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2 Abstract

Abstract
Plane waves are a recurring concept in various branches of physics. Although they are,
to some extent, idealizations, they provide the groundwork for describing a multitude of
radiative processes. The great strength of this concept lies in the structural simplicity of
plane waves, a simplicity that allows us to analytically tackle various problems and derive
an intuitive and computable framework that would otherwise be obscured by mathematical
complexity. Here, we will leverage these characteristics to study the nonlinear behavior of
particles moving in strong electromagnetic fields and nonlinear gravitational waves. We
will show how the large number of symmetries possessed by plane waves enables the exact
calculation of the interaction between a moving charge and the field it generates, an effect
known as radiation-reaction. We will also investigate the gravitational emission of moving
particles in an electromagnetic wave and demonstrate that the resulting amplitude can be
proved to be in a simple proportionality relation with its electromagnetic counterpart, both
from the classical and quantum perspectives. Additionally, we will explore the dynamics in
plane wave spacetimes that generalize the usual treatment in the weak-field approximation,
showing how this can be connected to known results for the motion in an electromagnetic
wave within flat spacetime. Finally, we will study the process of photon emission by an
electron in the aforementioned curved spacetime.

Zusammenfassung
Ebene Wellen sind ein wiederkehrendes Konzept in verschiedenen Zweigen der Physik.
Obwohl sie bis zu einem gewissen Grad Idealvorstellungen sind, bieten sie die Grundlage für
die Beschreibung einer Vielzahl von Strahlungsprozessen. Die große Stärke dieses Konzepts
liegt in der strukturellen Einfachheit der ebenen Wellen, einer Einfachheit, die es ermöglicht,
verschiedene Probleme analytisch zu behandeln und einen intuitiven und berechenbaren
Rahmen abzuleiten, der sonst durch mathematische Komplexität verschleiert wäre. Hier
werden wir diese Eigenschaften nutzen, um das nichtlineare Verhalten von Partikeln in
starken elektromagnetischen Feldern und nichtlinearen Gravitationswellen zu untersuchen.
Wir werden zeigen, wie die große Anzahl von Symmetrien, die ebenen Wellen besitzen, die
exakte Berechnung der Wechselwirkung zwischen einer sich bewegenden Ladung und dem
Feld, das sie erzeugt, ermöglicht – ein Effekt, der als “Radiation-Reaction” bekannt ist.
Desweiteren werden wir beweisen, dass die resultierende Amplitude, sowohl aus klassischer
als auch aus quantenmechanischer Perspektive, in einer einfachen Proportionalitätsbeziehung
zu ihrem elektromagentischen Gegenstück steht. Zusätzlich werden wir die Dynamik in
ebenen Wellen-Raumzeiten erforschen, die die übliche Behandlung im Schwachfeldansatz
verallgemeinern, und zeigen, wie dies mit bekannten Ergebnissen für die Bewegung in
einer elektromagnetischen Welle innerhalb der flachen Raumzeit verbunden werden kann.
Schließlich werden wir den Prozess der Photonenausstrahlung durch ein Elektron in der
zuvor erwähnten gekrümmten Raumzeit untersuchen.
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Preface
This thesis is divided into six Chapters, which are intended to be read in pairs. The
first two Chapters cover the topics of classical motion and radiation by a charge moving
in an electromagnetic plane wave, including the self-interaction of the charge with itself.
In Chapter 1 we discuss the classical dynamics in such a background and we study the
radiation-reaction effects in this context. In Chapter 2 we present the analytical expression
of the radiated energy spectrum from a charge driven by a strong plane wave [62].

The second pair of Chapters is devoted to the study of the interactions between QED
in intense electromagnetic fields and linearized gravity. In Chapter 3 we develop the
fundamental framework necessary to explore the topic. In Chapter 4 we show how the
electromagnetic and gravitational emissions in strong electromagnetic waves can be related
by a simple proportionality, both at the classical level and the quantum leading order [20].

Finally, the last two Chapters are devoted to the study of exact (or nonlinear) gravita-
tional waves in general relativity. In Chapter 5 we discuss how to define gravitational waves
as solutions of Einstein’s equations and investigate the dynamics in such spacetimes. In
Chapter 6 we examine the construction of quantum states in these curved spacetimes and we
provide the squared S-matrix element for the photon emission in a nonlinear gravitational
wave background [21].

At the end of Chapters 2, 4 and 6 the reader will find a Support Material section, which
can be useful to elucidate small details or calculations appearing in the main text. These
sections are not essential to understand this work and they can be skipped without altering
the comprehension of the central content.

Due to the structure of this thesis, we believe it is more sensible to discuss the results at
the end of every pair of Chapters. The reader will thus find discussion sections at the end
of Chs. 2, 4 and 6.
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Notation
The signature of the metric chosen in this work is -2 and we assume ℏ = c = ε0 = 1,
κ =
√

32πG. Referring to the Misner-Thorne-Wheeler systematization [131] within general
relativity, we adopt the convention [−,−,−]. While the first − refers to the metric signature,
the other two correspond to the conventions

Rν
µρα = ∂αΓν

µρ − ∂ρΓν
µα + Γβ

µρΓν
αβ − Γβ

µαΓν
ρβ,

Rµν −
1
2gµνR = −8πGTµν .

(1)

Plane waves propagating along z depend exclusively on the variable t− z. For this reason
we will employ very often the light-cone coordinates {x+, xi, x−} defined as x− = t− z ≡ ϕ,
x+ = 1

2(t + z), xi = {x, y} (see App. A.1 for further details). Latin indices will be used
throughout this paper referring to the two transverse coordinates {x, y}. Whenever a vector
(or a matrix) has a transverse index, this can be substituted with a four-dimensional index
in order to lighten the notation. For example, given vi we will assume the convention

vα = δα
i v

i. (2)

Certainly, vi will be properly defined before such a convention is applied, in order to avoid
confusion. From Chapter 5 on, letters belonging to the first half of the Greek alphabet α,
β, ... will refer to the flat spacetime metric (unless otherwise stated), whereas µ, ν, ... will
be used as curved spacetime indices.
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Recurring symbols and conventions
Misner-Thorne-Wheeler convention [−,−,−]
metric convention (+,−,−,−)
natural units (can be restored when needed) ϵ0 = c = ℏ = 1
fine structure constant α = e2

4πϵ0ℏc = 1
137

gravitational coupling κ =
√

32πG
electron mass m

Minkowski scalar product v · w = vαwβηαβ

three-dimensional scalar product v ·w = viwjδij

plane wave wavevector kα = ωnα = ω(1, 0, 0, 1)
emitted radiation wavevector lα = ω′n′α

light-cone basis {nα, ηiα, ñα}
light-cone coordinates {x−, xi, x+}
plane wave phase φ = k · x
dimensional phase ϕ = n · x = x−

plane wave structure tensor fαβ
i = nαδβ

i − nβδα
i

classical background field Aα

quantum field Aα

classical nonlinearity parameter ξ0

quantum nonlinearity parameter χ0 = η0ξ0

radiation reaction parameter τe = 2α
3m

vierbein, inverse vierbein eα
µ, eα

µ

flat-; curved-spacetime fields Φ, Ψ ; Φ,Ψ
Dirac matrices γ̄α

positive-, negative-energy Volkov states Up,Vp

symmetrization T(µ1..µn) = 1
n!
∑

σ∈Sn
Tµσ(1)...µσ(n)

antisymmetrization T[µ1..µn] = 1
n!
∑

σ∈Sn
sgn(σ)Tµσ(1)...µσ(n)

Chirped Pulse Amplification CPA
Radiation Reaction RR
Lorentz-Abraham-Dirac equation LAD
Landau-Lifshitz equation LL
Classical Radiation Dominated Regime CRDR
Strong-Field QED SFQED
Ordinary Differential Equation ODE



Introduction
“Love, despite what they tell you,

does not conquer all,
nor does it even usually last.
In the end the romantic aspirations
of our youth are reduced to,
whatever works.”

Boris Yellnikoff

Light amplification by stimulated emission of radiation: laser. This is the instrument
which enabled the research in strong electromagnetic fields to develop and advance. It thus
warrants a brief exploration of its history. The full name is by itself quite descriptive, or at
least it contains the fundamental characteristics of a laser, which is indeed an amplifier of
electromagnetic radiation. The very first ancestor of this instrument was designed to amplify
microwaves and was therefore historically referred to as a “maser”. However, scientists
quickly recognized that utilizing optical light would be significantly more advantageous.
The utility of a laser is not limited to the amplification, indeed with it we can produce
extremely directional and coherent light. By coherence we mean that the emitted waves
keep a constant phase difference, a property due to the process underlying the amplification
process known as “stimulated emission”. As often happens discussing the physics of the
twentieth century, the seminal idea about this mechanism belongs to Einstein, who proposed
it in a paper dated 1917 about “The quantum theory of radiation” [77]. The idea is simple:
a photon can induce an atomic transition from one quantum state E1 to another with lower
energy E0, resulting in two emitted photons (see the last picture in Fig. 1).

E1

E0

h̄ν
h̄ν

E1

E0

h̄ν
h̄ν

E1

E0

h̄ν

h̄ν

h̄ν

h̄ν

Figure 1: From left to right: photon absorption, spontaneous emission and stimulated emission.

If a photon goes through a medium, it can surely be absorbed bringing an atom or molecule
from the lower to the higher energy state E0 → E1. This process populates E1 while the
stimulated and spontaneous emissions do the opposite. Summing the contributions we can
describe the evolution of the system as

dN1
dt

= ρ(ν)(B0→1N0 −B1→0N1)−AN1, (3)
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12 Introduction

Figure 2: Schematic representation of a laser.

where ρ(ν) is the photon distribution at the frequency ν and B0→1, B1→0, A are transition
coefficients. If we consider only the photon-stimulated emission we can set aside the
spontaneous relaxation and consider the B terms only. Einstein recognized [77, 164] that
the coefficients should not depend on the direction of the transition: B0→1 has to be equal
to B1→0. Including this observation, the high energy state population evolves as

dN1
dt

= ρ(ν)B(N0 −N1). (4)

This means that in order to have a great number of stimulated emissions we need N1 ≫ N0,
which is not the case in a spontaneous equilibrium where N1/N0 = exp (− ∆E

kBT ). We thus
need to pump energy into the system and induce a population inversion. The resulting
machinery is an instrument which exploits an external source of energy to amplify the original
input signal. It is worth highlighting that unlike spontaneous emission, the stimulated
process generates radiation with the same direction and characteristics of the incoming one.
This is what allows a coherent amplification, enabling to reach high intensities and tightly
focused beams. If we put two mirrors at the extremities of the laser medium we can build
a resonator, where now the light gets amplified multiple times before exiting the device as
a beam (see Fig. 2)

The active medium can be chosen among a large variety of materials, the most powerful
optical lasers today work with titanium-sapphire crystals (Ti:Sa) [133]. On 16 May 1960
Theodore Maiman switched on the first ever working laser in Malibu, California. An
interesting fact: the Physical Review Letters editors at the time turned down Maiman
report, probably tired of receiving too many maser papers. This accident did not stop the
work to be published elsewhere, as it did not stop the public opinion speculations. After
the announcement to the news media, the first newspaper article was titled “Death rays
possibilities probed by scientists”. Newspapers have consistently found science fiction more
engaging than physics. Despite not being weapons belonging to “The war of the worlds”,
lasers gave a unique boost to the theoretical investigation of interactions between particles
and strong electromagnetic fields. Among the pioneers who first worked on the topic in the
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60s it is worth mentioning Howard Reiss [154], Ritus and Nikishov [139], Brown and Kibble
[49] and Eberly [75]. A large number of people contributed to the development of these
seminal works and we refer to [66, 81] for a comprehensive report. It should be mentioned
that the solution of the Dirac equation in an electromagnetic plane wave, an ubiquitous
element in the literature about these topics, was obtained by Volkov in 1935 [173], thirty
years before it could be properly exploited. In research, patience is indispensable. In
the same years in which laser research was born, Peter Higgs was working on what he
first thought being “completely useless”, a keystone of the Sandard Model, experimentally
proved only 50 years later.

The research on strong-field interactions grew over the following 20 years but soon laser
technology encountered an obstacle. Indeed, at intensities of the order of GW/cm2 the
light starts damaging the laser active medium during the amplification process, making
impossible to reach higher intensities. In 1985 the two researcher at Rochester university
Donna Strickland and Gerard Mourou introduced a procedure to solve this problem:
the “Chirped Pulse Amplification” (CPA) [168]. The idea is simple, in order to further
amplify a laser pulse avoiding the aforementioned problem we can stretch it before the
amplification, drastically diminishing its intensity, and then recompress it afterwords. This
technology today allows to generate pulses with the incredible intensities of 1023W/cm2

[1, 2]. Nowadays, thanks to numerous good people, very strong lasers are available. In the
following we will describe in detail what can be explored with them. Before proceeding let
us mention that modern technology also allows to produce ultra-short laser pulses in the
attosecond (10−18s) regime. This allows to investigate the very florid research branch known
as “ultra-fast physics”, which despite being very fascinating will not be treated in this work.
Here we will focus on the physics at very high intensities. Thus, what happens when a
charged particle interacts with a very intense coherent pulse? The physics emerging in
these conditions can be divided into three macro-categories: classical nonlinearity, quantum
nonlinearity and radiation reaction. In the following chapters we will discuss these topics
extensively, let us thus introduce them concisely here.

Firstly, classical nonlinearity. In this context the adjective “nonlinear” refers to the
equations of motion, namely the Lorentz equation for a charged particle. If we consider an
electron this reads [115]

du

dt
= e

m
(E + γ−1u×B), (5)

where u = γv is the relativistic velocity of the particle, m is the electron mass and e < 0.
The presence of u in the r.h.s. makes the differential equation nonlinear and this is directly
related to the magnitude of the magnetic term in the force. For a plane wave |E| = |B| in
natural units and this equation can be easily solved analytically [122], showing that the
nonlinearity in this case is reflected in the nonlinear dependence of the momentum on the
wave field (see Sec. 1.1.1).

The same is true for nonlinear quantum effects. Let us consider for example a scattering
process taking place in a electromagnetic field background Aα. If the latter is sufficiently
intense we cannot treat it perturbatively, instead we have to solve the dynamics exactly
in Aα, using the deriving “dressed” Feynman rules to calculate the process [66]. This is
another way to say that we have to sum all the possible contributions of the background
field to the fermion lines. This procedure is explained in Sec. 3.1.
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Figure 3: Electromagnetic and gravitational interactions between two repelling particles.

Finally, the radiation-reaction (RR). Since the advent of a proper theory of electro-
dynamics in the early 1900s, discussions on RR effects have been ongoing. The point is
very clear: the Lorentz equation for a charged particle cannot be complete because it does
not take into account the self-interaction of the particle on itself mediated by the field it
generates [122]. Requiring momentum conservation leads to a modified equation of motion
known as LAD equation, from Lorentz, Abraham, and Dirac (see Sec. 1.2.2). This equation
is not Newtonian as it involves derivatives of the acceleration. As such, it allows analytical
solutions which cannot be considered physical like “runaway” motions, in which the electron
acquires a diverging acceleration even in absence of external fields [66]. These problems can
be avoided employing a an approximation procedure introduced by Landau and Lifshitz
[122] as we will discuss in Sec. 1.2.3 . Despite being such an old problem, RR is still
debated due to the measurement difficulties it entails. In fact, in most of the situations the
RR forces are extremely small compared to the Lorentz force.

Let us now shift our focus and discuss a topic that might seem unrelated to what
we have said to this point: gravity. Despite its undeniable beauty and the simplicity of
its founding principles, Einstein theory of gravity is practically a complicated machinery.
Indeed, it is an intrinsically nonlinear theory. The reason for this is very simple: everything
is a source for the gravitational field. At least everything with mass or energy. It is evident
that this feature drastically complicates things, although nature tends to be nonlinear much
more often than we would like to admit. Let us think about the aforementioned RR effects:
also in this case a charge becomes source of the electromagnetic field itself, which then gets
involved in the equations of motion. This generates the recursive self-interaction. Now, the
major difference between gravity and electrodynamics in this sense does not lie in the matter
but in the fields. Let me clarify. Suppose we have a system made of two positive charges.
If we let them free to move they will surely repel each other and accelerate in opposite
directions (Fig. 3) Due to their motion they will generate non-Coulombian electromagnetic
and gravitational fields. A part of the electromagnetic field will be radiated and another
part will interact with both of the charges. The same is true for the gravitational field but in
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Figure 4: In some respects, gravity can be seen as a double copy of a gauge theory.

this case it is not the end of the story, both the generated fields will turn into gravitational
sources themselves!. In the language of quantum field theory we would say that at leading
order photons only couple to charges but never to themselves, while gravitons couple to
everything. This of course corresponds to the fact that Quantum Electrodynamics (QED)
is an abelian gauge theory and gravity is not.

The microscopic world is ruled by two other fundamental forces and none of them is an
abelian gauge theory. Indeed, both weak and strong interactions admit multiple-bosons
vertices. Let us take into account Quantum Chromodynamics (QCD) for example. In this
theory the gauge group is SU(3), which permits the existence of three- and four-gluons
vertices. This feature makes QCD, in some respects, closer to gravity. Clearly there are
many differences between the two theories, but when we treat them perturbatively we
notice that at the semiclassical level (three-level) the connections between them are more
than what we expected. These relations have been widely investigated by a numerous
group of people and today constitutes a branch of research which goes under the name
of “double copy theory”[31, 30]. Here “double copy” refers to the fact that amplitudes
involving gravitons can be written as proper products of amplitudes in gauge theories (Fig.
4). This sort of relations find their roots in a string theory paper dated 1985 [116] and
have been shown to be very valuable in the last thirty years. The practical utility of their
use stems from the empirical observation that calculating amplitudes involving gravitons is
significantly more complex than calculating amplitudes involving gluons. Thus, if we can
derive the former from the latter, we gain a clear advantage.

In some specific cases, similar relations can be found for processes involving only gravity
and electrodynamics [110, 36, 37, 13, 27, 12], an example is the proportionality between
Compton scattering and gaviton photoproduction at tree level [56, 111]. These will be the
subject of the second part of this work (Chs. 3, 4). In particular we will show how these can
be extended including the electromagnetic nonlinearity in the system through background
plane waves [20]. Indeed, even though electromagnetic and gravitational interactions are
profoundly different, the high number of symmetries belonging to plane waves allows to find
connections between the two theories which are not limited to the first order calculations.

In the last part of this work we will study the physics emerging in nonlinear gravitational
waves (Chs. 5, 6). We will find out that even in this context it is possible to find interesting
connections and similarities with the electromagnetic case, both in the classical and
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quantum regimes. We will show, for example, how to obtain the fermion quantum states
in a gravitational wave from a direct analogy with the solutions that Volkov found ninety
years ago for strong electromagnetic fields [173]. After the first direct observation by
LIGO-VIRGO [3] in 2015, gravitational waves have attracted a lot of attention. However,
due to the weakness of perturbations reaching the Earth, the work done on extending the
theoretical analysis to nonlinear gravitational waves has been relatively moderate. Here we
will argue that if we dear to do that, forgetting about the experimental complications for a
moment, we can actually discover some intriguing physics and explore QFT in a highly
symmetrical curved spacetime.



1
Classical dynamics

1.1 Dynamics neglecting the particle self-interaction

1.1.1 Motion in a plane wave and nonlinearity parameters
Before we dive deep into strong-field electromagnetism it is useful to get a sense of the
physical quantities that control the processes in this context. Let us consider the relativistic
Lorentz equation for an electron

dγv

dt
= e

m
(E + v ×B), (1.1)

where m is the electron mass and e < 0. As we anticipated in the introduction, if the
magnetic interaction is not negligible then this equation becomes nonlinear, in the sense that
the unknown variable appears in the interaction as well. In general we cannot find a specific
condition regarding the motion such that |v×B| ∼ |E| without fixing the relation between
the electric and magnetic fields. However, if we choose a plane wave as a background this
relation is always defined to be B = n ×E, where n is the wave propagation direction.

17
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This means that in this case the nonlinearity condition will be satisfied when the particle
becomes highly relativistic v ≲ 1 [66]. Now, the motion in a plane wave is periodic, so we
need the particle to become relativistic in a period. Thus, we need the energy transferred
to the particle in a period to be of the same order of its rest energy eEc/ω ∼ mc2. These
considerations suggest the introduction of the classical nonlinearity parameter ξ as

ξ = |e|E
mωc

, (1.2)

such that nonlinear effects emerge for ξ ≳ 1. For a laser this can be expressed in terms of
the peak field E0 and we will denote it by ξ0 = eE0

mωc . In order to have a clearer point of view
about this parameter in a plane wave background we can directly solve the equations of
motion, a surprisingly easy task for such a field. The Lorentz equation for the momentum
πα = muα in covariant form reads

dπα

dτ
= e

m
Fαβπβ. (1.3)

Plane waves propagating along z depend on the variable t−z only. Moreover the correspond-
ing field Aα(ϕ) has only components in the directions transverse to z, if we choose a proper
gauge [66]. Indeed we can choose to work in the Lorenz gauge ∂µA

µ(ϕ) = n · Ȧ(ϕ) = 0,
where kα = ωnα is the background wave vector, with the additional condition A0(ϕ) = 0.
Here and below the overdot stands for a derivative with respect to ϕ. By assuming that
limϕ→±∞A(ϕ) = 0, then the Lorenz-gauge condition implies n ·A(ϕ) = 0, such that the
field has indeed only transverse components. For these reasons we will choose to work with
light-cone coordinates {x+, xi, x−} defined as (see App. A.1)

Light-cone coordinates ⇒


x− = n · x = t− z ≡ ϕ
x+ = ñ · x = 1

2(t+ z)
xi = {x, y}

. (1.4)

The Latin indices will be used throughout this work referring to the two transverse
coordinates. Here we can also introduce the light-cone basis {nµ, δµ

i , ñ
µ} with nµ = (1, 0, 0, 1)

being proportional to the wave vector and ñµ = 1
2(1, 0, 0,−1), such that any vector vµ can

be decomposed as

vµ = v−ñµ + v+nµ + viδµ
i (1.5)

with v− = n · v, and v+ = ñ · v. We can thus utilize ϕ as an evolution parameter in place of
the proper time and rewrite the Lorentz equation as

π̇α
p (ϕ) = e

p−F
αβ(ϕ)πp,β(ϕ), (1.6)

where with the subscript p we indicates the momentum initial condition pα = muα
0 . The

last step to solve this equation is to observe that the plane wave Maxwell tensor

Fαβ(ϕ) = Ȧi(ϕ)(nαδβ
i − n

βδα
i ) ≡ Ȧi(ϕ)fαβ

i (1.7)
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commutes with itself at different phases, due to the structure of the tensor fαβ
i . This means

that Eq. (1.6) can be directly solved by exponentiation, the time ordering being needless

πα
p (ϕ) = exp

(
e

p−

∫ ϕ

dϕ̃F (ϕ̃)
)

αβ pβ. (1.8)

We can extract the dimensional parameters from the Maxwell tensor rewriting Fαβ(ϕ) =
E0
ω ψ̇

i(ϕ)fαβ
i , where now the functions ψi are dimensionless. If we now name ξi

⊥(ϕ) = ξ0ψ
i(ϕ)

we can write the solution in a compact form, where the dependence on the nonlinearity
parameter is manifest and clear

πα
p (ϕ) = exp

(
m

p− ξ
i
⊥(ϕ)fi

)
αβ pβ =

= pα −mξα
⊥(ϕ) + m

p−

[
p · ξ⊥(ϕ)− m

2 ξ⊥(ϕ) · ξ⊥(ϕ)
]
nα.

(1.9)

The exponential expansion stops at the second order due to the property fα
i βf

β
j γf

γ
k δ = 0.

Here we can fully appreciate the fact that the quadratic term in the background field is
proportional to ξ2

0 , as anticipated in the introduction. This parameter is then a proper
indicator of the motion nonlinearity.

There are other ways to solve the motion in a plane wave, besides the direct expo-
nentiation. Surely the most straightforward one is to observe that the three coordinates
xi, x+ are cyclic in the system Lagrangian. From this follow three conserved quantities
πi +mξi = pi, π− = p−. Adding to these the on-shell condition, the motion is completely
solved. While we may not reach six or seven explanations as Feynman recommended,
having various ways to convey the same point is still worthwhile. In order to visualize the
motion we can pick a monochromatic wave for simplicity and describe the trajectory from
the so-called average rest frame (see App. A.3). In this frame there is no drift velocity
along the wave propagation direction and the motion in the {x, z} and {y, z} planes traces
a characteristic figure-eight pattern [159] (Fig. 1.1).

It is useful to have a numerical expression for ξ0 involving only the laser features [66],
recalling that the peak intensity is defined as I0 = cϵ0E

2
0 we have

ξ0 = 7.5
√
I0[1020W/cm2]/ω[eV] = 6

√
I0[1020W/cm2]λ[µm]. (1.10)

To have an idea of the numbers involved it is enough to remember that super-strong
lasers usually work at optical frequencies λ ∼ µm (ω ∼ eV), such that for these sorts of
facilities ξ0 ∼

√
I0[1018W/cm2]. Modern PW-lasers can reach peak intensities of the order

of I0 ∼ 1023W/cm2 at the focus, thus the parameter space for which ξ0 ≳ 1 is already
available [1, 5].

The reader could object that Eq. (1.2) is not a manifestly Lorentz- and gauge-invariant
definition and be skeptical about its utility. In order to clarify this issue let us notice that
such a definition exists and reads [107]

⟨ξ⟩ = |e|
m

√
−⟨(Fαβpβ)2⟩

(k · p)2 , (1.11)
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Figure 1.1: Trajectory in the {z, x}-plane of an electron in a plane wave propagating along z with ξ0 = 3.19
as seen in the average rest frame.

where p is the initial particle momentum, kα is the laser wave vector and ⟨...⟩ indicates the
average over a phase period. The averaged quantity in this expression is proportional to
Tαβpαpβ , where Tαβ is the energy-momentum tensor of the electromagnetic wave. This is
clearly Lorentz- and gauge-invariant and when we take its square root and divide it by m
it represents the energy density seen by the charge in its rest frame. The other invariant
is the denominator k · p = ωp−. The dynamical factor p− represents the laser frequency
Doppler shift in the electron reference frame. In fact, if the particle is propagating (or
counter-propagating) along the wave direction we have that

p− = mc

√
1− β
1 + β

. (1.12)

Thus ωp−/mc is the laser frequency seen by the moving electron. If the latter is propagating
along the wave direction then p−/mc < 1 and we have a redshift. Clearly a blueshift occurs
in the counter-propagating case.

If there is any wavelength λ characterizing an electromagnetic field we could say that
the classical nonlinearity parameter is the work done by the field on a charge in a field
wavelength λ, ratio the particle rest energy. Again, this is because the motion becomes
nonlinear if the energy gained by the charge in a characteristic length of the background
field is of the same order of its mass. Now, if the work done by the field in the particle
rest frame on a Compton wavelength λC is of the order of its rest energy, then quantum
nonlinearity effects emerge, indeed this energy is enough to produce an e−e+ pair. The
correspondent quantum nonlinearity parameter regulating the emergence of such effects
can be written in a covariant form as [66]

χ =
eℏ
√
−(Fαβpβ)2

m3c4 . (1.13)

For a laser field χ0 = η0ξ0, with η0 = ℏ k·p
m2c2 . The parameter η0 makes the quantum
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nonlinearity dependent on the particle initial motion. Indeed, recalling that k · p represents
the laser frequency Doppler shifted in the electron reference frame, we see that we can
enhance χ0 shooting the electron in a head-on collision with the wave, blueshifting the laser
frequency. Another way to write χ0 involves the Schwinger critical field Fcr = m2c3/eℏ =
1.3× 1016V/cm = 4.4× 1013G

χ0 = p−

mc

F0
Fcr

, (1.14)

where F0 is the plane wave peak electric (or magnetic) field. It is important to underline
that in order to observe quantum nonlinear effects we do not only need very strong fields,
but also very fast electrons. Of course if we could reach the critical field it would be enough
to produce pairs out of vacuum, but this is far beyond the actual technical possibilities.
Also in this case, it is worth having an operative numerical expression for χ0, depending
only on the setup specifics. For a fast electron initially counterpropagating with respect to
the plane wave this reads [66]

χ0 = 5.9× 10−2ε0[GeV]
√
I0[1020W/cm2], (1.15)

where here ε0 is the electron initial energy.

1.1.2 Motion in a Redmond field
In this section we will briefly study the dynamics of a particle in a field composed of a plane
wave and a constant magnetic field aligned along the wave propagation direction. This
configuration is known as Redmond field [153] in the literature. The interesting aspect of
this field is that it allows a particle moving under its influence to enter in a resonant regime..
This happens when the synchrotron frequency and the wave frequency in the electron frame
are the same, such that the particle receives energy from both in a constructive way.

The Lorentz equation in this configuration reads

π̇α(ϕ) = e

p−

(
Fαβ(ϕ) +Bαβ

)
πβ(ϕ), (1.16)

where Bαβ is the Maxwell tensor associated to the constant magnetic field aligned to ẑ and
with magnitude H. We can generally write this tensor as [153]

Bαβ = iH(εαε
∗
β − ε∗

αεβ), (1.17)

with εα = 1/
√

2(0, 1, i, 0) such that ε ·ε∗ = −1 and ε ·ε = 0. One way to solve the equation
is to observe that the components ε ·π and ε∗ ·π decouple [153]. However, here we will solve
it by exponentiation as we did in the previous section for the single plane wave, indeed this
procedure abbreviates the calculations and can be more suitable for further generalizations.
The magnetic field tensor is constant, thus we can collect its dependence and write

πα
p (ϕ) = exp

(
e

p−Bϕ

)
αβ Πp,β, (1.18)

such that the Lorentz equation can be written in terms of Πα
p as

Π̇α
p (ϕ) = e

p− exp
(
− e

p−Bϕ

)
αβ Fβγ exp

(
e

p−Bϕ

)
γδ Πp,δ ≡

e

p− F̃
αβΠp,β. (1.19)
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Now, the important thing to observe is that the tensor F̃αβ is structurally similar to the
original plane wave tensor, indeed it satisfies (F̃ 2)αβ ∝ nαnβ . This means that the equation
can now be directly solved by exponentiation as in Sec. 1.1.1

πα
p (ϕ) = exp

(
e

p−Bϕ

)
αβ exp

(
e

p−

∫ ϕ

dϕ̃F̃ (ϕ̃)
)

β
γpγ . (1.20)

It is useful to introduce the following notation

A i =
∫ ϕ

dϕ̃
(
Ȧ1 cos Ωϕ̃+ Ȧ2 sin Ωϕ̃, Ȧ2 cos Ωϕ̃− Ȧ1 sin Ωϕ̃

)
=
∫ ϕ

dϕ̃Ri
j(−Ωϕ̃)Ȧj(ϕ̃),

(1.21)

where Ω = eH
p− is the Doppler-shifter cyclotron frequency and Ri

j(φ) is the counterclockwise
rotation matrix

Ri
j(φ) =

cosφ − sinφ
sinφ cosφ

 . (1.22)

The solution of Eq. (1.20) can now be expanded as

πα
p = p+nα + p−ñα +Rα

j(Ωϕ)[pj − eA j(ϕ)] + e

p−

(
p ·A − e

2A ·A
)
nα. (1.23)

If we turn off the magnetic field then A α H→0→ Aα. It is thus straightforward to find the
two limits of pure plane wave and magnetic field

πα
p

H=0= pα − eAα + e

p−

(
p ·A− e

2A
2
)
nα , πα

p
A=0= p+nα + p−ñα +Rα

j(Ωϕ)pj , (1.24)

in agreement with Eq. (1.9). Let us look at the field A α, which is the key of the dynamics
in this configuration. We immediately see that if there are components in the plane wave
oscillating with a frequency equal or close to Ω, then A α will grow with ϕ indefinitely
rather than oscillating (see Fig. 1.2). This resonance condition can be explicitly written as

Ω
ω

=
√

1− v2
0

(1− vz0 )2 ξ0
H

H0
∼ 1, (1.25)

where ω is the plane wave frequency and H0 its peak magnetic field. If the electron is
initially counterpropagating with respect to the wave, as in most of the experimental setups
involving strong lasers, then the velocity-dependent prefactor is ≤ 1. The maximum pulsed
magnetic field available is of the order of H ∼ 106G and it lasts few ms. Thus, in this
configuration is technically unlikely to obtain such a resonance with optical strong lasers
because the required magnetic field would exceed the technical possibilities. In contrast,
if the electron is propagating along the wave direction, then for ultrarelativistic initial
velocities u−

0 ∼ γ−1 and the resonance condition is in principle achievable. However, in
this case other experimental complications emerge, indeed it is very difficult to keep the
electron in the laser focus for a sufficiently long time.

This being said, the study of the Redmond configuration for lower frequency fields and
different pulse shapes can unveil interesting insights. In Sec. 1.2.6 we will briefly discuss
the emergence of radiation-reaction phenomena in this configuration.
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Figure 1.2: Trajectories in the {z, x}-plane of an electron in a Redmond field with ξ0 = 3.19 and different
values of Ω/ω. From top to bottom and left to right, this ratio takes the values: 0.05, 0.1, 0.3, 1, 1.5, 3. In
the fourth figure the field satisfies the resonance condition.
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1.2 Radiation reaction

1.2.1 Overview

Maxwell’s and Lorentz equations allow in principle to describe self-consistently the classical
dynamics of electric charges and their electromagnetic fields. However, even in the case of
a single elementary charge, an electron for definiteness, the solution of the self-consistent
problem of the electron dynamics and of that of its own electromagnetic field is plagued
by physical inconsistencies, which ultimately are related to the divergent self energy of a
point-like charge. In fact, the inclusion of the “reaction” of the self electromagnetic field on
the electron dynamics (known as radiation reaction) implies an unavoidable Coulomb-like
divergence when one evaluates the self field at the electron position [115, 122, 26, 158].
However, this divergence can be reabsorbed via a redefinition of the electron mass, which
ultimately leads to one of the most controversial equations in physics, the Lorentz-Abraham-
Dirac (LAD) equation (see Sec. 1.2.2) [4, 125, 71]. In the case of interest here, where the
external force is also electromagnetic, the LAD equation can be derived by eliminating
from the Maxwell-Lorentz system of equations the electromagnetic field generated by
the electron. In this respect, solving the LAD equation amounts to solving exactly the
electron dynamics in the external electromagnetic field and plugging the resulting solution
into the Liénard-Wiechert potentials amounts to determining the corresponding exact
electromagnetic field.

Even after the absorption of the divergent electron self-energy via the classical mass
renormalization, the LAD equation remains problematic as it allows for so-called runaway
solutions, where the electron’s acceleration may exponentially increase with time even
if the external field, for example, vanishes identically [115, 122, 26, 158]. The origin of
the existence of the runaway solutions is precisely a term in the radiation-reaction force,
known as Schott term, which depends on the time-derivative of the electron acceleration,
thus rendering the LAD equation a third-order differential equation with non-Newtonian
features.

Landau and Lifshitz realized that within the realm of classical electrodynamics, i.e.,
if quantum effects are negligible, the radiation-reaction force in the instantaneous rest
frame of the electron is always much weaker than the Lorentz force [122]. This allows
one to replace the electron four-acceleration in the radiation-reaction four-force with its
leading-order expression, i.e., by the Lorentz four-force divided by the electron mass (see
Se. 1.2.3) [122]. It is important to stress that the “reduction of order” proposed by Landau
and Lifshitz is such that neglected quantities are much smaller than corrections induced by
quantum effects, which are already ignored classically. The resulting equation is known
as Landau-Lifshitz (LL) equation and it is free of the physical inconsistencies of the LAD
equation [165]. The equivalence between the LL equation and the LAD equation within
the realm of classical electrodynamics has to be intended as these equations differ by terms
much smaller than quantum corrections (see Refs. [120, 51] for numerical tests about this
equivalence). Presently the LL equation, as well as the problem of radiation reaction in
general, are being investigated by several groups both theoretically [174, 39, 169, 124, 106,
185, 53, 175, 70, 69, 102, 155, 136, 137] and experimentally [182, 57, 149] (see also the
recent reviews [99, 66, 52, 38] for previous publications).
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1.2.2 The Lorentz-Abraham-Dirac equation

The Lorentz equation for an electron duα

dτ = e
mF

αβuβ is not complete, indeed it does not
take into account the field produced by the charge itself. Lorentz [125] first introduced an
additional term in the nonrelativistic regime starting from the well known Larmor formula
for the radiated power P = 2

3
e2a2

4π , arguing that a damping force FR = 2
3

e2

4π
da
dt should be

included to take into account the energy loss. This was then generalized to its relativistic
form by Abraham [4] and Dirac [71], leading to the Lorentz-Abraham-Dirac (LAD) equation

duα

dτ
= e

m
Fαβuβ + 2

3
α

m

(
d2uα

dτ2 + duβ

dτ

duβ

dτ
uα

)
, (1.26)

where units ℏ = c = ϵ0 = 1 are employed, such that α = e2/4π. The problems of
this equation are well known [66] and they are mostly due to the non-Newtonian term
proportional to the derivative of the acceleration, also known as Schott term.

Figure 1.3: Bound and radiated energy of a moving charge.

It is instructive to sketch the derivation of the LAD equation from the energy-momentum
conservation. Let us consider a particle of charge q and mass mq moving along a trajectory
zµ(τ) as depicted in Fig. 1.3. The electromagnetic tensor produced by the charge can be
directly calculated from the Lienard-Wiechert potential and it can be divided into two
parts (see, e.g., [115])

Fµν
RR(x) = 2q

4πρ
{

(a · t)u[µtν] + a[µtν]
} ∣∣∣∣

τr

+ 2q
4πρ2 u

[µtν]
∣∣∣∣
τr

= Fµν
1 (x) + Fµν

2 (x), (1.27)

where τr is the retarded time defined by [x − z(τr)]2 = 0 with t ≥ z0(τr) and we have
introduced the invariant distance ρ(τr) = −uµ(τr)[xµ − zµ(τr)] and the four-vector tµ =
ρ−1[xµ − zµ(τr)]. Here and below the subscripts stand for the power of ρ−1 appearing in
the tensors. The first part of this tensor depends on the acceleration of the charge and
scales with the first power of ρ, both characteristics lead us to suppose that this tensor
is associated with the electromagnetic radiation. The energy momentum tensor, being
proportional to the square of Fαβ, takes the form [170]:

Tµν
RR = Tµν

2 + Tµν
3 + Tµν

4 . (1.28)
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One can directly verify that the first tensor and the sum of the last two are separately
conserved outside the worldline:

∂µT
µν
2 (x) = 0 , ∂µ[Tµν

3 (x) + Tµν
4 (x)] = 0 x /∈ zµ(τ). (1.29)

This property suggests that we consider these two components separately and, to make the
notation more convenient, we define

Tµν
2 = Tµν

R , Tµν
3 + Tµν

4 = Tµν
b , (1.30)

where R, b stand for “radiated” and “bound” respectively. The tensor Tµν
R is indeed

responsible for the electromagnetic radiation, as it is proportional to tµtν and the flux
through a closed surface that contains the charge is independent of the choice of the surface.
The calculation of the impulse transferred by this tensor through a spacelike surface σ with
normal vector λα shows that [170]

dPµ
R(τ)
dτ

= − d

dτ

∫
σ(τ)

Tµν
R λν d

3σ = 2
3
q2

4πa
2(τ)uµ(τ), (1.31)

where one immediately recognizes the Larmor formula for the emitted radiation. It is worth
observing that the radiated impulse Pµ

R is not a function of state. By this, we mean that it
cannot be written in terms of the trajectory zµ(τ) and its derivatives, as it must always
be considered at the retarded time and therefore depends on the history of the particle.
This, although it is entirely logical here, is worth being noticed in opposition to the result
that is obtained for the bound momentum Pµ

b , which is indeed a function of state. Let us
now deal with the bound tensor, which is decidedly less clear compared to the radiation
contribution. The flux of Tµν

R is well-defined. Indeed it goes like ρ−2, while the surfaces
grow like ρ2 such that it possible to take the limit for small surfaces at will, maintaining
consistency. In the case of Tµν

b , this is no longer true and the integral itself is not defined
on the worldline. However, the authors of [170] noted an interesting property, namely

Tµν
b = ∂αK

µνα
2 , (1.32)

where Kµνα
2 is an antisymmetric tensor in the last two indices. It is worth spending a few

words to explain the importance of this property. As we have seen, we cannot go on the
worldline in the integration of the bound tensor, so the associated momentum will have a
form of the type

Pµ
b (τ) = − lim

ε→0
lim

R→∞

∫
d4xTµν

b λν θ(ρ− ε)θ(R− ρ)δ(λ · r) (1.33)

where δ(λ · r) = δ[λ · (x− z(τ))] and ε,R are the radii of two world tubes around the
worldline, the inner one very close to it while the outer one tends to infinity. The property
(1.32) allows us to perform an integration by parts and write

Pµ
b (τ) = lim

R→∞

∫
d4xKµνα

2 ∂νρnα δ(R− ρ)δ(λ · r)

− lim
ε→0

∫
d4xKµνα

2 ∂νρnα δ(ρ− ε)δ(λ · r).
(1.34)
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One can show that the integral on the outer surface is zero and the result for the total
momentum is [170]

Pµ
b (τ) = q2

4π

[
uµ

2ε + 1
6ε

(ηµν + uµuν)λν

λ · u
− 2

3a
µ
]
. (1.35)

Interestingly, this momentum is a function of state. This is a peculiarity, as the bound
tensor depends on the history of the particle through the retarded time. The fact that
it is a function of state is of great importance as it allows us to perform a procedure of
renormalization of the divergences. The bound momentum does not depend on the history
of the particle due to the possibility of writing Tµν

b as a divergence through Eq. (1.32).
We will now try to give an interpretation of these results. We can identify the first

divergent term with the infinite self-energy of the particle due to Coulombian repulsion and
the second, which depends on the orientation of the surface, with a term of self-stress. The
renormalization process described by Teitelboim [170] consists in absorbing the self-energy
into the mass

mq = m0 + q2

8πε,
(1.36)

while to cancel the ε-dependent self-stress term we modify ad hoc the energy momentum
tensor of the particle TP by simply adding to it this term with opposite sign. Certainly, one
could argue about the legitimacy of this procedure. However, divergences in the description
of point particles in classical electromagnetism are intrinsic and unavoidable, therefore one
has to deal with them in a way or another. The sum of the particle and bound momenta
after the renormalization is independent of the surfaces of integration and reads

Pµ
P + Pµ

b = πµ − 2
3
q2

4πa
µ, (1.37)

where πµ = mqu
µ. This is the momentum we would expect to find in order to keep into

account the energy loss due to the electromagnetic radiation. We can now derive the
equations of motion. Recalling Eq. (1.31) and assuming an external Lorentz force we find

d

dτ

(
πµ − 2

3
q2

4πa
µ

)
= e

mq
Fµνπν + 2

3
q2

4πa
2uµ, (1.38)

which reproduces the LAD equation

duα

dτ
= e

mq
Fαβuβ + 2

3
q2

4πmq

(
d2uα

dτ2 + duβ

dτ

duβ

dτ
uα

)
. (1.39)

Being the result of momentum conservation, this equation represents the most convincing
way to include the radiation reaction into the particle motion. It is not completely convincing
due to the arguable classical renormalization involved in its derivation, nonetheless is the
best we have when starting from first principles. However, being non-Newtonian, it allows
solutions which are intrinsically not physical. An example are runaway solutions in which an
electron accelerates exponentially, even in absence of an external field [158]. For this reason
we will prefer to employ one of its approximations, which can be shown to be completely
reliable in the regime of classical physics [64]. This approximation was introduced by
Landau and Lifshitz [122] and it is the topic of the next section.
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1.2.3 The Landau-Lifshitz equation
An order reduction of the LAD equation due to Landau and Lifshitz is possible if the RR
force in the particle rest frame is significantly smaller than the Lorentz force. As anticipated
in the introduction to this section, this requirement is always satisfied if quantum effects
can be neglected. We will now provide a more comprehensive clarification of this statement.
Let us consider the frame momentarily comoving with the particle. In this system the
equation restores the non-relativistic limit ma = FL + 2

3αȧ, where the external force FL is
the classical Lorentz expression and the overdot stands for a proper time derivative. Now,
deriving this expression we see that mȧ = ḞL + O(α). This means that the radiation
damping term is small compared to the Lorentz one in this frame if

|FL| ≫
α

m

∣∣∣ḞL

∣∣∣ . (1.40)

If we now substitute the velocity derivative to the order α in this expression we get the
following condition

|E + v ×B| ≫ α

m
|Ė + v × Ḃ + e

m
E ×B|. (1.41)

Let us introduce the variation scale of the field as λ, such that Ė ∼ E/λ. The above
condition corresponds then to the two requirements [66, 122]

α

mλ
≪ 1 or λ≫ αλC ,

eαF

m2 ≪ 1 or F ≪ Fcr

α
. (1.42)

The first of these conditions constrains the field variation scale, while the second its intensity
[122]. Now, if these conditions are fulfilled we can operate the order reduction and obtain
the Landau-Lifshitz (LL) equation (see App. A.4 for the explicit form of the LL eq. in
terms of three-vectors)

duα

dτ
= e

m
Fαβuβ + 2e

3m2α

[
Ḟαβuβ + e

m
FαβF γ

β uγ −
e

m
uδF

δβF γ
β uγu

α
]
. (1.43)

It is important to observe that the two aforementioned conditions Eq. (1.42) are always
satisfied if quantum effects can be neglected, in fact in order to treat electrodynamics
classically the two weaker conditions λ ≫ λC and F ≪ Fcr have to be fulfilled in the
particle rest frame. The fact that the radiation-reaction force in the electron rest frame is
assumed to be much smaller than the Lorentz force does not prevent the two forces to be
of the same order in the laboratory frame. Indeed this happens when [122, 66, 161]

γ2F ∼ Fcr

α
, (1.44)

as one can check comparing the last term in Eq. (1.43) with the Lorentz force. Thus, if the
particle is fast enough, classical radiation reaction can be observed and it is consistently
described by the LL equation. The above formula Eq. (1.44) is a rough estimation of
the ratio FR/FL, where FR is the radiation reaction force term. Of course this ratio also
depends on the specific form of the Maxwell tensor involved and the estimation may be
partially misleading. In order to dispel any doubt, in the next section we will briefly present
the analytical solution of the LL in a plane wave background, first found in 2008 by A. Di
Piazza [59] and here derived in a slightly different fashion.
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1.2.4 Analytical solution of the Landau-Lifshitz equation in a plane wave

Let us consider a plane wave Fαβ = Ȧi(ϕ)fαβ
i , with fαβ

i = 2n[αδ
β]
i and where the overdot

is a derivative with respect to ϕ. We recall that in this case the Maxwell tensor satisfies
the identities (F 2)αβ = −(ȦiȦi)nαnβ , Fαβnβ = 0. The first step to solve the LL equation
(1.43) is to use the phase as the evolution parameter. Observing that dϕ

dτ = u− we have

u−u̇α = e

m
Fαβuβ + 2e

3m2α

[
u−Ḟαβuβ + e

m
FαβF γ

β uγ −
e

m
uδF

δβF γ
β uγu

α
]
. (1.45)

One of the main reasons why this equation is analytically solvable is that we can explicitly
find u− as function of the wave field. Indeed, despite not being constant as in absence of
RR, this variable here follows the differential equation

u̇− = −2e2α

3m3 uδF
δβF γ

β uγu
α = 2e2α

3m3 Ȧ
iȦi(u−)2, (1.46)

as it can be easily verified contracting by nα both sides of the LL. This equation is easily
solved as u−(ϕ) = u−

0 /h(ϕ) with [59]

h(ϕ) = 1− 2α
3ωη0ξ

2
0

∫ ϕ

ϕ0
dϕ̃ ψ̇i(ϕ̃)ψ̇i(ϕ̃), (1.47)

where Ȧi(ϕ) = E0
ω ψ̇

i(ϕ). The phase ϕ is dimensional so ψ̇i(ϕ) have the dimension of ω.
In the following we will often use the dimensionless phase φ = k · x in order to properly
extract the physical parameters, however here it suffices to observe that the second term in
h is proportional to the parameter

R = αη0ξ
2
0 . (1.48)

This is the parameter controlling the magnitude of the RR effects in a plane wave [59], we
will further discuss its role in the following. Once u− is found we can write the equation in
terms of the rescaled momentum π̃α = hπα. The derivative of the function h cancels out
the last term in the LL equation, leaving us with the more compact

˙̃πα = e

p−hF
αβπ̃β + 2e

3m2α

(
Ḟαβπ̃β + e

p−hF
αβF γ

β π̃γ

)
. (1.49)

Once again, we can exploit the structure of the plane wave Maxwell tensor to solve this
equation in few steps. Choosing an initial phase ϕ0 and inserting the formal solution

π̃α
p = pα +

∫ ϕ

ϕ0
dϕ̃

[
e

p−hF
αβπ̃β + 2e

3m2α

(
Ḟαβπ̃β + e

p−hF
αβF γ

β π̃γ

)]
(1.50)

repeatedly in the r.h.s. of Eq. (1.49), one easily observes that due to the algebraic properties
of Fαβ

˙̃πα
p (ϕ) = d

dϕ
exp

[
e

p−

∫ ϕ

ϕ0
dϕ̃

(
hF + 2αp−

3m2 Ḟ

)]
αβ pβ + 2αe2

3m2p−hF
αβF γ

β pγ . (1.51)

As a last step we notice that the second term in the r.h.s. of this equation can be written
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Figure 1.4: Trajectory in the {z, x}-plane of an electron in a plane wave propagating along z including
the RR effects. The typical eight-figure is shifted and lost with the cumulation of RR contributions.

as
2αe2

3m2p−hF
αβF γ

β pγ = m2

2p−
dh2

dϕ
nα. (1.52)

After a trivial integration the solution is found to be

π̃α
p (ϕ) = exp

(
e

p− I
i(ϕ)fi

)
αβ pβ + m2

2p− [h2(ϕ)− 1]nα, (1.53)

where we introduced the notation

Ii(ϕ) =
∫ ϕ

ϕ0
dϕ̃

[
h(ϕ̃)Ȧi(ϕ̃) + 2αp−

3m2 Ä
i(ϕ̃)

]
. (1.54)

If the RR is neglected then Ii = Ai and h = 1, such that the solution (1.53) reduces to
Eq. (1.8) previously discussed in absence of RR. For standard optical lasers, being rapidly
oscillating fields, we can usually assume that |Ȧi| ∼ |Äi|. This means that the second term
in the previous expression can generally be neglected in agreement with the LL reduction
of order [122, 62](see Ref. [69] for a situation where this term cannot be ignored). We will
thus assume that

Ii(ϕ) ≃
∫ ϕ

ϕ0
dϕ̃h(ϕ̃)Ȧi(ϕ̃) ≡ m

e
F i

⊥(ϕ). (1.55)

For the sake of clarity let us expand the exponential and write the solution explicitly in
terms of the field F i

⊥ [59]

πα
p (ϕ) = 1

h(ϕ)

{
pα −mFα

⊥(ϕ) + m

p−

[
p · F⊥(ϕ)− m

2 F⊥(ϕ) · F⊥(ϕ) + m

2
(
h2(ϕ)− 1

)]
nα
}
.

(1.56)
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In this expression we clearly recognize the solution in absence of RR Eq. (1.9) with the
substitution ξi

⊥ → F i
⊥, plus an additional term in nα which is not present in the solution of

the Lorentz equation.

1.2.5 Magnitude of RR effects
In a plane wave field one can show that for an ultrarelativistic electron the radiative term
in the LL proportional to (Fu)2 gives a larger contribution to the RR compared to the
Schott term [59]. As discussed in Sec. 1.2.4, the parameter controlling the magnitude of
the RR effects in this field is

R = αη0ξ
2
0 = αξ0χ0, (1.57)

where χ0 ≪ 1 is required in order to treat the problem in the classical domain. Asking
R ∼ 1 and χ0 ≪ 1 defines the Classical Radiation Dominated Regime (CRDR) [66] and
imposes some very stringent constrains on the parameter space. To give an example let us
fix χ ∼ 10−1 such that we need ξ0 ∼ 103 in order to have R ∼ 1. For optical lasers ω ∼ eV
this corresponds to an intensity of I0 ∼ 1024W/cm2, an incredibly large intensity. Similar
intensities are not completely unimaginable but are at the boundary of what is expected to
be achieved in the next years, they are just five orders of magnitude below the Schwinger
critical intensity. Moreover, it is worth observing that under these assumptions, if the
electrons are initially counterpropagating with respect to the wave they cannot be very fast,
otherwise quantum effects emerge. This is one of the main problems at the experimental
level: measuring RR effects is very difficult, measuring classical RR effects is generally even
more challenging.

So far, the best experimental tests of RR came from experiments in crystals [182] and
only very recently high significance observations of RR in strong fields were published [126].
A comment is important here: RR effects are cumulative, they depends on the history of
the particle. For a plane wave this is manifested in the decreasing of the otherwise constant
u−, which including RR reads u− = u−

0 /h(ϕ). Let us recall Eq. (1.47) [59]

h = 1 + 2
3
R

ω

∫ ϕ

ϕ0
dϕ̃ψ̇2(ϕ̃). (1.58)

For a monochromatic, circularly polarized wave this is h = 1 + 2
3Rω∆ϕ, where ∆ϕ is the

phase duration of the interaction. This means that in principle we could enhance the RR
contributions by increasing the interaction time. However, strong Gaussian laser pulses are
focused on a longitudinal length of the order of the Rayleigh length, which is usually very
small, especially for a relativistic electron. Despite this problem, an enhancement can be
in principle obtained if other pulses are considered. The interesting case of Flying-Focus
Pulses has been recently studied in [84].

A system which behaves in a somehow complementary way regarding RR effects is the one
in which a constant magnetic field is chosen as a background. The radiation reaction for the
motion in this field has been considered in several papers (see, e.g., [161, 162, 184, 19, 166]).
Studying the motion, it is possible to show that in the ultrarelativistic limit the radius
of the spiral followed by the particle in its transverse motion is halved when γ0

ω2
H

ωe
t ∼ 1

(see, e.g. [166] eq. 7.25 and App. A.2 for further details), where ωH = eH
m is the cyclotron
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frequency in the particle rest frame and ωe = 3m
2α ≃ 1.6 × 1023Hz is proportional to the

electron fundamental frequency [161]. On the other hand, the Lorentz force which generates
the circular motion operates on a scale defined by ωH/γ0t ∼ 1. It follows that the proper
RR parameter in this scenario is [161]

R = γ2
0
ωH

ωe
. (1.59)

The quantum effects here becomes important when the emitted photons have the same
energy of the electron, namely when [161] γ0ωH/αωe ∼ 1. This means that in order to stay
in the CRDR and treat the motion classically having observable RR effects we need very
fast electrons γ0 ≫ 137 and not extremely strong magnetic fields ω ≪ ωe. In this sense this
situation is complementary to the head-on collision of a particle with a strong laser field
[59]. The Redmond configuration merges these two fields and could thus be an interesting
background for studying RR effects.

1.2.6 Considerations about the Landau-Lifshitz equation in a Redmond field
Let us discuss the various parameters involved in motion within a Redmond field con-
figuration. As discussed before, the parameter quantifying the pure magnetic RR is
R(B) = γ2 ωH

ωe
. On the other hand, in a plane wave these effects are regulated by the

parameter R(A) = αξ0χ0. If we consider optical lasers then ω ≫ ωH and there is no
practical possibility to produce constant fields with an eV(∼ 1014Hz) cyclotron frequency
in a laboratory at the moment, this would require magnetic fields of the order ∼ 107G. Let
us now assume that we are working in a neighborhood of the resonance for the RR-free
case, such that ωH/u

− ∼ ω. If the particle is counterpropagating with respect to the wave
and it is ultrarelativistic then this relation becomes

ωH ∼ γω, (1.60)

due to the blueshift of the laser frequency in the particle frame. In this case the magnetic
parameter R(B) ∼ γ3 ω

ωe
∼ 10−9γ3. We can thus work in the CRDR for the laser field

neglecting the magnetic field RR. In fact, if we set ξ0 ∼ 103, χ0 ∼ 10−1 for optical frequencies
and a γ ∼ 10 for the electron, the condition R(B) ≪ 1 is satisfied within the laser CRDR.
With these considerations in mind one can neglect the RR terms involving the magnetic
field in the LL equation and find an approximate solution in the form

πα
p = p+nα+ p−ñα +Rα

j(ΩΨ(ϕ))[pj − eA j(ϕ)]

+ e

p−

(
p ·A (ϕ)− e

2A (ϕ) ·A (ϕ)
)
nα + m2

2p− (h2(ϕ)− 1)nα,
(1.61)

where now

A i =
∫ ϕ

ϕ0
dϕ̃h(ϕ̃)Ri

j

(
−ΩΨ(ϕ̃)

)
Ȧj(ϕ̃) and Ψ(ϕ) =

∫ ϕ̃

ϕ0
dϕ′h(ϕ′). (1.62)

We refer to Sec. 1.1.2 for the rest of the notation. Here we clearly see the RR contribution
in the modification of A from Eq. (1.21). The resonance condition in this case cannot
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really be satisfied for an extended period. Indeed, as one would expect, keeping into
account the energy loss due to RR the synchrotron frequency seen by the charge changes
continuously. This is represented by the presence of Ψ instead of the phase in the rotation
matrix. However, this feature could be an interesting resource for studying classical RR
effects in such a field configuration if small displacement from the resonance condition could
be precisely measured. At the moment these are just heuristic opinions, a detailed study of
the possible experimental applications is left for future work.
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2
Nonlinear Thomson scattering

2.1 Overview

In this chapter, we present analytical expressions of the energy emission spectrum of an
electron driven by an external intense plane wave (nonlinear Thomson scattering) found
in [62] by taking into account radiation-reaction effects via the LL equation. To achieve
this goal, we use the analytical solution of the LL equation in an arbitrary plane wave [59]
and we derive the angularly-resolved and the angularly-integrated energy spectra as double
integrals over the phase of the plane wave. In this respect, we complete the analytical
determination of the self-consistent classical dynamics of the electron and its electromagnetic
field in the sense mentioned above: additional classical corrections, which would be brought
about, i.e., by using the LAD equation would be smaller than already ignored quantum
corrections. Finally, the corresponding expressions within the so-called locally-constant
field approximation (LCFA) are derived as single phase-integrals [157, 23, 66]. These
results obtained here also complement the ones obtained in Ref. [60], where the analytical
expression of the infrared limit of the emission spectrum including radiation-reaction effects

35
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was presented. Units with ℏ = c = ϵ0 = 1 are employed throughout.

2.2 Analytical spectrum of nonlinear Thomson scattering

Figure 2.1: Schematic representation of Thomson scattering in a plane wave.

Let us consider an electron (charge e < 0 and mass m, respectively), whose trajectory
is characterized by the instantaneous position x(t) and the instantaneous velocity v(t) =
dx(t)/dt. The electromagnetic energy E radiated by the electron per unit of angular
frequency ω′ and along the direction n′ = (sinϑ cosφ, sinϑ sinφ, cosϑ) within a solid angle
dΩ = sinϑdϑdφ is given by [see, e.g., Eq. (14.67) in Ref. [115]]

dE
dω′dΩ = αω′2

4π2

∣∣∣∣∫ ∞

−∞
dtn′ × (n′ × v(t))eiω′(t−n′·x(t))

∣∣∣∣2 , (2.1)

and we stress that this expression of the emitted energy is valid for an arbitrary trajectory
of the electron. Now, we assume that the electron moves in the presence of a plane-
wave background field, described by the four-vector potential Aµ(ϕ) = (A0(ϕ),A(ϕ)),
where ϕ = n · x = t − n · x, with nµ = (1,n) and the unit vector n identifying the
propagation direction of the plane wave itself. As explained in Sec. 1.1.1, if we assume
limϕ→±∞A(ϕ) = 0 and work in the Lorenz gauge ∂µA

µ(ϕ) = n · Ȧ(ϕ) = 0 with the
additional condition A0(ϕ) = 0, then Aµ(ϕ) is left with only transverse components.
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It is convenient first to express the emitted energy dE/dω′dΩ as an integral over the
laser dimensionless phase φ = ωϕ, where ω is the central angular frequency of the plane
wave (or, more in general, an arbitrary frequency scale describing the time dependence
of the plane wave). This is easily done because dϕ(t)/dt = 1− n · v(t) along the electron
trajectory and one obtains

dE
dω′dΩ = α

4π2
ω′2

ω2

∣∣∣∣∣
∫ ∞

−∞
dφ
n′ × (n′ × π(φ))

π−(φ) e
i ω′

ω

∫ φ

−∞ dφ′ ε(φ′)−n′·π(φ′)
π−(φ′)

∣∣∣∣∣
2

, (2.2)

where πµ(φ) = (ε(φ),π(φ)) = ε(φ)(1,v(φ)), with ε(φ) = m/
√

1− v2(φ), is the electron
four-momentum and π−(φ) = n · π(φ). Now, we recall that the LL equation in an external
electromagnetic field Fµν = Fµν(x) reads [122] [see Eq. (1.43)]

duα

dτ
= e

m
Fαβuβ + τe

e

m

[
(∂γF

αβ)uγuβ + e

m
FαβF γ

β uγ −
e

m
uδF

δβF γ
β uγu

α
]
. (2.3)

where τ is the electron proper time, τe = 2α
3m and uµ(s) = πµ(τ)/m is the electron four-

velocity. As we have extensively discussed in Sec. 1.2.4, in the case of a plane wave
background this equation is analytically solvable in a compact form [59]. By indicating
as pµ = (p0,p), with p0 =

√
m2 + p2, the initial four-momentum of the electron, i.e.,

limφ→−∞ πµ(φ) = pµ, the four-momentum πµ(φ) at the generic phase φ is given by Eq.
(1.56) [59]

πα(ϕ) = 1
h(ϕ)

{
pα −mFα

⊥(ϕ) + m

p−

[
p · F⊥(ϕ)− m

2 F⊥(ϕ) · F⊥(ϕ) + m

2
(
h2(ϕ)− 1

)]
nα
}
.

(2.4)

Here we have dropped the momentum subscript p to lighten the notation. πα will always
refer to this initial condition in this section, ensuring that no confusion arises. We recall
the definitions introduced in this expression, which we rewrite here in terms of ξ⊥(φ) =
(e/m)A′

⊥(φ) and ξµν(φ) = (e/m)[nµA′ ν(φ)− nνA′ µ(φ)]

h(φ) = 1 + 2
3αη0

∫ φ

−∞
dφ̃ ξ2

⊥(φ̃), (2.5)

Fµν(φ) =
∫ φ

−∞
dφ̃

[
h(φ̃)ξµν(φ̃) + 2

3αη0ξ
′ µν(φ̃)

]
. (2.6)

Here and below the prime indicates the derivative with respect to the dimensionless phase φ.
Note that, assuming that |ξµν(φ)| ∼ |ξ′ µν(φ)| as it is typically the case for standard laser
fields, the term proportional to ξ′ µν(φ) in Fµν(φ) can be neglected according to Landau
and Lifshitz reduction of order [122] (see Sec. 1.2.4). For this reason we assume

Fµν(φ) =
∫ φ

−∞
dφ̃ h(φ̃)ξµν(φ̃) (2.7)

and we use this expression below. For the sake of later convenience, we also report here the
light-cone components of the four-momentum of the electron in the plane wave including
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radiation reaction:

π−(φ) = p−

h(φ) , (2.8)

π⊥(φ) = 1
h(φ) [p⊥ −mF⊥(φ)], (2.9)

π+(φ) = m2 + π2
⊥(φ)

2π−(φ) = 1
h(φ)

m2h2(φ) + [p⊥ −mF⊥(φ)]2

2p− , (2.10)

where F⊥(φ) =
∫ φ

−∞ dφ̃ h(φ̃)ξ⊥(φ̃) [see Eq. (2.7)] as well as the corresponding longitudinal
momentum [π∥(φ) = n · π(φ)] and the energy:

π∥(φ) = π+(φ)− π−(φ)
2 = p−

2h(φ)

{
m2h2(φ) + [p⊥ −mF⊥(φ)]2

(p−)2 − 1
}
, (2.11)

ε(φ) = π+(φ) + π−(φ)
2 = p−

2h(φ)

{
m2h2(φ) + [p⊥ −mF⊥(φ)]2

(p−)2 + 1
}
. (2.12)

Before replacing Eq. (2.4) [or equivalently Eqs. (2.8)-(2.10)] in Eq. (2.2), it is convenient
to write the latter equation in the form

dE
dl

= − α

4π2

∫
dφdφ′ π(φ) · π(φ′)

(k · π(φ))(k · π(φ′))e
i
∫ φ

φ′ dφ̃
l·π(φ̃)
k·π(φ̃) , (2.13)

where we have introduced the wavevector of the emitted radiation lµ = (ω′, l) = ω′(1,n′).
This identity follows from the hypothesis that contour terms do not contribute to the
integral (see also Refs. [115, 23] on this), and it can be proved in few simple steps. First
we write

dE
dω′dΩ = α

4π2
ω′2

ω2

∣∣∣∣∣
∫ ∞

−∞
dφ
n′ × (n′ × π(φ))

π−(φ) e
i ω′

ω

∫ φ

−∞ dφ′ ε(φ′)−n′·π(φ′)
π−(φ′)

∣∣∣∣∣
2

=

= α

4π2

∣∣∣∣∫ ∞

−∞
dφ
n′(l · π(φ))− ω′π(φ)

k · π(φ) e
i
∫ φ

−∞ dφ̃
l·π(φ̃)
k·π(φ̃)

∣∣∣∣2
(2.14)

Now, if we call the phase factor Φ(φ) =
∫ φ

−∞ dφ̃ l·π(φ̃)
k·π(φ̃) and we assume that the boundary

contributions can be neglected we have∫
dφ

d

dφ
eiΦ(φ) = i

∫
dφ

l · π(φ)
k · π(φ)e

iΦ(φ) = i

∫
dφ
ω′ε(φ)− l · π(φ)

k · π(φ) eiΦ(φ) = 0. (2.15)

It follows the useful identity∫
dφ
l · π(φ)
k · π(φ)e

iΦ(φ) =
∫
dφ

ω′ε(φ)
k · π(φ)e

iΦ(φ), (2.16)

which can be exploited to rewrite the energy distribution as

dE
dω′dΩ = αω′2

4π2

∣∣∣∣∫ ∞

−∞
dφ

ε(φ)n′ − π(φ)
k · π(φ) eiΦ(φ)

∣∣∣∣2 =

= αω′2

4π2

∫ ∞

−∞
dφdφ′ [ε(φ)n′ − π(φ)] · [ε(φ′)n′ − π(φ)]

(k · π(φ))(k · π(φ′)) ei∆Φ(φ,φ′) =

= −αω
′2

4π2

∫ ∞

−∞
dφdφ′ π(φ) · π(φ′)

(k · π(φ))(k · π(φ′))e
i∆Φ(φ,φ′),

(2.17)
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where we defined the phase difference ∆Φ(φ,φ′) =
∫ φ

φ′ dφ̃
l·π(φ̃)
k·π(φ̃) . Eq. (2.13) is recovered

once the derivatives are expressed in terms of the spatial momentum l. Equation (2.13)
is especially useful if the four-dimensional scalar products are expressed in light-cone
coordinates, observing that the electron four-momentum is on-shell, i.e., π2(φ) = m2. After
a few straightforward manipulations, one can easily write Eq. (2.13) in a more suitable
form (see. S.m. 2.6.1 for a detailed derivation)

dE
dl

= − α

8π2m2η2
0

∫
dφdφ′ e

i l−
2p−η0

∫ φ

φ′ dφ̃ h2(φ̃)[1+π̂2
⊥(φ̃)] {

h2(φ) + h2(φ′) + [F⊥(φ)−F⊥(φ′)]2
}
,

(2.18)
where

π̂⊥(φ) = 1
m

[
π⊥(φ)− π−(φ)

l−
l⊥

]
= 1
mh(φ)

[
p⊥ −mF⊥(φ)− p−

l−
l⊥

]
. (2.19)

Expression (2.18) shows that the effects of radiation reaction are all encoded in the function
h(φ) [see Eq. (2.5)] and if radiation reaction is ignored, i.e., for h(φ) = 1, one obtains the
classical spectrum of Thomson scattering. This, in turn, can be obtained as the classical
limit of the spectrum of nonlinear Compton scattering as reported, e.g., in Ref. [67], which
is accomplished by neglecting the recoil of the emitted radiation (emitted photon in the
quantum language) on the electron. More precisely, we recall here that Eq. (2.18) divided
by ω′ corresponds to the classical limit of the average number of photons emitted by the
electron per units of emitted photon momentum [93, 63].

As one can easily recognize, from Eq. (2.18) one can obtain the angularly-integrated
energy emission spectrum dE/dl− by using the fact that dl = (ω′/l−)dl−dl⊥ such that

dE
dl−

= − α

8π2m2η2
0

∫
dl⊥

ω′

l−

∫
dφdφ′ e

i l−
2p−η0

∫ φ

φ′ dφ̃[h2(φ̃)+π̂2
⊥(φ̃)]

×
{
h2(φ) + h2(φ′) + [F⊥(φ)−F⊥(φ′)]2

}
.

(2.20)

By noticing that ω′ = l+ + l−/2 = l2⊥/2l− + l−/2, the integral in dl⊥ is easily taken as it is
Gaussian. By passing for convenience to the average and the relative phases φ+ = (φ+φ′)/2
and φ− = φ− φ′, the resulting energy spectrum is given by (see S.m. 2.6.2 for a detailed
derivation)

dE
dl−

= − iα

8πη0

l−

p−

∫
dφ+dφ−
φ− + i0 e

i l−
2p−η0

{∫ φ−/2
−φ−/2 dφ̃[h2(φ++φ̃)+F2

⊥(φ++φ̃)]− 1
φ−

[∫ φ−/2
−φ−/2 dφ̃ F⊥(φ++φ̃)

]2
}

×
{
h2
(
φ+ + φ−

2

)
+ h2

(
φ+ −

φ−
2

)
+
[
F⊥

(
φ+ + φ−

2

)
−F⊥

(
φ+ −

φ−
2

)]2
}

×

1 + m2

(p−)2

{
1
φ−

∫ φ−/2

−φ−/2
dφ̃

[
p⊥
m
−F⊥(φ+ + φ̃)

]}2

+ 2im2η0
l−p−

1
φ− + i0

 ,
(2.21)

where the shift of the pole at φ− = 0 towards the negative imaginary half-plane can be
understood by imposing that the Gaussian integral converges [23, 70, 67].
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We observe that the structure of the exponential function in the first line of this equation
allows for introducing the concept of electron dressed inside a plane wave [49, 119] also
when radiation-reaction effects are important. Indeed, the phase-dependent electron square
dressed mass m̃2(φ+, φ−) can be defined here as [see Eq. (2.21)]

m̃2(φ+, φ−) = m2
{

1
φ−

∫ φ−/2

−φ−/2
dφ̃h2(φ+ + φ̃)

+ 1
φ−

∫ φ−/2

−φ−/2
dφ̃F2

⊥(φ+ + φ̃)−
[

1
φ−

∫ φ−/2

−φ−/2
dφ̃F⊥(φ+ + φ̃)

]2
 .

(2.22)

This expression generalizes the phase-dependent square electron dressed mass as reported,
e.g., in Refs. [49, 119, 104, 61], including radiation-reaction effects.

Equation (2.21) can be explicitly regularized. First, we integrate by parts the term
proportional to [h2(φ+ + φ−/2) + h2(φ+ − φ−/2)]/φ2

− and we obtain

dE
dl−

= − iα

4πη0

l−

p−

∫
dφ+dφ−
φ− + i0 e

i l−
2p−

m̃2(φ+,φ−)
m2η0

φ−

×

(
h̄2(φ+, φ−)

{
1 + m2

(p−)2 [p⊥ − ⟨F⊥⟩(φ+, φ−)]2 − m2

(p−)2 h̄2(φ+, φ−)
}

+ im2η0
l−p−

[
h

(
φ+ + φ−

2

)
h′
(
φ+ + φ−

2

)
− h

(
φ+ −

φ−
2

)
h′
(
φ+ −

φ−
2

)]
− m2

p2
0,−

h̄2(φ+, φ−)
[
F̄2,⊥(φ+, φ−) + ⟨F⊥⟩2(φ+, φ−)− 2F̄⊥(φ+, φ−) · ⟨F⊥⟩(φ+, φ−)

]
+ 1

2

[
F⊥

(
φ+ + φ−

2

)
−F⊥

(
φ+ −

φ−
2

)]2

×
{

1 + m2

(p−)2 [p⊥ − ⟨F⊥⟩(φ+, φ−)]2 + 2im2η0
l−p−

1
φ−

} )
,

(2.23)
where we have introduced the notation

h̄2(φ+, φ−) = 1
2

[
h2
(
φ+ + φ−

2

)
+ h2

(
φ+ −

φ−
2

)]
, (2.24)

⟨h2⟩(φ+, φ−) = 1
φ−

∫ φ−/2

−φ−/2
dφ̃ h2(φ+ + φ̃), (2.25)

F̄⊥(φ+, φ−) = 1
2

[
F⊥

(
φ+ + φ−

2

)
+ F⊥

(
φ+ −

φ−
2

)]
, (2.26)

F̄2,⊥(φ+, φ−) = 1
2

[
F2

⊥

(
φ+ + φ−

2

)
+ F2

⊥

(
φ+ −

φ−
2

)]
, (2.27)

⟨F⊥⟩(φ+, φ−) = 1
φ−

∫ φ−/2

−φ−/2
dφ̃F⊥(φ+ + φ̃), (2.28)

⟨F2
⊥⟩(φ+, φ−) = 1

φ−

∫ φ−/2

−φ−/2
dφ̃F2

⊥(φ+ + φ̃). (2.29)
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Note that with these definitions, the square of the electron dressed mass can be simply
written as

m̃2(φ+, φ−) = m2
[
⟨h2⟩(φ+, φ−) + ⟨F2

⊥⟩(φ+, φ−)− ⟨F⊥⟩2(φ+, φ−)
]
. (2.30)

At this point only the terms in the second line of Eq. (2.23) need an explicit regularization.
In the absence of radiation reaction, this is achieved by imposing that the emission spectrum
has to vanish in the absence of the external field [23, 70, 67]. Here, due to the effect of
radiation reaction, we need a slightly more complicated regularization procedure. To this
end, we introduce the function

H2(φ+, φ−) = φ−⟨h2⟩(φ+, φ−) =
∫ φ−/2

−φ−/2
dφ̃ h2(φ+ + φ̃) (2.31)

and notice that
∂H2(φ+, φ−)

∂φ−
= h̄2(φ+, φ−) > 0 (2.32)

for any φ+. Now, for any positive real number a, it is

∫ ∞

−∞

dH2
H2 + i0e

iaH2 = 0. (2.33)

We have indicated the integration variable as H2 here because, by exploiting the result in
Eq. (2.32), we change variable to φ− and obtain

∫ ∞

−∞

dφ−
H2(φ+, φ−) + i0

∂H2(φ+, φ−)
∂φ−

eiaH2(φ+,φ−)

=
∫ ∞

−∞

dφ−
H2(φ+, φ−) + i0 h̄2(φ+, φ−)eiaH2(φ+,φ−) = 0.

(2.34)

This result shows that we can formally regularize the remaining terms of Eq. (2.23) by
subtracting the vanishing quantity

h2(φ+)
[
1 + m2

(p−)2 {[p⊥ −F⊥(φ+)]2 − h2(φ+)}
]

×
∫ ∞

−∞

dφ−
H2(φ+, φ−) + i0 h̄2(φ+, φ−)ei l−

2p−η0
H2(φ+,φ−)

(2.35)

inside the integral in φ+. As it will be clear below, the additional front factor h2(φ+) is
included because for |φ−| ≪ 1 it is H2(φ+, φ−) ≈ h2(φ+)φ−. The resulting regularized
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expression of the energy spectrum reads

dE
dl−

= − iα

4πη0

l−

p−

∫
dφ+dφ− e

i l−
2p−

m̃2(φ+,φ−)
m2η0

φ−

×

(
h̄2(φ+, φ−)

1 + m2

(p−)2 [p⊥ − ⟨F⊥⟩(φ+, φ−)]2 − m2

(p−)2 h̄2(φ+, φ−)
φ−

−
1 + m2

(p−)2 [p⊥ −F⊥(φ+)]2 − m2

(p−)2h
2(φ+)

H2(φ+, φ−)/h2(φ+) e
−i l−

2p−η0
φ−[⟨F2

⊥⟩(φ+,φ−)−⟨F⊥⟩2(φ+,φ−)]


+ im2η0
l−p−

1
φ−

[
h

(
φ+ + φ−

2

)
h′
(
φ+ + φ−

2

)
− h

(
φ+ −

φ−
2

)
h′
(
φ+ −

φ−
2

)]
− m2

p2
0,−

h̄2(φ+, φ−)
φ−

[
F̄2,⊥(φ+, φ−) + ⟨F⊥⟩2(φ+, φ−)− 2F̄⊥(φ+, φ−) · ⟨F⊥⟩(φ+, φ−)

]
+ 1

2φ−

[
F⊥

(
φ+ + φ−

2

)
−F⊥

(
φ+ −

φ−
2

)]2

×
{

1 + m2

(p−)2 [p⊥ − ⟨F⊥⟩(φ+, φ−)]2 + 2im2η0
l−p−

1
φ−

} )
,

(2.36)

where we have removed the now unnecessary shift +i0 of the pole. Notice that the above
regularization prescription reduces to the known one in the absence of radiation reaction,
which guarantees that the energy spectrum dE/dl− vanishes if the external plane wave
vanishes.

2.3 The Locally Constant Field Approximation (LCFA)

Figure 2.2: Plot of the power emitted by a charge in linear motion, properly normalized. From left to
right we have considered velocities equal (in natural units) to 0.3, 0.5, 0.95, respectively.

The power radiated by an accelerated charge is easily calculated through the expression
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of the Liénard-Wiechert potential and the definition of Poynting vector (see, e.g. [115])

dP

dΩ = α

4π
|n′ × [(n′ − v)× a]|2

(1− v · n′)5 . (2.37)

Now, if we consider for simplicity the case in which velocity and acceleration are parallel
and along z, this expression takes the simple form

dP

dΩ = αa2

4π
sin2 ϑ

(1− v cosϑ)5 , (2.38)

where as before ϑ is the angle measured from the z axis. Looking at the denominator of
the r.h.s. we clearly see that for high velocities v ∼ 1 the peak of the emitted power occurs
at small angles (see Fig. 2.2). To be more precise, a simple derivative shows that the angle
at which the emission is maximal is

ϑmax = arccos
{ 1

3v
[√

1 + 15v2 − 1
]}

v∼1∼ 1
2γ . (2.39)

This is a very general future of electromagnetic radiation: for relativistic particles it is
pinned in a cone with an opening angle of the order of 1

γ . It can also be seen as a simple
consequence of Lorentz contraction, the faster is the particle the more its Liénard-Wiechert
field look like an electromagnetic wave propagating along the particle velocity. This fact
can be extremely useful in order to efficiently approximate spectra formulas, resulting in
very compact expressions which can be easily plotted.

Indeed, let us consider a particle moving along a trajectory with a large deflection angle
compared to the emission cone angle 1

γ . Under this hypothesis, the portion of trajectory
responsible for the emission along a chosen direction n′ is very small and of the order of

lf = R

γ
, (2.40)

where R is the curvature radius of the particle trajectory and lf is known as formation
length [23](see Fig. 2.3). If the formation length associated to a system is very small, then
we can assume as a good approximation the background field to be constant over the scale
defined by lf . This means that the emission spectrum, under this approximation, will not
depend anymore on the value of the external field but just on the local values of velocity
and acceleration. In other words, we can adopt a Locally Constant Field Approximation
(LCFA). One can prove that for plane wave backgrounds, applying the LCFA corresponds
to keeping only the third order in φ− in the phase and the first order in the pre-exponential
terms of the spectrum formula Eq. (2.13), once it is expressed in terms of φ± (see, e.g.,
[23]). Indeed, we can interpret φ− as the coordinate spanning a length corresponding to a
trajectory segment of the order of the formation length. In this interpretation, the integral
over φ+ corresponds to the evolution parameter and at any fixed φ+, the integration over
φ− represents the contributions in a formation length around φ+. For larger values of φ−
the radiation is suppressed by destructive interference [66].
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Figure 2.3: Formation length for charge moving in an electromagnetic field.

2.4 The emission spectrum within the LCFA

In order to implement the LCFA, we use the same strategy as in Ref. [67] by expanding Eqs.
(2.18) and (2.21) for small values of |φ−| [recall that within the LCFA the problematic term
proportional to 1/(φ− + i0) can be integrated analytically, see, e.g., Refs. [23, 67], whereas
it is easier to perform the integration by parts of the terms proportional to 1/(φ− + i0)2

after the expansion for |φ−| ≪ 1].

It is interesting to notice that the regime where the LCFA applies well overlaps with
the regime where classical radiation-reaction effects are large (CRDR). In fact, the LCFA is
typically applicable at large values of the classical nonlinearity parameter ξ0 = |e|E0/mω
[157, 23, 66], where E0 is the amplitude of the external plane wave (see Refs. [22, 118, 65,
181, 103, 70, 67, 40, 16, 68, 113, 150, 112, 152] for investigations about the limitations of
the LCFA). Moreover, in the realm of classical electrodynamics one has to assume that the
quantum nonlinearity parameter χ0 = η0ξ0 is much smaller than unity [157, 23, 66]. Under
these conditions the LCFA is expected to be very accurate except possibly for extremely
small emitted radiation frequencies, which we do not consider here [67, 68, 113]. This indeed
well overlaps with the regime where classical radiation-reaction effects are typically large
because, apart from long laser pulses, radiation-reaction effects become large for ξ0 ≫ 1
[see Eq. (2.5)] but still with χ0 ≪ 1, to be able to neglect quantum corrections.

Under the above assumptions, as discussed in Sec. 2.3, one has to expand the phases in
Eqs. (2.18) and (2.21) up to the third order in φ−, whereas the leading-order expansion is
sufficient for the pre-exponential functions. The resulting angularly-resolved and angularly-
integrated energy spectra within the LCFA can be written as [see S.m. 2.6.3 for details on
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the more involved derivation of Eq. (2.42)]

dELCFA
dl

= α√
3π2

1
m2η0

∫
dφ+

h2(φ+)
χ(φ+)

√
1 + π̂2

⊥(φ+)

×
[
1 + 2π̂2

⊥(φ+)
]

K1/3

(
2
3
l−

p−
h2(φ+)
χ(φ+)

[
1 + π̂2

⊥(φ+)
]3/2

)
,

(2.41)

dELCFA
dl−

= 2α√
3π

l−

p−

∫
dφ+

ε(φ+)
π−(φ+)

h2(φ+)
η0

×
[
K2/3

(
2
3
l−

p−
h2(φ+)
χ(φ+)

)
− 1

2IK1/3

(
2
3
l−

p−
h2(φ+)
χ(φ+)

)]
.

(2.42)

Here, we have introduced the local quantum nonlinearity parameter χ(φ) = η0|ξ(φ)| (this
equality holds in our units where ℏ = 1 and it is easily checked that the above formulas
do not explicitly contain ℏ), the modified Bessel function Kν(z) of order ν [142] and the
function

IKν(z) =
∫ ∞

z
dz′Kν(z′). (2.43)

As expected from the very meaning of the LCFA, the above Eqs. (2.41)-(2.42) can be
obtained from the corresponding expressions in the absence of radiation reaction by replacing
the components of the electron four-momentum obtained from solving the Lorentz equation
in the plane wave with the corresponding expressions obtained from solving the LL equation
[see Eqs. (2.8)-(2.12)]. In particular, one can find that in the absence of radiation reaction
Eq. (2.42) has exactly the same form as the classical limit of the quantum energy emitted
spectrum as computed in Ref. [157]. However, we point out that the quantities dELCFA/dl
and dELCFA/dl

− are not local in φ+ because both the function h(φ) [see Eq. (2.5)] and the
function F⊥(φ) [see the definitions below Eqs. (2.6) and (2.10)] are not local in the laser
phase. This is also expected from the physical meaning of radiation reaction, with one of
the main physical consequences being the accumulation effects of energy-momentum loss.

As an additional remark, we notice that by taking the integral of Eq. (2.42) in dl− one
obtains that the total energy radiated is given by

ELCFA = 2
3αη0

∫
dφ+

ε(φ+)
h(φ+)ξ

2
⊥(φ+). (2.44)

This result coincides with the total energy radiated also beyond the LCFA, a curious
circumstance, which also occurs in the absence of radiation reaction [157].

Interestingly, the total minus component

dK−
dφ+

=
∫ ∞

0
dl−

∫
dl⊥

l−

ω′
dE

dl−dl⊥dφ+
=
∫ ∞

0
dl−

∫
dl⊥

dE
dldφ+

(2.45)

of the four-momentum radiated classically per unit of laser phase by an electron in a plane
wave including radiation reaction has been recently computed within the LCFA in Ref.
[105] in the different context of the so-called Ritus-Narozhny conjecture on strong-field
QED [156, 134, 135, 132, 15, 82]. According to Eq. (2.45), by defining dELCFA/dldφ+ as
the integrand in Eq. (2.41), and by performing the integral of this quantity over dl⊥ one
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can easily show that

dK−,LCFA
dφ+

= 2α√
3π

∫ ∞

0
dl−

l−

p−
h2(φ+)
η0

[
K2/3

(
2
3
l−

p−
h2(φ+)
χ(φ+)

)
− 1

2IK1/3

(
2
3
l−

p−
h2(φ+)
χ(φ+)

)]
,

(2.46)

in agreement with the result in Ref. [105].

2.5 Discussion
To summarize, we have derived analytically the angularly-resolved and the angularly-
integrated energy emission spectra of nonlinear Thomson scattering by including radiation-
reaction effects. This has been accomplished by starting from the analytical solution of the
LL in an arbitrary plane wave and by using the classical formulas of radiation by accelerated
charges.

The spectra are obtained as double integrals over the plane-wave phase. A particular,
new regularization technique has to be used in order to regularize the angularly-integrated
spectrum. We point out that the resulting spectra include higher-order classical radiative
corrections and can be considered as “classically exact” in the sense of the Landau and
Lifshitz reduction of order, meaning that neglected classical corrections are much smaller
than quantum corrections, which have been of course ignored from the beginning.

Moreover, we have obtained a phase-dependent expression of the electron dressed mass,
which includes radiation-reaction effects.

Finally, the expressions of the angularly-resolved and the angularly integrated spectra
within the locally-constant field approximations have been derived as well. These expressions
have the property that are expressed as single integrals over the laser phase of the corre-
sponding expressions without radiation reaction with the electron four-momentum replaced
with its expression including radiation reaction. Thus, they turn out to be non-local exactly
for the nature itself of radiation reaction giving rise to cumulative energy-momentum loss
effects.

We will now get more into the details of Eq. (2.42) in order to size the RR effects
on the emission spectrum. Let us consider a setup in which the electron is initially
counterpropagating with respect to the wave, such that p⊥ = 0. We can explicitly
substitute the momentum components Eqs. (2.12), (2.8) into the LCFA spectrum to obtain

dELCFA
dl−

(x) = α

2
√

3πη0
x

∫
dφ+

[
h2(φ+) + F⊥(φ+)2

(u−
0 )2 + 1

]
h2(φ+)IK5/3

(
2
3
h2(φ+)
χ(φ+) x

)
,

(2.47)

where we introduced the dimensionless parameter x = l−

p− and used the following relation
between Bessel functions [see, e.g., [96] pag. 929 Eq. (11)]

2Kν(x) = IKν+1(x) + IKν−1(x). (2.48)

For an ultrarelativistic electron in head-on collision with the wave p− ∼ 2ε0, where ε0 is
the electron initial energy. Under these hypothesis we can thus write the total radiated
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energy Eq. (2.44) as

ELCFA ≃
2
3ε0R

∫
dφ+

[
h2(φ+) + F⊥(φ+)2

(u−
0 )2 + 1

]
|ψ|2 (φ+)
h2(φ+) . (2.49)

For strong plane waves ξ0 ≫ 1, what really makes the difference, when RR effects are
included, is the denominator h2. Indeed for strong fields |F⊥| ≫ h but the factor h2 in the
denominator can differ significantly from one.

The parameter space region we are interested in here is the CRDR, defined by the
requirements R ∼ 1 and χ0 ≪ 1. Indeed, we want RR effects to be enhanced but at the
same time avoid any quantum effects, otherwise our classical description here presented
would be useless. Recalling that for a plane wave R = αξ0χ0 and assuming χ0 ∼ 0.1, we
can choose a field strength of the order ξ0 ∼ 103 so that R ≲ 1. Interestingly, the emission
spectra for different values of R in this conditions are clearly distinguishable (Fig. 2.4).
Moreover, the total emitted energy for the largest value of R considered in Fig. 2.4 is about
four times smaller than the energy emitted in the RR-free case. One could sensibly argue
that at χ0 ∼ 0.1 quantum effects cannot be neglected [126]. However, even for values of χ0
one order of magnitude smaller, the distinction is neatly present (Fig. 2.5). As of today,
there are not really convincing experimental results regarding classical RR effects from pure
wave-electron interaction and this is due to the technical difficulty of such a precise mea-
surement. However, we think that the analytical study of this phenomenon in more realistic
laser configurations could be fruitful for future verifications of the validity of the LL equation.

As a side note, It can be instructive to examine the asymptotic limit of the spectrum
for small values of x. This can be easily obtained recalling that for small x

IKν(x) ∼ Γ(ν − 1)
(2
x

)ν−1
. (2.50)

It then follows that dELCFA
dl− (x) x≪1≃ Cx

1
3 , with C given by

C = α

(
ξ2

0
η0

) 1
3 3

1
6 Γ(2

3)
2π

∫
dφ+

[
h2(φ+) + F⊥(φ+)2

(u−
0 )2 + 1

]
[h(φ+) |ψ| (φ+)]

2
3 . (2.51)

We see that when the electron momentum is small compared to the emitted one, the
dependence is generally cubic as in absence of RR.
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Figure 2.4: Nonlinear Thomson emission energy spectrum in the LCFA approximation for χ0 = 0.11 and
different values of R.

Figure 2.5: Nonlinear Thomson emission energy spectrum in the LCFA approximation for χ0 = 0.036 and
different values of R.
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2.6 Support material

2.6.1 Derivation of Eq. (2.13)
Let us show how to get Eq. (2.13). First we focus on the phase:

∆Φ(φ,φ′) =
∫ φ

φ′
dφ̃

l · π(φ̃)
k · π(φ̃) . (2.52)

From Eq. (2.4) we have k · π(φ̃) = ω p−

h(φ) , moreover we can expand the numerator in
light-cone coordinates

l · π = l−π+ + l+π− − l⊥ · π⊥ (2.53)

and replace all the ” + ” terms through the on-shell relation π+ = π2
⊥+m2

2π− , such that

l · π = l−
π2

⊥ +m2

2π− + l2⊥
2l−π

− − l⊥ · π⊥ = l−

2π−

{
m2 +

[
π⊥ −

p−
l−
l⊥

]2
}

= l−m2

2π−

(
1 + π̂2

⊥

)
.

(2.54)
Now, the point here is that expanding in light-cone coordinates one can easily show that
this product is quadratic in l⊥ (this is true in general, due to the light-cone expansion),
our aim was to obtain a manifestly Gaussian integral. It is easy to see that the phase can
be written as

∆Φ(φ,φ′) =
∫ φ

φ′
dφ̃
h(φ̃)
ωp−

l−m2

2π−(φ̃)
(
1 + π̂2

⊥(φ̃)
)

= l−

2p−η0

∫ φ

φ′
dφ̃ h2(φ̃)

(
1 + π̂2

⊥(φ̃)
)
. (2.55)

Now we have dealt with the phase, let us focus on the prefactor of Eq. (2.13). Again we
expand in light-cone coordinates and collect the squares of perpendicular components:

π(φ) · π(φ′)
(k · π(φ))(k · π(φ′)) =

= h(φ)h(φ′)
ω2(p−)2

[
π+(φ)π−(φ′) + π−(φ)π+(φ′)− π⊥(φ) · π⊥(φ′)

]
=

= h(φ)h(φ′)
ω2(p−)2

[
π−(φ′)π

2
⊥(φ) +m2

2π−(φ) + π−(φ)π
2
⊥(φ′) +m2

2π−(φ′) − π⊥(φ) · π⊥(φ′)
]

=

= h(φ)h(φ′)
2ω2(p−)2

m2
(
π−(φ′)
π−(φ) + π−(φ)

π−(φ′)

)
+
(√

π−(φ′)
π−(φ) π⊥(φ)−

√
π−(φ)
π−(φ′)π⊥(φ′)

)2 =

= 1
2ω2(p−)2

[
m2

(
h2(φ) + h2(φ′)

)
+
(
h(φ)π⊥(φ)− h(φ′)π⊥(φ′)

)2] =

= m2

2ω2(p−)2

[
h2(φ) + h2(φ′) +

(
F⊥(φ)−F⊥(φ′)

)2]
.

(2.56)

Where in the last line we made use of Eq. (2.9). Using these two results, Eq. (2.18) is
recovered.
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2.6.2 Derivation of Eq. (2.21)
Let us show step by step how to obtain Eq. (2.21) starting from Eq. (2.20). First we
observe that
dE
dl−

= − α

8π2m2η2
0

∫
dl⊥

ω′

l−

∫
dφdφ′

{
h2(φ) + h2(φ′) + [F⊥(φ)−F⊥(φ′)]2

}
ei∆Φ(φ,φ′) =

= − α

16π2m2η2
0

∫
dφdφ′dl⊥

[
1 + l2⊥

(l−)2

] {
h2(φ) + h2(φ′) + [F⊥(φ)−F⊥(φ′)]2

}
ei∆Φ(φ,φ′).

(2.57)

Now we recall that the phase has the form ∆Φ(φ,φ′) = l−

2p−η0

∫ φ
φ′ dφ̃ h2(φ̃)

(
1 + π̂2

⊥(φ̃)
)

and
it is quadratic in l⊥ (see Eq. (2.19)). We can thus write

h(φ)π̂⊥ = C +Dl⊥ with C = p⊥ −mF⊥(φ)
m

, D = − p−

ml−
, (2.58)

so that the phase can be written as

∆Φ(φ,φ′) = l−

2p−η0

∫ φ

φ′
dφ̃

(
h2(φ̃) + h2(φ̃)π̂2

⊥(φ̃)
)

=

= l−

2p−η0

∫ φ

φ′
dφ̃

(
h2(φ̃) +C2 + 2DC · l⊥ +D2l2⊥)

)
=

= l−

2p−η0

∫ φ

φ′
dφ̃

(
h2(φ̃) +C2

)
+ l−D2

2p−η0

∫ φ

φ′
dφ̃ (2C · l⊥

D
+ l2⊥) =

= l−

2p−η0

∫ φ

φ′
dφ̃

(
h2(φ̃) +C2

)
+ l−D2

2p−η0
(φ− φ′)

[
l2⊥ + 1

φ− φ′

∫ φ

φ′
dφ̃ 2C · l⊥

D

]
=

= l−

2p−η0

∫ φ

φ′
dφ̃

(
h2(φ̃) +C2

)
+ l−D2

2p−η0
(φ− φ′)

[
l⊥ + 1

(φ− φ′)D

∫ φ

φ′
dφ̃C

]2
−

− l−

2p−η0

1
φ− φ′

[∫ φ

φ′
dφ̃C

]2
.

(2.59)
It is now natural to shift the perpendicular momentum and perform a Gaussian integral.
Therefore, we shift the integration variable

l⊥ → l′⊥ = l⊥ + 1
(φ− φ′)D

∫ φ

φ′
dφ̃C (2.60)

and Eq. (2.57) becomes

dE
dl−

=− α

16π2m2η2
0

∫
dφdφ′dl⊥

[
1 + 1

(l−)2

(
l⊥ −

1
(φ− φ′)D

∫ φ

φ′
dφ̃C

)2
]

×
{
h2(φ) + h2(φ′) + [F⊥(φ)−F⊥(φ′)]2

}
× exp i

{
l−

2p−η0

∫ φ

φ′
dφ̃

(
h2(φ̃) +C2

)
+ p−

2m2l−η0
(φ− φ′)l2⊥ −

l−

2p−η0

1
φ− φ′

[∫ φ

φ′
dφ̃C

]2
}
.

(2.61)
One can now easily integrate over the perpendicular momentum l⊥, expressing the result
in terms of the variables φ± Eq. (2.21) is recovered.
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2.6.3 Derivation of Eq. (2.42)

We start from Eq. (2.21). In order to implement the LCFA, we expand each term of the
pre-exponent up to the leading order for |φ−| ≪ 1, whereas we keep terms up to φ3

− in the
phase (see, e.g., [67]):

dELCFA
dl−

= − iα

4πη0

l−

p−

∫
dφ+ h

2(φ+)
∫

dφ−
φ− + i0 e

i l−
2p−η0

h2(φ+)φ−[1+ 1
12ξ

′ 2
⊥ (φ+)φ2

−]

×
[
1 + 1

2ξ
′ 2
⊥ (φ+)φ2

−

]{
1 + m2

(p−)2

[
p⊥
m
−F⊥(φ+)

]2
+ 2im2η0

l−p−
1

φ− + i0

}
.

(2.62)

Now, we integrate by parts the only term containing 1/(φ− + i0)2 in the pre-exponent and
we obtain

dELCFA
dl−

= − iα

4πη0

l−

p−

∫
dφ+ h

2(φ+)
∫

dφ−
φ− + i0 e

i l−
2p−η0

h2(φ+)φ−[1+ 1
12ξ

′ 2
⊥ (φ+)φ2

−]

×

({
1 + m2

(p−)2

[
p⊥
m
−F⊥(φ+)

]2
}[

1 + 1
2ξ

′ 2
⊥ (φ+)φ2

−

]

− m2

(p−)2h
2(φ+)

[
1 + 1

4ξ
′ 2
⊥ (φ+)φ2

−

]
+ im2η0

l−p− ξ
′ 2
⊥ (φ+)φ−

)
.

(2.63)

This equation is already regular and can been expressed in terms of modified Bessel function
but, for the sake of convenience, we integrate by parts the last term

dELCFA
dl−

= − iα

4πη0

l−

p−

∫
dφ+ h

2(φ+)
∫

dφ−
φ− + i0 e

i l−
2p−η0

h2(φ+)φ−[1+ 1
12ξ

′ 2
⊥ (φ+)φ2

−]

×
[
1 + 1

2ξ
′ 2
⊥ (φ+)φ2

−

]{
1 + m2

(p−)2

[
p⊥
m
−F⊥(φ+)

]2

− m2

(p−)2h
2(φ+)

[
1 + 1

4ξ
′ 2
⊥ (φ+)φ2

−

]}

= − iα

4πη0

l−

p−

∫
dφ+ h

2(φ+)
∫

dy

y + i0 e
i l−

p−
h2(φ+)
χ(φ+) y

(
1+ y2

3

)

× (1 + 2y2)
{

1 + m2

(p−)2

[
p⊥
m
−F⊥(φ+)

]2
− m2

(p−)2h
2(φ+)(1 + y2)

}
,

(2.64)

where we have introduced local quantum nonlinearity parameter χ(φ) = η0|ξ′(φ)|(see also
the main text). At this point, we observe that the main contribution to the integral in y
comes from the region |y| ≲ 1. Moreover, we recall that within the LCFA we are assuming
that ξ0 ≫ 1 (see the discussion at the beginning of Sect. 2.4), which means that the largest
contribution to the integral in φ+ comes from the regions where F⊥(φ+) is at the largest.
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From the definitions below Eqs. (2.6) and (2.10), we obtain that

F⊥(φ) =
∫ φ

−∞
dφ̃ h(φ̃)ξ⊥(φ̃) = e

m

∫ φ

−∞
dφ̃h(φ̃)A′

⊥(φ)

= e

m

[
h(φ)A⊥(φ)− 2

3e
2η0

∫ φ

−∞
dφ̃ ξ2

⊥(φ̃)A⊥(φ̃)
]
,

(2.65)

which shows that |F⊥(φ)| ≲ h(φ)ξ0. In conclusion, we can consistently neglect the last
term in Eq. (2.64) as compared to the second-last one within the LCFA (note that we do
not make any assumptions about the values of |p⊥|/m and p−/m as compared with ξ0)
and we finally obtain the expression in the main text:

dELCFA
dl−

= 2e2
√

3π
l−

p−

∫
dφ+

ε(φ+)
π−(φ+)

h2(φ+)
η0

×
[
K2/3

(
2
3
l−

p−
h2(φ+)
χ(φ+)

)
− 1

2IK1/3

(
2
3
l−

p−
h2(φ+)
χ(φ+)

)]
,

(2.66)

where we have used the integral definitions of the modified Bessel functions Kν(z) [142] and
the expression (2.12) of the energy of the electron inside the plane wave, again neglecting
the term proportional to m2 there. The approximations used and the integrations by parts
carried out prevent the possibility of interpreting the integrand of Eq. (2.66) as the energy
emitted per unit of laser phase and unit of l−.



3
Strong-Field QED and graviton
interactions

The aim of this chapter is to introduce the basic background needed in order to deal with
SFQED and linearized gravity. These basic notions are essential for setting the stage for the
next chapter, where we will investigate the process of graviton photoproduciton in SFQED
and in strong classical waves. In the first part of this chapter, we briefly present how to
construct quantum states and amplitudes in SFQED. In the second part we introduce few
main features of general relativity, with a particular focus on the weak-field approximation
and the leading-order QFT approach.

3.1 A brief introduction to Strong-Field QED

Quantum electrodynamics (QED) is described by the well-known Lagrangian

LQED = −1
4F

µνFµν + ψ̄
(
i/∂ − e /A−m

)
ψ. (3.1)

53
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To be more precise, this the QED Lagrangian in vacuum. Let us consider the case in which
a classical electromagnetic field is present and serves as a background for quantum processes.
We will call this field Aα to distinguish it from the quantum field Aα. We can assume it is
generated by some current Jα

B and we do not really need to know the details of this source.
The full Lagrangian describing the system can be easily found shifting Aα → Aα +Aα in
LQED and adding the coupling with Jα

B

L = −1
4(Fµν + Fµν

B )(Fµν + FB,µν) + ψ̄
(
i/∂ − e /A− e /A−m

)
ψ − eJα

B(Aα +Aα), (3.2)

where here and below the subscript B stands for “Background”. Now, all the terms involving
exclusively classical quantities can be dropped, indeed they do not interact with the quantum
system we want to describe. Moreover, we assume that the field Aα is connected to the
classical source by the Maxwell equations ∂αF

αβ
B = eJβ

B and that the interactions between
the quantum field and the classical source are negligible. This is a sensible assumptions if
this source is far away from the interaction region. Under these hypothesis one can integrate
by parts and eliminate the mixed term

−1
2F

µν
B Fµν = Aν∂µF

µν
B = eAνJ

ν
B. (3.3)

We are then left with the compact Strong-Field QED (SFQED) Lagrangian in what is
known as Furry representation [88]

LSFQED = −1
4F

µνFµν + ψ̄
(
i/∂ − e /A− e /A−m

)
ψ. (3.4)

In the resulting theory the classical background field manifests solely as an interaction
with the matter fields, allowing its dynamics to be entirely disregarded. Now, if this field
is very strong we cannot treat it perturbatively and we must take into account all the
contributions of Aα on the quantum states, exactly. In other words, the spinor states in
the Furry picture are not the usual Dirac states but they are dressed by the background
field. This corresponds to solve the Dirac equation in presence of Aα

(
i/∂ − e /A−m

)
ψ = 0. (3.5)

This equation can be analytically solved for a very small number of background fields,
namely when Aα is either constant, Coulombian or a plane wave. Here we consider the last
of these possibilities and assume Aα(ϕ) dependent, as before, only on the variable ϕ = t− z.
As we have already discussed (see, e.g., Sec. 2.2), if we assume limϕ→±∞A(ϕ) = 0 then we
can choose Aα with components exclusively in the directions perpendicular to z. There are
various ways to solve this equation, here we present the most common and straightforward
one. However, in Sec. 6.2 a more general procedure is discussed, which can be generalized
to higher spin and gravitational backgrounds.

One can quickly verify that the solution of the scalar Klein-Gordon equation in presence
of Aα, namely (DαD

α +m2)Φ = 0 with Dα = ∂α + ieAα, is solved by Φp = eiSp(x) where

Sp(x) = −p · x− e

p−

∫ ϕ

dϕ̃

[
p ·A(ϕ̃)− e

2A
2(ϕ̃)

]
. (3.6)
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The function Sp is the classical action of a particle moving in a plane wave. This fact is
quite peculiar of plane wave backgrounds and highlights the semiclassical nature of quantum
states in this context. Indeed, the WKB approximation here leads to the exact result at
leading order. Being the Hamilton-Jacobi action, Sp possesses the property

−∂αSp(x) = πα
p (ϕ) + eAα(ϕ), (3.7)

where πα
p (ϕ) is the momentum given by Eq. (1.9). With this in mind and recalling the

on-shell condition πα
p πp,α = m2, it is trivial to prove that (DαD

α +m2)Φp = 0.
We can now look for positive-energy solutions of the Dirac equation in the form

Up(x) = eiSp(x)Up(ϕ) with the proper plane wave limit limϕ→±∞ Up = e−ip·xup. Here up is
the usual free spinor with positive energy satisfying (/p−m)up = 0.

The equation can be solved by simple quadrature, multiplying it by
(
i /D +m

)
. Exploiting

the property

γ̄αγ̄β = ηαβ + 2iΣαβ, (3.8)

where γ̄α are the Dirac matrices and Σαβ = − i
4 [γ̄α, γ̄β] are the generators of the quadri-

spinor representation
(

1
2 ,

1
2

)
of the Lorentz group, one gets

(DαD
α + 2iΣαβDαDβ +m2)Up = 0. (3.9)

Because of the antisymmetry of the generators and the gauge choice ∂αA
α = 0, the equation

reduces to

(DαD
α − eΣαβFαβ +m2)Up = 0. (3.10)

We can now insert the ansatz Up(x) = eiSp(x)Up(ϕ) and reduce the equation to a condition
on the spinor matrix Up

U̇a
p (ϕ) = ie

2p−Fαβ(ϕ)(Σαβ)a
bU

b
p(ϕ). (3.11)

It is interesting to note that the spinor follows a Lorentz-kind equation, where the Maxwell
tensor is projected onto the Lorentz group generators in the correspondent representation.
This fact and its possible generalizations will be further discussed later (see Sec. 6.2). Due
to the fact that the operator Fαβ(Σαβ)a

b is nilpotent and recalling the free particle initial
condition, the equation simplifies to

U̇a
p (x−) = ie

2p−Fαβ(Σαβ)a
bu

b
p, (3.12)

which can be directly integrated to find

Ua
p (ϕ) =

[
δa

b + ie

2p−

∫ ϕ

−∞
dϕ̃Fαβ(ϕ̃)(Σαβ)a

b

]
ub

p =
[
δa

b + e
(/n /A(ϕ))a

b

2p−

]
ub

p. (3.13)

The full solution can be compactly written as

Up(x) = eiSp(x)
[
1 + e

/n /A(ϕ)
2p−

]
up (3.14)
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Figure 3.1: Resummation of the background contributions to the fermion propagator in the Furry picture.

and is known as positive-energy “Volkov state”[173]. This solution is one of the fundamental
building blocks of Strong-Field QED. These states are often written in terms of the Ritus
matrices Ep(x) [157] as

Up(x) = Ep(x)up, (3.15)

such that Ep(x) encodes the full background dependence. It is easy to obtain the negative-
energy Volkov states Vp(x) with the same procedure in the form

Vp(x) = E−p(x)vp, (3.16)

where now vp is the negative-energy free spinor satisfying (/p+m)vp = 0

3.2 Nonlinear Compton scattering in Strong-Field QED

3.2.1 Calculation of the squared amplitude

In this section we will briefly sum up the main features of the photon emission by a
charge moving in a strong electromagnetic plane wave, also known as “nonlinear Compton
scattering”. In Ch. 4 we will see how this process can be related to the conversion of a
photon into a graviton. Nonlinear Compton scattering for a general plane wave background
was first studied in [128]. Here we have only one diagram, which actually corresponds to
an infinity of diagrams (see Figs. 3.1, 3.2). An incoming fermion in a plane wave with

p p′

l

Figure 3.2: Nonlinear Compton scattering amplitude. The double line represents a dressed fermion.

wavevector kµ is represented by a positive-energy Volkov state, as discussed in the previous
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section

Up(x) = eiSp(x)
[
1 + e

/n /A(ϕ)
2p−

]
up. (3.17)

Once again, we assume limϕ→±∞A(ϕ) = 0, such that in the Lorenz gauge the wave field
has only transverse components. The momentum conservation in the S-matrix for this
process is not complete. Indeed, the background is supplying energy to the electron but it is
not taken into account in the energy momentum conservation of the whole system. In other
words, the plane wave contributes to the diagram as an infinite amount of photons with
wavevector proportional to kµ, thus there is no limit to the momentum it can supply along
this direction. Therefore, our matrix element will involve an integral over a variable, namely
the phase ϕ. This because the action in the exponential Sp is more than just p · x and the
additional terms depends only on ϕ. If we consider an outgoing photon with polarization
εα and momentum lα we have

Sγ
fi = −ie

∫
d4xei[Sp(x)−Sp′ (x)+l·x]ūp′

[
1 + e

/A(ϕ)/k
2k · p′

]
/ε′∗
[
1 + e

/k /A(ϕ)
2k · p

]
up, (3.18)

where we recall that k · p = ωp−. Expanding the actions in the exponential one immediately
finds the momentum conservation along the three directions xi, x+. The matrix element
can thus be written as [128]

Sγ
fi = (2π)3δ(p− − p′− − l−)δ(2)(p⊥ − p′⊥ − l⊥)Mγ

fi. (3.19)

The element Mγ
fi takes the form

Mγ
fi = −ie

∫
dϕeig(ϕ)ūp′

[
1 + e

/A(ϕ)/k
2k · p′

]
/ε′∗
[
1 + e

/k /A(ϕ)
2k · p

]
up, (3.20)

where

g(ϕ) = −
∫ ϕ

dϕ̃
[
π+

p (ϕ̃)− π+
p′(ϕ̃)− l+

]
. (3.21)

We can extract the field dependence assuming Aµ = ψ(ϕ) aµ, this leads to the form

Mγ
fi = ie ūp′

[
/ε′∗f0 + e

2

(
/a/k/ε′∗

k · p′ + /ε′∗/k/a

k · p

)
f1 −

e2 a2 k · ε′∗

2 k · p k · p′ /kf2

]
up, (3.22)

where we introduced [128]

fa =
∫
dϕ eig(ϕ) [ψ(ϕ)]a. (3.23)

From this expressions we can easily find the unpolarized squared amplitude, averaging over
the initial states and summing over the final ones we have

1
2

∑
pol., spin

Mγ†
fi M

γ
fi = e2Tr

{
(/p′ +m)

[
γ̄µ f0 + e

2

(
/a/kγ̄µ

k · p′ + γ̄µ /k/a

k · p

)
f1 + e2 a2 kµ

2 k · p k · p′ /k f2

]

×(/p+m)
[
γ̄µ f

∗
0 + e

2

(
/a/kγ̄µ

k · p
+ γ̄µ /k/a

k · p′

)
f∗

1 + e2 a2 kµ

2 k · p k · p′ /k f
∗
2

]}
.

(3.24)
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We are not really interested in going through a detailed calculation of this trace here.
Indeed, this can be easily done with a short code in FORM like the one we listed in App.
(A.11.1) as ComptonEWlinear.frm. The result is the following

1
2

∑
pol., spin

Mγ†
fi M

γ
fi = 2e2

{
2 |f0|2 (p · p′ − 2m2)

−2eℜ(f0 f
∗
1 )
[
p′ · a

(
k · p′ − k · p

k · p′

)
+ p · a

(
k · p− k · p′

k · p

)]
+2 e2 a2ℜ(f0 f

∗
2 )− e2 a2 |f1|2

(
k · p
k · p′ + k · p′

k · p

)}
.

(3.25)

Moreover, the code ComptonEWlinear.frm also allows to linearize the squared amplitude
recovering the usual Compton scattering in vacuum QED. Taking into account the degrees
of freedom of the background, one finds

1
4

∑
pol., spin

Mγ†
fi M

γ
fi

O(e4)= 2e4
[
m4

( 1
p · k

− 1
p · l

)2
+ 2m2

( 1
p · k

− 1
p · l

)
+ p · l
p · k

+ p · k
p · l

]
,

(3.26)

which is the correct result for Compton scattering at tree-level (see, e.g, [148]). If interested,
one can check with the same code the results found in scalar QED, both in the linear and
nonlinear cases.

In the next section we will explicitly calculate the linearization of nonlinear Compton
amplitude, this is instructive in order to grasp the connection between vacuum QED and
strong-field QED. Moreover, in Ch. 6 we will adapt such a limit to processes in nonlinear
gravitational waves.

3.2.2 Linearization of the amplitude

Figure 3.3: First order contribution of the background field to nonlinear Compton scattering.

In this section we will show how to treat the linear expansion of nonlinear amplitudes
in order to obtain known results in vacuum QED. Let us consider a positive-energy Volkov
states

Up(x) = eiSp(x)
[
1 + e

/n /A(ϕ)
2p−

]
up. (3.27)
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Recalling that

Sp(x) = −p · x− e

p−

∫ ϕ

dϕ̃

[
p ·A(ϕ̃)− e

2A
2(ϕ̃)

]
, (3.28)

we find that, to the first order in the coupling e

Up(x) = e−ip·x
[
1− i e

p−

∫ ϕ

dϕ̃p ·A(ϕ̃) + e/n /A(ϕ)
2p−

]
up +O(e2),

Ūp(x) = eip·xūp

[
1 + i

e

p−

∫ ϕ

dϕ̃p ·A(ϕ̃) + e /A(ϕ)/n
2p−

]
+O(e2).

(3.29)

Now, in the context of scattering amplitudes in QFT, the linearization is accompanied by
the monochromatic assumption for the incoming wave Aµ = εµe−iωϕ = εµe−ik·x. Inserting
this hypothesis in the previous expansion we get

Up(x) ≃ e−ip·xup + e−i(p+k)·x e

2k · p (2p · ε+ /k/ε)up. (3.30)

Now, the amplitude for the emission of a photon is

Sγ
fi = −ie

∫
d4xŪp′(x) /A∗′

l (x)Up(x). (3.31)

Inserting our expansion we find

Sγ
fi =− ie

∫
d4xe−i(p−p′−l)·x

× ūp′

[
1 + e−ik·x e

2k · p′
(
−2p′ · ε+ /ε/k

)]
/ε′∗
[
1 + e−ik·x e

2k · p (2p · ε+ /k/ε)
]
up.

(3.32)

The first order in e gives a null contribution because of momentum conservation, while the
second order reads

Sγ
fi = −ie2(2π)4δ(p+ k − p′ − l)ūp′

[ 1
2k · p′

(
−2p′ · ε+ /ε/k

)
/ε′∗ + /ε′∗ 1

2k · p (2p · ε+ /k/ε)
]
up.

(3.33)

Introducing the notation Sγ
fi = (2π)4δ(p+ k − p′ − l)Mγ

fi we have

Mγ
fi = −ie2ūp′

[ 1
2p′ · k

(
−2p′ · ε+ /ε/k

)
/ε′∗ + 1

2p · k/ε
′∗ (2p · ε+ /k/ε)

]
up, (3.34)

which is exactly what is found for the usual tree level Compton scattering in vacuum [see,
e.g., Eq. (5.74) in Ref. [148]]. The first term, coming from the dressing of the outgoing
electron, is the u-channel while the second one which corresponds to the dressing of the
incoming electron is the s-channel (see Fig. 3.3). The denominators 2p · k, 2p′ · k are the
on-shell propagators poles, here they come from the scalar classical action and the fact that
the field depends only on k · x. The term /ε′∗ (2p · ε+ /k/ε) represents the numerator of the
spinorial Feynman propagator with momentum p+ k, here the contribution in k is taken
into account by the correction to the spinor Up, while the rest of the propagator comes
again from the classical action.
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3.3 Gravity from a field theory perspective

Figure 3.4: The curvature of the spacetime is described by the Riemann tensor and the scalars one can
construct from it. The vierbein connects the description on the manifold to the one on the tangent space.

3.3.1 Vierbein and transformations in general relativity
General relativity can be described as a classical field theory, the field being the metric
tensor gµν . The spacetime evolution of the metric is described by the Einstein’s equations

Rµν −
1
2gµνR = −8πGTµν , (3.35)

where Rµν , R are the Ricci tensor and scalar, respectively, and Tµν is the energy momentum
tensor of the system. The spacetime curvature is described by the “second derivatives”
of the metric and not by the metric itself. Indeed, it is encoded in the Riemann tensor
Rµνρδ, which involves products and derivatives of the Christoffel symbols. The gauge
group of general relativity is very big, in fact the theory is invariant under all coordinate
transformations

xµ → x′µ(x), (3.36)

which define the group of diffeomorphism in four dimensions. Under such a transformation,
the metric transforms covariantly and we can find an arbitrary number of different gµν

describing the same spacetime.
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Let us be more precise and define general relativity as that theory which is invariant under
general coordinate transformations and locally equivalent to special relativity. Basically
this is everything one needs to construct the theory. Let us think about it geometrically: if
M is the spacetime manifold, then for any p ∈ M the tangent space TpM is isomorphic
to the Minkowski space (see Fig. 3.4). This is of course fundamental: it is not enough to
say that the theory is invariant under Diff(M). The statement about the local tangent
spaces, also know as “equivalence principle”, is what really selects the correct theory. This
is not something one can derive, it is a postulate, the tangent space could be described by
a four-dimensional Euclidean spacetime, but it is not.

Now, let us make more explicit the definition of general relativity we have just given.
Suppose we have a point p in spacetime, p ∈M . This point is“attached” to the manifold
so if we change coordinates it will be identified by different numbers but will still be there,
unperturbed as the physics itself. Let us construct on the space tangent to the manifold
at this point TpM a chart {ξα(p)}, such that in a very small neighborhood of p on the
manifold

ds2
p = ηαβdξ

α(p)dξβ(p) = gµν(p)dxµdxν . (3.37)

This choice is of course always possible because of the equivalence principle. From this
equation we find that

ηαβ
∂ξα(x)
∂xµ

∂ξβ(x)
∂xν

= gµν(x), (3.38)

which identifies eα
µ = ∂ξα

∂xµ as the object connecting the manifold description to its tangent
space (see Fig. 3.4). This matrix is known as “vierbein” and we will make an extensive use
of it in the following chapters. It is worth stressing that this matrix has one flat spacetime
index α and a curved spacetime index µ. For this reason it behaves as a vector with respect
to both general coordinate transformations and local Lorentz transformations.

The vierbein is what really encodes the information about the gauge (coordinates)
choice, because it is connected to both the manifold and the local tangent spaces. We
could formulate general relativity in terms of the vierbein, than the symmetry of the theory
would be simply expressed: everything has to be covariant under general transformations
of coordinates and local Lorentz rotations

e′α
µ(x′) = Λα

β(x)eβ
ν(x) ∂x

ν

∂x′µ . (3.39)

Another way to see this issue is to think about a general coordinate transformation as
something that affects the tangent space as well, citing [143]:

“Under a general coordinate transformation xµ → x′µ , there is no reason to suppose that
the basis vectors for the local orthonormal frame are unaffected. A change of coordinates
will be taken to induce a local Lorentz transformation of the tangent space. This means
that under a general coordinate transformation, eα

µ must transform like a covariant vector
up to a local Lorentz transformation, and Aα must transform like a set of scalars, again up
to a local Lorentz transformation”.

The sentence “up to a local Lorentz transformation” makes all the difference. This has
to be true, because if we choose the general transformation to be a Lorentz one and the
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Figure 3.5: Spinors transform under local Lorentz transformations and act like scalars under general
coordinate transformations on the manifold.

space is flat, than this is just equivalent to locally Lorentz transform every tangent space
with the same transformation and a vector field in this case transforms covariantly (as any
other field with spin ̸= 0), it is not a scalar. Therefore, whenever in this context we say
that something is a scalar with respect to general coordinate transformations, what we
actually mean is that it is a scalar with respect to general coordinate transformations up to
local Lorentz transformations. Now the picture is clear let us consider spinors, later we
will need to include them in a curved spacetime description (see Ch. 6). In flat spacetime
a spinor ψ(x) is an object which transforms under infinitesimal Lorentz transformations
x′α = xα + ωαβxβ as

ψ′(x′) = e
i
2 ωαβΣαβ

ψ(x), (3.40)

where we recall that Σαβ = − i
4 [γ̄α, γ̄β ] are the generators of the Dirac representation of the

Lorentz group (clearly one could do the same within the Weyl representation). While we
know how to transform a vector or a tensor under GL(4), there is no finite dimensional spinor
representation of this group. Therefore, when dealing with spinors in curved spacetime we
are used to consider their vierbein definition, which is just called ψ(x). With this in mind,
the generalization of a spinor transformation to curved spacetime is natural. Let us focus
on the local tangent spaces: in curved spacetime a spinor is an object which transforms
under local Lorentz transformations e′α

µ(x) = Λα
β(x)eβ

µ(x) as

ψ′(x′) = e
i
2 ωαβ(x)Σαβ

ψ(x), (3.41)
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where Λαβ(x) ≃ ηαβ +ωαβ(x). Note that we do not care at all about the change of coordinate
on M , but only on TM : spinors are scalars under general coordinate transformation on
the manifold (see Fig. 3.5).

3.3.2 Gravitational waves in the weak-field approximation

In this section, our focus is on the regime in which the gravitational field is weak. To
implement such an assumption we can simply expand the metric as a flat component plus
a small perturbation (see Fig. 3.6)

gµν = ηµν + κhµν , (3.42)

where κ =
√

32πG. By “small” we mean that |κhµν | ≪ 1, such that we can work with
at the first order in κ and neglect any higher order contribution. To be more precise, we
assume there exists a reference frame (coordinate system) where the condition |κhµν | ≪ 1
is satisfied in a sufficiently large region (see, e.g., [129]). Indeed, we know that the values of
the metric depend on the gauge choice.

This assumption defines the weak-field approximation (see, e.g., [178]), and the resulting
linearized theory is widely used in the study of gravitational waves and other scenarios where
deviations from flat spacetime are small. As we discussed in the introduction, Einstein’s
theory is practically much more complicated than classical electromagnetism and the reason
is clear: the charge of the gravitational field is any form of matter or energy, even the field
itself. For this reason, linearized gravity is not only a great simplification but it allows
us to intuitively understand many phenomena that would otherwise be hidden behind
mathematical complications. From now on in this section, we will deal with the field hµν

more than gµν and discuss how to describe it from a field theory perspective.

Figure 3.6: Gravitational waves produced by merging black holes can be treated in the weak-field
approximation when measured at great distance from the source.

Let us insert the expansion gµν = ηµν + κhµν into the Einstein’s Eq. (3.35) and keep
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only the first order in κ. The Ricci tensor is defined as

Rµα = Rν
µνα = ∂αΓν

µν − ∂νΓν
µα + Γβ

µνΓν
αβ − Γβ

µαΓν
νβ , (3.43)

observing that Γ ∼ O(κ) we have

Rµα = ∂αΓν
µν − ∂νΓν

µα +O(κ2). (3.44)

The Christoffel symbols are immediately calculated in this approximation

Γλ
µν = κ

2
(
∂µh

λ
ν + ∂νh

λ
µ − ∂λhµν

)
, (3.45)

such that the Ricci tensor can be written as

Rµν = κ

2
(
□hµν + ∂µ∂νh− ∂µ∂αh

α
ν − ∂ν∂αh

α
µ

)
, (3.46)

where □ = ηαβ∂β∂α, h = hα
α. It is now convenient to consider the Einstein equation in the

form

Rµν = −κ
2

4

(
Tµν −

1
2gµνT

)
, (3.47)

where T = Tα
α. We finally end up with the following linearized equation (see, e.g., [178])

□hµν + ∂µ∂νh− ∂µ∂αh
α
ν − ∂ν∂αh

α
µ = −κ2

(
Tµν −

1
2ηµνT

)
. (3.48)

Let us now stop for a moment and address the following question: how many physical
degrees of freedom owns hµν? In principle this is a 4× 4 symmetric tensor, thus it has 10
different entries. However, we have to remember that the gauge group of general relativity
is quite large. We are free to choose the reference frame, ora gauge, we like. An useful
choice is the harmonic gauge, defined imposing the following condition on the Christoffel
symbols

Γλ
µνg

µν = 0. (3.49)

The linearization of this condition reads

∂αh
α
µ = 1

2∂µh (3.50)

and with it the wave equation reduces to the compact form

□hµν = −κ2

(
Tµν −

1
2ηµνT

)
. (3.51)

From the 10 initial variables we are now left with 6, we got rid of 4 imposing the gauge-
breaking condition Eq. (3.49). However, we are not done. Indeed, under infinitesimal
coordinate transformations xµ → xµ + ξµ the perturbation is easily found to transform in
the following way

hµν → hµν − ∂µξν − ∂νξµ, (3.52)
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Figure 3.7: The deformation of spacetime induced by the two gravitational wave polarizations.

as one can check expanding the transformation g′
µν(x′) = ∂xρ

∂x′µ
∂xδ

∂x′ν gρδ(x) to the first order.
Now, transforming in this way the field in Eq. (3.50) one finds

∂αh
α
µ −□ξµ = 1

2∂µh, (3.53)

which is invariant for any function ξµ satisfying □ξµ = 0. Such a function can always found,
therefore we can eliminate other 4 degrees of freedom, leaving hµν with only 2 physical
polarizations. One can show that ξµ can be chosen to make hµν traceless (see, e.g. [129]).
This particular choice of gauge, sum of the harmonic and traceless conditions, is known as
Transverse-Traceless (TT) gauge and it is commonly chosen to present gravitational waves
in the weak-field approximation. It is worth observing that this gauge can only be defined
in vacuum, where □ξµ = 0 can hold everywhere and it only makes sense in the weak-field
approximation. As we will see, it is not easily generalized to the full nonlinear theory.

This being said, let us focus on waves in vacuum. In the TT-gauge a monochromatic
solution of the wave equation □hµν = 0 propagating along z has only components in the
directions transverse to z, namely

hij(x) =

 h+ h×

h× −h+

 cos(k · x), (3.54)

where h+,× are the two polarizations and kα is the wave vector and i, j = {1, 2}. The
effects of waves with polarization h+,× on a system of particles can be easily derived from
the linearization of the geodesic equation [129] (see Fig. 3.7).

The polarization tensor of the wave, when expressed in terms of helicity states hµν =
ε+,µνe

ik·x + ε−,µνe
−ik·x, can be written as a product of spin-1 polarization vectors [98, 110]

εµν
± = εµ

±ε
ν
±, (3.55)
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where εµ
± = 1√

2(0, 1,±i, 0) are the photon right and left polarizations. We will often employ
this decomposition later in order to prove proportionality relations between graviton and
photon emissions.

3.3.3 Graviton Lagrangian in the linearized theory
A natural way to obtain the action of the field hµν is to linearize the full gravity Einstein-
Hilbert action. However, one can also follow a bottom-up approach and construct the
graviton theory from scratch. If we want to take this way we need to build the theory of a
spin-2 massless particle coupling with matter and energy.

This is actually quite easy, once the equations of motion of the field are known. We know
that the linearized theory in the harmonic gauge is described by a simple wave equation
(see Eq. (3.51))

□h̄µν = −κ2Tµν , (3.56)

where we defined h̄µν = hµν − 1
2ηµνh . We are looking for an action involving up to the

second power of the field hµν , such that we can extract a linear theory from it. In the
free graviton sector we need to find □h̄µν = 0 as the equation of motion, in other words
we can naturally guess the presence of a dynamical term of the form Lh ∝ hµν□h̄µν . We
should not forget that a metric determinant √g =

√
|det gµν | would naturally appear in

the action integral within the invariant measure. However, its weak-field expansion reds√
g = 1 + κ

2h + O(h2) and therefore when multiplied by Lh it contributes to the O(h2)
action as a unity. Our guess for the free graviton action thus reads

Sg.f.
h = C

∫
d4xhµν□h̄µν = C

∫
d4x

[
hµν□hµν −

1
2h□h

]
, (3.57)

where the superscript g.f. stands for “gauge fixed”. Adding a minimal coupling with the
source is now straightforward. Observing that the free Lagrangian is quadratic in the
gravitational field and therefore we get a factor of 2 deriving the equations of motion, we
have

Sg.f.
h + Sint = C

∫
d4x

[
hµν□hµν −

1
2h□h+ κhµνT

µν
]
. (3.58)

The constant C is not really relevant by now, however in order to match with the energy
momentum definition adopted in this text, we choose it to be C = −1

2 . Thus, let us write
the final form of the action as

Sg.f.
h + Sint =

∫
d4x

[
−1

2h
µν□hµν + 1

4h□h−
κ

2hµνT
µν
]
. (3.59)

Of course, one can verify that this is the correct action taking the linear limit of the Einstein-
Hilbert one and imposing the proper gauge (see [178, 129]). It is useful to recall that the
matter energy momentum tensor in general relativity can be defined as the functional
derivative of the matter action with respect to the metric

Tµν = 2
√
g

δSmatter
δgµν

= 2 ∂Lmatter
∂gµν

− gµν Lmatter. (3.60)
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The linearization of this definition reads

Tµν = −2
κ

∂L(1)
matter
∂hµν

− ηµν L(0)
matter,

(3.61)

where the superscripts refer to the order of hµν . From this definition we see that at first
order in κ the matter interaction is defined to be L(1)

matter = −κ
2hµνT

µν , which checks with
Eq. (3.59). This energy momentum tensor is naturally symmetrical, unlike the Noether
definition commonly employed in special relativity

TNoether
µν = 2 ∂L

(0)
matter

∂∂µΨa
∂νΨa − ηµν L(0)

matter,
(3.62)

where here with Ψa we refer to any matter field in the flat spacetime Lagrangian we are
dealing with. These two definitions in general do not give the same result, electromagnetism
is a renowned example of this eventuality. However, when integrated over space they give
the same physical energy-momentum [129]∫

V
d3xTNoether

µν =
∫

V
d3xTµν . (3.63)

The tensor TNoether
µν is not an observable quantity on its own, indeed in the electromagnetic

case is not even gauge invariant. On the other hand the general definition Tµν is well
defined and preferable in most cases. If the two aforementioned definitions were exactly the
same, one could be tempted to write

L(1)
matter

?= −κ∂L
(0)
matter

∂∂µΨa
∂νΨahµν . (3.64)

However, this does not hold unless some integrations by parts are done in the corresponding
actions and proper rearrangements are operated exploiting the equations of motion. An
easy example one can consider is the Proca Lagrangian describing a massive spin-1 field.
The r.h.s. of the previous formula involves only the derivatives of the field while the general
relativistic definition produces also a term proportional to the mass −κm2AαAβhαβ. In
the following we will use either definition based on the specific necessities.

3.4 Interactions between QED and linearized gravity
First of all, let us recall the flat QED Lagrangian

LQED = −1
4F

µνFµν + ψ̄

(
i

2
←→
/∂ − e /A−m

)
ψ, (3.65)

where ψ̄
←→
/∂ ψ = ψ̄

−→
/∂ ψ − ψ̄

←−
/∂ ψ. We now want to include gravity in this picture. As we said

several times, gravitons couple to everything with mass or energy, thus the final Lagrangian
will be of the form

L = LQED + Lh + LhA + Lhf + LhAf , (3.66)
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Figure 3.8: The interaction vertices involving QED and linear gravity.

where the second term in the r.h.s. is the free graviton Lagrangian, while the last three are
the graviton-matter interactions. We have already derived the graviton Lagrangian in Eq.
(3.59), in the harmonic gauge it reads 4.33

Lh = −1
2h

µν□hµν + 1
4h□h.

(3.67)

From this Lagrangian we could extract the graviton propagator, however we will not need
it in this section so we will refer to App. A.5 for an explicit derivation. The interaction is
fully determined by the knowledge of the energy momentum tensor of the system

LhA + Lhf + LhAf = −κ2hµνT
µν . (3.68)

The tensor Tµν is the sum of the Maxwell energy momentum tensor, the fermion one and
an interaction between the two fields. Now, in order to properly treat fermions in general
relativity we should employ the vierbein formulation described in sec. (3.3.1) and introduce
the covariant derivative in the spin-1

2 representation. This being said, at the linear order
this is not really necessary and we prefer to postpone the rigorous exposition of this topic
to Ch. 6. We thus direct the reader to that chapter for more details. We can calculate the
fermion energy momentum tensor through the Noether definition Eq. 3.62)

Tµν
f =

∂L(0)
f

∂∂µψ
∂νψ + ∂νψ̄

∂L(0)
f

∂∂µψ̄
− ηµνL(0)

f = i

2 ψ̄γ̄
µ←→∂ ν ψ − ηµνψ̄( i2

←→
/∂ −m)ψ. (3.69)

To include the interactions with the photon Aα we can just ask this tensor to be invariant
under the electromagnetic U(1) gauge symmetry. This is achieved replacing ∂α → Dα =
∂α + ieAα, such that

T ′µν
f = i

2 ψ̄γ̄
µ←→D ν ψ − ηµνψ̄( i2

←→
/D −m)ψ, (3.70)
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with ψ̄
←→
/D ψ = ψ̄

−→
/∂ ψ − ψ̄

←−
/∂ ψ + 2ieψ̄ /Aψ. We are now ready to list all the interaction terms

of the Lagrangian (3.66):

LhA = −κ2hµν

[
Fµ

αF
αν + 1

4η
µνFαβF

αβ
]
,

Lhf = −κ2 hµν

[
i

2 ψ̄γ̄
µ←→∂ ν ψ − ηµνψ̄( i2

←→
/∂ −m)ψ

]
,

LhAf = −eκ2 hµν

[
−Aµ ψ̄γ̄νψ + ηµν Aαψ̄γ̄

αψ
]
.

(3.71)

From these interactions we can extract the corresponding Feynman rules, in the usual way
[179, 148, 114, 56]

f

hµν

Aα

f̄

= −ieκ4 (2 ηµν γ̄α − ηµαγ̄ν − ηναγ̄µ) ,

f

hµν

f̄

p

p′

= i
κ

8
[
γ̄µ(p− p′)ν + γ̄ν(p− p′)µ − 2ηµν(/p− /p′ − 2m)

]
,

Aα

hµν

Aβ

k

k′

=

i
κ

2
[
k · k′(ηµαηνβ + ηµβηνα − ηµνηαβ)

+ηµνkαk
′
β + 2 ηαβk{µk

′
ν}

−2ηα{µk
′
ν}kβ − 2ηβ{µkν}k

′
α

]
,

(3.72)

where all momenta are ingoing and a{αbβ} = 1
2(aαbβ + bαaβ). With these three vertices we

are ready to compute graviton photoproduction. This process and its generalization will be
the main topic of the next chapter.

3.4.1 Graviton photoproduction in vacuum QED

By graviton photoproduction we refer to the emission of a graviton by an electron moving
under the influence of an electromagnetic field, namely

e(p) + γ(k, ε)→ e(p′) + g(l, ε′ε′). (3.73)



70 Strong-Field QED and graviton interactions
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Figure 3.9: Tree-level contributions to graviton photoproduction.

From the Feynman rules we listed in the previous section (3.4) one can easily write down
the diagrams contributing to this process at tree-level [Fig. 3.9].

A direct calculation shows that the amplitude reads (see, e.g., [110])

Mg
fi = −ieκ2 ūp′

[
p · ε′∗

2p · l
(
−2p · ε′∗ + /ε′∗/l

)
/ε + p′ · ε′∗

2p′ · l /
ε
(
2p′ · ε′∗ + /l/ε′∗)

+ε′∗ · k
k · l

(
ε′∗ · ε/l − ε′∗ · k/ε − ε · l/ε′∗)]up.

(3.74)

An interesting feature of this amplitude is that it can be shown to be proportional to the
amplitude for Compton scattering Eq. (3.34) with the convention

e(p) + γ(k, ε)→ e(p′) + γ(l, ε′). (3.75)

To be more precise, with the use of some algebra, one can prove that (see Refs. [56, 110])

Mg
fi = κ

2e

(
p · ε′∗l · p′ − p′ · ε′∗l · p

k · l

)
Mγ

fi = HMγ
fi, (3.76)

where Mγ
fi is exactly the expression of Eq. (3.34). The proportionality constant is usually

reported in the literature as H, and we will adopt this convention here. The same
proportionality can be easily derived in the context of scalar-QED, we refer to App. A.6 for
further details. In the next chapter we will show how this proportionality can be extended
to the regime of nonlinear electrodynamics both at the classical and quantum levels.



4
Gravitational emission by an electron
in an intense plane wave

4.1 Overview

Recently, large interest has awakened in the connection between gravity and Standard
Model gauge theories. There are multiple motivations driving this research area, concerning
both fundamental and technical aspects [31, 46, 36, 30]. It is known that a satisfactory
description of quantum gravity is not available today, nevertheless the low-energy limit of
any possible model should be properly connected to the Standard Model and the classical
theory of gravity, which are both experimentally well verified [148, 86, 171]. The fact that
canonical quantum gravity is not strictly renormalizable does not affect these considerations
and leading-order calculations are of notable interest. Indeed, it is possible to describe the
dynamics of massive objects through the classical limit of scattering amplitudes [28]. By
taking into account the proper Feynman diagrams, one can find corrections to the Coulomb
or Newton potential [35, 34].

71
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The relation between gravity and gauge theories manifests itself, for instance, through
the Kawai-Lewellen-Tye relations [116, 30] derived in the context of string theory, which
relate graviton and gauge-bosons tree-level amplitudes. These relations suggest a more
fundamental connection between general relativity and gauge theories: at the semiclassical
level gravity actually behaves as a double copy of a gauge theory [31, 30, 32] (see Refs.
[8, 7] for studies about double copy in a background plane wave electromagnetic field).
Moreover, general considerations about conservation laws [94, 55, 56] in tree-level diagrams
have been exploited to relate, for example, graviton photoproduction and QED Compton
scattering. These factorization properties and various other techniques [79] played a central
role in calculating on-shell amplitudes involving gravitons as Compton-like scattering and
photoproduction [110, 36, 37, 111, 13, 12, 27].

On a different side, the recent detection of gravitational waves has attracted a lot of
attention [3]. Despite the outstanding experimental result the lack of measurable events
makes it necessary to search for different sources of these perturbations. The classical
interplay between gravity and electromagnetism has a long history and in this context
Refs. [140, 141] are of particular interest. In these works it is proved that a proportionality
exists between the electromagnetic and gravitational energy spectra of a charge driven by a
monochromatic plane wave.

In a QFT perspective we can introduce the amplitudes for polarized Compton scattering
and graviton photoproduction

e(pi) + γ(ki, εi)→ e(pf ) + γ(kf , εf )
e(pi) + γ(ki, εi)→ e(pf ) + g(kf , εfεf ),

(4.1)

where εi,f are the polarizations of incoming and outgoing bosons, respectively. Note that
the polarization tensor εµν

f of the graviton is assumed to be written as εµν
f = εµ

fε
ν
f , where εµ

f

is the helicity polarization four-vector of a photon with the same four-momentum [98](see
Sec. 3.3.2). The relations studied in Refs. [94, 55, 56] lead to the following result regarding
the amplitudes associated to these two processes (see Sec. 3.4.1 )

εi,αε
∗
f,µε

∗
f,νM

αµν
eγ→eg = Hεi,αε

∗
f,µM

αµ
eγ→eγ , (4.2)

where

H = κ

2e

(
pi · ε∗

fkf · pf − pf · ε∗
fkf · pi

ki · kf

)
, (4.3)

and we recall that κ =
√

32πG in units where ℏ = c = 1, which are used throughout.
Equations (4.2) and (4.3) lead to the same proportionality between spectra found in

Refs. [140, 141] but a relation like Eq. (4.2) is not expected to hold for a higher number
of incoming photons [12] because the arguments based on conservation laws [94] cease to
apply. Thus, an investigation of this property in the context of strong-field QED, where
the effects of an electromagnetic background are taken into account exactly, is certainly
relevant and timely.

In the present chapter we show both classically and quantum mechanically that the
electromagnetic and the gravitational radiation amplitudes in an arbitrary plane-wave
background field are proportional to each other and that the proportionality constant is the
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same in both cases and equal to H. Classically, this is achieved by introducing a concept of
radiation amplitude in analogy with the quantum one. Quantum mechanically we work
within strong-field QED in the Furry picture, which allows to take into account exactly
the effects of the plane wave into the electron dynamics [29] (see Sec. 3.1, see also Ref.
[89] for a similar computation in a circularly-polarized monochromatic plane wave). It is
remarkable that the proportionality relies only on the symmetries of the background plane
wave and on the energy-momentum conservation laws which manifest themselves in the
semiclassical nature of dressed electrons in a plane wave.

4.2 Classical amplitudes proportionality

4.2.1 The source of gravitational radiation

Figure 4.1: The two mechanisms of gravitational emission by a charge moving in an electromagnetic field
when RR is neglected.

An electron in the presence of an intense electromagnetic plane wave radiates both
light and gravitational waves. The electron is characterized by an initial four-momentum p,
whereas the plane wave is described by the four-vector potential Aµ(ϕ), where ϕ = n · x,
with nµ = (1,n), n being the unit vector along the propagation direction of the plane wave
as usual. We assume that A(ϕ) satisfies the Lorenz-gauge condition and A0(ϕ) = 0, and
that limϕ→±∞Aµ(ϕ) = 0, such that the plane wave field has only transverse components.

As we observed several times, according to Einstein’s equations any form of matter or
energy is a source of gravity. Due to their remarkably small amplitudes in most situations,
we will consider here linear gravitational waves in the first-order weak-field approximation
O(κ) (see Sec. 3.3.2), where the metric is expanded as [178, 129]

gµν = ηµν + κhµν . (4.4)
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This implies that the energy-momentum brought by the gravitational wave itself is not
included in the total energy-momentum tensor Tµν , which is taken as the source of
the gravitational field. Thus, the sources of gravitational waves in the system under
consideration are the particle P , the background field Aµ and the field radiated by the
charge Aµ

R. Moreover, the electromagnetic stress tensor Tµν
EM = FµαF ν

α + 1
4η

µνFαβFαβ is
quadratic in the field Fµν = Fµν

R + Fµν
B , where Fµν

B = 2∂[µAν] and Fµν
R = 2∂[µA

ν]
R , with

2a[µbν] = aµbν−aνbµ, and therefore a mixed term arises involving background and radiation
fields. Consequently, on the whole the source for gravitational radiation reads

Tµν = Tµν
P + Tµν

R + Tµν
B + Tµν

RB. (4.5)

Now, we are interested in a regime where the background plane wave can be intense, in
the sense that the classical nonlinearity parameter ξ0 = |e|E0/mω can be larger than unity
[66, 95, 80]. Here, E0 and ω are the peak value of the electric field of the wave and its typical
angular frequency, respectively. We work in a parameter range, where radiation-reaction
effects can be neglected. Classically, this implies that the parameter αχ0ξ0Φ = RΦ is
much smaller than unity [59], where Φ is the total phase duration of the plane-wave field.
Quantum mechanically, this implies that multiple photon emissions and radiative corrections
are negligible, which is the case if αξ0Φ≪ 1 at χ0 ≲ 1 [63, 151, 85, 66, 95, 80]. Moreover,
neglecting radiation-reaction effects means classically that the conservation of the total
energy-momentum tensor has to be equivalent to the electron dynamics being described by
the Lorentz equation [115]

∂νT
µν
P = eFµα

B JP,α, (4.6)

where JP is the particle four-current Jµ
P (x) = δ(3)(x−x(t))dxµ(t)/dt of the electron moving

along the trajectory xµ(t). This implies that the energy-momentum tensor Tµν
R of the

electromagnetic field produced by the electron can be ignored in the source of gravitational
radiation Tµν .

It should be stressed that if Tµν
R is taken into account, analytical problems arise

because of its divergence on the electron trajectory. This divergence is not avoidable
unless one introduces a finite size model for the electron. In this way, we have that
Tµν = Tµν

P + Tµν
B + Tµν

RB (see also Refs. [140, 141]). Let us emphasize that this is not a
rough approximation, RR effects are generally small and even if they are not we will see that
the main contribution to the gravitational emission comes from the non-local interaction
between the radiated field and the background wave Tµν

RB.
At this point, one could expect the largest electromagnetic contribution to the gravita-

tional field to come from the background term [122]

Tµν
B (ϕ) = −Ȧ2(ϕ)nµnν , (4.7)

where Ȧµ = dAµ/dϕ and Ȧ2(ϕ) = Ȧ(ϕ) · Ȧ(ϕ). However, since Tµν
B depends only on ϕ, its

Fourier transform

Tµν
B (l) = (2π)3δ(l−)δ(2)(l⊥)ρ(l+)nµnν , with ρ(l+) = −

∫
dϕ exp(il+ϕ)Ȧ2(ϕ), (4.8)

is always zero unless lµ ∝ kµ, where kµ = ωnµ is the background wavevector. This is
absolutely natural, we are asserting that a plane wave with wavevector kµ has only wave
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Figure 4.2: Emission from a moving source measured in the radiation zone.

components along kµ. The consequence of this is that the Tµν
B cannot contribute to the

gravitational radiation. Indeed, when contracting with a physical polarization tensor we
find

Tµν
B (l)ε∗

µ(l)ε∗
ν(l) ∝ kµkνε∗

µ(k)ε∗
ν(k) = 0, (4.9)

where the last equality follows from gauge invariance. This is a general property in the weak-
field approximation: an electromagnetic plane wave cannot generate a linear gravitational
wave. It is worth observing that this is not true in the full nonlinear theory (see Ch. (6)).

We than conclude that [140, 141]

Tµν = Tµν
P + Tµν

RB. (4.10)

4.2.2 Classical amplitudes

The classical electromagnetic emission, under certain conditions, can be expressed as the
square of the source current Fourier transform (see Eq. (2.13)). This is a general feature
following from the inversion of the wave equation

□Aα
R = eJα

P . (4.11)

Let us consider the situation depicted in Fig. 4.2, where an electron is interacting with a
background field within a certain region and we are measuring the radiation it produces far
away from the source. One can easily prove that the electromagnetic field radiated by the
charge in this region along the direction n′ reads (see, e.g., [115, 178])

Aα
R(x) = − e

|x|
e−iω′(t−|x|)

∫
d3yJα

P (y, ω′)e−iω′n′·y, (4.12)

where y spans the interaction region and ω′ is a Fourier frequency. This field has the form
of a plane wave propagating along n′, indeed when we measure the radiation far away from
the source it locally looks like a plane wave. Being propagating along n′ with frequency ω′,
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its wave vector is lα = ω′n′α = ω′(1,n′). Introducing this notation in Eq. (4.12) we have
that

Aα
R(x) = − e

|x|
e−il·xJα

P (l). (4.13)

From this expression one clearly sees that the amplitude of the wave per unit solid angle in
the direction l is proportional to −eJα

P (l), thus the energy spectrum will be proportional to
the square of this quantity. The same considerations can be applied to the gravitational
case, the only difference being the starting wave equation (3.51)

□hµν = −κ2

(
Tµν −

1
2ηµνT

)
. (4.14)

As a result of these considerations, we can introduce the amplitudes Sγ
c (l) and Sg

c (l) for the
emission of electromagnetic and gravitational radiation, respectively, in such a way that
they coincide with the first-order quantum counterparts:

Sγ
c (l) = −ieJµ

P (l)ε∗
µ, (4.15)

Sg
c (l) = −iκ2T

µν(l)ε∗
µε

∗
ν . (4.16)

As we have mentioned in the introduction, εµ (εµεν) is the helicity polarization four-vector
(tensor) of the electromagnetic (gravitational) wave such that ε·ε = l·ε = 0 [98]. Contracting
the sources with the polarizations we are selecting the physical degrees of freedom, such
that squaring the above amplitudes and summing over the polarizations, one finds the
corresponding energy emission spectra (see Refs. [178, 115, 141]):

dEγ

dl
= 1

16π3

∑
pol.

Sγ∗
c (l)Sγ

c (l) = − e2

16π3 J
∗
P,µ(l)Jµ

P (l), (4.17)

dEg

dl
= 1

16π3

∑
pol.

Sg∗
c (l)Sg

c (l) = κ2

64π3

[
Tµν(l)T ∗

µν(l)− 1
2T

µ
µ(l)T ∗ν

ν (l)
]
, (4.18)

where we used the completeness relations [29, 172]∑
pol.

εµε
∗
ν ⇒ −ηµν ,

∑
pol.

εµνε
∗
αβ ⇒

1
2 (ηµαηνβ + ηµβηνα − ηµνηαβ) .

(4.19)

These polarization sums are equivalent to the physical ones by gauge invariance.

4.2.3 Proof of the proportionality
In order to show the proportionality between Sg

c (l) and Sγ
c (l), we first consider the mixed

energy-momentum tensor Tµν
RB(l) in Fourier space, which can be written as

Tµν
RB(l) =

∫
d4q

(2π)4

[1
2F

αβ
B (l − q)FR,αβ(q)ηµν

+ Fµα
B (l − q)F ν

R,α (q) + F να
B (l − q)F µ

R,α (q)
]
.

(4.20)
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By employing the retarded solution of the wave equation □Aµ
R = eJµ

P , the field tensor
Fµν

R (q) in momentum space is given by

Fµν
R (q) = 2

∫
d4x eiq·x∂[µA

ν]
R(x) = 2ie

q2 + iϵq0 q
[µJ

ν]
P (q), (4.21)

and, since ε · ε = 0, we can write the amplitude (4.16) as

Sg
c (l) = −κ2

iTµν
P (l)− 4e

∫
d4q

(2π)4
Fµα

B (l − q)q[αJ
ν]
P (q)

q2 + iϵq0

 ε∗
µε

∗
ν . (4.22)

The energy-momentum tensor of the electron in Fourier space is [178]

Tµν
P (l) = (πµJν

P )(l) =
∫

d4q

(2π)4π
µ(l − q)Jν

P (q), (4.23)

where πµ(ϕ) is the electron four-momentum in the plane wave Aµ, with the initial condition
limϕ→−∞ πµ(ϕ) = pµ. Now we observe that

Fµα
B (q) = (2π)3δ(q−)δ(2)(q⊥)Fµα

B (q+), (4.24)

and that in the chosen gauge it is π⊥(ϕ) = p⊥ − eA⊥(ϕ), such that

Fµν
B (q+) = 2iq+

e
[2πδ(q+)p[µ

⊥n
ν] − π[µ

⊥ (q+)nν]]. (4.25)

It is worth observing that one cannot use the identity q+δ(q+) = 0 here because of the
term q2 + iϵq0 in the denominator. In general, the product involving the delta-function is
not associative and, by replacing Eqs. (4.24) and (4.25) in Eq. (4.22), one finds that

Sg
c (l) = − iκ

2l− (l · np⊥ · ε∗ − l · p⊥n · ε∗) JP (l) · ε∗

− κ

2

[
iTµν

P (l)− 2i
l−
kα

(
π

[µ
⊥n

α]Jν
P

)
(l) + e

l−

(
Fµα

B JP,α

)
(l)nν

]
ε∗

µε
∗
ν ,

(4.26)

where we have used the fact that in Eq. (4.22) on can replace qµ − lµ = (q+ − l+)nµ.
At this point one can exploit the equations of motion in Fourier space

∂νT
µν
P = eFµα

B JP,α ⇒ e (Fµα
B JP,α) (l) = −ikνT

µν
P (l) (4.27)

and use Eq. (4.23) to obtain an expression of Sg
c (l) depending only on the electron

four-current and four-momentum:

Sg
c (l) = − iκ

2l− (l · np⊥ · ε∗ − l · p⊥n · ε∗) JP (l) · ε∗

− iκ

2l−
[
− l−πµ

⊥J
ν
P + l · π⊥n

µJν
P − l · πnµJν

P + l−πµJν
P

]
(l)ε∗

µε
∗
ν .

(4.28)

Finally, by observing that l · π = l−π+ + l+π− + k⊥ · π⊥ and that π− = p−, the following
proportionality is found

Sg
c (l) = κ

2e

(
p · ε∗l · k − l · pk · ε∗

l · k

)
Sγ

c (l), (4.29)
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where Sγ
c (l) = −ieJµ

P (l)ε∗
µ.

On the one hand, the proportionality constant in Eq. (4.29) coincides with that in Eq.
(4.3), as it can be easily verified using the relations pµ

i + kµ
i = pµ

f + kµ
f and kf · ε∗

f = 0 and
by identifying pµ

i = pµ, kµ
i = kµ, kµ

f = lµ, and εµ
f = εµ. Thus, we indicate it also as H, i.e.,

Sg
c (l) = HSγ

c (l). (4.30)

On the other hand, Eq. (4.29) generalizes the results in Refs. [140, 141] as here the
proportionality is shown to exist already at the level of the amplitudes and for an arbitrary
plane wave, whereas in Refs. [140, 141] the proportionality was found in the energy spectra
and for a monochromatic plane wave. Indeed, finding the gravitational energy spectrum is
straightforward [see Eqs. (4.17) and (4.18)]:

dEg

dl
= −1

2

(
∂H

∂ε∗
µ

)2
dEγ

dl
, (4.31)

where

−1
2

(
∂H

∂ε∗
µ

)2

= −4πG
e2

(
m2 − 2p · lp · k

l · k

)
(4.32)

in agreement with Ref. [141], once one takes into account that there the calculations are
carried out in the average rest frame of the electron and that the authors of Ref. [141] use
the opposite Minkowski metric tensor as compared to ours (see S.m. 4.5.1 for a detailed
proof).

4.3 Graviton photoproduciton at tree level in strong-field QED

Now, we pass to the quantum case. By linearizing the Einstein-Hilbert action [178, 122], or
with the bottom-up procedure described in Sec. 3.3.3, one obtains a field theory for the
graviton hµν describing a spin-2 massless particle [129, 178]. Working in the harmonic (or
de Donder) gauge, the Lagrangian density of the field hµν coupled to a generic, conserved
energy-momentum tensor Tµν is given by Eq. (3.59) [129]

Lg = 1
2∂αhµν∂

αhµν − 1
4∂

µh∂µh−
κ

2hµνT
µν , (4.33)

where h = hµ
µ. The electromagnetic sector is described by the strong-field QED Lagrangian

Lγ = −1
4F

µν
Q FQ,µν + ψ̄

(
i/∂ − e /A−m

)
ψ − eAµJD,µ, (4.34)

where Jµ
D = ψ̄γ̄µψ is the Dirac four-current and Aµ is the photon (Quantum) field (Fµν

Q =
∂µAν − ∂νAµ). We assume to work within the Furry picture [88] (see Sec. 3.1), where the
Dirac field is quantized in the presence of the plane-wave field Aµ. Thus,we recall that the
positive-energy state for an electron with four-momentum pµ outside the plane wave is
given by the Volkov spinor [173, 29]

Up(x) = eiSp(x)
[
1 + e

/n /A(ϕ)
2n · p

]
up, (4.35)



4.3. Graviton photoproduciton at tree level in strong-field QED 79

a)

p p′

l + b)

p p′

l + c)

p p′

l

Figure 4.3: Feynman diagrams contributing to the graviton photoproduction at the order O(κ) in the
presence of a strong electromagnetic plane-wave background field. The double oscillating lines represent the
graviton, while the double fermion lines correspond to Volkov states, and the oscillating lines with the cross
represent the background field source.

where Sp is the classical action of an electron in a plane wave (3.6) [122, 66]: −∂µSp(x) =
πµ

p (ϕ) + eAµ(ϕ) and up is the free positive-energy spinor (for notational simplicity, the spin
quantum number is not indicated). The energy momentum tensor coupled to the field hµν

in Eq. (4.33) is Tµν = Tµν
D + Tµν

Q + Tµν
QB + Tµν

B , where

Tµν
D = ψ̄

[
i

2 γ̄
{µ←→∂ ν} − eγ̄{µAν}−

−ηµν
(
i

2
←→
/∂ − e /A−m

)]
ψ,

Tµν
Q = Fµα

Q F ν
Q,α + 1

4η
µνFαβ

Q FQ,αβ,

Tµν
QB = Fµα

Q F ν
B,α + Fµα

B F ν
Q,α + 1

2η
µνFαβ

Q FB,αβ ,

(4.36)

with 2a{µbν} = aµbν + aνbµ and ψ̄
←→
∂ νψ = ψ̄

−→
∂ νψ − ψ̄

←−
∂ νψ. This tensors can be easily

obtained shifting Aα → Aα +Aα in Eq. (3.71).
The S-matrix transition amplitude of the graviton photoproduction by an electron

driven by an intense plane wave (ξ0 ≳ 1) is given by

Sg
fi = ⟨p′; l, εµν |S|p⟩, (4.37)

where the initial and the final electron states are Volkov states. The process e → e + g
here is allowed because the background plane wave supplies the otherwise missing energy-
momentum. The S-matrix is defined as S = T exp

[
i
∫
d4xLint(x)

]
, where T is the time-

ordering operator and
Lint = −κ2hµνT

µν − eAµJD,µ. (4.38)

At the first order in κ the process is described by the Feynman diagrams in Fig. 4.3 and
the corresponding amplitude is given by

Sg
fi =− iκ2T ⟨p

′|
{∫

d4x eil·xε∗
µε

∗
ν

[
Tµν

D (x)

− ieTµν
QB(x)

∫
d4y JD,α(y)Aα(y)

]}
|p⟩.

(4.39)

As in the classical case Tµν
B cannot contribute because of gauge invariance [see Eq. (4.9)].

Moreover, it is easily seen that this matrix element has exactly the same form of the classical



80 Gravitational emission by an electron in an intense plane wave

amplitude Eq. (4.22), the only differences being the spinorial nature of the particle and
the photon propagator which now has to follow the Feynman prescription instead of the
retarded one

Sg
fi = −κ2

iTµν
V (l)− 4e

∫
d4q

(2π)4
Fµα

B (l − q)q[αJ
ν]
V (q)

q2 + iϵ

 ε∗
µε

∗
ν , (4.40)

where

Jµ
V = ⟨p′|Jµ

D|p⟩ = Ūp′ γ̄µUp, (4.41)

Tµν
V = ⟨p′|Tµν

D |p⟩ = Ūp′

(
i

2 γ̄
{µ←→∂ ν} − eγ̄{µAν}

)
Up (4.42)

are the matrix elements of the corresponding operators between Volkov states. Although
the structure of the amplitude is similar to the classical one in Eq. (4.22), we stress the
fact that quantum phenomena like spin effects and the recoil on the electron are taken into
account in Eq. (4.40). Now, the considerations about the background field corresponding to
Eqs. (4.24) - (4.25) clearly remain valid here. Thus, it is easily seen that the retarded and
the Feynman prescriptions lead to the same result because the minus and the perpendicular
components of qµ are fixed by the conservation laws and the remaining term l+ − q+ in
the denominator is compensated as in the classical case. Consequently, one can derive the
analogous of Eq. (4.26), which now reads

Sg
fi =− i κ2l− (l · np⊥ · ε∗ − l · p⊥n · ε∗) JV (l) · ε∗

− κ

2

[
iTµν

V (l)− 2i
l−
lα

(
π

[µ
⊥n

α]Jν
V

)
(l) + e

l−

(
Fµα

B JV,α

)
(l)nν

]
ε∗

µε
∗
ν .

(4.43)

Moreover, the equations of motion for the matrix elements Tµν
V and Jµ

V are the same as for
the classical quantities [see Eq. (4.27) and S.m. 4.5.2 for a detailed derivation]:

e (Fµα
B JV,α) (l) = −ilνTµν

V (l). (4.44)

However, due to the spinorial structure of Volkov states, the quantity Tµν
V cannot be put in

the classical form as in Eq. (4.23) but it can rather be written as (see S.m. 4.5.3)

Tµν
V (l)ε∗

µε
∗
ν =

(
Jµ

V π
ν
p + i

e

4p− Ūp′ γ̄µ /FBUpn
ν
)

(l)ε∗
µε

∗
ν , (4.45)

where /FB = Fαβ
B γαγβ. Interestingly, the spin terms do cancel in the combination iTµν

V −
(i/l−)lαTµα

V nν in Eq. (4.43), see S.m. 4.5.4. Thus, in conclusion, the same result as in the
classical treatment is found

Sg
fi = κ

2e

(
p · ε∗n′ · n− n′ · pn · ε∗

n′ · n

)
Sγ

fi, (4.46)

where Sγ
fi = −ieJV (l) · ε∗ is the matrix element of nonlinear Compton scattering of Eq.

(3.18) (see Fig. 4.4).
Let us schematically summarize all the key steps of the proof here presented, both for

the sake of clarity and future convenience.



4.3. Graviton photoproduciton at tree level in strong-field QED 81

+ + = H ×

Figure 4.4: Proportionality between graviton photoproduction and photon emission in strong-field QED.

Compton scattering proportionality procedure

1. Write the amplitude Sg
fi in the form

Sg
fi = −κ2

iTµν
V (l)− 4e

∫
d4q

(2π)4
Fµα

B (l − q)q[αJ
ν]
V (q)

q2 + iϵ

 ε∗
µε

∗
ν , (4.47)

where

Jµ
V = Ūp′ γ̄µUp, (4.48)

Tµν
V = Ūp′

(
i

2 γ̄
{µ←→∂ ν} − eγ̄{µAν}

)
Up. (4.49)

2. Make use of the symmetries of the plane wave background write

Sg
fi =− i κ2l− (l · np⊥ · ε∗ − l · p⊥n · ε∗) JV (l) · ε∗

− κ

2

[
iTµν

V (l)− 2i
l−
lα

(
π

[µ
⊥n

α]Jν
V

)
(l) + e

l−

(
Fµα

B JV,α

)
(l)nν

]
ε∗

µε
∗
ν .

(4.50)

3. Use the equations of motion to substitute

e (Fµα
B JV,α) (l) = −ilνTµν

V (l). (4.51)

4. Exploit the explicit form of the energy momentum tensor

Tµν
V (l)ε∗

µε
∗
ν =

(
Jµ

V π
ν
p + i

e

4p− Ūp′ γ̄µ /FBUpn
ν
)

(l)ε∗
µε

∗
ν . (4.52)

to show that the spin terms do cancel in the combination iTµν
V − (i/l−)lαTµα

V nν .

5. Rearrange the kinematical terms to obtain

Sg
fi = κ

2e

(
p · ε∗n′ · n− n′ · pn · ε∗

n′ · n

)
Sγ

fi. (4.53)

It is quite straightforward to apply this procedure to photon and graviton pair-production.
Let us take into account the two processes in a strong background field

e−(p)→ γ(l, εµ
l ) + e−(p′) , γ(−l, εµ

−l)→ e+(−p) + e−(p′). (4.54)
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The two amplitudes associated to these processes are related by cross symmetry, in terms
of dressed states we can simply write

Sγ
fi

Up→V−p= Sγe+e−

fi , (4.55)

where U ,V are Volkov states of positive and negative energy. In fact

Sγ
fi = −ie

∫
d4xeil·xŪp′(x)/ε∗Up(x) ,while Se+e−

fi = −ie
∫
d4xeil·xŪp′(x)/ε∗V−p(x).

(4.56)

If we introduce the notation

J̃V = Ūp′γµV−p, (4.57)

we can rewrite the S-matrix elements as Sγ
fi = −ieε∗ · JV (l) and Se+e−

fi = −ieε∗ · J̃V (l).
Now, exactly the same reasoning applies to the graviton processes

e−(p)→ g(l, εµν
l ) + e−(p′) ; g(−l, εµν

−l)→ e+(−p) + e−(p′), (4.58)

indeed all the diagrams are obtained considering an incoming electron as an outgoing
positron with opposite momentum. One can thus reproduce the procedure employed for
Compton scattering in the context of pair production.

Pair production procedure

Now we will go through all the aforementioned steps for the amplitude of graviton pair
production Sge+e−

fi

Sg
fi

Up→V−p= Sge+e−

fi . (4.59)

1. Using the fact that Sg
fi

Up→V−p= Sge+e−

fi the first step now consists in writing the
amplitude as

Sge+e−

fi = −κ2

[
iT̃µν

V (l)− 4e
∫

d4q

(2π)4
Fµα

B (l − q)q[αJ̃
ν]
V (q)

q2 + iϵ

]
ε∗

µε
∗
ν , (4.60)

where

J̃µ
V = Ūp′ γ̄µV−p, (4.61)

T̃µν
V = Ūp′

(
i

2 γ̄
{µ←→∂ ν} − eγ̄{µAν}

)
V−p. (4.62)

2. The symmetries of the plane wave are still the same, thus the second step is equal to
the Compton scattering case.
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3. It is easy to show that the equations of motion are still the same, in fact one can
write the Volkov states as

Up(x) = Ep(x)up and Vp(x) = E−p(x)vp (4.63)

and the proof of the equations of motion is based on the spacetime dependent matrix
Ep(x), which is the same for Up(x) and V−p(x).

4. The form of the energy momentum tensor is the same, as showed before, with the
proper crossing symmetry understood.

T̃µν
V (l)ε∗

µε
∗
ν =

(
J̃µ

V π
ν
p + i

e

4p− Ūp′ γ̄µ /FBV−pn
ν
)

(l)ε∗
µε

∗
ν . (4.64)

The spin terms do cancel in the combination iT̃µν
V − (i/l−)lαT̃µα

V nν .

5. Rearrange the kinematical terms to obtain

Sge+e−

fi = HSγe+e−

fi . (4.65)

4.4 Discussion
A comment is in order, which pertains to both the classical and the quantum regime. The
proportionality constant H diverges as 1/θ in the limit where the angle θ between the
graviton and the plane-wave photons tends to zero (collinear emission). Since in the same
limit, the Compton-scattering probability tends to zero linearly [29], one concludes that
the graviton-emission probability diverges logarithmically [37, 141]. The same is true for
the classical gravitational energy spectrum [141]. For small scattering angles the dominant
contribution comes from the interaction between the particle field and the background.
Classically this can be seen from the trend of the formation length which grows with the
collinearity because the radiated electromagnetic field and the background interact for a
longer and longer time before the gravitational conversion takes place [141]. Since the mixed
electromagnetic energy-momentum tensor grows with the formation length, the emission
probability increases. Quantum mechanically this corresponds to the dominance of the
t-channel diagram in Fig. 4.3 (c) in this limit. Indeed, it is t = (p− p′)2 ∝ l · kB and when
this goes to zero an infinite contribution arises from the photon propagator. It is worth
noting that this diagram is dominant also in the non-relativistic range where the photon
recoil is negligible and p→ p′ [58].

To summarize, we have shown both classically and quantum mechanically that the
amplitudes of graviton and photon emission by an electron in an arbitrary plane wave are
proportional to each other. Although the electron dynamics is highly nonlinear in the plane
wave and quantum effects are large, the proportionality constant is classical and it does
not depend on the plane-wave intensity. At the fundamental quantum level, by combining
strong-field QED and quantum gravity, our proof shows that the proportionality relies
only on the symmetries of the plane wave and the semiclassical nature of the motion of
a quantum particle in a plane wave background. This proportionality is by itself quite
interesting and appears naturally in different contexts [56]. We believe that a further
investigation about its nature and its possible generalizations to higher orders could bring
more interesting insights.
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4.5 Support material

4.5.1 Proportionality constant in the average rest frame

It is instructive to show the agreement between the constant found in Eq. (4.32) and the
one reported in ref. [141]. Since the proportionality constant is a Lorentz-invariant quantity,
we can assume without loss of generality that in the laboratory frame the electron is initially
at rest. Below, the subscript L (R) indicates quantities in the laboratory (average rest)
frame [see App. (A.3)].

In the average rest frame the electron energy corresponds to the so-called effective mass
m∗ = mγ∗ [141], such that γ∗ =

√
(1 + vd)/(1− vd) describes the relativistic Doppler effect

between the two frames: ωL = γ∗ωR. In the laboratory frame it is p−
L = m, such that

m∗ = p−
LωL

ωR
= kL · pL

ωR
. (4.66)

Thus, since the quantity k · p is Lorentz invariant, one finds m∗ = p−
R. The proportionality

constant introduced in Ref. [141] [see Eqs. (1.5), (1.6), and (2.23) there] can then be
written as

C = 4πG
e2

(p−
R)2l2R,⊥

(l−R)2 . (4.67)

Finally, the equivalence of the two expressions of the proportionality constant is obtained
by observing that in the average rest frame the electron is initially counterpropagating with
respect to the plane wave so that pR,⊥ = 0 and therefore

− 4πG
e2

(
m2 − 2pR · lR pR · kR

lR · kR

)
= 4πG

e2
(p−

R)2l2R,⊥

(l−R)2 . (4.68)

4.5.2 Derivation of the equations of motion

In this section we will prove Eq. (4.44)

e (Fµα
B JV,α) (l) = −ilνTµν

V (l), (4.69)

where

Tµν
V (l) = i

2

∫
d4x eil·x Ūp′(x)γ̄{µD

ν}
B Up(x) (4.70)

with Dα
B = ∂α + ieAα. Let us start from the contraction with the first index, exploiting

the Dirac equation (i /DB −m)Up = 0 we have

lµ

∫
d4x eil·x Ūp′(x)γ̄µDν

BUp(x) = i

∫
d4x eil·x ∂µ[Ūp′(x)γ̄µDν

BUp(x)]

= e

∫
d4x eil·x Ūp′(x)

(
∂ν /A− /∂Aν)Up(x)

= e

∫
d4x eil·x F να

B Ūp′(x)γ̄αUp(x) = e (F να
B JV,α) (l)

(4.71)
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On the other hand, contracting with the second index one gets

lν

∫
d4x eil·x Ūp′(x)γ̄µDν

BUp(x) = i

∫
d4x eil·x ∂ν [Ūp′(x)γ̄µDν

BUp(x)]

= −e4

∫
d4x eil·x Ūp′(x)

(
/FB γ̄

µ − γ̄µ /FB

)
Up(x),

(4.72)

where we employed the quadratic Dirac equations(
□ + 2ieAν∂

ν − e2A2 +m2 + i
e

2
/FB

)
ψ = 0. (4.73)

Noting now that

/FBγ
µ = γ̄µ /FB − 4Fµα

B γ̄α (4.74)

we finally have

lν

∫
d4x eil·x Ūp′(x)γ̄µDν

BUp(x) = e

∫
d4x eil·x Fµα

B Ūp′(x)γ̄αUp(x) = e (Fµα
B JV,α) (l). (4.75)

Collecting the two previous results we recover Eq. (4.44)

e (Fµα
B JV,α) (l) = −ilνTµν

V (l). (4.76)

4.5.3 Energy momentum contracted with external polarizations
The energy momentum contracted with external polarizations reads

Tµν
V (l)ε∗

µε
∗
ν = i

4

∫
d4x eil·x Ūp′(x)γ̄{µ←→D ν}

B Up(x) ε∗
µε

∗
ν =

= i

∫
d4x eil·x Ūp′(x)γ̄µDν

BUp(x) ε∗
µε

∗
ν ,

(4.77)

where Dα
B = ∂α + ieAα is the background covariant derivative. Exploiting the relation [see

Eq. (3.11)]

i
−→
Dµ

BUp =
(
πµ

p + ie /FB

4p− nµ

)
Up, (4.78)

we find
Tµν

V (l)ε∗
µε

∗
ν =

(
Jµ

V π
ν
p + i

e

4p− Ūp′ γ̄µ /FBUpn
ν
)

(l)ε∗
µε

∗
ν . (4.79)

4.5.4 Decoupling of the spin term
It is easy to show that the spin terms disappear in the following expression[

iTµν
V (l)− (i/l−)lαTµα

V (l)nν] ε∗
µε

∗
ν , (4.80)

just recalling the form of the energy momentum tensor

Tµα
V (l)ε∗

µε
∗
α =

(
Jµ

V π
α
p + i

e

4p− Ūp′ γ̄µ /FBUpn
α
)

(l)ε∗
µε

∗
α. (4.81)
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Indeed, we clearly see that

lα
l−
Ūp′ γ̄µ /FBUpn

αnν = Ūp′ γ̄µ /FBUpn
ν , (4.82)

such that the full spin term of the complete momentum is restored and canceled in the
considered combination.



5
Gravitational plane waves in general
relativity

5.1 Overview

Gravitational waves that reach the Earth are generally weak. To have an idea, the typical
fractional deformation coming from astrophysical sources is of the order of ∼ 10−21 or less.
This means that Earth-based detectors like LIGO, Virgo or KAGRA, which have sizes of the
order of 103m, need the incredible displacement sensitivity of ∼ 10−18m in order to detect
a gravitational perturbation [24, 83, 3]. This is the reason why gravitational waves are
usually treated in the weak field approximation [178], in which the spacetime metric gµν is
approximated as the flat metric ηµν plus a small correction κhµν and a first-order treatment
of the latter is in most cases enough for any measurable prediction. Despite the weakness
of the perturbation amplitudes typically measured on Earth, nonlinear gravitational plane
waves, as exact solutions of Einstein’s equations, can become an interesting subject for
different reasons. One motivation comes from the fact that higher order corrections can

87
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grow substantially with the distance between the source and the observer, making nonlinear
effects eventually not negligible. This has been pointed out, for example, in Refs. [101, 100].
This is due to the fact that the dynamics can be expressed in terms of a matrix eij satisfying
the harmonic equation ëij = Hike

k
j , where the profile Hij encodes the spacetime curvature

as a function of the wave phase (see Sec. 5.3). For small amplitudes one can identify
2Hij = κḧij . However, this does not necessarily imply that only the first-order term in eij

has to be considered, in fact the second-order correction involves an integration of (ḣi
i)2 and

this generally grows with the phase length of the wave [101]. These large-scale effects could
in principle affect pulsar timing measurements [109, 101], which very recently evidenced
the presence of low-frequency background gravitational waves [11]. Nonlinear effects are
interesting also because they can be of a different nature than the linear ones, position and
velocity memory effects provide an example that attracted a lot of attention in the last
years as well [47, 101, 100, 97, 186]. Another reason for which exact gravitational plane
waves are worth to be studied comes from the so-called Penrose limit [147, 41]. Penrose
proved that “any spacetime has a plane wave as a limit”, namely the spacetime in a small
region around a null geodesic assumes a plane wave form. This is the gravitational analog
of a well known fact in electromagnetism, indeed an observer moving at ultrarelativistic
velocities perceives an arbitrary electromagnetic field approximately as a plane wave and
the faster the observer moves the more accurate is the similarity [115]. The generality of
this property suggests that despite being idealizations, exact plane waves can provide an
interesting scenario for studying limiting cases.

This chapter is organized as follows, in Sec. 5.2 we discuss how plane waves in flat
spacetime can be defined through their symmetries and the role that these play in the
dynamics. Section 5.3 is devoted to the description of Brinkmann and Rosen charts, which
provide two somehow complementary ways of describing a nonlinear gravitational wave. In
the next chapter Sec. 6.2 we examine the construction of quantum states in a plane wave
spacetime for scalar, spinor, and vector particles, underlining the similarities with the flat
spacetime case deriving from shared symmetries and extending the results found in Ref. [6].
Finally, in Sec. 6.3 we provide the full spin and polarization summed squared S-matrix
element for photon emission scattering in a nonlinear gravitational wave background.

5.2 Plane waves and their symmetries

5.2.1 Characterizing a plane wave through its symmetries

Very often in physics, basic concepts we thought to have solidly understood turn out to be
difficult to generalize, unveiling the weak points in their definitions. At first sight waves
do not seem to belong to this category, however a deeper investigation will suggest us to
be cautious in dealing with this concept. In the following we will focus on a specific but
very useful type of wave: plane waves. The issue of giving a definition of wave in general
relativity has very old roots. In 1913, two years before the correct filed equations were
formulated, Einstein and Born had the following conversation in Vienna

Born: “ I should like to put to Herr Einstein a question, namely, how quickly
the action of gravitation is propagated in your theory. That it happens at the
speed of light does not elucidate it to me. There must be a very complicated
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connection between these ideas”.
Einstein: “ It is extremely simple to write down the equations for the case when
the perturbations that one introduces in the field are infinitely small. Then
the g’s differ only infinitesimally from those that would be present without the
perturbation. The perturbations then propagate with the same speed of light”.

Einstein is clearly referring to what we called weak-field approximation here. As we discussed
in Sec. 3.3.2 one can easily find wave solutions moving at the speed of light in this context.
The conversation went on

Born: “ But for great perturbations things are surely very complicated?”.
Einstein: “ Yes it is a mathematically complicated problem. It is especially
difficult to find exact solutions of the equations, as the equations are nonlinear”.

Finding exact solutions to Einstein’s equations is quite challenging. What is even more
challenging is finding solutions that are of significant interest.

Gravity is a theory about spacetime and as such is one of the greatest manifestations of
the power of symmetries in physics. We could thus be tempted, in our attempt to define
waves as solutions of Einstein’s equations, to try and generalize the concept of plane wave
extending their symmetries to the realm of curved spacetime. This was the approach that
Bondi, Pirani and Robinson followed to get the first definition of plane wave in general
relativity in 1959 [45]. In order to adopt this approach we clearly have to define the
symmetries of plane waves in flat spacetime first.

Thus, what is a plane wave? We are used to think about a plane wave Φ(ϕ) as a field
that depends only on the combination ϕ = n · x = t− z of spacetime coordinates, with z
identifying the propagation direction of the plane wave itself. As we have pointed out several
times in the previous chapters, this intuitive idea unveils three symmetries. Namely, the
translations along all the spacetime coordinates except ϕ, i.e. x+ = (t+ z)/2 and xi, where
i = 1, 2 refers to the coordinates transverse to z. A more careful investigation reveals that
plane waves feature two more symmetries χi belonging to the Lorentz group. These Killing
vector fields correspond to the infinitesimal Lorentz transformations Λα

β = δα
β+ωα

β leaving
nα unchanged, namely ωαβn

β = 0. This equation defines the massless Wigner little group
associated to the null vector nα (see e.g. [180, 25, 179]). The Lorentz coefficients satisfying
this equation are a linear combination of the two antisymmetric tensors fαβ

i = nαδβ
i −nβδα

i ,
which are the natural transverse tensors associated to the wave. These tensors appear for
example in the Maxwell tensor of a plane wave [see (1.7)]

Fαβ(ϕ) = Ȧi(ϕ)fαβ
i . (5.1)

Now, recalling the scalar field representation of the Lorentz generators Σαβ
Φ = 2ix[α∂β] we

conclude that the two symmetries χi leaving unchanged the scalar wave χiΦ(ϕ) = 0 are

χi = 2ifαβ
i xα∂β = 2i

(
ϕ
∂

∂xj
− xj

∂

∂x+

)
. (5.2)

In terms of coordinates transformations (vector representation of the Lorentz group), a
transformation generated by these vectors read (see App. A.7)

x′α =
(
ebifi

)
α
β x

β = xα + bifα
i βx

β + 1
2b

ifα
i βb

jfβ
j γx

γ + ... (5.3)
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Observing that

bifα
i βb

jfβ
j γ = −bib

inαnγ and fα
i βf

β
j γf

δ
k ε = 0 (5.4)

we are left with

x′α = xα + bifα
i βx

β − bib
inαx−. (5.5)

Adding to these the translations along x+ and xi through a displacement parameter aα, we
get the full group of isometries

Plane wave isometries group


x′− = x−

x′+ = x+ + bi(xi + ai − 1
2b

ix−) + a+

x′i = xi − bix− + ai

. (5.6)

These Poincare’ symmetries leave ∂+ and dxidxi invariant, acting on constant phases
hyperplanes. This group can also be understood as a partially broken Carrol group (see
App. A.8).

The five Killing vector fields (∂+, ∂i, χj) have been reported by Bondi, Pirani and
Robinson in one of the first treatments of exact gravitational waves [45], along with the
coordinate isometries they generate. Above, we considered a scalar wave but the same
symmetries preserve electromagnetic waves as well, i.e., the vector field Aα(ϕ). To be more
precise, the Lorentz transformations χi in this case perform a gauge transformation on
Aα(ϕ) [121, 50] and therefore Fαβ is precisely invariant. We will discuss this in more detail
in the following. It has been observed that these generators define a Heisenberg algebra
(see e.g. [8], Eq. 2.3), which is substantially the same as the one satisfied by space and
momentum operators in quantum mechanics but with ∂+ replacing the identity.

One way to extend plane waves to curved spacetime is to require the latter to exhibit at
least five Killing vectors. This is what has been accomplished in Ref. [45], where it is observed
that such a metric can always be locally put in the form ds2 = 2dx+dϕ + γij(ϕ)dxidxj

[44, 78]. This being said, we can try to guess this metric from very heuristic hypothesis
and then check it possesses the proper symmetries. Considering that in the weak-field
approximation the metric in presence of a plane wave has the form

ds2 = ηµνdx
µdxν + κhij(ϕ)dxidxj = 2dx+dϕ+ (κhij(ϕ)− δij)dxidxj , (5.7)

one of the most natural assumptions we can come up with is to assume the general form

ds2 = 2dx+dϕ+ γij(ϕ)dxidxj (5.8)

for arbitrarily strong plane waves. This metric is known as Rosen (or Einstein-Rosen)
metric [78] and it is actually the right one to describe our spacetime. However, it has a
problem, it shows spurious coordinate singularities. In other words this chart will not cover
all the spacetime, we will have to glue a certain amount of its copies in order to describe a
plane wave globally. Despite this problem the Rosen map will turn out to be extremely
useful both from the mathematical and the conceptual point of view, especially because it
posses many explicit symmetries. The metric depends on ϕ only, thus the three translations
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discussed for the electromagnetic case are clearly present. The other two Killing vectors
are natural extensions of the χi previously discussed

χj = 2i
∫ ϕ

γji ∂

∂xi
− xj ∂

∂x+ to be compared to χj
flat = 2i

∫ ϕ

ηji ∂

∂xi
− xj ∂

∂x+ .
(5.9)

Later in this chapter we will see how to connect this chart to a globally defined one covering
all the spacetime which goes under the name of Brinkmann chart. This will complete the
toolkit we need in order to properly work in this spacetime and will allow us to calculate
S-matrix elements.

5.2.2 An interesting connection between symmetries and dynamics
For the sake of clarity, it is useful to discuss here in more detail the familiar case of an
electromagnetic plane wave in flat spacetime Aα(ϕ). As previously observed, this field is
gauge transformed by the Lorentz-like generators fαβ

i . This being said, there is a particular
combination of these generators which is the key to solve the dynamics in this background,
namely

ωαβ(ϕ,A) = eAi(ϕ)fαβ
i or equivalently ωαβ(ϕ,A) = e

∫ ϕ

dϕ̃Fαβ(ϕ̃). (5.10)

As already mentioned, for generic functions Ai(ϕ) these define the local little group E2(n)
associated to the null vector nα [50, 121, 144]. In addition, when these functions are the
plane wave components it turns out that these Lorentz-like generators completely solve the
motion. Namely, one can easily show that the momentum of a charged particle in a plane
wave is described by [121, 160]

πα
p (ϕ) = Λα

p,β(ϕ,A)pβ , Λp(ϕ,A) = exp
(
e

∫ ϕ dϕ̃

p−F (ϕ̃)
)
≡ e

ω(ϕ,A)
p− . (5.11)

This is what we obtained solving the Lorentz equation by exponentiation in (1.8). However
now he want to spend few more words about the matrix Λα

p,β . The transformation Λα
p,β has

the following properties [144, 50, 121]:

Λα
p,βΛγβ

p = ηαγ , Λα
p,βn

β = nα ⇒ ∂βΛα
p,β = 0 , Λα

p,βA
β = Aα + ∂αg,

(5.12)

with g(ϕ) = e
p−
∫ ϕ dϕ̃Aα(ϕ̃)Aα(ϕ̃). The physical meaning of the above equations is that

Λα
p,β is a Lorentz-like transformation, it describes the Wigner little group of the null vector
nα and finally it defines a U(1) gauge transformation. The momentum evolution tells
us something interesting. The motion of a particle in a plane wave can be described by
local Lorentz-like transformations of the initial momentum on the constant-ϕ hypersurfaces.
These transformations depend on the plane wave components. They do not alter the
background because they act as gauge transformations and they do not change the phase
direction due to the fact that they belong to its little group. These features will turn out to
be very general and surprisingly useful also in the gravitational generalization. In fact, we
will show that they are manifestly present in the Rosen metric. The underlying connection
between gauge and spacetime symmetries basically turns the problem of finding quantum
field states in a plane wave background into a simple procedure. This construction will be
discussed in detail later.
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5.3 Two complementary charts: Brinkmann and Rosen coordi-
nates

5.3.1 Prelude
As we have already anticipated, there are two charts particularly useful to describe a plane
wave spacetime: the Brinkmann [48] and the Rosen [78] coordinates. These metrics have
the form

Gµν = ηµν +Hij(ϕ)XiXjnµnν and gµν = 2n(µñν) + γij(ϕ)δi
µδ

j
ν , (5.13)

respectively. While the Rosen metric shows manifestly three of the five symmetries of plane
waves, it has the drawback of being not global: in general, at least two Rosen charts are
needed in order to cover the whole spacetime. On the other hand, the Brinkmann chart has
only one manifest symmetry but it is global and the Einstein equations have a trivial form
when described in these coordinates. In the following, we will describe the main properties
and the geodesic motion in both these charts, underlying the natural interplay between
them.

The key element connecting these metrics will be the Rosen vierbein eαµ defined by

eαµeβνη
αβ = gµν . (5.14)

The matrix eβν will appear in the discussions of both the Rosen and the Brinkmann charts,
the link between the two metrics being encoded in the evolution of its transverse part
ëij = Hike

k
j . This equation will be properly derived in the following.

It is worth emphasizing again that the symbol eβν will only refer to the Rosen vierbein
from now on, while Eβν will refer to the Brinkmann vierbein. Moreover, it is important to
note that the Rosen vierbein’s first index is be assumed to be raised and lowered by the
Minkowski metric while the second one by the Rosen metric. Thus, eβν is not a tensor
in Brinkmann coordinates but just a matrix. Furthermore, we will assume without losing
generality the symmetry condition [41]

ė µ
α eβµ = ė µ

β eαµ. (5.15)

5.3.2 The Brinkmann chart
A plane wave is described throughout all the spacetime by the Brinkmann metric Gµν(X)
[48]

Gµν = ηµν +Hij(ϕ)XiXjnµnν , (5.16)

where ϕ = n · X = T − Z is the same light-cone coordinate introduced in the previous
sections. The independence of Gµν on X+ = (T + Z)/2 makes manifest the symmetry
associated to the Killing vector field ∂+. It is worth noting that only one of the five
symmetries of plane waves is explicit in this metric, for this reason the equations of motion
in this chart are not as trivial as in the Rosen one, where three symmetries out of five are
manifest. The fact that this metric is in the Kerr-Schild form assures three easily verified
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facts [117]: the inverse metric is simply Gµν = ηµν −Hij(ϕ)XiXjnµnν , the vector nµ is
null with respects to both Gµν and ηµν , and, finally, the metric determinant is constant and
equal to the Minkowskian one detGµν = det ηµν = −1.

After a straightforward calculation one finds the following expression for the Christoffel
symbols in this chart

Γλ
µν = nλ

(1
2Ḣnµnν + 2H(µnν)

)
−Hλnµnν , (5.17)

where we introduced the notation H = HijX
iXj and Hµ = HµiX

i. From these we can
calculate the Ricci tensor, which has the simple form [167]

Rµρ = ∂ρΓν
µν − ∂νΓν

µρ + Γλ
µνΓν

λρ − Γλ
µρΓν

νλ = H i
i nµnρ. (5.18)

From this expression we see that the matrix Hij encodes the physical information about
the spacetime curvature. Thus, the Einstein’s equations in this spacetime read

H i
i nµnν = −8πGTµν (5.19)

and therefore the trace of Hij represents the energy density of the source which induces
the gravitational perturbation. This is clearly zero for vacuum solutions, the Brinkmann
profile Hij in this case satisfies the same traceless condition as the weak-field perturbation
hij in the physical transverse traceless (TT)-gauge. The pure gravitational wave is thus
represented by a 2×2 traceless matrix Hij and we can identify the two polarizations usually
introduced under the weak-field approximation [41, 100] (see Sec. 3.3.2)

Hij =

H+ H×

H× −H+

 . (5.20)

Let us go back to the general case, where Tµν ̸= 0. The weak energy condition T00 ≥ 0
implies H i

i ≤ 0 [91]. Exploiting the simple form of the Riemann tensor (see App. A.10) it
is possible to verify that its traceless part, the Weyl tensor, depends on the traceless part
of the matrix Hij . It thus follows that the spacetime is conformally flat if and only if the
Brinkmann profile is a pure trace Hij ∝ δij . This is the case for an electromagnetic wave
perturbating the spacetime [145, 41, 76], while pure gravitational waves are represented by
the traceless components and are Ricci-flat so their Weyl tensor is equal to the Riemann
one. This reflects the nature of the tidal forces acting on geodesics: in the electromagnetic
case these are acting on the volume of a body while in the gravitational case they deform
its shape along the two polarizations +,×. Recalling that the energy momentum tensor of
an electromagnetic wave has the form

Tµν(ϕ) = −Ȧ2(ϕ)nµnν ≡ ρ(ϕ)nµnν , (5.21)

we clearly see that this can be a legitimate source for a gravitational wave. Indeed this
expression has the correct tensor structure required by (5.19)

H i
i (ϕ)nµnν = −8πGρ(ϕ)nµnν . (5.22)
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This is a peculiar feature of nonlinear gravitational waves. In fact, in Sec. 4.2.1 we proved
that an electromagnetic wave cannot produce a linear gravitational wave. Here, we observe
that working within the full theory of general relativity uncovers interesting scenarios that
are otherwise hidden in first-order approximations.

Studying the geodesics we will see that the actual connection between the Brinkmann
profile Hij and the usual weak-field perturbation is given by Hij = κ

2 ḧij +O(h2). Despite
the similarity between Hij and hij , the Brinkmann chart is not the best candidate to
generalize the TT-gauge because of its dependence on the transverse coordinates, indeed
the Rosen chart will be more suitable for this purpose.

5.3.3 The Rosen chart

The other chart commonly employed to describe plane wave spacetimes is the Rosen one
gµν(ϕ) [78]

gµν(ϕ) = 2n(µñν) + γij(ϕ)δi
µδ

j
ν , (5.23)

where ϕ is the same as in Brinkmann coordinates ϕ = n · x and γij is a 2× 2 matrix. In
this chart three of the five Killing vector fields are clearly manifest: ∂+, ∂i. This will be
reflected in the simplicity of the equations of motion, as we will see in the following. An
important feature of this chart is that, unlike the Brinkmann one, it does not cover the
whole spacetime. Indeed, it exhibits spurious coordinates singularities, as anticipated in
the previous paragraph. This will become clear studying the geodesics. For this reason it
is generally necessary to work in Brinkmann coordinates whenever global problems such
as scattering processes are studied. Nonetheless this chart is very important in order to
exploit the symmetries of plane waves and it will be essential in solving field equations.
Moreover, the Rosen chart can be chosen to generalize the concept of TT-gauge usually
introduced in the weak-field approximation. In fact, the Rosen profile γij is transverse and
depends on ϕ only, as the perturbation hij . The traceless property, which the Brinkmann
profile shares with hij , is not satisfied by γij . However, a perturbative expansion in vacuum
shows that all the odd orders of γij are traceless while all the even ones are pure traces
[101]. Thus, in the linear limit γij = ηij + κhij , with the perturbation in the TT-gauge.

The Christoffel symbols in this metric are simply

Γλ
µν = 1

2
(
2gλργ̇ρ(µnν) − γ̇µνn

λ
)

(5.24)

and from these one can find the Ricci tensor to be

Rµδ =
(1

4 γ̇
klγ̇lm + 1

2γ
klγ̈lm

)
nµnδ. (5.25)

In order to connect the profiles γij and Hij one can for example compare the Rosen and
Brinkmann Riemann tensors in the Rosen chart. With the usual symmetries understood,
one finds (see App. A.10)

1
4 γ̇

klγ̇lm + 1
2γ

klγ̈lm = eikej
mHij . (5.26)
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Figure 5.1: Gravitational sandwich plane wave.

We can rewrite this relation in terms of the vierbein only as

ëij = Hike
k
j , (5.27)

recalling that we assumed without losing generality that the symmetry condition ė µ
α eβµ =

ė µ
β eαµ is fulfilled [41]. The link between the Rosen and the Brinkmann charts can be

completed observing that the Brinkmann transverse coordinates, being flat, are just the
Rosen vierbein projection of the Rosen ones Xi = ei

jx
j , with eαµe

α
ν = gµν .

This finally exhibits the connection between the Rosen and the Brinkmann charts in a
clear way. For completeness we report here the full coordinate transformation that connects
the two systems

xµ ⇒ Xµ


x− = X−

xi = e i
j X

j

x+ = X+ + 1
2σijX

iXj

, ëij = Hike
k
j , (5.28)

where we introduced the symmetric tensor σij = ėike
k

j . Another way to look at this
connection comes from the observation that Brinkmann coordinates are Fermi normal
coordinates constructed on null geodesics [42] (see App. A.9 for further details).

5.3.4 Focusing of null geodesics and singularities of the Rosen metric

In 1965 [145] Roger Penrose showed that it is impossible to define a global spacelike Cauchy
hypersurface in plane waves spacetime because of the focusing effect that plane waves exert
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on null geodesics (cones). Let us now briefly discuss the concepts of this paper, these will
allow us to introduce some essential elements useful in the following.

We consider a sandwich plane wave as in [145] (see Fig. 5.1) that is bounded between
two values of the phase ϕ1 < ϕ2. We then have our spacetime divided into three regions:
in-region, wave region, out-region. The in- and out-regions are flat while the wave region is
clearly not. We now pick a generic point Q in the flat in-region and study the null cone
based on it, that is the family of null geodesics that pass through Q. We can choose Q to
have the coordinates (ϕQ, 0, 0, X+

Q ) without loosing generality. Let us work in Brinkmann
coordinates, which we know being well defined everywhere

s2 = ηαβX
αXβ +HijX

iXjϕ2. (5.29)

Now, from the form of the metric one finds that the null cone originating from Q has the
general form

X+ = X+
Q −

1
2σij(ϕ)XiXj . (5.30)

In the flat in-region

2(X+ −X+
Q )(ϕ− ϕQ) +XiXi = 0, (5.31)

such that in this region we have

σij = ηij

(ϕ− ϕQ) . (5.32)

Now, asking this surface to be a light-cone through all the spacetime corresponds to asking
its normal vector to be null. This vector is easily found to be

Nδ = ∂δΣ = ∂δ(X+ −X+
Q + 1

2σijX
iXj) = ñδ + 1

2 σ̇ijX
iXjnδ + σδjX

j (5.33)

such that we have

NµNνGµν = 0 = (σ̇ij + σikσ
k
j −Hij)XiXj (5.34)

which considering the arbitrariness of the transverse coordinates corresponds to

σ̇ij = Hij − σikσ
k

j . (5.35)

As we observed in Sec. 5.3.2, the weak energy condition imposes H i
i ≤ 0. We can thus

trace our equation and observe that by Schwartz inequality

σ̇ i
i + (σ i

i )2 ≤ 0, (5.36)

which is equivalent to [145]

∂2
ϕ exp

∫ ϕ

dϕ̃σ i
i ≤ 0. (5.37)
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Now, before we continue let us think for a moment. We found how the coordinate X+ has
to change in order to keep a surface null in the wave region. However we know that a chart
exists in which the x+ coordinate is flat: the Rosen one. From (5.28) we know that

x+ − x+
Q = X+ −X+

Q + 1
2σijX

iXj . (5.38)

If we fix x+ = x+
Q we see that the equation that describes a fixed value of x+ reproduces

(5.30), where now we can identify σij = ėike
k

j . Let us consider a point Q such that
ϕQ → −∞ and define σ↑

ij to be the matrix associated to this choice. In this case we see
from (5.30) that

σ↑
ij(ϕ) = 0 for ϕ ∈ in-region. (5.39)

From this condition it follows that for ϕ ∈ in-region

∂ϕ exp
∫ ϕ

dϕ̃σ↑,i
i = 0. (5.40)

This expression, plus (5.37), implies that for some finite ϕ∗ outside of the in-region

exp
∫ ϕ∗

dϕ̃σ↑,i
i = 0, (5.41)

which means that some components of σ↑
ij must become infinite. Now, let us assume for

simplicity that this occurs in the out-region. The evolution equation (5.35) then implies
that in the out-region, where Hij = 0

∂ϕ

(
σ↑

ij

)−1
= ηij , (5.42)

from which it follows that in this region(
σ↑

ij

)−1
= ϕηij − cij . (5.43)

Here we see that whenever ϕ is an eigenvalue of the matrix cij we get a singularity for σ↑
ij .

In the case in which the two eigenvalues of cij are the same (anastygmatic case), such that
cij = ϕ∗ηij , the matrix σ↑

ij gets the form

σ↑
ij = ηij

ϕ− ϕ∗ . (5.44)

Here we see that the null cone originating from the point Q is here refocused in another
point R with coordinates R = (ϕ∗, 0, 0, X+

Q). This is the case of a gravitational wave
produced by an electromagnetic wave, the anastygmatic case discussed in Sec 5.3.2. if pure
gravitational waves are present one gets also an astygmatic focusing: the cone is focused in
a spacelike line passing through R. From this property it follows that it is impossible to
define a global Cauchy surface, indeed this surface should intersect every null geodesic only
once, but it is impossible to construct such a surface here.
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Figure 5.2: The null cone originating from Q is refocused by the gravitational wave in the point R at
some phase ϕ∗. Moreover, at the same phase the Rosen chart initially well defined in the in-region becomes
singular. The focusing, and with it the Rosen singularity, does not have to be in the out-region but it can
also happen to be in the wave. Here, as in the text, we assumed a “weak condition” as in [145], such that
ϕ∗ belongs to the out-region.

To sum up, we found that in a gravitational plane wave null cones are inevitably
refocused at some phase ϕ∗. This is not all, in fact we also proved that a Rosen metric
initially well defined in the in-region will have a singularity at the same phase ϕ∗. Indeed,
we can introduce the Rosen metric

g↑
µν = e↑α

µe
↑
αν (5.45)

with the initial condition

g↑
µν = ηµν for ϕ ∈ in-region. (5.46)

The vierbein defined by this metric is clearly the one generating σ↑
ij = ė↑

ike
↑,k
j and from the

previous discussion we see that at the focusing phase e↑,k
j (ϕ∗)→∞. Thus, at this phase the

Rosen metric g↑,µν becomes singular and it cannot be employed to describe the spacetime.

5.3.5 Classical dynamics in the Brinkmann chart
While the Einstein’s equations in the Brinkmann chart are algebraic, the equations of
motion are not completely trivial. The trajectories can be extracted from the Lagrangian

L = m−1ΠµΠνGµν . (5.47)
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The fact that nµ∂µ is a Killing vector implies that Π− is conserved such that Π− = p−,
where p is the initial momentum. Exploiting the Euler-Lagrange equations, the transverse
components are easily found to follow the harmonic equation

Ẍi = H i
jX

j . (5.48)

The last component Π+ can be found algebraically from the on-shell condition ΠµΠνGµν =
m2. A key point to study the geodesics in this chart is to find its Killing vectors. Studying
the Killing equation K(µ;ν) = 0, it is possible to identify two important symmetries. By
introducing a Rosen vierbein (here just a matrix) eij satisfying ëij = Hike

k
j and ė j

[i ek]j = 0,
the Killing vectors take the form [8, 43]

Kµ
j = γjk∂

µei
kXi, (5.49)

where γij = elie
l
j . Having in mind the details of Rosen metrics and their connection to the

Brinkmann chart, it is trivial to obtain these Killing vectors. Indeed, we know that the
coordinates xi are cyclic in the Rosen chart, from which it follow the two Killing vectors
Kµ

i = γij∂
µxj . Transforming these vectors to the Brinkmann chart and employing the

transformations (5.28) one immediately gets Eq. (5.49).
From these two Killing vectors follow two conservation laws: let Ẋµ be a geodesics,

then the quantities Kµ
j Ẋµ are conserved. It is immediate to see that these are equivalent to

∂ϕ(ei
jXi) = ckγ

kj with ck being constant. Let us now suppose that the gravitational wave
belongs to the sandwich-type, such that Hij(ϕ) ̸= 0 only in the interval ϕ1 < ϕ < ϕ2 for
arbitrary fixed ϕ1,2. If we assume boundary conditions in the past flat region ϕ < ϕ1, then
we can choose eij = ηij initially and write these conservation laws as p−∂ϕ(ei

jXi) = pkγ
kj ,

where pk is the particle initial momentum before the interaction with the wave. Expanding
the derivative we get the following expression for the transverse momentum

Πi
p = eijpj + p−σi

jX
j ≡ pi + ∆i

p, (5.50)

where for future convenience we have introduced the symbol ∆i
p = Πi

p − pi = ∆eijpj +
p−σi

jX
j to represent the correction to the transverse constant momentum one would have

in flat spacetime. It is worth noting that the knowledge of Πi still presumes the ability to
solve the second-order differential equation ëij = Hike

k
j and the number of wave profiles

Hij allowing to find analytical solutions is extremely limited. However, this expression can
be useful to study the geodesic congruences behavior. Exploiting the on-shell condition we
can write the full momentum as [10, 9]

Πµ
p = ηµαpα + ∆µ

p −
1

2p−

[
2pi∆i

p + ∆p,i∆i
p + (p−)2H

]
nµ, (5.51)

where ∆µ
p = δµ

i ∆i
p and H = HijX

iXj . While by definition of plane waves nµ;ν = 0, the
geodesic congruence generated by ∂− has the non trivial deformation tensor σij [163, 8] as
we have seen studying the null cones in Sec. 5.3.4.

Another important property of plane wave spacetimes concerns the imprint the wave
leaves on particles after its passage. These features are known as memory effects [47,
101, 97, 186]. Let us consider a pair of particles in a sandwich-wave, which we know
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being Minkowskian in the in-region ϕ < ϕ1 and out-region ϕ > ϕ2, both initially at rest
pν = (m, 0, 0, 0) for simplicity. If their initial perpendicular displacement is ∆Xi

0 then,
exploiting the fact that e j

i ∆Xi = ∆Xj
0 due to the symmetries discussed above Eq. (5.50),

we get for the momentum difference in the out-region the following expression [186]

∆Πν

∣∣
out-region = mėνi(ϕ2)∆Xi

0 −
m

2
[
∆Xi

0ėji(ϕ2)ėj
k(ϕ2)∆Xk

0

]
nν . (5.52)

This is an example of velocity memory effect: the vierbein is trivial in the in-region eij = ηij

but it is constrained by the differential equation ëνi(ϕ2) = 0 in the out-region, such that its
first derivative will generally be different from zero. This means that two particles initially
at rest but displaced acquire a relative momentum after the passage of the wave. As we
will see this property is also connected to the classical and quantum scattering of a particle
by the gravitational wave itself.

5.3.6 Classical dynamics in the Rosen chart
In the Rosen metric we can exploit the large number manifest symmetries to find the
geodesics. From the three Killing vector fields ∂+, ∂i we deduce the corresponding conserved
momenta π−

p = p−, πp,i = pi. The last component π+
p can be derived from the on-shell

condition πµ
pπ

ν
pgµν = m2. The complete momentum with initial conditions pµ can be

conveniently written as

πp,µ = pµ −
1

2p−

(
gρνpρpν −m2

)
nµ = pµ −

pipj

2p−

∫ ϕ

−∞
dϕ̃γ̇ij(ϕ̃)nµ. (5.53)

It is interesting to observe that the vierbein projection of geodesics in Rosen coordinates is
in a one-to-one correspondence with the motion of a charged particle in an electromagnetic
plane wave [21]. Recalling the definition e µ

α = δ µ
α + ∆e µ

α , where ∆e µ
α is a 2× 2 matrix

with transverse indices, we introduce the notation

∆e µ
α pµ = −κPα. (5.54)

The vierbein projected momentum π̄α
p = eα

µπ
µ
p is easily found to have the form

π̄α
p = pα − κPα + κ

p−

(
pβP

β − κ

2PβP
β
)
nα, (5.55)

with pα = δµ
αpµ. This is exactly the momentum of a charged particle with charge e moving in

an electromagnetic plane wave Aα(ϕ) in flat spacetime, with the substitution κPα ↔ eAα. It
is worth noting that the vector field Pα has only transverse degrees of freedom by definition,
as the electromagnetic wave. This formal equivalence is a consequence of the symmetries
shared between the Rosen metric and a plane wave in flat spacetime. In particular, one
can consider the vierbein projected geodesic equation p− ˙̄πβ + π̄αωαβδπ̄

δ = 0, where ωαβδ

are the spin connection coefficients ωαβδ = e µ
α e

ν
β eδν;µ. The coefficients depend on ϕ only,

moreover the contraction π̄αωαβδπ̄
δ is actually linear in the geodesic momentum because of

the conservation of pi and p−. It is easy to show that π̄αωαβδ = p̄αωαβδ = −κPβδ, where
we introduced the analog of the plane wave Maxwell tensor Pβδ = 2∂̄[βPδ]. Exploiting this
result we obtain a Lorentz equation for the vierbein projected geodesics

˙̄πα
p = κ

p−P
αβπ̄p,β. (5.56)
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As before this is formally equivalent to the Lorentz equation of a particle with charge
κ in flat spacetime in presence of an electromagnetic plane wave Pα(ϕ). It follows from
the analysis developed in Sec. 5.2 that we can write the momentum as a local Lorentz
transformation of the initial one, now depending on the vierbein components

π̄α
p (ϕ) = Λα

p,β(ϕ, P )pβ , Λp(ϕ, P ) = exp
(
κ

∫ ϕ

−∞

dϕ̃

p− P(ϕ̃)
)
. (5.57)

The transformation Λα
p,β(ϕ, P ) is a gauge transformation for the vierbein, therefore ẽ µ

α =
e µ

β Λβ
p,α defines a local reference system in which the particle has a constant momentum pα

throughout all the trajectory. This map is not only a formal interesting feature, it is very
useful for translating some known results in electromagnetism and QED to systems in plane
wave spacetimes and offers a very direct way to compare the linear results in these different
contexts. One example is the motion of a charged particle moving in an electromagnetic
plane wave keeping into account the spacetime curvature produced by the latter. The
vierbein projected motion in this case is described by p− ˙̄πα =

(
κPαβ + eF̄αβ

)
π̄β , therefore

the momentum is formally identical to the one of a free-falling particle with the substitution
κPα → κPα + eĀα. While the formal analogy is as simple as clear, in the physical
interpretation one has to be more careful. In fact, the connection between Pα and the
physical complete gravitational wave profile Hij is P̈i = H j

i (pj + Pj). Nonetheless, in the
linear limit it is Pα = 1

2p
βhβα and this is the most natural representative of the gravitational

perturbation in the weak-field limit.

5.3.7 About the analytically solvable motions

As we have illustrated, given a metric in the Rosen form it is immediate to solve the
geodesic equations and express the motion in terms of integrals of the metric itself. Now,
once we have a specific Rosen form it is rather not trivial, and many times impossible, to
find the Brinkmann waveform which corresponds to it. In fact, this is equivalent to solve
the equation

ëαµ = Hαβe
β
µ (5.58)

which is of the same order of complexity of the Einstein’s equation in the Rosen form. Here
we observe a sort of “conservation of complexity”: in Brinkmann coordinates the vacuum
Einstein equation becomes a trivial algebraic relation H α

α = 0, while the equations of
motion are second order ODE. On the other hand, in Rosen coordinates the Einstein’s
equation is a second order ODE, while the equations of motion are almost algebraic relations.
In other words, we can choose where we want the problems to arise, but we cannot avoid
them.

This being said, the object that reflects the gravitational properties in vacuum is Hαβ .
We thus have to face the following problem: in which cases can we analytically solve the
vierbein oscillator equation? Few solutions have already been considered in the literature
[17],[18], here we report two simple but instructive cases.
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Constant Hαβ

Let us warn the reader before we start: this spacetime is not flat at ±∞, therefore it is not
a suitable choice for describing a sandwich wave. Nonetheless, it can be useful to study
general properties of the motion. If the two polarizations +,× are linearly independent
than the wave is in linear polarization. Here we will assume

Hαβ = H+

1 0
0 −1

 . (5.59)

In this case, assuming a diagonal vierbein we get the two differential equations

ë11 = −H+e11 , ë22 = H+e22 (5.60)

and therefore, if we define ω+ =
√
H+ and we impose the boundary conditions eij(ϕ0) = ηij

and ėij(ϕ0) = 0 we get

eij =

− cosω+(ϕ− ϕ0) 0
0 − coshω+(ϕ− ϕ0)

 . (5.61)

Note that if H+ is small we find to the first order

eij ≃ ηij + 1
2

H+(ϕ− ϕ0)2 0
0 −H+(ϕ− ϕ0)2

 . (5.62)

And this is what we expected, a traceless perturbation quadratic in the phase. It is however
interesting to note that starting with a constant traceless matrix one gets a vierbein which is
oscillatory in one transverse direction and exponential in the other, two completely different
behaviors. It is also interesting to note that the orders Hn

+ with odd n in the expansion are
traceless, while the even ones are pure traces. This behavior will be discussed again later
when we will deal with the perturbative approach in Sec. 5.3.8 [101].

The conformal linear polarization

There are only three families of non-conformally flat vacuum solutions with conformal
symmetry and all of them are plane waves [17], [74]. In particular the following waveform
linearly polarized and its circular generalization belong to this class

Hαβ = a

(ϕ2 + ϵ2)2

1 0
0 −1

 . (5.63)

Choosing a = ϵ3 and take the limit ϵ→ 0, this waveform reduces to the impulsive case, in
which Hαβ ∝ δ(ϕ) [8, 14]. Because of the many symmetries of this specific spacetime (the
conformal group is 7-dimensional), we can actually solve analytically the equations

ëαµ = Hαβe
β
µ. (5.64)
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Being Hαβ diagonal, we are free to choose the vierbein to be diagonal as well, we then get
the two equations

ëij = −(1)i a

(ϕ2 + ϵ2)2 eij (5.65)

where the indices are not contracted. If a < ϵ2 the solutions can be written in the following
form [17]

e↑
ij = ηij

√
ϕ2 + ϵ2

ϵci
sin
[
ci

(
arctan

(
ϕ

ϵ

)
+ π

2

)]
≡ ηij

√
ϕ2 + ϵ2

ϵci
sin (ciΛ(ϕ)) , (5.66)

where ci =
√

1− (−1)i a
ϵ2 and we imposed the initial conditions eij(−∞) = ηij and

ėij(−∞) = 0. The out solutions is easily found to be

e↓
ij(ϕ) = e↑

ij(−ϕ). (5.67)

Let us note that 0 < Λ(ϕ) < π , this means that the vierbein components get singular when
ciΛ = π and this can happen only if ci > 1 and this is true only for c1. We conclude that
only e 1

1 will be singular at c1Λ = π, which corresponds to

ϕ∗ = −ε cot
(
π

c1

)
. (5.68)

This point is a geodesic focusing point [17], as discussed in Sec. 5.3.4. Moreover, the first
derivative of the vierbein has the form

ė↑
ij = ηij

1
ϵci

√
ϕ2 + ϵ2

[ϕ sin (ciΛ(ϕ)) + ϵci cos (ciΛ(ϕ))] (5.69)

and from this it follows that the deformation tensor

σ↑
ij = δij

ϕ+ ϵci cot (ciΛ(ϕ))
ϕ2 + ϵ2

. (5.70)

Clearly this tensor inherits the singular behavior from the vierbein, therefore σ↑
11 is singular

in ϕ∗. From the previous arguments we know that σ↓
ij(ϕ) = −σ↑

ij(−ϕ) and consequently
that σ↓

11 has a singularity in ϕ = −ϕ∗.

5.3.8 Perturbative considerations
Let us introduce a Brinkmann waveform [101]

Hαβ(ϵ, ϕ) = ϵHαβ(ϕ) (5.71)

such that ϵ = κβ regulates the amplitude of the wave, β being a real number. In the same
way we introduce an expansion for the vierbein and the related Rosen metric

eαµ(ϵ, ϕ) =
∞∑

a=0
ϵae(a)

αµ , gµν(ϵ, ϕ) =
∞∑

a=0
ϵag(a)

µν (ϕ) (5.72)
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with

g(n)
µν =

∑
a+b=n

e(a)
αµe

(b)α
ν . (5.73)

The oscillator equation now links different orders in ϵ

ë(n)
αµ = H β

α e
(n−1)
βµ , ë(0)

αµ = 0. (5.74)

Let us impose the initial conditions such that the vierbein and the associated Rosen metric
reduces to the Minkowskian form in the in-region

lim
ϕ→−∞

e↑
αµ(ϵ, ϕ) = η↑

αµ , lim
ϕ→−∞

ė↑
αµ(ϵ, ϕ) = 0, (5.75)

from which it follow e
↑(0)
αµ = ηαµ and ë

↑(1)
αµ = Hαµ. In general

e(n)
αµ =

∫ ϕ

−∞
dϕ1

∫ ϕ1

−∞
dϕ2H β

α (ϕ2)e(n−1)
βµ (ϕ2). (5.76)

It is worth observing that if we are in vacuum then H is traceless and therefore all the
odd terms in the expansion are traceless, while the even ones are pure traces. Here we can
connect the picture with the weak field limit identifying Hαβ = 1

2 ḧαβ such that

e↑
αµ(ϵ, ϕ) = ηαµ + ϵ

2hαµ(ϕ) + ϵ2

4

∫ ϕ

−∞
dϕ1

∫ ϕ1

−∞
dϕ2ḧ

β
α (ϕ2)hβµ(ϕ2) +O(ϵ3) (5.77)

and the corresponding Rosen metric, integrating by parts reads

g↑
µν(ϵ, ϕ) = ηµν+ϵhµν(ϕ)

+ ϵ2

4

[
hγβ(ϕ)hβγ(ϕ)−

∫ ϕ

−∞
dϕ1

∫ ϕ1

−∞
dϕ2ḣγβ(ϕ2)ḣβγ(ϕ2)

]
ηµν +O(ϵ3).

(5.78)

Moreover, it is worth noting that the out-vierbein reducing to the Minkowski form in the
out-region has the form

e↓
αµ(ϵ, ϕ) = ηαµ + ϵ

2hαµ(ϕ) + ϵ2

4

[∫ ϕ

∞
dϕ1

∫ ϕ1

∞
dϕ2ḧγβ(ϕ2)hβγ(ϕ2)

]
ηαµ +O(ϵ3) (5.79)

so clearly e↓
αµ − e↑

αµ = O(ϵ2). Here we see that in the weak-field approximation the in-
and out-verbein can be identified. Nonetheless, the second order contributions inevitably
distinguish them. The interesting fact we want to highlight here is that the second order
contributions involve the integral of ḣγβḣ

βγ , which is a positive quantity. Thus there is
a length scale at which the second order contributions exceed the first order. This is a
very peculiar fact and it make it worth studying the connection between the description of
waves in the full general relativity and with the weak-field approximation usually employed.
Indeed, it could be possible that non-leading order correction are not negligible even if the
wave amplitude is small, when long-scale interactions are considered [101].



6
Quantum states and photon emission
in nonlinear gravitational waves

6.1 Fields with arbitrary spin in curved spacetime

6.1.1 Covariant differentiation

It is worth introducing the general formalism suited for dealing with fields in curved
spacetime. The key element is the vierbein briefly introduced in Sec. 3.3.1. We recall that
this matrix is defined by the following two equations

eα
µeαν = gµν , e µ

α eβµ = ηαβ, (6.1)

where gµν is the metric of the curved spacetime considered and ηαβ is the usual Minkowski
metric. With the vierbein we can introduce the spin connection Γµ, which generalizes the
covariant differentiation to arbitrary spin fields (see, e.g., [178, 33]). Namely, one can define

105
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for any spin representation of the Lorentz group the derivative

∇µ = ∂µ + Γµ (6.2)

and define the spin connection requiring this to properly transform under general coordinate
and local Lorentz transformations. Let Ψa be a generic field, under the arbitrary local
Lorentz transformation

eα
µ(x)→ Λα

β(x)eβ
µ(x), (6.3)

it will transform as Ψa → Ra
b(Λ)Ψb, where Ra

b(Λ) is a proper representation of the Lorentz
transformation Λα

β [see Eq. (3.40) for the Dirac spinor case]. Now we ask ∇µ to be a scalar
with respect to the local Lorentz transformation, namely

∇µΨa → Ra
b(Λ)∇µΨb. (6.4)

This fixes the spin connection to be [33, 178]

Γµ = i

2ωµαβΣαβ, (6.5)

where Σαβ are the generators of the Lorentz algebra in the Ψ representation

[Σαδ,Σβγ ] = −i
(
ηαγΣδβ + ηδβΣαγ − ηαβΣδγ − ηδγΣαβ

)
(6.6)

and ωµαβ are the spin coefficients defined by

ωµαβ = e ν
α eβν;µ. (6.7)

Note that here we define the derivative ;µ to act only on curved spacetime indices while ∇µ

is the full covariant derivative extended to both Lorentz flat and curved spacetime indices.
To illustrate this more clearly, one can check that

∇µe
α
ν = 0, (6.8)

which is a fundamental property of ∇µ, while in general eα
ν;µ ̸= 0 unless the spin coefficients

are null.
As an example we can consider a very familiar object, a vector. If we want a vector

with respect to local Lorentz transformations behaving as a scalar under general coordinate
transformations we can simply project a vector field Aµ onto the vierbein

Āα = eα
µA

µ. (6.9)

From now on, unless otherwise stated, an overbar stands for a vierbein projection. For the
vector representation

(
1
2 ,

1
2

)
of the Lorentz algebra we have

(Σαβ)γ
δ = −i(ηαγηβ

δ − η
βγηα

δ) (6.10)
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and therefore the spin connection in this representation is simply given by the spin coefficients

(Γ( 1
2 , 1

2 )
µ )α

β = ω α
µ β . (6.11)

Thus we finally find that

∇µĀ
α = ∂µĀ

α + ω α
µ βĀ

β (6.12)

and this could actually be taken as a definition of the spin connection: it generalizes the
usual vector covariant derivative to Lorentz flat indices. Recalling the definition of covariant
derivative of a vector with respect to curved spacetime indices ∇µA

ν = ∂µA
ν + Γν

µλA
λ and

exploiting the property (6.8) one can easily derive the form of the spin coefficients of Eq.
(6.7).

Now we have a proper extended version of covariant differentiation we a re ready to
deal with the generalizations of field equations in curved spacetime, this will be the topic of
the next section.

6.1.2 Field equations
In this section we will discuss the equations of motion for scalar, Dirac and vector fields
in a general curved spacetime. A scalar field in flat spacetime satisfies the Klein-Gordon
equation

(∂α∂
α +m2)Φ = 0. (6.13)

It is worth observing that there is not only one way to extend this equation to general
relativity. Indeed, any equation which respects general covariance and reduces to (6.13) in
the flat spacetime limit could be an acceptable choice. The most general equation involving
scalar, local couplings with the right dimensions in this case is

(∇µ∇µ +m2 + ξR)Φ = 0, (6.14)

where ∇µ∇µϕ = 1√
g∂µ(√g∂µΦ), ξ is a number and R is the Ricci scalar. Considering

specific values of the coefficients ξ can be very interesting (see,e.g., [33]), however here we
are interested in the simple minimal coupling between the field and the background, such
that ξ = 0. From this point forward, we will assume that the following equation holds

(∇µ∇µ +m2)Φ = 0. (6.15)

Let us move on to the spinor case. The Dirac equation reads

(iγ̄α∂α −m)Ψ = 0. (6.16)

Now, the Dirac matrices γ̄α are just matrices and not a vector. Thus, we cannot just
substitute the flat indices with curved ones and write γ̄α∂α → γ̄µ∇µ, this would not
transform properly. However, we know form the discussion of Sec. 3.3.1 that spinors behave
like scalars under general coordinate transformations. Moreover the Dirac equation is
Lorentz-covariant. Thus, we need a covariant derivative transforming as a vector under
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local Lorentz transformations and this is just ∇̄α = eαµ∇µ. The proper generalization of
the Dirac equation to curved spacetime is then

(iγ̄α∇̄α −m)Ψ = 0. (6.17)

This equation can be alternatively written in terms curved spacetime indices if we define
the generalized Dirac matrices

γµ = e µ
α γ̄

α, (6.18)

such that

(iγµ∇µ −m)Ψ = 0. (6.19)

In Sec. 3.4 we described the interactions between spinors and gravitons at the first order
in κ. This has to correspond to the linearization of the spinor Lagrangian obtained with
the fully covariant equation (6.19). Let us check this is actually true in order to test the
consistency of our picture. The spinor Lagrangian in curved spacetime is clearly

Lf = √g
(
i

2 Ψ̄γµ←→∇ µΨ−mΨ̄Ψ
)
, (6.20)

where the metric determinant is needed in order to have an invariant action Sf =
∫
d4xLf .

Now, from the vierbein definition eα
µeαν = gµν and assuming to work in the weak-field

approximation gµν = ηµν + κhµν , it is straightforward to find that

eα
µ = δα

µ + κ

2h
α
µ +O(κ2). (6.21)

The spin connection term vanishes at the first order, thus we are left with

Lf = L(0)
f −

κ

2 hαβ

[
i

2 Ψ̄γ̄α←→∂ β Ψ− ηαβΨ̄( i2
←→
/∂ −m)Ψ

]
+O(κ2). (6.22)

The order O(κ) reproduces exactly the linear interaction between fermions and gravitons
we found in Eq. (3.71).

We can now proceed and deal with spin-1 abelian fields. Let us start from the massless
case. The familiar inhomogeneous Maxwell equations in vacuum can be covariantly extended
to curved spacetime as

∇µF
µν = 0, (6.23)

where Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ due to the torsionless nature of gravity. Using
the identity [∇µ,∇ν ]Aµ = −R µ

ν Aµ we can expand these equations in the form

∇µF
µν = ∇µ∇µAν −∇µ∇νAµ = ∇µ∇µAν +R ν

µ Aµ −∇ν∇µAµ. (6.24)

If we choose to work in the covariant Lorenz gauge ∇µAµ = 0 we can simplify this expression
to

∇µ∇µAν +Rν
µAµ = 0. (6.25)
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We are now free to include a mass term to generalize the equation to massive bosons

(∇µ∇µ +m2)Aν +Rν
µAµ = 0. (6.26)

The spin-2 wave equation for a massless perturbation in vacuum can be found computing
the Einstein’s equations in a metric gµν + κhµν to the first order in κ, for arbitrary gµν .
This is a very straightforward procedure and we refer to [176] for the details, the resulting
equation in the TT-gauge reads

∇ρ∇ρhµν + 2Rρ
µνδh

δ
ρ = 0. (6.27)

6.2 Quantum fields in a plane wave

6.2.1 In flat spacetime
In Sec. 5.2 we noticed that in an electromagnetic background the Lorentz-like transformation
generated by ωαβ(ϕ,A) = e

∫ ϕ dϕ̃Fαβ(ϕ̃) plays a very important role. Indeed, Λp =
exp (ω/p−) completely solves the dynamics acting as an evolution operator on the initial
four-momentum: πα

p = Λα
p,βp

β. The importance of this transformation is not limited to
particle dynamics but it is essential in solving fields equations. Let us recall the form of the
Hamilton-Jacobi action of Eq. (3.6)

Sp(x) = −p · x− e

p−

∫ ϕ

dϕ̃

[
p ·A(ϕ̃)− e

2A
2(ϕ̃)

]
, (6.28)

which satisfies

e−iSpiDαe
iSp = e−iSp(i∂α − eAα)eiSp = πp,α. (6.29)

From the momentum evolution Eq. (5.57) we find that

e−iSpiDαe
iSp = Λα

p,βp
β. (6.30)

This means that the quantum operator Y = exp i (Sp + p · x) |p→i∂ constructed from the
difference between the dressed and the free action is a unitary transformation that changes
the covariant derivative into the locally Lorentz transformed free derivative [50, 121]. If we
define the operator Λ = Λp|p→i∂ we find the useful relation

Y−1DαY = Λα
β∂

β. (6.31)

This can be seen as an evolution operator for the free field φp = e−ip·x such that

Φp = Yφp (6.32)

solves the Klein-Gordon equation
(
DαDα +m2)Φp = 0. It is indeed immediate to check

this exploiting the identity

Y−1D2Yφp = ∂2φp, (6.33)
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which in turn follows from the properties Λα
βΛγβ = ηαγ and Λα

βn
β = nα, recalling that

Λα
β depends only on ϕ.
We now proceed considering Dirac spinors and massive charged vector fields [50, 138],

as we will see there is a very natural way to exploit Λ in order to find these quantum states.
Let us introduce the generalized quantum operator

Λ(ϕ,A) = e
e

2∂+

∫ ϕ
dϕ̃F αβ(ϕ̃)Σαβ

, (6.34)

where Σαβ are the generators of the Lorentz algebra in a general representation. Above,
the four-vector representation was considered, where

(Σαβ)γδ = −i(δα
γδβ

δ − δα
δδβ

γ). (6.35)

The wave equations for fields Φp of spin
{

0, 1
2 , 1
}

in an electromagnetic plane wave can be
written as

(∇̃α∇̃α +m2)Φp = 0 , with ∇̃α = Dα1− e

2∂+
nαF

γβΣγβ = ΛDαΛ−1. (6.36)

It is worth observing that in order to prove the last equality one has to exploit the identity

[Fαβ(ϕ)Σαβ, F
γδ(ϕ′)Σγδ] = 0 (6.37)

for arbitrary values of ϕ and ϕ′, which derives from the fact that Σαβ are the generators
of the Lorentz algebra. One can expand ∇̃α∇̃α = DαD

α − eF γβΣγβ and check that this
reproduces the equations studied for example in [50, 138] for the scalar, Dirac and vector
fields

(DαD
α +m2)Φp = 0,

(DαD
α + ie/n /A+m2)Ψp = 0,

[(DαD
α +m2)δβ

γ + 2ieF β
γ ]Aγ

p = 0 , DαAα
p = 0.

(6.38)

Now, looking at the wave equations in the form of Eq. (6.36) we see that the property
∇̃α = ΛDαΛ−1 allows us to get rid of the spin structure, reducing the equation to the scalar
case. We can indeed write the equations (∇̃α∇̃α +m2)Φp = 0 as (DαDα +m2)Λ−1Φp = 0,
such that the problem is reduced to finding the scalar field solution. We already know the
solution this problem which is Φp = Yφp and we thus conclude that YΛ is the evolution
operator for fields up to spin one

Φp = ΛYφp, (6.39)

where φp is the initial condition in absence of the background wave. This clearly corresponds
to the fact that Λ satisfies the equation Λ−1Y−1∇̃αYΛ = Λα

β∂
β and from this it follows

Λ−1Y−1∇̃2YΛ = ∂2. For the sake of clarity, let us introduce the ϕ-dependent polarization
Sp(ϕ) such that

Φp = Spe
iSp . (6.40)
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Defining Λp = Λ|∂→−ip it is easy to check that this can be explicitly written as

Sp = Λpsp, (6.41)

where sp = {1, up, ε
α
p } are the free polarizations for scalar, Dirac, and vector fields, respec-

tively. For example, in the well known positive-energy Volkov solution [173] we studied in
Sec. 3.1 Up = Upe

iSp the spinorial term can be found as Ua
p = Λa

p,bu
b
p, such that

Up = eiSp

(
1 + e

/n /A

2p−

)
up. (6.42)

In the same way, the spin-one solution Φα
p = Eα

p e
iSp is found to be [50]

Φα
p = eiSp

[
εα

p −
ε−

p

p− eA
α + e

p−

(
εβ

pAβ −
ε−

p

2p− eAβA
β

)
nα

]
. (6.43)

Being in the vector representation, Eα
p = Λα

p,βε
β
p reduces to the particle classical momentum

if εα
p is replaced by pα. The Lorenz condition corresponds to the natural requirement

Eα
p πp,α = εα

p pα = 0.
As a side note, let us mention that the symbol ∇̃α was not randomly chosen. In fact, it

defines a sort of parallel transport rule for the field. From the properties of the operator
∇̃α it follows that ∇̃αΦp = −iΛα

p,βp
βΦp. Thus, a contraction with the momentum gives

πα
p ∇̃αΦp = −im2Φp. If we insert the expression Φp = Spe

iSp this equation reduces to a
condition on the polarization function, which is formally equivalent to a parallel transport

πα
p ∇̃′

p,αSp = 0, (6.44)

where ∇̃′
p,α = ∂α1− i e

2p−nαF
γβΣγβ = Λp∂αΛ−1

p .
It is also worth noting that if we choose the vector representation then

πα
p ∇̃′

p,απ
β
p = 0 (6.45)

is actually equivalent to the Lorentz equation. We could rephrase the preceding discussion
as follows: to construct the fields previously considered one can first operate a unitary
transformation Y that turns the gauge derivative Dα into Λα

β∂
β, then transport the

polarization function through the operator ∇̃′
p,α. We will now see how these considerations

can be translated in a plane wave spacetime.

6.2.2 In the Rosen metric
The Rosen chart is a particularly appropriated choice to solve fields equations. Let us start
with the scalar field satisfying

(∇µ∇µ +m2)Φ = 0. (6.46)

In vacuum flat spacetime we are used to expand fields in terms of momentum eigenstates,
but in a general curved spacetime this is not possible because there is no clear global notion
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of Fourier components. Nonetheless, the plane wave spacetime is quite peculiar because
in this space the scalar wave satisfies the Huygens’ principle [87, 177]. By exploiting the
identity ∇µ∇µΦ = 1√

g∂µ(√g∂µΦ) we can rewrite the wave equation as

( ˙log(√g)∂+ + ∂µ∂µ +m2)Φ = 0. (6.47)

Now, being ∂i, ∂+ symmetries of the spacetime under consideration, we will assume the
solution to be an eigenstate of these operators. It is then easy to reduce the equation to

(∂µ∂µ +m2)g
1
4 Φ = 0. (6.48)

From this equation one immediately sees that g
1
4 Φp = eiSp is a solution with initial

momentum p if Sp is the classical action satisfying

gµν∂µSp∂νSp = m2 and ∂µ∂µSp = 0. (6.49)

Introducing the notation Ω = g− 1
4 we can write the scalar wave as

Φp = ΩeiSp . (6.50)

The action can be easily computed exploiting the symmetries of the metric, but it can also
be borrowed from electromagnetism. If we project the derivatives in Eq. (6.48) onto the
vierbein and we split the latter as in Sec. 5.3.6 e µ

α = δ µ
α + ∆e µ

α , we obtain

[ηαβ(∂α + ∆e i
α∂i)(∂β + ∆e j

β ∂j) +m2]Ω−1Φp = 0. (6.51)

By observing that ηαβ[∆e µ
α ∂µ, ∂β + ∆e ν

β ∂ν ] = 0 and by recalling that Φp is eigenstate of
∂i, this equation can be written as

[ηαβ(∂α + iκPα)(∂β + iκPβ) +m2]Ω−1Φp = 0. (6.52)

Now, this is formally the scalar wave equation for the field Ω−1Φp in an electromagnetic
plane wave with the potential and charge product replaced by κPβ. It then follows that
the action Sp(x) is just the one of a charged particle moving in an electromagnetic plane
wave under the same substitution:

Sp(x) = −pµx
µ − κ

p−

∫ ϕ

dϕ̃

(
pαP

α − κ

2PαP
α
)
. (6.53)

One can easily verify that

−∂αSp(x) = pα + κ

p−

(
pβP

β − κ

2PβP
β
)
nα = π̄p,α + κPα, (6.54)

in complete analogy with the electromagnetic case [see Eq. (3.7) and Eq. (5.55)]. To
summarize, we found that the solution of the Klein-Gordon equation in the Rosen metric
is Φp = ΩΦp, where Φp is formally the field with charge κ satisfying the Klein-Gordon
equation in flat spacetime with an electromagnetic plane wave potential Pβ.
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Interestingly, the same is true for Dirac fields, such that the spinor in a plane wave
spacetime is Ψp = ΩΨp, where Ψp is the Volkov state [173] of charge κ in a wave potential
Pβ we discussed in Sec. 3.1

Ψp = ΩeiSp

(
1 + κ

/n/P

2p−

)
up. (6.55)

This can be verified observing that the Dirac equation in this spacetime (see Sec. 6.1.2)

(iγµ∇µ −m)Ψp = 0 (6.56)

can be reduced to

[i(/∂ + iκ/P )−m]Ω−1Ψp (6.57)

and this is once again formally the Dirac equation in flat spacetime in presence of a
plane wave field κPα. In this case, the spin connection term γµΓµ is exactly compensated
by the Ω prefactor. Indeed, in this metric the spin coefficients read (see App. A.10)
ωµαβ = −2n[αėβ]µ, such that the spin connection when contracted with a Dirac matrix gets
the simple form

γµΓµ = 1
4

˙log(g)/n = − ˙log(Ω)/n. (6.58)

Inserting this expression in the Dirac equation one finds

(iγµ∂µ − i ˙log(Ω)/n−m)Ψp = Ω(iγµ∂µ −m)Ω−1Ψp = 0, (6.59)

from which it directly follows Eq. (6.57). We will now proceed and consider vector fields.
The spin-one massive case is slightly more involved. Let us introduce the notation

Āα = ΩΦ̄α, (6.60)

where Āα = eα
µAµ is the vierbein-projected vector field. Keeping into account the condition

∇µAµ = 0 it is possible to reduce the field equation (6.26)

(∇µ∇µ +m2)Aν +Rν
µAµ = 0 (6.61)

to the form (see S.m. 6.5.1)

(∂̄β ∂̄β +m2)Φ̄α + 2iκP̂α
γΦ̄

γ + 1
2

¨log(g)Φ̄−nα = 0, (6.62)

where we introduced the quantum analog of the Maxwell-like tensor Pαβ substituting
pi → i∂i, namely κP̂αβ = −fαβ

j ėjki∂k. Here, we see that the last term in the l.h.s., which
comes from the contraction of two spin connections, is a nonlinear term absent in flat
spacetime [see the last of Eqs. (6.38)].

However, contracting with nα one finds that

(∂̄β ∂̄β +m2)Φ̄− = 0 (6.63)
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and therefore, assuming an initial momentum p it follows that

Φ̄−
p = ε−

p e
iSp , (6.64)

with ε−
p constant. Exploiting the property ∂̄βΦ̄

−
p = −iπ̄p,βΦ̄

−
p , one can check that the

shift Φ̄′α
p = Φ̄α

p + i
4p−

˙log(g)Φ̄−
p n

α restores the form of a flat spacetime field equation in an
electromagnetic wave background Eq. (6.38)

(∂̄β ∂̄β +m2)Φ̄′α
p + 2iκPα

γΦ̄
′γ
p = 0. (6.65)

Indeed, this field satisfies the condition ∂̄αΦ̄
′α
p = (∂α + iκPα)Φ̄′α

p = 0, which is the analog of
DαΦ

α
p = 0 found in flat spacetime in the previous section.

Finally, we can report the solution for the massive vector field in the form

Āα
p = ΩeiSp Ēα

p , (6.66)

namely [21]

Āα
p = ΩeiSp

[
εα

p −
ε−

p

p−κP
α + κ

p−

(
εβ

pPβ −
ε−

p

2p−κPβP
β

)
nα + i ˙log(Ω)

ε−
p

p−n
α

]
. (6.67)

Here one can explicitly observe once again the formal analogy with the case of an electro-
magnetic background in flat spacetime. Once the shift previously described is operated the
polarization Ēα

p can be found substituting eAα → κPα in the flat spacetime solution of Eq.
(6.43).

If the massless case is considered one can exploit the gauge freedom to fix

∂̄αΦ̄
α
l = 0 = Φ̄−

l , (6.68)

which implies ∇µAµ
l = 0 as well. In this case the additional term proportional to ¨log(g) in

Eq. (6.62) vanishes and the solution is once again in direct correspondence with the one in
flat spacetime, without any shift needed

Āα
l = ΩeiSl

[
εα

l + κ

l−
εβ

l Lβn
α
]
, (6.69)

where here Lα is the equivalent of Pα but with initial momentum lα. We will deal with
this choice studying the field in Brinkmann coordinates.

The massive spin-two field is not of our interest in the present work and we will confine
ourselves to the massless case, which is easily treated in Brinkmann coordinates once the
proper gauge is chosen [8]. For completeness we provide a brief treatment of this topic in
Rosen coordinates in S.m. 6.5.2 and we direct the reader to it for further details.

We can now retrace the discussion carried out in flat spacetime, i.e., that the operator
constructed from the difference between the free and the curved spacetime actions U =
exp i (Sp + pµx

µ) |p→i∂ is a unitary transformation that changes the vierbein projected
derivative into the Lorentz transformed curved one Y−1∂̄αY = Λ β

α ∂β , with ∂α = δµ
α∂µ. We

can introduce the gravitational analog of the Lorentz-like transformation exploited in the



6.2. Quantum fields in a plane wave 115

electromagnetic wave background treatment, which can be obtained through the simple
substitution emerged in the study of the dynamics eȦj → κP̂ j = −iκ∆ėjk∂k

Λ = e
κ

2∂+

∫ ϕ

−∞ dϕ̃P̂αβ(ϕ̃)Σαβ
. (6.70)

The wave equation for the fields {Φ,Ψ, Ā′α} ≡ Φ̄p can be written as

(∇̃α∇̃α +m2)Ω−1Φ̄p = 0 , with ∇̃α = ∂̄α1− κ

2∂+
nαP̂γβΣγβ = Λ∂̄αΛ−1, (6.71)

where we recall that the spin-one field now involves the shift Ā′α = Āα − i
p−

˙log(Ω)Ā−nα.
Let us point out that ∇̃α is not the vierbein projected covariant derivative. This operator
is defined by the representation of the considered field and not by the object it is acting
on. This is where its relevance comes from as it allows one to write the wave equation as
the actual square of an operator. However, when taken along a geodesic this operator is
actually equivalent to the vierbein-projected covariant derivative for the representations
here discussed, namely

π̄α
p ∇̃p,α = π̄α

p ∇̄α, (6.72)

with ∇̃p,α = ∂̄α1− i κ
2p−nαPγβΣγβ. This is quickly verified exploiting the spin coefficients

property π̄αωαβδ = −κPβδ. To complete the correspondence we have the properties

Λ−1Y−1∇̃αYΛ = Λ β
α ∂β , Λ−1Y−1∇̃2YΛ = ηαβ∂α∂β. (6.73)

This allows us to easily find the aforementioned fields as

Φ̄p = ΩΛUφp, (6.74)

where φp is the flat initial condition. Once again we can introduce the polarization Sp(ϕ)
such that

Φ̄p = ΩS̄p(ϕ)eiSp . (6.75)

As in Sec. 6.2.1 one can check that this can be written as

S̄p = Λpsp, (6.76)

where sp = {1, up, ε
α
p } are the flat-spacetime free polarizations for scalar, Dirac and vector

fields respectively.
By adapting the discussion of Sec. 6.2.1 we find that ∇̃αΩ−1Φ̄p = −iΛ β

α pβΩ−1Φ̄p

and from this π̄α∇̃αΩ−1Φ̄p = −im2Ω−1Φ̄p. Inserting into this equation the form Φ̄p =
ΩS̄p(ϕ)eiSp we obtain a condition for the polarization which reads π̄α

p ∇̃′
p,αS̄p = 0, where

∇̃′
p,α = ∂α1− i κ

2p−nαPγβΣγβ. Now, observing that

π̄α
p ∇̃′

p,αS̄p = π̄α
p ∇̃p,αS̄p = π̄α

p ∇̄p,αS̄p, (6.77)
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we finally find that the polarization function is defined by a proper parallel transport
πµ

p∇µSp = 0, or [21]

DSp

Dϕ
= 0. (6.78)

This is a covariant equation and it holds in other charts as well. In particular, it can be
used as an alternative way to find the states in Brinkmann coordinates. Moreover, this
equation underlines once again the semiclassical behaviour of quantum states in a plane
wave background and offers an intuitive geometric picture. For example, the polarization
of the shifted spin-one field evolves as a free falling gyroscope [178] being just parallel
transported.

6.2.3 In the Brinkmann metric
It is needless to say that we could just transform the fields obtained in the Rosen chart
and find the states in Brinkmann coordinates. However here we want to underline the
role of the operator Λ in this chart and also the form this takes in a particular gauge
reproducing the spin-raising operator studied in [8] for massless fields. The scalar field
can be clearly expressed as Φp = ΩeiSp where Sp is the classical action for a particle in
Brinkmann coordinates [8]

Sp(X) = −p−X+ −Xie j
i pj −

p−

2 σijX
iXj + 1

2p−

∫ ϕ

dϕ̃(pipjγ
ij −m2). (6.79)

The operator Λ can be written in this chart as

Λ = e
− i

2∂+
Σαβfαβ

i ηij(∂
Xj −ek

j∂
Xk )

. (6.80)

If we choose the natural vierbein associated to this chart

Eαµ = ηαµ + H

2 nαnµ (6.81)

we can immediately find the spinor solutions, in fact Eij = e′
ij where e′

ij = eik
∂xk

∂Xj is the
Rosen transverse vierbein in Brinkmann coordinates. We can thus expand the operator to
obtain

Ψp = ΩeiSp

(
1 +

/∆p/n

2p− ,

)
up, (6.82)

where we recall that ∆i
p = Πi

p− pi as in Sec. 5.3.5. Once again the solution is similar to the
Volkov one, with the substantial difference that now ∆i

p depends on the three coordinates
ϕ,Xi and not just on ϕ. This will be a major difference as compared to the electromagnetic
case when we will calculate S-matrix elements, along with the definition of in- and out-states
discussed in the next section. This solution can be verified to match the one found in
the Rosen chart, in fact the transformation of the spinor field is generated by the Lorentz
transformation connecting the Brinkmann chosen vierbein and the Rosen one expressed
in Brinkmann coordinates Eα

µ = Λ̃α
βe

β
ν

∂xν

∂Xµ = Λ̃α
βe

′β
µ. Expanding Λ̃αβ = ηαβ − ωαβ the
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infinitesimal Lorentz transformation is found to be ωαβ = 2n[ασβ]iX
i and accordingly the

transformed spinor follows as [see Eq. (3.40)]

Ψp = e− i
2 ωαβΣ

αβ ΩeiSp

(
1 + κ

/n/P

2p−

)
up

= ΩeiSpe
1
2 σαiX

iγ̄α/n

(
1 + κ

/n/P

2p−

)
up

= ΩeiSp

(
1 +

/∆p/n

2p−

)
up.

(6.83)

One can also verify that the spinorial matrix satisfies the parallel transport equation (6.78),
as discussed in the context of the Rosen metric.

Let us now consider the photon field. If we fix the gauge such that only the transverse
components of the flat polarization are left εµ = δµ

i ε
i and they obey the Lorentz condition

liε
i = 0, we can reduce the operator action to

Aµ
l = ΩΛµ

iε
ieiSl ≡ ΩRµeiSl , (6.84)

where we introduced the spin raising operator studied in [8, 130]

Rµ = Λµ
iε

i = 1
∂+

[δµ
i ∂+ − ∂in

µ] εi = − 1
∂+
εifµν

i ∂ν . (6.85)

In this gauge the massless vector field is thus given by

Aµ
l = ΩeiSl

(
δµ

i −
1
l−

∆l,in
µ
)
εi. (6.86)

This is clearly in agreement with the field found in the Rosen chart once the same gauge is
imposed, as in Eq. (6.69).

As noticed in [8], in vacuum we can choose for a massless spin-2 field the covariant
TT-gauge and fix nµhµν = 0. As a result the field can be found applying two times the
spin raising operator, such that hµν

l = ΩRµRνΦl. The polarization tensor is easily found to
be Eµν

l = Eµ
l Eν

l −
i

l−σijε
iεjnµnν such that

hµν
l = ΩeiSl

[(
δµ

i −
∆l,in

µ

l−

)(
δν

j −
∆l,jn

ν

l−

)
− i

l−
σijn

µnν
]
εiεj . (6.87)

6.3 Photon emission

6.3.1 Definition of scattering states

When dealing with scattering problems we have to work in Brinkmann coordinates, because
the regularity of fields over the whole spacetime is essential. Due to the presence of a
gravitational wave in- and out-states are generally different. Let us consider for simplicity
the scalar case Φ(X) = Ω(ϕ)eiS(X). Moreover we will assume the spacetime to be flat at
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ϕ = ±∞. We can impose the free plane wave boundary condition in the in- or out-region
and define the positive energy in- and out-states, respectively Φ↑,Φ↓ as [91, 8]

Φ↕
p = Ω↕eiS

↕
p , lim

ϕ→∓∞
Φ↑,↓

p = e−ip·X . (6.88)

As observed in the previous sections, these fields depend on a matrix eαµ, which is also the
vierbein of a Rosen metric. This is the reason why in- and out-states are different, they
depend on vierebeins which do not represent the physical wave profile Hij but they are
connected to it through the differential equation ëik = Hije

j
k. A vierbein does not have

to be trivial eαµ = ηαµ in order to describe a flat region, but it can be at most linear in ϕ
such that ëik = 0. In other words a Rosen metric does not have to be Minkowskian in a flat
region and if we require it to be so, for example in the in-region, it will not be Minkowskian
in the out-region. The boundary conditions are thus transferred to the vierbeins, such that

lim
ϕ→∓∞

(e↑,↓)α
µ = δα

µ , (e↑,↓)α
µ = (b↑,↓)α

µϕ+ (c↑,↓)α
µ for ϕ→ ±∞. (6.89)

There are only two constrains on these coefficients, one comes from the symmetry condition
ė µ

[β eα]µ = 0 and reads [8] (b↑,↓)α
[µ(c↑,↓)αν] = 0, the other one comes from the conservation

of the Wronskian related to the harmonic oscillator equation and links in- and out-states
[91] b↓

αµδ
α
ν = −b↑

ανδ
α
µ . It is worth recalling that the coefficients b↕ represent the velocity

memory effect induced by the passage of the wave. Now that the states are well defined we
should introduce a scalar product, however the standard definition [33] needs a well-defined
Cauchy surface Σ

⟨Ψ2|Ψ1⟩ = −i
∫

Σ

√
GΣdΣµΨ2

←→
∂ µΨ∗

1. (6.90)

As we have already discussed, it is impossible to define a Cauchy surface Σ in this spacetime
[145], nevertheless the surfaces of constant ϕ are intersected by almost all the geodesics
except the ones with constant ϕ [92], therefore they can be chosen to construct a foliation
of the spacetime. We can thus choose an arbitrary ϕ and rewrite the product definition as

⟨Ψ2|Ψ1⟩ = −i
∫

ϕ=const.
dX+d2X⊥Ψ2

←→
∂ +Ψ∗

1, (6.91)

where we recall that the absolute value of the Brinkmann determinant is always equal to
one due to its Kerr-Schild form. A straightforward calculation shows that the Bogoliubov
coefficient encoding particle creation is zero. This corresponds to the amplitude for a positive
frequency in-state to develop a negative frequency out-state component: ⟨Φ↓

1|Φ
↑∗
2 ⟩ = 0

[92, 91, 8]. It follows that the in- and out-vacua can be identified and no particle is created
by the background, as in the electromagnetic case. On the other hand, one can show that
the in-to-out scattering probability depends on the determinant of ė↑

ij in the out-region [91]

∣∣∣⟨Φ↓
1|Φ

↑
2⟩
∣∣∣2 ∝ δ(p−

1 − p
−
2 )

| det ė↑
ij |

∣∣∣∣∣∣
out-region

. (6.92)

Thus the probability for a scalar field to be scattered from the gravitational wave background
is directly correlated to the velocity memory effect. This is what one would expect, because
the difference between the initial and final momenta induced by the background corresponds
to this effect. The same is true for the classical cross section describing the interaction
between a particle and the gravitational wave [91].
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6.3.2 S-matrix element
In the previous sections we prepared all the tools needed in order investigate the emission
of a single photon by an electron (Compton scattering) in a sandwich plane wave spacetime.
The amplitude for the process e(p)→ e(p′) + γ(k′) in this background is

Sγ
G = −ie

∫
d4XΨ̄↓

p′γ
µΨ↑

pA
↓∗
k′,µ. (6.93)

As a first consistency check it is interesting to consider its linear order in κ in the monochro-
matic assumption. This has to coincide with the known results for the inverse graviton
photoproduction g(k) + e(p) → e(p′) + γ(k′) in vacuum quantum field theory, where
kµ = ωnµ is the momentum of the gravitational wave. In this approximation we are free to
use the quantum states in Rosen coordinates, in fact the difference between the in- and
the out-vacua emerges at the second order. We will thus drop the in and out labels and
consider Sγ

G = −ie
∫
d4xΨ̄p′ γ̄αΨpĀ∗

k′,α +O(κ2), where the states will be defined below and
where the metric determinant does not contribute at this order. Everything we need for
this approximation is encoded in the vierbein, which is now expanded as

eαµ = ηαµ + κ

2hαµ , e µ
α = δµ

α −
κ

2h
µ

α , (6.94)

where hαµ is the graviton field. We can now introduce the monochromatic assumption
defining hµν = εµενe

−ik·x, where the graviton polarization tensor has been written as a
product of two photon polarization vectors εµν(k) = εµ(k)εν(k) satisfying ε · ε = 0, k · ε = 0
and ε · ε∗ = −1 [98]. This, together with the energy-momentum conservation leads to the
simple substitution rule

Pα →
1
2e

−ik·xε · pεα (6.95)

in Ψp, in Ψ̄p′ (with p→ p′), and in Ā∗
k′,α (with p→ k′). With this in mind we can easily

find the states under these assumptions in the form

Ψp ≃ e−ip·x
[
1 + e−ik·xκ

p · ε
4p · k (2p · ε+ /k/ε)

]
up +O(κ2),

Ā∗
k′,α ≃ eik′·x

[
ε

′∗
α + e−ik·xκ

k′ · ε
2k · k′

(
ε

′∗ · εkα − k′ · εε′∗
α − ε

′∗ · kεα

)]
+O(κ2).

(6.96)

Now, one can plug these expressions into the amplitude previously defined. Introducing the
notation Sγ

G = (2π)4δ(4)(p + k − p′ − k′)M +O(κ2), the following result is found after a
proper rearrangement of the various terms

M = −ieκ2 ūp′

[
p′ · ε

2p′ · k
(
−2p′ · ε+ /ε/k

)
/ε

′∗ + p · ε
2p · k/ε

′∗ (2p · ε+ /k/ε)

+ ε · k′

k · k′

(
ε

′∗ · ε/k − ε · k′/ε
′∗ − ε′∗ · k/ε

)]
up,

(6.97)

which agrees with the vacuum QFT result as expected (see e.g. [56, 111] and Sec. 3.4.1).
The first-order expansion of the dressed fermions naturally generates the s and u channels
contributions, while the expansion of the photon state reduces to the sum of the γ-pole and
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the seagull diagrams [56]. The contact term never shows up explicitly in our calculation
as a consequence of graviton gauge invariance [54]: the seagull diagram only provides a
momentum-independent contribution which cancels out a term of the same kind in the
γ-pole diagram.

Let us now go back to the original amplitude. In the fully nonlinear case we have to
work in the Brinkmann chart in order to have a well defined matrix element. Choosing the
gauge ∇µAµ = 0 = A− for the photon field, the amplitude gets the following form

Sγ
G = −ie

∫
d4X(Ω↓)2Ω↑e

i(S↑
p−S↓

p′ −S↓
k′ )ūp′

1−
/∆↓

p′/k

2k · p′

/ε∗ −
εi∗∆↓

k′,i/k

k · k′

1−
/k /∆↑

p

2k · p

up,

(6.98)

The unpolarized squared amplitude averaged over the initial spin reads

1
2
∑

s,s′,ε′

Sγ†
G Sγ

G = e2

2

∫
d4XI(X)

∫
d4X ′I∗(X ′)×

× Tr

(/p′ +m)

1−
/∆↓

p′(X)/k
2k · p′

(γ̄α −
∆↓,α

k′ (X)/k
k · k′

)1−
/k /∆↑

p(X)
2k · p


× (/p+m)

1−
/∆↑

p(X ′)/k
2k · p

(γ̄β −
∆↓,β

k′ (X ′)/k
k · k′

)1−
/k /∆↓

p′(X ′)
2k · p′


×
(
−ηαβ +

kαk
′
β + k′

αkβ

k · k′

)
,

(6.99)

where the prefactor is defined as I = (Ω↓)2Ω↑e
i(S↑

p−S↓
p′ −S↓

k′ ). Once the trace is computed
this expression reduces to the following form

1
2
∑

s,s′,ε′

Sγ†
G Sγ

G = e2

2

∫
d4XI(X)

∫
d4X ′I∗(X ′)

×
{
k · p′

k · k′

(
Π↑i

p (X)Π↓
k′,i(X

′) + Π↓i
k′(X)Π↑

p,i(X
′) + 2p+k′− + 2p−k′+

)
+ k · p
k · k′

(
Π↓i

p′(X)Π↓
k′,i(X

′) + Π↓i
k′(X)Π↑

p′,i(X
′) + 2p′+k′− + 2p′−k′+

)
− k · p′

k · p

(
Π↑i

p (X)Π↑
p,i(X

′) + 2p+p−
)
− k · p
k · p′

(
Π↓i

p′(X)Π↓
p′,i(X

′) + 2p′+p′−
)

− 2k · pk · p
′

(k · k′)2

(
Π↓i

k′(X)Π↓
k′,i(X

′) + 2k′+k′−
)

+ m2(k · k′)2

k · pk · p′

}
.

(6.100)

This expression can be proved to give the correct linear limit of (inverse) graviton photo-
production employing the FORM code reported in App. A.11.2. With the same code it is
possible to check the photon-gauge invariance of the result. It is interesting to observe that
the terms in the amplitude quadratic in the gravitational field disappear in the unpolarized
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sum. For this reason, the integrals in the three coordinates X+, Xi are easily carried out
by observing that the prefactor is Gaussian in Xi. Namely∫
d4XI(X) = −i(2π)2δ(p− − p′− − k′−)

∫
dϕ

(Ω↓)2Ω↑

p−
√
C
e−i(p+−p′+−k′+)ϕ

× e
i

2p− Bi(C−1)ijBj−i κ
p−
∫ ϕ

−∞ dϕ̃(pαP α− κ
2 PαP α)+i κ

p′−
∫ ϕ

∞ dϕ̃(p′
αP ′α− κ

2 P ′
αP ′α)+i κ

k′−
∫ ϕ

∞ dϕ̃(k′
αK′α− κ

2 K′
αK′α)

,

(6.101)

where Cij = σ↑
ij − σ

↓
ij , C = detCij and Bi = e↑j

i pj − e↓j
i (p′

j + k′
j). By setting

∫
d4XI(X) =

i(2π)2δ(p− − p′− − k′−)
∫
dϕĨ(ϕ), the only other integral needed is the one with a prefactor

linear in the transverse coordinate Xi, namely∫
d4XI(X)Xi = i(2π)2δ(p− − p′− − k′−)

∫
dϕĨ(ϕ)

(C−1)i
jB

j

p− . (6.102)

We can finally write down the partially integrated transverse momentum as∫
d4XI(X)Π↑i

p (X) = −i(2π)2δ(p− − p′− − k′−)
∫
dϕĨ(ϕ)

(
e↑ijpj − σ↑i

j (C−1)j
kB

k
)
,

(6.103)

with this substitution rule the squared amplitude can be written as an integral in ϕ, ϕ′ only.
A further simplification can be achieved exploiting the identity C−1

ij = 1
C (C k

k ηij − Cij) for
rank-two matrices. Having derived the full nonlinear squared amplitude it would be natural
to consider some physically interesting examples, however one runs very soon into the
mathematical complexity of the problem. In particular, we recall that once the Brinkmann
profile is chosen one has to solve the differential equation ëij = Hike

k
j , in fact the knowledge

of the in and out vierbein is a key element. There are very few profiles Hij for which an
analytical solution of this equation is available (see Sec. 5.3.7). These include for example
impulsive waves Hij = δ(ϕ)dij where dij is a constant matrix, these solutions are relevant
as they represent the gravitational field produced by a massless particle moving at the
speed of light [14, 146, 72]. Other possibilities are profiles with conformal symmetry of the
form Hij = a(ϕ2 + b2)−1ϵij studied in [17]. However, physically interesting scenarios for the
process considered here would require proper approximations and numerical evaluations.
Also the concept of formation length, of great importance in electromagnetism, could be
worth to be studied in this context. In fact, despite the non-locality of the interaction and
the clear implications of a curved spacetime background, the high amount of symmetries
of the problem could lead to some interesting developments. A detailed study of this and
similar processes in the aforementioned directions will be left for future works.

6.4 Discussion
We examined the one-to-one map connecting the dynamics of a charged particle in an
electromagnetic plane wave and a particle in a nonlinear gravitational plane wave. This map
enables to translate interesting results known in electromagnetism to the context of plane
wave spacetimes. The dynamics in an electromagnetic plane wave is completely determined
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by a specific Lorentz-like transformation Λα
β , which provides a way to transport the initial

momentum of a free particle through the wave such that πα = Λα
βp

β . This transformation
has a number of interesting properties. Besides belonging to the Lorentz group, it operates
on constant-ϕ hypersurfaces and it acts as a gauge transformation on the background wave.
For these reasons its proper generalization as a quantum operator Λ turns out to be a
key element to construct quantum states in an electromagnetic plane wave background.
Exploiting the aforementioned analogy between electromagnetic waves in flat spacetime
and gravitational nonlinear waves we showed that the curved spacetime generalization of Λ
can be used to find quantum states in gravitational plane waves as well. In particular we
showed how scalar, spinor, and vector fields can be naturally mapped from one context to
the other. Finally, in the last part of the paper we applied the found states for spin 1/2 and
spin 1 particles to consider Compton scattering in a nonlinear sandwich gravitational wave.
Here we provided the spin- and polarization-summed squared amplitude for the process,
exact in the gravitational plane wave. A detailed study of the Compton cross section for
physically interesting plane wave gravitational backgrounds is left for a future work. Other
processes could be naturally investigated as well in the future, an interesting example being
the graviton emission by a moving particle. This could provide insights about its relation
with photon emission, a relation which has been studied in vacuum QFT [56, 110] and in
the presence of a background electromagnetic plane wave within strong-field QED [20, 90].
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6.5 Support material

6.5.1 Vierbein projection of the vector wave equation
The spin-1 wave equation reads

(∇̄β∇̄β +m2)Āα + R̄α
βĀβ = 0. (6.104)

Observing that ∇̄βĀα = ∂̄βĀα + ω α
β γĀγ , we can expand the double derivative as

∇̄β∇̄βĀα = 1
2

˙log(g)∂ϕĀα + ∂̄β(∂̄βĀα + ω α
β γĀγ) + ω α

β γ(∂̄βĀγ + ωβγ
δĀ

δ)

= 1
2

˙log(g)∂ϕĀα + ∂̄β ∂̄βĀα + 2ω α
β γ ∂̄

βĀγ + ω α
β γω

βγ
δĀ

δ

= 1
2

˙log(g)∂ϕĀα + ∂̄β ∂̄βĀα + 2ω α
β γ ∂̄

βĀγ + 1
4 γ̇

λργ̇λρĀ−nα.

(6.105)

Now, recalling that the Ricci tensor in Rosen coordinates has the form (see App. A.10)

Rµδ =
(1

4 γ̇
ρλγ̇λρ + 1

2γ
ρλγ̈λρ

)
nµnδ (6.106)

we can write the full wave equation as

1
2

˙log(g)∂ϕĀα + ∂̄β ∂̄βĀα + 2ω α
β γ ∂̄

βĀγ + 1
2

¨log(g)Ā−nα = 0. (6.107)

If we now introduce the notation Āα = ΩΦ̄α and observe that ω α
β γ ∂̄

βĀγ = iκP̂α
γĀγ , we

can finally write the equation for the rescaled field as in Eq. (6.62)

(∂̄β ∂̄β +m2)Φ̄α + 2iκP̂α
γΦ̄

γ + 1
2

¨log(g)Φ̄−nα = 0, (6.108)

6.5.2 Massless spin-2 fields in Rosen coordinates
The linearized Einstein equations on a curved background in the TT-gauge ∇µh

µ
ν = 0,

hµ
µ = 0 read [176]

∇ρ∇ρhµν + 2Rρ
µνδh

δ
ρ = 0. (6.109)

In a plane wave we are allowed to fix the gauge condition nµhµν = 0, due to the invariance
of nµ. Let us now deal with the curvature interaction 2Rρ

µνδh
δ

ρ . Due to the condition
nµhµν = 0 this product will select all the terms of the Riemann tensor (see App. A.10)
that do not involve neither nρ nor nδ. It is easy to check that one is left with

2Rρ
µνδh

δ
ρ = −

(
gρλg̈δλ + 1

2 ġ
ρλġδλ

)
h δ

ρ nµnν , (6.110)

such that the full equation reads

∇ρ∇ρhµν −
(
gρλg̈δλ + 1

2 ġ
ρλġδλ

)
h δ

ρ nµnν = 0. (6.111)
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We can now assume the ansatz hl,µν = ΦlEl,µν(ϕ) with the scalar field satisfying the massless
Klein-Gordon equation ∇ρ∇ρΦl = 0. The first term under these hypothesis becomes

∇ρ∇ρhl,µν = 2∇ρΦl∇ρEl,µν + Φl∇ρ∇ρEl,µν

= −2ilρΦl∇ρEl,µν + 2Φlg
ρλΓη

λνΓσ
ρµEl,ησ.

(6.112)

It easy now to show that

gρλΓη
λνΓσ

ρµEl,ησ = −1
4 ġ

ρλġδλE δ
l,ρnµnν . (6.113)

We can now collect all the terms and find a rather compact equation for the polarization
tensor

−2ilρ∇ρEl,µν −
(
gρλg̈δλ + ġρλġδλ

)
E δ

l,ρnµnν = 0. (6.114)

Here one immediately notices that El,µν cannot be just the product of two spin-1 polarization
vectors as in the flat case [8] El,µν ̸= El,µEl,ν . Indeed, in this case the vector would satisfy
the parallel transport equation lρ∇ρEl,µ = 0 and this assumption would directly cancel
the first term in this equation, leaving us with g̈δλEλ

l Eδ
l = 0. Let us now make the gauge

condition ∇µhl,µν = 0 explicit, this reads

−ilµEl,µν − Γλ
µνE

µ
l,λ = 0 or − ilµEl,µν −

1
2 ġµρEµρ

l nν = 0. (6.115)

Given the form of the polarization equation, it is sensible to assume

El,µν = El,µEl,ν + E++
l nµnν , (6.116)

where El,µ is the spin-1 polarization vector. With this assumption and recalling that
lµEl,µ = 0, the gauge condition reduces to

E++
l = i

2l− ġλρEλ
l E

ρ
l

(6.117)

and this is enough to determine the full solution

El,µν = El,µEl,ν −
i

2l− ġ
λρEl,λEl,ρnµnν . (6.118)
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A.1 Light-cone coordinates

A plane wave depends only on the phase φ = k · x, where kµ is the associated momentum.
It is useful to define a reference system in which this dependence is explicit, a system in
which this scalar involves only one coordinate. Such a reference goes under the name of
light-cone basis. Let us assume that the momentum is

kµ = ω(1,n) (119)

where n is the direction of propagation of the wave. The goal is to define coordinates in
which this four-vector is defined by a single number, i.e., has only one non-zero component.
Here, as in the main text, we assume the wave is propagating along z, such that n = z. A
natural basis can thus be chosen as {nα, δα

i , ñ
α}

nα = (1, 0, 0, 1), ñα = 1
2(1, 0, 0,−1) (120)

and choose the following notation for the coordinates in this basis

{x−,x⊥, x+}. (121)

The Minkowski metric in this basis has the form

η′
µν = ηαβ

∂xα

∂x′µ
∂xβ

∂x′ν =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

 , (122)

such that x+ = x− and x− = x+. Clearly in terms of this coordinates the phase is simply
φ = ωx−. It is worth noting that the Jacobian for this change of basis is equal to one, thus
the measure has the natural form d4x = dx−dx+d2x⊥.

A.2 The Landau-Lifshitz equation in a constant magnetic field

The Landau-Lifshitz equation in a constant magnetic field is given by

125
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dπα

dτ
= e

m
Bα

βπ
β + e2

ωem2

[
Bα

γB
γ
βπ

β + 1
m2 (Bβγπ

γ)2πα
]
, (123)

where the electron fundamental frequency is defined as ωe = 3m
2α ≃ 1.6× 1023 Hz [161] and

Bαβ is the magnetic field Maxwell tensor. Observing that (B)2
ij = −H2ηij , we can collect

the constant interaction terms and define the following transformation

πα = exp
[(

e

m
Bα

β −
ω2

H

ωe
ηα

⊥β

)
τ

]
Πβ, (124)

where ηαβ
⊥ = ηijδα

i δ
β
j . such that the equation reduces to:

dΠα

dτ
= ω2

H

ωem2 exp
(
−2ω

2
H

ωe
τηα

⊥β

)
Π2

⊥Πα. (125)

Multiplying by Πα
⊥ yields:

dΠ2
⊥

dτ
= 2 ω2

H

ωem2 exp
(
−2ω

2
H

ωe
τ

)
Π4

⊥ ⇒
dΠ−2

⊥
dτ

= −2 ω2
H

ωem2 exp
(
−2ω

2
H

ωe
τ

)
. (126)

Solving this equation, we find:

Π2
⊥ = m2p2

⊥

p2
⊥ exp

(
−2ω2

H
ωe

∆τ
)

+ 2p+p−
, (127)

where ∆τ = τ − τ0 and τ0 is the time at which the interaction starts. The next step is to
solve:

dΠα

dτ
= ω2

H

ωe

p2
⊥

p2
⊥ + 2p+p− exp

(
2ω2

H
ωe

∆τ
)(Π+nα + Π−ñα)

+ ω2
H

ωe

2p+p−

2p+p− + p2
⊥ exp

(
−2ω2

H
ωe

∆τ
)Πα

⊥,

(128)

for each component individually. This is easily done and the final result reads

πα = m√
p2

⊥ exp
(
−2ω2

H
ωe

∆τ
)

+ 2p+p−

[
p+nα + p−ñα + exp

(
−ω

2
H

ωe
∆τ
)
πα

L,⊥

]
,

(129)

where the transverse solution of the Lorentz equation πα
L,⊥ is given by

πα
L,⊥ = exp

(
e

m
Bα

βτ

)
pβ. (130)
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Let us now consider the motion to be initially (and thus during all the interaction)
in the transverse plane, with p∥ = 0. In this case, the Lorentz factor γ extracted from
π0 = mγ reads

γ(τ) = 1√
1− |v|2 exp

(
−2ω2

H
ωe

∆τ
) , (131)

where we observe the expected exponential damping of the transverse velocity. As a function
of t, the Lorentz factor can be found by using (see e.g. [166] eq. 7.19)

dγ

dt
= d

dτ
log(γ) = −ω

2
H

ωe

|v|2 exp
(
−2ω2

H
ωe

∆τ
)

1− |v|2 exp
(
−2ω2

H
ωe

∆τ
) = −ω

2
H

ωe
(γ2 − 1). (132)

This equation can be integrated to find [108]

γ(t) =
γ0 + 1 + (γ0 − 1) exp

(
−2ω2

H
ωe

∆t
)

γ0 + 1− (γ0 − 1) exp
(
−2ω2

H
ωe

∆t
) . (133)

This result can also be derived from the LL equation for the gamma factor in a constant
magnetic field [see Eq. (137)], assuming an initially transverse velocity

dγ

dt
= −e

2τeγ
2

m2c2 |v ×B|
2 with v = v⊥ ⇒ dγ

dt
= −τeω

2
Hγ

2β2 = −τeω
2
H(γ2 − 1),

(134)
which matches the earlier result. The scale that governs the energy loss due to radiation
reaction effects is set by

2ω
2
H

ωe
∆t ∼ 1 ⇒ ω2

H∆t ∼ 1023 Hz. (135)

If we measure time in units of the cyclotron frequency, we have the condition ωH∆t′ ∼ ωe,
where ∆t′ = ω∆t. To observe RR effects within ∆t′/2π ∼ 100 cycles for example, an
incredibly large frequency ωH ∼ 1020 Hz is required.

A.3 The average rest frame
The average rest frame is a useful choice of reference frame when we want to visualize the
motion in a plane wave. Below, the subscript L (R) indicates quantities in the laboratory
and the average rest frames, respectively. The latter has a relative (drift) velocity as
compared to the former given by vd = vdn, with vd defined via the relation

⟨πR(ϕ) · n⟩ = γ(vd)
[
⟨πL(ϕ) · n⟩ − vd⟨εL(ϕ)⟩

]
= 0. (136)

Here the averages are taken over a plane wave period, thus this definition defines the frame
in which there is no drift velocity along the wave direction but just an oscillating component.
In the average rest frame the electron energy corresponds to the so-called effective mass
m∗ = mγ∗ [141], such that γ∗ =

√
(1 + vd)/(1− vd) describes the relativistic Doppler effect:

ω0,L = γ∗ω0,R (recall that vd is along the propagation direction of the laser).
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A.4 Explicit form of the LL equation
For the sake of completeness let us report the LL equation in terms of the physical
electromagnetic fields (see, e.g., [122] or [183] Eq. 14a, 14b)

d(γv)
dt

= e

m
(E + v ×B) + eτeγ

m

(
dE

dt
+ v × dB

dt

)
+ e2τe

m2c

[1
c

(v ·E)E + c(E + v ×B)×B
]

+ e2τeγ
2

m2c2

[ 1
c2 (v ·E)2 − |E + v ×B|2

]
v,

(137)

dγ

dt
= e

mc2v ·E + eτeγ

mc2 v ·
dE

dt

+ e2τe

m2c2 (E + v ×B) ·E

+ e2τeγ
2

m2c2

[ 1
c2 (v ·E)2 − |E + v ×B|2

]
,

(138)

with τe = 2αℏ
3mc2 = 6.27× 10−24s in physical units and dE

dt = ∂E
∂t + v · ∇E. Combining the

two equations we can explicitly write the evolution of the velocity in the laboratory frame
dv

dt
= e

mγ

[
E + v ×B − 1

c2 (v ·E)v
]

+ eτe

m

[
dE

dt
+ v × dB

dt
−
(
v · dE

dt

)
v

]
+ e2τe

m2cγ

[1
c

(v ·E)E + c(E + v ×B)×B − 1
c

[(E + v ×B) ·E]v
]
.

(139)

A.5 The graviton propagator
The free graviton action reads

Sg.f.
h =

∫
d4x

{1
2∂αhµν∂

αhµν − 1
4∂

µh∂µh

}
. (140)

This is equivalent to the more symmetrical form

Sg.f.
h = −

∫
d4xhαβ□hµνPαβµν , (141)

where Pαβµν is the projector

Pαβµν = 1
2 (ηµαηνβ + ηµβηνα − ηµνηαβ) . (142)

We can now apply the general procedure to find a free propagator. Going to momentum
space we have to solve

k2 Pαβ
µνD

µνρδ = iηαρηβδ (143)

This is trivially done observing that Pαβ
µνPµνρδ = ηαρηβδ + ηαδηβρ which is actually the

unity for symmetric contractions. Therefore

Dαβµν(k) = i

2 k2Pαβµν . (144)
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A.6 Graviton photoproduction in scalar-QED
We recall here the scalar QED Lagrangian

LSQED = −1
4F

µνFµν + (Dµϕ)†Dµϕ−m2ϕ†ϕ. (145)

When we include a graviton in this theory the Lagrangian takes the form

L = LSQED + Lh + LhA + Lhs + LhAs + LhAAs. (146)

For the purpose of calculating the graviton photoproduction we can forget about the last
interaction which involves 5 particles. The Feynman rules can be extracted from the
quantity

ηµν (Dαϕ)†Dαϕ− 2(Dµϕ)†Dνϕ, (147)

from which one finds

p

p′

hµν
= i

κ

2
[
pµp

′ν + pνp
′µ − ηµν(p · p′ +m2)

]
(148)

and

p

p′

hµν

Aα

= ie
κ

2
[
ηαµ(p− p′)ν + ηαν(p− p′)µ − ηµν(p− p′)α] . (149)

One can now verify by hand or with the following simple FORM code that the proportionality
described in Sec. 3.4.1 occurs.
s e,K,m;
s s,t,u,a,A,B,C,D,E,F;
s wi,wf, cth, sth;
v ki,kf,pi,pf,p1,p2,p3,p4, epA,eph, epss;
i i,j, mu , nu , rho , al , be, si, de, th ;
f P;
auto f V;
***

l GravitonPhotoprodA = (
VAss(al,pi, - pi - ki )*Vhss(mu,nu,pi+ki,-pf)*i_/(2*pi.ki) -
VAss(al, pi - kf , -pf)*Vhss(mu,nu,pi,-pi + kf)*i_/(2*pi.kf) -
VhAA(mu,nu,al,be,ki,-ki+kf)*VAss(be,pi,-pf)*i_/(2*ki.kf)+
VhAss(mu,nu, al, pi,-pf) )*epA(al)*eph(mu)*eph(nu);

l ScalarComptonA = (
VAss(mu,pi, - pi - ki )*VAss(nu,pi+ki,-pf)*i_/(2*pi.ki) -
VAss(mu, pi - kf , -pf)*VAss(nu,pi,-pi + kf)*i_/(2*pi.kf) +
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VAAss(mu,nu) )*epA(mu)*eph(nu);

l H = - K/(2*e)*(eph.pf*pi.kf - eph.pi*pi.ki)/ki.kf;

l proportionalitytest = ki.kf*(GravitonPhotoprodA - H*ScalarComptonA);

#include amplitude.h

id epA.ki = 0;
id eph.kf = 0;
id eph.eph = 0;
id kf.epA = pi.epA - pf.epA;
id ki.eph = pf.eph - pi.eph;
id ki.ki = 0;
id ki.kf = ki.pi- ki.pf;
id ki.pf = kf.pi;

bracket e,K,i_;

Print +s;
.end

The header amplitude.h is reported in A.11.3.

A.7 Massless states little group and the Pauli-Lubanski pseu-
dovector

Here we want to briefly investigate the massless states little group [179]. We choose
without losing generality a reference null vector kµ = ω(1, 0, 0, 1) and we want to find the
transformations satisfying

Wµ
νk

ν = kµ. (150)

Now, remember that we can collect the Lorentz generators Mµν introducing rotations and
boosts

J i = −1
2ε

ijkMjk , Ki = M0i (151)

with the angles and rapidity

θk = −1
2ε

kijωjk , ηi = ω0i (152)

such that

i

2ωµνM
µν = i(ηiK

i − θiJ
i) and Λµ

ν = e−i(η·K−θ·J). (153)

Our little group condition is transferred to the algebra as ωµνn
ν = ωµ0 + ωµ3 = 0 and

therefore we get the 3 conditions

η1 = −θ2 , η2 = θ1 , η3 = 0 (154)
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we see here that the rotation along the propagation direction can be whatever we want,
there is no constrain on θ3, this will be shown to be connected to the helicity of the states.
We are than left with the generators (see e.g. [179] p. 71)

K1 + J2 , K2 − J1 , J3. (155)

The first two generators can be put in the form

χl = 1
2f

µν
l Mµν , (156)

in fact

χl = 1
2f

µν
l Mµν = nµηlνMµν = niηljMij + n0ηljM0j (157)

and in terms of boosts and rotations we find

χl = niηljMij + 2n0ηljM0j = ηi3ηljεijkJ
k + ηljKj = ε3lkJ

k +K l = εlkJk +K l (158)

such that

χ1 = K1 + J2 , χ2 = K2 − J1. (159)

The generators of the little group can be collected in the Pauli-Lubanski pseudovector [127],
[25]

Wµ = 1
2εµναβM

ναP β. (160)

Indeed expanding this object we find

W i = P 0J i − εijkP jKk and W 0 = −J iPi. (161)

Choosing Pµ = kµ = ω(1, 0, 0, 1), then

W 1 = ω(J1 +K2) , W 2 = ω(J2 −K1) , W 0 = ωJ3. (162)

We can than express our three generators as

χµ = 1
2εµναβM

ναnβ. (163)

The take home message is that the Pauli-Lubanski operator represents the generators of the
little group (see [25] pag. 215), defining the angular momentum of moving particles (spin
included). Note that, being by definition WµPµ = 0 only 3 components are independent,
and in fact we have 3 generators. This was easy to guess considering that by definition
Wµk

µ = kµk
µ = 0
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A.8 The Carroll group and its connection to plane wave symme-
tries

The plane wave symmetries discussed in Ch. 5 are connected to the so-called Carroll group
(from the Alice in Wonderland author), introduced as a limit of the Poincarè group by
Lèvy-Leblond in [123], therefore let us spend few words about this topic. We start recalling
that a general Poincarè transformation can be written in the form

Poincarè transformation

 x′
0 = γ(x0 + βiRijx

j) + d0

x
′i = Rijxj + γ−1

β2 β
jRjkx

kβi + γx0β
i + ai

, (164)

where R is a rotation matrix. Now, let us set [123]

s = Cx0 , bi = Cβi , a0 = Cd0 (165)

and take the limit C →∞ keeping s, bi, di fixed. In this case we get

Carroll transformation

s′ = s+ biRijx
j + a0

x
′i = Rijxj + ai

(166)

Now, this is in four dimensions, but we can restrict our attention at the slices of constant
phase of the Minkowski space (x+, xi). This restriction is a Carroll manifold, because it
contains a constant isometry ∂+ and the simple metric dxidxi [73]. On this manifold we
have a Carroll symmetry group. The phase is not part of this space so we can just use it as
a parameter of translations and redefine Carroll transformations on this manifold asx

′+ = x+ + biRij(xj + aj − 1
2b

jx−) + a+

x
′i = Rijxj + bix− + ai

(167)

where we also introduces in a proper way a+. Now, if we consider the case in which there
is no rotation in the xi plane we clearly get back our plane wave isometries. Therefore we
conclude that

The plane wave isometry group in d dimensions is the Carroll group in d− 1 dimensions
with broken rotations.

A.9 Brinkmann coordinates as null Fermi coordinates

A very interesting property of Brinkmann coordinates has been pointed out in [42], namely
that Brinkmann coordinates are Fermi normal coordinates constructed on null geodesics.
Let us discuss the general construction of Fermi coordinates on null geodesics (see [42] Sec.
4). First of all we define a null geodesic γµ(ϕ) and we introduce a tetrad eα. As usual we
identify one of the tetrad vectors with the velocity tangent to the geodesics. In this case

e+ = γ̇∂−, (168)
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with the orthonormality conditions along the curve being

ds2|γ = 2e+e− + eiei. (169)

We now consider a point on geodesic γ(0) = x0 and we construct from it spacelike geodesics
xµ(λ) originating from it and perpendicular to e−

µ (x0) on the geodesic:

ẋµ(0)e−
µ (x0) = 0 (170)

Usually the time vector of the tetrad is chosen as the tangent velocity and the spacelike
geodesics are required to be orthogonal to it. In this case both e+

µ (x0) and e−
µ (x0) are

involved [42]. We can introduce the Fermi coordinates yα of the point xµ(λ) as follows

yα(x(λ)) = (x−, λẋµ(0)eα
µ(x0)) (171)

Now, by definition we have that on the geodesic the relation between the general and the
Fermi coordinates is represented by the vierbein, in fact

∂yα

∂xµ

∣∣∣∣
λ=0

= ∂ẏα

∂ẋµ

∣∣∣∣
λ=0

= eα
µ(x0). (172)

With this considerations in mind we can now study the connection between Rosen and
Brinkmann coordinates in these terms.

Let us start with the Rosen metric and consider a null geodesic congruence with tangent
vector e+ ∝ ∂−. We can use the usual vierbein for the Rosen metric eαµe

α
ν = gµν . Now we

require it to be parallel transported along the congruence

e µ
α ;− = 0. (173)

Recalling the form of Christoffel symbols in this metric we get

e µ
α ;− = ñµ(∂µe

λ
α + Γλ

µνe
ν

α ) = ∂−e
λ

α + 1
2g

λρ∂−gρµe
µ

α = 0 (174)

and this is just the symmetry condition (5.15). Therefore, we learn here that this condition
is enough to state that the canonical Rosen vierbein is parallel transported along null
geodesics. As a next step we introduce the geodesics xµ(λ) starting from the original one
in x0 and we require them to have no components tangent to it

ẋµ(0)e−µ(x0) = ẋ−(0) = 0. (175)

These geodesics are defined by

u̇ν −
1
2u

µuρġρµnν = 0, (176)

the condition u−(0) = 0 implies that x− = x−
0 . The metric depends only on the phase,

therefore we have

u̇ν(λ)− 1
2u

µ(λ)uρ(λ)ġρµ(x0)nν = 0. (177)
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From this equation it is clear that the transverse components are linear in the affine
parameter λ, thus

xi = λui
0,⊥ , x+ = u+

0 λ+ 1
4u

i
0u

j
0γ̇ij(x0)λ2. (178)

By definition the transverse Fermi coordinates are just the vierbein projection of these

Xi(λ) = ei
jx

j , X+(λ) = x+ + 1
4 ġρµx

µ
⊥x

ρ
⊥ (179)

and this is exactly the connection between Brinkmann and Rosen coordinates (5.28). This
finally proves that Brinkmann coordinates are null Fermi coordinates. Moreover, we can
expand the metric around the geodesics in term of Fermi coordinates, a general expression
for null geodesics was given in [42] eq. (1.5). The interesting fact is that in the case of GW
this expansion stops at quadratic order reproducing the Brinkmann metric

ds2 = ηµνdX
µdXν +Hij(ϕ)XiXjdϕ2. (180)

It follows that the Brinkmann metric is the metric seen by a free falling observer following
the considered null geodesics.
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A.10 Gravitational wave metrics handbook
In the following table, we collect a few known but useful formulas regarding the Brinkmann
and the Rosen metrics. We refer to the main text for the notation.

Brinkmann
The metric ds2 = ηµνdX

µdXν +Hdϕ2

Christoffel symbols Γλ
µν = nλ

(
1
2Ḣnµnν + 2H(µnν)

)
−Hλnµnν

Riemann tensor Rρµνδ = [Hρνnµnδ − (ρ↔ µ)]− (ν ↔ δ)
Ricci tensor Rµδ = H i

inµnδ

Vierbein Eαµ = ηαµ + H
2 nαnµ

Spin connection ωµαβ = 2nµH[βnα]

Rosen
The metric ds2 = 2dx+dϕ+ γijdx

idxj

Christoffel symbols Γλ
µν = 1

2g
λρ (nµγ̇ρν + nν γ̇ρµ − nργ̇µν)

Riemann tensor Rρµνδ =
[(

1
4γρσγ̇

σλγ̇λν + 1
2 γ̈ρν

)
nµnδ − (ρ↔ µ)

]
− (ν ↔ δ)

Ricci tensor Rµδ =
(

1
4 γ̇

ρλγ̇λρ + 1
2γ

ρλγ̈λρ

)
nµnδ

Vierbein eαµ

Spin connection ωµαβ = −2n[αėβ]µ
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A.11 Codes

A.11.1 Nonlinear Compton scattering (ComptonEWlinear.frm)
The following FORM code calculates the unpolarized squared amplitudes for the process of
nonlinear Compton scattering in QED and in scalar QED. Moreover, this code calculates
the linear limit of these squared amplitudes recovering the known results for Compton
scattering in vacuum.

Here J stands for an integration times the exponential phases [see Eq. (3.20)]

J =
∫
dϕeig(ϕ) (181)

and JAa has to be interpreted as

JAa =
∫
dϕeig(ϕ)Aa(ϕ). (182)

The incoming momenta are pi, ki while the outgoing ones pf , kf .

s e,m,Xi,G,Gc, w, wf,K,J,Jc,E,[1-cos],cos,sin;
v A,Ac,k,kf,ki,pi,pf,Pi,Kf,Pf, Pic, Kfc, Pfc,kfperp, nt, eps, epsc, p1,...,p10,q,p;
i i,j,mu,nu,al,be,rho,de,si,eta;
cf f0,f1,f2,g0,g1,g2,D,Q,Qc,B,C,epA,eph,PI, PIc;
s E,Ep,wp,cth,sth,cph,kfplus,f,fc;
***
#include amplitude.h
off statistics ;
*************************************************************************
*@@ 1/4*SUM_(spin,pol) |M|ˆ2 for NONLINEAR COMPTON SCATTERING in QED @@@
*************************************************************************
*** J represents the integral times esponential phases, ***
*** Jc is its complex conjugate ***

l SquaredAmpSpinor = 1/4*J*Jc*
eˆ2*(g_(1,pf) + m)*
( 1 - e/(2*ki.pf)*g_(1,ki,A))*
( g_(1,mu) )*
( 1 - e/(2*ki.pi)*g_(1,A,ki))*
(g_(1,pi) + m)*
( 1 - e/(2*ki.pi)*g_(1,ki,Ac))*
( g_(1,nu) )*
( 1 - e/(2*ki.pf)*g_(1,Ac,ki))*
-d_(mu,nu) ;

***************************************************************************
*@@ 1/2*SUM_(pol) |M|ˆ2 for NONLINEAR COMPTON SCATTERING in scalar QED @@@
***************************************************************************
l SquaredAmpScalar = 1/2*J*Jc*
( - e*( PI(mu,pi) + PI(mu,pf) )
+ 2*eˆ2*A(mu) )*
( - e*( PIc(nu,pi) + PIc(nu,pf) )
+ 2*eˆ2*Ac(nu) )*
-d_(mu,nu) ;
***
trace4,1;
contract;
***
id PI(mu?,q?) = q(mu) + e*q.A/ki.q*ki(mu) - eˆ2*A.A/(2*ki.q)*ki(mu) ;
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id PIc(mu?,q?) = q(mu) + e*q.Ac/ki.q*ki(mu) - eˆ2*Ac.Ac/(2*ki.q)*ki(mu) ;
***
id ki.A = 0;
id ki.Ac = 0;
id ki.ki = 0;
id kf.kf = 0;
id pi.pi = mˆ2;
id pf.pf = mˆ2;
*
*** Print the full nonlinear result ***
*
bracket e,G,Gc,m,J,Jc ;
print +s SquaredAmpSpinor, SquaredAmpScalar;
.sort
********************
*@@ LINEAR LIMIT @@@
********************
*** there is no contribution from the terms quadratic in A ***
id A.A = 0;
id Ac.Ac = 0;
*** monochromatic plane wave hypothesis, f = eˆ(ik.x) ***
id A.Ac = f*fc*epA(rho,ki)*epA(rho,ki);
id Ac.A = f*fc*epA(rho,ki)*epA(rho,ki);
id A.q? = f*epA(al,ki)*q(al) ;
id Ac.q? = fc*epA(be,ki)*q(be) ;
*** first order expansion of the phase factors ***
id J = 1 + f*e*C(si)*epA(si,ki) ;
id Jc = 1 + fc*e*C(eta)*epA(eta,ki) ;
id C(mu?) = pi(mu)/ki.pi - pf(mu)/ki.pf ;
*** keep only the order eˆ4, momentum conservation requires the product f*fc ***
id eˆ4 = E;
id e = 0;
id E = eˆ4;
*
id fˆ2 = 0;
id fcˆ2 = 0;
*** sum over the incoming wave polarizations ***
id epA(ki,ki) = 0;
id epA(q?,ki)*epA(p?,ki) = -p(mu)*q(nu)*(d_(mu,nu) - (ki(mu)*kf(nu) + kf(mu)*ki(nu))/ki.kf );
id epA(mu?,ki)*epA(mu?,ki) = -(d_(mu,nu) - (ki(mu)*kf(nu) + kf(mu)*ki(nu))/ki.kf )*d_(mu,nu);
*** momentum conservation ***
id pi.pf = pi.ki - pi.kf + mˆ2 ;
id pi.pi = mˆ2;
id pf.pf = mˆ2;
id ki.ki = 0;
id kf.kf = 0;
id kf.pf = pi.ki;
id kf.pfˆ-1 = pi.kiˆ-1;
id pf.ki = pi.kf;
id pf.kiˆ-1 = pi.kfˆ-1;
***
*
#procedure labframe
id pi.kiˆ-2 = (w*m)ˆ-2 ;
id pi.kiˆ-1 = (w*m)ˆ-1 ;
id pi.ki = w*m ;
id pi.kfˆ-2 = (wp*m)ˆ-2 ;
id pi.kfˆ-1 = (wp*m)ˆ-1 ;
id pi.kf = wp*m ;
id ki.kfˆ-2 = (wp*w*[1-cos])ˆ-2 ;
id ki.kfˆ-1 = (wp*w*[1-cos])ˆ-1 ;
id ki.kf = wp*w*[1-cos] ;
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**
id wpˆ-2 = (wˆ-1 + [1-cos]*mˆ-1)*wpˆ-1 ;
id wˆ-2 = (wpˆ-1 - [1-cos]*mˆ-1)*wˆ-1 ;
id wˆ-1*wp = A ;
id wpˆ-1*w = B ;
id wpˆ-1 = wˆ-1 + [1-cos]*mˆ-1 ;
id wˆ-1 = wpˆ-1 - [1-cos]*mˆ-1 ;
id A = wˆ-1*wp ;
id B = wpˆ-1*w ;
id [1-cos] = 1-cos;
id [1-cos]ˆ-1 = (1-cos)ˆ-1;
**
#endprocedure
*
*** factorize and print the linear order ***
.sort
#$fac = factorin_(SquaredAmpSpinor);
Multiply 1/(’$fac’);
#Optimize SquaredAmpSpinor
bracket e,G,Gc,m,f ;
Print +s SquaredAmpSpinor,SquaredAmpScalar;
.sort
Skip;
#write <> "
Squarelinear = (%$)*Squarelinear ;",$fac
*
*** print the lab frame ***
.sort
*#call labframe
bracket e,G,Gc,m,f ;
*Print +s SquaredAmpSpinor,SquaredAmpScalar;
.sort
.end
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A.11.2 Photon emission in a gravitational wave (ComptonGW3.frm)

The following FORM code calculates the unpolarized squared amplitudes for the process of
photon emission in a nonlinear gravitational wave. Moreover, this code calculates the linear
limit of these squared amplitudes recovering the known results for graviton photoproduction.
As in A.11.1 the J stands for the integration involving the exponential terms. Moreover,
this code checks the independence of the probability on the gauge choice. The incoming
momenta are pi, ki while the outgoing ones pf , kf .

s e,m,Xi,G,Gc, w, wf,K,A,[1-cos],cos,sin;
v k,kf,ki,pi,pf,Pi,Kf,Pf, Pic, Kfc, Pfc,kfperp, nt, eps, epsc, PI, PIc, p1,...,p10,q1,...,q10,q,p;
v k5,k6,k7;
i i,j,mu,nu,al,be,rho,de,sig,eta;
i mu1,...,mu40,nu1,...,nu40,i1,...,i40,al1,...,al20;
cf f0,f1,f2,g0,g1,g2,D,Q,Qc,B, eph, epA,P, PG,L,ub,u,vb,v,g,gstring,fprop,Aprop,gprop,prop;
AutoDeclare f V;
s E,Ep,wp,cth,sth,cph,kfplus,f,fc,J,Jc;
***
off stat;
#include amplitude.h
***********************************************************************
*@@ 1/4*SUM_(spin,pol) |M|ˆ2 for NONLINEAR COMPTON SCATTERING IN GW @@@
***********************************************************************
*** Calculation done assuming only transverse polarizations for the incoming graviton ***
*** To check the correctness of the C.S. polarization sum, we calculate the ***
*** squared amplitude first substituting the flat polarization sum and than ***
*** the C.S. polarization sum. The result has to be the same. ***
*** J represents the integral times esponential phases, Jc is its complex conjugate. ***
*
l SquaredAmp1 = 1/4*eˆ2*J*Jc*
(g_(1,pf) + m)*
( gi_(1) - 1/(2*k.pf)*g_(1,Pf,k))*
( g_(1,mu) - Kf(mu)/(k.kf)*g_(1,k) )*
( gi_(1) - 1/(2*k.pi)*g_(1,k,Pi))*
(g_(1,pi) + m)*
( gi_(1) - 1/(2*k.pi)*g_(1,Pic,k))*
( g_(1,nu) - Kfc(nu)/(k.kf)*g_(1,k) )*
( gi_(1) - 1/(2*k.pf)*g_(1,k,Pfc))*
(-d_(mu,nu) + ( k(mu)*kf(nu) + k(nu)*kf(mu))/k.kf ) ;
*
l SquaredAmp2 = 1/4*eˆ2*J*Jc*
(g_(1,pf) + m)*
( gi_(1) - 1/(2*k.pf)*g_(1,Pf,k))*
( g_(1,mu) )*
( gi_(1) - 1/(2*k.pi)*g_(1,k,Pi))*
(g_(1,pi) + m)*
( gi_(1) - 1/(2*k.pi)*g_(1,Pic,k))*
( g_(1,nu) )*
( gi_(1) - 1/(2*k.pf)*g_(1,k,Pfc))*
( - d_(mu,nu) + 1/2*( Kf.Kf + Kfc.Kfc - 2*Kf.Kfc )*k(mu)*k(nu)/(k.kf)ˆ2 +
( k(mu)*(kf(nu) + Kf(nu) - ( kf.Kf + Kf.Kf/2 )*k(nu)/(k.kf) ) +
k(nu)*(kf(mu) + Kfc(mu) - ( kf.Kfc + Kfc.Kfc/2 )*k(mu)/(k.kf) ))/k.kf );
*
l PolarizationSumTest = SquaredAmp1 - SquaredAmp2 ;
*
***
trace4,1;
contract;
***
id k.k = 0;
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id k.Pi = 0;
id k.Pf = 0;
id k.Kf = 0;
id k.Pic = 0;
id k.Pfc = 0;
id k.Kfc = 0;
id kf.kf = 0;
id pi.pi = mˆ2;
id pf.pf = mˆ2;
bracket e,G,Gc,m,J,Jc ;
print +s SquaredAmp1;
.sort
********************
*@@ LINEAR LIMIT @@@
********************
Multiply replace_(k,ki) ;
*** monochromatic plane wave hypothesis, f = eˆ(ik.x) ***
id Pi.Pic = f*fc*Gˆ2/4*eph(pi,mu1)*eph(pi,mu1);
id Pf.Pfc = f*fc*Gˆ2/4*eph(pf,mu2)*eph(pf,mu2);
*
** obs: Kf.Kfc does not contribute in the linear limit **
id Kf.Kfc = A*f*fc*Gˆ2/4*eph(kf,mu3)*eph(kf,mu3);
*
id Kf.Pic = Pi.Kfc ;
id Pi.Kfc = f*fc*Gˆ2/4*eph(pi,mu4)*eph(kf,mu4);
id Kf.Pfc = Pf.Kfc ;
id Pf.Kfc = f*fc*Gˆ2/4*eph(pf,mu5)*eph(kf,mu5);
*
id Pi.q? = - f*G/2*eph(pi,q);
id Pf.q? = - f*G/2*eph(pf,q);
id Kf.q? = - f*G/2*eph(kf,q);
id Pic.q? = - fc*G/2*eph(pi,q);
id Pfc.q? = - fc*G/2*eph(pf,q);
id Kfc.q? = - fc*G/2*eph(kf,q);
*
*** first order expansion of the phase factors ***
id J = 1 + f*G/2*B(al,be)*eph(al,be);
id Jc = 1 + fc*G/2*B(sig,eta)*eph(sig,eta);
id B(mu?,nu?) = pi(mu)*pi(nu)/ki.pi - pf(mu)*pf(nu)/ki.pf - kf(mu)*kf(nu)/ki.kf ;
*
*** Print the full nonlinear result ***
bracket e,G,Gc,m,J,Jc ;
print +s SquaredAmp1 ;
.sort
*** keep only the order eˆ2*Gˆ2, momentum conservation requires the product f*fc ***
id eˆ2*Gˆ2 = E;
id e = 0;
id G = 0;
id E = eˆ2*Gˆ2;
id fcˆ2 = 0;
id fˆ2 = 0;
id f*fc = 1;
*
*** sum over the incoming wave polarizations ***
id eph(p1?,p2?)*eph(p3?,p4?) = PG(mu6,mu7,mu8,mu9)*p1(mu6)*p2(mu7)*p3(mu8)*p4(mu9) ;
id eph(p1?,mu1?)*eph(p3?,mu1?) = PG(mu10,mu11,mu12,mu13)*p1(mu10)*p3(mu12)*d_(mu11,mu13) ;
id PG(al?,be?,mu?,nu?) = 1/2*( L(al,mu)*L(be,nu) + L(al,nu)*L(be,mu) - L(mu,nu)*L(al,be) );
id L(mu?,nu?) = d_(mu,nu) - (ki(mu)*kf(nu) + ki(nu)*kf(mu))/ki.kf ;
***
.sort
*******************************************************************************
* Calculation of the linear squared amplitude from usual linear Feynman rules *



A.11. Codes 141

*******************************************************************************
l ComptonH = -1/2*
G/(2*e)*(pf(mu1)*pi.kf - pi(mu1)*pi.ki)/ki.kf*
(
ub(i1,pf,m)*VAff(mu2,i1,i2)
*fprop(i2,i3,q1,m)
*VAff(al1,i3,i4)*u(i4,pi,m)
+
ub(i1,pf,m)*VAff(al1,i1,i2)
*fprop(i2,i3,q2,m)
*VAff(mu2,i3,i4)*u(i4,pi,m)
)*epA(al1,ki)*eph(mu1,mu2,kf);
*
*** We square the amplitude, summing over the spin, pol. ***
#call vertices
#call squareamplitude(ComptonH,value)
*
*
* We can replace the propagators
*
id prop(q1.q1-mˆ2)ˆ2 = (2*pi.ki)ˆ-2;
id prop(q2.q2-mˆ2)ˆ2 = (-2*pi.kf)ˆ-2;
id prop(q1.q1-mˆ2)ˆ1 = (2*pi.ki)ˆ-1;
id prop(q2.q2-mˆ2)ˆ1 = (-2*pi.kf)ˆ-1;
id prop(q3.q3)ˆ2 = (-2*ki.kf)ˆ-2;
id prop(q3.q3)ˆ1 = (-2*ki.kf)ˆ-1;
id q1 = pi + ki;
id q2 = pi - kf;
id q3 = pi - pf;
*
.sort
*
l LinearTest = SquaredAmp1 - value ;
*
Multiply ki.kfˆ2;
*** momentum conservation ***
id ki.kf = pi.ki -pi.kf ;
id pi.pf = pi.ki -pi.kf + mˆ2 ;
id pi.pi = mˆ2;
id pf.pf = mˆ2;
id ki.ki = 0;
id kf.kf = 0;
id kf.pf = pi.ki;
id kf.pfˆ-1 = pi.kiˆ-1;
id pf.ki = pi.kf;
id pf.kiˆ-1 = pi.kfˆ-1;
***
#procedure labframe
id pi.kiˆ-2 = (w*m)ˆ-2;
id pi.kiˆ-1 = (w*m)ˆ-1;
id pi.ki = w*m;
id pi.kfˆ-2 = (wp*m)ˆ-2;
id pi.kfˆ-1 = (wp*m)ˆ-1;
id pi.kf = wp*m ;
id ki.kfˆ-2 = (wp*w*[1-cos])ˆ-2;
id ki.kfˆ-1 = (wp*w*[1-cos])ˆ-1;
id ki.kf = wp*w*[1-cos] ;
**
id wpˆ-2 = (wˆ-1 + [1-cos]*mˆ-1)*wpˆ-1 ;
id wˆ-2 = (wpˆ-1 - [1-cos]*mˆ-1)*wˆ-1 ;
id wˆ-1*wp = A ;
id wpˆ-1*w = B ;
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id wpˆ-1 = wˆ-1 + [1-cos]*mˆ-1 ;
id wˆ-1 = wpˆ-1 - [1-cos]*mˆ-1 ;
id A = wˆ-1*wp ;
id B = wpˆ-1*w ;
id [1-cos] = 1-cos;
*id [1-cos]ˆ-1 = (1-cos)ˆ-1;
**
#endprocedure
*
*** facatorization and print of the linear limit ***
#$fac = factorin_(SquaredAmp1);
Multiply 1/(’$fac’);
Bracket m,K,e,A;
Print +s SquaredAmp1,SquaredAmp2,PolarizationSumTest,value;
.sort
Skip;
#write <> "
PeheA = (%$)*PeheA ;",$fac
.sort
*** In order to reduce as much as possible the denominators we go to the Lab frame ***
#call labframe
Multiply [1-cos];
#call labframe
id w*wp*cos = m*wp - m*w + w*wp ;
*
Bracket m,K,e;

Print +s LinearTest, PolarizationSumTest ;
#write <> "
HERE THE TWO TESTS "

.end
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A.11.3 (amplitude.h)

#procedure squareamplitude(Amp,Mat)
.sort
*
* We skip everything but Amp. In Amp we look for the highest
* i and al indices
*
Skip;
NSkip ’Amp’;
#$imax = 0;
#do i = 1,40
if ( match(vb(i’i’,?a)) || match(v(i’i’,?a))
|| match(ub(i’i’,?a)) || match(u(i’i’,?a))
|| match(g(i’i’,?a)) || match(g(i?,i’i’,?a))
|| match(fprop(i’i’,?a))
|| match(fprop(i?,i’i’,?a)) );
$imax = ’i’;
endif;
#enddo
#$almax = 0;
#do al = 1,20
if ( match(g(?a,al’al’)) ||
match(Aprop(al’al’,?a)) ||
match(Aprop(al?,al’al’,?a)) ||
match(epA(al’al’,?b)) ||
match(epA(?a,al’al’)) );
$almax = ’al’;
endif;
#enddo
#$mumax = 0;
#do mu = 1,20
if ( match(g(?a,mu’mu’)) ||
match(eph(mu’mu’,mu?,?b)) ||
match(eph(mu?,mu’mu’,?b)) );
$mumax = ’mu’;
endif;
#enddo
.sort
*
*just for a check we print the highest i and al indices
*
#message highest i is i’$imax’, highest al is al’$almax’, highest mu is mu’$mumax’;
*
*Now construct the conjugate
*
Skip;
L ’Amp’C = ’Amp’;
id i_ = -i_;
*
* Make a new set of dummy indices above $imax and $almax.
*
Multiply replace_(
<i1,i{’$imax’+1}>,...,<i’$imax’,i{2*’$imax’}>);
Multiply replace_(
<al1,al{’$almax’+1}>,...,<al’$almax’,al{2*’$almax’}>);
Multiply replace_(
<mu1,mu{’$mumax’+1}>,...,<mu’$mumax’,mu{2*’$mumax’}>);
*
* Exchange rows and columns
*
id g(i1?,i2?,al?) = g(i2,i1,al);
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id g(i1?,i2?) = g(i2,i1);
id fprop(i1?,i2?,?a) = fprop(i2,i1,?a);
id Aprop(al1?,al2?,p?) = Aprop(al2,al1,p);
*
* and exchange u and ub, v and vb
*
Multiply replace_(ub,u,u,ub,vb,v,v,vb);
*
* gamma5 gets a minus sign. Hence k6 <--> k7
*
Multiply replace_(k6,k7,k7,k6);
id g(?a,k5) = -g(?a,k5);
.sort
*
* Now multiply Amp and AmpC to get the matrix element squared.
*
Skip;
Drop,’Amp’,’Amp’C;
L ’Mat’ = ’Amp’*’Amp’C;
*
* Spin sums
*
id u(i1?,p?,m?)*ub(i2?,p?,m?) = g(i1,i2,p)+g(i1,i2)*m;
id v(i1?,p?,m?)*vb(i2?,p?,m?) = -g(i1,i2,p)+g(i1,i2)*m;
id epA(al1?,p?)*epA(al2?,p?) = -d_(al1,al2);
id eph(al1?,al2?,p?)*eph(al3?,al4?,p?) = P(al1,al2,al3,al4);
id P(al?,be?,mu?,nu?) = 1/2*( d_(al,mu)*d_(be,nu) + d_(al,nu)*d_(be,mu) - d_(mu,nu)*d_(al,be) );

*
* Propagators
*
id fprop(i1?,i2?,p?,m?) = (g(i1,i2,p)+g(i1,i2)*m)*prop(p.p-mˆ2);
id Aprop(al1?,al2?,q?) = d_(al1,al2)*prop(q.q);
*
* String the gamma matrices together in traces.
*
repeat id g(i1?,i2?,?a)*g(i2?,i3?,?b) = g(i1,i3,?a,?b);
.sort
Skip;
NSkip ’Mat’;
*
* Now put the traces one by one in
* terms of the built in gammas
*
#do i = 1,10
id,once,g(i1?,i1?,?a) = g_(’i’,?a);
id g_(’i’,k7) = g7_(’i’);
id g_(’i’,k6) = g6_(’i’);
id g_(’i’,k5) = g5_(’i’);
#enddo
.sort
*
* Finally take the traces
*
#do i = 1,10
Trace4,’i’;
#enddo
#endprocedure

#procedure vertices
*******************



A.11. Codes 145

*** CONVENTIONS ***
**In the notation Vabc.. the fields are in decresing spin order, i.e. VhAff.
**All the momenta are incoming.
*******************

*** SCALAR QED ***

id VAss(mu?,p2?,p3?) = -i_*e*( p2(mu) - p3(mu) );
*
id VAAss(mu?,nu?) = 2*i_*eˆ2*d_(mu,nu);

*** QED ***

id VAff(mu?,i1?,i2?) = -i_*e*g(i1,i2,mu);

*** GRAVITON - QED ***

id VhAA(mu?,nu?,al?,be?,p2?,p3?) = i_*K/2*(
p2.p3*2*P(al,be,mu,nu) +
d_(mu,nu)*p2(al)*p3(be) +
d_(al,be)*( p2(mu)*p3(nu) + p3(mu)*p2(nu))-
(d_(al,mu)*p3(nu) + d_(al,nu)*p3(mu))*p2(be)-
(d_(be,mu)*p2(nu) + d_(be,nu)*p2(mu))*p3(al) );
**
id VhAff(mu?,nu?,al?,p3?,p4?,i3?,i4?) = -i_*e*K/4*(
2*d_(mu,nu)*g(i3,i4,al) -
d_(al,mu)*g(i3,i4,nu) -
d_(al,nu)*g(i3,i4,mu) );
**
id Vhff(mu?,nu?, p1?,p2?,i1?,i2?) = i_*K/8*(
(p2(mu) - p1(mu))*g(i1,i2,nu) +
(p2(nu) - p1(nu))*g(i1,i2,mu) +
2*(g(i1,i2,p1) - g(i1,i2,p2) - 2*m*g(i1,i2) )*d_(mu,nu) );

*** GRAVITON - SQED ***

id Vhss(mu?,nu?,p2?,p3?) = i_*K/2*(
p2(mu)*p3(nu) + p3(mu)*p2(nu) -
d_(mu,nu)*( p2.p3 + mˆ2) );
*
id VhAss(mu?,nu?,al?,p3?,p4?) = i_*e*K/2*(
d_(al,mu)*(p3(nu)-p4(nu)) +
d_(al,nu)*(p3(mu)-p4(mu)) -
d_(mu,nu)*(p3(al)-p4(al)) );
***
id P(al?,be?,mu?,nu?) = 1/2*( d_(al,mu)*d_(be,nu) + d_(al,nu)*d_(be,mu) - d_(mu,nu)*d_(al,be) );
***

#endprocedure

#procedure mandelstam(p1,p2,p3,p4,m1,m2,m3,m4)
id ’p1’.’p2’ˆ-2 = (1/2)ˆ-2*(S - ’m1’ˆ2 - ’m2’ˆ2)ˆ-2 ;
id ’p3’.’p4’ˆ-2 = (1/2)ˆ-2*(S - ’m3’ˆ2 - ’m4’ˆ2)ˆ-2 ;
id ’p1’.’p3’ˆ-2 = (-1/2)ˆ-2*(T - ’m1’ˆ2 - ’m3’ˆ2)ˆ-2 ;
id ’p2’.’p4’ˆ-2 = (-1/2)ˆ-2*(T - ’m2’ˆ2 - ’m4’ˆ2)ˆ-2 ;
id ’p1’.’p4’ˆ-2 = (-1/2)ˆ-2*(U - ’m1’ˆ2 - ’m4’ˆ2)ˆ-2 ;
id ’p2’.’p3’ˆ-2 = (-1/2)ˆ-2*(U - ’m2’ˆ2 - ’m3’ˆ2)ˆ-2 ;
*
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id ’p1’.’p2’ˆ-1 = (1/2)ˆ-1*(S - ’m1’ˆ2 - ’m2’ˆ2)ˆ-1 ;
id ’p3’.’p4’ˆ-1 = (1/2)ˆ-1*(S - ’m3’ˆ2 - ’m4’ˆ2)ˆ-1 ;
id ’p1’.’p3’ˆ-1 = (-1/2)ˆ-1*(T - ’m1’ˆ2 - ’m3’ˆ2)ˆ-1 ;
id ’p2’.’p4’ˆ-1 = (-1/2)ˆ-1*(T - ’m2’ˆ2 - ’m4’ˆ2)ˆ-1 ;
id ’p1’.’p4’ˆ-1 = (-1/2)ˆ-1*(U - ’m1’ˆ2 - ’m4’ˆ2)ˆ-1 ;
id ’p2’.’p3’ˆ-1 = (-1/2)ˆ-1*(U - ’m2’ˆ2 - ’m3’ˆ2)ˆ-1 ;
*
id ’p1’.’p2’ = 1/2*(S - ’m1’ˆ2 - ’m2’ˆ2) ;
id ’p3’.’p4’ = 1/2*(S - ’m3’ˆ2 - ’m4’ˆ2) ;
id ’p1’.’p3’ = -1/2*(T - ’m1’ˆ2 - ’m3’ˆ2) ;
id ’p2’.’p4’ = -1/2*(T - ’m2’ˆ2 - ’m4’ˆ2) ;
id ’p1’.’p4’ = -1/2*(U - ’m1’ˆ2 - ’m4’ˆ2);
id ’p2’.’p3’ = -1/2*(U - ’m2’ˆ2 - ’m3’ˆ2) ;
#endprocedure



A.11. Codes 147

Acknowledgments
This thesis would have not been possible without the help of my advisor A. Di Piazza. I am
deeply indebted to him for his patience in dealing with my nonlinear approach to research.
I am thankful to C.H. Keitel for giving my the opportunity of joining the MPIK, the place
where this work was developed.

My journey in Germany would have been much more painful without the company of some
nice people. I am truly grateful to anyone who laughed, drunk or climbed with me in the
last three years. Apparently, this is enough to include all of you. In the end, life is not so
complicated.

Basta che funzioni.



148 Appendix



Bibliography

[1] Center for Relativistic Laser Science (CoReLS). https://www.ibs.re.kr/eng/
sub02_03_05.do.

[2] Extreme Light Infrastructure (ELI). https://eli-laser.eu/.

[3] B. P. Abbott et al. Phys. Rev. Lett., 116:061102, 2016.

[4] M. Abraham. Theorie der Elektrizität. Teubner, Leipzig, 1905.

[5] H. Abramowicz et al. Letter of Intent for the LUXE Experiment. 9 2019.

[6] T. Adamo and A. Ilderton. J. High Energy Phys., 2019:15, 2019.

[7] T. Adamo and A. Ilderton. J. High Energy Phys., 2020:200, 2020.

[8] Tim Adamo, Eduardo Casali, Lionel Mason, and Stefan Nekovar. Scattering on plane
waves and the double copy. Class. Quant. Grav., 35(1):015004, 2018.

[9] Tim Adamo, Andrea Cristofoli, and Anton Ilderton. Classical physics from amplitudes
on curved backgrounds. JHEP, 08:281, 2022.

[10] Tim Adamo, Andrea Cristofoli, Anton Ilderton, and Sonja Klisch. All Order Grav-
itational Waveforms from Scattering Amplitudes. Phys. Rev. Lett., 131(1):011601,
2023.

[11] Gabriella Agazie et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-
wave Background. Astrophys. J. Lett., 951(1):L8, 2023.

[12] Naser Ahmadiniaz, Filippo Maria Balli, Olindo Corradini, José Manuel Dávila, and
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Int. J. Mod. Phys. Conf. Ser., 43:1660201, 2016.

[14] P. C. Aichelburg and R. U. Sexl. On the Gravitational field of a massless particle.
Gen. Rel. Grav., 2:303–3 12, 1971.

[15] E. Kh. Akhmedov. Phys. At. Nucl., 74:1299, 2011.

[16] I. A. Aleksandrov, G. Plunien, and V. M. Shabaev. Phys. Rev. D, 99:016020, 2019.

149

https://www.ibs.re.kr/eng/sub02_03_05.do
https://www.ibs.re.kr/eng/sub02_03_05.do
https://eli-laser.eu/


150 BIBLIOGRAPHY

[17] K. Andrzejewski and S. Prencel. Memory effect, conformal symmetry and gravitational
plane waves. Phys. Lett. B, 782:421–426, 2018.

[18] K. Andrzejewski and S. Prencel. Niederer’s transformation, time-dependent oscillators
and polarized gravitational waves. 10 2018.

[19] G. Ares de Parga and R. Mares. Exact solution of the Herrera equation of motion in
classical electrodynamics. Journal of Mathematical Physics, 40(10), October 1999.

[20] G. Audagnotto, C. H. Keitel, and A. Di Piazza. Proportionality of gravitational and
electromagnetic radiation by an electron in an intense plane wave. Phys. Rev. D,
106(7):076009, 2022.

[21] Giulio Audagnotto and Antonino Di Piazza. Dynamics, quantum states and Compton
scattering in nonlinear gravitational waves. JHEP, 06:023, 2024.

[22] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko. Nucl. Phys., B328:387, 1989.

[23] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko. Electromagnetic Processes at
High Energies in Oriented Single Crystals. World Scientific, Singapore, 1998.

[24] M. Bailes et al. Gravitational-wave physics and astronomy in the 2020s and 2030s.
Nature Rev. Phys., 3(5):344–366, 2021.

[25] V. Bargmann and Eugene P. Wigner. Group Theoretical Discussion of Relativistic
Wave Equations. Proc. Nat. Acad. Sci., 34:211, 1948.

[26] A. O. Barut. Electrodynamics and Classical Theory of Fields and Particles. Dover
Publications, New York, 1980.

[27] F. Bastianelli, O. Corradini, J. M. Dávila, and C. Schubert. Phys. Lett. B, 716:345,
2012.

[28] Yilber Fabian Bautista and Alfredo Guevara, 2019.

[29] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii. Quantum Electrodynamics.
Elsevier Butterworth-Heinemann, Oxford, 1982.

[30] Z. Bern, J. J. M. Carrasco, and Henrik Johansson. Phys. Rev. D, 78:085011, 2008.

[31] Zvi Bern. Living Rev. Rel., 5:5, 2002.

[32] Zvi Bern, John Joseph M. Carrasco, and Henrik Johansson. Phys. Rev. Lett.,
105:061602, 2010.

[33] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, 1982.

[34] N. E. J. Bjerrum-Bohr, Poul H. Damgaard, Guido Festuccia, Ludovic Planté, and
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