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Abstract

The purpose of this CDF note is to present the new results in D0− D̄0 mixing analysis using
D0 → Kπ decays. We measure the time dependent ratio of doubly Cabibbo suppressed decay
rate to Cabibbo favored decay rate.

Our previous result updated in July 2008 excluded no-mixing hypothesis with 4.27 Gaussian
standard deviations using approximately 2.3 fb−1 of integrated B-physics luminosity. In this note
we present our attempts to improve the analysis method by introducing new cuts and applying
Artificial Neural network method. The new results from the addition of approximately 1.5 fb−1

of new data are presented. Systematic uncertainties are updated. The new results show reduced
statistical and systematic uncertainties. We compute the expected mixing significance from toy
Monte Carlo simulations and expect to exclude no-mixing (x’ =y’ = 0) with ≈ 5 Gaussian
standard deviation.
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1 Motivation

The D0 − D̄0 mixing is now fairly established with the contributions from the BaBar, Belle, CDF,
and Cleo experiments. The first evidence of D0− D̄0 mixing came in 2006 from BaBar [1], which was
immediately confirmed by the CDF experiment in March 2007 [2]. Both the experiments analyzed
D0 → Kπ decay channel. Belles first result [3] that measured life time differences of CP eigenstates
and CP mixed states was published at the same time as BaBars. They also published the mixing
using the time dependent Dalitz analysis method [4]. Later, the BaBar experiment performed similar
measurements as Belles [5]. Previously the Celo experiment contributed to the searh by measuring
individual mixing parameter y and the strong phase difference δ [6]. The Focus experiment has also
analyzed wrong sign hadronic decay channel [7].

The combined result from all the experiments excludes no-mixing with more than 6.7 Gaussian
standard deviations (σ) and thus provides a clear observation of D0− D̄0 mixing [8]. However, there
is no single experiment that provides above 5 σ observation. BaBar and Belle experiments exclude
no-mixing with slightly more than 3 Gaussian standard deviation. In July 2008, CDF presented the
result that excludes no-mixing with 4.27 Gaussian standard deviation. There are also no signs of CP
violation from any of the above experiments.

At CDF we initiated our efforts to improve the result immediately after our publication in 2007.
We started with exploring new ways to reduce backgrounds by introducing new cuts and improving
fits. We tried the application of Artificial Neural Network (ANN) in the hope that it will bring
significant improvement over the standard method.

At this time we have almost 4 fb−1 of integrated B-physics luminosity data at our disposal. This
brings us to a unique position where we can provide the world’s most significant measurement of the
mixing parameters and may provide the first observation of the mixing as a single experiment, if it
exists in nature. For these reasons, we would like to present the new D0 − D̄0 mixing results in this
note.

The next section briefly introduces the D0 − D̄0 mixing theory. Section 3 summarizes the
current experimental status and provides the world average of the mixing parameter values. Section
4 introduces the main detector components relevant to this analysis. The description of the new
results starts from section 5 in which we start comparing the old and the new datasets in terms of
luminosities. Section 6 presents a qualitative comparison of the old and the new data sets. In that
section we show that the Right sign D∗ yield is decreasing with time but other than that, the new
data is consistent with the old data. Section 7 outlines the analysis method briefly for completeness
and presents the new measurements of the mixing parameters. Section 8 describes two methods
based on toy Monte Carlo (MC) simulations to estimate the expected mixing significance. Section 9
describes our various attempts to improve the standard analysis method. Section 10 is devoted to the
description of analysis using Artificial Neural Network method. The section describes the basic idea,
design, training and testing of the neural network. Section 11 is about a quick analysis performed
to study the extra lump in RS Kπ mass distribution. section 12 describes updated systematic
uncertainties. Finally, we summarize the work in the last section 13. Appendix A shows Kπ mass
fit comparison of the old and the new data sets, appendices B to D provide time sliced Kπ and
D∗ yield plots. In appendix E we show the signal and backgound distributions for some of the input
variables used in neural network analysis. In appendix F, the calculations for non prompt D∗ are
described.

This note is based on the two previous CDF notes 7116 [9] and 8879 [10] describing time
independent analysis and time dependent analysis respectively. Since these notes describe the theory
and methods at length, in this note they are outlined only briefly for the purpose of completeness.
The emphasis is more on the new studies.
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2 Introduction

In this section, we briefly discuss the D0 − D̄0 mixing formalism, introduce the mixing parameters
and explain the goal of the analysis.

Analogous to K0 − K̄0 and B0 − B̄0 systems, the D0 − D̄0 systems can be described by the
Schrodinger equation

i
∂

∂t

(
D0(t)
D̄0(t)

)
=

(
M− i

2Γ
) (

D0(t)
D̄0(t)

)
Where, M and Γ are the Hermitian matrices. The Γ term ensures the particle decay. The CPT

invariance require M11 = M22 and Γ11 = Γ22. In case of negligible CP violation, the mass eigenstates
are also the CP eigenstates and can be written as linear combination of flavor eigenstates.

Solving the equation gives time evolution of the D0 − D̄0 systems which will have oscillatory
exponential terms showing oscillations of D0 into D̄0 and vice-versa. The slight difference in masses
and decay widths of the two mass eigenstates governs the mixing. The mixing parameters are then
defined as

x =
m1 −m2

Γ
=
δm

Γ
and y =

Γ1 − Γ2

2Γ
=
δΓ
2Γ

The goal of the analysis is to measure these mixing parameters.
In weak interactions, the D0 → Kπ decay proceeds through a doubly Cabibbo suppressed (DCS)

decay, involving two ’cdw’ vertices or through D0 − D̄0 mixing followed by Cabibbo flavored (CF)
decay. Unlike K0 − K̄0 and B0 − B̄0 systems, the D0 − D̄0 system involves d quark and so the
mixing rate is small compared to K0 − K̄0 and B0 − B̄0 systems due to CKM factors. The mixing
can occur through either long-range processes or through short-range box diagrams. In long-range
processes, the D0 decays into some intermediate state such as π+π− and then evolves into D̄0 . In
short range processes, the D0 decay proceeds through penguin topology involving d, s and b quarks.
The current theoretical limits on the mixing parameters from short range calculations are x, y < 10−3

[11], .
The mixing parameters can be measured experimentally in several ways. Some of the important

methods employed by various experiments are outlined in the next section. In our analysis, we use
D0 → Kπ channel and exploit the decay chain D∗ → D0π ; D0 → Kπ . We define the decay chains
as wrong sign or right sign depending on the relative charges of the tagging pion and that from D0 .
In particular, the decay chain D∗+ → D0π+ , D0 → K+π− is identified as wrong sign and the decay
chain D∗+ → D0π+ , D0 → K−π+ is identified as right-sign. The same holds for charge conjugates.

Following the formalism given in PDG review on D0 − D̄0 mixing [12], the time dependent ratio
of wrong sign to right sign decay rates is given by

r(t) = RD +
√
RDy

′(t) +
(x′2 + y′2)

4
(t)2 (1)

where, RD is the the squared modulus of the ratio of DCS to CF amplitudes and x′ and y′ are the
rotated x and y by strong phase factor δ as:

x′ = xcosδ + ysinδ and y′ = −xsinδ + ycosδ

The decay time t is measured in terms of D0 proper decay time.
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Figure 1: Babar, Belle, and CDF results using wrong sign hadronic decay channel (D0 → Kπ

). The first plot is Babar’s measurement of x′2 and y′ . The second plot is the Belle’s result

in which x′2 is constrained to positive values. The last two plots are CDF’s July 2008 results

with and without restrictions on x′2 .

Experiment RD (10−3) y(10−3) x′ (10−3) Mixing
significance

BaBar 3.03± 0.19 9.7± 5.4 −0.22± 0.37 3.9
Belle 3.64± 0.17 0.6± 4.0± 3.9 0.18± 0.21± 0.23 2.0
CDF (2007) 3.04± 0.55 8.5± 7.6 −0.12± 0.35 3.8
CDF (2008-not published) 3.36± 0.48 5.27± 6.01 0.02± 0.26 4.27

Table 1: Summary of three results from wrong sign hadronic decay channel.

3 Current Experimental Status

In this section we summarize the important experimental results in D0 − D̄0 mixing.
The BaBar, Belle, and CDF experiments provide the evidence of mixing by analyzing wrong sign

hadronic decay channel D0 → Kπ . The BaBar experiment excludes no-mixing hypothesis with 3.8
Gaussian standard deviation using likelihood contours. In their measurement, x′2 and y′ are allowed
to take negative values. The Belle experiment performed similar studies but by restricting x′2 value to
physically allowed region. Their result excluded no-mixing with 2.0 Gaussian standard deviation using
Feldman-Cousins method. The CDF experiment used Bayesian probability contours and presented
the results with and without restricting x′2 to physically allowed region. These results are shown in
figure 1.

The Belle and BaBaR experiments also analyze decay time distributions of D0 meson from CP
eigenstates D0 → K+K− and D0 → π+π− and compare them with the decay time distribution from
CP mixed eigenstate D0 → K−π+ . From this analysis they measure the individual value of mixing
parameter yCP given by:

yCP = ycosφ− 1
2
AMsinφ

where, AM describes CP violation in mixing and φ describes interference between mixing and decays.
With no CP violation, AM and φ will be zero and yCP will be the same as y-the difference of decay
widths of two flavor eigenstates. The measurement of yCP found by both the BaBaR and the Belle
experiment provides evidence of mixing with 3 Gaussian standard deviation. Figure 2 shows the plots
from the Belle experiment.

The third significant result was from time-dependent Dalitz analysis again from the Belle exper-
iment using D0 → KSπ

+π− channel. The BaBar experiment also performed similar studies using
D0 → K+π−π0 decays. In Figure 2 the Belle’s measurement of x and y from the time evolution of
Dalitz distributions is shown in the last plot.

The Cleo experiment provided measurement of mixing parameter y and strong phase difference δ
using ψ(3770) → D0D̄0 channel. Other than these there were other approaches in which semileptonic
D0 decay channels were analyzed.

Table 1 summarizes the numerical values of x′2 and y′ provided by wrong sign hadronic decay
channel analyses from the recent experiments.

The heavy flavor averaging group (HFAG) provides the current average values of the mixing
parameters by combining all of the published results as
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Figure 2: Results from Belle: The top three plots are the comparison of lifetime differences of

D0 CP eigenstates and CP mixed states. The first two plots are the decay time distributions

from D0 → KK and D0 → ππ channels. The third plot shows decay time distribution using

D0 → Kπ decay. The last plot is Belle’s measurement of x and y from time dependent Dalitz

analysis.
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x = 0.97± 0.27± 0.29 and y = 0.78± 0.18± 0.19

These values correspond to exclusion of no-mixing hypothesis with 6.7 Gaussian standard deviation.
With this background, we now present the CDF results.
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4 The CDF experiment

The CDF II detector at the Fermilab Tevatron collider is a general purpose detector which detects
proton anti-proton collisions at

√
s = 1.96 TeV. The detector components relevant to this analysis

are the silicon vertex detector (SVX),Intermediate Silicon Layer (ISL), silicon Layer zero (L00), and
the drift chamber (COT) surrounded by a superconducting magnet producing a magnetic field of 1.4
T. These components together provide the physics quantities required to reconstruct wrong sign and
right sign events. The other detector parts relevant to B-physics data sets are: silicon vertex tracker
(SVT), Extremely fast tracker (XFT), Cherenkov luminosity counter (CLC), Central muon detector
(CMU), central muon upgrade detector (CMP), and central muon extension detector (CMX).

The CDF data acquisition system has a three level trigger system described by L1, L2, L3 triggers.
The data passing the selected trigger requirements is processed offline.

Here we define some of the important physics quantities which will be frequently referred through-
out the text.

Decay length significance for a particle is defined as

Lxy =
r ·PT

PT

where r is the distance between the primary and D0 vertices and PT is the transverse momentum
vector. In our analysis we sometimes use decay length significance Lxy/σxy, where σxy is the uncer-
tainty on Lxy Impact parameter for a particle is the distance of the closest approach from the primary
vertex and is defined as

d0 =
ẑ · (r×PT)

PT

where ẑ is the unit vector along z-axis.
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5 Data Samples

This section describes data samples, trigger requirements, and luminosity calculations. The detector
components and physics quantities mentioned here are introduced in the previous section.

The data samples used in D0− D̄0 mixing analysis are derived from B-physics hadronic data sets
passing two track trigger (TTT) requirements. These requirements are described in the CDF note
6526. At level 1, the TTT trigger requires two XFT tracks with transverse momentum PT > 2.05
GeV/c and scalar sum of two PT s > 5.5 GeV/c . At level 2, two SVT tracks are required to have
impact parameters between 0.12 mm and 1.0 mm. At level 3, the intersection of two tracks in r − φ
plane projected on the net momentum vector of the two tracks is required to be 200 µm or greater
from the beam line.

The events accepted by the above trigger requirements are written to B → ππ data block of Bst-
ntuple data sets [13]. The offline processing is done periodically by processing the data collected
over a certain time period. Table 2 shows the Bstntuple data sets used in this analysis with cor-
responding run numbers, date range over which the data was collected and integrated luminosities.
The luminosity values are obtained from the CDF II online run summary database (http:://www-
cdfonline.fnal.gov/daq/runSummary/). For B-physics the following run bits are set true: Required
silicon, Good run (core components), CLC, L1, L2, L3, COT, CMU, CMP, CMX, SVX, and ISL.
These settings yield the B-physics luminosity approximately 70 % total online luminosity.

For daily use we make our own D0 − D̄0 mixing specific data sets from selected Bstntupe data
sets. The mini-data sets are small, manageable and allow faster processing. They are given shorter
names as shown in the sixth column of the table 2. Each mini-dataset comprises several root files.
To be able to run a medium type job on computer farm, the size of each file is limited to 10 million
events.

Table 3 compares the data periods used for July 2008 result (we will refer to this data set as old
data) and the new data periods available after that result. The July 2008 result used period 0 to
16 data collected from 2002 to 2008 corresponding to integrated B-physics luminosity ≈ 2.23 fb−1 .
The new data added for the current analysis includes period 17 to 21 collected from February 2008 to
December 2008 and adds ≈ 1.5fb−1 of data. The last row shows the total data used for this analysis.

6 Qualitative comparison of the old and new data sets

To qualitatively compare the old and the new data sets, we obtain the right sign D∗ yields per unit
luminosity. The D∗ yields are obtained using the yield script described in the next section. The table
3 compares the RS D∗ yields for the data sets. We observe that the RS D∗ yield per unit luminosity
has decreased from 1.9 million to 1.5 million. The D∗ yield is decreasing with time. This is consistent
with the findings from the other CDF groups.

We can use these numbers to estimate what to expect at the end. With 4.2 million RS D∗ events
in July 2008, no-mixing was excluded with σold = 4.27. Now we have 5.6 million RS D∗ s. If we
assume that the Gaussian standard deviation is proportional to

√
N , where N is the number of events,

then we may expect σNew =
√

NNew

Nold
× σold. Then with the above numbers we get σNew = 4.94. This

tells us that we can expect to exclude no mixing with ≈ 5σ if we do not change the analysis method.
We may expect higher significance if the application of ANN brings some improvements in yield.

To see how the yield is affected as a function of D0 decay time, we look at the ratio of RS D∗ yields
of the old and the new data sets. This is shown in table 4. The table shows the ratio of the RS
D∗ yields for the new and old data sets in each time bin. As we can see, there are no large variations
in the ratio of the yields as function of decay time and they are consistent with the time integrated
ratio of the yields (the last row).

Apart from D∗ yield decrease with luminosity, there are no other major differences observed be-
tween the old and new data sets. We studied particle identification (dE/dx variable) distribution
(please refer to CDF note 8879 section 3.2.3 for the definition of dE/dx variable) and D0 mass distri-
butions to qualitative compare different data sets.
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Data set Periods Run range Dates Lumi Mini Number
(fb−1 ) data set of files

hadr-80/xbhdid 0 138425-186598 2002.02.09-2004.08.22 0.37 x0d 27
cdfpbnt/xbhdih 1-4 190697-203799 2004.12.16-2005.09.04 0.35 x0h 21
cdfpbnt/xbhdii 5-10 203819-233111 2005.09.05-2007.01.30 0.84 x0i 30
cdfpbnt/xbhdij 11-13 233133-246231 2007.01.30-2007.05.13 0.39 x0j 15
cdfpbnt/xbhdik 14-17 252836-261005 2007.11.04-2008.04.16 0.46 x0k 15
cdfpbnt/xbhdfm 18-21 261119-271047 2008.04.18-2009.01.01 1.31 x0m 26

Table 2: Bstntuple data sets and corresponding date ranges

Period Run range Dates Lumi RS D∗ RS D∗

(fb−1 ) (Millions) yield/lumi
0-16 138425-258879 Feb 09, 2002 - Feb 27, 2008 2,229,205.26 4.21 1.9 M
17-21 258880-271047 Feb 28, 2008 - Jan 01, 2009 1,492,480.97 1.30 0.87 M
0-21 138425-271047 Feb 09, 2002 - Jan 01, 2009 3,721,686.23 5.6 1.5 M

Table 3: RS D∗ yields per unit luminosity in the old and the new data

Time bin Yield(old) Yield (new) Ratio
P0 to P16 (106) P17 to P21 (106) (Yield (new)/Yield (old)

1 0.04± 0.0020 0.01± 0.0012 0.36± 0.04
2 0.16± 0.0041 0.05± 0.0025 0.33± 0.02
3 0.33± 0.0058 0.11± 0.0033 0.32± 0.01
4 0.44± 0.0068 0.14± 0.0040 0.31± 0.01
5 0.48± 0.0071 0.15± 0.0042 0.31± 0.01
6 0.46± 0.0069 0.14± 0.0042 0.31± 0.01
7 0.41± 0.0070 0.13± 0.0039 0.30± 0.01
8 0.35± 0.0061 0.11± 0.0034 0.30± 0.01
9 0.30± 0.0056 0.09± 0.0031 0.30± 0.01
10 0.25± 0.0051 0.07± 0.0028 0.30± 0.01
11 0.20± 0.0046 0.06± 0.0025 0.30± 0.01
12 0.16± 0.0041 0.05± 0.0023 0.30± 0.02
13 0.13± 0.0037 0.04± 0.0020 0.30± 0.02
14 0.19± 0.0044 0.06± 0.0024 0.30± 0.01
15 0.12± 0.0035 0.04± 0.0019 0.30± 0.02
16 0.07± 0.0028 0.02± 0.0015 0.29± 0.02
17 0.05± 0.0022 0.01± 0.0012 0.31± 0.03
18 0.04± 0.0022 0.01± 0.0012 0.30± 0.03
19 0.015± 0.00126 0.004± 0.00068 0.29± 0.05
20 0.006± 0.00084 0.002± 0.00047 0.31± 0.08
Total 4.21± 0.0322 1.30± 0.0135 0.31± 0.00

Table 4: The ratio of the RS D∗ yields from the old and the new data sets in different time bins
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Figure 3: dE/dx variable for period 0 to 9 data (blue) and for period 10 to 21 data (red).

The change in the distribution is due to the detector changes made to handle higher initial

instantaneous luminosity.

6.1 dE/dx variable distribution comparison

Data taking with dE/dx was turned off for the innermost COT superlayers due to increased initial
instantaneous luminosity. Due to this change the dE

dx distribution for period 10 onwards data is
different than the dE

dx distribution for period 0 to 9 data.This comparison is shown in figure ??. The
blue curve shows the dE

dx variable for period 0 to 9 data and the red curve shows period 10 to 21.
We use dE/dx < 0 cut to get RS signal. Despite the different distributions, both curves have 85 %
of the RS events below our cut of 0. The slight difference in efficiency between those two curves will
not affect the ratio. There is a new dE/dx calibration but it is not used in Bstntuple data sets and
we continue to use the same old calibration. We do not attempt to correct the period 10 to 21 data
for the new calibration since it will not make a noticeable difference.

To qualitative compare the old and the new data, we plot normalized dE/dx distributions for
period 10 to 16 and for period 17 to 21 data sets on top of each other. Figure ?? shows the plots for
K and π tracks each with K hypothesis and π hypothesis. The red curve shows period 17 to 21 data
and blue curve shows period 10 to 16 data and the two curves in all four plots are almost overlapping.
This shows that the new data is consistent with the part of old data after the detector changes.

6.2 D0 mass distribution comparison

We also compare D0 mass distribution to qualitatively compare the old and the new data. In figure
5, the first plot shows the binned fit for Kπ mass distribution for period 0 to 16 data and for period
17 to 21 data shown in blue and red colors respectively. The second plot in the figure shows a plot in
which we plot ∆MD∗ on x-axis and on y-axis we have integral of Kπ distribution in range between
1.865−∆m and 1.865 + ∆m GeV/c . The both distributions show no differences.
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Figure 4: dE/dx variable distributions for K and π tracks each with K hypothesis and π

hypothesis. Red: Period 17 to 21 data, blue:period 0 to 16 data. The red and blue curves in

all four plots almost overlap and show the consistency of the new data and the old data after

the detector change.
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7 Analysis and Results

This section describes the analysis using the previous analysis method without modification. The
method is described in detail in earlier CDF notes, so here we will outline only the basic ideas.

As described before, the goal of the analysis is to measure the ratio of wrong sign to right sign
D∗ s as a function of D0 decay time.

The wrong sign and right sign events are reconstructed from two oppositely charge particle tracks
that satisfy two track hadronic trigger requirements. The two tracks are given K and π assignments
and D0 vertex is formed. A third track requiring PT > 0.3 GeV/c is considered as pion and combined
with D0 track to reconstruct D∗ vertex. For each event we compute RS and WS invariant mass from
Kπ and πK interpretation and the data is stored in mini-data sets specific to D0 − D̄0 mixing.

An opposite mass assignment cut is applied to remove the background from mis-identification of
kaon and pion tracks. This appears as RS background in WS signal. The cut is determined from data
and removes m(Kπ )±20 MeV/c window from the WS mass distribution.

The particle ionization energy loss cut which provides particle identification (PID) is used to dis-
tinguish pion from kaons for all three tracks. The PID cut helps reducing opposite mass assignment
background. Other than these two cuts, a transverse decay length significance cut and impact pa-
rameter cuts on the tagging pion reduces combinatorial backgrounds. These cuts are summarized
below.

• Transverse momentum of soft pion cut for D∗ vertex reconstruction : PT (πs) ≥ 0.3 GeV/c .

• Opposite mass assignment cut to reduce background from mis-identification of kaon and pion:
|m(Kπ)− 1.8645| < 0.02 GeV/c2 . This cut removes RS background from WS signal.

• Particle identification cut on dE/dx variable is used to identify kaon and pion tracks.

• To reduce the background from non D∗ decay tracks we apply a series of cuts as: D0 Decay
length significance Lxy/σxy > 4, Tagging pion impact parameter d0 < 500µm, and the point of
closest approach along the beam line for the tagging pion must be less than 1.5 cm.

For the cut optimization procedure and other details, please refer to CDF notes 7116 and 8879.
The analysis method proceeds as follows: The RS and WS data is divided in 20 time bins in terms

of D0 lifetimes. The data in each time bin is further divided in 60 mass difference (∆MD∗ ) bins. For
each ∆MD∗ bin, we fit Kπ mass distribution. This gives the number of D0 vs ∆MD∗ distribution.
We fit this distribution to obtain number of D∗ s as a function of decay time. The time integrated
m(Kπ )and ∆MD∗ distributions are used to fix the shapes for signal and backgrounds. To reduce the
background from non-prompt D∗ s not originating at the primary vertex, we apply Impact parameter
cut. The details of the non-prompt D∗ correction procedure are given in appendix H.

Thus, we finally obtain the ratio of prompt WS to RS D∗ s as a function of decay time. Fitting
this distribution with equation 1 gives the values of x′ , y′ , and RD and statistical uncertainties on
these values. Most systematic uncertainties are canceled in the WS/RS ratio.

Following this method, we obtain the ratio plots for the period 0 to 16 data, Period 17 to 21 data
and period 0 to 21 total data. These plots are shown in Figure 6.

Uncertainties on the measured mixing parameters have reduced in the new analysis when we
compared period 0 to 21 and period 0 to 16 data. There is around 17 % reductions in uncertainties
on y′ and approximately 16 % reduction in that for x′ . So the average improvement is 16.5%. If we
propagate this improvement in mixing significance, we should expect 16.5% improvement over 4.27
σ-the July 2008 result. This gives expected mixing significance of 4.98 sigma, which is consistent with
our previous estimate from the number of RS D∗ events. This again tells us that we are right on the
edge of 5 sigma significance.

In the next section we try to estimate mixing significance more systematically using toy Monte
Carlo studies.
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Figure 7: Simulated experiment and δχ2 distribution: The left plot show single simulation of

WS/RS ratio. The second plot shows the δχ2 distribution from 1000 simulated experiments.

8 Toy Monte Carlo simulations of WS/RS ratios and estimate
of mixing significance

Here we describe two Monte Carlo simulation methods to estimate the expected significance ofD0−D̄0

mixing from the statistical uncertainties in the new measurements.
In this simulation method we take the values of RD , x′ , and y′ from July 2008 result and compute

the value of R(t) from equation 1 for each of the 20 times bins (center of the bin). For each data point
we add random noise with Gaussian distribution having standard deviation equal to the uncertainty
on the data point in corresponding time bin in Period 0 to 21 data ratio plot. We fit this simulated
data again using equation 1 but now RD , x′ and y′ are allowed to float. This gives new values of
the mixing parameters. We also fit the data with x′ and y′ fixing to zero. This fit corresponds to no
mixing. Then we find the difference between the χ2 of two fits.

8.1 δχ2 method to estimate probabilities

We make a thousand simulations and get a δχ2 distribution. Using the numerical mean of the
δχ2 distribution we compute the probability for two degrees of freedom. The calculations are based on
incomplete Gamma function P(a, x) where a =ndf/2 and x = χ2/2. P(a, x) represents the probability
that the observed chi-squared for a correct model should be less than the value of χ2 .

The first plot in figure 7 shows one simulation in which black colored fit is the best fit and
red fit corresponds to no mixing with x′ and y′ fixed to zero. The second plot in figure 7 shows a
δχ2 distribution from one thousand simulated experiments. The numerical mean we get from this
distribution is 30.053 which correspond to significance of 5.125 Gaussian standard deviations for 2
degrees of freedom. The expected significance is again ≈ 5σ, which is consistent with our previous
rough calculations.

8.2 Bayesian contour method

In this method we generate the Bayesian probability contours for a single simulated experiment. The
Bayesian contours are computed in the same way as it was done for the real data. Figure 8 shows the
result of one such experiment. In the resulting plot, the no-mixing point lies on the 5 sigma contour.

9 Attempts to improve the standard analysis method

We tried to improve the standard analysis method by adding new cuts and by finding ways to reduce
background. Two such studies are mentioned here: The D0 isolation cut and the multiple candidate
background study.

9.1 D0 isolation variable cut

We tried to add a new cut using D0 isolation variable where the isolation variable is defined as
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Figure 8: Bayesian contours from simulated experiment. The no-mixing point is on 4.92σ contour.
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Figure 9: WS D∗ yield vs. Isolation of D0 cut. The yield is almost flat. It appears that the

D0 isolation variable is not useful as a standard cut.

It =
P cand

T

P cand
T +

∑
∆R<0.4 PT

where,

• It: Isolation of tracks.

• P cand
t : Transverse momentum of candidate particle.

• PT : Transverse momentum of all other tracks except descendants of candidate particle.

• ∆R =
√

∆η2 + ∆φ2, where η is the pseudo-rapidity and φ is the azimuthal angle in η−φ space
of CDF II detector. ∆R < 0.4, 0.7 or 1.0.

For a fixed radius ∆R = 0.4, we computed WS D∗ syield for 10 isolation cuts using the standard
yield technique. Figure 9 shows the WS D∗ yield/uncertainty, where uncertainty comes from the
statistical error on the first fit parameter of Kπ mass fit and is equivalent to

√
S +B. As we see

from the figure 9, the yield is almost flat. This tells us that isolation variable may not be very useful
as a standard cut. We will leave this variable for the neural network to learn from it.

9.2 Multiple candidate background

We found that in our data we have a few events having the same D0 candidate but different soft
pion. To study these multiple candidate events, we processed a total 146 thousand events which
were filtered in after applying dE

dx cut, Kπ mass cut, and mass difference cut on a small fraction of
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x0h data set. In 146000 events, we found 4745 candidates having one event with the same D0 but
different soft pion, 140 events had two such events and no events were found with more than 2 multiple
candidates. In summary, there are only about 3% events in our data which have multiple candidates.
We decided not to change our method for such a small background. Initially we also began to study
the Kπ mass fit comparison using the multiple candidate events and single candidate events; but since
the backgrounds is negligible we did not push those efforts too far.
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Figure 10: Scatter plot showing WS and RS mass distribution. The plot shows WS signal

dominated by RS background.

10 Artificial Neural Network method

In our efforts to improve the D0− D̄0 results we attempted application of Artificial Neural Network.
In this section we describe this method.

10.1 Neural network method for D0 − D̄0 mixing analysis

There are basically four types of backgrounds in our data. The best way to understand these back-
ground is the wrong-sing vs right sign scatter plot as shown in figure 10. The plot shows wrong
sign Kπ mass plotted on x-axis and right sign Kπ mass plotted on y-axis. The four white corners
correspond to D0 → KK and D0 → ππ background which is removed with a Kπ mass cut. The
second type of background is from mis-identification of kaon and pion tracks which appears as right
sign background in wrong sign signal. The vertical oval in the center is our wrong sign signal which is
dominated by right sign background -the horizontal central oval. We apply the opposite mass assign-
ment cut to remove most of this background. It is the m(Kπ )mass cut that removes a 40 MeV/c
window centered at the D0 mass 1.865 GeV/c2 . We also apply the particle identification cut (dE/dx
variable) to identify kaons and pions which also helps removing this background. The third type of
background is from random pion in D∗ → D0π reconstruction. Mass difference cut ∆MD∗ < 20
MeV/c2 helps to remove most of this background. The fourth background is combinatorial back-
ground which arises from any other particle coming from the primary vertex. Particle identification
cut helps to remove this background to some extent. Even after applying all possible cuts our data
can still have some background from random pion and combinatorial background. We attempt to use
artificial neural network cut method to reduce this background.

Our hope that a neural network can reduce combinatorial and random pion background is based
on the neural networks ability to learn a complicated non linear multidimensional discrimination
function in hyper surface of its input parameter space. Neural network makes such a precise signal
and background discrimination possible by reducing multidimensional cuts to one dimensional neural
network output cut. This may bring improvement in our signal significance over the standard cut
optimization method.

The artificial neural network algorithm finds the non-linear discrimination function by adjusting
hundreds of internal parameters. The algorithm can be graphically visualized as a set of input nodes,
middle layers (called hidden layers), connecting links called synapses and the output nodes as shown in
figure 11. The algorithm starts with a random weight assigned to each synapse. At each subsequent
layer, the linear combination of the sigmoid functions is computed. The sigmoid function is defined as

1
1+ew where w is the weight on an input synapse. The output of sigmoid function lies between -1 and
+1. The linear combination of these sigmoid functions will be a non-linear function. If the problem
is classification problems as in most particle physics problems, then only one output node is required.
The output at this node will be between -1 or +1. If the neural network is used to find probability
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Figure 11: A typical artificial neural network has input nodes, synapses, middle layer with

hidden nodes, and output node. The network finds a discrimination function by adjusting

weights on each of the synapses.

distribution function, then more than one output nodes may be required. There are no specific rules
to decide the number of hidden layers and the number of nodes in each hidden layer. In most cases,
only one hidden layer is sufficient and a rule of thumb says that the number of nodes in the hidden
layer should be equal to twice the number of input variables.

In the training stage, a set of input values from a known data sample is given at the input nodes
of the neural network and the target output is set to +1 for signal and -1 for background. If the
neural network output at the end node is different from the target output then the difference is back-
propagated and the weights at all synapses are adjusted. Several error minimization algorithms are
available and choice of the algorithm depends on the type of the problem. The learning process is
repeated for all sets of inputs until the weights on the synapses become stable. At this stage the
network is said to be trained and can be used for signal and background separation in new data.

For our purpose we used a commercial neural network software product called NeruoBayes [14]
which is made available for CDF users under special license and is available only of fcdflnx machines.
We performed this analysis at fcdflnx4.fnal.gov machine at /cdf/spool/nageshk/NBD0/ folder.

10.2 Training sample preparation

For neural network training we need signal and background samples. Many neural network analyses
use Monte Carlo generated training samples. But since in our case it impossible to simulate all kinds
of backgrounds,the background samples taken from real data would be much more accurate. For this
reason we decide to extract our training samples from real data.

To get the signal data we applied standard dE
dx and impact parameter cuts and require Kπ mass

to be |m(D0RS)| < 20 MeV/c and D∗ mass difference ∆MD∗ < 20 MeV/c . To extract background
sample we applied standard dE

dx cut but not the impact parameter cut and require having wrong sign
Kπ mass either between 1.8 and 1.835 GeV/c2 or between 1.895 and 1.928 GeV/c2 windows. Wrong
sign mass difference ∆MD∗ (WS) > 30 MeV/c2 cut was required to remove most signal events keeping
random pion background. In addition, we apply right sign mass cut of 70 MeV form RS D0 mass
to eliminate opposite mass assignment background. The final regions in the mass distributions from
where the signal and background are extracted can be best illustrated by figure 12. The central
horizontal distribution shows the signal region and four corner boxes show the background region.
Even from a very narrow signal region we get a large number of signal events compared to background
events. Typically we get signal 8 to 10 times larger than background.

10.3 Input parameters and settings

We followed a rule that the variables used to obtain the training data such as D0 mass, mass difference,
dEdx and impact parameter of D0 , will not be used as inputs for the neural network for the reason
that there will not much for the neural network to learn from these variables. For each variable
available in our mini-data set, we studied the distribution for signal and background and decided to
keep the variable as NN input if the difference between the two distributions is large. The final 11
variables are summarized below.
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Figure 12: Signal and background samples used for training. The red corners show the region

from where background sample is extracted. The central horizontal bar shows the signal region.

For kaon, pion, and the tagging pion we used impact parameter, transverse momentum, and Z0
variable (the distance of closes approach along beam line). For D0 meson we used transverse and z
components of decay length significance defined earlier.

We also used isolation variable for D0 meson where the definition of isolation variable is given
earlier. In addition we used eta variable for the tagging poin only. The signal and background
distributions for kaon and pion eta variables were not significantly different and so they are not used
as NN inputs. Apart from these 11 variables, NeuroBayes require one extra unnamed input variable
for internal use.

The plots for the signal and background distributions for these variables are shown in Appendix
E. As we see from these plots, some variables such as transverse momentum of kaon and pions have
large differences in their signal and background distributions. We expect Neural network to learn more
from these inputs than others. The output of neural network training provides information about the
final weights assigned to each input synapse. This information is consistent with our expectation in
that the synapses corresponding to kaon and pion transverse momentum inputs were always given
relatively higher weights. Interestingly, we found that the D0 isolation variable which we found not
very useful in the standard analysis is also given significant weight and removing it from the inputs
reduced the neural network’s discrimination power.

The script Teacher.cc and Expert.cc are compiled to form Teacher.exe and Expert.exe executable.
Since the purpose of the neural network in our case is to separate signal from background, this becomes
a classification problem and so the neural network is designed to have single output node with output
varying between -1 and +1. The default setting of NeuroBayes program uses only 80 % of the training
sample events for training and leaves 20 % for testing. This setting is kept unchanged. Number of
epochs is set to 200, where epoch is the number of iterations or events after which the weights are
updated. This number is obtained from trial and error to give maximum yield at highest learning
speed. The number of training iterations is set to 15. The error minimization method used is BFGS
which stands for Broyden, Fletcher, Goldfarb, Shanno learning method. The other default settings
are unchanged. For 11 input variables we set 22 nodes in hidden layer and one node in output layer.
The topology of this network is shown in appendix B.

The teacher executable reads events from signal and background data files prepared for training.
Only 1.5 million total (signal + background) events are allowed for training. Since we have very few
background events compared to signal events, we wanted to use all available background events. For
the period 0 to 21 data, we get total 5.3 million signal events and 0.65 million background events.
We use all 0.65 million background events and only 0.85 million signal events to maintain the total
number 1.5 million. The signal to background ratio is then 1.3.

To train the neural network we provide the neural network with the signal events with target
output value set to +1.0 and background events with the target output value set to 0.0. The neural
network starts training process and after the training is over, the expertise(which include final weights
on synapses) is stored in file D0expertise1.nb. The executable also produces histograms of output
node value (NN output) for each event in signal and background training sample. Figure 13 shows
the training output in which signal is shown in red and background is shown in black. We observe
that signal gradually increases and background decreases with NN output from -1.00 to +1.00. From
figure 13 we expect to get maximum integrated signal and minimum integrated background if we
require the NN output to be slightly greater than 0.0.

The Expert executable takes D0expertise1.nb file and new data which we want to classify as inputs.
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Figure 13: Neural network training output: Signal is show in red color and background in

black color. Signal gradually increases and background decreases with NN output. Maximum

signal significance is found at NN cut > 0.10.

Analysis WS D∗ syield Uncertainty δ Ratio:Yield/δ
Standard method 24056.82 374.40 64.25
NN cut > 0.0 24363.45 376.61 64.69
NN cut > 0.05 238888.9 368.61 64.80
NN cut> 0.10 23481.15 360.88 65.06
NN cut > 0.15 22838.22 352.92 64.71
NN cut > 0.20 22133.21 344.70 64.20

Table 5: WS D∗ significance using the standard method and various neural network cuts. The

maximum signal significance is at NN cut > 0.10

The executable takes the input variables from the new data in the same order as they were given for
training and computes the NN output value for each event using the saved expertise.

We apply a neural network cut for which we expect to get maximum signal to background ratio and
the data passing that cut is used to find WS D∗ yield using the yield technique described previously.
The yield technique gives the number of WS D∗ sas a value of the first fit parameter. The uncertainty
delta on the first parameter can be considered as equivalent to

√
(S +B), where S is signal and B

is background. We use the ratio of yield/δ to compare the Neural network result with that from the
standard analysis method. Table 5 shows the WS D∗ significance we get from the standard method
and various neural network cuts. We see from the table that we get maximum signal significance for
neural network cut ¿ 0.10. This is close to our expected NN cut value.

As we see, the neural network gives only 1.5 % improvement over the standard method. When we
started with lesser data, we got 5 to 6 % improvements over the standard method but after adding
the total data from period 0 to 21 the improvement drops to 1.5 %. From this we conclude that this is
a negligible improvement and may turn out to be just a statistical fluctuation. Nevertheless, we tried
running the complete analysis to generate ratio plots using a neural network classified data to see if
the result looks sensible. The ratio plot was sensible and uncertainties on the values of the mixing
parameters were slightly reduced as expected. This means that, although at this time neural network
does not give major improvements it has potential to yield better results. In future we may try to use
realistic Monte Carlo data or throw in more input variables to bring more improvements.

11 Lump study

The CDF note 8879 describes the extra lump that appears in RS Kπ mass fit at 1.83 GeV/c (section
3.2.4). An extra Gaussian in the quadratic background fit function was required which improved
χ2 per number of degrees of freedom. We want to study if the significance of lump increased or



CDF Note 9806 Ver 1.1 25

Kπ mass Fit χ2 /ndf for Period 0 to 16 data χ2 /ndf for Period 0 to 21 data
Without Gaussian 852.65/50 = 17.05 983.5/50 = 19.67
With Gaussian 129.60/48 = 2.70 137.59/48 = 2.86

Table 6: χ2 /ndf for with and without extra Gaussian for the old and the new data.
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Figure 14: Kπ mass fit with and without extra Gaussian in addition to quadratic function

for background. The green curve show fit without Gaussian.

decreased with more data, to see if it is a real effect. We fit the RS Kπ mass distribution with and
without extra Gaussian for period 0 to 16 data and for period 00 to 21 data separately. Table 6 lists
the χ2 /ndf for both the data sets.

The difference in χ2 /ndf of two fits for period 0 to 16 data is 17.05-2.70 = 14.35 and that for
period 0 to 21 data is 19.67-2.86= 16.81. The increase in δχ2 in the new data set suggests increase in
the extra lump with time. Figure 14 shows the two fits.

We tried to search the cause of the extra lump through some realistic Monte Carlo simulation
studies. One idea was to test semileptonic D0 → Klν decay. For a quick look we generated 3000 D∗ →
D0π+ , D0 → K+µ+νµ simulated events using Pythia model. We find that the D0 mass reconstructed
from this decay falls below 1.8 GeV/c2 and after applying mass difference mD∗ − mD0 − mπ cut,
it cannot cause a lump at 1.83 GeV/c2 where it was found in the real RS D0 data. Similar results
found in other decay chains we tried. None of them had mean invariant mass close to 1.83 GeV/c2 .
The cause of the extra lump is still a mystery.
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12 Systematic Uncertainties

The systematic uncertainties for the 1.5 fb−1 analysis are described on pp. 26 - 27 of CDF note 8879.
This section will repeat some of the descriptions, and show the differences with the current analysis.

Most of the systematic uncertainties for this result are already included in the values returned
from the ROOT fitter. The CDF Statistics Committee points out that a fit to data will include
uncertainty about the fit shapes, as long as those parameters are floating. Adding more uncertainty
to the function shape would be a form of double counting. This is not true if the parameters are fixed
beforehand (from Monte Carlo or a fit to the time-summed data). We examined the possible sources
of systematic uncertainty, described in the following sections. Two additional terms are added (in
quadrature) to the ratio uncertainties, due to the mass difference background function and the extra
RS “lump” in the Kπ mass fits.

Most of the studies use “good” RS D∗. This means RS candidates with a mass difference near
the D* peak (4 < ∆m < 9 MeV) and an (unsigned) impact parameter less than 60 µm, for all decay
times. The number of “good” RS D∗ is determined from a fit.

12.1 Signal Shapes

The D0 signal shape is determined from a fit to “good” RS D∗. This shape is fixed, and used as the
signal shape for all subsequent RS and WS Kπ mass fits. The D∗ signal shape is determined from a
fit to the time-integrated mass difference plot.

The mass distributions of the D0 and D∗ candidates well matched by the signal functions we have
chosen. The true signal distributions are the same for RS and WS, since they have identical kinematics
(D0 → Kπ). We use the same signal shapes for RS and WS. While there might be systematic
uncertainties in the RS or WS signal yield separately, we expect it to be a common multiplicative
factor for both WS and RS, which will cancel in the WS/RS ratio.

12.2 Kπ Background

We expect an effect due to uncertainty in the background shapes for the Kπ plots. Since the signal-
to-background ratio is different for WS and RS, the ratio could be affected as well. However, since
we allow the quadratic polynomial parameters to float for every Kπ fit, the systematic uncertainty
is already included in the signal uncertainty returned by the fitter. (The signal uncertainty is larger
than a similar unbinned likelihood fit, or binned fits where the background shape is fixed a priori.)

Other analyses usually assume that the distribution in one variable (like Kπ mass) is independent
from another variable (such as mass difference). We do not make that assumption, so both the shape
and amplitude of the Kπ background can change depending on the mass difference and decay time.

Another point to consider is that we can’t have an alternate background function as a cross-check.
We are using a quadratic polynomial to fit the background. The Kπ fits agree with the data points,
with an average χ2/dof of 1.0. Any differences between our distribution and the “true” background
from data must be small. Any difference in shape could be treated as a Taylor expansion, which would
also make it a polynomial (and included in the fit). We have tried including a third order term to the
polynomial. There was no noticeable changes in the signal yields, and all fits that we looked at had
the third order term set to zero.

12.3 Mis-assigned Background Correction

There is no additional systematic uncertainty due to correcting for mis-assigned RS D∗s that show
up as background in the WS plots. The correction is given by Eq. 4 on page 14 of CDF note 8879.
Our kinematic and particle identification cuts greatly reduce the MRS background in the WS Kπ
mass plots, and the Kπ mass distribution for this background only has slight curvature under the
signal. For the previous result, the change in the WS/RS ratio due to not using the MRS correction
was smaller than the uncertainty returned by the fitter, and the uncertainty on the correction itself
(which would be the systematic uncertainty) was O(1 %).

The efficiency of the particle ID cut, determined by the change in the number of “good” RS D∗

with and without the PID cut, is now 85.99 ± 0.07%, compared to 86.58 ± 0.08% for our previous
result. The MRS correction in the analysis method has been modified to take this into account. Since
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the PID cut will have affect RS and WS signal equally, the cut does not affect the ratio. If the cut
efficiency changed greatly, for instance O(10 %) instead of the measured 0.6 %, we would consider
re-optimizing the cut value to get better signal-to-background discrimination.

12.4 Non-prompt D∗ Correction

We do not assign any additional uncertainty due to correction for non-prompt D∗s, Our results already
include uncertainties from the fits to the RS IP distributions in the different time bins. (For this study,
“good” D∗ do not have the IP requirement, but use sideband subtraction with the Kπ mass.) For
long decay times, the number of D∗s from B decays is a significant fraction of the total number of
D∗s.

We do vary the gaussian width of the non-prompt distribution, which has been parameterized. The
width is changed by ±1σ, and the change in the corrected ratio observed. The change was negligible
compared to the fitter uncertainty.

12.5 Mass Difference

The background distributions for the mass difference plots are described by a power term (∆mx,
where x is approximately 0.5), which is determined from fits to the RS and WS mass difference plots.

We do assign an additional uncertainty due to fixing the mass difference background power term
from the time-integrated fit. As a check, we changed the power term by±1σ, where σ is the uncertainty
from the fit to the time-summed data, and then observed the change in the WS/RS ratio in each time
bin compared to the best fit power term. The RS background is very small compared to the signal,
so caused a negligible change in the ratio. The WS signal was refit for the twenty decay time fits, and
the average change in the ratio was |∆R/R| = 0.46%. (The systematic uncertainty used for the 1.5
fb−1 analysis was |∆R/R| = 0.80%.)

12.6 Kπ Lump at 1.83 GeV

An extra Gaussian term is added to the RS Kπ fit, as described on pp. 16-18 of CDF note 8879. This
is background in the RS only. Since we have not been able to determine a decay that would produce
it, we have added a systematic uncertainty to be on the safe side. Using the time-integrated “good”
D∗, there is a change in the WS/RS ratio of ∆R/R = 0.07% when this “lump” is treated as part of
the D0 signal shape. (The value of ∆R/R = 0.34% from the 1.5 fb−1 analysis was overestimated.) A
systematic uncertainty of the same amount will be added to the WS D∗ yields for each time bin.

Since we had to recalculate the systematic uncertainty for this source, it might be useful to go over
the reasons why it is included. Figure 15 shows the RS and WS time-integrated fit for “good” D0s. RS
fit has 9 free parameters: 6 for the double Gaussian signal, and 3 for the (quadratic) background. The
WS fit has 4 free parameters: 1 for the signal amplitude, and 3 for the background. The WS signal
shape is determined from the RS fit. The RS fit, besides having an enormous χ2, shows structure in
the pull distribution.

To improve the RS Kπ fit, we added an additional Gaussian. The parameters for that “lump”
Gaussian are a mean of 1.83 GeV, width of 10 MeV, and an amplitude of 0.6 % compared to the
signal Gaussian. Figure 16 shows the RS and WS fits when this “lump” is determined from the RS
fit, and treated as part of the signal Gaussian. (The WS fit has no additional parameters, because
the signal shape is determined from the RS fit.) The improvements in the RS fit pull distribution and
χ2 are compelling reasons for including the extra Gaussian in the Kπ fit.

We also tried a fit where the extra Gaussian is treated as a background term. The mean and width
are the same for both RS and WS, but the amplitudes are allowed to float. Figure 17 shows those
RS and WS fits. The WS fit χ2 has improved by 25.4 units with the addition of a parameter for the
“lump” amplitude (independent of the RS). This excludes the hypothesis that the “lump” is signal, at
the 5.0σ level. In fact, the WS fit put the amplitude to zero. (The ROOT fit was not allowed to have
a negative amplitude.) When looking at the WS Kπ fits divided by mass difference or decay time,
the “lump” amplitude was always consistent (within errors) with zero. This led to the decision to not
have the “lump” in the WS Kπ fits, and to have the lump amplitude be an independent background
parameter for RS Kπ fits.
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Figure 15: Kπ mass for “good” RS (left) and WS (right) candidates, fit without an extra

Gaussian (lump).
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Figure 16: Kπ mass for “good” RS (left) and WS (right) candidates, fit with an extra Gaussian

(lump) that is treated as part of the signal shape.
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Figure 17: Kπ mass for “good” RS (left) and WS (right) candidates, fit with an extra Gaussian

(lump) that is not considered signal. The RS and WS fits have independent amplitudes for the

extra Gaussian, although they have the same mean and width. The WS fit has zero for the

“lump” amplitude.
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13 Conclusion

We made four major attempts to improve our previous (standard) analysis method. We tried to
introduce a new cut using D0 isolation variable which we did not find very useful in the standard
analysis method but found useful in Neural Network analysis. We found that the background from
multiple candidate events is negligible and it may not be worth pursuing it further.

Results from the application of artificial neural network were comparable to the standard analysis
method results. This confirms that our cuts are optimal.

In summary, we do not propose any changes in the standard analysis method at this time, and
present new result mainly from the addition of new data. We now have total 3.7 fb−1 integrated
B-Physics luminosity data available. The new data is qualitatively consistent with our old data that
was used in July 2008 result but we found that the RS D∗ yield is decreasing with time. We presented
the new WS/RS ratio plots using the total available data. We also recalculated the systematic
uncertainties. The following are the uncertainties on the mixing parameter from using all available
data.

RD = −−−± 0.42(10−3), y′ = −−−± 4.92(10−3), x′2 = −−−± 0.21(10−3)

The addition of new data reduces uncertainties on the mixing parameters from previous measure-
ments by 16 to 17 %.

We tried to estimate the expected mixing significance from rough calculations using RS D∗ yield
and from more systematic Monte Carlo simulations using χ2 difference method and Bayesian contour
method. From each of these methods we see that we may expect to exclude no-mixing with approx-
imately 5 Gaussian standard deviations. We are standing right on the edge from where we may be
able to observe D0 − D̄0 mixing as single experiment, if it exists in nature. We also have a good
chance of providing the world’s most significant measurement of D0 − D̄0 mixing parameters.
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Appendices

A Kπ mass fit comparison for the old and the new data

1.8 1.85 1.9
0

100

200

300

400

310×
Total RS KPiTotal RS KPi

1.8 1.85 1.9
0

20000

40000

60000

80000

Total RS KPiTotal RS KPi

Figure 18: Time integrated Kπ mass fits using the standard double Gaussian fit function.

Left plot is for period 0 to 16 data and the right plot is for period 17 to 21 data. The first three

parameters are listed in table 7

Parameter Period 0 to 16 Period 17 to 21
Number 1 4.20695± 0.001352(106) 1.295182± 0.001352(106)
Mean 1 1.865214± 0.000021 GeV/c2 1.865385± 0.000021 GeV/c2

Sigma 1 0.007192± 0.000044 GeV/c2 0.007369± 0.000044 GeV/c2

Number 2 0.366765± 0.013326 0.383522± 0.013326
Mean 2 1.864871± 0.000064 GeV/c2 1.864961± 0.000064 GeV/c2

Sigma 2 1.619948± 0.008501 GeV/c2 1.607657± 0.008501 GeV/c2

Table 7: The comparison of the first fit parameters of Kπ mass fits for the old and the new

data. The mean and the sigma for one Gaussian are shown. There is no shift in D0 mass

distribution in the new data.

B Time slices1:period 0 to 21 data
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C Time slices2: period 17 to 21 data
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E Some variables used as Neural network inputs
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Figure 19: Some of the neural network inputs: 1. Transverse momentum of kaon, 2. Trans-

verse momentum of pion, 3. Transverse momentum of soft pion, 4. The Z0 variable-the point

of closest approach along the beam line -for soft pion, 5. Impact parameter for soft pion. In all

plots red data shows distribution for signal and black data shows background distribution.
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F Non-Prompt D∗ Correction Details

This appendix is similar to Appendix D of CDF note 8879, and shows the data results for the B-decay
correction, starting with the fits for the time-binned impact parameter distributions. We use RS data,
with (Kπ) sideband-subtraction. The distribution for each time bin is fit with a double Gaussian (sum
of two Gaussians) for the prompt (signal) peak, and a single Gaussian for the non-prompt distribution.

From discussions with some of the authors of the D0 → µµ analysis (CDF note 9226), the impact
parameter distribution for promptly produced D0 is the same for all decay times, and D0 produced
as a secondary decay (like from B decays) have IP distributions that get wider with increasing decay
time. They did MC studies to confirm this.

Each plot covers the (signed) d0 values from -500 to +500 microns (ignore the x-axis numbers).
The first four time bins are excluded from the fit, as the ROOT fitter could not distinguish the
prompt and non-prompt shapes. The remaining 16 distributions were fit simultaneously, using the
same signal shape. A polynomial of order 3 (p0 + p1t + p2t

2 + p3t
3) is used to parametrize the non-

prompt Gaussian widths as a function of decay time. The first fit parameter (p0) is fixed to 27.9
µm, which is the Gaussian width when the prompt shape width is fit with a single instead of double
Gaussian. The other fit parameters (p1, p2, and p3) are allowed to float. The signal and background
amplitudes are used to allow the fit to converge, and are not used elsewhere. The blue curve is the
non-prompt fit, the green curve is prompt plus non-prompt.

The signal fit parameters are: f = 27.985± 0.453 % (fraction of the second Gaussian to the total
amplitude), σ1 = 22.024± 0.054µm (width of the first Gaussian), and σ2 = 40.347± 0.235µm (width
of the second Gaussian). The parameterization for the non-prompt Gaussian width is a 3rd order
polynomial: p0 = 27.9µm, p1 = 33.676 ± 0.549µm, p2 = −0.498 ± 0.208µm, and p3 = −0.0516 ±
0.0190µm.

We get the number of D∗s (for each time bin) for two impact parameter regions: |d0| ≤ 60µm
(inside), and 60 < |d0| ≤ 500µm (outside). These are used to correct for background from D∗ not
produced at the primary vertex. The amount of the prompt and non-prompt distributions in each IP
region is summarized in table 8.
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Appendix F: RS d0 Distributions By Decay Time
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Appendix F: RS d0 Distributions By Decay Time
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Time Bin Fraction In (fi) σfi
Fraction Out (gi)

prompt
distribution 0.95702 0.00024 0.04298
0.75-1.00 0.70800 0.00271 0.29200
1.00-1.25 0.64350 0.00304 0.35650
1.25-1.50 0.58812 0.00321 0.41188
1.50-1.75 0.54072 0.00329 0.45928
1.75-2.00 0.50007 0.00330 0.49993
2.00-2.25 0.46502 0.00328 0.53498
2.25-2.50 0.43462 0.00323 0.56538
2.50-2.75 0.40809 0.00318 0.59191
2.75-3.00 0.38479 0.00311 0.61521
3.00-3.25 0.36421 0.00304 0.63579
3.25-3.50 0.34593 0.00298 0.65407
3.50-3.75 0.32963 0.00292 0.67037
3.75-4.00 0.31501 0.00285 0.68499
4.0-4.5 0.29576 0.00277 0.70424
4.5-5.0 0.27418 0.00267 0.72582
5.0-5.5 0.25631 0.00259 0.74369
5.5-6.0 0.24137 0.00252 0.75863
6.0-7.0 0.22327 0.00244 0.77673
7.0-8.0 0.20521 0.00238 0.79479
8.0-10.0 0.18744 0.00239 0.81256

Table 8: Prompt and non-prompt distribution fractions. σfi is the uncertainty on fi based on

the uncertainties of the parameterization for the non-prompt Gaussian width.
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