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Abstract. In physics, spin is often seen exclusively through the lens of
its phenomenological character: as an intrinsic form of angular momen-
tum. However, there is mounting evidence that spin fundamentally orig-
inates as a quality of geometry, not of dynamics, and recent work further
suggests that the structure of non-relativistic Euclidean three-space is
sufficient to define it. In this paper, we directly explicate this funda-
mentally non-relativistic, geometric nature of spin by constructing non-
commutative algebras of position operators which subsume the structure
of an arbitrary spin system. These “Spin-s Position Algebras” are de-
fined by elementary means and from the properties of Euclidean three-
space alone, and constitute a fundamentally new model for quantum me-
chanical systems with non-zero spin, within which neither position and
spin degrees of freedom, nor position degrees of freedom within them-
selves, commute. This reveals that the observables of a system with spin
can be described completely geometrically as tensors of oriented planar
elements, and that the presence of non-zero spin in a system naturally
generates a non-commutative geometry within it. We will also discuss
the potential for the Spin-s Position Algebras to form the foundation for
a generalisation to arbitrary spin of the Clifford and Duffin–Kemmer–
Petiau algebras.
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1. Introduction

1.1. Spin and Geometry

In non-relativistic physics, spin presents phenomenologically as a form of
angular momentum which is intrinsic to some quantum mechanical systems.

This article is part of the Topical Collection on Proceedings ICCA 13, Holon, 2023, edited
by Uwe Kaehler and Maria Elena Luna-Elizarraras.

∗Corresponding author.

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-024-01322-1&domain=pdf
http://orcid.org/0000-0001-9938-8460


   26 Page 2 of 32 P. T. J. Bradshaw Adv. Appl. Clifford Algebras

Typically, we model such systems using a tensor product between the position-
momentum state space and the “internal” spin state space. The latter is taken
to be an irreducible representation of the real Lie algebra su(2, C). In this
model, a clear line is drawn between the geometry of the space the system
occupies, which is captured in the position-momentum degrees of freedom,
and the spin degrees of freedom. However, the two are more connected than
they might first appear.

To see how, let us first define,

Definition 1.1. (so(3, R)) The real Lie algebra so(3, R),

so(3, R) := span
R
({S1, S2, S3}), (1.1)

with Lie product,

Sa×Sb =
3∑

c=1

εabcSc. (1.2)

It is well-known that so(3, R) generates the Lie group SO(3, R), which is
the group of rotations in Euclidean three-space [15]. These rotations preserve
the Euclidean geometry of the space on which they act, directly connecting
the structure of so(3, R) to this geometry. On the other hand, su(2, C) is
isomorphic as a Lie algebra to so(3, R) [15]. Thus, in principle, it should
be possible to relate the spin degrees of freedom of a system, modelled by
representations of su(2, C) (equiv. so(3, R)), to the geometry of Euclidean
three-space.

A connection between spin and geometry has been investigated in myr-
iad ways by many authors. In the relativistic domain: Savasta et al. [25,26]
associate spin with the SO(4, R) symmetry present between three-velocities
and rates of change of proper time; whereas Kaparulin et al. [20] relate spin to
geometric qualities of a particle worldline. In non-relativistic physics, Bühler
[7] instead connects spin to polarisations of a wave in Euclidean three-space
via the Lie group SL(2, R).

Of principle interest to this paper is the approach taken by Colatto
et al. [8], who introduce a connection between spin generators and non-
commutative position operator algebras in Euclidean three-space,

Definition 1.2. (Position Operator Algebras) Consider the set {x̂a} of posi-
tion operators in a physical model indexed over a set J . The {x̂a} form a
non-commutative position operator algebra iff ∃a, b ∈ J such that,

[
x̂a, x̂b

] �= 0. (1.3)

Otherwise, the {x̂a} form a commutative position operator algebra.

Non-commutative position operator algebras constitute non-commutative
geometries in the sense of [3,13,29], which are employed by many as a way
to incorporate gravity into quantum mechanics. In the case of Colatto et
al., they consider a non-commutative position operator algebra satisfying,
∀p, q ∈ {1, 2, 3},

[
x̂p, x̂q

]
= − i�

m2c2

3∑

r=1

εpqrŜr, (1.4)
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with Ŝr the usual spin generators for a spin-1
2 system. Thus, encoding spin

into quantum mechanical systems in this way invites the possibility of novel
interactions between spin and gravity.

We will generalise this model of Colatto et al. in a number of ways.
Firstly, we will construct real non-commutative position operator algebras.
Secondly, our algebras will be independent of any notion of “internal” space
relied on in most descriptions of spin. Finally, our non-commutative position
operator algebras will model the position and spin degrees of freedom of
a system with arbitrary spin. With these generalisations, we will establish
elementary connections between arbitrary spin and the geometry of Euclidean
three-space through non-commutative geometry. Exploring this connection
will contribute to ongoing efforts to unify quantum mechanics and gravity,
and is paramount to the efficacy of such models in the future.

1.2. Scope of this Paper

This paper is primarily concerned with developing non-commutative position
operator algebras for systems of arbitrary spin in Euclidean three-space; this
is because real algebraic descriptions for the structure of an arbitrary spin
system (by which we mean their algebras of spin generators) are known in this
case [6]. Despite this, many of the constructions given here are valid for space-
times with non-degenerate signatures. Therefore, to lay the groundwork for
future studies, we will develop our ideas using non-degenerate space-times as
much as possible, and specialise to Euclidean three-space only when necessary
to connect to these algebras of generators.

1.3. Desired Properties for a Non-Commutative Position Operator Algebra

Within this paper’s approach to realising spin within a non-commutative
geometry, there are a number of properties that the author wishes a non-
commutative position operator algebra to have:

1. An action of the connected symmetry group for the space(-time) should
be encoded within the algebra, enabling us to algebraically transform
its elements;

2. The generators of the connected symmetry group for the space(-time)
should exist as elements of the algebra and;

3. The structure of a system with arbitrary spin should be subsumed within
the algebra of the generators.

While this may appear to be a challenging list of requirements, the
Clifford and Duffin–Kemmer–Petiau [12,16,23] algebras famously possess all
of these properties. Therefore, to gain a general understanding of the kind of
algebras we wish to construct, let us first study the Clifford algebra.

1.4. The Clifford Algebra

1.4.1. Preliminary Definitions. In order to define and describe the Clifford
algebra, we require some preliminary definitions. First, let us precisely define
our space(-time) and the available geometric information about it,
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Definition 1.3. ((V, g)) Minkowski space-time (V, g) is a pair consisting of
a real (p+q)-dimensional vector space V and a non-degenerate symmetric
bilinear map g : V ×V → R with signature (p, q).

Definition 1.4. (Metric) In this paper, a “metric” is the map g of the Minkowski
space-time (V, g), following the use of this term in relativity.

Remark. The metric g of (V, g) encodes the geometric information between
elements of V . Replacing the metric g with another metric g′ defined over the
same vector space V may result in a Minkowski space-time with a different
geometry. For the purposes of this paper, we shall interpret V as the real
vector space of all position operators in some quantum mechanical system.

Of principal importance to this paper is Euclidean three-space,

Definition 1.5. ((E, δ)) Euclidean three-space (E, δ) is a three-dimensional
Minkowski space-time whose metric has signature (3, 0).

Remark. Since the metric of Euclidean three-space is a special case of a
Minkowski space-time, we will discuss general Minkowski space-times where
possible as specialise to Euclidean three-space only when necessary.

Next, there are some related algebras which will become important in
the definition or to the structure of the Clifford algebra.

Definition 1.6. (Tensor Algebra) The tensor algebra[5] T (V ) of any real vec-
tor space V ,

T (V ) ∼= R ⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ . . . , (1.5)
is a unital, associative algebra with product ⊗ and multiplicative identity 1,
where,

V⊗k :=
k⊗

j=1

V. (1.6)

Elements of the tensor algebra are called “tensors”.

Definition 1.7. (Exterior Algebra) The exterior algebra Λ(V ) of a real vector
space V is a quotient algebra of the tensor algebra,

Λ(V ) ∼= T (V )
I (v⊗w + w⊗v)

, (1.7)

by the two-sided ideal I (v⊗w + w⊗v) generated by all tensors of the given
form, ∀v, w ∈ V . The product of Λ(V ), which we denote by ∧, is antisym-
metric and called the “wedge” product.

Of particular importance to the Clifford algebra are the objects of the
Exterior algebra.

Definition 1.8. (k-blade) A k-blade is the wedge product of k ∈ Z
+ vectors

{vj ∈ V },

v1∧v2∧. . .∧vk =
1
k!

∑

σ∈Sk

sgn(σ)
k⊗

j=1

vσ(j), (1.8)
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where Sk is the set of all permutations of k objects, and sgn(σ) is the sign
of the permutation σ. We may extend this definition to k ∈ N by defining
0-vectors to be scalars R ⊂ Λ(V ).

Remark. k-blades are often interpreted as hypervolume elements with dimen-
sion k [10], and as such have a simple and definite geometrical character.

Definition 1.9. (k-vector) For a given k ∈ N, a k-vector is a real linear combi-
nation of k-blades. We may also refer to k-vectors using prefixes, e.g. bivector
for 2-vector. We denote the space of all k-vectors as Λk(V ).

1.4.2. Definition and Structure of the Clifford Algebra.

Definition 1.10. (Clifford Algebra Cl(V, g)) Given a Minkowski space-time
(V, g), its Clifford algebra [9] Cl(V, g) is the quotient algebra, ∀v, w ∈ V ,

Cl(V, g) ∼= T (V )
I (v⊗w + w⊗v − 2g(v,w))

, (1.9)

by the two-sided ideal I (v⊗w + w⊗v − 2g(v,w)) generated by all tensors of
the given form, ∀v, w ∈ V . We will follow the community by leaving the
product of Cl(V, g) implicit.

We define the Clifford algebra in the above way to explicate its defining
algebraic identity, ∀v, w ∈ V ,

vw + wv = 2g(v,w). (1.10)

This construction is identical to the usual one which makes use of a quadratic
form,

Lemma 1.11. As V is real, definition 1.10 is equivalent to the construction
of Cl(V, g) using a quadratic form.

Proof. See [9]. �

We may understand the structure of Cl(V, g) by relating its elements to
those of the Exterior algebra Λ(V ).

Definition 1.12. (k-blade in Cl(V, g)) A k-blade in Cl(V, g) is defined as in
1.8, with all tensor products ⊗ replaced with Clifford products. We abuse
notation slightly by also denoting it by v1∧v2∧. . .∧vk, ∀k ∈ Z

+.

Lemma 1.13. As a vector space, Cl(V, g) ∼= Λ(V ), and is spanned by the k-
blades.

Proof. See [11]. �

Remark. From Lemma 1.13, we see the Clifford algebra is constructed from
objects which each have a definite geometric character. Furthermore, the
defining algebraic structure of the Clifford algebra (1.10) is controlled entirely
by the properties of the metric g. As such, it is an algebra with a strong and
natural geometric character.
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1.5. The Desired Properties in the Clifford Algebra

With the structure of the Clifford algebra understood, let us see how each of
the properties defined in section 1.3 emerge within it.

1.5.1. Generators and the Action of SO+(p, q, R) in Cl(V, g). The algebraic
structure of Cl(V, g) admits a natural action of bivectors on vectors,

Definition 1.14. (ucl
1) For all a, b, c ∈ V ,

ucl(a∧b)(c) := (a∧b)c − c(a∧b). (1.11)

This action on vectors also outputs vectors.

Lemma 1.15. For all a, b, c ∈ V ,

ucl(a∧b)(c) = −2
(
g(a,c)b − g(b,c)a

)
. (1.12)

Proof. Direct calculation using (1.10). �
Importantly, ucl(a∧b) admits a natural extension of its action to the

whole of Cl(V, g),

Lemma 1.16. We may naturally extend ucl(a∧b) to the whole of Cl(V, g) as
a derivation [5].

Proof. For all a, b ∈ V , A,B ∈ Cl(V, g), we notice that,

(a∧b)(AB) − (AB)(a∧b) =
(
(a∧b)A − A(a∧b)

)
B + A

(
(a∧b)B − B(a∧b)

)
.

This means the algebraic form of ucl(a∧b)(c) within Cl(V, g) is naturally a
derivation. This entails our extension. �

The action of ucl on Cl(V, g) imparts the structure of a Lie algebra on
the subspace of bivectors Λ2(V ) ⊂ Cl(V, g) with the commutator as its Lie
product,

Lemma 1.17. For all a, b, c, d ∈ V ⊂ Cl(V, g),

(a∧b)(c∧d) − (c∧d)(a∧b) = ucl(a∧b)(c∧d) ∈ Λ2(V ). (1.13)

Proof. Direct computation from the left-hand side utilising Lemma 1.15. The
inclusion follows from the derivation property of ucl(a ∧ b) by Lemma 1.16.

�
Remark. Lemma 1.17 reveals the bivectors to be the objects of a Lie algebra
within Cl(V, g), and ucl(a∧b) to be the action of a Lie algebra on Cl(V, g).

To identify this Lie algebra, we must first define,

Definition 1.18. (so(p, q, R)) Given a Minkowski space-time (V, g) whose met-
ric has signature (p, q), the Lie algebra so(p, q, R) is the Lie algebra of all
X ∈ End(V ) such that ∀v, w ∈ V ,

g(X(v),w) + g(v,X(w)) = 0, (1.14)

with the commutator as the Lie product.

1We have chosen the symbol u for this and related actions for no other reason than its
relationship to the maps t and µ defined in Definitions 2.16 and 1.19 respectively.
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Lemma 1.19. Given a Minkowski space-time (V, g) with metric signature (p, q),
and k ∈ R, the map μ, ∀v, w, x ∈ V ,

μ : Λ2(V ) → so(p, q, R)

μ(v∧w) := x �→ k
(
g(v,x)w − g(w,x)v

)
,

(1.15)

is a Lie algebra isomorphism if we endow Λ2(V ) with the Lie product L,
∀a, b, c, d ∈ V ,

L(a∧b, c∧d) := μ(a∧b)(c)∧d + c∧μ(a∧b)(d).

Proof. That μ is a vector space isomorphism is given in [14]. Showing,

μ(L(a∧b, c∧d)) = [μ(a∧b), μ(c∧d)],

may be achieved by direct calculation. �

Corollary 1.20. The Lie algebra of bivectors in Cl(V, g) is Lie algebra iso-
morphic to so(p, q, R),

Proof. This follows immediately from Lemma 1.19. �

Remark. Corollary 1.20 grants us an immediate geometric interpretation for
the objects of so(p, q, R): they are linear combinations of oriented planar
elements. For so(3, R), a 2-blade generates a rotation in SO(3, R), and encodes
both the plane and angle of rotation.

To see the significance of this isomorphism, let us consider the symme-
tries of the geometry encoded by g.

Definition 1.21. (O(p, q, R)) Given a Minkowski space-time (V, g) whose met-
ric has signature (p, q), the Lie group O(p, q, R) is the group of all A ∈ Aut(V )
such that ∀v, w ∈ V ,

g(A(v),A(w)) = g(v,w), (1.16)
with composition as the group product.

Remark. O(p, q, R) is the full group of linear transformations of the Min-
kowski space-time (V, g) which preserve the geometry imparted by g on V .

Definition 1.22. (SO+(p, q, R)) SO+(p, q, R) is the maximal connected Lie
subgroup of O(p, q, R).

Remark. SO+(p, q, R) is the generalisation of SO+(3, 1, R) and SO(3, R) to
arbitrary non-degenerate signatures, preserving both spatial and temporal
orientations.

Lemma 1.23. The Lie algebra of bivectors generates SO+(p, q, R) [15].

Proof. By [14,15,30], the Lie group SO+(p, q, R) is generated by finite prod-
ucts of elements of the form,

exp(X) =
∞∑

j=0

Xj

j!
, (1.17)

where X ∈ so(p, q, R). Using Corollary 1.20, we are done. �
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Lemma 1.24. With ucl(a∧b) extended as a derivation to all of Cl(V, g), there
exists a natural action of SO+(p, q, R) on Cl(V, g) which distributes over ten-
sor products.

Proof. See [21]. �

Remark. The algebraic form of ucl(a∧b) is a result of the algebraic struc-
ture of Cl(V, g). The Duffin-Kemmer-Petiau algebra on V admits a similar
so(p, q, R)-action, ∀a, b, c ∈ V ,

udkp(a∧b)(c) := (a∧b)c − c(a∧b) = −1
2
(
g(a,c)b − g(b,c)a

)
,

which again is derived from the structure of its algebra. The properties of
these actions, such as being a derivation, are determined by their algebraic
forms, which by Lemma 1.24 necessarily affects the character of their in-
duced SO+(p, q, R)-actions. As such, to make general statements about the
relationship between spin, symmetries, and geometry, we must determine if
(a∧ b)c − c(a∧ b) is the general form for the so(p, q, R)-action in an arbi-
trary unital associative algebra, independent of any additional structure in
the algebra. This shall be confirmed in Sect. 2.1.4.

1.5.2. Spin-1
2

Structure in Cl(E, δ). Restricting our attention now to the
Clifford algebra Cl(E, δ) of Euclidean three-space, we may discover the struc-
ture of a spin-1

2 system embedded within the algebraic structure of its bivec-
tors. To explicate this, let us introduce some notation.

Definition 1.25. (S′
p) Consider a Euclidean three-space (E, δ) and a basis

{ea} which is orthonormal with respect to δ. Then, in its Clifford algebra
Cl(E, δ), ∀p ∈ {1, 2, 3},

S′
p := −1

4

3∑

a,b=1

εabp ea∧eb. (1.18)

Lemma 1.26. In Cl(E, δ), ∀p, q ∈ {1, 2, 3},

S′
pS

′
q − S′

qS
′
p =

3∑

r=1

εpqrS
′
r. (1.19)

Proof. Consider equation (1.13) on basis vectors. Then transform both bivec-
tors on the left-hand side using (1.18) and simplify the right-hand side. �

Having recovered the canonical form of so(3, R) from the bivectors of
Cl(E, δ), we quickly discover that R ⊕ Λ2(E) ⊂ Cl(E, δ) is an associative
subalgebra.

Lemma 1.27. In Cl(E, δ), ∀p, q ∈ {1, 2, 3},
1
2
(S′

pS
′
q + S′

qS
′
p) +

1
4
δpq = 0. (1.20)

Proof. See Appendix A. �
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Corollary 1.28. In Cl(E, δ), ∀p, q ∈ {1, 2, 3},

S′
pS

′
q = −1

4
δpq +

1
2

3∑

r=1

εpqrS
′
r. (1.21)

Proof. Follows directly from Lemmas 1.26 and 1.27. �

And so we find,

Theorem 1.29. The subalgebra R⊕Λ2(E) ⊂ Cl(E, δ) under the Clifford prod-
uct is isomorphic as an algebra to the real Pauli algebra,

1 �→ I2, S′
x �→ 1

2
iσx, S′

y �→ −1
2
iσy, S′

z �→ 1
2
iσz,

where I2 is the 2 × 2 identity matrix and {σj} are the 2 × 2 Pauli matrices.

Proof. This can be verified directly using Corollary 1.28. �

Remark. Theorem 1.29 shows that Cl(E, δ) contains the structure of a spin-1
2

system algebraically within R ⊕ Λ2(E). This is widely known, for example in
[1,2,10].

1.5.3. The Origin of these Properties in Cl(E, δ). It is clear from the outset
that, in the case of the Clifford algebra, these properties are connected to its
defining identity (1.10). However, if we are to generalise these properties to
arbitrary spin systems, we must understand the extent of this connection.

Lemma 1.30. There is a hierarchy of identities within Cl(V, g), ∀a, b, c, d ∈ V ,

ab + ba =2g(a,b)
⇓

(a∧b)c − c(a∧b) = − 2
(
g(a,c)b − g(b,c)a

)

⇓
(a∧b)(c∧d) − (c∧d)(a∧b) = ucl(a∧b)(c∧d),

(1.22)

where the implication A ⇒ B indicates that identity B may be derived within
Cl(V, g) assuming identity A alone.

Proof. The second implication follows from the proof of Lemma 1.17, and
the first from the proof of Lemma 1.15. �

Theorem 1.31. The spin- 1
2 structure of Cl(E, δ) is a direct result of its defin-

ing relation, ∀a, b ∈ E,
ab + ba = 2δ(a,b). (1.23)

Proof. The proof of Lemma 1.27 in Appendix A derives Equation (1.20)
directly from (1.23) on basis vectors, utilising elements of Cl(E, δ) whose
algebraic properties are also the result of (1.23). Since (1.19) is also a conse-
quence of (1.23) by Lemma 1.30 we see Corollary 1.28 is as well. By Theorem
1.29, we are done. �
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1.6. Limitations of Clifford Algebra-Based Approach

As an algebra of position operators satisfying the requirements of Sect. 1.3,
the Clifford algebra is fundamentally limited to describing a spin-1

2 system
by Theorem 1.31. As such, we cannot hope to retain its algebraic structure
and describe a system with arbitrary spin. A standard approach to overcome
this problem is to construct a tensor power algebra Cl(E, δ)⊗k; this algebra
contains a Clifford substructure yet contains subalgebras with the structure
of arbitrary spin systems [28] for large enough k. Indeed, subspaces of tensor
products of this algebra also underpin the definition of many classic higher
spin models [4,18,19].

However, considered as an algebra of position operators, this method
also does not meet our requirements. To see why, first note that we are ulti-
mately looking for algebras which may be compatible with quantum mechan-
ical theories of systems with arbitrary spin. In principle, such theories should
be able to accommodate Hamiltonians with arbitrary position-dependent po-
tentials, including, for example, all polynomials of position operators. We
can see from this consideration that the space of all position-dependent po-
tentials is infinite-dimensional. However, regardless of the size of the ten-
sor power, Cl(E, δ)⊗k is always finite-dimensional; this severely limits the
position-dependent potentials which may be algebraically realised within the
Hamiltonians of the model.

As such, we cannot use the Clifford algebra as a base for the algebras of
position operators that we seek. This immediately raises a number of chal-
lenges. Firstly, without the structure of the Clifford algebra, we cannot guar-
antee that our algebras will naturally entail an action of so(p, q, R) within
their structure. Secondly, we have no guarantee that the algebraic form of
this action in our algebras will follow the commutator form of Definition 1.14;
this forces us to consider whether the generators of spin are bivectors for ar-
bitrary spin systems. Finally, it is unclear at this stage if algebras containing
the structure of arbitrary spin systems can be constructed in a consistent
and compatible way with the so(p, q, R)-action we are seeking to implement.
To address these challenges in a way independent of the Clifford algebra, we
must adopt a more synthetic approach.

1.7. Outline

The overall aim of this paper is to demonstrate that the geometry of Eu-
clidean three-space (E, δ) is all that is required to construct algebras of
position operators which naturally model and incorporate the structure of
arbitrary spin systems. Furthermore, we will show that spin is a neces-
sary consequence of geometry and that its presence naturally generates non-
commutative geometries.

To do this, in Sect. 2.1 we will first derive the Lie algebra action for
a general Minkowski space-time (V, g) through elementary arguments using
Householder reflections. Once we have established this, we shall prove that the
so(p, q, R)-action enjoys a unique algebraic form within any unital associative
algebra. This will ensure that the algebraic form of this action is completely
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general and that our knowledge of the Clifford algebra form does not bias
our construction.

Following this, in Sect. 2.2 we shall define the “Indefinite-Spin Posi-
tion Algebra” Pκ(V, g) which incorporates this action, and show that this
established both an SO+(p, q, R)-action, and the geometric character of it
generators as oriented planar elements in general. Then, in Sect. 2.3, we shall
outline the structure of arbitrary spin systems in terms of the spin algebras
A(s), and, in Sect. 2.4 prove that the structure of Pκ(V, g) is compatible with
an arbitrary spin structure.

We will complete our construction in Sect. 3, where we will derive from
Pκ(V, g) the “Spin-s Position Algebra” P(s)

κ (E, δ). In so doing, we will reveal
that the spin of a system naturally generates a non-commutative geometry.
Finally, in Sect. 4, we will contrast the P(s)

κ (E, δ) with other higher spin mod-
els, and consider the implications of these algebras for quantum mechanics.

2. Method

2.1. The General Algebraic so(p, q, R)-action

In order to have a natural SO+(p, q, R) action in our position operator alge-
bras, we must first establish the general form of an so(p, q, R)-action within
it. So far, we have only seen the so(p, q, R)-action in the context of the Clif-
ford algebra, wherein it has a particular form and algebraic implementation.
A priori, it is unclear which aspects of this are particular to the Clifford al-
gebra. Therefore, to ensure the generality of the non-commutative position
operator algebra we are constructing, it is prudent to derive both the form
and algebraic implementation of the so(p, q, R)-action by elementary means
and using only the properties of g to guide us.

2.1.1. g-adjoints. To begin our investigation, let us consider how the metric
g structures the endomorphism algebra End(V ), of which O(p, q, R) is a part.
To this end we define,

Definition 2.1. (g-adjoint) A g-adjoint of an endomorphism A ∈ End(V ) as
an endomorphism B ∈ End(V ) such that ∀v, w ∈ V ,

g(A(v),w) = g(v,B(w)). (2.1)

Lemma 2.2. Suppose B ∈ End(V ) is a g-adjoint of A ∈ End(V ). Then B is
unique, and A is the g-adjoint of B.

Proof. Suppose C ∈ End(V ) is also a g-adjoint of A. Then, ∀v, w ∈ V ,

g(A(v),w) = g(v,B(w)) = g(v,C(w)),

thus,
g(v,(B − C)(w)) = 0.

By the non-degeneracy of g, we have, ∀w ∈ V ,

(B − C)(w) = 0.
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Therefore, B = C. Furthermore, let D ∈ End(V ) be the g-adjoint of B. Then,
∀v, w ∈ V ,

g(v,D(w)) = g(B(v),w) = g(w,B(v)) = g(A(w),v) = g(v,A(w)),

and so from the previous argument D = A. �

Definition 2.3. (Ag) Let Ag ∈ End(V ) denote the unique g-adjoint of A ∈
End(V ).

Remark. The notation Ag is intended to mirror the notations for other im-
portant involutions, such as the transpose MT and Hermitian adjoint M†.

Lemma 2.4. The g-adjoint of the composition A◦B is Bg◦Ag.

Proof. For all v, w ∈ V ,

g(A◦B(v),w) = g(B(v),Ag(w)) = g(v,Bg◦Ag(w)),

which is unique by Lemma 2.2. �

To summarise the developments above, the metric g assigns to each
endomorphism A a unique partner Ag whose action on V is in some sense
compatible with that of A when considered through the structure of g. The
g-adjoint is entirely dependent on the structure of g, and provides us with
another tool to probe it.

The g-adjoints for some endomorphisms are particularly simple,

Definition 2.5. An endomorphism A ∈ End(V ) is self-g-adjoint when Ag =
A, and anti-self-g-adjoint when Ag = −A.

To capture this more precisely, let us define,

Definition 2.6. For all A ∈ End(V ),

a±(A) :=
1
2
(
A ± Ag

)
. (2.2)

Lemma 2.7. For all A ∈ End(V ), a+(A) is self-g-adjoint, and a−(A) is anti-
self-g-adjoint.

Proof. Direct computation. �

Corollary 2.8. Each A ∈ End(V ) may be decomposed into self-g-adjoint and
anti-self-g-adjoint parts,

A = a+(A) + a−(A). (2.3)

Proof. This follows immediately from Definition 2.6 and Lemma 2.7. �

The ability to isolate self- and anti-self-g-adjoint parts of an endomor-
phism will facilitate a rapid identification of the so(p, q, R)-action on vectors
in section 2.1.3.
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2.1.2. Householder Reflections and O(p, q, R). Now, let us limit our efforts
to understanding the structure of O(p, q, R). To begin, let us define a House-
holder reflection,

Definition 2.9. (Householder ReflectionR(a)) Given a Minkowski space-time
(V, g), we define the Householder reflection R(a) for non-null a ∈ V ,

R(a) := v �→ v − 2
g(a,v)
g(a,a)

a.

The Householder reflections, which will henceforth be referred to simply
as “reflections”, are important to the study of O(p, q, R) for a number of
reasons. First,

Lemma 2.10. For all non-null a ∈ V , R(a) ∈ O(p, q, R).

Proof. We may direct compute that, ∀v, w ∈ V ,

g
(
R(a)(v), R(a)(w)

)
= g(v,w). (2.4)

�

Next,

Lemma 2.11. Given a finite set of non-null vectors {aj ∈ V } indexed over
the set {1, . . . , N}, their composition is an orthogonal transformation,

R(a1)◦. . .◦R(aN ) ∈ O(p, q, R). (2.5)

Proof. Direct computation. �

Finally, we may establish the famous Cartan-Dieudonné Theorem,

Theorem 2.12. (Cartan-Dieudonné) All transformations from O(p, q, R) are
compositions of at most (p + q) reflections.

Proof. See [22,24]. �

Thus, studying the reflections grants us access the entirety of O(p, q, R),
which includes SO+(p, q, R). As such, we should be able to identify so(p, q, R)
using them.

2.1.3. The so(p, q, R)-Action from the Algebraic Structure of Reflections.
Now, let us combine the results of the previous two sections by studying the
algebraic structure of the reflections.

Lemma 2.13. All reflections R(a) are self-g-adjoint.

Proof. For all v, w ∈ V ,

g
(
R(a)(v), w

)
= g

(
v − 2

g(a,v)
g(a,a)

a,w
)

= g
(
v, w − 2

g(a,v)
g(a,a)

a
)

= g
(
v,R(a)(w)

)
.

�
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With this in mind, let us consider the properties of a composition of
two reflections R(a)◦R(b).

Lemma 2.14. For all v ∈ V ,

a−
(
R(a)◦R(b)

)
(v) = − 2g(a,b)

g(a,a)g(b,b)
(
g(a,v)b − g(b,v)a

)
(2.6a)

a+

(
R(a)◦R(b)

)
(v) = v +

2g(a,v)
g(a,a)g(b,b)

(
g(a,b)b − g(b,b)a

)
(2.6b)

− 2g(b,v)
g(a,a)g(b,b)

(
g(a,a)b − g(b,a)a

)
. (2.6c)

Proof. Direct computation. �

This immediately reveals that,

Corollary 2.15. The set of all reflections is not closed under composition.

Proof. We note that for two non-null vectors a and b,

a−
(
R(a)◦R(b)

) �= 0,

when g(a,b) �= 0, and thus R(a)◦R(b) cannot be a reflection. �

Corollary 2.15 is well-known, but our method of proving it has revealed
the internal structure of a product of reflections. In particular, Lemma 2.14
reveals the so(p, q, R)-action is present in both expressions. Let us capture
this through a bilinear map,

Definition 2.16. For all a, b ∈ V ,

t : V ×V → End(V )

t(a,b) := v �→ g(a,v)b − g(b,v)a.
(2.7)

Remark. We are not ready to write t(a,b) as the action of a bivector u(a∧b);
first, we would like to be certain that the bivector a∧ b itself enters the
algebraic form of t(a,b).

Corollary 2.17. The product of any two reflections is,

R(a)◦R(b) = id− 2g(a,b)
g(a,a)g(b,b)

t(a,b) +
2

g(a,a)g(b,b)
t(a,b)◦t(a,b). (2.8)

Proof. This is the sum of the results in Lemma 2.14 with a notational change
to t(a,b). �

Remark. Corollary 2.17 shows that the product in the algebra of reflections
is controlled by the so(p, q, R)-action, hinting at the relationship between
compositions of reflections and the elements of SO+(p, q, R).
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2.1.4. The Algebraic Form of the so(p, q, R)-Action on Vectors. Having mo-
tivated the so(p, q, R)-action on V in the form of the map t from reflections,
we must consider how to implement it as an algebraic identity within an
associative algebra. To achieve this aim we seek a third-order tensor f(a, b, c)

Definition 2.18. For all a, b, c ∈ V , and some α, β, γ, δ, ε, ζ ∈ R,
f : V ×V ×V → T (V )

f(a, b, c) =α(a⊗b⊗c) + β(a⊗c⊗b) + γ(b⊗c⊗a)

+ δ(b⊗a⊗c) + ε(c⊗a⊗b) + ζ(c⊗b⊗a),
(2.9)

whose properties match those of t(a,b)(c); this will enable us to construct
a quotient of T (V ) by the two-sided ideal ∀a, b, c ∈ V ,

I (f(a, b, c) − t(a,b)(c)) (2.10)

yielding the most general non-trivial algebra possible which contains the ac-
tion of so(p, q, R) within its structure.

Theorem 2.19. For arbitrary Minkowski space-times (V, g), the only f(a, b, c)
which shares all properties of t(a,b)(c) is,

f(a, b, c) = k
(
(a⊗b − b⊗a)⊗c − c⊗(a⊗b − b⊗a)

)
, (2.11)

where k ∈ R.

Proof. See Appendix B. �

Remark. Theorem 2.19 shows that f(a, b, c) is defined only up to an arbitrary
scaling. This is expected and unproblematic. Understanding the equivalence
of quotient algebras defined using different values of k is beyond the scope of
this paper.

2.2. The Indefinite-Spin Position Algebra

Using Theorem 2.19 we may now define the most general algebra of posi-
tion operators which contains a natural so(p, q, R)-action on vectors, or more
precisely a family of such algebras,

Definition 2.20. Given a Minkowski space-time (V, g), and choosing a value
of k = 1

2 in (2.11), we define the “Indefinite-Spin Position Algebra” Pκ(V, g)
as the quotient, ∀a, b, c ∈ V ,

Pκ(V, g) ∼= T (V )
I ((a∧b)⊗c − c⊗(a∧b) − κ(g(a,c)b − g(b,c)a))

, (2.12)

by the two-sided ideal (2.10), for some κ ∈ R. In this paper, we shall abuse
notation slightly and denote the product of Pκ(V, g) by ⊗, as this is consistent
with the developments of [6].

Remark. We include the κ in this definition to ensure these algebras are
eventually consistent with the Clifford and Duffin-Kemmer-Petiau algebras
defined on (V, g), for which κ = −2 and κ = − 1

2 respectively. More precisely,
for a family of Clifford algebras defined by, ∀a, b, c ∈ V ,

ab + ba = 2κclg(a,b),
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and a family of Duffin-Kemmer-Petiau algebras defined by, ∀a, b, c ∈ V ,

abc + cba = κdkp(g(a,b)c + g(c,b)a),

for some κcl, κdkp ∈ R, then their so(p, q, R)-actions are consistent with the
Pκ(V, g) when κ = −2κcl and κ = − 1

2κdkp respectively.

Remark. The term “indefinite-spin” here foreshadows Theorem 2.44, where
we will show that Pκ(E, δ) does not already contain the structure of any
particular spin. As such, in Definition 3.1 we will quotient it further to define
a new family of algebras each subsuming a particular spin structure.

We must now ensure that our algebraic implementation of the so(p, q, R)-
action in Pκ(V, g) extends to an SO+(p, q, R)-action. To facilitate this discus-
sion, let us capture the so(p, q, R)-action on vectors in Pκ(V, g) through the
multilinear map,

Definition 2.21. (u)

u(a∧b) := c �→ (a∧b)⊗c − c⊗(a∧b) = κt(a,b)(c). (2.13)

Now, let us consider its properties,

Lemma 2.22. For all a, b ∈ V , u(a∧b) may be naturally extended to the whole
of Pκ(V, g) as a derivation. Furthermore,

(a∧b)⊗(c∧d) − (c∧d)⊗(a∧b) = u(a∧b)(c∧d). (2.14)

Proof. Noting that u(a∧ b) and ucl(a∧ b) (recall Definition 1.14) have the
same implementation within their respective algebras (up to scaling), the
derivation property and (2.14) follow the same proofs as for Lemmas 1.16
and 1.17 respectively. �
Remark. Since u(a∧ b) is the unique tensorial implementation of t(a,b) in
Pκ(V, g) (up to scaling), we may consider its properties to be the natural
extension of t(a,b) to Pκ(V, g).

Lemma 2.23. With u(a∧b) extended as a derivation to all of Pκ(V, g), there
exists a natural action of SO+(p, q, R) on Pκ(V, g) which distributes over
tensor products.

Proof. See [21]. �
With Lemma 2.23, we have succeeded in constructing a general non-

commutative algebra of position operators which encodes an action of
SO+(p, q, R) and contains its generators as algebraic elements, in this case the
bivectors Λ2(V ). This construction holds for an arbitrary Minkowski space-
time.

2.3. The Algebraic Structure of Arbitrary Spin Systems

To achieve our final aim from Sect. 1.3, to construct non-commutative po-
sition operators algebras which subsume the structure of an arbitrary spin
system, we will specialise our arguments to Euclidean three-space (E, δ). Do-
ing so will enable us to complete this task by utilising the real arbitrary spin
algebras developed in [6]. For clarity, we will discuss the construction and
composition of these arbitrary spin algebras before proceeding further.
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2.3.1. The Universal Enveloping Algebra U(so(3, R)) of so(3, R). By def-
inition, all spin systems implement the Lie product of so(3, R) within their
algebra of spin operators, more specifically within the commutator between
two spin generators. The most general algebra which implements such a struc-
ture is the universal enveloping algebra U(so(3, R)) of so(3, R),

Definition 2.24. (U(so(3, R))) Given the Lie algebra so(3, R), its universal
enveloping algebra[17] U(so(3, R)) is the quotient algebra,

U(so(3, R)) ∼= T (so(3, R))
I (Sa⊗Sb − Sb⊗Sa − Sa×Sb)

, (2.15)

by the two-sided ideal I (Sa⊗Sb − Sb⊗Sa − Sa×Sb) generated by all tensors
of the given form, ∀Sa, Sb ∈ so(3, R). We will abuse notation for a third time
by also denoting its product by ⊗. This is to ensure consistency with [6].

We may probe the structure of U(so(3, R)) using an action of generators
which captures the structure of the Lie product, namely the adjoint action
[14] ad of U(so(3, R)) on itself,

Definition 2.25. (Adjoint action)
ad : U(so(3, R)) → End(U(so(3, R)))

ad(u) := v �→

⎧
⎪⎨

⎪⎩

uv u ∈ R

u⊗v − v⊗u u ∈ so(3, R)
ad(a)◦ad(b)(v) u = a⊗b.

(2.16)

In particular, we may decompose U(so(3, R)) using the adjoint action
of the Casimir element S2 ∈ U(so(3, R)),

Definition 2.26. (S2)

S2 :=
3∑

a=1

Sa⊗Sa. (2.17)

Doing so naturally identifies the “multipoles”,

Definition 2.27. (Multipoles) For all k ∈ N, the multipole tensors[6] are de-
fined recursively, α ∈ R, v ∈ so(3, R), Bk ∈ so(3, R)⊗k,

M (k) : so(3, R)⊗k → U(so(3, R))

M (0)(α) = α

M (k+1)(v⊗Bk) =
ad(S2 + k(k − 1))◦ad(S2 + k(k + 1))

4(k + 1)(2k + 1)
(
v⊗M (k)(Bk)

)
.

(2.18)

The images of the first few multipoles can be seen Table 1,
The multipoles {M (k)} enjoy a simple relationship with the action of

ad, and therefore with the algebraic structure of U(so(3, R)),

Lemma 2.28. For all k ∈ N, ∀v ∈ so(3, R),

Im(ad(v)◦M (k)) ⊆ Im(M (k)) (2.19a)

ad(S2)◦M (k) = −k(k + 1)M (k). (2.19b)
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Table 1. Images of the multipoles k = 0, . . . , 3 on k-adic
tensors. Adapted from [6]

Multipole Explicit form

M(0)(1) 1

M(1)(Sa) Sa

M(2)(Sa⊗Sb)
∑

σ∈Perm({a,b})

1

2
Sσ(a)⊗Sσ(b) − 1

6
δσ(a)σ(b)S

2

M(3)(Sa⊗Sb⊗Sc)
∑

σ∈Perm({a,b,c})

1

6
Sσ(a)⊗Sσ(b)⊗Sσ(c) − 1

30
δσ(a)σ(b)(3S

2
+ 1)⊗Sσ(c)

Proof. See [6]. �

Furthermore, the multipoles are multiplicatively closed in the following
sense,

Lemma 2.29. For any p, q ∈ N, consider A ∈ Im(M (p)) and B ∈ Im(M (q)).
Then, the product A⊗B can be written as an R[S2]-linear combination of
elements C ∈ ⋃p+q

j=|p−q| Im(M (j)).

Proof. See [6]. �

Together, these properties reveal the significance of the multipoles {M (k)}
to U(so(3, R)): they form a natural “basis” for it, in the sense that,

Lemma 2.30. All elements of U(so(3, R)) can be written as an R[S2]-linear
combination of objects from Im({M (k)}), where R[S2] is the ring of real poly-
nomials of S2.

Proof. See [6]. �

2.3.2. The Spin Algebras A(s). In light of Lemma 2.30, we can see that the
multipoles {M (k)} are closely related to the irreducible representations of
so(3, R), which all derive their structure from U(so(3, R)). We may make this
connection explicit by quotienting U(so(3, R)) by a given multipole to define
the “spin algebras”,

Definition 2.31. (A(s)) The spin algebra for spin s is the quotient algebra,

A(s) :=
U(so(3, R))

I
(
Im(M (2s+1))

) . (2.20)

This quotient by a given multipole entails that,

Lemma 2.32. For all k ∈ Z
+ such that k ≥ 2s + 1, M (k) = 0 in A(s).

Proof. The case k = 2s + 1 follows from the definition of A(s), and the case
k > 2s + 1 follows from the recursive relationship between multipoles of
Definition 2.27. �

Furthermore,
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Lemma 2.33. In A(s), ∀s ∈ {0, 1
2 , 1, 3

2 . . . },
S2 = −s(s + 1). (2.21)

Proof. See [6]. �
Corollary 2.34. For all s ∈ {0, 1

2 , 1, 3
2 . . . }, A(s) is a finite-dimensional real

algebra spanned by {Im(M (k)) | 0 ≤ k ≤ 2s} with dimension dim(A(s)) =
(2s + 1)2.

Proof. This follows from Lemmas 2.30, 2.32, and 2.33. The proof of the di-
mension is given in [6]. �
Remark. The algebraic structure of the spin algebras is exactly that of the
unital associative algebra of generators for a spin-s system, and as such all
irreducible representations of so(3, R) derive their structure from them. In
a full quantum mechanical theory, the multipoles M (k) are the physically
distinct observables for an arbitrary spin system. See [6] for further discussion.

2.4. Suitability of Pκ(E, δ) to Subsume Arbitrary Spin Algebras

In light of the previous section, if we hope to use Pκ(E, δ) to define new
algebras containing arbitrary spin structure, then we must ensure that it
contains no existing spin structure. More precisely, we must ensure that it
contains a subalgebra isomorphic as unital associative algebras to the whole
of U(so(3, R)).

2.4.1. Bivectors and Spin Generators. To begin, let us abuse notation slightly
and define,

Definition 2.35. (Sp) Given an orthonormal basis {ea} of (E, δ), a ∈ {1, 2, 3},
we define, ∀p ∈ {1, 2, 3},

Sp :=
1
2κ

3∑

a,b=1

εabp ea∧eb, (2.22)

which has inverse transformation,

ea∧eb = κ

3∑

p=1

εabpSp. (2.23)

Lemma 2.36. In Pκ(E, δ), ∀p, q ∈ {1, 2, 3}

Sp⊗Sq − Sq⊗Sp =
3∑

r=1

εpqrSr. (2.24)

Proof. Apply (2.22) to (2.14) evaluated on basis vectors {ea}. �
Lemma 2.37. In Pκ(E, δ),

S2 =
1

2κ2

3∑

a,b=1

(ea∧eb)⊗(ea∧eb), (2.25)

and commutes with all bivectors.

Proof. The form of S2 can be seen by applying (2.22) to Definition 2.26. That
it commutes with all bivectors can be directly computed. �
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2.4.2. Pκ(E, δ) and U(so(3, R)). Now that we have established an explicit
Lie algebra isomorphism between the bivectors and spin generators, we must
determine if the algebra of bivectors contained in Pκ(E, δ) is isomorphic
to U(so(3, R)). This is important, as our algebraic implementation of the
so(p, q, R)-action may have unintentionally restricted this algebra à la Theo-
rem 1.31.

First, let us establish that the Casimir element S2 is not a scalar, as this
would certainly indicate that the structure of U(so(3, R)) has been disturbed
in some way.

Lemma 2.38. In Pκ(E, δ), S2 is not equal to a scalar.

Proof. Considering the commutator of S2 with an arbitrary basis vector ed

we find, ∀d ∈ {1, 2, 3},

S2⊗ed − ed⊗S2 = − 1
2κ

3∑

a=1

(
(ea�ea)⊗ed − ed⊗(ea�ea)

)
, (2.26)

where we have introduced the symmetric product,

a�b :=
1
2
(a⊗b + b⊗a).

The right-hand side is clearly non-zero in T (E) and not an element of the
ideal, ∀a, b, c ∈ E,

I ((a∧b)⊗c − c⊗(a∧b) − κ(g(a,c)b − g(b,c)a)) ,

used to construct Pκ(E, δ). Thus, it is non-zero in Pκ(E, δ), and so S2 does
not generally commute with vectors v ∈ E ⊂ Pκ(E, δ). Therefore, it cannot
be a scalar. �

Remark. Notice that in Cl(E, δ) the right-hand side of (2.26) is zero, so S2

commutes with the whole algebra. This is a clear example of how the hierarchy
of Lemma 1.30 induces differences in the algebraic structures of Cl(E, δ) and
Pκ(E, δ).

With that in hand, let us abuse notation to define multipoles of bivec-
tors,

Definition 2.39. The multipoles M (k) written in terms of bivectors are, ∀n ∈
Z

+, ∀j ∈ {1, . . . , n}, ∀aj , bj ∈ {1, 2, 3},

M (n)
( n⊗

j=1

eaj
∧ebj

)
= κn

3∑

p1,...,pn=1

n∏

j=1

εajbjpj
M (n)

( n⊗

m=1

Spm

)
, (2.27)

and M (0)(α) = α, ∀α ∈ R.

For example, ∀a, b, c, d ∈ E,

M (2)
(
(a∧b)⊗(c∧d)

)
=

1
2
(
(a∧b)⊗(c∧d) + (c∧d)⊗(a∧b)

)

−κ2

3
S2

(
δ(a,c)δ(b,d) − δ(a,d)δ(b,c)

)
. (2.28)
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Now, let us explore the possibility that some multipoles of bivectors
may have become zero during the quotient, which would limit the kinds of
spin structures that we could implement within Pκ(E, δ).

Lemma 2.40. �n ∈ Z
+ : M (n) = 0.

Proof. [6] shows that in U(so(3, R)), M (n) = 0 entails S2 = − (n−1)(n+1)
4 . By

Lemma 2.38, S2 is not a scalar in Pκ(E, δ), so by contraposition no multipoles
are zero in Pκ(E, δ). �

With Lemma 2.40 established, we may now show that,

Lemma 2.41. The unital associative algebra homomorphism, ∀p ∈ {1, 2, 3},
φ : U(so(3, R)) → Pκ(E, δ)

φ := Sp �→ 1
2κ

3∑

a,b=1

εabp ea∧eb
(2.29)

is injective.

Proof. That φ as defined on generators can be extended to a unital associative
algebra homomorphism follows from Lemma 2.36. Furthermore, Lemma 2.40
demonstrates that no multipoles in Pκ(E, δ) are zero, and so by Lemma 2.30
we are done. �

We may draw this connection between U(so(3, R)) and Pκ(E, δ) closer
by relating the actions of their generators. First,

Definition 2.42. Let us extend u to be a unital associative algebra action,
∀α ∈ R, A,B ∈ T (Λ2(V )),

u : T (Λ2(V )) → End(Pκ(V, g))

u(A) :=

{
D �→ AD A ∈ R

u(B)◦u(C) A = B⊗C.

(2.30)

Then,

Corollary 2.43. For all, A ∈ T (Λ2(E)),

u(A)|T (Λ2(V )) = ad(A), (2.31)

where we translate bivectors into spin generators and back here appropriate
using Definition 2.35.

Proof. We need only compare the definitions of u and ad in light of Lemma
2.41. �

Finally, we are in a position where we may conclude,

Theorem 2.44. Pκ(E, δ) can support any spin structure.

Proof. Since by Lemma 2.41 U(so(3, R)) ⊂ Pκ(E, δ), Pκ(E, δ) lacks the ad-
ditional structure of any spin algebra A(s). Therefore, we are not limited in
the kinds of spin structures we can impose on Pκ(E, δ). �
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3. Results

3.1. The Indefinite-Spin Position Algebra

The aim of this paper has been to explore the relationship between spin and
geometry by constructing algebras of position operators from a Minkowski
space-time (V, g) which meet three requirements as outlined in Sect. 1.3. This
first two of these requirements are: algebraically containing an action of the
connected symmetry group for the metric g; and containing the generators
of this symmetry group as elements of the algebra. These goals are achieved
for general Minkowski space-times (V, g) within the Indefinite-Spin Position
Algebra, for κ ∈ R, ∀a, b, c ∈ V ,

Pκ(V, g) ∼= T (V )
I ((a∧b)⊗c − c⊗(a∧b) − κ(g(a,c)b − g(b,c)a))

. (3.1)

Our third requirement is to subsume within such an algebra the struc-
ture of a system with arbitrary spin. To do this, we restrict our attention
to Euclidean three-space (E, δ), where we may utilise the spin algebras A(s)

described in Sect. 2.3.2. In Theorem 2.44, we showed that Pκ(E, δ) has no
pre-existing spin structure, and so is the ideal foundational algebra within
which to achieve this aim for arbitrary spin (except for s = 0, which will be
discussed shortly).

3.2. The Spin-s Position Algebras

3.2.1. General Definition. We may now implement the final property from
section 1.3 and complete our construction of non-commutative position op-
erator algebras which subsume the structure of an arbitrary spin system,

Definition 3.1. (P(s)
κ (E, δ)) The Spin-s Position Algebra P(s)

κ (E, δ) for s ∈
{0, 1

2 , 1, . . . } is the quotient algebra,

P(s)
κ (E, δ) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Pκ(E, δ)
I

(
Im(M (2s+1))

) s �= 0

T (E)
Im(M (1))

s = 0,

(3.2)

with the multipole M (2s+1) understood to be tensors of bivectors as in Lemma
2.40.

Remark. When s �= 0, by Lemma 2.41 we are effectively embedding the
structure of A(s) within the algebra of bivectors in Pκ(E, δ). When s =
0, we embed the structure of A(0) into T (E) instead (this difference shall
be explained shortly). Therefore, we find the geometric realisation of spin
generators as bivectors is robust in the presence of arbitrary spin.

Let us explore some immediate consequences of this definition,

Lemma 3.2. For all s ∈ {0, 1
2 , 1, . . . }, in P(s)

κ (E, δ), S2 = −s(s + 1).

Proof. When s = 0, this is clear from the definition, and the case s �= 0
follows from Lemmas 2.33 and 2.41. �
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Lemma 3.3.

P(0)
κ (E, δ) ∼= Sym(E). (3.3)

Proof. The quotient by the ideal I
(
Im(M (1))

)
in Definition 3.1 entails that

in P(0)
κ (E, δ),

[a∧b = 0] ⇒ [a⊗b = b⊗a].

Thus, the definition of P(0)
κ (E, δ) is identical to that of the symmetric algebra

Sym(E). �

Remark. For P(0)
κ (E, δ), the value of κ changes nothing since it is only defined

in the so(3, R)-action on vectors.

Lemma 3.4. For all s ∈ {0, 1
2 , 1, . . . }, P(s)

κ (E, δ) is infinite-dimensional.

Proof. It is easy to see that, ∀s ∈ {0, 1
2 , 1, . . . }, ∀n ∈ Z

+, ∀j ∈ {1, . . . , n},
∀vj ∈ E, the vector space homomorphism,

f : Sym(E) → P(s)
κ (E, δ)

f := 1 �→ 1
f := v1 �→ v1

f := v1�. . .�vn �→ 1
n!

∑

σ∈Sn

vσ(1)⊗. . .⊗vσ(n),

is injective. �

3.2.2. P(0)
κ (E, δ) and Commutative Geometry. To begin our analysis of the

P(s)
κ (E, δ), let us consider the case when s = 0. In Definition 3.1, the s = 0

case derived from T (E) rather than Pκ(E, δ); this is to ensure that P(0)
κ (E, δ)

is identical to the standard commutative position operator algebra of quan-
tum mechanics. In terms of geometry,

Corollary 3.5. In the sense of commuting position operators, the structure
of a spin s = 0 system subsumed within P(0)

κ (E, δ) generates a commutative
geometry.

Proof. The commutative structure in Lemma 3.3 is a direct consequence of
the defining property of A(0), i.e. that all spin generators are zero. �

The zeroing of spin generators in an s = 0 system requires us to treat
this case separately, to ensure consistency with the standard position operator
algebra of quantum mechanics. Otherwise,

Lemma 3.6. Suppose we define,

P̃
(0)

κ (E, δ) ∼= Pκ(E, δ)
I

(
Im(M (1))

) ,

consistently with the P(s �=0)
κ (E, δ). Then, for κ �= 0, ∀a, b ∈ E,

P̃
(0)

κ (E, δ) ∼= R[x]. (3.4)
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Proof. In P̃
(0)

κ (E, δ), the quotient entails, ∀a, b ∈ E,

κ(a∧b) = 0,

and thus, ∀a, b, c ∈ E,

(a∧b)⊗c − c⊗(a∧b) = 0 = κ
(
δ(a,c)b − δ(b,c)a

)
.

Let us now choose {a, b} linearly independent in the above. Then, since κ �= 0,
∀c ∈ E,

[δ(a,c) = 0] ∧ [δ(b,c) = 0] ⇒ [a = 0] ∧ [b = 0],

by the non-degeneracy of δ, contradicting our assumption. Therefore, no such

linearly independent sets of a, b ∈ E exist in P̃
(0)

κ (E, δ), so all a ∈ E ⊂
P̃

(0)

κ (E, δ) are linearly dependent. The isomorphism with R[x] then follows.
�

Remark. Basing P(0)
κ (E, δ) on T (E) instead of Pκ(E, δ) means that it does

not contain an so(3, R)-action on its elements. Therefore, no rotations of its
elements are possible within P(0)

κ (E, δ). While this might seem alarming at
first, recall that in quantum mechanics we may only rotate position operators
using generators of orbital angular momentum, i.e. tensors of both position
and momentum operators, with the action determined by the Heisenberg
algebra. This structure is not present in P(0)

κ (E, δ), and so there is no con-
tradiction.

3.2.3. P(s �=0)
κ (E, δ) and Non-Commutative Geometry. We established in

Corollary 3.5 that the structure of a spin-0 system entails a commutative
geometry within our algebra of position operators. We may generalise this
statement to all spins,

Theorem 3.7. In the sense of non-commuting position operators [3,13,29],
the structure of a spin-s system subsumed within P(s)

κ (E, δ) generates a non-
commutative geometry within P(s)

κ (E, δ) iff s �= 0.

Proof. We may prove the above statement by proving its contraposition. One
direction of this is proven in Corollary 3.5, so let us prove its converse. Assume
a commutative geometry within T (E), so, ∀a, b ∈ E

Λ2(E) = {0}.

Since Im(M (1)) ∼= Λ2(E), our algebra must subsume the structure of a spin-0
system. �

This is the central result of this paper: the presence of spin in a system
entails a natural, spin-dependent non-commutative geometry for that system.
Such non-commutative geometries are much weaker than those common to
the literature [3,13,29], which typically place the position operators into a
Heisenberg-like [27,31] algebra.
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4. Discussion

As a non-commutative algebra of position operators, the P(s)
κ (E, δ) form the

foundation for a fundamentally new approach to incorporating spin into quan-
tum mechanical theories. Of course, each P(s)

κ (E, δ) is not a complete model
for a quantum mechanical point particle. However, it can form part of such
a model which includes additional observables, such as momentum, and ad-
ditional algebraic structure such as dynamical (symplectic) transformations
[9,14]. Despite this difference in scope, it is important that we contrast the
P(s)

κ (E, δ) with standard quantum mechanical models of arbitrary spin sys-
tems.

In such a model, position and spin degrees of freedom always commute
[32], as do the position degrees of freedom within themselves. This shows
that these observables are not independent in any P(s �=0)

κ (E, δ), and necessar-
ily entails higher-order correlations between position and spin, and between
position observables themselves. Clearly such corrections to the commuting
theory must be small to have not yet been observed, but through our approach
they are naturally motivated. The only exception to this statement is the spin-
0 model, which is completely equivalent to the standard quantum mechani-
cal model. Beyond non-relativistic quantum mechanics, the non-commutative
geometric aspects of relativistic generalisations of the P(s �=0)

κ (E, δ) may prove
useful in the construction of theories of quantum gravity which incorporate
both non-commutative geometry and spin.

It is also instructive to contrast the P(s �=0)
κ (E, δ) with other known de-

scriptions of spin-s systems with s �= 0, principally between P(1/2)
κ (E, δ) and

the Clifford, and P(1)
κ (E, δ) and the Duffin–Kemmer–Petiau algebras for Eu-

clidean three-space respectively. The Clifford and Duffin–Kemmer–Petiau al-
gebras are both finite-dimensional whereas both P(1/2)

κ (E, δ) and P(1)
κ (E, δ)

are infinite-dimensional by Lemma 3.4. This makes the P(s)
κ (E, δ) more appro-

priate for constructing models with position-dependent potentials. Further-
more, we may always find a value of κ such that so(3, R)-actions are identical
between P(1/2)

κ (E, δ) and the Clifford algebra, and between P(1)
κ (E, δ) and

the Duffin–Kemmer–Petiau algebra. This suggests the Clifford and Duffin–
Kemmer–Petiau algebras for Euclidean three-space may be recovered from
P(1/2)

κ (E, δ) and P(1)
κ (E, δ) respectively (for particular values of κ). This may

be achieved by further quotienting P(1/2)
κ (E, δ) and P(1)

κ (E, δ) by ideals gen-
erated by their defining algebraic relations. Furthermore, this raises the pos-
sibility that P(s)

κ (E, δ) may be used to derive finite-dimensional, higher-spin
generalisations of both the Clifford and Duffin–Kemmer–Petiau algebras.

5. Conclusion

In this paper, we revealed the relationship between spin and geometry in the
non-relativistic setting through the construction of non-commutative position
operator algebras. We first derived the “Indefinite-Spin Position Algebra”
Pκ(V, g): the most general such algebra incorporating within its structure a
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natural action of the connected symmetry group for the Minkowski space-
time (V, g). Showing that this algebra contained no spin structure itself, we
constructed from it the “Spin-s Position Algebras” a family of position oper-
ator algebras which subsume the structure of a system with arbitrary spin.
When s �= 0, these algebras constitute a fundamentally new model for quan-
tum mechanical systems with non-zero spin in which position and spin oper-
ators naturally do not commute, nor do position operators themselves. These
developments demonstrate that: spin naturally arises from Euclidean geom-
etry; spin can be described completely in terms of oriented planar elements;
and the presence of spin in a system naturally generates a spin-dependent
non-commutative geometry in that system. The possibility of using these
algebras to generalise the Clifford and Duffin–Kemmer–Petiau algebras was
also discussed.
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Appendix A. Proof that M (2)(S′
p ⊗S′

q) = 0 in Cl(E, δ)

Definition A.1. (I) Consider a Euclidean three-space (E, δ) and a basis {ea}
which is orthonormal with respect to δ. Then, we define I ∈ Cl(E, δ),

I := e1∧e2∧e3. (A.1)

This element I is called the “pseudoscalar” element[10] of Cl(E, δ).

Lemma A.2. In Cl(E, δ), the orthonormal set of vectors {ea} satisfy, ∀a, b ∈
{1, 2, 3},

1
2
(
eaeb + ebea

)
= δab. (A.2)

Proof. By the definition of Cl(E, δ). �

Corollary A.3.
I = e1e2e3. (A.3)

Proof. By Lemma A.2 ∀σ ∈ Sk,

sgn(σ)eσ(1)eσ(2)eσ(3) = e1e2e3.

�

Corollary A.4.
II = −1. (A.4)

Proof. Direct computation. �

Lemma A.5. For all a ∈ {1, 2, 3},
eaI = Iea. (A.5)

Proof. Fix k ∈ {1, 2, 3}, then,

ekI = eke1e2e3 = (−1)2e1e2e3ek = Iek.

�

Corollary A.6. For all A ∈ Cl(E, δ),

AI = IA. (A.6)

Proof. This follows directly from A.5 as all elements of Cl(E, δ) are algebraic
combinations of R and the {ea}. �

Lemma A.7. For all a ∈ {1, 2, 3},

Iea =
1
2

3∑

b,c=1

εabc eb∧ec. (A.7)

Proof. Direct computation. �

Corollary A.8. For all b, c ∈ {1, 2, 3},

eb∧ec =
3∑

a=1

εabc Iea. (A.8)
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Proof. Immediate consequence of Lemma A.7. �

Lemma A.9. For all p, q ∈ {1, 2, 3},
1
2
(S′

pS
′
q + S′

qS
′
p) +

1
4
δpq = 0. (A.9)

Proof. From Lemma A.2 we apply,

1
2

3∑

a=1

3∑

b=1

εacdεbfg II
(
eaeb + ebea

)
=

3∑

a=1

3∑

b=1

εacdεbfg IIδab.

Applying Corollaries A.6 and A.8 to the left-hand side, and Corollary A.4 to
the right, we find,

1
2
(
(ec∧ed)(ef ∧eg) + (ef ∧eg)(ec∧ed)

)
= −(δcfδdg − δcgδdf ).

Applying the transformation (1.18) to both sides yields,

1
2
(S′

pS
′
q + S′

qS
′
p) = −1

4
δpq.

�

Appendix B. Proof of the Algebraic Form of t(a,b)(c)

Let us begin by showing some important properties of t(a,b)(c).

Lemma B.1. For all a, b, e ∈ V ,

t(b,a)(e) = −t(a,b)(e). (B.1)

Proof. Direct computation. �

Lemma B.2. For all a, b, e ∈ V ,

t(a,b)(e) + t(b,e)(a) + t(e,a)(b) = 0. (B.2)

Proof. Direct computation. �

Lemma B.3. For all a, b, c, d, e ∈ V ,

t(a,b)◦t(c,d)(e) − t(c,d)◦t(a,b)(e) =

t
(
t(a,b)(c), d

)
(e) + t

(
c, t(a,b)(d)

)
(e).

(B.3)

Proof. Direct computation. �

Remark. Lemma B.3 captures the fact that the vector space of {t(a,b)} is
closed under commutator; this is an explicit realisation of the same fact for
so(p, q, R), which the {t(a,b)} is isomorphic to as a Lie algebra. As such, we
are searching for a third-order tensor whose properties support those required
to encode the Lie algebra structure of so(p, q, R).
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Lemma B.4. The properties of Lemmas B.1, B.2, and B.3 entail the con-
straints, ∀a, b, c, d, e ∈ V ,

f(b, a, e) + f(a, b, e) = 0 (B.4a)
f(a, b, e) + f(b, e, a) + f(e, a, b) = 0 (B.4b)

f(a, b, f(c, d, e)) − f(c, d, f(a, b, e))

− f(f(a, b, c), d, e) − f(c, f(a, b, d), e) = 0
(B.4c)

respectively.

Proof. In any algebra where f(a, b, c) = t(a,b)(c) (replacing the tensor prod-
ucts in f with the product of the algebra), we may translate the properties of
Lemmas B.1, B.2, and B.3 into constraints on f by direct substitution. �

Theorem B.5. For arbitrary Minkowski space-times, the system of constraints
in Lemma B.4 is satisfied only when,

f(a, b, c) = k
(
(a⊗b − b⊗a)⊗c − c⊗(a⊗b − b⊗a)

)
,

where k ∈ R.

Proof. In general, the form of f which satisfies the constraints (B.4a), (B.4b),
and (B.4c) will depend on the dimension of V ; this is because in low dimen-
sion we cannot assume that the tensors in our expressions are all linearly
independent.

When dim(V ) = 1, all non-zero vectors are linearly dependent, so writ-
ing a = kax etc. for some non-zero x ∈ V we have,

f(a, b, c) = (α + β + γ + δ + ε + ζ)kakbkc x⊗x⊗x.

Applying the constraint (B.4a), we find,

α + β + γ + δ + ε + ζ = 0,

and so f(a, b, c) = 0. This trivially satisfies (B.4b) and (B.4c), and is of the
form (B.5).

When imposing the constraints (B.4a)-(B.4c) for dim(V ) ≥ 2, we will
assume where possible that our set of input vectors are linearly independent.
However, linear independence of this set may fail when the dimension of the
space considered is too low. To overcome this difficulty, we will employ the fol-
lowing combinatorial argument. Consider a basis I = {bj} for V indexed over
a set J , and a set of parameterised linear combinations D = {∑j∈J λ

(k)
j bj}

indexed over a set K. Then, to impose a constraint defined with n vectors for
n > dim(V ), let us fix |D| = n − dim(V ) and evaluate it using all n-tuples of
vectors (σ(1), . . . , σ(n)) for all bijective σ : {1, . . . , n} → I ∪ D. We consider
valid only those solutions which are independent of the parameterisation of
the elements of D, and independent of the choice of σ.

Now let us continue with the proof, and implicitly utilise either lin-
ear independence or this combinatorial argument when necessary. When
dim(V ) ≥ 3, imposing the constraint (B.4a) entails,

[α = −δ] ∧ [β = −γ] ∧ [ε = −ζ], (B.5)
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and so,

f(a, b, c) = α(a⊗b− b⊗a)⊗c+ ε c⊗(a⊗b− b⊗a)+β
(
a⊗c⊗b− b⊗c⊗a

)
. (B.6)

Next, imposing (B.4b) on (B.6) entails,

[α + ε = β], (B.7)

thus,
f(a, b, c) = α(a⊗b − b⊗a)⊗c + ε c⊗(a⊗b − b⊗a)

+ (α + ε)
(
a⊗c⊗b − b⊗c⊗a

)
.

(B.8)

Finally, imposing (B.4c) on (B.8) entails,

[α2 + αε = 0] ∧ [ε2 + αε = 0] ∧ [(α + ε)2 = 0],

which reduces to,
[α = −ε], (B.9)

yielding (B.5).
There is an edge case when dim(V ) = 2 which we shall now address.

Imposing (B.4a) yields (B.5) as before, however, in two-dimensions, all tensors
of the form (B.6) satisfy the constraint (B.4b). Thus, we must impose (B.4c)
directly on (B.6), yielding,

(
[α = −ε] ∧ [β = 0]

) ∨ (
[α = ε] ∧ [β = −ε]

)
.

The first solution in the above gives the general case, and the second solution
yields only a trivial solution,

f(a, b, c) = α
(
a∧b∧c

)
= 0,

with the final equality following from the necessary linear dependence of
{a, b, c}. �
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