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UDK 514.7ANISOTROPIC BIANCHI TYPE-I MASSIVE STRINGCOSMOLOGICAL MODELS IN GENERAL RELATIVITYA. PradhanAbstra
tThe paper deals with the new 
lass of spatially homogeneous and anisotropi
 Bian
hi type-I
osmologi
al models representing massive strings. Some physi
al and geometri
 properties ofthe models are dis
ussed.Key words: massive strings, Bian
hi type-I models, a

elerating universe.1. Introdu
tion, �eld equations and solutionsIn re
ent years, there has been 
onsiderable interest in string 
osmology. Cosmi
strings are topologi
ally stable obje
ts whi
h might be found during a phase transitionin the early universe [1℄. Cosmi
 strings play an important role in the study of theearly universe. These arise during the phase transition after the big bang explosionas the temperature goes down below some 
riti
al temperature as predi
ted by granduni�ed theories [1�5℄. It is believed that 
osmi
 strings give rise to density perturbationswhi
h lead to the formation of galaxies [6℄. These 
osmi
 strings have stress-energy and
ouple to the gravitational �eld. Therefore, it is interesting to study the gravitationale�e
ts that arise from strings. The pioneering work in the formulation of the energy-momentum tensor for 
lassi
al massive strings was done by Letelier [7℄, who 
onsideredthe massive strings to be formed by geometri
 strings with parti
le atta
hed along itsextension. Letelier [8℄ �rst used this idea in obtaining 
osmologi
al solutions in Bian
hiI and Kantowski � Sa
hs spa
e-times. Sta
hel [9℄ has studied massive strings.In this paper, we have investigated exa
t and general solutions for Bian
hi type-I
osmologi
al models for a 
loud of strings whi
h are new and di�erent from the othersolutions.We 
onsider the spatially homogeneous and anisotropi
 Bian
hi type-I metri
 in theform

ds2 = −dt2 + A2dx2 + B2dy2 + C2dz2, (1)where A, B and C are the metri
 fun
tions of 
osmi
 time t only.The energy momentum tensor for a 
loud of massive strings has the form
T j

i = ρuiu
j − λxix

j , (2)where ui and xi satisfy 
ondition
uiui = −xixi = −1, (3)and

uixi = 0, (4)where ρ is the rest energy density for a 
loud of strings with parti
les atta
hed to them,
λ is the string tension density, xi is a unit spa
e-like ve
tor representing the dire
tion



ANISOTROPIC BIANCHI TYPE-I MASSIVE STRING COSMOLOGICAL MODELS 243of strings, so that x1 6= 0 and x2 = x3 = x4 and ui is the four-velo
ity ve
tor satisfyingthe 
onditions giju
iuj = −1 . In a 
o-moving 
o-ordinate system, we have

ui = (0, 0, 0, 1), xi =

(

1

A
, 0, 0, 0

)

. (5)If the parti
le density of the 
on�guration is denoted by ρp , then we have
ρ = ρp + λ. (6)The Einstein's �eld equations (in gravitational units G = c = 1) read

Rj
i −

1

2
Rgj

i = 8πT j
i , (7)where Rj

i is the Ri

i tensor; R = gijRij is the Ri

i s
alar.The �eld equations (7) together with (2) for the line-element (1) subsequently leadto the following system of equations:
B̈

B
+

C̈

C
+

ḂĊ

BC
= 8πλ, (8)

Ä

A
+

C̈

C
+

ȦĊ

AC
= 0, (9)

Ä

A
+

B̈

B
+

ȦḂ

AB
= 0, (10)

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
= 8πρ, (11)where the over-dot stands for the �rst and the double over-dot for the se
ond derivativewith respe
t to 
osmi
 time t .The �eld equations (8)�(11) are a system of four equations in �ve unknown pa-rameters A , B , C , ρ and λ . One additional 
onstraint relating these parameters arerequired to obtain expli
it solutions of the system. We assume that the expansion (θ )in the model is proportional to the shear (σ ) as dis
ussed by Collins et al. [10℄ forspatially homogeneous metri
, the normal 
ongruen
e to the homogeneous expansionsatis�es that the 
ondition σ/θ is 
onstant. This 
ondition leads to

A = Bm, (12)where m is proportionality 
onstant. Equations (10) and (12) lead to
(m + 1)

B̈

Ḃ
+ m2 Ḃ

B
= 0, (13)whi
h on integration redu
es to

B =

(

k2t + α

k3

)k3

, (14)where α and k1 are integrating 
onstants and km+1
2 = k1 and k3 =

m + 1

m2 + m + 1
.A

ordingly, we obtain

A =

(

k2t + α

k3

)mk3

. (15)



244 A. PRADHANNow subtra
ting Eq. (10) from (9), and integrating the resulting expression twi
e andthen by using Eqs. (14) and (15), we obtain
C =

k4

1 − (m + 2)k3

(

k2t + α

k3

)1−(m+1)k3

+ k5

(

k2t + α

k3

)k3

. (16)where k4 and k5 are 
onstants of integrations.After using a suitable transformation of 
oordinates the model of universe (1) redu
esto
ds2 = −

(

k3

k2

)2

dT 2 + T 2mk3dx2 + T 2k3dy2 +

+

[

k4

1 − (m + 1)k3
T 1−(m+1)k3 + k5T

k3

]2

dz2. (17)2. Some physi
al and geometri
 properties of the modelHere we dis
uss some physi
al and kinemati
 properties of string model (17). Theenergy density (ρ), the string tension (λ) and the parti
le density (ρp ) for the model(17) are given by
8πρ =

mk2
2

T 2
+ (m + 1)k2

[

MT−(m+1)k3 + k2k5T
k3−1

NT 2−(m+1)k3 + k5T k3+1

]

, (18)
8πλ =

(k3 − 1)k2
2

k3T 2
+

LT k3−1 − mk2MT−(m+1)k3

NT 2−(m+1)k3 + k5T k3+1
, (19)

8πρp =
(mk3 − k3 + 1)k2

2

k3T 2
+

(2m + 1)k2MT−(m+1)k3 + PT k3−1

NT 2−(m+1)k3 + k5T k3+1
, (20)where

L =
k2
2k5(k3 + 1)

k3
, M =

k2k4((m + 1)k3 − 1)

k3((m + 2)k3 − 1)
,

N =
k4

1 − (m + 2)k3
, P =

k2
2k5(mk3 − 1)

k3
.From Eq. (18), it is found that the energy density ρ is a de
reasing fun
tion of timeand ρ > 0 always. From Fig. 1, it is observed that in the initial time near the big bang,

ρ > 0 for m > 0 . But after that the energy density is always positive both for m > 0or m < 0 .From Eq. (19), it is observed that the parti
le density is negative. From Fig. 2, itis observed that in the initial time λ < 0 for m > 0 but after that for all m (eitherpositive or negative), λ > 0 and it is de
reasing fun
tion of time and approa
hes toa very small positive value at present epo
h.From Eq. (20), it is observed that the parti
le density ρp is also a de
reasing fun
tionof time and ρp > 0 always. From Fig. 3, it is observed that in the initial time near thebig bang, ρp > 0 for m > 0 . But after the initial time the parti
le density is alwayspositive both for m > 0 or m < 0 .The model (17) starts with a big bang at T = 0 and it goes on expanding until it
omes to rest at T = ∞ . We also note that T = 0 and T = ∞ 
orrespond respe
tivelyto the proper time t = 0 and t = ∞ . The initial singularity of the model is of the PointType. Both ρp and λ tend to zero asymptoti
ally.
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Fig. 1. Energy density ρ versus T and m

Fig. 2. Tension density λ versus T and mThe expressions for the s
alar of expansion θ , the magnitude of shear σ2 , the averageanisotropy parameter Am , the de
eleration parameter q and the proper volume V forthe model (17) are given by
θ =

(m + 1)k2

T
+

M + k2k5T
(m+2)k3−1

NT + k5T (m+2)k3
, (21)

σ2 =
1

3

[

k2

T 2
+

{

M + k2k5T
(m+2)k3−1

NT + k5T (m+2)k3

}2

−k2(m + 1)

{

M + k2k5T
(m+2)k3−1

NT 2 + k5T (m+2)k3

}

]

, (22)
Am = −1 + 3
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T
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Fig. 3. Parti
le density ρp versus T and m

q = −1 −
1

[

(m + 1)k2 + M+k2k5T (m+2)k3−1

N+k5T (m+2)k3−1

]2 ×

×

[

−3(m + 1)k2 +
3k2k5{(m + 2)k3 − 1}T (m+2)k3−1

N + k5T (m+2)k3−1
−

−
3

(

M + k2k5T
(m+2)k3−1

) {

N + k3k5(m + 2)T (m+2)k31
}

(N + k5T (m+2)k3−1)2

]

, (24)
V 3 =

k4T

1 − (m + 2)k3
+ k5T

(m+2)k3. (25)The rate of expansion Hi in the dire
tion of x , y and z are given by
H1 =

mk2

T
, H2 =

k2

T
, H3 =

M + k2k5T
(m+2)k3−1

NT + k5T (m+2)k3
. (26)From Eq. (24), it is observed that for k2 = 0 , the de
eleration parameter q = −1as in the 
ase of de Sitter universe. From Fig. 4, it is observed that for m < 5 , q > 0whereas for m ≥ 5 , q < 0 . Thus in this 
ase we have two phases of the model, i.e. fromde
elerating to a

elerating. Re
ent observations reveal that the present universe is ina

elerating phase.It 
an be seen that the spatial volume is zero at T = 0 and it in
reases withthe in
rease of T . This shows that the universe starts evolving with zero volume at

T = 0 and expands with 
osmi
 time T . From Eq. (26), we observe that all the threedire
tional Hubble parameters are zero at T → ∞ and ∞ when T → 0 . In derivedmodel, the energy density tend to in�nity at T = 0 . The model has the point-typesingularity at T = 0 . The shear s
alar diverges at T = 0 . As T → ∞ , the s
ale fa
tors
A(t) , B(t) and C(t) tend to in�nity. The expansion s
alar and shear s
alar all tend tozero as T → ∞ . Sin
e lim

T→∞

σ2

θ2
= const , the model does not approa
h isotropy at late
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Fig. 4. De
eleration parameter q versus T and mtime. The 
osmologi
al evolution of the Bian
hi type-I spa
e-time is expansionary, withall the three s
ale fa
tors monotoni
ally in
reasing fun
tion of time when m > 0 . Thedynami
s of the mean anisotropy parameter depends on the value of m .We have also 
onsidered two parti
ular 
ases when k4 = 0 and k5 = 0 , respe
tively.In these 
ases the geometry of the universe (1) takes the forms
ds2 = −

(

k3

k2

)2

dT 2 + T 2mk3dx2 + T 2k3(dy2 + k2
5dz2), (27)and

ds2 = −

(

k3

k2

)2

dT 2 + T 2mk3dx2 + T 2k3dy2 +
k2
4T

2[1−(m+1)k3]

[1 − (m + 2)k3]2
dz2, (28)respe
tively. In these 
ases the parti
le density and the tension density of the stringare 
omparable at the two ends and they fall o� asymptoti
ally at similar rate. It isobserved that the universe is dominated by massive strings throughout the whole pro
essof evolution. Also, in some 
ases the string always dominates over the parti
le. Otherphysi
al aspe
ts of these models are not reported here.I would like to thank the University Grants Commission, New Delhi, India for full�nan
ial support to attend the international 
onferen
e on �Petrov 2010 AnniversarySymposium on General Relativity and Gravitation� held in Kazan, Russia during Nov.1�6, 2010, where this paper was presented.�åçþìåÀ. Ïðàäõàí. Àíèçîòðîïíûå êîñìîëîãè÷åñêèå ìîäåëè òèïà Áèàíêè-I, îïèñûâàþùèåìàññèâíûå ñòðóíû, â îáùåé òåîðèè îòíîñèòåëüíîñòè.Íàñòîÿùàÿ ðàáîòà ïîñâÿùåíà èññëåäîâàíèþ íîâîãî êëàññà ïðîñòðàíñòâåííî îäíîðîä-íûõ è àíèçîòðîïíûõ êîñìîëîãè÷åñêèõ ìîäåëåé òèïà Áèàíêè-I, îïèñûâàþùèõ ìàññèâíûåñòðóíû. �àññìàòðèâàþòñÿ íåêîòîðûå �èçè÷åñêèå è ãåîìåòðè÷åñêèå ñâîéñòâà äàííûõ ìî-äåëåé.Êëþ÷åâûå ñëîâà: ìàññèâíûå ñòðóíû, ìîäåëè òèïà Áèàíêè-I, óñêîðÿþùàÿñÿ Âñåëåí-íàÿ.
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