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Abstract: We study the quantum dynamics of the opened three-level su(1, 1) bosonic model. The

effective non-Hermitian Hamiltonians describing the system of the Lindblad equation in the short

time limit are constructed. The obtained non-Hermitian Hamiltonians are exactly solvable by the

Algebraic Bethe Ansatz. This approach allows representing biorthogonal and nonorthogonal bases

of the system. We analyze the biorthogonal expectation values of a number of particles in the zero

mode and represent it in the determinantal form. The time-dependent density matrix satisfying the

Lindblad master equation is found in terms of the nonorthogonal basis.

Keywords: open quantum system; Bethe Ansatz; Lindblad equation

1. Introduction

There have been remarkable progresses and research activities in the study of the
quantum dynamics of Bose–Einstein condensates. The novel dynamical effects such as
pumped-up interferometry, atomic Einstein–Podolsky–Rosen entanglement, quantum
scanning microscopy for cold atoms, and quantum phase transitions in spinor condensates
have initiated great interest in the physics beyond the mean-field approximation [1–5].
Because of the complexity of such systems, the simplified “toy” exactly solvable models
play an important role [6–11].

Over the years, an intense research effort has been devoted to the investigation of
non-Hermitian systems both theoretically and experimentally [12–15]. The natural source
of non-Hermiticity in quantum many-body systems is induced by coupling the system
to its environment. The relevant equation of motion of the open system is the Lindblad
master equation [16].

In our paper, we shall consider an effective three-level su(1, 1) boson system of the
hyperfine manifold of a spin-1 of ultracold atoms [1,3,10]. In the presence of a boson
loss, the effective non-Hermitian will be obtained in the short time limit of the Lindblad
equation. The validity of the considered approximation was studied in detail in the
papers [17,18]. The representation of the dynamical variables of the model as the generators
of the su(1, 1) algebra allows imbedding the obtained non-Hermitian Hamiltonians into
the well-established scheme of the quantum inverse method [19] and solving exactly the
model up to its eigenvalues and eigenstates in biorthogonal and nonorthogonal bases. The
obtained bases allow calculating the expectation values of a number of particles in the zero
mode and the time-dependent Hermitian operator satisfying the Lindblad equation.

The advantage of this approach is that it is possible to simultaneously solve a number
of models with the different atom–atom interactions using proper bosonic realizations of
the su(1, 1) algebra [11,20]. The described method allows setting the connection of the
considered models with the models of the quantum optics [21,22].

The paper is organized as follows. In Section 2, the system of bosonic atoms describing
the spin-mixing dynamics is given. The Lindblad equation in the short time approximation
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is considered, and the effective non-Hermitian Hamiltonians are obtained. In Section 3, dif-
ferent bosonic realizations of the su(1, 1) algebra are used, and the effective non-Hermitian
Hamiltonians are expressed through the generators of the algebra. In Section 4, the gen-
erators of the su(1, 1) loop algebra are considered, which made it possible to apply the
Algebraic Bethe Ansatz method to solve the effective non-Hermitian Hamiltonians in
Section 5. In the final section, the biorthogonal and nonorthogonal bases are introduced,
and the expectation values of number of particles in the zero mode are represented in the
determinantal form.

2. Dissipative Spinor Bose–Einstein Condensates

The hyperfine manifold of a spin-1 Bose–Einstein condensate of ultracold atoms can be
used to construct an effective bosonic three-level system. Spin-mixing collisions coherently
outcouple pairs of atoms from the mF = 0 state to the mF = ±1 states. The full spin-mixing
dynamics may be mapped to an effective “toy” Hamiltonian [6,7] of the form:

Hsp =
g

2

[

a2
0a†

1a†
−1 + (a†

0)
2a1a−1

]

+
g

2
(n0 +

1

2
)(n1 + n−1 + 1)− κn0, (1)

where aα, a†
α (α = ±1, 0) are annihilation, creation operators associated with the spin mode

satisfying canonical commutation relations [aα, a†
β] = δαβ, and the particle number operator

nα = a†
αaα. The coupling is given by the constant g, while detuning by the constant κ. The

number operator:
N̂ = n1 + n−1 + n0 (2)

and the population difference operator:

∆ = n1 − n−1 (3)

commute with the introduced Hamiltonian (1).
The Lindblad master equation [16] governs the dynamics of the density matrix ρ in

the presence of a boson loss:

∂tρ = i[ρ, Hsp] + ∑
α

Γα

(

aαρa†
α −

1

2
nαρ −

1

2
ρnα

)

, (4)

where the so-called jump operators aα account for the coupling to the environment and the
rates Γα are positive. The Lindblad equation can conveniently be written as

∂tρ = i
(

ρH†
e f f − He f f ρ

)

+ ∑
α

Γαaαρa†
α. (5)

The effective non-Hermitian Hamiltonian:

He f f = Hsp −
i

2 ∑
α

Γαnα (6)

describes the continuous losses of energy and deterministic dynamics at short times [14].
At longer times, the so-called “recycling” term ∑α Γαaαρa†

α accounting for the occurrence
of quantum jumps can typically no longer be neglected. The quantum jumps describe the
effect of the measurement on the state of the system.

In the present paper, we shall consider the case when the rates Γ+ = Γ− = 0 and
Γ0 ≡ Γ. Dropping quantum jumps, one obtains

∂tρ = i
(

ρH†
e f f − He f f ρ

)

, (7)
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which is equivalent to working with the non-Hermitian Hamiltonian:

He f f = Hsp −
i

2
Γn0 . (8)

Notice that Hsp = H†
sp and n0 = n†

0. A density matrix ρ is Hermitian ρ = ρ†.
In the explicit form:

He f f = Hsp −
i

2
Γn0

=
g

2

[

a2
0a†

1a†
−1 + (a†

0)
2a1a−1

]

+
g

2

(

n0 +
1

2

)

(n1 + n−1 + 1)− (κ +
i

2
Γ)n0 . (9)

The obtained non-Hermitian Hamiltonian may be solved exactly for its eigenstates and
eigenvalues.

3. Hamiltonian as the su(1, 1) Model

To solve the model for its eigenstates and eigenvalues, it is convenient to express
Hamiltonian (9) in terms of the generators of the su(1, 1) algebra. The generators of this
algebra satisfy commutation relations:

[K0,K±] = ±K±, [K+,K−] = −2K0. (10)

The Casimir invariant of su(1, 1) is given by

K2 = (K0)2 −
1

2

(

K+K− +K−K+
)

. (11)

There are several representations of su(1, 1). Our interest will be confined to the representa-
tions based on the usual bosonic operators.

The two-mode boson realization of this algebra is

K0 =
1

2
(a†

1a1 + a†
−1a−1 + 1),

K+ = a†
1a†

−1 , K− = a1a−1 . (12)

The Casimir operator for this realization can be written as

K2
K =

1

4
(∆2 − 1),

∆ = a†
1a1 − a†

−1a−1. (13)

Obviously, the population difference operator ∆ defined by Equations (3) and (13) com-
mutes with all the operators in (12), and thus, the population difference in the modes with
α = ± must differ by some fixed amount, the eigenvalue of ∆. We denote this eigenvalue
as m, and without loss of generality, we take m to be a positive integer.

For a single-mode boson field α = 0, the su(1, 1) algebra is realized by the operators:

B0 =
1

2
a†

0a0 +
1

4
, (14)

B+ = −
1

2
(a†

0)
2 , B− = −

1

2
(a0)

2.

In this case, the Casimir operator reduces identically to

K2
B = −3/16. (15)
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Expressed in terms of su(1, 1) generators, the Hamiltonian (9) reads as

He f f = 2gB0K0 − g
(

B+K− + B−K+
)

− 2(κ +
i

2
Γ)B0 +

1

2
(κ +

i

2
Γ) , (16)

and the number operator (2) as

N̂ = 2(B0 + K0)−
3

2
, (17)

Furthermore, it is worth presenting the Hamiltonian in the form:

H ≡
1

g
He f f −

1

2g
(κ +

i

2
Γ) = 2B0K0 − B+K− − B−K+ − 2δB0 , (18)

where δ = (κ + i
2 Γ)/g, respectively, the conjugated Hamiltonian:

H† = 2B0K0 − B+K− − B−K+ − 2δB0 . (19)

The most obvious conserved quantities of the Hamiltonian (18) are the total number
of particles and the population difference in the modes with the opposite spins:

[H, N̂] = [H, ∆] = 0. (20)

The commutativity of the Hamiltonian with the Casimir operator (15):

[H,K2
B] = 0, (21)

means that the parity of the number of particles in the mode with α = 0 is the conserved
quantity as well. These conservation laws follow directly from the fact that the Hamiltonian
describes the creation and annihilation of bosonic atoms in pairs.

4. The su(1, 1) Loop Algebra

In this section, we shall demonstrate that the Hamiltonian (18) may be constructed
with the help of the following operators:

X0
δ(λ) =

B0

δ − λ
−

K0

λ
+ 1 , (22)

X±
δ (λ) =

B±

δ − λ
−

K±

λ
.

Here, λ is a complex variable, while the complex-valued constant δ is defined in the
previous section.

The operators (22) satisfy the following commutation relations:

[X+
δ (λ), X−

δ (µ)] = −
2

λ − µ

(

X0
δ(λ)− X0

δ(µ)
)

,

[X0
δ(λ), X±

δ (µ)] = ±
1

λ − µ

(

X±
δ (λ)− X±

δ (µ)
)

, (23)

[X+
δ (λ), X+

δ (µ)] = [X−
δ (λ), X−

δ (µ)] = [X0
δ(λ), X0

δ(µ)] = 0.

These equalities are checked by applying the commutation relations of the operators (12),
(15) and the equality:

1

(ǫ − λ)(ǫ − µ)
=

1

λ − µ

(

1

ǫ − λ
−

1

ǫ − µ

)

. (24)

Algebra (23) is known as the su(1, 1) loop algebra.
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The operators (22) are in the involution:

(X0
δ(λ))

† = X0
δ
(λ) , (25)

(X±
δ (λ))† = X∓

δ
(λ) .

Here, † is the Hermitian conjugation with complex conjugation.
By analogy to the Casimir operator (11), we introduce a family of operators depending

on the arbitrary complex number λ :

tδ(λ) =
(

X0
δ(λ)

)2
−

1

2

(

X+
δ (λ)X−

δ (λ) + X−
δ (λ)X+

δ (λ)
)

. (26)

The most-important property of these operators is that they commute for the arbitrary
complex numbers λ, µ:

[tδ(λ), tδ(µ)] = 0. (27)

This property is checked by direct calculation with the help of the commutation rela-
tions (23). The operator tδ(λ) may be considered as the generating function of the integrals
of motion.

Substituting (22) into (26), we have

tδ(λ) = 1 +

(

B0

δ − λ

)2

+

(

K0

λ

)2

−
B+B− + B−B+

2(δ − λ)2
−

K+K− + K+K−

2λ2

−
2K0

λ
+

2B0

δ − λ
−

2B0K0 − B+K− − B−K+

(δ − λ)λ
. (28)

The coefficient at the simple pole of this expression, when λ = δ, is equal to

Res|λ=δtδ(λ) = 2B0 −
1

δ

{

2B0K0 − B+K+ − B−K−
}

, (29)

and we have the following expression for the Hamiltonian (18):

H = −δRes|λ=δtδ(λ). (30)

From (28) and (27), it follows that

[tδ(λ), H] = [tδ(λ), N] = [tδ(λ), ∆] = [tδ(λ),K
2
B] = 0. (31)

The conjugated generating operator satisfies the relation:

t†
δ(λ) = tδ(λ) . (32)

It gives
H† = −δRes|λ=δtδ(λ). (33)

Knowing the eigenvectors and eigenvalues of generating operators tδ(λ) and tδ(λ), we
may find the eigenenergies of the Hamiltonians H (18) and H† (19) applying Equations (30)
and (33).

5. The Algebraic Bethe Ansatz

To develop the algebraic scheme of the diagonalization of the generating function
tδ(λ) (26), first, we recall that the basis of the unitary irreducible representation of the
su(1, 1) algebra is formed by the eigenvectors |n〉ν of operator K0 and Casimir operator K2:

K0|n〉ν = (n + ν)|n〉ν,

K2|n〉ν = ν(ν − 1)|n〉ν, (34)
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where ν is the so-called Bargmann index. The operators K± act as the rising and lowering
operators, respectively, on the eigenstates of K0. The non-normalized states |n〉ν may be
constructed by the successive action of operator K+ from the generating vector |0〉ν defined
by the equation:

K−|0〉ν = 0. (35)

These states are equal to:
|n〉ν =

(

K+
)n
|0〉ν. (36)

The conjugated states are given by the relations:

〈0|νK
+ = 0 , (37)

〈n|ν = 〈0|ν
(

K−
)n

.

The representation space of the two-mode realization (12), (13) of the su(1, 1) algebra
consists of two-mode Fock states, which are the direct product of the number states of spin
modes with α = ±. The generating vector of this realization is defined by the equation:

K−|0〉ν2 = 0. (38)

We may choose |0〉ν2 ≡ |m〉(+) ⊗ |0〉(−) or |0〉ν2 ≡ |0〉(+) ⊗ |m〉(−), (m = 0, 1, . . .). The
Bargmann index of this realization is ν2 = m+1

2 . It follows from (12) that these states are the
eigenstates of the operator ∆ (13):

∆|0〉ν2 = αm|0〉ν2 , (39)

where m is the difference of the population.
The representation space in the single-mode realization (15) is decomposed into the

direct sum of two irreducible components spanned by the states |2n + s〉 with an even
number of particles (s = 0) or by the states with an odd number of particles (s = 1). The
Bargmann index of this realization is ν1 = 2s+1

4 , and the generating vector (35) is defined
by the equation:

B−|0〉ν1
= 0. (40)

The space with ν1 = 1
4 (s = 0) is built from the Fock vacuum |0〉ν1

≡ |0〉(0), and the space

with ν1 = 3
4 (s = 1) is built from the one-particle state |0〉ν1

≡ |1〉(0), respectively. The
generating space satisfies the relation:

B0|0〉ν1
=

2s + 1

4
|0〉ν1

(41)

From the definition of the operators X±
δ (λ), X0

δ(λ) (22) and the number operator N̂
(17), it follows that

N̂X±
δ (λ) = X±

δ (λ)
(

N̂ ± 2
)

, (42)

and
N̂X0

δ(λ) = X0
δ(λ)N̂. (43)

Therefore, X±
δ (λ) acts as a creation (annihilation) operator of the pair of boson quasi-particles.

The state that is the direct product of the generating states (40) and (38):

|Ω〉 = |0〉ν1
⊗ |0〉ν2 , (44)

which we shall call the vacuum state, satisfies the following equations:

X−
δ (λ)|Ω〉 = 0, (45)

X0
δ(λ)|Ω〉 = xδ(λ)|Ω〉,
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with the vacuum eigenvalue of the X0
δ(λ) operator equal to:

xδ(λ) = 1 +
ν1

δ − λ
−

ν2

λ
, (46)

where ν1, ν2 are the Bargmann indices of the single- and two-mode representations,
respectively.

For the conjugated operators, one has

(X−
δ (λ)|Ω〉)† = 〈Ω|(X−

δ (λ))† =〈Ω|X+
δ
(λ) = 0 , (47)

(X0
δ(λ)|Ω〉)† = 〈Ω|(X0

δ(λ))
† =〈Ω|X0

δ
(λ) = xδ(λ)〈Ω| ,

where the relations (25) were used.
The vacuum state is an eigenstate of the number operator (17):

N̂|Ω〉 = (s + m)|Ω〉, (48)

and of the population difference operator (13):

∆|Ω〉 = αm|Ω〉. (49)

It is easy to verify that the vacuum state (44) is an eigenvector of the generating function
tδ(λ):

tδ(λ)|Ω〉 = kδ(λ)|Ω〉, (50)

with the eigenvalue:

kδ(λ) =

(

1 +
ν1

δ − λ
−

ν2

λ

)2

−
ν1

(δ − λ)2
−

ν2

λ2
. (51)

Applying the relation (32), one obtains:

(tδ(λ)|Ω〉)† = 〈Ω|tδ(λ) = kδ(λ)〈Ω| . (52)

Due to the conservation laws (31), the eigenvectors of the generating operators tδ(λ)
and tδ(λ) depend on the total number of particles in the system N, the difference of the
population m, and the parity s of the α = 0 spin mode. We shall look for these eigenvectors
in the form of the Bethe vectors. We have to distinguish the right eigenvectors:

|Φδ(λ1, λ2, . . . , λNp)〉 ≡ |Φδ(
{

λj

}

)〉 =
Np

∏
j=1

X+
δ (λj)|Ω〉 , (53)

and the left eigenvectors:

〈Ψδ(
{

λj

}

)| = 〈Ω|
Np

∏
j=1

X−
δ (λj) . (54)

In addition, it will be convenient to introduce the conjugated left eigenvector:

〈Φδ(λ1, λ2, . . . , λNp)| ≡ 〈Φδ(
{

λj

}

)| = (
Np

∏
j=1

X+
δ (λj)|Ω〉)† = 〈Ω|

Np

∏
j=1

X−
δ
(λj) (55)

and the right one:

|Ψδ(
{

λj

}

)〉 = (〈Ω|
Np

∏
j=1

X−
δ (λj))

† =
Np

∏
j=1

X+
δ
(λj)|Ω〉 . (56)
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Due to (42), the number of particles in this state is

N̂|Φδ(
{

λj

}

)〉 = N|Φδ(
{

λj

}

)〉 ; N ≡ 2Np + s + m . (57)

The number of operators X+(λ) in the product (53), which corresponds to a number of
pairs of the boson quasi-particles in the system, is equal to 2Np = N − m − s. The state (53)
is satisfied by the relations:

∆|Φδ(
{

λj

}

)〉 = αm|Φδ(
{

λj

}

)〉, (58)

(−1)N̂−|∆||Φδ(
{

λj

}

)〉 = (−1)s|Φδ(
{

λj

}

)〉.

For a given number of particles N, the possible values of quantum numbers m and s are
0 ≤ m + s ≤ N. Equations (57) and (58) are satisfied by states (54)–(56).

The vectors (53) and (54) are the eigenvectors of tδ(λ) if the parameters λj satisfy the
Bethe equations [23]:

1 +
ν1

δ − λj
−

ν2

λj
=

Np

∑
l 6=j

1

λj − λl
; j = 1, . . . , Np. (59)

The vectors (55) and (56) are the eigenvectors of tδ(λ) if the parameters λj satisfy the
conjugated Bethe equations:

1 +
ν1

δ − λj

−
ν2

λj

=
Np

∑
l 6=j

1

λj − λl

; j = 1, . . . , Np. (60)

There are Np + 1 sets
{

λσ
j

}Np

j=1
and

{

λ
σ
j

}Np

j=1
of solutions of these Np equations

(σ = 1, 2, . . . , Np + 1).
The N-particle eigenvalues Θσ

δ (µ) of the generating function tδ(µ) (26) are equal to

Θσ
δ (µ) = kδ(µ)−

Np

∑
j=1

2ν1

(δ − µ)(δ − λσ
j )

−
Np

∑
j=1

2ν2

µλσ
j

, (61)

with kδ(µ) given by the relation (51), and λσ
j ∈

{

λσ
j

}Np

j=1
. The eigenvalues Θσ

δ
(µ) of the

generating function tδ(µ) (26) are equal, respectively, to

Θ
σ
δ (µ) = kδ(µ)−

Np

∑
j=1

2ν1

(δ − µ)(δ − λ
σ
j )

−
Np

∑
j=1

2ν2

µλ
σ
j

. (62)

From Equations (30) and (61), it follows that the N-particle eigenenergies of the
Hamiltonian H (18):

H|Φδ(
{

λσ
j

}

)〉 = Eσ
δ |Φδ(

{

λσ
j

}

)〉 , (63)

〈Ψδ(
{

λσ
j

}

)|H = Eσ
δ 〈Ψδ(

{

λσ
j

}

)|

are

Eσ
δ = −δRes|µ=δΘσ

δ (µ) = −2δν1 + 2ν1ν2 +
Np

∑
j=1

2ν1δ

δ − λσ
j

. (64)
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With the help of the Bethe equation (59) these eigenenergies may be rewritten in the form:

Eσ
δ = −2δν1 + 2ν1ν2 + Np

(

Np − 1 + 2ν1 + 2ν2

)

− 2

Np

∑
j=1

λσ
j . (65)

The quantum numbers 2ν2 = m − 1 and 4ν1 = 2s + 1 are expressed through the difference
of population m and the parity of the number of particles s (see (39) and (40)).

The N-particle eigenenergies of the Hamiltonian H† (19):

〈Φδ(
{

λ
σ
j

}

)|H† = E
σ
δ 〈Φδ(

{

λ
σ
j

}

)| , (66)

H†|Ψδ(
{

λ
σ
j

}

)〉 = E
σ
δ |Ψδ(

{

λ
σ
j

}

)〉

are obtained with the help of Equations (33) and (62):

E
σ
δ = −2δν1 + 2ν1ν2 + Np

(

Np − 1 + 2ν1 + 2ν2

)

− 2

Np

∑
j=1

λ
σ
j . (67)

The energies of the effective Hamiltonians He f f and H†
e f f (9), (18) are equal, respec-

tively, to

Eσ
e f f = gEσ

δ +
δ

2
, E

σ
e f f = E

σ
δ +

δ

2
. (68)

6. Biorthogonal Expectation Values

It was shown that a non-Hermitian Hamiltonian operator has inequivalent right and
left eigenvectors. However, the sets (53), (54) and (55), (56) form a biorthogonal basis [15]:

〈Ψδ(
{

λσ′

j

}

)|Φδ(
{

λσ
j

}

)〉

〈Ψδ(
{

λσ
j

}

)|Φδ(
{

λσ
j

}

)〉
= δσ′ ,σ , (69)

〈Φδ(
{

λ
σ′

j

}

)|Ψδ(
{

λ
σ
j

}

)〉

〈Φδ(
{

λ
σ
j

}

)|Ψδ(
{

λ
σ
j

}

)〉
= δσ′ ,σ .

To prove these statements, it is enough to consider the element 〈Ψδ(
{

λσ′

j

}

)|H|Φδ(
{

λσ
j

}

)〉

and notice that Eσ′

δ 6= Eσ
δ . An analogous result holds for conjugated eigenvectors. The

scalar products of the states 〈Ψδ(
{

λσ′

j

}

)|Ψδ(
{

λ
σ
j

}

)〉 and 〈Φδ(
{

λ
σ′

j

}

)|Φδ(
{

λσ
j

}

)〉 are in

general not orthogonal.
The expectation values of a generic Hermitian operator A of the form

< A >=
〈Ψδ(

{

λσ
j

}

)|A|Φδ(
{

λσ
j

}

)〉

〈Ψδ(
{

λσ
j

}

)|Φδ(
{

λσ
j

}

)〉
(70)

are known as biorthogonal expectation values and play a central role in understanding the
dynamics of non-Hermitian models.

Let us calculate the expectation value of the operator a†
0a0. One must notice that the

variation of the parameter δ in the eigenvalue problem (18) and (63):

(2B0K0 − B+K− − B−K+ − 2δB0)|Φδ(
{

λσ
j

}

)〉 = Eσ
δ |Φδ(

{

λσ
j

}

)〉
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gives

< 2B0
>=

〈Ψδ(
{

λσ
j

}

)|2B0|Φδ(
{

λσ
j

}

)〉

〈Ψδ(
{

λσ
j

}

)|Φδ(
{

λσ
j

}

)〉
= −

∂Eσ
δ

∂δ
. (71)

Taking into account the definition (15), we thus find

< a†
0a0 >= −

∂Eσ
δ

∂δ
−

1

2
. (72)

This formula allows expressing the expectation of the number of particles in the zero mode
a†

0a0 through the solutions of the Bethe Equation (59) by using the expressions (65) for
the eigenenergies:

< a†
0a0 >= 2δ −

1

2
+ 2

Np

∑
j=1

∂λσ
j

∂δ
. (73)

The differentiation of the Bethe Equation (59) with respect to δ gives

Np

∑
j=1

f jl

∂λσ
l

∂δ
=

ν1

(δ − λσ
j )

2
,

where the elements of the matrix f̂ are:

f jl =

(

ν1

(δ − λσ
l )

2
+

ν2

(λσ
l )

2
+

Np

∑
k=1

1

(λσ
l − λσ

k )
2

)

δjl −
1

(λσ
j − λσ

l )
2

. (74)

The solution of this linear system is obtained by Cramer’s rule:

∂λσ
j

∂δ
=

det f̂ j

det f̂
, (75)

where f̂ j is the matrix formed by replacing the j-th column of f̂ by the column vector
ν1

(δ−λσ
j )

2 (j = 1, . . . , Np). Cramer’s rule allows expressing the sum on the right-hand side of

the relation (73) as
Np

∑
j=1

∂λσ
j

∂δ
= −

det ϕ̂

det f̂
,

where

ϕ̂ =

















f11 . . . f1Np

ν1
(δ−λσ

1 )
2

f21 . . . f2Np

ν1
(δ−λσ

2 )
2

. . . . . . . . . . . .
fNp1 . . . fNp Np

ν1
(δ−λσ

Np
)2

1 . . . 1 0

















.

Finally, for the expectation value, we have

< a†
0a0 >= 2δ −

1

2
− 2

det ϕ̂

det f̂
. (76)

The norm of the Bethe vectors is equal to

〈Ψδ(
{

λσ
j

}

)|Φδ(
{

λσ
j

}

)〉 = det f̂ , (77)

〈Φδ(
{

λ
σ
j

}

)|Ψδ(
{

λ
σ
j

}

)〉 = det f̂ † .
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The proof of this statement is based on the usual scheme of the quantum inverse scattering
method [19] and is of the standard form for the integrable models.

Knowing the eigenvectors (63) and (66) of the Hamiltonians H and H†, we can con-
struct the generic operators in terms of the nonorthogonal basis [15]. The time-dependent
operator ρ̃t can likewise be expressed in the following form:

ρ̃t = ∑
ν,ν′

eit(E
ν′

δ −Eν
δ )|Φδ(

{

λν
j

}

)〉〈Φδ(
{

λ
ν′

j

}

)|

〈Ψδ(
{

λν
j

}

)|Φδ(
{

λν
j

}

)〉〈Φδ(
{

λ
ν′

j

}

)|Ψδ(
{

λ
ν′

j

}

)〉
. (78)

The Hermitian operator ρ̃t = ρ̃†
t satisfies the Lindblad Equation (7).

7. Conclusions

In this paper, we examined the open-system quantum dynamics of Bose–Einstein
condensates using a “toy” three-level su(1, 1) bosonic model. The effective non-Hermitian
Hamiltonians describing the system in the presence of a boson loss are constructed in
the special limit of the Lindblad equation. Based on the formulas of the Algebraic Bethe
Ansatz, the obtained non-Hermitian Hamiltonians are solved exactly for their eigenstates
and eigenvalues. This approach allows representing biorthogonal and nonorthogonal bases
of the system. We analyzed the biorthogonal expectation values of the number of particles
in the zero mode and represented it in the determinantal form. The time-dependent density
matrix satisfying the Lindblad equation in the considered approximation is found in terms
of the nonorthogonal basis.
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