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Abstract
Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator
characterized by a (px, py)-orbital hexagonal lattice, has been theoretically proposed and
experimentally confirmed. Here, by combining tight-binding modeling with first-principles
calculations, we investigate the electronic structures and quantum transport properties of Bi
nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that
band gap emerges due to the quantum confinement, and the gaps size depends crucially on the
width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width;
while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of
Eg(3p−1) > Eg(3p) > Eg(3p+1), so that the overall relation is an oscillating dependence dumped by
1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to
2e2/h, and an applied gate voltage can efficiently regulate the conductance plateau, originating
from the interplay between gate voltage and topological gaps. Furthermore, the quantized
conductance remains robust against strong disorder, suggesting the unique advantage of
topological states for electronic transport. This work not only provides fundamental insights into
the electronic properties of topological insulator nanostructures, but also sheds light on the
potential applications of exotic states for quantum devices compatible with semiconductor
technology.

1. Introduction

As a new state of quantum matter, topological insulators (TIs) have attracted tremendous interest in
condensed matter and materials physics communities in the past years. They possess time-reversal-symmetry
protected conducting surface/edge states residing inside an insulating bulk gap, implying significant
implications in dissipationless transport and quantum computing devices [1, 2]. In particular,
two-dimensional (2D) TIs, also known as quantum spin Hall (QSH) insulators, possess one-dimensional
(1D) helical edge states at the boundary, which are more robust against non-magnetic disorder compared to
the surface states in three-dimensional TIs because the only backscattering channel is forbidden [3–7].
Graphene is the first model system that was theoretically predicted to exhibit QSH effect (Kane and Mele)
[8]. However, with the weak spin–orbit coupling (SOC) strength in carbon, it is difficult to detect the
topological edge states due to the negligible topological gap [9–11]. Thus far, plenty of QSH insulators have
been explored from both theoretical and experimental sides, including but not limited to, semiconductor
quantum wells [12, 13], monoelemental structures beyond graphene [14–16], metal dichalcogenides [17–20],
metal-organic frameworks [21–23] and recently jacutingaite [24–26]. Despite these studies, successful
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preparation and characterization of QSH insulators are rare [18, 27–29]. It is highly desirable to fabricate
QSH insulators with a sizable bulk gap, a critical requirement for room-temperature implementation.

In this endeavor, Zhou et al previously proposed to achieve QSH insulators by epitaxially growing heavy
elements (such as Bi) on semiconductor substrate [30]. Through an intriguing ‘substrate-orbital-filtering’
effect, the grown Bi layer is featured by a 2D (px, py)-orbital hexagonal lattice model [31–34], whose effective
SOC arises from the on-site spin–orbit interaction, so that the SOC strength is much enhanced compared to
that of graphene, leading to an extremely large topological gap of ~0.8 eV. Interestingly, this was later
experimentally confirmed by Reis et al [35], who used scanning tunneling microscopy/spectroscopy
(STM/STS) and angle-resolved photoemission spectroscopy to clearly characterize the large topological gap
and conductive edge states. Formation of exotic quantum phase on semiconductor surface is of paramount
importance, as it not only exhibits intrinsic compatibility with current semiconductor technology, but also
allows facile manipulation of the topological states with high tunability and fidelity for practical applications,
such as in novel electronics/spintronics and fault-tolerant quantum computation.

Here, by using the experimentally grown of Bi on SiC(0001) substrate (Bi/SiC) as a prototype probe, we
investigate the electronic structures and transport properties of large-gap QSH insulator nanoribbons (NRs),
with special attention paid to the topological edge states for nanoelectronics. 1D NRs, combining flexibility,
unidirectional properties, high surface area and tunable edge effects, have been extensively studied in
graphene [36–45], MoS2 [46, 47], phosphorene [48, 49], among many other 2D structures [50–53]. For
Bi/SiC, it is essential to construct Bi NRs so that the helical edge states can be utilized in a controlled way. In
experiment, this could be achieved by precisely patterning the epitaxially grown Bi layer on semiconductor
surface [54, 55] or by direct templated growth [56]. By joint first-principles and tight-binding (TB)
approaches, we are able to extract the key parameters that describe the band structures of Bi/SiC, so that the
electronic properties of Bi NRs with different ribbon width (N) and edge shapes (zigzag or armchair) can be
explored in a systematic way. While semi-infinite Bi NRs on SiC has gapless edge states connecting the upper
and lower bulk band edges to form a 1D Dirac cone [30, 32, 33, 57, 58], our calculations show that NRs with
limited width exhibit a finite band gap, and the gap size (Eg) is strongly enhanced by quantum confinement.
Specifically, for zigzag NRs, Eg decreases monotonically with width; while for armchair NRs, Eg can be
divided into three subfamilies depending on N= 3p− 1, 3p or 3p+ 1 (where p is an integer), with each
subfamily scaling inversely with N. Surprisingly, for armchair NRs with the same p, Eg follows
Eg(3p−1) > Eg(3p) > Eg(3p+1), which is in sharp contrast with the case of armchair graphene NRs (GNRs)
[39–43]. For transport properties, Canonico et al [59] performed spin and charge transport calculations on
2D Bi/SiC recently, demonstrating the interplay between topology, disorder, valley and spin degrees of
freedom. In this work, we consider a two-terminal device with Bi NRs and reveal that the conductance is
quantized to 2e2/h due to the doubly degenerate edge states. Meanwhile, an applied gate voltage can
efficiently regulate the conductance plateau according to the alignment between the gate voltage and
topological gap. The fundamental mechanisms underlying the obtained results are discussed. As the
quantum conductance is robust against strong disorder, our results suggest the great promise of QSH
insulator NRs for dissipationless interconnects.

2. Methods

2.1. First-principles calculations
First-principles calculations based on density functional theory (DFT) were performed with the
projector-augmented wave method as implemented in the Vienna ab initio simulation package [60, 61]. The
plane-wave energy cutoff was set to 400 eV. The generalized gradient approximation with the
Perdew–Burke–Ernzerhof formalism [62] was used for the exchanged-correlation functional. As standard
DFT usually underestimates the band gap of semiconductors, we have employed the more sophiscated
Heyd–Scuseria–Ernzerhof hybrid functional for electronic structure calculations [63]. SOC was treated as a
perturbation term [64]. The SiC substrate is modelled by hydrogenated SiC(0001) surface using a slab of
sixteen atomic layers, where both the top Si atoms and the bottom C atoms are terminated with H. For
Bi/SiC, Bi atoms are placed on the top Si atoms with H removed in a way that a hexagonal Bi lattice is
formed. During structural optimization, the bottom ten layers were fixed while all other atoms were fully
relaxed until the atomic forces were smaller than 0.01 eVÅ−1. The vacuum region in the direction normal to
surface was set to 30Å to eliminate the interaction between neighboring slabs. The Brillouin zone was
sampled by a 15× 15× 1 Γ-centered k-point mesh. The lattice constant of Bi hexagonal lattice is 5.35 Å,
corresponding to a (

√
3×

√
3)R30◦ superstructure of the 4H-SiC(0001) surface.
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2.2. TBmodeling
As the electronic structure of Bi/SiC can be described by a simplified TB model of 2D hexagonal lattice with
(px, py) orbitals, we constructed the effective Hamiltonian as expressed by [30, 31],

H= t∥
∑

r⃗∈A,s,i=1∼3

p†r⃗,i,s,σp⃗r+âei,i,s,σ + t⊥
∑

r⃗∈A,s,i=1∼3

p†r⃗,i,s,πp⃗r+âei,i,s,π

+ iλI

∑
r⃗,s

σz
ssp

†
r⃗,x,sp⃗r,y,s + iλR

∑
r⃗∈A,s,i=1∼3

p†r⃗,x,s̄ [̂z · (σ̂× êi)]s̄s p⃗r+âei,y,s + h.c., (1)

where t∥ (t⊥) denotes σ- (π-)bonding that can be parametrized from the standard Slater–Koster formalism
[65], and λI (λR) represents intrinsic (Rashba) SOC strength. s= ↑/↓ denotes one of the two spin states. a is

the nearest neighbor bond length. ê1 =
1
2 êx +

√
3
2 êy, ê2 =− 1

2 êx +
√
3
2 êy, ê3 =−êy are three unit vectors from

sublattice A to its three neighbors in sublattice B. p⃗r,i,σ ≡ (p⃗r,xêx + p⃗r,yêy) · êi and p⃗r,i,π ≡ (−p⃗r,xêy + p⃗r,yêx) · êi
(i= 1, 2, 3) are the projections of the p orbitals parallel and perpendicular to the bonding direction êi. a is
the nearest neighbor bond length. σz

ss are the diagonal elements of Pauli matrix σz. h.c. is the Hermitian
conjugate. σ̂ symbolizes the Pauli vector. s̄ has the opposite spin direction specified by s.

3. Electronic structures

Figure 1(a) shows the optimized structure of Bi epitaxially grown on SiC(0001) surface, where the planar Bi
layer forms a 2D hexagonal lattice and is stabilized on the substrate, as clearly observed by STM image [35].
Strong hybridization of Bi pz orbital with the electronic states of underlying substrate leads to an
‘substrate-orbital-filtering’ effect [30], so that only the (px, py) orbitals of Bi are left on each site on the
hexagonal pattern, as illustrated in figure 1(b). This (px, py)-orbital hexagonal lattice model typically
produces four bands, with two Dirac bands forming a Dirac point at K and two flat bands that touch the
Dirac bands at Γ forming two quadratic points. Inclusion of SOC opens a central gap at the Dirac point and
two lateral gaps at the quadratic points, which are all topologically nontrivial [30, 32]. We calculated the
band structure of Bi/SiC by DFT, and indeed found that SOC opens a large energy gap within the bulk gap of
SiC (figure 1(c)). By fitting the low-energy characteristics of band structure using the TB Hamiltonian
(equation (1)), we can obtain the key TB parameters that describe four-band model within a (px, py)-orbital
hexagonal lattice, i.e. t∥ = 1.953 eV, t⊥ =−0.205 eV, λI = 0.435 eV, and λR = 0.032 eV. These parameters are
generally in agreement with previous reports [59, 66].

Then, we turn to investigate the physical properties of Bi NRs. When shaped into 1D NRs on SiC
substrate, Bi may exhibit either zigzag or armchair edges, as shown in figure 2(a). Following the previous
convention of GNRs [37, 38], zigzag NRs are denoted by the number of zigzag chains (NZ) across the ribbon
width, while armchair NRs are denoted by the number of dimer lines (NA) across the ribbon width. We
studied the stability of the supported Bi NRs through the formation energy (EF), as defined by,
EF = [EBi/SiC − (ESiC + n× EBi)]/n, where EBi/SiC, ESiC and EBi represent the total energy of Bi ribbon
supported on SiC(0001) substrate, the energy of pure SiC and a single Bi atom, respectively. n is the number
of Bi atoms in the system. The calculated formation energies for zigzag and armchair Bi NRs of different
width are listed in table S1 in supplementary material. It was found that the formation energies are around
−4.9 eV, larger than the cohesive energy of Bi in the bulk form [67]. To explore the thermal stability, we
performed ab initiomolecular dynamics simulations at 300K for 20 ps with a time step of 2 fs using the
canonical ensemble and the Nosé–Hoover thermostat [68, 69]. The corresponding fluctuations of energy
with time are shown in figure S1 (supplementary material). Our stability analysis demonstrates that Bi NRs
are intrinsically stable on the substrate, indicating high probability of obtaining 1D Bi nanostructures via
high-resolution patterning or templated growth [54–56].

We computed the band structures of both zigzag and armchair NRs with a series of width (NZ = 2∼ 21,
NA = 3∼ 31). Here, the electronic properties of Bi NRs are calculated by TB method, with the TB parameters
obtained by fitting the DFT results as presented above. It was found that topological edge states appear in
both the central gap and the two lateral gaps. Interestingly, a noticeable energy gap (Eg) is opened between
the edge states in the central gap region, which depends on the edge shape and ribbon width. We summarize
the obtained variations of Eg against ribbon width in figures 2(b) and (c). For zigzag edge, the smallest
ribbon (NZ = 2) has a gap of 0.36 eV. With increased NZ , the gap size drops dramatically and becomes
almost zero (~0.001 eV) when NZ = 7 (figure 2(b)). For armchair edge, we found that the band structures
can be classified into three subgroups with NA = 3p− 1, 3p, and 3p+ 1, so that Eg has an oscillating
dependence on the ribbon width. With the same p, the gap size follows Eg(3p−1) > Eg(3p) > Eg(3p+1)( ̸= 0).
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Figure 1. (a) Optimized structure of Bi grown on SiC(0001) substrate, forming a 2D hexagonal lattice with (
√
3×

√
3) R30◦

commensurate registry. (a1, a2) denotes the unit cell. The purple, yellow, grey and white balls represent Bi, Si, C and H atoms,
respectively. (b) Schematic illustration of a (px , py)-orbital hexagonal lattice and the Brillouin zone with reciprocal lattice (b1, b2)
and high-symmetry points labeled. (c) Fitting of DFT band structures by TB modeling (blue curves). The size of red dots
indicates the relative contribution of Bi (px , py) orbitals obtained by DFT.

Figure 2. (a) Structure of Bi NRs, in which top and bottom are zigzag edges, and left and right are armchair edges. The width of
NRs with zigzag (NZ) and armchair (NA) edges are indicated. Variations of the calculated band gap (Eg) as a function of ribbon
width with zigzag (b) and armchair (c) edges.

The smallest armchair ribbon (NA = 3) has the largest Eg of 0.83 eV, which drops to 0.12 eV for the ribbon
with NA = 4 and climbs to 0.55 eV when NA = 5. With NA = 25, Eg reduces to ~0.001 eV. As such, Bi NRs
approach the bulk limit when the ribbon width reaches 29.3 Å (64.2 Å) for zigzag (armchair) type.

In figure 3, we plot out the band structures of Bi NRs with selected ribbon width. For zigzag NRs
(figures 3(a)–(d)), Eg is 0.04 eV for NZ = 4, which reduces to 0.01 eV with NZ = 5 and 0.004 eV with NZ = 6.
For NZ = 7 or larger NRs, the band structure can be regarded as that of semi-finite NRs with gapless edge
states. For armchair NRs (figures 3(e)–(h)), the gap size for NA = 7 is 0.06 eV, which greatly increases to
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Figure 3. (a)–(d) Band structures of zigzag Bi NRs with NZ = 4,5,6, and 7. (e)–(h) Band structures of armchair Bi NRs with
NA = 7,8,9, and 10. Black curves represent the bulk states and blue curves indicate the edge states. Insets in (a)–(d) show the
enlarged views of edge bands within an energy range of−0.07∼ 0.07 eV, highlighting the width-dependent energy gap.

0.25 eV with NA = 8. Further increase of width decreases Eg to 0.15 eV (0.03 eV) with NA = 9 (NA = 10),
following the band hierarchies of Eg(3p−1) > Eg(3p) > Eg(3p+1) strictly. It should be noted that during the
calculations of NRs, the Rashba SOC was neglected because λR is one order of magnitude smaller than λI ,
which does not change the overall topological order of the system.

As discussed before, Bi NRs with semi-infinite width have a pair of Dirac-cone-like edge states with
diminished energy gap. However, when shaped into NRs with finite width, band gap emerges due to the
non-negligible interaction between edge states at the two sides. In particular, Eg decreases monotonically
with width for zigzag NRs, while it has an oscillating dependence dumped by 1/width decay for armchair
NRs. Such behaviors remind us of the electronic properties of GNRs. In literature, it was reported that GNRs
with zigzag shaped edges have band gaps due to spin ordered states at the two edges [36], and the gap size
decreases with increasing width [39–43]. Here, we have also considered zigzag Bi NRs with different
ferromagnetic and antiferromagnetic configurations (see figure S2 in supplementary material), and found
that they all converge to the non-magnetic state. Therefore, the band gap existed in zigzag Bi NRs originates
from quantum confinement effect, so that the gap size shrinks rapidly with width. For GNRs with armchair
edges, earlier TB simulations showed either metallic or semiconducting properties with Eg(3p) ≳
Eg(3p+1) > E(3p+2)(= 0) [39–41], while subsequent first-principles calculations suggested that no metallic
GNRs exist and the gaps can be classified into three different categories with Eg(3p+1) > Eg(3p) >
Eg(3p+2)( ̸= 0) [39], resulting from the crucial effects of edges. The electronic structures of armchair GNRs
have been broadly discussed in literature, and it was shown that the three categories have unique aromatic,
electronic and topological properties, which are related to the inherent shell structure of graphene and
geometrical/topological constraints [44, 45]. This scenario is in sharp contrast with the size hierarchy of
Eg(3p−1) > Eg(3p) > Eg(3p+1)( ̸= 0) for armchair Bi NRs as revealed here. The difference should be ascribed to
the fundamental model associated with quantum confinement: as graphene can be described by a
single-orbital (pz) hexagonal lattice with a two-band model, while Bi/SiC is featured by a (px, py)-orbital
hexagonal lattice model with four bands, the relative strength of σ and π bonding is drastically different, thus
contributing to the different band-gap hierarchies when edges are present.

To shed light on the influence of σ and π bonding on the band structures of Bi NRs, we artificially
excluded the π bonding parameter (t⊥) and only considered the hopping integral of σ bonding (t∥), because
the amplitude of π bonding (0.205 eV) is much smaller than that of σ bonding (1.953 eV). The calculated
band gaps as a function of ribbon width are presented in figures S3 and S4 of supplementary material. It was
found that Eg for zigzag NRs follows a similar decreasing fashion with width (comparing figure S4 with
figure 2(b)), while for armchair NRs, the band gap becomes zero when NA = 3p+ 1, thus transforming the
structures from semiconducting to metallic systems (see figure S3 in supplementary material). This indicates
the crucial role of π bonding in determining the electronic properties of Bi NRs. Furthermore, we explored
the SOC effects on the electronic structures (to simulate elements with different SOC grown on the substrate,
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Figure 4. (a) Band structure of a zigzag Bi ribbon with NZ = 10. The selected points along edge bands are indicated. (b)
Real-space charge density distributions for the points shown in (a). The amplitude of states is proportional to the radius and color.
(c) Band structure of an armchair Bi ribbon with NA = 16. (d) Real-space charge density distributions corresponding to (c).

such as Pb, Sb, Sn, Ga, In and Tl [33]), and found that the trends of band-gap evolution with respect to
ribbon width are maintained, though the detailed gap size is modified (figures S5 and S6).

To directly see the topological edge states in Bi NRs, we plot out the charge density distributions in real
space. Figure 4(a) presents the band structure of a zigzag ribbon (NZ = 10), where several typical points
along the edge bands are selected within the central gap (P1, P2 and P3) and the lateral gap (P4, P5 and P6).
The corresponding spatial charge densities are shown in figure 4(b). Clearly, P1 and P4, which are far away
from bulk states, have charge density strongly localized in the edge region. For P2, P4 and P5 that are closer to
the bulk bands, the density becomes delocalized and extends into the bulk region. For P6, with energy
overlapping with bulk bands, the charge density is mainly spread over the central region of ribbon.
Therefore, the edge states away from bulk bands tend to be more localized, which should be more immune to
bulk imperfections. We also performed analyses on an armchair ribbon (NA = 16), where similar behaviors
can be observed (figures 4(c) and (d)).

4. Transport properties

As the topological states in Bi/SiC is intrinsically integrated in a semiconductor substrate, it is highly desired
to utilize these states for carrier transport. Here, we constructed a field-effect transistor (FET) device to
explore the transport properties. As shown in figure 5(a), the model device consists of two electrodes (source
and drain) and a central scattering region. When electrons travel through this device, the conductance G can
be calculated by Landauer formula [70],

G=
2e2

h

∑
i∈s,j∈d

|Sij|2, (2)

where s and d denote the source and drain electrodes of the device, and Sij is the scattering matrix from an
incoming propagating mode i to an outgoing mode j. Here, the scattering matrix formalism is used, as it is
equivalent to the nonequilibrium Green’s function approach based on the Fisher-Lee relation [71], but has a
simpler structure and is more stable in computations. In this work, we used KWANT to perform the
quantum transport calculations [72].

In the model device, a top gate is added to control the conductance between source and drain, which is
electrostatically coupled through a thin dielectric layer (figure 5(a)). Physically, when a gate voltage (Vg) is
applied in the scattering region, the chemical potential is changed and the band structure of scattering region
will be shifted in energy (figure 5(b)). Depending on the matching between the central/lateral topological
gaps of the electrode and those of the scattering region, quantized conductance could be efficiently tuned.
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Figure 5. (a) Schematic of a FET device based on Bi/SiC. (b) Band structure of a zigzag Bi ribbon (NZ = 16) as an electrode (left
panel) and as a scattering region with an applied gate voltage Vg (right panel). The topological gaps are highlighted by gray
shadow.

For instance, conductance plateaus will appear when an electron with an energy of−∆/2< E<∆/2 (∆ is
the size of the central gap) passes through the edge-state channels (in either the central gap or the two lateral
gaps). Otherwise, the electron will experience multiple scattering with bulk states and the quantized
conductance could disappear.

Figure 6 shows the calculated conductance spectra of the device based on a zigzag Bi ribbon. The ribbon
has a width of NZ = 16, so it is a QSH insulator with metallic gapless edge states. The central scattering
region includes 30 dimer lines, which is long enough to comprise all the perturbations on the system due to
the presence of scatters [73]. Without gate voltage (Vg = 0), three conductance plateaus with 2e2/h can be
clearly observed in the energy ranges of−3.02∼−2.25,−0.54∼ 0.54 and 2.25∼ 3.02 eV, denoted as region
I, II and III respectively. The quantized conductance 2e2/h originates from electron transport through two
edge-state channels within one ribbon, and the three plateaus correspond to the three topological gaps. The
conductance can reach its maximum value allowed by the number of bulk channels in the electrodes. We
considered the effect of Rashba SOC (λR = 0.032 eV) on the transport properties, and found that the
conductance shows little variation with the inclusion of λR (figure S7). With an applied gate voltage
(Vg = 0.3V), the maximum conductance decreases significantly due to the mismatch of bulk channels
between electrodes and scattering region. Meanwhile, the three quantized plateaus could still be observed.
With an increased gate voltage (Vg = 0.8V), the three plateaus seem to be up-shifted in energy. By examining
the correspondence between band structures (figure 5(b)) and conductance spectra (figure 6), we can find
several interesting behaviors: first, the plateaus contributed by the electron transport from the edge states of
electrode to the edge-state channels of scattering region shrinks with increased gate voltages, which could be
understood by the reduced overlap of the edge states. Second, for electron transport from the bulk states of
electrode to the edge-state channels of scattering region, the conductance is quantized, as determined by the
two edge-state channels. Third, for electron transport through the bulk-state channels of scattering region,
multiple scattering of the electrons with interband transition occurs, leading to a complicated behavior of
conductance with strong fluctuation.

Increase of the gate voltage to 1.7 V results in shortened quantized plateaus. Meanwhile, the plateau in
region I disappears as there is no conducting channel in the potential barrier region with no electron
transmission. When the gate voltage is 4.5 V or higher, a small quantized plateau can be observed in region
III. This plateau will be destroyed when Vg reaches 6.0 V. We also explored the transport properties of the
FET device based on armchair Bi NRs, and the conductance spectra are presented in figures S8 and S9. Our
results demonstrate that the quantized conductance of Bi NRs can be effectively regulated through gate
voltage, suggesting the great potential of Bi/SiC for electronic devices.

In practice, substrate supported 2D structures are subject to various types of defects during material
synthesis or device setting, which could affect the operating performance of nanoelectronic devices. Hence,
we further considered the disorder effect and simulated its influence on the conductance. To achieve this, an
on-site potential ϵi is introduced in the central scattering region that is randomly distributed within [−W/2,
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Figure 6. Conductance spectra of a FET device based on a zigzag Bi ribbon (NZ = 16). Different gate voltages are applied, with
Vg = 0, 0.3, 0.8, 1.7, 2.6, 3.6, 4.5, 5.0, and 6.0 V. The quantized plateaus (2e2/h) are indicated by dashed lines.

Figure 7. Conductance spectra of the FET device with different magnitudes of disorder strength (W = 0, 1.0, 3.0, and 4.0 eV). The
quantized plateaus are indicated.

W/2], whereW denotes the disorder strength. The calculated conductance spectra with different disorder
strengthW are shown in figure 7. Obviously, the maximum conductance contributed by bulk states
decreases significantly with increasingW, while the quantized conductance plateaus are more robust against
disorders. In particular, withW = 1.0 eV, all the three conductance plateaus are present with little impact
from disorders. With increasedW (3.0 eV), the conductance plateaus in regions I and III (the two lateral
gaps) disappear, while the conductance plateau in region II (the central gap) still exists. WhenW reaches
4.0 eV, which is twice as large as t∥, the conductance spectrum is strongly perturbed but the central plateau
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could still be detected. The different responses of conductance plateaus in the central and two lateral regions
lie in the distinguished properties of the electronic states around these gaps: the central gap is opened
between two Dirac bands described by a massless Dirac equation, while the two lateral gaps are split between
two quadratic points with parabolic bands characterized by Schrödinger equation [74]. Nevertheless, our
findings suggest the unique advantage of topological edge states for electronic transport, which are robust
against strong disorders (More results on the FET device with armchair NRs are presented in figure S10 in
supplementary material). Meanwhile, as the topological states of Bi NRs are intrinsically integrated into SiC,
and the large topological gap ensures room-temperature applications, the present system should provide a
promising platform for the implementation of exotic states for quantum devices compatible with current
mature technology.

5. Conclusion

In summary, by combining first-principles and TB simulations, we have systematically investigated the
electronic structures and transport properties of Bi NRs on SiC substrate, aiming to understand the
topological edge states for electronic devices. We show that band gap emerges between edge states due to
quantum confinement, and the gap size depends crucially on the width and edge shape of NRs. In particular,
for zigzag NRs the gap decreases monotonically with increasing width, while for armchair NRs it can be
categorized into three subfamilies with each subfamily decaying with 1/width. Quantum transport
calculations reveal the quantized conductance that are robust against strong disorder. Meanwhile, the
conductance plateau can be readily tuned by an applied gate voltage. The physical mechanisms underlying
the obtained findings are discussed. We expect this study to stimulate interest among experimentalists in
synthesizing novel quantum materials and devices for room-temperature applications, such as in
nanoelectronic/spintronic and quantum computing devices.
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