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ABSTRACT

Timing noise in pulsars is often modelled with a Fourier-basis Gaussian process that follows a power law with periodic boundary
conditions on the observation time, Tpan. However, the actual noise processes can extend well below 1/Tgpaq, and many pulsars
are known to exhibit quasi-periodic timing noise. In this paper, we investigate several adaptions that try to account for these
differences between the observed behaviour and the simple power-law model. First, we propose to include an additional term that
models the quasi-periodic spin-down variations known to be present in many pulsars. Secondly, we show that a Fourier basis of
1/2T span can be more suited for estimating long-term timing parameters such as the spin frequency second derivative (F2), and is
required when the exponent of the power spectrum is greater than ~4. We also implement a Bayesian version of the generalized
least-squares ‘Cholesky’ method which has different limitations at low frequency, but find that there is little advantage over
Fourier-basis methods. We apply our quasi-periodic spin-down model to a sample of pulsars with known spin-down variations
and show that this improves parameter estimation of F2 and proper motion for the most pathological cases, but in general the
results are consistent with a power-law model. The models are all made available through the RUN_ENTERPRISE software package.

Key words: methods: data analysis — pulsars: general.

1 INTRODUCTION

Pulsar timing relies on the comparison of the observed time of arrival
(ToA) of a pulse from a pulsar with a parametric model of the pulsar’s
spin, astrometric, and other parameters. The difference between the
observed ToA and the model for a given observation is termed the
residual, and in an ideal case the post-fit residual would be white
noise well described by the uncertainty on the ToA. However, it is
well known that pulsar residuals often exhibit excess noise with both
a white noise component (Ostowski et al. 2011; Parthasarathy et al.
2021), independent from observation to observation, and red noise
processes which are correlated on time-scales much longer than the
typical observing cadence (Cordes & Downs 1985; Hobbs, Lyne &
Kramer 2010; Parthasarathy et al. 2019). For many pulsars, the red
noise processes are very significant and can deviate from the model
by many rotations.

Estimating the power-spectral density of the residuals reveals that
the red noise typically appears well modelled by a power-law process
in the Fourier domain (Reardon et al. 2016; Parthasarathy et al. 2019).
The exponent of these power laws can be very steep, which hampers
simple techniques for estimation of the power-spectral density, and
typically requires using a method of pre-whitening the data using
either a differential method or using the covariance matrix. Coles
et al. (2011) showed that common fitting methods, such as weighted
least-squares can be biased by this red noise, even when using
simple methods to deal with the red noise by fitting polynomials
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or sinusoids. The same paper also demonstrates a method to estimate
the covariance matrix of the residuals from the estimate of the power-
spectral density, which can then be used with generalized least-
squares (GLS) to solve for the other parameters in the presence of
red noise. Although this so-called ‘Cholesky’ method is effective,
the iterative nature of requiring the covariance function of the data
to properly estimate the power-spectral density used to model the
covariance function means that it is possible to find a false peak
in the overall likelihood. Bayesian techniques were proposed to
solve for the data covariance function and the model parameters
simultaneously, analytically integrating over less critical parameters
in the timing model (van Haasteren & Levin 2013; Lentati et al.
2014).

The long-term fluctuations of the generally more stable millisec-
ond pulsars are also expected to contain red noise terms caused
by a stochastic background of gravitational waves. Detection of
these waves in pulsar timing data is a key objective of several large
international collaborations (Arzoumanian et al. 2020; Kerr et al.
2020; Chen et al. 2021; Miles et al. 2023; Tarafdar et al. 2022).
This has necessitated the optimization of the Bayesian algorithms
to reduce the very large computational complexity of solving a
model containing perhaps 100 pulsars simultaneously. This led to the
development of modelling the red noise as a Fourier-basis Gaussian
process which can greatly reduce the number of computations
required to fit the red noise models (Lentati et al. 2013). These
methods have been widely applied to pulsar data for gravitational
wave detection in codes such as TEMPONEST (Lentati et al. 2014) and
ENTERPRISE (Ellis et al. 2019).
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These models are also recently being more widely applied to the
timing of the larger population of pulsars (e.g. Parthasarathy et al.
2019). However, these algorithms are optimized for millisecond
pulsars where the scale of the red noise means that only a small
number of Fourier components are required to fully model the noise.
Furthermore, one might question if the periodic nature of a Fourier-
basis Gaussian process may impact the measurement of long-term
spin parameters such as the spin frequency second derivative that is
an important measurable when considering the long-term evolution
of pulsars. More importantly, although the red noise in pulsars is
often well fit by a power law, we have observed quasi-periodic spin
evolution in a growing number of pulsars (e.g. Hobbs et al. 2010;
Parthasarathy et al. 2019).

There have been some attempts to include these quasi-periodic
variations in the timing noise model. For example studies of a
sample of pulsars regularly timed with the Parkes radio telescope
have been searched for periodic modulations in the timing residuals
(Kerr et al. 2016; Parthasarathy et al. 2019). In these cases, the
method employed was to add a sinusoidal component to the timing
model with a free amplitude and periodicity, and use likelihood
or Bayesian evidence ratios to test the favourability of a periodic
model. Similarly, recent searches for planetary companions around
pulsars on the Jodrell Bank pulsar timing archive demonstrated
that periodic timing variations are detectable in a large number of
pulsars (Nitu et al. 2022). However, although these methods are
effective at detecting some quasi-periodic variability, especially in
cases where the periodicity is relatively constant, they do not fully
model the quasi-periodic variations and therefore may not be optimal
for parameter estimation. In this work, we build on these ideas by
developing a quasi-periodic term for the power-law timing model.

Young pulsars also often show a significant measurement ¥, the
long-term frequency second derivative (F2). Estimation of F2 is
important for the understanding of the long-term evolution of pulsars,
and is important for understanding the pulsar braking index and
in the recovery from pulsar glitches (Espinoza et al. 2011; Lyne
et al. 2015; Lower et al. 2021), as well as having implications for
high precision pulsar timing experiments (Liu et al. 2019). The F2
parameter appears as a cubic term in the residuals, and hence is
most sensitive on the longest time-scales, which are also those where
the timing noise dominates. Therefore the choice of timing noise
model may be important for estimating the magnitude of F2, and
particularly for quantifying the significance of any measurement.
Particularly, the important question is if the observed F2 is consistent
with being the low-frequency extension of the timing noise observed
on shorter time-scales, or if it reflects an additional process such as
glitch recovery or the long-term braking of the pulsar.

In this paper, we will attempt to address two questions regarding
the application of the current Fourier-basis Gaussian process models
on the canonical (i.e. non-millisecond) pulsar populations.

(1) Does the periodic boundary condition of Fourier basis models
affect the ability to measure F2 for young pulsars? If so can this be
mitigated by changing the lowest basis frequency?

(ii) Is there any advantage to modelling the pulsar timing noise
with a model containing a quasi-periodic component, rather than the
pure power-law model traditionally used?

We also take the opportunity to implement a Bayesian version of
the Coles et al. (2011) model within the ENTERPRISE framework and
confirm the results of Lentati et al. (2014) that the Fourier-domain
Gaussian process model performs equally as well as the GLS method
for the estimation of pulsar timing parameters.
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2 TIMING NOISE MODELLING

We make use of the ENTERPRISE framework for the Fourier-basis
Gaussian process models. A complete description of this method
can be found in Lentati et al. (2013, 2014). In brief, we define a
model of the Fourier-domain power-spectral density (PSD) and use
this to constrain the amplitude of a harmonic series of sinusoids,
i.e. a Fourier basis. The PSD is typically modelled as a power law,
parametrized by the log-amplitude log;¢(A) and the spectral exponent
y. For a stochastic Gaussian process, the underlying PSD is equal
to the variance in the amplitude of the corresponding sinusoid, and
so we can fit for harmonically related sinusoids with a Gaussian
prior with variance defined by the model PSD. In practice this
constrained fit is analytically marginalized over, making the method
very computationally efficient.

The GLS approach assumes that the noise is drawn from a
Normal distribution with zero mean and covariance given by a
covariance matrix C. We typically estimate C by the Wiener—
Khinchin theorem, which states that covariance as a function of lag
is the Fourier transform of the PSD. Coles et al. (2011) propose
fitting a power-law model to estimates of the PSD computed
using a periodogram analysis of the pulsar data. However, this
estimation of the PSD may depend on the choice of pulsar timing
parameters, which in turn may depend on the choice of C. This
can be somewhat addressed by an iterative approach, but this
still does not allow for the uncertainty in the PSD model to be
factored into the uncertainty on other fit parameters. The Bayesian
approach is to fit the PSD hyperparameters (the amplitude, A and
exponent, y, of the power-law) at the same time as solving for
other parameters of interest, whilst using the C(A, y) to evaluate the
likelihood, and GLS to analytically marginalize over any other linear
parameters.

It is worth noting that for both cases, we cannot strictly model
a pure power-law. For the GLS method, the integral to compute C
is not finite for a pure power-law, and so a corner frequency, f; is
introduced, below which the PSD flattens, typically chosen to be of
order 1/T,,,. The Fourier basis model must also make a choice of
the set of harmonically related frequencies to use. Typically for a
data set of length Ty, the lowest frequency used is of order fiow
= 1/Tpan. The number of harmonics, Npam used is also finite, and
the natural choice is to ensure that the PSD at the frequency fhign
= Nharmfiow 1s dominated by white noise. Unlike the GLS approach,
the Fourier basis model does not flatten below fiy, but rather the
use of a Fourier basis imposes periodic boundary conditions. This
means that the Fourier basis red noise model must be periodic
over a window of 1/fiy. Clearly the intrinsic timing noise has no
knowledge of our observing span, and therefore any timing noise
longer than this time-scale will leak into the fit parameters sensitive
to the longest time-scales. Usually, it is assumed that this only has
a small perturbation on the estimation of the long-term spin, FO,
and spin derivative, F1, parameters. In effect it means that FO and
F1 represent the average spin frequency and spin-down frequency
over the observing time-span rather than estimates of the long-
term spin of the pulsar, but this usually has little impact on their
interpretation.

2.1 Modelling quasi-periodic variations in spin down

The widely used timing noise models typically use a power-law
model for the PSD model, with some use of multiple or broken
power laws. However, there is good evidence that many pulsars
show quasi-periodic behaviour, which may not be well modelled
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by a power law. Here, we propose a modification to the existing
PSD model to include a quasi-periodic term. We choose to do
this in the Fourier domain to re-use the existing frameworks, but
equivalent time-domain covariance kernels could also be constructed.
We have chosen to model the quasi-periodic process with a Gaussian
function centred on the fundamental frequency and harmonics of
a periodic process. Motivated by the observed power spectra of
pulsars exhibiting quasi-periodic timing noise (particularly PSRs
B1828—11 and B1540-06), the Gaussian functions broaden and
decrease in amplitude at higher harmonics. Particularly the integral
of each Gaussian decays exponentially, and the Gaussians maintain
a constant fractional bandwidth. This choice is largely arbitrary, but
is similar in intent to the relatively common choice of a cosine or
sine-squared kernel multiplied by a Gaussian envelope in the time
domain.

The quasi-periodic process described in Lyne et al. (2010) appears
in the spin-frequency derivative, ¥, of the pulsar. Therefore we begin
by considering a quasi-periodic Fourier-domain Gaussian process
in v(z), with a PSD composed of a train of Gaussian components
with integral of the kth harmonic decaying like exp (— (kK — 1)/3),
where A is a free parameter that effectively describes the number of
significant harmonics in the data. Specifically, we define the spectral
shape of our model by

N

q(f, fqpv o,\) = Z

k=1

exp(=(k = D/A) [ =(f —kfyp)
- exp( T ) )

where o is the width of the Gaussian function and fy, is the
fundamental frequency (k = 1 harmonic) of the quasi-periodic
process. Our analysis requires a model of the PSD in the residuals,
r(f), which is related to v by v(z) o< #(¢).

Hence, to convert our model of v(¢) to the effect on the residuals
we integrate twice with respect to time. In the Fourier domain, we
only need to integrate the Fourier basis functions with respect to
time, which has the effect of multiplying the power spectrum by £,
ignoring constant scaling factors. The resulting power spectrum is
therefore proportional to f~*¢(f, Jap» 0, ).

The choice of a Gaussian function for the spectral shape of our
quasi-periodic process means that the power decays fairly quickly
away from the peak of the quasi-periodic function. In practice, we
find that this is not sufficient to model the observed spin variations
and the observed PSD appears more like a quasi-periodic process
on top of a power-law model. Some of this may be because the
V variation process has intrinsically broader ‘tails’ than a Gaussian
function. This might be observed if the ¥ variation process is behaving
more like a random switching of v and hence a random walk in
v. This would lead to a £~ PSD in v and hence a f~* power-
law process in r(f). One approach for modelling this would be
to replace the Gaussian function with a function with wider tails
(e.g. the probability density function of the Cauchy distribution),
but we find in practice it is simpler to add an additional power-law
term to the model. This also has the advantage that it allows us
to separate the ‘purely’ quasi-periodic component from the excess
power-law noise and capture both the excess v noise as a process
with spectral exponent of —4, but also allows us to model a wider
range of noise processes with different spectral indices. Indeed, we
will see that in practice y is significantly divergent from —4 for some
pulsars. The practical implementation of this model is described in
Section 2.2.
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2.2 Implementation of the noise models

2.2.1 Fourier basis Gaussian Process

For the Fourier-basis Gaussian process models we use the model of
Lentati et al. (2014) as implemented in ENTERPRISE. The power-law
noise model is defined by a one-sided power spectral density

A2 v
Pof) = 1503 <%> s @)

where f,, is a frequency of 1 per year. The hyperparameters are the
spectral exponent y, and log-amplitude logo(Ap).

There are numerous ways to model quasi-periodic variations, and
in this work we have chosen the model described in Section 2.1.
Specifically our model for quasi-period variations in ¥ has a power-
spectral density given by

—4

Pqp(f) = quPpl(fqp)Q(f7 fqpv o, 1) (%) ’ (3)
yr

where Ry, is the ratio of quasi-periodic noise to red noise at the

central frequency fqp, and g(f, fgp, 0, A) is the function describing the

spectral shape of our quasi-periodic process, defined in equation (1).

This model consists of N harmonically related Gaussian functions
of width o, which decay with an exponential scale A. The hyper-
parameters of the quasi-periodic model are logio(Rgp), fop, 0, and
M. The final red noise model including the quasi-periodic ¥ term is
Pyp(f) + Ppi(f), and so contains the 6 hyperparameters from both red
noise models.

In order to prevent Py, growing at very low frequencies, where the
Gaussian function decays slower than f~, a low-frequency cut-off is
applied such that Py, = O for f < fo,. We choose f to be the local
minima value of Py, for N = 1 (i.e. for only the lowest frequency
harmonic) and hence can be determined by differentiation to be

fou = % (foo = /(S5 — 1607)) .

2.2.2 Generalized least squares

When directly computing the covariance function for GLS fitting
we cannot use a pure power law as this diverges as the frequency
approaches zero, so we adapt the model proposed by Coles et al.
(2011), where the two-sided power-spectral density is given by

f1? ”2<fc>y
= Lref 1 _ s 4
Pa(f) Pt< +|:fc:|> o 4)

where f. is the corner frequency below which the spectrum turns
over and fir is the reference frequency at which Py is defined. This
modification allows us to sample the power-spectral density at a
meaningful scale, rather than at f. which may correspond to a time-
scale well beyond the observing span. This simplifies to the Coles
et al. model for f. = f, and approaches equation (2) for fi.t = fyr
and small values of f.. Specifically, for f. significantly smaller than
1/Tspan, conversion between Fourier basis Lentati et al. models (as
output by ENTERPRISE or TEMPONEST) and Coles et al. GLS models
(as used in TEMPO2) can be made by making use of the conversion

A2 fet\ T
2P = pl Jref _3’ 5
ref 1 27_[2 ( fyr yr ( )
where the factor of 2 converts from one-sided to two-sided power-
spectral density.
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Table 1. The four models used in this work.

Model Method Type Equations
PF Fourier basis Power law 2)
PG GLS Power law 4)
QF Fourier basis Power law + Quasi-periodic 2)+@3)
QG GLS Power law + Quasi-periodic (GOEE))]

It is of course possible to also implement the quasi-periodic
model within the GLS framework. The quasi-periodic model remains
unchanged, except being scaled by Pp(f) from equation (4) rather
than equation (2).

2.2.3 White noise

In addition to red noise, pulsars are also seen to exhibit excess white
noise (Ostowski et al. 2011; Parthasarathy et al. 2021). Hence for
the analysis in this paper we expand each of our noise models to
also include the widely used ‘EFAC’ and ‘EQUAD’ white noise
parameters that linearly scale and add in quadrature to the formal ToA
uncertainty respectively. We follow the convention in TEMPONEST
(Lentati et al. 2014) such that the output ToA error relates to the
input ToA error, 0,, by

Gout = \/ (EFAC X 0105)*> + EQUAD?. (6)

2.2.4 The four models

We therefore have four models, two using the Fourier basis and
two using the GLS, which are summarized in Table 1. These
have been implemented as part of a single pulsar Bayesian toolkit
RUN_ENTERPRISE (Keith, Nitu & Liu 2022), which utilizes the
ENTERPRISE framework and the pulsar timing package TEMPO2 as
exposed by the python interface LIBSTEMPO. RUN_ENTERPRISE has
been developed to allow fitting and comparison of a wide combi-
nation of pulsar noise models and timing parameters using a range
of Bayesian samplers. In this work, we sample the hyperparameters
using MULTINEST (Feroz & Hobson 2008), via the PYTHON interface
PYMULTINEST (Buchner et al. 2014).

3 LOW FREQUENCY CUT-OFF AND PERIODIC
BOUNDARY CONDITIONS

As we note in Section 2, even if the intrinsic spin-noise is a power-
law over the observation time-span, we know that the power-law
cannot extend to zero frequency as the PSD must remain finite
whilst the power-law diverges. The two types of models, we use
here behave differently at the lowest frequencies. The Fourier basis
models define a lowest frequency that is both a cut-off for the power-
law and also defines the time window for the periodic boundary
conditions imposed by the Fourier basis on the red noise model. The
GLS models define a corner frequency at which the model turns over
and hence can have a finite integral. It is generally assumed that
the effects of the frequencies below 1/Tp,, are absorbed in small
changes in the FO and F1 parameters, but this will also affect the
estimation of F2 to some extent. Although these models have been
tested extensively during their development, the impact on the F2
parameter was not the focus of these tests, yet F2 is an important
parameter for studying the long-term spin evolution of pulsars. To
investigate the impact of the choice of model on F2 estimation we
perform a simple simulation. We generate 224 simulated ToAs over
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Figure 1. Upper panel: The injected power law red noise for y = 3.6, 4.6,
5.6, and 6.6. The dotted vertical line is at 1/Tp,, and the dashed grey line
shows the white noise PSD. Lower panel: The behaviour of the four different
‘power-law’ models used for y = 4.6. Dashed curves are for the PF model
with finin = 1/Tspan and fiin = 1/2T5pan and dotted curves are for the PG
model with f. = 1/Tgpan and fo = 1/ lOOyr’l. The dotted vertical line is at
1/Tspan and the solid grey line is a pure power law.

a timespan of 22 yr, with cadence and measurement errors and pulsar
parameters based on the actual Lovell telescope observations of PSR
J1909+4-0912. In addition to white noise, we inject a power-law spin
noise that extends to a frequency of 1/200 yr~!, i.e. the longest
periodicity is ~9 times Tpa,. We run four sets of simulations, with
red-noise spectral exponents of 3.6, 4.6, 5.6, and 6.6 to reflect the
typical range of values we observe in the young pulsars where F2
is likely to be measured (Parthasarathy et al. 2019). The amplitude
of the red noise is chosen such that it produces a root-mean-square
(rms) residual similar to the real pulsar, which is dominated by the
red noise, and scaled between the four exponents such that the power
at 1/T gy, is approximately the same. The four injected power laws
are shown in the upper panel of Fig. 1. We compare four approaches
to estimating the red noise and F2.

(i) PF model with the lowest frequency at 1/T,qn, as typically used
for gravitational wave studies;

(ii) PF model with lowest frequency at 1/2Tp,, to reduce require-
ments for periodic boundary conditions;

(iii) PG model with f. = 1/Tgp.,, as suggested by Coles et al.
(2011);

(iv) PG model f. = 1/100yr~', a commonly used alternative for
when it is felt that fo < 1/Tpayn.

There are of course many other choices that could be made, but
we feel that these four explore a reasonable range of commonly used
models. An example of these four models is shown in the lower
panel of Fig. 1. It is worth noting that the PG models diverge from
a power-law well before reaching f;, and hence the power at /Ty,
is very different for the f. = 1/Tp,, model compared to the other
three models, which only significantly diverge from the power-law
at frequencies below 1/Tpqy.
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Table 2. Statistics of parameter estimates from 40 realizations of simulated
observations with power-law red noise. Parameters in the columns are defined
in Section 3.1 and from left to right represent the scatter, error overestimation
factor, and bias in the fitting.

y Model 0 plO p.min ep/op Aploy,
3.6 PF (1/Tspan) 1.0(1) 1.4(2) 0.0(2)
3.6 PF (1/2Tspan) 1.0(1) 1.2(1) 0.0(2)
3.6 PG (1/Tspan) 1.0(1) 0.7(1) 0.0(2)
3.6 PG (1/100yr) 1.0(1) 1.1(1) 0.0(2)
4.6 PF (1/Tspan) 1.1(1) 1.0(1) 0.12)
4.6 PF (1/2Tspan) 1.0(1) 1.2(2) 0.1(2)
4.6 PG (1/Tspan) 1.1(1) 0.6(1) 0.12)
4.6 PG (1/100yr) 1.0(1) 1.0(1) 0.1(2)
5.6 PF (1/Tspan) 1.0(1) 0.37(4) -0.3(2)
5.6 PF (1/2Tspan) 1.0(1) 1.1(1) —-0.3(2)
5.6 PG (1/Tspan) 1.1(1) 0.33(4) -0.3(2)
5.6 PG (1/100yr) 1.0(1) 0.61(7) —-0.3(2)
6.6 PF (1/Tspan) 1.1(1) 0.09(1) -0.1(2)
6.6 PF (1/2Tspan) 1.0(1) 0.74(9) —-0.12)
6.6 PG (1/Tspan) 1.2(1) 0.16(2) -0.1(2)
6.6 PG (1/100yr) 1.1(1) 0.27(3) —-0.1(2)

3.1 Results from simulations

For each choice of exponent, we run 40 realizations of the simulation,
and fit for the noise hyperparameters and F2, marginalizing over FO,
F1, and the position of the pulsar. The initial parameters for the fitting
were slightly perturbed from the simulated values. For a parameter p,
in this case F2, we have a truth value pym, the best-fitting value, p;,
and error, e, ;, of the ith realization of the simulation. We compute
the average deviation from the injected value,

1.
A[J = N Z(P: - plrulh)v (7)
i=0

and alf which is the variance of the p; values. Note the distinction
between e, ;, the formal error returned by the fit algorithm, and o,
which is derived from the observed variation between realizations
of the simulation. Using these, we can derive metrics for the quality
of the results obtained. First, we take 0,/0 ), min, rms in the results
normalized to the model with the lowest rms. This is the factor by
which the actual scatter in the parameter estimates increases over
the ‘best’ model. Next, we consider how well the fit errors model
the scatter. Since the values of e, ; are consistent from realization
to realization, we simply consider the mean error estimate e,. If
the errors are well estimated, €,/0,, will be unity. A greater value
indicates errors are typically overestimated, and a smaller value
indicates errors are typically underestimated. Finally we consider an
estimate of the normalized bias, A,/o,, which should be consistent
with zero. The results for fitting F2 in these models are given in
Table 2.

For y = 3.6, the PF models and the PG model with f, = 1/100
yr all return reasonable values. The PG model with fo = 1/Tu
tends to underestimate the uncertainties, as might be expected since
in this model the PSD starts to turn over well before the frequency
range influenced by the F2 fit. As the spectral exponent increases, the
PF model with lowest frequency at 1/Tp,, and the PG model with
Je = Ty, begin to significantly underestimate the uncertainties.
The PG model with f; = 1/100 yr also starts to underestimate
the uncertainty as the red noise becomes steeper. The PF model
with lowest frequency at 1/2Ty,, fairs better, consistently returning
reliable uncertainties at all tested values of y.
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However, it is worth noting that we do not know what happens
to the red-noise PSD at frequencies below our observing span, and
with our longest data sets at ~50 yr, we have no measurements for
frequencies close to 1/100 yr. We should therefore always keep in
mind that the measurements of F2 (and F1 and F0O) depend on our
choice of what happens to the red noise at frequencies below 1/Tpay,
and hence we may under (or over) estimate the significance of F2 even
with a very small choice of f; or fi,w. Nevertheless we believe these
simulations support our assertion that using the PF model with lowest
frequency at 1/2Ty,, significantly improves the uncertainty estimate
on F2 under the influence of steep red noise. Using the PG model
avoids any problems with the periodic boundary conditions, but the
uncertainty in F2 depends strongly on the choice of f.. Given the
additional computational cost of the PG model, especially for small
values of f;, we therefore would recommend using the PF model (or
QF model if appropriate) with lowest frequency at 1/2T,,, when
studying the long-term evolution of pulsars.

4 QUASI-PERIODIC SPIN-DOWN

4.1 Simulations

In order to demonstrate the limitations of using power-law models
for pulsars which exhibit quasi-periodic spin-down variations, we
construct another simple simulation. The simulated pulsar switches
between two spin-down states corresponding to a change of v by
1 per cent, with each ‘high’ state lasting for 162 =+ 10 d and each
‘low’ state lasting for 440 + 10 d. We again generate 224 ToAs
over 22 yr, and based on actual Lovell telescope observations of PSR
J19094-0912. This represents a highly, but not perfectly, periodic
variation in the pulsar spin, similar to a pulsar such as PSR B1828—11
or B1540—06. In order to test the effect of the mis-match between
model and data we consider two outputs — first, the estimates of the
power-spectral density of the data, and secondly the estimates of the
pulsar parameters.

We use the CHOLSPECTRA plugin of TEMPO2 to estimate the one-
sided power-spectral density based on the maximum likelihood
models from each realization of the simulation. The stochastic ¥
switching model does not lend itself to an analytical model of the
PSD, but we can estimate the expected PSD under ideal conditions by
simulating a large number of uniformly sampled realizations of the
injected signal. To avoid the spectral leakage prevalent when taking
a periodogram of processes that fall faster than f~2, we take the
discrete Fourier transform of 2'* uniformly spaced samples of each
realization of the injected ¥ time-series, and multiply the resulting
spectrum by f~*. This should be equivalent to integrating twice in the
time domain and hence recover the model spectrum for the residuals,
though we caution that aliasing may lead to excess high-frequency
noise that is then amplified if the spectrum does not decay rapidly
enough at high frequencies.

Fig. 2 shows the average of 2'° realizations of the PSD estimated
in this way, overlaid on the maximum likelihood model and an
average of the PSD from CHOLSPECTRA. As might be expected, for
such strongly periodic signals, the pure power-law models primarily
capture the peaks in the spectra, and hence significantly overestimate
the PSD at frequencies away from the harmonics of the quasi-periodic
signal. In panel (b) of Fig. 2, we show the average PSD from the 20
realizations of the simulation. Here we see that on average the use of
power-law models leads to a substantial overestimation of the PSD,
especially at low frequencies where it can be out by more than 2
orders of magnitude. All models also overestimate the PSD at high
frequencies, flattening well before reaching the injected white noise

MNRAS 523, 4603-4614 (2023)

202 Joquiadaq 9| uo Josn TgNT AQ 9E¥Z6 L L/E09Y/E/ETS/l0IE/SEIUW/WOo0"dNo-ojWapede//:Sdny Wwoly papeojumoq



4608 M. J. Keith and I. C. Nitu

1014
10-16

10-18

PSD (yr3)

1020

1022

10-14
10-16

1018

PSD (yr3)

1020

1022

10-14
10-16

1018

PSD (yr3)

1020

10-22

10-1 100
Freq (yr™1)

Figure 2. Power spectra derived from the simulations in Section 4.1. (a) The
maximum-likelihood model power-spectrum for a single realization of ToAs
from the simulation of quasi-periodic v variations on real pulsar sampling. (b)
The mean value of the PSD estimated from 20 realizations of the simulation
with irregular sampling. (c) The mean value of the PSD estimated from 20
realizations of the same simulation but with regular sampling. In each panel,
the solid lines are for the QG, dotted lines are for the PG model and dotted—
dashed lines are for the PF model. The QF model is not shown as it almost
exactly overlaps with the QG model. The dotted spectrum is the average of
the 1024 realizations of the simulation computed directly using the DFT on
the generated v sequence. The dashed horizontal line is the mean PSD of the
injected white noise only.

level, giving the appearance of excess white noise. We attribute this
high frequency excess to spectral leakage due to a combination of
the irregular sampling of the data and the fact that the model does
not perfectly capture the underlying PSD. This effectively limits
the dynamic range available in the power-spectrum with irregular
sampling. To test this hypothesis, we repeated the simulation with
the same number of ToAs uniformly sampled across the same time-
span, with the same white noise and quasi-periodic ¥ switching.
The average PSD from the 20 simulations with uniform sampling is
shown in Fig. 2(c), and we can see that the estimated PSD correctly
approaches the white noise level, but the low-frequency behaviour is
largely unchanged.

This apparent excess white noise in irregular sampling may also be
seen in real pulsar observations due to similar mismatches between
the model and underlying noise process, though it is not clear how
to distinguish this from excess white noise intrinsic to the pulsar. We
note that in the case of irregular sampling, the spectral estimates at
the high frequencies are highly correlated — indeed this must be the
case since the effective Nyquist frequency is much higher than for
the regularly sampled case yet the number of input data points has
not increased.

MNRAS 523, 4603-4614 (2023)

Table 3. Statistics of parameter estimates from 20 realizations of simulated
observations with v-switching. Columns are as in Table 2 and defined in
Section 3.1.

Parameter Model 0 pl0 p, min ep/op Aylop
F2 PF 5.0(5) 13(1) 0.3(2)
F2 PG 4.04) 3.4(4) 0.3(2)
F2 QF 1.0(1) 1.2(1) 0.2(2)
F2 QG 1.0(1) 1.1(1) 0.2(2)
PMRA PF 3.6(4) 1.4(1) 0.3(2)
PMRA PG 3.6(4) 1.3(1) 0.2(2)
PMRA QF 1.0(1) 1.1(1) 0.1(2)
PMRA QG 1.0(1) 1.1(1) 0.1(2)
PMDEC PF 4.3(5) 1.0(1) 0.0(2)
PMDEC PG 3.6(4) 1.1(1) 0.0(2)
PMDEC QF 1.0(1) 0.9(1) —-0.1(2)
PMDEC QG 1.0(1) 0.9(1) —-0.1(2)

In this simulation the PSD close to the periodicity is approximately
10? times the power-law component; however, it is important to note
that this is only discernible when the PSD is formed using the quasi-
periodic model. We also note that the simulation does not contain
a separate power-law component, but rather the quasi-periodic v
variations intrinsically cause a power-law red noise, at least below
the fundamental frequency of the quasi-periodic process.

For parameter estimation, we focus on three parameters: the long-
term frequency second derivative, F2, and the two proper-motion
parameters PMRA and PMDEC. These parameters have interest to
the pulsar astronomer, and have been shown they can be biased if
incorrectly dealing with red noise (Coles et al. 2011). The results of
fitting these parameters in 20 simulations are summarized in Table 3,
using the same metrics as in Section 3.1. In all cases the quasi-
periodic models are both a factor of 3-5 more precise, and have
better error estimates. In practice the real pulsars have a wide range
of observed periodicities, and the benefit of using a quasi-periodic
model will be highly situational, depending on both the periodicity,
amplitude, and purity of the observed quasi-periodic process.

4.2 Application to real data

Although the simulations can demonstrate that the quasi-periodic
model can improve results for a particular case, it is perhaps more
informative to see the effect when applied to a sample of pulsars
with known quasi-periodic variations. Therefore we apply the quasi-
periodic model fitting to the sample of pulsars from Lyne et al. (2010),
which exhibit strong quasi-period variations in their spin-down rate.
These pulsars have recently been revisited by Shaw et al. (2022;
hereafter S22) using more recent data, and this provides an ideal
data set with which we can test these models and investigate any
effect on the pulsar parameters. We refer readers to S22 for details of
the observations and preparation, but in brief the data set consists
of observations made with the 76-m Lovell telescope at Jodrell
Bank, supplemented with observations from the 25-m ‘Mark-II’
telescope also at Jodrell Bank. Most data prior to 2009 were centred
at 1400 MHz and recorded using a 32-MHz analogue filterbank.
Since 2009 most data are centred at 1520-MHz using a 384-MHz
digital filterbank. These are supplemented with a small number of
observations at400, 610, and 925 MHz. For the digital filterbank data,
radio frequency interference has been excised using a combination
of median filtering and manual removal of affected channels or time
intervals. ToAs are generated by cross correlation with a noise-
free template using PSRCHIVE. A phase coherent timing solution is
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Table 4. Results of fitting the QF quasi-periodic model to a sample of pulsars. In (Zgr/Zpr) is the log-Bayes factor in favour of a the quasi-periodic model.
Columns 3-8 give model parameters are as defined in equations (2) and (3). 1/ f; is the period associated with the peak of the v periodogram in S22 for

comparison. Values in parenthesis indicate the uncertainty in the last given digit. Pulsars are ordered by the evidence for the quasi-periodic model.

PSR In(72) togio (%) logn®Ry) 2 o g ¥ W@  UA@  filfe
B1828—11 147.5 —0.111(2) 2.7(2) 0.7(1) 0.047(4) -9.41(3) 4.3(1) 471(3) 490(50) 0.97(9)
B0740-28 25.5 0.42(1) 1.3(2) 3(2) 0.18(1) —9.37(4) 4.9(2) 138(3) 130(5) 1.06(5)
B1540—-06 23.8 —0.60(1) 2.7(3) 0.5(1) 0.04(2) —11.2(3) 5.1(7) 1470(30) 1461(6) 1.01(2)
B1642—-03 18.7 —0.82(5) 2.6(3) 1.6(3) 0.17(2) —10.43(9) 4.0(3) 2400(300)  2000(600) 1.2(4)
B1826—17 16.7 ~0.502) 1.93) 2.0(5) 0.14(3) ~103(2) 44(3)  1140(50)  1094(3) 1.05(5)
B1822—-09 11.2 —0.41(4) 1.3(3) 1.6(5) 0.15(2) —-9.4(2) 5.5(4) 1000(100)  8900(200) 0.11(1)
B1929-+20 10.1 —0.22(7) 1.12) 0.3(4) 0.134) ~103(1) 47Q2)  600(200) 604(3) 1.03)
B0919+06 8.8 —0.19(2) 0.9(2) 2(1) 0.12(4) —9.65(8) 4.3(2) 570(50) 600(300) 0.9(5)
B1818—04 6.5 ~0.97(2) 17(3) 0.7(2) 0.06(4) —1027(4)  49(2)  3400(100)  4000(1000) 0.93)
B1714-34 6.4 —0.60(2) 1.4(3) 0.5(4) 0.05(3) —10.0(1) 5.2(4) 1460(60) 1400(10) 1.04(4)
B2148+63 1.6 —0.43(9) 1.8(8) 5(3) 0.18(3) —11.6(5) 4.8(7)  1000(200)  1300(200) 0.8(2)
B2035+36 1.1 —-0.2(2) 0.5(6) 5(3) 0.13(4) =9.5(1) 5.93) 700(300)  13200(200) 0.05(3)
B1839-+09 0.8 —0.2(3) 0.39) 5(3) 0.11(6) ~10.0(1) 413)  800(800) 320(3) 212)

B1907+00 0.0 -0.7(3) 0(1) 3(3) 0.10(6) —10.4(1) 5.1(3) 2100(700)  5900(100) 0.4(1)
B0950-+08 —05 —0.83) (1) 2(3) 0.12(6) —11.3(1) 55(3)  3000(1000) 5000(1000) 0.7(3)
B1903+07 -1.0 -0.5(3) —0.6(8) 5(3) 0.10(6) —9.06(7) 4.6(2) 1500(800)  1800(900) 0.8(6)
1204342740 —12 —0.2(4) ~0.9(7) 5(3) 0.10(5) —9.25(5) 57(2)  800(600)  4010(900) 0.2(1)

obtained using TEMPO2, making use of the pulse numbering feature
to track the rotation of the pulsar over the entire dataset. Because of
the inhomogeneity of backend instruments, we fit for separate white
noise parameters (EFAC and EQUAD) for the legacy data, analogue
filterbank data and digital filterbank data.

We fit each of the models to the 17 pulsars in the data set of S22.
The parameter estimates for the QF quasi-periodic noise model are
given in Table 4. Results for the QG model are extremely similar and
so are not repeated. Ten of the pulsars show significant preference for
the quasi-periodic model, with a log-Bayes factor, In Zgr — In Zpr,
greater than 6. Of these, nine find a periodicity that matches with
the peak of the periodogram of v computed by S22. The remaining
pulsar is PSR B1822—09, for which we find a much shorter period
of 1000 d compared to a peak of 9000 d in S22. We attribute this
difference to the large exponent of the power spectrum for the red
noise in this pulsar. The ¥ time series used in S22 for the periodogram
is the second derivative of the pulsar residual. This process of taking
derivatives will whiten the red noise (Coles et al. 2011), and hence
reveal the quasi-periodic oscillations. However in the case where y
is significantly larger than 4 there will continue to be residual red
noise in the v timeseries, which likely leads to the identification
of a periodicity consistent with the data set length in S22 for PSR
B1822—-09.

Fig. 3 shows the PSD estimated from the residuals using the QG
model as well as the maximum likelihood model PSD for each of
the four models, for each of the pulsars with significant evidence in
favour of a quasi-periodic model. The remaining pulsars are shown
in Fig. 4. For the pulsars in Fig. 3, the quasi-periodic models are
able to capture the shape of the estimated PSD more closely than
the pure power-law models, with the power-law models consistently
overestimating the power at the lowest frequencies. The PF model
typically has a greater overestimation factor, in the most extreme case
of B1828—11, overestimating the PSD at 1/T,, by nearly 4 orders
of magnitude. The post-fit F2, PMRA, and PMDEC parameters for
the 10 pulsars in Fig. 3 are given in Table 5. As the main difference
in the PSD models is at the lowest frequencies, the main impact
is on the estimation of F2. In the case of PSR B1828—11 using
the QF model results in a >100 measurement of F2, which is

otherwise not significant under the PF model. As we might expect, the
proper motion measurements are most affected for pulsars with f,
closest to 1 per year. For example, PSR B1828—11 ( f, ~ 0.78 yr™ )
sees a reduced uncertainty in proper motion parameters by a factor
of around 4, whilst PSR B0740—28 (f,, ~ 2.8 yr~!) reduces the
uncertainty in proper motion by a factor of 2. These two pulsars also
have the highest evidence in favour of the QF model. PSR B1929+-20
(fap = 0.5yr™") sees a reduction in uncertainty of proper motion by
a factor of 1.4. The remaining pulsars show little change in the
value or uncertainty for proper motion, but all have a much longer
periodicity or do not have strong evidence in favour of the quasi-
periodic model (hence the quasi-periodic variations do not dominate
the timing noise).

4.3 Spin-down variations

The prevailing model for the quasi-periodic variations is that the
spin-down rate of the pulsar varies in a quasi-periodic manner, hence
it is useful to visualize the v(¢) time-series from our quasi-periodic
model. The Fourier-domain Gaussian process model can be used to
estimate 1(¢) by taking the second derivative of the Gaussian process
model. This can be computed analytically once we have the Gaussian
process in the form

Neoer
r(t) = Z A; cosw;t + B; sinw;t,

1

where A;, B; are the best-fitting amplitudes of the Fourier-domain
Gaussian process components from TEMPO2 and N is the number
of Fourier coefficients. The spin-down rate can therefore be computed
analytically, since by our definition of residual we have

1
v(t) = FO + Flr + EFth —FO7(t),

and hence,
v(t) = F1 + F2t — FO#(¢)

Neoef (8)
= F1 + F2¢ + FO Z A,-wi2 cos w;t + B,-a),-2 sin w;t.

1
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Figure 3. PSD of 10 pulsars estimated using the QG model overplotted with
the model PSD from each of the four models. The dashed vertical line marks
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Figure 4. PSD of 7 pulsars without significant evidence for quasi-periodic
variability, estimated using the QG model overploted with the model PSD
from each of the four models.

The uncertainty on () can be estimated from the parameter covari-
ance matrix, and the ToA uncertainties as outlined in Appendix A.
Fig. 5 shows the v(¢) derived directly from the QF model in
this work, compared against the results presented in S22 which
are generated from a time-domain Gaussian process applied to the
post-fit residuals. There is generally a lot of similarity between the
two methods for estimating v(¢). Some differences appear around
glitches, e.g. in PSR B0740—28, B0919+4-06 and B1828—11. The
estimation of glitch parameters, particularly the change in ¥ is
difficult in the presence of quasi-periodic variations in v and hence
the values obtained are sensitive to the choice of noise model used.
We claim that the ¥ timeseries around the glitch in the two pulsars
with the highest evidence for the QF model, PSR B0740—28 and
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Table 5. Post-fit timing parameters for a sample of pulsars when using the PF and QF models. The Bayes factor in favour of the QF

model is also included comparison.

PSR In (%) F2 (10-2° HZ?) PMRA (mas yr~!) PMDEC (mas yr—')

PF QF PF QF PF QF
B1828—11 147.5 12+21 113408 —12£40 2410 10£178 2446
B0740—28 25.5 83+32 10+6 —28 415 —26+8 —16 +20 —12410
B1540—06 23.8 —12+24 0.04 £ 0.07 —177409 —174+08 —60£28 —42+24
B1642—03 18.7 03+£12 —0.014+005 —26+13 —28+12 16+4 16 +4
B1826—17 16.7 0+4 0.45 +0.22 10£5 10+6 58 +49 58 + 57
B1822—09 1.2 1+14 545 16 £ 28 18 £ 29 —100 £ 110 —90 + 120
B1929+20 10.1 —0454+0.33  —0.48+0.25 1.542.0 21+14 0.0£3.1 0.4+22
B0919+06 8.8 0.8+ 1.0 14405 8+ 14 4+£12 70 =+ 40 60 = 32
B1818—04 6.5 —02+ 1.1 0.09 +0.18 -79+ 1.0 —8.0+0.9 155429 156 +29
B1714—34 6.4 —1+4 0.140.9 246 245 30 £28 27 +25

B1828—11, look qualitatively more plausible for our QF model
than that from S22, however, PSR B0919+06 does not seem well
modelled around the glitch for either case, perhaps reflecting other
unmodeled transient glitch effects in this pulsar.

PSR B0950+08 shows a long-term deviation between our model
and S22, a pulsar for which there is no evidence in favour of the QF
model over the PF model. The deviation from S22 is because the
QF model behaves like a power-law with a low frequency turn-over
for this pulsar, and hence deviates from the power-law significantly
at the lowest frequencies (see Fig. 4). This causes a change in the
estimation of F2 in this pulsar leading to a linear deviation in the
estimated v(¢), however, neither measurement is significant. The
maximum likelihood solution for F2 changes from (1.4 £ 1.1) x
1072 HZz? with the PF model to (—0.4 & 1) x 1072 Hz® with the
QF model. It is worth noting that this pulsar has variation time-scale
of several thousand days, and so only about two cycles are seen
within our observing window. It is possible that with a significantly
longer observing span the evidence in favour of the quasi-periodic
model would be more significant.

PSR B1822—09 and B20354-36 show rapid variations in the v(¢)
derived from our model compared to that in S22. For these two
pulsars, the v timeseries do not appear to be well modelled by a
Gaussian process, with evidence for non-stationarity in the statistics.
In these cases, it appears the time-domain Gaussian process of S22
performs better than fitting directly to the residuals with the Fourier
basis Gaussian process, though likely neither method really is optimal
for this type of pulsar behaviour.

PSR B1818—04 shows high frequency oscillations in S22 that are
not present in our model. A periodicity analysis shows that these
oscillations are consistent with a period of 1 yr, which suggests
an error in the position or proper motion in the timing model of
S22. Although S22 used a Gaussian process model of v(¢), the
timing model was solved in a ‘traditional’ way, and is therefore
susceptible to leakage from the spin noise into the pulsar parameters
as described in Coles et al. (2011). This highlights the benefits of the
noise modelling procedure for determining pulsar parameters and
studying the rotation. A similar feature also appears in B1714—34,
but to a lesser extent.

5 DISCUSSION

As may be naively expected, the results of this work show that the
parameter estimates are generally improved when the noise model
more closely matches the underlying noise process. However, the

widely used power-law Fourier domain Gaussian process models are
seen to be very robust and it takes fairly significant deviations to cause
issues. Particularly the quasi-periodic model is only significantly
advantageous in a small number of pulsars, even when we study
a sample of pulsars known to exhibit significant quasi-periodic
variations. Hence, we expect that it is not necessary to apply a quasi-
periodic model to most pulsars, and it will be clear from inspection
of the v time-series or power-spectra computed from a power-law
model if the quasi-periodic model is likely to be of any benefit to the
study of a given pulsar.

Based on the simulations in Section 3, we see that the Fourier
basis model with low-frequency cut-off at 1/T,, is not suitable
for estimating F2 for pulsars with steep timing noise. Indeed many
pulsars do show timing noise with a power-law exponent at or above
y = 4 (e.g. Parthasarathy et al. 2019), hence some mitigation is
needed for this. Here, we propose that a simple adjustment of the
low-frequency cut-off to 1/2Ty,, significantly improves the results
at large values of y, though this does increase computation as twice
as many frequency coefficients are needed to reach the same value
Ofﬁ’ligh'

Although this work focuses on the estimation of F2 and other
pulsar parameters for the study of pulsars, this may also have
implications for the ongoing gravitational wave pulsar timing array
experiments that are searching for a steep spectrum signal in the
pulsar data. Here, we have shown that quasi-periodic variations in
the pulsar spin down can lead to a spurious overestimation of the
modelled power at low frequencies. Although the actual spectral
estimates are not typically overestimated, except perhaps in the
most extreme cases, this would falsely increase the uncertainty
from pulsar spin noise and potentially the total power estimated
in the gravitational wave background (GWB). Of course, the pulsars
forming the pulsar timing array do not typically show evidence for
quasi-periodic oscillations in spin down, so this effect is unlikely
to be significant, but it does demonstrate that the choice of model
is important. Perhaps more importantly, the choice of how the
model should behave at frequencies below 1/Ty,, clearly does have
significant impact on the parameter estimates and it is unlikely that
the pulsar timing noise really does cease or turn-over at frequencies
around 1/Ty,,. This is especially important for pulsars exhibiting
steep red noise. We can use the estimation of F2 as a proxy for our
ability to model the lowest frequencies in the data, since an error in
the F2 estimate is caused by unmodelled low frequency red noise. We
find that the critical power-law exponent for reliable measurements
of F2 with modeled fiow = 1/Tspan is around y = 4, which is also
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Figure 5. Frequency derivative of the 17 pulsars from S22. Points with errors are those presented in S22 and the smooth curve is that derived from the QF
model in this work, with the filled band representing the 1o uncertainty. Vertical dashed lines mark the epoch of glitches. The left column shows the full range
of the data and the right column shows a zoom between MJD 54 000-56 000 to highlight some of the details of the time variation.
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the exponent that would be produced by random variations in ¥ as
well as that expected from the GWB. This is consistent with the
break in the uncertainty of measuring F2 against red noise power-
law exponent observed by Liu et al. (2019). Therefore we argue
that the choice of fi,y can be important for the gravitational wave
experiment, particularly as these analyses typically do not include F2
in the fitting. This means that any unmodelled power in the pulsar spin
noise may be falsely attributed to another source, perhaps manifesting
in the requirement of additional model terms, such as the recently
observed common uncorrelated red noise process (Antoniadis et al.
2022). A full exploration of the impact of oversampling the spectrum
for GWB searches is outside the scope of this paper, but there may be
other benefits to oversampling the Fourier space by capturing second
order statistics in the data, and we suggest further exploration of
these effects should be included in confirming the robustness of a
future GWB detection.

6 CONCLUSIONS

We set out to answer two questions regarding the choice of noise
model for pulsar timing. For the case of the choice of low-frequency
cut-off and the periodic boundary conditions, we found that below
about y = 4 all the models perform well even with the lowest
frequency set to 1/Tp,,. However, many pulsars show significantly
steeper red processes, and hence the power must either be absorbed
into F2 or another mitigation must be applied if F2 is a parameter
of interest. Here, we propose a simple solution of setting the lowest
frequency as 1/2Tp,,, which performs reliably up to about y = 6,
beyond which the model again struggles.

For quasi-periodic timing variations, we find that a small number
of pulsars are better modelled with our new noise model that includes
a quasi-periodic term. However, the power-law models generally do
well even without this quasi-periodic term for many of the pulsars,
and it is only for the pulsars with the strongest quasi-periodic
variations that there is a significant issue with measuring F2 with
the power-law model. We find proper motion measurements can be
affected where the quasi-periodic fluctuations have a period of the
order of a year. We believe it is unlikely that quasi-periodic models
will significantly improve pulsar timing if the quasi-periodic signal
is not already clearly apparent in the power spectrum of the residuals.

We also confirm previous results that in general, the Fourier-
basis Gaussian process performs largely as well as the equivalent
GLS model. The new models and implementation of the GLS
method are all made available for testing and real-world use through
RUN_ENTERPRISE, which will allow for use, or further testing, on a
wide range of data.
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APPENDIX: IMPLEMENTATION OF THE
GAUSSIAN PROCESS MODEL IN TEMPO2 AND
ESTIMATION OF THE UNCERTAINTIES

The TEMPO2 software performs the final step of evaluating the
timing model and is used in this work to extract the Gaussian
process time-series and the spin-down timeseries. TEMPO2 uses
generalized least squares fitting, though for the Gaussian process
model the data covariance matrix, N, is assumed to be diagonal
and contain the white noise uncertainties for each data point on the
diagonal. A design matrix M maps the parameters 8 to a model
of the residuals, r observed at at times ¢. Following the standard
least-squares methodology, we could compute an estimate of the
parameters from the residuals,

B=MTN"'M)"'"MN'r.

In practice this is performed using either the singular-value decom-
position (SVD), or the QR decomposition to avoid the numerical
precision issues with direct computation. Similarly, we can compute
the covariance matrix of the parameter estimates,

Cs=(MTN"'M)!,
which again is in practice computed via the SVD or QR decomposi-

tion.
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To fit the Fourier domain Gaussian process with n coefficients to
m data points, M will contain m rows and 2n columns with the form

M. = sin 27 fitj)for 0 < i < n,
P cos 2 fiqtj)forn < i < 2n.

In order to implement the Gaussian priors on these parameters, we
add 2n constraints to the least-squares problem. This is achieved by
extending r with 2n zero valued elements, and extending M with 2n
block diagonal elements that contain the Gaussian likelihood

Moo o — P(f)~'?8ffor0 <i <n,
i+m,i+2n = P(ﬁ_n)71/2 (SffOI’}’l <i< 2n’

where P(f;) is the model PSD at frequency f; and §f is the frequency
resolution of the Fourier components, which scales from PSD to
power. This constrained problem can then be solved using the
least squares formalism. In practice, M will also contain columns
associated with the pulsar timing model (e.g. the standard spin
and astrometric parameters); however, for the remainder of this
discussion it is assumed that we will extract only the relevant rows
and columns related to the red noise model. The linear algebra from
this point forward is implemented in the MAKE_PULSAR_PLOTS.PY
script provided with RUN_ENTERPRISE.

Estimates of the U(¢) at each epoch can be made by computing D,
the second time derivative of M scaled by FO (cf. equation 8),

D= 47 f2F0 sin (27 fit;)fori < n,
a 472 f2 FO cos 2m fi_ut;)forn < i < 2n,

In the same way, we can also compute a matrix D,, that maps the
parameters onto an arbitrary vector of time samples ¢,,, allowing us

to interpolate the value of (¢) at any arbitrary time by
#(t,) = DuB.

In order to compute the uncertainty on v(r) we first need the
covariance matrix of Gaussian process in the absence of any
observations,

Com = DnCyD].

We also need the covariance between the 1(¢) and the observations,
Cio = D CsMT,

and the covariance of the data with itself

Coo = MC;MT + N,

These can then be combined to estimate the covariance of the model
V() in the presence of the observations,

C, = Cpm — CioClCT .

We take the diagonal elements of C; to draw representative uncer-
tainties on the estimates of v(¢). Note that this does not include any
uncertainty related to the uncertainty on the model hyperparameters,
but this can be estimated by repeating the process for a range of
samples from the hyperparameter posteriors.
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