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Abstract: If spacetime is a physical object, it is conceivable that it loses its integrity or is
destroyed in some way as a continuum in an abrupt process initiated in spacetime itself.
An example is a gravitational collapse leading to a spacetime singularity, as in the interior
of a black hole. We find a conservative extension of quantum mechanics by quantum set
theory over the singular domain and show that it is reconcilable with the special exten-
sion of spacetime 4-diffeomorphisms by automorphisms of Boolean models of set theory.
The extension of quantum mechanics supports the random sequences of the quantum
mechanical outcomes that can negate Tsirelson’s conjecture, whereas the extension of
4-diffeomorphisms indicates the role of exotic smooth 4-spheres as gravitational instantons.
This leads to the negation of the smooth 4-dimensional Poincaré conjecture before its final
resolution by mathematicians. We also discuss the case where the Poincaré conjecture
would remain true.

Keywords: Boolean models of ZFC; quantum mechanics; quantum gravity; physics of
exotic smooth 4-spheres

1. Introduction

The reconciliation of general relativity (GR) and quantum mechanics (QM) is an on-
going but unsolved project in theoretical physics. GR and QM are the main pillars of the
contemporary understanding of the physical world, starting from the tiny micro-scale up
to the cosmological scales. Extending QM over the biggest scales raises the question of
the persistent classical character of gravity, even though the black hole singularities call
for a quantum explanation. From the other side, jumping into the micro-world of elemen-
tary particles by any gravitational probe shows the practical irrelevance of gravity there.
Moreover, any consistent formulation of quantum gravity theory reconciling quantum
principles with gravitational understanding of spacetime fails for probably fundamental
reasons which, nevertheless, are unclear at present. In this paper, we partially fill the gap.

Any successful theory of QG must shed light not only on the micro-regions but also
help understand the cosmological puzzles of the physical world. This task is especially
sound when one faces probably groundbreaking experimental data collected and sent to
the Earth by the James Webb Space Telescope (JWST) the data that would presumably
revolutionize our cosmological models so far. This paper also addresses this important
issue to some extent.
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In the quantum gravity (QG) limit, it is usually expected that QM remains unchanged,
while GR would undergo certain modifications, which are expected at very small spatial
distances or high scales of energy. One such phenomenon is the formation of black holes
(BH) via gravitational collapse (the suitable amount) of matter/energy in spacetime where
the densities can increase without limits, and the gravitational singularity emerges within
the interior of BH. The proper description of the singularity is presumably based on the
modified GR and QM. Another example comes from loop QG where spacetime in the
quantum regime becomes a kind of discrete dynamical graph with quantum properties
labeling it. Thus, GR must be manifestly modified in this regime since Lorentz invariance
is broken. In superstring theory, GR works without limits, but the issue of the background
dependence written in the theory from the very beginning shows a conflict with the rules
of GR. Moreover, GR can be formulated in various dimensions, including 4, while the
consistency of superstring theory requires higher dimensions (and supersymmetry, of
course), breaking in this respect the original universal applicability of GR. QM seems to be
valid universally in loop QG and string theory, but in this last case, there is the quantum
field theory, which has to be modified again by assuming supersymmetry between particles
and fields.

The approach in this paper addresses the above issue of the relation between GR and
QM from the perspective of the mathematical structures and their formal description. We
find room in model theory and set theory augmented by topics in differential geometry of
low dimensions, which allow for the simultaneous modification of both GR and QM.

Although most physical theories are based on mathematics, which is usually formu-
lated in the language of classical logic and set theory, notable exceptions are also known.
There are certain attempts in mathematical physics, like those within the scope of topos
theory, which are based on nonclassical, non-two-valued Boolean or intuitionistic log-
ics [1,2], but there are also some other ones, starting from the celebrated work of Birkhoff
and Von Neumann [3], which are based directly on quantum logic. The theories of sets,
corresponding to nonclassical logics, also undergo some important modifications compared
to the classical case. In the topos approaches, internal set theory is canonically governed by
the structure of topoi and includes Boolean set theories in Boolean toposes, while in the
regime of QM, this is a big unknown whether one can reasonably assign a set theory to the
quantum regime and what would be the meaning of such a quantum set theory. Such a
situation is partly the consequence of the difficulties with quantum logic as linked with
quantum sets, especially the implication problem, but, as we think, it is also the lack of
fundamental hints and studies devoted to set theory in the quantum regime. However,
there are exceptions. One notable is the proposition by Gaisi Takeuti [4,5], developed
further by Masanao Ozawa [6,7], where quantum set theory is modeled by the ‘universe’
VL which is analogous to the Boolean-valued universe of sets, VB where V is the usual
cumulative Von Neumann universe of sets and B is a complete Boolean algebra. In Takeuti’s
approach, B is replaced by the QM lattice of projections IL(A, V,0,1), giving rise to V. The
problem with such a ‘model of the quantum universe of sets’ is that it reflects much more
serious difficulties than just the lack of unique implications in quantum logic. One sees
that when logic encounters difficulties with implication the entire set-theory structure is
ambiguous or has a non-well-defined sense as a set-theory. Maybe one should weaken the
logic-sets link somehow to allow for a degree of freedom while considering sets aspects of
the quantum world.

This rough idea is, in some sense, realized in this work. We allow for local ‘minor’
changes in logic over a spacetime manifold where set theory is also slightly modified, but
the spacetime manifold undergoes decomposition in the extreme curvature limit into the
local fragments. These fragments are considered here as local maps of a smooth atlas of the
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manifold. This follows in a reverse way to the constructability of any manifold from its
smooth atlas as a colimit (over the groupoid in the category of manifolds whose objects
are local patches). The fragments are no longer causally related, but the set of fragments
seen in the 2-value environment is directly related to QM. From the 2-valued perspective,
sets in the quantum regime are organized into the global structure but with additional
relations between the spacetime fragments (replacing causality and locality). This is not
that unusual when one recalls the celebrated Bohr doctrines where any oddity of QM
is finally described in the 2-valued logic and set theory, and such possibility is elevated
into an inherent property of the world. Here, the classical environment allows us to see
the additional relations between local regions of the spacetime manifold in the quantum
regime. However, such an enriched structure of the fragments is not considered to be a
category-like structure, though this point requires some reflection. On the one hand, it
is reasonable to think about the relations between local patches of spacetime as a kind of
morphism replacing natural superset or diffeomorphism relations. On the other hand, we
do not aim at taking an internal structure of such a category as modifying a set or logic
structure. We rather take the 2-valued departure point as the final point, as well, from
which the entire structure is to be analyzed. The modifications of logic and set theory are
performed locally in the intermediate stages of the construction, and the effects of this are
traced at the final classical stage.

The first part of the paper realizes the scenario of the decomposition of the spacetime
regions into flat R*s fragments due to the symmetric collapse of matter and energy produc-
ing extra high 4-curvatures in spacetime. The domains of the extreme curvature and density
of energy are modeled by 4-spheres with increasing radius—a natural geometric model for
such a symmetric process up to certain approximations but still carrying the main geometric
features of the process. The fragmentation of such hyper-curved spheres in spacetime is
further allowed. Based on equivalence principles and some general considerations, the
final stage process of such fragmented S?s is predicted as the collection of flat patches
R* augmented by certain nonlocal relations between them. Extending preservation of
energy and momentum over this nonclassical regime, one finds that the entire gravitational
energy imprisoned in the original gravitational collapse in spacetime now is written in the
relations between the flat patches, which, as being flat, have vanishing 4-curvature and no
gravitational energy. To grasp properly the relations connecting flat spacetime fragments,
we turn to the methods of model theory and formal set theory, and the entire scenario is
developed from the very beginning by Boolean models of ZFC, which can now be seen as
physical degrees of freedom (e.g., ref. [8]).

The methods in this work resemble and follow, to some extent, those in ref. [8].
However, the use of model theory and formal mathematical tools has a long tradition in
physics. Especially Boolean models of set theory have emerged as a promising candidate
for the study of the quantum/classical relation. This overlapping domain is not fully
understood so far, especially the way in which physical spacetime emerges from the
quantum realm, which in some stage should be called a ‘quantized spacetime’. The Boolean
models of Zermello-Fraenkel set theory with the axiom of choice and their 2-valued forcing
extensions find their place in exploring the domain. The methods are strong enough to
create quite a consistent understanding of the quantum gravity regime from the spacetime
point of view. This is the topic of the second part of the paper.

In Section 4, the analysis of the reverse of fragmentation in space-time process is
performed. The conditions for the classical limit of the fragmented domains are given.
In particular, under the supposition of the negation of the smooth Poincaré conjecture
in dimension four, it is found that the limit leads to exotic S*s and that they correspond
canonically to the gravitational instantons of the semiclassical Euclidean gravity in the
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physical dimension. In the next ‘Heisenberg uncertainty and the fragmentation of S*
section, it is shown that, indeed, the cardinality conditions imposed on the fragmented
S*s are the conclusions of the Heisenberg uncertainty relations in the original spacetime
regions. In Section 4.4, the geometric representation of gravitons is given as the continuous
perturbations of the original 4-metric such that it corresponds to the exotic smoothness
structure on R* supporting S*s. The Section 5 ‘The Negation of the Tsirelson’s Conjecture
and VBs in QM’ discusses the findings in the previous publication [9] of the hyperrandom
sequences of QM outcomes, which are potentially falsifying Tsirelson’s conjecture. For the
Hilbert spaces H(®), the sequences (with the suitable degree of randomness) are related to
the quantum regime of gravity. We close the paper with the discussion section with future
directions of the approach.

There are also two sections of the complemented materials. Appendix A contains a
thorough discussion of the crucial technique of the V-classical limit of the local Boolean
theories, while Appendix B is the proof of Theorem 1.

2. The Extension of GR by Homomorphisms of Models
2.1. GR in the Vicinity of Extreme Curvatures

The description of curvatures by general relativity (GR) formally does not have
limits—GR can deal with arbitrary high densities of energies and values of curvatures of
spacetime. Even though the singularities in GR should be defined covariantly with respect to
the geodesic incompleteness [10], their formation is usually connected with abrupt processes
in spacetime. Usually, certain infinities or divergent quantities characterize such processes.
Some of them can be made finite just by the coordinate transformation, some others cannot,
and GR fails to describe this regime. Instead, QM should be applied there. Connected with
this, a quite natural assumption would be that for some sufficiently high (but finite) values
of curvature, spacetime should be approached by QM rather than classically by a smooth
manifold’s model. The understanding of this process is roughly the aim of the present work.
In this section, we want to test the limits of spacetime as a smooth manifold in the regime of
extremely high curvatures by proposing a suitable formal background.

Working in a formal language like the first-order language of Zermello-Frankel set
theory, Lzr, one can formulate in the language various well-formed formulas about sets.
Only some subclass of them can be proved within the formal system of sets like ZF or ZFC.
Some other subclass can be disproved. However, quite an important subclass is neither
proved nor disproved sentences, even though they can be true statements about sets (the
proofs of them are not proved in ZFC). There are also sentences that are not true in the
absolute sense but rather are independent of the axioms of ZFC. That means that there are
some models of set theory where the sentences become true and some other models where
they are false. Recalling that in every model of ZFC, all axioms of ZFC are true, we will
see that these sentences are strictly independent of ZFC. All sentences in each category
above are expressible in the language £7r of ZF, which does not mean they are provable in
ZFC. The language of ZF is a particularly strong enabling for the formulation of a large
part (some say almost all) of classical mathematics. An important example is the theory
of manifolds and general relativity. In fact, to express the constructions on differentiable
manifolds, we need a particularly low class of ZFC formulas, the X3 formulas of LzF. The
entire hierarchy of ZFC formulas is the celebrated Lévy hierarchy defined with respect to
the structural complexity or the number of existential and general quantifiers respecting
their order (see Appendix C).

Let (V, €) be the cumulative Von Neumann'’s hierarchy of all sets and M* a smooth
spacetime 4-dimensional Lorentz manifold. M* is ZFC expressible and requires maximally
Y3 formulas of the Zermello-Frankel language Lzr. Usually, it is unnecessary to refer
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explicitly to V or LzF since almost all mathematics has this property and is ZFC expressible.
However, in what follows, this formal ambient environment becomes an active and dynamic
player of the construction, losing its universal or fixed character. This is more or less a
direct consequence of what could happen to spacetime in the regime of extreme curvatures
or densities of energies as in the Planck scales. Even though spacetime is an extremely rigid
physical object, we could try to understand the limits of its integrity. Einstein’s equations
allow for the interpretation of spacetime as an elastic fabric that undergoes deformations
like bending, stretching, and the like performed by the densities of matter and energy,
e.g., ref. [11]. Even though we are missing the outer perspective for such a deformed elastic
medium, which is just an approximation, again, the tensor calculus enables for description
of the effects internally to 4-spacetime. Moreover, the physical dimension of the Einstein
tensor Gy is [1/ mz] and of T, is the same as the Young’s modulus Y, i.e., [kg/m- 5_2],
where the equation F/A = YATZ defines Y via linear deformation Al of an elastic body of
length I and the cross section A with the reacting pressure F/ A. Various approximations of
the Young modulus for the elastic spacetime can be further derived, which here gives us
just an idea about the scale of the rigidity of spacetime. Based on the classical effects of the
gravitational waves of frequency f [1/s] propagating in spacetime, one finds, e.g., ref. [12]

2
Y= %fz ~45-107 f? [kg/m -s~2].

Approaching the quantum regime of vacuum one finds just from the dimensional analysis
(ref. [12])

7

h-G?
Both results indicate extremely high stiffness of spacetime, but still, they are finite. When

Y, = ~5-10'"% [kg/m -s72].

the densities of mass and energy increase arbitrarily high in space-time, as can happen
during a gravitational collapse, these incredibly large numbers and the corresponding
densities of the energy that generates them can be formally exceeded unless a good reason
is found that forbids it. The finiteness of the numbers and the ability to exceed them in
physical real processes also raise different fundamental questions, like about the stability
and integrity of spacetime and the perspective enabling the proper grasping of such effects.
For example, if spacetime loses its integrity, the tensor calculus on a smooth manifold is
non-applicable any longer. The approach we give here is the attempt to understand the
limits of spacetime from the GR perspectives and physical processes causing spacetime can
become a nonsmooth object.

The obstruction

Consider a family {R1 4c1, Rape k } of certain, to be determined, remnants of spacetime
after decomposition of it as a smooth manifold M*. We expect the following properties to
be assigned to the family {R1ac1, Ropex }

(1) Each R;, is a certain set of spacetime points which are still causally connected
(locality).

(2) The density of gravitational energy vanishes along each R ,—it is flat if a smooth
calculus in local coordinates is applicable for such domains.

(3) Ry pek is a remnant of the gravitational energy density and curvature present in M
before decomposition.

Remark 1. (1) and (2) above show that, indeed, each R can be chosen to be flat since now they are
not causally glued together by local diffeomorphisms. It is also reasonable that (3) above codes the
curvature and gravity after the decomposition in (1) and (2).
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The obstruction in seeing spacetime as ‘torn” apart into pieces by the densities of matter
and energy is the lack of any external perspective to describe the pieces. Alternatively,
more precisely, such a perspective should be given by QM, but still, we do not understand
the process of attaining QM from the fragmented spacetime. Rather, we know that the
black hole singularities have to exist. Our main observation for fixing further steps is the
following correspondence:

The rigidity of spacetime is protected by the rigidity of the universe of sets V.

This is an extension of the fact that breaking causality and locality between different
regions of spacetime is not an observable process with the description within spacetime
itself. Special relativity theory and GR are based on the causality and locality of any transfer
of information in physical processes. Even in QM, this kind of signaling theory (allowing
for faster-than-light nonlocal transfer) is forbidden, though it can be considered to be
some nonphysical alternative. Therefore, given a domain U; C M* and another causally
disconnected domain U, C M*, which means that no observer in Uj can ‘see’ anything
from Uy, since the regions come from fragmented spacetime and, of course, U; N Uy = @.
In other words, we cannot see M* (the fragmented part of M*), in causally separated pieces,
as the part of M*. Alternatively, there would be no possibility to embed M* in M* since
causal separation refers to spacetime regions, not to a particular future cone of any observer
in spacetime. The following lemma explains the set-theory counterpart of this.

Lemma 1 (Kunen [13]). There does not exist a nontrivial automorphism (a nontrivial elementary
embedding) j: V — V.

Remark 2. This property can be stated equivalently that any automorphism j : V. — V is the
identity and that there is no nontrivial embedding V- — V. Nontrivial embeddings are possible
under assuming the existence of certain large cardinals.

Thus, nontriviality here means embedding, which would not be the identity on V.
Assume that given M?, it is always M* € V that fixes the formal environment. Thus,
given another copy of M* (fragmented or not), which is defined in V as well, the formal
perspective enforces that the nontriviality (in this case diffeomorphism, which is not an
identity) of M* — M?* requires the nontriviality of V — V. However, this is impossible
due to Lemma 1. We conclude

Corollary 1. If M* N M"* # @ and M* X M then, allowing for the set-theory formal envi-
ronment, M* € V, M" € V enforces that M* has to be identically diffeomorphic to M (thus
excluding M* "= " M),

Remark 3. The formal context V of M* is usually neglected in mathematics, and so is its relation
to itself. In such a case, the object like R* (flat M*) allows for unlimited embeddings R* — R*
onto the diffeomorphic images (submanifolds). Activating V as a valid formal context for R* creates
several constraints that prohibit such embeddings, and the entire procedure becomes valid in physical
applications. This V assigns to R* plays an analogous role in assigning certain ‘quantum numbers’
to physical objects; one must take care of the numbers and their preservation laws when manipulating
the objects.

Remark 4. One can think of M* as formally being a pair (M*, V) such that (M*, V) —
(M, V) = (f : M* — M*,j(f) : V — V) where f # id = j(f) is nontrivial.

On the one hand, this relative to the set-theory universe V formalism forbids referring
to the pieces of M4, but on the other hand, the formalism indicates the solution allowing
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for such reference. The solution is to deal with other models of ZFC than the cumulative
hierarchy V, V/, and to consider pairs (M* D U, V').

Theorem 1. There exist models of ZFC, V', allowing for embeddings
VoV sV

and given two such models, Vl’ , Vz’, there exist nontrivial automorphisms
iV =V

For the proof, see Appendix B.
Let B be a complete Boolean algebra in V, and VB a Boolean-valued model of ZFC,
then the proof of the above theorem shows

Corollary 2. V' = VB,

We assign the formal neighborhoods (U, VB“)ae j to local patches Uy, « € | of a
(maximal) smooth atlas U = {U,,« € J} of M*

{Uy = (Ue, VB) }aej, Un € UM )Vyey. 1)

Moreover, by reference to a good cover, which always exists on a smooth manifold, we can
assume that U, ~ R%. For now, we are leaving unspecified the family of complete Boolean
algebras and corresponding models V5s.

We are assuming the following heuristic rule, which would relate physics with such
an enriched description of spacetime

[H1] The presence of local Boolean models of ZFC, V5, becomes physically
relevant when sufficiently high densities of energies are attained in spacetime,
hence in the limit of sufficiently big curvatures. This means that in the small
densities of energies compared to the rigidity of spacetime, the physical effects
are irrelevant or negligibly small.

We are leaving, for now, unspecified this sufficiently high level of densities, but
intuitively, it should be related to the Planck regime, which approaches the quantum
description of physical phenomena in spacetime. We will come back to that point later on.

Currently we do not have any reason to suspect that the equivalence principle (EP),
which GR is based on, is not valid for physical spacetime in any regime. Thus, in the regime
of extreme densities of energies in spacetime as possibly having a devastating impact on
the spacetime structure or its integrity, EP still should be a guiding principle. That is to say,
some variant of EP holds when spacetime is no longer a smooth object. What could that be?

A geometrical variant of EP claims that any effect of gravitational energy in spacetime
can be locally eliminated by a suitable choice of the coordinate frame. This means that
the local frame in which the physical process is described, on a sufficiently small scale,
becomes flat R* where no gravitational effects are present and, certainly, the curvature of
spacetime vanishes. However, when the entire spacetime is curved as a global smooth
4-manifold, the choice of such local flat frames is not possible globally for all points in M*
(at each point of M*, there would be the vanishing curvature tensor; hence, it would vanish
globally). That would have meant that M* were actually flat. However, when the domains
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of M* are causally separated and connected by generalized transition functions (not just
diffeomorphisms), then it can happen

Foreachp € M?* there exists Uy € U that U, = flat R*.

and gravitational energy leaks somehow into the transitions between flat Uys.
Thus, according to this, we have the following quite general possibility.

[H2] The final stage of the gravitational collapse of spacetime would be a family
{U,} of flat R*s and a family { f : R* — R*} of nonlocal transformations between
flat R%s.

Remark 5. Under some conditions, the final stage of a gravitational collapse typically contains the
GR part of a geometric solution of the Einstein equations, where eventually, a black hole is formed
with a certain singularity, which is inaccessible by the formalism of GR. Here, we propose that a
singularity contains remnants of the causally disconnected fragments of spacetime, each worth flat
R%*s in VBs with the nonlocal symmetry between the fragments replacing diffeomorphisms of R*
inV.

Understanding H2, particularly its relation to QM, is the aim of the remaining part of
this paper.

2.2. Deformation of Diff(R*)

First, note that H2 and the analysis before it realizes points (1), (2), and (3) of the
previous section. To see this, it suffices to identify R ,, with U, = flat R?, and Ro,, with
nonlocal f, : R* — R* where v = af is such that faﬁ : Uy — Ug. Next, thinking about
the extension of GR over ZFC-deformed spacetimes leads to the deformation of transition
functions from diffeomorphisms f : R* — R* to some f,. We start by determining the
domain of the transformations. We expect a degree of nonlocality with respect to spacetime
points. Hence, we do not call f a function on spacetime but rather a transformation. We
have already indicated above the domain of f as U, as is the case for diffeomorphisms f.
However, based on H1 from the previous section, it should be rather U, in a local model
VB since the deformation of M* in the Planck regime requires factorization through V? for
certain B € V. More precisely, following H1 and H2, we have the following version of H2

[H2'] The final stage of the gravitational collapse of spacetime is a family {Up, =
R% € VB} peps of flat objects R4 in Boolean models VB and a family {f : R}, —
R%,} of nonlocal transformations.

We can be more specific about the maps f : R}, — R}, by claiming that they are
determined by the maps between Boolean models and that these last maps are determined
by the homomorphisms of the Boolean algebras. Using the same symbols f for the maps
of the models, f : VB! — VB2 let us observe that each f determines a map on objects
R}, — R}, of the corresponding models. However, the origins of this f on models lie
in the homomorphisms of the Boolean algebras B1 and B2. Thus, the maps between the
R*s objects have their origins in the homomorphisms of the Boolean algebras, as in the
following Lemma 2 and Corollary 3.

Lemma2. f: VB! — VB2 comes from certain homomorphisms of Boolean algebras, h r:Bl— B2
inV.

This lemma is a direct consequence of the behavior of Boolean-valued models of ZFC
under homomorphisms of Boolean algebras, e.g., ref. [14].
Now we see that it follows that indeed
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Corollary 3. f: R} — R},
This follows from the fact that R%;z — R*in V(B which is R%2 in VB2,

Remark 6. The nonlocal character of f in R% reflects its derivation from the homomorphism of B
and thus from the transformation of VB, which is the homomorphism of the formal neighborhood of
R* rather than any local map of R* itself.

Please note that the local diffeomorphisms of R* do not spoil the action of Hom V8
since any f € Diff R* sends open neighborhoods to open neighborhoods of R* and Rjs
additionally refine them. Similarly, Diff M* does not interfere with Hom VE. Hence, we
have the following modification of the symmetry of GR

Diff M* @& Hom V5 2)

which should be understood as follows. In the deep Planck regime, the dominant way
of changing the coordinate frames is by homomorphisms of V2 since M* can lose its
integrity, while in the macroscales, where M* survive as a smooth manifold, there effectively
dominate diffeomorphisms of R*. When the smoothness of M* is preserved (or dominates)
the action of f € Hom V® on opens of M* is replaced by diffeomorphisms of M* (there
are no nonlocal transformations) while when the integrity loss of M* occurs, then Hom V8
enters the stage and dominate. Thus, until the density of energy and deformation of
spacetime would not thorn it to the pieces, there are GR and diffeomorphisms governing
its behavior. This loss of the integrity of spacetime is a natural threshold for preventing
quantum phenomena of spacetime.

In the remainder of this paper, we show that the extension of Diff M* by Hom V? is
precisely what is needed for the formal reconciliation of QM and GR in this setting.

3. Extension of QM and GR

In the Introduction, we have mentioned the relationship between QM and the set-
theoretic constructions inherently following the QM formalism. Here, we focus on this
relation as the fundamental problem of the extension of QM such that the set theory of QM
determines its extension. To properly approach the set theory of QM, Takeuti proposed to
refer to the lattice of projections IL(7{) as generalizing the Boolean algebras—the maximal
complete Boolean algebras of projections in L. Then, one refers to V' as the universe of
set theory for QM. VI directly generalizes the Boolean-valued model of ordinary sets, V5,
where this last can be seen as more general than the 2-valued cumulative class of sets
V2 ~ V, which is a class-like, classical model of ZFC (here 2 = {0,1} — the 2-valued
Boolean algebra). Keeping in mind that IL can be considered to be the logic of QM and that
the algebras 2 and B represent classical and Boolean logics, respectively, the construction
VI seems to be a canonical object for quantum sets. However, this approach has many
intrinsic difficulties, e.g., [5,6]. Anyway, the richness and complication of the structure V-
is always locally reduced to the Boolean models V2, x € I for maximal complete Boolean
subalgebras, B, of projections in (7). The special role of B, for QM is that

Lemma 3 (Takeuti [4]). For any family of pairwise commuting self-adjoint operators { Ac,c € L}
on H there always exists a maximal complete Boolean algebra of projections By containing all Ae.

Remark 7. We say that B, contains A. when Ac has the spectral decomposition

A. = AE), o is the spectrum of A,

Oc
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and the spectral family dE, has its values in By.

Thus, B, determines the local Boolean logic of QM and the local set theory Vf of QM,
but also the set of commuting observables {AC, c € L}“’m, A. € B, on H. Furthermore,
there exists a very special relation between the model of ZFC, VB and the set of observables
Ac € By. Namely

Lemma 4 (Takeuti [4]). There exists 1:1 correspondence between the set of Dedekind’s real numbers
in the ZFC Boolean model VB and the set of self-adjoint commuting operators A. € By.

In the internal Boolean world V5« of sets, the set of reals (Dedekind’s) is the elevated
set of all commuting observables on H, to more general Boolean logic. If there is a model
of sets (in a generalized sense) with a similar property as in Lemma 4 but for all, also
noncommuting self-adjoint operators on H, then such a model would serve as direct
counterparts for QM. In fact, we have [7,15]

Lemma 5. For V¥, there is 1:1 correspondence between Dedekind’s real numbers and all self-adjoint
operators on H.

However, the resulting set theory of V' is not canonically a set theory. Thus, the
maximal natural interpretation of sets, which preserves the quantum observables, is VB«
where the observables are reduced to the set of commuting ones according to Remark 7.
Still, one can glue together these local ‘commutative’ contexts V5s to cover the entire
lattice IL(H).

Remark 8. Please note that even though the set of {V B} for all maximal complete Boolean algebras
B, in L, covers the entire lattice and generates all self-adjoint operators on ‘H, one cannot reduce
{VB«} to the single model VB« — each VB« generates only commutative family of operators and B,
is distributive while 1L is not.

This local-to-global relation of {B,} and L is the particular task of this section. Let
Bor(R) / Null be the quotient algebra of all Borel subsets of R modulo the ideal of Lebesgue
measure zero subsets.

Lemma 6 ([16], Th. 9.4.1). For complex infinite-dimensional, separable, Hilbert spaces of quantum
states H* the following are true

i. BDL - th’a @ B/
ii. ~ B = Bor(R)/Null.
iii. B is an atomless Boolean algebra, the same for all as, and By 4 is an atomic part of B, which
can differ with «.
Corollary 4. If dim H < +-oo, then By = By, contains only the atomic part.
The universality of B = Bor(R)/Null for H* allows us to show the following result.
Corollary 5. Let dim H = +oo and B, = B be as above. Then

For any hiy € Aut (B) there corresponds some fi5 : V1 — VB2,

i.e., for any pair B1, B2 of maximal complete Boolean algebras of projections in 1L there exists
hiy € Aut (B) such that VM2(Bl) = B2,
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The above corollary states the direct fact that any i € Aut(B) corresponds to the
isomorphism of the models VE ~ V"(B). This holds for any pair B1, B2 of maximal
complete Boolean algebras of projections from L since they are isomorphic to B. This
proves Corollary 5.

One can consider the extension of QM given by the set-theoretic component above,
which also extends the group Diff R* from GR as in (2) from the previous section

Diff M* @ Aut V8 3)
where now, certainly, B = Bor(R)/Null. Then, the main result follows.

Theorem 2. Let B be the universal maximal Boolean algebra of projections as in Lemma 6 and
Corollary 4. The symmetry of the structure resulting from the extension of GR (the equivalence prin-
ciple extended over causally disconnected flat open fragments of M* internal to V'B) coincides with
the symmetry of the QM projection lattice in H® that preserves local set-theory Boolean contexts.

Proof of Theorem 2. The resulting symmetry after the extension of GR is determined by
diffeomorphisms of M*, which are enriched along h : VB! — V582, This & is determined by
a homomorphism / : B1 — B2 (using the same symbol /). In particular, i € Aut (B), leads
toh: VB — VP and to generalized maps /i : Ry; — R},.

In QM on ‘H* and for vanishing the atomic part of B, as in Lemma 6 and Corollary 5
one has B = Bor(R)/Null and thus h4 € Aut (B) is the change in the local context in QM
according to the following.

Let B/,, Bp be two maximal complete Boolean algebras of projections from # such
that A, D, [A, D] # 0 are two noncommuting self-adjoint operators in B4, Bp cor-
respondingly (see Remark 7). This means that there exists a projection bp € Bp,
noncommuting with A.

Then ¢74bpe~"74 sends bp to a projection in certain maximal algebra B, for any
v €R.

It can be directly checked that

By ~ e "ABpe~ 14 (4)
establishes a homomorphism of the algebras B4 and Bp.
Under the supposition of the theorem H = H* and B, = B, one has
By X Band Bp L B

so the correspondence (4) establishes the isomorphism /14 of B4 and Bp. Since B4 ~ B and
Bp ~ B then hy € Aut(B). Finally, this gives rise to the isomorphism of local models of
set theories for QM, VB4 ~ VBp ~ V5. Finally, taking R} € V5, there corresponds to the
change in the generalized coordinates

hAZR%HR%

for the extension of GR as at the beginning of the proof. This finishes the proof of
Theorem 2. [

Let us assume explicitly, as is already stated in Theorem 2, that each 4-region R} of the
fragmented spacetime in various V5, is flat R%s, then the gravitational energy densities are
no longer carried by local diffeomorphisms.
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Remark 9. One consequence of this theorem is that the gravitational energy densities in the deep
Planck regime are carried by Aut (B) rather than by Diff M* as is the case in the subplanckian
classical regime of (nonextended) GR.

Remark 10. The isomorphism (4) is an example of the Fourier transform between, e.g., momentum
P and position Q operators in QM based on the spectral theorem. Here, we have the isomorphism of
the Boolean algebras Bp and Bg and dim H = +oo due to the uncertainty principle.

4. Euclidean Quantum Gravity
4.1. S*s and the Fragmentation of Spacetime

In this and the following subsections, we develop the formalism for gravitational
energy densities close to, or in, a singularity where quantum description should dominate.
We make some simplifications so that the construction presented here can be considered
to be the application of a general procedure. First, let us work with manifolds with
Riemannian metrics so spacetime will be a smooth 4-dimensional Riemannian M*. Let
(S%, g54) be a smooth 4-sphere with the standard round metric gsn. The sectional curvature
of an n-sphere of radius r is Kgn = 1/ % and its scalar curvature is Scgn = nn—1)/ r2
so thus Scgs = 1—% gives Scgs = 12 for radius = 1. Next, let the scalar curvature of M* in
the vicinity of a gravitational singularity, such as in BH, be a parameter diverging to +oo,
and this is a true singularity, not just a coordinate one. In addition, the increase in the
scalar curvature K — +co will be modeled by (S*,7),r — 0. The last seems to be a true
limitation since S* has a constant scalar curvature, which in the vicinity of quantum effects
is fluctuating, and S* is very regular and symmetric to reflect a general situation. However,
the following property in Theorem 3 shows that S* is a quite generic model and, moreover,
(S%,r) approaches arbitrary big curvatures with a smaller and smaller radius. The metric
fluctuations can be further considered on such S*s. Given a smooth Riemannian 4-manifold
(M*, ¢) the map f : M* — S*is called “distance non-increasing’, when

dg(p,q) < dg, (f(p), f(q)) forany p,q € M*.

Theorem 3 (ref. [17], Theorem A). Let (M, §) be a four-dimensional closed connected oriented
Riemannian manifold with Sce(p) > 12. If f : (M, g) — (S* gg4) is a smooth, distance non-
increasing map of non-zero degree, then f is an isometry.

Remark 11. Given M with the ‘big’ local scalar curvature Scy(p),p € M, we always find
(S%,7) such that Scgs > Scg(p) for all p € M and refer to this S* instead M with the distance
non-increasing property for f. The local fluctuations of the metric can now be considered to be on S*.

Recall that the connected sum # of two smooth manifolds with boundary, M;, M, is a
smooth manifold M;#M, obtained by cutting out the open balls from both boundaries of
the manifolds and gluing smoothly the remaining manifolds along the boundaries with
suitably reversed orientation.

Remark 12. In fact, we model high-curvature regions of spacetime by a part of S* since, at
this stage, M* is connected. Thus, $*\ D* would be glued to M*\ D4, resulting in the con-
nected sum M*#S*. Please note that (topologically and smoothly) $* \ D* ~ S3 x R leads to the
(R? x R,R3 x R) = (R*,R*) topological (or standard smooth) cover.

There is yet another clue for the S* x R local geometry emerging in the context of the
Lorentz metric of 4-spacetime for large density perturbations and for the standard ACDM
model. In the semiclassical approach to the Lorentzian GR in this cosmological model,
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for the perturbations on a much smaller scale than the size of the modes, the ‘separate
universe’ results, which may carry the geometry of the standard cosmological model but
with different values of the background density or curvature. In other words, a spherically
symmetric perturbation in an FLRW background behaves like a separate FLRW universe
with different matter density and curvature [18]. Topologically $> x R ~ §*\ D# so in the
limit of losing the integrity with spacetime (breaking the topological connected sum), and
switching to the Riemannian metrics, the resulting smooth S* (with eventual exotic metric)
can represent the gravitational instanton (see the discussion below in this section). This
semiclassical gravitational description of such hyperdense regions as separate universes
also refers to black holes since an observer (in the vacuum region surrounding the hyper-
density) would see the separate universe as a black hole [18]. We argue that losing the
integrity with spacetime gives even more insight into the quantum interior of black holes
as the semiclassical approximation reduces the description merely to the instanton’s effects.

Following Remark 12 with the Euclidean metric, the integrity of spacetime is preserved.
However, for certain high values of energy density and the corresponding scalar curvature
of §%, the disintegrating processes could dominate. Let us try to understand this step in
our setup. Let pp, p € M* be the density of gravitational energy at p € M*, and we do not
present any physical process behind this value. Let us assume the existence of a singular
region S over which geodesics cannot be smoothly extended. Thus, the radius r of (S*,r)
approximates the 4-curvature of spacetime locally as 1—% where close to the singularity it is
formally diverging due to r — 0. We have the simplified or naive model of the spacetime
singularity with the parameter r.

Now let us apply the procedure of Section 2.1, in particular H2 and H2'.

i. Letd ={U;,a =1,2,3,4,...} be some smooth cover of $* where U; ~ R*. For the
standard smooth $%, there exists a 2-element cover {U,, U }; however, the maximal
smooth atlas (the smoothness structure) still contains infinitely many elements.

ii.  There exists rg (possibly of the order of the Planck length rp) where spacetime becomes
locally internal in models V2s.

iii. In the same regime after reaching the Planck length rp and the local scalar curvature

12
26,121 - 10~70[m?]

~ 4594 -10"%[m 2] (5)

then the fragmentation of local spacetime occurs (H2') which is the fragmentation of
(§%7)

U ={U; =R} € VP, Ry = Rp, x Rp, x Rp, x Rp, flatin V%,i =1,2,...}
where each U, is the ‘local’ internalization of U; € U, (str) tO Vl-B .

Remark 13. As far as the connected sum of (S*,r) and M* is preserved then (see Remark 12) the
interior int(D*) = R3 = R* removed from S* where 2 = B is the Boolean algebra and V> = V.
However, the complete fragmentation of S* does not necessarily support such connectedness.

The fragmentation of S* and its separation from M* is presumably not an instanta-
neous process but spreads in time when the connected sum S*#M?* lasts. The process starts
with it and the final stage would be complete separation and fragmentation, i.e.,

M* — M*S* — M*\ D*O{R} }O{f;; : VB — VPl (6)

Here, the enriched set-sum symbol U is not only the set-sum of the corresponding families
of functions or topological spaces but additionally, the enriched set-sum preserves the
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topological relations of the members of the corresponding sets. In the above expression,
the right-hand side represents the part of spacetime M* \ D* sum up with the set of the
resulting fragments of S* and sum up with the relations between them represented by the
maps of Boolean models V5.

Following the discussion around H2', we have, in terms of generalized ‘transition
functions’, the following schema

M* — M*#S* — M*\ D*O{R} }O{f;; : Rj — R‘éj}. 7)

M* % MA4S* and the extremely high curvature of S* can be erased by a diffeomorphism
that simply reflects the fact that (S%,71) and (S%,1,) are diffeomorphic and the Riemann
tensor (and scalar curvature) are not in general invariant under 4-diffeomorphisms.

Thus, the symbol U in (6) and (7) is just the set operation of summation which results,
e.g., in a set of points of a topological space M* \ D* (with its default topological structure)
U a set of R%;,- objects in categories VBi U the set of relations between the categories VBi. This
is a nonhomogeneous object from the topological point of view but still has a well-defined
set-theoretic meaning on which one can perform certain operations. More precisely, the
forgetful operation on the topological space M* \ D* leads to the set of points, which gives
rise to a set-theoretic sum with the sets of certain objects.

Corollary 6. If dim H = +oo, then the final stage of fragmentation of S* reads
M*\ DAO{R}O{f;; : VB — VB} or M*\ D*O{RE}O{f;; : R} — Rj}
where f;; € Aut (B) and B = Bor(R)/Null.

In the next sections, we will be interested in the reverse process for fragmentation of S*
in the smooth V-limit, which is the gluing of fragments of S* and obtaining (if possible) a
smooth S*. Thus, our assumption here is that this gluing process, under certain conditions,
leads to S*. More formally, the gluing can be seen as the construction of a manifold M"
from its atlas & = {U, } where the set i{ is structured by the automorphisms of B.

Remark 14. For any open cover U of a Hausdorff paracompact manifold M" one assigns a cover
groupoid the space of objects being the disjoint union Gy = |1, Uy and the space of arrows is the
fiber product U X pgn U. Then the manifold M" is the colimit of U X pn U = U in the category of
smooth manifolds and maps.

In the quantum regime, the set I is structured by introducing the additional relations
between Uys that correspond to the automorphisms of B. In the classical limit (V-smooth
limit see Appendix A), there remains just the disjoint union of local patches, and the way
to S* or M* follows Remark 14.

Assuming the preservation of energy in the transition process from the classical
sector with 5% to quantum with fragmented S*, there has to be a transfer of the curvature
of spacetime of S* and the density of gravitational energy into the algebraic family of
automorphisms { ﬁj}, since the geometric flat R}s all have vanishing curvature and thus
the density of gravitational energy.

Accordingly, one expects similar preservation for momentum and angular momentum,
i.e., the transition from classical to quantum does not spoil the main preservation laws.
There could exist relative momenta (angular momenta) between local charts which would
lead to the loss of net momentum (angular momentum) after losing the causal connectivity
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of spacetime. However, after the rebirth of the smooth S* and taking a connected sum with
spacetime, the energy and momentum loss would be retrieved.

4.2. Towards Gravitational Instantons and Quantum Gravity

Consider two isomorphic copies of V5, ie., VB ~ VB2 ~ VB where By = B, =
B = Bor(R)/Null is such that By = f,1(By) for certain f,; € Aut(B). Let S” be n-
sphere in V5 (which is a Boolean model of ZFC). We want to identify smooth S* that
becomes fragmented due to the process f of changing the models V? but before the
final flattening of the local charts as in the family {R}}s. Let us choose the standard
2-element atlas {U;, U} where Uy, U, are still diffeomorphic to R* but are rather two
hemispheres of $* where the metric Suv On S* becomes truncated to gﬁ,) on U; and gﬁ,%,) on
U,. Uy, Uy can be both considered to be the interiors of the closed 4-disks ﬁl,z with the $3
boundaries, aﬁu = Siz correspondingly. Now, gluing two of these closed hemispheres
by diffeomorphisms can be seen as gluing along the diffeomorphism of their boundaries
S3 — S3.

Let S" be n-sphere and 7 : S"~! — S§"~! some diffeomorphism of the boundaries

of the closed hemispheres of S”. Let gg?,_l) = glalv) be an Euclidean metric on R*~! and
g;f{,(”fl) = gﬁlzv) its transformation by 7r. Then the following is the metric on R”
ds? = df2 + [(1— A())gW) + A (g dxtdx 6)

where A : R — R is a strictly increasing smooth function of the time t such that
limy, o s(t) = 0 and lim; ;1 s(t) = 1. The usual one-point compactification of R”"
with this metric results in a smooth n-sphere (see ref. [19]). However, it can happen
that diffeomorphisms 7t : $"~1 — $"~! gluing both spheres at the equator of S" are not
continuously connected with the identity on S"~!. Then the resulting smooth S", S, is
nondiffeomorphic with the standard smooth S”, i.e., S" # S but still S is smooth and
homeomorphic with S". More is true, all classes of smoothings (smoothness structures)
on S" are in 1:1 correspondence with the classes of ‘large’ (not connected with identity)
diffeomorphisms of S"=1 ref. [19]. However, a crucial exception is the case of dimension
4,i.e., S* J. Cearf [20] proved in 1968 that every diffeomorphism of the 3-sphere preserv-
ing the orientation is isotopic to the identity. This result leads to the conclusion that any
diffeomorphism of S extends over a diffeomorphism of the 4-ball for which S is the
boundary, i.e., Ty = Diff(53)/p(Diff(D*)) is a trivial group, where p is the truncation of
diffeomorphisms of D* over its boundary S®. Thus, in dimension 4, there is no room for
exotic §*, which would follow the construction of the 4-metric from diffeomorphisms 7.
Does it mean that there are no exotic 4-spheres? No, we do not know, and many researchers
expect that one day, the proof of the existence of exotic S* will be completed, but certainly
by methods different from gluing 3-diffeomorphisms. Until now, every attempt to construct
exotic S* has failed by any means. Thus, the celebrated smooth 4-dimensional Poincaré
conjecture remains still unresolved.

Reference to n-spheres, especially exotic ones, seems to be crucial for the QG pro-
gram. It follows from the breakthrough analysis of gravitational anomalies by Edward
Witten in ref. [19] in higher-dimensional theories of gravity like superstring theory. Ac-
cording to Witten, exotic S” as construed in (8), are ‘the best’ candidates for gravitational
instantons since to every | = S" there exists 7! = S~’7ZT,1 such that the connected sum
] 4 I*l — S~n

"1 = standard " which by the one-point decompactification of 5" corre-
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sponds to the flat R". Such a flat n-space gives the maximal contribution to a gravitational
Euclidean action Sg since Sg[d,,] = 0 thus

(21g1) = [ Dg- el ©)

has dominating contributions coming from the zero action in the saddle point. Witten
observed that only such pairs of instanton and anti-instanton have to be included in the
path integral due to the cluster decomposition effect: | has the same effect as the pair
J + ]~ (consider a very big separation of both instantons causing neglecting the action
of the very distant one). Thus, still, whenever | + | -1 gives the maximal contribution to
the path integral, it remains maximal also for ] alone because of the existence of ] 1. For
gravitational instantons that do not have a well-defined anti-instanton state, there is no
clear reason for including them in the path integral (there are presumably other terms with
dominating contributions in the path integral).

In general, gravitational instantons are semiclassical gravitational solutions that might
play a significant role between the classical spacetime and quantum regimes. In our
approach, it is the state of spacetime just before its fragmentation in the fully quantum
realm. However, in dimension 4, it is likely that exotic S%s do not exist, and the entire
approach based on exotic spheres would fail in this physical dimension. Nevertheless, the
approach allows for skipping these ‘classical” instantons and switching to more quantum
analogs. To this end, let us turn to tunneling processes connected with instantons in general
but also present in Formula (8) as gluing of the 3-metrics. Tunneling takes place between
two metrics on R""!, ¢, and v, which are related by nonlocal, large diffeomorphism
7t of S"~1 the one-point compactification of R"*~1. This nonlocality is expressed in the
inability to glue the two metrics by a diffeomorphic coordinate change but requires action
on the whole S"~1. This action is again a diffeomorphism, but it cannot be continuously
connected with any local coordinate change. Rather, 7t belongs to another class of large
diffeomorphisms of $” 1. Thus, tunneling is nontrivial, and the resulting n-sphere has to
be exotic, i.e., nondiffeomorphic with the standard smooth S”. We do not know whether
exotic 4-spheres exist, but there is also another reason for skipping the construction in (8)
while considering the tunneling phenomena of gravity in dimension 4. It is the Cerf result
that there is no large diffeomorphism of S® (see the discussion before in this section), and
hence, there is no tunneling in the sense of (8). We will show how our approach allows
for addressing such tunneling questions and leads to generalized exotic smooth S* or
instantons in the quantum domain. The direct proposal would be a modification of (8), i.e.,

ds? = dt* + (1 — A(t))gf}v)dx”dx" + A(t)gg,zl,)dx”dx" (10)
in VB in VB2

where gﬁ) would be g, in VB2 = f(VB1), f € AutB and the ‘+’ sign in the bracket is
adding the contributions of both terms in V. The last requires a more careful explanation.
A general question here is: What are the contributions in V derived from different Boolean
models V51, VB2? Let TR* be the tangent vector space to R* then it holds (see Remark 7 for
A € B where A is a self-adjoint operator and B the Boolean algebra of projections)

Lemma 7. Let By = By = Band A; € By and Ay € By be two self-adjoint noncommuting
operators on H®, then In V: If flat R* corresponds to flat R} € V1 then TR* corresponds to
R} € VP,
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For the proof of this lemma, let us turn to Section 3 and note that Theorem 2 and
Remark 10 give the result in Lemma 7.

Remark 15. Flat R* = TR* as vector spaces and Lemma 7 refers to the constitution of local
frames of a manifold, say M*, as R* or TR* on the set-theoretic level. Thus, even though there are
isomorphic copies of R*s that model local Uys in the smooth atlas of M*, still taking into account the
origins of the set theory, they can differ subtly. The difference is apparent when set theory degrees
of freedom are referred to in atlases of a smooth manifold. The change in the perspective of the set
theory from trivial V to local VB is responsible for the effect.

One can also think about this discrepancy between different R} detected in V as a
kind of curvature: taking a closed path in M* going through different R* local regions then,
at the beginning, the data at the initial point can differ at the end after taking the closed
path. This difference is the jump or gluing operation in (10). Although flat R* and TR* are
isomorphic, the content of the set theory distinguishes them.

There is one problem with the approach in (10), the classical spacetime limit of it
is necessary the standard S* after 1-point compactification of this geometry, and this
conclusion holds even in the hypothetical case of the existence of exotic 4-spheres. The
reason for this is the triviality of the diffeomorphism classes of S3. So, in the smooth limit,
the jump operation of (10) omits the exotic spheres. We would like to have a different
situation: the jump operation in the quantum regime, in the process of its reduction to the
classical smooth regime, should go through the exotic S* if they existed. Certainly, if they
do not exist, it is impossible, but the construction could still not have excluded exotic S4s
in principle. This is because alleged exotic S*s are well-suited for being the gravitational
instantons, and even if exotic 4-spheres do not exist, the jump operation, not excluding
their existence, would also be opened for another kind of instanton phenomenon. We
need to modify the jump operation in (10) so that it does not exclude exotic 4-spheres. The
simplest proposal is to take two 4-dimensional hemispheres of 5* and glue them by the

jump operator f : R‘él — R%Z such that g](},,) is the 4-metric on one open hemisphere in

VB and gﬁ,) on the other in V52 where f : R‘él — R‘éz and f : By — B is the jump or
gluing operator.
f g;(}l,)dx;‘dx” — gﬁ)dx"dx’/ . (11)

on R‘é in VB1 on R% in VB2
1 >

The above formula can have the smooth S* limit in V. This follows from the internal
construction of V8 in V and, from the other side, the canonical embedding V — VB so
that V < VB < V (see Theorem 1). From this it follows that the V-limit of f in (11)
is f : R* — R* which in the smooth limit should give rise to a gluing diffeomorphism
R* — R*. The following immediately follows.

Lemma 8. The smooth V-limit of (11) cannot be any smooth exotic S*.

The reason for this is that any such gluing by diffeomorphisms of R* has to be factor-
ized through the gluing of S3, which is a diffeomorphism of S3. If there were nontrivial
classes of these diffeomorphisms, then exotic S* would result. However, the Cerf result
discussed before forbids this possibility. This closes the proof of Lemma 8.

In general, given a smooth manifold M" in V with a smooth atlas U/ = {U; ~ R", f;; :
R" — R",i,j =1,2,...} there corresponds a generalized atlas U* = {U; ~ R’éi, ﬁj : R%i —
R%j/ i,j =1,2,...}. Conversely, we call the manifold (M",U) in V a smooth V-limit of
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the generalized manifold (M",U*). Switching between a generalized manifold and the
corresponding manifold in V, thus taking the V' limit, is based on Theorem 1.

To allow for exotic S* and gravitational instantons in dimension 4, we should further
modify (11). Observe that the standard S* can be characterized as such a smooth 4-manifold
$* homeomorphic to S* such that every smooth atlas I of 5 is incompatible as a smooth
atlas with the 2-element good atlas U/, as in (11). This means that indeed $* would not be
diffeomorphic with the standard S*. Gluing just two standard open hemispheres as in (11)
results in the standard smooth S* and also if there is a smooth open cover I/ of $* smoothly
equivalent to Uy, then $* would have to be the standard one. The compatibility of atlases
or smooth covers we understand as in the maximal smooth atlas for a manifold M", which
is the smoothness structure of M".

Lemma 9. Let I be a smooth, good open atlas of S*. If there does not exist any U such that |U| = 2,
then S* has to be exotic S*.

Remark 16. It can be stated equivalently as: if a maximal smooth atlas on S* is not compatible
with any two-element good cover of it, then S* has to be exotic.

Now, the modification of (11) is obvious. Let U* = {U; ~ R‘él_, fl-]- : R%i — R%j,
i,j =1,2,...} be a generalized cover of §* with the jump operators {f;;}. Let a V-smooth
limit of U* be U = {U; ~ R4,ﬂj R* = RYi,j=1,2,...}and U* = {U;,i = 1,2,...}, then

Corollary 7. If smooth V-limit of U* exists as a smooth manifold (S*,U) in V and if

*
Vi an open cover of S* U ‘ > 2

then S* has to be an exotic smooth 4-sphere.

We have a simple criterion for detecting exotic S*, but it has serious drawbacks. Up to
now, no single cover of $* has been detected as being unable to be reduced to a 2-element
standard one. Even more, no one knows whether such covers exist at all (e.g., ref. [21]).
On the other hand, if they exist and are not reducible to the 2-element standard cover,
we should check the property for any such good cover. The criterion is a theoretical tool.
Nevertheless, it can be useful in understanding quantum-classical regimes. In the following,
we apply the criterion to distinguish the alleged exotic S* in the 4-dimensional semiclassical
Euclidean QG.

- [QM,, ()] We call a manifold M" locally QM-supported of degree ¥ when for each
open U of M" and for the local scalar curvature x, < x at p € M", it contains among
its local charts {Ul, U,, U3} such that U; ~ R4, p € Uy NUs, and Uy, U3, are smooth V-
limits of R%l, R%Z in VB1, VB2 correspondingly, and for Kp > & the charts {Uy, Uy, U3}
are {R?, R%l, R‘éz} correspondingly, where By, By are two maximal incompatible local
contexts in L (different maximal local Boolean algebras of projections).

- [fQM,(x)] We call a manifold M" faithfully locally QM-supported of degree « if it
is locally QM-supported of degree x and different R‘éj lead to different {U;} in the
smooth V-limit in every open cover of M".

- [QM(x)] We call a spacetime manifold M" completely QM-fragmented of degree « if it
is faithfully locally QM-supported of degree x and for each p € M" k), > «.

Remark 17. The conditions may seem artificial; however, the fragmentation of spacetime for x > K

is performed such that a patch, say U, C S* is thrown into (at least) two pieces since we require

there should exist R} and R} nontrivially related by certain automorphism of B. The relation
! ]
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R* — R} is always trivial as is R* — R‘él_ — R*. Without any nontrivial phase between R‘él_ and
R%j, the patches can be reglued identically (see Appendix A for the explanation of this important
point) and are not the separated fragments of spacetime. That is why we are taking in QM,,(x) and
fQOM,, (k) the three fragments as the minimal number of them.

Theorem 4. If exotic S*s exist, then the smooth V-limit of a completely QM-fragmented 4-sphere
is exotic S*, and the spheres are gravitational instantons in dimension 4 (as gravitational solutions
of Euclidean GR).

If exotic S*s do not exist, then the smooth V-limit is not any smooth manifold, and it is a pair
of families ({R}L}, {fij R} — R}L}) in V where f;; are diffeomorphisms.

Proof. First we need to show that the smooth V-limit of QM(x) S* is a pair of families
({]R;l}, {fij}) as in the theorem. However, this follows directly from the definition of a
smooth V limit and the discussion of it given in Appendix A. More precisely, the frag-
mentation of $* in V is performed, and the family of R%I_s in VBis with some new relative
phases coming from Aut(B) is added. These new nontrivial phases lead to the noniden-
tity diffeomorphisms emerging in the V-limit (see Appendix A). The resulting families of
({R3}, {fr j}in V can still be a smooth cover of the initial smooth S* or can be a smooth
cover of another smooth manifold $* in V. The conditions in the theorem indicate an
exotic S* (if there exists any) as 5* since the condition for the completely QM-fragmented
4-sphere assumes that there is a certain level ¥ on which it holds true; hence, [QM(x)]
holds true, ¥ > 0. This fulfills the condition for Corollary 7 to be true. The nonsmooth
(nonexotic) case is given by the construction stage in which the automorphisms of B result
in diffeomorphisms f;; in the limit, but no smooth S* supports this. This finishes the proof
of Theorem 4. O

In general, we have two cases; in one, there exists a smooth manifold in V as a smooth
limit of QM(x) S* and in the second, the limit is not a smooth manifold, even though each
R%i gives rise to the smooth copy of R* (see Appendix A). In condition QM,, () above, we
have directly referred to the minimal number of local patches in any smooth atlas. This
can be better understood by considering R* ~ $*\ {pt.} ~ $*\ D* and requiring that
there be at least two incompatible local patches in any smooth atlas of R*. Incompatible
patches mean that one is the smooth V-limit of R‘él and the other R%z where By, B, are
two maximal Boolean algebras of projections from LL(H) containing different projections
(irreducible to the single one, thus incompatible). Thus, such a smooth R* interprets the
QM incompatible patches cannot be the standard smooth R* since its maximal smooth atlas
(the smoothness structure) is not compatible with any one-patch standard cover. Currently,
mathematicians recognized two families of continuum infinitely many exotic smooth Ris,
large R%s, and small R*s [22]. Large are distinguished by the property that they are not
embeddable smoothly into the standard R#, while small can all be embedded in R*. Now,
if the exotic R* obtained here were any large or small known exotic R*s, then adding a
point in infinity gives the standard S4[22].

Lemma 10 ([22]). The one-point compactification of any large or small exotic R* is the standard
smooth S*.

It follows that if exotic $* exists, then removing a point leads to exotic R*, which is

not any known existing exotic R%. In particular, there would exist an exotic D* ~ $4\ D%
such that D* ~ R* is not compatible with a smooth D* with a single element atlas. Thus,
requiring both, D* has at least two elements in each smooth atlas (i.e., the atlas compatible



Universe 2025, 11, 126

20 of 35

with the maximal smooth atlas) or S% has at least three elements in every smooth atlas,
leads to the same conclusion that such $* has to be exotic.

Remark 18. The approach favors the existence of exotic S*s, in which case gravitational instantons
are naturally represented. If such S*s do not exist, the smooth V-limits were not any smooth
manifold, which indicates on singular nonsmooth description that could have been experimentally
distinguished from the smooth case.

Consider an operator F : (54,1/{54) — {]R;L flat,i = 1,2,...} where U = {U;,i =
1,2,...} is a smooth good cover of $* with U; ~ R* flat,i = 1,2,... and F is a kind of
forgetful operator that completely erases the curvature of S*. Thus, gluing diffeomorphisms
fij - inU; — U;NUjon S* are incompatible with the flat R* system, which supports a
flat merely global R*.

4.3. Heisenberg Uncertainty and the Fragmentation of S*

We have found a general criterion ensuring that the smooth S* reglued from the local
R% patches is exotic or not (Lemma 9, Remark 16, Corollary 7). However, it appears that
something is missing to ensure that the fragmentation of S* due to the high curvature and
density of energy leads to more than two pieces rather than just two. The intuition from
physics where the disintegration of spherical bodies due to the growing internal pressure
in real experiments most probably leads to such many fragments cannot be applied directly
here, i.e., it could be, but it is not enough. This important feature has a more fundamental
explanation which is already indirectly present in the previous sections. The traces of
the behavior of spacetime in the extreme gravitational fields can already be seen in the
Heisenberg uncertainty relation (HU), which needs infinite-dimensional Hilbert spaces.
For the position £ and momentum p operators, HU states

>

(%, ply = ihyp, Y € H; orin terms of the standard deviations oy -0} > 5
where x, p are three-dimensional objects (3-component vectors). Including ¢-E uncertainty,
it can be written down in 4-vector notation and the Minkowski metric as

ot o, > géﬁ,y,v €{0,1,2,3}, 0y, = (t,x),00 = (E, p).

Now let us consider growing the curvature of a 4-sphere due to the growing of the gravita-
tional energy density and reaching the Planck scale (both with size and energy) with the
resulting disintegration. There are two factors governing this process: one is the classical
growth of the gravitational density of energy, and the second is the quantum uncertainty
relation. The classical indicates, in particular that to measure the position of a form of
matter trapped in the smaller and smaller sphere requires bigger and bigger energy, i.e.,
the infiltrating waves have to have very short lengths. QM places a limit on momenta,
which makes them highly undetermined, according to HU. We propose to go a step further
and consider the HU as an indication that position space and momentum space become
fundamentally independent in the Planck regime. The recipe is given in Lemma 7 (see also
Corollary 6 and Remark 15):

[FOLIATION] In the singular regime of spacetime (the Planck regime), S*is
fragmented into fragments which become foliated farther into R*, TR* as local
leaves. Still, the leaves remain connected by the QM Fourier transform of the
operators Q and P.
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Let us assume that the 4-sphere is (in the Planck regime) represented by just two
fragments—local flat R*s—with additional Aut V? carrying the gravitational energy. Ac-
cording to FOLIATION above, the fragment R* of S* is further foliated into the pair
(R4, TR4) which for the flat standard case is isometric to (R4, ]R4). Thus, we conclude

The minimal number of local patches of any fragmented 4-sphere is never smaller than 3.

The fragments of spacetime lose their causal connections and become separated but
can still be described by different QM contexts (such as Q and P operator contexts). The
proper perspective on such fragmented spacetime is thus the product of QM contexts
[ 1. {context in #(®)}, which in the classical V-limit gives rise to

[ [{context in 7—[(°°)}Ba — 1 Us, VAimit [ up where Up, = R‘éﬁ in VB and Ug ~ R*in V
p

p

and these last local patches describe the smooth spacetime manifold locally.

4.4. Gravitons and Smooth 4-Spheres

From the point of view of topology, 4-spheres naturally represent the universal
medium connecting any topological manifold M* and N*. This is expressed in the following
homeomorphism [23] (Lemma 2.1)

M*kS* ~ N*#1S*, k1 € N
of which the special generic case is
M*S* ~ M*,

Here # is the connected sum of two manifolds. Reading from right to left, this means the
possibility of creating a 4-sphere from M* but following the opposite direction, i.e., the
absorption of S* by M*. This suggests that the interchanging 4-spheres might be a carrier
for some interactions. In fact, the formalism developed in this paper indicates that smooth
4-spheres might indeed be the geometric counterpart of gravitons in QG.

The above relations are extended over smooth cases, and if exotic S*s exist, there
would be essentially new phenomena. Let us again consider the fragmentation of S* as
emerging from spacetime. If the final stage of the fragmentation were a family of flat R* s,
the curvature, and hence the density of gravitational energy, would disappear. However,
given the family Vs of ZFC models and the corresponding family of objects, R%s the
relative phases from AutB between the models VBs can carry the energy loss. That is why
we propose that gravitons (the regime of the fragmented spacetime is certainly outside
of GR) are responsible for the deficit of gravitational density. Preserving the energy is
not just a classical phenomenon; it is extended over the quantum regime, as is also the
case with the preservation of angular momentum. So far, our model allows for partial
fragmentation of spacetime and then the total fragmentation of S* at the Planckian regime
of densities. This fragmentation is due to the emission of gravitons. The inverse process
of retrieving smooth S*s from flat R* pieces is due to the absorption of (a certain number)
of gravitons. A simple setting like that is possible due to the simultaneous extension
of GR and QM, as presented in the previous sections. A graviton corresponds to the
collection {h,} C AutB. Based on Lemma Al in Appendix A, we can build the example
illustrating a simple (linear approximation of the) spectrum of gravitons in terms of the
relative jumps in the scalar curvature of S¢. Therefore, there is a family {S#,r € R}
of standard S* with radii r and S%l o~ 532 are diffeomorphic for any ry, 7, > 0 and f;, :

Sfl \D} — Sy, \Di‘}2 are the induced diffeomorphisms of R, i.e., f,,, € Diff R Let
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GP(A) = {e"*De A € AutB,t € R.} be a family of gravitons given by the 1-parameter
family of automorphisms of B (see (A4)). Let us take k = v/12/12 = % and assume that
A, D do not commute, [A, D] # 0. Then it should hold.

R‘If,, fork =k

R}, fork > k'

so that GP (A)(R}) = R,

GP(A)(Ry,) =

Here R} C S¢ so that they both have the same constant scalar curvature. Analogous
actions in 4-spheres read

GP(A)(S}) = S}, fork =k and GP (A)(S) = S}, fork > K.

This example also shows what the connection of geometry with the quantum gravity
regime might be like. However, the example is a kind of ‘first-order linear approximation” of
the graviton interaction with geometry with the observed scalar curvature: the graviton can
change the scalar curvature of R* (5%) globally, leading to new constant scalar curvatures.
As we will see shortly, working with the constant scalar curvatures can be considered to
be a certain approximation to the full-fledged description of interacting gravitons. This is
analogous to a tree approximation in the terminology of quantum field theory.

In order to understand a fully fledged description of gravitons in this setup, we have
some tools which we have already dealt with. These are basically the appearance of exotic
S*s as in Theorem 4 and the discussion of exotic S*s as gravitational instantons in Euclidean
QG. Certainly, provided that such spheres exist at all. If they do not, we are left with
the hybridized presentation of instantons as containing the diffeomorphic local patches
to R* and transition functions which cannot be fully translated into a smooth structure
on a 4-manifold (like S*) in V. Thus, in this case, an irreducible automorphism of B has
to be present, which would correspond to a graviton. In this way, a graviton would be
related to a gravitational instanton and a certain automorphism of B. However, there is yet
another role assigned to gravitons in this setup. They represent the Fourier transform of
the observables (self-adjoint operators) on H(*) a separable, complex, infinite-dimensional
Hilbert space, i.e., they represent the change in the quantum local context in H(®). The
Lemma 11 below explains this.

Let [A,D] # 0 where A, D are self-adjoint operators on H(®), and let B4, Bp are
two measure algebras of projections with spectral resolutions of A and B correspondingly.
Recall that we say then that A € B4 and D € Bp. Since By, Bp are complete maximal
Boolean algebras of projections, they comprise all commuting with A and all commuting
with D self-adjoint operators (Lemma 3). Then, given a transform: hap : B4 — Bp, we
have the corresponding transform on the commuting algebras of the operators in B4 and
Bp. Let us denote it 14 (D).

Lemma 11. Let [A, D] # 0 where A, D are self-adjoint operators on H(®). There exists h 4 (t, D)
which for each t € R defines the isomorphic transform of the algebra of operators commuting with
A onto the algebra of operators commuting with D. The operator A’ is a certain self-adjoint operator
in BA/-

This lemma follows directly from the proof of Theorem 2, which is rephrased here.
Let us turn to Lemma 3, which shows that any family of self-adjoint commuting operators
{A,E‘l)} is such that ELXAE) = A and that the family determines an algebra BEl) comprising

all projections that appear in the spectral families of all A,g(l). Let By be a complete maximal
/

Boolean algebra of projections in I(#(®)) that extends B (1)- Similarly, let {Al(gz)} be such
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that it contains D and determines B22) that extends to By in IL(#(®)). Please note that B, is
an isomorphic copy of the previous maximal complete Boolean algebra B; (see Lemma 6
and Corollary 5). Now, it follows that the self-adjoint operator spaces, determined by
such isomorphic algebras of projections, are isomorphic. In fact, there exists a self-adjoint
operator A’ € By, such that

A(D') = A D'e "4 D' € Bpand A’ € By and A(D') € By.

This should be read that while D’ spans the operators from Bp and for fixed A’ € B, this
spanning generates the operators A(D’) from B4. The change in the parameter t € R
gives rise to the automorphisms of the operator algebra of the operators from B,4. Thus,
A(D) = hy(t,D) is the family of the isomorphisms as in the statement of the lemma,
which finishes the proof of Lemma 11.

Finally, we turn to yet another property of gravitons, namely to the construction which
disturbs 4-metrics

Suv = 821/ + hyw

where g?w is the undisturbed metric and h,,, the disturbance due to gravitons. This is quite
important, at least in the semiclassical limit of the theory, since gravitons should correspond
to the particles of spin 2. The approach developed here deals with the absorption of
gravitons by the 4-spacetime region in the 4-disk D* (open but involved in the bounded
domain), and if it is flat, it results in the curving of this disk. Eventually, subsequent
absorption of gravitons curves the disk into extremely high values, which leads to its
fragmentation. The fragmentation of the disk into (at least) two subdomains with the
relative phase from the Aut B (see the previous sections and Appendix A). These fragments,
together with the additional fragment of spacetime, constitute S*. Thus, equivalently, we
see this process as fragmentation of the 4-sphere such that the nontrivial phase corresponds
to a graviton. If the graviton, i.e., Gp(A,t), would be emitted by this system, this leads
to the inverse process of gluing the local patches back into S*. However, gluing cannot
result in the standard smooth S* (see Theorem 4). If there exist exotic S*s, they are perfect
candidates for being the final stage of fragmentation and then re-gluing. Therefore, assume
that exotic S*s exist. Then, they correspond to the gravitational instantons in dimension
4 and describe the dominant part of the contribution in the semiclassical gravitational
Euclidean path integral (see the discussion of (9)). Now, the initial open 4-disk, after re-
gluing it into spacetime, has to be exotic R*-this is the interior of the (still hypothetic) 4-disk
embedded into spacetime.

Thus, the interaction of 4-spacetime with gravitons leads, in the smooth V' limit
(semiclassical approximation), to disturbing the smooth metric of spacetime by
the metrics of nested 4-disks, provided that exotic S*s exist.

Remark 19. Again, we should emphasize that the existence of exotic 4-disks is equivalent to the
existence of exotic 4-spheres, and the exotic R%s included in such disks, or S*s, are completely
different (unknown so far) than any known exotic R*s (see ref. [22] and Lemma 10).

The important feature emerges (still provided that exotic S¥s do exist). The disturbed
metric cannot be eliminated by any local diffeomorphism connected to identity. The exotic
S% is not diffeomorphic to the standard 4-sphere, but also the disturbed exotic R* C Sg
cannot become the standard R* by any local diffeomorphism.

The interactions of gravitons with spacetime in the classical limit result in the
change in the smoothness structure of the local 4-domain in spacetime (the interior
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of the exotic disk). This modified smoothness of spacetime cannot be removed by
any local diffeomorphism of spacetime.

Our concept of a graviton is a multifaceted object. Its interaction with spacetime, and
probably the matter content of it, remains the specific imprint in the local smoothness
structure of spacetime. The fluctuation of metric due to this is the source of gravitational
waves. As we commented above, the gluing process of the fragments of S* is due to the
emission of graviton carrying the nontrivial automorphism of B.

Before we take a closer look into interactions with the presence of gravitons, let us
discuss the basic property of exotic spheres in higher than 4 dimensions, which, however,
is not known whether it holds for S* (even supposing the existence of exotic S*). This
is the crucial fact that given an exotic sphere, S",n > 6, there always exists the inverse
exotic sphere, S (in the same dimension) such that S/#5" ~ S" where the last n-sphere
is the standard smooth sphere. This is necessary if we want to consider exotic spheres as
gravitational instantons (cluster decomposition; see (9) and the discussion around it, and
ref. [19]).

However, even though exotic S*s may not exist, the construction via Boolean models
of ZFC ensures that smooth V-limit is given by a hybridized collection of R%’X and nontrivial
automorphisms of VB. Consider a situation where we have just one fij € AutB. Since
Aut B is a group, and there exists an inverse automorphism fijfl that ensures that this
smooth hybridized limit V has the property required for instantons. Whatever the family
of automorphisms in the smooth V-limit is, there always exists the corresponding family
of inverse automorphisms. If exotic S* exists, the smooth V limit of fragmented 4-sphere
would be one of the exotic S*. These two cases are addressed in Theorem 4 in the previous
section. If it happens, then it is still possible that exotic S*s do exist, but the instanton
property would not hold since $* = (S#) ! does not exist. Also, in this case, the hybridized
smooth V-limit can stop just before reaching exotic smooth S*, and such truncated prelimits
always have inverse counterparts.

In the remaining part of this section, we are assuming that exotic S*s exist and they
have the instanton’s inverse property. Let us analyze a way in which gravitons could
interact with spacetime and instantons (which are exotic 4-spheres). So far, we were
approaching gravitons in the classical limit as exotic S*s (or hybridized versions of it),
which come from smooth V-limit of fragmented S* and 4-spacetime. We think that a
more accurate geometric representation for gravitons would be exotic disks (open) sitting
in S¥s: D ~ R* C S which reflects the fact that D U {pt.} ~ Si. Please note that
none of the known exotic R* could be such (interior) of the exotic D* (see Lemma 10 and
Remark 19). Figure 1 shows how the interactions of gravitons and the local geometry of
spacetime could be like in the presence of gravitational instantons. In Figure 1a, there
is a simplified representation of spacetime manifold M* and the standard S*, which are
represented by the disconnected sum of both. However, their fragmentation is performed
due to the super-high density of gravitational energy and curvature. The fragments do
not just independently exist in some abstract space—they acquire the relative phases in
Aut B such that after taking the smooth V-limit of S* becomes exotic S*. Further gluing is
the connected sum of this exotic S* and M*. The seed for the exoticness of S* lies in the
exotic 4-disk. In the figure, this is represented by the rectangle area in a) engulfing two
standard disks. Since they have a relatively nontrivial phase, their smooth V-limit results
in exotic 4-disk as being a part of exotic S%, as in Figure 1b. Finally, in Figure 1c, there is
the connected sum of the exotic §* (an instanton) and M*. The role of the exotic disk is
emphasized since this represents a graviton. We can briefly summarize by saying that the
connected sum of spacetime and an instanton is by interchanging a graviton. This exotic
connected sum is possible but can also not be formed. Possibly a kind of equilibrium should
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be there between instantons forming the connected sum and separated. If the instanton
remains separated off spacetime, then from the point of view of a spacetime observer, the
effects of instantons are not detectable, and the only their contribution would be to the
physical gravitational Euclidean path integral (9). This corresponds to the left-hand side of
Figure 1b). The exotic connected sum is in Figure 1c). Thus, taking the disconnected sum of
M* and S* (the standard one) as M*] ] S* we can represent the process in Figure 1 as
MATTs* % MY, 45t or MA]]S*+G — MY, #S*

4
eloc eloc

4
eloc

manifold with locally embedded the interior of an exotic 4-disk. While the process termi-

where +G means just the presence and the absorption of graviton and M, _is a spacetime
nated on the disconnected instanton, S, leaves M* with a hole after removing the disk. The
boundary of it is a non-traversable boundary of spacetime, i.e., a singularity.

The possibility of approaching a graviton G in our approach by metric fluctuations
in local coordinates builds a link between G and spin-2 fields and thus partially justifies
the appearance of such G in the quantum regime of gravity. Let gﬁi be one of the smooth
standard metrics on S*. Then, in the local coordinates, we can express the fluctuation of the
metric due to the presence of a graviton since any graviton is represented by an alleged
so far exotic disk D* such that its interior is an exotic R* (still alleged), which 1-point

4
compactification would lead to exotic S* (if there exist D* or R* as above). Let g}sﬁ,(x) be a
smooth exotic metric on exotic S# in the local coordinates on S%. From the point of view of

the standard smoothness on S*, the metric g”i%(x) is a continuous function on S* although
in the exotic smooth structure on S it is a (exotic) smooth function. Assuming that a
graviton G interacts as geometric objects with the standard S* say S* absorbs G, we can
find the resulting geometry as exotic Si. Thus, the direct coordinate representation of G as
the fluctuation Hy,, of the metric would follow

G (0)% (x) = g5y + Huw (x) (12)

where the fluctuation Hy,, is a continuous function on S%. In this way, any matter or energy
field can interact with gravitons via the background metric on spacetime.

Now, we can address the universality of graviton, i.e., its ability to interact with any
energy or matter. The description follows the classical and quantum regimes. Let ¢¥ be
some physical field in spacetime. We do not precisely specify its spin or nature; it is just
defined on a region of 4-spacetime. ¢p¥ couples to the metric g, in the usual way, such as
lowering or lifting the indices also in curved spacetime. Let us assume that the spacetime is
Euclidean. Then the interaction of graviton Hy, with ¢¥ is by disturbing the base metric of
spacetime according to (12) so thus after the interaction, the field ¢ is written down in the
modified exotic metric. More precisely, there exists a bounded 4-domain containing a 4-disk
D* on which the field ¢¥(x) is defined, x € R* C D*. After the interaction with graviton,
the disk becomes smooth exotic D#, and the field is written down on exotic R* C D%.

This may seem like a model for a classical interaction of the graviton with a particle;
however, the crucial factor is the exotic smoothness carried by the graviton and the resulting
exotic smoothness of the interaction domain of spacetime. Such a change in the smoothness
structure is forbidden within GR since it is like changing the spacetime manifold to another
nondiffeomorphic with the first. To understand that it is a quantum process, let us turn
to the model of gravitational instanton as the tunneling process. In this approach, the
geometry of an instanton is represented by an exotic 4-sphere, which results from the
interaction of the standard open 4-disk with the exotic one (the graviton, see Figure 1); thus,
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the resulting instanton corresponds to the tunneling process between the two drastically
different 4-geometries, exotic and the standard one.

The field Hy, (x) in (12) is continuous (nonsmooth) in the exotic smoothness structure
or is continuous in the standard smoothness structure of the field. The exotic structure
is localized on the disk, which can be taken of the Planck size, and such disks can be
localized smoothly in the spacetime manifold. The resulting fluctuations of the metric that
are outside of GR have quantum gravitational origins, which might also have cosmological
implications. If exotic 4-spheres do not exist, the fluctuations cannot be seen as smooth
processes and this would have a more abrupt action on spacetime structure. One might be
tempted to try to experimentally distinguish between these two scenarios, one supporting
the existence of exotic S*s and the other denying their existence. However, then such
verification would be an indication of whether (if yes) Nature is referring to exotic S*s
even before finding their mathematical proof. As we have already noted, the change in the
smoothness on R* or S* cannot be described within GR, and thus, the semiclassical gravity
with instantons seems more appropriate. However, the semiclassical approach here is the
smooth V limit of a deeper QM-based description (see Appendix A).

G
Y
exotic D
) ’ O )
O !
Instanton S* Instanton gt
b)

singularity

Figure 1. A schema for the interaction of a graviton with the local geometry of spacetime. (a) The
interaction of a graviton (with suitable energy) with spacetime enables the separation of the standard
fragment of S*, which after absorption of the graviton (gluing the exotic open 4-disk) becomes exotic
S*—an instanton. Exotic 4-disk is present in the middle rectangular domain and represents a graviton.
The minimal number, i.e., 2, of local patches of D*s is schematically shown. The graviton (exotic
open 4-disk) is glued into the remaining part of the standard S*, which gains the exotic smoothness
structure on S*. (b) While the instanton S* emerges, the spacetime regions gains a non-traversable
border—the singularity is formed. (c) The instanton is glued to spacetime, giving rise to the exotic
4-region, which corresponds to the quantum gravitational fluctuations.

5. The Negation of the Tsirelson’s Conjecture and VBs in QM

In the first part of the paper, we have found a strong relation between QM and GR
based on models of ZFC, especially Boolean-valued models VE. However, the picture
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of retrieving the 2-valued level from V? is far from complete. In the case of nonatomic
Boolean algebras such as B (the measure algebra), the way to a 2-valued model from V53
goes through the nontrivial forcing procedure. This particular passage is represented by
f+in Appendix A (A1), (A2), (A5), (A6)). Forcing is a purely set-theory technique but
also a tool for distinguishing finite- and infinite-dimensional Hilbert spaces. For finite-
dimensional #H the forcing would be trivial, i.e., nothing essentially new is added in the
extended model M[G]| since M[G] ~ M where M is the base model (which can be V as
well). This is so because the maximal Boolean algebras of the projections are atomic for
dim(H) < co. In the approach to QM presented here on the co-dimensional H(*), the
model we started with is V and the maximal complete Boolean algebra of projections B is
the atomless measure algebra, so thus the forcing V[G] ~ VB/UIt is the random forcing
which is nontrivial (for (®)). This last means that certain sets, not present in V, are added
to V as new ones (this is in the sense that these new sets extend the universe V with the
Boolean value 1). In ref. [9], we studied the problem of whether these new sets might
be physical in the context of QM for infinite-dimensional Hilbert spaces. We found there
(see also refs. [24,25]) that these new sets could carry a new kind of quantum random
behavior, and forcing procedure is strongly connected with the negation of Tsirelson’s
conjecture, =TC, the negation of which has been recently proved to be true in QM on H(*).
Currently, we know that =TC can hold only for infinite-dimensional Hilbert spaces: for
any finite-dimensional spaces and their factorizations, TC is true, and —TC is false.

Remark 20. Forcing in set theory is a procedure for proving the dependence or independence of
certain sentences or formulas in the ZF language from the axioms of ZF or ZFC. The proofs are
usually relative in the sense that given a model M of ZF(C) and a property ¢ (¢ is a sentence in
the first-order language of ZF) and finding the validity of ¢ in M, M & ¢. Then, one builds the
extended model M[G] where the property does not hold, M[G] I/ ¢. Since both M and M|G] are
models of ZFC (all theorems of ZFC are valid in both models), the property ¢ is not provable in
ZEC but rather ¢ is logically independent on the axioms of ZFC (¢ and —¢ both are compatible
with ZFC or ZF). This forcing procedure was invented by Paul Cohen in 1963 when he showed
the independence of the continuum hypothesis on the ZFC axioms and the axiom of choice on ZF
axioms. Cohen, in particular, builds a forcing extension M[G| of a certain countable transitive
model (CTM) of ZFC, M, such that M+ CH and M[G] I/ CH. Owver the years, forcing techniques
have been developed significantly and become a separate branch of mathematics with a huge number
of applications in many mathematical disciplines.

The application of forcing to physics, especially to QM, is based on genericity, which is
complementary to logical independence. Let M[G] be a certain forcing extension of a model
M. Genericity can be seen as the real or physical process of the extension of the universes of
sets by generic sets or ultrafilters G with the property that G ¢ M but G € M|G]. Forcing
represents a natural mechanism for the changes in ZFC models, the dynamics of which can
be included in physical theories. Usually, there are very rich families of sets not in M which
are ‘added by forcing’ and appear in the extended model M[G| along with G (like a perfect
tree with many reals added into M[G] alone with a single Cohen real). However, there is an
obvious difficulty with adding new sets to V: the universe V contains ‘all’ sets, so adding
a set G to V which was not previously in V, seems pointless, as seems V C V|[G]. The
problem has a solution that is based on Boolean-valued models V? construed entirely in V,
and the extensions of V are now possible with Boolean value 1. The appearance of V5s in
V explains the gravitational fluctuations in spacetime in the present paper but also allows
the building of random sequences of the QM outcomes, which show different behavior
(correlations) for the product case H, x H; than for the nonproduct case #(*) . Thus, the
correlations generated by the sequences falsify Tsirelson’s conjecture [9].
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Remark 21. Tsirelson’s problem was originally a conjecture (TC) that the sets of finitely many

correlations of independent measurements of commuting observables on a Hilbert space H of a

quantum system are always reproducible by the topologically complemented set of all finitely many
independent measurements on the joint system with the product Hilbert space H, X Hy. This
conjecture has been shown to be false [24], i.e., the product case does not reproduce all correlations

which can appear on the entire, necessarily infinite-dimensional, Hilbert space H(%). Tsirelson’s

conjecture is known to be equivalent to the Connes embedding problem for operator algebras, already
stated in 1976 by Alain Connes [26,27].

A.

Sequences that falsify TC have been ‘detected’ in theory by V® random forcing. Now,
forcing emerges in the context of the quantum approach to gravity and spacetime (e.g.,
Equation (A6) presented here and Appendix A). We think that this is not just a pure
coincidence but rather an important feature of the relationship between QM and GR.
—TC shows that there is a vast QM domain, connected with infinite dimension of the
Hilbert spaces H*, which presumably is not well-explored, both theoretically and,
certainly, experimentally. =TC holds true necessarily only on infinite-dimensional
Hilbert spaces, which is out of reach of the current experimental effort. The situation
resembles this known from the attempt to detect directly the infinite dimension of
H(*) in finitely many correlations in any quantum experiment. Although theoretically,
this has been shown to be possible, the experiments showing this are currently not
known [28]. Therefore, the infinite dimensions of H opens a rich new realm for QM
studies, but it has to await any experimental verification. Nevertheless, researchers
have all the right to develop theoretical scenarios regarding that matter at least in
order to understand its importance.

However, another important aspect of infinity in QM is the way how we construct
infinite tensor products (ITP) of Hilbert spaces or operators. This is certainly a way
to infinite-dimensional Hilbert spaces, and this belongs to ‘classical’, i.e., developed
already by John von Neumann, the domain of QM [29]. Currently, we know many
different ITPs that can also lead to separable (%) instead of nonseparable as construed
by Von Neumann himself. Also, in proving =TC we have construed certain separable
H () by the use of Boolean models technique [9].

Connected to this is the characterization of the generic sequences of QM outcomes
used to prove —TC from the point of view of quantum randomness. It appeared
that the sequences carry enhanced randomness compared to the known from the
theory of algorithmic randomness notions of 1,2, ..., 1, .. .- or w-randomness. This
new strong kind of randomness is hypothesized to be an upper limit for quantum
computers generating random numbers, similarly as the true randomness becomes
a limit for currently working classical computers, which generate quasi-random
numbers and sequences.

When studying the relation of GR and QM, it is a natural approach to deal with
increasing the number of degrees of freedom in QM or the number of particles such
that in the limit, quantum field theory becomes closer. In the approach presented
here and in the context of =TC, we should again readdress the procedure of attaining
infinities from QM, and the indication could be the constructions of ITPs or H.(*)
which were successfully applied in the TC problem. Therefore, the V2s technique and
the relation to V would be an indication of how to proceed.

The points A-D above and the TC problem are not in the main line of issues of the

paper, and we do not elaborate on them in more detail; however, these topics naturally

correspond to the constructions here and show where the presented approach to QG might
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be situated. This also shows the relevance of future efforts in these directions for the QG
program. Let us close this section by the following hypothesis (see ref. [8]).

Experimental verification of hyper-randomness of the sequences negating the TC
can be as difficult as experimental observing effects due to QG.

Still, it does not mean it is impossible at all. As is often the case in the history of science,
breakthroughs and inventions can change the picture quite rapidly. Any progress in either
of the two fields, QG or hyper-randomness in QM, would improve our understanding of
the other. Anyway, we do not have a good understanding of QG, and we eagerly need
new ideas, even highly theoretical ones. The way in which infinitely many dimensions or
degrees of freedom are attained in (the extension of) QM is one such valuable indication,
which we have learned from the negation of TC.

6. Discussion

GR and QM are extremely successful physical theories in the domains of their appli-
cability. Any modification of each of them is thus highly constrained experimentally. On
the other side, there is a vast unexplored region of ‘infinite constructions’ in QM and thus
in GR. The notable examples are Tsirelson’s conjecture, recently disproved, the infinite
dimension of Hilbert spaces detected in a finite set of correlations [28] or the infinite tensor
products introduced already by Von Neumann [9,29,30]. All these instances of infinity
come from the heart of QM and, as we emphasized in this paper, show the way how to
extend QM by the set theory suitable for the quantum regime and GR by elements that
respect the equivalence principle in the extreme physical conditions where even spacetime
description is inapplicable any longer. The modified smooth spacetime manifold refers to
the exotic smoothness of $* (with the possibility not to be discovered at all, however) where
such exotic S* would represent gravitational instantons transcending the classical regime of
gravity. Thus, the paper shows a meeting point in between the extension of QM by certain
infinite constructions and GR on a new kind of smooth 4-manifolds. The extension of QM
refers to Turing’s incomputable infinite sequences (the negation of the Tsirelson problem
in QM), while the smooth manifolds (exotic 4-spheres) negate the 4-dimensional Poincare
conjecture. From the point of view of mathematics, this is not that surprising that the issue
of infinity in QM is addressed by set theory since one of the crucial reasons behind the
development of set theory was infinity, but this, which is truly surprising, is the existence of
a natural extension of QM formalism by (quantum) set theory. In the opinion of the authors
the formal possibility as above opens a narrow door toward the quantum regime of gravity.

Thus, in this work, we change the formal perspective from logical to quantum set-
theoretical, which uncovers the room for the Solovay ZFC randomness. This was essentially
performed in the previous publications, e.g., refs. [9,25] and referred to as the “ZFC twist”,
emphasizing the fact that the procedure is rather the change in the formal point of view
than the proper extension of QM. It is based on the following correspondences [9]

{logical local contexts of QM } <— {Boolean measure algebras, B}
{maximal algebras of commuting observables in QM} +— {Boolean measure algebras}
{set-theoretic local contexts of QM} <— {Boolean-valued models of ZFC, V?}

global set theory of QM «— universe of quantum sets V" (non-Boolean, non-Heyting)

where this last correspondence follows from the fact that B C L leads to VB C V, which is
a ZFC submodel of the quantum set-theory universe V. The second correspondence says
that for any family of commuting self-adjoint observables there always exists a maximal
Boolean algebra B of projections determining all the operators in the family, e.g., ref. [4].
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Thus, the set universe V! is approximated by the family {V?} of ZFC universes valued
by Boolean as local contexts. The ZFC randomness of infinite sequences of QM outcomes
is, in fact, formally present in the Born probability of a single measurement (see ref. [31]).
However, when the ZFC twist is performed and the dimension of H is infinite, a hyper-
random behavior emerges of certain QM infinite sequences, which are 1. non-reducible to
the n-Turing incomputable infinite sequences, n € N, and 2. they can distinguish TC from
—TC [9].

We show that the ZFC twist of QM enables the reconciliation of QM with the extension
of GR outside the limits of physical spacetime. Classical GR is deeply rooted in differential
geometry and topology, but the mathematics of GR can be applied to an arbitrary dimen-
sion n. Suppose, as is the returning theme in this work, that the negation of the smooth
Poincaré conjecture in dimension 4 holds true and exotic 4-spheres exist, then the extended
GR distinguishes exotic 4-spheres as special geometries compatible with the semiclassical
regime of Euclidean gravity. In particular, exotic 4-spheres carry the geometry of gravita-
tional instantons. Thus, the negation of the 4-dimensional smooth Poincaré conjecture and
the negation of the Tsirelson conjecture meet here in the physical dimension 4, shedding
new light on the relation of GR and QM.

There exists an approach in physics according to which exotic smoothness structures
on R* or S3 x R are responsible for various effects in cosmology, QM or quantum field
theory and particle physics (e.g., [32-36]) which has been elevated within the years into the
quite powerful and independent methods of physical explanation. However, such exotic
smoothness structures on R* are completely different from those discussed in this paper in
the context of exotic S*. First, these are dubious at the moment, whereas the previous ones
are already mathematical facts. Second, none of these former can appear as supporting any
exotic 4-sphere which was explained in the course of the paper in more detail.

One more ‘subtlety” of the formalism relates the step from Boolean many-valued
contexts to the 2-valued standard ones, which would correspond to VB — V. However, for
H () the resulting model is the extended 2-valued model V[G] 2 V. This has been referred
to frequently in this paper and corresponds to the nontrivial forcing extension of the models
(see the previous section for a more detailed presentation and ref. [9]). The problem of
genericity in QM touches the fundamental questions in set theory like the multiverse
vs. universe foundations for sets (this set-theory multiverse has nothing to do, but the
same name, with the multiverses considered in cosmology). If random QM sequences
distinguishing —TC from TC become experimentally verified realities, this, according to
the set-theory approach, would indicate that the multiverse approach prevails, or nature
has chosen the one at least for QM phenomena.

There are also some experimental challenges with respect to the methods in this paper.
One is the experimental discriminating TC and =TC. Another, connected with the first, is to
propose and perform experiments that support the ZFC genericity (e.g., ref. [9]). However,
even the experimental verification of the co dimension of Hilbert spaces, such as those
generated in the Fock space formalism or quantum harmonic oscillators, which can be seen
in the finite set of quantum correlations, is out of reach at present [28]. These topics are
also related to quantum computation techniques and building advanced quantum random
number generators certified by, e.g., ‘Solovay genericity’. One big theoretical challenge
is to understand infinite constructions present from the very beginning in quantum field
theories from a QM point of view in a proper way. One major unsolved mathematical
problem that awaits its resolution and is important for the analysis here is certainly the
smooth Poincaré conjecture and the existence of exotic S*s. The case that exotic S*s do not
exist is also addressed, but then the theory becomes not as canonical as with the presence
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of the exotic 4-spheres. We could say that the internal consistency of the approach here
favors the negation of the smooth 4-dimensional Poincaré conjecture.

The Lorentzian vs Euclidean signatures of the spacetime metrics should be commented
on. In the text, we have quite freely switched between the two non-equivalent cases. In
particular, exotic S* and exotic R* require Euclidean underlying metrics while physical
spacetime is the Lorentzian one. However, these are not totally independent or conflicting.
We consider the approach that the smoothness structure on a manifold is fundamental
data allowing for further analysis. Even though a 4-manifold representing spacetime is
Lorentzian, a topological manifold underlies it, and this can be considered to be exotic
smooth (e.g., R* or $%), and this deep layer of smoothness can sometimes have a physical
impact (e.g., gravitational instantons). A quite fundamental and important case of the
global existence of exotic metrics on open 4-manifolds that solve the Einstein equations has
been studied, among others, by Etesi, who also gave many physical insights [36] (see also
ref. [33]). Even though the exoticness we refer to in this paper is dubious R* supporting
exotic S%, one can expect that they can also be related to the Lorentzian physical case. If they
do not exist, the methods in the paper could serve as the departure for the experimental
discrimination of the two cases.

Anyway, the tremendous effort toward building QG theory and the inability so far
to achieve this goal become a good reason for exploring the QM and GR formalisms
from yet unexplored points of view. The collision of the infinite constructions in QM and
these from QFT may be nontrivial and not necessarily agree on the classes of their Turing
uncomputability. The road from QM to QFT contains more intricacies than usually can
be thought.
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Appendix A. Smooth V-Limit

In this section, we will explain the smooth V-limit, which has been used in many
arguments in the text. Given R} in the Boolean ZFC model V2, we would like R* with
its standard smoothness structure in the smooth V limit of R‘é. However, also conversely,
any local flat U, ~ R* in spacetime is derivable as a smooth V-limit of certain R%a. The
correspondence is complementary in the density of gravitational energy, or in the local
scalar curvature parameter x in spacetime, in the sense that there exist «g, &y € [0, o0) such
that U, ~ R* for x < xg and U, ~ R%:x for x > %p. It can happen that %) < x¢ so that there
is a nontrivial interval (%o, x9) where both descriptions are still valid and complementary.
For &y > xo there is a gap (ko, ko) with yet another description not specified explicitly
here, and the case &y = o represents the usual understanding of the hyper-Planck or
below-Planck regimes.

In general, it is straightforward to require that the smooth V limit of R} € V5 be
(isomorphic copy of) R* in V. However, allowing for different models V5 and the cor-
responding objects R% there is a problem of their intersections like R} N R%. The overlap
domain for the parameter «, (%, ko) allows switching between R* and R% and thus between
the descriptions based on V and based on VB. This possibility is fundamental in set theory,
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though often neglected by working globally in V or V8 or simply in ZFC. Therefore, the
point is to work locally with different universes of sets and to understand the eventual
impact of their interchanges from the V point of view. Of particular interest would be

Ve VB vy

and its impact on the smooth manifold model in V. On the overlapping U, N Upg =~ Uyp =~
R*NR*in V one can lift it to R}

R* - R} — R4 (A1)

It would seem that after neglecting the intermediate V? stage, one is left with the R* —
R*, which can be represented by a diffeomorphism in V or even identity. However, we
want to emphasize that when there is a ‘nontrivial’ action of the V? stage, the resulting
diffeomorphism is not an identity on the overlapping Rsin V.

Following Theorem 3 and the discussion below, we represent the highly curved 4-
spacetime regions ~ R* as (part of) 4-spheres with relation to Aut B. We want to interpret
(subgroups A of) Aut B in Diff R* through p : Aut B — Diff R* such that:

i. AutB> Idg < Id € DiffR%,i.e., p(Idg) = Id and p~*(Id) = Idp.
ii. p:.A— DiffR*is a homeomorphism.

So, p is an isomorphism of A on p(A) C DiffR*. Given h € A corresponds to the
diffeomorphism p (k) € Diff R* and conversely, given f € Diff R* there are the correspond-
ing p~1(f) € A. Any change in the maximal Boolean algebra of projections B, hB, by a
nontrivial automorphism / results in a nontrivial diffeomorphism f € Diff R%. So thus, we
interpret the nontrivial stage of (A1) as

0 1
Ré L L RicyB M, pieyaB I, e (A2)

which gives rise to the diagram

RfcVB — 4 Rt V4B

y f % lfi (A3)
R4 1d R4

o] R4

where fT is the interpretation of R as (the isomorphic copy of) R} in VB and f* the inverse
assignment of the (isomorphic copy of) R* to RﬁA( ;) 1N Vha(tD)B - £ is the lift of the
ZFC models V — VB and f! the reduction of V' to V resulting in nontrivial set-theory
random forcing.

When we apply the assignments ft to each member of a collection {R4a,¢x e I},
then the result is the collection {R%} in V together with a net of diffeomorphisms (gluing)
{ftxﬁ : Ry — R%}

If there exists a smooth 4-manifold, M*, such that ({R%}, { f, p}) is a smooth
cover of it, then we say that M* is the smooth V-limit of ({R} }, {fa : R —
R%ﬁ},zx,ﬁ eLA: VB VB,

In the special case (R* Id € DiffR*), it is the smooth V-limit of any
(R‘éa, Id € AutB). They are isomorphic copies of R* for different as.

One can also start with a smooth manifold M* in V and then interpret its local U >~ R*
in VB and consider relative phases, resulting from the automorphisms of B, between the
models V2. Finally, the phases give an interpretation as diffeomorphisms in V, and one
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can ask the question about the existence of a smooth manifold M* in V that supports such
locally modified collection of R} (initially it being a smooth cover of M*). If such a smooth
M* exists in V it is again called the smooth V-limit of the modified collection of R%a in the
family of models VB« (see ref. [25] for more details).

Now let A = {h(t,D) : t € R} be a 1-parameter family of automorphisms in Aut B
given by (see the proof of Theorem 2)

et De ™ e Royg (A4)

where D is a real in VB and A and ¢4De 4 are reals in V"4(tDP)B (the reals in VB cor-
responds uniquely to the commuting self-adjoint operators in B—see Lemma 4). Again,
any change in the maximal Boolean algebra of projections B by a nontrivial automor-
phism % 4 (t, D)B results in a nontrivial diffeomorphism f € Diff R*. The nontrivial stage
in (A1) reads
0 L

rRé S, R cyB"AUD) o yiaD)B S e (A5)

and the corresponding diagram follows

R ¢ B D) pa o yaD)B

y fiJ{ J{ Jid (A6)
R4 Id R4

(3] R4

Please note that if t = 0, then the stage V? acts trivially, and @ is the identity
diffeomorphism.
The above example is different from the initial general case, as it leads to a change in
4-manifolds S} rather than the change in coordinate local patches in a fixed manifold.
This correspondence can be paired with the 4-curvature of 4-spheres. Let {S%,7 € R~}

be a family of standard S*s with the radii r. Certainly S;Ll o~ Sﬂz are diffeomorphic for any

ri,12 > 0and frr, : S‘}l \ D;ll — sz \Di‘}2 are the induced diffeomorphisms of R%, ie.,
frir, € Diff R,

Lemma A1l. Any automorphism of B which is not identity results in a non-vanishing change in
the scalar curvature of R* C S*.

The proof of this lemma relies on the interpretation of the parameter f in (A4) as the
scalar curvature of S* and the construction of the proper families. Let 4 (t, D) = Id + a(t, D)
and a(t,D) = 0 for t = 0 so that 14(0,D) = Id (on the algebra B). Please note that
e04De~04 = [d(D) = D. Let t = r € R result in the family {S}}. However, the constant
scalar curvature of S is Sc st =12 /2. This completes the proof of Lemma A1 since R* C S}
has the same scalar curvature depending on ¢.

Appendix B. Proof of Theorem 1

The embeddings V 1 V' 2 V come from the construction of the Boolean-valued
models VB as classes in V for case 2, while for 1., from the natural isomorphic embedding
of V into VB. These two steps naturally lead to V C; VB C, V as classes, which has
been referred to frequently in the main text. Thus, the proof is to show that V/ = V5
has the desired properties of their embeddings as in Theorem 1. First, starting with
an arbitrary Boolean model, V? shows that there is a canonical embedding 1. : V —
VB [37,38]. The image vV = 1.(V) in VB is construed inductively as the class of check
names X of sets x € V, i.e, to any x € V it is assigned recursively ¥ := {(7,1)|y € x}
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and V becomes a class name V := {¥|x € V} that extends the symbols of the language
by the predicate V for the ground model. The Boolean value in B of T € V is given by
[t € V] = Vyev[T = ¥] (t is a B name). Then for any set x € V we have [¥ € V] = 1 and
[V is a transitive class in VB containing all ordinals | = 1 (ref. [37] (Lemma 6)). It follows
that V is a 2-valued Boolean model isomorphic to V [37] and 1.(V) = V corresponds to
embedding 1.

To show the existence of an embedding 2. follows by the construction of V8 in V as a
class for any Boolean-valued model VE. Let B be a complete Boolean algebra in V. Then
VB is construed by recursion in V as a class of B-names, i.e., T is a B-name if T = (0, b),
where 0 is a B-name and b € B. The initial data for the recursion are the Boolean values of
the atomic formulas built by the double recursion [37]:

[neml= \/ [on=x]Ab

<K,b>€(72
[on = ] = [o1 C 2] AJop € 1]
[nco]l= AN (kea]—[xean])
xe dom (07)

here, certainly, —, A, V are operations in the Boolean algebra lattice. The above recursions
are performed entirely in V, leading to the class V? of names in V and the Boolean values
assigned to all assertions of set theory. Thus, given the class V? € V, it is a model of set
theory. One shows that VB is a full model, and for any complete Boolean algebra, B, the
Boolean values of any axiom of ZFC have value 1. This finishes the proof of the statement
that VB is the class-like model of ZFC construed in V and 2. reflects the construction above
for the specific Boolean measure algebra B.

It remains to show that there are nontrivial automorphisms j : VB — VB. However,
this was precisely explained during the construction of the proof of Theorem 2. This
observation completes the proof of Theorem 1.

Appendix C. The Lévy Hierarchy

The formal language Lr of Zermello-Frankel set theory is the one sorted (sets), a
first-order language with a single predicate symbol ‘being an element of’, €.
A formula ¢ in LzF is called complex of the class (level):

2iy1, if ¢ is equivalent to Jx;...3x, B in ZFC, where B is 11;
I1; 44, if ¢ is equivalent to Vx;...Vx, B in ZFC, where B is X
A;, if ¢ is provably both, Z; and IT;.
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