in non-abelian gauge theories, the equivalence Z; = Z, found in QED does not hold.
Nonetheless, the principles of non-abelian gauge invariance still enforce specific relationships between
the renormalization constants. These relationships are more complex than in the abelian case, and we
will explore examples of these in subsequent discussions. For now, we will focus on detailed calcula-
tions involving renormalization at the one-loop level.

2.3.2 Self-Energy in Gauge Bosons

Before delving into our example, we must consider the gauge boson self-energy, which is a fundamental
aspect involving one of the divergent amplitudes as depicted in Figure 2.10. We can think of these
amplitudes as the building blocks of our theory. Focusing on the one-loop contributions, the Feynman
diagrams for the self-energy of the photon and gluon are illustrated in Figure 2.12. For the photon,
the only contribution comes from the fermion loop graph, whereas for the gluon, additional diagrams
involving gluon loops must be taken into account. These loops are essential for understanding the
behavior of the gauge bosons within our framework.

QED: O o ees

9CD: ~ @ = o+ (O G A D),

Figure 2.12: The top row (QED) shows the contributions to the photon self-energy, primarily from
fermion loops. The bottom row (QCD) displays the gluon self-energy, including both
fermion and additional gluon loop contributions, reflecting the non-abelian nature of QCD
where gluons interact with each other [13].

Because of the relations 2.48 and 2.49, in the case of QED, calculating the gauge boson self-energy is
sufficient to determine the renormalization of the coupling. The outcome of this section will be em-
ployed in the next section to explore the renormalized electric charge.

We now compute the fermion loop graph.

q+k
W, a v, b _ab
- ~ - IEHV (q)
q K

Figure 2.13: Diagram illustrating the fermion loop graph in QED. This graph shows a photon with mo-
mentum ¢ interacting through a loop consisting of fermion-antifermion pairs, which signif-
icantly contributes to the photon’s self-energy [13].

University of Antwerp
24 — Bachelorproef . 1 Faculty of Science



As shown in Figure 2.12, in the QED case the fermion loop is all that contributes to the self-energy,
while in the QCD case this gives one of the required contributions. The graph in Figure 2.13 is given by,

lﬂﬁlz,(q) _ —ngr (TaTb) / (d4k Tr [yﬂ (k+g+m) W (lé'f‘m)] (2.50)

21" (k2 — m2 +i0+) ((k+q)2 —m2+io+)

This expression is written for the non-abelian case in general. Here, the color-charge factor®, is given
by,

1

Tr <T“Tb) = 58 2.51)

To obtain the QED case, we make the following substitutions,

g’ — e’ =4na, (2.52)

Tr (T"T”) S (2.53)

The integral in question is ultraviolet divergent. By performing superficial power counting in the loop
momentum k, the divergence is identified as quadratic. However, gauge invariance necessitates that 7,y
be proportional to the transverse projector g“qu —quqv, such that,

Ty = (8uvg” — quqv) TH(g?). (2.54)

To manage the divergence, dimensional regularization is employed. This technique adjusts the number
of dimensions in the integrals, mitigating the degree of divergence. It transforms a quadratic divergence
into a logarithmic one by reducing the number of momentum powers by two. In this method, the integral
is extended from 4 to d = 4 — 2¢€ dimensions by introducing a dimensionful scaling parameter U, so that,

, d*k

e d4—2£k
$ )

2
— g (u W

(2.55)

In dimensional regularization, a logarithmic divergence such as d*k/k* manifests as a pole at € = 0
(or d = 4). Ultraviolet divergences in the integral are indicated by poles in 1/€. The result for 7,y in
dimensional regularization becomes,

ab : apby & ! 4mu’ )

= (guvd” — quqv) TI(¢%). (2.56)

The first factor on the right-hand side, consistent with gauge invariance, confirms that the self-energy of
the gauge boson is purely transverse,

(guvd® — quav) ¢ =0,  (guvq* —quqv) g’ =0. (2.57)

The transversality of the self-energy implies that loop corrections do not endow gauge bosons with mass
in QED and QCD. The term Tr (7T") signifies the non-abelian charge factor, which reduces to 1 in the

2
QED case. Next, 4‘% is the coupling constant, turning into % = 2 for QED. The Euler gamma function
I'(€) encloses the logarithmic divergence, represented by the pole at € = 0 in dimensional regularization,

I'(e) = é —y+0(e), (2.58)

3This follows from color-algebra in QCD; the detailed derivation steps are not necessary for this thesis
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where 7 is the Euler-Mascheroni constant, approximately 0.5772. The first term in the integrand stems
from the regularization process, reliant on the ratio between the regularization scale x> and the combi-
nation of the mass scales m? and g°. The last term, 2x(1 —x), results from the specific Feynman diagram
computation.

Isolating the ultraviolet divergent part of the self-energy at ¢> = 0, the higher ¢> powers in I1(g?) are
finite. The simplified expression is,

IKO):>—TMT”TbszIKsXAldx<4nu2>82x(l—x)

r? m?
2
g 1

~ =T (1077 2.59
! 27’ ¢ (259)

For the QED case specifically, the approximation yields,

ol
o) ~ ——-—+... 2.60
(0)= 53—+ (2.60)

Armed with these results, we will proceed to discuss the renormalization of the electromagnetic coupling
in our forthcoming example.

2.3.3 Renormalization of The Electromagnetic Coupling

Consider a physical process involving the exchange of photons. The effect of renormalization on the
photon propagator can be understood by considering multiple photon self-energy insertions, depicted
schematically in figure 2.14.

Figure 2.14: Schematic representation of the renormalization effects on the photon propagator due to
repeated self-energy insertions. This sequence shows how the bare photon propagator Dy
is modified through successive insertions of the self-energy I, illustrating the series expan-
sion used in the renormalization process in QED [13].

Dy — D = Do+ DoI1Dy + DoIIDgIIDg + . .. (2.61)

Where Dy is the bare photon propagator, and II represents the photon self-energy computed in equa-
tion 2.60. By summing this series and applying the transverse projector in I, along with the fact that
longitudinal contributions vanish due to gauge invariance, we obtain,

Dy

Dy—-D=——7—+-. 2.62
BT ooy
Consequently, the effect of renormalization on the photon exchange process can be described as,
2 2
1
ST (N (2.63)
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where ¢ is the photon’s momentum.

Separating the divergent and finite parts of I1, we can express the denominator on the right-hand side as,

1=TI(¢*) = [1 =TI(O)] [1 - (T(¢*) ~T1(0)) ] + &' (a). (2.64)
Thus, we find,
2 2
e e 1
- = =—— (2.65)
¢ ¢ 1-1(g%)
1 e(z) 1
N — . (2.66)
g* 1 —T1(0) 1 - [TI(¢*) — T1(0)]
From this expression, we identify two main effects of renormalization:
1. The coupling strength is modified to,
2
€  _ 2
——=¢". 2.67
-1 ¢ (267)
Comparing with equation 2.49, we find the renormalization constant Z3,
Z3 ~ 1+11(0) (2.68)
o1
=1—-——+4... 2.69
3me * (269)

where we have utilized the explicit result for [1(0). The coupling e represents the physical, renormalized
coupling derived from the bare coupling e( via a divergence-managing rescaling.

2. The coupling becomes dependent on the momentum transfer ¢2, dictated by the finite part of the
self-energy, I1(¢*) —IT(0). This dependence is divergence-free and observable. The dependence of the
electromagnetic coupling on ¢ introduces a novel physical effect due to loop corrections. For low ¢°
(as ¢*> — 0),

I1(¢%) — I1(0) — 0, (2.70)
and for high ¢? (¢ > m?),
2
o
(%) — T1(0) ~ gln%. 2.71)

Therefore, ¢* signifies the coupling value at g> = 0, and we observe an increase in the coupling strength
as ¢* increases. Rewriting this in terms of the fine structure constant for large momenta gives,
o
2
a(q ) = o (12 *

This ¢%-dependence of the coupling is known as the running coupling, a concept we will explore further.
q p phing g pling p p

(2.72)

The result for the electromagnetic coupling illustrates the sum of perturbative terms containing large
logarithms when ¢ > m?. Expanding the equation in powers of o, we get,

2 n
o q

3n
This analogy likens the result to assembling a puzzle from small pieces (), noting that corrections can
become significantly complex at higher levels. However, by expressing the outcome via an effective
measure («¢(g?)), the series simplifies and becomes more manageable.

qZ
In" 2 +. ) . (2.73)
n

University of Antwerp
. I Faculty of Science BaChelorproef — 27



CHAPTER 2. QUANTUM CHROMODYNAMICS

2.4 Renormalization Group

Let’s explore renormalization from the perspective of the renormalization group. In previous discus-
sions, we noted that the introduction of renormalization introduces a dependence on the renormalization
scale u in loop calculations. Given that the choice of u is arbitrary, the laws of physics should remain
invariant regardless of the scale we choose. This concept is accurately captured by the renormalization
group. By examining how the theory evolves with the renormalization scale p, we can gain valuable
insights into the behavior of the theory at extremely short distances.

2.4.1 Renormalization Scale and Evolution Equations

In this section, we’re going to look at how we can understand the way some physical measurements
depend on a scale we choose, the renormalization scale . This is important because it lets us study a
specific physical quantity, let’s call it G, in a way that makes sense across different scales. When we
talk about 'renormalization’, we’re essentially finding a way to deal with infinite or undefined values
that can pop up in our calculations. We do this by using something called a renormalization constant,
denoted as Z, to adjust the original (or unrenormalized) version of G, which we’ll call Gy. This process
allows us to redefine G in a way that includes the effects of the chosen scale (t and a certain parameter
that changes with the scale, known as the renormalized coupling. This can be written as,

Go(pi, ) = ZG(pi,a, 1) (2.74)

Here, p; represents the set of physical momenta on which G depends, « is the renormalized coupling,
and oy is the unrenormalized coupling. Given that the left-hand side does not depend on p,

d
it follows that 4 96 9G 9 Iz
(04 n
YA A TRTER P TRyTE R TRITEAC (2.76)
By defining
o
dInZ
ne)=-—5 e (2.78)
we can rewrite the equation as,
L4—[3(Oc)i—i— (a)| G(pi,a,u) =0 (2.79)
a ln‘uz aa ’}/ Pi, &, “ - .

where (o) and y(o) are calculable functions of o.

Now, suppose we measure G at a physical mass scale O, which we use to rescale the arguments in
G and set,

G(pi,a,u) =F(x;,t,0) (2.80)

where i
X; = a (2.81)
t= 1n§§ (2.82)
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The equation then becomes,

d d
2+ B(@) 2+ ()| F1,@) =0 2.83)

where from now on, we will not explicitly write the dependence on the rescaled physical momenta x; in
F.

Equation 2.83 represents the renormalization group evolution equation, which can be solved with the
boundary condition F (0, a) at t = 0, implying that u = Q. To solve this, we initially find the solution
for the case when ¥ = 0 and then extend this solution to any value of y. For the case where ¥ = 0, the
equation simplifies to,

0 0
[_8t+ﬁ(a)aa] F(t,a) =0 (2.84)
Now, if we construct o/(¢) such that,
/ “_da’ (2.85)
t= )
a B(o)

then any function F of the form,
F(t,a) =F(0,0(t)) (2.86)

will satisfy the equation and the boundary condition. Here, 7 defines o(¢) as an implicit function.

For the general case where ¥ # 0, the solution is derived from the ¥ = 0 solution by multiplying it
with the exponential of an integral over v, as follows,

F(t, ) = F(0, a(t))exp [ /a “ da;;(((;))] 2.87)
— F(0,a(t))exp [ /O ’ dt’y(oc(t’))} (2.88)

In the second line, the variable of integration is changed using equation 2.85. This formula suggests that
after we deal with the infinite values that pop up in our calculations through a process called renormal-
ization, we can make our results accurate across different scales, from u to Q, by doing two things:

1. We switch out o for a new version, (), which changes with time or scale. This is like updat-
ing our measurements to reflect how things change at different scales.

2. We apply a special adjustment based on a formula that includes 7y, which tells us how to scale
our results over time. This adjustment is kind of like a correction that takes into account how things
stretch or shrink over different scales.

This correction changes how our results scale with ¢, adding new details that weren’t there before, thanks
to something called the anomalous dimension, 7. When we adjust our formula to include this, it helps
us avoid problems with infinite values in our predictions and makes our expansion series more accurate.
It does this by adding extra terms that become important at all levels of our calculations, helping us get
more precise results without the issue of increasingly large corrections.

2.4.2 Renormalization Group Analysis of Photon Self-Energy

Let’s revisit the study of photon self-energy, this time through the renormalization group perspective.
The divergent part of the renormalization constant Z3 helps us determine the QED f function at the
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one-loop level.

The B function describes how the coupling strength « varies with the energy scale p. This relation-
ship is expressed as,

o (u?)’ =Za (2.89)
By using expression 2.69 we have,

da o —e 1
S ——e(1- 5o (u?) =0 2.90
dlnpu? ( 3ne % (1) 3n (2.90)

The leading term of the QED f function at small coupling is given by,
B(a) = ba® +0(a?) (2.91)

1

= 292
e (2.92)

We finally find after substituting this term,

o 1
han(@/nd)’ T (2.93)

a(q%)

This equation reveals the leading term of the QED f3 function at low coupling strengths.

_

Figure 2.15: Graph depicting the leading term of the QED f function as a function of the coupling
strength ¢. This curve highlights the relationship between the coupling constant and the
rate of change of the coupling under renormalization group flow [13].

(00

When we delve into how electric charge behaves at the microscopic level, we observe that its behavior
becomes dependent on the energy involved. Initially, at a fundamental level, the charge appears to be-
have uniformly across all scales. However, when we factor in quantum corrections, we introduce a form
of ’adjustment’ factor, signified by an artificial or unphysical mass scale (such as ().

Although this artificial scale vanishes in the final outcomes, a significant change persists: the behav-
ior of the charge no longer remains constant across all energy levels. Instead, it varies depending on
the specific energy scale under consideration. This entire process, with its adjustments and variations,
is adeptly described by the renormalization group, which elucidates the universal trends in these adjust-
ments through the B and 7y functions. These functions are crucial for understanding and predicting how
electric charge behaves as we explore the microscopic realm at different scales.

2.4.3 The B-function of QCD

Let’s now finally explore the case of renormalization in QCD at the one-loop level, aiming to determine
the one-loop B function, similar to our previous discussions.
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We begin by rescaling the relations in QCD, which include the wave function and mass, as follows,

A—Ag=V7Z3A (2.94)
V= =Vhy (2.95)
c—co= V73 (2.96)
m— my = ?Zm (2.97)

where, in addition to the renormalization constants of the abelian case, we also introduce Z3. For renor-
malization of the coupling between quarks and gluons, we have,

ZoNZ380 = Z1g (2.98)
Z3vZ380 (2.99)
73740 =7, 38 (2.100)
7388 = Z148 (2.101)

We know that (without derivation) for non abelian guage invariance, that the vertices should have equal
couplings. With this property we can find relations between the different Z as follows,

Z_Z_Zs_ |7 (2.102)
7y L 73 Z3 '

In the non-abelian theory, we find that Z; # Z, (in QED they were equal).

Let’s define the renormalized coupling from the quark-gluon vertex as follows,

2

z
o (1?)° = ??23%0 (2.103)

Each of the renormalization constants Z; can be expanded in a perturbation series, with the coefficients
of this expansion being ultraviolet divergent. In dimensional regularization, these ultraviolet divergences
manifest as poles at € = 0, so the Z; constants take the form,

1
Zi=1+ ocxgci + finite term (2.104)

where the coefficients c; correspond to the divergent terms and need to be calculated. Utilizing o ( ,uz) €
and this expression, the 3 function is determined by,

_dag
~ dlnu?

B(as)

— —eap(n?) F[1-2(Zi 1) +2(Z— 1)+ (Z —1)]

1
=202(c; —co— 53) (2.105)
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A A

2) Ly

{3) M’\O\M’ ~v-<}ﬁ ,\;SZN w:::‘:i""“'\’

Figure 2.16: Illustration of one-loop Feynman diagrams contributing to the renormalization constants
Z1, Z3, and Z3 in QCD. Diagrams (1) show the quark-gluon vertex, (2) depict the quark
self-energy, and (3) represent gluon self-energy and ghost contributions [13].

The Feynman diagrams that contribute to Z;, Z;, and Z3 are the one-loop graphs for, respectively, the
quark-gluon vertex, quark self-energy, and gluon self-energy renormalization. By calculating these
diagrams using the method previously outlined for the fermion loop contributions and working in the
Feynman gauge (§ = 1), we derive the renormalization constants Z;,

o 1

zi—1-%2 2.106
1 471,'8(CF+CA) ( )
z—1-%1c (2.107)
2T T 4ge ¥ ’
a1 /5 4
Zi=1+5 2 (2c,— 2N 2.108
3 +477:8 <3 A= 3Ny F> ( )

where Ny is the number of quark flavors, and the color charge factors are,

Cy=N=3 (2.109)
N>—1 4
Cr = = 2.110
F N 3 ( )
1
Tr =5 (2.111)

Substituting these into the B function, we obtain,

1 o? 15 14
[))(as) = 20632(C1 —Cy — *C3) = 27Y <_CF —CA +CF — **CA + NfTR>

2 4r 23 23
2 2
o 11 4 o;
=S5 ——Cy+=-N;Tp | = — 11N —2N 2.112
47r< 3 A+3 FIR 12”( f) ( )

For Ny < ”TN the B function in non-abelian theories like QCD becomes negative at small couplings,

indicating asymptotic freedom,
Blos) = —Poo + O(a) 2.113)
where

1
Bo = m(llN—ZNf) (2.114)

This behavior of the 8 function is opposite to the behavior of the B function in QED (equation 2.91)!
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Figure 2.17: Graph displaying the behavior of the B function, contrasting with the behavior observed
in QED as previously noted. This graph shows the  function decreasing with increasing
coupling strength o [13].

This property of QCD, being weakly coupled at short distances, is critical for the perturbative calculation
of scattering processes in the strong interaction at large momentum transfers. The renormalization group
evolution equation incorporating this 8 function,

00t
T2 = B(oy) = —Poci? (2.115)

and solving this,
2y _ o5 (u?)
L+ ooty (1?)In &

oL ( (2.116)

where By was given already. We can see that QCD coupling decreases logarithmically as the momentum
scale ¢° increases. This property is very important for perturbative calculation of scattering processes
due to the strong interaction at large momentum transfers.

Let’s summarize this part: In QCD, the running coupling constant ¢ encapsulates the unique energy-
dependent strength of the strong interaction, essential for understanding particle behavior across scales.
Its decrease with increasing energy, known as asymptotic freedom, allows for perturbative calculations
of processes like deep inelastic scattering, where partons interact within hadrons. This running coupling
is integral to a specific evolution equation, which predict how parton distributions evolve with energy.
Let’s use everything we have learned until now to combine them in an equation.
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3 Parton Branching Method: Collinear and
TMD Distributions

This chapter is mostly based on reference[21].

3.1 Renormalization Group Evolution of Parton Distributions

Let’s now write the renormalization group evolution equation of the parton distribution functions in
terms of parton splitting processes (a parton emitting another parton) as follows,

dfa
fah);‘u‘u Z/ ~ Lab as )7Z)fb (;Cvuz) 3.1

where f,(x,uu?) are the parton distribution functions for a = 1,...,2N '+ + 1 species of partons (with
Ny the number of quark flavors) as functions of longitudinal momentum fraction x and evolution mass
scale i, and P, (04,7) are the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) splitting functions,
depending on the running coupling o and the splitting variable z. These splitting functions represent
the probability of a parton b to emit another parton and turn it into parton a, with z being the fraction of
the original parton’s momentum carried away by the emitted parton and we can write them as,

Py (0t,2) i( “)" o) (32)

We will work with the momentum-weighted parton distribution functions f,,

fa(xnuz) :)Cfa(x,‘l,LZ) (33)

for which the evolution equations reads

0 fu(x, 4?)
ah):“ Z / dzPuy(ats(12),2) fb< ) (3.4)

Ofcourse, nothing is easy in QCD and this equation doesn’t have a simple solution. The issue is that
in the physical picture of the evolution equation, we’re looking at how well we can distinguish between
partons when they’re packed closely together inside a proton or neutron and moving almost parallel to
each other. There’s a point beyond which we just can’t tell them apart, determined by the energy at
which we’re observing them and the fundamental strength of the force that holds them together. If we
ignore the tiny details that we can’t see, it messes up our calculations, suggesting the sum of all possible
outcomes doesn’t add up as it should (unitarity gets broken). So, it’s important to account for these tiny,
blurred details to keep our predictions accurate.

To address this issue, we’ll employ the "Parton Branching Method’. This approach aims to maintain

unitarity by reformulating the evolution equations with a focus on probabilities of no-branching (using
Sudakov form factors) and probabilities of actual branching events. We plan to formally integrate the

University of Antwerp
. I Faculty of Science BaChelorproef —35



CHAPTER 3. PARTON BRANCHING METHOD: COLLINEAR AND TMD DISTRIBUTIONS

resolution scale parameter z, into the evolution equations.

To set up our formalism, we split the parton splitting functions into different components,

1
Pab(amz) = Aab(as)6(1 _Z) +Kab(as) |:1—Z:| +Rab(a57z) (35)
+

where the plus-distribution [1%2]4- (function used to manage integral that become infinite at certain
points) is defined for any test function ¢ as,

1—z 1—z

A g e@de= | "L @) — ()l (3.6)

Equation 3.5 organizes the singularities in the splitting functions P,,(qy,z) as z — 1,breaking them
down into a delta function 8(1 — z) distribution, a plus distribution [%_Z] e and the remainder function
R (0, 2), that includes both logarithmic terms in In(1 — z) and regular terms as z — 1. The §(1 —z) and
[l%z} L The delta and plus-distributions are flavor diagonal (transitions or interaction can only occur
between same types of quarks without chainging their flavour) and we can write them as,

Dab(as) = 6abda(as)a Kab(as) = aabKa(as) (37)

The coefficients d, and k,, and the functions R, can be expanded as follows,

dul) = 1 (52) ar (3.8)

afes) = 1 (52) k" (3.9)

Ro(ow2) = Y (32) Rl () (3.10)
n=1

Charge conjugation and SU(Ny) suggest that the rules governing how particles split into other particles,
described by the splitting functions P,;, follow specific relations at all levels of calculation. Essentially,
these symmetries ensure that the behavior of these splitting functions is predictable and consistent across
different types of particles and interactions, no matter how complex the calculations become. These
relations are,

Foe = Fgg = Py Poq; = Pogi = Pgq
NS S NS S
P‘iiqj :Pf?iq_j :qu 5ij+qu’7 Pf]il?j :Pq_i‘Ij :Pqti 5ij+qu

where the superscripts NS and S stand respectively for non-singlet and singlet. A non-singlet config-
uration involves particles that transform non-trivially under a symmetry operation, often maintaining
distinct identities or flavors during interactions, this means they do not mix with particles of other fla-
vors. On the other hand, a singlet configuration involves particles that transform into a combination
that is invariant under symmetry operations, essentially appearing as a ’single’ entity regardless of the
symmetry applied. Consequently, the splitting functions, P, include three distinct interactions involv-
ing quarks and gluons or gluons with each other (P, Py, and Py), alongside four distinct quark-quark
interactions. These are divided into non-singlet components P’ and Pj,° and singlet components Py,
and qu).

Let’s try to find explicit expressions at one-loop and two-loop orders for the D,;, K, and R, terms
in equation 3.5.
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3.2 Resolvable and Non-resolvable Emissions

We introduce a new important parameter, the soft-gluon resolution parameter z;;, into the evolution
equations 3.4 by splitting the integration range on the right hand side into the resolvable (z < zjs) and
non-resolvable (z > zjs) regions. In each region, we use the decomposition 3.5 in the evolution equations.
We include terms through O(1 — z)7) but neglect power-suppressed contributions O(1 — z,)",n > 2.

Consider first the endpoint z — 1 contribution from the K, term in the evolution equation 3.5. Us-
ing equation 3.6, we rewrite this as

2
N

o (
—Z/d Ky (0% )) Fo(x/z,1%) Z/d Ko ))fb(xm (3.11)
In the region 1 > z > z);, we expand the momentum-weighted parton density as,

9fo(x, 1)

)2
S +0(1—2) (3.12)

Folx/z,1?) = fio(x,u®) + (1-2)
Then, we find that the contribution to the equation from the non-resolvable region is of order O(1 —zy),
and thus, up to O(1 — z)7), we have,

1 2
;/X dZKa(hl((fil)'i))be(x/Z,HZ)

-p [t Kl @) 7 e ) -x e Kl @) 7 0 ) (313

Next, we consider the contributions to the evolution equations 3.4 from the other two terms, D, and
R.p. The R, being at most logarithmic for z — 1 combined with the first term on the right-hand side of
equation contribution can be combined with the first term on the right hand side of equation 3.13, yields
a contribution to the evolution proportional to fj(x/z,u?). The Dy, contribution, using the §(1 — z),
yields a contribution to the evolution proportional to f,(x, u?). Thus, we can express the derivative of
fu(x, u?) with respect to In “2 as,

+Xb:{/xleDab((Xs(‘u2))5(1 _Z) _/OZMdZK“b(aX(IuZ))ll_Z}fb(x,H2> (3.14)

The first line in equation 3.14 contains contributions to evolution from real parton emission, while the
second line contains contributions from virtual corrections. It is convenient to define the kernels in the
bracket of the first line as the real-emission branching probabilities Péf) (ay,2),

Kab( )

0 Rap(0.2) (3.15)

chllf)(as,z) =

The real-emission branching probabilities P,Ef) (0y,z) are derived from the splitting functions Py, (4, z)
by subtracting the 6(1 — z) terms and replacing the plus-distribution 1/(1 —z)4 by 1/(1 —z). Conse-
quently, the evolution of the momentum-weighted parton density can be expressed as,

nlr) u“ =X [ 2B o u).2) oo/
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M 2 .
+;{/xldwab(as(u2))5(1z)/o dzl(‘”’(loi('zu))}fh(x’uz) G16)

The terms in the second line of this equation, which account for virtual corrections, are addressed
through the use of the momentum sum rule.

3.3 Applying the Momentum Sum Rule

The momentum sum rule states that the total momentum carried by all partons in a hadron is conserved
during the evolution process. Expressing this principle in terms of the splitting functions we get,

1
y /O Palay(u?),2)dz =0 (for any a) 3.17)

Which we need to eliminate the D-terms in the evolution equations in favor of the K-terms and R-
terms. Inserting the momentum sum rule into the evolution equations, by subtracting the momentum
sum integral in the second line of equation 3.16. We know that the D, and K,;, terms in this equation
are diagonal in flavor and therefore, by interchanging indices, we obtain from equation 3.16

dfa )
glr):uu / dzp, 1?),2) fo(x/z,1%)

+;{/xldcha(OCx(lﬂ))5(l—Z)—dz /OZMKCa(aS(Hz))ll_ }fa(x 1?) (3.18)

Let us now use again the decomposition for P, (ot (tt?),z) in the last line of this equation. We observe
that the D, term in P.,(0(1?),z) cancels against the first term in the curly bracket in equation 3.18,
while the R, term in P, (ot (u?),z) may be restricted to the region z < zy7, up to order O(1 — z).
Finally, the K., term in Pca(ocs(/ﬂ),z) may be combined with the second term in the curly bracket in
equation 3.18. Putting pieces together we get,

aJ;al;‘“ﬂ Z/ dzF 1?),2) fi(x/z, 14%)
_Z{/OZMdew(%(u ) —+/ dzReq(0ts(1?), )}fa(x u?) (3.19)
We thus recognize, by using equation 3.15, that the evolution equations 3.16 can be written as
9 fu(x, 1?)

“dlnp? Z/ dzPyy) (04 (1?),2) fi(x/ 2, 1%)

- /0 Y a2z PP (0 (u?),2) Fulo ) (3.20)

3.4 The Sudakov Form Factor

Let’s introduce another factor, the Sudakov form factor,

22
Adlent, 12, 13) —exp( Y /“ an - |zl <as<u’2>,z)> (3.21)
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The Sudakov form factor A, (zar, 12, /.Lg) has the interpretation of probability for parton a to undergo no
branching between evolution scale 1y and evolution scale pt. Noting that,

IAu(zut,
W G Z/ dzPyg (o(1),2) (3.22)

we obtain from equation 3.20 (removing z;; and “0 from the argument list for better readability),

3 fulx u Z/ dz P! 12),2) fio(x/z, u2)

“dlnp?
1 A (u?)
3.23
+Aa(,u2) al 'uz fa( ) ( )
This evolution equation can be written in a form similar to equation 3.4, but now in terms of real-

emission probabilities Pé? and Sudakov form factors,

? (faxu > / a2 (o (12).2) b(x/(’ ) (3.24)

dlnpu? Au(u?)

Integrating this equation we obtain, with A,(u3) = 1,

o - “2 d 2 M »

Falx,n?) = Aa(p?) fulr, 1) + Y / O A(n?) / dzPf) (0(u?),2) folx/z.u)  (3.25)
b 7 Ho x

We recognize that introducing the Sudakov form factor has led to an equation which is an integral

equation of Fredholm type,

10 = 50) + [ K s6)ay. (3.26)

This is finally the form of the evolution equation that we need to calculate the behaviour of the partons
inside the hadron in the Drell-Yan process. We can solve it numerically making use of the famous monte
carlo technique! We actually need to rewrite equation 3.25 one last time by keeping angular ordering in
mind.

In simple terms, when a high-energy quark or gluon radiates a softer gluon, the angular ordering rule
dictates that each subsequent emission must occur at a smaller angle relative to the direction of the ini-
tial high-energy parton than the previous emission. This is because gluons are emitted coherently from
all colored charges involved in the process, and the interference between different emission amplitudes
leads to a suppression of radiation at large angles.

The reason we need this is because when a particle involved in the strong force, like a quark, shoots
out other particles, the direction of these sprays gets more focused each time. It’s like a sprinkler that
starts spraying water all over but gradually starts to spray in a tighter stream. This idea is really impor-
tant for Monte Carlo programs that try to mimic these particle sprays. In these simulations, every new
spray has to be more straight and narrow than the one before. We write the branching equation for the
evolution of collinear (partons along the direction of motion of the parent particle) and TMD distribution
as,

Aa(X, ki, 12) = Mg (1) Aa(x, K, 145) +Z/7z,’ 7 Al SAa(q/Z)G)(Nz_qlz)G(qlz_.u(%)

M BB (o (2) A N
X dzP,’ (as(q7),2) Ap(z, ke + (1 —2)q',q") (3.27)

where A is the momentum weighted distribution A = xA and A, (x, k;, t?) the TMD distribution functions.
k; quantifies how much a parton is moving sideways (perpendicular to the beam direction) inside a fast-
moving proton or neutron, so it is the transverse momentum of the parton.
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CHAPTER 3. PARTON BRANCHING METHOD: COLLINEAR AND TMD DISTRIBUTIONS
3.5 Parton Branching Method with a Dynamic Resolution Scale

In practice, we will utilize the parton branching (PB) TMD methodology to describe Drell-Yan pro-
cesses at low transverse momentum (pr), which refers to the transverse momentum of the lepton pair,
across a wide range of lepton pair masses (m;;). To achieve this, we require next-to-leading order (NLO)
hard scattering matrix elements, which we obtain from the MCatNLO method, an NLO event generator,
which we will be discussing in the following section. These elements are then matched with TMD par-
ton distributions and showers (the repeated splitting of partons creates an extensive branching of emitted
particles) that result from PB evolution. Our results will demonstrate that the PB TMD distributions
contribute significantly due to the intrinsic-k7 (the transverse momentum of the partons), even though
most of the small-k7 contribution arises from PB evolution.

Looking at the PB evolution equations again for TMD parton distributions A, (x,k,u?) of flavor a,
which are expressed as,

2 2 dzq/ q/2 2 1) ” 2
Ak, 1u%) = A () Aa(x, kr, 1g +Z/ Aq 2 (1" —q7)0(q~ — 1)

/2
Tq 0

M ~
A <qf2),z>A,,(’;,H(l_z)nga) (3.28)

where k and ¢’ are 2-dimensional momentum vectors, zy, is the soft resolution scale, z is the longitudinal
(R)

momentum fraction in the branching, P’ (ay,z) are the resolvable splitting functions, and A, are the
Sudakov form factors defined by,

# d n
Aa(zr, 12, 145) —CXP< Z/ q / dzzP,’ (ot (q’ ),z)) (3.29)

The evolution equation incorporates soft-gluon angular ordering, with the branching variable q'? related
to the transverse momentum g7 of the emitted parton at the branching by,

gr =(1-2)|q'| (3.30)

It has also been established that angular ordering is crucial for the TMD distribution derived from the
evolution equation to be well-defined and to remain independent of the choice of the soft-gluon resolu-
tion scale zpy = 1 — € as € — 0. In contrast, ordering by pr can lead to ambiguities in the definition of
the TMD, particularly as z — 1.

Analogously to the case of ordinary parton distribution functions, the distribution A, (x,kr,u?) at the
starting scale Uy of the evolution, in the first term on the right hand side of the evolution equation is
a non-perturbative boundary condition to the evolution equation and is to be determined from experi-
mental data. For clarity, let’s simplify the description of the Transverse Momentum Dependent (TMD)
parton distribution function, A, (x,kr, %), which is parameterized as follows,

2
A > > K| 2
Aoa(x,kr, 1y) = fo.a(x, Hg) - exp <_W> /(2mo”) (3.3D
Here, the width of the Gaussian distribution, denoted as o = q‘ . This parameter is the same for all types
of partons and does not depend on their momentum fraction x Wthh were determined in the study [45].
The quantity g, represents the intrinsic transverse momentum parameter, which provides a measure of
the average inherent sideways motion of the partons within the hadron.
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The ’width of the Gaussian’ in this context symbolizes the uncertainty or spread in the partons’ mo-
mentum due to their confinement in the hadron, often referred to as Fermi motion. For instance, in
a proton made up of "up-up-down’ (uud) quarks, as we inject energy into the system, the simple uud
configuration becomes more complex. We observe more valence quarks and other partons, implying
that the original step-like distribution of the quarks’ momenta evolves into a smoother, more continuous
distribution. The variable kr, therefore, reflects the degree to which we have distorted the original Fermi
distribution by pumping energy into the hadron, altering its internal partonic structure and the number
of observable particles.

Another thing to note is that when we include the concept of angular ordering, it introduces a math-
ematical condition to determine if a gluon emission is ‘resolvable’, meaning it has enough energy to be
detected separately from the parton that emitted it. The condition is given by z < zj;(u’) with,

_ %

, (3.32)
u

a(p') =1
Here, ¢ is the minimum transverse momentum needed for an emission to be resolved, and ' is the
evolution scale, a parameter related to the energy scale of the collision process. Equation 3.32 helps
us visualize and distinguish between the resolvable and non-resolvable regions. When plotted, these
regions form distinct areas on a graph with axes u’ and z.

(a) _ (b)

1 1

[ Resolvable region JResolvable region
[—Inon-resolvable region [ Inon-resolvable region
Z:l-QDJ’g-' z:l-quh,-' |
1 - e 1
2 2

Figure 3.1: Graphical representation of the angular ordering condition and the distinguishable regions
for resolvable and non-resolvable emissions in parton branching processes. The vertical axis
represents the longitudinal momentum fraction z, while the horizontal axis represents the
scale p’. Graph (a) shows the scenario where 1 > x > 1 — qo/ Lo, and graph (b) shows the
case for 1 —qo/Ho > x > 0. The red line denotes the critical angular ordering condition
(') = 1—¢qo/1', separating the resolvable (yellow) and non-resolvable (gray) regions
[18].

In Figure 3.1, the yellow region represents the resolvable region, while the gray region represents the
non-resolvable region, as indicated in the figure’s legend. The red line denotes the dynamic z;; that we
will be using, which implies that only the resolvable region is considered. Consequently, our Sudakov
form factor will only include the perturbative components. In reference [45], similar research was
conducted as in this thesis, but with a key difference in the use of zj,. There, a fixed zj; was employed,
as illustrated by the purple line in Figure 3.1. Using a fixed zj; means also considering non-perturbative
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CHAPTER 3. PARTON BRANCHING METHOD: COLLINEAR AND TMD DISTRIBUTIONS

Sudakov factors (gray region), which is a particular modeling approach. The inclusion of the non-
perturbative Sudakov factor was based on the logical assumption that the Sudakov form factor must
have a non-perturbative component or region. In this thesis, we will be using the dynamical zj; (in

chapter 5 we will discuss this again).
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4 Drell-Yan Process

This chapter is mostly based on reference [8].

Now that we have an expression for the behaviors of partons inside hadrons, let’s examine a specific
process we briefly discussed earlier: the Drell-Yan process. This chapter aims to understand this pro-
cess and explore why it is used to study quarks and gluons. Let’s begin by examining the Feynman
diagram and describing what happens.

Figure 4.1: Feynman diagram illustrating the Drell-Yan process where quark (¢) and antiquark (§) from
hadrons h4 and hp annihilate, producing a virtual photon (y*) or Z-boson (Z*), which then
decays into a lepton (/) and antilepton (/) pair [20].

In the figure above, we see /4 and hp, which represent two colliding hadrons (for example, two protons).
Next, we have the partons, denoted by ¢ for a quark and g for an antiquark. The quark emanates from
one hadron and the antiquark from the other. These partons interact with each other, leading to a particle
exchange, which can be either a virtual photon (a particle intermediate state not directly observable but
facilitating the interaction between the quark and antiquark) or a Z-boson. From the quark-antiquark an-
nihilation, a pair of leptons is produced. In the diagram, / represents a lepton, such as an electron, while
[ represents the corresponding antilepton, such as a positron. Moving forward, we will only consider the
case where a Z-boson is exchanged, and we will disregard the virtual photon case.

In the parton model, we can express the cross section oyp for producing a lepton pair in a collision
between beam A and target B using the parton distribution functions f,(x) and fz(x), summing over all
possible quark-antiquark combinations as follows,

Oap =), / dxidxz fq(x1) f7(x2) 6451 .1
q

where 6, ,;; is the subprocess cross section of the Drell-Yan process. The agreemant between this
theoretical expression and the measured Drell-Yan cross sections at the Large Hadron Collider (LHC)
has validated the parton model approach. This was notably the first time a hadron-hadron cross section

could be derived from first principles (refers to the fundamental concepts or assumptions at the core
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CHAPTER 4. DRELL-YAN PROCESS

of a subject). The expression also survived the inclusion of perturbative QCD corrections, where all
divergences in the Drell-Yan corrections are factored into the renormalized parton distributions. The
updated cross section expression, incorporating the scale of the hard scattering process (high-energy
collision between particles that results in a large momentum transfer), is,

OAB :Z/dxldxzfq(xl7M2)fq(X2,M2)6qq_>,,- 4.2)
q

Here, M? denotes the large invariant mass squared of the lepton pair. This value is significant because it
sets the scale at which the hard scattering process is probed. In perturbative QCD, M? is important as it
governs the running of the strong coupling constant and influences the evolution of parton distribution
functions.

When calculating the cross section o4p for producing lepton pairs in particle collisions, it’s also es-
sential to consider the finite contributions that remain after the singularities (divergences) have been
factored into the parton distributions. These contributions are the actual perturbative corrections to the
cross section at order &'(ay),

Oap = Z/dxldxzfq(xl7M2)fq(X2,M2)CAqu-%”- [60 +ab)+a*6r+.. ] 4.3)
q

2
with a = “‘gg ) This formula is not just for one specific situation but can be used for many different

high-energy collisions. Most processes have been worked out to the next-to-leading order in perturbation
theory, which includes the term 6. The Drell-Yan process has even been calculated up to next-to-next-
to-leading order. We will discuss the Drell-Yan cross section in detail in the coming sections and then
talk about how this applies to Z boson production in high-energy proton-antiproton (pp) collisions. We
will also try to keep the explanation more general and avoid delving too deeply into the mathematics, as
we did in the first chapter, because this could lead us into many topics that are not our main focus.

4.1 Lowest Order Cross Section: Quark-Antiquark Annihilation

Let’s start by examining the lowest-order cross section for quark-antiquark annihilation into a lepton
pair,

. . dro® 1,

6(q(p1),q4(p2) = 1l) = 550

(alp1).alp2) = 1D = 5075 5 0;

Here, p denotes the momentum of the incoming quarks, 1/N is a color factor (we must keep color in
our calculations because annihilation can only occur when the color of the quark matches that of the
antiquark), and Q,, is the electric charge factor of the quarks. Since the incoming quark and antiquark
can have a spectrum of collision energies, it is more appropriate to consider the differential lepton pair
mass distribution. Therefore, the subprocess cross section for producing a lepton pair of mass M is given
by,

(4.4)

dé

s = 2L OR8((p + p2) — M) (4.5)

4o
3M?

with oy = . Utilizing this equation in the parton model gives the cross section for this process,

do 1 dé
— = [ dxidxy) fy(x1) f7(x2) = (g4 — II) (4.6)
dM? /o — /I

Considering now the rapidity y of the lepton pair. Rapidity is a concept used to describe the angle and
relative velocity of a particle along the beam axis in a collider experiment. It provides a way to quantify
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how fast and in what direction a particle is moving relative to the beamline, which is now expressed in
terms of the parton momentum fractions as,

1 X1

=5In— 4.7
y=5 nx2 4.7)
the double-differential cross section becomes,
d*c o) )
aldy ~ N | &2 Faln)fsx)) (4.8)
q

The double-differential cross section provides a measure of how the likelihood of lepton pair production
varies with both the invariant mass M? of the pair and their rapidity y. This is significant because it
allows us to potentially measure the distribution functions of quarks and antiquarks within the hadrons
involved in the collision by analyzing the rapidity and mass of the lepton pairs. To further our analysis,
we must consider the transverse momentum g7 of the partons, which is a crucial variable in our dataset.
This analysis is represented by a new expression for the cross section,

c :Z/dZQT,IdZQTJ/dxldsza(xlaC]T,la.LLZ)Ab(beIT,Zaﬂz)éij(xhx%QT,hQT,ZaIJZaQz) 4.9)
a,b

By measuring the resulting lepton pairs, we are effectively reverse engineering the collision process to
understand the initial state of the quarks and antiquarks. Next, we aim to apply this understanding to the
Drell-Yan process to derive the cross section in terms of g7, using the same reverse logic.

4.2 Adding Perturbative QCD Corrections on Drell-Yan Calculations

In this section, we calculate the &'( o) corrections to the parton model Drell-Yan cross section. We begin
by considering the parton-level Drell-Yan cross section for the leading-order process g(p1) +q(p2) — 11,

do 4ma? .
4M: TEed) (4.10)

with 7= 7 and .Z (1) = Qf,S (1 — 1), which is the expression we previously encountered in Equa-

MZ
(P1+p2
tion 4.5 for a single flavor of quark with charge Q). Generally, % has a perturbative expansion in powers
of the strong coupling,

o

F (1) = ﬁo(f)+§(/1(r)+... (4.11)

The diagrams contributing to &'(a) are given in figure 4.2. We can categorize them into three classes
of contributions,

* (a) Virtual gluon corrections to the leading-order contribution ZF qu,V
« (b) Real gluon corrections .% ¥

* (c) Quark-gluon scattering process %
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CHAPTER 4. DRELL-YAN PROCESS

{b) {c)

Figure 4.2: Contributions to the Drell-Yan cross section at the first order in the strong coupling constant
;. The diagrams show (a) virtual corrections, and (b) real emission processes involving
gluons, contributing to the next-to-leading order (NLO) corrections of the cross-section [8,
p-307].

As in Chapter 1, we will account for ultraviolet divergences from the loop integrals, infrared divergences
from the contribution (both real and virtual) of soft gluons (gluons with low energy or momentum), and
divergences from the splitting of the initial-state partons. We utilize regularization again in the space-
time dimension of 4 — 2¢ and reintroduce . The result, ignoring terms of ¢(&) or higher, is,

cvi aun g (u? 1 M?
P00 = F0 ¢ Foak _ g2 UL [2 <_8 ~Indz ~|—1n“2> PO (7) +Dq<r>} (4.12)

LY 5
goe_ W) [ (1 ™) PO sy 413
=9 o *E*n ”+YE+HF s’ (T) +Dg(T) (4.13)
with,

_ 2 2
D,(z) =Cr {4(1+z2)<ln1 Z) s (M—sﬂ (4.14)

l—z ), -z 3

1-2)% 1 7

Dy(z) = Tr [(z2+ (1 —z)Z)IH(ZZ) +5+32- 222] (4.15)

When the bare parton distributions, which must be convoluted with the .%79 and .# ¢ functions, are
replaced by scale-dependent "renormalized’ distributions, the divergences exactly cancel. We find that
the parton distribution function is given by,

o) = a0+ 20 (L omame) [VF (B (3 ) a2 (3 ) nl&)] + 01
(4.16)

This equation is precisely the DGLAP evolution equation! Now, writing the full cross section would
be quite lengthy, so we will not present it here, but it is detailed in [22]. What we do know is that the
magnitude of the &(ay)) correction depends on the mass of the lepton pair and the overall collision
energy. This means that we can work backwards, using what we can measure experimentally to gain
information about the quarks and antiquarks. Fortunately, the production of Z-bosons in a Drell-Yan
process in pp collisions is one of the most precisely measured processes at high energies at the LHC, so
the information we need is trustworthy and already known.
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4.3 Calculating The Drell-Yan Transverse Momentum

To work backwards, we will be needing the transverse momentum like we mentioned and this will be
done by employing the method developed in [25, 26]. According to this method, the hard scattering
matrix element for DY production is generated at next-to-leading order (NLO) in perturbation theory
using the MCatNLO program [27], and this is matched with the TMD distributions [28] constructed in
[21, 29] by using suitable subtraction terms to deal with partons moving in nearly the same direction
(collinear) or with very low energy (soft). A detailed study of these subtractions terms is performed in
the appendix of Ref. [30].

The method [25, 26] is designed to take into account both the transverse-momentum recoils in the parton
shower evolution and the nonperturbative intrinsic-k7 contributions [31, 32, 33]. It is implemented in
the Monte Carlo event generator Cascade [34, 35]. Besides DY production, the method has also been
applied to jet production [36, 37]. This approach has been found to describe the measured DY transverse
momentum distributions well in the region of low to moderate transverse momenta. The region of high
transverse momenta requires the additional technique [39, 39, 40] to take into account the contribution
of multiple jet radiation. In the following, we will limit ourselves to considering the low transverse-
momentum region.

For our computation of the DY transverse momentum, we will use the integrated and TMD NLO
parton densities from the set PB-NLO-2022 [41], obtained from fits to deep inelastic scattering pre-
cision data [42] using the xFitter package [43, 44]. We employ the factorization scale u, defined as

u= %Zi A /ml-2 + ptzﬂ-, where the sum is over all the final state particles. This scale helps us to distin-

guish between short-distance interactions, which involve high-energy processes and can be described by
perturbation theory, and long-distance effects, such as the binding of quarks and gluons within protons.
When calculating transverse momentum in line with the PB-TMD distributions, the factorization scale t
in the hard-scattering process is set to the mass of the Drell-Yan system, pt = m;;. In scenarios involving
real emissions, the scale is determined by the aforementioned formula which accounts for the mass and
transverse momentum of all final state particles [25, 45].

In our calculations, while the primary focus is on QCD, it is essential not to overlook the effects of QED.
Particularly, we must consider scenarios where high-speed leptons emit photons. This phenomenon is
significant as it can influence the final state of particle interactions and affect the accuracy of our predic-
tions. QED effects are crucial when dealing with lepton pairs produced in high-energy collisions, such
as those observed in the Drell-Yan process. The emission of photons by leptons can lead to observable
changes in the energy and momentum distribution of the final state particles. These emissions, known
as final state radiation (FSR), can alter the apparent invariant mass of the lepton pair and alter the exper-
imental measurements if not correctly accounted for. Hence, including QED corrections helps ensure
that theoretical predictions align closely with experimental data [25].

The PB TMD approach which we employ to compute the DY transverse momentum can be compared
with the traditional CSS approach [46]. TMD distributions determined from DY data using CSS are
given in [47, 48, 49, 50, 51, 54]. Both PB and CSS distributions are accessible from the library [53, 54].
A first discussion of the relationship between the two approaches is given in [55]. A deeper comparison
between them will be important, and will be an interesting subject for future investigations.
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4.4 Summary

Because hadrons are composite particles, their collisions are inherently complex. The difficulty lies in
the involvement of low-energy (or equivalently, long-distance or long-time) regimes where the appli-
cation of perturbation theory for Quantum Chromodynamics (QCD) becomes infeasible. Nonetheless,
there’s a workaround: factorization. This method hinges on the capacity to disentangle short-distance
effects, which are amenable to perturbative calculations, from long-distance effects. Without hadrons,
long-time effects could simply be negated through unitarity. However, hadrons complicate this, making
it impossible. The best achievable solution is to separate long- and short-time effects. Thus, a factorized
expression can be derived, linking measurable hadronic quantities to partonic quantities that are calcu-
lable through perturbation theory. The demarcation between long-time and short-time (or low-energy
and high-energy) introduces an artificial factorization scale. For the inclusive cross section of a collision
between two hadrons, the factorized formula encapsulates the parton distribution functions (PDFs) of
the interacting partons within the hard process and the hard-scattering function that characterizes the
hard interaction. The PDFs are evaluated at the factorization scale, while the hard-scattering function is
calculated using the strong coupling at the renormalization scale and also depends on the factorization
scale. A pivotal equation we’ve derived in this chapter is the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equation, a renormalization group equation for (momentum-weighted) PDFs, de-
lineating their evolution with the mass scale. The DGLAP equations are formulated in terms of splitting
functions, which describe the likelihood of a parton splitting into two other partons at a given mass scale.
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5 Study of Drell-Yan transverse momentum at
varying masses in the PB TMD
methodology: dynamical resolution scale and
intrinsic transverse momentum

As part of the PBO-NLO-2022 dataset, which includes the Transverse Momentum Dependent (TMD)
distributions used in our calculations, we will analyze data using a series of Les Houches Event (LHE)
files. Each LHE file is crucial for Monte Carlo simulations ! in particle physics experiments, capturing
the output from event generators. Our initial assessments have focused on how the quantity of LHE files
affects computational workload and simulation accuracy.

Note that at the end of Chapter 3, we clarified which z); we used and highlighted that we will be using
the dynamical z;, as this has not been researched yet. In reference [45], a similar study was conducted
to examine the dependence of k7 on the mass of the lepton pair, resulting in findings that showed no
dependence. In this thesis, the idea is to investigate whether removing the non-perturbative Sudakov
factor will yield the same results, specifically the mass independence in our results.

In this new study, we aim to enhance our understanding of the scaling variable g, by fitting CMS data
[19] across various mass ranges using the Parton Branching (PB) method, now incorporating a dynam-
ical zmax. This modification allows for a more precise adaptation to the variable conditions of parton
momentum fractions, thereby providing a more accurate representation of parton dynamics under vari-
ous experimental scenarios. Additionally, we will examine the impact of setting different pr max values,
which effectively truncates the number of data points or the range of the transverse momentum, across
varying masses.

5.1 Analyzing The Number of LHE Files used

Our objective in this part was to determine whether results obtained from processing a large number of
LHE files align with those derived from a smaller, more manageable set. If the outcomes from both sets
agree, it would indicate that a less extensive dataset can yield reliable results. This finding would be
significant as it would allow us to make accurate predictions while conserving both time and computa-
tional resources.

For our analysis, we will explore various mass window ranges and adjust some parameters to deter-
mine their impact on the mass of the lepton pair. Specifically, we will vary gg, performing calculations
at go = 1 GeV and go = 0.5 GeV. Additionally, we will adjust g, starting from g; = 0.0001 GeV, then
increasing to g; = 0.1 GeV, and continuing in increments of 0.1 GeV up to 1.6 GeV for gg = 0.5 GeV
and up to 2 GeV for go = 1 GeV. We will also explore how varying the pr range affects our results,
setting pr max values of 5, 10, and 15 GeV.

I'The solution of the evolution equation applying a Monte Carlo method can be found in reference [21, p.8-10]
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METHODOLOGY: DYNAMICAL RESOLUTION SCALE AND INTRINSIC TRANSVERSE MOMENTUM

These variations cover all the parameters we will be adjusting. The mass windows for our analysis
are set as follows,

my; =[50 to 76,76 to 106, 106 to 170,170 to 350,350 to 1000|GeV G.D

This comprehensive approach allows us to thoroughly assess any dependencies these parameters might
have on the mass of the lepton pair. Of course, we won’t be displaying all the plots we produced,
as there are too many. However, this is not an issue, because they all follow the same structure. By
understanding one example, we can generalize to all the plots. We will discuss the results for gy = 0.5
GeV and gp = 1.0 GeV separately, as we will see notable differences that merit individual attention.

5.1.1 Influence of the number of LHE files for gy = 0.5 GeV

Let’s examine the calculations for g, = 0.2 GeV, go = 0.5 GeV, and pr max = 10 GeV. We will compare
the results from both the large LHE file set and the smaller LHE file set, and plot these out as seen on
figure 5.1.

CMS, 13 TeV, Z/y* — €707, 50 < my < 76 GeV CMS, 13 TeV, Z/7" — (707,50 < my < 76 GeV
—4— Data —4— Data
qo = 0.5 GeV, qs = 0.2 GeV, X/ =zaz qo = 0.5 GeV, qs = 0.2 GeV, X/ =194
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Figure 5.1: Comparison of differential cross sections for lepton pair production using two different LHE
file sizes across the mass window of 50 GeV < my;; < 76 GeV. The figures display the
experimental data (black points) against the theoretical predictions (red lines) for minimal
q; = 0.2 GeV, qp = 0.5 GeV, and maximum transverse momentum, py . = 10 GeV. The
left graph uses the large LHE file set, and right graph utilizes the smaller LHE file set.

It shows the differential cross section (on the y-axix denotes as do /dpr), which is the probability per
unit transverse momentum (on the x-axis denoted pr (1)) interval of producing lepton pairs in the lepton
mass window (m;) from 50 GeV to 76 GeV. The measurement is performed at a center-of-mass energy
of 13 TeV. The black points represent the actual experimental data with error bars indicating the uncer-
tainty in the measurements. The red line represents theoretical predictions made using our parameters.

The lower panel of the graph provides the ratio of the Monte Carlo simulation prediction to the ac-

tual data (MC/Data). A value of 1 in this ratio would mean a perfect match between the simulation and
the data. Variations above or below 1 indicate the discrepancies between the predicted and observed
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results, reflecting how accurately the theoretical model with the chosen parameters gy and g, describes
the experimental data.

Finally, the chi-square per degree of freedom (y?/n) value is a statistical measure used to assess the
goodness of fit of a theoretical model to observed data. It’s calculated with,

22 = Y (mi— ) Cyr (mg — ) (52)
ik

with m; being the measurement and p; being the prediction for data point i. The covariance matrix C is
decomposed into a component describing the uncertainty in the measurement, Cj***, and the statistical
and scale uncertainties in the prediction,

Cik — gcleas. —i—C;}?Odel_Stat' _’_Cl_skcale (5.3)

The covariance matrix of the measurement is taken directly from the supplementary material provided
by CMS.

A x?/n value close to 1 indicates a good fit; the model predictions are in good agreement with the
observed data, within the limits of statistical fluctuations. If the x2/n value is significantly greater than
1, it suggests that the model may not be adequately describing the data, or it could also mean that the
uncertainties have been underestimated. Conversely, a value much less than 1 might indicate that the
model fits the data too well and that the uncertainties might be overestimated.

If the data is not dependent on a variable, then we expect the minimal )2 value to be approximately
the same even when changing the variable. So let’s look if the number of LHE files has any effect and
we will be using pr e = 5,10,15 GeV (we will just do this for every pr ,,qax S0 We can be sure of our
conclusion) to check this with different g; values. So the idea is to look which g, value has a minimal
%2 value and plot this in function of the mass (we use the mean mass of each window to be able to plot
it) and thus we get the figures 5.2-5.4.

Minimal gs vs Mass of lepton pair for prmax=5 GeV
(go =0.5 GeV)

°
%

o

—e—p_Tmax =5 GeV for small LHE files

)

——p_T max =5 GeV for big LHE files

Minimal gs (GeV

o

o

63 91 138 260 675

Mass of lepton pair (GeV)

Figure 5.2: Variation of minimal g, values against the mean mass of the lepton pair for pr max =5 GeV
settings for gy = 0.5 GeV. The plot illustrate how the sensitivity of the minimal x> values
varies with the lepton pair mass and the influence of pr max cut-off.
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Minimal gs vs Mass of lepton pair for prmax= 10 GeV
(go=0.5 GeV)

—e—p_T max = 10 GeV for small LHE files

—o—p_T max =10 GeV for large LHE files

Minimal gs (GeV)

63 91 138 260 675

Mass of lepton pair (GeV)

Figure 5.3: Variation of minimal g, values against the mean mass of the lepton pair for p7 max = 10 GeV
settings for gy = 0.5 GeV. The plot illustrate how the sensitivity of the minimal x2 values
varies with the lepton pair mass and the influence of p7 max cut-off.

Minimal gs vs Mass of lepton pair for ptmax= 15 GeV
(go=0.5GeV)

—e—p_T max = 15 GeV for small LHE files
—e—p_T max = 15 GeV for large LHE files

Minimal gs (GeV)

Mass of lepton pair (GeV)

Figure 5.4: Variation of minimal g values against the mean mass of the lepton pair for p7 max = 15 GeV
settings for gy = 0.5 GeV. The plot illustrate how the sensitivity of the minimal x2 values
varies with the lepton pair mass and the influence of pr max cut-off.

Observing the plots, the behavior of the individual graphs appears notably unstable. Additionally, the
minimal 952 values for both lines do not seem to match cleanly, except at pr max = 5 GeV. Notably, we
observe a peak typically occurring in the second or third mass window, specifically at m;; = 76 to 106
GeV or my; = 106 to 170 GeV. These peaks could be attributed to several factors:

* The proximity of the peaks to the mass of the Z boson (which is around 90 GeV [57]) suggests
that resonant production might be influencing the distributions. At resonance, the production
cross-section is significantly enhanced, which could explain the observed peaks. The initial state
configuration characterized by go may directly impact the kinematics and dynamics of the particle
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interactions. A higher go value might shift the energy distribution available for particle produc-
tion, moving beyond the resonance or threshold energies where certain particles or states are more
likely to be produced. For example, if the peak at go = 0.5 GeV corresponds to a resonant pro-
duction such as the Z boson, increasing go to 1.0 GeV could result in a distribution that either
overshoots the resonance peak or affects the efficiency of detecting these states due to altered
kinematics. Notably, this peak does not occur with gg = 1 GeV. Another thing to note is that the
peaks of the blue and orange lines on the graphs do not always overlap. This could be because the
mass of the Z boson is close to the boundary of the second and third mass windows and the mass
can vary to become higher than 106 GeV due to its momentum and this could place the peak on
the third mass window instead of the second.

» The detector’s resolution or the analysis’s sensitivity to changes in go might also play a crucial
role. Higher values of gy may lead to broader or shifted peaks that are less distinguishable from
the background, especially if the experimental setup or the data analysis techniques are optimized
for a certain energy range.

5.1.2 Influence of the number of LHE files for gy = 1.0 GeV

Following the same protocol as outlined in the previous section, we now shift our focus to the case
where go = 1.0 GeV. Plotting the calculations for the Drell-Yan cross section and plotting these out, we
get figure 5.5.

CMS, 13 TeV, Z/y* = (147,50 < my; < 76 GeV CMS, 13 TeV, Z/ " — £767,50 < myp < 76 GeV
|—4+— Data |—+— Data
qo = 1L.0GeV, gs = 0.2 GeV, x2/n=o035 qo = 1.0GeV, gs = 0.2 GeV, X3/ =036

—T e

de/dpr(€f) [Pb}"(.'il.'\'"]
do/dpyp(£) [pb/GeV)

14 | 14
13| 131
2 12§ 2 12
= E E = | E
g8 ME it L, L ouH 84 . e e e e
9] 0.9 } T i i J o9 1 T i
= o081 = o8
07 ¢ 0.7
0.6 06§
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Figure 5.5: Comparison of differential cross sections for lepton pair production using two different LHE
file sizes across the mass window of 50 GeV < my; < 76 GeV. The figures display the
experimental data (black points) against the theoretical predictions (red lines) for minimal
q, = 0.2 GeV, q) = 1.0 GeV, and maximum transverse momentum, py ,,« = 10 GeV. The
left graph uses the large LHE file set, and right graph utilizes the smaller LHE file set.

Again, if the data is independent of these parameters, we would expect the minimal ¥ values to remain
consistent across measurements. To illustrate this, we have plotted the minimal y? for each ¢, value as
a function of the mass of the lepton pair, as shown in Figures 5.6 through 5.8.

Upon examining the plots, it becomes apparent that, in general, the minimal 2 values match or are
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quite close to each other for gg = 1.0 GeV. This observation leads us to conclude that utilizing the
smaller set of LHE files yields results comparable to those obtained using the larger set, with the added
benefit of time efficiency. Throughout the three plots, we observe that the minimal y? starts around
1.0 but increases as the mass of the lepton pair rises (reaching a maximum around 1.5). This indicates
that our uncertainty in the data grows as we move to higher masses. This behavior is logical because,
when considering the mass windows for m;;, we cover a much wider range for higher masses (50 to 76
GeV compared to 350 to 1000 GeV), resulting in increased uncertainties for the same amount of data.
However, our conclusion that there is no significant difference between using large or small LHE files re-
mains unchanged. Compared to gg = 0.5 GeV, we observe that there is no peak, as previously explained.

Moving forward, we will use the smaller LHE file set for our analyses with gg = 1.0 GeV 2, as we
have verified that the plots for both LHE file sizes yield consistent results in this setting. For gg = 0.5
GeV, we will analyze both sizes of LHE files due to observed unusual behavior, which prevents us
from conclusively determining LHE size independence. We will next explore how the cutoff for maxi-
mum transverse momentum, pr max, influences our results across various g, values within different mass
window ranges.

Minimal gs vs Mass of lepton pair for pimac=5 GeV
(go=1.0 GeV)

:i =

N
N

N

—e—p_T max =5 GeV for small LHE files

o
3

p_T max =75 GeV for big LHE files

Minimal gs (GeV)

o
]

IS

63 91 138 260 675

Mass of lepton pair (GeV)

Figure 5.6: Variation of minimal g, values against the mean mass of the lepton pair for pr max = 5 GeV
settings for gy = 1.0 GeV. The plot illustrate how the sensitivity of the minimal x2 values
varies with the lepton pair mass and the influence of p7 max cut-off.

2Just to cover all bases, I'll throw in the plot for the big file set too in the next section.
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Minimal gs vs Mass of lepton pair for prmax= 10 GeV
(qo=1.0GeV)

—e—p_T max =10 GeV for small LHE files
—e—p_T max = 10 GeV for large LHE files

Minimal gs (GeV)

63 91 138 260 675

Mass of lepton pair (GeV)

Figure 5.7: Variation of minimal g, values against the mean mass of the lepton pair for pr max = 10 GeV
settings for go = 1.0 GeV. The plot illustrate how the sensitivity of the minimal y? values
varies with the lepton pair mass and the influence of pz max cut-off.

Minimal gs vs Mass of lepton pair for prmax= 15 GeV
(go=1.0GeV)

—e—p_T max =15 GeV for small LHE files
—e—p_T max = 15 GeV for large LHE files

Minimal gs (GeV)

63 91 138 260 675

Mass of lepton pair (GeV)

Figure 5.8: Variation of minimal g, values against the mean mass of the lepton pair for p7 max = 15 GeV
settings for gy = 1.0 GeV. The plot illustrate how the sensitivity of the minimal x> values
varies with the lepton pair mass and the influence of pr max cut-off.

5.2 Evaluating the Impact of p7 . Cuts Across Different g; Values

As a refresher, varying g, values alters the width of the Gaussian distributions, impacting the number
of particles in our simulation. We aim to understand how applying a cut to pr . influences our results
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across different g, values within various lepton pair mass (m;;) windows. The initial plots from which
we derive our y2/n values appear in figure 5.9 (these plots are merely illustrative samples from a larger
set and this will be the same for gy = 0.5 GeV and gp = 1.0 GeV).
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Figure 5.9: Comparison of differential cross-section plots for pr distributions of lepton pairs with vary-
ing Gaussian widths (g, values) at different transverse momentum cuts (pr mqx = 5 GeV for
the top-left plot, pr max = 10 GeV for the plot underneath, and pr 4 = 15 GeV for the top-
right plot), sampled from simulations for the mass window of m;; = 50 to 76 GeV. These are
illustrative examples representing the consistent trend observed across a broader data set.

As we can observe, a larger pr max enables the inclusion of more data points. Let’s now again talk about
the go values separately.
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5.2.1 prux cut influence on gop = 0.5 GeV

Plotting the minimal %2 as a function of each ¢, value, we observe trends as in figure 5.10-5.14 (for the
large LHE set we will have similar looking plots).

x*/n vs gs for mi=[50-76]
(go = 0.5 GeV)(small LHE set)

®p Tmax=5GeV
® p_Tmax=10GeV

10 * p_Tmax=15GeV . »-
.
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Figure 5.10: The minimal y?/n values across different g, values for the lepton pair mass window of
50-76 GeV at gy = 0.5 GeV. Each series represents different transverse momentum cuts:
blue for pr max = 5 GeV, orange for pr max = 10 GeV, and green for pr max = 15 GeV.

v*/n vs gs for mi=[76-106]
(go = 0.5 GeV))(small LHE set)

®p Tmax=5GeV
12 ® p_Tmax=10GeV

® p_T max =15 GeV

x/n

gs (GeV)

Figure 5.11: The minimal y?/n values across different g, values for the lepton pair mass window of
76-106 GeV at go = 0.5 GeV. Each series represents different transverse momentum cuts:
blue for pr max = 5 GeV, orange for pr max = 10 GeV, and green for pr max = 15 GeV.
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x%n vs gs for mi=[106-170]
(go = 0.5 GeV)(small LHE set)

® p_Tmax=5 GeV
25 ® p_Tmax=10GeV
® p_Tmax=15GeV

0 02 04 06 08 1 12 14 16 18

Figure 5.12: The minimal y?/n values across different g, values for the lepton pair mass window of
76-106 GeV at gop = 0.5 GeV. Each series represents different transverse momentum cuts:
blue for pr max = 5 GeV, orange for pr max = 10 GeV, and green for pr max = 15 GeV.

x*n vs gs for mi=[170-350]
(go =0.5 GeV)(small LHE set)
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Figure 5.13: The minimal y?/n values across different g, values for the lepton pair mass window of
170-350 GeV at gg = 0.5 GeV. Each series represents different transverse momentum cuts:
blue for pr max = 5 GeV, orange for pr max = 10 GeV, and green for pr max = 15 GeV.
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x%n vs gs for mi=[350-1000]
(go = 0.5 GeV)(small LHE set)
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Figure 5.14: The minimal y?/n values across different g, values for the lepton pair mass window of
350-1000 GeV at gg = 0.5 GeV. Each series represents different transverse momentum
cuts: blue for pr max = 5 GeV, orange for pr max = 10 GeV, and green for pr max = 15 GeV.

The uncertainty in Figure 5.10 begins to increase noticeably at around g; = 1.2 GeV. The maximum
value reaches 3.47 for pr max = 15 GeV and 4.75 for pr max = 10 GeV. Notably, for pr max = 5 GeV,
the uncertainty spikes to 10.05, which is expected as the prmax cut limits the number of data points
included in our calculations—more data typically yields greater accuracy. As g, values increase, a clear
dependency on pr max emerges.

Transitioning to higher mass ranges, the behavior begins to shift. In Figure 5.12, the differences in
minimal xz values among the three pr max settings become more pronounced; the most accurate results
remain with pr max = 15 GeV, but the second most precise shifts to pr max = 5 GeV. By Figure 5.14, the
ranks alter once again, with the most accurate calculations now associated with prmax = 5 GeV. This
suggests that for higher masses, a lower pr max yields more stable and reliable results.

At higher particle masses, using a lower maximum transverse momentum (p7 max) tends to yield more
stable and reliable results. This setting helps to reduce unwanted background noise by filtering out less
important, lower momentum particles. As a result, it allows us to focus more on the significant signals
that come from higher mass particles.

Lower pr max settings also improve the accuracy of measurements, which is especially important when
studying heavy particles. Accurate measurements are essential for correctly identifying these particles
and separating them from irrelevant background activity. Additionally, a lower pr max reduces the com-
plication of overlapping signals, known as pileup, in experiments conducted at colliders with very high
rates of particle collisions. This reduction is advantageous because it helps to clarify the signals from
high-mass particles, making them easier to detect and analyze.

Finally, we create similar plots to those in the previous sections, but in this case, we compare the effects
of different pz max cuts.
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Minimal gs vs Mass of lepton pair Minimal gs vs Mass of lepton pair
(go = 0.5 GeV)(small LHE set) (go = 0.5 GeV)(Large LHE file)

—e—p_T max =5 GeV
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Figure 5.15: Comparison of the minimal g, values as a function of lepton pair mass for two different
sets of data at go = 0.5 GeV. Left one is for the small set of LHE files and the right one is
for the big set of LHE files. Each plot illustrates trends across different pr max cut-offs: 5
GeV, 10 GeV, and 15 GeV. Both plots demonstrate the influence of varying pr max on the
minimal g, values for lepton pairs within the mass range of 50 to 1000 GeV.

For go = 0.5 GeV, as observed in Figure , the data predominantly forms a constant line with a peak
occurring in the second or third mass window as we have seen multiple times before for gy = 0.5 GeV.
Now the range of ¢ for both sets is around the same. But the great news is that for both plots we find
similar results, so the discussion about if the number of LHE files are important, we can say that for
qo = 0.5 GeV, it is also not dependant of it.

5.2.2 prmax cut influence on gop = 1.0 GeV

Now, plotting the minimal 2 as a function of each ¢, value for gy = 1.0 GeV, we observe trends as
in figure 5.16-5.18 (we will only show those plots where significant differences are observed between
each).

v*/n vs gs for mi=[50-76]

(go = 1.0 GeV)
3
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Figure 5.16: The minimal y?/n values across different g, values for the lepton pair mass window of
50-76 GeV at gy = 1.0 GeV. Each series represents different transverse momentum cuts:
blue for pr max = 5 GeV, orange for pr max = 10 GeV, and green for pr max = 15 GeV.
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¥%n vs gs for mi=[106-170]
(qo=1.0GeV)
®p Tmax=5GeV

° p_T max =10 GeV
® p_Tmax =15 GeV

gs (GeV)

Figure 5.17: The minimal y?/n values across different g, values for the lepton pair mass window of
106-170 GeV at gop = 1.0 GeV. Each series represents different transverse momentum cuts:
blue for pr max = 5 GeV, orange for pr max = 10 GeV, and green for pr max = 15 GeV.

¥%n vs gs for mi=[350-1000]
(go=1.0GeV)

®p Tmax=5GeV
p_T max = 10 GeV

®p Tmax=15GeV
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Figure 5.18: The minimal x2/n values across different ¢ values for the lepton pair mass window of
350-1000 GeV at gg = 1.0 GeV. Each series represents different transverse momentum
cuts: blue for pr max = 5 GeV, orange for pr max = 10 GeV, and green for pr max = 15 GeV.

Looking at the figures above, we can observe a rank shift occurring again, but this time within the same
plot. The behavior in Figure 5.16 is similar to that in Figure 5.10. However, examining Figures 5.17
and 5.18, we notice something special. In the plots at lower g, values, pr max = 5 GeV exhibits the most
uncertainty. But as we move to higher g, values, it becomes the least uncertain, effectively switching
places with pr max = 15 GeV. Apart from a few outliers, such as in Figure 5.17 at g, = 2 GeV and
in Figure 5.18 at g, = 1.7 GeV, this trend is consistent in the last two plots. This could be the same
behavior as we discussed earlier for gg = 0.5 GeV. However, because we are dealing with a higher ¢,
which signifies a higher minimal emission transverse momentum, it likely means that at higher g, values
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(indicating more particles), we start observing more unnecessary emissions that add to the uncertainty.
This explains why working with a lower pr max cut-off is more effective at higher g, values.

Minimal gs vs Mass of lepton pair Minimal gs vs Mass of lepton pair
(go = 1.0 GeV)(Large LHE file) (go = 1.0 GeV)(Small LHE file)
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Figure 5.19: Comparison of the minimal g, values as a function of lepton pair mass for two different
sets of data at gg = 1.0 GeV. Left one is for the small set of LHE files and the right one is
for the big set of LHE files. Each plot illustrates trends across different pz max cut-offs: 5
GeV, 10 GeV, and 15 GeV. Both plots demonstrate the influence of varying pr max on the
minimal g, values for lepton pairs within the mass range of 50 to 1000 GeV.

We previously noted that the LHE file size did not significantly impact our results for go = 1.0 GeV, and
as evidence we can see that the similarity between graphs in Figure 5.19. The minimal )2 /n remains
approximately constant across different settings, suggesting a lack of dependence on ¢, across various
mass windows. Given that g, directly influences the Gaussian width, affecting the number of particles
involved in the calculations, this independence implies that similar results can be achieved regardless of
the particle count in the simulation. We can also clearly see that the lines remain constant across all mass
windows (slightly increase), indicating that there is no (or atleast a mild) dependence on mass either.

Comparing the results for gg = 0.5 GeV and go = 1.0 GeV, we find that the results are comparable
if we disregard the peak and consider that for go = 0.5 GeV, the data predominantly forms a constant
line. However, a significant difference emerges in the minimal x? values, which shift by approximately
1 when comparing Figure 5.15 for go = 0.5 GeV and Figure 5.19 for gg = 1.0 GeV.

At a lower gg value of 0.5 GeV, the threshold for including emissions in the analysis is relatively low,
allowing for a greater number of low-momentum emissions to contribute to the event. This typically re-
sults in a higher degree of background noise and potentially more fluctuations in the measured variables,
which can contribute to a relatively constant but noisy line in the data distribution. Conversely, increas-
ing go to 1.0 GeV raises the kinematic threshold, effectively filtering out lower-momentum emissions
that do not meet this criterion. This filtering can lead to a cleaner signal with fewer low-momentum
background emissions, resulting in a more distinct and possibly more accurate depiction of the underly-
ing physics processes, as reflected by a shifted y? value.

The increase in g likely reduces the overall complexity of the events by omitting less significant emis-
sions, which can enhance the clarity and quality of the data. However, it also means that some real but
low-momentum events are excluded from the analysis, which could potentially omit relevant physical
phenomena present at lower momentum scales. Thus, the choice of gy must balance between achiev-
ing sufficient resolution to capture relevant physics and maintaining a manageable level of background
noise.
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6 Conclusion

In this thesis we have performed a study of non-perturbative strong-interaction effects in the transverse-
momentum spectra of DY lepton pair production at the LHC. We have used the Parton Branching-
Transverse Momentum Distribution methodology to obtain theoretical predictions for the DY transverse
momentum distributions, and we have carried out a systematic comparison of these predictions with
recent experimental measurements of the DY transverse momentum performed at the LHC in a broad
range of DY invariant masses.

We have concentrated on the region of low transverse momenta, which is where the non-perturbative
strong-interaction dynamics is expected to become important. The PB TMD methodology allows one
to take this dynamics into account by introducing intrinsic transverse momentum distributions at low
mass scales and studying their evolution to high mass scales in terms of appropriate generalizations of
renormalization group equations. In this approach, the predictions for DY distributions thus depend on
non-perturbative intrinsic transverse momentum parameters, and are otherwise determined by theory. In
our work, by comparing the predictions with LHC experimental measurements, we have used the exper-
imental data to make an extraction of the intrinsic-k7 parameter g;. To do this, we have implemented the
predictions in numerical form using Monte Carlo computer codes, and performed fits to the data. The
results of our work provide a determination of the non-perturbative g; parameter as a function of the DY
invariant mass, and of the soft-gluon resolution scale used in the parton branching evolution. While an
extraction of g, for fixed resolution scale has already been presented in the literature, an analysis with
varying resolution scales has never been attempted before, so that the results presented here on this are
entirely new.

To organize the presentation of our work, we have structured the thesis by starting with a brief introduc-
tion to the fundamental principles of particle physics and immediately jumping into the basic elements
of Quantum Chromodynamics (QCD), the gauge field theory of the group SU(3) which describes the
strong interaction between quarks and gluons. The goal of this part of the thesis is to describe how the
partons (quarks and gluons) interact with each other inside hadrons in the Drell-Yan process. This is a
process where high energetic hadrons collide with each other where a virtual photon or Z boson gets
interchanged between the particles producing a lepton pair, for example two electrons. In our discus-
sion of parton interactions, we have briefly described renormalization, renormalization group evolution
equations, the running strong coupling o, the DGLAP evolution equations. Then we have proceeded to
illustrate the Parton Branching-Transverse Momentum Distribution methodology, to find an expression
for this equation that we can solve using a Monte Carlo method. Within this methodology we have pre-
sented the extraction of the intrinsic-k7 non-perturbative TMD parameter from fits to the measurements
of Drell-Yan transverse momentum (p7) differential cross sections performed at the LHC at 13 TeV, for
Drell-Yan masses between 50 GeV and 1 TeV. This fitting was done using the Cascade3 program for the
TMD evolution, and the MCatNLO program to obtain the Drell-Yan cross section in terms of the TMD
distributions.

We made detailed studies and checks of our approach. The first aspect we examined was whether the
number of events simulated in the Monte Carlo affects the data. This involves analyzing the number of
LHE files used. We conducted simulations using both a small and a large set of LHE files. To determine
if there is any dependence on this variable, we focused on the minimal uncertainty x? (corresponding
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to a specific g, value). If this value remains consistent across different experimental setups, we can
conclude that our program yields consistent results regardless of the variable used. We utilized two dif-
ferent g values, and for go = 1.0 GeV, it is evident from Figures 5.6 to 5.8 that the minimal uncertainty
remains unchanged, regardless of the set used. However, examining the plots from 5.2 to 5.4, it is more
challenging to confirm that these minimal x> values match. Therefore, we continued to compare these
values in the subsequent section. Upon reviewing Figure 5.15, we observe that the graphs for both sets
closely resemble each other, leading us to conclude that the number of LHE files does not significantly
impact the data. Nevertheless, there is another issue at play, specifically the recurring peak.

The reason for this peak is not entirely clear, but it could be associated with masses resembling that
of the Z boson, which suggests that resonant production might be influencing the distributions. At reso-
nance, the production cross-section is significantly enhanced, which could explain the observed peaks.
For instance, if the resonance peak occurs at gg = 0.5 GeV, increasing g might shift the energy distribu-
tion available for particle production, moving beyond the resonance or threshold energies where certain
particles or states are more likely to be produced. Therefore, increasing go could result in a distribution
that either overshoots the resonance peak or affects the efficiency of detecting these states due to altered
kinematics.

We also examined the influence of reducing the pr max (thereby decreasing the number of data points)
and found intriguing results. We employed p7 max values of 5, 10, and 15 GeV. For both ¢, values, we
observed that at higher masses and higher g, values, the uncertainty for prmax = 5 GeV becomes the
lowest, while pr max = 15 GeV becomes the highest, despite the opposite being true at lower masses and
gs. This phenomenon could be attributed to the fact that at higher particle masses, using a lower maxi-
mum transverse momentum tends to yield more stable and reliable results. This setting helps to reduce
unwanted background noise by filtering out less significant, lower momentum particles, thus allowing
us to focus more on the significant signals emanating from higher mass particles.

We then wanted to determine if our calculations depend on these prmax cuts. For go = 1.0 GeV, the
lines in Figure 5.19 closely match each other, indicating no dependence, which means we can achieve
consistent results with fewer data points—a fascinating observation, especially from a numerical per-
spective. For go = 0.5 GeV, a similar pattern emerges, although the well-known peak in Figure 5.15
complicates the analysis. However, if we disregard the peak, we observe a constant line (it slightly
increases, likely due to systematic reasons.). The lines are also parallel to the x-axis, suggesting no (or
mild) dependence on the mass of the lepton pair. Comparing Figure 5.15 with Figure 5.19, there ap-
pears to be a shift in the uncertainty value, which remains somewhat unclear. This could be because, at
a lower g, the threshold for including emissions in the analysis is relatively low, allowing for a greater
number of low-momentum emissions to contribute to the event. This typically results in a higher degree
of background noise and potentially more fluctuations in the measured variables, which can lead to a
relatively constant but noisy line in the data distribution.
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