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Fig. 1. Two-leg SSH model: (a) Two-leg (labeled respectively by A and B) superconducting circuits with transmon qubits. The
qubits are coupled with their nearest-neighbor sites. All couplers are capacitors. C,; and EJV ; are the effective capacitance and the
Josephson energy of the qubit at the jth site on the vth leg. Cy;; and Cap; are the capacitors to couple the qubits at the jth site
on the vth leg with its nearest-neighbor sites along each leg and between the legs, respectively. ¢,; is the phase of the Josephson
junction of the qubit at the jth site on the vth leg. The Josephson junction of the transmon qubit is a superconducting quantum in-
terference device(SQUID). El{g is the Josephson energy of SQUID. Each qubit is modulate by two external magnetic fluxes 45(“13-) ()
and 455,2]) (t).
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Abstract

Topological gapless systems, as the connection of the different topological quantum phases, have received
much attention. Topological nonmediocre nodes are typically observed in two- or three-dimensional gapless
systems. In this paper, we demonstrate that the topological nonmediocre nodes are existent in a model that lies
between one dimension and two dimensions. Superconducting circuits, as essential all-solid state quantum
devices, have offered a promising platform for studying the macro-controlling quantum effects. Recently,
experimental achievements have enabled the realization of tunable coupling strengths between transmon qubits
and the implementation of a one-dimensional Su-Schrieffer-Heeger (SSH) model [Li X et al. 2018 Phys. Rev.
Appl. 10 054009]. According to this work, herein we present a two-leg SSH model implemented in
superconducting circuits and demonstrate the existence of topological nonmediocre nodes. Firstly, two-leg
superconducting circuit with transmon qubits which are coupled with their nearest-neighbor sites by capacitors
is designed. To construct the two-leg SSH model, we introduce two alternating-current magnetic fluxes to drive
each transmon qubit. We discover two types of phase boundaries in the SSH model and obtain the
corresponding energy spectra and phase diagram. We identify two distinct topological insulating phases
characterized by winding number +1, and the corresponding edge states exhibit distinct characteristics.
Moreover, we discuss the topological properties of the two phase boundaries. By representing the Bloch states
as a vector field in k space, we demonstrate the existence of two kinks of nonmediocre nodes with first-type
phase boundaries. These two nonmediocrenodes possess distinct topological charges of 1 and —1, respectively. On
the other hand, the nonmediocre nodes with the second-type phase boundaries are topologically trivial. These
results open the way for exploring novel topological states, ladder physical systems, and nodal point topological

semimetals.
Keywords: superconducting circuits , two-leg Su-Schrieffer-Heeger model, nodal points
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