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Evaluating the formation of clusters in finite and infinite nuclear systems is a fundamental
problem in nuclear physics, and the variation in clustering in the isotope chain up to the
neutron drip-line is one such intriguing phenomenon. Recently, experiments performed us-
ing the (p, pα) reactions have revealed a negative correlation between α-cluster formation
and neutron number in Sn isotopes, showing a trend opposite to that theoretically predicted
for Be and B isotopes. Although the observed charge radii of the Be and B isotopes suggest
the formation of clusters as the neutron drip-line is approached, these radii themselves are
not a physical quantity that can directly probe the cluster structure. Here, we directly inves-
tigate the cluster formation in Be and B isotopes to elucidate the possibility of clustering
as the neutron drip-line is approached. It has been shown that the sum of the S-factors
(i.e., S(α), S(6He), and S(8He)) increases as the neutron drip-line approaches, in agreement
with those of previous studies. The results indicate that the excess neutrons contribute to
the formation of 6He and 8He clusters as well as α clusters. Thus, S(α) is not sufficient to
estimate the enhancement of clustering in Be and B isotopes.
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1. Introduction
Cluster formation is a universal phenomenon exhibited at all levels constituting the hierarchy of
matter. In the sub-atomic regime, the α-cluster structure plays an important role in both finite
and infinite nuclear systems. In dilute nuclear matter, the formation of α clusters is theoretically
predicted to depend on the nuclear density as well as the symmetry energy [1–4]. Notably, in
finite nuclei, cluster formation is expected to be hindered by the growth of a neutron skin [5].
Therefore, it is important to clarify the correlation between the neutron-skin thickness and the
cluster formation. Recently, it was shown that the proton-induced α knockout reaction (p, pα)
is useful for assessing the α-cluster formation at the nuclear surface [6]. Using this reaction,
the negative correlation between the neutron-skin thickness and the α-cluster formation at the
nuclear surface of Sn isotopes has been reported [7]. A similar negative correlation was also
theoretically shown in neutron-rich C isotopes [8].

In contrast to the trend observed in Sn isotopes, the α-cluster formation in light nuclei, such
as Be and B isotopes, is predicted to enhance as the neutron drip-line approaches [9–12]. The
enhancement of the α-cluster formation in Be isotopes as the neutron drip-line is approached
is theoretically well explained by the molecular orbital model, which assumes that the excess
neutrons bond with two α particles, similar to the covalent electrons in a molecule [13–15]. For

C© The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/11/113D

01/6798384 by D
ESY-Zentralbibliothek user on 26 D

ecem
ber 2022

mailto:motoki@nucl.sci.hokudai.ac.jp
https://creativecommons.org/licenses/by/4.0/


PTEP 2022, 113D01 H. Motoki et al.

example, in 12Be, the two excess neutrons are promoted into the sd-shell across an N = 8 shell
gap and enhance the clustering compared with that in 10Be. The observed increase in the charge
radii of the Be and B isotopes suggests the development of clusters as the neutron drip-line is
approached [16–18].

However, direct observation of the enhancement in the clustering is a significant challenge.
Therefore, a study based on the physical quantities that can directly probe the cluster structure
is highly desirable. Consequently, we investigate the cluster formation probability, which can
be experimentally measured via (p, pα) reactions, at the nuclear surfaces of Be and B isotopes
through antisymmetrized molecular dynamics (AMD) calculations. We focus on the 6He and
8He clusters that are expected to emerge because of the excess neutrons near the neutron drip-
line as well as the α clusters.

This paper is organized as follows. In Sect. 2, the theoretical framework of AMD is briefly
explained. In Sect. 3, we present the numerical results and discuss the clustering in Be and B
isotopes. Finally, Sect. 4 summarizes this work.

2. Theoretical framework
2.1. Hamiltonian and model wave functions
The microscopic Hamiltonian for an A-body system is expressed as

Ĥ =
A∑
i

t̂i − t̂c.m. +
A∑

i< j

v̂NN
i j +

A∑
i< j∈proton

v̂C
i j, (1)

where t̂i and t̂c.m. denote the nucleon and center-of-mass kinetic energies, respectively. The
Gogny D1S parameter set [19] is employed to represent the effective nucleon–nucleon inter-
action v̂NN

i j , and the Coulomb interaction v̂C
i j is approximated by a sum of seven Gaussians.

The model wave function of the A-body system is a parity-projected Slater determinant,

�π = P̂πA{φ1 φ2 · · · φA}, (2)

where P̂π denotes the parity projection operator and φi is the ith nucleon wave packet expressed
by the deformed Gaussian [20]:

φi(r) = exp

{
−

∑
σ=x,y,z

νσ (rσ − Ziσ )2

}
(aiχ↑ + biχ↓)ηi. (3)

Here, the isospin part ηi is fixed to either a proton or neutron. The Gaussian widths (νx, νy,
νz), centroids Ziσ , and spin directions ai and bi are the parameters of the model wave func-
tion (2) and are determined by the frictional cooling method, which minimizes the sum of the
Hamiltonian and constraint potential,

E (β ) = 〈�π |Ĥ |�π 〉
〈�π |�π 〉 + vβ (〈β〉 − β )2. (4)

In this case, a sufficiently large value of the constraint potential strength vβ is selected to ensure
that the quadrupole deformation parameter 〈β〉 [21] of the model wave function is equal to the
input value β. Further, we obtain the optimized wave function �π (β), which has the minimum
energy for each given value of β.

After the energy variation, the optimized wave functions are projected to the eigenstate of
the angular momentum,

�Jπ
MK (β ) = 2J + 1

8π2

∫
d� DJ ∗

MK (�)R̂(�)�π (β ), (5)
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where DJ
MK (�) and R̂(�) denote Wigner’s D-function and the rotation operator, respectively.

Then, the projected wave functions that have different values of the deformation parameter β

are superposed as


Jπ
α =

∑
iK

giK,α�
Jπ
MK (βi). (6)

This is the wave function of the generator coordinate method (GCM) [22], where the defor-
mation parameter β is employed as the generator coordinate (6). This GCM wave function
can approximately describe the bound state as well as the unbound state with a bound-state
approximation. The coefficients g jK ′

,α and the eigenenergy Eα are determined by solving the
Hill–Wheeler equation [22]: ∑

jK ′
(HiK jK ′ − EαNiK jK ′ )g jK ′

,α = 0, (7)

HiK jK ′ = 〈
�Jπ

MK (βi)|Ĥ |�Jπ

MK ′ (β j )
〉
, (8)

NiK jK ′ = 〈
�Jπ

MK (βi)|�Jπ

MK ′ (β j )
〉
. (9)

The GCM wave functions can be used to derive the properties of Be and B isotopes, such as
the distribution radii and degree of clustering.

2.2. Reduced width amplitude
To evaluate the degree of clustering in Be and B isotopes, we calculate the reduced width am-
plitude (RWA), which is defined as the overlap between the A-body GCM wave function and
the reference state composed of a cluster with a mass C1 and a daughter nucleus with a mass
A − C1. Thus, the RWA is the probability amplitude of a cluster at a distance r = a from the
daughter nucleus,

YC1 (a) =
√(

A
C1

) 〈
δ(r−a)

ra Y�=0(r̂)[�0+
C1

�Jπ
A−C1

]|�Jπ
A

〉
, (10)

where �0+
C1

is the fully antisymmetrized wave function of the cluster C1 with spin-parity 0+;
�Jπ

A−C1
and �Jπ

A are the fully antisymmetrized wave functions of the ground states of the daugh-
ter and mother nuclei. The spin-parity Jπ is 0+ and 3/2− for the Be and B isotopes, respectively.
In this study, we only consider the orbital angular momentum of the intercluster motion, i.e.,
� = 0. In the practical calculations, Eq. (10) was evaluated by using the Laplace expansion
method [23].

The degree of clustering may be evaluated by the spectroscopic factor (S-factor), which is the
squared integral of the RWA:

S(C1) =
∫ ∞

0
da |aYC1 (a)|2. (11)

Notably, S(C1) is not normalized to unity because of the antisymmetrized effects between the
cluster S(C1) and the daughter nucleus.

We also calculate the root mean square (RMS) radius of the RWA between the cluster C1 and
the daughter nucleus, defined by

arms(C1) ≡
[∫ ∞

0
da a2|aYC1 (a)|2

/∫ ∞

0
da |aYC1 (a)|2

]1/2

, (12)
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Table 1. Calculated quadrupole deformation parameter β; the RMS proton, neutron, and matter distri-
bution radii of the Be isotopes (unit: fm); and the principal neutron quantum numbers Nn. The approx-
imated shell model (SM) and molecular orbital (MO) configurations [30] are also listed.

β
√

〈r2
p〉

√〈r2
n〉

√〈r2
m〉 Nn SM MO

10Be 0.60 2.44 2.49 2.47 4.03 0�ω π2

12Be 0.55 2.57 2.85 2.76 7.60 2�ω π2σ 2

14Be 0.60 2.62 2.99 2.88 10.01 0�ω π4σ 2

Fig. 1. Calculated RMS charge radii of the Be isotope ground states compared with those experimentally
obtained from isotope shift measurements [16–18].

where an expectation value of the squared intercluster distance a is normalized by the S-factor,
S(C1).

3. Results and discussion
3.1. Structure of the ground states of Be isotopes
Be isotopes are well known to have an enhanced two α-cluster core surrounded by valence
neutrons; such cores have been studied using numerous cluster models [24–29]. In the molecular
orbital model, the excess neutrons occupy the molecular orbitals and bond with the α particles
[13–15,30]. 10Be is dominated by the π2 configuration, in which the two excess neutrons occupy
the π orbitals corresponding to the spherical p orbitals in the limit of zero distance between the
two α clusters. The two additional excess neutrons in 12Be occupy the σ orbitals that correspond
to the spherical sd-shell in the limit of zero distance between the two α clusters; further, the
π2σ 2 configuration is dominant in 12Be. Similarly, the two additional excess neutrons in 14Be
occupy the π orbitals, and the π4σ 2 configuration is dominant. It is considered that the σ -bond
structure separates the α particles, while the π -bond structure brings them closer [26,29]. In an
ordinary spherical shell model, 10Be and 14Be are dominated by the normal configuration (i.e.,
the 0�ω configuration). In contrast, 12Be is dominated by the 2�ω configuration, in which two
of the valence neutrons occupy the orbitals in the sd-shell beyond the N = 8 shell gap.

The ground-state properties of 10Be, 12Be, and 14Be deduced by our calculations are sum-
marized in Table 1. The point proton or charge distribution radii of the Be isotopes increase
toward the neutron drip-line in accordance with the enhancement of clustering. In Fig. 1, both
the observed and calculated RMS charge radii increase from 10Be toward the neutron drip-line,
although our calculations systematically overestimate the radii. This is because the Gogny in-
teraction used in this study tends to overestimate the radii of the s-shell nuclei, in particular
that of the α particle, which is an important ingredient in the clustered ground states of Be
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Fig. 2. The calculated α (a) and 6He (b) RWAs of the Be isotopes with orbital angular momentum � = 0.

Fig. 3. Calculated RMS radii of the RWAs for α and 6He clusters in the Be isotopes.

isotopes. The calculated RMS neutron and matter radii also show a similar trend. The large
quadrupole deformation parameter β also supports the presence of two α-cluster cores with
large intercluster distances. Moreover, the calculated principal neutron quantum numbers, Nn,
of 10Be and 14Be are approximately 4 and 10, respectively, indicating the 0�ω configuration,
whereas for 12Be, Nn � 8, which corresponds to the 2�ω configuration.

3.2. Cluster formation in the ground states of Be isotopes
Here, we discuss the enhancement of clustering in Be isotopes based on the calculated RWAs.
Figure 2(a) shows the calculated α RWA of the ground state of ABe for the |α ⊗A−4 He(0+

1 )〉
channel. The amplitudes are suppressed and oscillate in the nuclear interior because of the
Pauli exclusion principle. The effect of Pauli exclusion is approximately described by the
Wildermuth–Tang rule [31], which asserts that the nodal quantum number n and orbital angu-
lar momentum � of the RWA must satisfy the condition 2n + � ≥ 4 in 10Be and 2n + � ≥ 6 in
12,14Be. Thus, the α RWAs with � = 0 have two and three nodes in 10Be and 12,14Be, respectively.
Note that the condition 2n + � ≥ 6 for 12Be implies the dominance of the 2�ω configuration,
i.e., the breaking of the N = 8 magic number. The amplitudes are peaked at the nuclear exterior
(r � 3.0 fm), indicating cluster formation at the nuclear surface. The peak position is more out-
ward for 12,14Be than for 10Be, and this result is consistent with the enhanced cluster formation
by the excess neutrons occupying the σ orbitals. This trend is also evident from the calculated
RMS radius of the RWA, arms, shown in Fig. 3. The arms(α) of 12Be is larger than that of 10Be
owing to the cluster development in 12Be. Additionally, the arms(α) of 14Be is slightly shorter
than that of 12Be, because the two neutrons of 14Be occupying the π orbitals attract the two
α-cluster cores.
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Fig. 4. Calculated α and 6He S-factors and the sum of these S-factors as a function of the neutron
number of the Be isotopes.

Table 2. Calculated deformation parameters β, γ ; the RMS proton, neutron, and matter distribution
radii; and the principal neutron quantum numbers Nn of the B isotopes. The γ values and radii are
presented in units of degree and fm, respectively.

β γ
√

〈r2
p〉

√〈r2
n〉

√〈r2
m〉 Nn

11B 0.45 59 2.45 2.49 2.47 4.03
13B 0.30 6 2.47 2.56 2.52 6.04
15B 0.50 0 2.61 2.87 2.79 10.00
17B 0.55 9 2.66 3.02 2.92 14.01
19B 0.45 60 2.69 3.12 3.01 18.01

However, the calculated S-factor for α clustering, shown in Fig. 4, contradicts the aforemen-
tioned analysis. The S-factor decreases as the neutron number increases, suggesting the suppres-
sion of α-cluster formation by the excess neutrons. The associated mechanism may be explained
as follows: Because of the glue-like role played by the valence neutrons in 12Be, this Be isotope
has a mixing of α + 8He and 6He+6He configurations. As a result, the S(α) of 12Be becomes
smaller than that of 10Be, although the sum of S(α) and S(6He) is larger than that of 10Be.
Similarly, 14Be may be an admixture of the α + 10He and 6He+8He configurations. To verify
this hypothesis, the calculated 6He RWAs of 12Be and 14Be are shown in Fig. 2(b). In both 12Be
and 14Be, the peak height of the 6He RWA is comparable to that of the α RWA, and the peak
position slightly shifts inward, which is reflected by the RMS radii of the RWAs for the α and
6He clusters shown in Fig. 3. Thus, the magnitude of S(6He) is comparable with that of S(α).
The sum of S(α) and S(6He) (i.e., Ssum) does not decrease with increasing neutron number but
increases slightly. Thus, taking into account the clustering of 6He as well as α, it can be stated
that Be isotopes have a well-developed cluster structure.

3.3. Structure of ground states of B isotopes
Although the structures of B isotopes have been theoretically studied by many authors [10–
12,32–34], the physical quantities, which facilitate a direct analysis of clustering, have not been
discussed. Here, we explain our calculated ground-state properties of B isotopes. Table 2 lists
the calculated quadrupole deformation parameters β and γ , and the RMS proton, neutron,
and matter distribution radii of the B isotopes. The principal neutron quantum numbers, Nn,
are approximately 4, 6, 10, 14, and 18 for 11,13,15,17,19B, respectively, indicating that all the B
isotopes are dominated by the 0�ω configurations. The deformation parameters γ show that
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Fig. 5. Calculated RMS point proton radii of the B isotopes compared with the corresponding observed
values [35,36].

Fig. 6. Calculated magnetic moments μ of the B isotopes compared with the observed values [37–40].
The gray dashed line shows the Schmidt value for the p3/2 proton.

Fig. 7. Calculated electric quadrupole moments Qp of the B isotopes compared with the observed values
[41–43].

13B, 15B, and 17B are prolately deformed, while 11B and 19B are oblately deformed. Remarkably,
in the present calculations, 19B is oblately deformed (γ p, n ≈ 60◦), while the spin-fixed AMD
calculations [12] yielded a prolate deformation. This difference significantly affects the cluster
formation probabilities as discussed later in this paper. Figure 5 shows the calculated RMS
point proton radii, which are in reasonable agreement with the experimental values, except
for 11B. The magnetic moments μ and electric quadrupole moments Qp of 11–17B shown in
Figs. 6 and 7 are also in good agreement with the observed values and do not exhibit a strong
dependence on the neutron number. Thus, the present calculation results successfully describe
the ground states of B isotopes.

3.4. Cluster formation in B isotopes
In this subsection, we discuss the cluster formation in B isotopes based on the intrinsic density
distributions, RWAs, radii of the RWAs, and S-factors.
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Fig. 8. Panels (a) and (b) show the proton, neutron, and matter intrinsic density of Be and B isotopes,
respectively. The peak positions of the proton density distributions are marked by points and those
distances are shown in panel (c). Note for 11B that the largest distance between one peak and the mean
position of the other peaks is adopted and shown as an arrow.

Cluster formation in B isotopes can be evaluated from Fig. 8, which shows the proton, neu-
tron, and matter intrinsic density distributions of the Be and B isotopes. The peak positions
of the proton density distributions are marked by points, and the distances d between them
are shown in panel (c). All the Be isotopes exhibit a prolate shape, and the distance d increases
as the neutron number increases, which is consistent with the growth of clustering toward the
neutron drip-line. For the B isotopes, the S-factors are expected to be smaller than those of
the Be isotopes, because the distance d is smaller than that of the Be isotopes. The S-factor
increases as a function of the neutron number until 17B. The isotope 19B has an oblate shape
and does not exhibit clustered structures. Thus, we expect that the clustering is enhanced until
17B, but the corresponding S-factors are always smaller than those of the Be isotopes.

Next, we discuss the RWAs in the |α⊗A − 4Li(3/2−
1 )〉 channel with A = 11, 13, and 15 as shown

in Fig. 9(a). The RWAs of the B isotopes are peaked at the nuclear exterior and suppressed in
the interior because of the Pauli exclusion satisfying the Wildermuth–Tang rule [31]. The peak
height is much smaller than that of the Be isotopes, suggesting the presence of less developed
clustered structures as expected. Similar to the case of Be and C isotopes [8], S(α) decreases as
the neutron number increases as shown in Fig. 10 because of the excess neutrons, which cause

8/11

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/11/113D

01/6798384 by D
ESY-Zentralbibliothek user on 26 D

ecem
ber 2022



PTEP 2022, 113D01 H. Motoki et al.

Fig. 9. Calculated α (a), 6He (b), and 8He (c) RWAs of the B isotopes with an orbital angular momentum
of � = 0.

Fig. 10. Calculated α, 6He, and 8He S-factors and the sum of those S-factors as a function of the neutron
number of the B isotopes.

Fig. 11. Calculated RMS radii of the RWAs for α, 6He, and 8He clusters of the B isotopes.

the mixing of the α + 9Li and 6He+7Li configurations in 13B and that of the 6He+9Li and
8He+7Li configurations in 15B. The calculated 6He and 8He RWAs are shown in Figs. 9(b) and
(c), respectively. Evidently, in 13B, the peak height of the 6He RWA is comparable to that of the
α RWA. In 15B, the peak heights of the 6He and 8He RWAs are larger than that of α. Similarly,
the excess neutrons in 17B contribute to the formation of the 8He+9Li configuration. These
features are reflected in the S-factors depicted in Fig. 10 as well as the radii of the RWAs shown
in Fig. 11. Clearly, some of the α, 6He, and 8He cluster structures are enhanced in 11,13,15,17B.
In Fig. 10, Ssum shows the sum of S(α), S(6He), and S(8He) and is not hindered by the excess
neutrons in the isotopes up to 17B.

In 19B, the corresponding RWA and S-factor indicate a less developed 8He cluster structure,
which is expected from the intrinsic densities. Therefore, the behavior of Ssum is consistent with
the enhancement of clustering, determined from the intrinsic density distributions in Fig. 8.
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This figure indicates a certain amount of cluster development at Ssum values smaller than that
of Be isotopes.

4. Summary
In this study, AMD calculations were performed that predicted the enhancement of α-cluster
formation in Be and B isotopes as the neutron drip-line is approached, which is opposite to the
experimental observations of Sn isotopes. Experimental investigation of the cluster formation
based on the physical quantities that can directly probe the cluster structure is a considerable
challenge. Thus, we theoretically evaluated the cluster formation in Be and B isotopes to clar-
ify the possible clustering as the neutron drip-line is approached. We investigated the cluster
formation probability at the nuclear surface by analyzing the 6He and 8He clusters that are
expected to emerge because of the excess neutrons as well as the α clusters. The AMD frame-
work successfully described the ground-state properties of both the Be and B isotope chains.
We estimated the enhancement of clustering from the intrinsic density distributions in the Be
and B isotopes as well as by using the molecular orbital model for the Be isotopes. Although
the calculated α spectroscopic factors (i.e., S(α)) show a negative correlation with the neutron
number, the sum of S(α) and S(6He) for the Be isotopes and that of S(α), S(6He), and S(8He)
for the B isotopes are not being hindered as the neutron drip-line approaches, except for 19B.
This result is consistent with the enhancement of clustering estimated from the intrinsic density
distributions. Thus, the results of this study reveal the possibility of cluster formation as the
neutron drip-line is approached in Be and B isotopes. These results are based on the discussion,
which explains the mechanism of cluster formation in Be isotopes and shows the consistency
between the cluster distances of the intrinsic density distributions and cluster formations in B
isotopes. Consequently, the results indicate that 6He and 8He clusters are formed along with α

clusters owing to the excess neutrons surrounding the α-cluster cores.
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Appendix A. Principal neutron quantum number
The number operator n̂σ = âσ â†

σ is defined as

âσ = √
νσ

(
σ̂ + p̂σ

2i�νσ

)
, (A1)

â†
σ = √

νσ

(
σ̂ − p̂σ

2i�νσ

)
, (A2)

where νσ is a Gaussian width of σ = x, y, z direction and p̂σ is a momentum operator. The
principal neutron quantum number Nn is calculated using the number operator n̂σ , which is
acted on the neutron part of the parity-projected wave function (2):

Nn =
∑

i∈neutron

∑
σ=x,y,z

〈n̂σ 〉i =
∑

i∈neutron

∑
σ=x,y,z

〈
�π |âi,σ â†

i,σ |�π
〉

〈�π |�π 〉 . (A3)
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