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Abstract: If spacetime is a physical object, it is conceivable that it loses its integrity or is

destroyed in some way as a continuum in an abrupt process initiated in spacetime itself.

An example is a gravitational collapse leading to a spacetime singularity, as in the interior

of a black hole. We find a conservative extension of quantum mechanics by quantum set

theory over the singular domain and show that it is reconcilable with the special exten-

sion of spacetime 4-diffeomorphisms by automorphisms of Boolean models of set theory.

The extension of quantum mechanics supports the random sequences of the quantum

mechanical outcomes that can negate Tsirelson’s conjecture, whereas the extension of

4-diffeomorphisms indicates the role of exotic smooth 4-spheres as gravitational instantons.

This leads to the negation of the smooth 4-dimensional Poincaré conjecture before its final

resolution by mathematicians. We also discuss the case where the Poincaré conjecture

would remain true.

Keywords: Boolean models of ZFC; quantum mechanics; quantum gravity; physics of

exotic smooth 4-spheres

1. Introduction

The reconciliation of general relativity (GR) and quantum mechanics (QM) is an on-

going but unsolved project in theoretical physics. GR and QM are the main pillars of the

contemporary understanding of the physical world, starting from the tiny micro-scale up

to the cosmological scales. Extending QM over the biggest scales raises the question of

the persistent classical character of gravity, even though the black hole singularities call

for a quantum explanation. From the other side, jumping into the micro-world of elemen-

tary particles by any gravitational probe shows the practical irrelevance of gravity there.

Moreover, any consistent formulation of quantum gravity theory reconciling quantum

principles with gravitational understanding of spacetime fails for probably fundamental

reasons which, nevertheless, are unclear at present. In this paper, we partially fill the gap.

Any successful theory of QG must shed light not only on the micro-regions but also

help understand the cosmological puzzles of the physical world. This task is especially

sound when one faces probably groundbreaking experimental data collected and sent to

the Earth by the James Webb Space Telescope (JWST) the data that would presumably

revolutionize our cosmological models so far. This paper also addresses this important

issue to some extent.
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In the quantum gravity (QG) limit, it is usually expected that QM remains unchanged,

while GR would undergo certain modifications, which are expected at very small spatial

distances or high scales of energy. One such phenomenon is the formation of black holes

(BH) via gravitational collapse (the suitable amount) of matter/energy in spacetime where

the densities can increase without limits, and the gravitational singularity emerges within

the interior of BH. The proper description of the singularity is presumably based on the

modified GR and QM. Another example comes from loop QG where spacetime in the

quantum regime becomes a kind of discrete dynamical graph with quantum properties

labeling it. Thus, GR must be manifestly modified in this regime since Lorentz invariance

is broken. In superstring theory, GR works without limits, but the issue of the background

dependence written in the theory from the very beginning shows a conflict with the rules

of GR. Moreover, GR can be formulated in various dimensions, including 4, while the

consistency of superstring theory requires higher dimensions (and supersymmetry, of

course), breaking in this respect the original universal applicability of GR. QM seems to be

valid universally in loop QG and string theory, but in this last case, there is the quantum

field theory, which has to be modified again by assuming supersymmetry between particles

and fields.

The approach in this paper addresses the above issue of the relation between GR and

QM from the perspective of the mathematical structures and their formal description. We

find room in model theory and set theory augmented by topics in differential geometry of

low dimensions, which allow for the simultaneous modification of both GR and QM.

Although most physical theories are based on mathematics, which is usually formu-

lated in the language of classical logic and set theory, notable exceptions are also known.

There are certain attempts in mathematical physics, like those within the scope of topos

theory, which are based on nonclassical, non-two-valued Boolean or intuitionistic log-

ics [1,2], but there are also some other ones, starting from the celebrated work of Birkhoff

and Von Neumann [3], which are based directly on quantum logic. The theories of sets,

corresponding to nonclassical logics, also undergo some important modifications compared

to the classical case. In the topos approaches, internal set theory is canonically governed by

the structure of topoi and includes Boolean set theories in Boolean toposes, while in the

regime of QM, this is a big unknown whether one can reasonably assign a set theory to the

quantum regime and what would be the meaning of such a quantum set theory. Such a

situation is partly the consequence of the difficulties with quantum logic as linked with

quantum sets, especially the implication problem, but, as we think, it is also the lack of

fundamental hints and studies devoted to set theory in the quantum regime. However,

there are exceptions. One notable is the proposition by Gaisi Takeuti [4,5], developed

further by Masanao Ozawa [6,7], where quantum set theory is modeled by the ‘universe’

VL which is analogous to the Boolean-valued universe of sets, VB, where V is the usual

cumulative Von Neumann universe of sets and B is a complete Boolean algebra. In Takeuti’s

approach, B is replaced by the QM lattice of projections L(∧,∨, 0, 1), giving rise to VL. The

problem with such a ‘model of the quantum universe of sets’ is that it reflects much more

serious difficulties than just the lack of unique implications in quantum logic. One sees

that when logic encounters difficulties with implication the entire set-theory structure is

ambiguous or has a non-well-defined sense as a set-theory. Maybe one should weaken the

logic-sets link somehow to allow for a degree of freedom while considering sets aspects of

the quantum world.

This rough idea is, in some sense, realized in this work. We allow for local ‘minor’

changes in logic over a spacetime manifold where set theory is also slightly modified, but

the spacetime manifold undergoes decomposition in the extreme curvature limit into the

local fragments. These fragments are considered here as local maps of a smooth atlas of the
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manifold. This follows in a reverse way to the constructability of any manifold from its

smooth atlas as a colimit (over the groupoid in the category of manifolds whose objects

are local patches). The fragments are no longer causally related, but the set of fragments

seen in the 2-value environment is directly related to QM. From the 2-valued perspective,

sets in the quantum regime are organized into the global structure but with additional

relations between the spacetime fragments (replacing causality and locality). This is not

that unusual when one recalls the celebrated Bohr doctrines where any oddity of QM

is finally described in the 2-valued logic and set theory, and such possibility is elevated

into an inherent property of the world. Here, the classical environment allows us to see

the additional relations between local regions of the spacetime manifold in the quantum

regime. However, such an enriched structure of the fragments is not considered to be a

category-like structure, though this point requires some reflection. On the one hand, it

is reasonable to think about the relations between local patches of spacetime as a kind of

morphism replacing natural superset or diffeomorphism relations. On the other hand, we

do not aim at taking an internal structure of such a category as modifying a set or logic

structure. We rather take the 2-valued departure point as the final point, as well, from

which the entire structure is to be analyzed. The modifications of logic and set theory are

performed locally in the intermediate stages of the construction, and the effects of this are

traced at the final classical stage.

The first part of the paper realizes the scenario of the decomposition of the spacetime

regions into flat R4s fragments due to the symmetric collapse of matter and energy produc-

ing extra high 4-curvatures in spacetime. The domains of the extreme curvature and density

of energy are modeled by 4-spheres with increasing radius—a natural geometric model for

such a symmetric process up to certain approximations but still carrying the main geometric

features of the process. The fragmentation of such hyper-curved spheres in spacetime is

further allowed. Based on equivalence principles and some general considerations, the

final stage process of such fragmented S4s is predicted as the collection of flat patches

R4 augmented by certain nonlocal relations between them. Extending preservation of

energy and momentum over this nonclassical regime, one finds that the entire gravitational

energy imprisoned in the original gravitational collapse in spacetime now is written in the

relations between the flat patches, which, as being flat, have vanishing 4-curvature and no

gravitational energy. To grasp properly the relations connecting flat spacetime fragments,

we turn to the methods of model theory and formal set theory, and the entire scenario is

developed from the very beginning by Boolean models of ZFC, which can now be seen as

physical degrees of freedom (e.g., ref. [8]).

The methods in this work resemble and follow, to some extent, those in ref. [8].

However, the use of model theory and formal mathematical tools has a long tradition in

physics. Especially Boolean models of set theory have emerged as a promising candidate

for the study of the quantum/classical relation. This overlapping domain is not fully

understood so far, especially the way in which physical spacetime emerges from the

quantum realm, which in some stage should be called a ‘quantized spacetime’. The Boolean

models of Zermello–Fraenkel set theory with the axiom of choice and their 2-valued forcing

extensions find their place in exploring the domain. The methods are strong enough to

create quite a consistent understanding of the quantum gravity regime from the spacetime

point of view. This is the topic of the second part of the paper.

In Section 4, the analysis of the reverse of fragmentation in space–time process is

performed. The conditions for the classical limit of the fragmented domains are given.

In particular, under the supposition of the negation of the smooth Poincaré conjecture

in dimension four, it is found that the limit leads to exotic S4s and that they correspond

canonically to the gravitational instantons of the semiclassical Euclidean gravity in the
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physical dimension. In the next ‘Heisenberg uncertainty and the fragmentation of S4’

section, it is shown that, indeed, the cardinality conditions imposed on the fragmented

S4s are the conclusions of the Heisenberg uncertainty relations in the original spacetime

regions. In Section 4.4, the geometric representation of gravitons is given as the continuous

perturbations of the original 4-metric such that it corresponds to the exotic smoothness

structure on R4 supporting S4s. The Section 5 ‘The Negation of the Tsirelson’s Conjecture

and VBs in QM’ discusses the findings in the previous publication [9] of the hyperrandom

sequences of QM outcomes, which are potentially falsifying Tsirelson’s conjecture. For the

Hilbert spacesH(∞), the sequences (with the suitable degree of randomness) are related to

the quantum regime of gravity. We close the paper with the discussion section with future

directions of the approach.

There are also two sections of the complemented materials. Appendix A contains a

thorough discussion of the crucial technique of the V-classical limit of the local Boolean

theories, while Appendix B is the proof of Theorem 1.

2. The Extension of GR by Homomorphisms of Models

2.1. GR in the Vicinity of Extreme Curvatures

The description of curvatures by general relativity (GR) formally does not have

limits—GR can deal with arbitrary high densities of energies and values of curvatures of

spacetime. Even though the singularities in GR should be defined covariantly with respect to

the geodesic incompleteness [10], their formation is usually connected with abrupt processes

in spacetime. Usually, certain infinities or divergent quantities characterize such processes.

Some of them can be made finite just by the coordinate transformation, some others cannot,

and GR fails to describe this regime. Instead, QM should be applied there. Connected with

this, a quite natural assumption would be that for some sufficiently high (but finite) values

of curvature, spacetime should be approached by QM rather than classically by a smooth

manifold’s model. The understanding of this process is roughly the aim of the present work.

In this section, we want to test the limits of spacetime as a smooth manifold in the regime of

extremely high curvatures by proposing a suitable formal background.

Working in a formal language like the first-order language of Zermello-Frankel set

theory, LZF, one can formulate in the language various well-formed formulas about sets.

Only some subclass of them can be proved within the formal system of sets like ZF or ZFC.

Some other subclass can be disproved. However, quite an important subclass is neither

proved nor disproved sentences, even though they can be true statements about sets (the

proofs of them are not proved in ZFC). There are also sentences that are not true in the

absolute sense but rather are independent of the axioms of ZFC. That means that there are

some models of set theory where the sentences become true and some other models where

they are false. Recalling that in every model of ZFC, all axioms of ZFC are true, we will

see that these sentences are strictly independent of ZFC. All sentences in each category

above are expressible in the language LZF of ZF, which does not mean they are provable in

ZFC. The language of ZF is a particularly strong enabling for the formulation of a large

part (some say almost all) of classical mathematics. An important example is the theory

of manifolds and general relativity. In fact, to express the constructions on differentiable

manifolds, we need a particularly low class of ZFC formulas, the Σ3 formulas of LZF. The

entire hierarchy of ZFC formulas is the celebrated Lévy hierarchy defined with respect to

the structural complexity or the number of existential and general quantifiers respecting

their order (see Appendix C).

Let (V,∈) be the cumulative Von Neumann’s hierarchy of all sets and M4 a smooth

spacetime 4-dimensional Lorentz manifold. M4 is ZFC expressible and requires maximally

Σ3 formulas of the Zermello-Frankel language LZF. Usually, it is unnecessary to refer
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explicitly to V or LZF since almost all mathematics has this property and is ZFC expressible.

However, in what follows, this formal ambient environment becomes an active and dynamic

player of the construction, losing its universal or fixed character. This is more or less a

direct consequence of what could happen to spacetime in the regime of extreme curvatures

or densities of energies as in the Planck scales. Even though spacetime is an extremely rigid

physical object, we could try to understand the limits of its integrity. Einstein’s equations

allow for the interpretation of spacetime as an elastic fabric that undergoes deformations

like bending, stretching, and the like performed by the densities of matter and energy,

e.g., ref. [11]. Even though we are missing the outer perspective for such a deformed elastic

medium, which is just an approximation, again, the tensor calculus enables for description

of the effects internally to 4-spacetime. Moreover, the physical dimension of the Einstein

tensor Gµν is [1/m2] and of Tµν is the same as the Young’s modulus Y, i.e., [kg/m· s−2],

where the equation F/A = Y ∆l
l defines Y via linear deformation ∆l of an elastic body of

length l and the cross section A with the reacting pressure F/A. Various approximations of

the Young modulus for the elastic spacetime can be further derived, which here gives us

just an idea about the scale of the rigidity of spacetime. Based on the classical effects of the

gravitational waves of frequency f [1/s] propagating in spacetime, one finds, e.g., ref. [12]

Yf =
c2

G
f 2 ≃ 4.5 · 1027 f 2 [kg/m · s−2].

Approaching the quantum regime of vacuum one finds just from the dimensional analysis

(ref. [12])

Yq =
c7

h · G2
≃ 5 · 10113 [kg/m · s−2].

Both results indicate extremely high stiffness of spacetime, but still, they are finite. When

the densities of mass and energy increase arbitrarily high in space–time, as can happen

during a gravitational collapse, these incredibly large numbers and the corresponding

densities of the energy that generates them can be formally exceeded unless a good reason

is found that forbids it. The finiteness of the numbers and the ability to exceed them in

physical real processes also raise different fundamental questions, like about the stability

and integrity of spacetime and the perspective enabling the proper grasping of such effects.

For example, if spacetime loses its integrity, the tensor calculus on a smooth manifold is

non-applicable any longer. The approach we give here is the attempt to understand the

limits of spacetime from the GR perspectives and physical processes causing spacetime can

become a nonsmooth object.

The obstruction

Consider a family {R1,α∈I ,R2,β∈K} of certain, to be determined, remnants of spacetime

after decomposition of it as a smooth manifold M4. We expect the following properties to

be assigned to the family {R1,α∈I ,R2,β∈K}
(1) Each R1,α is a certain set of spacetime points which are still causally connected

(locality).

(2) The density of gravitational energy vanishes along each R1,α—it is flat if a smooth

calculus in local coordinates is applicable for such domains.

(3) R2,β∈K is a remnant of the gravitational energy density and curvature present in M4

before decomposition.

Remark 1. (1) and (2) above show that, indeed, eachRα can be chosen to be flat since now they are

not causally glued together by local diffeomorphisms. It is also reasonable that (3) above codes the

curvature and gravity after the decomposition in (1) and (2).
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The obstruction in seeing spacetime as ‘torn’ apart into pieces by the densities of matter

and energy is the lack of any external perspective to describe the pieces. Alternatively,

more precisely, such a perspective should be given by QM, but still, we do not understand

the process of attaining QM from the fragmented spacetime. Rather, we know that the

black hole singularities have to exist. Our main observation for fixing further steps is the

following correspondence:

The rigidity of spacetime is protected by the rigidity of the universe of sets V.

This is an extension of the fact that breaking causality and locality between different

regions of spacetime is not an observable process with the description within spacetime

itself. Special relativity theory and GR are based on the causality and locality of any transfer

of information in physical processes. Even in QM, this kind of signaling theory (allowing

for faster-than-light nonlocal transfer) is forbidden, though it can be considered to be

some nonphysical alternative. Therefore, given a domain U1 ⊂ M4 and another causally

disconnected domain U2 ⊂ M4, which means that no observer in U1 can ‘see’ anything

from U2, since the regions come from fragmented spacetime and, of course, U1 ∩U2 = ∅.

In other words, we cannot see M̃4 (the fragmented part of M4), in causally separated pieces,

as the part of M4. Alternatively, there would be no possibility to embed M̃4 in M4 since

causal separation refers to spacetime regions, not to a particular future cone of any observer

in spacetime. The following lemma explains the set-theory counterpart of this.

Lemma 1 (Kunen [13]). There does not exist a nontrivial automorphism (a nontrivial elementary

embedding) j : V → V.

Remark 2. This property can be stated equivalently that any automorphism j : V → V is the

identity and that there is no nontrivial embedding V → V. Nontrivial embeddings are possible

under assuming the existence of certain large cardinals.

Thus, nontriviality here means embedding, which would not be the identity on V.

Assume that given M4, it is always M4 ∈ V that fixes the formal environment. Thus,

given another copy of M4 (fragmented or not), which is defined in V as well, the formal

perspective enforces that the nontriviality (in this case diffeomorphism, which is not an

identity) of M4 → M4 requires the nontriviality of V → V. However, this is impossible

due to Lemma 1. We conclude

Corollary 1. If M4 ∩ M′4 ̸= ∅ and M4 diff≃ M′4 then, allowing for the set-theory formal envi-

ronment, M4 ∈ V, M′4 ∈ V enforces that M4 has to be identically diffeomorphic to M′4 (thus

excluding M4 Diff. ̸= Id≃ M′4).

Remark 3. The formal context V of M4 is usually neglected in mathematics, and so is its relation

to itself. In such a case, the object like R4 (flat M4) allows for unlimited embeddings R4 → R4

onto the diffeomorphic images (submanifolds). Activating V as a valid formal context for R4 creates

several constraints that prohibit such embeddings, and the entire procedure becomes valid in physical

applications. This V assigns to R4 plays an analogous role in assigning certain ‘quantum numbers’

to physical objects; one must take care of the numbers and their preservation laws when manipulating

the objects.

Remark 4. One can think of M4 as formally being a pair (M4, V) such that (M4, V) →
(M4, V) ≡ ( f : M4 → M4, j( f ) : V → V) where f ̸= id ≡ j( f ) is nontrivial.

On the one hand, this relative to the set-theory universe V formalism forbids referring

to the pieces of M′4, but on the other hand, the formalism indicates the solution allowing
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for such reference. The solution is to deal with other models of ZFC than the cumulative

hierarchy V, V′, and to consider pairs (M4 ⊃ U, V′).

Theorem 1. There exist models of ZFC, V′, allowing for embeddings

V → V′ → V

and given two such models, V′1, V′2, there exist nontrivial automorphisms

j′ : V′1 → V′2.

For the proof, see Appendix B.

Let B be a complete Boolean algebra in V, and VB a Boolean-valued model of ZFC,

then the proof of the above theorem shows

Corollary 2. V′ = VB.

We assign the formal neighborhoods (Uα, VBα)α∈J to local patches Uα, α ∈ J of a

(maximal) smooth atlas U = {Uα, α ∈ J} of M4

{Uα → (Uα, VBα)}α∈J , Uα ∈ U (M4)∀α∈J . (1)

Moreover, by reference to a good cover, which always exists on a smooth manifold, we can

assume that Uα
diff≃ R4. For now, we are leaving unspecified the family of complete Boolean

algebras and corresponding models VBs.

We are assuming the following heuristic rule, which would relate physics with such

an enriched description of spacetime

[H1] The presence of local Boolean models of ZFC, VB, becomes physically

relevant when sufficiently high densities of energies are attained in spacetime,

hence in the limit of sufficiently big curvatures. This means that in the small

densities of energies compared to the rigidity of spacetime, the physical effects

are irrelevant or negligibly small.

We are leaving, for now, unspecified this sufficiently high level of densities, but

intuitively, it should be related to the Planck regime, which approaches the quantum

description of physical phenomena in spacetime. We will come back to that point later on.

Currently we do not have any reason to suspect that the equivalence principle (EP),

which GR is based on, is not valid for physical spacetime in any regime. Thus, in the regime

of extreme densities of energies in spacetime as possibly having a devastating impact on

the spacetime structure or its integrity, EP still should be a guiding principle. That is to say,

some variant of EP holds when spacetime is no longer a smooth object. What could that be?

A geometrical variant of EP claims that any effect of gravitational energy in spacetime

can be locally eliminated by a suitable choice of the coordinate frame. This means that

the local frame in which the physical process is described, on a sufficiently small scale,

becomes flat R4 where no gravitational effects are present and, certainly, the curvature of

spacetime vanishes. However, when the entire spacetime is curved as a global smooth

4-manifold, the choice of such local flat frames is not possible globally for all points in M4

(at each point of M4, there would be the vanishing curvature tensor; hence, it would vanish

globally). That would have meant that M4 were actually flat. However, when the domains
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of M4 are causally separated and connected by generalized transition functions (not just

diffeomorphisms), then it can happen

For each p ∈ M4 there exists Ux ∈ U that Ux = flat R4.

and gravitational energy leaks somehow into the transitions between flat Uαs.

Thus, according to this, we have the following quite general possibility.

[H2] The final stage of the gravitational collapse of spacetime would be a family

{Uα} of flat R4s and a family { f̃ : R4 → R4} of nonlocal transformations between

flat R4s.

Remark 5. Under some conditions, the final stage of a gravitational collapse typically contains the

GR part of a geometric solution of the Einstein equations, where eventually, a black hole is formed

with a certain singularity, which is inaccessible by the formalism of GR. Here, we propose that a

singularity contains remnants of the causally disconnected fragments of spacetime, each worth flat

R4s in VBs with the nonlocal symmetry between the fragments replacing diffeomorphisms of R4

in V.

Understanding H2, particularly its relation to QM, is the aim of the remaining part of

this paper.

2.2. Deformation of Diff(R4)

First, note that H2 and the analysis before it realizes points (1), (2), and (3) of the

previous section. To see this, it suffices to identifyR1,α, with Uα = flat R4, andR2,γ with

nonlocal f̃γ : R4 → R4 where γ = αβ is such that f̃αβ : Uα → Uβ. Next, thinking about

the extension of GR over ZFC-deformed spacetimes leads to the deformation of transition

functions from diffeomorphisms f : R4 → R4 to some f̃γ. We start by determining the

domain of the transformations. We expect a degree of nonlocality with respect to spacetime

points. Hence, we do not call f̃ a function on spacetime but rather a transformation. We

have already indicated above the domain of f̃ as Uα as is the case for diffeomorphisms f .

However, based on H1 from the previous section, it should be rather Uα in a local model

VB since the deformation of M4 in the Planck regime requires factorization through VB for

certain B ∈ V. More precisely, following H1 and H2, we have the following version of H2

[H2′] The final stage of the gravitational collapse of spacetime is a family {UB,α =

R4
B ∈ VB}B∈B of flat objects R4

α in Boolean models VBα and a family { f̃ : R4
B1 →

R4
B2} of nonlocal transformations.

We can be more specific about the maps f̃ : R4
B1 → R4

B2 by claiming that they are

determined by the maps between Boolean models and that these last maps are determined

by the homomorphisms of the Boolean algebras. Using the same symbols f̃ for the maps

of the models, f̃ : VB1 → VB2, let us observe that each f̃ determines a map on objects

R4
B1 → R4

B2 of the corresponding models. However, the origins of this f̃ on models lie

in the homomorphisms of the Boolean algebras B1 and B2. Thus, the maps between the

R4s objects have their origins in the homomorphisms of the Boolean algebras, as in the

following Lemma 2 and Corollary 3.

Lemma 2. f̃ : VB1 → VB2 comes from certain homomorphisms of Boolean algebras, h f : B1→ B2

in V.

This lemma is a direct consequence of the behavior of Boolean-valued models of ZFC

under homomorphisms of Boolean algebras, e.g., ref. [14].

Now we see that it follows that indeed
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Corollary 3. f̃ : R4
B1 → R4

B2.

This follows from the fact that R4
B2 = R4 in Vh f (B1) which is R4

B2 in VB2.

Remark 6. The nonlocal character of f̃ in R4
B reflects its derivation from the homomorphism of B

and thus from the transformation of VB, which is the homomorphism of the formal neighborhood of

R4 rather than any local map of R4 itself.

Please note that the local diffeomorphisms of R4 do not spoil the action of Hom VB

since any f ∈ DiffR4 sends open neighborhoods to open neighborhoods of R4 and R4
Bs

additionally refine them. Similarly, Diff M4 does not interfere with Hom VB. Hence, we

have the following modification of the symmetry of GR

Diff M4 ⊕Hom VB (2)

which should be understood as follows. In the deep Planck regime, the dominant way

of changing the coordinate frames is by homomorphisms of VB since M4 can lose its

integrity, while in the macroscales, where M4 survive as a smooth manifold, there effectively

dominate diffeomorphisms of R4. When the smoothness of M4 is preserved (or dominates)

the action of f̃ ∈ Hom VB on opens of M4 is replaced by diffeomorphisms of M4 (there

are no nonlocal transformations) while when the integrity loss of M4 occurs, then Hom VB

enters the stage and dominate. Thus, until the density of energy and deformation of

spacetime would not thorn it to the pieces, there are GR and diffeomorphisms governing

its behavior. This loss of the integrity of spacetime is a natural threshold for preventing

quantum phenomena of spacetime.

In the remainder of this paper, we show that the extension of Diff M4 by Hom VB is

precisely what is needed for the formal reconciliation of QM and GR in this setting.

3. Extension of QM and GR

In the Introduction, we have mentioned the relationship between QM and the set-

theoretic constructions inherently following the QM formalism. Here, we focus on this

relation as the fundamental problem of the extension of QM such that the set theory of QM

determines its extension. To properly approach the set theory of QM, Takeuti proposed to

refer to the lattice of projections L(H) as generalizing the Boolean algebras—the maximal

complete Boolean algebras of projections in L. Then, one refers to VL as the universe of

set theory for QM. VL directly generalizes the Boolean-valued model of ordinary sets, VB,

where this last can be seen as more general than the 2-valued cumulative class of sets

V2 ≃ V, which is a class-like, classical model of ZFC (here 2 = {0, 1} − the 2-valued

Boolean algebra). Keeping in mind that L can be considered to be the logic of QM and that

the algebras 2 and B represent classical and Boolean logics, respectively, the construction

VL seems to be a canonical object for quantum sets. However, this approach has many

intrinsic difficulties, e.g., [5,6]. Anyway, the richness and complication of the structure VL

is always locally reduced to the Boolean models VBα , α ∈ I for maximal complete Boolean

subalgebras, Bα, of projections in L(H). The special role of Bα for QM is that

Lemma 3 (Takeuti [4]). For any family of pairwise commuting self-adjoint operators {Ac, c ∈ L}
onH there always exists a maximal complete Boolean algebra of projections Bα containing all Ac.

Remark 7. We say that Bα contains Ac when AC has the spectral decomposition

Ac =
∫

σc

λdEλ, σc is the spectrum of Ac,
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and the spectral family dEλ has its values in Bα.

Thus, Bα determines the local Boolean logic of QM and the local set theory VB
α of QM,

but also the set of commuting observables {Ac, c ∈ L}com, Ac ∈ Bα on H. Furthermore,

there exists a very special relation between the model of ZFC, VB, and the set of observables

Ac ∈ Bα. Namely

Lemma 4 (Takeuti [4]). There exists 1:1 correspondence between the set of Dedekind’s real numbers

in the ZFC Boolean model VBα and the set of self-adjoint commuting operators Ac ∈ Bα.

In the internal Boolean world VBα of sets, the set of reals (Dedekind’s) is the elevated

set of all commuting observables onH, to more general Boolean logic. If there is a model

of sets (in a generalized sense) with a similar property as in Lemma 4 but for all, also

noncommuting self-adjoint operators on H, then such a model would serve as direct

counterparts for QM. In fact, we have [7,15]

Lemma 5. For VL, there is 1:1 correspondence between Dedekind’s real numbers and all self-adjoint

operators onH.

However, the resulting set theory of VL is not canonically a set theory. Thus, the

maximal natural interpretation of sets, which preserves the quantum observables, is VBα

where the observables are reduced to the set of commuting ones according to Remark 7.

Still, one can glue together these local ‘commutative’ contexts VBα s to cover the entire

lattice L(H).

Remark 8. Please note that even though the set of {VBα} for all maximal complete Boolean algebras

Bα in L, covers the entire lattice and generates all self-adjoint operators onH, one cannot reduce

{VBα} to the single model VBα − each VBα generates only commutative family of operators and Bα

is distributive while L is not.

This local-to-global relation of {Bα} and L is the particular task of this section. Let

Bor(R)/Null be the quotient algebra of all Borel subsets of R modulo the ideal of Lebesgue

measure zero subsets.

Lemma 6 ([16], Th. 9.4.1). For complex infinite-dimensional, separable, Hilbert spaces of quantum

statesH∞ the following are true

i. Bα = Bα,a ⊕ B,

ii. B = Bor(R)/Null.

iii. B is an atomless Boolean algebra, the same for all αs, and Bα,a is an atomic part of Bα which

can differ with α.

Corollary 4. If dimH < +∞, then Bα = Bα,a contains only the atomic part.

The universality of B = Bor(R)/Null forH∞ allows us to show the following result.

Corollary 5. Let dimH = +∞ and Bα = B be as above. Then

For any h12 ∈ Aut (B) there corresponds some f12 : VB1 → VB2,

i.e., for any pair B1, B2 of maximal complete Boolean algebras of projections in L there exists

h12 ∈ Aut (B) such that Vh12(B1) = VB2.
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The above corollary states the direct fact that any h ∈ Aut (B) corresponds to the

isomorphism of the models VB ≃ Vh(B). This holds for any pair B1, B2 of maximal

complete Boolean algebras of projections from L since they are isomorphic to B. This

proves Corollary 5.

One can consider the extension of QM given by the set-theoretic component above,

which also extends the group DiffR4 from GR as in (2) from the previous section

Diff M4 ⊕Aut VB (3)

where now, certainly, B = Bor(R)/Null. Then, the main result follows.

Theorem 2. Let B be the universal maximal Boolean algebra of projections as in Lemma 6 and

Corollary 4. The symmetry of the structure resulting from the extension of GR (the equivalence prin-

ciple extended over causally disconnected flat open fragments of M4 internal to VB) coincides with

the symmetry of the QM projection lattice inH∞ that preserves local set-theory Boolean contexts.

Proof of Theorem 2. The resulting symmetry after the extension of GR is determined by

diffeomorphisms of M4, which are enriched along h : VB1 → VB2. This h is determined by

a homomorphism h : B1→ B2 (using the same symbol h). In particular, h ∈ Aut (B), leads

to h : VB → VB and to generalized maps h : R4
B1 → R4

B2.

In QM onH∞ and for vanishing the atomic part of Bα as in Lemma 6 and Corollary 5

one has B = Bor(R)/Null and thus hA ∈ Aut (B) is the change in the local context in QM

according to the following.

Let B′A, BD be two maximal complete Boolean algebras of projections from H such

that A, D, [A, D] ̸= 0 are two noncommuting self-adjoint operators in BA, BD cor-

respondingly (see Remark 7). This means that there exists a projection bD ∈ BD,

noncommuting with A.

Then eiγAbDe−iγA sends bD to a projection in certain maximal algebra BA for any

γ ∈ R.

It can be directly checked that

BA ≃ eiγABDe−iγA (4)

establishes a homomorphism of the algebras BA and BD.

Under the supposition of the theoremH = H∞ and Bα = B, one has

BA
iso≃ B and BD

iso≃ B

so the correspondence (4) establishes the isomorphism hA of BA and BD. Since BA ≃ B and

BD ≃ B then hA ∈ Aut (B). Finally, this gives rise to the isomorphism of local models of

set theories for QM, VBA ≃ VBD ≃ VB. Finally, taking R4
B ∈ VB, there corresponds to the

change in the generalized coordinates

hA : R4
B → R4

B

for the extension of GR as at the beginning of the proof. This finishes the proof of

Theorem 2.

Let us assume explicitly, as is already stated in Theorem 2, that each 4-region R4
α of the

fragmented spacetime in various VBα , is flat R4s, then the gravitational energy densities are

no longer carried by local diffeomorphisms.
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Remark 9. One consequence of this theorem is that the gravitational energy densities in the deep

Planck regime are carried by Aut (B) rather than by Diff M4 as is the case in the subplanckian

classical regime of (nonextended) GR.

Remark 10. The isomorphism (4) is an example of the Fourier transform between, e.g., momentum

P and position Q operators in QM based on the spectral theorem. Here, we have the isomorphism of

the Boolean algebras BP and BQ and dimH = +∞ due to the uncertainty principle.

4. Euclidean Quantum Gravity

4.1. S4s and the Fragmentation of Spacetime

In this and the following subsections, we develop the formalism for gravitational

energy densities close to, or in, a singularity where quantum description should dominate.

We make some simplifications so that the construction presented here can be considered

to be the application of a general procedure. First, let us work with manifolds with

Riemannian metrics so spacetime will be a smooth 4-dimensional Riemannian M4. Let

(S4, gS4) be a smooth 4-sphere with the standard round metric gSn . The sectional curvature

of an n-sphere of radius r is KSn = 1/r2 and its scalar curvature is ScSn = n(n − 1)/r2

so thus ScS4 = 12
r2 gives ScS4 = 12 for radius = 1. Next, let the scalar curvature of M4 in

the vicinity of a gravitational singularity, such as in BH, be a parameter diverging to +∞,

and this is a true singularity, not just a coordinate one. In addition, the increase in the

scalar curvature K → +∞ will be modeled by (S4, r), r → 0. The last seems to be a true

limitation since S4 has a constant scalar curvature, which in the vicinity of quantum effects

is fluctuating, and S4 is very regular and symmetric to reflect a general situation. However,

the following property in Theorem 3 shows that S4 is a quite generic model and, moreover,

(S4, r) approaches arbitrary big curvatures with a smaller and smaller radius. The metric

fluctuations can be further considered on such S4s. Given a smooth Riemannian 4-manifold

(M4, g) the map f : M4 → S4 is called ‘distance non-increasing’, when

dg(p, q) ≤ dg
S4
( f (p), f (q)) for any p, q ∈ M4.

Theorem 3 (ref. [17], Theorem A). Let (M, g) be a four-dimensional closed connected oriented

Riemannian manifold with Scg(p) ≥ 12. If f : (M, g) → (S4, gS4) is a smooth, distance non-

increasing map of non-zero degree, then f is an isometry.

Remark 11. Given M with the ‘big’ local scalar curvature Scg(p), p ∈ M, we always find

(S4, r) such that ScS4 > Scg(p) for all p ∈ M and refer to this S4 instead M with the distance

non-increasing property for f . The local fluctuations of the metric can now be considered to be on S4.

Recall that the connected sum # of two smooth manifolds with boundary, M1, M2, is a

smooth manifold M1#M2 obtained by cutting out the open balls from both boundaries of

the manifolds and gluing smoothly the remaining manifolds along the boundaries with

suitably reversed orientation.

Remark 12. In fact, we model high-curvature regions of spacetime by a part of S4 since, at

this stage, M4 is connected. Thus, S4 \ D4 would be glued to M4 \ D4, resulting in the con-

nected sum M4#S4. Please note that (topologically and smoothly) S4 \ D4 ≃ S3 ×R leads to the

(R3 ×R,R3 ×R) = (R4,R4) topological (or standard smooth) cover.

There is yet another clue for the S3 ×R local geometry emerging in the context of the

Lorentz metric of 4-spacetime for large density perturbations and for the standard ΛCDM

model. In the semiclassical approach to the Lorentzian GR in this cosmological model,
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for the perturbations on a much smaller scale than the size of the modes, the ‘separate

universe’ results, which may carry the geometry of the standard cosmological model but

with different values of the background density or curvature. In other words, a spherically

symmetric perturbation in an FLRW background behaves like a separate FLRW universe

with different matter density and curvature [18]. Topologically S3 ×R ≃ S4 \ D4 so in the

limit of losing the integrity with spacetime (breaking the topological connected sum), and

switching to the Riemannian metrics, the resulting smooth S4 (with eventual exotic metric)

can represent the gravitational instanton (see the discussion below in this section). This

semiclassical gravitational description of such hyperdense regions as separate universes

also refers to black holes since an observer (in the vacuum region surrounding the hyper-

density) would see the separate universe as a black hole [18]. We argue that losing the

integrity with spacetime gives even more insight into the quantum interior of black holes

as the semiclassical approximation reduces the description merely to the instanton’s effects.

Following Remark 12 with the Euclidean metric, the integrity of spacetime is preserved.

However, for certain high values of energy density and the corresponding scalar curvature

of S4, the disintegrating processes could dominate. Let us try to understand this step in

our setup. Let ρp, p ∈ M4 be the density of gravitational energy at p ∈ M4, and we do not

present any physical process behind this value. Let us assume the existence of a singular

region S over which geodesics cannot be smoothly extended. Thus, the radius r of (S4, r)

approximates the 4-curvature of spacetime locally as 12
r2 where close to the singularity it is

formally diverging due to r → 0. We have the simplified or naive model of the spacetime

singularity with the parameter r.

Now let us apply the procedure of Section 2.1, in particular H2 and H2′.

i. Let U = {Ui, α = 1, 2, 3, 4, . . . } be some smooth cover of S4 where Ui ≃ R4. For the

standard smooth S4, there exists a 2-element cover {U1, U2}; however, the maximal

smooth atlas (the smoothness structure) still contains infinitely many elements.

ii. There exists r0 (possibly of the order of the Planck length rP) where spacetime becomes

locally internal in models VBs.

iii. In the same regime after reaching the Planck length rP and the local scalar curvature

12

26,121 · 10−70[m2]
≃ 4594 · 1070[m−2] (5)

then the fragmentation of local spacetime occurs (H2′) which is the fragmentation of

(S4, r)

U = {Ui = R4
Bi
∈ VBi , R4

Bi
= RBi

× RBi
× RBi

× RBi
flat in VBi , i = 1, 2, . . . }

where each Ui is the ‘local’ internalization of Ui ∈ U(S4,r) to VB
i .

Remark 13. As far as the connected sum of (S4, r) and M4 is preserved then (see Remark 12) the

interior int(D4) = R4
2 = R4 removed from S4 where 2 = B is the Boolean algebra and V2 = V.

However, the complete fragmentation of S4 does not necessarily support such connectedness.

The fragmentation of S4 and its separation from M4 is presumably not an instanta-

neous process but spreads in time when the connected sum S4#M4 lasts. The process starts

with it and the final stage would be complete separation and fragmentation, i.e.,

M4 → M4#S4 → M4 \ D4∪̃{R4
Bi
}∪̃{ fij : VBi → VBj}. (6)

Here, the enriched set-sum symbol ∪̃ is not only the set-sum of the corresponding families

of functions or topological spaces but additionally, the enriched set-sum preserves the
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topological relations of the members of the corresponding sets. In the above expression,

the right-hand side represents the part of spacetime M4 \ D4 sum up with the set of the

resulting fragments of S4 and sum up with the relations between them represented by the

maps of Boolean models VBi .

Following the discussion around H2′, we have, in terms of generalized ‘transition

functions’, the following schema

M4 → M4#S4 → M4 \ D4∪̃{R4
Bi
}∪̃{ f̃ij : R4

Bi
→ R4

Bj
}. (7)

M4 Diff.≃ M4#S4 and the extremely high curvature of S4 can be erased by a diffeomorphism

that simply reflects the fact that (S4, r1) and (S4, r2) are diffeomorphic and the Riemann

tensor (and scalar curvature) are not in general invariant under 4-diffeomorphisms.

Thus, the symbol ∪̃ in (6) and (7) is just the set operation of summation which results,

e.g., in a set of points of a topological space M4 \ D4 (with its default topological structure)

∪ a set of R4
Bi

objects in categories VBi , ∪ the set of relations between the categories VBi . This

is a nonhomogeneous object from the topological point of view but still has a well-defined

set-theoretic meaning on which one can perform certain operations. More precisely, the

forgetful operation on the topological space M4 \ D4 leads to the set of points, which gives

rise to a set-theoretic sum with the sets of certain objects.

Corollary 6. If dimH = +∞, then the final stage of fragmentation of S4 reads

M4 \ D4∪̃{R4
B}∪̃{ fij : VB → VB} or M4 \ D4∪̃{R4

B}∪̃{ f̃ij : R4
B → R4

B}

where fij ∈ Aut (B) and B = Bor(R)/Null.

In the next sections, we will be interested in the reverse process for fragmentation of S4

in the smooth V-limit, which is the gluing of fragments of S4 and obtaining (if possible) a

smooth S4. Thus, our assumption here is that this gluing process, under certain conditions,

leads to S4. More formally, the gluing can be seen as the construction of a manifold Mn

from its atlas U = {Uα} where the set U is structured by the automorphisms of B.

Remark 14. For any open cover U of a Hausdorff paracompact manifold Mn one assigns a cover

groupoid the space of objects being the disjoint union GU = ⨿α Uα and the space of arrows is the

fiber product U ×Mn U . Then the manifold Mn is the colimit of U ×Mn U ⇒ U in the category of

smooth manifolds and maps.

In the quantum regime, the set U is structured by introducing the additional relations

between Uαs that correspond to the automorphisms of B. In the classical limit (V-smooth

limit see Appendix A), there remains just the disjoint union of local patches, and the way

to S4 or M4 follows Remark 14.

Assuming the preservation of energy in the transition process from the classical

sector with S4 to quantum with fragmented S4, there has to be a transfer of the curvature

of spacetime of S4 and the density of gravitational energy into the algebraic family of

automorphisms { f̃ij}, since the geometric flat R4
Bs all have vanishing curvature and thus

the density of gravitational energy.

Accordingly, one expects similar preservation for momentum and angular momentum,

i.e., the transition from classical to quantum does not spoil the main preservation laws.

There could exist relative momenta (angular momenta) between local charts which would

lead to the loss of net momentum (angular momentum) after losing the causal connectivity
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of spacetime. However, after the rebirth of the smooth S4 and taking a connected sum with

spacetime, the energy and momentum loss would be retrieved.

4.2. Towards Gravitational Instantons and Quantum Gravity

Consider two isomorphic copies of VB, i.e., VB1 ≃ VB2 ≃ VB where B1 = B2 =

B = Bor(R)/Null is such that B1 = f21(B2) for certain f21 ∈ Aut (B). Let Sn
i be n-

sphere in VBi (which is a Boolean model of ZFC). We want to identify smooth S4 that

becomes fragmented due to the process f of changing the models VB but before the

final flattening of the local charts as in the family {R4
B}s. Let us choose the standard

2-element atlas {U1, U2} where U1, U2 are still diffeomorphic to R4 but are rather two

hemispheres of S4 where the metric gµν on S4 becomes truncated to g
(1)
µν on U1 and g

(2)
µν on

U2. U1, U2 can be both considered to be the interiors of the closed 4-disks D4
1,2 with the S3

boundaries, ∂D4
1,2 = S3

1,2 correspondingly. Now, gluing two of these closed hemispheres

by diffeomorphisms can be seen as gluing along the diffeomorphism of their boundaries

S3
1 → S3

2.

Let Sn be n-sphere and π : Sn−1 → Sn−1 some diffeomorphism of the boundaries

of the closed hemispheres of Sn. Let g
(n−1)
µν = g

(1)
µν be an Euclidean metric on Rn−1 and

g
π,(n−1)
µν = g

(2)
µν its transformation by π. Then the following is the metric on Rn

ds2 = dt2 +
[
(1− λ(t))g

(1)
µν + λ(t)g

(2)
µν

]
dxµdxν (8)

where λ : R → R is a strictly increasing smooth function of the time t such that

limt→−∞ s(t) = 0 and limt→+∞ s(t) = 1. The usual one-point compactification of Rn

with this metric results in a smooth n-sphere (see ref. [19]). However, it can happen

that diffeomorphisms π : Sn−1 → Sn−1 gluing both spheres at the equator of Sn are not

continuously connected with the identity on Sn−1. Then the resulting smooth Sn, S̃n, is

nondiffeomorphic with the standard smooth Sn, i.e., Sn ̸= S̃n, but still S̃n is smooth and

homeomorphic with Sn. More is true, all classes of smoothings (smoothness structures)

on Sn are in 1:1 correspondence with the classes of ‘large’ (not connected with identity)

diffeomorphisms of Sn−1, ref. [19]. However, a crucial exception is the case of dimension

4, i.e., S4. J. Cearf [20] proved in 1968 that every diffeomorphism of the 3-sphere preserv-

ing the orientation is isotopic to the identity. This result leads to the conclusion that any

diffeomorphism of S3 extends over a diffeomorphism of the 4-ball for which S3 is the

boundary, i.e., Γ4 = Diff(S3)/ρ(Diff(D4)) is a trivial group, where ρ is the truncation of

diffeomorphisms of D4 over its boundary S3. Thus, in dimension 4, there is no room for

exotic S4, which would follow the construction of the 4-metric from diffeomorphisms π.

Does it mean that there are no exotic 4-spheres? No, we do not know, and many researchers

expect that one day, the proof of the existence of exotic S4 will be completed, but certainly

by methods different from gluing 3-diffeomorphisms. Until now, every attempt to construct

exotic S4 has failed by any means. Thus, the celebrated smooth 4-dimensional Poincaré

conjecture remains still unresolved.

Reference to n-spheres, especially exotic ones, seems to be crucial for the QG pro-

gram. It follows from the breakthrough analysis of gravitational anomalies by Edward

Witten in ref. [19] in higher-dimensional theories of gravity like superstring theory. Ac-

cording to Witten, exotic Sn as construed in (8), are ‘the best’ candidates for gravitational

instantons since to every J = S̃n
π there exists J−1 = S̃n

π−1 such that the connected sum

J + J−1 = S̃n
π◦π−1 = standard Sn which by the one-point decompactification of Sn corre-



Universe 2025, 11, 126 16 of 35

sponds to the flat Rn. Such a flat n-space gives the maximal contribution to a gravitational

Euclidean action SE since SE[δµν] = 0 thus

⟨g2|g1⟩ =
∫

Dg · e−SE [g] (9)

has dominating contributions coming from the zero action in the saddle point. Witten

observed that only such pairs of instanton and anti-instanton have to be included in the

path integral due to the cluster decomposition effect: J has the same effect as the pair

J + J−1 (consider a very big separation of both instantons causing neglecting the action

of the very distant one). Thus, still, whenever J + J−1 gives the maximal contribution to

the path integral, it remains maximal also for J alone because of the existence of J−1. For

gravitational instantons that do not have a well-defined anti-instanton state, there is no

clear reason for including them in the path integral (there are presumably other terms with

dominating contributions in the path integral).

In general, gravitational instantons are semiclassical gravitational solutions that might

play a significant role between the classical spacetime and quantum regimes. In our

approach, it is the state of spacetime just before its fragmentation in the fully quantum

realm. However, in dimension 4, it is likely that exotic S4s do not exist, and the entire

approach based on exotic spheres would fail in this physical dimension. Nevertheless, the

approach allows for skipping these ‘classical’ instantons and switching to more quantum

analogs. To this end, let us turn to tunneling processes connected with instantons in general

but also present in Formula (8) as gluing of the 3-metrics. Tunneling takes place between

two metrics on Rn−1, gµν and gπ
µν, which are related by nonlocal, large diffeomorphism

π of Sn−1 the one-point compactification of Rn−1. This nonlocality is expressed in the

inability to glue the two metrics by a diffeomorphic coordinate change but requires action

on the whole Sn−1. This action is again a diffeomorphism, but it cannot be continuously

connected with any local coordinate change. Rather, π belongs to another class of large

diffeomorphisms of Sn−1. Thus, tunneling is nontrivial, and the resulting n-sphere has to

be exotic, i.e., nondiffeomorphic with the standard smooth Sn. We do not know whether

exotic 4-spheres exist, but there is also another reason for skipping the construction in (8)

while considering the tunneling phenomena of gravity in dimension 4. It is the Cerf result

that there is no large diffeomorphism of S3 (see the discussion before in this section), and

hence, there is no tunneling in the sense of (8). We will show how our approach allows

for addressing such tunneling questions and leads to generalized exotic smooth S4 or

instantons in the quantum domain. The direct proposal would be a modification of (8), i.e.,

ds2 = dt2 + (1− λ(t))g
(1)
µν dxµdxν

︸ ︷︷ ︸

in VB1

+ λ(t)g
(2)
µν dxµdxν

︸ ︷︷ ︸

in VB2

(10)

where g
(2)
µν would be gµν in VB2 = f (VB1), f ∈ Aut B and the ‘+’ sign in the bracket is

adding the contributions of both terms in V. The last requires a more careful explanation.

A general question here is: What are the contributions in V derived from different Boolean

models VB1 , VB2 ? Let TR4 be the tangent vector space to R4 then it holds (see Remark 7 for

A ∈ B where A is a self-adjoint operator and B the Boolean algebra of projections)

Lemma 7. Let B1 = B2 = B and A1 ∈ B1 and A2 ∈ B2 be two self-adjoint noncommuting

operators on H∞, then In V: If flat R4 corresponds to flat R4
B ∈ VB1 then TR4 corresponds to

R4
B ∈ VB2 .
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For the proof of this lemma, let us turn to Section 3 and note that Theorem 2 and

Remark 10 give the result in Lemma 7.

Remark 15. Flat R4 iso≃ TR4 as vector spaces and Lemma 7 refers to the constitution of local

frames of a manifold, say M4, as R4 or TR4 on the set-theoretic level. Thus, even though there are

isomorphic copies of R4s that model local Uαs in the smooth atlas of M4, still taking into account the

origins of the set theory, they can differ subtly. The difference is apparent when set theory degrees

of freedom are referred to in atlases of a smooth manifold. The change in the perspective of the set

theory from trivial V to local VB is responsible for the effect.

One can also think about this discrepancy between different R4
B detected in V as a

kind of curvature: taking a closed path in M4 going through different R4 local regions then,

at the beginning, the data at the initial point can differ at the end after taking the closed

path. This difference is the jump or gluing operation in (10). Although flat R4 and TR4 are

isomorphic, the content of the set theory distinguishes them.

There is one problem with the approach in (10), the classical spacetime limit of it

is necessary the standard S4 after 1-point compactification of this geometry, and this

conclusion holds even in the hypothetical case of the existence of exotic 4-spheres. The

reason for this is the triviality of the diffeomorphism classes of S3. So, in the smooth limit,

the jump operation of (10) omits the exotic spheres. We would like to have a different

situation: the jump operation in the quantum regime, in the process of its reduction to the

classical smooth regime, should go through the exotic S4 if they existed. Certainly, if they

do not exist, it is impossible, but the construction could still not have excluded exotic S4s

in principle. This is because alleged exotic S4s are well-suited for being the gravitational

instantons, and even if exotic 4-spheres do not exist, the jump operation, not excluding

their existence, would also be opened for another kind of instanton phenomenon. We

need to modify the jump operation in (10) so that it does not exclude exotic 4-spheres. The

simplest proposal is to take two 4-dimensional hemispheres of S4 and glue them by the

jump operator f̃ : R4
B1
→ R4

B2
such that g

(1)
µν is the 4-metric on one open hemisphere in

VB1 and g
(2)
µν on the other in VB2 where f̃ : R4

B1
→ R4

B2
and f : B1 → B2 is the jump or

gluing operator.

f : g
(1)
µν dxµdxν

︸ ︷︷ ︸

on R4
B1

in VB1

→ g
(2)
µν dxµdxν

︸ ︷︷ ︸

on R4
B2

in VB2

. (11)

The above formula can have the smooth S4 limit in V. This follows from the internal

construction of VB in V and, from the other side, the canonical embedding V →֒ VB so

that V →֒ VB →֒ V (see Theorem 1). From this it follows that the V-limit of f in (11)

is f : R4 → R4 which in the smooth limit should give rise to a gluing diffeomorphism

R4 → R4. The following immediately follows.

Lemma 8. The smooth V-limit of (11) cannot be any smooth exotic S4.

The reason for this is that any such gluing by diffeomorphisms of R4 has to be factor-

ized through the gluing of S3, which is a diffeomorphism of S3. If there were nontrivial

classes of these diffeomorphisms, then exotic S4 would result. However, the Cerf result

discussed before forbids this possibility. This closes the proof of Lemma 8.

In general, given a smooth manifold Mn in V with a smooth atlas U = {Ui ≃ Rn, fij :

Rn → Rn, i, j = 1, 2, . . . } there corresponds a generalized atlas U ∗ = {Ui ≃ Rn
Bi

, f̃ij : Rn
Bi
→

Rn
Bj

, i, j = 1, 2, . . . }. Conversely, we call the manifold (Mn,U ) in V a smooth V-limit of
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the generalized manifold (M̃n,U ∗). Switching between a generalized manifold and the

corresponding manifold in V, thus taking the V limit, is based on Theorem 1.

To allow for exotic S4 and gravitational instantons in dimension 4, we should further

modify (11). Observe that the standard S4 can be characterized as such a smooth 4-manifold

S̃4 homeomorphic to S4 such that every smooth atlas Ũ of S̃4 is incompatible as a smooth

atlas with the 2-element good atlas U2 as in (11). This means that indeed S̃4 would not be

diffeomorphic with the standard S4. Gluing just two standard open hemispheres as in (11)

results in the standard smooth S4 and also if there is a smooth open cover Ũ of S̃4 smoothly

equivalent to U2, then S̃4 would have to be the standard one. The compatibility of atlases

or smooth covers we understand as in the maximal smooth atlas for a manifold Mn, which

is the smoothness structure of Mn.

Lemma 9. Let Ũ be a smooth, good open atlas of S̃4. If there does not exist any Ũ such that |Ũ | = 2,

then S̃4 has to be exotic S4.

Remark 16. It can be stated equivalently as: if a maximal smooth atlas on S4 is not compatible

with any two-element good cover of it, then S4 has to be exotic.

Now, the modification of (11) is obvious. Let U ∗ = {Ui ≃ R4
Bi

, f̃ij : R4
Bi
→ R4

Bj
,

i, j = 1, 2, . . . } be a generalized cover of S4 with the jump operators { f̃ij}. Let a V-smooth

limit of U∗ be U = {Ui ≃ R4, fij : R4 → R4, i, j = 1, 2, . . . } and U∗ = {Ui, i = 1, 2, . . . }, then

Corollary 7. If smooth V-limit of U ∗ exists as a smooth manifold (S4,U ) in V and if

∀U an open cover of S4 |U ∗| > 2

then S4 has to be an exotic smooth 4-sphere.

We have a simple criterion for detecting exotic S4, but it has serious drawbacks. Up to

now, no single cover of S4 has been detected as being unable to be reduced to a 2-element

standard one. Even more, no one knows whether such covers exist at all (e.g., ref. [21]).

On the other hand, if they exist and are not reducible to the 2-element standard cover,

we should check the property for any such good cover. The criterion is a theoretical tool.

Nevertheless, it can be useful in understanding quantum-classical regimes. In the following,

we apply the criterion to distinguish the alleged exotic S4 in the 4-dimensional semiclassical

Euclidean QG.

- [QMp(κ)] We call a manifold Mn locally QM-supported of degree κ when for each

open U of Mn and for the local scalar curvature κp < κ at p ∈ Mn, it contains among

its local charts {U1, U2, U3} such that U1 ≃ R4, p ∈ U2 ∩U3, and U2, U3, are smooth V-

limits of R4
B1

, R4
B2

in VB1 , VB2 correspondingly, and for κp > κ the charts {U1, U2, U3}
are {R4, R4

B1
, R4

B2
} correspondingly, where B1, B2 are two maximal incompatible local

contexts in L (different maximal local Boolean algebras of projections).

- [fQMp(κ)] We call a manifold Mn faithfully locally QM-supported of degree κ if it

is locally QM-supported of degree κ and different R4
Bj

lead to different {Uj} in the

smooth V-limit in every open cover of Mn.

- [QM(κ)] We call a spacetime manifold Mn completely QM-fragmented of degree κ if it

is faithfully locally QM-supported of degree κ and for each p ∈ Mn κp > κ.

Remark 17. The conditions may seem artificial; however, the fragmentation of spacetime for κ > κ0

is performed such that a patch, say Uα ⊂ S4 is thrown into (at least) two pieces since we require

there should exist R4
Bi

and R4
Bj

nontrivially related by certain automorphism of B. The relation
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R4 → R4
B is always trivial as is R4 → R4

Bi
→ R4. Without any nontrivial phase between R4

Bi
and

R4
Bj

, the patches can be reglued identically (see Appendix A for the explanation of this important

point) and are not the separated fragments of spacetime. That is why we are taking in QMp(κ) and

fQMp(κ) the three fragments as the minimal number of them.

Theorem 4. If exotic S4s exist, then the smooth V-limit of a completely QM-fragmented 4-sphere

is exotic S4, and the spheres are gravitational instantons in dimension 4 (as gravitational solutions

of Euclidean GR).

If exotic S4s do not exist, then the smooth V-limit is not any smooth manifold, and it is a pair

of families ({R4
j }, { fij : R4

i → R4
j }) in V where fij are diffeomorphisms.

Proof. First we need to show that the smooth V-limit of QM(κ) S4 is a pair of families

({R4
j }, { fij}) as in the theorem. However, this follows directly from the definition of a

smooth V limit and the discussion of it given in Appendix A. More precisely, the frag-

mentation of S4 in V is performed, and the family of R4
Bi

s in VBi s with some new relative

phases coming from Aut(B) is added. These new nontrivial phases lead to the noniden-

tity diffeomorphisms emerging in the V-limit (see Appendix A). The resulting families of

({R4
i′}, { fi′ j′} in V can still be a smooth cover of the initial smooth S4 or can be a smooth

cover of another smooth manifold S̃4 in V. The conditions in the theorem indicate an

exotic S4 (if there exists any) as S̃4 since the condition for the completely QM-fragmented

4-sphere assumes that there is a certain level κ on which it holds true; hence, [QM(κ)]

holds true, κ > 0. This fulfills the condition for Corollary 7 to be true. The nonsmooth

(nonexotic) case is given by the construction stage in which the automorphisms of B result

in diffeomorphisms fij in the limit, but no smooth S4 supports this. This finishes the proof

of Theorem 4.

In general, we have two cases; in one, there exists a smooth manifold in V as a smooth

limit of QM(κ) S4 and in the second, the limit is not a smooth manifold, even though each

R4
Bi

gives rise to the smooth copy of R4 (see Appendix A). In condition QMp(κ) above, we

have directly referred to the minimal number of local patches in any smooth atlas. This

can be better understood by considering R4 ≃ S4 \ {pt.} ≃ S4 \ D4 and requiring that

there be at least two incompatible local patches in any smooth atlas of R4. Incompatible

patches mean that one is the smooth V-limit of R4
B1

and the other R4
B2

where B1, B2 are

two maximal Boolean algebras of projections from L(H) containing different projections

(irreducible to the single one, thus incompatible). Thus, such a smooth R4 interprets the

QM incompatible patches cannot be the standard smooth R4 since its maximal smooth atlas

(the smoothness structure) is not compatible with any one-patch standard cover. Currently,

mathematicians recognized two families of continuum infinitely many exotic smooth R4s,

large R4s, and small R4s [22]. Large are distinguished by the property that they are not

embeddable smoothly into the standard R4, while small can all be embedded in R4. Now,

if the exotic R4 obtained here were any large or small known exotic R4s, then adding a

point in infinity gives the standard S4 [22].

Lemma 10 ([22]). The one-point compactification of any large or small exotic R4 is the standard

smooth S4.

It follows that if exotic S4 exists, then removing a point leads to exotic R4, which is

not any known existing exotic R4. In particular, there would exist an exotic D4 ≃ S4 \ D4

such that D4 ≃ R4 is not compatible with a smooth D4 with a single element atlas. Thus,

requiring both, D4 has at least two elements in each smooth atlas (i.e., the atlas compatible
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with the maximal smooth atlas) or S4 has at least three elements in every smooth atlas,

leads to the same conclusion that such S4 has to be exotic.

Remark 18. The approach favors the existence of exotic S4s, in which case gravitational instantons

are naturally represented. If such S4s do not exist, the smooth V-limits were not any smooth

manifold, which indicates on singular nonsmooth description that could have been experimentally

distinguished from the smooth case.

Consider an operator F : (S4,US4) → {R4
i flat, i = 1, 2, . . . } where US4 = {Ui, i =

1, 2, . . . } is a smooth good cover of S4 with Ui ≃ R4 flat, i = 1, 2, . . . and F is a kind of

forgetful operator that completely erases the curvature of S4. Thus, gluing diffeomorphisms

fij : Ui ∩Uj → Ui ∩Uj on S4 are incompatible with the flat R4 system, which supports a

flat merely global R4.

4.3. Heisenberg Uncertainty and the Fragmentation of S4

We have found a general criterion ensuring that the smooth S4 reglued from the local

R4
B patches is exotic or not (Lemma 9, Remark 16, Corollary 7). However, it appears that

something is missing to ensure that the fragmentation of S4 due to the high curvature and

density of energy leads to more than two pieces rather than just two. The intuition from

physics where the disintegration of spherical bodies due to the growing internal pressure

in real experiments most probably leads to such many fragments cannot be applied directly

here, i.e., it could be, but it is not enough. This important feature has a more fundamental

explanation which is already indirectly present in the previous sections. The traces of

the behavior of spacetime in the extreme gravitational fields can already be seen in the

Heisenberg uncertainty relation (HU), which needs infinite-dimensional Hilbert spaces.

For the position x̂ and momentum p̂ operators, HU states

[x̂, p̂]ψ = iℏψ, ψ ∈ H; or in terms of the standard deviations σx · σp ≥
ℏ

2

where x, p are three-dimensional objects (3-component vectors). Including t-E uncertainty,

it can be written down in 4-vector notation and the Minkowski metric as

σµ · σν ≥
ℏ

2
δ

µ
ν , µ, ν ∈ {0, 1, 2, 3}, σµ = (t, x), σν = (E, p).

Now let us consider growing the curvature of a 4-sphere due to the growing of the gravita-

tional energy density and reaching the Planck scale (both with size and energy) with the

resulting disintegration. There are two factors governing this process: one is the classical

growth of the gravitational density of energy, and the second is the quantum uncertainty

relation. The classical indicates, in particular that to measure the position of a form of

matter trapped in the smaller and smaller sphere requires bigger and bigger energy, i.e.,

the infiltrating waves have to have very short lengths. QM places a limit on momenta,

which makes them highly undetermined, according to HU. We propose to go a step further

and consider the HU as an indication that position space and momentum space become

fundamentally independent in the Planck regime. The recipe is given in Lemma 7 (see also

Corollary 6 and Remark 15):

[FOLIATION] In the singular regime of spacetime (the Planck regime), S4 is

fragmented into fragments which become foliated farther into R4, TR4 as local

leaves. Still, the leaves remain connected by the QM Fourier transform of the

operators Q and P.
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Let us assume that the 4-sphere is (in the Planck regime) represented by just two

fragments—local flat R4s—with additional Aut VB carrying the gravitational energy. Ac-

cording to FOLIATION above, the fragment R4 of S4 is further foliated into the pair

(R4, TR4) which for the flat standard case is isometric to (R4,R4). Thus, we conclude

The minimal number of local patches of any fragmented 4-sphere is never smaller than 3.

The fragments of spacetime lose their causal connections and become separated but

can still be described by different QM contexts (such as Q and P operator contexts). The

proper perspective on such fragmented spacetime is thus the product of QM contexts

∏α{context inH(∞)}α which in the classical V-limit gives rise to

∏
α

{context inH(∞)}Bα −→∏
β

UBβ

V-limit−→ ∏
β

Uβ where UBβ
= R4

Bβ
in VBβ and Uβ ≃ R4 in V

and these last local patches describe the smooth spacetime manifold locally.

4.4. Gravitons and Smooth 4-Spheres

From the point of view of topology, 4-spheres naturally represent the universal

medium connecting any topological manifold M4 and N4. This is expressed in the following

homeomorphism [23] (Lemma 2.1)

M4#kS4 ≃ N4#lS4, k, l ∈ N

of which the special generic case is

M4#S4 ≃ M4.

Here # is the connected sum of two manifolds. Reading from right to left, this means the

possibility of creating a 4-sphere from M4 but following the opposite direction, i.e., the

absorption of S4 by M4. This suggests that the interchanging 4-spheres might be a carrier

for some interactions. In fact, the formalism developed in this paper indicates that smooth

4-spheres might indeed be the geometric counterpart of gravitons in QG.

The above relations are extended over smooth cases, and if exotic S4s exist, there

would be essentially new phenomena. Let us again consider the fragmentation of S4 as

emerging from spacetime. If the final stage of the fragmentation were a family of flat R4 s,

the curvature, and hence the density of gravitational energy, would disappear. However,

given the family VBs of ZFC models and the corresponding family of objects, R4
Bs the

relative phases from AutB between the models VBs can carry the energy loss. That is why

we propose that gravitons (the regime of the fragmented spacetime is certainly outside

of GR) are responsible for the deficit of gravitational density. Preserving the energy is

not just a classical phenomenon; it is extended over the quantum regime, as is also the

case with the preservation of angular momentum. So far, our model allows for partial

fragmentation of spacetime and then the total fragmentation of S4 at the Planckian regime

of densities. This fragmentation is due to the emission of gravitons. The inverse process

of retrieving smooth S4s from flat R4 pieces is due to the absorption of (a certain number)

of gravitons. A simple setting like that is possible due to the simultaneous extension

of GR and QM, as presented in the previous sections. A graviton corresponds to the

collection {hα} ⊂ Aut B. Based on Lemma A1 in Appendix A, we can build the example

illustrating a simple (linear approximation of the) spectrum of gravitons in terms of the

relative jumps in the scalar curvature of S4
t . Therefore, there is a family {S4

r , r ∈ R>0}
of standard S4 with radii r and S4

r1
≃ S4

r2
are diffeomorphic for any r1, r2 > 0 and fr1r2 :

S4
r1
\ D4

r1
→ S4

r2
\ D4

r2
are the induced diffeomorphisms of R4, i.e., fr1r2 ∈ DiffR4. Let
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GD
t (A) = {eitADe−itA ∈ Aut B, t ∈ R>0} be a family of gravitons given by the 1-parameter

family of automorphisms of B (see (A4)). Let us take k =
√

12/t2 = 2
√

3
t and assume that

A, D do not commute, [A, D] ̸= 0. Then it should hold.

GD
t (A)(R4

k′) =







R4
k′ , for k = k′

R4
t , for k > k′

so that GD
k (A)(R4

k) = R4
k .

Here R4
k ⊂ S4

k so that they both have the same constant scalar curvature. Analogous

actions in 4-spheres read

GD
k (A)(S4

k′) = S4
k′ , for k = k′ and GD

k (A)(S4
k′) = S4

k , for k > k′.

This example also shows what the connection of geometry with the quantum gravity

regime might be like. However, the example is a kind of ‘first-order linear approximation’ of

the graviton interaction with geometry with the observed scalar curvature: the graviton can

change the scalar curvature of R4 (S4) globally, leading to new constant scalar curvatures.

As we will see shortly, working with the constant scalar curvatures can be considered to

be a certain approximation to the full-fledged description of interacting gravitons. This is

analogous to a tree approximation in the terminology of quantum field theory.

In order to understand a fully fledged description of gravitons in this setup, we have

some tools which we have already dealt with. These are basically the appearance of exotic

S4s as in Theorem 4 and the discussion of exotic S4s as gravitational instantons in Euclidean

QG. Certainly, provided that such spheres exist at all. If they do not, we are left with

the hybridized presentation of instantons as containing the diffeomorphic local patches

to R4 and transition functions which cannot be fully translated into a smooth structure

on a 4-manifold (like S4) in V. Thus, in this case, an irreducible automorphism of B has

to be present, which would correspond to a graviton. In this way, a graviton would be

related to a gravitational instanton and a certain automorphism of B. However, there is yet

another role assigned to gravitons in this setup. They represent the Fourier transform of

the observables (self-adjoint operators) onH(∞) a separable, complex, infinite-dimensional

Hilbert space, i.e., they represent the change in the quantum local context in H(∞). The

Lemma 11 below explains this.

Let [A, D] ̸= 0 where A, D are self-adjoint operators on H(∞), and let BA, BD are

two measure algebras of projections with spectral resolutions of A and B correspondingly.

Recall that we say then that A ∈ BA and D ∈ BD. Since BA, BD are complete maximal

Boolean algebras of projections, they comprise all commuting with A and all commuting

with D self-adjoint operators (Lemma 3). Then, given a transform: hAD : BA → BD, we

have the corresponding transform on the commuting algebras of the operators in BA and

BD. Let us denote it hA(D).

Lemma 11. Let [A, D] ̸= 0 where A, D are self-adjoint operators onH(∞). There exists hA′(t, D)

which for each t ∈ R> defines the isomorphic transform of the algebra of operators commuting with

A onto the algebra of operators commuting with D. The operator A′ is a certain self-adjoint operator

in BA′ .

This lemma follows directly from the proof of Theorem 2, which is rephrased here.

Let us turn to Lemma 3, which shows that any family of self-adjoint commuting operators

{A
(1)
α } is such that ∃α A

(1)
α = A and that the family determines an algebra B′(1) comprising

all projections that appear in the spectral families of all A
(1)
α . Let B1 be a complete maximal

Boolean algebra of projections in L(H(∞)) that extends B′(1). Similarly, let {A
(2)
β } be such
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that it contains D and determines B′(2) that extends to B2 in L(H(∞)). Please note that B2 is

an isomorphic copy of the previous maximal complete Boolean algebra B1 (see Lemma 6

and Corollary 5). Now, it follows that the self-adjoint operator spaces, determined by

such isomorphic algebras of projections, are isomorphic. In fact, there exists a self-adjoint

operator A′ ∈ BA′ , such that

A(D′) = eitA′D′e−itA′ , D′ ∈ BD and A′ ∈ BA′ and A(D′) ∈ BA.

This should be read that while D′ spans the operators from BD and for fixed A′ ∈ BA′ , this

spanning generates the operators A(D′) from BA. The change in the parameter t ∈ R>0

gives rise to the automorphisms of the operator algebra of the operators from BA. Thus,

A(D) = hA′(t, D) is the family of the isomorphisms as in the statement of the lemma,

which finishes the proof of Lemma 11.

Finally, we turn to yet another property of gravitons, namely to the construction which

disturbs 4-metrics

gµν = g0
µν + hµν

where g0
µν is the undisturbed metric and hµν the disturbance due to gravitons. This is quite

important, at least in the semiclassical limit of the theory, since gravitons should correspond

to the particles of spin 2. The approach developed here deals with the absorption of

gravitons by the 4-spacetime region in the 4-disk D4 (open but involved in the bounded

domain), and if it is flat, it results in the curving of this disk. Eventually, subsequent

absorption of gravitons curves the disk into extremely high values, which leads to its

fragmentation. The fragmentation of the disk into (at least) two subdomains with the

relative phase from the Aut B (see the previous sections and Appendix A). These fragments,

together with the additional fragment of spacetime, constitute S4. Thus, equivalently, we

see this process as fragmentation of the 4-sphere such that the nontrivial phase corresponds

to a graviton. If the graviton, i.e., GD(A, t), would be emitted by this system, this leads

to the inverse process of gluing the local patches back into S4. However, gluing cannot

result in the standard smooth S4 (see Theorem 4). If there exist exotic S4s, they are perfect

candidates for being the final stage of fragmentation and then re-gluing. Therefore, assume

that exotic S4s exist. Then, they correspond to the gravitational instantons in dimension

4 and describe the dominant part of the contribution in the semiclassical gravitational

Euclidean path integral (see the discussion of (9)). Now, the initial open 4-disk, after re-

gluing it into spacetime, has to be exotic R4-this is the interior of the (still hypothetic) 4-disk

embedded into spacetime.

Thus, the interaction of 4-spacetime with gravitons leads, in the smooth V limit

(semiclassical approximation), to disturbing the smooth metric of spacetime by

the metrics of nested 4-disks, provided that exotic S4s exist.

Remark 19. Again, we should emphasize that the existence of exotic 4-disks is equivalent to the

existence of exotic 4-spheres, and the exotic R4s included in such disks, or S4s, are completely

different (unknown so far) than any known exotic R4s (see ref. [22] and Lemma 10).

The important feature emerges (still provided that exotic S4
e s do exist). The disturbed

metric cannot be eliminated by any local diffeomorphism connected to identity. The exotic

S4 is not diffeomorphic to the standard 4-sphere, but also the disturbed exotic R4 ⊂ S4
e

cannot become the standard R4 by any local diffeomorphism.

The interactions of gravitons with spacetime in the classical limit result in the

change in the smoothness structure of the local 4-domain in spacetime (the interior
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of the exotic disk). This modified smoothness of spacetime cannot be removed by

any local diffeomorphism of spacetime.

Our concept of a graviton is a multifaceted object. Its interaction with spacetime, and

probably the matter content of it, remains the specific imprint in the local smoothness

structure of spacetime. The fluctuation of metric due to this is the source of gravitational

waves. As we commented above, the gluing process of the fragments of S4 is due to the

emission of graviton carrying the nontrivial automorphism of B.

Before we take a closer look into interactions with the presence of gravitons, let us

discuss the basic property of exotic spheres in higher than 4 dimensions, which, however,

is not known whether it holds for S4 (even supposing the existence of exotic S4). This

is the crucial fact that given an exotic sphere, Sn, n > 6, there always exists the inverse

exotic sphere, S̃n
e (in the same dimension) such that Sn

e #S̃n ≃ Sn where the last n-sphere

is the standard smooth sphere. This is necessary if we want to consider exotic spheres as

gravitational instantons (cluster decomposition; see (9) and the discussion around it, and

ref. [19]).

However, even though exotic S4s may not exist, the construction via Boolean models

of ZFC ensures that smooth V-limit is given by a hybridized collection of R4
Bα

and nontrivial

automorphisms of VB. Consider a situation where we have just one fij ∈ Aut B. Since

Aut B is a group, and there exists an inverse automorphism f−1
ij that ensures that this

smooth hybridized limit V has the property required for instantons. Whatever the family

of automorphisms in the smooth V-limit is, there always exists the corresponding family

of inverse automorphisms. If exotic S4 exists, the smooth V limit of fragmented 4-sphere

would be one of the exotic S4. These two cases are addressed in Theorem 4 in the previous

section. If it happens, then it is still possible that exotic S4s do exist, but the instanton

property would not hold since S̃4 = (S4
e )
−1 does not exist. Also, in this case, the hybridized

smooth V-limit can stop just before reaching exotic smooth S4, and such truncated prelimits

always have inverse counterparts.

In the remaining part of this section, we are assuming that exotic S4s exist and they

have the instanton’s inverse property. Let us analyze a way in which gravitons could

interact with spacetime and instantons (which are exotic 4-spheres). So far, we were

approaching gravitons in the classical limit as exotic S4s (or hybridized versions of it),

which come from smooth V-limit of fragmented S4 and 4-spacetime. We think that a

more accurate geometric representation for gravitons would be exotic disks (open) sitting

in S4
e s: D4

e ≃ R4 ⊂ S4
e which reflects the fact that D4

e ∪ {pt.} ≃ S4
e . Please note that

none of the known exotic R4 could be such (interior) of the exotic D
4

(see Lemma 10 and

Remark 19). Figure 1 shows how the interactions of gravitons and the local geometry of

spacetime could be like in the presence of gravitational instantons. In Figure 1a, there

is a simplified representation of spacetime manifold M4 and the standard S4, which are

represented by the disconnected sum of both. However, their fragmentation is performed

due to the super-high density of gravitational energy and curvature. The fragments do

not just independently exist in some abstract space—they acquire the relative phases in

Aut B such that after taking the smooth V-limit of S4 becomes exotic S4. Further gluing is

the connected sum of this exotic S4 and M4. The seed for the exoticness of S4 lies in the

exotic 4-disk. In the figure, this is represented by the rectangle area in a) engulfing two

standard disks. Since they have a relatively nontrivial phase, their smooth V-limit results

in exotic 4-disk as being a part of exotic S4, as in Figure 1b. Finally, in Figure 1c, there is

the connected sum of the exotic S4 (an instanton) and M4. The role of the exotic disk is

emphasized since this represents a graviton. We can briefly summarize by saying that the

connected sum of spacetime and an instanton is by interchanging a graviton. This exotic

connected sum is possible but can also not be formed. Possibly a kind of equilibrium should
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be there between instantons forming the connected sum and separated. If the instanton

remains separated off spacetime, then from the point of view of a spacetime observer, the

effects of instantons are not detectable, and the only their contribution would be to the

physical gravitational Euclidean path integral (9). This corresponds to the left-hand side of

Figure 1b). The exotic connected sum is in Figure 1c). Thus, taking the disconnected sum of

M4 and S4 (the standard one) as M4 ⨿ S4 we can represent the process in Figure 1 as

M4 ⨿ S4 G−→ M4
eloc#S4 or M4 ⨿ S4 + G −→ M4

eloc#S4

where +G means just the presence and the absorption of graviton and M4
eloc is a spacetime

manifold with locally embedded the interior of an exotic 4-disk. While the process termi-

nated on the disconnected instanton, Se leaves M4 with a hole after removing the disk. The

boundary of it is a non-traversable boundary of spacetime, i.e., a singularity.

The possibility of approaching a graviton G in our approach by metric fluctuations

in local coordinates builds a link between G and spin-2 fields and thus partially justifies

the appearance of such G in the quantum regime of gravity. Let gS4

µν be one of the smooth

standard metrics on S4. Then, in the local coordinates, we can express the fluctuation of the

metric due to the presence of a graviton since any graviton is represented by an alleged

so far exotic disk D4 such that its interior is an exotic R4 (still alleged), which 1-point

compactification would lead to exotic S4 (if there exist D4 or R4 as above). Let g̃
S4

e
µν(x) be a

smooth exotic metric on exotic S4
e in the local coordinates on S4

e . From the point of view of

the standard smoothness on S4, the metric g̃
S4

e
µν(x) is a continuous function on S4 although

in the exotic smooth structure on S4
e it is a (exotic) smooth function. Assuming that a

graviton G interacts as geometric objects with the standard S4 say S4 absorbs G, we can

find the resulting geometry as exotic S4
e . Thus, the direct coordinate representation of G as

the fluctuation Hµν of the metric would follow

g̃µν(x)S4
e (x) = gS4

µν + Hµν(x) (12)

where the fluctuation Hµν is a continuous function on S4. In this way, any matter or energy

field can interact with gravitons via the background metric on spacetime.

Now, we can address the universality of graviton, i.e., its ability to interact with any

energy or matter. The description follows the classical and quantum regimes. Let φµ be

some physical field in spacetime. We do not precisely specify its spin or nature; it is just

defined on a region of 4-spacetime. φµ couples to the metric gµν in the usual way, such as

lowering or lifting the indices also in curved spacetime. Let us assume that the spacetime is

Euclidean. Then the interaction of graviton Hµν with φµ is by disturbing the base metric of

spacetime according to (12) so thus after the interaction, the field φ̃µ is written down in the

modified exotic metric. More precisely, there exists a bounded 4-domain containing a 4-disk

D4 on which the field φµ(x) is defined, x ∈ R4 ⊂ D4. After the interaction with graviton,

the disk becomes smooth exotic D4
e , and the field is written down on exotic R4 ⊂ D4

e .

This may seem like a model for a classical interaction of the graviton with a particle;

however, the crucial factor is the exotic smoothness carried by the graviton and the resulting

exotic smoothness of the interaction domain of spacetime. Such a change in the smoothness

structure is forbidden within GR since it is like changing the spacetime manifold to another

nondiffeomorphic with the first. To understand that it is a quantum process, let us turn

to the model of gravitational instanton as the tunneling process. In this approach, the

geometry of an instanton is represented by an exotic 4-sphere, which results from the

interaction of the standard open 4-disk with the exotic one (the graviton, see Figure 1); thus,
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the resulting instanton corresponds to the tunneling process between the two drastically

different 4-geometries, exotic and the standard one.

The field Hµν(x) in (12) is continuous (nonsmooth) in the exotic smoothness structure

or is continuous in the standard smoothness structure of the field. The exotic structure

is localized on the disk, which can be taken of the Planck size, and such disks can be

localized smoothly in the spacetime manifold. The resulting fluctuations of the metric that

are outside of GR have quantum gravitational origins, which might also have cosmological

implications. If exotic 4-spheres do not exist, the fluctuations cannot be seen as smooth

processes and this would have a more abrupt action on spacetime structure. One might be

tempted to try to experimentally distinguish between these two scenarios, one supporting

the existence of exotic S4s and the other denying their existence. However, then such

verification would be an indication of whether (if yes) Nature is referring to exotic S4s

even before finding their mathematical proof. As we have already noted, the change in the

smoothness on R4 or S4 cannot be described within GR, and thus, the semiclassical gravity

with instantons seems more appropriate. However, the semiclassical approach here is the

smooth V limit of a deeper QM-based description (see Appendix A).

Figure 1. A schema for the interaction of a graviton with the local geometry of spacetime. (a) The

interaction of a graviton (with suitable energy) with spacetime enables the separation of the standard

fragment of S4, which after absorption of the graviton (gluing the exotic open 4-disk) becomes exotic

S4—an instanton. Exotic 4-disk is present in the middle rectangular domain and represents a graviton.

The minimal number, i.e., 2, of local patches of D4s is schematically shown. The graviton (exotic

open 4-disk) is glued into the remaining part of the standard S4, which gains the exotic smoothness

structure on S4. (b) While the instanton S4 emerges, the spacetime regions gains a non-traversable

border—the singularity is formed. (c) The instanton is glued to spacetime, giving rise to the exotic

4-region, which corresponds to the quantum gravitational fluctuations.

5. The Negation of the Tsirelson’s Conjecture and V
Bs in QM

In the first part of the paper, we have found a strong relation between QM and GR

based on models of ZFC, especially Boolean-valued models VB. However, the picture
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of retrieving the 2-valued level from VB is far from complete. In the case of nonatomic

Boolean algebras such as B (the measure algebra), the way to a 2-valued model from VB

goes through the nontrivial forcing procedure. This particular passage is represented by

f ↓ in Appendix A ((A1), (A2), (A5), (A6)). Forcing is a purely set-theory technique but

also a tool for distinguishing finite- and infinite-dimensional Hilbert spaces. For finite-

dimensional H the forcing would be trivial, i.e., nothing essentially new is added in the

extended model M[G] since M[G] ≃ M where M is the base model (which can be V as

well). This is so because the maximal Boolean algebras of the projections are atomic for

dim(H) < ∞. In the approach to QM presented here on the ∞-dimensional H(∞), the

model we started with is V and the maximal complete Boolean algebra of projections B is

the atomless measure algebra, so thus the forcing V[G] ≃ VB/Ult is the random forcing

which is nontrivial (forH(∞)). This last means that certain sets, not present in V, are added

to V as new ones (this is in the sense that these new sets extend the universe V with the

Boolean value 1). In ref. [9], we studied the problem of whether these new sets might

be physical in the context of QM for infinite-dimensional Hilbert spaces. We found there

(see also refs. [24,25]) that these new sets could carry a new kind of quantum random

behavior, and forcing procedure is strongly connected with the negation of Tsirelson’s

conjecture, ¬TC, the negation of which has been recently proved to be true in QM onH(∞).

Currently, we know that ¬TC can hold only for infinite-dimensional Hilbert spaces: for

any finite-dimensional spaces and their factorizations, TC is true, and ¬TC is false.

Remark 20. Forcing in set theory is a procedure for proving the dependence or independence of

certain sentences or formulas in the ZF language from the axioms of ZF or ZFC. The proofs are

usually relative in the sense that given a model M of ZF(C) and a property φ (φ is a sentence in

the first-order language of ZF) and finding the validity of φ in M, M ⊢ φ. Then, one builds the

extended model M[G] where the property does not hold, M[G] ̸⊢ φ. Since both M and M[G] are

models of ZFC (all theorems of ZFC are valid in both models), the property φ is not provable in

ZFC but rather φ is logically independent on the axioms of ZFC (φ and ¬φ both are compatible

with ZFC or ZF). This forcing procedure was invented by Paul Cohen in 1963 when he showed

the independence of the continuum hypothesis on the ZFC axioms and the axiom of choice on ZF

axioms. Cohen, in particular, builds a forcing extension M[G] of a certain countable transitive

model (CTM) of ZFC, M, such that M ⊢ CH and M[G] ̸⊢ CH. Over the years, forcing techniques

have been developed significantly and become a separate branch of mathematics with a huge number

of applications in many mathematical disciplines.

The application of forcing to physics, especially to QM, is based on genericity, which is

complementary to logical independence. Let M[G] be a certain forcing extension of a model

M. Genericity can be seen as the real or physical process of the extension of the universes of

sets by generic sets or ultrafilters G with the property that G /∈ M but G ∈ M[G]. Forcing

represents a natural mechanism for the changes in ZFC models, the dynamics of which can

be included in physical theories. Usually, there are very rich families of sets not in M which

are ‘added by forcing’ and appear in the extended model M[G] along with G (like a perfect

tree with many reals added into M[G] alone with a single Cohen real). However, there is an

obvious difficulty with adding new sets to V: the universe V contains ‘all’ sets, so adding

a set G to V which was not previously in V, seems pointless, as seems V ⊊ V[G]. The

problem has a solution that is based on Boolean-valued models VB construed entirely in V,

and the extensions of V are now possible with Boolean value 1. The appearance of VBs in

V explains the gravitational fluctuations in spacetime in the present paper but also allows

the building of random sequences of the QM outcomes, which show different behavior

(correlations) for the product caseHa ×Hb than for the nonproduct caseH(∞). Thus, the

correlations generated by the sequences falsify Tsirelson’s conjecture [9].
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Remark 21. Tsirelson’s problem was originally a conjecture (TC) that the sets of finitely many

correlations of independent measurements of commuting observables on a Hilbert space H of a

quantum system are always reproducible by the topologically complemented set of all finitely many

independent measurements on the joint system with the product Hilbert space Ha ×Hb. This

conjecture has been shown to be false [24], i.e., the product case does not reproduce all correlations

which can appear on the entire, necessarily infinite-dimensional, Hilbert space H(∞). Tsirelson’s

conjecture is known to be equivalent to the Connes embedding problem for operator algebras, already

stated in 1976 by Alain Connes [26,27].

A. Sequences that falsify TC have been ‘detected’ in theory by VB random forcing. Now,

forcing emerges in the context of the quantum approach to gravity and spacetime (e.g.,

Equation (A6) presented here and Appendix A). We think that this is not just a pure

coincidence but rather an important feature of the relationship between QM and GR.

¬TC shows that there is a vast QM domain, connected with infinite dimension of the

Hilbert spaces H∞, which presumably is not well-explored, both theoretically and,

certainly, experimentally. ¬TC holds true necessarily only on infinite-dimensional

Hilbert spaces, which is out of reach of the current experimental effort. The situation

resembles this known from the attempt to detect directly the infinite dimension of

H(∞) in finitely many correlations in any quantum experiment. Although theoretically,

this has been shown to be possible, the experiments showing this are currently not

known [28]. Therefore, the infinite dimensions ofH opens a rich new realm for QM

studies, but it has to await any experimental verification. Nevertheless, researchers

have all the right to develop theoretical scenarios regarding that matter at least in

order to understand its importance.

B. However, another important aspect of infinity in QM is the way how we construct

infinite tensor products (ITP) of Hilbert spaces or operators. This is certainly a way

to infinite-dimensional Hilbert spaces, and this belongs to ‘classical’, i.e., developed

already by John von Neumann, the domain of QM [29]. Currently, we know many

different ITPs that can also lead to separableH(∞) instead of nonseparable as construed

by Von Neumann himself. Also, in proving ¬TC we have construed certain separable

H(∞) by the use of Boolean models technique [9].

C. Connected to this is the characterization of the generic sequences of QM outcomes

used to prove ¬TC from the point of view of quantum randomness. It appeared

that the sequences carry enhanced randomness compared to the known from the

theory of algorithmic randomness notions of 1, 2, . . . , n, . . .- or ω-randomness. This

new strong kind of randomness is hypothesized to be an upper limit for quantum

computers generating random numbers, similarly as the true randomness becomes

a limit for currently working classical computers, which generate quasi-random

numbers and sequences.

D. When studying the relation of GR and QM, it is a natural approach to deal with

increasing the number of degrees of freedom in QM or the number of particles such

that in the limit, quantum field theory becomes closer. In the approach presented

here and in the context of ¬TC, we should again readdress the procedure of attaining

infinities from QM, and the indication could be the constructions of ITPs or H(∞)

which were successfully applied in the TC problem. Therefore, the VBs technique and

the relation to V would be an indication of how to proceed.

The points A–D above and the TC problem are not in the main line of issues of the

paper, and we do not elaborate on them in more detail; however, these topics naturally

correspond to the constructions here and show where the presented approach to QG might
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be situated. This also shows the relevance of future efforts in these directions for the QG

program. Let us close this section by the following hypothesis (see ref. [8]).

Experimental verification of hyper-randomness of the sequences negating the TC

can be as difficult as experimental observing effects due to QG.

Still, it does not mean it is impossible at all. As is often the case in the history of science,

breakthroughs and inventions can change the picture quite rapidly. Any progress in either

of the two fields, QG or hyper-randomness in QM, would improve our understanding of

the other. Anyway, we do not have a good understanding of QG, and we eagerly need

new ideas, even highly theoretical ones. The way in which infinitely many dimensions or

degrees of freedom are attained in (the extension of) QM is one such valuable indication,

which we have learned from the negation of TC.

6. Discussion

GR and QM are extremely successful physical theories in the domains of their appli-

cability. Any modification of each of them is thus highly constrained experimentally. On

the other side, there is a vast unexplored region of ‘infinite constructions’ in QM and thus

in GR. The notable examples are Tsirelson’s conjecture, recently disproved, the infinite

dimension of Hilbert spaces detected in a finite set of correlations [28] or the infinite tensor

products introduced already by Von Neumann [9,29,30]. All these instances of infinity

come from the heart of QM and, as we emphasized in this paper, show the way how to

extend QM by the set theory suitable for the quantum regime and GR by elements that

respect the equivalence principle in the extreme physical conditions where even spacetime

description is inapplicable any longer. The modified smooth spacetime manifold refers to

the exotic smoothness of S4 (with the possibility not to be discovered at all, however) where

such exotic S4 would represent gravitational instantons transcending the classical regime of

gravity. Thus, the paper shows a meeting point in between the extension of QM by certain

infinite constructions and GR on a new kind of smooth 4-manifolds. The extension of QM

refers to Turing’s incomputable infinite sequences (the negation of the Tsirelson problem

in QM), while the smooth manifolds (exotic 4-spheres) negate the 4-dimensional Poincarè

conjecture. From the point of view of mathematics, this is not that surprising that the issue

of infinity in QM is addressed by set theory since one of the crucial reasons behind the

development of set theory was infinity, but this, which is truly surprising, is the existence of

a natural extension of QM formalism by (quantum) set theory. In the opinion of the authors

the formal possibility as above opens a narrow door toward the quantum regime of gravity.

Thus, in this work, we change the formal perspective from logical to quantum set-

theoretical, which uncovers the room for the Solovay ZFC randomness. This was essentially

performed in the previous publications, e.g., refs. [9,25] and referred to as the “ZFC twist”,

emphasizing the fact that the procedure is rather the change in the formal point of view

than the proper extension of QM. It is based on the following correspondences [9]

{logical local contexts of QM} ←→ {Boolean measure algebras, B}
{maximal algebras of commuting observables in QM} ←→ {Boolean measure algebras}
{set-theoretic local contexts of QM} ←→ {Boolean-valued models of ZFC, VB}
global set theory of QM←→ universe of quantum sets VL (non-Boolean, non-Heyting)

where this last correspondence follows from the fact that B ⊂ L leads to VB ⊂ V, which is

a ZFC submodel of the quantum set-theory universe VL. The second correspondence says

that for any family of commuting self-adjoint observables there always exists a maximal

Boolean algebra B of projections determining all the operators in the family, e.g., ref. [4].
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Thus, the set universe VL is approximated by the family {VB} of ZFC universes valued

by Boolean as local contexts. The ZFC randomness of infinite sequences of QM outcomes

is, in fact, formally present in the Born probability of a single measurement (see ref. [31]).

However, when the ZFC twist is performed and the dimension of H is infinite, a hyper-

random behavior emerges of certain QM infinite sequences, which are 1. non-reducible to

the n-Turing incomputable infinite sequences, n ∈ N, and 2. they can distinguish TC from

¬TC [9].

We show that the ZFC twist of QM enables the reconciliation of QM with the extension

of GR outside the limits of physical spacetime. Classical GR is deeply rooted in differential

geometry and topology, but the mathematics of GR can be applied to an arbitrary dimen-

sion n. Suppose, as is the returning theme in this work, that the negation of the smooth

Poincaré conjecture in dimension 4 holds true and exotic 4-spheres exist, then the extended

GR distinguishes exotic 4-spheres as special geometries compatible with the semiclassical

regime of Euclidean gravity. In particular, exotic 4-spheres carry the geometry of gravita-

tional instantons. Thus, the negation of the 4-dimensional smooth Poincaré conjecture and

the negation of the Tsirelson conjecture meet here in the physical dimension 4, shedding

new light on the relation of GR and QM.

There exists an approach in physics according to which exotic smoothness structures

on R4 or S3 × R are responsible for various effects in cosmology, QM or quantum field

theory and particle physics (e.g., [32–36]) which has been elevated within the years into the

quite powerful and independent methods of physical explanation. However, such exotic

smoothness structures on R4 are completely different from those discussed in this paper in

the context of exotic S4. First, these are dubious at the moment, whereas the previous ones

are already mathematical facts. Second, none of these former can appear as supporting any

exotic 4-sphere which was explained in the course of the paper in more detail.

One more ‘subtlety’ of the formalism relates the step from Boolean many-valued

contexts to the 2-valued standard ones, which would correspond to VB → V. However, for

H(∞) the resulting model is the extended 2-valued model V[G] ⊋ V. This has been referred

to frequently in this paper and corresponds to the nontrivial forcing extension of the models

(see the previous section for a more detailed presentation and ref. [9]). The problem of

genericity in QM touches the fundamental questions in set theory like the multiverse

vs. universe foundations for sets (this set-theory multiverse has nothing to do, but the

same name, with the multiverses considered in cosmology). If random QM sequences

distinguishing ¬TC from TC become experimentally verified realities, this, according to

the set-theory approach, would indicate that the multiverse approach prevails, or nature

has chosen the one at least for QM phenomena.

There are also some experimental challenges with respect to the methods in this paper.

One is the experimental discriminating TC and ¬TC. Another, connected with the first, is to

propose and perform experiments that support the ZFC genericity (e.g., ref. [9]). However,

even the experimental verification of the ∞ dimension of Hilbert spaces, such as those

generated in the Fock space formalism or quantum harmonic oscillators, which can be seen

in the finite set of quantum correlations, is out of reach at present [28]. These topics are

also related to quantum computation techniques and building advanced quantum random

number generators certified by, e.g., ‘Solovay genericity’. One big theoretical challenge

is to understand infinite constructions present from the very beginning in quantum field

theories from a QM point of view in a proper way. One major unsolved mathematical

problem that awaits its resolution and is important for the analysis here is certainly the

smooth Poincaré conjecture and the existence of exotic S4s. The case that exotic S4s do not

exist is also addressed, but then the theory becomes not as canonical as with the presence
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of the exotic 4-spheres. We could say that the internal consistency of the approach here

favors the negation of the smooth 4-dimensional Poincaré conjecture.

The Lorentzian vs Euclidean signatures of the spacetime metrics should be commented

on. In the text, we have quite freely switched between the two non-equivalent cases. In

particular, exotic S4 and exotic R4 require Euclidean underlying metrics while physical

spacetime is the Lorentzian one. However, these are not totally independent or conflicting.

We consider the approach that the smoothness structure on a manifold is fundamental

data allowing for further analysis. Even though a 4-manifold representing spacetime is

Lorentzian, a topological manifold underlies it, and this can be considered to be exotic

smooth (e.g., R4 or S4), and this deep layer of smoothness can sometimes have a physical

impact (e.g., gravitational instantons). A quite fundamental and important case of the

global existence of exotic metrics on open 4-manifolds that solve the Einstein equations has

been studied, among others, by Etesi, who also gave many physical insights [36] (see also

ref. [33]). Even though the exoticness we refer to in this paper is dubious R4 supporting

exotic S4, one can expect that they can also be related to the Lorentzian physical case. If they

do not exist, the methods in the paper could serve as the departure for the experimental

discrimination of the two cases.

Anyway, the tremendous effort toward building QG theory and the inability so far

to achieve this goal become a good reason for exploring the QM and GR formalisms

from yet unexplored points of view. The collision of the infinite constructions in QM and

these from QFT may be nontrivial and not necessarily agree on the classes of their Turing

uncomputability. The road from QM to QFT contains more intricacies than usually can

be thought.
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Appendix A. Smooth V-Limit

In this section, we will explain the smooth V-limit, which has been used in many

arguments in the text. Given R4
B in the Boolean ZFC model VB, we would like R4 with

its standard smoothness structure in the smooth V limit of R4
B. However, also conversely,

any local flat Uα ≃ R4 in spacetime is derivable as a smooth V-limit of certain R4
Bα

. The

correspondence is complementary in the density of gravitational energy, or in the local

scalar curvature parameter κ in spacetime, in the sense that there exist κ0, κ̃0 ∈ [0, ∞) such

that Uα ≃ R4 for κ < κ0 and Uα ≃ R4
Bα

for κ ≥ κ̃0. It can happen that κ̃0 < κ0 so that there

is a nontrivial interval (κ̃0, κ0) where both descriptions are still valid and complementary.

For κ̃0 > κ0 there is a gap (κ0, κ̃0) with yet another description not specified explicitly

here, and the case κ̃0 = κ0 represents the usual understanding of the hyper-Planck or

below-Planck regimes.

In general, it is straightforward to require that the smooth V limit of R4
B ∈ VB be

(isomorphic copy of) R4 in V. However, allowing for different models VBα and the cor-

responding objects R4
α there is a problem of their intersections like R4

α ∩ R4
β. The overlap

domain for the parameter κ, (κ̃0, κ0) allows switching between R4 and R4
B and thus between

the descriptions based on V and based on VB. This possibility is fundamental in set theory,
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though often neglected by working globally in V or VB or simply in ZFC. Therefore, the

point is to work locally with different universes of sets and to understand the eventual

impact of their interchanges from the V point of view. Of particular interest would be

V →֒ VB →֒ V

and its impact on the smooth manifold model in V. On the overlapping Uα ∩Uβ ≃ Uαβ ≃
R4 ∩R4 in V one can lift it to R4

B

R4 → R4
B → R4. (A1)

It would seem that after neglecting the intermediate VB stage, one is left with the R4 →
R4, which can be represented by a diffeomorphism in V or even identity. However, we

want to emphasize that when there is a ‘nontrivial’ action of the VB stage, the resulting

diffeomorphism is not an identity on the overlapping R4s in V.

Following Theorem 3 and the discussion below, we represent the highly curved 4-

spacetime regions ≃ R4 as (part of) 4-spheres with relation to Aut B. We want to interpret

(subgroups A of) Aut B in DiffR4 through p : Aut B→ DiffR4 such that:

i. Aut B ∋ IdB ↔ Id ∈ DiffR4, i.e., p(IdB) = Id and p−1(Id) = IdB.

ii. p : A → DiffR4 is a homeomorphism.

So, p is an isomorphism of A on p(A) ⊂ DiffR4. Given h ∈ A corresponds to the

diffeomorphism p(h) ∈ DiffR4 and conversely, given f ∈ DiffR4 there are the correspond-

ing p−1( f ) ∈ A. Any change in the maximal Boolean algebra of projections B, hB, by a

nontrivial automorphism h results in a nontrivial diffeomorphism f ∈ DiffR4. So thus, we

interpret the nontrivial stage of (A1) as

R4 R4 ∈ VB R4 ∈ VAB R4f ↑ h f ↓
(A2)

which gives rise to the diagram

R4 ∈ VB R4 ∈ VAB

R4 R4 R4

f ↓ f ↓
f ↑

Id Φ

(A3)

where f ↑ is the interpretation of R4 as (the isomorphic copy of) R4
B in VB and f ↓ the inverse

assignment of the (isomorphic copy of) R4 to R4
hA(t,D)B

in VhA(t,D)B. f ↑ is the lift of the

ZFC models V → VB and f ↓ the reduction of VB to V resulting in nontrivial set-theory

random forcing.

When we apply the assignments f ↓ to each member of a collection {R4
Bα

, α ∈ I},
then the result is the collection {R4

α} in V together with a net of diffeomorphisms (gluing)

{ fαβ : R4
α → R4

β}.

If there exists a smooth 4-manifold, M4, such that ({R4
α}, { fαβ}) is a smooth

cover of it, then we say that M4 is the smooth V-limit of ({R4
Bα
}, { fA : R4

Bα
→

R4
Bβ
}, α, β ∈ I, A : VBα → VBβ).

In the special case (R4, Id ∈ Di f fR4), it is the smooth V-limit of any

(R4
Bα

, Id ∈ Aut B). They are isomorphic copies of R4 for different αs.

One can also start with a smooth manifold M4 in V and then interpret its local Uα ≃ R4

in VBα and consider relative phases, resulting from the automorphisms of B, between the

models VBα . Finally, the phases give an interpretation as diffeomorphisms in V, and one
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can ask the question about the existence of a smooth manifold M̃4 in V that supports such

locally modified collection of R4
α (initially it being a smooth cover of M4). If such a smooth

M̃4 exists in V it is again called the smooth V-limit of the modified collection of R4
Bα

in the

family of models VBα (see ref. [25] for more details).

Now let A = {hA(t, D) : t ∈ R4
>
} be a 1-parameter family of automorphisms in Aut B

given by (see the proof of Theorem 2)

eitADe−itA, t ∈ R>0 (A4)

where D is a real in VB and A and eitADe−itA are reals in VhA(t,D)B (the reals in VB cor-

responds uniquely to the commuting self-adjoint operators in B—see Lemma 4). Again,

any change in the maximal Boolean algebra of projections B by a nontrivial automor-

phism hA(t, D)B results in a nontrivial diffeomorphism f ∈ DiffR4. The nontrivial stage

in (A1) reads

R4 R4 ∈ VB R4 ∈ VhA(t,D)B R4f ↑ hA(t,D) f ↓
(A5)

and the corresponding diagram follows

R4 ∈ VB R4 ∈ VhA(t,D)B

R4 R4 R4

hA(t,D)

f ↓ f ↓
f ↑

Id Φ

(A6)

Please note that if t = 0, then the stage VB acts trivially, and Φ is the identity

diffeomorphism.

The above example is different from the initial general case, as it leads to a change in

4-manifolds S4
t rather than the change in coordinate local patches in a fixed manifold.

This correspondence can be paired with the 4-curvature of 4-spheres. Let {S4
r , r ∈ R>0}

be a family of standard S4s with the radii r. Certainly S4
r1
≃ S4

r2
are diffeomorphic for any

r1, r2 > 0 and fr1r2 : S4
r1
\ D4

r1
→ S4

r2
\ D4

r2
are the induced diffeomorphisms of R4, i.e.,

fr1r2 ∈ DiffR4.

Lemma A1. Any automorphism of B which is not identity results in a non-vanishing change in

the scalar curvature of R4 ⊂ S4.

The proof of this lemma relies on the interpretation of the parameter t in (A4) as the

scalar curvature of S4 and the construction of the proper families. Let hA(t, D) = Id + a(t, D)

and a(t, D) = 0 for t = 0 so that hA(0, D) = Id (on the algebra B). Please note that

ei0ADe−i0A = Id(D) = D. Let t = r ∈ R> result in the family {S4
t }. However, the constant

scalar curvature of S4
t is ScS4

t
= 12/t2. This completes the proof of Lemma A1 since R4 ⊂ S4

t

has the same scalar curvature depending on t.

Appendix B. Proof of Theorem 1

The embeddings V
1.→ V′ 2.→ V come from the construction of the Boolean-valued

models VB as classes in V for case 2, while for 1., from the natural isomorphic embedding

of V into VB. These two steps naturally lead to V ⊂1 VB ⊂2 V as classes, which has

been referred to frequently in the main text. Thus, the proof is to show that V′ = VB

has the desired properties of their embeddings as in Theorem 1. First, starting with

an arbitrary Boolean model, VB shows that there is a canonical embedding 1. : V →
VB [37,38]. The image V̌ = 1.(V) in VB is construed inductively as the class of check

names x̌ of sets x ∈ V, i.e., to any x ∈ V it is assigned recursively x̌ := {⟨y̌, 1⟩|y ∈ x}
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and V̌ becomes a class name V̌ := {x̌|x ∈ V} that extends the symbols of the language

by the predicate V̌ for the ground model. The Boolean value in B of τ ∈ V̌ is given by

Jτ ∈ V̌K =
∨

x∈VJτ = x̌K (τ is a B name). Then for any set x ∈ V we have Jx̌ ∈ V̌K = 1 and

JV̌ is a transitive class in VB containing all ordinals K = 1 (ref. [37] (Lemma 6)). It follows

that V̌ is a 2-valued Boolean model isomorphic to V [37] and 1.(V) = V̌ corresponds to

embedding 1.

To show the existence of an embedding 2. follows by the construction of VB in V as a

class for any Boolean-valued model VB. Let B be a complete Boolean algebra in V. Then

VB is construed by recursion in V as a class of B-names, i.e., τ is a B-name if τ = ⟨σ, b⟩,
where σ is a B-name and b ∈ B. The initial data for the recursion are the Boolean values of

the atomic formulas built by the double recursion [37]:

Jσ1 ∈ σ2K =
∨

⟨κ,b⟩∈σ2

Jσ1 = κK∧ b

Jσ1 = σ2K = Jσ1 ⊆ σ2K∧ Jσ2 ⊆ σ1K

Jσ1 ⊂ σ2K =
∧

κ∈ dom (σ1)

(Jκ ∈ σ1K→ Jκ ∈ σ2K)

here, certainly,→, ∧, ∨ are operations in the Boolean algebra lattice. The above recursions

are performed entirely in V, leading to the class VB of names in V and the Boolean values

assigned to all assertions of set theory. Thus, given the class VB ∈ V, it is a model of set

theory. One shows that VB is a full model, and for any complete Boolean algebra, B, the

Boolean values of any axiom of ZFC have value 1. This finishes the proof of the statement

that VB is the class-like model of ZFC construed in V and 2. reflects the construction above

for the specific Boolean measure algebra B.

It remains to show that there are nontrivial automorphisms j : VB → VB. However,

this was precisely explained during the construction of the proof of Theorem 2. This

observation completes the proof of Theorem 1.

Appendix C. The Lévy Hierarchy

The formal language LZF of Zermello-Frankel set theory is the one sorted (sets), a

first-order language with a single predicate symbol ‘being an element of’, ∈.

A formula φ in LZF is called complex of the class (level):

Σi+1, if φ is equivalent to ∃x1...∃xnB in ZFC, where B is Πi

Πi+1, if φ is equivalent to ∀x1...∀xnB in ZFC, where B is Σi

∆i, if φ is provably both, Σi and Πi.
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