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拓扑无能隙系统作为不同量子相的连接, 目前已经成为备受关注的前沿科学. 超导量子电路作为一个重

要的全固态量子器件是宏观调控量子效应的优秀平台. 本文在超导量子电路中构建了双链的 Su-Schrieffer-Heeger

(SSH)模型并发现了拓扑非平庸的节点. 首先设计了电容耦合的双链 transmon比特, 之后用两个交流微波驱

动每一个 transmon比特, 从而实现比特间耦合强度的独立调控, 最后通过选择比特间合适的耦合参数实现交

错的双链 SSH模型. 接下来探索了交错双链 SSH模型的拓扑性质, 首先计算了 k 空间中双链 SSH模型的本

征能量, 并发现了两种类型的相边界. 之后在参数空间中画出了拓扑相图, 发现了两类拓扑绝缘相, 其拓扑数

分别为 1和–1, 对应有两类边界态 . 拓扑相图也进一步给出了两类相边界的分布以及它们两侧拓扑数的值 .

最后分析了两类相边界的拓扑性质, 发现其中一类拓扑相边界对应的能带有两个拓扑非平庸的节点. 本文的

工作为探索链条型物理系统、拓扑物态以及节点型拓扑半金属提供了新的途径.
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 1   引　言

随着拓扑能带理论的发展, 拓扑量子相 [1,2] 已

经成为了凝聚态物理中备受关注的领域. 目前拓扑

量子材料的前沿科学已经从具有能隙的拓扑绝缘

体扩展到了无能隙的拓扑半金属 [3−6]. 拓扑无能隙

系统作为两个量子相的连接, 其能带在动量空间中

有接触点, 这些接触点称为节点 [4,7−18]. 节点通常

以辅助向量场的拓扑缺陷的形式出现. 由于这些点

受到对称性保护, 因此它们是不会消失的, 除非一

对点相遇之后湮灭. 典型的节点有狄拉克点 [7−9] 和

外尔点 [10−12]. 狄拉克点是四重简并线性能带的交

叉点, 其低能态具有四分量旋量形式. 狄拉克点通

常受到一些特殊的对称性保护, 例如时间反演对称

性、反转对称性和晶格对称性. 外尔点通常是一对

双重简并的线性交叉点, 外尔点的出现意味着系统

打破了时间反演对称性或反转对称性. 这些典型的

节点通常只能出现在二维或三维空间中. 本文提供

了一个介于一维和二维之间的两链模型, 并在这一

模型中发现了拓扑非平庸的节点.

近年来, 微纳米技术的快速发展使得全固态量

子器件超导量子电路成为了量子信息 [19−22]、量子

计算 [23−26] 以及量子模拟 [27−34] 的优秀平台. 相比

于其他量子平台, 超导量子电路系统在扩展性、集

成性、调控性等方面都具有更大的优势 [35−38]. 基于

这些优势, 大量的量子模拟工作已经在超导量子电

路系统中实现, 如多体局域化 [28]、动力学量子相变 [27]、
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磁性物理 [29,30]、量子行走 [39] 以及拓扑材料 [31,32] 等.

最近, 实验 [40] 上已经实现了由 24个最近邻耦合

的 transmon比特构造的双链结构, 并模拟出了双

链玻色-哈伯德模型, 进一步探索了系统中单激发

和双激发的动力学特性. 同时, 实验 [41,42] 中实现了

transmon比特之间耦合强度的独立可调, 并且模

拟出了单链的 Su-Schrieffer-Heeger  (SSH)模型 ,

进一步观测到了拓扑非平庸的磁子绝缘体 [31]. 因

此 , 基于目前的实验现状 , 可以通过改变双链

transmon比特间的耦合强度在超导量子电路中实

现双链 SSH模型.

基于以上的实验及理论工作, 本文提出了利

用 transmon比特实现耦合强度独立可调的双链

SSH模型的可行性实验方案, 并在这一模型中发

现了拓扑非平庸的节点. 本文首先设计了电容耦合

的双链 transmon比特, 然后用两个交流微波驱动

每一个 transmon比特, 从而实现比特间耦合强度

的独立调控, 最后通过改变比特间耦合参数实现交

错耦合的双链 SSH模型. 接下来探索双链 SSH模

型的拓扑性质, 首先计算 k 空间中双链 SSH模型

的本征能量, 并发现了两种类型的相边界. 之后在

参数空间中画出拓扑相图, 发现了两类拓扑绝缘

相, 拓扑数分别为 1和–1, 对应有两类边界态. 拓

扑相图也进一步给出了两类相边界的分布以及它

们两侧拓扑数的值. 最后分析了两类相边界的拓扑

性质, 将布洛赫态映射为 k 空间的矢量场, 发现第

一类相边界对应能带的节点处, 矢量场存在两个扭

结. 两个节点有相反的拓扑荷分别为 1和–1, 并且

受到平移和反转对称性的保护. 另外, 本文发现第

二类相边界的能带节点是拓扑平庸的. 本文的工作

为探索链条型物理系统、拓扑物态以及节点型拓扑

半金属提供了新的途径.

 2   理论模型

目前, 双链耦合的超导量子比特链已经在实

验上实现 [40]. 基于这一实验, 本文用 transmon比

特设计了双链的 Su-Schrieffer-Heeger (SSH)模型.

如图 1(a)所示 , 两条比特链中所有最近邻比特
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图 1    双链 SSH模型  (a) 两条 transmon比特链分别标记为 A 和 B. 每个 transmon比特都与其最近邻比特两两耦合 . 这里所有

的耦合器均为电容.   表示的是第 n 条链上的第 j 个比特.   和   分别是第 n 条链上, 第 j 个比特的有效电容和约瑟夫森能.

 是耦合第 n 条链上 , 第 i 和第 j 个比特的电容 .   表示 A, B 两条链上第 j 个比特之间耦合的电容 .   是第 n 条链上 , 第

j 个比特的约瑟夫森结的相位. 本文中 transmon比特的约瑟夫森结由超导量子干涉仪 (SQUID)形成,   是 SQUID中每个约瑟

夫森结的能量 . 每个比特都受到两个外加磁通   和   的调制 . (b) 双链 SSH模型示意图 , 图中红色和蓝色的实心球表

示 SSH模型中一个原胞的两种比特
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Fig. 1. Two-leg  SSH  model:  (a)  Two-leg  (labeled  respectively  by A  and B)  superconducting  circuits  with  transmon  qubits.  The

qubits are coupled with their nearest-neighbor sites. All couplers are capacitors.    and    are the effective capacitance and the

Josephson energy of the qubit at the jth site on the    leg.    and    are the capacitors to couple the qubits at the jth site

on the     leg with its nearest-neighbor sites along each leg and between the legs, respectively.     is the phase of the Josephson

junction of the qubit at the jth site on the    leg. The Josephson junction of the transmon qubit is a superconducting quantum in-

terference device(SQUID).    is the Josephson energy of SQUID. Each qubit is modulate by two external magnetic fluxes  

and   .
 

物 理 学 报   Acta  Phys.  Sin.   Vol. 72, No. 14 (2023)    140301

140301-2



之间都通过电容进行耦合, 相应的拉氏量表示为 

L =
∑
ν,j

[
Cνj

2
ϕ̇2νj + EJ

νj cos
(
ϕνj
ϕ0

)]

+
∑

ν,⟨i,j⟩

[
Cνij

2

(
ϕ̇νi − ϕ̇νj

)2]

+
∑
j

[
CABj

2

(
ϕ̇Aj − ϕ̇Bj

)2]
, (1)

ν = A/B

Cνj

EJ
νj

Cνij

CABj

ϕνj ϕ0 = 1/ (2e)

⟨i, j⟩
ϕ̂νj

式中, 每条链上比特的位置用 j 标记, 不同的链用

 来标记. 第 n 条链上, 第 j 个比特的电容

用  来表示. 第 n 条链上, 第 j 个比特的约瑟夫森

能用  表示. 第 n 条链上, 第 i 和第 j 个比特之间

耦合的电容用  表示. A, B 两条链上第 j 个比特

之间耦合的电容用  表示. 第 n 条链上, 第 j 个

比特中约瑟夫森结的相位用  表示,  

是其量子化单位.    是每条链上最近邻比特的

求和. 如果选择   为正则坐标, 相应的正则动量

可以表示为 

q̂νj = ∂L/∂
˙̂
ϕνj

= Cνj
˙̂
ϕνj +

∑
j⟨i⟩

Cνj

(
˙̂
ϕνj − ˙̂

ϕνj⟨i⟩

)

+ Cνν′j

(
˙̂
ϕνi − ˙̂

ϕν′i

)
, (2)

j⟨i⟩
Cνj ≫

{Cν(j−1)j Cνj(j+1) CABj}
q̂νj q̂νj ≈ Cνj

˙̂
ϕνj

式中,   表示对第 j 个 transmon比特的最近邻比

特的求和 , n 与 n′取不同的值 . 实验上有  

 ,    ,    
[43], 因此本文正则动量

 可以近似地表示为  . 利用勒让德变

换, 哈密顿量可以表示为 

Ĥ = Ĥ0 + ĤIJ + ĤR, (3)

其中 

Ĥ0 =
∑
ν,j

(
q̂2νj

2C̃νj

+
ϕ̂2νj
2LJ

νj

−
EJ

νj

24ϕ̂40
ϕ̂4νj

)
, (4)

 

ĤIJ =
∑

ν,⟨i,j⟩

Cνij

CνiCνj
q̂νiq̂νj , (5)

 

ĤR =
∑
j

CABj

CAjCBj
q̂Aiq̂Bi, (6)

1

C̃νj

=
1

C2
νj

(Cνj−CABj − Cν(j−1)j−Cνj(j+1))

1

LJ
νj

=
EJ

νj

ϕ20

式中,    ,

 . 之后, 引入如下的玻色产生湮灭算符:
 

âνj =

√
C̃νjω0

νj

2
ϕ̂νj + i

√
1

2C̃νjω0
νj

q̂νj , (7)

 

â†
νj =

√
C̃νjω0

νj

2
ϕ̂νj − i

√
1

2C̃νjω0
νj

q̂νj , (8)

[âνj , â
†
ν′,j′ ] = δν,ν′δj,j′ ω0

νj =
√
8EC

νjE
J
νj

ν EC
νj =

e2/(2C̃νj)

算符满足   .   

是第   条链上 , 第 j 个比特的频率 , 其中  

 . 考虑旋波近似之后, 得到如下双链耦合

的 Bose-Hubbard模型: 

Ĥ0 =
∑
ν,j

ω0
νjâ

†
νjâνj +

1

2
Vνj n̂νj(n̂νj − 1), (9)

 

ĤIJ =
∑
ν,j

gνjâ
†
ν(j−1)âνj + H.c., (10)

 

ĤR =
∑
j

g̃ABjâ
†
AjâBj + H.c., (11)

n̂νj = â†
νjâνj

Vνj = −EC
νj

其中 H.c.表示厄米共轭.   是粒子数算

符.    表示第 n 条链上, 第 j 个比特的非

谐性强度. 

gνj = Cν(j−1)j

√
ω0
ν(j−1)ω

0
νj

/
(2
√
Cν(j−1)Cνj)

j − 1

g̃ABj=CABj

√
ω0
Ajω

0
Bj

/
(2
√
CAjCBj)

gνj = g̃ABj = g0

EC
νj ≪

EJ
νj EJ

νj/E
C
νj = 50

{Cν(j−1)j , Cνj(j+1), CABj} ≈ 0.5 Cνj ≈

100 Vνj/(2π) ≈ 200

g0/ (2π) ≈ 10

Vνj ≫ g0

â†
νj |0⟩νj = |1⟩νj â†

νj |1⟩νj = 0 âνj |0⟩νj = 0

âνj |1⟩νj = |0⟩νj
Vνj n̂νj(n̂νj − 1)/2 ≡ 0

表示第 n 条链上第 j 个比特与第  个比特之间

的耦合强度.   

表示 A, B 两链上第 j 个比特之间的耦合强度. 为

了方便讨论, 下文中的参数设置为  .

由于本文选用的是 transmon比特 [43], 因此  

 . 如果选择   , 并将电容值设定

为     fF以 及  

  fF. 之后, 通过计算得到   MHz,

  MHz. 显然模型中比特的非谐性远远

大于比特间的耦合强度, 即   
[40]. 由哈密顿

量 (9)—(11)式知, transmon比特在这种很强的非

谐性下只能激发一个玻色子, 也就是说, 玻色算符

满足  ,   ,   以及

 . 这时哈密顿量 (9)式中的第二项

满足  . 考虑这一条件后, 哈密

顿量 (9)—(11)式可以表示为 

Ĥ =
∑
ν,j

ω0
νjâ

†
νjâνj +

∑
ν,j

(
g0â

†
ν(j−1)âνj + H.c.

)
+
∑
j

(
g0â

†
AjâBj + H.c.

)
. (12)
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为了实现双链 SSH模型, 需要调节比特间的

耦合强度, 本文利用两个交流微波对每个 transmon

比特进行驱动. 实验上可以通过磁通偏置线实现这

种驱动 [41,42]. 如图 1(a)所示, 将 transmon比特的

约瑟夫森结替换成超导量子干涉仪 (SQUID). 将

两个独立可控的交流磁通设置在 SQUID的回路中 

Φ
(1)
νj (t) = δ

(1)
νj cos(p(1)νj t+ ϕ

(1)
νj ),

Φ
(2)
νj (t) = δ

(2)
νj cos(p(2)νj t+ ϕ

(2)
νj ),

{δ(1)νj , δ
(2)
νj } ≪ ω0

νj p
(1)
νj

p
(2)
νj ϕ

(1)
νj ϕ

(2)
νj

其中   是两个磁通的振幅 .    和

 以及  和  分别为两个磁通的频率和相位.

此时, transmon比特的势能变为 

V p
νj = EJ0

νj cos

(
φ+

Φ
(1)
νj (t) + Φ

(2)
νj (t)

2

)

+ EJ0
νj cos

(
φ−

Φ
(1)
νj (t) + Φ

(2)
νj (t)

2

)

= 2EJ0
νj

[
cos (φ) cos

(
Φ
(1)
νj (t) + Φ

(2)
νj (t)

2

)]
, (13)

比特的有效约瑟夫森能变为 

EJeff
νj = EJ0

νj cos

(
Φ
(1)
νj (t) + Φ

(2)
νj (t)

2

)
. (14)

根据上文中比特频率的定义, 比特的频率此时变为 

ωνj(t) = ω0
νj

√√√√cos

(
Φ
(1)
νj (t) + Φ

(2)
νj (t)

2

)
. (15)

ω(t) Φ
(1)
νj (t) = 0 Φ

(2)
νj (t) = 0将   在   和   处泰勒展开 , 保

留到 2阶可得 

ωνj = ω0
νj + ε

(1)
νj cos(u(1)νj t+ φ

(1)
νj )

+ ε
(2)
νj cos(u(2)νj t+ φ

(2)
νj )

+ ε
(3)
νj cos(u(3)νj t+ φ

(3)
νj )

+ ε
(4)
νj cos(u(4)νj t+ φ

(4)
νj ), (16)

ε
(1)
νj = ω0

νjδ
(1)2
νj /32 ε

(2)
νj = ω0

νjδ
(2)2
νj /32

ε
(3)
νj = ε

(4)
νj = ω0

νjδ
(1)
νj δ

(2)
νj /16

u
(1)
νj = 2p

(1)
νj u

(2)
νj = 2p

(2)
νj u

(3)
νj = p

(1)
νj + p

(2)
νj

u
(4)
νj = p

(1)
νj − p

(2)
νj φ

(1)
νj =

2ϕ
(1)
nuj + π φ

(2)
νj = 2ϕ

(2)
nuj + π φ

(3)
νj = ϕ

(1)
nuj + ϕ

(2)
nuj + π

φ
(4)
νj = ϕ

(1)
nuj − ϕ

(2)
nuj + π

其中参数   ,    和

 为外加偏置磁通的有效

振幅;   ,   ,   和

 为外加偏置磁通的有效频率;  

 ,   ,  

和   为外加偏置磁通的有效

相位.

之后, 利用如下幺正算符对哈密顿量 (12)式

进行幺正变换: 

Û = Û1 × Û2 , (17)

其中 

Û1 = exp

−i
N∑
j=1

∑
ν=A,B

ω0
νjâ

†
νjâνjt

 , (18)

 

Û2=exp

i 4∑
d=1

N∑
j=1

∑
ν=A,B

α
(d)
νj â

†
νjâνj cos(u

(d)
νj t+ φ

(d)
νj )

 ,
(19)

α
(d)
νj = ε

(d)
νj /u

(d)
νj (d = 1, 2, 3, 4).式中 ,     幺正变换之

后, 系统的哈密顿量可以写为 

Ĥ = Û †ĤÛ + i
dÛ †

dt
Û = ĤE + ĤI, (20)

其中
 

 

ĤE =
∑

ν=A,B

g0

{
â†
ν1âν2e−i∆ν2t exp

[
4∑

d=1

− iα(d)
ν1 cos

(
u
(d)
ν1 t+ φ

(d)
ν1

)
+ iα(d)

ν2 cos
(
u
(d)
ν2 t+ φ

(d)
ν2

)]
+ H.c.

}

+ g0

{
â†
ν2âν3e−i∆ν3t exp

[
4∑

d=1

− iα(d)
ν2 cos

(
u
(d)
ν2 t+ φ

(d)
ν2

)
+ iα(d)

ν3 cos
(
u
(d)
ν3 t+ φ

(d)
ν3

)]
+ H.c.

}
+ · · · , (21)

 

ĤI = g0

{
â†
A1âB1e−∆AB1t exp

[
4∑

d=1

− iα(d)
A1 cos

(
u
(d)
A1t+ φ

(d)
A1

)
+ iα(d)

B1 cos
(
u
(d)
B1t+ φ

(d)
B1

)]
+ H.c.

}

+ g0

{
â†
A2âB2e−∆AB2t exp

[
4∑

d=1

− iα(d)
A2 cos

(
u
(d)
A2t+φ

(d)
A2

)
+iα(d)

B2 cos
(
u
(d)
B2t+φ

(d)
B2

)]
+H.c.

}
+· · · , (22)

∆νj = ω0
νj − ω0

ν(j−1) ∆ABj = ω0
Bj − ω0

Aj exp[iα cos(ut+ φ)] =
∑∞

−∞
imJm(α)·

exp[im(ut+ φ)] Jm(α)

式中,   ,   . 利用 Jacobi-Anger等式 

  (  是第 m 阶第一类贝塞尔函数), 可以得到:
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ĤE =
∑
ν,j

g0â
†
ν(j−1)âνj

∞∑
m1=−∞

(−i)m1Jm1

(
α
(1)
ν(j−1)

)
exp

[
−im1

(
u
(1)
ν(j−1)t+ φ

(1)
ν(j−1)

)] ∞∑
m2=−∞

im2Jm2

(
α
(1)
νj

)

× exp
[
i
(
m2u

(1)
νj −∆νj

)
t+ im2φ

(1)
νj

] ∞∑
m3=−∞

(−i)m3Jm3

(
α
(2)
ν(j−1)

)
exp

[
−im3

(
u
(2)
ν(j−1)t+ φ

(2)
ν(j−1)

)]

×
∞∑

m4=−∞
im4Jm4

(
α
(2)
νj

)
exp

[
im4

(
u
(2)
νj t+ φ

(2)
νj

)] ∞∑
m5=−∞

(−i)m5Jm5

(
α
(3)
ν(j−1)

)

× exp
[
−im5

(
u
(3)
ν(j−1)t+ φ

(3)
ν(j−1)

)] ∞∑
m6=−∞

im6Jm6

(
α
(3)
νj

)
exp

[
im6

(
u
(3)
νj t+ φ

(3)
νj

)]

×
∞∑

m7=−∞
(−i)m7Jm7

(
α
(4)
ν(j−1)

)
exp

[
−im7

(
u
(4)
ν(j−1)t+ φ

(4)
ν(j−1)

)]

×
∞∑

m8=−∞
im8Jm8

(
α
(4)
νj

)
exp

[
im8

(
u
(4)
νj t+ φ

(4)
νj

)]
+ H.c., (23)

 

ĤI =
∑
j

g0â
†
AjâBj

∞∑
m1=−∞

(−i)m1Jm1

(
α
(1)
Aj

)
exp

[
−im1

(
u
(1)
Aj t+ φ

(1)
Aj

)] ∞∑
m2=−∞

im2Jm2

(
α
(1)
Bj

)

× exp
[
im2

(
u
(1)
Bjt+ φ

(1)
Bj

)] ∞∑
m3=−∞

(−i)m3Jm3

(
α
(2)
Aj

)
exp

[
−im3

(
u
(2)
Aj t+ φ

(2)
Aj

)]

×
∞∑

m4=−∞
im4Jm4

(
α
(2)
Bj

)
exp

[
i
(
m4u

(2)
Bj −∆ABj

)
t+ im4φ

(2)
Bj

] ∞∑
m5=−∞

(−i)m5Jm5

(
α
(3)
Aj

)

× exp
[
−im5

(
u
(3)
Aj t+ φ

(3)
Aj

)] ∞∑
m6=−∞

im6Jm6

(
α
(3)
Bj

)
exp

[
im6

(
u
(3)
Bjt+ φ

(3)
Bj

)] ∞∑
m7=−∞

(−i)m7

× Jm7

(
α
(4)
Aj

)
exp

[
−im7

(
u
(4)
Aj t+ φ

(4)
Aj

)] ∞∑
m8=−∞

im8Jm8

(
α
(4)
Bj

)
exp

[
im8

(
u
(4)
Bjt+ φ

(4)
Bj

)]
. (24)

∆ABj = u
(2)
Bj

∆νj = u
(1)
νj −u(1)νj

u
(d)
νj ≫ {gνj , g̃j}

将参数设定为   . 对于 j 为奇数 (偶数)

的比特, 设定参数    (  ). 另外, 本文

参数满足   . 利用旋波近似, 可以忽

略掉哈密顿量 (23)式和 (24)式中的振荡项. 最后

可以得到如下哈密顿量:
 

Ĥ =
∑
νj

(
tνjeiφ̃νj â†

ν(j−1)âνj + H.c.
)

+
∑
j

(
t̃ABjeiφ̃ABj â†

AjâBj + H.c.
)
, (25)

其中, 比特间的有效耦合强度为
 

tνj = g0J1(α
(1)
ν(j−1))

4∏
d=2

J0(α
(d)
ν(j−1))

4∏
d=1

J0(α
(d)
νj ),

t̃ABj = g0J1(α
(2)
Bj)

4∏
d=1

J0(α
(d)
Aj )

4∏
d=1,d̸=2

J0(α
(d)
Bj ). (26)

φ̃νj = (−1)(j+1)i(π/2 + φ
(1)
νj ) φ̃ABj = i(π/2+

φ
(2)
Bj)

相位   ,   

 .

tνj t̃ABj α
(d)
νj

2N

tνj t̃ABj

3N − 2 α
(d)
νj 8N

tνj t̃ABj

tAj = t1 tBj = t2

tAj = t2 tBj = t1 α
(d)
νj

t̃ABj = 1

−π/2

φ̃νj = φ̃ABj = 0

从 (26)式可以看出, 参数  和   是  的

函数. 如果本文中的双链超导量子电路一共有 

个比特, 则比特之间有效耦合强度  和  共有

 个, 相应地, 可以调控的参数  一共有 

个. 可以看出, 可调控参数的数量总是大于比特之

间有效耦合强度的数量. 因此哈密顿量 (25)式中

的耦合强度   和   是独立可调的. 那么, 本文

可以通过选择合适的参数来实现两链 SSH模型,

即当 j 为奇数时, 有   及   , 当 j 为偶

数时, 有  以及  . 通过调节参数  ,

本文将链间比特的有效耦合强度设定为  .

之后, 将外加偏置磁通的有效相位均设置为  ,

即相位   . 此时, 在超导量子电路系

物 理 学 报   Acta  Phys.  Sin.   Vol. 72, No. 14 (2023)    140301

140301-5



统中实现了两链 SSH模型: 

Ĥ =
∑
j

(
t1b̂

†
(j)âj+1 + t2â

†
(j)b̂j+1 + â†

j b̂j + H.c.
)
.

(27)

âj b̂j为了讨论方便, 下文中用   (  )表示 A 链中

j 为奇数 (偶数)和 B 链中 j 为偶数 (奇数)的玻色

湮灭算符. 另外, 在接下来的讨论中, 只考虑单激

发的情况.

 3   拓扑相图

âk =
∑

j
eikjâj/

√
N

b̂k =
∑

j
eikj b̂j/

√
N (−π, π]

Ĥ =
∑

k
(â†

k, b̂
†
k)ĥ(k)×( âk

b̂k

)

双链的 SSH模型已经通过电容耦合的 trans-

mon比特建立. 本节将讨论双链 SSH模型的拓扑

相图 . 考虑傅里叶变换   和

 , 其中 k 取值为  . k 空间

中哈密顿量 (27)式可表示为 

 , 其中
 

ĥ(k) = ε(k) · σ̂, (28)

ε(k)=(εx, εy, εz) εx=(t1 + t2) cos(k) + 1

εy = (t1 − t2) sin(k) εz = 0 σ̂

式中  , 其中  ,

 ,    .    是三维泡利算符 .

k 空间中的能谱可以通过对角化哈密顿量 (28)式

得到: 

ε± = ±
√
|t1e−ik + t2eik + 1|2. (29)

ε± = 0

ε± = 0

由 (29)式可知, 能谱的两个能带会在  

时发生简并. 当  时有: 

(t1 + t2) cos(kc) + 1 = 0, (30)
 

(t1 − t2) sin(kc) = 0, (31)

kc其中  是能带简并点的波矢. 通常情况下, 参数空

间中能带简并点两侧的拓扑性质会发生变化. 由

kc

kc ̸= 0 t1 =

t2 cos(kc) = −1/(2t2) kc = 0

sin(kc) = 0 cos(kc) = −1/(t1 + t2)

(30)式和 (31)式可知, 根据  的不同取值, 拓扑相

边界可以分为两类. 第一类是当   时, 有  

 以及   . 第二类是当   时 ,

即   时 , 有   . 那么 ,

可以得到第一类相边界: 

t1 = t2, |2t2| > 1, (32)

以及第二类相边界: 

t1 + t2 = ±1. (33)

±kc
kc = π kc = 0

t1 = t2 = ±1/2

t1 = t2 = ±1/2

第一类相边界的能带有两个节点  . 第二类相边

界的能带有一个节点  或  . 两类相边界

有两个交点, 为  . 本文将两类相边界

以及交点  上对应的能带图画在了图 2

中, 可以更直观地看到第一类相边界对应能带的两

个节点 (图 2(a))以及第二类相边界对应能带的一

个节点 (图 2(b)). 另外, 第一类相边界能带的两个

节点在相边界交点处相遇, 变为一个节点 (图 2(c)).

ĥ(k)

接下来, 进一步探索相边界两侧的拓扑性质.

首先需要计算拓扑不变量. 本文中, 由于哈密顿量

 有 PT对称性 , 因此根据 Altland-Zirnbauer

拓扑分类 [44], 能带的拓扑不变量为绕数: 

N =
1

2π

∫ π

−π
dkv × ∂kv, (34)

v = (εx(k), εy(k))/
√
ε2x(k) + ε2y(k)其中,   .

根据拓扑不变量 N 的分布, 图 3给出了参数

空间中的相图. 图中红色实线标记的是第一类相边

界 ((32)式), 发现相边界两侧的拓扑不变量分别为

–1和 1. 这表明第一类相边界的两侧区域中, 能带

都是拓扑非平庸的, 并且两侧区域的拓扑不变量之

差为 2. 黑色实线标记的是第二类相边界 ((33)式),

边界两侧的拓扑不变量分别为 0和 1或 0和–1. 这

表明第二类相边界两侧中总有一侧是拓扑平庸的,
 

0-p p

0

4



E
n
e
rg
y

(a)

-4
0-p p

0

3



E
n
e
rg
y

(b)

-3
0-p p

0

2



E
n
e
rg
y

(c)

-2

t1 = t2 = 1.5 t1 = −1.5 t2 = 0.5 t1 = t2 = −0.5图 2    双链 SSH模型的能谱图    (a)   ; (b)   和   ; (c)  

t1 = t2 = 1.5 t1 = −1.5 t2 = 0.5 t1 = t2 = −0.5Fig. 2. Energy bands of SSH model: (a)   ; (b)    and   ; (c)   . 
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另一侧是拓扑非平庸的, 并且两侧区域的拓扑不变

量之差为 1.

接下来进一步讨论开边界条件下相图中不同

区域的特性. 根据体边对应原理 [45,46], 当体态表现

为拓扑非平庸时, 边界态是没有能隙的. 因此, 图 3

中的拓扑非平庸区域在开边界条件下其能带会出

现准 0能模. 为了证明这点, 图 4给出出了开边界

N = 1

ψα(j)

N = −1

N = 0

条件下的能带图以及相应的波函数 . 图 4(a1)是

 时对应的能带, 可以看出, 在能量 0点处出

现了两个简并的能隙闭合点. 相应的波函数  

画在图 4(b1)中, 可以看出其呈指数地局域在系统

的边界上, 这正是拓扑相在开边界条件下的一个显

著特征. 图 4(a2)和图 4(b2)是  时对应的能

带及波函数, 它们与图 4(a1)和图 4(b1)有相同的特

征. 图 4(a3)和图 4(b3)是  , 也就是拓扑平庸

时对应的能带及波函数, 可以发现此时 0能简并消

失, 出现能隙, 并且波函数没有边界局域的特征.

 4   节点的拓扑特性

由上文知, 系统存在两种类型的相边界. 可以

发现, 这两类相边界最显著的不同是, 第一类相边

界两侧的相区域都是拓扑非平庸的且拓扑数相差

2; 第二类相边界两侧的相区域总有一侧是拓扑平

庸的, 另一侧拓扑非平庸且两侧拓扑数相差 1. 那

么这两类相边界是否有不同的拓扑性质呢? 本节

将讨论这个问题.

ε由哈密顿量 (29)知,   在布洛赫球的 x-y 平面

上的轨迹为一个正椭圆: 

(x− 1)2

(t1 + t2)2
+

y2

(t1 − t2)2
= 1. (35)

对于第 3节中拓扑数为 1和–1的相区域, 该椭圆
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图  3    双链 SSH模型在参数空间   中的拓扑相图 . 深

绿色的区域是拓扑数   的区域 , 浅咖色的区域是拓

扑数   的区域, 浅绿色的区域是拓扑数   的区域;

红色的线标记的是第一类相边界, 黑色的线标记的是第二

类相边界

t1-t2

N = −1 N = 1 N = 0

Fig. 3. Topological  phase  diagram in  the      plane.  The

bottle green, light coffee color and pale green areas indicate

the  areas  with    ,      and      respectively.

N denotes the winding number. The red and black lines in-

dicate the first and second phase boundaries respectively. 
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图 4    开边界能带和边界态   (  )  和  ; (  )   和  ; (  )   和  . (  )—(   )是 (  )—

(  )中第 20个能带的波函数
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0.5 t2 = 0.3 a1 a2 a3 b1 b2

b3

Fig. 4. Energy  bands  with  open  boundary  condition  with  (  )      and    ;  (  )      and    ;  (  )   

  and   . The wave functions corresponding with the 20th energy bands of (  ), (  ), and (  ) are plotted in (  ), (  ),

and (  ), respectively. 
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(0, 0)

(0, 0)

x

运动轨迹的旋转方向相反但均将原点  包含在

椭圆内部 (图 5(a)和图 5(b)). 而对于拓扑数为

0的相区域, 该椭圆始终没有将原点  包含在椭

圆内部 (图 5(c)). 布洛赫球上的原点正是上文中得

到的能级简并点. 这与第 3节得到的结论是一致

的. 那么, 当参数取在相边界上时, 椭圆轨迹会有

怎样的变化呢? 对于第一类相边界, 参数满足 (30)式,

椭圆轨迹方程 (35)变为布洛赫球   轴上的线段

(图 5(d)): 

x = 2t1 cos(k) + 1, y = 0. (36)

(1, 0) 4|t1|显然, 这是一个以  为平衡位置,   为振幅的

简谐振动. 对于第二类相边界, 参数满足 (31)式,

椭圆轨迹 (35)式仍为一个正椭圆 (图 5(e), (f)): 

(x− 1)2 +
y2

(2t1 ± 1)
= 1. (37)

|2t1 ± 1|
(0, 0)

ε

(0, 0)

(0, 0)

该椭圆的半轴长度分别为 1和   , 并且可以

注意到, 该椭圆会经过原点   . 至此可以看到,

 在这两类相边界上有完全不同的运动轨迹. 最重

要的是, 轨迹方程 (36)在完成一个振动周期后会

经过两次原点   , 并且两次运动轨迹的方向相

反, 而轨迹方程 (37)在完成一个运动周期后只经

过了一次原点   . 从这里可以看出第一类相边

界上的能带是拓扑非平庸的, 而第二类相边界上的

能带是拓扑平庸的.

接下来, 分析拓扑相边界的另一些拓扑特性.

F (k)首先, 在 k 空间定义一个三维的矢量场  : 

F (k) = (⟨σ̂x⟩(k), ⟨σ̂y⟩(k), ⟨σ̂z⟩(k)), (38)

⟨σ̂l⟩(k)(l = x, y, z) ĥk |k⟩
⟨σ̂l⟩(k) t1 = t2

其中   是哈密顿量   本征态   下

 的期待值. 考虑第一类相边界, 即  时,

可以得到场矢量为 

F (k) = (sgn(2t1 cos(k)) + 1, 0, 0), (39)

F

kc = arccos(−1/2t1)

(−π, π] kc

F

⟨σ̂x⟩

其中 sgn(·)是符号函数. 可以看出, 场  存在扭结,

扭结出现在   的位置, 在第一布

里渊区  中,   有两个取值. 这两个扭结正是

第一类相边界的能带简并点. 两个扭结的拓扑荷分

别为 1和–1. 为了直观地看到场  的扭结, 图 6给

出了 (40)式中自旋   期待值随 k 的变化. 从这

里也能够判断出, 第一类相边界上的两个能带简并

点 (也称为节点)是受到拓扑保护的.

 

0-1 21 3 



1

0

(a)

-1

0-1 21 3 



1

0

(d)

-1

0-1 21 3 



1

0

(b)

-1

0-1 21 3 



1

0

(e)

-1

0 21

1

0

2



(c)

-1

-1

-2

0 21 3

1

0

2

(f)




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ε x-y N = 1 ε t1 = 1.5 t2 = 0.5

N = −1 ε t1 = 0.5 t2 = 1.5 N = 0 ε t1 = 1 t2 = −0.7

t1 = t2 ε t1 = t2 = 1 t1 + t2 = 1 ε

t1 = 0.8 t2 = 0.2 t1 + t2 = −1 ε t1 = −1.3 t2 = 0.3

图 5    不同参数下   在布洛赫球的   平面上的轨迹   (a)拓扑数   时   的轨迹 , 参数设定为   和   ; (b)拓扑

数   时   的轨迹, 参数设定为   和   ; (c)拓扑数   时   的轨迹, 参数设定为   和   ; (d)参数

满足第一类相边界   时   的轨迹, 参数设定为   ; (e)参数满足第二类相边界   时   的轨迹, 参数设定为

 和   ; (f)参数满足第二类相边界   时   的轨迹, 参数设定为   和   . 图中红点表示原点,

箭头表示轨迹的运动方向

ε x-y t1 = 1.5 t2 = 0.5 t1 = 0.5 t2 = 1.5

t1 = 1 t2 = −0.7 t1 = t2 = 1 t1 = 0.8 t2 = 0.2 t1 = −1.3 t2 = 0.3

Fig. 5. The curve of the vector     in     plane of the Bloch sphere with (a)     and    ; (b)     and    ;

(c)     and    ; (d)    ; (e)     and    ; (f)     and    . The red points and arrows

indicate the origin points and direction of the curve respectively. 

 

1

-|c| |c| 0
0

-p p

-1

F

t1 = t2 = 1

F (k) kc

图  6    参数设定为   (第一类相边界上)时矢量

 随波矢 k 的变化 . 图中箭头表示自旋的方向 ,   为能

级简并点处的波矢

F (k)

t1 = t2 = 1 kc

Fig. 6. The variation of the vector     as k changes with

 .  The  arrows  and      indicate  the  direction  of

the spin and degenerate energy point respectively. 
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|t1 + t2| = 1

F (k)

对于第二类相边界, 即参数满足  

时, 场矢量  为 

F (k) = (sgn[1± (t1 + t2)], 0, 0). (40)

F此时场矢量   与 k 无关, 也就是说这时不存在扭

结. 因此, 这时的节点是拓扑平庸的.

t1 = t2

T̂1

P̂

至此, 了解到只有第一类相边界的能带节点是

受到拓扑保护的, 因此在这一节点处一定有其独有

的对称性. 接下来讨论这一问题. 当系统处在第一

类相边界时, 参数满足  . 这时系统不再是双

链 SSH模型, 而变成了两条完全相同的比特链. 这

时会出现两个双链 SSH模型中没有的对称性. 这

两个对称性分别用一步平移算符  和子格子反演

算符  来刻画. 这两个算符的作用分别为 

T̂1âjT̂
−1
1 = b̂j+1, T̂1b̂jT̂

−1
1 = âj+1, (41)

以及 

P̂ âjP̂
−1 = b̂j , P̂ b̂jP̂

−1 = âj . (42)

T̂1

t1 ̸= t2 T̂1 P̂

t1 ̸= t2 T̂1

t1 = t2

  的作用是沿着每条比特链移动一个格点 .  当

 时,   和哈密顿量 (28)式是不对易的.   的

作用是将 SSH模型的两个子格子互换位置. 显然

当  时,   与哈密顿量 (28)式也是不对易的.

当  时, 可以得到: 

[Ĥ, T̂1] = [Ĥ, P̂ ] = 0, (43)

Ĥ T̂1 P̂哈密顿量  、算符  和  拥有相同的本征态:
 

|χ±(k)⟩ =
1√
2N

∑
j

e−ikj(b̂†j ± â†
j)|0⟩, (44)

相应的本征能量为 

ε±k = ±|2t1 cos(k) + 1|. (45)

由 (45)式得, 这些本征态满足: 

T̂1|χ±
k ⟩ = ±eik|χ±

k ⟩, (46)

以及 

P̂ |χ±
k ⟩ = ±|χ±

k ⟩. (47)

kc由上文知, 节点出现在波矢为  的位置, 对应

的能量简并本征态为 

|χ±(kc)
a⟩ = 1

N

∑
j

e−ikcjâ†
j |0⟩,

|χ±(kc)
b⟩ = 1

N

∑
j

e−ikcj b̂†j |0⟩, (48)

这些本征态满足: 

T̂1|χa
k⟩ = eikc |χb

k⟩, T̂1|χa
k⟩ = eikc |χb

k⟩, (49)
 

P̂ |χa
k⟩ = |χb

k⟩, P̂ |χa
k⟩ = |χb

k⟩, (50)

这说明本文第一类相边界的节点受到一步平移对

称性和子格子反演对称性的保护.

 5   结　论

本文提出了利用 transmon比特实现耦合强度

独立可调的双链 SSH模型的可行性实验方案, 发

现了拓扑绝缘体和两类不同拓扑性质的相边界. 构

建模型时, 本文首先设计了电容耦合的双链 trans-

mon比特, 然后用两个交流微波驱动每一个 trans-

mon比特, 从而实现比特间耦合强度的独立调控,

最后通过改变比特间耦合参数实现交错的双链

SSH模型. 双链 SSH模型是探索拓扑物态的重要

模型之一, 本文提供了一种构建双链 SSH模型的

新途径. 接下来探索了交错双链 SSH模型的拓扑

性质, 首先计算了 k 空间中双链 SSH模型的本征

能量, 并发现了两种类型的相边界. 之后在参数空

间中画出了拓扑相图, 发现了两类拓扑绝缘相, 其

拓扑数分别为 1和–1, 对应有两类边界态. 拓扑相

图也进一步给出了两类相边界的分布以及它们两

侧拓扑数的值. 最后分析了两类相边界的拓扑性

质. 本文将布洛赫态映射为 k 空间的矢量场, 发现

第一类相边界两个能带节点处的矢量场有两个扭

结. 两个节点的拓扑荷分别为 1和–1, 并且受到平

移和反转对称性的保护. 另外, 本文发现第二类相

边界的能带节点处的矢量场不存在扭结, 节点是拓

扑平庸的. 本文的结果填补了超导量子电路系统中

实现双链 SSH模型的空白, 并为探索链条型物理

系统、拓扑物态以及节点型拓扑半金属提供了新的

途径.
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Abstract

Topological gapless systems, as the connection of the different topological quantum phases, have received

much  attention.  Topological  nonmediocre  nodes  are  typically  observed  in  two-  or  three-dimensional  gapless

systems. In this paper, we demonstrate that the topological nonmediocre nodes are existent in a model that lies

between  one  dimension  and  two  dimensions.  Superconducting  circuits,  as  essential  all-solid  state  quantum

devices,  have  offered  a  promising  platform  for  studying  the  macro-controlling  quantum  effects.  Recently,

experimental achievements have enabled the realization of tunable coupling strengths between transmon qubits

and  the  implementation  of  a  one-dimensional  Su-Schrieffer-Heeger  (SSH)  model  [Li  X  et  al.  2018 Phys.  Rev.

Appl.  10  054009].  According  to  this  work,  herein  we  present  a  two-leg  SSH  model  implemented  in

superconducting  circuits  and  demonstrate  the  existence  of  topological  nonmediocre  nodes.  Firstly,  two-leg

superconducting circuit with transmon qubits which are coupled with their nearest-neighbor sites by capacitors

is designed. To construct the two-leg SSH model, we introduce two alternating-current magnetic fluxes to drive

each  transmon  qubit.  We  discover  two  types  of  phase  boundaries  in  the  SSH  model  and  obtain  the

corresponding  energy  spectra  and  phase  diagram.  We  identify  two  distinct  topological  insulating  phases

characterized  by  winding  number  ±1,  and  the  corresponding  edge  states  exhibit  distinct  characteristics.

Moreover, we discuss the topological properties of the two phase boundaries. By representing the Bloch states

as  a  vector  field  in k  space,  we  demonstrate  the  existence  of  two  kinks  of  nonmediocre  nodes  with  first-type

phase boundaries. These two nonmediocrenodes possess distinct topological charges of 1 and –1, respectively. On

the other hand, the nonmediocre nodes with the second-type phase boundaries are topologically trivial.  These

results open the way for exploring novel topological states, ladder physical systems, and nodal point topological

semimetals.
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