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Resumo

O processo de investigação cientı́fica moderno requer que tanto experimentalistas como administradores de sis-

temas dediquem uma parte significativa do seu tempo a criar estratégias para aceder, armazenar e manipular

instrumentos cientı́ficos e os dados que estes produzem. Este é um desafio crescente considerando o aumento

de colaborações que necessitam de vários instrumentos, investigação em áreas remotas e instrumentos cientı́ficos

com constantes alterações. O DAQBroker é uma nova plataforma desenhada para a monitorização de instrumentos

cientı́ficos e ao mesmo tempo fornece métodos simples para qualquer utilizador aceder aos seus dados. Os da-

dos podem ser guardados em uma ou várias bases de dados locais ou remotas utilizando os gestores de bases de

dados mais comuns (MySQL, PostgreSQL, Oracle). Esta plataforma também fornece as ferramentas necessárias

para criar e editar versões virtuais de instrumentos cientı́ficos e manipular os dados recolhidos dos instrumentos,

independentemente do grau de conhecimento que o utilizador tenha com o(s) instrumento(s) utilizado(s). Séries

temporais guardadas numa base de dados DAQBroker beneficiam de um conjunto de métodos estatı́sticos para a

classificação, comparação e detecção de eventos, determinação das séries com maior influência e os sub-perı́odos

experimentais com maior actividade. Esta tese apresenta a arquitectura da plataforma, os resultados de diversos

testes de esforço efectuados em ambientes controlados e um caso real da sua utilização na experiência CLOUD,

no CERN, Suı́ça. São estudados também os métodos de análise de séries temporais, tanto singulares como multi-

variadas aplicados na plataforma.

Palavras-chave: Estatı́stica de Séries Temporais, Desenvolvimento de Software, Arquitectura de Bases de

Dados, Applicações Web, Aquisição de Dados
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Abstract

The current scientific environment has experimentalists and system administrators allocating large amounts of time

for data access, parsing and gathering as well as instrument management. This is a growing challenge since there

is an increasing number of large collaborations with significant amount of instrument resources, remote instru-

mentation sites and continuously improved and upgraded scientific instruments. DAQBroker is a new software

designed to monitor networks of scientific instruments while also providing simple data access methods for any

user. Data can be stored in one or several local or remote databases running on any of the most popular relational

databases (MySQL, PostgreSQL, Oracle). It also provides the necessary tools for creating and editing the meta

data associated with different instruments, perform data manipulation and generate events based on instrument

measurements, regardless of the user’s know-how of individual instruments. Time series stored in a DAQBroker

database also benefit from several statistical methods for time series classification, comparison and event detection

as well as multivariate time series analysis methods to determine the most statistically relevant time series, rank the

most influential time series and also determine the periods of most activity during specific experimental periods.

This thesis presents the architecture behind the framework, assesses the performance under controlled conditions

and presents a use-case under the CLOUD experiment at CERN, Switzerland. The univariate and multivariate time

series statistical methods applied to this framework are also studied

Keywords: Time series statistics, Software development, Database architecture, Web applications, Data Ac-

quisition
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Resumo Alargado

A criação de sistemas de aquisição de dados aplicados a conjuntos de instrumentos cientı́ficos é uma área pouco

aprofundada e para a qual existem poucas soluções integradas desde a colecção de dados até download/exibição dos

dados a um utilizador final. Estas soluções muitas vezes variam em execução, devido às idiossincrasias da arqui-

tectura utilizada o que limita o seu uso fora dos ambientes para os quais foram desenvolvidas. Outras soluções são

desenvolvidas em ambiente fechado com o objectivo de explorar financeiramente a plataforma, limitando o número

de utilizadores e colaborações que as usam. O aumento do número de colaborações cientı́ficas e a necessidade de

melhor compreender processos fisico-quı́micos cria a necessidade de empregar um número cada vez maior e mais

variado de instrumentos cientı́ficos para o seu estudo. Ao mesmo tempo, a proliferação de dispositivos ligados à

Internet e os valores e conceitos promovidos pelo movimento Internet of Things (IoT) promovem o desenvolvi-

mento de soluções integradas que facilitem o acesso de utilizadores tanto aos dados dos seus instrumentos, como

aos dados de outros instrumentos associados, sejam eles processados ou não. Todas as necessidades apresentadas

tornam essencial a existência de uma plataforma integrada em todos os aspectos da monitorização de instrumentos

cientı́ficos, fornecendo soluções universais ao nı́vel do armazenamento de informação e monitorização e primitivas

para a o acesso a dados e controlo dos instrumentos monitorizados.

Para a criação de uma ferramenta integrada de monitorização de instrumentos cientı́ficos, é necessário garantir

o funcionamento de várias funcionalidades: comunicação, identificação de fontes de dados, armazenamento de

dados e acesso a dados. Para o aspecto de comunicação da plataforma são estudados vários conceitos possı́vels de

utilização, focando a relevância no seu grau de utilização e flexibilidade de acesso. Devido à necessidade de pos-

sivelmente garantir comunicação com utilizadores em qualquer parte do mundo foi establecido que a comunicação

por TCP/IP fosse utilizada, sendo introduzido um protocolo de comunicação entre diferentes utilizadores para a

actualização de informação. Quanto à identificação de fontes de dados, foi introduzido o conceito da representação

virtual do instrumento cientı́fico, dividindo o instrumento em três blocos distintos que se colocam dentro de cada

um. Começando num bloco geral que descreve o instrumento e o seu objectivo, dentro do qual se inserem blocos

intermédios que identificam conjuntos de dados que são recolhidos através da mesma interface e dentro dos quais

se inserem canais de dados que descrevem um stream individual de uma variável no tempo que está a ser recolhida.

Relativamente ao aspecto de armazenamento de dados, foram estudados diferentes sistemas de armazenamento de

dados, focando-se não só na flexibilidade de armazenamento mas também na necessidade de apresentar uma es-

tructura uniforme que permita a separação distinta entre diferentes esforços cientı́ficos. O sistema escolhido acabou

por ser o relacional, que apesar de fornecer uma estructura rı́gida de armazenamento, permite uma clara separação

entre esforços cientı́ficos, permite pesquisas complexas sobre a estructura e está optimizada para realizar pedidos

de elevado volume. Finalmente, relativamente ao aspecto de acesso e manipulação de dados, introduziram-se várias

alternativas para fornecer ferramentas para os utilizadores criarem, editarem e manipularem as representações vir-

tuais dos seus instrumentos, focando-se na necessidade de criar ferramentas flexiveis, de desenvolvimento contı́nuo

e que possam ser utilizadas por qualquer utilizador em qualquer máquina. Como tal, foi escolhido o desenvolvi-

mento de uma aplicação web para fornecer a interface básica de representação do estado dos dados guardados.

Esta aplicação fará uso de um Application Programming Interface (API) usando um modelo de REpresentational
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State Transfer (REST) fornecida pela plataforma para realizar alterações na estructura de dados e representações

virtuais de instrumentos.

Um factor importante na avaliação da viabilidade da plataforma consiste em medir o seu desempenho em difer-

entes arquitecturas para determinar os limites da sua utilização. Para tal, são introduzidas duas arquitecturas com

diferentes nı́veis de potência computacional, dentro da qual é instalada a plataforma para realizar um conjunto de

testes para identificar os limites de monitorização de instrumentos cientı́ficos. O primeiro teste consiste em testar

o efeito que o número de instrumentos monitorizados tem sobre o funcionamento tanto da plataforma no geral,

como na arquitectura onde foi instalada. Para este teste são analisados o tempo de aquisição de dados, a utilização

de CPU, RAM e utilização de disco para periodos semelhantes usando um número crescente de instrumentos. O

segundo teste consiste em estudar os limites de armazenamento de dados em tempo real da plataforma. Para tal

é calculado o diferencial de tempo existente entre os dados armazenados e os dados produzidos por instrumentos

com diferentes granularidades temporais. O último teste realizado consiste em testar os limites de armazenamento

de dados. Para tal é medido o tempo de pedidos de dados de um instrumentos com um crescente número de dados

armazenados.

Para além de avaliar o desempenho da plataforma num ambiente controlado, também se torna necessário avaliar

o uso da plataforma num exemplo real. Para tal, a plataforma foi instalada na experiência CLOUD, no CERN,

Suı́ça, para monitorizar os dados recolhidos pelos instrumentos durante o perı́odo experimental do Outono de

2017. Durante este perı́odo foram identificadas e avaliadas as principais funcionalidades fornecidas, focando a

análise nas limitações da flexibilidade da aplicação e na identificação de pontos onde o desenvolvimento poderá

ser melhorado. Paralelamente foram identificados um conjunto de análise de dados offline e monitorização em

tempo real que foram facilitados com o uso da plataforma.

A plataforma apresentada descreve um método de recolher, armazenar e manipular dados de diversos instrumentos

de uma maneira universal. Esta natureza universal dos daods monitorizados permite que seajm criados e apli-

cados diversos algoritmos para a análise de séries temporais sobre esses dados com o objectivo de fornecer aos

utilizadores informações sobre a qualidade dos dados recolhidos, a relevância dos dados recolhidos, descrever as

relações entre os dados recolhidos por um instrumento e os dados recolhidos por outros instrumentos e realizar

uma análise de um determinado periodo experimental. Para tal, são estudados um conjunto de métodos de análise

de séries temporais, métodos esses que são aplicados sobre os dados recolhidos durante o Outono de 2017 pela

experiência CLOUD para mostrar os resultados obtidos quando aplicados a um conjunto de dados reais. Inicial-

mente são apresentados um conjunto de testes de hı́potese que pretendem classificar séries temporais individuais

sobre um diverso conjunto de caracterı́sticas. Seguidamente são estudados e apresentados diversos métodos de

comparação de séries temporais, focando-se não só na qualidade da comparação, mas também na eficiência com-

putacional do método usado, visto que a utilização de tais métodos poderão ser utilizados por vários utilizadores

um número variado de vezes e o uso de um algoritmo pouco eficiente por vários utilizadores poderá por em causa o

bom funcionamento da plataforma. Outro ângulo de análise de séries temporais foca-se na identificação de eventos

em diferentes séries temporais. A natureza universal dos dados guardados na plataforma obriga a análise a utilizar
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métodos de detecção não supervisionados, focando-se num método que permite a determinação de alterações de

estado de séries temporais baseado na alteração de entropia da série entre diferentes intervalos de tempo. A análise

de séries temporais culmina na implementação de um método de análise de séries temporais multivariadas que tem

como objectivo a realização de um resumo de um perı́odo experimental baseado em testes estatı́sticos aplicados a

um conjunto de séries temporais. O resumo pretendido está divido em três partes: identificação das séries tempo-

rais estatisticamente mais relevantes, análise das relações entre as diferentes séries temporais e determinação dos

sub-perı́odos experimentais mais relevantes. A primeira parte da análise consiste em identificar as séries tempo-

rais mais relevantes segundo a sua distribuição de frequências. A segunda parte consiste em identificar e exibir

as relações entre as diferentes séries temporais através dos diversos métodos de comparação estudados anterior-

mente. A última parte consiste na determinação dos sub perı́odos experimentais mais relevnates através de um

algorı́tmo de detecção de eventos baseado no algoritmo utilizado anteriormente para séries individuais. Também é

estudada a integração deste resumo como uma adição à plataforma e quais os passos necessários a realizar para o

conseguir.
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Chapter 1

Introduction

Data acquisition (DAQ) systems are a constantly evolving medium that is ubiquitous in any field of science [1–5].

All modern scientific instruments either possess or require some sort of DAQ system ranging from simple hardware

buffers [6] to fully implemented control and monitoring systems [7]. Often, instruments with different measure-

ment purposes are used together to produce a better understanding of the underlying process being measured

[8–10]. This reality is becoming more and more common as collaborations between different scientific institutes

are increasing [11, 12]. With the proliferation of the Internet and the recent trend of the Internet-of-Things (IoT)

enabled devices, information is now expected to be available with only a few clicks [13, 14]. However, the growing

number of instruments, multi-instrument sites and collaborations will often have data being stored in instrument

files [15, 16] and using specific software tailored only to the instrument set available for the collaboration [17–19].

Often companies offer closed source DAQ solutions for their own products [20, 21], limiting the spectrum of data

analysis and the research carried out to that of the companies’ technologies, products and/or instruments.

An alternative approach to these closed DAQ systems must exist to provide the following functionalities for any

instrument user[22]:

• Universal data storage - identify, collect and store data from any instrument and ideally from any data

source,

• Universal data monitoring - provide users with the tools to visualize the instrument’s data output even if

they are not familiar with the instrument,

• Primitives for instrument data access - provide functions to integrate with existing systems to access other

instruments’ data,

• Primitives for instrument control - allow sending specific messages, ideally via any imaginable medium,

that trigger changes to an instrument’s settings.

A universal data storage format can be achieved by creating virtual instrument representations, transferable be-

tween sites using the same DAQ system, or stored in a global repository for later use, thus facilitating future data

acquisition efforts. It also eases the experience of data monitoring, making it easier for users to request visualiza-
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tion (or data) from other instruments they are not experienced with. The data access and control primitives would

allow the creation of third-party systems that could deal with the specific data processing and control needs of

the instrument set that is used, while still maintaining the same known format for all users. A DAQ system that

provides these functionalities would be an advantage on a variety of instrument sets and individual instruments,

facilitating the sharing of data and information between different users. Providing such functionalities in an open

format would allow users to build upon the existing framework and provide support for more complicated instru-

ments which could immediately be shared with other researchers. It would also simplify the moving of instruments

from one experimental site to another, as the infrastructure for data acquisition would already exist (assuming both

sites agree to adopt the same DAQ system).

1.1 Problem Overview

DAQ systems are typically referred to as the systems that provide means of extracting information from a physical

phenomenon, converting it into a digital value and either storing or presenting that information for an end-user to

analyze[23]. This is a somewhat broad definition that allows for many interpretations, thus the existence of many

stages of data acquisition:

• Transduction of a physical quantity to an electrical signal

• Sampling of said signal via specific circuitry

• Analog-to-digital conversion of the sampled signal

• Collection, parsing and storage of the digital signal

For the purposes of this thesis, only the last step of data acquisition will be relevant, as for all other steps, the

approaches to data acquisition are highly dependent on the instrument and the quantity being measured [24] and

as expressed earlier, all modern scientific instruments possess the ability to perform most, if not all, steps of data

acquisition.

1.1.1 Classes of DAQ systems

At this level of the DAQ process, most systems can be categorized into one of two classes that, while similar, still

possess distinctive properties[25, 26].

1.1.1.1 Distributed Control Systems

A Distributed Control System (DCS) is a control architecture that oversees multiple integrated sub-systems, each

controlling specific parts of a process. DCS systems are often implemented in industrial settings where the process

being controlled has small geographical extension. DCS are robust since the control is highly distributed through

small systems and can resist single processor failures. DCS systems are process oriented, being made to control
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specific industrial processes, thus making them less flexible to changes and not being specifically designed for data

acquisition.

1.1.1.2 Supervisory Control and Data Acquisition Systems

Supervisory Control and Data Acquisition (SCADA) systems, contrary to DCS, often consist of geographically

dispersed control systems, monitored by a centralized unit, employing high fidelity communication infrastructure

to connect each individual control system to the centralized unit, which employs a human-machine interface which

allows operators to issue commands to each control unit. SCADA processes are event driven, meaning that they

require more emphasis in data acquisition and more importantly data manipulation to accurately report events to

human operators.

Historically, DCS and SCADA systems were employed in different areas of industrial control but today with the

advancements in communication and Information Technologies (IT), there is little difference between DCS and

SCADA systems [27]. The heavier DAQ side of the SCADA architecture as well as the centralized supervising of

many (and often geographically disperse) processes, makes it a better approach for a DAQ system developed for

scientific instrument data acquisition.

1.1.2 Data Acquisition Software

Several software packages exist that can be used for scientific instrument data acquisition. However, they suffer

from problems that make them unfit to be used as universal scientific instrument DAQ systems, be it limited scope,

closed source, or not being designed for scientific instruments. Some examples will now be discussed.

1.1.2.1 Zabbix

The Zabbix monitoring platform [28] is a highly scalable enterprise solution for monitoring IT networks, servers

and services. It provides a framework for assessing the status and performance of connected resources. It provides

server applications with centralized data storage as well as agents for handling larger networked resources and

ausers to edit the code in order to expand functionalities for more specific applications. However, while it has seen

efforts in its specific use in scientific experiments [29–31] it is not designed with scientific instruments in mind

and thus presents challenges such as visualization generation and data parsing which limits its use as a universal

scientific instrument DAQ system. In the specific case of DAQ systems in the CLOUD experiment, the Zabbix

ecosystem was not only used to ensure network communication between the central servers collecting data and the

individual instrument machines but had its functionalities extended to provide tools and specialized observation

interfaces for the experiments in question.
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1.1.2.2 LabView

LabView [20] is a platform provided by National Instruments (NI) that allows users to collect data from NI hard-

ware via a simple graphical programming language. It is extremely popular for use in individual instrument data

acquisition due to easy interfacing with NI hardware, which can be found in all fields of scientific study today

[32–34]. Its simple graphical language also allows for fast development of graphical user interfaces and automated

state management for operators which are not fluent with programming nor with the instruments electronics. While

it is used for industrial and single instrument data acquisition solutions, its closed source and limited compatibil-

ity only with NI hardware make it unsuitable for creating a universal scientific instrument DAQ system. In the

case of the CLOUD experiment at CERN, Labview is used extensively on individual instruments employing NI

hardware.

1.1.2.3 Matlab

Matlab [35] is a data analysis and programming language provided by MathWorks. It includes a widely encompass-

ing set of data processing techniques and visualization possibilities as well as packages for instrument monitoring

and is very actively used within the scientific community[36–38]. MathWorks invests heavily on exposing this

product to students, providing free student licenses and testing suites, thus making MatLab a very common tool

among students and, by extension, early stage and often experienced researchers, even though such popularity

is beginning to be overshadowed in favor of other open source data analysis software, such as Python or R [39].

However, besides being a closed source environment, it does not provide a framework for multiple instrument DAQ

and is mostly optimized for post-processing of data, limiting its use with a general purpose set of instruments. In

the case of the CLOUD experiment, Matlab is very popular as a data processing tool for instrument data.

1.1.2.4 Grafana

Grafana [40] is an open source time series analytics software. It provides an intuitive interface for displaying ana-

lytics collected from different databases. Grafana is already used for a variety of visualization solutions [41–43].

Grafana, however, provides only visualizations of data from already collected and uniform data, not providing the

tools for acquiring and storing data from instruments. This makes Grafana unsuitable as a single tool for collecting

and serving data from multiple scientific instruments. In the case of the CLOUD experiment, Grafana was briefly

considered as a tool for handling data visualization in a proposed update to the existing DAQ system.

1.1.2.5 OPeNDAP

OPeNDAP (Open-source Project for a Network Data Access Protocol) [44] is an open source protocol for request-

ing and providing data access across the applications that enable the use of such protocol. It provides resources

and defines standards for data storage servers and data access across many different platforms. It is currently used

by leading organizations worldwide [45–47]. While providing many needed communication primitives and stan-

dard storage solutions, it still lacks the tools for handling individual scientific instrument data acquisition, as the
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handling of each individual instrument must be built outside of OPeNDAP.

While other software frameworks exist, the above examples illustrate that the current scientific instrument en-

vironment lacks a common architecture for handling and presenting the data acquisition of different scientific

instruments, whether being operated by a single individual or institute or being operated by multiple individuals

or collaborations. Thus, developing a single, open-source, device independent application for handling, collecting,

storing and serving data from a universal set of instruments is not only a worthwhile endeavor, it will eventually

become a necessity in a scientific world with massively increasing data loads.

1.2 Proposed Solution

This thesis documents the creation of a framework that allows the data acquisition of a set of instruments with

varied data sources and formats, collects and stores said data in a centralized and universal format and provides the

tools for data access, manipulation and visualization in a fast, open and intuitive way. The created framework has

been named DAQBroker and it was successfuly implemented at the CLOUD experiment at CERN. DAQBroker

has been tested under machines of different computational power as well as under different suites of instruments

and database setups, the results of which will be discussed on this thesis.

Chapter 2 introduces the reader to the current approaches for instrument data sources, communication protocols,

data storage techniques that were considered while designing DAQBroker, as well as the statistical principles of

time series analysis that are used in some more advanced features of DAQBroker. Chapter 3 details the design of

DAQBroker, focusing on its three main components: Storage, communication and user interface. This chapter also

describes and presents results of performance studies performed under different experimental conditions and host

machines. Chapter 4 details the implementation of DAQBroker in a real-world experiment - the CERN CLOUD

experiment - highlighting the needs and limitations found as well as providing examples of several studies, online

and offline, that are facilitated by the use of DAQBroker. Chapter 5 presents a more advanced set of general

purpose measurements that can be achieved via statistical methods of time series analysis of a generalized dataset

and proof-of-concept results with data collected during the last CLOUD experimental campaign in the Fall of 2017.

Chapter 6 provides a brief synopsis of the different achievements of the work of this thesis, the main interpretation

of the results of performance tests and time series analysis and provide a set of improvements and future work to

apply to the DAQBroker framework.
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Chapter 2

Background

This chapter introduces the concepts behind the development and data processing aspects of DAQ systems, all of

which were considered during the development of DAQBroker. These concepts will be used in chapters 3 and 5.

Section 2.1 will introduce the technical concepts behind building the framework itself, such as communication,

storage and data sources. Section 2.2 will introduce the statistical concepts of time series analysis considered for

advanced aspects of single and multiple variable time series analysis.

2.1 Technical concepts

This section introduces the concepts that are behind the technical development of DAQBroker, from the data output

of an experimental instrument up to, and including, the storage and handling of said data to other uses. In some

aspects, the development of DAQBroker is not unlike that of a content delivery network (CDN) [48, 49]. CDNs

consist of a network of (often geographically distributed) servers, that oversee and provide access to a specific type

of data or content [50]. DAQBroker can be seen as the software that provides the service of collecting, overseeing

and providing access to the data from a network of scientific instruments, be it in a centralized or distributed

fashion. The development of such a software must take into account:

• Communication - proper communication must be ensured between instruments and the software,

• Data sources - all possible data sources of an instrument data must be accessible,

• Storage - at least one data storage solution is available and functioning,

• Access - user access to data of the instrument network must be ensured.

These aspects are discussed in the following subsections
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2.1.1 Instrument communication

The ability to communicate with an instrument is extremely important in any scientific field[51–53]. Whether for

simple data acquisition [54, 55] or to control an experiment [56, 57], digital instrument communication plays a

major role in all modern scientific experiments and laboratories. The most popular means of digital instrument

communication follow.

2.1.1.1 Serial communication

One very popular means of communication between computers and peripherals is the serial communication via

serial ports. This communication consists in transferring information sequentially one bit at a time [58]. An

integrated circuit inside the computer manages the data timing and framing. The widespread availability of serial

ports (historically starting with the RS-232 standard connector) allowed for the production of many instruments’

data transfer via serial communication [59]. Today, most serial communications are made via USB and to a lesser

extent FireWire [60], which are more complex communication standards that require faster processing speeds.

In the context of modern scientific instruments, serial communications are mixed between the USB and RS-232

standards [61–66]. The CAN bus is also an example of a more specialized serial communication for industrial

settings with improvements over traditional serial communication systems. Some communication standards such

as Bluetooth[67] will emulate a serial communication channel by providing the computer they are connected to

with a virtual serial port through which communication can occur[68].

In order to generate useful information, serial data transfers are defined by the instrument via a series of set-

tings, often user controlled, which must be matched by the computer reading the instrument’s data [69] (figure

2.1):

Figure 2.1: Example digital message via serial communication highlighting the different relevant settings (parity bit not repre-
sented). Source - University of Texas at El Paso.

• Baud Rate - The rate at which bits are transmitted via the serial port. The value is usually measured in bits

per second. Some popular baud rate values include 9600, 19200 and 115200 bit/s,

• Data bits - The number of bits of each character to be sent. The current accepted values are 5,6,7 and 8 bits,

the last one consists of byte-sized characters being the most popular,

8

http://www.ece.utep.edu/courses/web3376/SCI%20Overview.html


• Parity - Determines the type of error checking (if any) to be done by the reading software. This value can be

set to none (N), odd (O), even (E), M or space (S). No parity bit is the most usual form of communication,

allowing the error handling be made further after the decoding of the message.

• Stop bits - Defines the number of bits to send at the end of every character for the hardware to be able to

detect and resynchronize with the character stream. One stop bit is usually the amount of bits used, however

some specific devices use one-and-one half or even two stop bits.

2.1.1.2 Network communication

The physical distance from the instrument or the sheer amount of instruments to collect data from usually make

serial communication impossible [70, 71] since serial cables without any form of signal boosting will have a

range limit of about 15 meters1[72]. When this limitation exists, the choice is to connect instruments in a network.

Although instrument networks can be complicated and fairly customized, most modern instrument networks follow

the OSI network model which divides the network into layers with different levels. A high level layer responds to

requests from a lower layer and issues requests to the upper level layer [73] (Illustrated in figure 2.2):

1. Physical Layer - Provides the physical and electrical specifications of the connections. This means pin

numbers, voltages, signal timing, frequency, transmission mode and more. For the context of scientific

instruments, this layer defines cabling, hubs and repeaters that allow the physical communication between

instruments.

2. Data Link Layer - Handles node-to-node data transfer. It defines the protocols to handle connections

between two physically connected devices. This layer is also responsible for detecting and (if possible)

correcting errors that occur in the physical layer. Of note in the context of scientific instruments, the Ethernet

and 802.11 (WIFI) protocols operate in this layer of abstraction, which allows connection between computers

and scientific instruments of the network.

3. Network Layer - Provides definitions of switching and routing technologies to ensure optimal paths for

transmitting data between nodes.

4. Transport Layer - Provides the means of transferring variable-length data sequences from a source to a

destination. Defines the protocols that handle the sending of said sequences as well as providing acknowl-

edgment of successful transmission if no errors occurred (if required by the underlying protocol). In the

context of a network of scientific instruments, the most relevant protocols are Transport Control Protocol

(TCP) and User Datagram Protocol (UDP). TCP provides a highly reliable, ordered and error-checked mes-

sage streaming service as messages require both end points of the message retrieval to go through a complex

series of state changes[74]. On the other hand, UDP is a less safe protocol, where there is no end point

handshaking, no guarantee of message delivery and no error checking, making it a flexible protocol to be

used in cases where data loss is not a concern and error checks, handshaking, etc., are implemented at a

higher level (video streaming for example).[75].

1This is only true for traditional serial communication, specialized buses like the CAN bus can reach up to 40 m.
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5. Session Layer - Establishes, manages and terminates connections between applications. This layer is re-

sponsible for the graceful closing of connections, one feature of the TCP protocol.

6. Presentation Layer - Responsible for providing a translation to and from the application layer. It handles

encryption and decryption of data, character conversions, data compression and graphic handling.

7. Application Layer - The layer with most contact with the end-user. This layer interacts with the applications

that implement the communicating component, the applications themselves being not a part of the OSI

model. In the context of scientific instruments the language used to communicate via a network interface is

responsible to provide the methods for each host to ensure that the communication is used and displayed.

Figure 2.2: Illustration of the OSI model layers of a computer network. Source Lifewire

Using this model, many instruments and data acquisition systems can transmit data and be controlled via general

network communication. In the context of data acquisition software, an instrument will usually have a reserved

network port (identified by an integer number) where its data is either sent periodically or presented when a proper

command is specified [76]. It is thus required to provide the used port number and transport protocol in order to

effectively communicate with the network instrument.

2.1.1.3 Specialized buses

Apart from the general purpose communication methods outlined previously, other instrument communication and

instrument network protocols exist. These communication and network methods are often employed in industrial

settings but can also be seen in specific scientific experiments [77, 78]. Two examples of such communication

protocols are VME [79] and CAN[80] buses. These often require either proprietary or custom solutions to be

implemented into the data acquisition system which can be handled by providing an open-source data acquisition

system and allowing users to create specific solutions for such buses. Development of such solutions are not the

focus of this thesis and thus will not be discussed further.

2.1.2 Data sources

The evolution of personal computing has had a deep impact in the development of scientific instruments and the

way they produce data [81]. Scientific instruments rely less and less on specialized communication buses and
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will often be advertised to be compatible with most commercially available personal computers [82, 83]. Digital

instrument data creation is thus more and more accessible via general purpose sources [84–86]. This subsection

will discuss the most used general purpose data sources in the scientific instrument landscape.

2.1.2.1 Data files

Files currently make up a large amount of scientific data sources and are today perhaps the most popular source of

scientific instrument data[87, 88]. The reason for this popularity is the file’s universal compatibility with commer-

cial and private operating systems (operating systems are required to read and write data to files), the non-volatility

of a file (a file remains in a computer’s storage until willfully deleted) and the ease of use (when learning any pro-

gramming language, writing and reading to files are among the first required skills[89]). Data files can be divided

into two groups depending on the encoding of the data in the file[90]:

1. Text file or ASCII file or plain text file - consists of a file which can be read directly by a person as an

electronic book. A set of bits in these files encodes each character according to a specific encoding (ASCII

is the most often used encoding, hence text files are often called ASCII files). In the context of most scientific

instruments, text data files are structured to provide the type of measurement, value of said measurement and

the time at which that measurement was taken[91, 92], and can be accompanied by a leading or trailing

set of text providing additional secondary information for data classification referred to as the header. The

format of this data is easy to understand, however, the lack of a unified table and/or header format makes it

extremely complicated to programatically gather data from a large set of instruments[93].

2. Binary file - A formal treatment defines a binary file as any file that contains at least some data that consists

of sequences of bits that do not represent plain text. These files cannot normally be read by users unless a

specific (and often proprietary) piece of software is used to decode the non-representable sequences of bits.

In the context of scientific instruments a significant number of instruments produce said files. This practice

is used when instrument results require some degree of post-processing to produce meaningful data (such as

de-noising or filtering). However, some binary formats have been more frequently used within the scientific

community due to the capability of efficiently storing information, saving space compared to a structured

table of measurement data [94, 95]. The secondary information is often referred to as meta-data and is of

high importance in classifying instrument data [96, 97]

2.1.2.2 Serial port

As pointed out in 3.1.1, serial communication plays a great part in controlling and relaying scientific informa-

tion. Instruments often provide a true or virtual serial communication channel - called the serial port - for data

acquisition and/or control. In the case of data acquisition via serial port, data can be transferred in one of two

ways:

1. Per request - users establish a connection to the instrument’s serial port and also provide a specific command

before the data is returned to the user. This allows instruments to compartmentalize relay of data by providing

11



data, only when it is requested[98].

2. Streaming - instrument continuously sends data to the serial port. It is the data acquisition system on the

other end of the serial communication channel that gathers and parses the data provided via streaming. This

method allows faster sending of data since no request for the data needs to be made; however, the computing

work increases when multiple data is sent via this method[99].

2.1.2.3 Network port

In much the same way as in serial communication, instruments often communicate and are controlled via network

communication (most times via TCP or UDP)[100, 101]. In the context of software, the communication is made

through a network port, identified by a specific number. Again much like serial ports, the data transfer can also be

made via request or streaming[102, 103].

2.1.3 Data storage

Storage of digital data is still today a highly investigated topic[104–106]. As stated in 2.1.2, instruments often

store their data in files. While manageable for individual instruments, the task of sifting through files becomes

cumbersome when faced with a (potentially large) set of instruments2. While specific software can be created

to automatically search through the aforementioned files, find and return the required information, there is still

the question of how to store this newly acquired data for later use[107, 108]. A common resource is required to

ensure that data is properly stored and accessed, the most popular being called a database. Databases and database

management systems (DBMS) have been under constant evolution since their introduction in the 1960s and are

still today a topic of intense discussion[109–111]. A number of databases exist and all vary in terms of reliability,

scalability and speed[112–114]. This subsection discusses several aspects of databases and the pros and cons of

choosing specific DBMS and languages over others.

2.1.3.1 Relational vs Non-relational databases

Databases were popularized in the 1970s with the introduction of a relational database[115]. A relational database

follows the relational model of data, first appearing in 1969[116]. This model introduces the following con-

cepts:

• Tables or relations - Related data is stored in a table. Each table has rows that represent a record and columns

that represent the attributes of each record.

• Tuple or row - a row of a table, this row describes a record with its many attributes (table columns),

• Attribute or column - a column of a table, attribute represented by a value, character or string that is related

to each other via the same row,

• Relation Schema - describes the table designation and each table’s column type and names.

2Instrument data from serial or network ports could theoretically be collected onto files, resulting in another file data source.
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For every table (relation) the following constraints, exist:

• Key constraints - In a table, there must be at least one subset of columns - called a key - which identifies

each a row uniquely. This forces each key to be unique and not to contain NULL values,

• Domain constraints - Each column is supplied with a domain depending on the real world value it depicts,

meaning each column is limited to values in a specific range (ex: age as a number; telephone numbers cannot

contain digits above 9),

• Referential integrity constraints - Requires that the same data presented in different tables must be unique.

In terms of key constraints, for the same key to exist in two tables, it must contain the same value in both

tables.

In modern relational databases, none of the above constraints are necessarily enforced, however, ensuring them

provides faster development and mostly in the case of key constraints, processing speed[117]. A database system

that provides storage options according to the aforementioned model is called a Relational Database Management

System (RDBMS). In order to insert, delete, edit and select data from different tables in a database, a query must

be performed[118]. All RDBMS have the advantage of sharing a common query language called Structured Query

Language (SQL)[119]. This language allows changes to be made to relational databases regardless of the system

behind them.

In the past decade, there has been a growing resurgence of non-relational databases (more often called noSQL

databases, a moniker for ’no SQL’ or ’not only SQL’), incentivized by the needs of Web 2.0 companies such as

Facebook, Google and Amazon[120, 121] as well as its intensive use by the scientific community[122], with a

very active example being the BaBar experiment[123]. These databases, as their name state, do not focus on

building relations and most of them don’t benefit from using the SQL language[124]. Their rise in popularity

came from their ease of use and the ability of horizontal scaling[125, 126], which is an inherent challenge for

relational databases since an RDBMS requires several systems to ensure their transactions preserve the relational

model, which is harder to ensure for multiple machines[127]. There are several different types of noSQL database

systems available for use today[121], most of them being open source, and some provided by cloud computing

companies[128–131]:

1. Key-Value Store - This type of database is the simplest concept of noSQL database. It defines a key

and assigns it a value, a varying-length binary string containing whatever was decided to be stored, to

be understood by the application that stored it. Key-value stores are useful for storing session data, user

profiles and preferences (ex. online shopping cars). However, these databases are not optimized for carrying

out queries for specific values, ensure relationships between data values and operate on multiple keys and

persistent value updates.[132]

2. Document Store - While similar to the key-value store model, the document store model stores data associ-

ated with a key in a structured document, this structured document contains data that can be queried against

using methods provided by the database management system (DBMS) which stored it. Document store

databases are useful for storing unstructured data and make it easier to write application logic. However, doc-

ument stores should be avoided if complex queries and/or multiple operation transactions are needed[133].
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3. Column Store - This concept departs from the previous two, in that data is stored in columns and families of

columns. It comes quite close to the relational model, however the concept of rows is not defined and each

column is serialized together and stored in the same disk entry for faster access. Column store databases

provide very efficient compression, more optimized aggregate queries (sums,averages,etc...), provide good

scalability and fast load times[134].

4. Graph Base - Employ the concept of Nodes, Edges and Properties to create a relationship between data[135].

A node can be seen as a row in a relational database or a document in the document store model. The edge

of a graph connects different nodes together, it is an abstraction concept that is not implemented in other

database models. Properties are related to nodes and can be seen as the columns of a relational database.

The concept of the edge is what distinguishes the graph model from other database models as it provides

a simplified solution to complex queries. The value of graph databases is diluted when there is a simple

underlying structure to the collected data[136].

While many different non relational database systems exist, the main difference between relational and non re-

lational databases comes down to the ability to handle data that have a complex, changing or even non existent

underlying structure[137]. Relational databases can efficiently and reliably store, edit and provide data when their

structure and relationships is uniquely identified, while non relational databases are built to store, edit and provide

whatever data is supplied to them with minimal setup requirements[138]. The choice of using either database sys-

tems often depends on the amount of data to handle, as regardless of database model, the challenges for handling

the data increase with data size. In the light of the development of a data acquisition system for a potentially large

set of instruments, each of which can produce itself a large amount of data, the choice of DBMS is one of crucial

importance for the handling, sorting and serving of instrument data to users.

2.1.3.2 Scaling and Database Distribution

As discussed previously, the choice of the database system is intrinsically connected to the amount of data to be

handled and the resources available. The more data is expected to be handled, the more the DBMS is required

to scale, meaning it needs to perform more operations with the resources available[139]. If a database system is

running on a single machine and that machine’s hardware is not changed, there will be a limit to how much data

can be handled[107]. There are two possible solutions to this problem[140, 141]:

• Vertical Scaling - Provides more resources to a DBMS in order to handle larger computational loads. This

can be done via hardware (more CPU cores, RAM, storage) or via software (via settings of the DBMS),

• Horizontal Scaling - Provides more machines to handle the extra load. These machines must run a variation

of DBMS called a distributed DBMS (DDBMS).

Choosing to scale your system vertically or horizontally has both advantages and disadvantages and should be

carefully chosen by correctly identifying the expected amount of data to handle[142].

If one chooses to vertically scale their system, there is no need to change the underlying DBMS, however there is an

eventual limit of data to be handled, since there is no hardware produced today that provides infinite computational
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Figure 2.3: Illustration of the different methods of scaling a DBMS. Source Stack Overflow

power on a single machine[143].

If the choice is to horizontally scale a system, a distributed DBMS must be installed on a network of computers.

This DDBMS will allow the handling of more data but will be inherently slower, due to the overhead of consistency

checks over the network of computers[144]. DDBMS are subjected to the CAP theorem, which states that no

distributed system is safe from network failures, thus network partitioning3 must be ensured by the DDBMS[146].

In the case of network failure, the DDBMS must guarantee that either consistency or availability is maintained.

If a system chooses to ensure consistency, then every node in a distributed system must return the most recent

successful write, otherwise an error is returned (strong consistency)[147]. If, however, a system chooses to ensure

availability, then every node must return its own available most recent write, without errors but also without the

guarantee that the values are the most recent[148].

In the case of the development of a multi instrument data acquisition system, the choice of scaling model can be

a hybrid between vertical and horizontal, since most DDBMS systems offer APIs that are compatible with the

non-distributed DBMS used in single machines[149, 150]. Using a DDBMS might provide better solutions for

large sets of instruments but can suffer from slower response times if the set is sufficiently small to be handled by

a single DBMS.

2.1.3.3 Data storage types

In order to optimize the storage, query speed and responsiveness of the system, an appropriate representation of

the data to store - often called a schema - must be created in the DBMS. While building a specific schema depend

strongly on the data to be stored, there are some general models that can be applied to a set of data[151]:

3The ability for the DDBMS to continue despite an arbitrary number of messages being dropped[145]
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• Star Schema - It is the simplest type of data warehousing schemas[152] and consists on separating the data

into facts and dimension containers4[153]. A fact container stores measurable information about an event

or object and key constraints to dimension containers which contain more detailed description of a specific

fact[154].

• Snowflake Schema - A more generalized version of the star schema, a snowflake schema contains a central

fact container whose dimensions are distributed into their own star schema, meaning that each main dimen-

sion container is divided into other dimension containers[155]. Snowflake schemas trade more complex

query formulation for storage savings[156].

Figure 2.4: Illustration of the star (left) and snowflake (right) database schemas. Source ResearchGate

2.1.4 Data access and handling

When a suitable storage system is in place and instrument data is being properly stored, decisions must also be

made in terms of data access. Apart from general tools for providing data access, what medium is chosen to provide

the data to the users is important. Issues of authentication and security must also be addressed.

2.1.4.1 Web vs Native applications

With the rapid growth of web technologies[157], it is now viable to not only provide data-intensive applications

as downloadable and installable programs, but also server applications via web browsers (web applications)[158].

The use of native applications takes advantage of the full features of the device it is being run on and often

perform better due to more optimized processes[159]. However, they are harder to maintain, since they need to

be altered and compiled for different operating systems. Web applications on the contrary, have the advantage of

being supplied to the users directly from a common source, the web browser, which contains a common code base

between all operating systems (i.e: Javascript, HTML) making web applications much easier to maintain[160].

The limiting factor of serving web applications is the unavailability of certain features on the machine it is being

run as well as of optimization of the processes [161].

One concern of web applications that is not always a concern of the native application is handling of data in

an inherently decentralized system[162]. While native applications often have the choice of storing critical data

locally and accessing it at will, web applications do not, not only due to the ephemeral nature of the application but

also due to security concerns[163, 164]. This means that persistence of data in web applications must be handled

4In a relational database one can see dimensions as a table, but in non relational databases that may not be the case.
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on the server side (back-end). To this end, web applications are created with the expectation of a back-end service

that allows the requesting, adding, altering and removing of server held data, or resources. These services are often

referred to as Web API (Application, Programable, Interface)[165]. The most popular architecture of Web APIs is

the Representational State Transfer, which provides a set of operations that can receive a textual representation of

the action to be taken on a specific web resource[166]. REST APIs use HTTP to communicate between client and

server and will often employ a common way of providing data to and from a request, the most popular of which are

eXtensible Markup Language (XML) and JavaScript Object Notation (JSON)[167, 168]. REST APIs also have

the advantage of being independent of the client using them, requiring one that clients send a request via HTTP

via one of the available actions (GET, HEAD, POST, PUT, PATCH, DELETE, CONNECT, OPTIONS or TRACE)

to a resource[169], meaning that REST APIs, while designed with web applications in mind, can also be used for

native applications as well.

2.1.4.2 Monitoring & Visualization

A critical aspect of data handling and one that is particularly critical when designing a system meant to handle data

from scientific instruments is the question of monitoring and visualization[16, 170]. When considering monitoring

of a set of instruments, tools and interfaces for the following cases must be considered:

• Instrument Status - when the measurement status of an instrument measurement is changed, whether by

direct action of the operator, or by unexpected changes in the network (i.e: instrument’s measuring state is

changed, network communication is ceased - disconnection, shutdown),

• Event Detection - when the data collected by the instrument shows a behaviour that is outside of what is

considered normal operation, whether by experimental action or unexpected actions (i.e: experiment stage

change, power failure/surge)

In any of these cases, programmable automated tools must exist to either simply inform users that (un)expected

actions were taken that changed the overall state of the experiment or to take automatic actions to safeguard the

instrumentation[171].

When considering visualization of data, several libraries exist to handle data visualization, regardless of considera-

tions of the type of application used[172]. One interesting factor of visualization is its role on providing interactive

monitoring information, specifically when it comes to event detection[173, 174]. An interface that provides scien-

tific instrument data handling must provide tools to visualize instrument data.

2.1.4.3 Security concerns

With open software, which is often the case in the scientific world, there come inevitable security concerns of

data breaches. Several steps can be implemented to ensure proper user authentication and to prevent malicious

individuals from obtaining access through known vulnerabilities[175]:

• User authentication - The most common means of authenticating users in repositories, often required by

the DBMS themselves for access [176].
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• Access control - A separation of users by privileges is also often used (i.e: A guest can only access data

visualizations, while an instrument operator can manipulate said visualizations)[177].

• Injection attack prevention - Injection attacks target unprotected segments of code where user input is

required. This input is usually altered to provide more information than expected or affect the database (i.e:

delete complete databases, add/delete specific entries, etc...). While only common in DBMS that have an

underlying query system (i.e: SQL), injection attacks should also be a concern for noSQL databases[178].

To prevent such attacks, all expected user input must be properly handled by the server application that

processes user input to the DBMS, a topic of much discussion [179, 180].

• Data encryption - In order to prevent a malicious party to monitor the exchange of data between a server and

an end-user, data will often be encrypted between the user and the application by use of several algorithms

that ensure that decrypting data without knowing the appropriate keys is not completed in a small time

scale[175].

2.2 Time Series Analysis

Scientific data collection requires the observation of physical processes, occasionally for long periods of time.

The observed process will often contain a probabilistic component, either contained in the underlying process or

induced by the method of observation used (instrument)[181, 182]. This means that every time data is collected

from said process, the same exact data is not collected. These stochastic processes [183] are extremely prevalent

in data acquisition systems and current scientific experiments[184, 185]. Data collected during a time interval of a

realization of these processes is called a time series[186].

The collection of time series from different instruments generates a time series data set related to the time interval

of the collection. Several statistical techniques can be applied to data from one or various instruments in order

to extract information from the environment being sampled, reveal statistical relevance of specific time periods or

finding relationships between different variables. This section will introduce statistical concepts used for analysis

of time series. Subsection 2.2.1 will focus on methods to analyze individual time series. Subsection 2.2.2, will

focus on methods for analyzing clusters of time series.

2.2.1 Univariate Time Series Analysis

A time series (X) consists of a series of measurements of the same variable, executed during a specific time interval

and indexed in time order[187]. Time series can be continuous or discrete, with regards to their sampling method.

Often, for instruments only discrete time series are analyzed[188]. Time series collected using the same sampling

frequency can be conceptually defined as follows:

X = {x1, x2, ..., xn−1, xn} (2.1)
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Where N is the time series sample size. The following subsections will discuss the statistical concepts applied to

single and sets of time series to extract meaningful information.

2.2.1.1 Classifying Time Series

Time series of a single process contain information about the process to be extracted (i.e: mean, variance, trend,

etc...). In order to correctly extract that information, there are several statistical properties of a time series that must

be evaluated[189]:

• Stationarity,

• Integration,

• Trends,

• Seasonality.

This subsection discusses these statistical properties and provides ways of testing whether or not these properties

are ensured.

2.2.1.1.1 Stationarity A stationary time series is a special case of a time series where a certain number of its

properties do not vary over time[190]. A time series can have several types of stationarity, depending on which

properties are allowed to vary over time:

1. Strong Stationarity - As the name states, it is the strongest and hence the hardest type of stationarity.

Strongly stationary time series have the same joint distribution of any smaller collection of time/value pairs.

Formally that property can be defined as follows[191]:

F ({x1+τ , ..., xk+τ}) = F ({x1, ..., xk}),∀τ, k ∈ Z>0 (2.2)

where F(...) represents the joint distribution of a specific time series. As a consequence statistical properties

such as mean and variance of the time series do not change with time;

2. Weak Sense Stationary - A common form of stationarity in signal processing that only requires that the first

moment (mean) and the autocovariance of the series do not vary with time. Formally, weak sense stationarity

can be defined as [192]:

E({x1+τ , ..., xk+τ}) = E({x1, ..., xk}) = mx(t),∀τ, k ∈ Z>0 (Mean) (2.3)

ACFx(t1, t2) = ACFx(t1 − t2, 0) (Autocovariance) (2.4)

where E represents the expected value and ACF (t1, t2) represents the autocorrelation function of the dis-

tribution x with regards to the times t1 and t2. It comes from this definition that the autocovariance function

only depends on the time difference specified. This definition can also be extended to include non-varying

moments up to a specific order m, such a time series is thus considered to be ”stationary of order m”[193]
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3. Trend Stationarity - Corresponds to the existence of a trend in a time series which can be removed, the

remaining time series being stationary. The corresponding trend needs not be linear and must only be a

function of time. Formally, time series (Xt) with trend stationarity can be defined as[190]:

Xt = f(t) + et (2.5)

Where t is time, f is a function f(R)−− > R and e is a stationary time series.

To detect stationarity in a time series, one can perform a variety of statistical tests[194]. The data is considered to

follow a specific distribution (null hypothesis) against another possibility which will usually be another distribution

(alternate hypothesis). The test consists in calculating a a specific value or test statistic, associated with assuming

the null hypothesis[195]. The resulting value of the test statistic will allow the tester to decide whether to accept

the assumed null hypothesis or reject it in favor of the alternate hypothesis. The value of the statistic is often

associated with a probability value called p-value, which expresses the probability of the tester being wrong by

rejecting the null hypothesis. It is common to consider a p-value of 5 or 1% to reject the null hypothesis[196]. The

use of statistical tests is not fool proof as it is highly dependent on the sample being tested. A small or improperly

pre-processed sample might result in the wrong conclusion, whether it be incorrectly accepting the null hypothesis

- false positive or type I error - or incorrectly rejecting the null hypothesis - false negative or type II error[197].

The statistical test used in this thesis to test stationarity of a time series is the Kwiatkowski–Phillips–Schmidt–Shin

test (KPSS). This test is one of the most popular tests for determining stationarity of a time series[198]. It tests

the null hypothesis of the tested time series being sampled from a trend-stationary process, against the alternate

hypothesis of the process possessing a unit root[199], defined below.

2.2.1.1.2 Integrated time series There are many processes with non-stationary underlying time series [200].

The most common process represented in non-stationary time series are integrated processes[201]. The definition

of a time series of an integrated process is the one that can be transformed into a stationary process by differencing

it. Considering a time series xt, its differenced series wt is defined as:

wt = ∆xt = xt − xt−1, (2.6)

where ∆ is the differencing operator and xt−1 is the value of time series in the previous time value. If the time

series wt is considered to be stationary (constant mean and variance), the original time series xt is considered to

be integrated of order 1. If a number d differentiations are required to recover a stationary time series, the process

is considered to be integrated of order d[190].

The most well known integrated process is called the random walk process. It is formally defined as a time series

zt with the following representation[202]:

zt = zt−1 + εt, (2.7)
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where zt−1 is the time series value in the previous time and εt is a value of a random distribution at time t. The

random walk is a special case of a more general representation of stochastic processes that are linearly dependent

on earlier values, the autoregressive model, which is defined by the series[203]:

zt = a+ σzt−1 + εt, (2.8)

where a is a constant and σ ∈ R. It can easily be seen that equation 2.7 can be recovered from 2.8 with a = 0

and σ = 1. A random walk process can be easily shown to be an integrated process of order 1 by applying the

differencing operator (∆) into equation 2.7, since the remaining stochastic term of equation 2.7 (εt) is by definition

stationary. A process which is integrated of order 1 can also be stated as having a unit root[204].

In the context of instrument data acquisition and scientific data, it is not uncommon to find unit root processes[205,

206]. Unit root processes should not be mistaken for trends, even though they exhibit at first glance similar

properties[207].

To detect integrated time series, more specifically, unit root time series, the Augmented Dickey-Fuller (ADF) test

is used in this work. ADF tests the null hypothesis of whether a unit root is present against the alternate hypothesis

that no unit root is present, making the process trend stationary. It can be performed for 3 different types of unit

root[208]:

• The process is integrated of order p: ∆zt =
∑i=p
i=1 δi∆zt−(i+1) + εt,

• The process is integrated of order p with drift: ∆zt = α+
∑i=p
i=1 δi∆zt−(i+1) + εt,

• The process is integrated of order pwith drift and deterministic trend: ∆zt = α+βt+
∑i=p
i=1 δi∆zt−(i+1)+εt.

For the purposes of this thesis, only the first type of ADF tests will be used, as a test for trend and also for trend

stationarity.

2.2.1.1.3 Trend A stochastic process that contains a trend has its values changed by a deterministic constant

value with time. It can be described as follows[209]:

zt = a+ β(t)t+ εt, (2.9)

where β is a deterministic value that may or may not be constant over time. By subtracting this trend from the time

series one can retrieve a stationary time series[190]. The main difference between trended and integrated processes

is their behaviour to shocks, or sudden changes in the environment being measured[210]. This is clear in figure 2.5

which compares two stochastic processes, one containing a trend and one containing a unit root. After a shock,

processes that contain a trend will revert to their mean value and thus are called mean reverting, while processes

which are integrated will not[211].
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Figure 2.5: Example of two stochastic processes (red) and their shocked equivalents at t = 50 (blue). The left figure shows a
trended stochastic process while the right process shows a unit root process. Notice that on the left image, after the shock is
applied the left image reverts to its non-shocked equivalent (mean reverting) while the right image does not.

The previously introduced autoregressive model for a stochastic process can be naturally complemented with the

addition of a trend term to 2.8:

zt = a+ β(t)t+ σzt−1 + εt (2.10)

In the context of instrument data acquisition and scientific data, trends in time series are more important than in-

tegrated time series in most cases [212]. It is thus extremely important to identify and extract trends from time

series, whether it is for post processing, detrending and/or smoothing or forecasting[213, 214].

In order to detect trends in a time series, the Mann-Kendall (MK) trend test[215, 216] is used in this work. This test

assumes a null hypothesis of a non-existent monotonic trend, which may or may not be linear against the alternate

hypothesis that a trend is present.

2.2.1.1.4 Seasonality Seasonality consists of patterns in the data that are repeated over time[217]. From the

previous definition two types of periodic patterns can be deduced (illustrated in figure 2.6):

• Cyclic patterns - When the time elapsed between repeated patterns is not well defined (e.g: extinction

events),

• Seasonal patterns - When the time elapsed between repeated patterns is well defined, also often referred to

as periodicity (e.g: solar cycle,heart beat, etc...).

Seasonality of a time series is analysed using the Autocorrelation Function (ACF) and Partial Autocorrelation

Function (PACF)[218]. The ACF is calculated by taking the time series (xt) and correlating it with the same time

series shifted in time by a certain interval, defined as lag. Formally, taking a time series the calculation of its

autocorrelation function is:
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Figure 2.6: A plot of US birth rates as a function of time, the plot shows a highly reapeatable (seasonal) yearly pattern of
higher and lower births. The plot also shows a slow increase of overall births over a decade proceeding to drop off over the
following decade, while the last decade in the plot shows an increase of births over 5 years followed by a decrease in the next
5 years (cyclic pattern). Source Grroups

ACFx(n) = Corr(xt, xt+n) =

∑N−n
i=1 [x(i)− E(x)][x(i+ n)− E(x)]∑N

i=1[x(i)− E(x)]
(2.11)

Where N is the total number of samples of the time series and x(i) is the value of the time series on index i. The

number of indexes, n, defines the lag interval.

The ACF at a particular lag value will include contributions from all other smaller lag values (i.e: ACF at lag 10

will have contributions from lag 0 to 9). In order to properly calculate the single contribution of a lag value, the

aforementioned contributions must be removed, thus calculating the PACF[219]. The PACF is obtained for lag

n by producing a regression analysis of the time series considering an autoregressive model of order n defined

as:

AR(n) =

n∑
i=1

σixt−i + εt (2.12)

Where σi is the autoregressive coefficient of order i. The resulting coefficient of order n assuming the process is

AR(n) will be the value of the PACF at lag n.

The distinction between seasonality and a trend in the time series is highly dependent on the time series length, as

well on the sampling frequency chosen. In the context of scientific instruments, the identification of seasonal pat-

terns is important whether for modeling efforts [220] or removing from the general trend[221]. Cyclic patterns are

usually the result of unexpected changes to the measured environment and can be used for prediction of incoming

events[222], thus are also important to identify.
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In order to detect periodicities in a time series, the Fisher periodicity test is used. This test assumes a null hypothesis

of non-existent periodicity and an alternate hypothesis of periodicity[223].

2.2.1.2 Comparing Time Series

In most experiments and especially in ones employing sets of scientific instruments, it is often the case that more

than one distinct time series exists for different measured quantities. In such cases, it is important to distinguish

time series with similar behaviors to one another, as it allows to infer on possible causal relationships between the

series[224, 225]. This can be done through visual inspection of the time series, a slow process which often requires

heavy data processing and knowing beforehand which time series will behave similarly[226, 227]. If the behaviors

of time series are not known a priori and the number of time series prohibits visual inspection of each pair of

series, then a different method must be used to compare their behaviors and, when comparison is complete, should

provide a shorter pool of similar time series, from which data processing and visual inspection can be employed

with less user effort.

Two major types of measurements exist for comparing time series. The first are similarity measurements that

compare how alike two time series (X and Y ) are. They provide a number in the range of [0, 1], 0 being absolutely

different and 1 being absolutely equal. The second types of comparison measurements are dissimilarity or distance

measurements, which provide a number in the range [0,∞] where 0 means the series are equal and the larger the

value the more different the time series are[228]. Of important note, dissimilarity measurements (d(X,Y )) values

can be converted into similarity measurement (s(X,Y )) values using the following formula[229]:

s(X,Y ) =
1

1 + d(X,Y )
(2.13)

Other important properties of both similarity and dissimilarity measurements are[230]:

• Symmetry - d(X,Y ) = d(Y,X),

• Reflexivity - d(X,Y ) = 1 (or 0 for dissimilarity) ⇐⇒ X = Y ,

• Triangle inequality - d(X,Y ) ≤ d(X,Q) + d(Q,Y ) with Q being any other time series.

When the time series to be compared are well constrained in time and a reasonably controlled environment is

established, it is often common for the time period to be ignored in favor of transforming the time series into a set

of components in a frequency space, often by means of the Fourier Transform[231]. The Fourier Transform (F )

of a time series is defined as:

FX(ω) =

∫ ∞
−∞

Xte
−2iπωtdt, (2.14)

where Xt is the time series value at time t. This transformation turns X , a function of time, into a function of

frequency (ω) and allows the exploitation of each frequency contributions to the overall time series. For discrete
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data, the Discrete Fourier Transform (DFT) is generally used:

FX(k) =

N−1∑
n=0

Xne
−2iπktdt k = 0, ..., N − 1, (2.15)

whereN is the number of elements in time seriesX (sample size). Computationally, the discrete Fourier transform

is calculated via Fast Fourier Transform algorithms (FFT), which greatly decrease the computational effort for the

calculation[232]. Working with the frequency components of time series provides several avenues for time series

comparison[233–235]

This work focuses and uses the most popular measures in literature, more specifically: correlation (similarity),

dynamic time warping (distance), local similarity (similarity) and coherence (similarity)

2.2.1.2.1 Correlation Correlation coefficient is a similarity measurement that can be applied to two samples

in order to calculate the degree of linear correlation between the two corresponding variables[236]. The Pear-

son correlation coefficient is probably the most popular measure to infer the similarity of two samples [237].

Considering the specific case of time series, if two samples have different distributions with the same size (N )

- Xt = {x1, ..., xN} and Yt = {y1, .., yN} - the formal calculation of the Pearson correlation coefficient (r) is

calculated as:

r =

∑N
i=1(xi −X)(yi − Y )√∑n

i=1(xi −X)2
√∑n

i=1(yi − Y )2
, (2.16)

where q is the mean sample value of the sample q. The result of equation 2.16 is a value between -1 and 1. If the

value of the coefficient is 1, then X and Y are perfectly related to each other (correlation). If the value is -1 then

there is a relationship between X and Y where if X increases, then Y decreases and vice-versa (anti-correlated).

If the value of the coefficient is 0 then there is no relationship between the samples[238].

An immediate limitation of the Pearson correlation coefficient is the need for both samples to be of the same

size[239]. This makes it impossible to calculate the coefficient between two time series with different sample

frequencies; while this limitation can be fixed by interpolation of the largest frequency sample or suppression

of values from the smallest frequency sample, these methods can induce unwanted artifacts[240]. The Pearson

correlation coefficient is also sensitive to scaling along the y-axis and warping of the time axis (i.e: not sensitive to

delayed responses, accelarated/decelarated processes)[241].

A possible alternative to the Pearson correlation coefficient similar to correlation is the cross-correlation of signals.

This method is popular in image processing to find similar images, and can be used for 1-dimensional signals It

consists of multiplying elements of one of the signals by the other shifted by a certain time values. It can be

formally defined for discrete time series as[242]:

RXY (k) =

N∑
i=1

Xi × Yi+k (2.17)
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This measurement is similar to the convolution of signals, except that the first signal precedes the second signal,

which does not happen for a convolution. The cross-correlation measurement can deal with delayed time signals

but is now not bound by the similarity measurement limits. It can recover those limits by normalizing the time

series by the norm of their auto-correlation[243].

2.2.1.2.2 Dynamic Time Warping (DTW) This is a distance measurement which accounts for different se-

quences which change in speed[244]. DTW attempts to find the optimal alignment between two different time

sequences (X adn Y ) of length N and M (respectively) by producing an NxM cost matrix (CDTW ) where each

element of said matrix is a simple distance measure such as the Eucledian distance and finding a path through that

matrix that minimizes the cost of traversing the matrix. Formally this cost matrix can be defined as[245]:

CDTW (X,Y ) =



c1,1 c1,2 . . . c1,M−1 c1,M

c2,1 c2,2 . . . c2,M−1 c2,M
...

...
. . .

...
...

cN−1,1 cN−1,2 . . . cN−1,M−1 cN−1,M

cN,1 cN,2 . . . cN,M−1 cN,M


(2.18)

where ci,j is an appropriate binary distance measure (eg: Eucledian, Mahalanobis or cosine distances) of element

i of time series X and element j of time series Y . In order to traverse the matrix with minimal cost the optimal

warping path must be discovered. The warping path is a set p of a number L of pairs of indexes from the X and Y

time series (p = {p1, . . . , pL} = {(x1, y1), . . . , (xL, yL)}) and must satisfy the following conditions[246]:

• Boundary condition - p1 = (1, 1) and pl = (N,M)

• Monotonicity condition - x1 ≤ x2 ≤ · · · ≤ xL−1 ≤ xL and y1 ≤ y2 ≤ · · · ≤ yL−1 ≤ yL

• Step size condition - pi+1 − pi ∈ {(1, 1), (1, 0), (0, 1)} for i ∈ [1 : L− 1]

For a warping path (p) properly defined, DTW will minimize the total cost function over said path (cp) which is

defined by:

cp(X,Y ) =

L∑
i=1

c(xpi , ypi), (2.19)

where c is the aforementioned distance measure selected for the definition of the cost matrix in 2.18.

The classical DTW contains one critical disadvantage, since it requires searching through a matrix of N ×M for

elements, making the calculation of the optimal path and respective cost function a computational problem of com-

plexity O(n2)[247]5. However, several restrictions can be applied to the warping path calculation to increase the

computational speed of the method, as with the Sakoe-Chiba band or the Itakura parallelogram, both represented

in figure 2.7. These methods restrict the choice of optimal warping path to certain (user-defined) regions in the

cost matrix thus limiting the number of choices of possible warping paths [248, 249]. This limitation, while in

5An algorithm implementing this method would require n2 computations to finish where n is a length representing the size of the arrays
used. This is one of the most inefficient types of algorithmic complexities.
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some scenarios might limit the distance metric to higher values, will in most chosen signals with appropriate limits

allow the choice of a semi-optimal path that should properly define the distance between time series[250].

Figure 2.7: Illustration of the Sakoe-Chiba and Itakura parallelogram over a generic cost matrix. The shaded regions represent
the allowed regions for warping path calculation[251].

Another possibility for making DTW more efficient is to apply dimensionality reduction by using coarse approx-

imations of the time series, and thus building a smaller overall cost matrix. One such example is the fastDTW

algorithm[252].

2.2.1.2.3 Local Similarity Measurements of local similarity were first introduced for testing similarity between

biological time series[253–255]. The need for this introduction came from the fact that very often the effect of one

tested compound or tested behavior would vary from series to series not allowing relevant similarity measurements

by using simple correlation. It is an ideal method to use with a set of time series where little knowledge is known

a priori for each individual channel. Local similarity provides, as the name states, a similarity measurement, that

results from the application of successive similarity measurements in localized subsets of the time series, limited

by a user-defined maximum delay parameter[256].

One algorithm for calculating a local similarity statistic is presented here, adapted from [257].

To note that the returned value from this algorithm, LSS, can be either positive or negative, depending on which

score matrix dominates in absolute value, thus providing not only a similarity measurement, but also a sense of

correlation or anti-correlation. Also of note is that for a large enough delay, this algorithm will be of complexity

O(n2). This means that steps must be taken to limit the available delay. The fact that this measurement provides

the positive aspects of both correlation measurements (signal of the measurement) and dynamic time warping

(flexibility with the time scale) justifies its use in this work.

2.2.1.2.4 Coherence The coherence of two time series is a measure of how related the time series are at a

certain frequency[258]. The coherence (C ) of two time series (X and Y ) is defined as:
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Data: Time series to compare (X and Y ), delay (D) in time
Result: Local Similarity Statistic (LSS)
m=len(X); /* Length of time series */

n=len(Y ); /* Length of time series */

P=zeroes(m,n); /* Positive score matrix declaration */

N=zeroes(m,n); /* Negative score matrix declaration */

for i = 1, i+ +, while i < m do
for j = 1, j + +, while j < n do

if |i− j| <= D then
Pi+1,j+1 = max(0, Pi,j +Xi ∗ Yj);
Ni+1,j+1 = max(0, Ni,j −Xi ∗ Yj);

end
end

end
P̂ = max|i−j|<=D(Pi,j);
N̂ = max|i−j|<=D(Ni,j);

LSS = sign(P̂ − N̂)max(P̂ ,N̂)√
n∗m

Algorithm 1: Local similarity statistic calculation for two time series.

CXY (ω) =
|GXY (ω)|2

GXX(ω)GY Y (ω)
, (2.20)

where G is the cross-spectral density of two time series, defined as[259]:

GXY (ω) = FRXY
(ω) =

∫ ∞
−∞

RXY (t)e−2iπωtdt, (2.21)

with RXY being the cross-correlation function of X and Y , defined in equation 2.17.

Coherence can be seen as a the cross correlation function in the frequency domain and provides a measure of each

frequency component relation for the compared time series.

A relevant result to facilitate the estimation of coherence comes from the definition of the Fourier Transform when

applied to the convolution of two functions. The convolution of two functions f and g (fg) is defined as:

(fg)(t) =

∫ ∞
∞

f(τ)g(t− τ)dt (2.22)

Which draws many parallels with the cross-correlation function, in fact applying this definition the cross correlation

function can be written as convolution of two time series:

RXY (t) = X∗Y (2.23)

Where ∗ denotes complex conjugate (which in practical terms will not matter for this thesis, since all signals are

of real values). It can also be proven that the Fourier Transform of a convolution of two functions is equal to the

multiplication of the Fourier Transforms of each function[260]. Thus, the cross spectral density can be calculated

as:
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GXY (ω) = F ∗X(ω)F ∗Y (ω) (2.24)

2.2.1.3 Event detection

Event detection is one actively purpose of time series analysis [261–263]. It has many uses in the scientific

community allowing simple activities like identification of change of state of an experiment [263], but can also be

used for critical event detection to maintain the health of a site or experiment[264]. There are many types of event

detection algorithms, most of then falling into one of two main categories[265]:

• Supervised detection - The algorithm receives a set of events (positive, negative or both, depending on the

complexity of the algorithm) and by studying the underlying statistical properties and structure of the set it

compares that information to the one corresponding to new data and identify events [266].

• Unsupervised detection - The algorithm is only provided with a method of extracting the structure of the

data and from it, the algorithm has a process to decide whether an event has happened or not[267]

Usually, supervised event detection will more accurately detect events with a smaller amount of false positive

events. However, large sets of events (training sets) must be provided to these algorithms beforehand[268]. If a

type of event is not provided to the training set, more than likely it will not be detected in the live data. Unsupervised

algorithms by not requiring training will require less computational effort and will not be restricted to a possibly

limited set of training events. However, if not properly tuned, unsupervised algorithms may often provide many

false positives and also false negatives[269].

This work focuses on unsupervised algorithms that detect events while the data is being gathered, called online de-

tection algorithms. Specifically, three different event detection methods are explored: threshold detection, ARIMA

model detection and symbolic ensemble wavelet decomposition event detection.

2.2.1.3.1 Threshold detection This technique consists in defining one (or more) values that are considered

anomalous (threshold), if the values of the series is exceeded, then an event is considered to be under way (figure

2.8)[270]. More complex versions of this algorithm exist such as adaptive thresholds[271] or cumulative sum

thresholds[272] to deal with signal seasonality or spurious values. Threshold methods require a stable signal that

is not expected to have multiple states[273].

2.2.1.3.2 Windowed detection One variation of this method consists in the detecting events inside a certain

sub-period of time inside the available time series. The event detection is evaluated by examining the point-by-

point statistics of each sub-period, assuming that a specific distribution is achieved during each sub-period. The

most popular method used is the rolling z-score, which assumes that a point in a sub-period is anomalous and is

thus classified as an event if it deviates more than a user-specified amount of standard deviations of the sub-period.

This method thus assumes that there is a certain degree of stationarity on each window, which, given a combination

of narrow windows and slow processes could be true. However, the use of a z-score assumes that the distribution

of the signal at each window is normally distributed, which is not always the case[274].
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Figure 2.8: Illustration of threshold event detection. This particular method uses two threshold values (A and B). Source .

Figure 2.9: Illustration of event detection using a rolling z-score method. The top image shows in red the data points and in
green the limit of detection (3.5) given by the previous 5 data points. The bottom plot shows the response of the event detection
(0 if no event and [1, -1] if the signal is over the user-defined number of standard deviations.

2.2.1.3.3 ARIMA modeling Statistical modeling of time series is a highly investigated area[275, 276]. Auto-

regressive Integrated Moving Average (ARIMA) models are highly popular methods for modeling and forecasting

time series[277]. These models can also be used for event detection by searching for time periods where the data

deviates from the forecast values[278]. As the name states, the model consists of optimizing an expression with 3

distinct terms [279]:

1. Autoregressive - A term that depends on the previous values of the time series, this term may also contain

(non linear) trend terms to be fitted,

2. Integrated - These are not terms to be fitted but merely an indication that the data used is subtracted by their

previous values. This method is used to remove any existing unit roots from the data,

3. Moving Average - A term that depends on the previous values of a previously chosen error distribution.

With the forecasting power of the ARIMA models comes the ability to distinguish when a signal deviates from its

30

https://irevolutions.org/tag/poptech/ , irevolutions


normal behavior, thus signaling a possible event (figure 2.10) [280]. ARIMA models with seasonal terms can also

be used to include existing seasonality in time series. While ARIMA modeling is a powerful and proven method

for time series forecasting and event detection, a large amount of data points is required in order to generate a

proper model of the underlying process [281].

Figure 2.10: Illustration of threshold event detection. This particular method uses two threshold values (A and B). Source .

2.2.1.3.4 Symbolic wavelet partitioning This time series analysis method is based on several techniques and

is thoroughly explained in [282–284]. The ones used in this work are: Wavelet transform and symbolic analysis.

The wavelet transform is a time-to-frequency transformation, in which a time series is represented in the frequency

domain by the components in a set of base functions, much like the Fourier Transform[285]. The set (ψ) of

functions used to represent the data in frequency space must be an orthonormal system such that:

〈ψj , ψk〉 = δjk, (2.25)

where ψj represents one base function of the set and δjk represents the Kronecker delta[286]. In the case of the

wavelet transform, instead of functions with shifting frequencies as in the Fourier Transform, the orthonormal set

consists in a series of functions that are shifted in both time and frequency (scale) called wavelets. A set of wavelets

is defined by a mother wavelet and a scaling function that is responsible for moving and stretching/compressing

(scale) the mother wavelet in time. This means that the wavelet transform not only provides information of the time

series in the frequency space, it also maintains time space information[287]. A wavelet is a class of function that

has similar characteristics to waves, but is limited in time depending on the decomposition level of transformation

chosen [288]. The decomposition level of the transformation defines how fine a frequency analysis is required.

A larger decomposition level uses a scaling function that reaches smaller scales, meaning better representation of

finer features of the signal (figure 2.11).

The result of a wavelet transform is a matrix of time × frequency points. In order to analyze these points, a

symbolic ensemble analysis is performed. This method consists in ordering the content of a signal in a meaningful

set of representative symbols, often called an alphabet, by a procedure called called partitioning[289]. Partitioning
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Figure 2.11: Illustration of the scaling of a wavelet, the top shows the normal wavelet function and the bottom function shows
a scaled wavelet function by a scale factor of 1

2
. Source .

consists in dividing the time series data in subsets and assigning a symbol to each one6. There are many partition-

ing methods[290], this work focuses on maximum entropy (ME) partitioning. ME partitioning allows an automatic

choice of alphabet size (number of subsets of data to consider) by maximizing the information (entropy) that each

alphabet segment provides. When the provided information of an alphabet segment is lower than a certain provided

threshold, the entropy is considered to be maximized and the ideal alphabet size.

Once the ideal alphabet size is defined a symbolic representation of the time series is achieved. The aforementioned

alphabet can now be applied to other time series of similar length to create a new symbolic representation, the

comparisons between the two representations allow to decide whether or not an event occurred[291].

2.2.2 Multivariate time series analysis

When considering multiple instruments, often the use of combined data from those instruments allows to in-

crease the knowledge of the overall process being studied. The application of a statistical treatment to several

time series is part of the domain of multivariate statistics, more specifically in this case, multivariate time series

statistics. A multivariate time series (X) is simply a set of two or more time series, which are either realizations

of the same process measured by different instruments, or measurements made from the same instrument, only

shifted in time[292, 293]. Extending the definition of equation 2.1, a multivariate time series can be defined as

follows:

X = X1, ..., XM (2.26)

6An alphabet does not require to have specific symbols, it only requires to contain a set intervals that encompass all the data points in a time
series
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Where Xi consists of a single time series (i.e: the measurement of a single variable, as defined by equation 2.1).

In this case the multivariate time series contains M individual time series, and is thus M-dimensional.

In the context of multivariate time series applied to a universal data acquisition and monitoring solution, two

aspects are important: dimensionality reduction and network visualization. Each of these aspects will be discussed

in the following subsections.

2.2.2.1 Dimensionality reduction

The concept of dimensionality reduction consists in removing from a data set specific data that is considered to be

redundant to the available information, maintaining data that meaningfully explains the behavior in the initial data

set[294]. This allows reducing noise in the data and/or alleviates the computational strain of algorithms applied

further down in the processing pipeline[295, 296].

Dimension reduction can be extended to multivariate time series, however, it is important to take into account that

when considering time series, the order of the measurements with respect to time must be preserved[297]. When

applied to multivariate time series, the goal is to find a subset of time series that encapsulate the behavior of all the

time series.

While there are many different methods of dimension reduction, by far the most popular one consists in a form of

Principal Component Analysis (PCA)[298]. This method transforms the data set from the space of measurements

to the space of the data points and in this space, chooses the set of points that represent most of the variance

of the whole data set[299]. It can be easily extended to the analysis of multivariate time series, considering the

components of the multivariate time series Fourier transform, which don’t suffer from the ordering requirement of

the time space[300].

For a m-dimensional multivariate time series (FX):

FX(k) =


FX1

(k)

FX2
(k)

...

FXm(k)

 , (2.27)

where FXi
is the Fourier transform of the i-th time series, given by equation 2.15. This matrix consists of an

m sets of n
2 Fourier components which can now be analyzed to determine which set of data sources and Fourier

components best represent the variance of the whole matrix data. Matrix FX can be decomposed using Single

Value Decomposition (SVD)[301]:

FX(k) = ΣΛΩ, (2.28)

Where Σ is an m×m matrix containing an orthogonal set of vectors that transforms the data sources space, Ω is

an n
2 ×

n
2 matrix containing an orthogonal set of vectors that transforms the frequency space and Λ is an m × n

2
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diagonal matrix which contains a set of scaling coefficients in descending order. It can also be shown that equation

2.28 can be represented as:

FX(m) =

r∑
i=1

λiSi, (2.29)

Where λi is the i-th scaling component in the Λ diagonal matrix and Si is an m× n
2 matrix obtained by the outer

product of the i-th column vectors of the Σ and Ω matrices, respectively. The i-th element of the sum in equation

2.29 consists in the i-th principal component of the data set[302]. Equation 2.29 is thus the result of a PCA analysis

of a multivariate time series and by truncating the sum at a specified number of (r < m) principal components, the

data set is thus simplified into a smaller subset of sources and frequency components that meaningfully represent

the initial data set. To do that, one needs only to look at the components of Λ which contain the information on

how each principal component contribute to explaining the original data. The contribution (σi) of each principal

component can be calculated from its respective scaling factor (λi) as:

σi =
λ2i∑m
k=1 λ

2
i

(2.30)

Since the SVD of the multivariate Fourier matrix presents its scaling factors in descending order, a maximum value

of r can be imposed in equation 2.29 such that:

r∑
i=1

σi ≥ σL, (2.31)

where σi is given by equation 2.30 and σL is a limiting number between 0 and 1 that represents the percentage of

the variance of the Fourier components explained by the r first principal components. This value is usually user

defined and lies within the range of 90-100% for most applications of PCA.

By decomposing the initial data set via PCA where σL of the variance is explained, the initial data set is reduced

to a smaller and more easily treatable data subset.

2.2.2.2 Graph visualization

Graph visualization is a method of visualizing data that has recently gained popularity[303–305]. By showing data

as a set of nodes interconnected with a specific kind of relation, the whole data set can be visualized as a network

of interactions and several algorithms of graph theory can be applied to highlight relevant nodes or emphasize

communities of closely related data[306]. Graph visualizations can be analyzed according to the number and

strength of connections between each nodes in a subset of graph theory called network theory. Prominent uses

of graph and network theory in science include condensed matter physics and quantum field theory (see figure

2.12)[307]
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a) b)

Figure 2.12: Two examples of graph representations used in separate fields of science: a) Nanoflake graph representation; b)
Feynman diagram

2.2.2.2.1 Interaction measurement In order to study a network of time series, a relationship measure must

be defined to interrelate the sources of data. Since the measurements being discussed are time series, either of

the similarity methods discussed in 2.2.1.2 are potential candidates for use as an interaction measurement between

pairs of series. A similarity matrix can be built:

S =



s1,1 s1,2 . . . s1,N−1 s1,N

s2,1 s2,2 . . . s2,N−1 s2,N
...

...
. . .

...
...

sN−1,1 sN−1,2 . . . sN−1,M−1 sN−1,N

sN,1 sN,2 . . . sN,N−1 sN,N


(2.32)

Where sx,y is the similarity measurement between series x and y and can be viewed as the interaction measurement

between nodes in a similarity time series graph visualization.

2.2.2.2.2 Graph representation When an interaction measurement is chosen, a graph visualization can be

created. A graph is a diagram where textual labels (nodes) are connected via line segments (edges). Graph edges

can be directed or undirected, depending if the relationship is asymmetrical or symmetrical, respectively. Directed

graphs can have two edges connecting two nodes, one for one direction of the relationship and another for the

inverse direction (hence the name directed), while undirected graphs can have only one connection between two

nodes. In this work, the nodes in a graph represent a single signal and the edges are measurements derived from

either coherence or partial coherence analysis. All presented graphs are undirected.

Graphs can be presented in a variety of forms:

• Force-based or force-directed layouts: where the strength of the connection between nodes is represented by

a force that repels or clusters nodes. These graphs can easily convey the strength of the connections and also

provide good interactivity and flexibility[308].

• Hierarchical layouts: where nodes are placed in layers often in a descending order, generating more complex

connections as the layer number increases. These layouts are more popular when listing dependencies such

as in software debugging [309].
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• Circular layouts: where nodes are placed in the perimeter of a circle, and edges are usually connections

made inside the circle. These layouts are very popular for use in communications networks[310].

Figure 2.13: Illustration of two types of graph layouts (circular on the left and force-based on the right). The right graph is
more effective at presenting the dependency of individual nodes[311]

The most appropriate graph to visualize the strength of the connection between an arbitrary number of nodes are

the force-directed graphs (as shown in figure 2.13). From these graphs, network theory can be applied and relevant

information can be extracted from the nodes and their interactions. This work will focuses on two important pieces

of information: centrality and community measurements.

2.2.2.2.2.1 Centrality Graph centrality measurements attribute a specific value to each node according to a

specific function which often evaluates the amount and weight of the edges linked to the node on the graph[312].

Several centrality measurements exist, 3 specific ones will be considered:

• Degree centrality: the simplest form of centrality measurement, consists in calculating the number of edges

connected to a node. It is often normalized to the total amount of edges in the graph. This measure is used

to find the most important (most connected) nodes of the network. A more complex measure of degree

centrality is eigenvector centrality (ε) which takes into account not only the number of connections of a node

but also the number of connections to connected nodes, which allows the calculation of the most influential

nodes in a network[313].

• Betweenness centrality: this measure of centrality focuses on shortest paths. It is calculated by dividing the

number of shortest paths between adjacent nodes that pass through the target node by all the shortest paths

between the adjacent nodes. This measure allows finding nodes that control the flow of information in a

network graph[314].

• Closeness centrality: this measure of centrality focuses on the distance between a node’s adjacent nodes. It

is calculated by dividing the number of connections of a node by the sum of the distances between adjacent

nodes. This measurement is used to find nodes which can quickly influence most of the network[315].
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2.2.2.2.2.2 Communities Another important aspect of graph analysis is the grouping of different sets of nodes

into communities. These communities of nodes are useful not only to aid the user in understanding the structure in

the network, but to highlight specific sets of nodes that may have similar behavior and should be studied together

when assessing the influence in the overall system[316]. Several algorithms exist to calculate the existence of

communities in a graph[317]. For this work, the Louvain algorithm is chosen, which focuses on optimizing a

quantity called modularity (Q) with respect to the number of communities and their nodes:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δci, cj (2.33)

Where Ai,j is the edge weight between nodes i and j, kn is the sum of weights of edges attached to node n,

m is the sum of all edge weights in the graph and cn is the community of node n. By finding shifting nodes

between initially assigned communities and calculating the shift in modularity an optimal arrangement of nodes in

communities can be made that maximize the modularity of the network[318].

Figure 2.14: Illustration of the Louvain algorithm. A first step of community assignment is performed by modularity optimiza-
tion is performed and a second step of community aggregation is made. These steps are repeated until a maximum step of
modularity is achieved (source[318]).
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Chapter 3

DAQBroker framework & performance

DAQBroker is the proposed solution to the challenge of providing an open source framework for instrument mon-

itoring and control. In this chapter the first section describes the main components of DAQBroker and the second

section evaluates the performance of DAQBroker on a working example of the framework on controlled infrastruc-

tures of varying computational power.

3.1 DAQBroker framework

DAQBroker is a python-based web framework that focuses on instrument monitoring and aims to provide mon-

itoring and control methods for any type of instrument. The framework itself focuses on three major compo-

nents:

• Communication - strategies for conveying information from an instrument to a centralized repository,

• Storage - methods for collecting, organizing and storing instrument data,

• Interface - solutions for data access and manipulation.

While interconnected, each component presents clearly defined challenges in the context of scientific instrument

DAQ. Most of DAQBroker’s code is written in Python with the exception of the supplied web interface, which uses

the standard HTML, Javascript and CSS. The following subsections will thoroughly define and justify each of the

choices made for the aforementioned components. The last subsection is devoted to security mechanisms, access

control and data access in DAQBroker.

3.1.1 Communication

The current version of DAQBroker allows instrument data to be gathered from either a single machine or from a

network of machines. The network communication is implemented via a server/agent architecture that emphasizes
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on minimizing the load on the client machine1. The protocol used was built over TCP sockets, but provides a more

relaxed communication scheme to handle slow or malfunctioning machines.

3.1.1.1 Server/agent architecture

Since the source of data (different scientific instruments) is varied, similar requests require instructions to be tailor

made for each instrument, hampering remote procedure calls. The use of the Internet and local area networks

has made wide-spread the usage of networks and the paradigm of network communication introduced in 2.1.1.2,

pushing the use of specialized buses into a secondary alternative. For those reasons, DAQBroker is prepared

to be deployed in a TCP/IP network environment, where multiple computers are acquiring data from multiple

instruments. Its structure consists of two python-based applications that communicate in a networked server-client

architecture:

• Server - focuses on connecting to the different associated database engines - remote or local - and analyzing

the different DAQBroker databases that exist in those engines. With this information this application iden-

tifies the connected instruments and linked computers in the network (nodes). It then periodically requests

information from the different nodes running the agent application. This strategy is called a push commu-

nication method[319]. Though this method is not the most scalable for large numbers of machines[320],

message size and quantities are optimized and as small as possible, to prevent network overflow. This appli-

cation is also responsible for the main experiment data flow, ensuring that the most recent instrument data is

stored in each of the connected database engines (refer to 3.1.2 for more details on storage)

• Agent - focuses on maintaining communication with one or more server applications and provides answers

to specific requests issued by those servers. The use of an agent application allows it to be personalized

for the specific instrument control tasks. Apart from providing new data from the scientific instruments on

request, the agent also provides health information of the machine running it, an important factor to keep in

mind on a network of instruments.

While not being the most scalable option, a server-agent architecture with push communication provides the least

amount of extra load on the different client machines, which are expected to be running computationally intensive

programs for individual instrument data acquisition. The use of an agent application also provides customization

opportunities for instrument control, a feature that can not be guaranteed in a network architecture based on remote

procedure calls (see for instance[321]).

3.1.1.2 Communication protocol

The communication between the server and each agent application is based on TCP sockets run over a high level

distributed messaging library called ZeroMQ[322]. ZeroMQ provides a special class of high level sockets that

fulfill specific communication paradigms with performance and concurrency. In DAQBroker, these sockets are

used to send personalized messages between the server and the agents. The agents interpret the orders from

1As the client machine may be using most of its resources to run important instrument application(s)
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the server and provide a response. However, the ZeroMQ socket communication is still very rigid and a single

malfunctioning agent machine could slow down the server machine due to connection loss or high agent loads.

To overcome this problem a parallel push-pull method of communication is implemented in which both the server

and agent application contain dedicated message receiver and sender loops, which interpret and send messages

between each other, ensuring concurrency in both cases. In order to ensure that all machines that are assigned

instruments are available on the network, a server-wide message is sent to the network via the local network’s

broadcast port. Machines running the agent application in the local network will receive this message and reply to

the server with specific information about the machine, including a dedicated message listener port and the network

unique identifier of the machine. Agents not on the local network of the server machine run an active secondary

communication loop, periodically contacting the server machines to convey the same information. After a machine

is deemed operational (i.e: running the agent application and reachable through the network), requests are sent via

the following steps (illustrated in figure 3.1):

1. A (ZeroMQ) TCP socket (S1) is established between the dedicated server message sender and the agent

message listener port,

2. The message is encoded and sent to the agent and the socket (S1) is closed. In this message a number for

a dedicated server message listener is also provided, along with the unique identifier(s) of the instrument(s)

and the respective database the message is aimed at,

3. The agent receives the message via the dedicated listener, decodes and interprets the message. The agent

executes the order in the message and creates a new socket to the dedicated server listener (S2),

4. The response message is encoded and sent back to the server with the unique identifier(s) of the instrument(s)

and respective database the message was aimed at, the socket (S2) is then closed,

5. The server receives the response message, interprets the request, instrument and database it was aimed at

and updates the respective database accordingly.

This system allows for multiple sockets to be sent in succession, without need for waiting for the remote machine

to interpret orders and provide replies, since the socket is immediately closed after the message is sent. This

ensures that a single server/client machine can run without being interrupted or delayed by slow or malfunctioning

client/server machines.

3.1.2 Storage

Two types of data storage are used in DAQBroker. User and server configuration data are stored in a local file

database and instrument data is stored in each user provided database running any type of major consumer SQL

engine. This subsection will introduce this storage strategy as well as the existing methods for data gathering and

the main storage process loop.
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Server Agent

S1 Created

Sent order

Instrument ID; Return port; database

Order determined
to be sent

S1 Closed

Message decoded

Listener

Interpreter

Message interpreted

Order fulfilled

S2 Created

Sent reply
Instrument ID; database

Listener

Process loop S1

S2

S2 Closed

Message decoded

Message interpreted

Database state change

Figure 3.1: Illustration of communication between a server and agent applications. The communication requires the creation
of 2 sockets (S1 & S2) and a total of 4 independent processes evenly divided between the server and agent applications (refer
to 3.1.2.5 for more information).

3.1.2.1 Data partitioning

The first data storage concern before considering individual instrument data is to define how data belonging to

different scientific efforts is to be partitioned. The main concerns in choosing how to partition data are the follow-

ing:

1. A flexible format that allows long single experimental efforts to be recorded as well as small and staggered

ones,

2. Clear separation between periods of different experimental parameters,

3. Hierarchical structure to allow separating periods of both major and minor changes in experimental param-

eters.

To that end the structure used in the CLOUD experiment was implemented, consisting of a hierarchical structure

of Campaigns, which contain experimental Runs, which in turn contain Stages:

• Campaign - this is the largest data partitioning block, which represents a period of scientific experiments

where an effort is made to study one or several effects using a particular set of instruments. Using the

example of the CLOUD experiment, a campaign represents a time period where the chamber is in one of its

two main operational modes (see 4.1.2),

• Run - an experimental effort where the influence of a particular set of parameters is studied. This data

partition defines a period of time during which several experimental parameters are changed to study the

development of certain phenomena. In the particular example of the CLOUD experiment an experimental

run will consist of a single particle formation event, where experimental parameters are changed to study
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the chemical dependency of newly formed particles or a cloud formation run where the composition of the

atmosphere is changed to study the formation and lifetime of clouds.

• Stage - the smallest data partitioning block that consists in minor changes (often and ideally a single change)

of experimental parameters to study the immediate influence of those parameters on the overall experimental

effort. In the particular example of the CLOUD experiment, an experimental stage consists in simple changes

to experimental parameters to change the generation of new particles or clouds (e.g: turning on UV lights,

injection of seed particles or changing of gas concentration levels).

This data partitioning hierarchy is implemented in DAQBroker by separating each campaign into separate databases,

while each database contains an internal record of its experimental runs and stages. This partitioning model should

provide enough flexibility to be used in most scientific data gathering efforts (see appendix A for more informa-

tion).

3.1.2.2 Instrument set as a data warehouse

Instrument data comes in a wide variety of formats, sources and granularity. However, there is one common

quantity to all data gathering instruments, the time at which measurements are taken. Time allows data from

different instruments to be compared and, when required, to be manipulated to create new measurements. Time

is thus the best parameter to base the data storage and searches for a single or multiple instruments. The different

sources and formats of instrument data consist of a top-down design concept of instrument data warehousing is

introduced where the instrument is the at the top. The instrument block is presented in figure 3.2 and is divided

into smaller more specific blocks:

• Instrument block - The most general block that encompasses all others and defines the basic information

about an instrument (name, operator info, contacts, etc...). This block allows separation between different

instruments’ data.

• Data source block - Provides information about a specific data source from an instrument. This block allows

DAQBroker to decide what data gathering method to use and what information to feed to the corresponding

method (ex: file data gathering requires a folder, file format and extension info).

• Data channel block - The most specific block of an instrument, each channel is associated to a data source

block and is related to a single stream of unit information (ex: number or string). Data for each channel are

associated with a specific time value or range.

An instrument model as the one described allows most instruments to be properly defined by providing the users a

means of supplying each block. In order for data gathering to be performed in DAQBroker, an instrument (already

defined by its main block) is required to have at least one data source and channel blocks. With the instrument

identification as well as a common data attribute for storage and searches to be performed, it is clear that the ap-

proach of DAQBroker is to create a relational database of instrument data.
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Instrument 1

Data Source 1 Data Source 2 Data Source 1

Channel 1 Channel 2 Channel 3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Chann
    1

Chann
    2

Chann
    3

Chann
    4

Chann
    5

Instrument 2

Data Source 1

1  2  3  4  5  6  7  8  9  ...

... 354 355 356357 358 359 360

Figure 3.2: Illustration of the instrument data warehouse model with two examples. Left instrument with 3 different data
sources, each one having a varying number of channels - 5, 3 and 15. Right instrument with a single data source and 360 data
channels.

3.1.2.3 The case for noSQL

At first glance, the reader could be inclined to consider that noSQL databases would be the best approach for

this kind of universal data storage approach, since as stated previously, these databases are much better suited to

handle heterogeneous data and would also facilitate the horizontal scalability of the application. However, two key

features of relational databases win out over noSQL databases. The first is the ability for the underlying database

management system to make operations that ensure the continuity of the database in case of failure (often called

ACID transactions[323]). The other feature is the ability to preform complex queries over the underlying data.

While noSQL databases allow for a more heterogeneous set of data structures, they severely limit the range of

inspection over that data by the user, making it necessary to create third-party applications for the handling of this

heterogeneous data. While a solution for DAQBroker could be implemented in terms of a noSQL database, that

was not the selected option, the process of implementation would be wildly different and the instrument concept

would have to be revised.

3.1.2.4 DAQBroker database schema

As described previously, DAQBroker uses a relational storage model for instrument data. A DAQBroker user may

choose to use one or many databases for storing their data, and a single database should contain the instruments

that gather data for the same scientific objective. A single instrument database follows a hybrid star/snowflake

schema. In figure 3.3 an example database without any inserted instrument is provided. The schema contains the

following tables that define the instrument using the previously defined model (a full description of the schema is

provided in appendix A):

• Instruments - Contains the information of the main instrument block. The attributes of each instrument are

as follows:

1. Name - String defining the name of the instrument. This name is unique and cannot be repeated.

2. instid - Integer uniquely defining the instrument.

3. active - Boolean defining whether an instrument is in active data gathering or not,

4. description - Blob that contains a description of what the instrument is supposed to do,
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5. username - String relating the instrument to the DAQBroker user that created it,

6. email - Blob containing contact information for the instrument operator (does not have to be just email),

7. insttype - Integer that defines the type of instrument storage format,

8. log - JSON encoded blob that contains a public electronic instrument log that users can fill out to help

keep track of changes made to the instrument.

• Instmeta - Contains the information of each instrument’s data source blocks. The attributes of said blocks

are as follows:

1. clock - Integer defining the last edit timestamp of the data source,

2. name - String identifying the data source,

3. metaid - Integer uniquely identifying the data source,

4. instid - Integer relating the data source with its instrument (see Instruments - instid),

5. type - Integer defining the type of data source (allows specific data gathering methods to be chosen),

6. node - String defning the network node associated with this data source,

7. remarks - JSON encoded blob containing relevant information for data gathering methods for the type

of data source chosen,

8. sentRequest - Boolean that tests whether a remote data gathering routine is under way (for time out

purposes),

9. lastAction - Integer defining the timestamp of the last automated action preformed on this data source,

10. lasterrortime - Integer defining the timestamp of the last error encountered when preforming data

gathering for this data source,

11. lastError - Blob containing information of the last error encountered when preforming data gathering

for this data source.

12. lockSync - Boolean to test whether there is a data gathering action currently taking place for this data

source (used with sentRequest for timeout purposes).

• Channels - Contains the information of each instrument’s data channels. The attributes each channel are:

1. Name - String containing the name of data channel,

2. channelid - Integer uniquely identifying the data channel,

3. channeltype - Integer that defines the type of data channel (used for data manipulation),

4. valuetype - Integer that defines the type of data returned by this channel (i.e: string, numbers),

5. units - String containing the physical units of the data provided by this data channel,

6. instid - Integer relating the data channel with its instrument (see Instruments - instid),
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7. description - Blob containing a description of the data provided by the data channel,

8. active - A Boolean that tests whether the data channel is actively providing data,

9. remarks - JSON encoded blob containing relevant information for automated handling of the specific

data channel,

10. metaid - Integer relating the data channel with its data source (see Instmeta - metaid),

11. lastclock - Integer defining the timestamp of the last gathered data value,

12. lastValue - String containing the last gathered value on the channel,

13. fileorder - Integer defining an order for the data channel to be gathered (only used on specific data

gathering methods),

14. alias - String defining an alias of the channel to be used in certain data gathering methods,

15. firstClock - Integer defining the timestamp of the first gathered data value (can be updated if newer

values are gathered).

These 3 tables contain the relevant information that fully define an instrument and preform data gathering. When

an instrument is created via DAQBroker, two new tables are created:

• * data - Contains the data gathered from the instrument (the ’*’ in the name of the table is replaced by the

instrument name). The attributes of this table are the names of the non-custom data channels,

• * custom - Contains the custom data gathered from the instrument. This includes data that is a direct result

of manipulation of data between one or various instruments. The attributes of this table are the names of the

custom data channels of the instrument.

With the creation of these final two tables for each instrument, data from instruments can be stored and queried via

the snowflake. Other tables are also created to allow the storage of information from other relevant DAQBroker

services and are not part of the aforementioned snowflake thus the hybrid star/snowflake schema definition.

The main advantage of this schema for instrument data storage is that an individual instrument’s data injection

can be made in parallel of other instruments under the same RDMS, meaning that, under the same campaign, one

instrument will not be responsible for locking data storage of other instruments since only that instrument’s table

is locked for data injection.

While a network of computers will often be connected to a single machine running a DAQBroker server (or more

if one server machine is not powerful enough or the network is too large), it is possible that multiple servers

connect to the same database engine and store instrument data on that database. Thus a DAQBroker database is

not geographically bound to a location as long as different instrument locations have access to a specific database

engine (e.x: AWS RDS, institution server).
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Figure 3.3: Enhanced Entity Relationship (EER) diagram of an empty DAQBroker database. A full description of all tables can
be found in appendix A

3.1.2.5 Database monitor

Each DAQBroker server allows one or more local or remote SQL database engines to be used to store instrument

data. For each user-provided engine, the server creates a process that continuously queries the database instru-

ments’ data sources to evaluate when they require actions to be preformed. When an action is to be preformed

on an instrument’s data source, it must be properly identified and its relevant information must be conveyed to the

appropriate node so that the proper data acquisition action is taken. This subsection will define the main process

loop for continuously monitoring a database engine as well as the different available instrument data gathering

methods.

3.1.2.5.1 Process loop The process loop for each user-provided database engine is depicted in algorithm 2:

This loop allows for continuous monitoring of the database engine and sends update messages only from active
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Data: Engine login information
Result: Continuous database engine analyser
connection=dbConnect(); /* Create initial engine connection */

while True do
connection.update(); /* Updates the connection object */

nodes=nodeCheck(); /* List of local available machines - separate process */

bookeeping(); /* Run global engine book keeping functions */

for db in connection.databases do ; /* list of active databases */

msgToSend=[] ; /* List of messages to send */

DBbookeeping(); /* Run specific database book keeping functions */

for inst in db.instruments do ; /* List of active instruments */

for src in inst.dataSources do ; /* List of active data sources */

if (src.node included in nodes) and (src.lastAction-currentTime < src.actionPeriod) then
msgToSend[node].append(createMsg(src)); /* Update node message */

end
end

end
for message, node in msgToSend Where message not empty do

sendMessage(message,node) ; /* Send messages to appropriate nodes */

end
end

end
Algorithm 2: Main process loop for monitoring each database.

databases with instruments that are active and have active data sources, to nodes that are contactable by the server

application. An instrument from one database can contain data sources from machines in different networks that

are being managed by different server machines. While it can be argued that a database engine that contains

several DAQBroker-generated databases will become increasingly slower, the operations preformed in this loop

are aimed at an overall small number of target rows2 and thus one database loop should not take more than several

milliseconds on an appropriately designed machine.

3.1.2.5.2 Data gathering methods When it is determined by DAQBroker’s database engine process loop that

an instrument is required to provide new data, a new process is initiated to gather new instrument data, order it

into each individual data channel and store it in the respective database (either locally or remotely depending on

the assigned network machine of the data source). DAQBroker currently supports 3 methods of data gathering and

one method for custom data gathering:

• File parser - A large amount of instruments produce data in the form of data files. Those files will often

contain extremely free form formats. DAQBroker allows users to define the format of an instrument’s output

file by providing the channel separator, an option of providing an example file to extract individual channel

names and specify the format of the timestamp (figure 3.4). This parser allows virtually any ASCII instru-

ment ASCII output file to be immediately read out to a DAQBroker database, as well as provides the option

2A single instrument is not expected to have on average more than 5 data sources - even though very specific instruments can exceed that
value - and a single database containing more than 100 instruments is already considered to be a large scale database (that should consider
partitioning and multiple server machines). Thus the total number of operations for each nested database loop should not exceed 300 and this
can be quickly preformed by any low-mid range machine.
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to back up the created files, for later use by the users,

• Serial port reader - Some instruments’ DAQ provide information via serial communication. DAQBroker

allows such instruments’ data to be gathered and stored. The user has full control over the settings of the

serial port as well as the serial port to use (either local or remote). Users can also choose to send a command

via the same serial port to request new data in the case that the instrument produces data by request,

• Network port reader - Apart from serial ports, some instruments’ DAQ will provide data via network ports.

DAQBroker provides users the ability to set up data sources that listen or even provide commands to network

ports much in the same way as serial ports. Network data requests are sent to the machine of the network

port and the request is made locally to emulate the serial port, such that the load of processing the request is

left to the data machine,

• Custom data gathering - Custom data refers to data created from one or several channels from one or

several instruments. The current iteration of the data manipulator allows for data from different channels to

be gathered and manipulated into a new value which is a function of the different chosen data channels. This

function can come in the form of a simple mathematical expression but can also contain conditionals and

loops as functions of channel values using the Python language. In the near future further functions will be

added, such as means (weighted and not), derivatives and string handlers.

The decision to use different data gathering methods depends on the type of data source (refer to 3.1.2.4). The

open source nature of DAQBroker’s code allows for easy integration of new data gathering methods as well as

expansion of the existing ones by adding new methods to the project.

3.1.3 Interface

Interface is the last major component of the DAQBroker framework and of great importance, as it provides users

with the tools and visual methods of interacting with the instrument environment provided by DAQBroker. Since in

a shared instrument environment, most users will not be familiar with all instruments, a simple interface is required

to access the relevant data from each instrument in a universal way. In order to provide off-the-shelf functionalities

to users from a wide spectrum of programming experience, a web application was designed to query and interact

with DAQbroker databases. This application contains a dynamic HTML interface based on AJAX (Asynchronous

JAvascript and XML) requests [324] with an underlying RESTful API built with Python and Flask. This subsection

will cover the user interface and underlying API.

3.1.3.1 Front-end user interface

The main user interface is presented in figure 3.5. It contains several different tabs on the left side that provide

users with the ability to query and interact with the instrument environment visible by the server machine, and tabs

on the right side that provide users with settings and/or administrative tools. Depending on the type of user that is

connected, some tabs may have limited functionalities or even be off limits, raising an error to the user in case he
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decides to attempt access (refer to 3.1.4 for more information regarding users and access control). The left tabs are

the following:

• Instruments - The default tab of DAQBroker. Users can access this tab to create/edit/view existing instru-

ments, users can access instrument logs and access data for individual channels. To create an instrument

the user is prompted to go through a 3-step form to provide information for each of the blocks of the instru-

ment (refer to 3.1.2). Created instruments are bound to the user that created the instrument and can only be

edited/deleted by said user or an administrator.

• Data - Provides users with the ability to access and manipulate instrument data. Users can create and

share visualizations of channels from different instruments or even create visualizations of linear functions

of existing channels. Users can also use this tab to access visualizations created by other users and insert

comments on existing visualizations to provide interpretations for specific features in the data. This tab can

also be used to download data from different instruments directly into a file to be used by other data analysis

programs.

• Runs - Using this tab, users can keep a record of different experimental periods of the data collected in a

database. Each experimental period is called a run and each run can be divided into any number of stages.

Only specific users can create and stop new runs/stages but any user can insert comments into a run/stage to

instruct other users on specific events that occurred during the run. Runs and stages can be shown in every

data visualization to provide users with information when the experimental period changed states or they can

be downloaded into a file for use in other data analysis programs. On first use of the tab, users are prompted

to create a set of experimental parameters to change between each experimental run/stage. This list can be

edited in case a new parameter is added later to the experiments.

• Nodes - This tab provides a list of all machines connected to the server machine. Users can access this tab

to acquire health information about network machines. They can also use this node to gain access to the

agent application across many available platforms, so that it can be installed and run on other machines.

Administrator users can access this tab to insert new machines into the network by providing a pairing string

that can be used to find the agent machine in the network. Administrator users can also decide whether or

not an NTP routine is applied to specific machines for time synchronization. This tab is specific to a single

machine running the DAQBroker server application. If a user accesses a machine in a different network,

even if connected to the same database, this tab will provide a different list of nodes.

The right hand tabs are the following:

• Database chooser - A drop-down menu that provides users with a list of databases present in the connected

engine. Choosing a different database will change the information provided to the user on most left-side tabs

• Database administrator - Provides administrator users access to database engine administrator tools. These

users can access a list of databases and users and change their settings. Databases can be set to active or

inactive, providing or removing the ability to collect new instrument data. Users can be changed between

their many types. Administrators can also create and delete existing users and/or databases.
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• Local administrator - Administrator users can access this tab to edit local settings of the server machine.

These users can edit the existing paths for backup and import, set and provide NTP servers for time synchro-

nization, change the network ports for communication and logging and access the local logging information

for specific time periods.

• Logout - This tab logs the current user out of the application and returns a login prompt for users to provide

new login credentials.

3.1.3.2 Back-end RESTful API

DAQBroker provides a comprehensive API based on HTTP calls to manage and modify the instrument environ-

ment. Each call requires the proper user authentication before any changes can be attempted. The most recent

version of the API can be found at http://daqbroker.com/documentation.html.

3.1.4 Security

One final important aspect of DAQBroker and of any web-based application is security. With off-the-shelf software

and HTTP APIs come inevitable security concerns and possible avenues for malicious interventions. While rarely

the target of these attacks, the scientific community should have prime responsibility in implementing security

methods because scientific products often bleed out to industry and individual use. This subsection will discuss the

common web-based attacks that could affect DAQBroker and the security measures implemented to prevent said

attacks.

3.1.4.1 Role Based Authentication

In order to control the power each user has over the underlying DBMS, DAQBroker was built with a role-based

authentication (RBA) with 4 different user types ordered below by increasing privileges in access to changing the

instrument environment:

• Guest - The user with most basic privileges. Can only view instrument data and is not allowed to create

or edit instruments, runs or provide comments. The intended use is to provide data access to external

collaborators,

• Operator - This user type is assigned to instrument operators, who are in charge of one or more instruments

and/or even a network machine. This user can create and edit the instruments created by itself as well as

create visualizations and provide comments to runs and visualizations,

• Run coordinator - This user is assigned to control room operators or experiment coordinators. Apart from

having the same privileges as an operator, a run coordinator can create/edit/remove experimental runs/stages

and edit experimental parameters,
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• Administrator - The user with the most privileges. An administrator user has control over all created

instruments, runs/stages and connected machines. An administrator user is also responsible for creating new

users and databases.

This privilege hierarchy minimizes the risk of compromising instrument data when a user has their credentials

compromised. Operator users only have full control over their own instruments’ data and are only able to view (and

not edit) other users’ data. Only the run coordinator and administrator accounts can inflict changes that affect global

information on the database. It is thus expected that only a few administrator and run coordinator accounts exist

per DAQBroker instance, thus limiting the number of accounts that, if compromised, can alter/remove multiple

users’ data. The operators are thus responsible for keeping their own accounts secure at the risk of compromising

only their own instruments’ data.

3.1.4.2 Injection/XSS/XSRF prevention

Web-enabled technologies give users with malicious intent the opportunity to execute unexpected commands via

the provided API and/or user interfaces. With the use of SQL as a common querying language, input that is not

properly protected can be a target of SQL injection and if improperly handled by the server application can be

used to run unintended commands for other clients accessing the user imported data (ex: Running a key logger to

capture a user’s credentials). This is called Cross-site scripting (XSS). The improperly authenticated user sessions

maliciously ’hijacked’ is called cross site request forgery (XSRF).

DAQBroker’s database connections and requests are handled by the a popular open-source database toolkit SQLAlchemy

(see 3.2.2). This toolkit contains bindings for user input that dramatically reduce the risk of SQL injection. Addi-

tions to the software, however, must be properly tested to ensure that no avenues for SQL injection are inadvertently

created. DAQBroker itself is created under the Flask framework, that uses the Jinja2 language[325] to generate

website templates. This language already checks for arbitrary HTML attempts to be injected via templates. In the

case of DAQBroker’s back-end API, all requests generate a unique id that is created at the start of a session and is

written to all templates and sent to all requests in order to validate the user making the request, which drastically

reduce the risk of XSRF. Similarly, all requests requiring user input are also thoroughly analyzed and escaped to

prevent unwanted code execution via that avenue.

3.2 DAQBroker architectural choices

3.2.1 Communication

As stated in 3.1.1 the communication protocol for DAQBroker was built over TCP with safeguards in place to han-

dle remote instruments with poor/without connection to allow graceful termination of communication attempts.

The protocol was designed on top of ZeroMQ message sockets, which are essentially TCP sockets with the possi-

bility of handling bad connections and timing out communication attempts. This is basis for the internal commu-
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nication that is used between DAQBroker agent and server applications to handle data requests from instruments.

For external communication with a DAQBroker application other options are provided (see 3.2.3)

3.2.2 Storage

Storage in DAQBroker follows a hybrid snowflake data warehouse relational model as described in 3.1.2. To

provide support for all popular RDBMS, a popular open-source python Object-Relational Mapper (ORM) called

SALAlchemy[326] was used. This ORM abstracts the particular needs of each RDBMS into classes objects used

by the underlying programming language (in this case Python, which uses classes to define the different tables and

their relations). This provides a dependency injection development pattern when dealing with the definition of the

schema and the connection to the RDBMS itself.

3.2.3 Interface

In 3.1.3, it is stated that DAQBroker provides a web interface via a REST API. This API is responsible for handling

user authentication, instrument Creation, Reading, Updating and Deleting (CRUD) operations as well as data

access (data requests for specific channels). This API is built under the Flask framework, which is an extensible

framework under Python that provides methods for handling all the aforementioned interactions. To provide users

with a graphical way of interacting with this API, a front-end web application is also provided with DAQBroker

that allows users to easily create, edit, delete instruments and access/manipulate instrument data, experimental

runs using the Flask API. This application is built using standard web tools (Javascript, HTML) along with some

graphical frameworks such as jQuery for DOM manipulation.

3.3 DAQBroker performance

As discussed in the previous chapters, an application with the scope of monitoring sets of scientific instruments

requires not only a comprehensive and simple interface, but also the possibility to handle a changing and often

growing set of instruments. Several choices made for DAQBroker to be user-friendly can affect its performance.

In this section the performance of the current version of DAQBroker is evaluated by applying a set of tests designed

to mimic examples of real-world use. The focus is on testing the performance of the database monitoring process

under changing sets of instruments and available computational power.

Two machines were chosen for the following tests to represent low (LP) and high (HP) computational power

machines. The specifications of each machine are highlighted in figure 3.6:

When relevant, tests will be duplicated first using a local database engine and second a remote AWS (Amazon

Web Services) free tier database[327] to study the effect of decentralizing the database engine. All machines are

running on the same network served by a TP-LINK AC1200 Gigabit Router[328]. Randomized instrument data

will be collected from a single low power Raspberry pi machine running the DAQBroker Agent application. This
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Low Computing Power (LP) High Computing Power (HP)

- CPU: 4× ARM Cortex-A53, 1.2GHz
- RAM: 1GB LPDDR2 (900 MHz)
- Net: 10/100 Ethernet
- ROM: SanDisk Ultra® microSD UHS-I 16GB

- CPU: Intel Core i7 5960X (8x HT) @ 3.00GHz
- RAM: GSKill 32GB  DDR4 (3200 MHz)
- Net: Intel Gigabit LAN
- ROM: Crucial MX200 500GB

Figure 3.6: Specifications of the two machines used to test the DAQBroker software. Considering the number of possible
threads that can be created at the same time and the speed difference between them, the high power computer has around 10
times more computational power. However, there is always demand for low power machines to handle long running monitoring
processes on small sets of instruments that update data at very low rates. For those cases, a less powerful machine provides
lower power consumption.

machine will not be monitored as it does not accurately represent a single or multiple instrument machine. Each

test and their results are presented in the following subsections.

3.3.1 Number of instruments

The test intends to study the server machine response to an increasing set of instruments, it can also be seen as a

scalability test. For the LP machine, each instrument produces a single source 10 channel file and updates data

every second. For the HP machine, another single source, with 100 channels, is considered. Since all data sources

are treated separately, regardless of the instrument they belong to, this test also evaluates the behavior of a server

to an increasing set of data sources on a single instrument. To emulate an instrument already containing data, each

instrument data container is pre-filled with entries of artificially generated data and is set up to collect new data

every 10 seconds. For each set of instruments, 30 minutes of continuous monitoring is preformed, during which

relevant machine parameters are recorded, such as CPU utilization, RAM, ROM and disk IO.

3.3.1.1 Collection time

Figure 3.7 presents the collection time of instrument data as a function of the number of instruments being mon-

itored. DAQBroker attempts to collect new data twice per data collection interval. Hence an instrument whose

data is to be collected every 10 seconds should have its data collected every 5 seconds in practice. This figure

shows that under a local database engine, there is a decrease in the average collection time of instrument data when

more instruments are monitored, with that decrease being more pronounced on the LP machine. This behavior

is counter-intuitive to the expected behavior of the application, although the variability of the collection time in-

creases with the number of monitored instruments. This indicates that the numberof instruments up to 19 does not

limit the collection time in local DB.
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Under a remote database engine there is no discernible trend as a function of monitored instruments for the LP

machine, while in the HP machine there seems to be a gradual increase of the collection time. This behavior is

more in line with the expected behavior of the application but may be influenced by the underlying cloud service

and the limitations of the database engine and storage tier used.
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Figure 3.7: Instrument collection time versus number of monitored instruments in a single DAQBroker server on the LP machine
(left) and the HP machine (right).

3.3.1.2 CPU utilization

Figure 3.8 shows the CPU utilization of the underlying machine as a function of monitored instruments. Regardless

of the number of instruments and database engine used, there seems to be no existing trend for CPU utilization,

averaging around 25% for the LP machine and around 7% for the HP machine. This behavior is in line with the

expected behavior of DAQBroker, as not particularly heavy computational efforts are requested for the application

itself, most of the computation being spent in organizing lists resulted from database requests.
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Figure 3.8: CPU utilization versus number of monitored instruments in a single DAQBroker server on the LP machine (left)
and the HP machine (right).
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3.3.1.3 RAM

Figure 3.9 shows the RAM used by DAQBroker as a function of monitored instruments. There is a marginal

upward trend with more monitored instruments however the used RAM tends to stay constant at around 1.25%

for the HP machine and 18 and 19% for the LP machine with local and remote database engines, respectively.

This behavior is in line with the expected behavior of DAQBroker since little amount of data is kept stored in

buffered memory, most of it being sent directly to the database engine. While not enough time was spent with

each set of instruments, a total of 10 hours of monitoring was made and clearly no meaningful amount of memory

changed during that time, thus it is safe to assume that no visible memory leaks exist in the current version of this

software.
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Figure 3.9: Used RAM versus number of monitored instruments in a single DAQBroker server on the LP machine (left) and the
HP machine (right).

3.3.1.4 Disk usage

Figure 3.10 shows the disk usage of as a function of monitored instruments. Regardless of machine and database

engine, a clear increasing trend exists for both read and writes per second (RPS and WPS, respectively), with a

local database producing more variability and overall larger values of both metrics, as expected for using local

resources over remote ones. This trend seems to show that DAQBroker is IO-bound for both machines. This is not

surprising, as the bulk of DAQBroker’s operations are reading and writing to files or file-like resources. The actual

values of the disk operations vary from machine to machine but the trend is present in both.

3.3.2 Rate of data generation

For DAQBroker to be able to monitor an instrument, it must be able to retrieve and store its information in the

database in a timely fashion. Otherwise, new data will take progressively longer to arrive and real time monitoring

will eventually be impossible to perform. In order to test the limits of DAQBroker when it comes to instrument

data generation rates, the following test is proposed. A single instrument from a remote machine with a single file

source and 10 channels is created with a variable data creation periods from 1 to 10−3 s. For each period a fixed
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Figure 3.10: Disk usage versus number of monitored instruments in a single DAQBroker server on the LP machine (left) and
the HP machine (right). The top plots show writes per second and the bottom plots show reads per second.
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10 minutes of monitoring is preformed using DAQBroker. During this time a program running on the instrument’s

machine will simultaneously record every second the timestamp of the last record in the reference file and the

timestamp of the last value stored in the DAQBroker database. While DAQBroker is able to store the instrument’s

data in a timely fashion, the difference between the aforementioned timestamps should always be smaller than the

data collection period of that instrument.

Figure 3.11 shows the timestamp differences as a function of time for the different data generation rates. It can

be seen that for a LP machine, a local database engine struggles to monitor instruments with a periods equal and

lower than 10−2 seconds (100 Hz). This limitation is improved by the use of a remote database and data generation

periods of 10−2 seconds can now be monitored. For a HP machine, however, a local database engine struggles to

keep up with periods as low as 10−3 seconds (1000 Hz) while a remote database engine simply cannot handle the

same data generation period.
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Figure 3.11: Current to stored timestamp differences versus time for different machines and data generation periods. The left
plots characterize the LP machine performance and the right plots the HP machine performance. The top plots refer to the use
of a local database engine while the bottom plots refer to the use of a remote database engine.

Figure 3.11 illustrates the need for carefully choosing the database engine position. A remote engine, while free-

ing local resources to handle more computation costs, trades more CPU performance for less network performance

which can be at times more damaging for the monitoring of very fast data generating instruments.
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It should also be noted that the data generation periods presented in these figures are quite fast to require real

time monitoring. Frequently data generated at this speed will require some intermediate step of processing before

producing data to monitor. However, DAQBroker can handle most of the presented speeds of data generation so

that the data processing step can be made with DAQBroker itself (see section 4.3.2 for specifics on data processing

with DAQBroker).

3.3.3 Data retrieval

Apart from instrument data injection, tests must also be preformed on the server’s ability to handle data requests.

These tests serve to validate the algorithms and queries used for serving data to users, specifically for online visu-

alizations, which require timely showing of data. The algorithms used for online visualizations use the width of

the user’s screen to prevent too much data from being delivered to the user that requested it. Thus, no matter what

the time length a user requests to visualize, only a maximum number of (time,value) pairs (up to the pixel width of

the screen used) will be delivered, as this is the maximum resolution that can be seen in the used display.

The proposed test for data requests uses similar queries. A single instrument with 10 data channels is created and

one million entries are introduced in it (a little over 10 days for an instrument sampling frequency of 1 Hz). Once

done, a certain amount of data is requested (1, 5 and 10 days respectively, assuming the instrument produces data

every second), that data is delivered considering a screen with 1200 pixels of width3. The request is made several

times with the same length but different start times in order to produce a statistically significant set of request time

values and not use the same and often cached values from previous requests. Once done, another million data

entries are added to the instrument’s table and the requests are again made. This process is repeated until 100

million entries are placed in the instrument (a little over 3 years for sampling at 1 Hz). These tests measure the

degradation of the serving of data, as an instrument chooses from more and more data.

Figure 3.12 shows the request time versus number of entries in the instrument for both machines. While for the

HP machine all requests seem to take a similar amount of time to complete, the LP machine requests take longer to

complete, saturating at around 1 second at containers above 40M entries. While the LP requests take significantly

longer to process than the HP machine, these requests are within a perfectly reasonable waiting time for remote

monitoring and web technologies.

3This width lies in the range of HD, which is a low end when compared to already existing Full HD and 4K displays. However, for the
amount of data points requested, the total number of points returned would be only a factor of 4 higher, at maximum.
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Figure 3.12: Request time versus DAQBroker container size. The different colors depict different request sizes.The left plot
characterizes the LP machine performance and the right plot the HP machine performance.
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Chapter 4

DAQBroker and the CLOUD

Experiment

DAQBroker was first implemented on the CLOUD experiment. In this chapter the CLOUD experiment is pre-

sented, along with the data acquisition challenges that lead to the conceptualization of DAQBroker. First, a broad

description of the experiment is made discussing the objectives, types of measurement and performed experi-

ments. Second, the implementation of DAQBroker in CLOUD is described, focusing on the existing challenges at

CLOUD that range from instrument data collection to data visualization and manipulation and how DAQBroker

tackles those challenges. Finally, some examples of experiment results are introduced, highlighting the benefits of

using this framework for online and offline data analysis.

4.1 The CLOUD Experiment

The CERN CLOUD experiment is an ideal example of one situation where instrument data monitoring, manipula-

tion and storing approaches such as DAQBroker are required.

4.1.1 Description

The CLOUD experiment[329] consists of a collaboration of over 20 institutes around the world. The aim of this

experiment is to study different processes in atmospheric particle creation and cloud generation in order to better

understand and quantify the influence of the said processes. Since currently cloud processes contribute with the

largest uncertainty to future climate predictions, the ultimate aim is to reduce the current uncertainty in climate

forecasting models[330, 331]. The experiment set-up is shown in figure 4.1 and consists of a 27 m3 stainless steel

cylinder inside which a pristine atmosphere of O2 and N2 is created. Using high precision controls, a wide range

of trace gases can be inserted with concentrations as low as 10 ppb [332] into the pristine atmosphere in order to

kick-start the intended atmospheric processes. Also, different gases (Sulphuric acid (SA), α-pinene and limonene)
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can be injected into the chamber at controlled intervals in precise quantities to test the influence of individual

and/or groups of gases in the different atmospheric processes[333].

Apart from precise control of chemical species, an accurate control of the temperature of the chamber is also ex-

pected. The left image of figure 4.1 shows the chamber’s thermal control system. Around the chamber, surrounded

by an insulated surface, an air flow with controlled temperature is constantly blown through the surface of the

chamber walls, ensuring its interior is maintained at a pre-determined constant temperature [334].

The influence of cosmic rays in the development of atmospheric processes is also studied in the CLOUD experi-

ment [329]. The CERN Proton Synchrotron (PS) particle beam is used to bombard the chamber atmosphere with

charged π+ particles which ionize the particles inside the chamber, mimicking cosmic ray interaction with the

atmosphere. A high voltage electric field can also be applied to produce an electric potential difference of up to 60

kV between the top and bottom of the chamber. This electrical field is used to remove charged particles from the

chamber.

Two fans are also installed at the top and bottom ends of the chamber to ensure proper circulation and mixing of

compounds. Many other quantities are also controlled, such as pressure and lighting as they can also influence the

atmospheric processes [335, 336].
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Figure 4.1: (Left) Picture of the CLOUD chamber in operation at CERN. The large structure in the middle is the chamber
itself and the measuring instruments are seen sampling at different angles around the chamber. (Right) Diagram of the thermal
circulation control system with the positions of control mechanisms (gas inlets, circulation fans and high voltage cage), ther-
mocouple (TC), optical (OS) and platinum resistance (PT) are placed at key points in the chamber to measure the temperature
change over the whole surface
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4.1.2 Types of Experiments

The chamber operates in two main experimental modes. The first is particle formation mode, where trace gases are

inserted at a controlled rate into the chamber to start particle formation processes while keeping the pressure in the

chamber at 5 mbar above atmospheric pressure to prevent unwanted contaminants to enter the chamber through

the instrument inlet ports. These experiments aim to precisely study the influence of a single or a set of chemical

species on the rate of formation of new particles. The focus is on the generation of new particles from the successive

clustering of smaller particles. These are called nucleation events and can be detected with the distribution particle

counters as shown in figure 4.2. For these experiments, the different particle counter instrument data will need

to be processed to produce an accurate value for the rate of change of particle generation at different sizes[337].

At the same time, data from the different mass spectrometers requires a heavy amount of processing to accurately

calculate the different concentration of chemical species in the chamber.

Figure 4.2: Three distinct nucleation events produced inside the CLOUD chamber. This plot shows the size distribution of
particles (particle size in y axis and number of particles in color) as a function of time. As time increases, smaller and smaller
clusters gather to create larger and larger size of particles, depleting the lower sizes in the process.

The second mode of operation is the cloud formation mode. The chamber is placed at high relative humidity and

is pressurized up to 220 mbar with a distribution of particles inside. When equilibrium is reached, a controlled

adiabatic expansion is preformed over a period ranging from 10 seconds to 10 minutes. This expansion cools the

air and drives the relative humidity above 100%, thus allowing for the formation of clouds (liquid or ice, depending

on the initial temperature)[338]. For these experiments fast readout of all instruments is required to monitor the

experiment during cloud formation. It is often the case that a pre-existing particle distribution is injected into the

chamber and the expansion allows the particles to grow by condensing supersaturated water onto their surfaces.

The result of these abrupt expansions is an upward shift of the size distribution and a subsequent decrease in counts

as smaller particles cluster together to form larger particles as shown in figure 4.3 which exhibits several of these

events captured during one specific experimental run.

4.1.3 Types of Measurements

The CLOUD experiment, regardless of operation mode, requires a wide range of measurements to be performed,

focusing on measuring the physical properties and chemical makeup of the atmosphere generated inside the cham-

ber. Figure 4.4 shows a diagram of the different instruments to be used in the data campaign of 2017.

To create a more manageable description of the set of instruments, the instruments used in CLOUD are divided

into three main types according to the measured quantities.
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Figure 4.3: Three distinct cloud formation events measured in the CLOUD chamber. The purple areas correspond to periods
where an adiabatic expansion is performed. Note the different particle sizes resulting from the nucleation events in figure 4.2

Figure 4.4: Instrument layout for the 2017 data taking campaign. Apart from the central layer of instruments a smaller set of
instruments are also placed on the bottom of the chamber.

4.1.3.1 Instruments for Physical Measurements

The physical measurements focus on characterizing large scale behaviors in the CLOUD chamber, such as tem-

perature, humidity and particle size distributions. Table 4.1 lists all instruments making physical measurements,

along with their time granularity and total disk space occupied during the CLOUD 2017 campaign.
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Table 4.1: Physical measurements used in CLOUD 2017. Instruments that only have post-processing data have a labeled
granularity of PP.

Instrument Description ∆t (s) Disk (bytes)
CIC Ions and naturally charged particles Mobility diameter

<0.9 nm
20 5,4G

CPC3776 Cluster particle counter 2.5nm size cutoff 2 1,2G
crossflowCIMS Quantitative measurement of neutral cluster chemical

composition
1 253G

Dew Dew Point Mirror 10 6,0M
DMAtrain Size-distribution in the range 1.6-10 nm 1 2,8G
EESI Online Aerosol molecular composition PP 125G
GCR Ambient cosmic ray measurements PP 146M
LightSpectrometer Visible light spectrometer (185-816nm) 10 8,6G
LongSMPS Particle size distribution (20-500 nm) 173 204M
NAIS ions Ion size distribution mobility diameter 0.75-45 nm 150 29G
NAIS particles Naturally charged particles size distribution mobility di-

ameter 0.75-45 nm
150 1,2G

Nano-HTDMA Hygroscopic growth of 10-25 nm particles at different
relative humidities (RH)

PP 1,2G

nanoSMPS Particle size distribution (2-65 nm) 55 2,1G
nRDMA Measure the size distributions of sub-10 nm (1.5-8.5nm)

particles
1 7,6G

PSM12 Particle Size Magnifier Fixed mode Low cutoff 1 2,6G
PSM15 Particle Size Magnifier Scan mode Neutral 1 2,7G
PSM16 Particle Size Magnifier Scan mode Total 1 2,7G
PSM PSI Particle Size Magnifier 1 691M
PSM Vienna Particle Size Magnifier Fixed mode High cutoff 1 2,5G
TDL Hygrometer 10-14000 ppm H2O 1 375M
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4.1.3.2 Instruments for Chemical Measurements

The chemical measurements characterize the chemical composition of the atmosphere inside the chamber. Table

4.2 lists all instruments performing chemical measurements, along with their time granularity and total disk space

occupied during the CLOUD 2017 campaign.

Table 4.2: Chemical measurements used in CLOUD 2017. Instruments that only have post-processing data have a labeled
granularity of PP

Instrument Description ∆t (s) Disk (bytes)
APITOF neg Naturally charged ions in neutral mode 1 14,1G
Bromide-CI-APi-
TOF

Iodinated species: I2, IO, OIO, I2O4, HOI and poten-
tially I2O3, I2O5

10 433G

CAPS Optical absorption spectrometer for NO2 10 28M
CE-DOAS Measuring NO2, glyoxal, methyl glyoxal, IO, I2, OIO,

HONO
3 180G

CLD780 NO measurement with 3 ppt detection limit 2 43M
CMU FIGAERO Measure unaccounted organics in the gas and particle

phase
1 1,6T

HONO HONO measurements 0.002 4,7G
HOxROx Measuring HOx(=OH, HO2) and ROx(=RO, RO2) radi-

cals
1 130G

HTOF UFRA NH3, amines measurements 1 59G
ioniAPITOF Positive ion composition PP 27G
LTOF UFRA HOMs, Sulfuric acid,DMA, DMA-SA clusters 1 389G
NO NO monitor 10 49M
PICARRO Ammonia measurements 3 1,7G
PTR3 Proton transfer mass spectrometer, ideal for most VOCs

and SVOCs
5 348G

STOF PTR Sport TOF 1 91G

4.1.3.3 Instruments for Diagnostic Measurements

The diagnostics measurements consist in measurements of control mechanisms to ensure their set points are being

followed. Inevitably there will be some mixing between diagnostic and physical/chemical measurements. Table

4.3 lists all instruments performing diagnostic measurements during the CLOUD 2017 campaign.

As can be seen for either type of measurement, all instruments generate data in a wide range of time periods and use

different amounts of disk space, up to a total 3.7 TB of used disk space. While the amount of disk space generated

is generally not a problem for modern systems, the wide range of granularity presents a challenge for global data

collection and storage in a centralized repository. The use of DAQBroker in these circumstances simplifies the

storage as each instrument contains its own data table and storage folder, minimizing the existence of sparse data

matrices.
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Table 4.3: Diagnostic measurements used in CLOUD 2017.

Instrument Description ∆t (s) Disk (bytes)
Fan Mixing fans 10 5,1G
Gas Trace gas input control 300 1,6G
GBox Electrical field grounding box 10 22M
HVFC Field cage ion screening 10 57M
Laser UV laser 10 932K
O3 Ozone measurement 1 36M
PhotoDiode12 UV photodiode 1 276M
PT100 Pt100 temperature sensor string 3 614M
Sabre Control and monitor of UV linear light sources 1 276M
Scalers Hodoscope beam intensity measurement 1 1,2G
SO2 SO2 measurement 10 30M
UVLamp Controllable UV lamps 10 54M

4.2 DAQBroker Application at CLOUD

DAQBroker was a tool initially designed for the CLOUD experiment. Several of its mechanisms, mostly graphical

interfaces, were thought out for this particular experiment. It was only later in the development that the aim of mak-

ing DAQBroker a universal monitoring tool was considered. The use of DAQBroker in the CLOUD experiment

brought specific challenges. Several instruments have highlighted limitations both in the back and front end of

DAQBroker. These limitations could be identified and improved online and data collection was merely interrupted

for a few hours. The different tools of DAQBroker applied to the CLOUD experiment are presented in this section

along with the experimental limitations found and how they were tackled. The first part is on the creating/edition

of instruments as well as the collection and storage of their data, accessing/creating/editing data visualizations,

the different visualization needs for CLOUD and how these were met. Afterwards the focus is on the monitoring

of networked machines, which allows users to remotely monitor the health of their machines via DAQBroker’s

agent. Finally the experimental run log considerations are discussed with methods for users to start/edit/end exper-

imental runs as well as to highlight time intervals during a run where explanation of unexpected/problem events

occurred.

4.2.1 Instrument Containers

Since the CLOUD experiment consists of a large set of instruments that come from different backgrounds and/or

institutes, it is unreasonable to expect that for all instruments the data handling is similar. In fact, most instruments

store the data in their own unique way implying that before DAQBroker, the system administrator constantly had

to generate a rule for each new instrument and its underlying data generation.

As mentioned in 3.1.3, DAQBroker provides users with a tab for managing existing instruments. Each user can ac-

cess this tab using any available web browser and consequently any device capable of running a web browser. The

tab allows users to create a new instrument container by providing all the relevant information about the instrument

via a data form. In this form users provide their instrument with a unique name, contact info and most importantly

all relevant information about the instrument’s data generation. Each instrument can have several data generation
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rules which can come from different origins (data files and serial or network ports). In CLOUD most data comes

from data files while only a small subset of permanent instruments provide their data directly via network or serial

ports.

While a user fills the form, an example file can be supplied to test on the fly how subsequent data will be handled.

The instrument creation procedure is one important improvement of DAQBroker over the otherwise less scalable

method of requiring the system administrator to create a specific back end rule every time a new instrument appears

in CLOUD or if data from an existing instrument changes.

Since the first version of DAQBroker was produced for the CLOUD 2017 data campaign, testing of the interface

was limited. This resulted in difficulties found by users when generating instrument containers. One specific case

of blatant limitation was highlighted for instruments that produce very large headers, spanning several lines of the

file. Since the first versions of DAQBroker only considered headers up to 20 lines, the process of analyzing an

example file on the user’s browser, rendered the interface incapable of generating the instrument creation request.

Another limitation was the initial low optimization when generating data channels: one particular instrument of this

campaign generated over 2000 individual data channels and the user’s computer would considerably slow down

when attempting to create the instrument. Both these limitations were easily patched by accessing the specific

classes in the DAQBroker interface code and in the case of the header limitation, introducing a dynamic parameter

for header size and in the case of low optimization of channel display, to optimize the column display loop.

Regarding the back end behavior of DAQBroker’s main instrument data collection loop, no particular issues were

raised. Once an instrument request was properly sent, the data would begin to be collected automatically with very

few exceptions, which were due to bad network infrastructure or limitations of the agent program not covered here

(see 4.2.3). On the storage side, one particular instrument evidenced storage limitation that did not induce breaking

behavior. This was the Gas control monitoring system, with over 400 individual data channels of data, connected

to one single data source. That data source consisted of daily data files which updated each channel every 5

minutes. Also, whenever a single parameter is altered, a single entry for the change of that parameter is added to

these data files. While this feature was promptly handled by DAQBroker the relational nature of the instrument

container means a new line containing null values for all unchanged channels is added to the instrument’s table.

This resulted in a largely sparse data table which, while not competing with other instruments for disk space, was

still a large amount of data for the granularity of the instrument. This limitation was not resolved as it is a result of

the choices of data storage taken for DAQBroker, but it is important to highlight it as an inherent limitation of this

framework for these types of exotic data file structure.

4.2.2 Data Visualizations

The data visualization component of DAQBroker also constitutes an improvement over the existing online CLOUD

tools. This feature allows individual users to create dynamic and interactive visualizations of instrument data while

in the past it was only the system administrator that could provide the necessary visualizations to users as well as
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to edit the existing ones. This was because plot configuration data was maintained at a server level. DAQBroker

provides a tool that allows users to group individual data channels and provide the information to create a visual-

ization of the said channels.

In the context of CLOUD, three different graphical visualizations are required and are included in DAQBroker.

The three types of visualization are exemplified in figure 4.5:

• Time series charts (figure 4.5a): the most popular charts used in CLOUD. These charts allow the visualiza-

tion of one or several time series simultaneously providing users with valuable information on the behavior

of the experiment. These charts are an improvement over existing ones not only for the fact that users can

now create these charts but also by providing interactivity. Users can actively change the display of the

chart, colors of the series, limits and scale of the y axis or show each series in their own individual y axis.

Users can also access the data in the series and highlight individual timestamps of a series, store persistent

comments on a time series chart as well as save the current visualization in a static format for later use in

internal documents or publications.

• Time-evolving histogram charts (figure 4.5b): the most visually interesting charts to be created as they

provide a heatmap of the behavior of several channels. While these charts lack the interactivity provided

by the time series charts, they still provide vector graphics plots with access to the data generated of a

distribution given by a set of individual data channels and how this distribution evolves in time. These plots

were used to show how different size distributions evolved in time during experiments.

• Bar charts (figure 4.5c): being the least popular, these charts provide information comparing different sets

of channels over a specific time period. Users are also able to decide if the bar charts were cumulative

or averaged over the time. These charts were used, for example, to provide the vertical and horizontal

distribution of the CERN PS beam at different times in the experiments, and monitor that the beam was

centered.

All charts are rendered in the front end, changing the visualization from server side to the client side. The rea-

son for this choice is the improvement of server performance, since resources provided by the CLOUD server

infrastructure are better suited for collecting and processing instrument data rather than producing visualizations

for users. The decentralization of these features also allows the front-end applications to provide users with a

more interactive and persistent experience even at situations where connection to the server is not immediately

guaranteed[339].

For each chart a list of data channels required for the generation of the chart is produced and a request for the

data of each channel is sent to the DAQBroker API1. Once the data from all channels is retrieved the chart is then

rendered. Data for a single time series is collected as it is stored, at this stage, no interpolation is performed to the

data and the user is provided with the raw data collected from the instrument. There is a performance optimization

choice sent for each chart request which provides the server with the number of horizontal pixels the chart is to

occupy on the user’s screen. This instructs the database query to provide the request with at most the number of

1see https://www.daqbroker.com/documentation/webapi2.html#post--data-getData for details on the request.
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Figure 4.5: Example of the different charts available for creation in DAQBroker. The time series chart (a) was the most popular,
closely followed by the time-evolving histogram chart (b) and finally the least deployed was the bar chart (c).

data points equal to the number of pixels in the chart, evenly spaced in time, since the screen used by the user will

not be able to render more points in the plot. The user has the opportunity to zoom-in to a smaller time interval

to get the data with full resolution. There is also an optional data smoothing option on the front end side with the

application of a moving average filter. DAQBroker as a rule aims to provide the user with the data retrieved from

each instrument as it was retrieved, allowing the user to decide whether or not this data requires processing.

The charting tool was the most used DAQBroker tool during the 2017 campaign. This experience enabled the

pinpointing of several limitations, mostly due to limited testing, and were promptly patched and fixed. One inter-

esting limitation was the server optimization choice for providing only a number of data points at most equal to the

number of horizontal pixels of the plot. For the aforementioned Gas monitoring system, when data was requested

from this instrument, the algorithm to gather data points equally spaced in time failed to provide any data points

or miss key data points, due to the sparse data table that was created. This limitation was fixed by providing the

charting tool users with a new chart option, allowing the request of the full data in the time range accompanied by

the necessary warning that this would impact performance.

4.2.3 Network monitoring

This tool provides users with a view of the network around the connected DAQBroker server and of each individual

node that is using or has used the DAQBroker network agent to connect their machine to the central DAQBroker

server application. It allows different instrument operators to remotely monitor their machines health as long as the

DAQBroker network agent is properly running on their machine and at least one connection is used to the server
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machine.

Another feature of the network tool is that it provides users with a set of pre-compiled agent software for a variety

of operating systems and CPU architectures. This was the mostly used feature of this tool as users that required to

set-up a remote machine needed to access this tool to download the network agent.

The network agent tool was widely used in the CLOUD campaign of 2017 since most instruments in CLOUD

arrive with their own machine that needed to be connected to the network and afterwards all data needs to be

extracted from their own machine onto the central server. Of note an interesting limitation of the network agent

was discovered when users tried to run the agent in a folder with no permissions. The network agent required to

write files in the folder and, not being able to do it, no new data was synchronized onto the server machine and

no new data was allowed to be transferred. This breaking limitation was promptly patched and was not identified

sooner due to the lack of logging information for that agent.

4.2.4 Experimental log

Another widely used feature of DAQBroker in the CLOUD experiment was the experimental log tool. This tool

allowed users to separate experimental runs in a hierarchical system. The particular case of CLOUD separated

experiments into runs and each run into stages where a run contains a major change in experimental parameters

while a stage only contains a single or few experimental parameters changes.

Since DAQBroker was developed with the CLOUD experiment in mind, the experimental log tool provides users

with the run hierarchy followed in the CLOUD experiment: An experimental run or stage has two possible states,

active and inactive. An active run is one that is currently under way and is highlighted above all other runs in

the interface, while an inactive run joins the set of previously performed runs. The run list can be downloaded in

different formats for use in other users’ data processing or for generating internal documents.

Another requirement of the CLOUD experiment was to build a table of relevant experimental parameters provided

by users. This table was implemented in DAQBroker with the ability for a properly authenticated user to change

the table adding several different parameters. Each experimental parameter can be provided in three ways:

• Text: a free-form input that allows the user to provide textual representation of an changeable experimental

parameter,

• Choice: a choice input that allows the user to select from a predetermined set of inputs,

• Number: a numerical input that allows the user to set the values of an experimental parameter (requires the

user to provide the units of this parameter).

Apart from the experimental log, and the parameter table, users are also able to provide comments at specific

timestamps in runs. These comments can be placed in active or inactive runs and are used to emphasize specific
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events that occurred during the run, whether expected or not.

Some limitations were found for the tool, during the campaign, for example, while the REST API of DAQBroker

was able to easily handle requests once properly formulated, the user interface failed when special characters were

used creating runs or placing comments. These limitations were promptly patched and resolved at several stages

in the campaign.

4.2.5 Overall analysis

This illustrates how use of DAQBroker in the CLOUD campaign was able to overcome the previous lack of

thorough testing. While most issues were found in the user interface side of the framework, user experience is a

key factor in determining the use and popularity of a framework. It is clear that overall testing is required to be

implemented in DAQBroker at all stages of development in order to provide a properly functioning framework that

can easily accommodate new modules and tools for other users.

4.3 Studies using DAQBroker

While the DAQBroker tests presented in 3.3 provide a good depiction of the performance of DAQBroker with

varying power, it does not refer the features added for actual scientific instruments. This section will provide three

separate examples of the use of DAQBroker in the context of the CERN CLOUD experiment. While it is inevitable

that online data from an experimental campaign will be replaced by processed data, during the data taking effort,

for the CLOUD experiment in particular, accurate values of the measured parameters are required for users to be

able to follow experimental protocols and promptly decide on the next measurements that are interesting or more

relevant to achieve the optimal physical meaning.

4.3.1 Temperature stability study

To study the temperature stability of the CLOUD chamber, a large set of temperature sensors was installed in the

chamber to measure the radial and axial temperature profiles of the chamber2. A total of 16 sensors was installed,

grouped in three rods (two radial ones and one to measure the axial profile).

The array of sensors was used during two CLOUD campaigns. The first was dedicated to the in-situ calibra-

tion of each sensor, during which a set of previously laboratory calibrated temperature sensors was placed in the

chamber next to the sensors to calibrate, doubling the amount of sensor data. During this campaign, very specific

measurements were made to provide statistically relevant data sets for calibration at a relevant range of operating

temperatures and to study the stability of the chamber in a static state and without any other instruments present.

2This subsection contains a very abbreviated description of the work in [334]
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The second campaign was during the data taking effort of the fall of 2014. During this time several experiments

were preformed in CLOUD, both particle formation and cloud formation experiments, allowing to characterize the

full range of CLOUD temperatures and experimental methods as well as to compare the static chamber, with no

instruments connected, with the active chamber containing several instruments, which requires a continuous active

refresh of the air inside the chamber.

By considering each rod of sensors a separate instrument, each sensor can be defined in the DAQBroker CLOUD

environment as a data channel of their rod. This allows users to easily identify each sensor and its relative position

in CLOUD, creating views that are related only to the radial, vertical position, or both. Figure 4.6 shows an

example of such visualizations: a time series of the axial and vertical temperature profiles during a cloud formation

event.
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Figure 4.6: Time series visualization of the vertical (left) and axial (right) temperature profiles during a cloud formation
experiment (adiabatic expansion) in CLOUD. The top plots show the absolute temperature measured by the sensors and the
bottom plots show the difference between each sensor value to the average rod sensor value at each time stamp.

Apart from easy access and visualization of sensor data, DAQBroker’s API allowed the creation of user developed

scripts that would facilitate access to large amounts of sensor data, which proved particularly useful during the

calibration stage of each sensor and in the selection of individual cloud formation events such as the one shown in

figure 4.6.

4.3.2 Concentration estimation

DAQBroker’s features allow for a channel’s data to be manipulated. In an experimental setting such as the CLOUD

experiment, often an instrument’s data will require some degree of manipulation to provide meaningful data and

their interpretation. Quite often the aforementioned data manipulation changes during the experiment. In the

CLOUD experiment the manipulation process is particularly important when attempting to provide online val-

ues for compound concentrations obtained from mass spectrometry. More specifically, on the field of Chemical
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Ionization Mass Spectrometry (CIMS).

CIMS methods consists in the creation of ions by way of chemical reaction of a collected sample with a known

substance[340]. Since this substance is known to react with specific compounds these methods allow high selec-

tivity of the compounds to study and are also more sensitive to smaller concentrations of the said compounds[341].

In the specific case of CLOUD, a large amount of substances are used and the chamber contains different chemi-

cal behaviors at different experimental conditions (temperature, relative humidity, UV intensity, etc...), scenarios

impossible to prepare in advance. The users of these instruments are thus required to make calculations on-the-fly

to provide correction values and improved calculations of concentrations that must be updated centrally for other

users have access.

To accommodate these types of manipulations, DAQBroker features two different ways to compute derived values

from the channel data:

• Visualization manipulation - Users can add computed values time series to existing visualizations. The data

from these manipulations is not stored but rather processed at each request from the available instrument data.

This allows users to alter the computed expressions a later time if they so desire. It is ideal for representing

data that is not entirely understood and require constant changing in the underlying manipulation. It is only

used for viewing purposes, not enabling other users to access the data offline for processing needs.

• Custom channels - Special type of data channels that can be programmed according to the data in one or

several channels. These channels can be created on any instrument and by any user controlling the instru-

ment. The channel data is stored with a time granularity equal to the smallest granularity of the channels used

for the custom data. These channels also offer a level of non-commitment since if the inherent manipulation

of the channel is altered, the user can choose to keep the previously stored data on file.

4.3.3 Nucleation rate calculation

One of the most relevant parameters determined in the CLOUD experiment is the rate at which new particles of

a given diameter are created inside the chamber via physical and/or chemical processes. This process is named

nucleation and by knowing the rate at which nucleation occurs when specific trace gases are added to the CLOUD

chamber, more knowledge is available for global environment models to estimate future and near future climate

scenarios.

Several studies on nucleation rate calculation have been preformed on CLOUD and a general empirical equation

is used for the experimental calculation of nucleation rates at a given particle size (Jx), which relies on the data

collected from multiple instruments[342]:

Jx =
dNx
dt

[
kcoag(T, x, D̄)N2

x + kdill ∗Nx + kwall(D̄) ∗Nx
]

(4.1)

76



Where kcoag , kdill, kwall are respectively coagulation, dilution and wall loss coefficients, T is the temperature of

the chamber, x is the size of the particles that are nucleating and D̄ is the mean size of the particle distribution

function. As indicated in equation 4.1, the loss coefficients are a function of several experimental parameters. T

can be obtained from any of the temperature sensors discussed in 4.3.1, x can be obtained from any particle counter

instrument (Condensation Particle Counter, Particle Size Magnifier, etc...)[343, 344] and D̄ can be obtained from a

relevant particle distribution measurement (usually a Scanning Mobility Particle Sizer)[345]. As for the calculation

of the concentrations of different chemical compounds, DAQBroker’s data manipulation features allow for an easy

integration of a new custom channel with equation 4.1 calculated via the aforementioned experimental parameters

x, D̄ and T .

Figure 4.7 shows processed nucleation rates calculated using 4.1 against rates calculated using a simple derivative

method during a 12 hour nucleation event taken in the fall of 2017. The calculation of the different coefficients in

equation 4.1 require a particle distribution measurement which only provides values every 5 minutes. The online

calculation was made with only a median filter being applied to the raw data and derivative values of the collected

concentration, which are implemented in DAQBroker. The ability to process online data to such close agreement

with processed data is a clear advantage for the use of DAQBroker in projects that require close supervision of data

and fast response to experimental data.
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Figure 4.7: Comparison between processed (blue)and online (red) nucleation rates.
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Chapter 5

Time Series Analysis with DAQBroker

In the previous chapter, the performance of DAQBroker was discussed within the framework of studies and calcu-

lation of scientific parameters. While these use cases are relevant for other experiments, they only show a limited

use of the framework. Since the goal of DAQBroker is to provide general purpose monitoring of instruments, tools

for statistical analysis of the monitored data should be included. These tools can provide insights into instruments’

general status and of the experiment as a whole and provide users with important information apart from simple

visual examination. To address this need, the purpose of this chapter is to demonstrate a series of useful method-

ologies ready to be implemented in DAQBroker to provide users with extended information on the behavior of an

instrument’s data. The corresponding software was built and tested using CLOUD experiment results.

This chapter begins by introducing selected tools based on the statistical methods described in chapter 3 and

applying them to the analysis of individual and/or pairs of time series to collect meaningful information. The

analysis of the single time series allows discovering statistically relevant information from a specific data such as

event detection or detect similarities with other series. Later in the chapter, a larger scale analysis is introduced that

aims at producing an essentially automated statistical summary of a specific data set using a large amount of data

channels from a DAQBroker database. This analysis takes advantage of DAQBroker to store several data channels

from a variety of instruments, while simultaneously monitoring them, to present users with an automated review

of the relationships, most valuable channels (statistically) and periods during their activities.

5.1 Single Time Series Analysis for DAQBroker

This section describes methodologies for handling individual time series from DAQBroker. It begins by intro-

ducing a way of classifying different time series segments in terms of their stationarity. It provides methods for

comparing time series in terms of their similarity and concludes by introducing a procedure for automated event

detection in single time series. As a proof-of-concept, all discussed time series analysis methods are tested on data

from the 2017 fall CLOUD campaign. The data used from the campaign is a specific subset of signals represent-
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ing several relevant physical and chemical parameters of the experiment and the time range is days (not months)

providing the reader with the most detailed data as possible, emulating available data from an on-line experiment,

during which the user is interested in reviewing data from previous runs with a duration of at most a couple of days.

The specific dataset chosen to test the concepts of time series analysis consist in the following channels:

• UV intensity read out from an Hamamatsu S2281 photo-diode [346]

• Temperature measured by a Pt100 temperature sensor [334]

• Sulphuric acid concentration as measured by an LTOF mass spectrometer [347]

• Particle concentration for a fixed size PSM [343]

• α−pinene concentration as measured by a Proton Mass Transfer (PTR) mass spectrometer [348]

A random time frame of two days is chosen between the 15th of October and the 17th of October, which lies in the

middle period of the data campaign of 2017.

5.1.1 Time Series Classification

As discussed in 2.2.1.1, time series can be classified in terms of several properties. This section intends to gather

those properties into a single concept called activity. It begins by introducing a method for classifying a time

series, followed by proof-of-concept tests preformed on CLOUD data. It concludes with the discussion of the

implementation in DAQBroker in terms of necessary user interface tools and its limitations.

5.1.1.1 Classification Procedure

Stationarity of a time series was defined in 2.2.1.1 as a special case where a certain number of its properties do

not vary in time. It was indicated that a stationary time series tests negative for the following properties: Trend,

periodicity and unit root. If one of these properties exists, the time series is considered non-stationary.

To analyze if a time series is stationary, a battery of statistical p-value tests is applied to test if at least one of the

aforementioned properties is present. If none of the properties is present, the time series can be truly classified as

stationary. The 4 p-value tests for each of the aforementioned time series properties are:

• Trend - Mann-Kendall test,

• Periodicity - Fisher test,

• Unit root - ADF test,

• Stationarity - KPSS test; this test is used to reinforce the stationarity hypothesis
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After applying the aforementioned tests to a certain period of the time series, it is classified stationary if all tests

point to a stationary time period. The scientific advantage of a statistically stationary time segment is that it repre-

sents a phenomenon that is not affected by uncontrolled parameters. The segment is representative for controlled

parameters and can be easily handled for experimental purposes. While individually, in each of the statistical tests

type I and II errors can occur, the fact that these four tests are applied at the same time reduces the chance of a time

period being incorrectly labeled stationary due to one single test failure.

In this section, the values used for the p-tests will vary to highlight the need for user interactivity when using real

data. For instance, a user can choose to ignore periodicity tests if said user is certain that no periodicities exist in

the time series of the instrument and that any existing periodicities arise from noise sources.

5.1.1.2 Classification of CLOUD Time Series

To each of the CLOUD time series introduced in this section, the method of classification is applied and the results

are discussed case by case. While considering each individual case, it becomes apparent that the length of time

segments is a major factor in the correct evaluation of stationary data segments.

5.1.1.2.1 UV Intensity Figure 5.1 shows the time series for measured UV intensity and the regions where

stationarity is statistically significant. For this particular time series the size of the segments chosen was 20 minutes,

and the limiting p-values of the statistical tests are kept at their default values. This particular time series is quite

simple to evaluate as the measurement is extremely precise the electronic noise/signal is very small and only a few

number of modifications exist. While by visual analysis it is clear which segments are stationary and which aren’t,

further confirmation is provided by the stationarity method. This analysis shows that for this particular time period,

the UV intensity time series has intervals classified as stationary.
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Figure 5.1: UV intensity inside the CLOUD chamber (blue) and segments classified as stationary (green).
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5.1.1.2.2 Temperature Figure 5.2 shows the time series for temperature measured inside the CLOUD chamber

and the segments deemed to be stationary. For this time series the size of the segments chosen was 5 minutes and

the limiting p-values of the statistical tests were kept at the default value. While in this figure it seems simple

visualize what the stationary periods are, the fact is that for larger segments, the statistical tests fail to find any

stationary segment, which suggests that, for both high and low temperature periods, there are a significant amount

of time segments that behave in a non-stationary way (convection, eddies or turbulence could be a factor). Other

possible factors for non-stationarity could associated to the electronics used, as the National Instruments electronics

often produce processed data giving false negatives and/or positives for the applied statistical tests, for very stable

periods. This analysis shows that for this particular time period, the temperature time series has little to none

intervals classified as stationary.
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Figure 5.2: Temperature inside the CLOUD chamber (blue) and segments classified as stationary (green).

5.1.1.2.3 Sulphuric Acid Concentration Figure 5.3 shows the time series of sulphuric acid concentration in-

side the CLOUD chamber. For this time series the segment length was set to 1 hour and the limiting p-values for

the statistical tests are kept at their default values. While being an extremely noisy time series, several stationary

segments could be found even if segment sizes are significantly larger. This suggests that the segments classified

as stationary are stable for periods of one hour or more. This behavior is expected for sulphuric acid concentra-

tion since the chamber is capable of producing very controlled amounts of this compound by way of photolysis

using both a very stable source of SO2 and the highly controlled source of UV light (figure 5.1). This analysis

shows that for this particular time period, the sulphuric acid concentration time series has intervals classified as

stationary.

5.1.1.2.4 Particle Concentration Figure 5.4 shows the concentration of small diameter particles (d < 12 nm)

measured inside the CLOUD chamber. The segment size was chosen to be 10 minutes and the limiting p-values

of the statistical tests are kept at the default value. The found stationary segments clearly show stable behavior for

data at several orders of magnitude. While, in the timeseries, there are clear changes in both behavior and order of
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Figure 5.3: Sulphuric acid concentration inside the CLOUD chamber (blue) and segments classified as stationary (green).

magnitude (log y scale) due to several different experiments being performed during this 2 day period, it is clear

that the stationary periods are those where the particle concentration seems stable in value. Particle concentration

time series have intervals classified as stationary, and changes are usually associated to new particle formation

experiments, during which particle concentration should attain a stable value for the experiment to continue to the

next stage. The use of this method to either create automated control for new particle formation experiments or to

signal users to change experiment mode is thus an interesting option to have on DAQBroker.
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Figure 5.4: Small particle concentration inside the CLOUD chamber (blue) and segments classified as stationary (green).

5.1.1.2.5 α-pinene Concentration Figure 5.5 shows the concentration of the α-pinene compound inside the

CLOUD chamber. The segment size was set to 10 minutes and the limiting p-values of the statistical tests were

kept at their default values. Since this compound is directly related to particle creation, it is not surprising that

there exists stationary segments very similar in time to those found in the particle concentration time series (figure

5.4). There are, however, fewer segments in this time series than in the former, hinting that either the measurement

83



or the control of the injection of the compound is not as stable as the particle creation and its measurement.
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Figure 5.5: α-pinene concentration inside the CLOUD chamber (blue) and segments classified as stationary (green).

5.1.1.3 Implementation in DAQBroker

In order for this method of classification to be implemented in DAQBroker, some constraints should be considered.

First the user should be given the opportunity to filter the data in order to remove any possible outliers and improve

the overall detection of stationary segments. Second the user should be able to provide the limiting factors for each

individual test, or to completely suppress the evaluation of specific statistical tests, to account for particularly noisy

data or overcome known sources of signal interference. Finally, a proper result of the statistical tests depends on

retrieving a statistically significant amount of data points and thus in choosing the correct time interval to apply

these tests. This interval varies from time series to time series (instrument to instrument) and on the phenomenon

being measured. Thus the implementation of this method in DAQBroker requires strict limits on the amount of

data to analyze not only to spare the server from large computational effort but most important to not provide false

results due to insufficient data points. Figure 5.6 shows a suggested interface for time series classification along

with an example visualization of the resulting analysis.

5.1.2 Time Series Comparison

As stated in chapter 2.2.1.2, the local similarity statistic (LSS) is used to assess the similarity between time series.

Because of the computational limitations of this method, the comparisons are limited to specific features found in

the time series. As proof-of-concept the comparison between features of time series of the CLOUD experiment

are performed and a discussion on the advantages and caveats of implementing this comparison mechanism in

DAQBroker is performed.
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Figure 5.6: Mock-up of the time series classification interface (a) and subsequent visualization (b)
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5.1.2.1 Comparison Procedure

The method of comparison of time series intends to provide an ordered list of the compared series from most to

least similar. It also decides whether any time series can be considered similar to another. This method begins

with a set of pre-selected intervals identifying the features in a time series. Then, the same time length intervals

are collected from the time series to be compared. For each pair of time series, the user provides a maximum time

delay to be considered and then algorithm 1 is applied to both time series to calculate the LSS statistic (see chapter

2). To improve the speed of the algorithm and to limit the emergence of undesired correlations, the maximum

delay is limited to a percentage (50%) of the length of the compared time series. Once all comparisons are made,

the results are listed in a table for the user to analyze, the comparison with the Pearson Correlation coefficient is

also listed to follow the change in the LSS with increasing delay.

5.1.2.2 Comparison of CLOUD Time Series

A set of comparisons using CLOUD time series are presented in this subsection. In each main time series, three

features are highlighted and comparisons are made with other time series for those features in an effort to find

similar behaviors. Comparison of time series are handled feature by feature and feature selection will be manual

and limited to input parameters in the CLOUD experiment. This specifically means that only temperature, UV

intensity and α-pinene concentration features will be considered, since these parameters do not result from any

reaction in the chamber. The results of the comparison are presented as the LSA statistic for several different

time delays (0, 10, 20 and 30 minutes) along with their execution time and the Pearson correlation coefficient to

compare with traditional correlation methods.

5.1.2.2.1 UV Intensity Figure 5.7 presents the features of UV intensity marked for comparison. The purpose

of the UV system is to increase the amount of sulphuric acid (SA) in the chamber[349]. By increasing SA, the con-

centration of particles is expected to increase. Also, the internal temperature of the chamber is expected to increase

with the UV intensity. Thus, meaningful correlation is expected for temperature, sulphuric acid concentration and

particle concentration.

Figures 5.8, 5.9 and 5.10 show the results for each feature comparison using the same period of the UV intensity

time series: the local similarity statistic for a delay of 0, 10, 20 and 30 minutes (LSSi) along with the execution

time of the algorithm and finally the Pearson correlation coefficient. The smaller the delay is, the closer the results

are to the standard correlation coefficient as expected with the definition of the local similarity algorithm. Once a

meaningful delay is introduced, the values tend to change.

1. Feature 1 (figure 5.8) - for this feature one can clearly see the relevance of the local similarity statistic.

For this comparison, the relationship is direct, its production reaction, from SO2 by means of photolysis,

is a direct consequence of the UV intensity. Since the photolysis requires time, the default correlation

coefficient does not provide a value as high as the first delayed LSS statistic value. The default correlation

coefficient produces a negative value since the UV intensity increases as the particle concentration decreases
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Figure 5.7: Selected features from the UV Intensity time series.

for the majority of the time series. However, there is a clear delayed intensity spike around the 50 minute

mark. Knowing that the increase in particle concentration is directly related to the increase in sulphuric

acid concentration, it is undeniable that the correlation between particle concentration and UV intensity

should be positive. This is identified by a high delay LSS statistic for similarity value as opposed to a

small globally negative correlation value provided by the default correlation coefficient (see table in figure

reffig:intensityCompare1).

2. Feature 2 (figure 5.9) - for this feature, the use of the LSS statistic for is less meaningful than in feature 1,

and there seems to be a smaller delay in the creation of particles. This highlights the need for correct choice

of maximum time delay for feature comparison. This comparison also highlights the need for a correct

choice of maximum time delay for LSS calculation. The values vary between highly correlated and highly

anti-correlated, due to small fluctuations in the temperature not always associated with the UV intensity,

leading to spurious correlation.

3. Feature 3 (figure 5.10) - the same behavior as feature 2 can be found for the third feature LSS producing

values similar to the correlation coefficient, with a higher particle formation rate, possibly due to higher

temperatures or higher α-pinene concentration.

The results of this comparison effort show that LSS can be useful in situations where the behavior of the system is

known, but the delay must be chosen carefully to ensure that no spurious correlation values are encountered.

5.1.2.2.2 Temperature Figure 5.11 shows the temperature features to be compared to the rest of the time se-

ries. Features 1 and 3 are the result of the modification of an external parameter (fan speed increase). This change
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UV Feature 1 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (0.3638,14.4) (0.513,29.5) (0.579,41.1) (0.580,48.5) 0.366
α-pinene (-0.395,13.8) (0.396,28.8) (0.693,40.4) (0.986,46.9) -0.300
Particles (-0.387,13.6) (0.521,28.5) (0.876,40.2) (1.00,47.8) -0.242

Temperature (0.168,13.9) (0.273,30.0) (-0.483,39.8) (-0.806,48.0) 0.119
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Figure 5.8: Behavior of all time series during the period of UV feature 1. This particular feature consists of an abrupt change at
the beginning and end as well as a spike of about 10 minutes in the middle of the interval. The behavior of particle concentration
is clearly influenced by this middle spike, but with a delay.
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UV Feature 2 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (0.239,31.8) (0.154,57.3) (0.116,76.8) (0.123,93.1) 0.241
α-pinene (-0.135,32.7) (-0.215,57.8) (0.243,76.6) (0.316,93.8) -0.073
Particles (0.375,31.9) (0.261,56.6) (0.321,77.3) (0.400,96.6) 0.376

Temperature (0.417,32.1) (0.704,57.5) (-0.487,77.8) (-0.574,91.4) 0.193

Figure 5.9: Behavior of all time series during the period of UV feature 2. This feature consists of a large spike in the beginning,
followed by a slow decay of about 40 minutes. The particle plot as well as the sulphuric acid plot seems to follow the intensity
plot, which is to be expected from [349].
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UV Feature 3 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (0.142,111.0) (0.109,156.7) (0.097,199.7) (0.097,243.8) 0.142
α-pinene (-0.594,111.6) (-0.533,157.7) (-0.571,202.3) (-0.594,243.8) -0.431
Particles (0.846,111.2) (0.813,156.9) (0.763,201.2) (0.657,241.7) 0.846

Temperature (-0.780,112.6) (-0.735,159.2) (-0.657,200.4) (-0.612,236.5) -0.706

Figure 5.10: Behavior of all time series during the period of UV feature 3. This feature consists of an abrupt change at the
beginning and end of the period. However, in this figure α-pinene is also present, which also is affected by the introduction of
UV light into the chamber but also has an external source.
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of temperature is not expected to impact any of the other chosen time series. Feature 2 is the major change in value

of temperature. This feature changes some of the other time series, as temperature has an effect on all chemical

reactions inside the CLOUD chamber. No meaningful correlation should be found with temperature and UV in-

tensity, since UV intensity does not depend on the chamber temperature.
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Figure 5.11: Selected features from the temperature time series.

Figures 5.12, 5.13 and 5.14 show the behavior of each chosen time series during the period of each selected feature

as well as the result of the application of the various similarity measurements.

1. Feature 1 (figure 5.12) - in this feature the increase of mixing fan speed in the CLOUD experiment is

related to a slight increase in the temperature and to a sharp decrease in particle concentration. Thus it’s not

surprising that a high anti-correlation is obtained by low LSS and default correlation coefficient. A delayed

positive correlation with α-pinene is found by way of LSS. This correlation can be more closely related to

temperature variation since the α-pinene change is not as sharp and its intake is not temperature controlled.

Correlation between UV intensity and temperature failed because the algorithm is not prepared to handle

channels with one single value in the whole time period.

2. Feature 2 (figure 5.13) - this feature contains a slow increase of temperature over 4 hours. Though this

significant increase of temperature should produce changes in the chemical species in the chamber, both

sulphuric acid and α-pinene are at extremely low levels and no significant change is visibe in the data or
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results via LSS or correlation statistics. A spurious high correlation is found with UV intensity because

during this period (during which no active experiment is performed) a UV source was being used for particle

cleaning. Similarly a high anti-correlation is recorded with the default correlation coefficient (but negated

with larger delay LSS) since during this period the particles in the chamber were slowly being cleared.

3. Feature 3 (figure 5.14) - in this feature the same increase in mixing fan speed is made, which results in a

feature similar to feature 1, however, in this period, the particle and α-pinene concentration are much lower.

When the fan speed is decreased at around 30 minutes, the temperature returns to normal levels and the

particles start to slowly increase in number. This results in a very high unrelated anti-correlation between

temperature and particle concentration which is not dampened by LSS since a new stage of UV intensity is

started during this period, which increases particle formation further while temperature decreases. A high

correlation between α-pinene is also found during this period, as the compound is necessary for particle

formation and is thus decreases while lowering temperature (at the time of UV increase).

While no specific meaningful correlation was found for the chosen temperature features, considering the small

number of 5 channels, meaningful values are found by correlation method and LSS for smaller delay values, that

are very close..
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T Feature 1 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (-0.019,39.6) (-0.016,66.8) (-0.017,90.7) (-0.019,110.4) -0.018
α-pinene (0.662,40.1) (0.850,71.7) (0.983,93.2) (1.00,110.8) 0.583
Particles (-0.902,39.2) (-0.758,66.5) (-0.675,87.8) (-0.756,106.6) -0.903

UV Intensity (0.0,40.9) (0.0,67.8) (0.0,89.0) (0.0,103.7) NaN

Figure 5.12: Behavior of all time series during the period of temperature feature 1. This particular feature consists of an abrupt
increase of 0.2 C followed by a similarly abrupt decrease of 0.2 C. This is a small temperature change taking into account the
large volume of the CLOUD chamber and should not affect the overall processes in the CLOUD chamber.
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T Feature 2 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (0.274,70.3) (0.229,106.8) (0.191,140.6) (0.161,168.5) 0.274
α-pinene (0.282,73.1) (0.229,106.8) (0.172,140.2) (0.143,165.8) 0.237
Particles (-0.878,72.2) (-0.717,105.7) (-0.585,139.0) (-0.483,168.7) -0.880

UV Intensity (0.754,70.1) (0.628,105.6) (0.524,137.0) (0.439,165.1) 0.755

Figure 5.13: Behavior of all time series during the period of temperature feature 2. This feature consists of a slow increase of
temperature over several hours from 7.5 to 25 C. This feature is expected to change the chemical reactions in the chamber, how-
ever, this period is not an active experimental environment so external changes and low overall values of the other parameters
fail to illustrate the dependence

93



0 25 50 75 100 125
Minute

25.18

25.20

25.22

25.24

25.26

25.28

T
 (
C

)

Temperature - Feature 3

20

40

60

80

100

In
te

n
si

ty
 (

%
)

0

10

20

30

40

50

S
A

 (
cm

3
)

0

50

100

150

200

250

300

350

P
a
rt

ic
le

s 
(c
m

3
)

100

120

140

160

180

200

220

-p
in

e
n
e
 (
cm

3
)

T Feature 3 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (-0.096,17.3) (-0.096,34.5) (-0.078,47.9) (-0.091,57.2) -0.094
α-pinene (0.797,18.1) (0.806,37.5) (0.691,50.1) (0.828,57.0) 0.782
Particles (-0.935,17.6) (-1.00,34.0) (-0.897,46.2) (-0.920,55.8) -0.923

UV Intensity (-0.835,17.1) (-0.851,34.8) (-0.816,46.5) (-0.996,54.9) -0.821

Figure 5.14: Behavior of all time series during the period of temperature feature 3. This feature consists of an abrupt change
of 0.1 C followed by a slow decay of that temperature over 100 minutes. This is a small change that should not affect any
time series. However, considering only these channels and time series, some relationships can be statistically found between
particle and α-pinene concentration.
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5.1.2.2.3 α-pinene Figure 5.15 shows the selected α-pinene features. The first two consist in consecutive in-

creases in the concentration with the intent to map particle formation rates. The third feature consists on settling a

desired concentration. α-pinene concentration is strongly connected to new particle formation, thus that a positive

correlation with small delay is expected to exist between both concentrations.
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Figure 5.15: Selected features from the α-pinene time series.

Figures 5.16, 5.17 and 5.18 show the individual behavior of each time series during the period of each event as

well as the result of the comparison between time series, using LSS and correlation coefficient.

1. Feature 1 and 2 (figures 5.16 and 5.17) - these features show two nucleation events dominated by α-pinene

concentration, without any particular delay as it is evidenced by the higher numbers of the LSS statistic with

smaller delay. A high correlation value is also attributed to the temperature during these intervals, which

could be explained by the less efficient temperature control of the inlet gases when compared to the CLOUD

chamber. However, these temperature changes are so small that they could be explained by electrical noise

of the sensor’s acquisition system and may not have physical meaning.

2. Feature 3 (figure 5.18) - shows an initial increase of the α-pinene concentration up to a stable value (plateau

at around 600 cm−3). A corresponding larger similarity value is attributed to the temperature, which seems

to decrease meaningfully, albeit with small values. This could be the consequence of the injection of com-

pounds into the chamber, since these values were taken in mid-October at room temperature that was lower
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than the set point of 25 °C. Thus an inefficient temperature control of inlet compounds would promote these

temperature variations. Particle concentration appears to have a positive response to the change in α-pinene,

but not as meaningful as temperature and with no visible delay as illustrated by the mainly similar LSS val-

ues. During all comparisons, UV Intensity was kept constant, single valued, and the comparison algorithm

fails. Sulphuric acid does not seem to have significant change with the injection of α-pinene, which would

make sense as no UV was introduced to promote photolysis.

These features illustrate the similarity of LSS and Pearson correlation coefficient, when no delays are visible in the

data.
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AP Feature 1 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (0.023,17.6) (0.025,34.3) (-0.022,47.8) (0.021,56.0) 0.016
UV Intensity (0.0,17.7) (0.0,34.1) (0.0,46.7) (0.0,54.2) NaN

Particles (0.933,18.1) (0.829,36.4) (0.811,47.3) (0.718,58.1) 0.935
Temperature (0.928,17.2) (0.814,34.5) (0.796,46.8) (0.697,56.1) 0.929

Figure 5.16: Behavior of all time series during the period of α-pinene feature 1. This feature consists of a slow increase in
concentration from around 400 to 600 cm−3 over the course of 2 hours. During this time particle formation is occurring, as
evidenced by the increase in particle concentration, and a very slight increase in temperature is observed.

5.1.2.3 Implementation in DAQBroker

As can be seen in the tables of the previous subsection, the use of the local similarity statistic with the selected

features length can use delays between 20 to 150 seconds. This makes LSS a statistic of limited scope for use

in large scale comparisons. One way to implement LSS is to limit the delay to small values and the feature size

to a certain number of data points, however, this will also limit the amount of features that can be compared.

Assuming that a database’s channels and feature size are small, an interface can be created for the user to provide

the maximum delay between correlated features and the time interval of the main feature to compare. This would

allow DAQBroker to apply LSS to each pair of channels, producing an association network[253] that shows the

96



0 50 100 150
Minute

600

700

800

900

1000

1100

1200

-p
in

e
n
e
 (
cm

3
)

-pinene - Feature 2

7.6

7.7

7.8

7.9

8.0

8.1

8.2

8.3

8.4

In
te

n
si

ty
 (

%
)

5.9900

5.9925

5.9950

5.9975

6.0000

6.0025

6.0050

6.0075

T
 (
C

)

0

10

20

30

40

S
A

 (
cm

3
)

0

5000

10000

15000

20000

25000

30000

P
a
rt

ic
le

s 
(c
m

3
)

AP Feature 2 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (0.026,27.4) (0.022,49.0) (0.018,66.9) (0.017,80.0) 0.019
UV Intensity (0.0,27.1) (0.0,47.9) (0.0,64.1) (0.0,80.4) NaN

Particles (0.887,26.7) (0.748,49.5) (0.637,66.6) (0.535,80.8) 0.888
Temperature (0.664,29.6) (0.576,50.1) (0.498,67.8) (0.436,80.7) 0.603

Figure 5.17: Behavior of all time series during the period of α-pinene feature 2. Similarly to feature 1 this feature consists
in the increase in α-pinene concentration from 600 to 1100 cm−3 over the course of 2.5 hours. During this time, particle
formation is also observed despite the abrupt high value at around 25 minutes. Temperature seems to be stable but there is a
slight increase during introduction of α-pinene.
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AP Feature 3 VS. LSS0 (value,time) LSS10 (value,time) LSS20 (value,time) LSS30 (value,time) Pearson Correlation
Sulphuric Acid (-0.033,38.5) (-0.035,65.0) (-0.036,87.9) (-0.036,106.5) -0.033
UV Intensity (0.0,39.1) (0.0,64.3) (0.0,85.4) (0.0,102.5) NaN

Particles (0.510,38.5) (0.531,64.4) (0.519,86.3) (0.496,104.1) 0.507
Temperature (0.721,39.5) (0.855,66.3) (0.896,90.0) (0.899,104.3) 0.720

Figure 5.18: Behavior of all time series during the period of α-pinene feature 3. This feature consists of a fast increase of
α-pinene concentration from 800 to 900 cm−3 followed by a slow decay to around 600 cm−3 over the course of 2.5 hours.
The temperature seems to decrease during the change in compound injection. Concentration of particles seems to follow the
change in behavior of α-pinene.
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most and least correlated channels. LSS can also be used to infer feature causality since the time series pair with

highest LSS can be visually inspected within the delay. When the feature size and/or number of channels are

too large, an alternative feature analysis can be offered by means of a correlation matrix. A correlation matrix

maps pairs of channels as points in a P × P matrix (P being the number of channels) via the Pearson correlation

coefficient. This method does not account for delays and does not infer causality but is more efficient in terms

of processing time and can be used on a multi-step analysis to filter out channels that do not present meaningful

correlation for a further LSS step with less channels. Figure 5.19 shows a suggested interface necessary for the

time series comparison as well as an example of the resulting visualization.

a)

b) Comparison score: 0.99

Figure 5.19: Mock-up of the times eries comparison interface (a) and subsequent visualization (b)

5.1.3 Time Series Event Detection

To complement the existing DAQBroker tools for manual input of experimental runs and events, a method of

automated event detection is considered. Due to its portability and low computational effort, the symbolic wavelet

partitioning method described in 2.2.1.3 is the one selected. This subsection introduces the method applied in

CLOUD data followed by the corresponding results. The implementation of this method in the DAQBroker API is

also discussed from a user interface point-of-view.
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5.1.3.1 Event Detection Implementation

The symbolic wavelet partitioning method consists in dividing a predetermined time segment into slices, the first

slice is considered to be the test slice from which a wavelet transform is preformed. The transformed slice is then

partitioned such that each partition of the slice contains the same number of wavelet coefficients. The number of

slices is determined by an entropy minimization method using the Shannon Entropy expression[350]. The change

in entropy (∆E) associated with the increase of the number of partitions of the data is calculated by:

∆E(N) = −
n=N∑
n=1

pn log2 pn (5.1)

Where N is the number of partitions chosen and pi is the probability of a data point being in a specific partition

(in this partitioning method pi =
Np

N where Np is the number of points in the slice). Equation 5.1 is a decreasing

function with increasing N meaning that there is less information gained as the number of partitions increases.

The user must select the limiting value for entropy variation that chooses the number of partitions created. Once

a suitable wavelet partition is created for the first slice of the data, the slice will be represented by a probability

vector P, which represents the slice in the chosen partitioning scheme. The vector can be compared to other

probability vectors in the same partitioning scheme by vector operations such as calculating the angle (α) between

these N -dimensional vectors:

αi,j = acos
(
〈Pi,Pj〉
||Pi||||Pj||

)
(5.2)

Where 〈•, •〉 is the inner product between two vectors and ||•|| represents the Eucledian norm of a vector. Equa-

tion 5.2 is limited to the range of [0, π2 ] since the elements of the probability vector are strictly positive. When

the angle between vectors is sufficiently large, the segment analyzed is considered significantly altered and is

classified as anomalous. This sufficiently large limit can be supplied by the user to select the sensitivity of event

detection.

5.1.3.2 CLOUD time series event detection

The described event detection algorithm is applied to the channels and time interval introduced in the beginning of

the chapter. While a proper application of the method would be for recent online data, its flexibility allows it to be

used on a larger time series with relatively fast execution time. The results can be used as proof-of-concept for the

performance of the method.

5.1.3.2.1 UV Intensity Figure 5.20 shows the time series of UV intensity and highlights the time slices where

an event was flagged. Each tested time segment had the duration of 30 minutes and each slice was 3 minutes long.

The limit of event detection was set to 0.75, which corresponds to roughly 50% of the range of limits of equation

5.2. Since the sensor has almost no noise and very sharp changes in value exist for UV intensity modification all
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existing features were flagged as possible events. Also during hour 39 and 41 a possible event is flagged associated

with noise.
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Figure 5.20: UV intensity time series (blue) and slices flagged as possible events (red).

5.1.3.2.2 Temperature Figure 5.21 shows the time series of temperature as well as the time slices where an

event was flagged. Each tested time segment was 60 minutes long and 6 minute slices were considered. The

limit of detection was set to 0.81, which corresponds to around 52% of the available range. In figure 5.21 one

main feature exists but some smaller ones are also present, at hours 11, 19, 24 and 37. All of the aforementioned

features were properly flagged as events, as well as some additional smaller length flags that would require finer

analysis to decide whether they correspond to an event or not.
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Figure 5.21: Temperature time series (blue) and slices flagged as possible events (red).

5.1.3.2.3 Sulphuric Acid Concentration Figure 5.22 shows the time series for sulphuric acid inside the CLOUD

chamber. Slices that were flagged as possible events are highlighted in red. Time segments are 60 minutes long

101



and each tested slice is 6 minutes long. The limit of detection was set to 0.8, again slightly above 50% of the

available detection range. Since this series is close to the detection limit of the instrument and very little features

can be discerned by eye, a look into the list of manually recorded runs is necessary. The black dashed vertical lines

represent experimental runs that took place within 6 minutes of a tested slice. From the 24 runs recorded during

this period, 15 runs took place within 6 minutes of a possible event detection. The other runs were not detected

by the algorithm meaning that either the limit of event signaling was not achieved or the event did not produce a

difference in the sulphuric acid concentration. It can also be seen that there are several false positives according to

the run list for this period1, most notably for the period between hours 13 and 18 and the period between hours 40

and 46. These false positives could be removed by increasing the detection limit for possible events, but one must

be careful not to increase the amount of false negatives as well.
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Figure 5.22: Sulphuric acid concentration time series (blue) and slices flagged as possible events (red). Vertical black dashed
lines represent experimental runs that took place in a 6 minute time window from the detection of anomalous behavior.

5.1.3.2.4 Particle Concentration Figure 5.23 shows the time series of particle concentration in the CLOUD

chamber as well as time intervals flagged as events. Time segments were 30 minutes long and tested slices were

3 minutes long. The limit for event flagging was set to 0.65, which corresponds to around 40% of the available

range of values. It is clear that for this time series, it becomes more complicated to detect events particularly due to

the existing noise which increases for smaller values. While events are correctly flagged from hours 1 to 21, when

noise was larger, the false positives appear. Increasing the limit range would allow for less falsely detected events,

but it would also result in more false negatives. One possible solution to overcome noise is to apply a smoothing

algorithm to the data before the event detection method is applied.

5.1.3.2.5 α-pinene Concentration Figure 5.24 shows the time series for concentration of α-pinene and the

slices of time flagged as events. Time segments were set to be 90 minutes long and the time slices 9 minutes long.

The limit for detection was set to 0.7 which is roughly 45% of the range of the limit. This time series, much like

1It is also possible that some changes made to the instrument or the experimental environment were not logged but could still be detected
by the algorithm.
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Figure 5.23: Particle concentration time series (blue) and slices flagged as possible events (red).

the particle concentration, has significant noise/signal ratio at small values. However, the time series stabilizes at

those small values. This allows for the event detection algorithm to adapt to the larger noise and to not flag the

larger noise slice as a possible event. At larger values with lower noise/signal ratio, most visible excursions of

the data are correctly flagged as events, although some are missed at hour 38 and hour 45. Again a smoothing

algorithm should be an option to apply to the data before this method is used.
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Figure 5.24: α-pinene concentration time series (blue) and slices flagged as possible events (red).

5.1.3.3 Implementation in DAQBroker

As introduced earlier in this section, this method of event detection is ideal to complement the existing methods of

manual event recording, offering users possible time periods where specific behaviors should be at least highlighted

or even recorded alongside experimental runs. Fully automated event detection would need to be ensured by a

supervised algorithm and not the unsupervised algorithm introduced in this session and also training would be
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required for each channel. To implement this method in DAQBroker requires it to be applied to the most recent

data at a time period defined by the user as well as with a specified entropy limit. Alternatively to the user specified

limit, a color-coded scheme can be used to classify the results of equation 5.2, such as green for low values, yellow

for intermediate values and red for large values, signifying respectively, low, medium and high confidence of the

occurrence of an event. From the point of view of interface implementation, users will be able to mark a specific

channel or visualization for event detection, and choose the length of time to test, as well as the limit for event

detection. When a visualization of that channel is presented, slices flagged as possible events are highlighted and

users can take action by either ignoring the flags or creating a new comment. One possible option that should be

investigated is to offer a denoising algorithm to minimize false flags, as evidenced from the sulphuric acid and

α-pinene time series analysis. Figure 5.25 contains a suggested interface provided to the user for requesting the

detection as well as a visualization to be provided with the detecetd events highlighted.

a)

b)

Figure 5.25: Mockup of the event detection event interface (a) and subsequent visualization (b)

5.2 Large Scale Time Series Analysis for DAQBroker

With the capability of DAQBroker to store large amounts of information from a wide range of instruments, a single

user may become flustered with the breadth of information available. For this reason, a strategy for condensing in-

formation in DAQBroker is required. As stated in 3.1.3, users can divide relevant periods of experimental analysis

into runs and further divide those experimental runs into stages. These structured experimental analysis provide

104



the ideal separation in analysis periods that allow the production of simple, statistically-based reviews of the avail-

able data, highlighting the most relevant data channels during each period, their relationships with other channels,

channels that influence the flow of information and periods of more activity during the experimental run. In order

for this analysis to be user-friendly, it should provide a wide array of user options, while having default values that

properly convey relevant information. This section will focus on the individual analysis that provides a detailed

summary of an experimental run to the users.

The methods used in this section are based on multivariate time series analysis. It is therefore required that a set

of channels be interpreted as a multivariate time series. For that reason, this section begins by discussing pre-

processing methods required to be first applied to the data. It continues by presenting a method of dimensionality

reduction that focuses on selecting the most important time series in terms of data variation. A method of providing

a visualization of relationships between all data channels and a method for signaling the most active time periods

by means of event detection are introduced. This method of experimental run summary is also applied to CLOUD

measurements using a specific set of data channels. Finally, a discussion on the implementation of this method in

DAQBroker is discussed, highlighting it’s strengths and weaknesses.

5.2.1 Data pre-processing

In this section, considerations are taken into account for the pre-processing of instrument data so that different data

channels can be properly compared and/or placed in a hierarchical order among each other.

Considering the universal scope of DAQBroker, the data provided from different channels in DAQBroker is as-

sumed to come from multiple sources, measure different quantities and use completely different measurement

methods. However, given the nature of the experimental runs and stages, it is also fair to assume that during an

experimental stage in DAQBroker, all instruments are measuring the influence of the same phenomenon, which by

the scientific experiments’ nature, should remain stable for a statistically significant time period2. This means that

during a single stage, it is assumed that all measurements correspond to a stationary process with the purpose of

studying the influence of one specific input variable.

The pre-processing step will focus first on time denoising, then on time regularization and last on data normaliza-

tion.

5.2.1.1 Noise Reduction

In order to properly study a set of time series, a first stage consists in removing unwanted components of the signal

(e.g: noise) that may severely compromise the results of the analysis. However, noise reduction methods must be

used with moderation, to avoid removal of significant elements of the signal. If the signal is known beforehand,

2This may not always be the case for a widely geographically distributed set of instruments, however, these are fringe cases that warrant
other means of statistical summaries.

105



usually a detailed study of the signal is available and a noise model is selected to be subtracted from the spectrum of

the experimental data signal[351]. It would be useful to provide the use of specific noise models in the DAQBroker

framework. In this thesis, a two-step noise reduction process is implemented. First, a median filter is applied to the

data to remove possible outliers. Second, a low-order Savitzky–Golay filter (≤ 2) is applied to the data to further

decrease noise.

This processing produces a set of data channels that ultimately contain less information, but in most cases, removes

the contamination associated with instrument noise for future statistical analysis.

5.2.1.2 Time Regularization

As mentioned in 3.1.2, the one common trait of all data channels in DAQBroker is the time of measurements, but

there is no intrinsic requirement that data is collected at the same time intervals or even starts at the same time.

A multivariate time series from a set of instruments has to be processed in order to create a set of time series that

contain the same number of measurements, to match the one introduced in equation 2.26. While the choice of start

and end times is already solved with the use of experimental runs or stages, there is still the matter of providing

the same number of data points for each time series3. In choosing the method to equal the number of points for

all time series there is a trade off between information retained and computational complexity[352], the latter

being a sensitive topic when working with continuous data updates and large amounts of data channels. Using the

assumption that all instruments are measuring the same process, most time ranges are adjusted to the time scale of

the measured process and there is no significant difference between the instrument sampling frequencies. With this

assumption, and in order to retain all of the available information (at the expense of future computational speed) for

the studied experimental run, all time series are converted to interpolated versions of themselves using the smallest

time increment found in the time series collection. Unless stated otherwise, all interpolations in this section are

made using the scipy package in Python.

5.2.1.3 Data Normalization

Since most time series are produced from different instruments, different data channels will measure different

physical and/or chemical quantities. It is of extreme importance to compare all time series values on equal footing

and avoid the dominance of the larger values or large excursions[353]. For this reason, a normalization procedure

is implemented to each time series to have its data between the same boundary numbers (chosen as 0 and 1). Thus

all time series to be compared are mean subtracted and subsequently normalized by its maximum amplitude width,

creating a new set of normalized-mean-reduced time series values:

3It could be the case that a very limited number of points exist during this time period either as a result of poor data acquisition or of low
sampling frequency from the underlying instrument.
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X =


X1

...

Xm

 , Xi =
[
X̂i

1
− ˜̂Xi . . . X̂i

n
− ˜̂Xi

]
, X̂i =

[
X1

i−min(Xi)
max(Xi)−min(Xi)

. . .
Xn

i −min(Xi)
max(Xi)−min(Xi)

]
,

(5.3)

Where ˜̂Xi = 1
n

∑n
k=1 X̂i

k
is the mean value of the normalized time series and Xi is the mean reduced time series

matrix. With this new set of time series, all values are between 0 and 1 as explained. Time series which are constant

will be set to 0 via mean reduction, to have no influence from constant values, and consider only the variance of

each signal.

By applying the above pre-processing steps to all time series it is important to highlight that all time series data

were tampered with, there was information suppression by noise reduction and data normalization steps and a

added information with the time regularization step. Thus, it is important that in the future implementation of this

approach in DAQBroker, these processes are optional4.

5.2.2 Relevant Channel Highlighting

After the pre-processing steps, all time series contain the same number of samples and the same scale, becoming

possible to analyze the set as a multivariate time series. The first step in the analysis is to find the most relevant

time series in the set. It is important to define what relevance means. For a scaled set of time series, no particular

measurement is more important than others assuming that noise has been reduced to small levels or even completely

removed. It will thus be defined that the most relevant time series will be the one contributing most to the power

spectrum. Since all time series were obtained during one single experimental stage, it is assumed that all excursions

of data are due to the behavior of the studied phenomena. Since for each stage only one phenomena is studied, the

assumption of stationarity should be reasonable for most timeseries. The multivariate time series can be converted

to the frequency domain by applying the FFT (F ) to each row of the previously introduced normalized-mean-

reduced X time series matrix:

FX(ω) =


FX1

(ω)
...

FXm
(ω)

 (5.4)

With the set of time series in the frequency domain, there is no limitation for successive time periods and PCA

can be applied to FX. Choosing the relevant percentage of variance to be explained (user defined parameter σL) a

simplified version of the previous matrix (FX), containing only the most relevant frequencies in the most relevant

time series is calculated as the sum of principal components defined in 2.2.2.1:

4Apart from some form of time regularization.
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r∑
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λiSi ,
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i=0

λ2i∑
n λ

2
n

<= σL (5.5)

The LU decomposition, however, introduces some caveats to this method. This decomposition does not take

into account the relative importance of specific time series. For example, if one relatively unimportant value of

a time series influences the behavior of another more relevant time series, there is no absolute certainty that the

most relevant time series will be chosen over the less important one. One solution to this issue is to introduce an

auxiliary step in the permutation matrix of the LU decomposition that disallows the permutation of important rows

with unimportant one, the importance of each row to be defined by the user.

5.2.3 Channel Relationship Visualization

Apart from relevant channel highlighting, the X matrix can also be used for similarity measurements. However, an

appropriate similarity measurement should be selected to relate each pair of time series. For this study 4 distinct

similarity measurements will be considered:

1. The Pearson correlation coefficient will be used (defined in equation 2.16) to evaluate the direct linear rela-

tionship between series,

2. The maximum of the cross correlation function (defined by equation 2.17) used as similarity measurement.

This can be seen as a delay-independent generalization of the Pearson coefficient,

3. The dynamic time warping algorithm will be used to provide a different alternative to the previous calcu-

lations. The fastDTW algorithm will be used to calculate a distance measurement between series and then

said distance measurement is used in equation 2.13 to convert to a similarity measurement,

4. Finally the coherence between time series is calculated (via equation 2.20) to evaluate the similarity of each

time series in the frequency domain.

From each of these measurements a similarity matrix can be calculated (as in 2.32) and a network visualization

of the relationships between time series can be made, as discussed in 2.2.2.2. A force directed network graph

was chosen to visualize the relationships, since it more immediately provides a user with a qualitative state of

the relationships via the relative distances between nodes. Since the visualized network is not directed and there

is no new information obtained from making a similarity matrix of a time series with itself, there is no expected

self-interaction force between nodes, thus the main diagonal of the similarity matrix will not be considered in the

creation of this network graph.

5.2.3.1 Expected Results

Since 4 different types of graphs are created, it is important to consider what are the expected results and the

reason for using each similarity measurement. Firstly, LSS similarity was not used due to the algorithm’s O(n2)

complexity, which was defined in 2.2.1.2 and resulted in relatively high computing time for comparing pairs of

time series in 5.1.2.2. The following describes the reasons for choosing each similarity method:
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• The Pearson Correlation Coefficient is used to provide a classical comparison of time series, without consid-

ering the existence of delays in time series and provide a basis for interpretation of other results using other

similarity measurements.

• The maximum value of the Correlation Function to provide a measure which improves on the Pearson

Coefficient, the maximum of the correlation function is used, this provides a maximum value for comparing

pairs of time series, regardless of what possible lag value exists between them. Predictably, using this

maximum value will necessarily yield larger values of Correlation over the Pearson Coefficient, when a

significant delay exists between series.

• The DTW similarity is used to attempt a different measurement method over correlation, the DTW distance

is used as a similarity measurement. As defined in 2.2.1.2, DTW allows the distortion of the time axis to

choose a shape for one series which better describes the other. While a popular method for finding similarities

between time series, even when the sampling frequency of time series is different, the pre-processing step

defined in 5.2.1 handles the up-sampling of time series, thus the advantage of using DTW is expected to be

somewhat mitigated.

• Coherence is used much like the Pearson Correlation Coefficient in frequency space, comparing how one

frequency of one signal is responsible for changing the same frequency of another signal. Since this method

focuses purely on the real part of the frequency spectrum, the concept of delay is not even defined for

coherence, thus a signal can only be further compared in frequencies to another. While this can come as

an advantage for some signals, where linear relationships dominate, more complex relationships might get

ignored when using this method.

To illustrate the result of comparing time series using a each different method, a sigmoidal function with two

different time delays was compared using each method. The sigmoidal function is a time series defined as:

f(t) =
1

1 + e−t
(5.6)

and is one of many examples of time series that aim to be analyzed using DAQBroker. Figure REF shows two

sigmoidal time series over a period of 500 seconds and both series are delayed by a period of 200 seconds as well

as a table with the resulting similarity value for each method.

As expected a certain small correlation coefficient is found. When moving on to the maximum of the correlation

function, a larger value is found at a lag very close to the period of lag of both series. One surprising factor is

the value of the DTW similarity is quite small when compared to the previous values. This is hopefully due to

a missing normalization factor related to the size of the time series and hopefully some sort of order is restored

when analysing similarity matrix. The coherence value as expected is one of the largest values, since most of the

frequencies that define one function are present on the other and as such it is simple to attribute similarity.
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Pearson 0.3242
Max. Cross-corrleation (0.46223, [195])
DTW 0.03934
Coherence 0.70223
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Figure 5.26: Sigmoidal time series with different delays (left) and result of similarity measurements using the methods described
(right). For the maximum cross correlation similarity, the delay for which the correlation is maximum is also shown.

5.2.4 Relevant period detection

With a relevant subset of time series and with all relevant relationships highlighted in a graphical visualization, a

look at the time series itself is warranted to provide users with the most relevant periods of activity in the time series.

Since most time series originate from different instruments, no particular model can be applied to all the time

series to efficiently evaluate their behavior. Similarly, finding a unique model for all single time series for each

experimental stage would be too cumbersome to provide as a feature to users. This section introduces a simple

extension of the univariate time series event finding algorithm presented in 5.1.3.

As stated earlier in this section, all time series are regularized in time to contain the same amount of points as the

most granular time series, in order to retain the maximum information possible. Thus it is possible to treat time as

a single series as it is the same for all series.

1. The time series is divided into a number of user-defined evenly sized sub intervals. These are the time

periods to be studied in terms of relevance.

2. In order to define the relevance, the symbolic wavelet partitioning method is applied to each time series in

X at each period.

3. Each interval is further divided into 10 smaller subintervals, the first subinterval is used as the test example

for each time series and the rest of the subintervals are tested for events detection.

4. For each interval the number of subintervals that deviate from the test subinterval by an angle greater than a

user-supplied angle are considered events.

For each interval the total number of events over all time series is calculated and the period with most events found

is considered the most relevant.

It is simple to show users which period is the most relevant by shading the areas of the time series plot as a function

of the number of events found, as shown in figure 5.27.
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Figure 5.27: Example of visual ranking of periods in time series plot. More shaded areas are of less interest and areas with
excursions are the areas of larger interest. This is the expected behavior of the multivariate time series ranking of relevant
periods.

5.2.5 Application to CLOUD data

The validity of the methods presented in the previous section were tested with data from the CLOUD experi-

ment. A full list of all channels used for this analysis can be found in tables B.1 and B.2. A total of 88 channels

are screened for data and, in the case there is no data for a specific time period, the corresponding channels are

discarded from the analysis. 52% of the total number of CLOUD instruments integrate in this analysis but only

around 1% of the total number of channels is represented. This small representation of channels is placated with

the knowledge that some channels are composite channels with large amounts of channels for a single time series.

If one takes into account the individual channels used in the composite channels, the channel representations in-

creases to around 30%. It must also be considered that most of the data channels in this specific CLOUD campaign

originate from the Light Spectrometer, which samples the light spectrum at a sub-nanometer resolution (from 185

to 876 nm) resulting in over 44% of the total number of channels. The non-represented channels in the whole data

set are either channels used to monitor instrument status or for monitoring parameters that do not play a part in the

selected time periods. A reduced set of time series is also considered to test whether reducing the main data set

provides more scientifically relevant insights. This reduced time series set is shown in tables B.3 and B.4.

Similarly to the bulk of experimental stages in the 2017 CLOUD campaign, one specific particle generation run

(1962) was chosen to apply this method. The analysis of this method is performed on 5 different stages of the

aforementioned run, which illustrate a typical set of experimental stages for these types of runs. This particular

run tested the influence of organic components in the formation of atmospheric particles under low sulphuric acid

concentrations, each stage is now described and summarized in table 5.1:

• In a preparation stage, the precursor gases’ concentrations are set to predetermined values, specifically,
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sulphuric acid and SO2 are set to low values and α-pinene and ozone concentrations are set an initial value.

• The first stage (1962.01) starts by turning on the CLOUD chamber’s ultraviolet lights, which induce ozonol-

ysis in the chamber’s atmosphere and leads to the formation of sulphuric acid. This stage is preformed under

the application of an electrical field over the chamber to screen out charged particles, thus studying only

neutral chemical pathways.

• The second stage (1962.02) consists in the removal of the applied electrical field, which introduces charged

particles to the chamber’s atmosphere and should result in an increased rate of particle formation since new

chemical pathways for particle formation are introduced.

• The third stage (1962.03) is a transition stage, where the concentration of α-pinene is increased to prepare

for a new particle generation event. During this time, the electrical field is re-applied in preparation for

another neutral stage and a set of mixing fans is set to maximum value to remove already created particles

from the chamber.

• The fourth stage (1962.04) is the same as the first stage, except a larger concentration ofα-pinene is available.

This stage starts with turning down the mixing fan speed to allow particles generated to be read by the

instruments.

• The fifth stage (1962.05) is the same as the second stage at a higher concentration of α-pinene. This stage

starts similarly to the second stage, by turning off the electrical field, introducing charged particle generation

pathways.

.

In order not to burden the reader with large amounts of results, only the analysis of one stage is described in this

section. The analysis of other stages can be accessed in appendix B.

For all runs, the user-defined parameters are kept constant to produce comparable results. For the highlighting of

important time series, the PCA explained variance is kept at 97%. Finally the limiting angle for event detection is

kept at 45° (π/4) and the time period is divided into 4 sub-intervals to test for event detection relevance.

Table 5.1: Stages of particle generation run studied via multivariate analysis and respective summaries

Stage Description Expected behavior

1962.01 Neutral AP 150 Organic particles dependent on α-pinene (AP) are created, this gives
rise to eventual particle creation

1962.02 Charged AP 150 Neutral fields switched off, larger particle growth should be observed
1962.03 Increase AP to 300 Period for increasing α-pinene and cleaning of the chamber

1962.04 Neutral AP 300 Larger values of α-pinene should increase particle generation, even at a
neutral stage

1962.05 Charged AP 300 Neutral fields switched off again, even larger particle growth should be
observed
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5.2.5.1 Run 1962.01 - Relevant Time Series Highlighting

Figure 5.28 shows the most relevant time series highlighted with the method described in 5.2.2.
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Figure 5.28: Most relevant time series for CLOUD experimental run 1962.01. The compared time series are shown in their
original sampled values, before normalization to give the reader an idea of the absolute change of values. This visualization
can be shown to users to allow for a more detailed study of the results.

The main advantage of this method is to reduce the time series set, in this case resulting in a 90% reduction from

the initial set of time series while retaining most (97%) of the frequency variance of the whole set. Also of note is

the fact that 2 time series highlighted for this experimental run, corresponding to instruments for different particle

size measurements. This is in line with the focus of the run in creating particles. One can go further with this anal-

ysis by noting that the particle measuring channels (LTOF CPC and PSM16 conc) measure only small particles

and the fact that this particular run generated uncharged particles with low concentrations of precursors, meaning

that most clusters would not have grown to detectable sizes. Also of note the highlighting of two chemical species’

(Acetone and O3) concentration, with an increase in the first and a slight decrease in the second, hinting that these

chemical species or their precursors are relevant in particle generation.

Highlighting of the NAIS ions - Ions pos channel, measuring the concentration of positive values, is unexpected.
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This time series is clearly an important channel to consider but since this run is neutral, the highlighting of charged

particle channels is not expected. The reason for the selection of this channel is due to the noise at low values

(compare with the charged run in figure B.1, which features values at a higher order of magnitude) that is not fully

removed during the pre-processing state. This makes the noise frequencies be highlighted and is thus considered

relevant. This issue can be resolved by another auxiliary step that would allow users to apply a specific model for

noise removal on their time series, in the pre-processing stage of the method.

Figure 5.29 shows the most relevant time series highlighted when using the reduced time series data set. What

is most immediately apparent is the number of highlighted time series, which reduced by 3. This means that a

significant amount of information was removed from the main set, since less time series are required to explain

the variance of the reduced set. While less channels are required, it is unclear whether the new plots show new

information, since two of the highlighted time series (Fan speed1 and PTR3 Acetic Acid) seem to be measuring

noisy measurements.
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Figure 5.29: Most relevant time series for CLOUD experimental run 1962.01 using the reduced set of time series. The compared
time series are shown in their original sampled values, before normalization to give the reader an idea of the absolute change
of values. This visualization can be shown to users to allow for a more detailed study of the results.
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5.2.5.2 Run 1962.01 - Time Series Relationships

To study the relationships between time series, two sets of channels were used for this particular part of the process.

Firstly we will consider the initial set of channels defined in tables B.1 and B.2. However, there is a possibility that

some channels chosen from the base set, while not relevant to the scientific analysis of the stage being preformed

and due to the nature of their statistics, be it improper pre-processing or sampling below the instrument’s detection

limit, can cause the resulting network graph to become skewed toward unexpected relationships. Thus, the initial

set of channels was pruned to consider only channels relevant to the experimental run preformed. While this should

not be the norm when using of DAQBroker, since the whole focus of these methods is to preform exploratory

analysis on the collected data, relying solely on statistical methods to provide results for users is also not practical

in a real world scenario and thus users should be allowed to choose subsets of data channels on which to apply these

exploratory methods. The resulting subset of channels was chosen to reflect the fact that this is a low sulphuric

acid particle generation experiment, where the levels of α-pinene are gradually increased at the run’s half point

and several stages of neutral and charged particle generation attempts are made, thus eliminating several channels,

due to a combination of non-relevant physics/chemistry, measurements below limit of detection and equivalent

methods of detection, all of which could cause spurious relationships to occur. It is also worth noting that while a

change in the set of channels used does indeed change the results of the previously made PCA, it merely affects the

number of ranks found, the underlying conclusions and highlighted channels for both sets remain fundamentally

the same except that less channels are highlighted.

5.2.5.2.1 Full channel set

5.2.5.2.1.1 Pearson Correlation Similarity Figure 5.30 shows the Pearson correlation network graph of the

channels during the experimental run. The strength of each pair of channels is visualized by a reversed grey scale

(0% is light grey and 100% black). Node sizes are related to the degree of eigenvector centrality, thus highlighting

the most influential nodes in terms of the respective network. To ease the identification of nodes in figure 5.30,

table 5.2 ranks each node’s eigenvector centrality in descending order, thus the top ranked nodes will correspond to

the largest nodes in figure 5.30. The color of each node places said node in one of the several possible communities

found after applying the Louvain algorithm, described in section 2.2.2.2.

It is clear from table 5.2 that the most influential nodes are those of particle concentration measurements, followed

by light spectrometry measurements with a small contribution of chemical measurements in the ozone times se-

ries. These highlighted relationships are all expected, since the goal of this stage was to use specific wavelengths

to generate ozonolysis in the chamber, thus driving up the particle generation rate. It can also be shown in that for

other runs, this method can also generate predictable results (see B.2)

Regarding the three communities found in either graph, no direct explanation for the separation is immediately

found as each set of nodes for each network graph consists of both chemical and physical measurements. It ap-

115



Stage 1962.01

3 communities found

PSM16
conc

Light_Spectrometer
LS4

PTR3
PINONALDEHYDE

Light_Spectrometer
LS3

SabreTemperature
Sabre3Temperature

LongSMPS
Particles  20-500 nm 

nanoSMPS
Total Conc.  #/cm 

NAIS_ions
Ions_pos

HTOF_UFRA
NH3

PSM15
conc

PICARRO
NH3_2MIN

PSM12
conc

NAIS_ions
Ions_neg

STOF
BETACARYOPHYLENE

LTOF_UFRA
NIT

STOF
TMB

HTOF_UFRA
H30

STOF
ISOPRENE

O3
o3

STOF
NAPHTHALENE

LTOF_CPC
CPC

Fan
speed2

LTOF_UFRA
DMA

Light_Spectrometer
UVH

LTOF_UFRA
SA

CPC3776
3776-1DisplayConc.

Light_Spectrometer
LS1

Scalers
brust

Light_Spectrometer
UVX

STOF
PINONALDEHYDE

DMAtrain
Ch1 C [#/cc]

HVFC
mvolt2

LTOF_UFRA
HIO

DMAtrain
Ch0 Ch [#/cc]

nRDMA
Count

SO2
so2

Dew
dew

PTR3
ISOPRENE

PTR3
NAPHTHALENE

STOF
APINENE

HTOF_UFRA
H7O3

TDL
sat_water

Fan
speed1

PTR3
BETACARYOPHYLENE

PTR3
TOLUENE

STOF
TOLUENE

PTR3
ACETICACID

HVFC
mvolt1

SabreTemperature
Sabre4Temperature

HTOF_UFRA
H3OH2O

PTR3
TMB

PhotoDiode12
intensity2

STOF
ACETICACID

PTR3
ACETONE

PT100
temp1

STOF
ACETONE

PTR3
APINENE

HTOF_UFRA
O2

CAPS
NO2

Figure 5.30: Pearson correlation network graph for the CLOUD experimental run 1962.01. A reversed grey scale based on
connection strength is applied to the line color connecting each node for visualization purposes.
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Table 5.2: Eigenvector (ε) centrality node ranking for run 1962.01 using the Pearson correlation as similarity

Rank Instrument Channel ε

1 PSM12 conc 0.2841
2 LTOF CPC CPC 0.277
3 CPC3776 3776-1DisplayConc. 0.2754
4 Light Spectrometer LS4 0.2731
5 O3 o3 0.2645
6 Light Spectrometer LS3 0.2614
7 LTOF UFRA NIT 0.2603
8 Light Spectrometer UVH 0.2596
9 PSM16 conc 0.2583
10 Light Spectrometer LS1 0.2548
11 PSM15 conc 0.2507
12 LongSMPS Particles 20-500 nm 0.2258
13 HTOF UFRA H30 0.2204
14 Light Spectrometer UVX 0.2078
15 NAIS ions Ions neg 0.1513
16 LTOF UFRA SA 0.1362
17 LTOF UFRA DMA 0.1149
18 LTOF UFRA HIO 0.1076
19 NAIS ions Ions pos 0.0701
20 nanoSMPS Total Conc. #/cm 0.048
21 DMAtrain Ch1 C [#/cc] 0.0415
22 PTR3 PINONALDEHYDE 0.0407
23 DMAtrain Ch0 Ch [#/cc] 0.0381
24 STOF BETACARYOPHYLENE 0.0278
25 STOF PINONALDEHYDE 0.0182
26 PICARRO NH3 2MIN 0.0177
27 HTOF UFRA NH3 0.0176
28 SabreTemperature Sabre3Temperature 0.0159
29 Fan speed2 0.0157
30 Dew dew 0.0122
31 STOF ISOPRENE 0.0099
32 STOF NAPHTHALENE 0.009
33 nRDMA Count 0.0079
34 STOF TMB 0.0076
35 PTR3 ISOPRENE 0.0063
36 Scalers brust 0.0058
37 SO2 so2 0.0044
38 PTR3 TOLUENE 0.0043
39 Fan speed1 0.0025
40 PTR3 TMB 0.0022
41 HVFC mvolt1 0.0021
42 STOF ACETICACID 0.0019
43 HVFC mvolt2 0.0017
44 PTR3 NAPHTHALENE 0.0014
45 HTOF UFRA H7O3 0.0012
46 TDL sat water 0.0011
47 PTR3 ACETICACID 0.0011
48 PhotoDiode12 intensity2 0.0007
49 STOF APINENE 0.0007
50 STOF TOLUENE 0.0006
51 PT100 temp1 0.0006
52 PTR3 ACETONE 0.0005
53 PTR3 APINENE 0.0005
54 HTOF UFRA O2 0.0004
55 HTOF UFRA H3OH2O 0.0003
56 PTR3 BETACARYOPHYLENE 0.0003
57 CAPS NO2 0.0003
58 STOF ACETONE 0.0002
59 SabreTemperature Sabre4Temperature 0.0002
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pears that each existing community seems to group time series with similar values of eigenvalue centrality and

thus the coloring of each node according to its community further inform the user of the importance of each time

series. When compared with other graphs, this graph shows the most spread in nodes, easing the identification of

communities of nodes.

While important information can be retrieved from the network graph, that can shed light on the behavior of the

studied multivariate time series, it also becomes clear that a static representation of the relationships between each

pair of time series becomes not very useful for the larger number of variables included in the multivariate time

series. Introducing a strength threshold for a statistically significant relationship would provide more manageable

static visualizations. Alternatively, since the end goal of this method is to be implemented in DAQBroker, a more

interesting solution to this problem is to consider this method of visualization in a more dynamic sense. This

second approach is developed in 5.2.6.

5.2.5.2.1.2 Cross-correlation Similarity Figure 5.30 shows the maximum cross-correlation network graph of

the channels during the experimental run. To calculate the pairwise relationship between time series (sXYmax corr),

the following expression is used:

sXYmax corr = |max
k

RXY (k)| (5.7)

Where RXY (k) is the cross-correlation function between time series X and Y , given by equation 2.17, which is a

function of the delay between time series. Compared to the Pearson correlation, this method should find differences

when there is significant delay between time series that otherwise have similar linear relationships. Table 5.3 again

is used to help identify the nodes in the map in the same way as in the previous section.

As can be seen from analysing table 5.3, very similar results are found, with one single exception of the highlighting

of a chemical channel measuring mass in range of nitrate compounds, which was already prominent in table 5.2

(up by only 2 ranks). Inspecting the individual channel, there is indeed a change in the values which cannot not

be immediately attributed to noise in the instrument, but can be related to a change in a measurement state of

the instrument, the instrument operator should be contacted to highlight the source of this change. It can be seen

how, considering any possible delay, some channels can become related to others in a spurious way, as is the case

here, however, this method should not be discarded as relevant information can be retrieved from introducing the

possibility of delay analysis. It is also worth noting that the graph produced in figure 5.31 is now much more

compact, as the values of maximum cross-correlation are overall higher. Again, three communities are found,

all of which seem once again to group the nodes in terms of the eigenvector centrality, once again in aiding the

grouping of nodes, which is more complex in this case.

5.2.5.2.1.3 DTW Similarity Figure 5.32 shows the DTW network graph of the channels during the experimen-

tal run. The similarity between timeseries in this case sXYDTW is found by calculating the DTW distance between

the series (dXYDTW ) and applying equation 2.13:
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Figure 5.31: Maximum cross-correlation network graph for the CLOUD experimental run 1962.01. A reversed grey scale
based on connection strength is applied to the line color connecting each node for visualization purposes.
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Table 5.3: Eigenvector (ε) centrality node ranking for run 1962.01 using the maximum cross-correlation as similarity

Rank Instrument Channel ε

1 PSM12 conc 0.2431
2 LTOF CPC CPC 0.2376
3 Light Spectrometer LS4 0.2371
4 CPC3776 3776-1DisplayConc. 0.2368
5 LTOF UFRA NIT 0.2318
6 O3 o3 0.2314
7 Light Spectrometer LS3 0.2299
8 Light Spectrometer UVH 0.2286
9 PSM16 conc 0.2273
10 Light Spectrometer LS1 0.2238
11 PSM15 conc 0.2214
12 LongSMPS Particles 20-500 nm 0.2082
13 HTOF UFRA H30 0.1989
14 Light Spectrometer UVX 0.19
15 NAIS ions Ions neg 0.1708
16 LTOF UFRA SA 0.1372
17 PTR3 ACETICACID 0.1346
18 CAPS NO2 0.1302
19 PT100 temp1 0.1254
20 nanoSMPS Total Conc. #/cm 0.1244
21 PTR3 ACETONE 0.1216
22 NAIS ions Ions pos 0.1215
23 LTOF UFRA DMA 0.1197
24 LTOF UFRA HIO 0.111
25 PTR3 APINENE 0.1017
26 PhotoDiode12 intensity2 0.099
27 PICARRO NH3 2MIN 0.0969
28 Dew dew 0.093
29 SO2 so2 0.0726
30 DMAtrain Ch1 C [#/cc] 0.0715
31 TDL sat water 0.0645
32 PTR3 PINONALDEHYDE 0.0641
33 STOF ACETICACID 0.0615
34 DMAtrain Ch0 Ch [#/cc] 0.0604
35 STOF ACETONE 0.0573
36 PTR3 NAPHTHALENE 0.0565
37 STOF NAPHTHALENE 0.0557
38 PTR3 TOLUENE 0.0546
39 STOF BETACARYOPHYLENE 0.0539
40 HVFC mvolt1 0.053
41 Fan speed1 0.0506
42 PTR3 TMB 0.0504
43 STOF TMB 0.05
44 HTOF UFRA NH3 0.0499
45 HVFC mvolt2 0.0491
46 STOF PINONALDEHYDE 0.0483
47 PTR3 ISOPRENE 0.0482
48 STOF ISOPRENE 0.0461
49 Fan speed2 0.0461
50 STOF APINENE 0.0456
51 PTR3 BETACARYOPHYLENE 0.0417
52 HTOF UFRA H3OH2O 0.0411
53 HTOF UFRA H7O3 0.041
54 HTOF UFRA O2 0.0383
55 nRDMA Count 0.0363
56 STOF TOLUENE 0.0361
57 Scalers brust 0.0359
58 SabreTemperature Sabre3Temperature 0.0351
59 SabreTemperature Sabre4Temperature 0.0348
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sXYDTW =
1

1 + dXYDTW
(5.8)

Compared to the previous methods, this method allows more freedom in distorting the time axis to find a better

relationship and is thus suitable when instruments have very different sampling frequencies. Due to the pre-

processing stage, it is not expected for this method to show any improvement. Table 5.4 again is used to help

identify the nodes in the map in the same way as in the previous section.

From the analysis of table 5.4, a striking difference is found from the previous methods. While some particle

concentration measurements are highlighted, they are far from being the most popular and unexpectedly, several

chemical channels measuring non-relevant chemical species (specifically NH3) are highlighted, which belong to

the same instrument. From analysing the individual time series, it is obvious that these time series are measuring

only noise and the increased freedom to distort the time axis to find relationships works against finding any rel-

evant information, and highlights only noise which unsurprisingly comes from the same instrument. This result

highlights the need for a user to review the channels being analysed and iterate through the set of channels to be

analysed and find problematic channels in the analysis. Also of note is the strengths of the relationships between

channels using this method, which are highlighted by the colors of the connections between nodes in figure 5.32,

which are very loosely connected, this results in a more fairly homogeneous graph where it becomes harder to

distinguish between relevant nodes, hinting that the DTW similarity is possibly not suited for use as a similarity

measurement for the current set of channels. This limitation is probably contributing to the unfavorable results

found in table 5.4. The Louvain algorithm, however is able to identify 3 distinct communities, which once again

are related to their respective eigenvector centrality.

5.2.5.2.1.4 Coherence Similarity Figure 5.33 shows the coherence network graph of the channels during the

experimental run. The similarity between timeseries in this case sXYcoh is found by calculating the average coherence

between the series:

sXYcoh = CXY (ω) (5.9)

Where Z represents an average over all available frequencies and CXY represents the coherence between time

series X and Y and is given by equation 2.20, where each element of the calculation is estimated by the result

derived in equation 2.24.

Compared to the previously used methods, this one compares time series in a completely different domain, that

of frequency and thus the concept of delays between time series does not exist. Table 5.5 again is used to help

identify the nodes in the map in the same way as in the previous section.

Analysis of table 5.5 shows that, much like the DTW similarity, several channels are highlighted which do not

possess any relevant features. The same chemical species highlighted in the DTW graph are once again high-

lighted. The signals from the high voltage field cage are also highlighted which upon closer inspection show

very small oscillations, which could be a result of improper pre-processing of the data. Unlike all other graphs,
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Figure 5.32: DTW network graph for the CLOUD experimental run 1962.01. A reversed grey scale based on connection
strength is applied to the line color connecting each node for visualization purposes.
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Table 5.4: Eigenvector (ε) centrality node ranking for run 1962.01 using DTW as similarity

Rank Instrument Channel ε

1 HTOF UFRA H7O3 0.2029
2 DMAtrain Ch0 Ch [#/cc] 0.1969
3 HTOF UFRA NH3 0.1854
4 HTOF UFRA H3OH2O 0.1723
5 HTOF UFRA O2 0.1671
6 PSM16 conc 0.1627
7 PSM15 conc 0.1601
8 DMAtrain Ch1 C [#/cc] 0.1542
9 LTOF CPC CPC 0.1482
10 CPC3776 3776-1DisplayConc. 0.1465
11 nRDMA Count 0.1457
12 Scalers brust 0.1436
13 Light Spectrometer LS3 0.1416
14 Light Spectrometer UVH 0.1391
15 O3 o3 0.1389
16 Light Spectrometer LS4 0.1388
17 Light Spectrometer LS1 0.1361
18 Light Spectrometer UVX 0.1351
19 PICARRO NH3 2MIN 0.1343
20 SabreTemperature Sabre4Temperature 0.1331
21 PhotoDiode12 intensity2 0.1297
22 PTR3 TOLUENE 0.129
23 LTOF UFRA HIO 0.129
24 STOF TMB 0.1289
25 HTOF UFRA H30 0.1287
26 LongSMPS Particles 20-500 nm 0.1261
27 LTOF UFRA DMA 0.1257
28 STOF APINENE 0.1256
29 PTR3 BETACARYOPHYLENE 0.1254
30 PTR3 TMB 0.1248
31 NAIS ions Ions pos 0.1239
32 PTR3 PINONALDEHYDE 0.1237
33 STOF PINONALDEHYDE 0.1231
34 LTOF UFRA SA 0.123
35 SO2 so2 0.1227
36 STOF TOLUENE 0.1223
37 STOF ACETICACID 0.1208
38 PTR3 NAPHTHALENE 0.1206
39 PTR3 ISOPRENE 0.1204
40 PSM12 conc 0.1191
41 STOF BETACARYOPHYLENE 0.1178
42 STOF ACETONE 0.1174
43 HVFC mvolt2 0.1157
44 NAIS ions Ions neg 0.1139
45 PTR3 APINENE 0.1129
46 TDL sat water 0.1124
47 PTR3 ACETICACID 0.1108
48 STOF ISOPRENE 0.1105
49 Fan speed1 0.1102
50 LTOF UFRA NIT 0.1092
51 Fan speed2 0.1058
52 STOF NAPHTHALENE 0.1053
53 Dew dew 0.1039
54 CAPS NO2 0.1032
55 nanoSMPS Total Conc. #/cm 0.0941
56 PTR3 ACETONE 0.0924
57 PT100 temp1 0.0847
58 SabreTemperature Sabre3Temperature 0.0782
59 HVFC mvolt1 0.0495
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Figure 5.33: Coherence network graph for the CLOUD experimental run 1962.01. A reversed grey scale based on connection
strength is applied to the line color connecting each node for visualization purposes.
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Table 5.5: Eigenvector (ε) centrality node ranking for run 1962.01 using the coherence as similarity

Rank Instrument Channel ε

1 HVFC mvolt2 0.1403
2 Light Spectrometer UVH 0.1401
3 HVFC mvolt1 0.1394
4 DMAtrain Ch0 Ch [#/cc] 0.1393
5 HTOF UFRA O2 0.1393
6 LongSMPS Particles 20-500 nm 0.1387
7 HTOF UFRA H3OH2O 0.138
8 HTOF UFRA H7O3 0.1379
9 Fan speed2 0.1375
10 PTR3 ISOPRENE 0.1374
11 LTOF UFRA DMA 0.1373
12 Light Spectrometer UVX 0.1373
13 nRDMA Count 0.137
14 PTR3 TMB 0.1369
15 STOF ISOPRENE 0.1369
16 PTR3 PINONALDEHYDE 0.1367
17 Light Spectrometer LS4 0.1363
18 LTOF UFRA SA 0.1362
19 SO2 so2 0.1358
20 DMAtrain Ch1 C [#/cc] 0.1355
21 HTOF UFRA H30 0.1355
22 STOF PINONALDEHYDE 0.1352
23 STOF TMB 0.1352
24 HTOF UFRA NH3 0.1349
25 STOF ACETICACID 0.1349
26 Light Spectrometer LS1 0.1349
27 STOF ACETONE 0.1345
28 STOF TOLUENE 0.1343
29 Scalers brust 0.1343
30 LTOF UFRA HIO 0.134
31 Light Spectrometer LS3 0.134
32 STOF APINENE 0.1339
33 PTR3 BETACARYOPHYLENE 0.1337
34 PTR3 TOLUENE 0.1336
35 Dew dew 0.1334
36 Fan speed1 0.1333
37 STOF BETACARYOPHYLENE 0.1331
38 NAIS ions Ions pos 0.1331
39 PICARRO NH3 2MIN 0.1329
40 PTR3 ACETICACID 0.1327
41 O3 o3 0.1314
42 PhotoDiode12 intensity2 0.1296
43 PTR3 APINENE 0.1295
44 PTR3 NAPHTHALENE 0.1287
45 LTOF UFRA NIT 0.1284
46 NAIS ions Ions neg 0.1272
47 CAPS NO2 0.1235
48 SabreTemperature Sabre4Temperature 0.1228
49 SabreTemperature Sabre3Temperature 0.1223
50 PTR3 ACETONE 0.1196
51 STOF NAPHTHALENE 0.1161
52 LTOF CPC CPC 0.1116
53 PT100 temp1 0.1108
54 PSM16 conc 0.1102
55 CPC3776 3776-1DisplayConc. 0.11
56 PSM12 conc 0.1098
57 PSM15 conc 0.1062
58 TDL sat water 0.1004
59 nanoSMPS Total Conc. #/cm 0.0709
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very strong relationships are found between most nodes and only two communities are found using the Louvain

algorithm.
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Table 5.6: Eigenvector (ε) centrality node ranking for run 1962.01 using the Pearson correlation as similarity

Rank Instrument Channel ε
1 PSM12 conc 0.3347
2 Light Spectrometer LS4 0.3301
3 CPC3776 3776-1DisplayConc. 0.3243
4 O3 o3 0.3194
5 Light Spectrometer UVH 0.3154
6 Light Spectrometer LS3 0.3154
7 Light Spectrometer LS1 0.3077
8 PSM16 conc 0.3022
9 LongSMPS Particles 20-500 nm 0.2709
10 Light Spectrometer UVX 0.256
11 NAIS ions Ions neg 0.1844
12 NAIS ions Ions pos 0.077
13 nanoSMPS Total Conc. #/cm 0.0592
14 PTR3 PINONALDEHYDE 0.0493
15 PhotoDiode12 intensity 0.0234
16 PICARRO NH3 2MIN 0.0201
17 Dew dew 0.0162
18 STOF ISOPRENE 0.0132
19 Scalers brust 0.0076
20 PTR3 ISOPRENE 0.007
21 SO2 so2 0.0068
22 PTR3 TOLUENE 0.0059
23 HVFC mvolt1 0.0033
24 Fan speed1 0.0029
25 PTR3 TMB 0.0025
26 PTR3 NAPHTHALENE 0.0022
27 PTR3 ACETICACID 0.002
28 TDL sat water 0.0013
29 STOF APINENE 0.0011
30 PT100 temp1 0.0011
31 PTR3 ACETONE 0.001
32 PTR3 APINENE 0.0009
33 CAPS NO2 0.0005
34 PTR3 BETACARYOPHYLENE 0.0004

5.2.5.2.2 Reduced Channel Set As was noted previously, be it by being deemed unnecessary for the experi-

ment or by containing problematic statistics, there is a case for reviewing the set of channels chosen. While this

compromises the exploratory analysis that a larger dataset provides, it allows the analysis to highlight more rel-

evant relationships. Tables B.3 and B.4 contain the reduced set of channels, which focused on containing most

of the physical measurements but removed channels that used similar measurements to avoid spurious correlation

and removed several chemical measurements that were not considered important for the run or were measuring at

levels lower than the detection limit. The similarity analysis was then repeated.

5.2.5.2.2.1 Pearson Correlation Similarity Figure 5.34 shows the resulting network graph using the Pear-

son correlation coefficient as a similarity measurement. Table 5.6 shows the ranking of nodes according to their

eigenvector centrality for simpler identification.

When comparing 5.34 with figure 5.30, very little changed and the first one seems to be a less dense version of
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Figure 5.34: Pearson correlation network graph for the CLOUD experimental run 1962.01 using a reduced set of channels. A
reversed grey scale based on connection strength is applied to the line color connecting each node for visualization purposes.
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Table 5.7: Eigenvector (ε) centrality node ranking for run 1962.01 using the maximum cross-correlation as similarity

Rank Instrument Channel ε
1 PSM12 conc 0.2841
2 Light Spectrometer LS4 0.2836
3 O3 o3 0.2759
4 CPC3776 3776-1DisplayConc. 0.2747
5 Light Spectrometer LS3 0.2738
6 Light Spectrometer UVH 0.2728
7 Light Spectrometer LS1 0.2646
8 PSM16 conc 0.2643
9 LongSMPS Particles 20-500 nm 0.2484
10 Light Spectrometer UVX 0.2262
11 NAIS ions Ions neg 0.2042
12 PTR3 ACETICACID 0.1722
13 CAPS NO2 0.165
14 PT100 temp1 0.1535
15 nanoSMPS Total Conc. #/cm 0.1529
16 NAIS ions Ions pos 0.1528
17 PTR3 ACETONE 0.1475
18 PTR3 APINENE 0.1225
19 PICARRO NH3 2MIN 0.1222
20 Dew dew 0.1182
21 SO2 so2 0.087
22 TDL sat water 0.0784
23 PTR3 PINONALDEHYDE 0.0705
24 PTR3 NAPHTHALENE 0.0653
25 HVFC mvolt1 0.0625
26 PTR3 TOLUENE 0.0622
27 Fan speed1 0.0564
28 PTR3 TMB 0.0561
29 PTR3 ISOPRENE 0.0533
30 STOF APINENE 0.0503
31 STOF ISOPRENE 0.0495
32 PhotoDiode12 intensity 0.0461
33 PTR3 BETACARYOPHYLENE 0.045
34 Scalers brust 0.0346

the second. Such a claim is confirmed when comparing table 5.6 with 5.2, the most relevant time series are the

particle concentration measurements, along with light spectrometer measurements and ozone concentration. The

Louvain algorithm once again highlights two different communities of nodes, with no particular practical meaning

other than being clustered by their eigenvector similarity value, thus further aiding the user in determining the

importance of each node in the graph.

5.2.5.2.2.2 Cross-correlation Similarity Figure 5.35 shows the resulting network graph using the maximum

cross-correlation as similarity. Table 5.7 shows the ranking of nodes according to their eigenvector centrality to

help identify each node.

Analysing figure 5.35 similar conclusions are made as the ones in the previous section. This graph seems to

be a less dense version of figure 5.31, favouring once again the particle concentration, light intensity and ozone

measurements over all others. One difference is that for this graph, the Louvain algorithm finds three communities,
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Figure 5.35: Maximum cross-correlation network graph for the CLOUD experimental run 1962.01 using a reduced set of
channels. A reversed grey scale based on connection strength is applied to the line color connecting each node for visualization
purposes.
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Table 5.8: Eigenvector (ε) centrality node ranking for run 1962.01 using DTW as similarity

Rank Instrument Channel ε
1 CPC3776 3776-1DisplayConc. 0.2417
2 Light Spectrometer LS4 0.2374
3 Light Spectrometer UVH 0.2367
4 O3 o3 0.2287
5 Light Spectrometer LS3 0.2255
6 Light Spectrometer LS1 0.2179
7 LongSMPS Particles 20-500 nm 0.2122
8 PSM12 conc 0.2074
9 Light Spectrometer UVX 0.2069
10 PICARRO NH3 2MIN 0.1789
11 NAIS ions Ions pos 0.1789
12 SO2 so2 0.1714
13 PTR3 PINONALDEHYDE 0.1677
14 PSM16 conc 0.1674
15 PTR3 ISOPRENE 0.1648
16 PTR3 TMB 0.1614
17 NAIS ions Ions neg 0.1604
18 Scalers brust 0.1602
19 PTR3 TOLUENE 0.1593
20 STOF APINENE 0.1586
21 STOF ISOPRENE 0.1569
22 PTR3 BETACARYOPHYLENE 0.1564
23 PTR3 ACETICACID 0.1525
24 Dew dew 0.1468
25 Fan speed1 0.1453
26 PTR3 APINENE 0.1443
27 TDL sat water 0.1372
28 PTR3 NAPHTHALENE 0.1357
29 CAPS NO2 0.1324
30 nanoSMPS Total Conc. #/cm 0.1287
31 PTR3 ACETONE 0.1215
32 PT100 temp1 0.1117
33 HVFC mvolt1 0.0711
34 PhotoDiode12 intensity 0.0554

similarly to the full set graph. Once again these communities have no immediate meaning other than to help the

user highlight the importance of each node.

5.2.5.2.2.3 DTW Similarity Figure 5.36 shows the network graph using DTW similarity as a similarity mea-

surement. Table 5.8 once again ranks the nodes in terms of their eigenvector centrality for easier identifica-

tion.

Figure 5.36 also resembles a less dense version of figure 5.32. Since several of the removed channels comprised

of the top ranking channels of table 5.4 it is not surprising that table 5.8 looks significantly different, however, the

results now match those that are reported by the other methods. Analysing the similarity values that connect each

node once again shows that DTW as a similarity measurement is not the best choice of similarity measurement for

this CLOUD dataset, since the similarity values found are all very small.
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Figure 5.36: DTW network graph for the CLOUD experimental run 1962.01 using a reduced set of channels. A reversed grey
scale based on connection strength is applied to the line color connecting each node for visualization purposes.
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Table 5.9: Eigenvector (ε) centrality node ranking for run 1962.01 using the coherence as similarity

Rank Instrument Channel ε
1 Light Spectrometer UVH 0.1893
2 HVFC mvolt1 0.1884
3 LongSMPS Particles 20-500 nm 0.1871
4 Light Spectrometer UVX 0.1856
5 PTR3 ISOPRENE 0.1855
6 STOF ISOPRENE 0.1851
7 PTR3 TMB 0.1851
8 PTR3 PINONALDEHYDE 0.1847
9 Light Spectrometer LS4 0.1844
10 SO2 so2 0.1837
11 Light Spectrometer LS1 0.1826
12 Scalers brust 0.1815
13 Light Spectrometer LS3 0.1814
14 STOF APINENE 0.1811
15 PTR3 TOLUENE 0.1808
16 PTR3 BETACARYOPHYLENE 0.1808
17 Dew dew 0.1807
18 Fan speed1 0.1803
19 PTR3 ACETICACID 0.18
20 PICARRO NH3 2MIN 0.1799
21 NAIS ions Ions pos 0.1795
22 O3 o3 0.1779
23 PTR3 APINENE 0.1749
24 PTR3 NAPHTHALENE 0.1742
25 NAIS ions Ions neg 0.1733
26 CAPS NO2 0.1668
27 PTR3 ACETONE 0.1616
28 PT100 temp1 0.15
29 CPC3776 3776-1DisplayConc. 0.1498
30 PSM16 conc 0.1491
31 PSM12 conc 0.149
32 TDL sat water 0.1366
33 nanoSMPS Total Conc. #/cm 0.0985

5.2.5.2.2.4 Coherence Similarity Figure 5.37 shows the resulting network graph using the coherence as a

similarity measurement. Table 5.9 helps identify each node by ranking them in terms of their eigenvector central-

ity.

Once again, figure 5.37 is a less dense version of figure 5.33. When analysing table 5.9, the same channels from

the full set still seem to dominate. An emphasis is still given to the high voltage channel since, which is still an

unexpected product of the existing noise that was not properly removed from the data as well as some chemical

channels measuring similar species and of the same instrument are also highlighted. While highlighting several

relevant channels, it is not clear whether analysing this particular set of time series from the CLOUD experiment

in the frequency domain is useful.

5.2.5.2.3 Explaining the Results To explain the results found not only in this section but also in B.2, a deeper

look into the data is required. This section will consider the previously analysed reduced time series set to interpret

the results of similarity measurements applied to pairs of time series. For this set, the most relevant time series are
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Figure 5.37: Coherence network graph for the CLOUD experimental run 1962.01 using a reduced set of channels. A reversed
grey scale based on connection strength is applied to the line color connecting each node for visualization purposes.
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chosen according to one eigenvector centrality rank, in this case the rank chosen was the DTW similarity rank. For

each time series, the most relevant relationships are found using each comparison method described and the results

are analysed. Tables 5.10, 5.11 and 5.12 shows the top ranks for the DTW similarity method, Pearson correlation

coefficient and Maximum Cross-Correlation, respectively:

Table 5.10: Top ranks of DTW similarity

Channel, Rank Rank 1 Rank 2 Rank 3 Rank 4
CPC3776-1Conc., 1 6.73e-03, PSM12 conc 6.23e-03, L Spect LS4 5.93e-03, L Spect UVH 4.86e-03, O3 o3
L Spect LS4, 2 6.23e-03, CPC3776-1Conc. 6.16e-03, PSM12 conc 4.70e-03, L Spect UVH 3.97e-03, LSMPS 20-500 nm
L Spect UVH, 3 5.93e-03, CPC3776-1Conc. 4.70e-03, L Spect LS4 4.43e-03, LSMPS 20-500 nm 4.34e-03, PSM12 conc
O3 o3, 4 4.86e-03, CPC3776-1Conc. 4.34e-03, L Spect LS3 3.73e-03, L Spect LS1 3.63e-03, PSM12 conc
L Spect LS3, 5 4.34e-03, O3 o3 3.72e-03, LSMPS 20-500 nm 3.66e-03, L Spect LS1 3.44e-03, CPC3776-1Conc.
L Spect LS1, 6 3.73e-03, O3 o3 3.66e-03, L Spect LS3 3.60e-03, L Spect UVX 3.59e-03, CPC3776-1Conc.
LSMPS 20-500 nm , 7 4.43e-03, L Spect UVH 3.97e-03, L Spect LS4 3.95e-03, CPC3776-1Conc. 3.74e-03, PSM12 conc
PSM12 conc, 8 6.73e-03, CPC3776-1Conc. 6.16e-03, L Spect LS4 4.34e-03, L Spect UVH 3.74e-03, LSMPS 20-500 nm

Table 5.11: Top ranks of Pearson correlation

Channel, Rank Rank 1 Rank 2 Rank 3 Rank 4
CPC3776-1Conc., 3 9.69e-01, PSM12 conc 8.76e-01, L Spect LS4 8.36e-01, L Spect UVH 8.32e-01, L Spect LS3
L Spect LS4, 2 9.18e-01, PSM12 conc 9.13e-01, L Spect LS3 9.05e-01, L Spect UVH 8.76e-01, O3 o3
L Spect UVH, 5 9.05e-01, L Spect LS4 8.76e-01, PSM12 conc 8.43e-01, L Spect LS3 8.36e-01, CPC3776-1Conc.
O3 o3, 4 8.76e-01, L Spect LS4 8.74e-01, PSM12 conc 8.40e-01, L Spect LS3 8.34e-01, L Spect UVH
L Spect LS3, 6 9.13e-01, L Spect LS4 8.72e-01, PSM12 conc 8.43e-01, L Spect UVH 8.40e-01, O3 o3
L Spect LS1, 7 8.61e-01, L Spect LS4 8.38e-01, PSM12 conc 8.14e-01, L Spect LS3 8.11e-01, L Spect UVH
LSMPS 20-500 nm , 9 7.73e-01, O3 o3 7.32e-01, PSM12 conc 6.99e-01, L Spect LS4 6.69e-01, L Spect UVH
PSM12 conc, 1 9.69e-01, CPC3776-1Conc. 9.18e-01, L Spect LS4 8.76e-01, L Spect UVH 8.74e-01, O3 o3

Table 5.12: Top ranks of Maximum cross correlation

Channel, Rank Rank 1 Rank 2 Rank 3 Rank 4
CPC3776-1Conc., 3 9.69e-01, PSM12 conc, -1 8.78e-01, L Spect LS4, 20 8.38e-01, L Spect UVH, 109 8.37e-01, L Spect LS3, -31
L Spect LS4, 1 9.18e-01, PSM12 conc, 7 9.13e-01, L Spect LS3, -1 9.05e-01, L Spect UVH, -1 8.78e-01, CPC3776-1Conc., 20
L Spect UVH, 6 9.05e-01, L Spect LS4, -1 8.76e-01, PSM12 conc, -1 8.43e-01, L Spect LS3, -3 8.38e-01, CPC3776-1Conc., 109
O3 o3, 5 8.76e-01, L Spect LS4, -1 8.74e-01, PSM12 conc, -1 8.56e-01, L Spect LS3, 55 8.34e-01, L Spect UVH, -1
L Spect LS3, 4 9.13e-01, L Spect LS4, -1 8.72e-01, PSM12 conc, -2 8.56e-01, O3 o3, 55 8.43e-01, L Spect UVH, -3
L Spect LS1, 7 8.61e-01, L Spect LS4, -1 8.40e-01, PSM12 conc, -13 8.15e-01, L Spect LS3, 14 8.13e-01, CPC3776-1Conc., -28
LSMPS 20-500 nm , 9 7.78e-01, O3 o3, -52 7.44e-01, PSM12 conc, -128 6.99e-01, L Spect LS4, -1 6.88e-01, CPC3776-1Conc., -189
PSM12 conc, 2 9.69e-01, CPC3776-1Conc., -1 9.18e-01, L Spect LS4, 7 8.76e-01, L Spect UVH, -1 8.74e-01, O3 o3, -1

From analysing tables 2 and 3 it is clear that for this stage there is little difference found in either set due to the

very small time delay found for the maximum correlation. This is further emphasised by comparing with the DTW

similarity results found in table 1, while the values themselves are low, for most channels, the relative intensity

of the relationship is kept at a very similar value (dividing the Pearson correlation by the DTW similarity yields

similar results for most pairs of channels).

135



5.2.5.3 Run 1962.01 - Relevant Period Selection

Table 5.13 shows the channels where at least one sub-period statistically deviates more than the provided threshold

value, the number of times for each period it happens as well as the totals for each channel and period. Table 5.14

shows the same detection using a classical rolling z-score window of threshold 5σ for comparison. For this method

the full data set of time series was used since it was decided in 5.2.5.1 that the reduced does not provide any further

insights that the full set provides.

Table 5.13: Events in each period for run 1962.01 using wavelet ME partitioning.

Channel Period 1 Period 2 Period 3 Period 4 Total
Scalers brust 7 7 5 8 27
NAIS ions Ions neg 5 7 7 7 26
Dew dew 6 0 6 8 20
nRDMA Count 0 0 9 6 15
Fan speed2 5 0 4 3 12
Fan speed1 1 1 4 5 11
LongSMPS Particles 20-500 nm 6 0 3 2 11
Light Spectrometer LS1 6 1 0 2 9
HVFC mvolt1 0 0 0 9 9
Light Spectrometer LS3 2 3 2 1 8
Light Spectrometer UVX 1 2 0 4 7
NAIS ions Ions pos 6 0 0 0 6
Light Spectrometer LS4 3 3 0 0 6
Light Spectrometer UVH 1 3 0 1 5
TDL sat water 0 2 0 3 5
HTOF UFRA H3OH2O 5 0 0 0 5
CAPS NO2 1 1 0 2 4
DMAtrain Ch0 Ch [#/cc] 0 0 0 4 4
PTR3 PINONALDEHYDE 1 1 1 0 3
PTR3 APINENE 1 0 1 0 2
STOF NAPHTHALENE 0 2 0 0 2
DMAtrain Ch1 C [#/cc] 1 0 0 1 2
PTR3 ACETONE 0 1 0 0 1
PTR3 TOLUENE 0 0 0 1 1
PTR3 NAPHTHALENE 0 1 0 0 1
PTR3 ACETICACID 1 0 0 0 1
SO2 so2 1 0 0 0 1
PTR3 ISOPRENE 0 0 1 0 1
PTR3 BETACARYOPHYLENE 0 1 0 0 1
PTR3 TMB 1 0 0 0 1
Total 61 36 43 67 207

Comparing tables 5.13 and 5.14 it is clear that the more classical method captures more events per channel, but fails

to capture events on most channels. However, the more classical method seems to highlight the more important

part of the experimental run, which are the two middle sub periods, with very similar amounts of detected events

for each, while the wavelet ME partitioning method fails to capture the importance of the second sub-period. This

could be due to a poor choice of separation of periods due to the interface of the two first sub-periods being in a

transition state and thus the choice of template period against which to check for anomalies should be reviewed

for this detection method. Also of note that for either method, the channels that most contribute to event detection

are not those that are highlighted nor are they expected to be related to particle generation (for instance Dew dew,
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Table 5.14: Events in each period for run 1962.01 using a rolling z-score

Channel Period 1 Period 2 Period 3 Period 4 Total
HTOF UFRA NH3 16 16 12 16 60
HTOF UFRA H7O3 10 18 18 11 57
nRDMA Count 10 18 9 16 53
HTOF UFRA O2 9 17 11 16 53
HTOF UFRA H3OH2O 16 12 22 0 50
DMAtrain Ch0 Ch [#/cc] 10 10 10 5 35
Scalers brust 6 10 0 6 22
TDL sat water 0 0 18 0 18
DMAtrain Ch1 C [#/cc] 7 4 0 6 17
Light Spectrometer UVH 4 0 0 0 4
Total 88 105 100 76 369

measuring dew point and Scalers brust measuring the intensity of cosmic rays bombarding the chamber - which

should not influence a neutral run). Analyzing the other particle generation experiments (tables B.9, B.19 and

B.24) shows that this is not always the case.

Using these statistically significant events, one can effectively transform figure 5.28 to reflect the amount of events

observed by scaling the brightness of one time period to the total number of events observed during that time

period. Figure 5.38 shows said alteration to the original figure. Analyzing the ranked relevant sub-periods shows

that the most important part of the stage is the first sub-period, followed by the last, third and finally second sub-

periods. This result is unexpected since one would assume that the first two sub-periods would be the most relevant

as it is during these that particles begin to form. However, it is clear that some signals start to show change before

the second sub-period while others do it during the second sub-period (see PSM16, PT100 and O3 plots versus

LTOF CPC and Light Spectrometer UVH plots).

While the caveats discussed in this section do not necessarily imply a problem with the event detection method,

it is clear that a degree of fine-tuning of said method should be available for users to handle detection at a signal-

by-signal case should it be necessary. This limitation can be dampened by providing the user with the opportu-

nity to change the detection threshold for each used channel. Despite this being a cumbersome job for the user,

it is the only way of providing each channel with similar ranking power. Also the proposed fixes to the pre-

processing method suggested in previous subsections would also improve the performance of this event detection

algorithm.

5.2.6 Implementation in DAQBroker

As mentioned previously, this method of statistical analysis of the collected data can very easily be implemented

into DAQBroker as a method of providing a statistics-based summary of an experimental run. The summary gen-

eration can be presented to the user as an option, after the experimental run or stage is finished, as a background

process that can be reviewed when completed from the run list interface (see 3.1.3). Implementing this method

requires simple additions to the main DAQBroker code, both in the back-end and the front-end due to the modu-

larity of DAQBroker’s code, In this section the required changes to each part of the code to provide users with this

functionality are presented.
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Figure 5.38: Most relevant time series for CLOUD experimental run 1962.01 coupled with ranking of specific time periods to
the number of events observed in each event. The time period was divided into 4 distinct sub-periods, which were then tested
for the existence of events. The ranking of each sub-period shades each sub-period more the less events are found. In this case,
as time increases, more events were found in each sub-period.
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5.2.6.1 Back-end Considerations

Before implementing this facility in DAQBroker, one must first consider whether the method should be performed

in a sequential or parallel fashion. The application of the fairly efficient version described previously yields exe-

cution times of around 150 seconds for 93 data channels with time ranges from 1.4 to 2.7 hours. The execution

speeds are very different for sequential execution when in the context of a web interface since a high amount of

waiting time for the end result is associated. It would thus be more acceptable to allow the user to navigate to other

interfaces while waiting for the different methods to be executed, thus a background execution of the methods

should be preferred.

Two features must be explored for the back-end implementation of this method in DAQBroker: The first consists

in the implementation of the different parts of this method onto self-contained functions that handle a set of pro-

vided time series. In this case a new class (the MVSG class) is introduced which contains all necessary methods

for providing the time series pre-processing, relevance highlighting, relationships and time period ranking steps

described in the previous sections. The second front focuses on the addition of these sets of functions to the

DAQBroker methods set. A new call made by the user and all required actions are performed in the background

providing all necessary information in a timely fashion, for the front-end to produce meaningful visualizations

for the user. To this end a new DAQBroker REST API is introduced to handle the background generation of the

necessary tasks.

5.2.6.1.1 MVSG Class The Multi-Variate Summary Generator class is responsible for collecting and process-

ing the information contained in a set of time series. What follows is a list of the class’ attributes and methods to

handle all the necessary steps of time series processing.

• Attributes :

– time series: An array containing the set of provided time series. Each time series is an array of arrays,

where sub-array contains the time and the respective value of the time series at that time.

– names: An array containing the names of the data channels to which each time series corresponds

– time series processed: An array that will contain arrays of values of the pre-processed time series,

after the pre-processing steps have been performed. No time information is required as time as been

regularized and only one array of time is required to provide users with time information,

– time: An array containing the regularized time after the pre-processing steps have been executed,

– fft: An array containing the arrays of the Fourier transform of the pre-processed multivariate time

series. This array will be used for the PCA step and to calculate the power of each pre-processed

series,

– pca limit: A float value between 0 and 1 to illustrate the amount of explained variance to be extracted

from the PCA analysis step,
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– fft reconstructed: A reconstructed version of the fft attribute after the PCA step has been preformed,

– time series sorted: An array of sorted time series to be created at the time of the LU decomposition,

– names sorted: An array of sorted channel names to be created at the time of the LU decomposition,

– cross spectrum: A matrix where each element consists of the cross spectral density of two time series,

this matrix will be used to calculate the different coherence matrices which will be used to create the

respective network graphs;

– G and G part: Network graphs for full and partial coherence (respectively),

– limit angle: An array of angles that serve as a threshold value for event detection in each time series,

– series angles: An array of arrays containing, for each time series, the angles between the first and

subsequent periods inside each sub-period of the multivariate time series;

• Methods :

– add time series: Method to add a new time series to the multivariate set. Must include as an argument

the time series as defined in the time series attribute and should contain an optional argument to supply

the name of the data channel,

– regularize time: Method to collect all time series granularity perform all necessary interpolation func-

tions,

– normalize timeseries: Method to normalize each time-regularized time series, creating the time series processed

attribute,

– spectral calculations: Method to calculate the Fourier transform of the multivariate time series. Gen-

erates the fft attribute and calculates the power of each time series, which allows an internal sorting of

the time series processed and names attributes to account for the power of each time series,

– pca analysis: Method to implement the PCA analysis step of the multivariate time series. Generates

the fft reconstructed attribute and makes use of the pca limit attribute,

– csd calculation: Method to calculate the cross spectral density matrix. This method can take advantage

of a high degree of parallelization to generate the cross spectrum attribute

– graph generation: Method to create the full and partial coherence network graphs,

– event detection: Method to divide the time attribute into a user-defined number of sub-periods and

perform event detection for each time series in these sub-intervals. Generates the series angles attribute

and uses the limit angle attribute.

This is a simplified description of the class, highlighting the most important methods and attributes. Other auxiliary

methods are required in order for the class to work efficiently and also many of them for error handling to account

for unexpected errors.
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In order to use the MVSG class, it must be provided a set of time series by means of multiple uses of the

add timeseries method. More code is required to collect the time series and supply them to the MVSG class.

5.2.6.1.2 REST Endpoint To allow for implementation in a web-based user interface, a new REST API end-

point should be added to DAQBroker. This endpoint should receive all the relevant information from the user to

be able to instantiate a MVSG object and correctly run all its different methods. The following is a description of

the aforementioned endpoint containing all the required inputs from the user and a short description of the steps to

perform and where to store the produced data.

• Inputs:

– exp run: A unique descriptor of the experimental run to generate a summary. This value will be used

to define the start and end times of the summary,

– channels: A list of unique channel identifiers containing the channels to be included in the summary

generation,

– normalize: A boolean that tells the method to perform normalize time series data,

– mfilter: A boolean that tells the method to perform a median filter on the data,

– sgfilter: A boolean that tells the method to perform a Savitzky–Golay filter on the data,

– mfilter window: An integer containing the window of the median filter. Must be odd,

– sgfilter degree: An integer containing the degree of the Savitzky–Golay filter,

– pca limit: A float from 0 to 1 containing the percentage of explained variance from the PCA step,

– strength limit: A float from 0 to 1 containing minimum relationship strength to consider when making

the coherence network graphs,

– partitions: An integer containing the number of equal parts the experiment time period is to be divided

into,

– limit angle: An array of floats from 0 to π/2 with the limiting angles for statistically relevant event

detection of each channel

• Outputs:

– process id: A unique identifier of the process executing the summary routine. Information about this

process should be stored in a job queue for easy access (see appendix A jobs table). Once completed,

the result of this method should be permanently stored in a specific table that contains an entry for each

performed summary execution mapped to the run it was attempted on. The columns of this table must

include:

* Unique experimental run identifier,

* Date of task start/end,
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* Results of the PCA analysis, most relevant channels,

* The cross-spectral matrix,

* The full and partial coherence matrices,

* Event detection results.

With this endpoint in place, it is possible to send the server a request for a summary execution either via a pre-

designed user interface or by using the REST API over another interface. This is simply a template of what the

inputs and outputs of the endpoint must contain, several other security, rate limiting and error handling considera-

tions must be considered.

5.2.6.2 Front-end Considerations

In order to build the user interface that enables the summarized analysis of experimental runs, two major blocks

are considered.

The first block consists of preparing the request to be sent in the context of the aforementioned REST end-

point.

The second block should consider the visualization options for the different results of the run summary. Consider-

ations for PCA, coherence graphs and event detection must be considered.

5.2.6.2.1 Request Preparation As was previously stated, the request for a run summary should be sent at the

time the users requests to end said run. This block should take into account that several parameters must be sent

in a structured way, it should be able to handle errors and as best as possible prevent abuse of the interface. It

must also take into account the background nature of the run summary task and provide users with the appropriate

waiting response if a task is still under way for a specific run, or an optional run summary prompt when ending

an experimental run. To prepare this summary a user-interface for the choice of all parameters in the simplest

possible manner is presented. The choice of parameters must be divided according to the different parts of the

method:

1. Data channels to include,

2. Pre-processing values (filter windows and degrees),

3. PCA explained variance,

4. Limiting relationship strength,

5. Event detection threshold angle.

All these sections contain clearly defined prompts for the user to consider when performing a run summary request.

The interface fields should be previously filled with default values either from predefined values or from values

inputted by the user during a previous run summary request (this last choice requires an extra server request to
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collect the previous defaults). For validation must be considered in this stage to avoid incorrect inputs by the user.

Once the request is sent, the user is given a message that the handling of the request is underway. Ideally the user

will be presented with a progress bar showing the step in which the request is currently at (pre-processing, PCA,

coherence calculation, event detection). After starting, the interface changes, informing users that a summary

request is currently underway and preventing users from performing more requests (this locking should occur first

at the server-side). Figure 5.39 shows a mock-up of what the interface mentioned look like. A separator tab would

allow a clean division between each step of the analysis showing the user only the important information for each

step.

a)

c)

b)

d)

e)

Figure 5.39: Suggested implementation of the request preparation user interface. The user is presented with a multi-tab
interface to prepare all necessary parameters to be sent to the REST API. An initial tab (a) allows users to choose what
channels to user for the multivariate time series, another tab (b) provides users with the possibility to change important pre-
processing parameters and the last 3 tabs provide important parameters for each of the steps of the run summary: PCA (c),
times eries relationships (d) and event detection (a).

5.2.6.2.2 Summary Visualization The second and arguably most important part of the front-end considera-

tions refers to the presentation of the results to the user. To this end a completely new section of the DAQBroker

front-end interface is suggested. This section can be reached via the user interface when browsing the run list; on

runs where at least one finished run summary exists, a button allowing the user to view the existing summaries is

provided. The user is then redirected to the new section where he can easily share this visualization with other

users by way of the unique URL of the visualization, which is then rendered for each user.

The new section should be able to create meaningful visualizations of the most relevant channels, the most im-

portant periods of the experimental run as well as to highlight the network structure of each channel and its rela-

tionships, providing in depth tools to explore at detail each one. The suggested tool should thus include a network

graph for all available similarity measurements (not necessarily just the ones used in 5.2.5.2), as well as a list

of the most important time series, with the most important periods highlighted for example using the strategy

implemented in figure 5.38.

Since most of these features require several interactive elements, a mock-up of the desired application is available

at https://www.daqbroker.com/mvrs_mockup/. This mock-up is not optimized for mobile displays, however,

a fully functioning implementation into DAQBroker’s web interface would require mobile considerations of the

application.
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Chapter 6

Results and Conclusions

This thesis presents DAQBroker, a proposal for an open and flexible framework that allows monitoring and con-

trol of a set of scientific instruments in a way that is simple for the end user but also provides the automation

tools that are often available for the experienced programmer. The creation and implementation of DAQBroker

in the CLOUD experiment answers the need for such a framework in this experiment, and is also an opportu-

nity to cultivate its use and dissemination. This chapter summarizes all the current capabilities of DAQBroker

and in-use learning of required improvements, as well as of near future implementations of newer capabilities.

This chapter will also provide a description of long term efforts to further improve the framework and aid in its

dissemination.

6.1 Achievements

The main achievement of this PhD is the creation of the instrument monitoring framework DAQBroker that allows

users to monitor and collect instrument data by providing a universal data storing format for all instruments. This

framework also allows for easy relocation of instruments between sites, provides users with an API for third-party

applications to be run and allows users to gather different information for one definite experimental run by provid-

ing tools to flag the time periods belonging to the different experiments.

The current version of DAQBroker provides users with two main applications:

• A server application responsible for providing the web server as well as ensuring connection and monitoring

of instruments associated with different database servers.

• An agent application to be installed in remote machines and ensures connection to the server application,

allowing said server to request simple machine metrics and the most recent data from instruments connected

to the remote machine

While the agent application is used to connect remote instruments to one or several running server applications and
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receive orders from them, the server application provides several functionalities:

• A main server process that continuously queries a database of existing instruments and networked computers

and sends orders to agents to collect new data,

• A logging process that stores relevant information about the data collection of each instrument (this process

also exists for each agent application),

• A REST API that provide methods for third party users to access the data collected by the server,

• A web application that allows users to create and edit new virtual representations of instruments, access the

real time data provided provided by those representations and control all the features of the DAQBroker

framework, given the proper login credentials.

DAQBroker’s performance was tested using both low and mid/high performance machines (both commercially

available). These tests were aimed at achieving quantifiable limits of the framework with specific hardware limita-

tions.

• Generating a predefined number of copies of the same instrument, the gauging server performance was

tested as instrument number increased by measuring the collection time for each instrument compared to

the set collection period for that instrument. For an increasing set of instruments and regardless of machine,

it was clear that the collection time degraded and became more unreliable. Another conclusion was that

the software behind the framework is I/O bound, as expected for the strong application focus on reading

and writing. In quantifiable terms, DAQBroker was proven to handle up to 20 separate instruments, with

a total of 200 channels for a low performance machine and 2000 channels on a high performance machine

generating data at 1 Hz, uploading data to the DAQBroker database every 10 seconds without exceeding

more than 50% of the aforementioned period.

• For testing the performance of the framework with data generation rate, a single instrument with varying

data generation rate was used. It was concluded that DAQBroker is capable of handling data generation

speeds up to 100 Hz (although this is taxing on a low performance machine).

• The performance in data request operations, to perform tasks such as data visualization was also tested.

The optimized queries in DAQBroker are able to provide a response that spans up to 800000 data points in

around 1 second for the low performance machine and around 0.1 seconds in the high performance machine

whether that instrument contains 0 entries or 106 entries.

The suite of tools provided by DAQBroker for both online and offline analysis is described and applied to several

examples. A study of the temperature stability of the CLOUD experiment leveraged both DAQBroker’s data ware-

house model for instruments and its API to create an easily accessible database for further analysis of the stability

of the experiment. Two other online examples were provided to showcase the ability for DAQBroker to generate

custom data channels with semi-processed data, one creating volatile visualization channels with temporary calcu-

lations of mass spectrometry temperatures and another generating more permanent channels using data from many

instruments to obtain comprehensive particle generation rates.
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Apart from the specific uses of DAQBroker in the CLOUD experiment the possibility of creating of visualizations

of monitored or saved data, selecting some channels or semi-processed data, DAQBroker aims at providing users

with optional general methods of data analysis, applicable to any time series. Three methods of univariate time

series analysis were introduced and tested on a limited set of data from 5 data channels of different instruments

used during the CLOUD experimental campaign of the fall of 2017:

• The first method allows the evaluation of stationarity intervals of a time series by applying statistical tests

to said series that test the time series for specific features, stationarity, trend, unit roots and seasonality. The

implementation of this method allows users to control the limit of the validity of the statistical tests and

select the specific tests required.

• The second method allows for time series comparison using the local similarity statistic. It was shown that

this statistic agrees with the standard Pearson correlation coefficient for direct comparison but it extends the

comparison by providing the possibility of introducing a time delay to emphasize delayed similarities. The

evaluation of this statistic is computationally heavy and thus the method is considered only for comparison

of pre-selected features of input parameters of the CLOUD data. The use of this method becomes prohibitive

in an online environment for numerous and large features (in terms of data points) and sizable delays. It was

concluded that the useful implementation of this method in DAQBroker implies several limitations on the

algorithm to allow for smooth feature comparison.

• The third and final method is event detection. It consists of introducing an unsupervised event detection

algorithm based on maximum entropy partitioning of the wavelet transform of a selected time period of the

data channel. A dissimilarity measure is used to compare how the probability vector of one time period

varies from another. If this dissimilarity measure surpasses a user-defined value, the method flags the time

period as being sufficiently different to mark an event. With CLOUD data, it was shown that when a proper

time interval is selected, this method accurately flags time periods associated with abrupt changes in the

general behavior of the time series. The implementation of this method in DAQBroker requests users to

supply the limit above which an event is flagged as well as the size of the features to be analyzed for the

algorithm then flags events highlighting the corresponding time periods.

To complement the referred analysis, a set of statistical analysis tools is also considered for implementation in

DAQBroker, dubbed the multivariate run summary. This analysis aimed at producing automated experimental

run summaries using DAQBroker’s ability to generate experimental logs, defining certain time periods as relevant

for a specific scientific effort. The generation of these automated summaries includes three distinct time series

analysis processes to the user-defined set of various data channels collected by DAQBroker from several machines.

The first process is a principal component analysis of the frequency spectrum of the selected multivariate time

series in order to retrieve the most relevant time series of the set according to a certain user-defined percentage

of explained frequency variance. This application to CLOUD data revealed that in all cases, several channels

that were expected to be relevant were properly highlighted. However, some limitations were discovered mostly

related to improper pre-processing of data channels. The second process consists of the generation of network

graphs based on the coherence and partial coherence of pairs of time series, which allows for visual inspection

of the relationships that exist between the different time series in the set. Application of this process to CLOUD
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data produced insights into the structure of the data in CLOUD, such that a complex relation exists between all

instruments and particle measurement instruments and that all time series in the particle generation experiments

can be considered in one of two communities which indicates that the CLOUD experiment is dominated by two

different main sets of frequencies. The third process consists in a generalized version of the aforementioned event

detection method applied to a multivariate time series. The focus of this method is to generate a ranked subset of

periods from the main time period of experimental run ordered by the number of events found for each time series.

Application to CLOUD data showed that a common limiting value for event detection for all time series results

in an incorrect ranking of events, at least according to visual inspection of the data. Although more refinement

is required for these processes to be utilized as an automated run summary tool, it is an important first step for

providing the users with an automated and dynamic tool to generate a comprehensible analysis of very large set of

time series and its implementation in DAQBroker is definitely an important added value.

DAQBroker aims to be a constantly evolving process and as such several other possibilities for tools to leverage

time series statistics to aid users. Two possibilities that are currently being considered are the following:

1. Multivariate time series modelling - this effort aims to provide users with a tool that allows the definition of a

theoretical model for the behavior of a set of monitored time series. With the model and the time series being

collected in real time, provide either metrics on how the model is performing against the collected values

and/ estimate future values based on current time series values. These results can be used, among others,

to automate scientific efforts, schedule automated alerts for users or improve the underlying model. Sev-

eral methods exist to model multivariate time series using methods such as Kalman filters and Multivariate

Autoregressive (MAR) mooels [354, 355]

2. Multivariate stage clustering - this effort aims to create tools for users to cluster sets of time series lever-

aging the time series partitioning already defined in 3.1.2.1. These methods would allow users to group

experimental efforts according to statistics extracted from a user-defined set of time series. This allows users

to easily group experimental efforts to more easily extract meaningful information from their data. Several

methods exist for clustering time series most of which focus on calculating similarity measurements between

multivariate time series [293, 356]

DAQBroker is thus introduced as an open source framework, aimed for use in scientific environments where fast

and modular access to a set of instruments is required within a team of one or more scientists spanning a wide

spectrum of knowledge about the instruments used. The framework is available for download at in many formats,

from simple executables to the python module, following an open source code policy (the repository can be found

at ).

6.2 Future Work

Apart from the time series analysis methods presented, several other features are scheduled to be implemented in

DAQBroker with the intent to make this framework an open and accessible way of not only monitoring and ma-

nipulate instrument data but also providing tools to control instruments as well. These features vary significantly
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in scope, ambition and overall knowledge of the challenges thus this section will be divided into short-term goals

and long-term goals.

In terms of short-term goals, several small optimization steps are required to increase individual instrument,

database and database engine scalability. Currently the application is optimized for the MySQL database en-

gine and several queries should be updated to be compatible with all SQL engines. Updates to the custom channel

scripting language must also be implemented, such as including basic derivation and histogram operations. An-

other important improvement to apply is a new data gathering method that allows the parsing of data in binary files

(for example, the HDF5 format) since more specialized instruments will often create these files. The OPeNDAP

project contains several modules for handling popular binary files, these modules should be able to be leveraged

to be used in DAQBroker to allow for many more instruments to be monitored without the need for a previous

external file processing step. However a simple interface must be designed to allow users to provide the proper

information to be stored in the database. As mentioned previously, several statistical methods are also planned

to be implemented to increase automated analysis of data, providing users and their peers with more information

about their time series. Several improvements to the web application are also expected in order to improve both

client and server side performance and provide the user with more information when exceptions occur. Other im-

provements include automatic contacts to the instrument operator when a machine is reaching resource capacity,

to allow actions to be taken to prevent potential loss of data. In order to increase the dissemination of the frame-

work, attempts to generate partnerships with universities and institutes are planned. This could come in the form

of personalized distributions of DAQBroker and regular instructional seminars.

On the side of the development of DAQBroker, it was noted in chapter 4 that there were limitations found when

implementing DAQBroker in the CLOUD experiment due to the lack of testing and quality assessment mainly

of the front-end user interface but also on some of the back-end processes. One goal to strive for in DAQBroker

is to introduce the concept of test-driven-development to the application with the creation of unit tests that must

successfully pass before a new feature pushed to production.

In terms of long-term goals, one of the major milestones aimed by DAQBroker is providing users the ability to

control their instruments via the framework itself. Whether by working with the instrument manufacturers to

create custom built controls for the web application or to provide general purpose user interface tools and server

side requests for setting instrument parameters. The former would require first the large dissemination of the

framework itself to convince instrument manufacturers to work with DAQBroker. This is already possible for

specific cases by altering the source code of DAQBroker to include specialized modes for each instrument. The

latter option requires changing the instrument model introduced in chapter 3 to include a control module parallel

to data source modules to independently handle control and data acquisition. Another large long-term feature to be

added is the possibility of using a non relational database model for data storage, which would allow DAQBroker

to run without the need to connect to a relational database. In order for this change to be done, the methods for data

fetching must switch from database queries to reading files from the disk, this change is subject to unpredictable

errors coming from various sources such as the file syncing algorithm and other read requests. While the existing
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model is appropriate for storing data from most instruments, there are still instruments that are not compatible with

this format without some sort of formatting of the output format. One way of dealing with this issue is to create

non-SQL methods of data storage that would rely only on the sources of instrument data, without having to parse

said data until a data query is performed. This would require a large overhaul of the current instrument model

and the whole framework itself, but would make DAQBroker a truly universally compatible tool for instrument

data monitoring. A possible long-term attempts to disseminate the framework would come through associating

with known brands of hardware manufacturers or cloud service providers to supply the framework as a supported

service.
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[298] J. Zubova, O. Kurasova, and M. Liutvinavičius. Dimensionality reduction methods: The comparison of

speed and accuracy. Information Technology And Control, 47(1):151–160, 2018.

[299] K. Pearson. LIII. on lines and planes of closest fit to systems of points in space. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, nov 1901. doi: 10.1080/

14786440109462720. URL https://doi.org/10.1080/14786440109462720.

[300] J. D. Horel. Complex principal component analysis: Theory and examples. Journal of climate and Applied

Meteorology, 23(12):1660–1673, 1984.

[301] V. Klema and A. Laub. The singular value decomposition: Its computation and some applications. IEEE

Transactions on automatic control, 25(2):164–176, 1980.

[302] C. Ding and X. He. K-means clustering via principal component analysis. In Proceedings of the twenty-first

international conference on Machine learning, page 29. ACM, 2004.

170

https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1080/14786440109462720


[303] Z.-K. Gao, Y.-X. Yang, P.-C. Fang, N.-D. Jin, C.-Y. Xia, and L.-D. Hu. Multi-frequency complex network

from time series for uncovering oil-water flow structure. Scientific reports, 5:8222, 2015.

[304] H. Senaratne, M. Mueller, M. Behrisch, F. Lalanne, J. Bustos-Jiménez, J. Schneidewind, D. Keim, and
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S. Ehrhart, C. Frege, H. Gordon, N. Höppel, M. Heinritzi, T. B. Kristensen, U. Molteni, L. Nichman,

T. Pinterich, A. S. H. Prévôt, M. Simon, J. G. Slowik, G. Steiner, A. Tomé, A. L. Vogel, R. Volkamer,
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Appendix A

DAQBroker database schema

In section 3.1.2.4, a subset of the full database schema of DAQBroker is presented. The focus of that section was

to highlight the instrument data warehouse relational model. As can be seen in figure 3.3, several tables were

not described. While not relevant for the instrument model, these tables are crucial for the correct performance

of DAQBroker. This appendix intends to fully document the database schema of DAQBroker, highlighting the

purpose of each table and their columns.

The DAQBroker environment is replicated in each database engine used and on each active server application. On

a database engine a DAQBroker environment will contain one global database for settings and several user created

data storage databases. Each server application creates a local database file that contains information regarding the

existing database engines, local folder structure and available nodes. This appendix will be divided into three parts

each describing the mentioned databases.

A.1 Global engine database

The global engine database is created the first time an engine uses the DAQBroker framework and contains 3 tables

with information specific to the engine being used. The table structure is the following:

• Databases - Contains information on all data storage databases created using the engine and information on

whether or not the databases are active for data storage. Accordingly it has two columns

– dbname - A finite length string column containing the name of each individual data storage database.

These will have the prefix ’daqbro ’ added to it to minimize conflicts with existing databases,

– active - A boolean column that indicates whether a database is active or not for data storage. Inac-

tive databases will not automatically retrieve the instrument’s most recent data and will only allow

administrator users to make changes to the information in the database.

• Users - This table contains information on all created users using DAQBroker in the database engine. It also
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contains information on the type of user, thus defining what interfaces and system calls are available for that

user. Similar to the previous table, it is organized in two columns:

– username - A finite length string column containing the name of an individual user. To avoid conflicts

with existing users in the database the user name should be a carefully planned task for the system

administrator,

– type - An integer column that defines the type of user. As defined in 3.1.4, DAQBroker supports 4 types

of users : Administrator, Operator, User and Guest.

• Links - Contains information on all shareable web links created by each user. Shareable links point to a

specific endpoint of the DAQBroker web application where some manipulation has already been made by

the user. Currently shareable links are limited to data visualizations but could be extended in future versions

of DAQBroker. It is organized in four columns:

– clock - An integer containing the time of creation of the shareable link. The current type of links are

one-time shareable model with limited life. 7 day old links are removed from the database,

– linkid - A finite length string that contains a unique identifier for the shareable link,

– site - A finite length string that contains the endpoint of the DAQBroker web application pointed to by

the link,

– variable - A text column that contains the user-made data manipulations to the endpoint that will be

transferred to the user that receives and follows the shareable link.

A.2 Data storage database

The data storage databases contain the bulk information of the DAQBroker framework and also the specific infor-

mation. Each of these databases contain information about the specific data effort requirements, short or long term

and as such information that is only usable in the context and timespan during which the database is active. While

inactive databases can be revisited and its data queried, it is not advised that the database be changed when inac-

tive, reason why this task can only be made by an administrator user. The description of the data storage database

schema tables (represented in figure 3.3) follow:

• Instruments - Contains the information of the main instrument block. The attributes of each instrument are

as follows:

1. Name - String with the name of the instrument. The name is unique and cannot be repeated.

2. instid - Integer with the unique identification of the instrument.

3. active - Boolean defining whether an instrument is in active data gathering or not,

4. description - Blob that contains a description of what the instrument is supposed to do,

5. username - String relating the instrument to the DAQBroker user that created it,
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6. email - Blob containing contact information for the instrument operator (does not have to be just email),

7. insttype - Integer that defines the type of instrument storage format,

8. log - JSON encoded blob that contains a public electronic instrument log that users can fill out to help

keep track of changes made to the instrument.

• Instmeta - Contains the information of each instrument’s data source blocks. The attributes of said blocks

are as follows:

1. clock - Integer defining the last edit timestamp of the data source,

2. name - String identifying the data source,

3. metaid - Integer uniquely identifying the data source,

4. instid - Integer indicating the instrument that is the data source (see Instruments - instid),

5. type - Integer defining the type of data source (allows specific data gathering methods to be chosen),

6. node - String defining the network node associated with this data source,

7. remarks - JSON encoded blob containing relevant information for data gathering methods for the type

of data source chosen,

8. sentRequest - Boolean that tests whether a remote data gathering routine is under way (for time out

purposes),

9. lastAction - Integer defining the timestamp of the last automated action preformed on this data source,

10. lasterrortime - Integer defining the timestamp of the last error encountered when preforming data

gathering for this data source,

11. lastError - Blob containing information of the last error encountered when preforming data gathering

for this data source.

12. lockSync - Boolean to test whether there is a data gathering action currently taking place for this data

source (used with sentRequest for timeout purposes).

• Channels - Contains the information of each instrument’s data channels. The attributes each channel are:

1. Name - String containing the name of data channel,

2. channelid - Integer uniquely identifying the data channel,

3. channeltype - Integer that defines the type of data channel (used for data manipulation),

4. valuetype - Integer that defines the type of data returned by this channel (i.e: string, numbers),

5. units - String containing the physical units of the data provided by this data channel,

6. instid - Integer relating the data channel the instrument source (see Instruments - instid),

7. description - Blob containing a description of the data provided by the data channel,
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8. active - A Boolean that tests whether the data channel is actively providing data,

9. remarks - JSON encoded blob containing relevant information for automated handling of the specific

data channel,

10. metaid - Integer relating the data channel with its data source (see Instmeta - metaid),

11. lastclock - Integer defining the timestamp of the last gathered data value,

12. lastValue - String containing the last gathered value on the channel,

13. fileorder - Integer defining an order for the data channel to be gathered (only used on specific data

gathering methods),

14. alias - String defining an alias of the channel to be used in specific data gathering methods,

15. firstClock - Integer defining the timestamp of the first gathered data value (can be updated if newer

values are gathered).

• parsing - Contains information on all the parsing operations and files on which they were executed for a

single data source. This is used to prevent multiple parsing of the same data to occur, which compromises

performance. Each parsing entry is defined by the following columns:

1. clock - Integer containing the timestamp creation of this entry,

2. lastAction - Integer containing the timestamp of last parsing activity done on this entry,

3. metaid - Integer uniquely identifying the parsing entry,

4. instid - Integer identifying the instrument to which this entry belongs to,

5. type - Integer defining the type of data parsing to be preformed, same as instmeta - type,

6. locked - Boolean that defines whether parsing for this entry is currently taking place or not,

7. forcelock - Boolean that defines whether or not parsing this entry has been stopped by user request,

8. remarks - Text entry containing type specific information regarding parsing operations executed.

• collections - Contains the information of user defined data channel collections. These collections can be

used to choose large amounts of channels with a single request. A collection is defined by the following

columns:

1. Name - Finite length string containing a user defined name for the collection,

2. channels - Text entry containing a JSON encoded string of a list of data channels,

3. remarks - Text entry containing supplementary information about the collection. Current version of

DAQBroker does not use this entry,

• plots - Contains information about the user defined and saved data visualization. These visualizations are

available for all other users to see, each visualization is defined by the folowing columns:

1. plotname - Finite length string containing a user defined name for the visualization,
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2. plotid - Integer containing a unique identifier for that visualization,

3. channels - JSON encoded string containing a list of data channels relevant to the creation of the visu-

alization,

4. plottype - Integer defining the type of visualization to be created. Currently DAQBroker can create

4 types of visualizations: Simple time traces; Time evolved histograms; Single histograms; External

plots;

5. adminPlot - Boolean used to define whether or not a visualization should only be altered byb an ad-

ministrator. Currently not used and to be removed in the future,

6. active - Boolean that defines whether or not this visualization is to be listed to other users. Currently

not used in the API,

7. remarks - Text entry containing supporting type dependant information for the visualization, such as

axis limits, logarithmic axis, colours and more,

• plotcomments - Contains information on user supplied comments to specific visualizations. Each user

comment is defined by the following columns:

1. clock - Integer containing the timestamp of the comment,

2. plotid - Integer containing a unique identifier for that visualization into which the comment was in-

serted,

3. channelid - Channel identifier of the comment. To be used for comments on specific visualizations that

allow specific channels to receive a comment from a user,

4. comment - Text entry containing the user comment

5. author - Text entry containing the username of the user that supplied the comment,

6. remarks - Text entry containing supporting information for the comment. Currently not being used,

• layouts - Contains information regarding user defined saved multiple data visualizations. Each layout is

made out of plots defined in the plots table and is defined by the following columns:

1. Name - Limited length string containing a user defined name for the layout

2. layoutid - Integer containing a unique identifier for the layout,

3. plots - JSON encoded string containing a list of visualizations to be added to the layout,

4. format - Text string containing the definition of the format of the layout, such as number of vertical and

horizontal plot spots.

• runs - Contains information on the previous and current additions to the experimental run list parameters.

Each entry contains changes made to the list and is defined by the following columns:

1. clock - Integer containing the timestamp of the edit to the experiment list,
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2. lastUpdate - Integer containing the timestamp of the previous edit to the experiment list,

3. isLinked - Boolean containing a legacy check to link the run list to a google spreadsheet,

4. linkRemarks - Legacy JSON encoded string containing information on how to link the google spread-

sheet,

5. linkType - Legacy integer containing the type of link to be made,

6. runlistRemarks - JSON encoded string containing the information on the parameters to represent the

run list, which will be columns in the runlist table. Each run list parameter can be of 3 types: Number,

text, drop-down menu with user defined choices

• runlist - Contains the list of experimental runs logged by users. Changes to the run list parameters will result

in adding, editing, deleting columns in the run list. A run list without any user defined parameters consists

of the following columns:

1. start - Integer containing the timestamp of the start of the experimental run, is automatically created

on run/stage start, can be changed when a new run/stage is started,

2. end - Integer containing the timestamp of the end of the experimental run, is automatically created on

run/stage end, can be changed when a new run/stage is started,

3. run - Finite length string containing the unique identifier for a run and its stage (ex: ’1900.10’ will be

run ’1900’, stage ’10’ and uniquely identifies a run and its stage),

4. summary - Text string containing a summary of the run/stage,

5. comments - JSON encoded string of a list of user supplied comments to a run/stage, identifying specific

sections of the run/stage where a meaningful event occurred,

6. active - Boolean defining whether or not a run/stage is currently in an active state.

• jobs - Contains information on the job queue implemented in the DAQBroker. This list is to be moved with

high priority to the local server application database as job queues from multiple servers can conflict with

each other. Each job consists of the following columns:

1. clock - Integer containing the timestamp of the job creation time. This is used to time out an existing

job if its type is set to be short running,

2. jobid - A finite length string defining a unique identifier for the job,

3. type - Type of job being requests, the current version of DAQBroker only expects one type of job, that

being a data query,

4. username - Username requesting the job,

5. status - integer defining the current status of the job: 1 being completed without errors; 0 being under

way and -1 being completed with errors,

6. data - Text entry pointing at the memory object containing the result of the requested job,
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7. error - Text entry containing the error message of a possible error. To be used in conjunction with a -1

on the status column,

8. reqid - A text entry uniquely defining the source of the request of the job.

• subscribers - Contains a list of emails of users who request to be updated with information regarding this

database:

A.3 Local storage database

The server local storage database contains certain machine-specific settings that are required for the proper be-

haviour of the DAQBroker server application. The current iteration of the DAQBroker server application stores 5

tables:

• folder - Contains information on all available and/or previously used folders on the server machine. The

DAQBroker API allows the application to scan and if possible create new folders for various purposes. The

following columns define each folder:

– clock - An integer containing the creation time of the folder,

– path - A finite length string that contains the full path of the folder, this string will have different

compositions depending on the operating system the server application is being used in,

– type - An integer that defines the type of usage for the folder, currently 3 types of folder usage are

supported: backup, uploads and temporary files,

– remarks - A text field that contains secondary information about the folder. The current version of

DAQBroker does not use this field.

• global - A single row table that contains the current local settings of the server application. The settings are

defined by each column:

– clock - An integer containing the time of last settings change,

– version - A finite string containing the version of the server application,

– backupfolder - Finite length string containing the currently used backup folder,

– importfolder - Finite length string containing the currently used import folder,

– tempfolder - Finite length string containing the currently used temporary folder,

– ntp - A text field that contains the address of the NTP server to use when software time synchronization

is required by DAQBroker,

– logport - An integer field that contains the port that handles logging requests,

– commport - An integer field that contains the port that handles communication requests,
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– remarks - A text field that contains secondary information about the machine. This field currently

keeps relevant information about the general operation of the machine.

• nodes - Contains information about all the nodes running the DAQBroker client application that are con-

nected to this specific machine. Each node is defined by the following columns:

– node - A unique identifier generated by the python snowflake persistent unique ID generation[357],

– name - A user provided name for the machine to be identified as in the DAQBroker network. Defaults

to the machine name as viewed by Python, so it is possible for conflicts to occur when a new machine

is being inserted to the network,

– address - String containing the current address of the machine as seen from the server machine,

– local - String containing the current address of the server machine, as seen from the client machine.

Arguably unnecessary, but currently used to ensure client-server communication,

– port - Integer containing the current communications port of the client application,

– active - A boolean used to test if the node is actively available for instrument monitoring,

– lastActive - An integer containing the timestamp of the last communication made between the node

and the server application. This time is used to check if a node is to be automatically set to inactive or

not,

– tsyncauto - A boolean to check if the node is to use the current server application NTP address to

synchronize its software clock,

– remarks - A text field that contains secondary information about the machine. This field currently

keeps relevant information about the general operation of the machine such as available RAM and

ROM, CPU utilization and other meaningful parameters.

• ntp - Contains information about all the NTP servers used on this server machine. NTP synchronization

is achieved via python’s native NTP library[358] and a simple custom-made update algorithm. Each NTP

server is identified by the following columns:

– clock - Integer containing a timestamp of the creation time of the NTP record on the DAQBroker server

application,

– server - A finite length string containing a unique identifier of the NTP server address,

– port - An integer containing the port of the NTP server, in case a non-standard port is used.

• servers - Contains information on all the database engines used by the owning machine. Each engine is

identified by the following:

– server - Finite length string containing the full address of the database engine (’localhost’ in the case

of a local engine)
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– engine - The engine that is being run on that address. This information is required for login purposes

and to allow for the same servers to run different engines under the DAQBroker framework which,

while unusual is not impossible to find in certain environments.
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Appendix B

Multivariate Time Series Analysis

This appendix provides analysis of all CLOUD experimental runs selected and not shown in 5.2.5. It begins by

listing the number of channels integrated into the multivariate time series to be analyzed.

B.1 Chosen Data Channels

This section provides a list of channels that are used on to create a multivariate time series, as described in 5.2. This

set of channels contains their underlying instrument and whether the measurement is that of a physical quantity

or a chemical quantity as well as specific comments when the channels are a composite of several channels. This

large list of channels could be used in an exploratory analysis of the data from an experimental run to attempt to

find hitherto unknown relationships between time series.
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Table B.1: Full list of channels to be used for multivariate time series analysis

# Channel Instrument Type Comment
1 intensity PhotoDiode12 Physical N/A
2 intensity2 PhotoDiode12 Physical N/A
3 mvolt1 HVFC Physical N/A
4 mvolt2 HVFC Physical N/A
5 shutter1 UVLamp Physical N/A
6 intensity1 UVLamp Physical N/A
7 shutter2 UVLamp Physical N/A
8 intensity2 UVLamp Physical N/A
9 shutter3 UVLamp Physical N/A
10 intensity3 UVLamp Physical N/A
11 shutter4 UVLamp Physical N/A
12 intensity4 UVLamp Physical N/A
13 speed1 Fan Physical N/A
14 speed2 Fan Physical N/A
15 temp1 PT100 Physical N/A
16 brust Scalers Physical N/A
17 sat water TDL Physical N/A
18 so2 SO2 Chemical N/A
19 o3 O3 Chemical N/A
20 Ch0: Ch [#/cc] DMAtrain Physical N/A
21 Ch1: C [#/cc] DMAtrain Physical N/A
22 Ch2: C [#/cc] DMAtrain Physical N/A
23 Ch3: C [#/cc] DMAtrain Physical N/A
24 Ch4: C [#/cc] DMAtrain Physical N/A
25 Ch5: C [#/cc] DMAtrain Physical N/A
26 Sabre3Temperature SabreTemperature Physical N/A
27 Sabre4Temperature SabreTemperature Physical N/A
28 3776-1DisplayConc. CPC3776 Physical N/A
29 3010-1DisplayConc. CPC3776 Physical N/A
30 3010-2DisplayConc. CPC3776 Physical N/A
31 3785DisplayConc. CPC3776 Physical N/A
32 NH3 HTOF UFRA Chemical N/A
33 H30 HTOF UFRA Chemical N/A
34 H3OH2O HTOF UFRA Chemical N/A
35 H7O3 HTOF UFRA Chemical N/A
36 O2 HTOF UFRA Chemical N/A
37 conc PSM15 Physical N/A
38 conc PSM16 Physical N/A
39 conc PSM Vienna Physical N/A
40 conc PSM12 Physical N/A
41 Count nRDMA Physical N/A
42 Total Conc. (#/cm) nanoSMPS Physical N/A
43 I2Br CMU FIGAERO Chemical N/A
44 BrH2O CMU FIGAERO Chemical N/A

In order to study relationships that can be obscured through spurious similarities, a reduced set of channels is

chosen. The focus of this set is to prune the initial set, considering only the channels relevant to the stages being

studied, similar to what would be done during the CLOUD experiment to emphasise certain results. The chosen

channels are the following:
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Table B.2: Full list of channels to be used for multivariate time series analysis (continued)

# Channel Instrument Type Comment
45 NO2 CAPS Chemical N/A
46 I2 CEDOAS CE-DOAS Chemical N/A
47 HONO CEDOAS CE-DOAS Chemical N/A
48 NO2 CEDOAS CE-DOAS Chemical N/A
49 Glyoxal CEDOAS CE-DOAS Chemical N/A
50 Megly CEDOAS CE-DOAS Chemical N/A
51 APINENE STOF Chemical N/A
52 ISOPRENE STOF Chemical N/A
53 ACETONE STOF Chemical N/A
54 ACETICACID STOF Chemical N/A
55 TMB STOF Chemical N/A
56 NAPHTHALENE STOF Chemical N/A
57 TOLUENE STOF Chemical N/A
58 BETACARYOPHYLENE STOF Chemical N/A
59 PINONALDEHYDE STOF Chemical N/A
60 dew Dew Physical N/A
61 NIT LTOF UFRA Chemical N/A
62 SA LTOF UFRA Chemical N/A
63 HIO LTOF UFRA Chemical N/A
64 DMA LTOF UFRA Chemical N/A
65 CPC LTOF CPC Physical N/A
66 conc PSM PSI Physical N/A
67 HV-Actual Laser Physical N/A
68 Egy-Actual Laser Physical N/A
69 APINENE PTR3 Chemical N/A
70 ISOPRENE PTR3 Chemical N/A
71 ACETONE PTR3 Chemical N/A
72 ACETICACID PTR3 Chemical N/A
73 TMB PTR3 Chemical N/A
74 NAPHTHALENE PTR3 Chemical N/A
75 TOLUENE PTR3 Chemical N/A
76 BETACARYOPHYLENE PTR3 Chemical N/A
77 PINONALDEHYDE PTR3 Chemical N/A
78 NH3 2MIN PICARRO Chemical N/A
79 UVX Light Spectrometer Physical Sum over wavelengths of UVX
80 LS3 Light Spectrometer Physical Sum over wavelengths of LS3
81 LS4 Light Spectrometer Physical Sum over wavelengths of LS4
82 LS1 Light Spectrometer Physical Sum over wavelengths of LS1
83 UVH Light Spectrometer Physical Sum over wavelengths of UVH
84 Ions neg NAIS ions Physical Sum over negative ion channels of NAIS ions
85 Ions pos NAIS ions Physical Sum over positive ion channels of NAIS ions
86 Particles neg NAIS particles Physical Sum over positive ion channels of NAIS particles
87 Particles pos NAIS particles Physical Sum over positive ion channels of NAIS particles
88 Particles (20-500 nm) LongSMPS Physical Sum over all particle sizes of Long SMPS
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Table B.3: Reduced list of channels to be used for multivariate time series analysis

# Channel Instrument Type Comment
1 intensity PhotoDiode12 Physical N/A
2 mvolt1 HVFC Physical N/A
3 intensity1 UVLamp Physical N/A
4 speed1 Fan Physical N/A
5 brust Scalers Physical N/A
6 sat water TDL Physical N/A
7 so2 SO2 Chemical N/A
8 o3 O3 Chemical N/A
9 3776-1DisplayConc. CPC3776 Physical N/A
10 3010-1DisplayConc. CPC3776 Physical N/A
11 3010-2DisplayConc. CPC3776 Physical N/A
12 3785DisplayConc. CPC3776 Physical N/A
13 conc PSM15 Physical N/A
14 conc PSM16 Physical N/A
15 conc PSM Vienna Physical N/A
16 conc PSM12 Physical N/A
17 Total Conc. (#/cm) nanoSMPS Physical N/A
18 I2Br CMU FIGAERO Chemical N/A
19 BrH2O CMU FIGAERO Chemical N/A
20 NO2 CAPS Chemical N/A
21 I2 CEDOAS CE-DOAS Chemical N/A
22 HONO CEDOAS CE-DOAS Chemical N/A
23 NO2 CEDOAS CE-DOAS Chemical N/A
24 Glyoxal CEDOAS CE-DOAS Chemical N/A
25 Megly CEDOAS CE-DOAS Chemical N/A

Table B.4: Reduced list of channels to be used for multivariate time series analysis (continued)

# Channel Instrument Type Comment
26 APINENE STOF Chemical N/A
27 ISOPRENE STOF Chemical N/A
28 dew Dew Physical N/A
29 conc PSM PSI Physical N/A
30 HV-Actual Laser Physical N/A
31 Egy-Actual Laser Physical N/A
32 APINENE PTR3 Chemical N/A
33 ISOPRENE PTR3 Chemical N/A
34 ACETONE PTR3 Chemical N/A
35 ACETICACID PTR3 Chemical N/A
36 TMB PTR3 Chemical N/A
37 NAPHTHALENE PTR3 Chemical N/A
38 TOLUENE PTR3 Chemical N/A
39 BETACARYOPHYLENE PTR3 Chemical N/A
40 PINONALDEHYDE PTR3 Chemical N/A
41 NH3 2MIN PICARRO Chemical N/A
42 UVX Light Spectrometer Physical Sum over wavelengths of UVX
43 LS3 Light Spectrometer Physical Sum over wavelengths of LS3
44 LS4 Light Spectrometer Physical Sum over wavelengths of LS4
45 LS1 Light Spectrometer Physical Sum over wavelengths of LS1
46 UVH Light Spectrometer Physical Sum over wavelengths of UVH
47 Ions neg NAIS ions Physical Sum over negative ion channels of NAIS ions
48 Ions pos NAIS ions Physical Sum over positive ion channels of NAIS ions
49 Particles neg NAIS particles Physical Sum over positive ion channels of NAIS particles
50 Particles pos NAIS particles Physical Sum over positive ion channels of NAIS particles
51 Particles (20-500 nm) LongSMPS Physical Sum over all particle sizes of Long SMPS

B.2 Runs Analysis

This section contains the analysis of each run presented in table 5.1 and which were not shown in 5.2.5. The

user is reminded that the results of this analysis with many are available in an interactive web application to be

used as a mockup of what would be the use in DAQBroker, accessible via https://www.daqbroker.com/mvrs_
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mockup/.

B.2.1 Run 1962.02

This was the second run in a series of particle generation runs, designed to test the contribution of certain com-

pounds to the rate of new particle generation. This particular run introduced charged particles to an already existing

background of particle generation, and consequently a relative increase of particle generation is expected. In terms

of defining characteristics, it is expected that the particle counters should be highlighted, as in the previous run,

and the charged particle counters are also expected to be highlighted.

B.2.1.1 Relevant Time Series Highlighting

Figure B.1 shows the most relevant time series according to the PCA method defined in 5.2 at a 98% explained

variance. As expected, particle counters are represented, however, no relevance is given to the charged particle

counters. This is not unexpected, since the variance contribution of the charged particle counters may be shared

with most particle counters and thus ignored in the PCA analysis. No particular trend is immediately distinguish-

able in the highlighted chemical channels, however, the reduction of acetone concentration could be used as a proxy

on the consumption of α-pinene for new particle formation, since some studies suggest a link between acetone and

oxidation of α-pinene[359? ].

Figure B.2 shows the result of the series highlighting using a reduced set. The most relevant feature is the number

of channels highlighted, which reduced by over than half. This means that quite a lot of information was removed

by moving to the reduced set of time series. While, relevant time series are highlighted, specifically the particle

concentration measurements, they do not paint the whole picture of a charged particle generation run. It does

not seem that for this stage the reduced set is a proper data set to consider to produce more scientifically relevant

results.

B.2.1.2 Time Series Relationships

As discussed in the previous section, the full set of time series was determined to be more relevant than the

reduced set, it will thus be the set used to evaluate the relationships between time series using the method defined

in 5.2.3.

B.2.1.2.1 Pearson correlation similarity Figure B.3 shows the network similarity graph using the Pearson co-

efficient applied to the full time series data set, with the size of its node being related to the value of its eigenvector

coefficient. Table B.5 helps in identifying nodes in figure B.3 by ranking each node according to its eigenvector

coefficient, meaning that higher ranked nodes in table B.5 correspond to larger nodes in figure B.5.

Analyzing figure B.3 and table B.3, there is a clear distinction between two sets of nodes, highlighted by their

coloring, which is related to the assigned community of each node according to the Louvain algorithm. A first
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Figure B.1: Most relevant time series for CLOUD experimental run 1962.02 using the full data set. The compared time series
are shown in their original sampled values, before normalization to give the reader an idea of the absolute change of values.
This visualization can be shown to users to allow for a more detailed study of the results.
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Figure B.2: Most relevant time series for CLOUD experimental run 1962.02 using the reduced data set. The compared time
series are shown in their original sampled values, before normalization to give the reader an idea of the absolute change of
values. This visualization can be shown to users to allow for a more detailed study of the results.
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community consists of a more tightly couple set of nodes consisting of mostly particle concentration measurements

and light measurements, indicating a strong statistical connection between those groups, which is expected, has

been extensively discussed and is also found in figure 5.30, which is analogous to this figure for the previous stage.

The second community consists of loosely coupled nodes which populate the rest of the network graph. These

appear to be measurements that are loosely couple between each other and it is difficult to define the relevance of

this community to the whole set, since it contains time series which should be relevant to the whole data set (for

example, the α-pinene measurements). Of note in this stage is the addition to the first discussed community of

the ion concentration time series (NAIS ions Ions pos and NAIS ions Ions neg), which is an expected result since

charged particles are generated in this stage whereas in the previous stage this was not the case.

B.2.1.2.2 Maximum cross-correlation similarity Figure B.4 shows the similarity network graph with the

maximum cross-correlation between pairs of time series as the similarity measurement. Once again, each node

is sized by its eigenvector centrality and table B.6 aids in identifying each node in the figure by ranking nodes

based on their eigenvector centrality.

Much like comparing tables 5.2 and 5.3, table B.6 presents many similarities to table B.5 with the domination in the

highest ranks of light intensity and particle concentration measurements. Again of note the increase in ranking of

the charged particle measurements. What differs from the previous graph is the introduction of a third community,

further stratifying the data set into groups of which seem to be related much like was discussed in 5.2.5.2.

B.2.1.2.3 DTW similarity Figure B.5 illustrates the similarity network graph using the DTW distance as a

similarity measurement. Again, table B.7 is provided to aid in the identification of individual nodes.

As in the discussion made in 5.2.5.2 the relationships found between nodes using this measurement are extremely

low as evidenced by the reversed grey scale used to quantify the strength of the relationships between nodes,

when compared to the other network graphs shown. The same type of channels are also highlighted using this

method, which relation several channels from a small number of instruments which indicate that random noise is

being highlighted incorrectly, possibly due to improper pre-processing. For this particular similarity measurement

it would be more useful to use a reduced set of time series to minimize the existence of spurious relationships

between time series. Regardless of the data set used, the values of similarity found are extremely low, meaning

that this similarity measurement is probably not suited for the CLOUD time series.

B.2.1.2.4 Coherence similarity Finally, figure B.5 shows the similarity network graph using coherence as a

similarity measurement. Table B.7 once again is provided to aid in the identification of the nodes in the graph.

Once again as reported in 5.2.5.2, coherence similarity highlights several nodes from the same instruments most

likely finding similarity in unprocessed noise. However, there is a marginal increase from the DTW measurement

since the relationship values are larger. Some relevant time series are also highlighted, such as a small amount
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Figure B.3: Pearson correlation network graph for the CLOUD experimental run 1962.02. A reversed grey scale based on
connection strength is applied to the line color connecting each node for visualization purposes.
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Table B.5: Eigenvector (ε) centrality node ranking for run 1962.02 using the Pearson correlation as similarity

Rank Instrument Channel ε

1 Light Spectrometer LS4 0.295
2 PSM12 conc 0.2922
3 Light Spectrometer UVH 0.2846
4 Light Spectrometer LS3 0.2838
5 LTOF CPC CPC 0.2837
6 CPC3776 3776-1DisplayConc. 0.282
7 PSM16 conc 0.2628
8 NAIS ions Ions pos 0.2614
9 PSM15 conc 0.2558
10 NAIS ions Ions neg 0.2547
11 O3 o3 0.2426
12 Light Spectrometer LS1 0.242
13 Light Spectrometer UVX 0.1852
14 HTOF UFRA H30 0.1667
15 DMAtrain Ch1 C [#/cc] 0.1267
16 DMAtrain Ch0 Ch [#/cc] 0.1214
17 LTOF UFRA NIT 0.0632
18 STOF ISOPRENE 0.0598
19 HVFC mvolt2 0.0508
20 LTOF UFRA DMA 0.0473
21 nRDMA Count 0.046
22 Fan speed1 0.0395
23 Dew dew 0.038
24 DMAtrain Ch2 C [#/cc] 0.0371
25 Fan speed2 0.0349
26 PTR3 TOLUENE 0.0343
27 TDL sat water 0.0327
28 PTR3 ISOPRENE 0.028
29 LTOF UFRA SA 0.0265
30 STOF ACETICACID 0.0232
31 nanoSMPS Total Conc. #/cm 0.022
32 DMAtrain Ch4 C [#/cc] 0.0218
33 PTR3 PINONALDEHYDE 0.0191
34 DMAtrain Ch3 C [#/cc] 0.0182
35 STOF BETACARYOPHYLENE 0.0167
36 PTR3 ACETICACID 0.0141
37 CAPS NO2 0.0129
38 STOF APINENE 0.0117
39 STOF TOLUENE 0.0114
40 STOF NAPHTHALENE 0.0104
41 PTR3 TMB 0.0102
42 LTOF UFRA HIO 0.009
43 STOF PINONALDEHYDE 0.0089
44 PICARRO NH3 2MIN 0.0083
45 PTR3 BETACARYOPHYLENE 0.0075
46 Scalers brust 0.0069
47 PhotoDiode12 intensity2 0.0063
48 HTOF UFRA H7O3 0.0054
49 HTOF UFRA NH3 0.0037
50 SabreTemperature Sabre3Temperature 0.0032
51 STOF TMB 0.003
52 HVFC mvolt1 0.0027
53 SabreTemperature Sabre4Temperature 0.002
54 LongSMPS Particles 20-500 nm 0.0016
55 HTOF UFRA O2 0.0015
56 PTR3 APINENE 0.0009
57 PTR3 NAPHTHALENE 0.0009
58 HTOF UFRA H3OH2O 0.0009
59 STOF ACETONE 0.0009
60 SO2 so2 0.0007
61 PT100 temp1 0.0006
62 PTR3 ACETONE 0.0005B.9
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Figure B.4: Maximum cross-correlation network graph for the CLOUD experimental run 1962.02. A reversed grey scale based
on connection strength is applied to the line color connecting each node for visualization purposes.
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Table B.6: Eigenvector (ε) centrality node ranking for run 1962.02 using the maximum cross-correlation as similarity

Rank Instrument Channel ε

1 Light Spectrometer LS4 0.2399
2 Light Spectrometer UVH 0.2364
3 PSM12 conc 0.2363
4 Light Spectrometer LS3 0.2338
5 LTOF CPC CPC 0.2329
6 CPC3776 3776-1DisplayConc. 0.2321
7 NAIS ions Ions pos 0.2278
8 NAIS ions Ions neg 0.2238
9 PSM16 conc 0.2192
10 O3 o3 0.2158
11 PSM15 conc 0.2154
12 Light Spectrometer LS1 0.2134
13 HTOF UFRA H30 0.1728
14 Light Spectrometer UVX 0.1726
15 PTR3 ACETICACID 0.1482
16 DMAtrain Ch1 C [#/cc] 0.1383
17 DMAtrain Ch0 Ch [#/cc] 0.1294
18 CAPS NO2 0.1283
19 LTOF UFRA NIT 0.1217
20 PT100 temp1 0.1217
21 PTR3 ACETONE 0.1197
22 PhotoDiode12 intensity2 0.1032
23 Dew dew 0.1014
24 nanoSMPS Total Conc. #/cm 0.0978
25 PICARRO NH3 2MIN 0.0899
26 LongSMPS Particles 20-500 nm 0.0878
27 TDL sat water 0.0859
28 HVFC mvolt2 0.0849
29 STOF ISOPRENE 0.0837
30 PTR3 ISOPRENE 0.0825
31 LTOF UFRA DMA 0.0814
32 nRDMA Count 0.0788
33 Fan speed1 0.0775
34 DMAtrain Ch3 C [#/cc] 0.0735
35 PTR3 TOLUENE 0.073
36 SO2 so2 0.072
37 PTR3 PINONALDEHYDE 0.0708
38 LTOF UFRA SA 0.0708
39 DMAtrain Ch2 C [#/cc] 0.0706
40 DMAtrain Ch4 C [#/cc] 0.0695
41 HVFC mvolt1 0.0693
42 Fan speed2 0.0665
43 HTOF UFRA H7O3 0.0661
44 PTR3 APINENE 0.0653
45 LTOF UFRA HIO 0.0637
46 STOF ACETONE 0.0627
47 HTOF UFRA H3OH2O 0.0614
48 STOF ACETICACID 0.061
49 STOF TOLUENE 0.0592
50 STOF NAPHTHALENE 0.0578
51 HTOF UFRA NH3 0.0576
52 PTR3 TMB 0.0575
53 PTR3 BETACARYOPHYLENE 0.0566
54 PTR3 NAPHTHALENE 0.055
55 STOF APINENE 0.0536
56 STOF PINONALDEHYDE 0.0534
57 HTOF UFRA O2 0.0525
58 STOF TMB 0.0507
59 Scalers brust 0.0497
60 STOF BETACARYOPHYLENE 0.0493
61 SabreTemperature Sabre4Temperature 0.0394
62 SabreTemperature Sabre3Temperature 0.0325B.11
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Figure B.5: DTW similarity network graph for the CLOUD experimental run 1962.02. A reversed grey scale based on connec-
tion strength is applied to the line color connecting each node for visualization purposes.
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Table B.7: Eigenvector (ε) centrality node ranking for run 1962.02 using the DTW distance as similarity

Rank Instrument Channel ε

1 DMAtrain Ch4 C [#/cc] 0.6458
2 DMAtrain Ch3 C [#/cc] 0.598
3 HTOF UFRA H7O3 0.4055
4 HTOF UFRA H3OH2O 0.157
5 HTOF UFRA O2 0.123
6 HTOF UFRA NH3 0.0594
7 DMAtrain Ch1 C [#/cc] 0.0541
8 DMAtrain Ch2 C [#/cc] 0.0502
9 DMAtrain Ch0 Ch [#/cc] 0.0262
10 SabreTemperature Sabre4Temperature 0.0247
11 Scalers brust 0.0244
12 HTOF UFRA H30 0.0242
13 TDL sat water 0.0223
14 nRDMA Count 0.0222
15 nanoSMPS Total Conc. #/cm 0.0207
16 STOF NAPHTHALENE 0.0185
17 PSM15 conc 0.0172
18 PSM16 conc 0.017
19 PTR3 NAPHTHALENE 0.0167
20 PICARRO NH3 2MIN 0.0166
21 LTOF CPC CPC 0.0166
22 PhotoDiode12 intensity2 0.0166
23 CPC3776 3776-1DisplayConc. 0.0166
24 CAPS NO2 0.0159
25 STOF TOLUENE 0.0155
26 Light Spectrometer LS3 0.0154
27 PSM12 conc 0.0153
28 O3 o3 0.0149
29 STOF TMB 0.0147
30 STOF APINENE 0.0146
31 STOF ACETICACID 0.0146
32 LTOF UFRA HIO 0.0145
33 PTR3 BETACARYOPHYLENE 0.0143
34 PTR3 TOLUENE 0.0134
35 PTR3 PINONALDEHYDE 0.013
36 Light Spectrometer UVH 0.013
37 Light Spectrometer UVX 0.0128
38 PTR3 ISOPRENE 0.0127
39 Fan speed1 0.0126
40 LTOF UFRA DMA 0.0119
41 STOF ACETONE 0.0116
42 PTR3 TMB 0.0115
43 STOF ISOPRENE 0.0114
44 HVFC mvolt1 0.0114
45 PT100 temp1 0.0114
46 LTOF UFRA SA 0.0112
47 PTR3 APINENE 0.0111
48 PTR3 ACETONE 0.011
49 PTR3 ACETICACID 0.0109
50 STOF BETACARYOPHYLENE 0.0109
51 STOF PINONALDEHYDE 0.0108
52 Light Spectrometer LS4 0.0103
53 SO2 so2 0.0098
54 Fan speed2 0.0098
55 NAIS ions Ions neg 0.0095
56 Dew dew 0.0094
57 NAIS ions Ions pos 0.0091
58 Light Spectrometer LS1 0.0083
59 SabreTemperature Sabre3Temperature 0.0083
60 LTOF UFRA NIT 0.0078
61 LongSMPS Particles 20-500 nm 0.0065
62 HVFC mvolt2 0.0061B.13



of light intensity time series and particle concentration measurements. Once again, this measurement should be

used in a reduced set to reduce the chance of spurious similarity, making it not very proper for use in exploratory

analysis.
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Figure B.6: Coherence network graph for the CLOUD experimental run 1962.02. A reversed grey scale based on connection
strength is applied to the line color connecting each node for visualization purposes.

B.2.1.3 Relevant Period Selection

Figure B.7 shows the shaded version of figure B.1, when accounting for event detection, as described in 5.2.

The full dataset is used here because in B.2.1.1 the full data set was deemed more relevant than the reduced set.
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Table B.8: Eigenvector (ε) centrality node ranking for run 1962.02 using the coherence as similarity

Rank Instrument Channel ε

1 HVFC mvolt1 0.1356
2 HTOF UFRA H3OH2O 0.1355
3 DMAtrain Ch3 C [#/cc] 0.1354
4 DMAtrain Ch4 C [#/cc] 0.1351
5 Light Spectrometer LS1 0.135
6 DMAtrain Ch1 C [#/cc] 0.1349
7 HTOF UFRA H7O3 0.1345
8 HTOF UFRA O2 0.1334
9 Light Spectrometer UVX 0.1323
10 LongSMPS Particles 20-500 nm 0.1322
11 LTOF UFRA NIT 0.1322
12 Light Spectrometer LS3 0.1321
13 Light Spectrometer UVH 0.1321
14 STOF BETACARYOPHYLENE 0.1319
15 DMAtrain Ch2 C [#/cc] 0.1316
16 O3 o3 0.1314
17 STOF ISOPRENE 0.1313
18 HTOF UFRA H30 0.1311
19 PTR3 TMB 0.1309
20 PTR3 PINONALDEHYDE 0.1308
21 Scalers brust 0.1307
22 STOF APINENE 0.1307
23 PTR3 ACETICACID 0.1307
24 LTOF UFRA SA 0.1305
25 STOF PINONALDEHYDE 0.1305
26 SO2 so2 0.1303
27 PTR3 ISOPRENE 0.1302
28 PTR3 TOLUENE 0.1301
29 NAIS ions Ions neg 0.1297
30 STOF ACETONE 0.1297
31 STOF ACETICACID 0.1296
32 Light Spectrometer LS4 0.1296
33 NAIS ions Ions pos 0.1296
34 PTR3 APINENE 0.1294
35 STOF TOLUENE 0.1293
36 LTOF UFRA HIO 0.1291
37 LTOF UFRA DMA 0.1291
38 PTR3 BETACARYOPHYLENE 0.129
39 Fan speed1 0.1286
40 HTOF UFRA NH3 0.1283
41 STOF TMB 0.1282
42 HVFC mvolt2 0.1279
43 Dew dew 0.1274
44 PICARRO NH3 2MIN 0.127
45 Fan speed2 0.1267
46 PhotoDiode12 intensity2 0.1266
47 PTR3 NAPHTHALENE 0.1258
48 DMAtrain Ch0 Ch [#/cc] 0.1233
49 nRDMA Count 0.1229
50 CAPS NO2 0.1226
51 SabreTemperature Sabre3Temperature 0.1175
52 STOF NAPHTHALENE 0.1172
53 PT100 temp1 0.1165
54 PTR3 ACETONE 0.1162
55 SabreTemperature Sabre4Temperature 0.1156
56 PSM16 conc 0.1155
57 PSM15 conc 0.1146
58 TDL sat water 0.1096
59 LTOF CPC CPC 0.1055
60 nanoSMPS Total Conc. #/cm 0.1053
61 PSM12 conc 0.1049
62 CPC3776 3776-1DisplayConc. 0.1039B.15



Contrary to the previous run, most events were located in the first half of the experimental run, that are associated

to the increase in charged particles witnessed in both positive and negative particle counters during the first half of

the experimental run. Table B.9 shows the distribution of found events over each data channel. While several of

the PCA-highlighted channels are not present in this table, a total of 4 channels out of the 13 presented contribute

with 75 events, around 40% of the total detected events. While this indicates better selectivity compared with run

1962.01, there is need for optimization of the event detection method, such as defining custom limit parameters to

account for the specifications of each channel.

Table B.9: Events in each period for run 1962.02 using wavelet ME partitioning.

Channel Period 1 Period 2 Period 3 Period 4 Total
nanoSMPS Total Conc. #/cm 9 2 0 6 17
NAIS ions Ions pos 2 4 3 7 16
HTOF UFRA O2 8 7 0 0 15
Fan speed1 7 4 2 0 13
HTOF UFRA NH3 3 4 0 6 13
LongSMPS Particles 20-500 nm 0 8 2 2 12
HVFC mvolt1 9 0 0 0 9
Light Spectrometer LS3 2 4 1 1 8
STOF NAPHTHALENE 2 3 1 2 8
HVFC mvolt2 2 4 0 1 7
NAIS ions Ions neg 0 3 4 0 7
TDL sat water 4 0 1 1 6
Scalers brust 0 0 6 0 6
Light Spectrometer LS4 1 3 0 1 5
Light Spectrometer UVH 2 0 3 0 5
Dew dew 0 0 4 0 4
Fan speed2 0 0 0 3 3
DMAtrain Ch1 C [#/cc] 3 0 0 0 3
PTR3 TOLUENE 1 1 0 0 2
Light Spectrometer LS1 1 0 0 1 2
Light Spectrometer UVX 0 0 0 1 1
CAPS NO2 0 0 1 0 1
PTR3 ACETICACID 1 0 0 0 1
PTR3 NAPHTHALENE 1 0 0 0 1
Total 58 47 28 32 165
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Figure B.7: Most relevant time series for CLOUD experimental run 1962.02 coupled with ranking of specific time periods to
the number of events observed in each event. The time period was divided into 4 distinct sub-periods, which were then tested
for the existence of events. The ranking of each sub-period shades each sub-period more the less events are found. In this case,
as time increases, more events were found in each sub-period.
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B.2.2 Run 1962.03

This run is probably the most different in terms of objectives of all the other runs presented, as its goal is to

eliminate, rather than create particles in the CLOUD chamber. This is done using an electrical field that pushes

particles towards the edges of the chamber, ensuring that said particles be either purged from or sent to the walls of

the chamber. This is required when a significant number of particles exist in the chamber to avoid interference with

further particle generation experiments. During this experimental run, the levels of α-pinene were also increased

from 100 to 250 ppb for further particle generation experiments.

B.2.2.1 Relevant Time Series Highlighting

Figure B.8 shows the most relevant time series. As expected from the description of this run, the α-pinene time se-

ries is highlighted in figure B.8, however, no particle concentration measurements are highlighted, instead showing

two different measurements of other chemical species, specifically NO2 and H3O. It is unclear what the importance

of the H3O channel is, it could be that the measurement is being made below detection limit and the noise of this

specific channel is being highlighted but it is overwhelmingly clear the the NO2 measurement is either being made

below detection limit or is not properly calibrated. There is thus a clear need to either apply a channel-specific

noise reduction model or simply remove these channels from the analysis. Also of note is the reduction in relevant

time series for this run, hinting that there is a reduction of the variance in this run, thus less time series are needed

to explain the same percentage of variance from other runs.
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Figure B.8: Most relevant time series for CLOUD experimental run 1962.03. The compared time series are shown in their
original sampled values, before normalization to give the reader an idea of the absolute change of values. This visualization
can be shown to users to allow for a more detailed study of the results.

Using the reduced set of time series, a change is the output is observed, which is highlighted in figure B.9. While the

α-pinene measurement is still highlighted, now the NO2 and H3O are replaced by a concentration measurement

(PSM12) and a measurement of another chemical species, acetic acid. While the acetic acid measurement still

seems to be a noisy measurement, there is a clear explanation for the highlighting of the particle concentration

measurement as stated earlier. It is also noticeable that reducing the time series set also did not reduce the amount

of information contained since it was still required that three time series explain the same amount of variance. It

thus seems that for this stage, the reduced time series set is a better set to analyze.
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Figure B.9: Most relevant time series for CLOUD experimental run 1962.03 using a reduced set of time series. The compared
time series are shown in their original sampled values, before normalization to give the reader an idea of the absolute change
of values. This visualization can be shown to users to allow for a more detailed study of the results.

B.2.2.2 Time Series Relationships

As discussed in the previous section, the reduced set of time series was determined to be more scientifically

relevant than the full set, unlike previous runs, this will then be the set used to evaluate the relationships between

time series.

B.2.2.2.1 Pearson correlation similarity Figure B.10 shows the similarity network graph using the Pearson

correlation as similarity measurement. Each node is sized according to its eignevector centrality and table B.10

ranks each node also according to its eigenvector centrality, thus it helps identifying the nodes in figure B.10 by

relating larger nodes in the figure with higher ranking nodes in the table.

When analysing both figure and the table, a clear departure from previous stages is seen. Several different time

series are highly ranked in table B.10, ranging from temperature measurements, chemical measurements and light

intensity measurements. This result is in line with the description provided of this run, highlighting two different

α-pinene signals and other organic compounds (e.g: PTR3 Toluene), temperature measurements which can be

explained by thermal load from the increase of the speed of the fans (this is a known taboo issue in CLOUD).

However, very little particle concentration measurements are highlighted and all of them are relegated to the

bottom half of table B.10, making them less statistically relevant for this stage. Once again, several communities

are found using the Louvain algorithm, with little explanation as to the scientific relationships that exist inside each

community.

B.2.2.2.2 Maximum cross-correlation similarity Figure B.11 shows the similarity network with maximum

cross-correlation as a similarity measurement. Once again, table B.11 helps identify nodes in figure B.11 by relat-

ing the size of each node in the figure to an eigenvector centrality in the table (larger nodes are higher ranked in

eigenvector centrality).

Analysing both the figure and the table shows very similar behaviour to using the Pearson correlation, much like

in previous stages. However, particle concentration measurements more and higher ranked for this similarity
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Figure B.10: Pearson correlation network graph for the CLOUD experimental run 1962.03. A reversed grey scale based on
connection strength is applied to the line color connecting each node for visualization purposes.
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Table B.10: Eigenvector (ε) centrality node ranking for run 1962.03 using the Pearson correlation as similarity

Rank Instrument Channel ε

1 PTR3 APINENE 0.3761
2 PT100 temp1 0.3612
3 PTR3 TOLUENE 0.3332
4 O3 o3 0.2988
5 Light Spectrometer LS4 0.2912
6 STOF APINENE 0.2638
7 Light Spectrometer LS3 0.2592
8 Dew dew 0.2451
9 Light Spectrometer UVH 0.2152
10 Light Spectrometer UVX 0.1836
11 CAPS NO2 0.1576
12 Light Spectrometer LS1 0.1543
13 PTR3 ISOPRENE 0.1534
14 Fan speed1 0.1407
15 SO2 so2 0.1288
16 HVFC mvolt1 0.1173
17 TDL sat water 0.1083
18 PICARRO NH3 2MIN 0.0899
19 PTR3 NAPHTHALENE 0.0885
20 STOF ISOPRENE 0.0706
21 nanoSMPS Total Conc. #/cm 0.0699
22 LongSMPS Particles 20-500 nm 0.0435
23 PTR3 BETACARYOPHYLENE 0.0391
24 PTR3 PINONALDEHYDE 0.0291
25 NAIS ions Ions neg 0.0214
26 PTR3 TMB 0.0203
27 Scalers brust 0.019
28 NAIS ions Ions pos 0.0153
29 PSM12 conc 0.006
30 CPC3776 3776-1DisplayConc. 0.006
31 PSM16 conc 0.0058
32 PTR3 ACETONE 0.0055
33 PTR3 ACETICACID 0.0037
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measurements, meaning that there is a potential delayed relationship between time series.
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Figure B.11: Maximum cross-correlation network graph for the CLOUD experimental run 1962.03. A reversed grey scale
based on connection strength is applied to the line color connecting each node for visualization purposes.

B.2.2.2.3 DTW similarity Figure B.12 shows the similarity network with DTW distance as a similarity mea-

surement, with nodes sized according to their eignevector centrality. Table B.12 shows the ranking of nodes

according to their eigenvector centrality, easing the identification of individual nodes in figure B.12.
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Table B.11: Eigenvector (ε) centrality node ranking for run 1962.03 using the maximum cross-correlation as similarity

Rank Instrument Channel ε

1 Light Spectrometer LS4 0.2428
2 PTR3 APINENE 0.2386
3 PT100 temp1 0.2353
4 PTR3 TOLUENE 0.2232
5 Dew dew 0.2231
6 Light Spectrometer LS3 0.2211
7 CAPS NO2 0.2161
8 O3 o3 0.2148
9 Light Spectrometer UVH 0.2105
10 CPC3776 3776-1DisplayConc. 0.2037
11 PSM12 conc 0.2031
12 PSM16 conc 0.1982
13 STOF APINENE 0.1833
14 PTR3 ACETICACID 0.1815
15 nanoSMPS Total Conc. #/cm 0.1779
16 Light Spectrometer LS1 0.1741
17 PTR3 ACETONE 0.1733
18 PICARRO NH3 2MIN 0.1717
19 NAIS ions Ions pos 0.17
20 Light Spectrometer UVX 0.1593
21 NAIS ions Ions neg 0.1476
22 TDL sat water 0.1474
23 Fan speed1 0.1367
24 SO2 so2 0.1358
25 PTR3 ISOPRENE 0.1354
26 LongSMPS Particles 20-500 nm 0.1323
27 PTR3 NAPHTHALENE 0.1315
28 HVFC mvolt1 0.112
29 PTR3 PINONALDEHYDE 0.0943
30 STOF ISOPRENE 0.0819
31 PTR3 BETACARYOPHYLENE 0.0799
32 PTR3 TMB 0.0787
33 Scalers brust 0.0615
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Table B.12: Eigenvector (ε) centrality node ranking for run 1962.03 using the DTW distance as similarity

Rank Instrument Channel ε

1 Fan speed1 0.7063
2 HVFC mvolt1 0.7061
3 PTR3 APINENE 0.0214
4 PT100 temp1 0.0169
5 Light Spectrometer UVX 0.0143
6 Light Spectrometer LS3 0.0138
7 LongSMPS Particles 20-500 nm 0.0101
8 Light Spectrometer LS4 0.0085
9 Dew dew 0.0083
10 STOF APINENE 0.0081
11 CAPS NO2 0.008
12 Light Spectrometer LS1 0.008
13 Light Spectrometer UVH 0.0079
14 O3 o3 0.0079
15 PICARRO NH3 2MIN 0.0077
16 SO2 so2 0.0074
17 NAIS ions Ions pos 0.0074
18 PTR3 TOLUENE 0.0074
19 PTR3 ISOPRENE 0.0068
20 PTR3 ACETICACID 0.0067
21 PTR3 PINONALDEHYDE 0.0063
22 STOF ISOPRENE 0.0062
23 PTR3 TMB 0.0061
24 PTR3 BETACARYOPHYLENE 0.0059
25 NAIS ions Ions neg 0.0058
26 PTR3 ACETONE 0.0058
27 nanoSMPS Total Conc. #/cm 0.0056
28 PSM12 conc 0.0055
29 PTR3 NAPHTHALENE 0.0054
30 CPC3776 3776-1DisplayConc. 0.0053
31 PSM16 conc 0.0049
32 Scalers brust 0.0049
33 TDL sat water 0.0043

Analysing the figure, it is clear that there is a high relevance of the fan speed and high voltage measurement, while

all other measurements appear to be equally as irrelevant. This result is further stressed by analysing the table,

which ranks the first two time series extremely above all others, meaning that both these measurements are very

important to all other measurements. While this is indeed a true result, there are relationships that are left out and

once again it is important to note that the evaluated similarities are extremely small, as evidenced by the reversed

grey scale used in figure B.12. Further investigation is required to determine whether this measurement is valid for

this particular stage.

B.2.2.2.4 Coherence similarity Figure B.12 shows the similarity network graph with coherence as the simi-

larity measurement, with nodes sized according to their eigenvector centrality. Table B.13 ranks nodes according

to their eigenvector centrality, thus simplifying the identification of nodes.

Unlike all other network graphs analysed for this stage, the coherence graph is extremely monotone, finding very
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Figure B.12: DTW similarity network graph for the CLOUD experimental run 1962.03. A reversed grey scale based on
connection strength is applied to the line color connecting each node for visualization purposes.
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little nodes to highlight in favor of others. Two communities are found, again apparently stratifying the set in terms

of the eigenvector centrality, again with little scientific relevance. However, the coherence graph does rank nodes

similarly to the rankings proposed by the other similarity measurements, giving slightly more relevance to the light

intensity measurements.
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Figure B.13: Coherence network graph for the CLOUD experimental run 1962.03. A reversed grey scale based on connection
strength is applied to the line color connecting each node for visualization purposes.
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Table B.13: Eigenvector (ε) centrality node ranking for run 1962.03 using the coherence as similarity

Rank Instrument Channel ε

1 HVFC mvolt1 0.1917
2 Light Spectrometer UVX 0.1914
3 Fan speed1 0.1913
4 Light Spectrometer LS3 0.1911
5 Light Spectrometer LS1 0.1879
6 LongSMPS Particles 20-500 nm 0.1866
7 STOF APINENE 0.1862
8 Light Spectrometer LS4 0.1851
9 PTR3 TOLUENE 0.184
10 SO2 so2 0.1838
11 PICARRO NH3 2MIN 0.1831
12 PTR3 ISOPRENE 0.1831
13 Light Spectrometer UVH 0.183
14 PTR3 PINONALDEHYDE 0.1825
15 STOF ISOPRENE 0.1824
16 PTR3 TMB 0.1818
17 nanoSMPS Total Conc. #/cm 0.1799
18 PTR3 ACETICACID 0.1791
19 O3 o3 0.179
20 PTR3 NAPHTHALENE 0.1787
21 PTR3 BETACARYOPHYLENE 0.1786
22 Scalers brust 0.1784
23 PTR3 APINENE 0.1776
24 Dew dew 0.1772
25 PTR3 ACETONE 0.1765
26 NAIS ions Ions pos 0.1759
27 CAPS NO2 0.1742
28 PT100 temp1 0.172
29 NAIS ions Ions neg 0.1638
30 TDL sat water 0.1443
31 CPC3776 3776-1DisplayConc. 0.094
32 PSM12 conc 0.0823
33 PSM16 conc 0.0749
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B.2.2.3 Relevant Period Selection

Figure B.14 shows the event detection step of the experimental run summary applied to run 1962.03 using the

reduced set of time series since its relevance in this particular stage was stated in B.2.2.1. Table B.14 shows the

distribution of found events over each individual channel. It is shown that the most relevant time period is the first

and last quarter of the experimental run, with some emphasis being given to the third quarter. As stated previously,

this run also had the goal of increasing levels of α-pinene concentrations, this particular increase levels out at the

third period (which can be seen from the toluene time series). Looking at table B.14, several particle concentration

measurements contribute to the total number of events (i.e: LongSMPS, NAIS). The highlighting of these particular

periods is expected for this run since most of the particle changes take place during the first quarter of the run and

during the last quarter their value plateaus in preparation for the following run, signaling again a change of state,

which should trigger more event detection.

Table B.14: Events in each period for run 1962.03 using wavelet ME partitioning.

Channel Period 1 Period 2 Period 3 Period 4 Total
Light Spectrometer LS3 5 2 8 4 19
Scalers brust 9 0 0 9 18
LongSMPS Particles 20-500 nm 5 8 3 1 17
NAIS ions Ions pos 0 9 0 7 16
Light Spectrometer UVX 8 2 3 3 16
HVFC mvolt2 9 0 7 0 16
Light Spectrometer LS4 4 2 4 4 14
NAIS ions Ions neg 0 0 5 8 13
nanoSMPS Total Conc. #/cm 0 0 4 8 12
DMAtrain Ch1 C [#/cc] 3 0 7 2 12
Light Spectrometer UVH 2 3 2 4 11
Light Spectrometer LS1 3 1 0 5 9
Fan speed1 9 0 0 0 9
Fan speed2 9 0 0 0 9
Dew dew 0 0 6 0 6
DMAtrain Ch0 Ch [#/cc] 5 0 0 0 5
PTR3 APINENE 1 1 1 1 4
PTR3 PINONALDEHYDE 1 1 1 1 4
PTR3 BETACARYOPHYLENE 1 1 1 1 4
PTR3 ACETICACID 1 1 1 1 4
PTR3 ISOPRENE 1 1 1 1 4
PTR3 NAPHTHALENE 1 1 1 1 4
CAPS NO2 0 0 0 3 3
PTR3 TOLUENE 1 1 1 0 3
PTR3 ACETONE 1 1 1 0 3
PTR3 TMB 1 1 1 0 3
STOF ACETICACID 0 0 2 0 2
STOF NAPHTHALENE 0 0 0 2 2
STOF ISOPRENE 0 0 0 1 1
STOF BETACARYOPHYLENE 0 0 0 1 1
STOF APINENE 0 0 0 1 1
STOF TOLUENE 0 0 0 1 1
TDL sat water 0 0 1 0 1
Total 80 36 61 70 247
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Figure B.14: Most relevant time series for CLOUD experimental run 1962.03 coupled with ranking of specific time periods to
the number of events observed in each event. The time period was divided into 4 distinct sub-periods, which were then tested
for the existence of events. The ranking of each sub-period shades each sub-period more the less events are found. In this case,
the first and fourth period show most detected events, respectively.

B.2.3 Run 1962.04

This run is very similar run to 1962.01 since the goal is to generate neutral particles where the only difference is

an increase in the α-pinene concentration. It is thus expected that particle generation be highlighted except for

charged particle counters.

B.2.3.1 Relevant Time Series Highlighting

Figure B.15 shows the most relevant channels according to the PCA highlighting step. As expected, a good part of

the highlighted time series are particle generation measurements. Of note the highlighting of the light spectrometer

time series, indicating the relevance of light sources towards new particle formation. However, the highlighting of

chemical measurements such as the pinonaldehyde and SO2 time series, seem to be measuring at a constant rate

and at very small and possibly below detection limit, which is not expected to happen. The reduced set should be

considered for this stage.

Figure B.16 shows the result of the highlighting using the reduced set of time series. This result more accurately

shows the relevant time series of this run, highlighting the same particle concentration and measurements as in

the full set, but highlighting the light spectrometer, α-pinene and O3 time series, which are all relevant series

for particle generation. Another noticeable fact is that the reduced set produces a reduced amount of time series,

meaning that reducing the set removed some of the variance of the full set, thus information was lost with the

removal of certain channels. However, it is more likely that the information contained in the removed channels

was that of unimportant noise. Since a significant amount of time series was maintained by using the reduced set,

this one will be used in further analysis of this stage, though this decision is debatable.

B.2.3.2 Time Series Relationships

As discussed in the previous section, the reduced set was (though this decision is debatable), chosen to be the

representative set to analyse.
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Figure B.15: Most relevant time series for CLOUD experimental run 1962.04 using the full data set. The compared time series
are shown in their original sampled values, before normalization to give the reader an idea of the absolute change of values.
This visualization can be shown to users to allow for a more detailed study of the results.
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Figure B.16: Most relevant time series for CLOUD experimental run 1962.04 using the reduced data set. The compared time
series are shown in their original sampled values, before normalization to give the reader an idea of the absolute change of
values. This visualization can be shown to users to allow for a more detailed study of the results.
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Table B.15: Eigenvector (ε) centrality node ranking for run 1962.04 using the Pearson correlation as similarity

Rank Instrument Channel ε

1 Light Spectrometer LS4 0.3743
2 PT100 temp1 0.3708
3 PTR3 APINENE 0.3634
4 Light Spectrometer UVH 0.343
5 PTR3 TOLUENE 0.3118
6 NAIS ions Ions neg 0.2959
7 PTR3 ACETONE 0.2911
8 Light Spectrometer LS3 0.2705
9 Light Spectrometer LS1 0.2425
10 Light Spectrometer UVX 0.1874
11 NAIS ions Ions pos 0.1121
12 Fan speed1 0.0763
13 PTR3 ISOPRENE 0.0747
14 STOF APINENE 0.0624
15 Dew dew 0.0456
16 SO2 so2 0.045
17 CAPS NO2 0.0385
18 Scalers brust 0.0245
19 PTR3 NAPHTHALENE 0.0212
20 PICARRO NH3 2MIN 0.0177
21 CPC3776 3776-1DisplayConc. 0.0126
22 PSM12 conc 0.0124
23 PSM16 conc 0.0122
24 LongSMPS Particles 20-500 nm 0.0111
25 PTR3 ACETICACID 0.0106
26 O3 o3 0.0097
27 nanoSMPS Total Conc. #/cm 0.0069
28 PTR3 PINONALDEHYDE 0.0067
29 PTR3 TMB 0.0059
30 STOF ISOPRENE 0.0056
31 TDL sat water 0.0055
32 PTR3 BETACARYOPHYLENE 0.0051
33 HVFC mvolt1 0.005

B.2.3.2.1 Pearson correlation similarity Figure B.17 shows the similarity network graph using the Pearson

correlation coefficient as a similarity measurement. Each node is sized according to their respective eigenvector

centrality, thus the larger the centrality, the larger the node. Table B.15 ranks each node according to its eigenvector

centrality and thus is useful to identify individual nodes in figure B.17.

Analysing figure B.17 and aided by the coloring provided by the communities found by the Louvain algorithm,

it is clear that there are three different sets of time series, loosely related to their rank in table B.15. The first set

contains several particle concentration, light intensity measurements, temperature and organic chemical species

(α-pinene and toluene). While most relationships are in line with the ones found in the sames stage at lower α-

pinene concentrations (discussed in 5.2.5.2), the highlighting of the time series for organic compounds, temperature

and charged particle concentrations is not expected. One explanation for this behavior is due to the fact that the

transition between stages is abrupt and could have been set during a time when proper balance was not achieved.

This would explain the relevance in temperature change (which fluctuates over 0.1°C during this run, something

very unexpected in CLOUD).
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Figure B.17: Pearson correlation network graph for the CLOUD experimental run 1962.04. A reversed grey scale based on
connection strength is applied to the line color connecting each node for visualization purposes.
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Table B.16: Eigenvector (ε) centrality node ranking for run 1962.04 using the maximum cross-correlation as similarity

Rank Instrument Channel ε

1 PT100 temp1 0.2536
2 Light Spectrometer LS4 0.2522
3 PTR3 APINENE 0.2474
4 Light Spectrometer UVH 0.2344
5 NAIS ions Ions neg 0.2309
6 PTR3 TOLUENE 0.2272
7 CPC3776 3776-1DisplayConc. 0.2233
8 PSM12 conc 0.2229
9 PSM16 conc 0.2221
10 Light Spectrometer LS3 0.2065
11 LongSMPS Particles 20-500 nm 0.2041
12 PTR3 ACETICACID 0.2037
13 PTR3 ACETONE 0.2036
14 Light Spectrometer LS1 0.1848
15 CAPS NO2 0.1813
16 NAIS ions Ions pos 0.1644
17 Light Spectrometer UVX 0.1643
18 PTR3 PINONALDEHYDE 0.1643
19 nanoSMPS Total Conc. #/cm 0.1606
20 O3 o3 0.1536
21 Dew dew 0.1531
22 PICARRO NH3 2MIN 0.1265
23 Fan speed1 0.1219
24 TDL sat water 0.1219
25 SO2 so2 0.1089
26 PTR3 TMB 0.1062
27 HVFC mvolt1 0.0966
28 STOF APINENE 0.0935
29 PTR3 ISOPRENE 0.0781
30 PTR3 NAPHTHALENE 0.0769
31 PTR3 BETACARYOPHYLENE 0.0725
32 Scalers brust 0.07
33 STOF ISOPRENE 0.0656

B.2.3.2.2 Maximum cross-correlation similarity Figure B.18 shows the similarity network graph with the

maximum cross-correlation between time series as a similarity measurement. Once again, table B.16 ranks each

node according to their eigenvector centrality, which aids in identifying individual nodes in figure B.18, which

sizes each node also according to their eigenvector centrality.

Analysing table B.16 shows very similar results to the previous analysis, with higher importance provided to

charged particle concentration and temperature measurements and keeping organic compound signals on a promi-

nent rank. On the positive side, several other particle concentration measurements rise in rank. Once again three

communities are found, again dividing the set of time series according to their eigenvector centrality. The relative

similarities between this method and the previous one show that even when considering delays between signals,

there is a statistically significant behavior in the temperature and charged species time series and their behavior

should be studied.

B.2.3.2.3 DTW similarity Figure B.19 shows the similarity network graph using DTW distance as a similarity

measurement. As with all other network graphs, nodes are sized according to their eigenvector centrality and table
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Figure B.18: Maximum cross-correlation network graph for the CLOUD experimental run 1962.04. A reversed grey scale
based on connection strength is applied to the line color connecting each node for visualization purposes.

B.34



Table B.17: Eigenvector (ε) centrality node ranking for run 1962.04 using the DTW distance as similarity

Rank Instrument Channel ε

1 CPC3776 3776-1DisplayConc. 0.4837
2 PSM12 conc 0.482
3 LongSMPS Particles 20-500 nm 0.2694
4 PSM16 conc 0.2299
5 PTR3 PINONALDEHYDE 0.1486
6 PICARRO NH3 2MIN 0.1441
7 PTR3 ACETICACID 0.1427
8 Light Spectrometer LS1 0.1362
9 O3 o3 0.1351
10 PTR3 ACETONE 0.1338
11 STOF ISOPRENE 0.1336
12 PTR3 BETACARYOPHYLENE 0.1328
13 PTR3 ISOPRENE 0.1312
14 SO2 so2 0.1274
15 PTR3 TMB 0.1264
16 nanoSMPS Total Conc. #/cm 0.1262
17 PTR3 NAPHTHALENE 0.1259
18 STOF APINENE 0.1244
19 PTR3 APINENE 0.1224
20 CAPS NO2 0.1204
21 Light Spectrometer LS4 0.1189
22 PTR3 TOLUENE 0.1188
23 NAIS ions Ions neg 0.1165
24 NAIS ions Ions pos 0.1155
25 Dew dew 0.1052
26 Scalers brust 0.1026
27 PT100 temp1 0.1025
28 TDL sat water 0.1018
29 Light Spectrometer UVX 0.0968
30 Light Spectrometer UVH 0.0912
31 HVFC mvolt1 0.0708
32 Light Spectrometer LS3 0.0703
33 Fan speed1 0.0546

B.17 ranks each node according to its eigenvector centrality, thus simplifying the identification of each node.

Analysing the figure and table shows a departure from the two previous methods, relegating the temperature and

charged particle concentration measurements to the bottom half of table B.17 and highlighting several other particle

concentration measurements, such that the Louvain algorithm also highlights the 4 most highly ranked time series

as a single community. This result in more in line with the scientific relevance of the run, however, some importance

is given to clearly noisy time series such as the pinonaldehyde signal, which casts doubt as to whether this similarity

measurement is proper to apply to CLOUD measurements. Another argument against DTW, which is also shared

with all other DTW network graphs, is the consistently weak relationships found between nodes when using this

similarity.

B.2.3.2.4 Coherence similarity Figure B.20 shows the similarity network graph using coherence as the simi-

larity measurement. Once again, table B.23 helps identifying nodes in the network graph by relating nodes sizes

to their eigenvector centrality.
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Figure B.19: DTW similarity network graph for the CLOUD experimental run 1962.04. A reversed grey scale based on
connection strength is applied to the line color connecting each node for visualization purposes.
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Analysing figure B.20 one can see another monotone graph with very hardly any node visually highlighted, much

like the same graph of stage 1962.01 (figure 5.37). Table B.23 shows that the light intensity and organic compound

measurements are highlighted over others but by a small margin. This is not in line with the results produced

by other similarity measurements and casts doubt once again in the validity of using coherence as a similarity

measurement for CLOUD measurements.

Stage 1962.04

2 communities found

NAIS_ions
Ions_pos

CPC3776
3776-1DisplayConc.

Light_Spectrometer
LS4

PSM12
conc

CAPS
NO2

PSM16
conc

PTR3
TOLUENE

nanoSMPS
Total Conc.  #/cm 

NAIS_ions
Ions_neg

HVFC
mvolt1

STOF
ISOPRENE

SO2
so2

PTR3
APINENE

PTR3
NAPHTHALENE

LongSMPS
Particles  20-500 nm 

Dew
dew

O3
o3

STOF
APINENE

PICARRO
NH3_2MIN

Light_Spectrometer
UVH

PTR3
PINONALDEHYDE

PT100
temp1

Light_Spectrometer
LS1

Light_Spectrometer
UVX

PTR3
ISOPRENE

PTR3
ACETONE

Light_Spectrometer
LS3

PTR3
BETACARYOPHYLENE

TDL
sat_water

PTR3
ACETICACID

PTR3
TMB

Scalers
brust

Figure B.20: Coherence network graph for the CLOUD experimental run 1962.04. A reversed grey scale based on connection
strength is applied to the line color connecting each node for visualization purposes.
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Table B.18: Eigenvector (ε) centrality node ranking for run 1962.04 using the coherence as similarity

Rank Instrument Channel ε

1 Light Spectrometer LS3 0.1942
2 Light Spectrometer UVX 0.1937
3 Light Spectrometer UVH 0.193
4 STOF ISOPRENE 0.1881
5 Scalers brust 0.1869
6 PTR3 ISOPRENE 0.1863
7 Light Spectrometer LS1 0.1862
8 O3 o3 0.1859
9 PTR3 TMB 0.1859
10 STOF APINENE 0.1855
11 PTR3 BETACARYOPHYLENE 0.185
12 Dew dew 0.1849
13 PTR3 PINONALDEHYDE 0.1847
14 SO2 so2 0.1844
15 PICARRO NH3 2MIN 0.1839
16 HVFC mvolt1 0.1837
17 LongSMPS Particles 20-500 nm 0.1833
18 PTR3 ACETONE 0.1817
19 PTR3 TOLUENE 0.1807
20 PTR3 ACETICACID 0.1801
21 PTR3 NAPHTHALENE 0.1799
22 PTR3 APINENE 0.1789
23 Light Spectrometer LS4 0.1763
24 NAIS ions Ions neg 0.1758
25 PT100 temp1 0.1686
26 nanoSMPS Total Conc. #/cm 0.1629
27 NAIS ions Ions pos 0.1619
28 CAPS NO2 0.1571
29 TDL sat water 0.1418
30 PSM16 conc 0.1393
31 PSM12 conc 0.1375
32 CPC3776 3776-1DisplayConc. 0.1315
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B.2.3.3 Relevant Period Selection

Figure B.21 shows the shaded version of figure B.16, since the reduced set was deemed more relevant than the full

set, taking into account detected events while table ?? shows the distribution of detected events during run 1962.04.

For this particular run, the most relevant time period is the first quarter, while all other three periods are ranked

in a very similar fashion. This is not the expected behavior, since the particle generation is mostly detected from

the second period onward. One possible explanation is the influence of the cleaning run 1962.03 in the particle

generation run 1962.04 that might have created the conditions for several events to be focused on the beginning of

the run due to the change in operational mode. This could be resolved by ignoring an initial fraction of each run

period before applying the run summary algorithm. Another more likely explanation is the existence non-filtered

noise coming from several time series during this run. Looking at table B.19 it can be seen that most particle

counter time series correctly detect events from the second period onward, but the number of events detected in

said periods are small compared to the events (possibly spurious) detected from all other time series during the first

period. Regarding the highlighted time series, 4 time series contribute a total of 57 events (around 50% of total

events).

Table B.19: Events in each period for run 1962.04 using wavelet ME partitioning.

Channel Period 1 Period 2 Period 3 Period 4 Total
HVFC mvolt1 4 9 6 0 19
nanoSMPS Total Conc. #/cm 3 1 7 3 14
LongSMPS Particles 20-500 nm 8 5 0 0 13
TDL sat water 0 3 2 6 11
Light Spectrometer LS3 4 2 0 3 9
Fan speed1 6 0 2 0 8
Light Spectrometer UVX 5 0 1 1 7
Light Spectrometer UVH 4 0 1 1 6
NAIS ions Ions pos 0 0 0 6 6
NAIS ions Ions neg 0 0 4 2 6
Light Spectrometer LS4 2 1 0 0 3
PSM12 conc 0 3 0 0 3
Light Spectrometer LS1 0 1 0 2 3
PTR3 APINENE 1 0 1 0 2
PTR3 ACETONE 1 0 1 0 2
PTR3 TMB 1 0 1 0 2
CAPS NO2 0 0 0 2 2
PTR3 BETACARYOPHYLENE 1 0 1 0 2
PTR3 ACETICACID 1 0 0 0 1
PTR3 TOLUENE 1 0 0 0 1
PTR3 PINONALDEHYDE 1 0 0 0 1
PTR3 ISOPRENE 1 0 0 0 1
PTR3 NAPHTHALENE 1 0 0 0 1
Total 45 25 27 26 123
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Figure B.21: Most relevant time series for CLOUD experimental run 1962.04 coupled with ranking of specific time periods to
the number of events observed in each event. In this case, most events were found in the first sub-period.

B.2.4 Run 1962.05

This last run is most similar in scope to run 1962.02, using increased α-pinene concentrations. It is expected that

charged particles be a highlight of this run along with other particle counter time series.

B.2.4.1 Relevant Time Series Highlighting

Figure B.22 shows the most relevant time series for run 1962.05. Contrary to other experiments this run presents

the least amount of highlighted channels and does not show the expected charged particle counters. Again, parti-

cle concentration time series are highlighted, bringing emphasis to the particle generation during this run. Also,

two light spectrometer time series are also highlighted which emphasises the importance of light during this run.

The Dew Point time series is also highlighted, which could still be of spurious as explained in the analysis of run

1962.03. Relevance is also given to the NO2 and O3 while no particular explanation exists for their highlight-

ing.

Figure B.23 show the result of the highlighting using the reduced time series set. Both sets highlight the same

number of time series, meaning that little information was lost when switching to a reduced set. Both sets highlight

the ion particle concentration measurement as well as other particle concentration measurements, however, using

the full set highlights the measurement of acetic acid, while the reduced set highlights the light spectrometer

measurements. Since either seem to measure at the same degree of variance it is unclear whether the reduced set

improves the scientific analysis of the data set, thus the full set will be maintained for this stage.
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Figure B.22: Most relevant time series for CLOUD experimental run 1962.05. The compared time series are shown in their
original sampled values, before normalization to give the reader an idea of the absolute change of values. This visualization
can be shown to users to allow for a more detailed study of the results.
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Figure B.23: Most relevant time series for CLOUD experimental run 1962.05 using the reduced time series set. The compared
time series are shown in their original sampled values, before normalization to give the reader an idea of the absolute change
of values. This visualization can be shown to users to allow for a more detailed study of the results.

B.2.4.2 Time Series Relationships

Since in the previous section it was determined that the full time series set is the one that will more reliably contain

the most relevant information to analyse, that will be the data set used to analyse the relationships between time

series for this stage

B.2.4.2.1 Pearson correlation similarity Figure B.24 shows the similarity network graph using the Pearson

correlation coefficient as the similarity measurement. Each node in the figure is sized according to the its eigen-

vector centrality and table B.20 ranks each node according to its eigenvector centrality and thus can be used to

identify individual nodes in figure B.24.

Analysing figure B.24 shows a clear separation between two sets of nodes on the left and right side of the graph.

The coloring is a result of the Louvain algorithm separating each node into their community, four of which were

found for this graph. While each community stratifies the data set further by grouping loosely based on their

eigenvector centrality, very little scientific explanation is available to explain the reason for each community.

Analysing table B.20 it is clear the main focus is on highlighting particle concentration measurements, such that

the first third of the table is comprises almost entirely of particle concentration measurements. This is a similar

result as the one obtained in the analogous charged particle stage 1962.02 (discussed in B.2.1.2) except that for

that stage there was a larger relevance given to the light intensity measurements.
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Figure B.24: Pearson correlation network graph for the CLOUD experimental run 1962.05. A reversed grey scale based on
connection strength is applied to the line color connecting each node for visualization purposes.
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Table B.20: Eigenvector (ε) centrality node ranking for run 1962.05 using the Pearson correlation as similarity

Rank Instrument Channel ε

1 LTOF CPC CPC 0.2887
2 PSM12 conc 0.2887
3 CPC3776 3776-1DisplayConc. 0.2885
4 PSM16 conc 0.2816
5 nanoSMPS Total Conc. #/cm 0.2789
6 PSM15 conc 0.2776
7 LongSMPS Particles 20-500 nm 0.2658
8 NAIS ions Ions neg 0.262
9 NAIS ions Ions pos 0.2573
10 DMAtrain Ch5 C [#/cc] 0.2211
11 DMAtrain Ch0 Ch [#/cc] 0.2066
12 DMAtrain Ch4 C [#/cc] 0.2049
13 DMAtrain Ch1 C [#/cc] 0.1939
14 Light Spectrometer LS4 0.1505
15 DMAtrain Ch3 C [#/cc] 0.1466
16 Light Spectrometer LS3 0.1444
17 STOF ACETICACID 0.1164
18 Light Spectrometer UVH 0.1138
19 Light Spectrometer LS1 0.1102
20 nRDMA Count 0.1094
21 DMAtrain Ch2 C [#/cc] 0.0975
22 PICARRO NH3 2MIN 0.0568
23 PTR3 TOLUENE 0.0427
24 PTR3 BETACARYOPHYLENE 0.0409
25 Light Spectrometer UVX 0.036
26 STOF TMB 0.0327
27 STOF PINONALDEHYDE 0.0289
28 Scalers brust 0.0281
29 STOF TOLUENE 0.0235
30 SO2 so2 0.0216
31 PTR3 PINONALDEHYDE 0.0188
32 PTR3 TMB 0.0178
33 Fan speed2 0.0166
34 STOF APINENE 0.0162
35 Dew dew 0.0136
36 PhotoDiode12 intensity 0.0128
37 O3 o3 0.0127
38 Fan speed1 0.01
39 STOF ISOPRENE 0.0069
40 PTR3 APINENE 0.0061
41 PTR3 NAPHTHALENE 0.0046
42 TDL sat water 0.0044
43 LTOF UFRA HIO 0.0037
44 PTR3 ISOPRENE 0.0032
45 SabreTemperature Sabre3Temperature 0.0018
46 LTOF UFRA SA 0.0016
47 LTOF UFRA NIT 0.0015
48 SabreTemperature Sabre4Temperature 0.0013
49 PTR3 ACETICACID 0.0009
50 HVFC mvolt2 0.0009
51 HVFC mvolt1 0.0008
52 STOF BETACARYOPHYLENE 0.0006
53 LTOF UFRA DMA 0.0006
54 CAPS NO2 0.0005
55 STOF NAPHTHALENE 0.0005
56 PTR3 ACETONE 0.0005
57 STOF ACETONE 0.0004
58 PT100 temp1 0.0003
59 PhotoDiode12 intensity2 0.0003
60 HTOF UFRA H30 0.0002
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B.2.4.2.2 Maximum cross-correlation similarity Figure B.25 shows the similarity network graph using the

maximum cross-correlation between time series as the similarity measurement. Once again, table B.21 ranks nodes

according to their eigenvector centrality and helps identifying individual nodes in figure B.25.

Analysing the figure, one is drawn to a set of highlighted nodes containing mostly light intensity and particle

concentration measurements. This set is also further highlighted by the coloring provided by community detec-

tion via the Louvain algorithm. For this graph the communities seem to separate the data set according to their

proximity in eigenvector centrality value but no further scientific meaning can be found to explain the reason for

each run. Looking at table B.21 one can notice the same trend as in the previous analysis a lot more emphasis is

given to particle concentration measurements and less emphasis given to light intensity measurements when com-

pared to the previous charged particle generation run. This could be explained by the fact that at higher α-pinene

concentrations, it is expected that the rate of particle generations increases and thus a sharper increase in particle

concentrations is noticed and thus a larger relevance be given in this run to particle concentration measurements.

The similarities between using maximum cross-correlation and the Pearson correlation mean that no significant

delays are found between the analysed time series.

B.2.4.2.3 DTW similarity Figure B.26 shows the similarity network graph using DTW distance as a similarity

measurement. As always, table B.22 aids in identifying individual nodes in figure B.26 by ranking each node by

their eigenvector centrality (each node in the figure is also sized according to their eigenvector centrality).

Analysing figure B.26 shows clearly spurious relationships between both electrical field voltage time series, which

are turned off at the same time and thus is expected to be highlighted. However, this relationship is so high

that it saturates other possibly relevant relationships. The Louvain algorithm highlights the existence of four

communities, once again, relating nodes to their eigenvector centrality values. It is once again clear that the

DTW distance measurement is very sensitive to same instrument spurious relationships and an analysis with this

similarity measurement would be improved using a reduced set of time series.

B.2.4.2.4 Coherence similarity Figure B.27 shows the similarity network graph with coherence as the simi-

larity measurement. Once again, each node is sized according to its eigenvector centrality and table B.23 aids in

identifying each individual node by ranking each node according to the same centrality.

Analysing figure B.27 the reader is once again presented with a mostly monotone graph with the exception of a

completely isolated and obviously low ranked group containing electrical field voltage measurements and one light

intensity measurement. There is no immediate reason for the relationship between voltage and light intensity, since

they are completely separated systems, thus it is assumed that this is a spurious relationship. Table B.23 shows that

there is not particularly stand out time series, which also points that most relationships found are spurious. Once

again coherence results further support the argument that this similarity measurement has little use for this set of

CLOUD measurements.
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Figure B.25: Maximum cross-correlation network graph for the CLOUD experimental run 1962.05. A reversed grey scale
based on connection strength is applied to the line color connecting each node for visualization purposes.
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Table B.21: Eigenvector (ε) centrality node ranking for run 1962.05 using the maximum cross-correlation as similarity

Rank Instrument Channel ε

1 PSM12 conc 0.2448
2 LTOF CPC CPC 0.2447
3 CPC3776 3776-1DisplayConc. 0.2446
4 PSM16 conc 0.2425
5 PSM15 conc 0.2401
6 nanoSMPS Total Conc. #/cm 0.2401
7 NAIS ions Ions neg 0.2372
8 NAIS ions Ions pos 0.2334
9 LongSMPS Particles 20-500 nm 0.2321
10 DMAtrain Ch5 C [#/cc] 0.2031
11 DMAtrain Ch0 Ch [#/cc] 0.1891
12 DMAtrain Ch4 C [#/cc] 0.1886
13 DMAtrain Ch1 C [#/cc] 0.1783
14 Light Spectrometer LS4 0.1775
15 Light Spectrometer LS3 0.1738
16 Light Spectrometer UVH 0.1665
17 STOF ACETICACID 0.1555
18 Light Spectrometer LS1 0.1434
19 DMAtrain Ch3 C [#/cc] 0.1412
20 CAPS NO2 0.1234
21 nRDMA Count 0.1127
22 PhotoDiode12 intensity2 0.1115
23 PT100 temp1 0.1058
24 DMAtrain Ch2 C [#/cc] 0.1042
25 PTR3 ACETONE 0.0958
26 PTR3 ACETICACID 0.0944
27 PICARRO NH3 2MIN 0.0942
28 Light Spectrometer UVX 0.0914
29 Dew dew 0.0768
30 LTOF UFRA NIT 0.0678
31 STOF ISOPRENE 0.0668
32 PTR3 TOLUENE 0.0641
33 O3 o3 0.0605
34 PTR3 NAPHTHALENE 0.06
35 STOF TOLUENE 0.0598
36 PTR3 BETACARYOPHYLENE 0.0598
37 STOF TMB 0.059
38 TDL sat water 0.0558
39 SO2 so2 0.0547
40 HTOF UFRA H30 0.0541
41 Scalers brust 0.053
42 HVFC mvolt2 0.0521
43 HVFC mvolt1 0.0517
44 PTR3 TMB 0.049
45 PTR3 APINENE 0.0488
46 STOF PINONALDEHYDE 0.0486
47 PhotoDiode12 intensity 0.0468
48 STOF APINENE 0.0463
49 LTOF UFRA HIO 0.0462
50 LTOF UFRA DMA 0.0462
51 LTOF UFRA SA 0.0455
52 PTR3 PINONALDEHYDE 0.045
53 STOF BETACARYOPHYLENE 0.043
54 Fan speed2 0.0413
55 STOF NAPHTHALENE 0.0402
56 STOF ACETONE 0.0402
57 Fan speed1 0.037
58 PTR3 ISOPRENE 0.0364
59 SabreTemperature Sabre4Temperature 0.0266
60 SabreTemperature Sabre3Temperature 0.0239
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Stage 1962.05

4 communities found
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Figure B.26: DTW similarity network graph for the CLOUD experimental run 1962.05. A reversed grey scale based on
connection strength is applied to the line color connecting each node for visualization purposes.
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Table B.22: Eigenvector (ε) centrality node ranking for run 1962.05 using the DTW distance as similarity

Rank Instrument Channel ε

1 HVFC mvolt1 0.6752
2 HVFC mvolt2 0.6692
3 PhotoDiode12 intensity 0.2604
4 PSM12 conc 0.0674
5 LTOF CPC CPC 0.0673
6 CPC3776 3776-1DisplayConc. 0.0663
7 NAIS ions Ions neg 0.0444
8 LongSMPS Particles 20-500 nm 0.044
9 NAIS ions Ions pos 0.0362
10 PSM16 conc 0.0248
11 STOF NAPHTHALENE 0.0241
12 PSM15 conc 0.0231
13 STOF BETACARYOPHYLENE 0.0212
14 TDL sat water 0.0189
15 nanoSMPS Total Conc. #/cm 0.0186
16 STOF ACETONE 0.0185
17 DMAtrain Ch1 C [#/cc] 0.0179
18 DMAtrain Ch4 C [#/cc] 0.017
19 DMAtrain Ch3 C [#/cc] 0.0159
20 nRDMA Count 0.0157
21 SabreTemperature Sabre4Temperature 0.0144
22 Scalers brust 0.0144
23 DMAtrain Ch2 C [#/cc] 0.0139
24 DMAtrain Ch0 Ch [#/cc] 0.0137
25 PTR3 TMB 0.0135
26 DMAtrain Ch5 C [#/cc] 0.0134
27 PTR3 NAPHTHALENE 0.0125
28 PTR3 PINONALDEHYDE 0.0125
29 STOF ACETICACID 0.0125
30 PTR3 TOLUENE 0.0124
31 PTR3 BETACARYOPHYLENE 0.0122
32 PhotoDiode12 intensity2 0.0121
33 Light Spectrometer LS1 0.0121
34 PTR3 ISOPRENE 0.0119
35 Light Spectrometer LS4 0.0118
36 Light Spectrometer LS3 0.0117
37 STOF TOLUENE 0.0117
38 STOF TMB 0.0116
39 Light Spectrometer UVH 0.0115
40 PTR3 ACETONE 0.0115
41 LTOF UFRA HIO 0.0114
42 PICARRO NH3 2MIN 0.0114
43 LTOF UFRA DMA 0.0114
44 PTR3 ACETICACID 0.0113
45 SO2 so2 0.011
46 LTOF UFRA SA 0.0108
47 Light Spectrometer UVX 0.0108
48 O3 o3 0.0108
49 PT100 temp1 0.0106
50 HTOF UFRA H30 0.0105
51 Fan speed2 0.0105
52 CAPS NO2 0.0104
53 PTR3 APINENE 0.0102
54 Dew dew 0.0101
55 Fan speed1 0.01
56 STOF APINENE 0.0097
57 STOF PINONALDEHYDE 0.0086
58 SabreTemperature Sabre3Temperature 0.0085
59 STOF ISOPRENE 0.0075
60 LTOF UFRA NIT 0.0064
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Figure B.27: Coherence network graph for the CLOUD experimental run 1962.05. A reversed grey scale based on connection
strength is applied to the line color connecting each node for visualization purposes.
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Table B.23: Eigenvector (ε) centrality node ranking for run 1962.04 using the coherence as similarity

Rank Instrument Channel ε

1 Light Spectrometer LS3 0.1411
2 Light Spectrometer UVX 0.1408
3 HTOF UFRA O2 0.1407
4 HTOF UFRA NH3 0.1406
5 HVFC mvolt2 0.1403
6 Light Spectrometer UVH 0.14
7 HTOF UFRA H3OH2O 0.1399
8 HTOF UFRA H7O3 0.1392
9 DMAtrain Ch2 C [#/cc] 0.1383
10 DMAtrain Ch3 C [#/cc] 0.1378
11 STOF ISOPRENE 0.1367
12 Scalers brust 0.1357
13 LTOF UFRA NIT 0.1354
14 STOF BETACARYOPHYLENE 0.1354
15 O3 o3 0.1352
16 PTR3 TMB 0.1351
17 PTR3 ISOPRENE 0.135
18 LTOF UFRA SA 0.1349
19 PTR3 PINONALDEHYDE 0.1349
20 Light Spectrometer LS1 0.1348
21 LTOF UFRA HIO 0.1346
22 STOF APINENE 0.1344
23 PTR3 BETACARYOPHYLENE 0.1343
24 STOF ACETONE 0.1341
25 STOF TOLUENE 0.134
26 SO2 so2 0.134
27 LongSMPS Particles 20-500 nm 0.134
28 PICARRO NH3 2MIN 0.1339
29 Dew dew 0.1338
30 HVFC mvolt1 0.1337
31 LTOF UFRA DMA 0.1332
32 STOF PINONALDEHYDE 0.1329
33 STOF TMB 0.1327
34 HTOF UFRA H30 0.1321
35 STOF ACETICACID 0.1321
36 PTR3 ACETICACID 0.1313
37 PTR3 ACETONE 0.131
38 PTR3 NAPHTHALENE 0.1304
39 PTR3 TOLUENE 0.1304
40 DMAtrain Ch4 C [#/cc] 0.1303
41 DMAtrain Ch1 C [#/cc] 0.129
42 PTR3 APINENE 0.1284
43 DMAtrain Ch0 Ch [#/cc] 0.1277
44 PhotoDiode12 intensity2 0.1267
45 Light Spectrometer LS4 0.1265
46 SabreTemperature Sabre3Temperature 0.1265
47 NAIS ions Ions neg 0.1264
48 SabreTemperature Sabre4Temperature 0.1244
49 PT100 temp1 0.121
50 nanoSMPS Total Conc. #/cm 0.1182
51 STOF NAPHTHALENE 0.1167
52 NAIS ions Ions pos 0.1164
53 CAPS NO2 0.1132
54 TDL sat water 0.103
55 PSM16 conc 0.1026
56 PSM12 conc 0.1012
57 nRDMA Count 0.1
58 PSM15 conc 0.099
59 LTOF CPC CPC 0.0972
60 CPC3776 3776-1DisplayConc. 0.0966
61 Fan speed1 0.0
62 Fan speed2 0.0B.50



B.2.4.3 Relevant Period Selection

Figure B.28 shows the event highlighting periods and table B.24 shows the distribution of the detected events over

each channel. The first period was found to be the most relevant and the third period also showing significant

emphasis. The latter was attributed to the correcting of a failure of the charged particle beam used in CLOUD

during the first half of the run. A large amount of detected events are found for the beam particle counter (scalers

brust) as well as other time series (of note are several particle counters such as NAIS ions Ions neg and LongSMPS

Particles 20-500 nm) which react to this change in the particle beam behavior during this thrid period.

Table B.24: Events in each period for run 1962.05 using wavelet ME partitioning.

Channel Period 1 Period 2 Period 3 Period 4 Total
Dew dew 5 3 2 3 13
NAIS ions Ions pos 4 6 2 0 12
Scalers brust 0 0 9 3 12
nanoSMPS Total Conc. #/cm 1 2 1 6 10
HVFC mvolt2 9 0 0 0 9
HVFC mvolt1 9 0 0 0 9
DMAtrain Ch3 C [#/cc] 7 0 1 0 8
LongSMPS Particles 20-500 nm 0 0 5 2 7
Fan speed2 0 3 0 4 7
NAIS ions Ions neg 1 0 5 0 6
Light Spectrometer UVH 2 0 3 0 5
TDL sat water 1 1 1 1 4
DMAtrain Ch0 Ch [#/cc] 3 0 0 0 3
Light Spectrometer UVX 0 2 0 1 3
DMAtrain Ch2 C [#/cc] 0 0 3 0 3
Light Spectrometer LS1 0 1 0 1 2
Light Spectrometer LS4 1 0 0 0 1
Light Spectrometer LS3 0 0 0 1 1
Fan speed1 0 0 0 1 1
DMAtrain Ch4 C [#/cc] 1 0 0 0 1
Total 44 18 32 23 117
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Figure B.28: Most relevant time series for CLOUD experimental run 1962.05 coupled with ranking of specific time periods to
the number of events observed in each event. The time period was divided into 4 distinct sub-periods, which were then tested
for the existence of events. The ranking of each sub-period shades each sub-period more the less events are found. The first
period was considered the most important, followed by a slight relevance of the thrid period.
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