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1 Introduction

In this paper, we revisit A/ = 2 heterotic strings, focusing on their 1 + 1 dimensional vacua.
These theories were first studied in the 1990’s [1-5], and were shown to exhibit interesting
properties. As we will see, some of their properties are related to more recently studied topics,
such as symmetric product CFT, and TT deformed CFT. They also share many properties
with string theory on AdSs (with NS B-field). For example, we will see that they have
the property that string winding around the spatial direction plays a central role in their
analysis. The winding zero sector contains generators of an infinite-dimensional spacetime
symmetry algebra, while the w # 0 sectors contain states that transform non-trivially under
that symmetry. The symmetry includes left and right-moving Kac-Moody and Virasoro
algebras, whose action on sectors with w # 0 has central extensions that depend on w.
Another property that AV = 2 heterotic strings share with string theory on AdSs is that their
spacetime properties mirror in many ways the worldsheet ones.

The relations described in the previous paragraph are one of the main motivations for
this study. We hope that further studying N' = 2 strings will shed light on the systems
mentioned above, and vice versa. Another motivation is the work of [3-5], which suggested
that AV = 2 heterotic strings are relevant for a deeper understanding of string dualities. That



work involved (1,2) heterotic strings, but in this paper we will focus on the (0,2) theory,
postponing the analysis of the (1,2) one to another publication.

It was recognized in the 1990’s that N' = 2 heterotic strings can be formulated in 1+ 1
or 2 + 1 dimensions. In this paper, we focus on the 1 4+ 1 dimensional construction, leaving
the 2 4+ 1 dimensional one to future work. A major theme in our discussion will be the
difference between the case where the spatial direction is non-compact, and the one where it
is compactified on a circle. We will start with the former, and then turn to the latter.

The plan of the remainder of the paper is the following. In section 2, we describe the
basic structure of the (0,2) heterotic string and some of its properties, in the case where the
1 + 1 dimensional target space is non-compact (R!!). This serves to fix our notation and
define various quantities that enter the analysis. In particular, we define the Niemeier CF'T
M — a holomorphic ¢ = 24 worldsheet CFT that enters the construction of a class of vacua
of the (0, 2) heterotic string. We show that the spectrum of the theory is given by a set of
scalar fields, ¢%, that transform in the adjoint representation of the Lie algebra G associated
with M. The spacetime theory for the fields ¢, restricted to the Cartan subalgebra (CSA)
of G, appears to be a T'T deformation of a free field theory, with TT coupling ~ g2a/.

In section 3, we compactify the spatial direction in target space on a circle of radius
R. We focus on a new feature of this case — the appearance of sectors in the Hilbert space
that describe strings winding multiple times around the circle. We show that for positive
winding, the single-string spectrum contains only left-moving excitations on the string, while
for negative winding, all the excitations are right-moving. For w = 1, the spectrum coincides
with that of the Niemeier CFT, M, that went into its worldsheet construction. Similarly, for
w = —1, we find a copy of the right-moving analog of M. For |w| > 1, we find a single-string
spectrum that, as we show in section 5, agrees with that of the Z, twisted sector in the
corresponding symmetric product of M.

We also show in section 3 that the spacetime theory has an interesting algebraic structure.
The w = 0 sector contains left and right-moving affine Lie algebras, G Ls G R, associated
with the Niemeier CFT M. G| acts naturally on states with w > 0, while G R acts on
states with w < 0. The central extensions of both algebras depend on the winding sector.
These algebras act as spectrum generating algebras on the single-string spectrum, arranging
it into representations.

We also find in section 3 that the w = 0 sector contains left and right-moving higher
spin symmetry generators, and in particular Virasoro algebras, with similar properties. The
central extensions again depend on the winding sector, and the symmetry generators act
on the w # 0 sectors as spectrum generating operators.

In section 4, we study the thermal partition sum of the (0,2) string theory. We show
that the spectrum of section 3 can be recovered from this partition sum. In section 5, we
study some properties of the symmetric product of Niemeier CFT’s, MY /Sy In particular,
we describe its spectrum and symmetry structure, and calculate its thermal partition sum,
in preparation for comparing them to the spacetime theory of the (0,2) string in section 6.
In section 7, we comment on our results and possible extensions. An appendix contains the
derivation of some technical results used in the text.



2 Non-compact theory

In the (0,2) heterotic string, the left-moving worldsheet degrees of freedom are those of the
bosonic string, while the right-movers are those of the N = 2 string. Thus, the right-moving
worldsheet CFT is described by four scalars z#, u = 0,1, 2,3, with signature (—, —, +, +),
and their four superpartners under right-moving worldsheet N' = 2 superconformal symmetry,
the fermions 1)*. We take the scalars 2* to be non-compact, though later we will compactify
some of them.

The right-moving N/ = 2 superconformal generators are given by

1- - 1- -
T=— gal'ual‘u — §¢Mw”,

_ 7 _
G* = 2a,(n“”iI“”)1/JM8xl,, (2.1)

_ 1 _
T =5 Dyt

Here, the metric is n*¥ = diag(—1, —1,1,1), and the complex structure Z+H” satisfies ZH" =
—IVH, IWI")‘ = nﬁ. We will take 703 = 712 = 1.

N = 2 worldsheet supersymmetry is gauged in the N/ = 2 string. In the superconformal
gauge, one finds two (3,7) systems, that couple to G*, (2.1), (f+,7+). From them, we can
obtain in the usual way two bosons @4, B+7+ = 0@+. These play the same role as in the
N =1 fermionic string, giving rise to the notion of pictures, as we review below.

The left movers are those of the bosonic string. Since the scalars z#, p = 0,1, 2,3, are
non-compact, they have left-moving components as well, and contribute to the left-moving
stress-tensor,

1
T, = —aax“(‘)azu. (2.2)

Normally, that would mean that we need to add to (2.2) twenty two left-moving scalars, but
in this case, it is more convenient to proceed in a different way [2]. We add to the z* twenty

four left-moving scalars y7, j = 1,2,--- , 24, which contribute to the left-moving stress tensor!

1 .
T, = —583/383/]. (2.3)

Thus, the left-movers appear to live in a 26 + 2 dimensional spacetime, with (z°,z!) the
two time dimensions, and (22,23, 7) the twenty six space dimensions.

In order to reduce the left-moving spacetime to 25 + 1 dimensions (the critical dimension
and physical signature of the bosonic string), we gauge a left-moving null U(1) current. There
are two qualitatively different ways of doing that [2]. If we choose this current to lie in
the R?? parametrized by z*, we get a theory that lives in 1 4+ 1 non-compact dimensions.
On the other hand, if the null U(1) involves one of the compact directions ¥, the resulting
theory is 2 + 1 dimensional.

As mentioned above, in this paper we will study the 1 + 1 dimensional vacua of the
(0,2) heterotic string. We will take the null U(1) current to be J = dz¢ + dzg (w.l.g). The

Tt is convenient to take y* to be canonically normalized, y*(2)y’ (0) ~ —&" In 2, whereas z* (2.2) have the
standard normalization [6], " (z)z" (0) ~ —%/77“” In |z|?. Thus, the worldsheet left-moving scaling dimension
of exp(ip’- ) is AL = 5|p]°, while for exp(ip,a*) we have AL = Ar = C“Tlpup”.



null gauging effectively removes the two worldsheet fields (2%, 2%), so the resulting theory
lives in 1 + 1 dimensions,

(2!, 2%) = (t,2). (2.4)

The twenty four left-moving scalars i must be described by a holomorphic modular invariant
worldsheet CFT. This means that the momentum pj for these scalars lives in an even,
self-dual lattice, one of the twenty four Niemeier lattices. We will refer to this holomorphic
theory as a Niemeier CFT, and will denote it by M.

We now turn to the spectrum of the resulting string theory. Since the right-movers are
those of the N' = 2 string, we can proceed as in the N' = 1 superstring. In the (—1,—1)
picture for the two ghost systems mentioned above, the right-moving part of the physical
vertex operators takes the form

[ o )
TPt TP—ePat® — —P+—P- gmibttipr (2.5)

Here, o = 1,2 runs over the two spacetime directions? (¢,z), (2.4), and (E,p) are the
components of p®. They are continuous in the non-compact theory, and satisfy the mass-shell
condition

pap”® =0, ie. E=*4p. (2.6)

On the left-moving side, to satisfy the mass-shell condition (2.6), we need to add to (2.5)
a dimension (1,0) operator, which we will denote by J, from the Niemeier CF'T M. The
J¢ include the currents idy’/v/2, j = 1,---,24, and operators of the form exp(ipy, - 7),
with p7, any vector of length squared |pz|? = 2 in the Niemeier lattice. Together, they
give the familiar vertex operator construction of a rank twenty four simply laced affine
Lie algebra G, with idy /v/2 giving the CSA generators, and 7, being the roots of G [7].
They satisfy the OPE algebra

k,(;ab/2 ifabCJC
(=872 2-¢°

where fo%¢ are the structure constants of the Lie algebra G. The level k of this algebra is

J4(2)J°(€) ~

(2.7)

equal to one [7]. Thus, while we include the level k in many subsequent equations, it should
always be understood to take the value k¥ = 1 below.

The full vertex operator in the (0,2) string, in the (—1, —1) picture for the right-movers,
takes the form

Vek) = / d?z %P+ =P, (2.8)

The mass-shell condition (2.6) implies that (2.8) describes dim(G) massless scalar fields,
¢ (za).

We will refer to operators with £ = p as left-moving, and those with £ = —p as

right-moving. In terms of lightlike coordinates and momenta,

1
T =t+uz, pizi(Ej:p), (2.9)

2We can set po = p3 = 0 using the null gauging.



the left-moving vertex operators are given by
Vi (p /d2z.]“e Pl (2.10)

Vg is given by a similar expression with + < —.
As usual, for calculations we also need the (0,0) picture version of the operators (2.8),
(2.10). To find it, we need to act on (2.8), (2.10) with G, and G, (2.1). One of the two
2 2

always gives zero when acting on the operator (2.8). Thus, the action of éil and G~ ,

on the (=1, —1) picture operator (2.8) is the same as the action of their anti- commutator
{G 17G 1} - L 1-
We conclude that the (0,0) picture version of the vertex operator (2.8) is

Ve(p) = /dQZJaéeip'I. (2.11)

This is a familiar vertex operator from studies of the standard, (0, 1), heterotic strings. It
describes a 1 + 1 dimensional gauge field with polarization proportional to the momentum, in
other words, a pure gauge one. The scalar fields ¢® mentioned after eq. (2.8) can be thought
of as the gauge functions, related to the gauge fields as

Al (t,x) = 0a0(t, ). (2.12)

The mass-shell condition (2.6) can be thought of as the Lorenz gauge condition 0“A¢% = 0,
which leads to the massless Klein-Gordon equation for ¢%, 8,0%¢* = 0.

One might expect that a pure gauge field such as (2.12) is trivial, and thus the physics
should be independent of ¢®. However, as is familiar from other contexts, this is the case if
the gauge function goes to zero as we approach the boundary of spacetime. Gauge functions
that do not go to zero at the boundary do not decouple in general. Gauge functions that go
to a constant at the boundary are expected to give rise to global symmetries of the model,
while ones that diverge as we approach the boundary, give rise to a change of the background.

We will find below that these expectations are realized. In particular, we will argue that
one should think of the physical states that appear in the above perturbative string analysis
as modes of currents that form an infinite symmetry algebra, and that certain solutions for
¢®(x) that diverge near the boundary give rise to a Narain-type vacuum manifold.

Consider, for example, the left-moving vertex operator (2.10). The corresponding zero-
picture vertex operator (2.11) takes the form

Vi(p / A2z de? (2.13)

The operator (2.13) is labeled by a momentum, p*; it’s instructive to Fourier transform
it, and define a position space operator,

V(e / P2J°08(x (2,7) — ). (2.14)

Note that in (2.14), 7 (2, z) is a worldsheet field, while x is a constant, the Fourier transform
of p*. Also, in an abuse of notation, we denote the position-space operator (2.14) by the
same letter as the momentum-space one (2.13).



The vertex operators (2.14) are localized in z—, but are independent of x+. They
correspond to gauge functions ¢ (2.12) that do not go to zero as x* — co. According to
the discussion above, we expect them to give rise to symmetry generators. We next show
that this is indeed the case.

As we describe in more detail in section 3, we can rewrite (2.14) as

dz

Vi(e) = ¢ 5 -J%0(" (2, 2) — 2), (2.15)

where the contour integral runs over small circles around other insertions in a correlation
function. In particular, we can calculate the commutator

Vil j{ 2mi 27T’L T (2)d(x(2,2) = x)Jb(g)(s(mi(&f) —Y). (2.16)

The z integral in (2.16) is over a small contour around £. To calculate it, we use the
worldsheet OPE algebra (2.7). We find

VE (@), VEW)] = i@ — Vi) — 56700 —y) § 30 0@ (6.6 —v) . (217

The commutation relation (2.17) is the famous current algebra with central extension. We
will study it in more detail in section 3.

The (0,0) picture vertex operators (2.11) can also be used in the sigma-model approach
to string theory, to study the field space parametrized by the ¢*(z). To do that, one adds
to the worldsheet action the term

68 = —i/dQZJaéqﬁa(xa). (2.18)

For general ¢%(xz®), this perturbation breaks (worldsheet) conformal symmetry, however,
setting

¢ (%) = V209 22, (2.19)

where j runs over the CSA of G (and setting all the other ¢® to zero), gives rise to solutions
for all values of the constants CJ. Indeed, plugging (2.19) into (2.18), and recalling the
definition of the currents J7, we find that the deformation takes the form

08 = Cg/d228yj5ma, (2.20)

where the index j = 1,---,24 runs over the twenty four dimensions of M. The deforma-
tion (2.20) is well known to be truly marginal; it parametrizes a Narain-type moduli space
labeled by the constants CJ.

Note that the above discussion is compatible with our statement that when the gauge
functions ¢ (2.19) do not go to zero near the boundary of R!| they can have an effect on
the theory. The gauge functions (2.19) in fact diverge at the boundary of R%!, so it’s not
surprising that they have the effect of changing the background. Furthermore, the gauge
functions (2.19) are not good operators in the worldsheet theory,® which is another reason
that the deformation (2.18) has an effect.

3They do not have powerlike correlatin functions.



The above discussion is also compatible with the observation in the literature from the
1990’s, that the effective action of the ¢’ is the Nambu-Goto action [5],

1 ) )

where g, is the string coupling of the N' = 2 string. The NG action (2.21) also has the

solutions (2.19), and in fact can be viewed as the effective action for fluctuations around
the background with general C.

An interesting question is what are the observables in the ' = (0, 2) heterotic string.
Usually, in string theory, the observables are S-matrix elements of physical vertex operators,
which in our case are given by (2.11). In the N' = 2 string these S-matrix elements are
known to vanish. This is natural, since the vertex operators (2.11) describe pure gauge gauge
fields, (2.12). However, there may be other observables, which we will discuss in a future
publication. Here we note that one observable is the action for the ¢’/ (2.21). One way
to think about this NG action is as determining the Zamolodchikov metric on the moduli
space labeled by the CJ in (2.19), (2.20).

It is instructive to compare the role of the NG action in our case to that of the DBI action
for D-branes. In that case, the moduli space analogous to (2.19) corresponds to rotations and
boosts of the D-brane, as well as turning on a constant field strength for the worldvolume
gauge field on the brane. The DBI action allows one to study small fluctuations on a D-brane,
at a general point on this moduli space. From the worldsheet point of view, it is given by the
disk partition sum in a state corresponding to a D-brane at a particular point in moduli space.
It would be interesting to understand the analog of this in our case. Of course, D-branes
have a richer spectrum of excitations, and one can study their dynamics using open string
theory. This aspect of D-brane physics is more subtle in our case.

We finish this section with a few comments:

« The action (2.21) is reminiscent of the one that appears in 7T deformed CFT [8, 9.
Indeed, if we start with the free field theory of twenty four scalars ¢/, its TT deformation
with deformation parameter g2a’ gives the action (2.21) [9].

o The coefficient multiplying the action (2.21) suggests that one can think of the spacetime
theory as describing a large number, N ~ 1/ gg, of fundamental strings stretched in the
x direction. This is reminiscent of what happens in string theory in AdSs, where the
AdS background is obtained by adding a large number of strings to a fivebrane throat.
It also suggests that the spacetime theory should have a symmetric product structure.
This will become clearer in the next sections.

« Above, we discussed the action for the fields that belong to the CSA algebra of G, ¢”.
The analysis can be generalized to the non-abelian case, but we will not describe the
details here.

3 Compact theory

In this section, we study the theory of section 2 in the case where the spatial coordinate
x (2.4) is compactified on a circle of radius R. We start with a discussion of the spectrum.



3.1 Spectrum

As is well known, when x is compactified on a circle, the corresponding left and right-moving
momenta take the form

n  wR n  wR

pL =45 —

R o PRTRT (3:-1)

where (n,w) are the momentum and winding on the circle, respectively. The resulting
spectrum is richer than in the non-compact case. Consider, for example, the (—1,—1)
picture operators

O = / d?ze= P+ =PIl iPLeL PRI Y, (3.2)

where Va is an arbitrary Virasoro primary of (left-moving worldsheet) dimension A in the
Niemeier CFT M. The mass-shell condition takes in this case the form

/ / /
«

Y2 Y2 = Y2 _

Plugging (3.1) into (3.3), gives the level matching condition
A —1=nw. (3.4)

For A > 1, (3.4) implies that n and w are both non-zero, and have the same sign. The
energy E (3.3) takes the form

n  wR
E:E—’—?, fOI' n,’U}>0, (35)
and R
n w
E:—E—?, for n,w<0 (36)

One can think of these equations as follows. The winding term is a kind of zero point energy,

the energy of a string of tension 7' = 1/27a/ wrapped |w| times around a circle of radius R,
w|R

Ey = [v] : (3.7)

Oé,

If we define the energy relative to FEy, i.e. replace E in (3.5), (3.6) by Ep + &, as is standard
in the study of the dynamics on branes in string theory, we find

£ = %, for w > 0, (3.8)
and
E=-2 for w<0 (3.9)
= . :

Thus, for w > 0 the spectrum only contains left-moving excitations on the wound string,
while for w < 0 it only contains right-moving ones. If one thinks of w > 0 as describing
wound fundamental strings, and w < 0 as anti-strings, we find that the excitations on wound
strings are left-moving, while those on anti-strings are right-moving.



Moreover, the energies (3.8), (3.9) are related to the left-moving excitation level in the
worldsheet Niemeier CFT M. Indeed, according to (3.4), we can write (3.8) as
RE=n=2"1 (3.10)
w
For w =1, (3.10) takes the form RE = A — 1. This looks like the formula for the energy on
the cylinder of a state with dimension A in a left-moving CFT with central charge ¢ = 24. It
suggests that the spacetime theory describing w = 1 states is closely related to the holomorphic
Niemeier CFT that went into the construction of the (0,2) heterotic string in question. We
will return to this point later in the paper. Note also that for A =0, i.e. VA = 1, (3.10) gives
a negative energy, RE = —1. Thus, superficially it looks like the energy is negative, however,
for R > [, the total energy (3.5) is still positive, so one can use the above equations.

For w > 1, equation (3.10) has two notable properties. One is that it implies a constraint
on A, which is due to the fact that the momentum n is integer. The second is that, as we
will show in section 5, this formula is the same as that obtained in the Z,, twisted sector of
the symmetric product of Niemeier CFT’s. This hints that the spacetime theory for w > 0 is
closely related to such a symmetric product. Again, we will return to this point later.

For w = 0, (3.4) implies that only states with A = 1 exist, but they can have any
momentum 7. These states are described by the vertex operators V# (2.10), (2.11), and their
right-moving counterparts V3, with quantized spatial momentum p = n/R. As discussed
in section 2, the vertex operators (3.2) correspond in this case to pure gauge gauge fields,
see the discussion around (2.11), (2.12). We will take the attitude explained there, that one
should think of them not as states in the theory, but as symmetry generators that act on
other states. We will study them from this point of view in the next subsection.

The construction of the spectrum for w # 0 described above is valid for operators Va in
the Niemeier CF'T that are primary under worldsheet Virasoro. However, it can be generalized
to all states in the Niemeier CFT. Consider, for example, a generalization of (3.2) where Va
is replaced by 0V, the derivative of a Virasoro primary operator in M. This operator has
worldsheet dimension A + 1, so the mass-shell condition for it is (3.3), with A — A 4 1. Of
course, we still have to satisfy level matching, (3.4), which is not a problem for |w| = 1, but
places constraints on A for larger |w|. We will ignore these constraints in the discussion below.

Even if the mass-shell condition is satisfied, the resulting operator is not BRST invariant.
The reason is that the left-moving part of the operator, OVa exp (iprxy — iFt), is not primary
under the worldsheet Virasoro T'(z) = T,(z) + T, (2), (2.2), (2.3). Indeed, the operator
OV satisfies the OPE

2AVA(0) N (A +1)0Va(0) N 9?Va(0)
> .

T,,(2)0Va (0) ~ (3.11)

23 z z

The first term on the r.h.s. violates the BRST invariance of the operator constructed above.
The solution of this problem is known. To cancel the triple pole term in (3.11), we
can consider the operator
21A

e vrTes (8VA - wRVAax_> e EtePLTLTIPRIR (3.12)



where 2~ is given in (2.9). One can check that this operator has the property that the triple

pole in its OPE with the stress-tensor T'(z) cancels between the two terms in the brackets.

Thus, integrating it over the worldsheet, as in (3.2), gives a BRST invariant vertex operator.

For w = 1, this operator has energy larger than that of (3.2) by one unit, RE =n + 1.
Some comments about the preceding discussion are useful at this point:

o The operator (3.12) gives a BRST invariant observable corresponding to the operator
OVa in M, for any Virasoro primary Va. One can generalize the discussion to all
operators in M. We will not discuss the general construction here. Thus, for |w| =1,
the single-string spectrum looks like that of M, while for |w| > 1, it looks like that of
the Z),,| twisted sector in the symmetric product of these CFT’s (see section 5).

e In our construction above, we chose the improvement term (the second term in the
brackets in (3.12)) to only involve dz~, and not dz™, (2.9). This is a gauge choice. We
could modify (3.12) by adding to it an arbitrary multiple of the operator

e_@+_¢7a (VAe—iEteimeL-FiPRxR) , (313)

which is BRST exact, and thus trivial. One advantage of the choice (3.12) is that the
coefficient of the improvement term only depends on the winding w, and not on the
momentum n. In other words, it only depends on the winding sector, and not on the
particular state within this sector. Any other choice would not have this property. This
choice is also convenient for other reasons.

e In the next subsection, we will describe a different way of constructing the full spectrum
of the theory from the primaries (3.2), by using a spectrum generating algebra related
to an infinite-dimensional symmetry of the model.

3.2 Symmetries I: affine Lie algebra

In this section, we will show that the AV = 2 heterotic string has an infinite-dimensional sym-
metry algebra. In particular, if the Niemeier CFT M that enters the worldsheet construction
has a current algebra G (2.7), the spacetime theory contains the same affine Lie algebra.
Recall that G has rank twenty four, and is in general non-abelian (the Leech lattice is the
only Niemeier lattice that gives an abelian affine Lie algebra G = U(1)%4).

To construct this algebra, we go back to the analysis of sections 2, 3.1, and focus on the
w = 0 sector which, as we explained, is expected to contain symmetry generators. The level
matching condition (3.4) implies that in that sector we must take A = 1, and there are two
types of physical vertex operators, corresponding to left and right-movers in spacetime. We
will first discuss the left-moving operators, and then comment on the right-moving ones.

These operators are labeled by the integer momentum n. Generalizing (2.11) to the
compact case, it is natural to define

K = /dQ,zJ“(z)Ggei%f(z’g), n € Z. (3.14)

Since the currents J%(z) are holomorphic on the worldsheet, the integrand of (3.14) can be
written as a total derivative, at least away from other insertions in a worldsheet correlator.
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Thus, we can write
Ko = /szag (JeeiieT), (3.15)

where the integral runs over the worldsheet, with small circles around the other insertions
in the worldsheet path integral removed. Alternatively, we can write

dz ‘=
K¢ = ¢ —J%2)e'r" (57 3.16
where the contour integral runs counterclockwise around other insertions, and we slightly
changed the overall normalization of the operator. We will discuss later some subtleties with
the manipulations (3.14) — (3.16), but for now we proceed.

The commutator of two charges is given by

Ka Kb % 7{](1 iHTT (Z,Z)Jb imx*(ﬁ,g). 3.17
i 3ms ") (€)' (3.17)
The only contributions to the contour integral over z, going around &, are due to the poles

n (2.7). The single-pole term gives if% K The double pole gives

n+m
k b'Ln d{ _ sntm . —
Nosab vl s 7 z 1
25 7 2m,8:£ e R (3.18)

For n +m # 0, the operator (3.18) vanishes, since it is proportional to the integral of a total
derivative of a “good” operator in the theory, s However, for n +m = 0, the situation
is different. In that case, the operator (3.18) is a derivative of the operator x~, which is not
a good operator in the theory, and thus, it does not need to decouple.

Combining both contributions to the commutator (3.17), we find

k
(K K2) =if, n+m+§n5“b6n+mvoP_, (3.19)
where ) J
z
Pr=— ¢ —idx". 2
L =g 2m,28$ (3.20)

We see that the operators K¢ form an affine Lie algebra G of level kP . Interestingly, the
central extension is an operator, rather than a scalar, but it commutes with all the K2. Thus,
it is central, as expected. We will provide a better understanding of the operator (3.20), and
its role in (3.19), later. Note also that the construction of an affine Lie algebra (3.16) — (3.20)
is directly related to the current algebra discussed in section 2, around equation (2.15) — (2.17).
The above discussion can be repeated for the right-moving symmetry generators, defined
as in (3.14), (3.16). They are given by
Ko = ﬁJa(z)ei%WZ@. (3.21)
m 27
A similar calculation to (3.17) — (3.20) shows that K¢ satisfy a right-moving G affine Lie
algebra with central extension kP;", where P} is given by (3.20) with — — +.
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We note in passing that the charges K¢, (3.16), and K¢, (3.21), are the same. In other
words, this model has a single global symmetry, G, that acts both on the left-movers and
on the right-movers. This should be contrasted with CF'T’s with left and right Kac-Moody
symmetries, G Ls G R, which have separate global symmetries Gy and Ggr. This suggests
that the spacetime theory is not conformal. We already saw a hint of that in section 2,
where we wrote the spacetime action (2.21), which of course is not conformal. We will
return to this issue below.

We now reach an important subtlety in the above discussion. Suppose we want to
generalize the calculation (3.17) — (3.20), to compute the commutator of left and right-
moving symmetry generators, [K%, K% ]. The analog of (3.17) contains in this case the OPE

12z (2, z) i

eR

e (&, f) which goes like |z — £|%, with 8 proportional to nma’//R2. In evaluating
the above commutator we are led to consider integrals such as

j{ - \2—515 (3.22)
€2

This presents two problems. One is that the integral (3.22) is, in general, divergent. The
second is that since it is an integral of a non-holomorphic function, the result depends on
the shape of the integration contour.

We learn that correlators with insertions of both (3.16) and (3.21) are more subtle, for
general n, m. At first sight, it seems that this means that these symmetry generators should
be discarded (except for the zero modes K¢ = K¢). To see that the situation is actually
better, it is useful to consider the action of the charges (3.16), (3.21) on states with w # 0.

Since sectors with w > 0 only contain left-moving excitations, while those with w < 0
contain only right-moving ones (see the discussion around equations (3.8), (3.9)), it is natural
to expect that the left-moving symmetry generators K act well on the sectors with w > 0,
and the K¢ act on the sectors with w < 0. We next show that this is indeed the case.

Suppose the physical vertex operator (3.2) has the property that the worldsheet operator
Va that enters its construction is not only a primary of Virasoro, but is also a primary of
the G affine Lie algebra (2.7). Thus, it satisfies the worldsheet OPE

T“VA(f )
—¢
where T“ are matrices representing the Lie algebra G in a representation R. In other words,

the numerator on the r.h.s. of (3.23) looks like (T“);Vj, with 7,7 =1,--- ,dim R (summed
over j), and Va on the Lh.s. needs to be replaced by VX.

JH(2)Va(€) ~ (3.23)

As explained in subsection 3.1, the operators (3.2) describe left or right-moving excitations,
depending on the sign of the winding w. For w > 0, they are left-moving, and according to
the discussion above, we expect the affine Lie algebra (3.16) to act on them.

To see that action, we compute the commutator

K} 7OA ]{7Ja 1 i (275)6*%_4*95—e*iEteipLxLJriprERVAi(g)’ (3.24)

211

where pr, pr and E are given by (3.1), (3.5), and we omitted the ¢ integral on the r.h.s.
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Consider first the case [ = 0. In this case, the only singularity as z — £ is the one
in (3.23), and one gets

[K§, Ox] = (T);07. (3.25)

This is the statement that the vertex operator (3.2) transforms in the representation R of G.
For general [ in (3.24), a short calculation gives an additional factor (z — &)".* The
additional power of z — £ has the following effect on the commutator (3.24). For [ > 0, it gives

[Kf,04] =0 for 1> 0. (3.26)

This is natural, since K}* are in this case annihilation operators, and the state corresponding

to the vertex operator O"A is primary. For [ < 0, the situation is more interesting. The

leading singularity in the OPE (3.24) is 1/(z — &)1 and in order to compute the contour

integral we need to expand the integrand to |l|w’th order and pick out the single pole term.
The resulting operator (3.24) has the following properties:

o It is BRST invariant, since it is obtained by commuting two BRST invariant operators,
K{ and O}.

o If the original operator O% has momentum and winding (n,w), the operator (3.24) has
(n 4 |l|,w). In other words, it is an operator that lives in the same winding sector,
and has energy larger by |/| units from the original one. This is consistent with our
expectation that Kj' with negative | are raising operators in G representations, that
increase the energy by |I|.

 Since the operator (3.24) is obtained by expanding the r.h.s. to order |l|w, one can
think of it as having A larger by that amount from the original operator (3.2). This
is compatible with the level matching condition (3.4). If the original operator (3.2)
satisfies level matching, so does the new one, since it is obtained by taking n — n + ||,
A= A+ |l|w.

One can summarize the above discussion by saying that the operators K;* with negative [
form a spectrum generating algebra for G. Starting with primaries of G, (3.2), (3.23), we
can act with the raising operators, K with [ < 0, and construct all the descendants, in a
sector of given w. Of course, if one acts with K with [ > 0 on the resulting G descendants,
one does not get zero, as in (3.26), but rather another state in the G representation. This
is guaranteed by the algebra (3.19).

It is also instructive to calculate the central extension of the spacetime G algebra (3.19).
For this we need to calculate the commutator of P;, (3.20), with Oa (3.2). A short
calculation gives

[PE, OA] = 'UJOA. (3.27)

Thus, we conclude that in a sector with given w, the central extension in (3.19) is a constant,
and the level of the affine Lie algebra G is kw, w times the worldsheet level, which in our case

4Note that there is no dependence on z — £, despite the fact that the operators we are contracting, 2t (2.9),
are not holomorphic.
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is equal to one. The operators K}' constructed above do not change w, which is consistent
with the fact that the central extension is fixed in a given representation of G.

Above, we discussed the physical states in sectors with w > 0, and studied the action of
the left-moving Kac-Moody currents K¢ (3.16) on them. One can repeat the discussion for
sectors with w < 0, which are acted on by the right-moving Kac-Moody currents I_(g, (3.21).
The details are very similar, and we will not repeat them.

Like in our discussion of the commutator of K¢ and K?, around equation (3.22), the
action of K2 on the right-moving vertex operators, the analog of (3.24) with w < 0, runs
into the same problems as there. Similarly, the right-moving modes K2 do not act well on
the left-moving operators, (3.2) with w > 0.

One can think of the situation in the following way. In addition to the fact that K2 (K%)
give rise to a spectrum generating algebra for w > 0 (w < 0), they can be used inside a subset
of correlation functions. In particular, the operators K2 can be inserted into correlation
functions of the form

<OA1 e OAm>7 (328)

where all the O’s are either the operators (3.2) with w; > 0 (for the in-states), or their c.c’s
(for the out-states). Similarly, the operators K¢ can be inserted into correlation functions
of the form (3.28), where all the O’s have w; < 0. Correlation functions that contain both
operators with w > 0 and w < 0 do not transform well under either Kac-Moody algebra.

As we will discuss in section 6, the above properties of the left and right-moving affine
Lie algebras can be understood from the spacetime point of view as due to a coupling of
left and right-movers via gs effects. For now, we note that this issue (the breaking of the
Kac-Moody algebras in general string amplitudes) afflicts n-point functions with n > 2, so it
is in a sense a g, correction to the free string theory, which is the focus of this section.

3.3 Symmetries II: Virasoro

Given the construction of the spacetime affine Lie algebra in subsection 3.2, it is natural
to ask whether the (0,2) heterotic string also has a Virasoro algebra. This is the problem
we will address in this subsection. Before turning to that discussion, we note that for any
affine Lie algebra, one can construct a corresponding Sugawara stress-tensor. In particular,
one can do this for the affine Lie algebra G (3.16). As we will explain later, this is not
what we are looking for.

The construction of the K2 suggests that the Virasoro generators L,, should be in the
w = 0 sector as well, and should go like ¢'®*" . Two natural candidates are

%miei%f. (3.29)

The operator which contains 0z~ was discussed before, around equation (3.18). We saw

that for n = 0 it is trivial, but it may play a role in the construction of Ly. We will see
later that it indeed does.

For n # 0, we are left with the operator that contains dz ™ in (3.29). The problem with this

operator is that it is not BRST invariant. This is due to the fact that the operator dxte' &%~
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is not primary under the worldsheet Virasoro (2.2). Indeed, the OPE T (2)dzte'®* (0)
contains a cubic pole, whose coefficient is proportional to ne®* (0) (see appendix A).

In order to make a physical operator out of (3.29), we need to add to it another operator
that cancels this cubic pole. Interestingly, the authors of [10] (see also [11, 12]) encountered
a similar problem in a different context, and proposed a solution for it. Phrasing it in our
language, and restoring the numerical coeflicients, their proposal is to consider the operators

Ln - a -
211

_f & (”?a»ﬁ - n@ln(@x_)) el (22), (3.30)
o 2
The second term in (3.30) is non-local, and at first sight appears to be problematic. We will
return to this issue below, but for now we assume that it is well defined and proceed.
The first question is whether (3.30) is BRST invariant. It is not hard to see that the cubic
pole in the OPE of the worldsheet stress-tensor 7'(z) with the integrand of (3.30) cancels
between the two terms in the brackets (see appendix A). Thus, L,, is indeed physical. The
second question is why we did not see the vertex operator (3.30) in our discussion of the
spectrum in the w = 0 spectrum in subsection 3.1. The answer is that this vertex operator
is non-local on the worldsheet, and is therefore not captured by the standard analysis. We
believe it should still be included, since the w = 0 sector describes symmetry generators
rather than states, and we see no obstruction to including (3.30) in the list of such generators.
The next question concerns the commutator [L,, L,,]. A calculation, described in
appendix A, gives

C
(Lo, L] = (n — m) Ly + ﬁn35n+m70, (3.31)

where C is given by
C=24P,, (3.32)

with P, (3.20).

The algebra (3.31) is not quite the Virasoro algebra, since the central term goes like
n3, and not like n® — n. However, this is easy to fix. If we set n +m = 0 in (3.31), the
r.h.s. looks like

C
2nLg + ﬁn?’. (3.33)
If we shift Ly by C/24, i.e. write
dz (iR 1
Lo=¢ — (=02t + —0z~ 34
. fm(a,ax —i—R@x), (3.34)

the algebra (3.31) becomes the Virasoro algebra,
¢ 3
[Ly, Lip) = (n— m) Ly + E(n — 1)0p4m,0- (3.35)

This shift has a natural interpretation. It means that Lo in (3.30) is actually (R times) the
energy on the cylinder, and the shift is the usual one that relates the two. As we saw before,
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the central charge C, (3.32), is given in the sector with winding w by C' = 24w, see (3.27).
We will provide an interpretation of this result later in the paper.

Now that we constructed the Kac-Moody and Virasoro operators (3.16), (3.30), (3.34),
we can calculate the commutator of the two. We find

[Ln, Kpy] = —mK

n+m»

(3.36)

which is the standard commutation relation between Virasoro and Kac-Moody generators.

Finally, we can generalize the discussion of the action of Kac-Moody generators on
states in sectors with w > 0 (the discussion around equation (3.24)) to the Virasoro case.
For Ly, (3.34), we find

[Lo, Oal = (n+ w)Oa, (3.37)

where Oy is given by (3.2). This equation has a natural interpretation: the w term is the
value of C'/24 in the sector with winding w. Therefore, the energy on the cylinder of the
state corresponding to Op is

A-1
REA:L()—C/24:TL:7, (3.38)
w
where the last equality follows from (3.4). We will interpret (3.38) in terms of symmet-
ric product CFT later in the paper. Note that (3.38) agrees with the energy above the
vacuum (3.8), that we computed above.

We next turn to the calculation of [L;, Oa] for [ # 0. In this case, we have to face the

fact that the operator (3.30) is non-local; in particular, writing

0%ax~

Oln(0x™) = 3.39
n(or ) = 50 (3.39)

we have to understand how to deal with the inverse of Jx~ that appears in this expression.

First, we note that the operators (3.2) depend on z;, the conjugate variable to 9z,
only through the factor

ePLTL = ¢~ ol L, (3.40)

Thus, to evaluate the above commutator, we need the OPE of an arbitrary function of dx—,
F(0x~(z)), with this factor. The authors of [10] show how to perform this calculation. In
our notation, their result is

F(0r (2))e 0 o [}' (“”f + ax—(z)) - f(ax—(z))} o L), (3.41)

Using this result for the function F that appears in (3.30),

F(0z(2)) =0lnox", (3.42)
we find the OPE
Floa= () 00 o Lomuieio) (3.43)

We can use the OPE (3.43) to evaluate the commutator [L;, Oa].
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As in the Kac-Moody calculation of subsection 3.2, there is a difference between positive
and negative [. For positive [, we again get zero, since the contour integral (3.30) going
around the location of (3.2) behaves as

]fdzz“"*l(- ), (3.44)
0

which vanishes for positive [,w. For [ < 0, we again have an order |l|w + 1 pole, and
have to expand the integrand to order |l|w in z to find the single-pole contribution. The
interpretation is the same as in the Kac-Moody analysis. The Virasoro generators L; with
[ > 0 are annihilation operators which, when acting on the Virasoro primaries described
by (3.2), give zero. The Virasoro generators with negative [ are spectrum generating operators,
which map primaries of the Virasoro algebra (3.35) to descendants.

So far we discussed the left-moving Virasoro generators (3.30), (3.34), and their action on
the left-moving vertex operators with w > 0. There is of course also a right-moving Virasoro
algebra with generators L,, which is obtained from (3.30), (3.34) by exchanging =% with =~
in these equations. The generators of this algebra act naturally on states with w < 0. As
in the Kac-Moody case, the left-moving Virasoro generators don’t act well on right-moving
excitations (including on right-moving Virasoro generators), and vice-versa.

3.4 Symmetries III: higher spin symmetries

In the previous subsections, we constructed the generators of spin one and two symmetries
that act naturally on chiral excitations of the (0,2) string. Of course, all operators in the
Niemeier CF'T M can be viewed as symmetry generators, since they are holomorphic, and
form the chiral algebra of the model. Thus, we should be able to generalize the discussion
above to all operators in M.

A large class of such operators consists of the Virasoro primaries Va defined in (3.2).
Following the discussion of this section, we expect to be able to associate with each Va
an infinite set of modes, V,,, that satisify an infinite-dimensional algebra, and act on the
chiral excitations in sectors with w > 0.

Following the discussion of the Virasoro generators above, it is natural to write

Vi = ?{27r16:EA1

For A =0, i.e. VAo = 1, (3.45) vanishes for n # 0, as explained around eq. (3.18), while
for n = 0 it reduces to (3.20). For A =1, i.e. VAo = J® (which are defined in section 2,
around eq. (2.7)), it gives (3.16). For A > 1, one has to make sense of the operator (9z~)"

?Jb
8

(3.45)

with negative [. We can define it by continuation from non-negative [. In particular, since
(Ox~ )leZRx is a Virasoro primary of dimension [ for any [ € Z., it formally has this property
for | < 0 as well. Therefore, (3.45) is BRST invariant.

We note in passing that one can think of (3.45) in the following way. As mentioned
above (in footnote 3), in correlation functions of operators of the form (3.2) with w > 0,
the worldsheet field 7 (z, Z) is holomorphic, dz~ = 0. Therefore, one can trade the contour
integral over z in (3.45) for one over x~(z). Plugging the transformation property of Va
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under this transformation,
Va(2)(d2)® = Va(e™)(da), (3.46)

into (3.45), we find that it can be written as

dx~ ‘n
v, = %QLMVA(x_)eZﬁx . (3.47)

The variable 2~ lives on a cylinder, and the integral in (3.47) is around the spatial circle.
We see that V;, can be thought of as the mode with momentum n/R of the field VA on
the spacetime cylinder.

To use (3.45) in calculations, we can, for example, compute the commutation relations of
V,, with K2,. If VA is a primary of the worldsheet Kac-Moody algebra G in the representation
R, (3.23), one finds

(K2, Vi]=Tav! (3.48)

17 " n+m:*

One can also compute the commutation relation between different V;,, and the action of V,,
on the states in sectors with w > 0, (3.2). This was done in the follow-up paper [13].

Finally, we note that the construction of higher spin fields (3.45), which was done for
Virasoro primaries, can be generalized to descendants, but the structure of the resulting
operators is more complicated. We already saw an example of this phenomenon in the
construction of the stress tensor in the previous subsection. The analog of (3.45) for that case
would naturally involve the replacement of Va by Ty (z), the stress tensor of the worldsheet
Niemeier CFT M, (2.3). However, since Ty, is not primary, we need to correct this structure.
This raises two questions:

o How to correct (3.45) for this case (A =2, VA =T),) to make it BRST invariant.

o We constructed the spacetime stress-tensor in the previous subsection, see (3.30), (3.34).
The construction of this subsection should give an equivalent set of Virasoro generators
Ly,. Why is this the case?

To address the first question, we follow the procedure outlined around (3.45) — (3.47). In
the spacetime theory, we can define the operators

. dx~ N\ i
L, = —zRy{ TmTy(:U Je'’RY (3.49)

which are modes of the spacetime stress tensor in the left-moving spacetime Niemeier CET. As
in (3.46), we want to pull back (3.49) to the worldsheet, using the conformal map 2~ = 27 (2).
For the stress tensor, we need to take into account the Schwarzian derivative term,

Bz~ 3 (0%z7)?

(027 )* Ty (z7) = Ty(2) — 2{x",2}, {a~,2}= g 2 (@) (3.50)
Plugging (3.50) into (3.49), we find
, dz | Ty(= PP~ O*z7)?| ing-
Ln = _ZR% 2mi l &IE_) N 2(837_)2 i 3<(8x_))3 T (3:51)
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One can check that the operator (3.51) is a worldsheet Virasoro primary, and thus is physical.
Moreover, it satisfies® the Virasoro algebra (3.31). Like in the discussion around eq. (3.33),
we need to shift Ly by C'/24 to get the algebra (3.35). This shift has the same origin as there
— it is due to the fact that (3.49) with n = 0 is the energy on the cylinder.

The stress tensor (3.51) looks superficially different from the one we constructed in
the previous subsection, (3.30), (3.34). It is natural to ask how the two are related. We
expect them to be equivalent in the BRST cohomology of the (0,2) string theory, but will
not discuss the details here.

The construction of equations (3.49) — (3.51) can be generalized to an arbitrary descendant
operator Vx in the Niemeier CFT. To do this, one starts with the Fourier transform (3.47),
and uses the analog of (3.50) for VA (or, equivalently, the OPE of VA with the stress tensor),
to arrive at the analog of (3.51). We will not present the details of this construction here.

4 Thermal partition sum

In this section, we compute the (spacetime) thermal partition sum for the (0,2) string, as a
check on the calculation of the spectrum in section 3. This partition sum is defined as

Z(ﬁ, L, b) — Tr efB(Hbew/o/+i,Lm/R)7 (4'1)

where the trace runs over all single-string states, and S, b, and p are chemical potentials
that couple to the energy, winding and momentum, respectively.

From the worldsheet point of view, to compute (4.1) we need to evaluate the torus
partition sum in the (0,2) string theory [15], with the target space being a Euclidean torus
of size 2rR and modulus

(u+9)B

= 4.2
C="%5 & (4.2)
Parametrizing the target-space torus by the complex coordinate z, with metric ds? = dzdz,

this corresponds to the identifications
x~x+2rR~ 1z +21R(. (4.3)

The chemical potential for winding, b in (4.1), corresponds to turning on an imaginary
B-field ib on the torus (so that the B-field is real in the Lorentzian continuation). It is
normalized such that for b = 1 the winding term in (4.1) subtracts from H the energy due
to winding ((3.7) for w > 0).
The torus partition sum for the (0,2) string on a target-space torus is given by (see
e.g. appendix A of [5])
drdt

Z = 5—20(7,T) Zpa (7). (4.4)
F Ty

Here, 7 = 71 + 19 is the modulus of the worldsheet torus, F is the fundamental domain over
which it is integrated, Zy(7,7) is the contribution to the partition sum of the spacetime fields

5See appendix A of [14] for a similar calculation in a different context.
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a# and the ghosts, and Zx(7) is the partition sum of the Niemeier CFT, M, that enters the
worldsheet construction (see section 2). The contributions of the non-zero modes of x* and
the ghosts to Zy cancel, and one is left with the contribution of the zero modes,

Zo(1,T) =72 E exp (—27moH + 2min P) , (4.5)
mi,mg,
ni,ng

with (see (2.4.11) of [16] and (3.55) of [17])
1

H = 5 {”i(g_l)ij”j +m'(g — bg~'b)i;m’ + 2mibik(g_1)kjnj} , P=mln;, i,j=1,2,
(4.6)
and
PN (e b B0 G W
v o \ G |C’2 ) ] o \ G 0 » .

where n; is the momentum quantum number along the i-th coordinate, and m’ is the winding
quantum number.
Plugging (4.5) into (4.4), we find

drdt .
7 — / —27r7'2H+27T7,7'1PZ ) 4.8
[ as
ni,n2

This partition function (4.8) can be rewritten in a form that makes the spectrum more manifest,
by using the unfolding trick described in [15]. This rewriting involves Poisson resumming no
as a sum of wy. A useful way of thinking about this resummation is as a Fourier transform,

S f(ng) = / dny F(n2) 3 6(ny — ws) = / dny f(na) 3 e2mm2we =3 flun).  (4.9)

Plugging (4.9) into (4.8), we have

P Z / drdr /dng e~ 22 HA2mim PA2mingws 7 (1) (4.10)
my,mg, F T2
ni,w

After summing over mq, ny, and integrating over ng, the integrand of the drd7 /73 integral
in (4.10) is invariant under the SL(2,Z) which acts on the worldsheet modulus 7, provided
that (wg, mg) transforms as a doublet. Thus, we can trade the sum over wg, mo € Z and a 7

integral over the fundamental domain F, (4.10), for a sum over we = 1,2,..., with mg =0,
and a T integral over the strip S corresponding to |71| < 1, co < 72 < 00,
7 i Z / drdt /dTLQ 6_271-7-2H+27ri7-1P+27Tin2w2 Zm (7_) (4.11>
S T2

wo=1m1,n1 ma=0

After performing the Gaussian integral over no, the sum over wo can be interpreted as a sum
over the number of strings in a multi-string gas [15]. Writing (4.11) as

Z =Y Zu,, (4.12)

wo=1
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the single-string contribution is

2,2
drdt _27"72 L,ng‘f‘iimz +27Ti71m1n1—27riC1n1—M—WR, 3
L= D / 3¢ (2R2 L 1) - 2 Z (7).
ni,mi S T2
(4.13)
To read off the spectrum from the partition function (4.8), (4.13), we write
Z./\/l (7_) = Tr qLo c/24 __ ZD —27r72 (A-1)+2mit (A— 1)’ (414)

where in the second equality we used ¢ = e?™7 = ?™11=2772 and ¢ = 24. Here, A € Z, are
the left-moving dimensions of the operators in M, and D(A) are their degeneracies.

Plugging (4.14) into (4.13), the integral over 71 and 72 can be performed in closed form.
A useful identity for the 7o integral is

oo dt [T
a/t—ct 2+/ac
/0 t3/2€ = e . (4.15)

The result is

mini+A,1-

(4.16)
The Kronecker delta constraint in (4.16) arises as a result of integrating over 71 € [—3, 3].

Zipy1 = Z ZD( —zwng(\/ T /R2)+(R2/a”)mi+(2/a/)(A—1)+Rbmi /o) =2miCini

ny,mi A

Comparing (4.16) to (4.1), (4.2), we see that the integers (ni,m1) correspond to momen-
tum and winding on S, respectively, and the spectrum we read off (4.16) is the same as that

obtained in section 3. Indeed, setting m; = —w < 0, and n; = n, we obtain
78 =37 D(1 + nuw)e 2 nt o) —2ricin (4.17)
n>0
with ,
R
REy = ——(1—b). (4.18)

A similar analysis for w < 0 leads to the more general expression for Ey, which is valid
for all w € Z,

R2
REy = ?(|w| — bw). (4.19)

For b = 0, (4.19) is identical to (3.7). And, as there, we find from (4.17) that
RE = R(E — Ey) =n, (4.20)

in agreement with (3.8). The b dependence of Ey (4.19) was explained above.

To recapitulate, we find that the thermal partition sum of the (0,2) string, (4.4), repro-
duces the expected answer, (4.1), with the spectrum found in subsection 3.1. Of course, this
had to be the case, so the calculation of this section is a consistency check on the technology.
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5 Some properties of MY /Sy

In this section, we discuss the symmetric product of Niemeier CFT’s, M” /Sy. This problem
is of interest in its own right, but our motivation for studying it is that, as we will see in
section 6, it is directly relevant to the (0,2) heterotic string studied in the previous sections.

Symmetric product CFT’s play an important role in matrix string theory [18], holography
in AdS3 and its single-trace TT-type irrelevant deformations,® and have been extensively
studied in these contexts. One new element here is that the seed CFT, M, is holomorphic.
We will discuss below some of the features particular to that case.

5.1 Spectrum

The spectrum of MY /Sy splits into different twist sectors. The untwisted sector consists
of all operators V in M, summed over the different copies in the symmetric product. Thus,
it is isomorphic to M. In addition, there are Z,, twisted sectors, obtained by picking
w of the N copies of the seed M, and looking at states twisted by the Z,, that takes
My = My — - — My — My, As we will see below, the spectrum in these sectors
takes the form

Ay = a-l +w, (5.1)
w
where A runs over the spectrum of the seed CFT M. For w > 1, not all A contribute. The
requirement that the dimensions A,, (5.1) are integer, which is necessary for consistency,
implies that A — 1 € wZ.
In the symmetric product, twisted sectors are labeled by conjugacy classes,

m
(w1, wa, w3, ... W), ij = N, (5.2)
j=1

which are obtained by dividing the N copies of M into groups of w; copies, j = 1,--- ,m,
and looking at Z,,; twisted sectors for each group. We will see in section 6 that in the
context of (0,2) string theory, the Z,, twisted sector describes single-string states winding
w times around the spatial circle, while the general states (5.2) correspond to m particle
states, consisting of strings with windings wj;.

In the Z,, twisted sector, local operators V in M transform non-trivially under a 27
rotation in the z-plane:

Vi(e*™x) = Vi (2), (5-3)

where I = 1,--- ,w labels the w copies of M that transform to each other under Z,, in the
way indicated above, and Vy,41(z) = Vi(x). One can think of (5.3) as due to an insertion
of a twist field o, at the origin of the z-plane.

To compute the spectrum in the Z,, twisted sector, it is convenient to go to the covering
space of the z-plane (see e.g. [20]), and define a complex coordinate

t=azw. (5.4)

5For a recent description of the status of symmetric product CFT’s in AdSs and single-trace T'T, as well
as references to earlier work, see [19].
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On the ¢ plane, the conditions (5.3) imply that the operators V are single valued, and we have
a single copy of the CF'T M. In this CFT, the operator V creates a state with dimension A.
In order to compute the dimension of this state in the original CFT on the z-plane, we need
to relate scaling dimensions on the covering space labeled by ¢ to those on the z-plane. Using
the standard transformation of the stress-tensor under conformal transformations,

c 2" 2" ()2
()T (w) = T() — ot} {1} = x’((tt)) N g ac((;)2 ’

(5.5)

one finds [20]

C
L§™ = wlo = o ( 2 1). (5.6)

Plugging ¢ = 24, Ly = A, and LY = A into (5.6), we find the relation (5.1).

5.2 Symmetries

In this subsection, we discuss the following question. Consider a symmetric product M» /Sy,
where the seed CFT M has Kac-Moody and Virasoro symmetries with generators K and
L,, respectively.” We would like to understand the fate of these symmetries in the symmetric
product CFT. We will discuss this issue for the Kac-Moody case, and comment on the
generalization to Virasoro.

The CFT MY has an affine Lie algebra generated by

N
K= Z K2, (5.7)
a=1

where K2, are the Kac Moody generators K2 in the a’th copy of the CFT M. The

n,x
generators K2 (5.7) have the following properties:

 They are invariant under Sy, and therefore survive the projection to MY /Sy.
o They satisfy the same affine Lie algebra as in the seed CF'T M.
o If the level of the affine Lie algebra in the seed CFT is k, the level of (5.7) is Nk.

Now, consider the action of the generators (5.7) on the states described in the previous
subsection. These states break up into sectors labeled by conjugacy classes (5.2), and one
can discuss the action of K¢ on a particular sector.

For a specific choice of w; in (5.2), one can write K} as a sum of contributions of the
different groups of w; copies of M,

Ko=) Ky (w)), (5-8)
j=1

where K (w;) is the contribution to the sum (5.7) of the w; copies of M that participate
in the cycle My = My — -+ = My, — M discussed above.

"In most of this subsection we do not assume that M is holomorphic.
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The level of the current algebra generated by K2 (w;) is kw;. Of course, the total level
is still Nk, due to (5.2), but if we restrict attention to the action of K2 on the cycle wj,
it acts as an affine Lie algebra of level kwj.

It is easy to generalize the above discussion to the Virasoro case. The total Virasoro
generators are

N
Ly=Y Lna, (5.9)
a=1

and the central charge of the Virasoro algebra (5.9) is N¢, N times the central charge of the
seed CFT M. When acting on states in the sector (5.2), one can write the L, (5.9) as a sum
of contributions of the cycles w;, with each cycle contributing central charge cw;.

We note for future reference, that if we restrict to the action of (5.9) on the cycle w,
we can translate the equation for the scaling dimensions (5.1) to one for the corresponding
energies on the cylinder,

cw A—1
RE—Aw—ﬂ— — (5.10)

Of course, in (5.10) we did restrict to the case of interest for us, and in particular set
Ccy = 24w, ¢ = 0.

The above discussion is reminiscent of what we found for (0,2) strings in section 3. As
mentioned above, this is not an accident, since the free string Hilbert space has a symmetric
product structure, with a cycle w corresponding to a single-string state with winding w.

5.3 Torus partition sum

In this subsection, we discuss the torus partition sum of a CFT of the form M?" /Sy, for
a given seed CFT M, not necessarily holomorphic.® The MY /Zx orbifold was discussed
in [21]. We will generally follow their notations, and will comment on the points where
the treatment of Sy and Zy orbifolds differ (see [22, 23] for related discussions). After
reviewing the construction for general seed CFT M, we will apply the results to the case of
a holomorphic M, and see how (5.1), (5.10) can be read off from the partition sum.

We start with the case N = 2, where Sy = Zy. The partition sum of states in M? =
M x M that are invariant under the Zsy that exchanges the two copies is

1 1
Zi(fgariant@_? 77—) = QZM(Ta %)2 + §ZM (27—5 277—)' (511)

The first term on the r.h.s. of (5.11) accounts correctly for the contribution of states in
M?, where we take distinct states from each copy, but undercounts states for which the
contributions of the two copies are the same. The second term corrects for that.

Zi(f‘zaﬁant (5.11) is not modular invariant by itself, but it can be completed to a modular
invariant function by defining

(5.12)

1 o1 IR THj T+
ZEr7) = 327V + 5 ZnCr2) + 5 Y 2 (T3 T
j=0

2 72

8Not to be confused with the worldsheet partition sum discussed in section 4. In particular, the modulus 7
that we will use in this section is the analog of ¢ (4.2) there, and not of 7 (4.4).
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The expression (5.12) is the torus partition function of the M? /Sy orbifold,
— 2 —
ZMQ/S' - Zr(lezzv Zl(n\Zarlant (T’ T) + Zt(w)ist(Tv 7—)' (5'13)

It is identical to eq. (10) of [21], as well as eq. (25) of [23], where Zﬁi@(n T) = Za(7, 7).
From (5.11) — (5.13), we see that the quantity

S0 _ wz_:lz <T+j %ﬂ') (5.14)
twist w = M w | w .
(for w = 2; the general w expression will be useful for N > 2 below) is the contribution of
the Zo twisted sector of the orbifold. In the language of (5.2), the two terms on the r.h.s.
of (5.13) correspond to the contributions of the conjugacy classes (1,1) and (2), respectively.

In the application to string theory (section 6), one can interpret the first term on the
r.h.s. of eq. (5.13) as the contribution of two string states, each wound once around a spatial
circle, while the second term is the contribution of a single, doubly wound, string. The
two-string contribution is symmetrized, since the strings are indistinguishable.

For N = 3, one can proceed in a similar way. The contribution of S3 invariant states
in M3 is
(3) _ 1 1 1 _
Zoiant (T T) = EZM (1,7)% + 2ZM(27, 27)Zpm (1, 7) + gZ(BT, 37). (5.15)
The three terms on the r.h.s. have the same interpretation as before: the first term correctly
accounts for the contributions of states in M3, where we take distinct states from all three
copies, and the other two terms correct for the undercounting of states where either two

of the three or all three are the same.
Completing (5.15) to a modular invariant function, one finds the partition sum of M3/S3,”

1 1 1
Zppzs,(T,7) = 6ZM(T )3+ fZM(27', 27) 2 (1, 7) + gZM(?,T, 37)

4= ZZ (T” T"QH)ZM(T,%)

L ZZ <T+y T;—]). (5.16)

The first line of (5.16) is the contribution of the untwisted sector of the orbifold (the conjugacy
class (1,1,1) in (5.2)), the second is the contribution of states in the sector (2,1), that are
products of Zs twisted and untwisted states, and the third line corresponds to the sector
(3) of Zs twisted states. In the application to string theory, they correspond to three singly
wound strings, two strings with windings one and two, and a single string with winding
three, respectively.

For general N, one can extend the above construction using the technology of Hecke sums.
As explained in [23], one can define quantities Zy (7, 7), which are related to Z~ g, (7,7)

9This equation is equivalent to eq. (26) in [23]. It does not appear in [21], since that paper considered the
Zs orbifold.
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(which were denoted by ZEn(7,7) in [23]), by

1+ Z nNZMN/SN(T,?) = exp <Z nNZN(T,T)> . (5.17)
N=1 N=1

Here 7 is a formal expansion parameter. The quantities Zy are related by the Hecke sum,
Zn(m,7) = TN [Zpm(7,T)], (5.18)

to the partition function Zy((7,7) of the seed CFT. We will not review the definition of
Ty here; see equations (16)—(22) in [23].

One can check that the quantities Z v /g, (7,7) on the Lh.s. of (5.17) are indeed the
partition sums of the orbifold M" /Sy, that they can be written as a sum over contributions
of different sets of w; (5.2), and that the contribution of the Z,, twisted sector to the partition
sum is given by Zt(svvi)st (5.14).

So far, we discussed the case where the seed CFT M is arbitrary. We next turn to
the case where it is a holomorphic CFT with ¢ = 24. The partition sum of M, Zx((7), is
given in this case by eq. (4.14) (though, again, 7 here is the modulus of the target-space
torus, while there it was that of the worldsheet one). To calculate the partition sum of the
Z, twisted sector of MY /Sy, we substitute (4.14) into (5.14). The sum over j constrains
A — 1 to be an integer multiple of w,

A —1=nw, ne”Z;. (5.19)
Evaluating the sum in (5.14), imposing the constraint (5.19), one finds

Zt(\?vui)st(T) — Z D(l + nw)e—27r7—2n+27ri7—1n‘ (5‘20)
n>0

Comparing (5.20) to the general form of the thermal partition sum (4.1), we see that the
spectrum of the twisted sector includes states with energy
A—-1
RE=n=—— (5.21)

w

and degeneracy D(A), in agreement with what we found earlier (5.10).

While not essential for the main line of development of this paper, we next briefly
comment on the relation between the partition sum of M~ /Sy and the Klein j function.
Any unitary, modular invariant holomorphic CFT with central charge ¢ = 24, such as a
Niemeier CFT M, has a torus partition sum that is equal up to an additive integer to
the Klein j function (assuming a unique SL(2, R) invariant vacuum, which is certainly the
case for Niemeier CFT’s),

G(T) = ¢~ + 744 + 196884q + 21493760¢° + 864299970¢> 4 202458562564 +.... (5.22)
More precisely, one has
Zm(t) = (1) +jo,  Jo=24(h+1)—T44, (5.23)

where h is the Coxeter number of the lattice [24, 25].
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The partition function of MY /Sy must take the form

N
Zpn sy (1) = Y aps®, (5.24)
p=0

where ay =1, and a,, are integers that depend on N. We next present the values of these
integers for N = 2,3.

For N = 2, using (5.22) and substituting (5.23) into (5.12), leads to a Laurent expansion
of Zy2/s,, which agrees, term by term, with the expression

Zpezys, = §° + arj + ao, (5.25)

where
ay = —744 — jo, ag = 81000 — jo(jo - 3)/2 (526)

For N = 3, we substitute (5.23) into (5.16) and find that
Zpgs)sy = 3° + a2j” + arj + ao, (5.27)
where
ag = —2(744 + jo), a1 = 437652 + %jo(jo + 1489),

1
ap = —12288000 — 74452 — 30 (jg + 1069952) . (5.28)

Note that the constants a, (5.26), (5.28) are integers, as expected. It should be possible
to repeat this analysis for arbitrary N by going back to the Hecke structure (5.18), but
we will not do it here.

6 Spacetime theory

In sections 2 — 4, we described some properties of (0,2) heterotic strings from the worldsheet
point of view. The purpose of this section is to discuss the spacetime theory, based on what
we found in those sections, and the results of section 5.

Consider first the free theory (i.e. set the string coupling gs = 0). In section 3, we found
that the single-string spectrum of the spacetime theory is labeled by a winding number w € Z.
States with w > 0 are left-moving, while those with w < 0 are right-moving. The sector with
w = 1 is described by a left-moving CF'T M, which is a spacetime version of the worldsheet
CFT M that enters the construction of the model. For w = —1, we find a right-moving
CFT, Mpg, which is a right-moving spacetime version of M.

The sectors with |w| > 1 of the string theory exhibit a symmetric product structure.
For positive w, we found that the single-string spectrum, (3.5), (3.8), (3.10), is the same
as that of the Z,, twisted sector of the orbifold CFT (Mp)" /Zy, (5.1), (5.10). Similarly,
for negative w, the spectrum (3.6), (3.9) agrees with that of the Z,, twisted sector of the
orbifold CFT (Mg)™! /Z,,.

Therefore, the symmetric product CFT

(M) /SN, (6.1)
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captures via (5.2) all the multi-string states with arbitrary positive windings w; and total
winding Ny. In other words, it captures all the left-moving excitations on an arbitrary
collection of wrapped fundamental (0,2) strings with fixed total winding. Similarly, the
symmetric product CFT (Mg)™% /S Ny captures all the multi-string states with negative w;
in (5.2), or equivalently the right-moving excitations on an arbitrary collection of wrapped
anti-strings with total winding Ng.

The w = 0 sector of the theory plays a special role in the construction. As we saw in
section 3, it contains left and right-moving copies of the chiral algebra of M. This algebra
includes Kac-Moody, Virasoro, and higher spin operators, which we constructed and discussed
in subsections 3.2, 3.3, and 3.4, respectively. These generators act on the states in the sectors
with w # 0, and organize them into representations. The left-moving symmetry generators
act on the left-moving theory (6.1), while the right-moving generators act on its right-moving
analog. The central extensions of the Kac-Moody and Virasoro algebras depend on the
winding w, see (3.19), (3.20), (3.27), (3.32), (3.35). We explained this fact from the point
of view of the symmetric product theory (6.1).

General states, that contain strings with total winding Ny, and anti-strings with total
winding Np, are described in the free theory by the CFT

(M)NE /Sn, x (MR)MR /Sn,.. (6.2)

A natural question is whether there is a maximal value that Nz and Ng in (6.2) can take.
This is a non-perturbative (in the string coupling gs) question. In the free theory, one can
take Ni, Ng to be arbitrarily large, but at finite g; one may expect an upper bound on
them (a stringy exclusion principle). Since in this paper we discussed the perturbative theory,
we will leave this issue for future work.

Looking back at equation (3.5), we see that the conformal field theory energy on the
cylinder of the theory (6.1) differs from that found in string theory by the additive factor,

R NLR
M;W:w' (6.3)

One can think of this as a vacuum energy density (or cosmological constant), given by
Np/d'. In the spacetime field theory (6.1) it is a non-universal contribution to the energy,
but it is natural that the (0,2) string theory, that provides a particular UV completion,
fixes it (to the value (6.3)).

So far we discussed the free string theory. The next question we need to address is
that of string interactions. We will mostly leave this issue to future work, restricting here
to some initial remarks.

It is natural to expect that for states that include only strings (or only anti-strings), the
description (6.1) (or its right-moving analog) is exact. If both strings and anti-strings are
present, as in (6.2), we expect interactions between the left and right-moving excitations
living on them. To understand the kind of interactions that we expect, it is useful to look
back at equation (2.21). There, we found that the non-compact theory includes what looks
like a TT deformation that couples the left and right-moving components of the scalar fields
#’, with a TT coupling proportional to gld'.
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Therefore, it is natural to expect that string interactions give rise to a TT deformation
of the above CFT, that acts non-trivially on states that contain both strings and anti-strings.
In a sector with given Ny and Ng, this interaction takes the form tTT, where t ~ o g2 and
T, T are the total stress-tensors of (M) /Sy, , (Mp)"® /SN, respectively. We next
comment on some features of such interactions.

In sectors of the Hilbert space that contain only left-moving, or only right-moving,
excitations, the T'T interaction does not have an effect. E.g. in the symmetric product
CFT (6.1), with any Nz, the T'T interaction vanishes, since T = 0. To see the effects of this
interaction, we must take both Ny and Ng to be non-zero.

Consider, for example, the case N, = N = 1, corresponding to two strings with w =1
and w = —1, respectively. In the free theory, this sector is described by the CFT

M x Mpg. (6.4)

The TT interaction has an effect on the spectrum and symmetries. The effect on the spectrum
is familiar from [8, 9], while that on the symmetries is the following. In the individual CFT’s
My and Mp (6.4), we have Kac-Moody currents K%(x) and K%(Z), that are holomorphic
and anti-holomorphic, respectively. Expanding them in modes, we get the charges K¢ (3.16)
and K¢ (3.21), that we found in section 3.

When we turn on the 7’7 interaction that couples My, and Mp in (6.4), a straightforward
calculation gives, to first order in the TT coupling t:

05 K(z) =ty (Ka:f(gz)) . (6.5)

Thus, the current K¢, that is holomorphic in the undeformed theory, remains conserved, but
ceases to be holomorphic, due to the T'T coupling. It still gives a global conserved charge,
but all the conserved charges (3.16) with n # 0 are broken by the interaction, since their
conservation relies on the holomorphy of K¢. Similar comments apply to the right-moving
conserved current K%(#), and its modes (3.21).

The resulting picture is consistent with what we found in section 3. In general correlation
functions, that involve sectors of the Hilbert space with Ny, Ngr > 0, the affine Lie algebras
are broken, while if either Ny or Np vanishes, we can use the Kac-Moody (and higher
spin) symmetry generators to study the (undeformed) amplitudes. Since two-point functions
involve amplitudes with either (Ny,, Nr) = (2,0) or (0,2), there is no violation of the affine
Lie algebras in the free theory. Higher-point functions exhibit this breaking, but since they
correspond to string interactions, one can think of them as g effects.

7 Discussion

In this paper, we studied the (0, 2) heterotic string, building on some work from the 1990’s [1-
5]. The main reason for our renewed interest in this model is that it has some features in
common with certain holographic models in string theory. Therefore, studying heterotic
N = 2 strings may be useful for improving our understanding of such models, and vice versa.
One can also hope that a better understanding of these models will lead to progress in the
program of [3-5], that suggested that related models may play a role in string duality.
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The main result of this paper is a description of the spectrum and symmetries of the
single-string Hilbert space of a class of vacua of the (0,2) string. Such vacua are labeled by a
choice of a left-moving worldsheet CFT with ¢ = 24. An example of such CFT’s is obtained
by studying twenty four chiral scalars living on a Niemeier torus, and we restricted to this
class. We further restricted to the 1 + 1 dimensional vacua of the (0,2) string.

Compactifying the spatial direction in target space on a circle, we found an interesting
spectrum. The Hilbert space splits into sectors with different values of the string winding
w € Z. Sectors with w > 0 contain left-moving excitations, while those with w < 0 contain
right-moving ones. These excitations fall into a symmetric product structure. For positive
w, the single and multi-string excitations are described by the symmetric product (6.1),
where the seed of the symmetric product My is the Niemeier CFT that appears in the
worldsheet construction. For negative w, one finds a right-moving analog of (6.1), with (the
right-moving analog of) the same seed CFT.

The sector with w = 0 plays an interesting role in the theory. It contains symmetry
generators, corresponding to the chiral algebra of the seed CFT in (6.1) and its right-
moving analog. In particular, we found left and right-moving Kac Moody (3.16), (3.21) and
Virasoro (3.30), (3.51) algebras, as well as higher spin operators (3.45), that are in one to
one correspondence with local operators in the Niemeier CE'T M. The left (right) moving
symmetry generators act on the sectors with w > 0 (w < 0) as spectrum generating algebras.

These algebras have a number of interesting properties. One is that their central
extensions are w-dependent when acting on the single-string states with w # 0. Another is
that while they act well on excitations of the same chirality, they do not act well on excitations
of the opposite chirality. This is one of a number of indications that the full spacetime theory,
that describes both left and right-moving excitations, is not a CF'T. We proposed that it
might be a TT deformation of such a CFT, with a coupling proportional to g2

One of the things that drew our attention to heterotic N' = 2 strings is their similarities
to string theory on AdSs;. Some examples of these similarities are the following. In our study
of (0,2) strings, we found that they have a symmetric product structure, (6.1) for w > 0,
and its right-moving analog for w < 0. In string theory on AdSs, there is a similar structure
associated with long fundamental strings [26-29], which plays an important role in studying
the dynamics. In both theories, Z,, twisted sectors of the orbifold correspond to single-string
states with winding w, and general conjugacy classes (5.2) correspond to multi-string states
with windings w;. The seed of the symmetric product corresponds to the sector with w =1,
and in both cases it can essentially be read off the worldsheet analysis [30].

Another similarity between (0, 2) string theory and AdSs is that both theories exhibit
infinite-dimensional symmetry algebras with central charges that depend on the winding
sector. The generators of these symmetries, which include Kac-Moody and Virasoro algebras,
come from the zero-winding sector. Their construction in our model is similar to that in
AdSs. For example, eq. (3.16) is similar to eq. (2.27) in [31], and the w-dependent central
charge (3.20) is similar to (2.31) in that paper.

The fact that the central charges of Kac-Moody and Virasoro algebras depend on the
sector was seen in section 5 to have a natural interpretation in the symmetric product. The
total central charge is always the same, due to the sum rule (5.2), but when we restrict
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attention to single-string states, i.e. to a particular w; in (5.2), we only see the contribution
of that sector. This clarifies the interpretation of some results in [32, 33|, regarding the
interpretation of the central terms in the various algebras that appear in string theory on AdSs5.

Of course, the analogy between (0, 2) strings and string theory on AdSs is not perfect.
In particular, while in the (0,2) string all the excitations are chiral, in string theory on AdSs
the generic states in the seed CFT are not. A related point is that while in the (0,2) string
one can think of the w = 0 sector as containing only the chiral algebra of the spacetime
theory, in AdSj3 this sector contains an infinite number of non-chiral operators.

In section 6, we argued that string interactions may give rise to a TT deformation of
the spacetime CFT that describes free (0,2) strings. An analog of that in string theory on
AdSs is the single-trace TT deformation, an irrelevant deformation of the boundary CFT
that leads in the bulk to a deformed geometry that approaches near the boundary a linear
dilaton background [34]. The deformed theory retains a symmetric product structure (for
long strings), but the seed of the symmetric product is (TT) deformed.

In AdSs, the single-trace T'T deformation changes the energies of the states from their
original (CFT) values, but for (anti-) chiral states the change vanishes. It was argued
in [35, 36] that in these sectors one can define Kac-Moody and Virasoro algebras, that act
well on chiral states, but not on anything else. This is similar to what we found for the
(0,2) string in section 3. Our analysis clarifies the role of these symmetries. They can be
viewed as spectrum generating algebras for the chiral sectors, which is very natural since
these sectors don’t feel the TT deformation. Therefore, one can organize their spectrum
w.r.t. the undeformed Kac-Moody, Virasoro, etc in that sector.

These algebras are also relevant for correlation functions of arbitrary operators in the
left-moving theory (6.1), or its right-moving analog. General correlation functions, which
involve both left and right-moving operators, are not usefully constrained by them.

Some of our results are also reminiscent of those in [10, 37]. In subsection 2.6 of [37], it
was shown that there is a relationship between the critical bosonic string on R; x S* x M,
where M is a generic CFT with (c,¢) = (24,24), and a TT deformation of the CFT M,
with coupling /. In a certain gauge, which restricts the theory to a sector with a singly
wound string on the S!, the TT deformed CFT is described in terms of the worldsheet
theory of this bosonic string. In [10], it was shown that in the chiral sector of this theory,
there is a conserved Virasoro symmetry (and similarly for the anti-chiral sector); see eq.
(4.5) in [10].1° Comparing to our eq. (3.30), we see that the two constructions are similar.
And, in both constructions, the (anti-) chiral Virasoro generators don’t act well outside
the sector of (anti-) chiral operators.

While in this paper we focused on perturbative string physics, we mentioned the idea
that the full theory at a finite value of the string coupling g, may be a TT deformation
of a CFT of the form

(Mp)N /Sy x (Mr)™ /S, (7.1)

0That paper considers a more general problem, where the string is non-critical. The analogy to our
construction involves the critical case.
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where N ~ 1/g2 is the total number of (anti-) strings, and the TT coupling is t ~ g2c/.
If the coupling ¢ is positive (in the usual conventions in the literature), the high-energy
spectrum exhibits Hagedorn growth, with entropy (here and below we omit order one
numerical constan‘cs)11

Sy ~Va'E. (7.2)

On the other hand, for energies that are low enough that we can ignore the T'T interaction
between left and right-movers, we find the usual Cardy entropy of the CFT (7.1),

Sc ~VNRE. (7.3)

The crossover between the two behaviors happens at an energy FE,

N
B~ VB (7.4)

O[,

This energy is comparable to the zero-point energy (6.3) that we found in the (0, 2) string
analysis of section 3. We view this agreement as a check of the basic idea that such a TT
coupling between left and right-moving spacetime excitations is present in the (0,2) string.

The results of this paper lead to many questions and avenues for further progress. We
next list some of them:

e The worldsheet construction gives rise to a spacetime theory in which the left and
right-moving wound strings are described by (6.1) and its right-moving analog, with
My and Mp being the same Niemeier CFT, M. From the wordsheet point of view,
the fact that M and Mpg are the same is obvious — the worldsheet construction
takes as input one particular M. However, from the spacetime point of view, it is not
clear what would go wrong if, for example, we took M and Mpg to be two different
Niemeier CFT’s.

e Another, perhaps related, consequence of the worldsheet construction, is the spacetime
symmetry structure. We saw in subsection 3.2 that while the full affine Lie algebras,
Gr (3.16) and Gg (3.21), do not act well on the full Hilbert space of the theory, their
zero modes K, f(g do. Moreover, they are equal to each other, K§ = f(g. Thus,
the spacetime theory has one global symmetry, GG, as opposed to two — one from the
left-movers, and another from the right-movers. It would be interesting to understand
this phenomenon from the spacetime point of view.

e We argued that the spacetime theory describing the left-moving states is the symmetric
product CFT (6.1). In that theory, we can calculate the correlation functions of local
operators. Presumably, if our expectation is correct, we should be able to compute
these correlation functions directly in the (0, 2) string theory. It would be interesting
to do it, especially given the fact that the standard string scattering amplitudes vanish
in the V' = 2 string.

"See e.g. [34].
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e The worldsheet construction of section 3 has a Narain moduli space, relating different
even self-dual lattices of signature (25,1) [6]. This moduli space is twenty five dimen-
sional. Twenty four of the moduli are the objects CJ in (2.20), and the last one is
the radius of the x circle. As is familiar from other contexts, moving around in this
moduli space interpolates between different Niemeier CFT’s. It would be interesting to
understand this interpolation from the spacetime point of view (6.1), (6.4).

 In this paper, we focused on the 1 + 1 dimensional vacua of N/ = 2 heterotic strings.
It would be interesting to generalize the discussion to the 2 4+ 1 dimensional vacua.
Since the 1 4+ 1 dimensional vacua give rise to spacetime theories that are of more
general interest in field and string theory, the 2 4+ 1 dimensional vacua may also lead to
interesting spacetime theories. Some comments on these models appear in the 1990’s
literature, but no systematic analysis seems to exist. We hope to perform such an

analysis in future work.

« In this paper we studied (0, 2) strings. In [3-5] it was argued that the heterotic (1,2)
string leads to a particularly interesting class of theories. In particular, its 1 + 1
dimensional vacua give rise to critical bosonic, type II and other strings in target space,
whereas the 2 4+ 1 dimensional vacua give rise to membrane worldvolume theories. This
makes it interesting to generalize our discussion to that case. We hope to report on
this generalization in future work.

Note added. In a follow-up paper [13], we calculated the correlation functions of left-moving
operators in the (0,2) string, and showed that they agree with the holomorphic CFT ones,
as anticipated above.
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A Virasoro algebra

The purpose of this appendix is to describe some properties of the operator L, (3.30). The
first is that this operator is primary under worldsheet Virasoro. As mentioned in section 3,
the first part of this operator is not primary. Indeed, using the OPE

v (2)27(§) ~ ' log(z — €), (A1)
and the form of the worldsheet stress-tensor (2.2), T, = &0zTdz~, we find that the OPE

R ACH & R — irx~ &
T, (2) %,agﬁe% (g,g)zéﬁazﬁazx (2) ezt el BT (£, €) (A.2)

contains a cubic pole, with residue

—ne' T (€,€). (A.3)
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The second contribution to (3.30) can be written as, (3.39),

n %z~
O (6,6), (A4)

and its OPE with T, (z) also has a cubic pole, with the opposite residue. Thus, in the

:U\S

full operator (3.30) the cubic pole cancels, and we conclude that this operator is primary
under worldsheet Virasoro.

The second property of (3.30) that we would like to verify is the algebra (3.31). If we
again write L, as a sum of two terms,

L,=LY 4+ L®), (A.5)

corresponding to the two terms on the r.h.s. of (3.30), the commutator (3.31) contains four
terms. We next discuss them in turn.
The first term is itself a sum of two different terms, corresponding to different Wick

contractions:
[L%I),L%)h N j{2m Qd; Z(fa et /R( ) Zjaﬁeimf/R(@
%27” Qd; Z?R(?O_éz)aﬁe%mm)xm(g)
= ZOT}/% 2m.( m)dz T eltnrma—/R g
= (=l (A.6)
and
o
= f Z?RET—};)Z?RQ izfm‘m(”e’m—/R(g)
%27” % Z?Rzzu—lg)f]g(?i z)( —f) "o eilmtm)z—/R¢)
% (_in;m> ax_ei(ner)x—/R(g)' (A.7)

For n 4+ m # 0, the operator on the r.h.s. of (A.7) vanishes, as discussed after eq. (3.18).
For n + m = 0, we find
dg n?
27 R

where P, is the central operator (3.20). Adding up the two contributions (A.6), (A.7), we
find that Lg) satisfies the algebra

&) =n*P, (A.8)

(LD, L) = (0 = m) Ly, + 0 PL im0 (4.9)

n+m

We next turn to the two cross-terms, [L%l),Lg)], [Lg),L%)]. For n +m # 0, we have a
calculation that is very similar to what we did above, so we will not review it. It gives

LO, L®) = nL?

n o n+m:-

(A.10)

— 34 —



For n +m = 0, one has an additional contribution,

[L(l),L(Q)] _ ]{dﬁ di ﬁaereinz_/R(z) ( 2) 00x~ zmx_/R(é)

nom 27 2m' « O

iR 2d’ P . _ m 1 L
inx~ /R+in(z—£)0z~ /R+... ey 4 ima /R
% 2mi 2771 o (z— 5)36 © < 2 > Bz ©

iR 2d 1, _ mY 1
me 2m o (z _5)35(271(2 &0z /R)’ <2> Oz~

1 1 nd_
St
27 27TZ R(z-¢) 2
df m _ o n?
—0x

erefore, combining the two cross-terms, we find the following contribution to the 0,+m.0
Therefi b g th find the foll g b he 6y4m,
term: 4

LD L0 £ (2, L] = 6,06 25 Zg - pipr (A12)

This doubles the coefficient of P; in (A.8), (A.9), and together with the other terms
discussed above, gives (3.31), (3.32).
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