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A B S T R A C T 

Timing noise in pulsars is often modelled with a Fourier-basis Gaussian process that follows a power law with periodic boundary 

conditions on the observation time, T span . However, the actual noise processes can extend well below 1/ T span , and many pulsars 
are known to exhibit quasi-periodic timing noise. In this paper, we investigate several adaptions that try to account for these 
differences between the observed behaviour and the simple power-law model. First, we propose to include an additional term that 
models the quasi-periodic spin-down variations known to be present in many pulsars. Secondly, we show that a Fourier basis of 
1/2 T span can be more suited for estimating long-term timing parameters such as the spin frequency second deri v ati ve (F2), and is 
required when the exponent of the power spectrum is greater than ∼4. We also implement a Bayesian version of the generalized 

least-squares ‘Cholesky’ method which has different limitations at low frequency, but find that there is little advantage o v er 
Fourier-basis methods. We apply our quasi-periodic spin-down model to a sample of pulsars with known spin-down variations 
and show that this impro v es parameter estimation of F2 and proper motion for the most pathological cases, but in general the 
results are consistent with a power-law model. The models are all made available through the RUN ENTERPRISE software package. 

Key words: methods: data analysis – pulsars: general. 
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 I N T RO D U C T I O N  

ulsar timing relies on the comparison of the observed time of arri v al
ToA) of a pulse from a pulsar with a parametric model of the pulsar’s
pin, astrometric, and other parameters. The difference between the 
bserved ToA and the model for a given observation is termed the
esidual, and in an ideal case the post-fit residual would be white
oise well described by the uncertainty on the ToA. Ho we ver, it is
ell known that pulsar residuals often exhibit excess noise with both 
 white noise component (Osłowski et al. 2011 ; Parthasarathy et al.
021 ), independent from observation to observation, and red noise 
rocesses which are correlated on time-scales much longer than the 
ypical observing cadence (Cordes & Downs 1985 ; Hobbs, Lyne & 

ramer 2010 ; Parthasarathy et al. 2019 ). For many pulsars, the red
oise processes are very significant and can deviate from the model 
y many rotations. 
Estimating the power-spectral density of the residuals reveals that 

he red noise typically appears well modelled by a power-law process
n the Fourier domain (Reardon et al. 2016 ; Parthasarathy et al. 2019 ).
he exponent of these power laws can be very steep, which hampers
imple techniques for estimation of the power-spectral density, and 
ypically requires using a method of pre-whitening the data using 
ither a differential method or using the covariance matrix. Coles 
t al. ( 2011 ) showed that common fitting methods, such as weighted
east-squares can be biased by this red noise, even when using
imple methods to deal with the red noise by fitting polynomials 
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r sinusoids. The same paper also demonstrates a method to estimate
he covariance matrix of the residuals from the estimate of the power-
pectral density, which can then be used with generalized least- 
quares (GLS) to solve for the other parameters in the presence of
ed noise. Although this so-called ‘Cholesky’ method is ef fecti ve,
he iterative nature of requiring the covariance function of the data
o properly estimate the power-spectral density used to model the 
ovariance function means that it is possible to find a false peak
n the o v erall likelihood. Bayesian techniques were proposed to
olve for the data covariance function and the model parameters 
imultaneously, analytically integrating over less critical parameters 
n the timing model (van Haasteren & Levin 2013 ; Lentati et al.
014 ). 
The long-term fluctuations of the generally more stable millisec- 

nd pulsars are also expected to contain red noise terms caused
y a stochastic background of gra vitational wa ves. Detection of
hese waves in pulsar timing data is a key objective of several large
nternational collaborations (Arzoumanian et al. 2020 ; Kerr et al. 
020 ; Chen et al. 2021 ; Miles et al. 2023 ; Tarafdar et al. 2022 ).
his has necessitated the optimization of the Bayesian algorithms 

o reduce the very large computational complexity of solving a 
odel containing perhaps 100 pulsars simultaneously. This led to the 

evelopment of modelling the red noise as a Fourier-basis Gaussian 
rocess which can greatly reduce the number of computations 
equired to fit the red noise models (Lentati et al. 2013 ). These
ethods have been widely applied to pulsar data for gravitational 
ave detection in codes such as TEMPONEST (Lentati et al. 2014 ) and

NTERPRISE (Ellis et al. 2019 ). 
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These models are also recently being more widely applied to the
iming of the larger population of pulsars (e.g. Parthasarathy et al.
019 ). Ho we ver, these algorithms are optimized for millisecond
ulsars where the scale of the red noise means that only a small
umber of Fourier components are required to fully model the noise.
urthermore, one might question if the periodic nature of a Fourier-
asis Gaussian process may impact the measurement of long-term
pin parameters such as the spin frequency second deri v ati ve that is
n important measurable when considering the long-term evolution
f pulsars. More importantly, although the red noise in pulsars is
ften well fit by a power la w, we hav e observ ed quasi-periodic spin
volution in a growing number of pulsars (e.g. Hobbs et al. 2010 ;
arthasarathy et al. 2019 ). 
There have been some attempts to include these quasi-periodic

ariations in the timing noise model. For example studies of a
ample of pulsars regularly timed with the Parkes radio telescope
ave been searched for periodic modulations in the timing residuals
Kerr et al. 2016 ; Parthasarathy et al. 2019 ). In these cases, the
ethod emplo yed w as to add a sinusoidal component to the timing
odel with a free amplitude and periodicity, and use likelihood

r Bayesian evidence ratios to test the fa v ourability of a periodic
odel. Similarly, recent searches for planetary companions around

ulsars on the Jodrell Bank pulsar timing archive demonstrated
hat periodic timing variations are detectable in a large number of
ulsars (Ni t ¸u et al. 2022 ). Ho we ver, although these methods are
f fecti ve at detecting some quasi-periodic variability, especially in
ases where the periodicity is relatively constant, they do not fully
odel the quasi-periodic variations and therefore may not be optimal

or parameter estimation. In this work, we build on these ideas by
eveloping a quasi-periodic term for the power-law timing model. 
Young pulsars also often show a significant measurement ν̈, the

ong-term frequency second deri v ati ve (F2). Estimation of F2 is
mportant for the understanding of the long-term evolution of pulsars,
nd is important for understanding the pulsar braking index and
n the reco v ery from pulsar glitches (Espinoza et al. 2011 ; Lyne
t al. 2015 ; Lower et al. 2021 ), as well as having implications for
igh precision pulsar timing experiments (Liu et al. 2019 ). The F2
arameter appears as a cubic term in the residuals, and hence is
ost sensitive on the longest time-scales, which are also those where

he timing noise dominates. Therefore the choice of timing noise
odel may be important for estimating the magnitude of F2, and

articularly for quantifying the significance of any measurement.
articularly, the important question is if the observed F2 is consistent
ith being the low-frequency extension of the timing noise observed
n shorter time-scales, or if it reflects an additional process such as
litch reco v ery or the long-term braking of the pulsar. 
In this paper, we will attempt to address two questions regarding

he application of the current Fourier-basis Gaussian process models
n the canonical (i.e. non-millisecond) pulsar populations. 

(i) Does the periodic boundary condition of Fourier basis models
ffect the ability to measure F2 for young pulsars? If so can this be
itigated by changing the lowest basis frequency? 
(ii) Is there any advantage to modelling the pulsar timing noise

ith a model containing a quasi-periodic component, rather than the
ure power-law model traditionally used? 

We also take the opportunity to implement a Bayesian version of
he Coles et al. ( 2011 ) model within the ENTERPRISE framework and
onfirm the results of Lentati et al. ( 2014 ) that the Fourier-domain
aussian process model performs equally as well as the GLS method

or the estimation of pulsar timing parameters. 
NRAS 523, 4603–4614 (2023) 
 TI MI NG  NOI SE  M O D E L L I N G  

e make use of the ENTERPRISE framework for the Fourier-basis
aussian process models. A complete description of this method

an be found in Lentati et al. ( 2013 , 2014 ). In brief, we define a
odel of the Fourier-domain power-spectral density (PSD) and use

his to constrain the amplitude of a harmonic series of sinusoids,
.e. a Fourier basis. The PSD is typically modelled as a power law,
arametrized by the log-amplitude log 10 ( A ) and the spectral exponent
. For a stochastic Gaussian process, the underlying PSD is equal

o the variance in the amplitude of the corresponding sinusoid, and
o we can fit for harmonically related sinusoids with a Gaussian
rior with variance defined by the model PSD. In practice this
onstrained fit is analytically marginalized o v er, making the method
ery computationally efficient. 

The GLS approach assumes that the noise is drawn from a
ormal distribution with zero mean and covariance given by a

ovariance matrix C . We typically estimate C by the Wiener–
hinchin theorem, which states that covariance as a function of lag

s the Fourier transform of the PSD. Coles et al. ( 2011 ) propose
tting a power-law model to estimates of the PSD computed
sing a periodogram analysis of the pulsar data. Ho we ver, this
stimation of the PSD may depend on the choice of pulsar timing
arameters, which in turn may depend on the choice of C . This
an be somewhat addressed by an iterative approach, but this
till does not allow for the uncertainty in the PSD model to be
actored into the uncertainty on other fit parameters. The Bayesian
pproach is to fit the PSD hyperparameters (the amplitude, A and
xponent, γ , of the power-law) at the same time as solving for
ther parameters of interest, whilst using the C ( A , γ ) to e v aluate the
ikelihood, and GLS to analytically marginalize o v er an y other linear
arameters. 
It is worth noting that for both cases, we cannot strictly model

 pure power-la w. F or the GLS method, the integral to compute C
s not finite for a pure power-law, and so a corner frequency, f c is
ntroduced, below which the PSD flattens, typically chosen to be of
rder 1/ T span . The Fourier basis model must also make a choice of
he set of harmonically related frequencies to use. Typically for a
ata set of length T span the lowest frequency used is of order f low 

 1/ T span . The number of harmonics, N harm 

used is also finite, and
he natural choice is to ensure that the PSD at the frequency f high 

 N harm 

f low is dominated by white noise. Unlike the GLS approach,
he Fourier basis model does not flatten below f low , but rather the
se of a Fourier basis imposes periodic boundary conditions. This
eans that the Fourier basis red noise model must be periodic
 v er a window of 1/ f low . Clearly the intrinsic timing noise has no
nowledge of our observing span, and therefore any timing noise
onger than this time-scale will leak into the fit parameters sensitive
o the longest time-scales. Usually, it is assumed that this only has
 small perturbation on the estimation of the long-term spin, F0,
nd spin deri v ati ve, F1, parameters. In ef fect it means that F0 and
1 represent the average spin frequency and spin-down frequency
 v er the observing time-span rather than estimates of the long-
erm spin of the pulsar, but this usually has little impact on their
nterpretation. 

.1 Modelling quasi-periodic variations in spin down 

he widely used timing noise models typically use a power-law
odel for the PSD model, with some use of multiple or broken

o wer laws. Ho we ver, there is good evidence that many pulsars
how quasi-periodic behaviour, which may not be well modelled
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y a power law. Here, we propose a modification to the existing
SD model to include a quasi-periodic term. We choose to do 

his in the Fourier domain to re-use the existing frameworks, but 
qui v alent time-domain covariance kernels could also be constructed. 
e have chosen to model the quasi-periodic process with a Gaussian 

unction centred on the fundamental frequency and harmonics of 
 periodic process. Moti v ated by the observed po wer spectra of
ulsars exhibiting quasi-periodic timing noise (particularly PSRs 
1828 −11 and B1540-06), the Gaussian functions broaden and 
ecrease in amplitude at higher harmonics. Particularly the integral 
f each Gaussian decays exponentially, and the Gaussians maintain 
 constant fractional bandwidth. This choice is largely arbitrary, but 
s similar in intent to the relatively common choice of a cosine or
ine-squared kernel multiplied by a Gaussian envelope in the time 
omain. 
The quasi-periodic process described in Lyne et al. ( 2010 ) appears

n the spin-frequency deri v ati ve, ν̇, of the pulsar. Therefore we begin
y considering a quasi-periodic Fourier-domain Gaussian process 
n ν̇( t), with a PSD composed of a train of Gaussian components
ith integral of the k th harmonic decaying like exp ( − ( k − 1)/ λ),
here λ is a free parameter that ef fecti vely describes the number of

ignificant harmonics in the data. Specifically, we define the spectral 
hape of our model by 

( f , f qp , σ, λ) = 

N ∑ 

k= 1 

exp ( −( k − 1) /λ) 

k 
exp 

(−( f − kf qp ) 2 

2 kσ 2 

)
, (1) 

here σ is the width of the Gaussian function and f qp is the
undamental frequency ( k = 1 harmonic) of the quasi-periodic 
rocess. Our analysis requires a model of the PSD in the residuals,
 ( t ), which is related to ν̇ by ν̇( t) ∝ r̈ ( t). 

Hence, to convert our model of ν̇( t) to the effect on the residuals
e integrate twice with respect to time. In the Fourier domain, we
nly need to integrate the Fourier basis functions with respect to 
ime, which has the effect of multiplying the power spectrum by f −4 ,
gnoring constant scaling factors. The resulting power spectrum is 
herefore proportional to f −4 q ( f , f qp , σ , λ). 

The choice of a Gaussian function for the spectral shape of our
uasi-periodic process means that the power decays fairly quickly 
way from the peak of the quasi-periodic function. In practice, we 
nd that this is not sufficient to model the observed spin variations
nd the observed PSD appears more like a quasi-periodic process 
n top of a power-law model. Some of this may be because the

˙ variation process has intrinsically broader ‘tails’ than a Gaussian 
unction. This might be observed if the ̇ν variation process is behaving 
ore like a random switching of ν̇ and hence a random walk in
. This would lead to a f −2 PSD in ν and hence a f −4 power-

aw process in r ( t ). One approach for modelling this would be
o replace the Gaussian function with a function with wider tails
e.g. the probability density function of the Cauchy distribution), 
ut we find in practice it is simpler to add an additional power-law
erm to the model. This also has the advantage that it allows us
o separate the ‘purely’ quasi-periodic component from the excess 
ower-law noise and capture both the excess ν̇ noise as a process
ith spectral exponent of −4, but also allows us to model a wider

ange of noise processes with different spectral indices. Indeed, we 
ill see that in practice γ is significantly divergent from −4 for some
ulsars. The practical implementation of this model is described in 
ection 2.2 . 
s
.2 Implementation of the noise models 

.2.1 Fourier basis Gaussian Process 

 or the F ourier-basis Gaussian process models we use the model of
entati et al. ( 2014 ) as implemented in ENTERPRISE . The power-law
oise model is defined by a one-sided power spectral density 

 pl ( f ) = 

A 

2 
pl 

12 π2 

(
f 

f yr 

)−γ

f −3 
yr , (2) 

here f yr is a frequency of 1 per year. The hyperparameters are the
pectral exponent γ , and log-amplitude log 10 ( A pl ). 

There are numerous ways to model quasi-periodic variations, and 
n this work we have chosen the model described in Section 2.1 .
pecifically our model for quasi-period variations in ν̇ has a power- 
pectral density given by 

 qp ( f ) = R qp P pl ( f qp ) q( f , f qp , σ, λ) 

(
f 

f yr 

)−4 

, (3) 

here R qp is the ratio of quasi-periodic noise to red noise at the
entral frequency f qp , and q ( f , f qp , σ , λ) is the function describing the
pectral shape of our quasi-periodic process, defined in equation ( 1 ).

This model consists of N harmonically related Gaussian functions 
f width σ , which decay with an exponential scale λ. The hyper-
arameters of the quasi-periodic model are log 10 ( R qp ), f qp , σ , and
. The final red noise model including the quasi-periodic ν̇ term is
 qp ( f ) + P pl ( f ), and so contains the 6 hyperparameters from both red
oise models. 
In order to pre vent P qp gro wing at very low frequencies, where the

aussian function decays slower than f −4 , a lo w-frequency cut-of f is
pplied such that P qp = 0 for f < f cut . We choose f cut to be the local
inima value of P qp for N = 1 (i.e. for only the lowest frequency

armonic) and hence can be determined by differentiation to be 

 cut = 

1 

2 

(
f qp −

√ 

( f 2 qp − 16 σ 2 ) 
)

. 

.2.2 Generalized least squares 

hen directly computing the covariance function for GLS fitting 
e cannot use a pure power law as this diverges as the frequency

pproaches zero, so we adapt the model proposed by Coles et al.
 2011 ), where the two-sided power-spectral density is given by 

 pl ( f ) = P ref 

( 

1 + 

[
f 

f c 

]2 
) −γ / 2 (

f c 

f ref 

)−γ

, (4) 

here f c is the corner frequency below which the spectrum turns
 v er and f ref is the reference frequency at which P ref is defined. This
odification allows us to sample the power-spectral density at a 
eaningful scale, rather than at f c which may correspond to a time-

cale well beyond the observing span. This simplifies to the Coles
t al. model for f c = f ref , and approaches equation ( 2 ) for f ref = f yr 

nd small values of f c . Specifically, for f c significantly smaller than
/ T span , conversion between Fourier basis Lentati et al. models (as
utput by ENTERPRISE or TEMPONEST ) and Coles et al. GLS models
as used in TEMPO2 ) can be made by making use of the conversion 

 P ref = 

A 

2 
pl 

12 π2 

(
f ref 

f yr 

)−γ

f −3 
yr , (5) 

here the factor of 2 converts from one-sided to two-sided power-
pectral density. 
MNRAS 523, 4603–4614 (2023) 
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Table 1. The four models used in this work. 

Model Method Type Equations 

PF Fourier basis Power law ( 2 ) 
PG GLS Power law ( 4 ) 
QF Fourier basis Power law + Quasi-periodic ( 2 ) + ( 3 ) 
QG GLS Power law + Quasi-periodic ( 4 ) + ( 3 ) 

 

m  

u  

t

2

I  

n  

t  

a  

p  

u  

(  

i

σ

2

W  

t  

h  

R  

E  

e  

b  

n  

o  

u  

P

3
B

A  

l  

c  

w  

h  

m  

l  

c  

G  

a  

t  

c  

e  

t  

p  

p  

i  

p  

Figure 1. Upper panel: The injected power law red noise for γ = 3.6, 4.6, 
5.6, and 6.6. The dotted vertical line is at 1/ T span and the dashed grey line 
shows the white noise PSD. Lower panel: The behaviour of the four different 
‘power-law’ models used for γ = 4.6. Dashed curves are for the PF model 
with f min = 1/ T span and f min = 1/2 T span and dotted curves are for the PG 

model with f c = 1/ T span and f c = 1/100yr −1 . The dotted vertical line is at 
1/ T span and the solid grey line is a pure power law. 
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It is of course possible to also implement the quasi-periodic
odel within the GLS framework. The quasi-periodic model remains

nchanged, except being scaled by P pl ( f ) from equation ( 4 ) rather
han equation ( 2 ). 

.2.3 White noise 

n addition to red noise, pulsars are also seen to exhibit excess white
oise (Osłowski et al. 2011 ; Parthasarathy et al. 2021 ). Hence for
he analysis in this paper we expand each of our noise models to
lso include the widely used ‘EFAC’ and ‘EQUAD’ white noise
arameters that linearly scale and add in quadrature to the formal ToA
ncertainty respecti vely. We follo w the convention in TEMPONEST

Lentati et al. 2014 ) such that the output ToA error relates to the
nput ToA error, σ toa , by 

out = 

√ 

( EFAC × σtoa ) 2 + EQUAD 

2 . (6) 

.2.4 The four models 

e therefore have four models, two using the Fourier basis and
wo using the GLS, which are summarized in Table 1 . These
ave been implemented as part of a single pulsar Bayesian toolkit
UN ENTERPRISE (Keith, Ni t ¸u & Liu 2022 ), which utilizes the
NTERPRISE framework and the pulsar timing package TEMPO2 as
xposed by the p ython interf ace LIBSTEMPO . RUN ENTERPRISE has
een developed to allow fitting and comparison of a wide combi-
ation of pulsar noise models and timing parameters using a range
f Bayesian samplers. In this work, we sample the hyperparameters
sing MULTINEST (Feroz & Hobson 2008 ), via the PYTHON interface
YMULTINEST (Buchner et al. 2014 ). 

 LOW  FREQUENCY  CUT-OFF  A N D  PERIODI C  

O U N D  A R  Y  C O N D I T I O N S  

s we note in Section 2 , even if the intrinsic spin-noise is a power-
a w o v er the observ ation time-span, we kno w that the po wer-law
annot extend to zero frequency as the PSD must remain finite
hilst the power-law diverges. The two types of models, we use
ere behave differently at the lowest frequencies. The Fourier basis
odels define a lowest frequency that is both a cut-off for the power-

aw and also defines the time window for the periodic boundary
onditions imposed by the Fourier basis on the red noise model. The
LS models define a corner frequency at which the model turns o v er

nd hence can have a finite integral. It is generally assumed that
he effects of the frequencies below 1/ T span are absorbed in small
hanges in the F0 and F1 parameters, but this will also affect the
stimation of F2 to some extent. Although these models have been
ested e xtensiv ely during their dev elopment, the impact on the F2
arameter was not the focus of these tests, yet F2 is an important
arameter for studying the long-term spin evolution of pulsars. To
nvestigate the impact of the choice of model on F2 estimation we
erform a simple simulation. We generate 224 simulated ToAs o v er
NRAS 523, 4603–4614 (2023) 
 timespan of 22 yr, with cadence and measurement errors and pulsar
arameters based on the actual Lo v ell telescope observations of PSR
1909 + 0912. In addition to white noise, we inject a power-law spin
oise that extends to a frequency of 1/200 yr −1 , i.e. the longest
eriodicity is ∼9 times T span . We run four sets of simulations, with
ed-noise spectral exponents of 3.6, 4.6, 5.6, and 6.6 to reflect the
ypical range of values we observe in the young pulsars where F2
s likely to be measured (Parthasarathy et al. 2019 ). The amplitude
f the red noise is chosen such that it produces a root-mean-square
rms) residual similar to the real pulsar, which is dominated by the
ed noise, and scaled between the four exponents such that the power
t 1/ T span is approximately the same. The four injected power laws
re shown in the upper panel of Fig. 1 . We compare four approaches
o estimating the red noise and F2. 

(i) PF model with the lowest frequency at 1/ T span , as typically used
or gravitational wave studies; 

(ii) PF model with lowest frequency at 1/2 T span to reduce require-
ents for periodic boundary conditions; 
(iii) PG model with f c = 1/ T span , as suggested by Coles et al.

 2011 ); 
(iv) PG model f c = 1/100yr −1 , a commonly used alternative for

hen it is felt that f c � 1/ T span . 

There are of course many other choices that could be made, but
e feel that these four explore a reasonable range of commonly used
odels. An example of these four models is shown in the lower

anel of Fig. 1 . It is worth noting that the PG models diverge from
 power-law well before reaching f c , and hence the power at 1/ T span 

s very different for the f c = 1/ T span model compared to the other
hree models, which only significantly diverge from the power-law
t frequencies below 1/ T span . 

art/stad1713_f1.eps
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Table 2. Statistics of parameter estimates from 40 realizations of simulated 
observ ations with po wer-la w red noise. P arameters in the columns are defined 
in Section 3.1 and from left to right represent the scatter, error o v erestimation 
factor, and bias in the fitting. 

γ Model σ p / σ p ,min e p /σp � p / σ p 

3.6 PF (1/ T span ) 1.0(1) 1.4(2) 0.0(2) 
3.6 PF (1/2 T span ) 1.0(1) 1.2(1) 0.0(2) 
3.6 PG (1/ T span ) 1.0(1) 0.7(1) 0.0(2) 
3.6 PG (1/100yr) 1.0(1) 1.1(1) 0.0(2) 
4.6 PF (1/ T span ) 1.1(1) 1.0(1) 0.1(2) 
4.6 PF (1/2 T span ) 1.0(1) 1.2(2) 0.1(2) 
4.6 PG (1/ T span ) 1.1(1) 0.6(1) 0.1(2) 
4.6 PG (1/100yr) 1.0(1) 1.0(1) 0.1(2) 
5.6 PF (1/ T span ) 1.0(1) 0.37(4) −0.3(2) 
5.6 PF (1/2 T span ) 1.0(1) 1.1(1) −0.3(2) 
5.6 PG (1/ T span ) 1.1(1) 0.33(4) −0.3(2) 
5.6 PG (1/100yr) 1.0(1) 0.61(7) −0.3(2) 
6.6 PF (1/ T span ) 1.1(1) 0.09(1) −0.1(2) 
6.6 PF (1/2 T span ) 1.0(1) 0.74(9) −0.1(2) 
6.6 PG (1/ T span ) 1.2(1) 0.16(2) −0.1(2) 
6.6 PG (1/100yr) 1.1(1) 0.27(3) −0.1(2) 
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.1 Results from simulations 

or each choice of exponent, we run 40 realizations of the simulation,
nd fit for the noise hyperparameters and F2, marginalizing o v er F0,
1, and the position of the pulsar. The initial parameters for the fitting
ere slightly perturbed from the simulated values. For a parameter p ,

n this case F2, we have a truth value p truth , the best-fitting value, ˆ p i ,
nd error, e p , i , of the i th realization of the simulation. We compute
he average deviation from the injected value, 

 p = 

1 

N 

N ∑ 

i= 0 

( ̂  p i − p truth ) , (7) 

nd σ 2 
p which is the variance of the ˆ p i values. Note the distinction 

etween e p , i , the formal error returned by the fit algorithm, and σ p 

hich is derived from the observed variation between realizations 
f the simulation. Using these, we can derive metrics for the quality
f the results obtained. First, we take σ p / σ p ,min , rms in the results
ormalized to the model with the lowest rms. This is the factor by
hich the actual scatter in the parameter estimates increases o v er

he ‘best’ model. Next, we consider how well the fit errors model
he scatter. Since the values of e p , i are consistent from realization 
o realization, we simply consider the mean error estimate e p . If
he errors are well estimated, e p /σp , will be unity. A greater value
ndicates errors are typically o v erestimated, and a smaller value 
ndicates errors are typically underestimated. Finally we consider an 
stimate of the normalized bias, � p / σ p , which should be consistent
ith zero. The results for fitting F2 in these models are given in
able 2 . 
For γ = 3.6, the PF models and the PG model with f c = 1/100

r all return reasonable values. The PG model with f c = 1/ T span 

ends to underestimate the uncertainties, as might be expected since 
n this model the PSD starts to turn o v er well before the frequency
ange influenced by the F2 fit. As the spectral exponent increases, the
F model with lowest frequency at 1/ T span and the PG model with
 c = 1/ T span begin to significantly underestimate the uncertainties. 
he PG model with f c = 1/100 yr also starts to underestimate

he uncertainty as the red noise becomes steeper. The PF model 
ith lowest frequency at 1/2 T span fairs better, consistently returning 

eliable uncertainties at all tested values of γ . 
Ho we ver, it is worth noting that we do not know what happens
o the red-noise PSD at frequencies below our observing span, and
ith our longest data sets at ∼50 yr, we have no measurements for

requencies close to 1/100 yr. We should therefore al w ays k eep in
ind that the measurements of F2 (and F1 and F0) depend on our

hoice of what happens to the red noise at frequencies below 1/ T span ,
nd hence we may under (or o v er) estimate the significance of F2 even
ith a very small choice of f c or f low . Nevertheless we believe these

imulations support our assertion that using the PF model with lowest
requency at 1/2 T span significantly improves the uncertainty estimate 
n F2 under the influence of steep red noise. Using the PG model
 v oids any problems with the periodic boundary conditions, but the
ncertainty in F2 depends strongly on the choice of f c . Given the
dditional computational cost of the PG model, especially for small 
alues of f c , we therefore would recommend using the PF model (or
F model if appropriate) with lowest frequency at 1/2 T span when

tudying the long-term evolution of pulsars. 

 QUASI -PERI ODI C  SPIN-DOW N  

.1 Simulations 

n order to demonstrate the limitations of using power-law models 
or pulsars which exhibit quasi-periodic spin-do wn v ariations, we 
onstruct another simple simulation. The simulated pulsar switches 
etween two spin-down states corresponding to a change of ν̇ by 
 per cent, with each ‘high’ state lasting for 162 ± 10 d and each
low’ state lasting for 440 ± 10 d. We again generate 224 ToAs
 v er 22 yr , and based on actual Lo v ell telescope observations of PSR
1909 + 0912. This represents a highly, but not perfectly, periodic
ariation in the pulsar spin, similar to a pulsar such as PSR B1828 −11
r B1540 −06. In order to test the effect of the mis-match between
odel and data we consider two outputs – first, the estimates of the

ower-spectral density of the data, and secondly the estimates of the
ulsar parameters. 
We use the CHOLSPECTRA plugin of TEMPO2 to estimate the one-

ided power-spectral density based on the maximum likelihood 
odels from each realization of the simulation. The stochastic ν̇

witching model does not lend itself to an analytical model of the
SD, but we can estimate the expected PSD under ideal conditions by
imulating a large number of uniformly sampled realizations of the 
njected signal. To a v oid the spectral leakage pre v alent when taking
 periodogram of processes that fall faster than f −2 , we take the
iscrete Fourier transform of 2 14 uniformly spaced samples of each 
ealization of the injected ν̇ time-series, and multiply the resulting 
pectrum by f −4 . This should be equi v alent to integrating twice in the
ime domain and hence reco v er the model spectrum for the residuals,
hough we caution that aliasing may lead to excess high-frequency 
oise that is then amplified if the spectrum does not decay rapidly
nough at high frequencies. 

Fig. 2 shows the average of 2 10 realizations of the PSD estimated
n this way, o v erlaid on the maximum likelihood model and an
verage of the PSD from CHOLSPECTRA . As might be expected, for
uch strongly periodic signals, the pure power-law models primarily 
apture the peaks in the spectra, and hence significantly o v erestimate
he PSD at frequencies away from the harmonics of the quasi-periodic
ignal. In panel (b) of Fig. 2 , we show the average PSD from the 20
ealizations of the simulation. Here we see that on average the use of
ower-law models leads to a substantial o v erestimation of the PSD,
specially at low frequencies where it can be out by more than 2
rders of magnitude. All models also o v erestimate the PSD at high
requencies, flattening well before reaching the injected white noise 
MNRAS 523, 4603–4614 (2023) 
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M

Figure 2. Power spectra derived from the simulations in Section 4.1 . (a) The 
maximum-likelihood model power-spectrum for a single realization of ToAs 
from the simulation of quasi-periodic ̇ν variations on real pulsar sampling. (b) 
The mean value of the PSD estimated from 20 realizations of the simulation 
with irregular sampling. (c) The mean value of the PSD estimated from 20 
realizations of the same simulation but with regular sampling. In each panel, 
the solid lines are for the QG, dotted lines are for the PG model and dotted–
dashed lines are for the PF model. The QF model is not shown as it almost 
e xactly o v erlaps with the QG model. The dotted spectrum is the average of 
the 1024 realizations of the simulation computed directly using the DFT on 
the generated ̇ν sequence. The dashed horizontal line is the mean PSD of the 
injected white noise only. 
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Table 3. Statistics of parameter estimates from 20 realizations of simulated 
observations with ν̇-switching. Columns are as in Table 2 and defined in 
Section 3.1 . 

Parameter Model σ p / σ p , min e p /σp � p / σ p 

F2 PF 5.0(5) 13(1) 0.3(2) 
F2 PG 4.0(4) 3.4(4) 0.3(2) 
F2 QF 1.0(1) 1.2(1) 0.2(2) 
F2 QG 1.0(1) 1.1(1) 0.2(2) 
PMRA PF 3.6(4) 1.4(1) 0.3(2) 
PMRA PG 3.6(4) 1.3(1) 0.2(2) 
PMRA QF 1.0(1) 1.1(1) 0.1(2) 
PMRA QG 1.0(1) 1.1(1) 0.1(2) 
PMDEC PF 4.3(5) 1.0(1) 0.0(2) 
PMDEC PG 3.6(4) 1.1(1) 0.0(2) 
PMDEC QF 1.0(1) 0.9(1) −0.1(2) 
PMDEC QG 1.0(1) 0.9(1) −0.1(2) 
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e vel, gi ving the appearance of excess white noise. We attribute this
igh frequenc y e xcess to spectral leakage due to a combination of
he irregular sampling of the data and the fact that the model does
ot perfectly capture the underlying PSD. This ef fecti vely limits
he dynamic range available in the power-spectrum with irregular
ampling. To test this hypothesis, we repeated the simulation with
he same number of ToAs uniformly sampled across the same time-
pan, with the same white noise and quasi-periodic ν̇ switching.
he average PSD from the 20 simulations with uniform sampling is
hown in Fig. 2 (c), and we can see that the estimated PSD correctly
pproaches the white noise level, but the low-frequency behaviour is
argely unchanged. 

This apparent excess white noise in irregular sampling may also be
een in real pulsar observations due to similar mismatches between
he model and underlying noise process, though it is not clear how
o distinguish this from excess white noise intrinsic to the pulsar. We
ote that in the case of irregular sampling, the spectral estimates at
he high frequencies are highly correlated – indeed this must be the
ase since the ef fecti ve Nyquist frequency is much higher than for
he regularly sampled case yet the number of input data points has
ot increased. 
NRAS 523, 4603–4614 (2023) 
In this simulation the PSD close to the periodicity is approximately
0 3 times the power-law component; however, it is important to note
hat this is only discernible when the PSD is formed using the quasi-
eriodic model. We also note that the simulation does not contain
 separate power-law component, but rather the quasi-periodic ν̇
ariations intrinsically cause a power-law red noise, at least below
he fundamental frequency of the quasi-periodic process. 

For parameter estimation, we focus on three parameters: the long-
erm frequency second deri v ati ve, F2, and the two proper-motion
arameters PMRA and PMDEC. These parameters have interest to
he pulsar astronomer, and have been shown they can be biased if
ncorrectly dealing with red noise (Coles et al. 2011 ). The results of
tting these parameters in 20 simulations are summarized in Table 3 ,
sing the same metrics as in Section 3.1 . In all cases the quasi-
eriodic models are both a factor of 3–5 more precise, and have
etter error estimates. In practice the real pulsars have a wide range
f observed periodicities, and the benefit of using a quasi-periodic
odel will be highly situational, depending on both the periodicity,

mplitude, and purity of the observed quasi-periodic process. 

.2 Application to real data 

lthough the simulations can demonstrate that the quasi-periodic
odel can impro v e results for a particular case, it is perhaps more

nformative to see the effect when applied to a sample of pulsars
ith known quasi-periodic variations. Therefore we apply the quasi-
eriodic model fitting to the sample of pulsars from Lyne et al. ( 2010 ),
hich exhibit strong quasi-period variations in their spin-down rate.
hese pulsars have recently been revisited by Shaw et al. ( 2022 ;
ereafter S22 ) using more recent data, and this provides an ideal
ata set with which we can test these models and investigate any
ffect on the pulsar parameters. We refer readers to S22 for details of
he observations and preparation, but in brief the data set consists
f observations made with the 76-m Lo v ell telescope at Jodrell
ank, supplemented with observations from the 25-m ‘Mark-II’

elescope also at Jodrell Bank. Most data prior to 2009 were centred
t 1400 MHz and recorded using a 32-MHz analogue filterbank.
ince 2009 most data are centred at 1520-MHz using a 384-MHz
igital filterbank. These are supplemented with a small number of
bservations at 400, 610, and 925 MHz. For the digital filterbank data,
adio frequency interference has been excised using a combination
f median filtering and manual removal of affected channels or time
ntervals. ToAs are generated by cross correlation with a noise-
ree template using PSRCHIVE . A phase coherent timing solution is

art/stad1713_f2.eps
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Table 4. Results of fitting the QF quasi-periodic model to a sample of pulsars. ln ( Z QF / Z PF ) is the log-Bayes factor in fa v our of a the quasi-periodic model. 
Columns 3–8 give model parameters are as defined in equations ( 2 ) and ( 3 ). 1 /f ν̇ is the period associated with the peak of the ν̇ periodogram in S22 for 
comparison. Values in parenthesis indicate the uncertainty in the last given digit. Pulsars are ordered by the evidence for the quasi-periodic model. 

PSR ln 
(

Z QF 
Z PF 

)
log 10 

(
f qp 

yr −1 

)
log 10 ( R qp ) λ σ log 10 ( A pl ) γ 1/ f qp (d) 1 /f ν̇ (d) f ν̇ /f qp 

B1828 −11 147.5 −0.111(2) 2.7(2) 0.7(1) 0.047(4) −9.41(3) 4.3(1) 471(3) 490(50) 0.97(9) 
B0740 −28 25.5 0.42(1) 1.3(2) 3(2) 0.18(1) −9.37(4) 4.9(2) 138(3) 130(5) 1.06(5) 
B1540 −06 23.8 −0.60(1) 2.7(3) 0.5(1) 0.04(2) −11.2(3) 5.1(7) 1470(30) 1461(6) 1.01(2) 
B1642 −03 18.7 −0.82(5) 2.6(3) 1.6(3) 0.17(2) −10.43(9) 4.0(3) 2400(300) 2000(600) 1.2(4) 
B1826 −17 16.7 −0.50(2) 1.9(3) 2.0(5) 0.14(3) −10.3(2) 4.4(3) 1140(50) 1094(3) 1.05(5) 
B1822 −09 11.2 −0.41(4) 1.3(3) 1.6(5) 0.15(2) −9.4(2) 5.5(4) 1000(100) 8900(200) 0.11(1) 
B1929 + 20 10.1 −0.22(7) 1.1(2) 0.3(4) 0.13(4) −10.3(1) 4.7(2) 600(200) 604(3) 1.0(3) 
B0919 + 06 8.8 −0.19(2) 0.9(2) 2(1) 0.12(4) −9.65(8) 4.3(2) 570(50) 600(300) 0.9(5) 
B1818 −04 6.5 −0.97(2) 1.7(3) 0.7(2) 0.06(4) −10.27(4) 4.9(2) 3400(100) 4000(1000) 0.9(3) 
B1714 −34 6.4 −0.60(2) 1.4(3) 0.5(4) 0.05(3) −10.0(1) 5.2(4) 1460(60) 1400(10) 1.04(4) 
B2148 + 63 1.6 −0.43(9) 1.8(8) 5(3) 0.18(3) −11.6(5) 4.8(7) 1000(200) 1300(200) 0.8(2) 
B2035 + 36 1.1 −0.2(2) 0.5(6) 5(3) 0.13(4) −9.5(1) 5.9(3) 700(300) 13200(200) 0.05(3) 
B1839 + 09 0.8 −0.2(3) 0.3(9) 5(3) 0.11(6) −10.0(1) 4.1(3) 800(800) 320(3) 2(2) 
B1907 + 00 0.0 −0.7(3) 0(1) 3(3) 0.10(6) −10.4(1) 5.1(3) 2100(700) 5900(100) 0.4(1) 
B0950 + 08 −0.5 −0.8(3) 0(1) 2(3) 0.12(6) −11.3(1) 5.5(3) 3000(1000) 5000(1000) 0.7(3) 
B1903 + 07 −1.0 −0.5(3) −0.6(8) 5(3) 0.10(6) −9.06(7) 4.6(2) 1500(800) 1800(900) 0.8(6) 
J2043 + 2740 −1.2 −0.2(4) −0.9(7) 5(3) 0.10(5) −9.25(5) 5.7(2) 800(600) 4010(900) 0.2(1) 
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btained using TEMPO2 , making use of the pulse numbering feature 
o track the rotation of the pulsar o v er the entire dataset. Because of
he inhomogeneity of backend instruments, we fit for separate white 
oise parameters (EFAC and EQUAD) for the le gac y data, analogue
lterbank data and digital filterbank data. 
We fit each of the models to the 17 pulsars in the data set of S22 .

he parameter estimates for the QF quasi-periodic noise model are 
iven in Table 4 . Results for the QG model are extremely similar and
o are not repeated. Ten of the pulsars show significant preference for
he quasi-periodic model, with a log-Bayes factor, ln Z QF − ln Z PF ,
reater than 6. Of these, nine find a periodicity that matches with
he peak of the periodogram of ν̇ computed by S22 . The remaining
ulsar is PSR B1822 −09, for which we find a much shorter period
f 1000 d compared to a peak of 9000 d in S22 . We attribute this
ifference to the large exponent of the power spectrum for the red
oise in this pulsar. The ̇ν time series used in S22 for the periodogram
s the second deri v ati ve of the pulsar residual. This process of taking
eri v ati ves will whiten the red noise (Coles et al. 2011 ), and hence
eveal the quasi-periodic oscillations. However in the case where γ
s significantly larger than 4 there will continue to be residual red
oise in the ν̇ timeseries, which likely leads to the identification 
f a periodicity consistent with the data set length in S22 for PSR
1822 −09. 
Fig. 3 shows the PSD estimated from the residuals using the QG
odel as well as the maximum likelihood model PSD for each of

he four models, for each of the pulsars with significant evidence in
a v our of a quasi-periodic model. The remaining pulsars are shown
n Fig. 4 . For the pulsars in Fig. 3 , the quasi-periodic models are
ble to capture the shape of the estimated PSD more closely than
he pure power-law models, with the power-law models consistently 
 v erestimating the power at the lowest frequencies. The PF model
ypically has a greater o v erestimation factor, in the most extreme case
f B1828 −11, o v erestimating the PSD at 1/ T span by nearly 4 orders
f magnitude. The post-fit F2, PMRA, and PMDEC parameters for 
he 10 pulsars in Fig. 3 are given in Table 5 . As the main difference
n the PSD models is at the lowest frequencies, the main impact
s on the estimation of F2. In the case of PSR B1828 −11 using
he QF model results in a > 10 σ measurement of F2, which is
therwise not significant under the PF model. As we might expect, the 
roper motion measurements are most affected for pulsars with f qp 

losest to 1 per year. For example, PSR B1828 −11 ( f qp ≈ 0 . 78 yr −1 )
ees a reduced uncertainty in proper motion parameters by a factor
f around 4, whilst PSR B0740 −28 ( f qp ≈ 2 . 8 yr −1 ) reduces the
ncertainty in proper motion by a factor of 2. These two pulsars also
ave the highest evidence in favour of the QF model. PSR B1929 + 20
 f qp ≈ 0 . 5 yr −1 ) sees a reduction in uncertainty of proper motion by
 factor of 1.4. The remaining pulsars show little change in the
alue or uncertainty for proper motion, but all have a much longer
eriodicity or do not have strong evidence in fa v our of the quasi-
eriodic model (hence the quasi-periodic variations do not dominate 
he timing noise). 

.3 Spin-do wn v ariations 

he pre v ailing model for the quasi-periodic variations is that the
pin-down rate of the pulsar varies in a quasi-periodic manner, hence
t is useful to visualize the ν̇( t) time-series from our quasi-periodic
odel. The Fourier-domain Gaussian process model can be used to 

stimate ̇ν( t) by taking the second deri v ati ve of the Gaussian process
odel. This can be computed analytically once we have the Gaussian

rocess in the form 

( t) = 

N coef ∑ 

i 

A i cos ω i t + B i sin ω i t , 

here A i , B i are the best-fitting amplitudes of the Fourier-domain
aussian process components from TEMPO2 and N coef is the number 
f Fourier coefficients. The spin-down rate can therefore be computed 
nalytically, since by our definition of residual we have 

( t) = F0 + F1 t + 

1 

2 
F2 t 2 − F0 ̇r ( t) , 

nd hence, 

ν̇( t) = F1 + F2 t − F0 ̈r ( t) 

= F1 + F2 t + F0 
N coef ∑ 

i 

A i ω 

2 
i cos ω i t + B i ω 

2 
i sin ω i t . 

(8) 
MNRAS 523, 4603–4614 (2023) 
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Figure 3. PSD of 10 pulsars estimated using the QG model o v erplotted with 
the model PSD from each of the four models. The dashed vertical line marks 
f qp . 

Figure 4. PSD of 7 pulsars without significant evidence for quasi-periodic 
variability, estimated using the QG model o v erploted with the model PSD 

from each of the four models. 
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he uncertainty on ν̇( t) can be estimated from the parameter covari-
nce matrix, and the ToA uncertainties as outlined in Appendix A . 

Fig. 5 shows the ν̇( t) derived directly from the QF model in
his work, compared against the results presented in S22 which
re generated from a time-domain Gaussian process applied to the
ost-fit residuals. There is generally a lot of similarity between the
wo methods for estimating ν̇( t). Some differences appear around
litches, e.g. in PSR B0740 −28, B0919 + 06 and B1828 −11. The
stimation of glitch parameters, particularly the change in ν̇ is
ifficult in the presence of quasi-periodic variations in ν̇ and hence
he values obtained are sensitive to the choice of noise model used.

e claim that the ν̇ timeseries around the glitch in the two pulsars
ith the highest evidence for the QF model, PSR B0740 −28 and

art/stad1713_f3.eps
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Table 5. Post-fit timing parameters for a sample of pulsars when using the PF and QF models. The Bayes factor in fa v our of the QF 
model is also included comparison. 

PSR ln 
(

Z QF 
Z PF 

)
F2 (10 −25 Hz 3 ) PMRA (mas yr −1 ) PMDEC (mas yr −1 ) 

PF QF PF QF PF QF 

B1828 −11 147.5 12 ± 21 11.3 ± 0.8 −12 ± 40 2 ± 10 10 ± 178 2 ± 46 
B0740 −28 25.5 8.3 ± 3.2 10 ± 6 −28 ± 15 −26 ± 8 −16 ± 20 −12 ± 10 
B1540 −06 23.8 −1.2 ± 2.4 0.04 ± 0.07 −17.7 ± 0.9 −17.4 ± 0.8 −6.0 ± 2.8 −4.2 ± 2.4 
B1642 −03 18.7 0.3 ± 1.2 −0.01 ± 0.05 −2.6 ± 1.3 −2.8 ± 1.2 16 ± 4 16 ± 4 
B1826 −17 16.7 0 ± 4 0.45 ± 0.22 10 ± 5 10 ± 6 58 ± 49 58 ± 57 
B1822 −09 11.2 1 ± 14 5 ± 5 16 ± 28 18 ± 29 −100 ± 110 −90 ± 120 
B1929 + 20 10.1 −0.45 ± 0.33 −0.48 ± 0.25 1.5 ± 2.0 2.1 ± 1.4 0.0 ± 3.1 0.4 ± 2.2 
B0919 + 06 8.8 0.8 ± 1.0 1.4 ± 0.5 8 ± 14 4 ± 12 70 ± 40 60 ± 32 
B1818 −04 6.5 −0.2 ± 1.1 0.09 ± 0.18 −7.9 ± 1.0 −8.0 ± 0.9 15.5 ± 2.9 15.6 ± 2.9 
B1714 −34 6.4 −1 ± 4 0.1 ± 0.9 2 ± 6 2 ± 5 30 ± 28 27 ± 25 

B
t  

m
u

a  

m  

Q
f
a  

e  

e
m
1  

Q  

o  

w
l  

m
 

d  

p  

G
I
p
b
f

n
o  

a  

S  

t
s
a  

n
s
b

5

A  

p
m

w
s  

i
a  

a
v  

p  

o
m  

s
 

b  

f  

p  

γ  

n  

l  

a  

a  

o
 

p  

i
e  

p
t  

m
e  

m
f
i
f  

q
t  

i
m  

s  

t  

a  

s  

a  

t  

fi
o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/3/4603/7192436 by EM
BL user on 16 D

ecem
ber 2024
1828 −11, look qualitatively more plausible for our QF model 
han that from S22 , ho we ver, PSR B0919 + 06 does not seem well

odelled around the glitch for either case, perhaps reflecting other 
nmodeled transient glitch effects in this pulsar. 
PSR B0950 + 08 shows a long-term deviation between our model 

nd S22 , a pulsar for which there is no evidence in fa v our of the QF
odel o v er the PF model. The deviation from S22 is because the
F model behaves like a power-law with a low frequency turn-over 

or this pulsar, and hence deviates from the power-law significantly 
t the lowest frequencies (see Fig. 4 ). This causes a change in the
stimation of F2 in this pulsar leading to a linear deviation in the
stimated ν̇( t), ho we ver, neither measurement is significant. The 
aximum likelihood solution for F2 changes from (1.4 ± 1.1) ×

0 −26 Hz 3 with the PF model to ( −0 . 4 ± 1) × 10 −26 Hz 3 with the
F model. It is worth noting that this pulsar has variation time-scale
f several thousand days, and so only about two cycles are seen
ithin our observing window. It is possible that with a significantly 

onger observing span the evidence in fa v our of the quasi-periodic
odel would be more significant. 
PSR B1822 −09 and B2035 + 36 show rapid variations in the ν̇( t)

erived from our model compared to that in S22 . For these two
ulsars, the ν̇ timeseries do not appear to be well modelled by a
aussian process, with evidence for non-stationarity in the statistics. 

n these cases, it appears the time-domain Gaussian process of S22 
erforms better than fitting directly to the residuals with the Fourier 
asis Gaussian process, though likely neither method really is optimal 
or this type of pulsar behaviour. 

PSR B1818 −04 shows high frequency oscillations in S22 that are 
ot present in our model. A periodicity analysis shows that these 
scillations are consistent with a period of 1 yr, which suggests
n error in the position or proper motion in the timing model of
22 . Although S22 used a Gaussian process model of ν̇( t), the

iming model was solved in a ‘traditional’ way, and is therefore 
usceptible to leakage from the spin noise into the pulsar parameters 
s described in Coles et al. ( 2011 ). This highlights the benefits of the
oise modelling procedure for determining pulsar parameters and 
tudying the rotation. A similar feature also appears in B1714 −34, 
ut to a lesser extent. 

 DISCUSSION  

s may be naively expected, the results of this work show that the
arameter estimates are generally impro v ed when the noise model 
ore closely matches the underlying noise process. Ho we ver, the 
idely used power-law Fourier domain Gaussian process models are 
een to be very robust and it takes fairly significant deviations to cause
ssues. Particularly the quasi-periodic model is only significantly 
dvantageous in a small number of pulsars, even when we study
 sample of pulsars known to exhibit significant quasi-periodic 
ariations. Hence, we expect that it is not necessary to apply a quasi-
eriodic model to most pulsars, and it will be clear from inspection
f the ν̇ time-series or power-spectra computed from a power-law 

odel if the quasi-periodic model is likely to be of any benefit to the
tudy of a given pulsar. 

Based on the simulations in Section 3 , we see that the Fourier
asis model with lo w-frequency cut-of f at 1/ T span is not suitable
or estimating F2 for pulsars with steep timing noise. Indeed many
ulsars do show timing noise with a power-law exponent at or above
= 4 (e.g. Parthasarathy et al. 2019 ), hence some mitigation is

eeded for this. Here, we propose that a simple adjustment of the
o w-frequency cut-of f to 1/2 T span significantly impro v es the results
t large values of γ , though this does increase computation as twice
s man y frequenc y coefficients are needed to reach the same value
f f high . 
Although this work focuses on the estimation of F2 and other

ulsar parameters for the study of pulsars, this may also have
mplications for the ongoing gravitational wave pulsar timing array 
xperiments that are searching for a steep spectrum signal in the
ulsar data. Here, we have shown that quasi-periodic variations in 
he pulsar spin down can lead to a spurious o v erestimation of the
odelled power at low frequencies. Although the actual spectral 

stimates are not typically o v erestimated, e xcept perhaps in the
ost extreme cases, this would falsely increase the uncertainty 

rom pulsar spin noise and potentially the total power estimated 
n the gravitational wave background (GWB). Of course, the pulsars 
orming the pulsar timing array do not typically show evidence for
uasi-periodic oscillations in spin down, so this effect is unlikely 
o be significant, but it does demonstrate that the choice of model
s important. Perhaps more importantly, the choice of how the 
odel should behave at frequencies below 1/ T span clearly does have

ignificant impact on the parameter estimates and it is unlikely that
he pulsar timing noise really does cease or turn-o v er at frequencies
round 1/ T span . This is especially important for pulsars exhibiting
teep red noise. We can use the estimation of F2 as a proxy for our
bility to model the lowest frequencies in the data, since an error in
he F2 estimate is caused by unmodelled low frequency red noise. We
nd that the critical power-law exponent for reliable measurements 
f F2 with modeled f low = 1/ T span is around γ = 4, which is also
MNRAS 523, 4603–4614 (2023) 
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Figure 5. Frequency deri v ati ve of the 17 pulsars from S22 . Points with errors are those presented in S22 and the smooth curve is that derived from the QF 
model in this work, with the filled band representing the 1 σ uncertainty. Vertical dashed lines mark the epoch of glitches. The left column shows the full range 
of the data and the right column shows a zoom between MJD 54 000–56 000 to highlight some of the details of the time variation. 
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he exponent that would be produced by random variations in ν̇ as
ell as that expected from the GWB. This is consistent with the
reak in the uncertainty of measuring F2 against red noise power- 
a w e xponent observ ed by Liu et al. ( 2019 ). Therefore we argue
hat the choice of f low can be important for the gravitational wave
xperiment, particularly as these analyses typically do not include F2 
n the fitting. This means that any unmodelled power in the pulsar spin
oise may be falsely attributed to another source, perhaps manifesting 
n the requirement of additional model terms, such as the recently 
bserved common uncorrelated red noise process (Antoniadis et al. 
022 ). A full exploration of the impact of oversampling the spectrum
or GWB searches is outside the scope of this paper, but there may be
ther benefits to o v ersampling the F ourier space by capturing second
rder statistics in the data, and we suggest further exploration of
hese effects should be included in confirming the robustness of a 
uture GWB detection. 

 C O N C L U S I O N S  

e set out to answer two questions regarding the choice of noise
odel for pulsar timing. For the case of the choice of low-frequency

ut-off and the periodic boundary conditions, we found that below 

bout γ = 4 all the models perform well even with the lowest
requency set to 1/ T span . Ho we ver, many pulsars sho w significantly
teeper red processes, and hence the power must either be absorbed 
nto F2 or another mitigation must be applied if F2 is a parameter
f interest. Here, we propose a simple solution of setting the lowest
requency as 1/2 T span , which performs reliably up to about γ = 6,
eyond which the model again struggles. 
For quasi-periodic timing variations, we find that a small number 

f pulsars are better modelled with our new noise model that includes
 quasi-periodic term. Ho we ver, the power-law models generally do 
ell even without this quasi-periodic term for many of the pulsars,

nd it is only for the pulsars with the strongest quasi-periodic 
ariations that there is a significant issue with measuring F2 with 
he power-law model. We find proper motion measurements can be 
ffected where the quasi-periodic fluctuations have a period of the 
rder of a year. We believe it is unlikely that quasi-periodic models
ill significantly impro v e pulsar timing if the quasi-periodic signal 

s not already clearly apparent in the power spectrum of the residuals.
We also confirm previous results that in general, the Fourier- 

asis Gaussian process performs largely as well as the equi v alent
LS model. The new models and implementation of the GLS 

ethod are all made available for testing and real-world use through 
UN ENTERPRISE , which will allow for use, or further testing, on a
ide range of data. 
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PPENDI X:  I MPLEMENTATI ON  O F  T H E  

AUSSI AN  PROCESS  M O D E L  IN  T E M P O 2  A N D  

STIMATION  O F  T H E  UNCERTAI NTI ES  

he TEMPO2 software performs the final step of e v aluating the
iming model and is used in this work to extract the Gaussian
rocess time-series and the spin-down timeseries. TEMPO2 uses 
eneralized least squares fitting, though for the Gaussian process 
odel the data covariance matrix, N , is assumed to be diagonal

nd contain the white noise uncertainties for each data point on the
iagonal. A design matrix M maps the parameters β to a model 
f the residuals, r observed at at times t . Following the standard
east-squares methodology, we could compute an estimate of the 
arameters from the residuals, 

ˆ = ( M T

 N 

−1 M ) −1 M N 

−1 r . 

n practice this is performed using either the singular-value decom- 
osition (SVD), or the QR decomposition to a v oid the numerical
recision issues with direct computation. Similarly, we can compute 
he covariance matrix of the parameter estimates, 

 β = ( M T

 N 

−1 M ) −1 , 

hich again is in practice computed via the SVD or QR decomposi-
ion. 
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To fit the Fourier domain Gaussian process with n coefficients to
 data points, M will contain m rows and 2 n columns with the form

 j,i = 

{
sin (2 πf i t j ) for 0 < i < n, 

cos (2 πf i−n t j ) for n < i < 2 n. 

In order to implement the Gaussian priors on these parameters, we
dd 2 n constraints to the least-squares problem. This is achieved by
xtending r with 2 n zero valued elements, and extending M with 2 n
lock diagonal elements that contain the Gaussian likelihood 

 i + m,i + 2 n = 

{
P ( f i ) −1 / 2 δf for 0 < i < n, 

P ( f i−n ) −1 / 2 δf for n < i < 2 n, 

here P ( f i ) is the model PSD at frequency f i and δf is the frequency
esolution of the Fourier components, which scales from PSD to
ower. This constrained problem can then be solved using the
east squares formalism. In practice, M will also contain columns
ssociated with the pulsar timing model (e.g. the standard spin
nd astrometric parameters); ho we ver, for the remainder of this
iscussion it is assumed that we will extract only the rele v ant ro ws
nd columns related to the red noise model. The linear algebra from
his point forward is implemented in the MAKE PULSAR PLOTS.PY

cript provided with RUN ENTERPRISE . 
Estimates of the ν̇( t) at each epoch can be made by computing D ,

he second time deri v ati ve of M scaled by F0 (cf. equation 8 ), 

 j,i = 

{
4 π2 f 2 i F0 sin (2 πf i t j ) for i < n, 

4 π2 f 2 i−n F0 cos (2 πf i−n t j ) for n < i < 2 n, 

In the same way, we can also compute a matrix D m 

that maps the
arameters onto an arbitrary vector of time samples t m 

, allowing us
NRAS 523, 4603–4614 (2023) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( http://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
o interpolate the value of ν̇( t) at any arbitrary time by 

˙( t m 

) = D m ̂

 β. 

In order to compute the uncertainty on ν̇( t) we first need the
ovariance matrix of Gaussian process in the absence of any
bservations, 

 mm 

= D m 

C βD T

 

m 

. 

e also need the covariance between the ν̇( t) and the observations, 

 mo = D m 

C βM T

 , 

nd the covariance of the data with itself 

 oo = M C βM T

 + N , 

hese can then be combined to estimate the covariance of the model
˙( t) in the presence of the observations, 

 ν̇ = C mm 

− C mo C 

−1 
oo C T

 

mo . 

e take the diagonal elements of C ν̇ to draw representative uncer-
ainties on the estimates of ν̇( t). Note that this does not include any
ncertainty related to the uncertainty on the model hyperparameters,
ut this can be estimated by repeating the process for a range of
amples from the hyperparameter posteriors. 
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