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Abstract

Matrix models, and their associated integrals, are encoded with a rich structure,

especially when studied in the large N limit. In our project we study the dynamics

of a Gaussian ensemble of m complex matrices or 2m hermitian matrices for d = 0

and d = 1 systems.

We first investigate the two hermitian matrix model parameterized in “matrix

valued polar coordinates”, and study the integral and the quantum mechanics of

this system. In the Hamiltonian picture, the full Laplacian is derived, and in the

process, the radial part of the Jacobian is identified. Loop variables which depend

only on the eigenvalues of the radial matrix turn out to form a closed subsector

of the theory. Using collective field theory methods and a density description,

this Jacobian is independently verified.

For potentials that depend only on the eigenvalues of the radial matrix, the

system is shown to be equivalent to a system of non-interacting (2+1)-dimensional

“radial fermions” in a harmonic potential.

The matrix integral of the single complex matrix system, (d = 0 system), is

studied in the large N semi-classical approximation. The solutions of the station-

ary condition are investigated on the complex plane, and the eigenvalue density

function is obtained for both the single and symmetrically extended intervals of

the complex plane.

The single complex matrix model is then generalized to a Gaussian ensemble

of m complex matrices or 2m hermitian matrices. Similarly, for this generalized

ensemble of matrices, we study both the integral of the system and the Hamilto-

nian of the system.

A closed sector of the system is again identified consisting of loop variables

that only depend on the eigenvalues of a matrix that has a natural interpretation

as that of a radial matrix. This closed subsector possess an enhanced U(N)m+1

symmetry. Using the Schwinger-Dyson equations which close on this radial sector

we derive the Jacobian of the change of variables to this radial sector.

The integral of the system of m complex matrices is evaluated in the large
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N semi-classical approximation in a density description, where we observe the

emergence of a new logarithmic term when m ≥ 2. The solutions of the stationary

condition of the system are investigated on the complex plane, and the eigenvalue

density functions for m ≥ 2 are obtained in the large N limit.

The “fermionic description” of the Gaussian ensemble of m complex matrices

in radially invariant potentials is developed resulting in a sum of non-interacting

Hamiltonians in (2m + 1)-dimensions with an induced singular term, that acts

on radially anti-symmetric wavefunctions.

In the last chapter of our work, the Hamiltonian of the system of m complex

matrices is formulated in the collective field theory formalism. In this density de-

scription we will study the large N background and obtain the eigenvalue density

function.
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Chapter 1

Structure Of This Thesis

This thesis is organized as follows: in chapter two we provide a very schematic

review of large N matrix systems and the AdS/CFT correspondence. We also

provide an example of the AdS/CFT correspondence by briefly discussing the

BMN limit.

In chapter three we provide a brief review of matrix models, and discuss

some examples of theories that have successfully demonstrated the application

of matrix models. Chapters two and three provide us insight into some of the

powerful methods that can be used to solve a system of N × N matrices in the

large N limit. These two chapters render us the motivation for the research work

undertaken in this thesis.

In chapter four we review some of the properties of the single hermitian matrix

model. For the integral, we also establish the form of the eigenvalue density

function for a harmonic oscillator potential, and show that it satisfies the well

known Wigner semi-circle distribution. The Laplacian of this matrix model is

identified. Following this, the single hermitian matrix model is given a fermionic

description. In this chapter we further present the generalized collective field

theory framework and demonstrate its importance by applying it to the single

hermitian matrix model.

The density description of the single hermitian matrix model, obtained through

the collective field theory formalism, is obtained in the large N limit where we

can observe the background geometry that arises.
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Chapter five will see us investigate some of the complex properties of the

two hermitian matrix model. A new parameterization will be defined, inducing

“matrix valued polar coordinates” into the aforementioned hermitian system.

After this new parameterization, the infinitesimal line element is used to derive

the full Laplacian that mixes both radial and angular degrees of freedom, from

which, a Vandermonde determinant with positive definite radial eigenvalues will

be identified.

In chapter six, we introduce a (Gaussian) potential for the single complex

matrix with radial symmetry, that will be generalized later for a larger system

of Gaussian complex matrices. With this potential we identify the partition

function of the system, whose stationary condition is obtained. The solutions

for this stationary condition will be investigated along the single cut [x−, x+]

interval of the complex plane such that x+ > x− > 0 for the radial eigenvalues

x = ρi = r2i . The single cut will be extended symmetrically to a double cut

[−x−,−x+] and [x−, x+], whereupon the solution will be investigated.

For the Hamiltonian, the fermionic picture of the singlet sector of the N ×N

single hermitian matrix model, obtained in chapter four, is well known. In chapter

seven we consider the radially restricted sector of the single complex matrix model

and show that this system can also be described by N non-interacting “radial

fermions” in (2 + 1)-dimensions.

In chapter eight, we will develop the density description for the single complex

matrix model, restricted to the radially symmetric subsector. In this description,

the Jacobian of the system will be derived by defining the collective field theory

variables that close under “joining” and “splitting”, first encountered in chapter

four.

To extend the formalism from chapter eight for the single complex matrix

model, in chapter nine, a Hamiltonian restricted to radial degrees of freedom with

a Gaussian potential that possess enhanced radial symmetry will be presented

using the collective field theory formalism. In this radial sector, we will obtain

the eigenvalue density function of the system.

In chapter ten we will generalize the number of (the) Gaussian ensemble of
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matrices from a single complex matrix to a general number m. This chapter

will again see us identify gauge invariant correlators with radial symmetry that

close in the radial sector and in which the Schwinger-Dyson equations also close.

A more generalized Jacobian will be identified by establishing an identity using

Schwinger-Dyson equations.

Following the complexities of chapter ten, in chapter eleven, the partition

function with a Gaussian potential that possesses enhanced symmetry for a gen-

eral Gaussian ensemble of m complex matrices will be investigated using the large

N semi-classical approximation. The solutions of the system of complex matrices

will be investigated along the single cut [ρ−, ρ+] of the real line of the complex

plane for ρ+ > ρ− > 0. Also, these solutions will be extended symmetrically to

a double cut of the complex plane to [−ρ−,−ρ+] and [ρ−, ρ+]. In both scenarios,

the eigenvalue distribution function will be investigated for the radially restricted

sector.

In chapter twelve we mention how the stationary condition and densities for

the partition function for a system of a Gaussian ensemble of complex matrices

identified in chapter eleven can be related to the zeros of Laguerre and Hermite

polynomials.

In chapter thirteen the radially restricted Hamiltonian for a general number

of complex matrices is interpreted using “radial fermions” in higher dimensions

where a singular form is observed.

In the penultimate chapter of our work, we again work in the radially sym-

metric restricted closed subsector where the Hamiltonian of a general number of

m complex matrices is represented in the density description using the collective

field theory formalism. A Gaussian potential will be introduced and defined, fol-

lowing this, the eigenvalue density function of this radially restricted sector will

be derived.

The final chapter, chapter fifteen, will be reserved for the discussion and

conclusion regarding our work, identifying and addressing problems that we would

wish to pursue for future research.
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Chapter 2

From t’ Hooft To BMN: An

Overview

The goal of this chapter is to introduce, in a non-technical manner, important

works whose ideas and results influence, to a certain extent, the purpose and

objective of our project.

Some of these important concepts presented in this chapter provide a historical

bridge to the more recent work that has been carried out in this project.

A map of key ideas, not necessarily following a specific chronological order,

illustrating important earlier works that set the precedent for our project, will be

presented in this chapter.

To be precise, the following are objectives we wish to carry out in chapter 2:

• Provide a general introduction of the t’ Hooft model of large N QCD

• Present a general introduction of Random Matrix Theory

• Briefly review the Dyson Gas approach to solving an ensemble of random

matrices

• Provide a non-technical introduction to the AdS/CFT correspondence

• Give an example of an AdS/CFT correspondence: the BMN correspondence
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2.1 When QCD Is Non-Perturbative

Quantum Chromodynamics (QCD) has positioned itself as the theory of strong

interactions, and an impressive building block that forms part of an edifice of

physical theories whose objective is to:

(i) aid in providing a consistent model of Quantum Gravity and

(ii) contribute towards a formulation of physical theories whose aim is to unify

all of nature’s fundamental forces.

Quantum Chromodynamics is responsible for describing the dynamics sur-

rounding the strong nuclear force. This theory of strong interactions belongs to

the SU(3) non-abelian gauge symmetry group.

The theory of strong interactions is made up of quarks and gluons. The

quarks are six spin half fermion particles that come in six flavours namely up,

down, strange, charm, bottom and top.

Quarks also carry an inherent internal degree of freedom that enable them to

have a “charge”. This quark charge is referred to as the “colour charge”. Colour

is the quantum charge associated with QCD. Interactions amongst quarks are

mediated by gauge gluon bosons. The colour charge of quarks come in three

variations, these being red, blue and yellow charge.

The consistent success of QCD in its ability to make correct predictions that

can be verified experimentally can be attributed, in part, to the application of

perturbative methods that are applied when performing computations in QCD [8]

[9]. These computations are carried out at different energy scales of the theory.

QCD has a running coupling constant and this generally means that the coupling

constant, g, has an explicit dependence on the energy scales of the theory [10].

In order for us to understand how the running coupling constant evolves with

the varying energy scales of QCD, one has to study the so called “beta” function

β(g) given by the following equation

β(g) =
dg(µ)

dln(µ)
, (2.1.1)

where g(µ) represents the running coupling constant of the gauge theory and
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µ is associated with the energy/momentum scale of the theory [11].

This function, β(g), is determined by the renormalization group of equations

and relates the coupling constant of the theory to its momentum scale.

QCD can be probed and understood at both high and low energy regimes.

QCD studied in the high energy regime renders the function β(g) to be negative

therefore the running coupling constant becomes very small [13].

At these high energy/short distance scales, perturbative methods are appli-

cable to QCD since the running coupling constant of the theory becomes weakly

coupled at this ultraviolet (UV) (high energy) regime. In this limit, the function

β(g) has a form that is determined by the renormalization group of equations of

the ultraviolet (energy) regime. The function β(g), in the ultraviolet limit has

a Gaussian fixed point at which QCD becomes an “asymptotically free theory”

[12].

Computations in QCD become easier to handle since a dictionary can be

developed for the theory of strong interactions in the ultraviolet regime where

the perturbative techniques are applicable. In addition, when QCD is probed at

such short distance scales, the running coupling constant of the theory diminishes

to zero, therefore rendering QCD a weakly coupled theory resulting in calculations

that are much easier to compute.

Since the perturbative tools are applicable in studying QCD at high energies

where the theory is weakly coupled and reveals asymptotic freedom, it would be

interesting to explore general features of QCD at low energies.

As one descends from the ultraviolet regime and moves down to the physics of

lower energy scales, the tools of perturbation theory breaks down. When QCD is

studied at low energy scales, or more technically the infrared (IR) energy scales,

the methods of perturbation theory no longer apply.

The renormalization group of equations that determine the perturbative ex-

pansion of the β(g) function indicates that as one investigates QCD at large

distance scales, the running coupling constant increases, resulting in a strongly

coupled theory of strong interactions that is non-perturbative.

One can ask: How can a low energy, strongly coupled and non-perturbative
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QCD be understood physically?

In the infrared regime, one can consider a pair of quarks that are strongly

coupled. In such a scenario, the force between the pair of quarks is relatively

strong and this force increases as the distance between the two quarks is increased.

It becomes energetically more favourable to produce two quark anti-quark (qq̄)

pairs.

The force between the two quarks increases with increasing distance between

the quarks. This unique phenomena leads one to deduce that the quarks could

never be observed in an isolated state. This feature of low energy QCD is more

commonly known as “quark confinement” [14].

From the β(g) obtained from the renormalization group equations of the in-

frared regime, a infrared (Gaussian) fixed point can be observed when the first

term of β(g) becomes very large (g →∞) [14]. This represents the point at which

quark confinement occurs in low energy QCD.

In essence, the low energy scheme of QCD is where infrared instabilities are

prevalent and this is the energy domain of the theory of strong interactions where

the tools of perturbation theory fail to provide a physically consistent model of

QCD that would explain phenomena such as chiral symmetry breaking [15] [16]

and quark confinement.

Hence, non-perturbative low energy QCD still needs to explain the observed

phenomena and associated properties of sub-nucleic particles of strong interac-

tions.

The preceding argument highlights, without any technicalities, that QCD, a

theory of strong interactions with six quarks, three colour charges and non-abelian

symmetry gauge group SU(3) in (3 + 1)-dimensions cannot be consistently solved

using perturbative methods across all energy scales accessible to the theory.

The following section will discuss an alternative method to probe the low

energy regime of QCD.
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2.1.1 Low Energy QCD With A Large Number Of Colour

Charges

In his famous work [17], t’ Hooft proposed an approximation method to investi-

gate the low energy regime of QCD.

It was suggested by t’ Hooft that instead of studying QCD with SU(3) gauge

symmetry with a fixed colour charge parameter Nc = 3, rather the low energy

dynamics of QCD should be investigated for an infinitely large number of colour

charges, Nc →∞, with non-abelian gauge group SU(Nc).

Strong interactions understood using gauge group SU(3) is a more realistic

picture of nature. For a generalized case where one considers a model with an

infinite number of colour charges, it would be natural to assume that the theory

would be complex and completely non-tractable. In fact the opposite is true,

QCD becomes perturbatively tractable when one adopts the t’ Hooft approach

to probe low energy dynamics.

The framework proposed by t’ Hooft in order to understand QCD requires

that the inverse of number of colour charges Nc be considered as the perturbative

expansion parameter of the theory. Therefore the t’ Hooft model will have an

infinitely large amount of colour charges Nc → ∞ and a non-abelian SU(Nc)

symmetry gauge group. With such characteristic features, the t’ Hooft model

of QCD will provide a perturbative expansion of QCD in the low energy regime

where Nc = 3 in reality.

The dynamics governing SU(Nc) gauge theory are studied perturbatively in

the double scaling limit. In this double scaling limit, the t’ Hooft model requires

Nc →∞ and the (square of the) Yang-Mills coupling constant gYM of the theory

be taken to zero whilst keeping the product of two constants fixed. The product

of Nc and g2YM provides a definition for the t’ Hooft coupling constant λ defined

by λ = g2YMNc.

With the t’ Hooft coupling constant held fixed in the low energy limit of large

Nc QCD, the first term of the β(g) function perturbative expansion continues to

be negative [13]. In this case, it means that large Nc QCD proposed by t’ Hooft
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is consistent with an asymptotically free theory.

This ingenious proposal by t’ Hooft allows perturbative techniques to be ap-

plied to investigate the low-energy physics of QCD since the theory of strong

interactions becomes weakly coupled for large Nc and the t’ Hooft coupling con-

stant, λ = g2YMNc, held fixed.

Perturbative QCD studied in the large Nc limit, coupled to SU(Nc) gauge sym-

metry, can reveal interesting properties of the model such as simplified diagrams

that can be associated with physical generic process that governs quark-gluon

dynamics [18] .

Fermions of strong interactions are fields in the fundamental representation

of SU(Nc) gauge invariance. The propagation of these quark fields can be rep-

resented using index notation and can be diagrammatically represented by an

oriented line.

It can be elegantly shown that generic physical processes of strong interactions

can be represented by planar Feynman diagrams using this index associated with

the propagating quark fields [17].

On the other hand, the gauge bosons mediating the strong nuclear force, are

represented and transform in the adjoint representation of the SU(Nc) symmetry

gauge group. The gluon fields can be shown by a pair of oriented lines in opposite

directions [17].

The gluon and quark fields can be coupled and together be diagrammatically

shown in “double-line” notation or ribbon graphs as Feynman diagrams in the

large Nc limit. The physics that govern large Nc QCD is considerably simplified in

the perturbative expansion since the quark-gluon interactions can be understood

through Feynman diagrams in double line notation. The double-line Feynman

diagrams are coupled to the factors λ and Nc, which are both perturbative ex-

pansion parameters of large Nc QCD.

The generic physical processes of large Nc QCD that involve quark-gluon prop-

agators have different double-line Feynman diagrams that appear with different

factors of Nc (for propagation lines) and gYM (associated with interaction ver-

tices). Alternatively, double-line Feynman diagrams can be grouped according to
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different powers of the t’ Hooft coupling constant λ.

The double-line Feynman diagrams that are proportional to N2
c are grouped

as leading order diagrams. These leading order double-line Feynman diagrams

appear as being planar. Planar diagrams can loosely be understood to be dia-

grams that can be drawn on a plane or on the surface of a Riemann sphere with

no lines crossing over each other or intersecting.

In the perturbative regime of large Nc QCD, planar diagrams become dom-

inant as they grow exponentially large compared to non-planar diagrams. The

non-planar diagrams tend to be sub-leading in N2, and these group of diagrams

grow factorally in the large Nc limit.

As mentioned previously, different factors of Nc and λ can be associated as

coefficients to different double-line Feynman diagrams that could be either planar

or non-planar. For the diagrammatic representation of physical processes, the

vertex of each diagram can be associated with Nc/λ and propagators can be

assigned factors of λ/Nc. The quark loops contribute a factor of Nc.

The double-line Feynman diagrams that are proportional to the 1/Nc per-

turbation expansion parameter have a topological interpretation [19]. The 1/Nc

factor that is coupled to planar Feynman diagrams can be understood through

the Riemann surface on which the planar diagram can be drawn. One can nest

the relationship between planar Feynman diagrams and surfaces on which they

are mapped [19] by the following equation

NV−E+F
c λE−V = Nχ

c λ
E−V . (2.1.2)

In (2.1.2) above, the term V represents the number of vertices of the planar

diagram, E are the propagators (or equivalently the number of edges) and the

term F are the loops (or equivalently the number of faces). The term

χ = V − E + F denotes the Euler character of the surface upon which the

corresponding Feynman diagram in double line notation will be drawn.

As a result of the topological invariance of the Euler character χ, we can

represent it in terms of the number of handles and boundaries of the surface on
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which the planar Feynman diagram can be drawn as:

χ = 2− 2g − b. (2.1.3)

Equation (2.1.3) consists of the number of handles g of the surface and the

number of boundaries b.

Through the applications of perturbative methods, the generic amplitudes

AQCD that represent quark-gluon physical processes in terms of double line Feyn-

man diagrams can be neatly represented as follows:

AQCD =
∞∑

h,b=0

(Nc)
2−2g−b fgYM (λ). (2.1.4)

The polynomial fgYM (λ), is related to the t’ Hooft coupling constant λ. One

can deduce from equation (2.1.4) above that the leading order diagrams occur in

the absence of quark loops (b = 0) and are also planar (g = 0), therefore this

represents the planar limit sector of large Nc QCD.

In general, surfaces with maximum possible Euler character χ = 2 have the

topologies of a sphere or a plane. Planar diagrams can be consistently and

smoothly mapped to surfaces with maximum Euler character.

Higher order diagrams that have g > 0, will appear to be sub-leading in Nc.

Each term in the perturbative expansion that is sub-leading in Nc will have a

1/Nc factor resulting in a multitude of non-planar diagrams for higher orders of

perturbative expansions.

The low energy dynamics of strong interactions, when perturbatively studied

in the large Nc limit of QCD yields rich and insightful features. The simplification

of large Nc QCD which uses the number of colour charges Nc as a perturbation

expansion parameter is useful because one is able to understand quark-gluon

physical processes by studying double line Feynman diagrams.

In the large Nc perturbation regime of QCD, both planar and non-planar

diagrams appear but it is the former that tend to dominate and therefore provide

an extensively simplified formulation of QCD with an infinite number of colour

charges Nc and SU(Nc) symmetry gauge group.
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Though large Nc QCD is considerably simplified by enabling the applications

of perturbative techniques to understand the planar limit, it should be emphasized

that the t’ Hooft model is an approximation to the real world non-perturbative

low energy limit of QCD with Nc = 3 number of colour charges and SU(3) non-

abelian symmetry gauge group.

Large Nc QCD in itself is approximative but at the moment lacks an exact

solution. Therefore large Nc QCD provides an indicative solution to the low

energy regime of QCD in (3 + 1)-dimensions.

2.1.2 What Of Random Matrix Theory?

In the preceding section, crucial fundamental ideas were introduced. The model

proposed by t’ Hooft represents an ensemble of Nc × Nc matrices which can

be understood to be a multimatrix model of sorts. This statistical ensemble of

matrices can be linked to the action that can be used to derive both planar and

non-planar double line Feynman diagrams [21].

In addition, the inverse of the size Nc of the matrices plays the role of an

expansion parameter in the perturbation of large Nc QCD, and this parameter is

explicitly related to the topology of these double line Feynman diagrams.

The ingenious model provided by t’ Hooft to understand the low energy dy-

namics of QCD can be further simplified when studied through the framework of

Random Matrix Theory (RMT) [22].

Matrix models have contributed significantly in the pursuit to unlock and un-

derstand the physics that underlies the sub-nuclear nature of atomic particles.

Even in the context of modern day physics, multimatrix models have evolved to

become a critical analytical tool that can be used to provide a deeper compre-

hension and mathematical solutions to cutting edge science problems across a

multitude of disciplines.

Through the application of matrix models in our project, insightful and unique

analytical observations have been arrived at in the large Nc limit. Therefore, large

Nc multimatrix models leave much to be desired.

The t’ Hooft model of large Nc QCD becomes solvable in some instances of
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Random Matrix Theory [21]. The first application of RMT to QCD was by t’

Hooft where the author was studying a model of mesons in (1 + 1)-spacetime

dimensions in the large Nc limit [23].

Random Matrix models were first used by E. P. Wigner to understand and

provide a model for nucleic properties that occur during reactions [24]. Since

then, Random Matrices have been put to good use in other disciplines of science

like statistical physics, mathematics etc.

Wigner wished to provide a mathematical model that would describe the

properties of energy spacings when heavy nuclei were undergoing excitations.

It made sense to Wigner to let the varying distributions of energy spacings be

represented by a statistical ensemble of real symmetric matrices.

The distribution of the energy spacings can be understood by considering

an hermitian operator
→
H which would represent the Hamiltonian of the system.

Wigner proposed that the Hamiltonian operator
→
H should be a very large random

matrix that is an element of an even larger ensemble of random matrices. Wigner

further proposed that this group of random matrices have the same general prop-

erties as that of the Hamiltonian operator
→
H.

From these preceding conditions, the following system can be set up

→
H v(xi) = λW (xi)

→
H . (2.1.5)

TheN×N matrix λW (xi) is the eigenvalue matrix of the Hamiltonian operator
→
H and v(xi) is the eigenvalue dependent wavefunction of the system. The intervals

between successive N×N eigenvalue matrices equivalently represents the intervals

between successive energy levels. The random N×N matrices studied by Wigner

are taken to be large such that N →∞.

The distribution of eigenvalues of the system of an ensemble of N × N ran-

dom matrices enabled Wigner to solve and show exactly how the nuclear energy

spacings are distributed.

In this limit, large Nc QCD can also be understood and be solved using RMT

[25]. What truly is exciting and indeed fascinating, is that the perturbative large

Nc limit of QCD in the planar limit is exactly solvable [21], but not necessarily
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integrable [26]. We now continue to motivate how the t’ Hooft model can be

understood through RMT.

Random Matrix Theory can be understood as a theory of a random ensemble

of N × N matrices that are generated through a probability function of the

theory. In this case we will require that the size of the matrix N be the same

as the number of colour charges Nc. This random matrix will be discussed in

the large Nc limit for some arbitrary generated potential V (ψ) where ψ denotes

randomly generated Nc ×Nc hermitian matrices.

For this system of randomly generated Nc × Nc matrices ψ, one is able to

determine the eigenvalue density function ρ(E). To do this, the following partition

function should be defined

Z =

∫
dψe−NcTr(V (ψ)). (2.1.6)

The probability function that generates the random matrices ψ is given by

P (ψ) =
1

Z
e−NTr(V (ψ)), (2.1.7)

and has the normalization condition
∫
DψP (ψ) = 1.

The above probability function is invariant under the unitarity transformation

P (ψ) = P (U †ψU).

For this system of randomly generated Nc × Nc matrices ψ, we would wish

to solve an eigenvalue/eigenfunction equation ψv = Ev in the planar limit. The

eigenvalue system will be solved for a randomly generated Nc × Nc matrix ψ in

the large Nc limit that is generated with probability P (ψ).

Once the system is solved, the distribution of eigenvalues will be captured

by the eigenvalue density function ρ(E) and represented through a graph. This

eigenvalue distribution graph can reveal interesting features about the system

and one can learn about the underlying geometry of the system.

The system of randomly generated hermitian matrices will be solved for the

action S = −NTr (V (ψ)), through the path integral Z. The path integral will

be integrated over Nc × Nc matrices using the measure of the theory dψ. Once
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solved, the path integral can be entirely represented in terms of the eigenvalues

of ψ which simplifies the system and becomes more tractable.

Using RMT to understand large Nc QCD is beneficial. Solving large Nc QCD

in this matrix model is similar, in principle, to solving a quantum field theory in

(0 + 0)-dimensional spacetime.

In the same spirit as in RMT, one can consider, in particular, Gaussian matrix

integrals that are expressed in terms of Nc×Nc hermitian matrices. The solutions

to Gaussian matrix integrals can be associated with the double-line Feynman

diagrams as a result of how the matrices ψ are defined. This approach of treating

Gaussian matrix model integrals is very similar to the t’ Hooft model of large Nc

QCD.

The planar limit of RMT can be understood through double line Feynman

diagrams using the index notation that is assigned to quark-gluon interactions.

Just as in the t’ Hooft model, planar diagrams dominate the large Nc limit of

RMT.

For some arbitrary chosen potential V (ψ), the real analytic function G(z) that

represents a series of quark propagators can be defined for quark-gluon generic

processes [21]. From this analytic function, G(z), planar Feynman diagrams

can be generated which are topologically invariant. In this limit, under special

conditions the density of eigenfunctions ρ(E) can be defined from the solution of

the real analytic function G(z).

A famous example that elegantly shows the summation of planar Feynman

diagrams and provides an analytic function is shown in the work of BIPZ [27] for

eigenvalue distributions/densities. The authors of BIPZ [27] consider an Nc×Nc

single hermitian matrix model.

In their work, the authors provide a solution for planar diagrams that are

summed exactly. In addition, for this single hermitian matrix model, the analytic

function that satisfies special conditions provides a solution to the density of

eigenvalues. The eigenvalue distribution of the single hermitian matrix Gaussian

model is shown to be the famous Wigner’s semi-circle distribution.

Regarding the work presented in our current project, we will review the
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methodology of arriving at the Wigner distribution used by the authors of BIPZ

[27] to study the single hermitian matrix model. In the framework of our project,

this methodology will be extended by applying it to a multimatrix model. The

way in which this is done is unique for multimatrix models and we hope this will

offer valuable insight into multimatrix models.

In the framework of RMT, for a particular potential V (ψ) 1 , it can be shown

that the Wigner type distribution characterizes the eigenvalues of the density

function ρ(E) in the large Nc limit.

2.1.3 The Dyson Gas Approach

There is an alternative method that can be used to understand and solve the

real analytical function G(z). This alternate method that is popularly applied in

RMT is known as the “Dyson Gas” approach [28] [29] [30].

To heuristically motivate, without any technical details, and argue why the

Dyson gas approach is preferable, we consider the following potential:

V (ψ) = aψ2 + gψ4, defined for a random Nc × Nc matrix ψ. The term a

appearing in V (ψ) is defined up to a constant and g can be thought of as the

coupling constant of the RMT associated with the potential V (ψ).

The random Nc×Nc matrix can be diagonalized using unitary N×N matrices

U and U †. Naturally, the random matrix ψ is invariant under unitary transforma-

tion. To obtain an explicit representation of ψ, we carry out the transformation

ψ = U †λDU . The matrix λD is an Nc ×Nc diagonal matrix of the eigenvalues of

the random matrix ψ.

The partition function of the system of random matrices in terms of eigenval-

ues takes the form

Z =

∫
dψe−NcTr(V (ψ))

=

∫
dU

∫ ∏
i

dλDiJRe−Nc
∑
i V (λi). (2.1.8)

1The simplest example can be V (ψ) = 1
2m

2ψ2.
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The Jacobian JR arises when one changes the variables of integration of the

measure from dψ to the new coordinates dλDi . In the second line of equation

(2.1.8), the partition function is purely in terms of the eigenvalues λi of the

matrix ψ.

The integral that runs over the measure dU gives the volume of the gauge

group SU(Nc). The degrees of freedom that are associated with the unitary

matrix U of the system decouple. This simplification lends itself as a necessity

since the decoupling of the unitary matrix model from the partition function

leaves a system that is purely in terms of eigenvalues.

When our model is purely in terms of eigenvalues, the distribution of these

eigenvalues when plotted on a graph can reveal much about the system. This

eigenvalue distribution can also indicate whether this system defined with a large

number of randomly distributed matrices is in fact a system of non-interacting

gas molecules.

At this point, without presenting a derivation, the partition function Z, can

be shown to be

Z =
∏
i

∫
dλDie

−NE(λ1,λ2,λ3,...,λNc ), (2.1.9)

where we have that

E(λ1, λ2, λ3, . . . , λNc) =
∑
i

V (λi)− 1/Nc

∑
i 6=j

log (λi − λj)2 . (2.1.10)

The partition function in equation (2.1.9) is in fact equivalent to the partition

function of a classical one-dimensional gas with Nc molecules.

One of the advantages of the Dyson approach is that it simplifies the system

of Nc×Nc matrix models ψ with N2
c degrees of freedom to a more accessible and

simplified model with Nc degrees of freedom.

This system of eigenvalues appearing in the partition function (2.1.9) and

the effective action (2.1.10) has a very simple and yet extraordinary physical

interpretation. In the semi-classical limit, equation (2.1.9) coupled to (2.1.10)
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represents an interacting one-dimensional classical gas with Nc degrees of freedom

where the i’th eigenvalue λi denotes the position of the i’th molecule.

The gas itself is confined to a potential well V (λi). Any two molecules confined

in the potential well V (x) will repel each other according to −1/Nclog (x− y)2.

Further physical properties can be revealed for this one-dimensional classi-

cal gas by studying this system in the semi-classical approximation. Using this

approximation method, the classical gaseous system is defined in the continuum

limit where the variables of the system become continuous. Previously, the parti-

tion function appearing in equation (2.1.9) was in terms of eigenvalues which are

discretized. Therefore, according to the semi-classical approximation method we

find that

V ′(λi) =
2

Nc

∑
i 6=j

1

λi − λj
. (2.1.11)

To obtain a solution to equation (2.1.11) above we need to solve it for con-

tinuous variables in the continuum limit. In this limit, an analytical function

G(z) can be introduced, and its solution will indicate the form of the eigenvalue

density function of the system.

The analytic function is solved in the complex plane z on an interval that is

cut along the real axis. A very elegant method has been shown by BIPZ [27] on

how this analytical can be solved. We adopt a similar method for our argument in

our work. The function G(z) will be subject to special conditions. For instance,

on the complex plane, we will require that when z →∞ then the function G(z)

must converge such that G(z)→ 1/z.

The function G(z), by satisfying boundary conditions along the cut of the

real axis on the complex plane and meeting strict restrictions, does provide a

solution that can be related to the eigenvalue density function of the system in

the potential well V (x). This will be reviewed in detail in chapter 4.

For quadratic potentials (Gaussian), the one-dimensional classical gas with Nc

degrees of freedom can be shown to have an eigenvalue distribution that obeys

the Wigner semi-circle distribution.

In our motivation of the Dyson gas approach we originally considered the
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system with potential V (λ) = aλ2 + g
Nc
λ4 represented in terms of eigenvalues.

The 1/Nc term can be understood to represent the temperature of the system

[21]. This potential can be shown to have a system of eigenvalues that obeys the

Wigner semi-circle distribution.

The work of BIPZ [27] provides an in depth and elegant example of the Dyson

approach for a single hermitian Nc × Nc matrix. The RMT model of BIPZ [27]

is a framework that will be understood through our project by considering a

parameterized multimatrix model.

The aim of discussing RMT was to highlight some of the special features of

the framework that will be of great importance for our project. We also hoped

to motivate and illustrate the richness and the usefulness of the methodology

considered by Dyson in studying a large system of random matrices.

In general we indicated, through the Dyson gas approach, how a system of

Nc × Nc matrices with N2 degrees of freedom can be reduced to Nc degrees of

freedom by studying a RMT framework.

RMT can be used to study systems with a large number of degrees of freedom

to make these more calculable. The big advantage of RMT is that it is exactly

solvable, whereas the same cannot be said about the t’ Hooft model of large Nc

QCD. This is due to the complexity of the space-time valued multimatrix systems.

A solution of large Nc QCD would have to be an exact summation of all the

planar (and non-planar diagrams) that emerge from the perturbation theory of

the t’ Hooft model. This method of solving the low energy regime would be

crude and laborious. Alternatively a more elegant approach similar to the Dyson

gas approach would be needed to solve the t’ Hooft model of QCD where the

(planar) large N limit corresponds to a semi-classical limit. In turn, this solution

will provide a deeper understanding on how low energy QCD can be understood

and solved.

In the context of our project, the issue/challenge becomes that of parametriza-

tion for a large system of matrices. For instance, for two matrices M1 and M2, it

is easy to find a parametrization that yields the eigenvalues of the matrices under
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the trace. We observe that:

Tr(M2
1 ) =

∑
i

λ2i Tr(M2
2 ) =

∑
i

λ2j , (2.1.12)

which both yield N degrees of freedom.

Things become complicated when the product of matrices mix under the trace,

for instance: Tr(M1M2), which no longer yields a parameterization that will give

us terms that strictly depend on eigenvalues of the matrices M1 and M2 since

the angular degrees of freedom under the trace don’t get eliminated. In such an

instance, the number of degrees of freedom no longer grows like N .

In terms of parameterization, for three matrices, for instance, one may try to

parametrize invariant loops as:

Tr(
∞∏
pi

∞∏
qi

∞∏
ki

Mpi
1 M

qi
2 M

ki
3 ). (2.1.13)

Clearly such an explicit parametrization becomes complicated and unyieldy.

2.1.4 A String At The End Of The Gauge Theory Tunnel

The theory of strong interactions has, within its framework, string-like objects

which are flux tubes or Wilson lines [31] [32] [33]. When you have a pair of quark

and anti-quark particles and you try to separate the them, a flux tube forms

between the two. This flux tube is a result of the force between the quark and

anti-quark particle increasing with the separation distance between the quark pair

(quark confinement). The pair of quarks transmit a gluon gauge boson between

themselves even at large distances.

This behavior of quarks is contrary to what classical physics suggests (New-

ton’s laws) that the force of attraction between two bodies diminishes with in-

creasing distance between the two bodies

In general, upon close observation, these flux tubes of QCD seem to behave like

“strings”. Hence, motivated by this observation, there have been many attempts

to formulate a theory of strong interactions whose fundamental objects are these

“string” like flux tubes.
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The description of QCD in terms of these string like objects unveiled many

surprisingly interesting phenomenological attributes of QCD, as a consequence,

a “theory of strings” was born.

2.1.5 Could This Be A Hint For A Gauge/String Theory

Duality?

String theory was discovered during a time when particle accelerators were un-

veiling a zoo of particles such as mesons and hadrons that exist on a sub-atomic

scale. In an attempt to formulate a theoretical model that would consistently

describe these particles, string theory came about [34] [35].

The motivation behind string theory was that these particles could be un-

derstood as different oscillation modes of strings. The idea was great in that it

described very well some of the features of the hadron spectrum. Unfortunately,

string theory could not provide a complete picture for the hadron spectrum as

it suffered from inconsistencies. As a result, Quantum Chromodynamics proved

itself as a successful theory of strong interactions and succeeded where string

theory could not.

Quantum Chromodynamics, a non-abelian SU(3) gauge theory with three

colour charges, Nc = 3, successfully described the physics of strongly interacting

particles. The t’ Hooft model, provided a more simplified model of QCD when

the number of colour charges Nc of the theory were made infinitely large bringing

back the idea of a “QCD” string underlying the topological expansion. Also,

the diagrammatic perturbative expansion of large Nc QCD points towards a free

string theory in the large Nc limit.

In the planar limit, the coupling constant of the free string theory gs can be

identified with the double line Feynman diagram expansion parameter 1/Nc.

If QCD with Nc = 3 colour charges possesses similar features as QCD with

an infinite number of colour charges Nc → ∞, then this similarity would help

provide the correct string model of strong interactions. Considering the preceding

relation and using string theory to describe strong interactions, the string model
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provides a consistent relation between the mass (m) and angular momentum (J)

for the lightest hadron with a given spin. The relation for the lightest hadron

produced by the string model was m2 ≈ TJ2 + const [36].

The preceding relation, is based on a rotating, relativistic string with tension

T . The above mentioned relation is an example of how a model of strings can

be related to QCD in the large Nc limit. It is evident that the large Nc limit of

QCD connects gauge theory with string theory.

The argument presented in this section seems to suggest that a large Nc gauge

theory can be related to string theory. This argument is very general in its nature

and serves as an indication and not an explicit rigorous derivation.

2.2 Lo and Behold: Gauge Theory Is “Stringy”!

Without presenting pedantic and exhaustive details, we will motivate how gauge

theory could have a possible dual string description.

String theory, just like large Nc QCD is a mathematical model that is based

on perturbation theory. It is not exactly soluble. In this perturbation framework

of string theory, a topological expansion that is associated with generic string

processes can be identified.

The Feynman diagrams that represent how strings interact can be likened to

the planar diagrams of large Nc QCD [13] [19] [37]. In string theory, the amplitude

AST associated with the generic processes of string interactions is given by the

following equation

AST =
∑
g,h

g2g+h−2s kg,h. (2.2.1)

In equation (2.2.1) above, the constants g and h have the same definition as

in the amplitude AQCD (in equation (2.1.4)) of large Nc QCD. Also, gs in the

above equation represents the coupling constant of string theory.

When one compares AQCD in equation (2.1.4), and AST in equation (2.2.1),

the following identification can be made: gs = 1/Nc. Essentially, by matching
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equation (2.1.4) with equation (2.2.1), we observe that the string theory coupling

constant gs plays the role of the 1/Nc expansion parameter in large Nc QCD.

The matching of the expansion parameters of string theory and 1/Nc of gauge

theory presents an important though non-rigorous and non-lucid guide towards

the existence of gauge theories having a string theory description.

The equivalence of equation (2.1.4) and equation (2.2.1) seems to suggests

that large Nc QCD could be reformulated using string theory. The double line

Feynman diagrams in the planar limit of QCD have a topological expansion en-

coded in the 1/Nc expansion parameter. It is this 1/Nc parameter that may be

mapped onto the world sheet of a propagating string with the same topology as

the double line Feynman diagram in the large Nc limit.

Clearly, both equations (2.1.4) and (2.2.1) represent amplitudes and are both

based on perturbative expansions. Therefore, the equivalence of AQCD and AST
should be treated as an allusion that beyond the terrain of gauge theories, string

theory resides. In other words, gauge theories and string theories might be related

by dualities.

More recently, many examples of dualities are well known. For example, the

different dualities that relate the different string theories [38] [39] [40] [41]. When

a single theory can be described using (at least) two descriptions to describe the

same theory, then these two descriptions are related through a duality.

For example, one description of the theory could be strongly coupled while

the other description of the same theory is weakly coupled and vice-versa, then

these two theories are dual to each other.

In order to for us to gain a deeper understanding of the low energy regime of

QCD, one would hope that there could possibly exist a dual description of QCD.

In the low energy domain, QCD is strongly coupled, therefore a dual theory, one

might hope, could possibly provide deeper understanding and elucidate on the

nature of the strongly coupled gauge theory.

Several indications have been suggested that the dual description of the strongly

coupled theory of strong interactions might possibly be string theory. The most

well known example of a gauge theory/string theory duality is the AdS/CFT
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correspondence.

2.3 The AdS/CFT Correspondence: A General

Motivation

The AdS/CFT (Anti-de Sitter/Conformal Field Theory) correspondence is a con-

jecture that acts as a bridge between theories described by different frameworks,

which upon a deeper inspection, are in fact related to each other. On the one end

of the AdS/CFT correspondence, one can identify gauge theories that are formu-

lated through the prescriptions of Quantum Field Theory. In addition, on the

gauge theory side of the correspondence, a gravitational prescription is absent.

On the other end of the AdS/CFT correspondence, resides superstring theory

in ten-dimensions. On this side of the correspondence, gravity is present and the

superstring model includes a massless spin two gauge boson naturally.

According to the previous description of the AdS/CFT correspondence, we

can essentially deduce that what the correspondence does is to relate a theory

that incorporates gravity into its framework to a theory that does not. The

theory whose framework incorporates gravity is in D-dimensions and this frame-

work is related to a local field theory in (D − 1)-dimensions whose model lacks a

gravitational description.

The idea of relating theories from different dimensions separated by a single

dimension was suggested by t’ Hooft in attempting to reconcile the physics of

general relativity and the premises of quantum mechanics into a single framework

[42] [43].

This idea proposed by t’ Hooft can further be understood as an extension

of the Holographic principle [44] [45]. The holographic principle was critical in

understanding the macroscopic variables of black holes [46] [47] [48] [49] [50] [51].

Therefore, according to the holographic principle, the information of a body

in D-dimensions can be uniformly mapped to and stored on its boundary which

is a region of lower dimension (D − 1). From this boundary region, one can infer

properties of the body in higher dimensions.
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Classically, the holographic principle is based on the idea of the hologram.

A hologram is a devise that is able to contain all the information of a body in

(3 + 1)-dimensions on a surface in (2 + 1)-dimensions. t’ Hooft extended the

principles of holography to understand and attempt to unravel insightful ideas

regarding Quantum Gravity.

Therefore the AdS/CFT correspondence provides a dictionary that is based

on the ideas of the holographic principle [47]. This dictionary offers a translation

between a higher dimensional string theory and a lower dimensional local field

theory.

Specifically, the AdS/CFT duality provides an equivalence between conformal

field theories and string theories.

On the conformal theory side of the correspondence, one can identify Quantum

field theories that are conformal and gauge invariant. These gauge invariant mod-

els on the conformal side of the correspondence describe particles, both fermions

and bosons, up to spin one.

On the string theory side of the correspondence, the theory is defined on the

Anti-de Sitter background and its framework includes a massless spin two particle

that acts as a gauge boson for the gravitational force.

The most common conjecture that provides a demonstration of the AdS/CFT

correspondence is the one proposed by Juan Maldacena [52] [53] [54] [55]. The

Maldacena conjecture suggests an equivalence between a (9+1)-dimensional type

IIB string theory compactified on the AdS5 × S5 and N = 4 Supersymmetric

Yang-Mills theory on (3 + 1)-dimensional spacetime.

In this part of the introduction we will present a non-technical approach to

demonstrate and understand the AdS/CFT correspondence.

2.3.1 A Tale Of Two Theories

A Brane New World

The Maldacena conjecture is largely understood through Dp-branes. Dp-branes

are a group of extended objects on which open strings can attach their end points
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[56] [57] [58]. These extended objects are teeming with physical properties that

allow for elegant physical solutions.

Dp-branes can be viewed differently in different p-dimensions. For instance,

a D0-brane can be identified with a point particle, a D1-brane can be viewed as

a one-dimensional extended object such as a string, a D2-brane can be viewed as

a two-dimensional surface like the world sheet swept out by a propagating string

and so forth. Naturally, the number of dimensions p can be generalized to higher

dimensions.

The Dp-branes have inherent properties such as mass, tension and energy.

In addition, Dp-branes have a tension that is proportional to the inverse of the

coupling constant gs of a string.

Both open and closed strings display some sort of interaction with Dp-branes.

The end points of an open string attached onto the surface of a Dp-brane sat-

isfy particular boundary conditions. These boundary conditions can either be

Dirichilet boundary conditions or Neumann boundary conditions. Our argument

regarding the Maldacena conjecture will be based on D(irichilet)- branes i.e. Dp-

branes defined according to Dirichilet boundary conditions of open strings.

The physics of open and closed strings coupled to Dp-branes can offer insight

into the gauge theory side of the AdS/CFT correspondence. The spectrum of

open strings can be associated with gauge fields and from the vibrational modes

of the closed string the graviton arises naturally.

Parameters of the t’ Hooft Model

The t’ Hooft model was presented as a large Nc gauge theory where Nc →∞ and

with gauge symmetry group SU(Nc). The coupling constant λ = g2YMNc of the

t’ Hooft model was defined in the double scaling limit, Nc → ∞ and gYM → 0,

where it was held fixed.

The parameter Nc represents the number of colour charges of QCD and gYM

is a dimensionless coupling constant that controls the interactions of the gauge

bosons, also the parameter Nc can be understood as the degrees of freedom of

SU(Nc).
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In sections that follow we will elucidate the AdS/CFT correspondence in the

limit where the degrees of freedom of SU(Nc) are large. To accomplish this we

will provide a heuristic non-technical demonstration of the Maldacena conjecture.

The t’ Hooft Coupling Constant Related To Strings

The objective for this section is to provide a general motivation as to how, in

the Nc → ∞ limit, the ’t Hooft coupling constant λ arises from considering

interacting open strings attached to Dp-branes [59].

As we mentioned previously, coupled to the open strings are massless gauge

fields, and these fields live on a stack of N coincident Dp-branes. Under these

conditions it is possible to show that the string coupling constant go is related

to the Yang-Mills dimensionless coupling constant gYM associated with strong

interactions.

The end points of open strings attached to the stack of N Dp-branes can be

labeled from 1 to N i.e. we can assign an index i to each of the end points of the

open strings attached to any one of the N Dp-branes such that i = 1, 2, 3 . . . , N .

Since go governs the interactions of open strings, and the massless fields are

gauge bosons living on the open strings, then one can associate the gauge bosons

with open strings. Therefore, the coupling constant g2YM of gauge theory will

coincide with the coupling constant of open strings go.

We remind ourselves that, for large Nc QCD, whenever the gauge bosons

of the theory interact, the process of interaction involves a factor of g2YM . In

general, we also demonstrated that for the SU(Nc) gauge theory, the amplitude

that represents the generic processes of interacting gauge bosons involved the

g2YM coupling constant.

Naturally, we can generalize the number of interacting open strings on the

stack of N coincident Dp-branes to be very large. In this instance, the amplitude

that represents the generic process of interacting massless open strings will be
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An =
∞∑
n=0

cn
(
g2YMN

)n
=

∞∑
n=0

cnλ
n, (2.3.1)

where cn is some constant of order n.

The above equation elucidates how, for a system of interacting open strings

whose end points are attached to a stack of N coincident Dp-branes, the ’t Hooft

coupling constant emerges naturally (compare with equation (2.1.4)).

In general, the amplitude that governs interacting open strings on N Dp-

branes can be shown to be equal to the amplitude that describes the interactions

of gauge bosons in SU(Nc) gauge theory.

It is also possible to associate both planar and non-planar diagrams to the

amplitude that governs interacting open strings on the N coincident Dp-branes.

If we take a number of N Dp-branes to be equivalent to the number of colour

charges Nc (which we assumed implicitly without stating it), interesting indicative

results can be observed between the parameters of the ’t Hooft model and the

framework of interacting open strings.

The emergence of the ’t Hooft coupling constant λ in the framework of open

strings attached to N coincident Dp-branes essentially demonstrates the follow-

ing:

(i) a relationship between the dimensionless coupling constant gYM of strong inter-

actions and the coupling constants that regulates the interaction of the massless

open strings and,

(ii) how the ’t Hooft coupling constant is involved in the amplitude An of open

string generic processes.

The above argument is a non-technical indicative demonstration that large Nc

gauge theories with SU(Nc) symmetry might be related to string theories. This is

shown through the relationship between the parameters of both gauge and string

theory.
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Gravitational Effects In The Company Brane-iacs

In this section, we provide some insight as to how Dp-branes induce gravitational

effects in the background geometry [59] [60]. This insight plays an important role

in understanding the Maldacena conjecture.

We mentioned earlier that Dp-branes have properties such as mass/energy

and tension. Therefore according to General Relativity, it means that Dp-branes

can induce curvature into the background geometry. Curvature introduced into

background geometry can loosely translate to mean that there is a gravitational

force as a result of Dp-branes introduced into the spacetime geometry.

To get a clearer understanding on how the presence of Dp-branes can induce

gravitational effects, first we consider a stack of N Dp-branes. The parameter N

can be taken to be large 2.

These N coincident Dp-branes with mass M will be wrapped around a com-

pact space of volume Vp and will be a distance r away from some arbitrary body

with mass m. These N coincident Dp-branes will have tension Tp given by the

following equation

Tp =
1

gc

1(√
α′
)p+1 . (2.3.2)

In equation (2.3.2) above, the tension of the N coincident Dp-branes Tp is

proportional to the inverse of the string coupling constant gc and α′ ≈ l2s is the

characteristic string length.

We introduce a scaling factor R in D′ spacetime dimensions such that

RD′−3 ≡ G(D′)M . This scaling factor, can be related to the parameter N and the

string coupling constant gc. The constant D′ represents the spacetime dimensions

in which the N Dp-branes are defined and G(D′) is the Newton gravitational

constant in D′-dimensions 3.

The scale factor R can be identified with the radius of a Schwarzschild black

hole of mass M , up to terms of order one.

2We will follow here the discussion in [59].

3The Newton gravitational constant in D′-dimensions: G(D′) ≈ g2c
(√

α′
)D′−2

.
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A stack of N Dp-branes compactified on a p-dimensional space with volume

Vp will have the following mass M

M = NVp
1

gc

1(√
α′
)p+1 . (2.3.3)

In the dimensionally reduced (D′ − p) spacetime the stack of N Dp-branes

with total mass M will appear as a point source for an observer a large distance

away.

At this point, we can obtain a characteristic equation for the N coincident

Dp-branes that involves the string length α′, gc and N . This system of Dp-branes

can be understood through the following equation

(
R√
α′

)D′−p−3
∼= gcN. (2.3.4)

Equation (2.3.4) can be taken in two limits. In the first limit, we can study

equation (2.3.4) for weakly coupled string theory where gcN → 0. In this weak

coupling limit of string theory, R → 0. This behavior for R means that we can

neglect gravitational effects in the background geometry.

Curvature of the spacetime region occupied by N coincident Dp-branes with

total mass M will be minimal, resulting in negligible gravitational effects [59].

For the second limit, we consider a strongly coupled string theory specified by

the condition gcN → ∞. We see in equation (2.3.4) that in the limit gcN → ∞

we find that R >> 1. In the limit where the string theory is strongly coupled,

the gravitational effects cannot be neglected, this will induce a back reaction into

calculations performed in this spacetime region occupied by the N coincident

Dp-branes.

Maldacena Conjecture

The preceding section provided an idea on how a stack of N Dp-branes can

introduce gravitational effects into the spacetime geometry they occupy. These

N Dp-branes have properties such as total mass M , volume Vp and tension Tp.
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Understanding the effects due to the N Dp-branes on the spacetime region

they occupy is important in understanding the AdS/CFT correspondence.

Maldacena formulated the AdS/CFT background by considering a stack of N

D3-branes in D′ = (9 + 1)-dimensional Minkowski spacetime.

On the N D3-branes one finds the low energy limit of type IIB string the-

ory. Maldacena conjectured that the low energy limit of type IIB string theory

must be equivalent to a conformally invariant maximally supersymmetric N = 4

Supersymmetric Yang-Mills (SYM) theory in (3 + 1)-spacetime dimensions.

The type IIB string theory lives in the AdS5×S5 space, and its low energy limit

is a supergravity theory. On the string theory side of the Maldacena conjecture,

are the closed strings of type IIB (string) theory whose spectrum contains the

graviton. The spectrum of massless open strings is coupled to the gauge theory

degrees of freedom.

On the field theory side, the maximum amount of supercharges the N = 4

Supersymmetric Yang-Mills theory can have is four i.e. four spinor charges (N =

4).

To show the equivalence between the conformal field theory and string theory,

as conjectured by the AdS/CFT correspondence, one must consider the symme-

tries of both theories. To make manifest the beautiful structure of the Maldacena

conjecture, it is of utmost importance that

(i) we consider the low energy regime of type IIB string theory in

D′ = (9 + 1)-dimensional spacetime approximated by type IIB supergravity on

N coincident D3-branes and,

(ii) we show that the symmetries of N = 4 SYM match with those of low energy

type IIB string theory.

The AdS/CFT correspondence will be examined starting in the limit where

the spacetime geometry is a flat D′ = (9 + 1)-dimensional Minkowski spacetime

and there is no curvature in the background geometry such that gcN << 1.

We will also comment about the AdS/CFT correspondence in the limit where
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gravitational effects due to the N D3-branes cannot be ignored, in the limit

gcN >> 1.

In Weakness And In Strength: Gravitational Effects Due To D3-branes

Below, we will review the role of type IIB string theory whose low energy limit

is approximated by type IIB supergravity theory.

Previously we mentioned that the coupling constant go of open strings re-

stricted to the surfaces of N coincident Dp-branes is related to the dimensionless

Yang-Mills coupling constant gYM that governs the interactions of SU(Nc) gauge

theory for a large number of degrees of freedom Nc. The two coupling constants

were shown to be related as follows: g2o ≈ g2YM .

The coupling constant gc of closed strings permeating in D′ = (9 + 1)-

dimensional Minkowski spacetime is related to go by the relation gc ≈ g2o . In

total we can relate all coupling constants across the spectrum for gauge theory,

open and closed string theory through g2o ≈ g2YM ≈ gc.

The above relations of the gauge and string theory coupling constants are

merely approximations and not exact, they just give us an inclination of how

they are related.

We will consider a stack of N coincident D3 branes in flat (9 + 1)-dimensional

spacetime. Since the N Dp-branes have properties such as mass and tension, we

can investigate the gravitational effects of this system in flat (9 + 1)-dimensional

spacetime.

We will first start off by considering the system of N coincident D3-branes

taken in the limit gcN <<< 1.

In the case where gc → 0, the closed strings propagate freely and are non-

interacting in (9 + 1)-dimensional spacetime. Similarly the open strings on the

N coincident D3-branes are non-interacting due to the relation of the coupling

constants.

In the limit gcN << 1, the gravitational effects due to the N coincident

D3-branes on the background geometry is minimal. This means that the N D3-

branes can be treated as though they are embedded in flat (9 + 1)-dimensional
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spacetime.

The system we consider will be studied in the low energy limit E of type IIB

string theory, this implies the following condition

E <<
1

ls
, (2.3.5)

where ls is the characteristic string length. We will require that the energy

E be very small when compared to the string energy scale 1/ ls. When ls → 0,

the relation (2.3.5) will be required to hold.

In the limit where the string length approaches zero, the massive open string

states restricted onto the stack of N D3-branes are mostly intractable and inac-

cessible. As a result, only massless gauge degrees of freedom are confined to the

D3-branes.

Also, when ls → 0, the Newton gravitational constant G(10) → 0. Since G(10)

vanishes, this naturally implies that the closed string coupling constant gc also

goes to zero. Therefore in the limit G(10) → 0, closed strings propagate freely in

background geometry with no interactions.

For string length scales that are very small, the remaining gauge degrees of

freedom on the N coincident D3-branes are massless U(N) Yang-Mills fields. In

the limit where ls → 0, the U(1) gauge field decouples from the system, leaving

supersymmetric SU(N) non-abelian gauge fields in four-dimensions.

In summary, by considering the low energy regime of N coincident D3-branes

in the limit where gcN << 1, we can make the following inferences regarding the

physics of this system,

• Freely non-interacting closed strings propagating in (9+1)-dimensional flat

Minkowski spacetime are decoupled from the physics of the bulk

• The physics of the N coincident D3-branes is described by SU(N) N = 4

Supersymmetric Yang-Mills massless gauge fields confined to the D3-branes.
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The second case that will be considered in the argument that follows is for

a system of N coincident D3-branes that induce curvature into the background

geometry. Simply put, we now consider the system of D3-branes in the limit

gcN >>> 1, but still for low energy.

In the limit gcN >> 1, the N coincident D3-branes are defined on a back-

ground geometry of (9 + 1)-dimensional spacetime that is no longer flat. In

addition to having total mass M and other physical properties, the stack of N

D3-branes also carry charge4. Complex and intractable field equations of massless

modes of type IIB supergravity string theory describe the physics that governs

the stack N D3-branes system.

The configuration of the system of Dp-branes has a solution that could be

understood through the background geometry with induced curvature. This ge-

ometrical solution that describes the configuration of D3-branes is a plane with

an infinite well at the center (the throat).

An infinite distance away down the throat, lies the solution whose geometry

describes the physics of the N D3-branes where the horizon is found.

The throat asymptotically converges into a cylinder as one moves towards the

origin of the throat. The circles that surround the throat converge into circles of

constant radius. These circles are known as the “circumference of the throat”.

The circle an infinite distance down the throat is the horizon. Any point that lies

on the plane will naturally be an infinite distance away from the location of the

horizon.

We should remember that we are discussing the geometry of N coincident

D3-branes that induce curvature into the geometry of the spacetime fabric in

(9 + 1)-dimensions.

In this spacetime, when the N D3-branes are extended along the coordi-

nates (x1, x2, x3), an observer who assumes a position specified by the coordinates

(x4, x5, x6, x7, x8, x9) will see the configuration of D3-branes as a point mass. The

coordinates that specify the framework of the observer are transverse to the co-

ordinates of the system of D3-branes.

4The N coincident D3-branes carry a Ramond-Ramond charge see [19] [61] [62].
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The configuration of D3-branes along the six-dimensional transverse coor-

dinates, are surrounded by five-dimensional spheres S5. The geometry of the

horizon arises in this transverse space an infinite distance down the throat.

The horizon, a circle that surrounds the origin of the throat an infinite distance

away, is surrounded by S5 spheres with constant radius R. The volume of the S5

spheres with radius R that surround the horizon converge to a constant value.

We can now see the emergence of a throat geometry with a horizon arising

from the system of N coincident D3-branes. This is the same configuration of

Dp-branes with mass M considered in the limit gcN >> 1 yielding non-negligible

gravitational effects on the background geometry.

When one provides a mathematical formulation to describe the gravitational

solution of the throat geometry, the metric of this geometry is encoded with the

mathematical structure of the near horizon geometry. Within the metric that

provides a gravitational solution, one finds the metric that describes the near-

horizon geometry which is identical to the metric of the AdS5 × S5 geometry.

The metric that describes the AdS5 × S5 is

ds2 = R2
[
dρ2 − dt2 cosh2 ρ+ sinh2 ρdΩ2

3

]︸ ︷︷ ︸
AdS5

+

S5︷ ︸︸ ︷
R2
[
dθ2 + dϕ2 cos2 + sin2 θ (dΩ′3)

2
]
.

(2.3.6)

In the above metric of AdS5×S5, the global coordinates that describe the anti-

de Sitter geometry AdS5 are (t, ρ,Ωi) and the global coordinates that describe

the geometry of the five sphere are (ϕ, θ,Ω′i).

The four spacetime dimensions that make up the AdS5 geometry are coordi-

nates parallel to the system of N coincident D3-branes plus a radial dimension

that extends transverse to the configuration. In total, there are five-dimensions

that describe the AdS5 space.

The S5 spheres are made up by five-dimensions in the transverse direction. In

total, the sum of the AdS5 and S5 spatial extensions make up the total coordinates

of the (9 + 1)-dimensional spacetime.
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Having discussed the geometry underlying the system of N coincident D3-

branes which consequently gave rise to the AdS5 × S5 background, we now wish

to understand the physics of the system of D3-branes coupled to the near horizon

throat geometry.

An observer whose frame of observation is positioned an infinite distance away

from the near horizon geometry, sees redshifted energy excitations that come from

the horizon. This simply means that discrete finite energy excitations produced

near the horizon will appear as being redshifted for an observer far away from

the throat.

The discrete finite amount of energy excitations from the horizon appear with

an even lesser amount of energy for an observer an infinite distance away since

this energy radiating from the near horizon is redshifted. Therefore, the near

horizon energy excitations will reduce the amount of energy for an excitation or

equivalently result in a longer wavelength for the radiation when observed from

far away.

An observer positioned far away who sees low energy excitation from the

throat geometry, he/she either observes fixed amounts of energy excitations pro-

duced from the horizon or the observer sees long wavelength (low energy) excita-

tions from the system of D3-branes.

Interestingly, the two observations made by the observer decouple. This means

that for an observer located an infinite distance away, the horizon of the throat

geometry looks much smaller than the long wavelength of the energy excitations.

Therefore the energy excitations from the horizon are never captured by the

observer.

In addition, the original energy excitations do not have enough energy to

overcome the energy barrier near the horizon geometry to escape to infinity.

These primary excitations are never captured.

The above system of the near horizon geometry can be well approximated by

a system of two decoupled configurations. These decoupled systems are

• A flat (9 + 1)-dimensional Minkowski spacetime with low energy closed

strings propagating freely a distance far away from the near horizon geom-

40



etry

• A configuration of type IIB superstrings that are permeating the near hori-

zon AdS5 × S5 geometry.

We have presented an argument wherein we consider a system of N coincident

D3-branes in the low energy limit E defined by equation (2.3.5). The system of N

coincident D3-branes was characterized by the two limits of gcN . In both limits

the parameter N was assumed to be very large yet finite and the closed string

coupling constant gc adjusted to define the limits reached by the product gcN .

In the first limit, where gcN << 1, the gravitational affects on the (9 + 1)-

dimensional Minkowski spacetime, due to the presence of the system of D3-branes,

are negligible and close to zero. In this limit, the background is approximated to

be flat.

The second limit, where gcN >> 1, causes curvature of the Minkowski space-

time and in this instance the gravitational effects due to the presence of the

D3-branes cannot be ignored. Calculations performed under these conditions

have to take the backreaction due to the D3-branes into account.

In both limits of gcN , the system of N coincident D3-branes resulted in two

decoupled systems.

When gcN << 1, we established that one of the decoupled systems is a local

SU(N) gauge symmetry field theory of N = 4 Supersymmetric Yang-Mills theory

on the N coincident D3-branes. In the limit where gcN >> 1, the system reduced

to a theory of type IIB closed strings propagating in AdS5 × S5 geometry.

In the limit where the product gcN is generalized, we would still observe the

same decoupled systems with closed strings.

Therefore, for any value gcN , the same physics can be described consistently

by the theories that arise from the decoupled systems. One can use the prescrip-

tion of N = 4 Supersymmetric Yang-Mills theory or one can use closed strings

near the horizon geometry of type IIB superstring theory whose low energy limit

is type IIB supergravity in the AdS5×S5 to describe the physics (of the D3-brane
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configuration ). Both theories will provide a consistent description.

The argument provided above provides an indicative motivation for the Mal-

dacena conjecture and demonstrates that N = 4 Supersymmetric Yang-Mills

theory is equivalent to type IIB string theory on the AdS5× S5 spacetime geom-

etry.

Matching Global Symmetries Of The Maldacena Conjecture

Preceding this current section, we provided an argument that demonstrated how

the AdS/CFT correspondence can be deduced by considering a system of N

coincident D3-branes in (9 + 1) spacetime dimensions.

Further proof that supports and elucidates the AdS/CFT correspondence are

the matching global symmetries associated with the theories on either side of the

duality [52] [63] [64]. Below, in what follows, we will explicate the matching global

symmetries between N = 4 SYM and type IIB string theory on the AdS5 × S5

geometry.

On the gauge theory side of the AdS/CFT correspondence, one finds confor-

mal field theory that preserves conformal invariance in (3+1)-dimensions. These

conformal symmetries consist of operators that define the Lie algebra of the re-

spective field theories and are made up of a combination of Lorentz generators

and spacetime translation generators. In addition, there are other operators of

the conformal symmetry group that generate scale transformations and special

conformal translations.

In total, there are 15 operators that generate the symmetries of conformal

field theories in (3 + 1)-dimensional Minkowski spacetime.

We will now consider the symmetry dynamics on the string theory side of the

AdS/CFT correspondence.

The closed strings of type IIB string theory propagate freely in the bulk of

the spacetime geometry due to the gravitational excitations when gcN >> 1.

The geometry where the closed string propagate is described by five-dimensional

anti-de Sitter space AdS5.

The anti-de Sitter spacetime is described by a Lorentz manifold that possess
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maximal symmetry. The Lorentz manifold is associated with a constant negative

scalar curvature. This five-dimensional anti-de Sitter space represents a vacuum

solution with maximal symmetry of the Einstein equations with a negative cos-

mological constant.

The isometries of AdS5 spacetime are generated by 15 operators and satisfy

an algebraic structure similar to N = 4 SYM conformal field theory in (3 + 1)-

dimensions.

In order for the AdS/CFT to be consistent, the symmetries of (4+1)-dimensional

AdS5 spacetime must match those of conformal field theory in (3+1)-dimensional

spacetime. The isometries of S5, the five-dimensional sphere, have a symmetry

algebra that matches the superconformal symmetry of conformal field theories in

(3 + 1)-dimensions. Within Supersymmetric Yang-Mills, the symmetries are pre-

served when a set of scalar fields and a set of fermionic fields are rotated amongst

each other and these symmetries match the ones found in S5.

The conformal field theory in (3 + 1)-dimensions possesses a superconformal

symmetry group SU(2, 2|4). This superconformal symmetry has bosonic sub-

groups which are the conformal groups: SU(2, 2)× SU(4)R ≈ SO(2, 4)× SO(6)R.

The bosonic subgroup SU(2, 2) ≈ SO(2, 4) represents the conformal symme-

tries in (3 + 1)-dimensions. The symmetry SU(4)R ≈ SO(6)R represents the

R-symmetry group that rotates the N = 4 supercharges into one another. The

R-symmetry group can be understood to be a symmetry that does not commute

with other supersymmetries and acts as a rotation group of the space transverse

to the N D3-branes.

The N = 4 SYM is conformally invariant, and this means that it is invariant

under the global superconformal transformations that we showed above.

We will now take a look at the global symmetries of type IIB string theory

on AdS5 × S5 spacetime.

The AdS5 geometry has the isometry group SO(4, 2). Also, the S5 sphere has

the rotation symmetry group SO(6) ≡ SU(4). In total, the AdS5 × S5 spacetime

will have the full symmetry SU(2, 2)×SU(4) which is a product of the symmetries

of AdS5 and S5. Therefore the full symmetry group of the string theory on the
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(9 + 1)-dimensional AdS5 × S5 is the supergroup SU(2, 2|4).

The supergroup SU(2, 2|4) emerges on the string theory side because of all

the 32 Poincaré symmetries, 16 of these are preserved by the N coincident D3-

branes and the maximally supersymmetric AdS spacetime. The 16 Poincaré

supersymmetries will be increased to the full 32 by the addition of 16 conformal

symmetries. This will give the total global symmetry of SU(2, 2|4) on the string

theory side.

In conclusion we see that on the conformal theory side, the N = 4 Supersym-

metric Yang-Mills consists of 32 supercharges characterized by the superconformal

symmetry SU(2, 2|4) which is the same as that of the supergroup SU(2, 2|4) on

the string theory side on the AdS5 × S5 geometry.

Matching The Fundamental Parameters Of The Maldacena Conjecture

By considering global symmetries and the physics of N coincident D3-branes

in a special limit, the preceding sections illustrated the correspondence between

an SU(N) N = 4 Supersymmetric Yang-Mills local gauge field theory and type

IIB superstring theory whose low energy limit is type IIB supergravity on the

AdS5 × S5 spacetime.

Essentially the correspondence provides a dictionary for a gauge theory and

a string theory.

The gauge theory, an N = 4 SYM, is defined in (3 + 1) spacetime dimen-

sions and type IIB supergravity theory exists in (9 + 1) spacetime dimensions of

the AdS5 × S5 geometry. To crystallize the dictionary of the AdS/CFT corre-

spondence that relates gauge and string theories, we can relate the fundamental

parameters of two theories on either side of the duality.

For the gauge theory side of the correspondence, we find two-dimensionless

parameters,

• the QCD dimensionless coupling constant gYM

• the number of colour charges Nc ≡ N of the quarks.
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We also defined the t’ Hooft coupling constant λ = g2YMN in the large N

limit, N → ∞, that acts as a parameter of the theory and is associated with

topological Feynman diagrams.

On the string theory side of the Maldacena conjecture we find type IIB su-

perstring theory on AdS5 × S5 spacetime. Associated with the string theory are

the following parameters

• the coupling constant gc for closed strings, related to the coupling constant

of open string go through gc ≈ g2o

• the radius of S5,
(
R/
√
α′
)
, expressed in natural units of string length,which

are identical to that of AdS5.

Massless open strings propagating on the surfaces of N coincident D3-branes

give rise to massless gauge bosons of SU(N) gauge theory, we can relate the

coupling constants of the two theories by gYM ≈ go. The coupling constants of

both open and closed strings can be related to the gauge coupling constant by

g2YM ≈ g2o ≈ gc. To be precise, we have

g2YM = 4πgc. (2.3.7)

Previously we mentioned that the spacetimes of AdS5 and S5 have the same

effective radius
(
R/
√
α′
)
, where R is also the radius of the horizon of the throat

geometry.

In terms of the parameters R, ls, gc and N , we can define the following

relations between the parameters of gauge and string theories

gc =
g2YM
4π

⇐⇒ gc =
λ

4πN
, (2.3.8)

R4

l2s
= g2YMN ⇐⇒

√
λ =

R2

ls
. (2.3.9)

WhenN is taken to be very large, N →∞, with the t’ Hooft coupling constant

held fixed, the closed string coupling constant gc in equation (2.3.8) becomes very

small, and in turn λ will be small.

45



In this regard, equation (2.3.8) seems to suggest that when N is large, both

type IIB supergravity string theory and N = 4 SYM seem to be weakly coupled.

If we extend this inference to equation (2.3.9), we observe that when λ is small,

then the radius R of AdS5 × S5 geometry is small which implies that the radius

of S5 will be small.

With R being small, it presents a challenge because type IIB supergravity

becomes intractable and very difficult to handle. It is also difficult to produce

meaningful results when the radius R is small.

To perform calculations with meaningful results on the string theory side, we

need R to be large for a weakly coupled, gc → 0, string theory. In the limit

that the radius R is large, this means that S5 will have a large radius and the

curvature of the background geometry will be minimal therefore making it much

easier to perform calculations of type IIB superstring theory.

Upon close inspection in equation (2.3.9), in the limit where R is large, this

means that λ will also be large. If the t’ Hooft coupling constant is large, it means

that large N QCD becomes a strongly coupled SU(N) gauge theory therefore

making it nearly impossible to do calculations that will yield meaningful results

on the gauge theory side.

It is very difficult to work with a strongly coupled gauge theory, therefore a

special ingredient will be needed to make things easier. This special ingredient

is supersymmetry. What supersymmetry introduces is the ability for some gauge

theory observables not to depend on λ when g2YM = 0. These observables are

said to be “protected observables”.

The quantities computed on the gauge theory side with supersymmetry can

now be compared to the observables appearing on the string theory side. Also,

in the limit that λ → ∞, the string modes decouple and type IIB supergravity

string theory holds and it becomes easier to perform calculations. Hence, we see

a weak-strong coupling duality.

In the limit that N = 4 SYM is defined in the large λ limit, it acquires observ-

ables that are hard to calculate, but these observables can easily be calculated

on the string theory side of the duality.
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This demonstrates the weak/strong coupling nature between gauge theories

and string theories of the AdS/CFT correspondence.

2.4 The Maldacena Berenstein Nastase Limit

The Maldacena conjecture can be extended beyond the supergravity states of

type IIB string theory.

In the spirit of the AdS/CFT correspondence, there is a holographic principle

that relates the spectrum of closed strings permeating the pp-wave geometry and

N = 4 Supersymmetric Yang-Mills defined in (3 + 1)-dimensions.

This holographic relationship between strings on the pp-wave geometry and

a gauge theory in (3 + 1)-dimensions is famously known as the “BMN limit”, or

Berenstein-Maldacena-Nastase limit [65] [66] [67] [68] [69].

In the BMN limit, there is a restricted class of operators on the gauge theory

(SYM) side that correspond to strings in pp-wave geometry. This restricted class

of BMN operators, are coupled to an anomalous dimension that is a function of

the effective ’t Hooft coupling constant λ′. These BMN operators can be shown

to be equivalent to string states in the BMN limit.

In general, the restricted class of BMN operators on the SYM side of the cor-

respondence come with an anomalous dimension that can be equivalently mapped

to the string theory side. On the string theory side of the BMN correspondence,

the gauge operators correspond to a spectrum of closed string states with large

angular momentum J in a flat spacetime geometry

On the gauge theory side of the BMN correspondence one finds the single

trace operator, namely chiral primary operator Tr
(
ZJ
)
. These chiral primary

operators on the Yang-Mills side can be shown to be equivalent to the spectrum

of a perturbative closed string theory in a space with no curvature in the pp-wave

geometry.

The gauge theory operators, Tr
(
ZJ
)
, are defined with large angular momen-

tum J and are equivalent, in the BMN correspondence, to a massless gauge

particle with spin two, the graviton.
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The BMN correspondence seems to extend the original dictionary of the Mal-

dacena conjecture by providing us with a more concrete example of an AdS/CFT

correspondence. The emergence of the graviton on the string theory side that

can be related to operators on the gauge theory side is strongly indicative of a

gauge/gravity duality.

2.4.1 BMN Parameters Of The Theory

Having hinted in the preceding section that the BMN correspondence could be a

possible holographic principle between a gauge theory and a theory of gravity, we

provide further details of this notion in this section. Our objective for this part

of the introduction is to show how parameters of the gauge theory relate with

those on the string theory side in the BMN correspondence.

The background geometry in which the BMN correspondence is defined is

special, it is a pp-wave geometry. To obtain the pp-wave background geometry,

the AdS5 × S5 geometry of type IIB supergravity is considered in the Penrose

limit. In this limit, closed strings move along the circumference of S5 with a large

angular momentum J .

The metric that encodes the plane wave geometry is maximally supersymmet-

ric, this means that, the closed strings that propagate in this spacetime geometry

can be described by a type IIB maximally supersymmetric string theory. Since

the action of these type IIB closed strings propagating in the plane wave geom-

etry is easily defined and tractable in the light cone gauge, this means that the

closed string spectrum is easily calculable in this gauge.

Now, on the gauge theory side of the correspondence we find the chiral primary

operators Tr
(
ZJ
)
. These chiral primary operators are defined with large R-

charge J and are also required to be gauge invariant.

The gauge theory side of the BMN correspondence is described by N = 4

Supersymmetric Yang-Mills Theory. On the gauge theory of the correspondence,

the framework is defined in the double scaling limit where the number of colour

charges N and the R-charge J are taken to be infinitely large.

In this double scaling limit, the perturbative closed string spectrum can be
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obtained in the pp-wave geometry. The parameters of the gauge theory side of

the correspondence are given by

λ′ =
g2YM
J2

, gf =
J2

N
. (2.4.1)

In the BMN limit, the effective ’t Hooft coupling constant λ′ and gf are kept

fixed when J,N → ∞. The constant gf is the effective genus of the double line

Feynman diagrams [70].

The effective t’ Hooft coupling constant λ′ and the effective genus counting

parameter gf can be related to the energy/mass scale µ, the square of the char-

acteristic string length or the Regge slope α′ and the momentum of the vibrating

closed string mode p+.

The relationship is

λ′ =
g2YMN

J2
=

1

(µp+α′)2
, (2.4.2)

and

gf =
J2

N
= 4πgc

(
µp+α′

)2
. (2.4.3)

Equations (2.4.1)− (2.4.3) reconcile the fundamental parameters that are im-

portant in describing the physics of N = 4 SYM gauge theory and the parameters

that govern the physics that occurs on the string theory side of the correspondence

on a pp-wave background geometry.

The parameter µ, when taken in the limit approaching zero, approximates

the deviation of the pp-wave geometry from flat space Minkowski. The limit

µ → 0 can be viewed in the same spirit as with the N coincident D3-branes of

the Maldacena conjecture in the limit where gsN >>> 1, resulting in curvature

being induced into flat (9 + 1)-dimensional Minkowski spacetime.

When the parameter µ is taken to be small, µ → 0, this introduces a strong

coupling limit into the gauge theory side of the correspondence according to

equation (2.4.2). In addition, we see how the effective genus parameter gf is pro-

portional to the closed string coupling constant gc according to equation (2.4.3).
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2.4.2 More Parameters More Relations

We will further extend on the key equations that are important in illustrating

the BMN correspondence.

To start off, the Lagrangian of N = 4 Supersymmetric Yang-Mills theory

consists of six real (Higgs) scalar fields φi where i = 1, 2, 3 . . . , 6. These scalar

fields φi transform in the adjoint representation of the gauge group SU(N).

The symmetry of the N = 4 Supersymmetric Yang-Mills theory is the con-

formal symmetry group SO(2, 4)× SO(6). The conformal group SO(6) is an R-

symmetry group. The R-symmetry group operates on the six Higgs scalar fields,

in addition, the angular momentum J can be understood as an operator that

acts on two of the six Higgs scalars. Therefore J generates rotations on the (1 2)

plane defined by the φ1 − φ2 Higgs of R6.

The BMN framework is considered in the limit where N →∞ and gYM << 1

whilst gYM , kept fixed. With these limits, it will mean that the ’t Hooft coupling

constant will be very large. In addition, on the field theory side, we consider

operator states that carry large R-charge J , where J is the SO(2) generator of

rotations that is responsible for rotating two of the six Higgs scalar fields (φ1, φ2).

Symmetry breaking takes place in the plane wave geometry of the BMN cor-

respondence due to the dynamics of the closed string.

In the Penrose limit of the AdS5×S5 geometry, we considered a closed string

propagating on the periphery of S5. The scenario of a closed string propagating on

the equator of S5 is equivalent to considering the neighbourhood of the trajectory

of a particle that is positioned at the center of AdS5 that traces out a path along

the circumference of S5 and moving close to the speed of light.

As we mentioned previously, the metric of S5 has an inherent SO(6) isometry.

In the Penrose limit, by restricting ourselves to the neighbourhood trajectory of

a particle traveling along the equator of S5, this restriction breaks the SO(6)

R-symmetry of S5. The symmetry that remains on the gauge theory side is

SO(4)× U(1).

It should be emphasized that the symmetry is broken on both the gauge theory

side and string theory side of the BMN correspondence in the instance where we
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restrict ourselves to the geometry seen by the particle centered on AdS5 and

traveling close to the speed of light along the equator of S5.

The symmetry subgroup U(1) of SO(6) can be identified with the angle be-

tween the φ1 − φ2 plane of R6, generated by J .

We can further couple an R-charge to a particular state that is associated with

the U(1) symmetry group whose rotations are generated by J . Equivalently, the

R-charge of a state can be understood to mean that U(1) ≈ SO(2) is a subgroup

of SO(6).

A particle or a closed string propagating in the pp-wave geometry has proper-

ties that are associated with the variables p+ and p−. The variable p− describes

the energy of closed string propagating in the pp-wave geometry, and p+ is its

momentum. Both variables are defined in the light cone gauge.

In this light cone framework, we can understand p+ and p− to be the light

cone energy and the light cone momentum that are associated with a closed string

propagating in the pp-wave geometry.

The variables p+ and p− can be related to variables that appear on the gauge

theory side through the coordinate transformations of AdS5 × S5 taken in the

Penrose limit.

Without presenting the details, it can be shown that the correspondence be-

tween operators of N = 4 SYM theory and type IIB string theory on the pp-wave

background adhere to the following relations

2p− = −p+ = ∆− J,

2p+ = −p− =
∆ + J

R2
. (2.4.4)

In equation (2.4.4), ∆ is the conformal dimension and J is the R-charge and

both are BMN operators. The above equations must satisfy the BPS condition

which requires that ∆ ≥ |J |, and naturally this implies that p± > 0 be non-

negative.

We remember that on the string theory side we consider the neighbourhood

of a particle traveling close to the speed of light along the equator of S5 therefore
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the fluctuations of the closed string of type IIB (string) theory are localized in

the neighbourhood of the particle.

On the gauge side of the BMN correspondence, the operators ∆ + J and ∆− J

will be required to be finite due to the picture of the closed strings in the pp-wave

background. Equation (2.4.4) is a realization of the BMN correspondence.

The light cone energy p− represents the light cone Hamiltonian of the closed

string action that has been quantized in the light cone gauge.

The arguments presented so far demonstrate a generic dictionary constructed

in the BMN limit. This dictionary provides a relationship regarding the BMN

correspondence between the spectrum of closed strings with a Hamiltonian p− in

the light cone gauge.

2.4.3 Chiral Primary Operators Of BMN

In this section we will delve further into the BMN correspondence. We dedicate

this section to considering the BMN correspondence in terms of chiral primary

operators Tr
(
ZJ
)

and the closed string spectrum.

On the field theory side of the BMN correspondence, we have six Higgs scalars

φi for i = 1, 2, . . . , 6 that make up R6. A pair from the six Higgs scalars, φ1 and

φ2, are used to define the complex matrix Z such that Z = φ1 + iφ2.

The matrix Z is used to construct the chiral primary operator Tr
(
ZJ
)
. The

generator J is the U(1) ≈ SO(2) generator that rotates the φ1 − φ2 plane.

These chiral primary operators are the 1/2 BPS states that carry large R-

charge J . Also, the 1/2 BPS states have a scaling dimension that is equivalent

to J for all orders of the effective t’ Hooft coupling constant λ′.

The gauge operator Tr
(
ZJ
)

is a single trace state of Yang-Mills theory on

R× S3 and the trace runs over the N colour indices where N is taken to be very

large. Also, these chiral primary operators can be identified with a spectrum of

dimensions that are made up of single trace operators of the theory on R4 [65],

the two descriptions of these gauge theory operators are interchangeable.

The objective is to match operators appearing on the field theory side of the

correspondence with those of string theory defined on pp-wave geometry.
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What makes the BMN correspondence so important is the property that the

non-interacting type IIB string theory is exactly solvable in the BMN limit where

the action of the type IIB string theory is quantized in the light cone gauge in

the plane wave geometry.

The Hamiltonian in the light cone gauge of the quantized string theory is

given by

Hlc = 2p− = −p+ =
∞∑

n=−∞

8∑
I=1

(
aIn
)†
aIn

√
µ2 +

n2

(α′p+)2
. (2.4.5)

Equation (2.4.5) clearly shows how the light cone energy p− is equal to the

light cone Hamiltonian Hlc of the closed strings of type IIB string theory. The

creation operator aIn and annihilation operators
(
aIn
)†

generate bosonic excitations

when acting on the ground state or the vacuum state |0; p+ > in the light cone

gauge.

The |0; p+ > vacuum state in the light cone gauge has zero light cone energy,

therefore according to equation (2.4.4) it should correspond to a gauge operator

with ∆− J = 0. This correspondence will be expanded upon later.

A general state of quantized type IIB string theory, is described by 8 massive

bosons and 8 massive fermions. We will restrict ourselves to the general state

that generates the bosonic excitations, and this state is represented as follows

aI1n1
aI2n2

aI2n3
. . . aImnm|0; p+ > . (2.4.6)

The index I counts the number of bosons, that is I = 1, 2 . . . .8.

The vibrational modes n associated with a propagating closed string can be

decomposed into Fourier modes. On the closed string, the right moving modes

of vibration are denoted by n < 0 and the left moving modes of vibration are

denoted by n > 0. The zeroth mode of vibration is represented by n = 0.

The light cone gauge framework in which we consider closed strings with

modes of vibration will require that we impose a physical restriction on the closed

strings. This physical condition is such that the total momentum of the vibra-

tional modes along the closed string conserve the total momentum. The mo-
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mentum of both the left and right moving modes of vibration cancel each other,

therefore rendering the total momentum of the modes of vibration conserved.

This physical condition will be represented as follows

P =
∞∑

n=−∞

8∑
I=1

nN I
n = 0. (2.4.7)

The number N I
n represents the total occupation of the modes of vibration or

equivalently it represents the eigenvalue number of the pair of creation/annihilation

operators
(
aIn
)†
aIn acting on the vacuum energy state |0; p+ >.

The physics of the n = 0 mode of vibration for a closed string necessitate a

comment. The excitation of the n = 0 mode of vibration generates the spectrum

of massless supergravity closed string states that propagate in the plane wave

geometry. If we consider a particle with fixed p+ that traces out a trajectory in

the plane wave geometry, it would feel like it was trapped in a potential well and

therefore cannot escape to infinity because its energy p− is fixed.

The light cone Hamiltonian Hlc in equation (2.4.5) can be expressed in terms

of the occupation number Nn as follows

Hlc = 2p− = −p+ =
∞∑

n=−∞

8∑
I=1

Nn

√
µ2 +

n2

(α′p+)2
. (2.4.8)

We can also use the dictionary of parameters that we developed to rewrite

Hlc in terms of the gauge theory parameters. Therefore the spectrum of Hlc in

terms of gauge theory operators is given by the following

∆− J =
∞∑

n=−∞

8∑
I=1

N I
n

(
1 + λ′n2

)1/2
. (2.4.9)

In the pp-wave geometry, we generate the spectrum of closed string states by

acting with the creation and annihilation operators, aIn and
(
aIn
)†

, acting on the

unique ground string state |0; p+ > that has zero light cone energy p− = 0.

The vacuum state |0; p+ > with zero light cone energy should correspond to

a gauge operator with ∆− J = 0, which is the lowest value that can be assigned

to the chiral primary operator Tr
(
ZJ
)

with large R-charge J .
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To demonstrate the dictionary of the BMN correspondence between the single

trace operator with the lowest value and the vacuum state of a closed string we

present the following equivalence

1√
JNJ

Tr
(
ZJ
)
←→ |0; p+〉. (2.4.10)

The vacuum string state in the light cone gauge appearing in equation (2.4.10),

is defined for the n = 0 mode, and is shown to be equivalent to the normal-

ized chiral primary operator with normalization factor 1/
√
JNJ . Naturally, as

we mentioned before, the above correspondence appearing in equation (2.4.10)

describes a spectrum of massless supergravity mode, n = 0, of closed strings

propagating in the pp-wave geometry.

The string states of the n = 0 mode in the pp-wave geometry generate the

flat space spectrum.

2.4.4 Impurity States Of BMN

Now that we have shown the correspondence of the gauge operator with the lowest

possible value ∆− J = 0 and the ground string state in the light cone gauge, we

now want to look at excited string states.

The excited massless supergravity modes will be generated by creation/annihilation

operators acting on the vacuum string state |0; p+〉. These creation/annihilation

operators will be restricted to zero momentum modes of the closed string.

The zero momentum oscillators are ai0 for i = 1, 2 . . . 8 (and Sb0 for b = 1, 2 . . . 8

for their fermionic counterparts), and these oscillators act on the string vacuum

state in order to generate excitations for the closed string spectrum.

It should be noted that all these oscillators have the same light cone energy

and this property leads to the general condition that the “total light cone energy

is equivalent to the total number of oscillators that are acting on the light cone

ground state” [65].

In order for us to generate the excited states, we first have to obtain the gauge

theory operators. These gauge theory operators that correspond to excited string
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states are represented by generalized chiral primary operators that are coupled

to scalar fields inside the single trace of the operator. These scalar fields can be

shown to generate a string spectrum in flat space.

On the gauge theory side, to generate the first excited state, the scalar fields

φr, where r = 3, 4, 5, 6 are treated as impurities and are added into the single

trace operator Tr
(
ZJ
)
. The position of the impurity inside the single trace gauge

operator is important since the physics is carried out in the large N limit, that

is, the planar limit. The positions of the impurity inside the trace operator will

only shift in the presence of interactions.

The impurity states φr inside the chiral primary operators are summed over

all possible positions they can occupy inside the trace. The lowest lying mode

with ∆ − J = 0 has already been shown in the previous section, and there is a

single mode with this condition.

The next lying mode, that is associated with the first excited states has

∆− J = 1, and this will correspond to supergravity states with zero momentum

on the string theory side. Therefore, we can generate the first excited state in

the BMN limit

1√
NJ+1

Tr
(
φrZJ

)
←→ ai0|0; p+〉. (2.4.11)

The gauge theory operator has been normalized in the large N limit.

The number of excitations can be generalized by inserting k impurities into

the single trace operator. Every time an impurity φr is inserted into the trace, it

is summed over all positions it could occupy inside the trace.

To obtain higher excited states in the BMN limit, we simply add more im-

purities into the single trace gauge operator. On the string theory side, we still

have supergravity modes that are associated with the n = 0 mode.

In general, higher excited states are given by

∑ 1√
NJ+k

Tr (. . . Zφi1Zφi2 . . . Zφik)←→ ai10 a
i2
0 . . . a

ik
0 |0; p+〉. (2.4.12)

The above string states in equation (2.4.12) will correspond to a gauge oper-
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ator state with ∆− J = k for a general number k of impurities φr.

The sum (
∑

) in equation (2.4.12), represents the summation over all the po-

sitions that could be occupied by the impurities inside the single trace operator.

The summation that runs over the position of the impurities inside the trace in

equation (2.4.12) neglects the situation where we have two impurities occupying

the same position since these have a coefficient that is subleading in J , such that

1/J is the leading coefficient. Gauge operators subleading in J with 1/J are

neglected in the large J limit.

We are working in the limit where we assume that the number of impurities

appearing inside the trace will always be smaller than the number of the Z matri-

ces. This scenario suggests that we are working in a system that is approximated

by a “dilute gas”.

We have illustrated that supergravity modes with n = 0 are in precise cor-

respondence with chiral primary operators Tr
(
ZJ
)
. Operators appearing on the

gauge theory side of the correspondence are 1/2 BPS states and these states have

dimension ∆ that does not depend on the coupling parameters of the theory.

The oscillators that act on the light cone vacuum string state |0; p+〉 to gen-

erate excitations were supergravity modes with zero momentum modes n = 0.

The BPS operators are gauge operators that have (∆ − J) finite and have

∆ ≈ J ≈
√
N . The BPS condition ∆ ≥ |J | is implicit to BPS operators.

For these BPS operators, the conformal dimension ∆ remains unchanged by the

interactions since ∆ does not depend on gYM . This unique property corresponds

to supergravity states with zero momentum n = 0 modes.

2.4.5 Non-BPS States

In the previous section we discussed BPS operators that were identified with

supergravity states of the zeroth mode i.e. n = 0.

In what follows we extend the dictionary of the BMN correspondence to in-

clude stringy non-BPS states, which are essentially the non-supergravity modes

that have n 6= 0.

These non-supergravity states will correspond to gauge operators on the Yang-
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Mills side coupled to impurity states. The action of string oscillators with non-

zero modes of vibration of the closed string on the vacuum string state will be

identified with the gauge theory operators.

In the pp-wave geometry, these non-BPS string states can be understood to

represent “massive” string states that have total momentum along the closed

string conserved. Therefore the constraint that the total momentum for string

states be conserved means that more than a single oscillator
(
a†n
)i

and (a−n)i

should act on the vacuum string state |0; p+〉 such that
(
a†n
)i

(a−n)i |0; p+〉.

Equivalent to these string states on the gauge theory side we find gauge op-

erators that have more than one impurity φ that is position dependent inside the

single trace operator. The action of more than one oscillator acting on the vac-

uum state and more than one position dependent impurity inserted on the gauge

theory side ensures that there is zero total momentum along the closed string.

An interesting new feature appears on the Yang-Mills side of the BMN cor-

respondence for non-supergravity states. The chiral primary operators will have

more than one impurity inserted into the trace. The trace operator sums the

impurity over all possible positions it could occupy inside the trace along the Z

fields. A phase term that is related to the positions of the impurities inside the

trace appears to be multiplied by the single trace operator.

The position dependent phase term that is related to the position of the

impurity φ inside the single trace operator is given by exp ((2πinl) /J). The term

l appearing inside the phase term represents the position of the impurity φ inside

the single trace operator.

Below we present the simplest demonstration of the BMN correspondence for

non-supergravity states and phase dependent chiral primary operators

(
a†n
)i

(a−n)i |0; p+〉 ←→ 1√
J

1

NJ/2+1
Tr
(
φiZ

lφjZ
J−l) e 2πinl

J . (2.4.13)

The gauge theory operator appearing on the right hand side of equation

(2.4.13) is a non-BPS operator when the phase term exp ((2πinl) /J) 6= 0.

Equation (2.4.13) demonstrates how the two oscillator operators acting on
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the vacuum string state equivalently correspond to a gauge theory state with

two impurities inserted inside the chiral primary operator. The two impurities

appearing inside the gauge theory operator are summed over all possible positions

that they could occupy inside the trace along the string of Z fields.

The correspondence appearing in equation (2.4.13) can be generalized for

many excitations of the non-supergravity states. Therefore, for a general number

of excitations we have

(an1)
† . . . (anm)† |0; p+〉 ←→ 1

J

J∑
l1...lm=1

1

N
J+m

2

Tr (φ . . . Zφ . . . ZφZ . . .)×

e(2πi[n1l1+n2l2...nmlm]/J). (2.4.14)

The pattern that governs the correspondence for non-supergravity states and

non-BPS states becomes easy to follow. An oscillator mode for each closed string

corresponds to ∆− J = 1 on the gauge theory side for each single field.

The single (impurity) field appearing inside the gauge operator is summed

at all possible positions inside the trace according to a phase that depends on

the momentum. In the case where there is a state whose total momentum does

not disappear, that is, the total momentum along the string is not zero, this

results in operators being zero automatically due to the cyclicity of the trace.

The constraint, equation (2.4.7), that the total momentum should vanish along

the closed string will always be enforced on the string spectrum.

The constraint that total momentum be zero for a closed string with n 6= 0

vibration modes when a single creation/annihilation operator acts on a vacuum

string state corresponds to a single impurity appearing in the trace operator

Tr
(
ZJ
)

for large R-charge J .

However, for the n 6= 0 modes of vibration, the impurity inside the trace is

position dependent and is coupled to a phase dependent term multiplying the

single trace operator.

Single oscillator states acting on the string vacuum states will vanish as a

result of the conservation of momentum constraint. Explicitly, the BMN non-

supergravity states with n 6= 0 modes that vanish due to the conservation of
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momentum have the following form

ain|0; p+〉 ←→ 1

J

J∑
l=1

1

N (2J+1)/2
Tr
(
Z lφiZJ−l) e 2πinl

J . (2.4.15)

The right hand side of equation (2.4.15) above vanishes due to the cyclicity

of the trace for the n 6= 0 modes of vibration. The left hand side of equation

(2.4.15) also vanishes due to the salient constraint that the total momentum

along the closed string should vanish. The conservation of total momentum can

be identified with a physical state.

In the double scaling limit of the BMN correspondence of the gauge param-

eters, since J ≈
√
N , then the difference between the conformal dimension ∆

(dilatation operator) and the R-charge J coupled to an impurity with phase n,

gives the following relation [71]

(∆− J)n =
√

1 + λ′n2. (2.4.16)

Equation (2.4.16) is exactly the same as equation (2.4.9).

In conclusion, the argument provided for this section demonstrated how the

spectrum of type IIB string theory defined on the pp-wave geometry is equivalent

to a special class of BMN operators in N = 4 Supersymmetric Yang-Mills theory.

This introduction, provided to motivate the BMN correspondence which rep-

resents a special limit of the AdS/CFT correspondence, and serves only as an

heuristic demonstration of the BMN correspondence and not a rigorous deriva-

tion.

We hope that this introduction provided a general idea behind the equivalence

between a string spectrum of type IIB string theory defined on the plane wave

geometry and a restricted class of BPS states or BMN operators in the N = 4

SU(N) Supersymmetric Yang-Mills Theory.
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Chapter 3

Matrix Models

In the previous chapter we presented an introduction that provided highlights of

important works that serve as a motivation for the work carried in this project.

This chapter will (formally) introduce matrix models. We will carry out the

following objectives:

• Overall, provide a general introduction on matrix models whose character-

istic features are aligned with our project

• Present a general introduction on Plane Wave Matrix Theory

• Highlight the significance of matrix models through examples

• Briefly review 1/2 BPS states and LLM

• Provide examples of different treatments of the two matrix model

We remember that, in the previous chapter, we classified the BMN limit as a

special limit of the AdS/CFT correspondence that possessed the special property

of being exactly solvable for a theory of closed strings restricted to the plane wave

background geometry.

The gauge theory operators, Tr
(
ZJ
)
, of the BMN correspondence were shown

to mix with scalar fields φ appearing inside the single trace. These chiral primary

gauge operators appear at the boundary of the plane wave spacetime with a large

angular momentum J .
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BMN introduces the idea of an (1 + 1)-dimensional theory as a result of an

impurity φ hopping in the background of Z fields, as described in the previous

chapter.

The physics of the scalar fields amongst the Z fields inside the chiral primary

operator can be correctly described by a (1 + 1)-dimensional string field theory

in the plane wave geometry. In the limit where we describe the plane wave string

theory in terms of the light cone gauge degrees of freedom, the plane wave string

theory is reduced to a free and massive two-dimensional matrix model [72].

The perimeter of the plane wave geometry where the chiral primary gauge

operators are defined is in fact a one-dimensional region and the string theory

lives in the plane wave (1 + 1)-dimensional region. The correspondence between

the two regions where the string theory lives and the gauge theory lives, seem to

satisfy the prescriptions of the Maldacena conjecture.

Since the idea of BMN, the authors of [73] provided a derivation of a quantum

mechanical Hamiltonian by considering the N = 4 SYM theory in the BMN limit

for the two impurity case. This Hamiltonian in [73] is derived from the one loop

part of the dilatation operator matrix element.

In the spirit of BMN, [73] makes it more precise from N = 4 SYM that string

field theory results in a quantum mechanical system of matrices [74].

It turns out that this quantum mechanical system can also be obtained as a

dimensional reduction on S3, which is referred to as plane wave matrix theory

[75]. In the section that follows we discuss this “Plane Wave Matrix Model”.

3.1 Plane Waves Coupled To Matrix Degrees Of

Freedom

The theory living on the boundary of the plane wave geometry is a one-dimensional

N = 4 Supersymmetric Yang-Mills theory. This theory is a quantum mechanical

system with matrix degrees of freedom [75].

The authors of [75] suggested that this matrix model can be obtained by

performing a dimensional reduction through studying a Kaluza-Klein reduction
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of D = (3 + 1), N = 4 SYM on a round three sphere S3.

3.2 A Flavour For Plane Wave Matrix Theory

The authors of [75] start by considering an N = 4 Supersymmetric Yang-Mills in

(3 + 1)-dimensions compactified on a three sphere. The action that describes the

physics of N = 4 Supersymmetric Yang-Mills in (3 + 1)-dimensional Minkowski

spacetime is well known to result from a reduction on N = 1 Supersymmetric

Yang-Mills in (9+1)-dimensions on a six torus formulated on a curved background

that is invariant under supersymmetry.

The N = 4, D = 4 Supersymmetric Yang-Mills defined on R×S3 is described

by the following metric

ds2 = gανdx
αdxν = −dt2 +R2

(
dθ2 + sin2 θdψ2 + sin2 θ sin2 ψdχ

)
, (3.2.1)

where R is the radius of S3 and (θ, ψ, χ) are the global coordinates.

The dimensional reduction from D = (3 + 1)-dimensions of N = 4 SYM is

carried out by performing an expansion of the D = (3 + 1) fields in terms of the

spherical harmonics of S3. These spherical harmonics are expressed in irreducible

representation (mL;mR) of the isometry group SO(4) ≡ SU(2)L ⊗ SU(2)R. Also,

these spherical harmonics depend on the spin of the D = (3 + 1) fields.

Upon inserting the spherical harmonics into the N = 4, D = (3 + 1) SYM

theory and integrating out the action over S3, what remains is a one-dimensional

theory that is made up of an infinite number of fields. These infinite number of

fields have an associated mass spectrum.

To determine the mass spectrum of the excited fields, the spherical harmonics

must be orthonormalized. The mode expansions (of the orthonormal spherical

harmonics) are substituted into the action of the theory and a new action is

obtained that is proportional to the term (4π2R3) /g2YM appearing in equation

(13) in [75].

In general, without discussing details, the masses of the vector modes are

calculated using vector spherical harmonics.
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As expected these masses, presented in an infinite Kaluza-Klein mass tower,

depend on the radius R of S3. Since the masses appearing in the Kaluza-Klein

mass tower come in different states, one needs to act with the two supercharges

QL and QR to move from one mass state to the next.

The entire Kaluza-Klein tower with mass states is a uniform irreducible rep-

resentation that is not decomposed into finite portions of irreducible representa-

tions. One finds masses of the Kaluza-Klein tower that come in different states,

for example, the lowest lying states of the mass tower are 1/2 BPS states, the

following level of mass states are 1/4 BPS states etc.

The infinite Kaluza-Klein mass tower spectrum of N = 4 SYM on R × S3 is

reduced to lower dimensions to derive the plane wave matrix theory. This is done

by showing that the infinite tower of the Kaluza-Klein mass spectrum can be

consistently truncated to the lowest lying modes and that the action that governs

the lowest lying modes is the plane wave matrix theory model.

In [75], the one-dimensional Lagrangian with quantum mechanical degrees of

freedom is given by the following Lagrangian

L = Tr

(
1

2
(DtXI)

2 − 1

2

(m
3

)2
X2
a −

1

2

(m
6

)2
X2
i

)
+ Tr

(
m

3
iεabcXaXbXc +

1

4
[XI , XJ ]2 − 2iθ†Dtθ +

m

2
θ†θ

)
− Tr

(
2θ†σa[Xa, θ]− θ†iσ2ρi [Xi, θ

∗] + θT iσ2ρ†i [Xi, θ]
)
. (3.2.2)

The variables appearing in equation (3.2.2) above are defined as follows:

the XI ’s are one-dimensional bosonic hermitian N × N matrices, θ is the one-

dimensional fermionic hermitianN×N matrix, Dt represents the covariant deriva-

tive with respect to time t, σa is identified with Pauli matrices, ρi represents

Clebsch-Gordon co-efficients and m is the mass parameter of the plane-wave

matrix model = 6/R. For the Lagrangian above, I = 1, . . . . . . , 9, a = 1, 2, 3,

i = 1, 2, . . . , 6.

It should be mentioned that the action with fields in one-dimension of plane

wave matrix theory can be used to retrieve the equations of motion of the

D = (3 + 1)-dimensions.
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At this point, we can further introduce the coupling constant parameter gYM

of N = 4, D = (3 + 1) SYM theory and relate it to m of the plane wave matrix

model in (1 + 0)-dimensions. By requiring that the prefactor of the plane wave

background action of N = 4 SYM in (9 + 1)-dimensions match the prefactor of

the quadratic action of N = 4 SYM in D = (3 + 1)-dimensions compactified on

S3, the following is shown

m3

9
=

32π2

g2YM
. (3.2.3)

The above relation appearing in equation (3.2.3), relates the parameters of

N = 4, D = (3 + 1) Super Yang-Mills theory and the (1 + 0)-dimensional plane

wave matrix model.

There is a remarkable agreement between the plane wave matrix model Hamil-

tonian and the dilatation operator calculated to higher loop order.

The work of [75] established precisely how a quantum mechanical model with

matrix degrees of freedom in one-dimension arises as the Kaluza-Klein reduction

of N = 4, D = (3 + 1) Supersymmetric Yang-Mills theory on R× S3.

This result obtained in [75] of matrix degrees of freedom in one-dimension

has been motivated by [78] through the holographic principle, by showing that

the BMN gauge theory dual of type IIB plane wave superstring theory should be

given by a one-dimensional (plane wave matrix) model.

3.3 Examples: Application Of Matrix Models

In general, in this thesis, (path) integrals of matrices or the quantum mechanics

of matrices will be referred to as matrix models.

Matrix models or multimatrix models have generated great interest due to

their extensive applicability. The more fascinating framework is the study of

multimatrix models of hermitian matrices of size N × N studied in the large N

limit. Large N matrix models are truly fascinating because of their richness in

structure and the physical results they yield.

In what follows, and in addition to the example discussed in the previous
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subsection, we give further examples of where matrix models have successfully

found applications.

M(atrix)-Theory Conjecture

String theory was shown to be consistent and contain a gravitational description

only in (9 + 1)-dimensions. It was further demonstrated that string theory is

made of five supersymmetric perturbative theories in (9 + 1)-dimensions. These

five superstring theories (where some have been mentioned in earlier chapters),

described in terms of both open and closed strings, are Type IA, Type IIA, Type

IIB, Heterotic E8 × E8 and Heterotic SO(32).

What’s fascinating is that all these five superstring theories are not distinct,

that is, these superstring theories are related by dualities namely the T-duality,

S-duality and U-duality. The U-duality is a combination of the T-duality and the

S-duality [79] [80] [81].

Witten conjectured that these five superstring theories are all a special limit

of a (10 + 1)-dimensional supergravity theory known as M-theory [40] [82] [83]

[84]. The M-theory in (10 + 1)-dimensions provides a single framework for all the

five superstring theories in (9 + 1)-dimensions.

It was further conjectured that (10 + 1)-dimensional M-theory is in fact a

theory of matrices. The conjecture that proposes that M-theory is a theory of

matrices is more commonly known as the BFSS conjecture [85] named after its

authors and is known as M(atrix)-theory [85] [86] [87] [88] [89].

The BFSS conjecture considers an “infinite momentum frame” from where an

observer of this frame is moving at light speed. In this model, BFSS conjectures

that a simple Supersymmetric Yang-Mills theory of D0-branes is equivalent to

(10 + 1)-dimensional supergravity in the infinite momentum reference frame.

The D0-branes are the fundamental objects upon which the BFSS conjecture

is based. These D0-branes can be treated as point particles with no spatial

extension. The spacetime coordinates of D0-branes are N ×N matrices that act

as the degrees of freedom of the theory.

Computations done in M(atrix)-theory, based on matrix models can give a
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better understanding about (10+1)-dimensional supergravity and equivalently M-

theory. Also, M(atrix)-theory is a quantum mechanical model that could provide

a non-perturbative formulation of M-theory and also help better understand the

five variations of the perturbative superstring theories.

Other Examples

We give further examples of theories that have descriptions related to quantum

mechanical or zero dimensional matrix degrees of freedom.

• In the plane wave limit, operators are constructed from a complex matrix

Z made up of two Higgs fields. These group of operators can be considered

as operators acting on an N dimensional vector space V and dual to 1/2

BPS giant gravitons living in the AdS5 × S5 geometry. The gauge theory

operators are defined in the zero coupling limit, gYM = 0, and large N of

the Yang-Mills theory. The operators living on the gauge theory side which

are equivalent to these giant gravitons are in fact, by their definition and

construction, multi-trace matrix operators. On the N = 4, U(N), Yang-

Mills side, the gauge theory operators are represented by a special class of

1/2 BPS operators. Their two point functions can be diagonalized, and in

this diagonalized space one can find correlators of 1/2 BPS operators that

are identified with 1/2 BPS states of giant gravitons in the AdS5 × S5 via

the AdS/CFT correspondence [90] [91].

• The three point correlation functions of chiral primary operators of N = 4,

D = (3 + 1) Supersymmetric Yang-Mills theory of supergravity states and

1/2 BPS states are known to be independent from the t’ Hooft coupling

constant λ = g2YMN [93]. These three-point functions are calculated for

the strong coupling limit λ >> 1 and the weak coupling limit λ << 1.

The weak coupling limit represents a weak field theory in which exact non-

perturbative solutions are obtained, whereas in the strong coupling limit,

operators are studied perturbatively through type IIB supergravity. The

calculation of three point functions is equivalent to calculating free matrix
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model overlaps and reinforces the Maldacena conjecture.

• In [94], the large N limit of gauge quantum mechanics for a single hermitian

matrix model in a harmonic oscillator potential is studied as a toy model

for the AdS/CFT conjecture. This single matrix model is argued, by [94]

and in agreement with [90], to be dual to giant gravitons, which are iden-

tified with 1/2 BPS states in terms of D-branes. The propagation of these

giant gravitons is understood in the AdS5 × S5 geometry are argued to be

associated with the eigenvalues of a matrix.

• The authors of [95] manage to demonstrate how a canonical string field

theory is derived by considering large N matrix models taken in the BMN

double scaling limit of Supersymmetric Yang-Mills theory. The parameters

N , J were previously defined to be the colour charges and the SO(2) gen-

erator of rotations. In [95], to derive the string field theory, the authors use

collective field theory [96].

• The c = 1 string theory has been shown to correspond to a large N matrix

model [97] [98] [99]. This matrix model can be decomposed into eigenvalues

that become fermions of the quantum theory (BIPZ) [27]. The string theory

whose dual theory is a matrix model has a two-dimensional spacetime. The

two-dimensional string theory possesses a linear dilaton background.

• It has been shown that a large N theory with SU(N) gauge symmetry

defined on a d-dimensional spacetime is equivalent to an SU(N) symme-

try gauge theory also defined in the large N limit but living on a single

point. This equivalence demonstrates a reduction in degrees of freedom

from d-dimensional fields to a single point for a large N theory with SU(N)

symmetry. This reduction of degrees of freedom was shown by Euguchi

and Kawai and is popularly referred as the Euguchi-Kawai model [100]. In

the weak coupling limit, the Euguchi-Kawai model is troubled by anoma-

lies and inconsistencies as a result of the symmetry breaking that takes

place at gYM → 0. To overcome these troubles and recover large N QCD
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with SU(N) symmetry, a “quenched” Euguchi-Kawai model was proposed

to overcome the challenge of spontaneous symmetry breaking that occurs at

weak coupling [101]. In the “quenched” Euguchi-Kawai model, the eigen-

values of the hermitian matrices are quenched (arranged over) so that the

original large N SU(N) gauge theory on the d-dimensional spacetime can

be recovered [102] [103].

To list all of the research work that makes use of the richness of matrix

models would indeed truly be a project on its own. Our goal of giving examples

of work that make use of matrix models was to motivate and hopefully generate

an interest into the wide and extensive field of matrix models and also indicate

their importance since our entire project is based on matrix models.

In our project, we start by considering a complexified two hermitian matrix

model that we parameterize through “matrix polar coordinates” into a single

complex matrix. We then generalize the model from a single complex matrix to

an arbitrary number of complex matrices, (or equivalently to an even number of

hermitian matrices).

As it will be shown, there is a closed subsector of these systems that can be

thought of as being associated with a matrix valued radial coordinate. We will

study many aspects of the dynamics of this radial subsector.

In studying the dynamics of this radial degree of freedom, we will make use

and occasionally generalize the collective field approach developed by Jevicki and

Sakita [96] [104]. This framework of collective field theory will be reviewed later

in this thesis.

The idea of singling out one of the hermitian matrices of a complex matrix

system is not new, and it is briefly described in the next subsection.

3.4 Review: 1/2 BPS States And LLM

We follow the approach of [108] in showing that the dynamics of 1/2 BPS states

associated with giant gravitons corresponds to the dynamics of a single hermitian

matrix, obtained by truncation of a single complex matrix.
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The two hermitian matrix model is made up of two of the six Higgs scalar

fields Φa, a = 1, 2 . . . , 6. The Hamiltonian of the system will be a dilatation

operator and the Higgs degrees of freedom will be identified with the coordinates

of the system. The action of the two matrix system is given in terms of the Higgs

scalar fields by the following

S =
1

g2YM

∫
dtTr

((
Φ̇1

)2
+
(

Φ̇2

)2
− Φ2

1 − Φ2
2 −

1

2
[Φ1,Φ2]

2

)
. (3.4.1)

The commutator term appearing in the equation (3.4.1) above plays no role

in establishing a correspondence between matrix theory and supergravity states,

and it can therefore be neglected. Therefore, of relevance to the 1/2 BPS sector

will be the following quadratic harmonic oscillator Hamiltonian for the two matrix

model

H =
1

2
Tr
(
P 2
1 + P 2

2 + Φ2
1 + Φ2

2

)
. (3.4.2)

A complex matrix, along with its complex conjugate, is constructed from two

of the Higgs scalar fields as follows

Z =
1√
2

(Φ1 + iΦ2) , Z† =
1√
2

(Φ1 − iΦ2) . (3.4.3)

Naturally, the conjugates to Z and Z† given by ∂/∂Z and ∂/∂Z† can also be

defined.

The matrix model has an SL(2, R) or SU(2) symmetry, and the generator of

rotations J amongst the scalar fields is a U(1) charge symmetry.

A special class of states that are defined on the matrix theory side will be

defined using the complex matrix in equation (3.4.3). These states will represent

a restricted class of chiral primary operators and are associated with 1/2 BPS

states, and are of the general form

Tr
(
Zk1
)

Tr
(
Zk2
)
. . .Tr

(
Zkn
)
. (3.4.4)
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Creation and annihilation operators A and B† are related to the field Z and

the conjugate Π = −i ∂
∂Z†

as follows

A =
1

2
(Z + iΠ) B† =

1

2
(Z − iΠ) . (3.4.5)

Using these operators, the Hamiltonian of the system in the reduced Hilbert

space and the U(1) charge J can also expressed in a new form such that

H = Tr
(
A†A+B†B

)
J = Tr

(
A†A−B†B

)
. (3.4.6)

The 1/2 BPS sector of the theory is defined by H = J , in other words, no B

excitations.

The eigenvalue configuration of the system is obtained by diagonalizing the

system of A oscillators from which these eigenvalues can be treated as fermionic

degrees of freedom. The diagonalized oscillators [90] [108] are of the form

Aij = λiδij A†ij = λ†iδij. (3.4.7)

In this new representation of the sub-sector of the Hilbert space in terms of

the eigenvalues of the oscillators, the Hamiltonian of the system takes the form

H =
∑
i

λ†iλi. (3.4.8)

The fermionic wavefunctions of the system are shown by [90] [108], and these

wavefunctions are represented as states of the restricted Hilbert space. This is

obtained by multiplication by the Vandermonde determinant.

The different states of the fermionic wavefunctions can be represented by

Schur polynomials. In particular, Schur polynomials with l boxes in a single row

and l boxes in a single column correspond to particles/holes respectively and to

giant gravitons in the AdS geometry and S sphere respectively.

The 1/2 BPS sector, (J = ∆), corresponds to the A, A† system, with no B

excitations, which can be associated with the single hermitian matrix

M = 1/
√

2
(
A+ A†

)
, and it can be given a bosonized density description.
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As it will be shown later, the bosonized density description of a single hermi-

tian matrix in an harmonic potential is given by the following

H0
eff =

1

2N2

∫
dx∂xΠ(x)φ(x, 0)∂xΠ(x)+N2

∫
dx

(
π2

6
φ3(x, 0) + φ(x, 0)

(
ω2x2

2
− µ

))
,

(3.4.9)

where φ is the density of eigenvalues M .

As N → ∞, the background configuration φ0, is given by the well known

Wigner distribution

πφ(x, 0) = πφ0

=
√

2µ− ω2x2

=
√

2ω − ω2x2. (3.4.10)

One can see the emergence of the droplet picture proposed by Lin, Lunin and

Maldacena (LLM) [107], if the following is defined: p± ≡ ∂xΠ(x)/N2 ± πφ(x, 0).

Using this definition, equation (3.4.9) can be given the following phase space

representation

H0
eff =

N2

2π

∫
dp

∫
dx

(
p2

2
+
x2

2
− µ

)
. (3.4.11)

In the large N limit, N → ∞, we observe p± → ±πφ(x, 0) = ±πφ0, and the

boundary of the droplet is given by the following: p2± = 2µ− x2.

Referring now to LLM [107], their final expression for the flux and energy of

the bosonized free fermion droplet takes the following form

N =
1

4πl2p

∫
dx1

∫
dx2

(
u(t, x1, x2) +

1

2

)
, (3.4.12)

∆ =
1

4π~2

∫
dx1

∫
dx2

(
x21 + x22

)(
u(t, x1, x2) +

1

2

)
− 1

8π~2

∫
dx1

∫
dx2

(
x21 + x22

)(
u(t, x1, x2) +

1

2

)2

. (3.4.13)
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Equation (3.4.13), is nothing but equation (3.4.11), where the coordinates

(x1, x2) correspond to the phase space coordinates (x, p). In addition, equation

(3.4.12) is nothing but the condition

∫
dxφ0(x) = 1. (3.4.14)

Up to this point, we were considering a system whose dynamics was restricted

to 1/2 BPS configurations, corresponding to a single hermitian matrix model

subsector defined by A, A† oscillators. This restriction can be removed to a

sector with a larger number of matrices, that is, a matrix model whose states

now include B excitations.

First define the two matrix model by matrices M and N with the Hamiltonian

H:

H = −1

2
Tr

(
∂

∂M

∂

∂M

)
− 1

2
Tr

(
∂

∂N

∂

∂N

)
+

1

2
Tr
(
M2 +N2

)
(3.4.15)

The third term in equation (3.4.15) represents the quadratic potential of the

system of two matrices.

The Hamiltonian in equation (3.4.15) is treated asymmetrically in the ap-

proach followed in [108], in that the matrix N = 1√
2

(
B +B†

)
is treated in a

coherent state basis. The oscillators B are the impurities in the system.

The Hamiltonian (3.4.15) will act on functionals of invariant loop variables:

Φ(ψ(k, s = 0, 1, 2 . . . , s)), where ψ(k, s = 0, 1, 2, . . . s) represents the states with

a general number of s “B” impurities. The spectrum of these states about the

background generated by the matrix M is studied.

The sector with a single impurity in a harmonic oscillator potential has eigen-

functions which are identical to Tchebychev polynomials of the second kind [108].

In general, for s impurities subject to a harmonic oscillator potential, a shifted

Marchesini-Onofri operator. On the matrix theory side, [108] finds wavefunctions

that take the form of plane waves. On the SUGRA side, a kernel operator is

constructed that establishes a relation of AdS and S geometry wavefunctions to

the wavefunctions of the matrix model.
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3.5 More Examples Of The Two Matrix Model

In this section, we provide other (brief) examples of models of two matrices,

where the matrices are treated asymmetrically.

The author of [109] adopts a similar approach to [108], in that the two matrix

model considered by [109], where one of the matrices is treated exactly in the

large N limit and the second matrix is treated in the large N background of

the first matrix, in a creation/annihilation operator basis. The second matrix is

treated as an impurity in the harmonic background of the first matrix and shown

to agree with the Fock space spectrum.

A gYM dependent interaction Hamiltonian is considered and first order per-

turbation carried out in the two cases: in the first case, the impurity is associated

with an anti-holomorphic matrix, and the second case, this matrix represents one

of the transverse Higgs scalars. In the second case, a BMN type Hamiltonian is

identified.

This BMN type Hamiltonian is further studied in [110], where, following a

Bogoliubov transformation, the action of this Hamiltonian is considered when

acting on multi-impurity states. The two impurity states are shown to diagonalize

this Hamiltonian, and the spectrum is obtained, which depends on the 2 momenta.

A relationship to the magnon spectrum is pointed out.

Reference [111] attempts to incorporate the gYM dependence on the back-

ground itself, again in an approach where one of the matrices is treated exactly,

where the other is restricted to the ground state in a creation/annihilation basis.

In this sector, the background configurations obtained in closed form and shown

to be well defined in the limit when λ = g2YMN →∞.

Now that we have provided a motivation, an explanation and gave examples

regarding the relevance of multimatrix models and their applications in general,

from this point onwards we proceed with our project.

The following chapter will serve to strengthen our understanding of some of

the underlying features of the single hermitian matrix model as presented by BIPZ

[27]. The results obtained by BIPZ will be generalized to decode the intricate
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structure of the two hermitian matrix model or single complex matrix model that

has been parameterized through “matrix valued polar coordinates”.

Having gained confidence from studying the two hermitian matrix model we

will pursue our ambition to investigate some of the unique properties of a larger

and generalized Gaussian ensemble of m N × N complex matrices in the large

N limit where m ≥ 2, which will require us to identify a closed subsector, where

Schwinger-Dyson equations close and there is an underlying enhanced radial sym-

metry.
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Chapter 4

Large N Limit Of The Single

Hermitian Model

In this chapter we will review certain key properties that arise from studying the

single hermitian matrix model. Some of the methods used to obtain solutions in

the single hermitian matrix model will be extended and applied to a system that

is larger, encompassing greater degrees of freedom.

The objectives for this chapter are as follows:

• Introduce the single hermitian matrix model and derive its integral equation

in the d = 0 case

• Solve for the eigenvalue density function and observe the geometry due to

distribution of eigenvalues (Dyson Gas approach)

• For d = 1, show how the single hermitian matrix model can be mapped to

a system of fermionic degrees of freedom

• Introduce the collective field theory formalism in its generality

• Apply the methods of collective field theory to the single hermitian matrix

model and as a result, study the background geometry that arises from the

distribution of eigenvalues in the leading large N limit.
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4.1 Single Hermitian Matrix Model

We consider a matrix model described by a single N × N hermitian matrix M .

By performing an angular parametrization on the matrix M we are able to diag-

onalize it and obtain its eigenvalue representation as follows:

M = V †λV. (4.1.1)

In the above, V is a N ×N unitary matrix that represents angular degrees of

freedom of the matrix M . This unitary matrix belongs to the U(N) gauge group.

The matrix λ is a diagonal N ×N matrix with real entries on the main diagonal

which are the eigenvalues of the matrix M .

With the matrix M , we can define a single hermitian matrix model partition

function

ZSM =

∫
dM exp−(W (M)), (4.1.2)

whose potential W (M) is also invariant under the angular similarity transfor-

mations of the unitary matrices V † and V

W (V †MV ) = W (M). (4.1.3)

If the above invariance for the potential is true then it means that the potential

can be represented in terms of the eigenvalues of the matrix M or in terms of the

moments

Tr (λn) , (4.1.4)

for some integer n.

As an example, we choose the potential for the single hermitian matrix model

as

W (M) = Tr

(
1

2
M2 +

g

N
M4

)
, (4.1.5)
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then for our partition function we have

ZSM =

∫
dM exp (−1

2
Tr
(
M2
)
− g

N
Tr
(
M4
)
). (4.1.6)

We need to introduce a change of coordinates from the N2 degrees of freedom

of the matrix M to the N degrees of freedom of the diagonal matrix and the

N2 − N degrees of freedom of the unitary matrix that diagonalizes the matrix

M .

We write the line element dM of the partition function in equation (4.1.6)

in terms of the eigenvalues of the hermitian matrix M and the angular degrees

of freedom V and V † using equation (4.1.1). Having done this, we will need to

compute the square of the line element Tr (dM2). We draw the following analogy

ds2 = gµνdx
µdxν ≡ Tr

(
dM2

)
= ηµνdX

µdXν . (4.1.7)

The detailed calculation that shows the measure dM expressed in terms of

the eigenvalues dλ and dV is shown in the appendix A.1.

Using this result, the partition function ZSM can now be written in terms of

the eigenvalues of the diagonal matrix λ such that

ZSM =

∫
dM exp

(
−1

2
Tr
(
M2
)
− g

N
Tr
(
M4
))

=

∫
dM exp

(
−1

2
Tr
(
λ2
)
− g

N
Tr
(
λ4
))

=

∫
dλi
∏
i<j

(λi − λj)2 exp

(
−1

2

∑
i

λ2i −
g

N

∑
i

λ4i

)

=

∫
dλi
∏
i 6=j

(λi − λj) exp

(
−1

2

∑
i

λ2i −
g

N

∑
i

λ4i

)

=

∫
dλi exp

(
−1

2

∑
i

λ2i −
g

N

∑
i

λ4i + ln

(∏
i 6=j

(λi − λj)

))

⇒ ZSM =

∫
dλi exp

(
−1

2

∑
i

λ2i −
g

N

∑
i

λ4i +
∑
i 6=j

ln (λi − λj)

)
. (4.1.8)

In equation (4.1.8) we see the well known Vandermonde determinant for the
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single hermitian matrix model:

∆(λ) =
∏
i<j

(λi − λj) . (4.1.9)

We note that the problem has been reduced from N2 degrees of freedom of

the N × N hermitian matrix M in equation (4.1.6) to N degrees of freedom in

terms of the the eigenvalues of M .

Equation (4.1.8) describes N particles in the common potential
(
1
2
λ2i + g

N
λ4i
)

subject to an interacting repulsive two-dimensional Coulomb law potential.

In the large N limit, N → ∞, we solve for our saddle point equations of

motion for the partition function ZSM in equation (4.1.8) above. We compute

our saddle point equation

∂

∂λk

(
−1

2

∑
i

λ2i −
g

N

∑
i

λ4i +
∑
i 6=j

ln(λi − λj)

)
= 0

⇒ −λk −
4g

N
λ3k +

 ∑
j(j 6=k)

1

λk − λj
−
∑
i(i 6=k)

1

λi − λk

 = 0

⇒ −λk −
4g

N
λ3k +

∑
j(j 6=k)

2

λk − λj
= 0

⇒
∑
j(j 6=k)

1

λk − λj
=

1

2
λk +

2g

N
λ3k. (4.1.10)

Hence, the eigenvalues λi, satisfy the following stationary condition

1

2
λi +

2g

N
λ3i =

∑
i 6=j

1

λi − λj
. (4.1.11)

Equation (4.1.11) is the large N single hermitian matrix model saddle point

equation.

The Vandermonde determinant appearing in the measure of equation (4.1.8)

is a result of diagonalizing the hermitian matrix M and integrating out the an-

gular degrees V . When we compute our saddle point equations in the large N

limit, we find that the mutually repulsive Coulomb interaction balances the force

derived for the common potential, N particles will be evenly distributed around

the minimum of the potential.
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One-cut solution

Equation (4.1.11) is an eigenvalue problem that we wish to solve in the large

N limit. To do this we need to move from a framework whose variables are

discretized i.e. λi,j for i, j = 1.2.3......N to a framework where the variables are

no longer discrete but are now continuous.

In equation (4.1.11) we rescale the discrete variables to introduce the contin-

uous variables

λi →
√
Nλ(x), (4.1.12)

then following this we define an eigenvalue density function ρ(λ) that satisfies

the following condition

∂x

∂λ
= ρ(λ). (4.1.13)

The potential W (M) in equation (4.1.5) of the single hermitian matrix model

can have one global minima but several local minima that are all occupied by

eigenvalues. Due to these multiple minima, it means that the eigenvalue density

function ρ(λ) can have multiple discontinuities, thus we need to define a support

(−α, α) on the real line for ρ(λ) and require that in the support the eigenvalue

density function be even 5, positive and normalized as follows

∫ α

−α
dλρ(λ) = 1. (4.1.14)

Therefore in the continuum limit, we have the following equation

1

2
λ+ 2gλ3 = −

∫ α

−α
dζ

ρ(ζ)

λ− ζ
|λ| ≤ α, (4.1.15)

where the variables described above are continuous.

For N →∞ we require that ρ(λ) be continuous and positive in the compact

support (−α, α), but we will also require that the density function vanish outside

this support.

5This is a consequence of the fact that the potential is even.
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To obtain the solution of the equation of the semi-classical approximation we

introduce an analytic function G(z) for complex z, with a single cut along the

interval defined by the support (−α, α) [27], defined as follows

G(z) =

∫ α

−α
dζ

ρ(ζ)

z − ζ
. (4.1.16)

The analytic function G(z) has a unique solution that satisfies particular

conditions. This unique solution is analytic on the complex plane outside the cut

of the support (−α, α) and when the continuous variable z is real outside the

support (−α, α) then the G(z) must also be real.

From equation (4.1.16) we also observe that z → ±∞ requires that G(z)

linearly decay as 1
z

as a consequence of the normalization condition (4.1.15). On

the complex plane when z approaches the support, z → (−α, α), the analytic

function G(λ) will have the following behaviour

G(z ± iε) =
1

2
z + 2gz3 ∓ iπρ(z). (4.1.17)

The unique solution which satisfies the previously mentioned conditions for

the analytic function G(z) on the complex plane was constructed by Brézin et.al

[27]. It is given by the following

G(z) =
1

2
z + 2gz3 −

(
1

2
+ 2gz3 + α2g

)√
z2 − α2. (4.1.18)

The derivation of equation (4.1.18) is shown in appendix A.2

The above equation is encoded with the structure of the eigenvalue density

function ρ(λ). From equation (4.1.18) above, it follows that

ρ(λ) =
1

π

(
1

2
+ 2gλ2 + α2g

)√
α2 − λ2, |λ| ≤ α2. (4.1.19)

If we switch off the coupling constant, that is, we consider a system with no

interactions defined by g = 0, we find that equation (4.1.19) yields the Wigner

semi-circle law for the dispersion of eigenvalues for a system of a single hermitian
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Figure 4.1: Single hermitian matrix model: Wigner semi-circle eigenvalue distri-

bution.

matrix M i.e.

ρ(λ) =
1

π

√
1− λ2

4
. (4.1.20)

For the g = 0 system, the support of the function is on the real line where

α = 2. Equation (4.1.20) represents an equation obeying the semi-circle law of

the Wigner distribution. The distribution of eigenvalues is shown in Figure (4.1).

4.2 One-Dimensional Fermionic Picture

In this section we continue with the single hermitian matrix model but in an

Hamiltonian setting, and show that it is equivalent to a Fermi gas of N non-

interacting particles [27] subject to the potential in equation (4.1.5)

W (M) = W (λi) =

(
1

2
λ2i +

g

N
λ4i

)
. (4.2.1)

We start off by introducing the Hamiltonian
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HSM = −1

2
∇2 +W (M) (4.2.2)

= −1

2
Tr

(
∂2

∂M2

)
+W (M)

= −1

2

(
1

∆2

∂

∂λi
∆2 ∂

∂λi

)
+W (λi) + . . . (angular degrees of freedom),

for the N×N hermitian matrix M and the φ4 interaction W (M) as defined in

equation (4.2.2). In equation (4.2.2) above, the Laplacian operator appearing on

the right hand side has been derived in appendix A.1 and ∆ defined previously

in equation (4.1.9).

In the ground state of the system, we see no appearance of any angular degrees

of freedom. Therefore all singlet wavefunctions disappear when operated upon

by operators that represent the angular degrees of freedom in the kinetic piece of

the Laplacian.

Using the above Hamiltonian operator, we set up the following eigenvalue

equation

HSMφ(λi) = EGφ(λi), (4.2.3)

for the ground state energy EG, and identify φ(λi) as the ground state sym-

metric wavefunction, that is, it is symmetric under the exchange of any two

eigenvalues.

Consider the kinetic piece of the Hamiltonian that acts as an operator in the

Hamiltonian of equation (4.2.2). This Laplacian operator is the one that we use

to arrive at the fermionic description of the single hermitian matrix model. We

consider

(
−1

2

1

∆2

∂

∂λi
∆2 ∂

∂λi

)
φ(λi). (4.2.4)

Let us introduce a ground state anti-symmetric wavefunction Ω(λi) defined

by the following equation

Ω(λi) = ∆φ(λi), (4.2.5)

83



and consider the action of the Laplacian on Ω(λi).

The anti-symmetric function Ω(λi) is a product of the symmetric wavefunction

φ(λi) and the anti-symmetric Vandermonde determinant.

The kinetic operator of equation (4.2.4) ((4.2.2)) is now purely dependent on

the eigenvalues λi of the system, allowing us to define an eigenvalue equation as

follows

− 1

2

(
1

∆2

∂

∂λi
∆2 ∂

∂λi

)
φ(λi) = EGφ(λi)

−1

2

(
1

∆2

∂

∂λi
∆2 ∂

∂λi

)
Ω(λi)

∆
= EG

Ω(λi)

∆

−
(

1

∆

∂

∂λi
∆

)(
∆

∂

∂λi

1

∆

)
Ω(λi) = 2EGΩ(λi). (4.2.6)

In total, it turns out that

HSMΩ(λi) =
N∑
i

ΛiΩ(λi) = EGΩ(λi), (4.2.7)

for the discretized Hamiltonian operator

N∑
i

Λi = −1

2

∑
i

∂2

∂λ2i
+

1

2

∑
i

λ2i +
g

N

∑
i

λ4i . (4.2.8)

The derivation of equation (4.2.8) from equation (4.2.6) is shown in the ap-

pendix A.3.

Equation (4.2.8) has been reduced to a problem with just N non-interacting

degrees of freedom.

By introducing the anti-symmetric wavefunction Ω(λi) into our one dimen-

sional system, our eigenvalue problem has become that of N single particle

fermions in the potential defined by W (λi),

W (λi) =
1

2

∑
i

λ2i +
g

N

∑
i

λ4i . (4.2.9)

These N particles can be interpreted as a Fermi gas in the potential W (λi) in

equation (4.2.9) above.
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4.3 Collective Field Theory Formalism

In this section we review the collective field theory formalism. In the next section,

we will use this method to obtain a density description of the single hermitian

matrix Hamiltonian.

The reason for this is that the collective field theory formalism simplifies a

problem posed in a quantum field theoretical framework defined in the large

N limit. In this large N limit the variables of collective field theory become

independent and the original solution of quantum field theory can be interpreted

in a quantum mechanical framework, via collective field theory.

Our first step of transitioning into the collective field theory frame work is

to reformulate the single hermitian matrix Hamiltonian description in terms of

our new invariant trace variables. So in essence this means that we are rewriting

the Hamiltonian for the single hermitian matrix model defined in equation (4.2.2)

using independent (in the large N limit) collective field theory invariant variables.

As a first step, we wish to demonstrate how to derive a generalized Hamilto-

nian using collective field theory variables.

We start of by defining a Hamiltonian using general coordinates qi with some

arbitrary potential V (qi)

H = HK +HV

= −1

2

∑
i

∂

∂qi

∂

∂qi
+
∑
i

V (qi). (4.3.1)

The notation HK and HV denotes the kinetic and potential parts of the Hamil-

tonian for general coordinates qi. Also in the first line of equation (4.3.1) the term

−i∂/∂qi is the conjugate momentum of the coordinate qi.

From equation (4.3.1) we perform a change of variables, that is, we are now

performing a transition into the framework of collective field theory from a theory

defined using general coordinates qi to the collective field theory variable(s) φα.

Acting with the Hamiltonian on wavefucntions that only depend on the in-

variant collective field variables, one has
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2H = −
∑
i

∂

∂qi

∂

∂qi
+ V (qi)

= −
∑
i,α

∂2φα
∂q2i

∂

∂φα
−
∑
i

∑
α,β

∂φα
∂qi

∂φβ
∂qi

∂

∂φα

∂

∂φβ
+ V (φα)

= −
∑
i,α

ωα
∂

∂φα
−
∑
α,β

Ωα,β
∂

∂φα

∂

∂φβ
+ V (φα). (4.3.2)

In equation (4.3.2) above we have defined the following terms

ωα =
∑
i

∂2φα
∂q2i

, Ωα,β =
∑
i

∂φα
∂qi

∂φβ
∂qi

, (4.3.3)

where ωα is the “splitting” operator and Ωα,β is the “joining” operator.

The relevance of these terms will be seen when we do an explicit example

using the single hermitian matrix model.

After performing the change of variables, the kinetic and potential energy

components of the Hamiltonian in equation (4.3.1) take the form

2HK = −
∑
i,α

ωα
∂

∂φα
−
∑
α,β

Ωα,β
∂

∂φα

∂

∂φβ
, HV = V (φα). (4.3.4)

As a result of the change of variables, naturally we would expect a Jacobian.

In the coordinate space encoded by the general coordinates qi, the wavefunctions

ψ(q) carry information regarding the energy states of the Hamiltonian.

Similarly, the invariant operator wavefunctions Ψ(φ) carry information about

the space in which the coordinates φα live. Thus, requiring a change of coordinates

from the old variables qi to the new variables φα requires that the inner products

of the wavefunctions from the two respective coordinate spaces be preserved,

hence

∫
dqψ†(q)ψ(q) =

∫
dφJΨ†(φ)Ψ(φ), (4.3.5)

where J is the Jacobian of the transformation.

The explicit hermiticity of the kinetic piece HK should be apparent after

performing the following similarity transformation
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∂

∂φα
→ J1/2 ∂

∂φα
J−1/2

=

(
∂

∂φα
− 1

2

∂ ln J(φ)

∂φα

)
. (4.3.6)

In equation (4.3.6) above we note the subtlety of the dependence of the Ja-

cobian J on the invariant variable φ. Our attention is now solely on the kinetic

piece HK of the Hamiltonian (4.3.2).

The equation stemming from the similarity transformation in the last line of

equation (4.3.6) is substituted into the kinetic piece HK of the collective field

theory Hamiltonian:

−2HK =
∑
α

ωα
∂

∂φα
+
∑
α,β

Ωα,β
∂

∂φα

∂

∂φβ

−→
∑
α

ωα

(
∂

∂φα
− 1

2

∂ ln J(φ)

∂φα

)
+
∑
α,β

Ωα,β

(
∂

∂φα
− 1

2

∂ ln J(φ)

∂φα

)(
∂

∂φβ
− 1

2

∂ ln J(φ)

∂φβ

)
=
∑
α

ωα
∂

∂φα
− 1

2

∑
α

ωα
∂ ln J(φ)

∂φα

+
∑
α,β

(
∂

∂φα
Ωα,β

∂

∂φβ
−
(

∂

∂φα
Ωα,β

)
∂

∂φβ

)
− 1

2

∑
α,β

Ωα,β

(
∂

∂φα

∂

∂φβ
ln J(φ)

)
−
∑
α,β

Ωα,β

(
∂

∂φα
ln J(φ)

)
∂

∂φβ
+

1

4

∑
α,β

Ωα,β

(
∂ ln J(φ)

∂φα

∂ ln J(φ)

∂φβ

)
. (4.3.7)

We have assumed Ωα,β = Ωβ,α. Substituting the similarity transformation

equation (4.3.6), HK should be explicitly hermitian and any non-hermitian terms

must be set equal to zero. Therefore the real function J(φ) can be uniquely

determined from this requirement. This gives

0 =
∑
α

ωα
∂

∂φα
−
(

∂

∂φα
Ωα,β

)
∂

∂φβ
− Ωα,β

(
∂ ln J(φ)

∂φβ

∂

∂φα

)
⇒ 0 = ωα −

(
∂

∂φβ
Ωα,β

)
− Ωα,β

(
∂ ln J(φ)

∂φβ

)
. (4.3.8)

From equation (4.3.8) above it follows that

∂ ln J(φ)

∂φγ
= Ω−1γ,αωα − Ω−1γ,α

(
∂

∂φβ
Ωα,β

)
, (4.3.9)
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with the definition
∑

α Ω−1γ,αΩα,β = δγ,β.

Equation (4.3.9) may not be solvable for J(φ) in closed form, but we make use

of it by substituting it back into HK which is purely hermitian. By performing

this substitution HK becomes

HK = −1

2

∑
α

ωα
∂ ln J(φ)

∂φα
+
∑
α,β

∂

∂φα
Ωα,β

∂

∂φβ

−
∑
α,β

Ωα,β

(
(
∂

∂φα

∂ ln J(φ)

∂φβ
) +

1

4

∂ ln J(φ)

∂φα

∂ ln J(φ)

∂φβ

)
= −1

2
ωα

(
Ω−1α,βωβ − Ω−1α,β

(
∂

∂φγ
Ωβ,γ

))
+

∂

∂φα
Ωα,β

∂

∂φβ

− Ωα,β

(
∂

∂φα

[(
Ω−1β,αωα − Ω−1β,α

(
∂

∂φγ
Ωα,γ

))])
(4.3.10)

+
1

4
Ωα,β

(
Ω−1α,βωβ − Ω−1α,β

(
∂

∂φγ
Ωβ,γ

))(
Ω−1β,αωα − Ω−1β,α

(
∂

∂φγ
Ωα,γ

))
.

We multiply the 1/2 factor that appeared in front of the kinetic piece and set

equal to zero any non-hermitian terms that emerge in equation (4.3.10) above.

So now, we see our complete hermitian collective field theory Hamiltonian

H = −1

2

∂

∂φα
Ωα,β

∂

∂φβ
+

1

8
ωαΩ−1α,βωβ −

1

8
ωαΩ−1α,β

(
∂

∂φγ
Ωβ,γ

)
− 1

8

(
∂

∂φγ
Ωβ,γ

)
Ω−1β,αωα −

1

8

(
∂

∂φγ
Ωβ,γ

)
Ω−1β,α

(
∂

∂φγ
Ωα,γ

)
+

1

2

(
∂

∂φα
ωα

)
+

1

2

(
∂

∂φα

∂

∂φγ
Ωα,γ

)
+ V [φ]. (4.3.11)

In our case, we will be investigating the dynamics of matrix models in the large

N limit where not all of the terms appearing in equation (4.3.11) will survive.

The only terms that appear in the Hamiltonian in the large N limit for the kinetic

piece will be the first two terms appearing in the first line of equation (4.3.11).

The rest of the terms are sub-leading, do not contribute to the leading large N

limit and fluctuations.

In total, our effective collective field theory Hamiltonian will be as follows

Heff =
1

2

∑
α,β

∂

∂φα
Ωα,β

∂

∂φβ
+
∑
α,β

1

8
ωαΩ−1α,βωβ + V [φ] (4.3.12)
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In equation (4.3.12) above, we re-introduced the summations over α and β

to express the effective Hamiltonian formally. If the invariant variable labels are

continuous we can also express the above equation in the coordinate represen-

tation (x, y) using the fact that
∑

i f(xi) →
∫
dxf(x) to give us the following

effective Hamiltonian

Heff = −1

2

∫
dx

∫
dy

∂

∂φ(x)
Ω(x, y, [φ])

∂

∂φ(y)

+
1

8

∫
dx

∫
dyω(x, [φ])Ω−1(x, y, [φ])ω(y, [φ]) + V [φ]. (4.3.13)

Equation (4.3.13) will be used more effectively by applying it to the single

hermitian matrix model. This is what we will do in the following section.

4.4 Single Hermitian Matrix Model Density De-

scription

Now that we have formally presented the framework of collective field theory for

a general set of variables, the goal is now to apply the results of the previous

section to the single hermitian matrix model.

Our starting point is the single hermitian matrix model Hamiltonian

HSM = −1

2
∇2 +W

= −1

2
Tr

(
∂

∂M

∂

∂M

)
+W (M). (4.4.1)

We emphasize again that the Hamiltonian (4.4.1) for the N × N hermitian

matrix M is invariant under U(N) gauge transformations.

We introduce our collective field variables which constitute the invariant set

of operators

φk = Tr
(
eikM

)
=
∑
i

eikλi , (4.4.2)

for some real number k.
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The degrees of freedom in this framework are the eigenvalues λi of the matrix

M with the index i specified by the size of the matrix such that i = 1, 2, ....N .

The variable φk represents the exponentiated sum of the eigenvalues λi lying on

the main diagonal of the hermitian matrix M . The invariant set of operators φk

are specified in the coordinate space with the following Fourier transformation

φ(x) =

∫
dk

2π
e−ikφk =

∑
i

δ(x− λi). (4.4.3)

Using our new set of variables that we introduced in equations (4.4.2) and

(4.4.3), and following the steps described in the previous section, we can write

down our newly formulated Hamiltonian in equation (4.4.1), taking equations

(4.3.12) and (4.3.13) as a starting point

HSM = −1

2
Tr

(
∂

∂M

∂

∂M

)
+W (M)

= −1

2

∂

∂Mij

∂

∂Mji

+W (M)

= −1

2

[(
∂2φk

∂Mij∂Mji

)
∂

∂φk
+

(
∂φk
∂Mji

∂φk′

∂Mij

)
∂

∂φk

∂

∂φk′

]
+W [φ]

= −1

2
ω(k; [φ])

∂

∂φk
− 1

2
Ω(k, k′; [φ])

∂

∂φk

∂

∂φk′
+W [φ], (4.4.4)

where the “joining” and “splitting” operators in our new variables take the

form

Ω(k, k′; [φ]) =
∂φk
∂Mji

∂φk′

∂Mij

ω(k; [φ]) =
∂2φk

∂Mij∂Mji

. (4.4.5)

Explicitly, the joining operator in the collective field theory language takes

the form
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Ω(k, k′; [φ]) =
∑
ij

(
∂[φk]

∂Mij

)(
∂[φk′ ]

∂Mji

)
=

∑
ij

(
∂

∂Mij

Tr
(
eikM

))( ∂

∂Mji

Tr
(
eik
′M
))

=
∑
ij

ik
(
eikM

)
ij
ik′
(
eik
′M
)
ji

= −kk′
∑
i

(
ei(k+k

′)M
)
ii

= −kk′Tr
(
ei(k+k

′)M
)

= −kk′φk+k′ . (4.4.6)

The joining operator performs the following (φk, φk′)→ (φk+k′).

As for the splitting operator, we operate on φk twice, this is shown below:

ω(k; [φ]) =
∑
ij

∂

∂Mij

∂

∂Mji

[φk]

=
∂

∂Mij

(
ik
(
eikM

)
ij

)
= ik

∫ 1

0

dα
(
eiαkM

)
ik

(
ik
∂Mkl

∂Mij

)(
ei(1−α)kM

)
lj

= (ik)2
∫ 1

0

dα
(
eiαkM

)
ii

(
ei(1−α)kM

)
jj

let k′ = kα

= −k
∫ k

0

dk′Tr
(
eik
′M
)

Tr
(
ei(k−k

′)M
)

= −k
∫ k

0

dk′φk′φk−k′ . (4.4.7)

In third line of equation (4.4.7) above, we made use of the following critical

identity

∂

∂Mij

(
eikM

)
qq′

= (ik)

∫ 1

0

dα
(
eikM

)
qi

(
ei(1−α)kM

)
jq′
, (4.4.8)

which allowed us to see the splitting process on φk′ : (φk, φk−k′ ; k, k
′ ∈ <).

To demonstrate the usefulness of collective field theory for the single hermitian

matrix model, we need to make use of equation (4.4.3). It means that we need
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to define all our variables so that they can be substituted into equation (4.4.4) in

the coordinate space (x, y).

We proceed with the Fourier transform of the splitting operator ωk, defined

in k-space. We first resume our calculation from the last line of equation (4.4.7)

ωk = −k
∫ k

0

dk′
(
eikM

)
ii

(
ei(k−k

′)M
)
jj

= −k
∑
ij

∫ k

0

dk′
(
eik
′(λi−λj)

) (
eikλj

)
=

∑
i 6=j

ik

λi − λj
(
eikλi − eikλj

)
= 2

∑
i 6=j

ikeikλi

λi − λj
(4.4.9)

Equation (4.4.9) is the version of equation (4.4.7) in the eigenvalue representa-

tion. From this point onwards, we will define all our variables that are necessary

to be substituted into the Hamiltonian in equation (4.4.4) from the k-space rep-

resentation to the coordinate representation (x, y) by Fourier transform.

We proceed as follows

ωk = 2

∫
dx

∫
dyδ(x− λi)δ(y − λj)

∑
i 6=j

ikeikx

x− y

= 2ik

∫
dx−
∫
dy
∑
i

δ(x− λi)
∑
j

δ(y − λj)
eikx

(x− y)
. (4.4.10)

In equation (4.4.10) (above) we made and will make use (below) of the fol-

lowing definitions

∫
dxδ(x− λi)f(x) = f(λi);

∫
dk

2π
e−ikxφk = φ(x) =

∑
i

δ(x− λi), (4.4.11)

and we obtain the following for ωk

ωk = 2ik

∫
dx−
∫
dy
φ(x)φ(y)

(x− y)

(
eikx
)
. (4.4.12)
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From the equation (4.4.12) above, to obtain the Fourier transform ω(x) of ωk

we perform

ω(x) = 2

∫
dk

2π
e−ikxωk

= 2

∫
dk

2π
e−ikx

(
ik

∫
dz−
∫
dy
φ(z)φ(y)

(z − y)
eikz
)

= −2

∫
dk

2π

(
∂

∂x
e−ikx

)(∫
dz−
∫
dy
φ(z)φ(y)

(z − y)
eikz
)

= −2∂x

∫
dk

2π

(∫
dz−
∫
dy
φ(z)φ(y)

(z − y)
eik(z−x)

)
= −2∂x

∫
dzφ(z)−

∫
dy

φ(y)

(z − y)

∫
dk

2π
eik(z−x)

= −2∂x

(∫
dzδ(z − x)

)
−
∫
dyφ(z)φ(y)

1

z − y

= −2∂x−
∫
dyφ(x)φ(y)

1

x− y

⇒ ω(x) = −2∂x

(
φ(x)−

∫
dy

φ(y)

x− y

)
⇒ ω(x) = −2∂xφ(x)G(x). (4.4.13)

In the fifth line of equation (4.4.13) we define ∂x = ∂/∂x, also we see the

density description of the splitting operator ω(x).

We will now continue by presenting the density description of the joining

operator, using the definition of equation (4.4.6):
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Ω(x, y, [φ]) =

∫
dk

2π

∫
dk′

2π
e−ikxe−ik

′yΩ(k, k′, [φ])

=

∫
dk

2π

∫
dk′

2π
e−ikxe−ik

′y (−kk′φk+k′)

=

∫
dk

2π

∫
dk′

2π

(
∂xe
−ikx) (∂ye−ik′y)(∑

i

ei(k+k
′)λi

)

= ∂x∂y

∫
dk

2π

∫
dk′

2π

(
e−ikx

) (
e−ik

′y
)(∑

i

ei(k+k
′)λi

)

= ∂x∂y

∫
dk

2π

∫
dk′

2π
e−ikxe−ik

′y

(∫
dzδ(z − λi)

∑
i

ei(k+k
′)z

)

= ∂x∂y

∫
dk

2π
e−ik(x−z)

∫
dk′

2π
e−ik

′(y−z)

(∫
dz
∑
i

δ(z − λi)

)

= ∂x∂y

(
δ(x− z)δ(y − z)

∫
dzφ(z)

)
= ∂x∂y

(∫
dzδ(x− z)δ(y − z)φ(z)

)
⇒ Ω(x, y, [φ]) = ∂x∂y (δ(x− y)φ(x)) . (4.4.14)

We have computed all the necessary terms to give us the form/structure of

the collective field theory effective Hamiltonian for the single hermitian matrix

model.

Since we wish to rewrite the effective Hamiltonian Heff in equation (4.3.13)

in terms of the invariant set of variables φk and φ(x) of the single hermitian

matrix model, we need to calculate the term that expresses the contribution of the

repulsion amongst the eigenvalues of the system. The term, in equation (4.3.13),

associated with the eigenvalue repulsion is ω(x, [φ])Ω−1(x, y, [φ])ω(y, [φ]).

Below, we explicitly calculate this repulsion directly from equation (4.3.13) as

follows
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1

8

∫
dx

∫
dyω(x, [φ])Ω−1(x, y, [φ])ω(y, [φ])

=
1

8

∫
dx

∫
dy (−2∂x (φ(x)G(x))) Ω−1(x, y, [φ]) (−2∂y (φ(y)G(y)))

=
1

2

∫
dx

∫
dy (∂x (φ(x)G(x))) Ω−1(x, y, [φ]) (∂y (φ(y)G(y)))

=
1

2

∫
dxφ(x)G(x)

∫
dy
(
∂y∂xΩ

−1
x.y

)
φ(y)G(y)

=
1

2

∫
dx

∫
dy (φ(x)G(x))

(
∂x∂yΩ

−1
x,y

)
(φ(y)G(y)). (4.4.15)

In equation (4.4.15) above, we made use of the following definition (see (4.4.13))

G(x) = −
∫
dy

φ(y)

x− y
, (4.4.16)

which is a term that captures the repulsion amongst the eigenvalues of the

single hermitian matrix model.

In the integration by parts above, all surface terms do not contribute as φ(x)

has finite support.

Equation (4.4.15) can be simplified further. The inverse of the joining operator

Ω−1x,y, partially differentiated with respect to the density variables ∂x and ∂y can

be shown explicitly to simplify as follows

∫
dyΩ−1x,yΩy,z = δ(x− z)

⇒
∫
dyΩ−1x,y∂y∂z (δ(y − z)φ(y)) = δ(x− z)

⇒ ∂z

∫
dyΩ−1x,y∂y (δ(y − z)φ(y)) = δ(x− z)

⇒ −
[
∂z

∫
dy
(
∂yΩ

−1
x,y

)
δ(y − z)φ(y)

]
= δ(x− z)

⇒ −∂z
[(
∂zΩ

−1
x,z

)
φ(z)

]
= δ(x− z)

⇒ −∂x∂z
[(
∂zΩ

−1
x,z

)
φ(z)

]
= ∂xδ(x− z)

⇒ −∂z
[(
∂z∂xΩ

−1
x,z

)
φ(z)

]
= −∂zδ(x− z)

⇒
(
∂x∂zΩ

−1
x,z

)
=
δ(x− z)

φ(x)
. (4.4.17)
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The identity derived in equation (4.4.17) is substituted into equation (4.4.15)

to give us the following

1

8

∫
dx

∫
dyω(x, [φ])Ω−1(x, y, [φ])ω(y, [φ])

=
1

2

∫
dx

∫
dy (φ(x)G(x))

(
∂x∂yΩ

−1
x,y

)
(φ(y)G(y))

=
1

2

∫
dx

∫
dy (φ(x)G(x))

(
δ(x− y)

φ(y)

)
(φ(y)G(y))

=
1

2

∫
dx

∫
dyφ(x)G(x)δ(x− y)G(y)

=
1

2

∫
dxφ(x)G2(x)

=
1

2

∫
dxφ(x)

(
−
∫
dy

φ(y)

x− y

)2

. (4.4.18)

The last line of equation (4.4.18) shows a repulsion amongst eigenvalues that

contribute to the potential in the denominator. There is an identity that allows

this term to simplify. First note that

G(x) = −
∫
dy

φ(y)

x− y

= −
∫
dy

1

x− y

∫
dk

2π
e−ikyφk

=

∫
dk

2π
φk

{
−
∫
dy
e−iky

x− y

}
. (4.4.19)

The last line of equation (4.4.19) requires that we perform contour integration,

and can be shown to be

−
∫
dy
e−iky

x− y
= iπς(k)e−ikx, (4.4.20)

for ς(±k) = ±1.

Substituting into (4.4.18)
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1

2

∫
dxφ(x)G2(x)

=
1

2

∫
dxφ(x)

(
−
∫
dy

φ(y)

x− y

)2

=

∫
dx

∫
dk1
2π

∫
dk2
2π

∫
dk3
2π

φk1φk2φk3e
−ikx1 ×(

−
∫
dy
e−ik2

x− y
−
∫
dy′

e−ik3

x− y′

)
= −π2

∫
dk1
2π

∫
dk2
2π

∫
dk3
2π

φk1φk2φk3ς(k2)ς(k3)×∫
dxe−i(k1+k2+k3)x

=
π2

3

∫
dxφ3(x). (4.4.21)

In arriving at the result above, the different signs of k1, k2, k3 are considered.

So what we have proved is that the term that represents the repulsion amongst

eigenvalues for the single hermitian matrix model contributing to the common

potential is cubic and local, that is

1

8

∫
dx

∫
dyω(x, [φ])Ω−1(x, y, [φ])ω(y, [φ]) =

π2

6

∫
dxφ3(x). (4.4.22)

For the kinetic piece we have,

1

2

∫
dx

∫
dyΠ(x)Ω(x, y, [φ])Π(y) =

1

2

∫
dx

∫
dyΠ(x) ((∂x∂yδ(x− y))φ(x)) Π(y) =

1

2

∫
dx (∂xΠ(x))φ(x)

∫
dyδ(x− y) (∂yΠ(y)) =

1

2

∫
dx (∂xΠ(x))φ(x) (∂xΠ(x)). (4.4.23)

We arrive at the form of the (effective) collective field Hamiltonian,
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HSMeff =
1

2

∫
dx

∫
dyΠ(x)Ω(x, y, [φ])Π(y)

+
π2

6

∫
dxφ3(x) +W [φ]

=
1

2

∫
dx (∂xΠ(x))φ(x) (∂xΠ(x)) +W [φ], (4.4.24)

subject to the constraint

∫
dxφ(x) = N. (4.4.25)

The “effective” potential W [φ], is defined as follows

W [φ] =
π2

6

∫
dxφ3(x) +W [φ]. (4.4.26)

Below we will give an example that demonstrates the application of the col-

lective field theory formalism using the single hermitian matrix model.

We consider a system coupled to the harmonic oscillator potential, described

by the following Lagrangian

L =
1

2
Tr

(
∂

∂M

∂

∂M

)
− 1

2
ω̄2Tr

(
M2
)
, (4.4.27)

where ω̄ is the angular frequency of the system.

Using our new set of invariant variables, the harmonic potential becomes the

following

1

2
ω̄2Tr

(
M2
)

=
1

2
ω̄2
∑
i

λ2i

=
1

2
ω̄2

∫
dx
∑
i

δ(x− λi)x2

=
1

2
ω̄2

∫
dxx2φ(x). (4.4.28)

So now our system can be described by the following effective Hamiltonian

HSMeff =
1

2

∫
dx (∂xΠ(x))φ(x) (∂xΠ(x)) +W(φ), (4.4.29)
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with the effective potential defined by

W [φ] =
π2

6

∫
dxφ3(x) +

1

2
ω̄2

∫
dxx2φ(x). (4.4.30)

To obtain a solution, we set up the following functional

K(µ, φ) =
π2

6

∫
dxφ3(x) +

1

2
ω̄2

∫
dxx2φ(x)

+ µ

(
N −

∫
dxφ(x)

)
, (4.4.31)

in order to enforce the constraint in equation (4.4.25).

To make visible the N dependence for the rest of the terms appearing in

equation (4.4.31), we rescale according to the following

x→
√
Nx, φ(x)→

√
Nφ(x), µ→ Nµ and Π→ Π

N
, (4.4.32)

which will give us

HSMeff =
1

2N2

∫
dx (∂xΠ(x))φ(x) (∂xΠ(x)) (4.4.33)

+ N2

[
π2

6

∫
dxφ3(x) +

1

2
ω̄2

∫
dxx2φ(x) + µ

(
1−

∫
dxφ(x)

)]
.

We see that the large N limit corresponds to the minimum of the effective

potential.

Differentiating the functional K(µ, φ) with respect to φ, we obtain the follow-

ing

∂

∂φ(x)
K(µ, φ) = 0

⇒
(
π2

2
φ2(x) +

1

2
ω̄2x2 − µ

)
= 0. (4.4.34)

Solving for φ0(x), we obtain

φ0(x) =

√
2

π

(
µ− 1

2
ω̄2x2

)1/2

|x| ≤
√

2µ

ω̄
. (4.4.35)

99



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

f(
x)

Figure 4.2: Single hermitian matrix model collective field theory solution: Wigner

semi-circle distribution.

Equation (4.4.35) is the Wigner semi-circle distribution for the single hermi-

tian matrix model. We denoted by φ0(x) the background large N configuration.

It represents the ground state wavefunction of the system which is the classical

stationary point. This is the same equation that was obtained by Itzykson et.al

[27] for µ = 1 and ω̄ = 1/2.

The Lagrange multiplier µ is fixed by the constraint
∫
dxφ(x) = 1, and in our

case is µ = ω̄, hence the normalized density is

φ0(x) =

√
2ω̄

π

√
1− 1

2
ω̄x2. (4.4.36)

The large N background geometry represented by equation (4.4.36) is shown

in Figure 4.2 for ω̄ = 1/2.

100



Chapter 5

Two Hermitian Matrices

The preceding chapter focused on general special properties of the single hermi-

tian matrix model and in particular the emergence of the Wigner distribution that

arose from studying the single hermitian matrix model in an harmonic potential.

In this chapter, we consider the two hermitian matrix model, in the hope

that we can learn more about the matrix system. We will study this multimatrix

model parameterized in terms of “matrix valued polar coordinates”.

This parameterization yields a more symmetric approach when studying the

multimatrix model of two hermitian matrices. In the framework that we propose,

we treat the quantum mechanics of a system of two hermitian matrices in a

non-supersymmetric framework.

In this chapter, we will carry out the following objectives:

• Introduce the parameterization of “matrix valued polar coordinates” for the

two hermitian matrix system

• Obtain the Jacobian due to the two hermitian matrix system that has been

parameterized

• Obtain the Laplacian in terms of the polar matrix coordinates
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5.1 Polar Matrix Coordinates

To start off, we consider the system of two hermitian N × N matrices X1 and

X2. Using these two hermitian matrices, we study the system whose quantum

mechanics is described by the following Hamiltonian

Ĥ = −1

2
∇2 + V (X1, X2)

= −1

2

(
∂

∂ (X1)ij

∂

∂ (X1)ji
+

∂

∂ (X2)ij

∂

∂ (X2)ji

)
+ V (X1, X2) . (5.1.1)

These two matrices are projected onto the complex plane where they are

represented in a real-imaginary basis. On this complex plane, the matrix Z is

defined as follows

Z = X1 + iX2. (5.1.2)

The two N × N hermitian matrices X1 and X2 can be viewed as two of the

six scalar fields Xi where i = 1, 2 . . . , 6 appearing in the bosonic sector of N = 4

SYM. The linear combination of X1 and X2 on the complex plane that makes up

the matrix Z can be parameterized into a product of a radial component and an

angular component as per usual treatment of coordinates defined on the complex

plane.

While we imply the Euler treatment of X1 and X2, we should remember that

we are working in a matrix model and therefore the treatment of the hermitian

matrices X1 and X2 should follow the principles of matrices and not real numbers.

The symmetrical treatment of the quantum mechanics of two hermitian ma-

trices X1 and X2 generally means that both matrices are treated exactly in the

coordinate basis and there is no holomorphic projection of either matrix.

We write the single complex matrix Z as follows

Z = X1 + iX2 ≡ RU Z† = X1 − iX2 ≡ U †R. (5.1.3)

The complex matrix Z is a product of the N ×N hermitian matrix R and the

N × N unitary matrix U . The radial hermitian matrix R constitutes the radial
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degrees of freedom of Z and the unitary matrix U makes up the angular degrees

of freedom of Z. Note that

Tr
(
Z†Z

)
= Tr

(
ZZ†

)
= Tr

(
X2

1 +X2
2

)
. (5.1.4)

The new parametrization of the complex matrix Z does in fact preserve the

number of degrees of freedom of the system of matrices. The number of indepen-

dent degrees of freedom of R and U is N2 for each of them, so therefore, in total

Z will have 2N2 degrees of freedom.

One should be able to express the Hamiltonian operator appearing in equation

(5.1.1) in terms of the new “matrix valued polar coordinates” shown in equation

(5.1.3). Specifically, we would like to write the Laplacian appearing in equation

(5.1.1) in the new parameterization of matrix polar coordinates in terms of the

eigenvalues of the radial matrix R and angular variables.

For this, we need to compute the polar matrix line element. This line element

in matrix polar coordinates will be encoded with the Jacobian of our system. We

will therefore make the following identification

Tr
(
dZdZ†

)
= Tr

(
dZ†dZ

)
≡ gABdX

AdXB. (5.1.5)

The standard procedure to change from standard matrices (X1, X2) to radial

and angular matrix variables (R,U) will require the diagonalization and recon-

figuration of the complex matrix Z. To accomplish this, the radial matrix R is

diagonalized such that R →
(
V †rV

)
where the unitary matrices V and V † are

N ×N matrices belonging to the U(N) gauge group and r is an N ×N diagonal

matrix of the eigenvalues of R.

Therefore, the following diagonalization of Z follows naturally

Z = RU = V †r (V U) Z† =
(
U †V †

)
rV. (5.1.6)

With the above expressions for Z and Z†, the following differentials are ob-

tained
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dZ = V †
(
dr + rdV V † − dV V †r + rV dUU †V †

)
V U (5.1.7)

= V †
(
dr +

[
r, dV V †

]
+ rV dUU †V †

)
V U.

and

dZ† = U †V †
(
dr +

[
r, dV V †

]
− V UdU †V †r

)
V. (5.1.8)

Following the diagonalization of the complex matrix Z, anti-hermitian Lie

algebra differentials are defined in terms of the variables of Z. These differentials

are given by

dX = V dUU †V † dS = dV V †. (5.1.9)

We substitute the Lie algebra differentials into dZ and dZ†, we obtain

dZ = V † (dr + [r, dS] + rdX)V U (5.1.10)

and

dZ† = U †V † (dr + [r, dS]− dXr)V. (5.1.11)

One way to compute the Jacobian that arises as a result of the change in coor-

dinates (X1, X2)→ (r, V, U) is to obtain the line element dZdZ† ≡ gABdX
AdXB.

From the two expressions of dZ and dZ†, we can obtain the full expression for

the square of the infinitesimal length

Tr
(
dZ†dZ

)
=

∑
i

{
(dri)

2 + (ri)
2 dXiidX

∗
ii

}
(5.1.12)

+
∑
i<j

{
2 (ri − rj)2 dSijdS∗ij + (ri − rj)2

[
dSijdX

∗
ij + dXijdS

∗
ij

]}
+

∑
i<j

{(
r2i + r2j

)
dXijdX

∗
ij

}
.

The full expression of equation (5.1.12) is derived in appendix B.1, as shown

in equation (B.1.20).

104



From the expression in equation (5.1.12), one is able to specify the matrix of

the metric gAB that will allow us to write the line element in a short hand version

as it appears in equation (5.1.5). The full expression and complete derivation of

the metric gAB is shown in the appendix B.1, in equation (B.1.21).

With some standard algebra techniques and using equation (B.1.21), we com-

pute the following

det |gAB| =
∏
i

r2i

(
1

4

∏
i<j

(
r2i − r2j

)2)2

=
∏
i

r2i∆
2
TMM , (5.1.13)

which is the determinant of the metric gAB.

We define the Jacobian JTMM , which emerges from the change in coordinates

Tr
(
dZ†dZ

)
→ JTMM dr dS dX, as follows

JTMM =
√

det |gAB| =
∏
i

ri∆
2
TMM , (5.1.14)

where

∆2
TMM =

∏
i<j

1

4

(
r2i − r2j

)2
. (5.1.15)

Equation (5.1.15) is the Vandermonde determinant, for positive definite vari-

ables r2i .

The Jacobian JTMM is the Jacobian of the two hermitian matrix system in

matrix polar coordinates represented purely in terms of the eigenvalues of the

radial matrix R and is decoupled from any angular degrees of freedom.

The Laplacian of the Hamiltonian operator (5.1.1), defined in the standard

way, can be represented in terms of the new coordinates as follows
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∇2 =
1∏
k rk

1

∆2
TMM

∂

∂ri

[∏
k

rk∆
2
TMM

]
∂

∂ri
+

{
1

r2i

∂

∂Xii

∂

∂X∗ii

}
+

∑
i 6=j

2(r2i + r2j )

(r2i − r2j )2
∂

∂Sij

∂

∂S∗ij
−
∑
i 6=j

2

(ri + rj)2

{
∂

∂Sij

∂

∂X∗ij
+

∂

∂Xij

∂

∂S∗ij

}
+

∑
i 6=j

4

(ri + rj)2
∂

∂Xij

∂

∂X∗ij

=
1∏
k rk

{
∂

∂ri

∏
k

rk

}
∂

∂ri
+

1

∆2
TMM

{
∂

∂ri
∆2
TMM

}
∂

∂ri
+

∂

∂ri

∂

∂ri

+

{
1

r2i

∂

∂Xii

∂

∂X∗ii

}
+
∑
i 6=j

2(r2i + r2j )

(r2i − r2j )2
∂

∂Sij

∂

∂S∗ij
(5.1.16)

−
∑
i 6=j

2

(ri + rj)2

{
∂

∂Sij

∂

∂X∗ij
+

∂

∂Xij

∂

∂S∗ij

}
+
∑
i 6=j

4

(ri + rj)2
∂

∂Xij

∂

∂X∗ij
.

The full derivation of equation (5.1.16) is shown in appendix (B.1) and is

given by equation (B.1.29).

Equation (5.1.16) above is the Laplacian of the Hamiltonian operator in equa-

tion (5.1.1) represented in terms of our new coordinate system defined on the

complex plane.

It should be noted that the computation of the Laplacian operator in equation

(5.1.16) was performed for one of the possible parameterizations [112]. We only

felt it necessary to present one of the two parameterizations because it carries a

significant result that appears for both parameterizations. This common result

is the Jacobian JTMM .

The potential of the new system of two matrices in polar matrix coordinates

has a rich U(N)× U(N) symmetry which simplifies our system even more when

the potential depends on the eigenvalues ri of the radial matrix R. Therefore, in

general, the form of the potential considered, will be of the following form

V (X1, X2) = Tr
(
F
(
ZZ†

))
= Tr

(
F
(
Z†Z

))
= Tr (F (r)) = F (ri) = V (ri).

(5.1.17)

In chapters 6 − 9, we will continue with the discussion of the properties of

two hermitian matrices. In chapters 10 − 14 we will show how many of the
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results obtained for two hermitian matrices can be generalized to an arbitrary

even number of hermitian matrices.

107



Chapter 6

Wigner Distribution And

Harmonic Potential For The Two

Matrix Model

In the previous section we managed to derive the Jacobian JTMM and the Lapla-

cian operator for the two hermitian matrix model parameterized in “matrix valued

polar coordinates”. This Jacobian emerges as a result of a change in coordinates

from matrices to a system expressed purely in terms of the eigenvalues of the

radial matrix R and angular matrices V and V †.

This chapter will be dedicated to investigating whether a Wigner semi-circle

distribution does arise for the polarized two matrix system with an harmonic

potential as we saw for the single hermitian matrix model.

In this chapter, we aim to accomplish the following objectives:

• Introduce an integral system for the two hermitian matrix model parameter-

ized in “matrix valued polar coordinates” (partition function) for a central

harmonic potential

• Obtain the radial eigenvalue density defined on the single interval of the

complex plane

• Extend the large N radial eigenvalue density to a double cut interval
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• Present an eigenvalue density function associated with the double cut in-

terval of the complex plane showing agreement with the restriction to the

single cut solution

6.1 Polar Matrix Model Integral

We will now establish the matrix integral in our new polar matrix coordinates.

We will first consider the Gaussian potential

G =
ω2

2
Tr
(
Z†Z

)
=
ω2

2
Tr
(
R2
)

=
ω2

2

∑
i

r2i =
ω2

2

∑
i

ρi (6.1.1)

In equation (6.1.1) we let ρi = r2i for the index i = 1, 2 . . . , N . For the

Gaussian partition function, one obtains

ZTMM =

∫
dZdZ†e−G

≈
∫
dr
∏
i

ri
∏
i<j

(r2i − r2j )2e−
ω2

2

∑
i r

2
i

=

∫ ∏
i

dρi
∏
i<j

(ρi − ρj)2e−
ω2

2

∑
i ρi

=

∫ ∏
i

dρie
∑
i 6=j ln(ρi−ρj)−

1
2
ω2

∑
i ρi

⇒ ZTMM =

∫ ∏
i

dρie
−Geff (ρi). (6.1.2)

In the last line of equation (6.1.2) we defined the effective action Geff (ρi) of

the system as follows

Geff (ρi) =
ω2

2

∑
i

ρi −
∑
i 6=j

ln |ρi − ρj|. (6.1.3)

Equations (6.1.2) and (6.1.3) are used to obtain the stationary condition below
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∂

∂ρk

(∑
i 6=j

ln(ρi − ρj)2 −
1

2
ω2
∑
i

ρi

)
= 0

⇒
∑
i 6=j

(
1

ρi − ρj
(δik − δjk)

)
− 1

2
ω2
∑
i

δik = 0

∑
k 6=j

1

ρk − ρj
+
∑
k 6=j

1

ρk − ρj
− 1

2
ω2 = 0

⇒ 2
∑
k 6=j

1

ρi − ρj
=

1

2
ω2. (6.1.4)

Similar to the single hermitian matrix model, the stationary condition seen

in the last line of equation (6.1.4) will be defined in the continuum limit. In this

limit, the variables of our system are continuous, therefore we find that

−
∫
dx′Φ(x′)

x− x′
=
ω2

4
, (6.1.5)

where x = ρ and x′ = ρ′.

A short comment is in order. The two hermitian matrix model that was pa-

rameterized through angular and radial degrees of freedom into the single complex

matrix Z represents the m = 1 model whose parameterization is treated more

symmetrically instead of the “impurity” state basis where the matrices are rep-

resented as creation/annihilation operators [108] [109] [110] [111].

By treating the two matrix model in the creation/annihilation basis, where

one matrix generates the large N limit background and the other matrix is treated

in the “impurity” sector of the first matrix, the matrix that generates the back-

ground becomes the holomorphic component of a complex matrix. This is differ-

ent from the approach followed in this thesis.

Also, in the parameterization considered in [113] used to study the eigenvalue

distribution of matrix ensembles (complex, quaternion and real matrices), the

single complex matrix is parameterized in terms of it’s eigenvalues and the upper

diagonal matrix. This type of parameterization is appropriate for holomorphic

projections.
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6.2 Positive Single Cut Ansatz

Equation (6.1.5) is a stationary condition taken in the continuum limit. To

provide a standard solution for equation (6.1.5), we will adopt the methods of

BIPZ [27]. This will require that we introduce an analytical function F(z) as

already described in chapter 4,

F(z) =

∫ x+

x−

dx′
Φ(x′)

z − x′
. (6.2.1)

It is important to note that the function F(z) defined in the complex plane,

can only have a cut on the positive real axis, i.e. on the interval [x−, x+] with

x+ > x− > 0.

We recall that when z approaches the support [x−, x+] from either side

F(x± iε) =

∫ x+

x−

dx′
Φ(x′)

x− x′
∓ iπΦ(x)

=
ω2

4
∓ iπΦ(x). (6.2.2)

The analytic function that satisfies the above mentioned conditions is unique

in its construction and is given by

F(z) =
ω2

4
− ω2

4z

√
(z − x+)(z − x−), (6.2.3)

with

x− = 0 x+ =
8

ω2
. (6.2.4)

Note that the condition x− = 0 removes the apparent pole in equation (6.2.3).

The derivation of this ansatz and the conditions for the end points are described

in appendix C.1.

From equations (6.2.2) and (6.2.3), we obtain the eigenvalue density function
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Figure 6.1: Eigenvalue distribution Φ(ρ) of the two matrix model parameterized

in “matrix valued polar coordinates” Z.

Φ(ρ) =
ω2

4πρ

√
(x+ − ρ)(ρ− x−)

=
ω2

4πρ

√
(

8

ω2
− ρ)ρ

⇒ Φ(ρ) =
ω2

4π

√
8

ω2ρ
− 1

=
ω2

4π
√
ρ

√
8

ω2
− ρ 0 ≤ ρ ≤ 8

ω2
. (6.2.5)

Equation (6.2.5) does not resemble the Wigner semi-circle law as can be ob-

served in Figure (6.1) plotted for ω = 1/2.

6.3 Symmetric Extension Of The Real Line

In order to confirm the solution (6.2.5), in particular the handling of the diver-

gence as ρ → 0, in this section we will treat the stationary condition appearing

in equation (6.1.5) symmetrically in terms of the radial coordinate r (ρ = r2).

We first start with the stationary condition in equation (6.1.4), and express

it in terms of the eigenvalues ri of the radial matrix R such that
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2
∑
j(i 6=j)

1

ρi − ρj
=

1

2
ω2

⇒
∑
i 6=j

ri
r2i − r2j

=
1

4
ω2ri. (6.3.1)

We will now introduce the following identity into the left hand side of equation

(6.3.1)

2ri
r2i − r2j

=
1

ri − rj
+

1

ri + rj
. (6.3.2)

Once the identity (6.3.2) is substituted into equation (6.3.1) we obtain

2
∑
i 6=j

ri
r2i − r2j

=
∑
i 6=j

(
1

ri − rj
+

1

ri + rj

)
=

1

2
ω2ri. (6.3.3)

In this equation, both ri and rj are positive. The second term however suggests

that if we allow rj to be both positive and negative, then equation (6.3.5) can be

written as

∑
−∞<rj<∞(ri 6=rj)

1

ri − rj
=

1

2
ω2ri, (6.3.4)

and strongly resembles the solution of the single hermitian matrix model that

yielded the Wigner distribution of eigenvalues appearing in equation (4.1.11) (for

the free case g = 0).

It is therefore natural to extend the density of the eigenvalues to the whole

real line, by defining a density function φ(r′)

φ(r′) ≡ 2r′Φ(r′2) ≡ φ(−r′), r > 0, (6.3.5)

under the change of coordinates x = ρ = r2. By construction φ(r′) is sym-

metric.

It follows that the integral (6.1.5) takes the following form

−
∫ ∞
0

dx′Φ(x′)

x− x′
= −
∫ ∞
0

dr′2r′Φ(r′2)

r2 − r′2
= −
∫ ∞
0

dr′φ(r′)

r2 − r′2
. (6.3.6)
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So in total we will have the following equation

−
∫ ∞
0

dr′φ(r′)

r2 − r′2
=
ω2

4
. (6.3.7)

Then:

−
∫ ∞
0

dr′φ(r′)

r2 − r′2
=

1

2r
−
∫ ∞
0

dr′φ(r′)

(
1

r + r′
+

1

r − r′

)
=

1

2r

[
−
∫ 0

−∞

dr′φ(−r′)
r − r′

+−
∫ ∞
0

dr′φ(r′)

r − r′

]
=

1

2r
−
∫ ∞
−∞

dr′φ(r′)

r − r′
, (6.3.8)

so that (6.1.5) takes the form

−
∫ ∞
−∞

dr′φ(r′)

r − r′
=

ω2r

2
. (6.3.9)

Note the constraint

∫ ∞
−∞

dr′φ(r′) = 2, (6.3.10)

which is a normalization condition for the integral of the radial function φ(r′)

as a result of integrating over the entire real axis for both positive and negative

values of r.

Equation (6.3.9) is similar to the single Hamiltonian with a harmonic poten-

tial. The ansatz for the extended real line F ′(z) follows from (4.1.18) from which

one gets immediately

F ′(z) =
ω2

2
z − ω2

2

√
z2 − α2, (6.3.11)

where the asymptotic expansion F ′(z) = 2/z + . . . is in accordance with the

constraint (6.3.10) when z is large.

From equation (6.3.11) one can follow the methods of the single hermitian

matrix model to obtain the density function, given by
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Figure 6.2: Wigner semi-circle eigenvalue distribution of the two matrix model

parameterized in “matrix valued polar coordinates” Z.

φ(r) =
ω2

2π

[
8

ω2
− r2

]1/2
−
√

8

ω
≤ r2 ≤

√
8

ω
. (6.3.12)

The eigenvalue distribution (6.3.12) is a Wigner semi-circle distribution as can

be observed in Figure (6.2) above for ω = 1/2. However, one needs to remember

that the physical region is the restriction to r ≥ 0.

After obtaining the eigenvalue density function appearing in equation (6.3.12),

we now return to our original variables where we had r2 = ρ > 0 and

2rΦ(r2) = φ(r) = 2
√
ρΦ(ρ) we re-write equation (6.3.12) as follows

φ(r) =
ω2

2π

[
8

ω2
− r2

]1/2
2
√
ρΦ(ρ) =

ω2

2π

[
8

ω2
− ρ
]1/2

⇒ Φ(ρ) =
ω2

4π

(
8

ρω2
− 1

)1/2

0 ≤ ρ ≤ 8

ω2
. (6.3.13)

In agreement with with equation (6.2.5).
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Chapter 7

Fermionization In The Radial

Sector Of Two Hermitian

Matrices

It is well known that the singlet sector of the N × N single hermitian matrix

model Hamiltonian with a potential that depends strictly on the eigenvalues of

the system is equivalent to a configuration of N non-interacting fermions [27] as

reviewed in chapter 4.

As shown, this is a result of the fact that the Jacobian (4.1.9) is anti-symmetric

under the exchange of any two matrix eigenvalues.

In this chapter, we will carry out the following objectives:

• Consider the radial sector of the two matrix Laplacian in matrix valued

polar coordinates when acting on symmetric wavefunctions

• Show that the system has an equivalent description in terms of decoupled

two dimensional “radial fermions”.

For the sake of convenience, we will denote this Jacobian from equation (4.1.9)

(the Vandermonde determinant) by JSM .

As a reminder, the single hermitian matrix model Jacobian JSM is of the
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following form

JSM =
∏
i<j

(xi − xj) = ∆(xk). (7.0.1)

We consider the Laplacian operator appearing in equation (5.1.16) restricted

to act on wavefunctions which depend on radial eigenvalues only. We refer to

these as “s-states”, decoupled from any angular degrees of freedom.

Recalling that ρi = r2i are the eigenvalues of R, the Laplacian in equation

(5.1.16) acting on the “s-states” takes the form:

− 1

2
∇2 = −1

2

1

∆2
TMM

∑
i

∂

∂ri

(
ri∆

2
TMM

) ∂

∂ri

= − 2

∆2(ρ)

∑
i

∂

∂ρi

(
ρi∆

2 (ρ)
) ∂

∂ρi
. (7.0.2)

The second line in equation (7.0.2) will act on symmetric wavefunctions Φ.

Similar to the single hermitian matrix case, this suggests that we introduce an

anti-symmetric wavefunction Ψ defined as

Ψ = ∆Φ. (7.0.3)

The following Schrödinger equation is set-up

−

(
2

∆2(ρi)

∑
i

∂

∂ρi
ρi∆

2(ρi)
∂

∂ρi

)
Ψ

∆(ρi)
= E

Ψ

∆(ρi)

−

[
2

∆(ρi)

∑
i

∂

∂ρi
∆(ρi)ρi∆(ρi)

∂

∂ρi

1

∆(ρi)

]
Ψ = EΨ. (7.0.4)

In appendix D we verify that the left hand side of the equation (7.0.4) above

simplifies to

−

[
2

∆(ρi)

∑
i

∂

∂ρi
∆(ρi)ρi∆(ρi)

∂

∂ρi

1

∆(ρi)

]
= −2

∑
i

∂

∂ρi
ρi

∂

∂ρi
. (7.0.5)
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Recalling that ri =
√
ρi, we obtain the system of eigenvalue equations of the

form

(
−2
∑
i

∂

∂ρi
ρi

∂

∂ρi
+ V (ρi)

)
Ψ =

(
−1

2

1

ri

∂

∂ri
ri
∂

∂ri
+ V (ri)

)
Ψ. (7.0.6)

For some index i, the discretized system in equation (7.0.6) corresponds to one

single particle Hamiltonian describing the energy of a (1 + 1)-dimensional non-

interacting “radial fermion” subjected to a potential V (ri). We refer to these

particles as “fermions” or “radial fermions” because the anti-symmetrization has

only taken place for the radial coordinate.

In conclusion, equation (7.0.6) represents an “s-state” Schrödinger equation

for N non-interacting and non-relativistic 2-dimensional “radial fermions” sub-

jected to the potential V (ri). The appearance of (1 + 1)-dimensional particle

coordinates from two matrices is a new result [112].
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Chapter 8

Closed Subsector And Matrix

Radial Coordinates

The radial sector discussed in the previous chapter turns out to be a closed

subsector of the two matrix model [112] [114]. In this chapter we will apply the

collective field theory method to obtain a density description of this subsector.

The objectives of this chapter are:

• Develop a density description for the radial sector of (the) two hermitian

matrix model parameterized in polar matrix coordinates

• Rederive the Jacobian of the two matrix polar system in the density de-

scription. It will be shown later that this approach can be generalized to

an arbitrary even number of hermitian matrices

We first start off by defining the following set of invariant states in terms of

the complex matrix Z and Z†

Φk = Tr
(
eikZ

†Z
)

=
∑
i

eikr
2
i , (8.0.1)

and the coordinate x representation given by the Fourier transform
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Φ(x) =

∫
dk

2π
e−ikxφk

=
∑
i

∫
dk

2π
e−ik(x−r

2
i )

=
∑
i

δ(x− r2i ). (8.0.2)

We note that

∂Φk

∂Zij
=

∂

∂Zij
Tr
(
eikZ

†Z
)

= ik
(
eZ
†ZZ†

)
ji
, (8.0.3)

and that

∂Φk

∂Z†ij
=

∂

∂Z†ij
Tr
(
eikZ

†Z
)

= ik
(
ZeikZ

†Z
)
ji
. (8.0.4)

We find that the joining operator is given by

Ωkk′ =

[
∂Φk

∂Z†ij

∂Φk′

∂Zji

]
= ik

(
ZeikZ

†Z
)
ji
ik′
(
eik
′Z†ZZ†

)
ij

= −kk′Tr
(
Z†Zei(k+k

′)Z†Z
)
. (8.0.5)

The joining operator has a Fourier transform in coordinate space x given by

the following, (x = r2i ),
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Ωxx′ =

∫
dk

2π

∫
dk′

2π
e−ikxe−ik

′x′Ωkk′

= −kk′
∫

dk

2π

∫
dk′

2π
e−ikxe−ik

′x′Tr
(
Z†Zei(k+k

′)Z†Z
)

= ∂x∂x′

∫
dk

2π

∫
dk′

2π
e−ikxe−ik

′x′Tr
(
Z†Zei(k+k

′)Z†Z
)

= ∂x∂x′

(∑
i

xiδ(x− xi)δ(x′ − xi)

)
⇒ Ωxx′ = ∂x∂x′ [xΦ(x)δ(x′ − x)] . (8.0.6)

We will now take a close look at the splitting operator ωk defined by

ωk =

[
∂2φk

∂Z†ij∂Zji

]

= (ik)2
∫ 1

0

dα
(
eikαZ

†Z
)
ii

(
Zeik(1−α)Z

†ZZ†
)
jj

+ ik
(
eikZ

†Z
)
ii
δjj︸︷︷︸
N

(8.0.7)

= −k2
∫ 1

0

dα
(
eikαZ

†Z
)
ii

(
Z†Zeik(1−α)Z

†Z
)
jj

+ ikN
(
eikZ

†Z
)
ii
.

We now introduce a change of variables into equation (8.0.7):

k′ = αk : α = 1⇒ k′ = k;α = 0⇒ k′ = 0, (8.0.8)

and obtain

ωk = −k
∑
ij

∫ k

0

dk′
(
eik
′r2i

)(
r2j e

i(k−k′)r2j
)

+ ikN
∑
i

eikr
2
i . (8.0.9)

The above equation is integrated over the k′-space and is represented purely

in terms of eigenvalues. We will proceed and break up the integral above into

terms that have i = j and i 6= j. We obtain

ωk = −k2
∑
i

r2i e
ikr2i − k

∑
i 6=j

∫ k

0

dk′eik
′r2i r2j e

i(k−k′)r2j + ikN
∑
i

eikr
2
i .

(8.0.10)
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The second term appearing in equation (8.0.10) will be dealt with separately

below so as to simplify it even further. We write:

− k
∑
i 6=j

∫ k

0

dk′eik
′r2i r2j e

i(k−k′)r2j =
∑
i 6=j

ikr2j
(r2i − r2j )

(
eikr

2
i − eikr2j

)
=

∑
i 6=j

ikr2j e
ikr2i

(r2i − r2j )
−
∑
i 6=j

ikr2j e
ikr2j

(r2i − r2j )

= −ik
∑
i 6=j︸︷︷︸
N−1

∑
i

eikr
2
i +

∑
i 6=j

ikr2j e
ikr2j

(r2j − r2i )
−
∑
i 6=j

ikr2j e
ikr2j

(r2i − r2j )

= −ik(N − 1)
∑
i

eikr
2
i − 2

∑
i 6=j

ikr2j e
ikr2j

(r2i − r2j )
. (8.0.11)

We substitute equation (8.0.11) into equation (8.0.10) and continue to solve

for ωk to obtain the following

⇒ ωk = −k2
∑
i

r2i e
ikr2i − 2ik

∑
i 6=j

r2j e
ikr2j

(r2i − r2j )
+ ik

∑
i

eikr
2
i . (8.0.12)

Having solved for the splitting operator in k-space, we can naturally consider

its Fourier transform in x-coordinate space denoted by ωx:

ωx =

∫
dk

2π
e−ikx

(
−k2

∑
i

r2i e
ikr2i

)
+

∫
dk

2π
e−ikx

(
−2ik

∑
i 6=j

r2j e
ikr2j

(r2i − r2j )

)

+

∫
dk

2π
e−ikx

(
ik
∑
i

eikr
2
i

)
(8.0.13)

For the sake of simplicity and clarity, each of the three terms appearing in

equation (8.0.13) will be calculated individually below. We start with the second

term appearing in the first line of equation (8.0.13)

122



∫
dk

2π
e−ikx

(
−2ik

∑
i 6=j

r2j e
ikr2j

(r2i − r2j )

)
= 2∂x

∑
i 6=j

∫
dk

2π
eik(r

2
j−x)

r2j
(r2i − r2j )

= −2∂x

∫
dx′Φ(x′)−

∫
dy′Φ(y′)δ(y′ − x)

y′

y′ − x′

= −2∂x−
∫
dx′Φ(x′)Φ(x)

x

x− x′
(8.0.14)

⇒
∫

dk

2π
e−ikx

(
−2ik

∑
i 6=j

r2j e
ikr2j

(r2i − r2j )

)
= −2∂x

(
xΦ(x)−

∫
dy

Φ(y)

x− y

)
Below, we now solve for the rest of the terms appearing in equation (8.0.13)

∫
dk

2π
e−ikx

(
−k2

∑
i

r2i e
ikr2i

)
= ∂2x

∫
dx′δ(x′ − x)Φ(x′)x′

⇒
∫

dk

2π
e−ikx

(
−k2

∑
i

r2i e
ikr2i

)
= ∂2x (xΦ(x)) , (8.0.15)

and also

∫
dk

2π
e−ikx

(
ik
∑
i

eikr
2
i

)
= −∂x

∫
dx′Φ(x′)δ(x′ − x)

⇒
∫

dk

2π
e−ikx

(
ik
∑
i

eikr
2
i

)
= −∂x (Φ(x)) . (8.0.16)

Equations (8.0.14), (8.0.15) and (8.0.16) will be substituted back into equation

(8.0.13) to obtain the full expression for ωx:

ωx = ∂2x (xΦ(x))− 2∂x

(
xΦ(x)−

∫
dyΦ(y)

(x− y)

)
− ∂xΦ(x)

= −∂x
[
−∂x(xΦ(x)) + 2xΦ(x)−

∫
dyΦ(y)

(x− y)
+ Φ(x)

]
⇒ ωx = −∂x

(
xΦ(x)

[
2−
∫

dyΦ(y)

(x− y)
− ∂xΦ(x)

Φ(x)

])
. (8.0.17)

As has been observed in the collective field theory for the single hermitian

matrix model, the term ∂xΦ(x)/Φ(x) can be neglected [115], leaving us with

⇒ ωx = −∂x
[
xΦ(x)

(
2−
∫
dyΦ(x)

(x− y)

)]
. (8.0.18)
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In the collective field density description, the Jacobian J that arises from

a change of variables from matrices to invariant state operators will satisfy the

following equation (refer to equation (4.3.9))

∫
dx′Ωxx′

∂ ln J

∂Φ(x′)
+

∫
dx′

∂Ωxx′

∂Φ(x′)
= ωx. (8.0.19)

The second term appearing on the left hand side of equation (8.0.19) vanishes

as previously observed in the density description of the single hermitian matrix

model. With this condition, it necessarily follows that

∫
dx′Ωxx′

∂ ln J

∂Φ(x′)
− ωx = 0. (8.0.20)

In equation (8.0.20) above, we will make use of Ωxx′ and ωx that have already

been defined, it then follows that

∫
dx′Ωxx′

∂ ln J

∂Φ(x′)
− ωx = 0

⇒
∫
dx′∂x∂x′ (xΦ(x)δ(x− x′)) ∂ ln J

∂Φ(x′)
+ ∂x

(
xΦ(x)

[
2−
∫
dx′Φ(x′)

x− x′

])
= 0

⇒ − (xΦ(x)) ∂x
∂ ln J

∂Φ(x)
+ (xΦ(x))

[
2−
∫
dx′Φ(x′)

x− x′

]
= 0

⇒ ∂x
∂ ln J

∂Φ(x)
= 2−
∫
dx′Φ(x′)

x− x′
. (8.0.21)

We now show that the Jacobian J = ∆2
TMM that we had previously obtained

in (5.1.15) namely

J =
∏
i<j

1

4

(
r2i − r2j

)2
, (8.0.22)

satisfies equation (8.0.21).

One has

ln J =
∑
i 6=j

ln
∣∣r2i − r2j ∣∣+ const

= −
∫
dx−
∫
dyΦ(x)Φ(y) ln |x− y|+ const. (8.0.23)
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Substituting into the left hand side,

∂x
∂ ln J

∂Φ(x)
= 2−
∫
dx′Φ(x′)

x− x′
. (8.0.24)

This collective field theory treatment of the radial sector of two hermitian ma-

trices shows that this set of invariant operators close under the process of joining

and splitting. This is equivalent to the closure that characterizes Schwinger-

Dyson equations as will be observed in later chapters.
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Chapter 9

Radial Sector Density

Description Of The Two Matrix

Hamiltonian

We will continue with the collective field theory formalism, elegantly demon-

strated by Jevicki and Sakita [96], that we first applied to the single hermitian

matrix model and the previous chapter, by presenting the Hamiltonian descrip-

tion of the restricted radial sector made up of two hermitian matrices

In this chapter we will carry out the following objectives:

• Consider a radially restricted Hamiltonian formalism for the two hermitian

matrices coupled to a Gaussian potential

• Obtain the eigenvalue density function and couple this to the geometrical

representation due to the distribution of eigenvalues of the system

We recall equation (4.3.13)

Heff [x, x
′; [φ]] = −1

2

∫
dx

∫
dx′Π(x)Ω[x, x′, [φ]]Π(x′) (9.0.1)

+
1

8

∫
dx

∫
dx′ω(x; [φ])Ω−1(x, x′; [φ])ω(x′; [φ]) + P [x, [φ]].

We (also) recall that previously we defined the following invariant states:
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φk = Tr
(
eikZ

†Z
)

=
∑
i

eikr
2
i =

∑
i

eikxi ,

φ(x) =

∫
dxe−ikxφk =

∑
i

δ(x− r2i ) =
∑
i

δ(x− xi). (9.0.2)

We should emphasize that in equation (9.0.2), xi = r2i > 0.

In the previous chapter, we have derived the expressions of both the joining

and the splitting operators. For the joining operator

Ω(k, k′; [x]) =
∂φk

∂Z†ij

∂φk′

∂Zji
= −kk′Tr

(
Z†Zei(k+k

′)Z†Z
)
, (9.0.3)

Ω(x, x′; [φ]) =

∫
dk′

2π

∫
dk

2π
e−ikxe−ik

′x′Ω(k, k′; [φ]) = ∂x∂x′ [xφ(x)δ(x− x′)] ,

and the splitting operator with its associated Fourier transform is

ω(k, k′; [φ]) =
∂2φk

∂Z†ijZji
= −k2

∑
i

xie
ikxi − 2ik

∑
i 6=j

xje
ikxi

(xi − xj)

+ ik
∑
i

eikxi ,

ω(x; [φ]) =

∫
dk

2π
e−ikxω(k; [φ])

= ∂x

[
(xφ(x))

[
2−
∫
dx′φ(x′)

(x− x′)

]]
= ∂x [(xφ(x))L(x)] . (9.0.4)

We will first study the effective potential term which represents the repulsion

amongst the eigenvalues coupled to each other:

∫
dx

∫
dx′ω(x; [φ])Ω−1(x, x′; [φ])ω(x′; [φ]) = (9.0.5)∫

dx

∫
dx′(∂x(xφ(x))L(x))Ω−1(x, x′; [φ])(∂x′(x

′φ(x′))L(x′)) =

=
1

8

∫
dx

∫
dx′ (xφ(x)L(x))

(
∂x∂x′Ω

−1(x, x′; [φ])
)
x′φ(x′)L(x′).

Using exactly the same argument used in obtaining equation (4.4.17), we

obtain
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(
∂x∂x′Ω

−1
x,x′

)
=

δ(x− x′)
x′φ(x′)

. (9.0.6)

We substitute the definition appearing in equation (9.0.6) into the last line of

equation (9.0.5) to obtain the following expression

1

8

∫
dx

∫
dx′ (xφ(x)L(x))

(
∂x∂x′Ω

−1(x, x′; [φ])
)
x′φ(x′)L(x)

=
1

8

∫
dx (xφ(x))

[
2−
∫
dx′φ(x′)

(x− x′)

]2
. (9.0.7)

Using equation (9.0.7), and (9.0.3) we obtain a new expression for the effective

Hamiltonian operator

Heff [x, x
′; [φ]] =

1

2

∫
dx (∂xΠ(x)) [xφ(x)] (∂xΠ(x)) (9.0.8)

+
1

8

∫
dx (xφ(x))

[
2−
∫
dx′φ(x′)

(x− x′)

]2
+ P [x, [φ]].

The first term appearing in the last line of equation (9.0.8), encodes the

repulsive behavior of the eigenvalues of the physical system. The denominator of

this term seems to suggest that the eigenvalues repel each other when trapped in

a potential.

We saw that in the single hermitian (matrix) system, this term was shown to

be equivalent to a local cubic interaction. We wish to investigate if this is also

the case for the radial sector of the two (hermitian) matrix system.

To do so, and as was the case for the single matrix integral, we extend the

range and the definition of the radial eigenvalue density to the whole real line.

From our original definition of the eigenvalues x = r2 > 0, we will extend the

definition of our eigenvalues to include both positive values and negative values

of r. We will define: x and x′ such that x = r2, x′ = s2 for both s > 0 and r > 0.

Also, by definition, we induce a change of variables for the wavefunctions of the

system as follows: Φ(r) = 2rφ(r2). As previously, we extend the domain of the

definition of the density to the whole real line by requiring Φ(−r) ≡ Φ(r), r > 0.
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We will proceed as follows

∫
dx
(
xφ(x)L2(x)

)
=

∫ ∞
0

dx (xφ(x))

[
2−
∫ ∞
0

dx′φ(x′)

(x− x′)

]2
= 4

∫ ∞
0

(dr2)
(
r2φ(r2)

)(
−
∫ ∞
0

d(s2)φ(s2)

(r2 − s2)

)2

= 4

∫ ∞
0

drΦ(r)r2
(
−
∫ ∞
0

dsΦ(s)

(r2 − s2)

)2

. (9.0.9)

Equation (9.0.9) carries an identity that can be used to simplify the entire

expression, but first we extend the range of integration

4

∫ ∞
0

drΦ(r)r2
(
−
∫ ∞
0

dsΦ(s)

(r2 − s2)

)2

=

∫ ∞
0

drΦ(r)

(
−
∫ ∞
0

dsΦ(s)
2r

(r2 − s2)

)2

=

∫ ∞
0

drΦ(r)

(
−
∫ ∞
0

dsΦ(s)

(
1

(r + s)
+

1

(r − s)

))2

=

∫ ∞
0

drΦ(r)

((
−
∫ 0

−∞

dsΦ(−s)
(r − s)

+−
∫ ∞
0

dsΦ(s)

(r − s)

))2

=

∫ ∞
0

drΦ(r)

(
−
∫ ∞
−∞

dsΦ(s)

(r − s)

)2

=
1

2

∫ ∞
−∞

drΦ(r)

(
−
∫ ∞
−∞

dsΦ(s)

(r − s)

)2

. (9.0.10)

The squared term appearing in the brackets is in fact an identity that first

appeared in the collective field theory framework of the single hermitian matrix

model. This is remarkable because it will allow us to simplify the above expres-

sion. As we previously saw, we can write

(
−
∫ ∞
−∞

dsΦ(s)

(r − s)

)2

=
π2

3
Φ2(r). (9.0.11)

We make use of equation (9.0.11) in equation (9.0.10) to obtain the following
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4

∫ ∞
0

drΦ(r)r2
(
−
∫ ∞
0

dsΦ(s)

(r2 − s2)

)2

=
1

2

∫ ∞
−∞

drΦ(r)

(
−
∫ ∞
−∞

dsΦ(s)

(r − s)

)2

=
1

2

∫ ∞
−∞

drΦ(r)

[
π2

3
Φ2(r)

]
=

π2

6

∫ ∞
−∞

drΦ3(r). (9.0.12)

We note that in equation (9.0.12) above, the integral over the radial eigenval-

ues r integrating the radial function Φ(r) runs over the entire real line domain.

Also, as we saw for the single hermitian matrix case, we get a cubic potential

that’s generated in the radially symmetric bosonic sector of (2 + 1)-dimensional

fermions [112].

We substitute equation (9.0.12) into equation (9.0.8), to obtain a more sim-

plified expression for the effective Hamiltonian

Heff [x, x
′; [φ]] =

1

2

∫
dx (∂xΠ(x)) [xφ(x)] (∂xΠ(x))

+
1

8

(
π2

6

∫ ∞
−∞

drΦ3(r)

)
+ P [x, [φ]]. (9.0.13)

We will define the effective potential

P ′(x; [φ]) =

[
π2

48

∫ ∞
−∞

drΦ3(r)

]
+ P [x, [φ]]. (9.0.14)

The eigenvalues for our system of two matrices will be subjected to a Gaussian

potential that has U(N) × U(N) symmetry. At this point, we will use, in the

calculations that follow, a potential for our matrix system that is expressed in

terms of collective field theory variables.

We introduce the following Gaussian potential for our system
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P [x, [φ]] =
ω2

2
Tr
(
Z†Z

)
=
ω2

2

∑
i

r2i

=
ω2

2

∫
dxφ(x)x

=
ω2

2

∫ ∞
0

dr(2rφ(r2))r2 [x = r2]

=
ω2

2

∫ ∞
0

drΦ(r)r2 [Φ(r) = 2rφ(r2)]

⇒ P [x, [φ]] =
ω2

4

∫ ∞
−∞

drΦ(r)r2. (9.0.15)

Using equation (9.0.15), we assemble the effective potential to obtain the

following

P ′(x; [φ]) =
π2

48

∫ ∞
−∞

drΦ3(r) + P [x, [φ]]

=

[
π2

48

∫ ∞
−∞

drΦ3(r)

]
+
ω2

4

∫ ∞
−∞

drΦ(r)r2

= P ′[r, [φ]]. (9.0.16)

The density function Φ(r) is subject to the constraint

∫ ∞
−∞

drΦ(r) = 2N. (9.0.17)

The functional is given by the following expression

M(ϑ, [φ]) = P ′(r; [φ]) + ϑ

(
2N −

∫ ∞
−∞

drΦ(r)

)
=

π2

48

∫ ∞
−∞

drΦ3(r) +
ω2

4

∫ ∞
−∞

drΦ(r)r2

+ ϑ

(
2N −

∫ ∞
−∞

drΦ(r)

)
. (9.0.18)

The term ϑ represents the Lagrange multiplier.

The functional appearing above will be solved in the large N limit, but before

we do this we will need to rescale our collective field theory variables to explicitly

show how the N dependence emerges. One has:

r →
√
Nr, Φ(r)→

√
NΦ(r), ϑ→ Nϑ. (9.0.19)
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We substitute the rescaled variables appearing in equation (9.0.19) into equa-

tion (9.0.18), to obtain the following equation

M(ϑ, [Φ]) = P ′A(r; [φ]) + ϑ

(
2N −

∫ ∞
−∞

drΦ(r)

)
= N2

[
π2

48

∫ ∞
−∞

drΦ3(r) +
ω2

4

∫ ∞
−∞

drΦ(r)r2
]

+ ϑN2

(
2−

∫ ∞
−∞

drΦ(r)

)
. (9.0.20)

In order to obtain the large N background solution, we can vary equation

(9.0.20) with respect to the radial density (Φ) to obtain the following

∂

∂Φ(r)
M(ϑ, [φ]) = 0

⇒ N2

(
π2

16
Φ2(r) +

ω2

4
r2 − ϑ

)
= 0

⇒ Φ(r) =
2

π

(
4ϑ− ω2r2

)1/2
. (9.0.21)

Proceeding from equation (9.0.21), we will use the constraint (9.0.17) to fix

the Lagrange multiplier ϑ such that ϑ = ω/2 and to obtain the normalized ground

state eigenvalue density function

Φ0(r) =
2ω

π

(
2

ω
− r2

)1/2

|r| ≤ ±
√

2

ω
. (9.0.22)

Equation (9.0.22) is the normalized eigenvalue density function whose density

description yields the semi-circle law that defines the Wigner distribution.

Figure (9.1) shows the Wigner semi-circle distribution obeyed by equation

(9.0.22) for ω = 1/2 and is perfectly symmetric about the zero point.

Note that in terms of the original variables ρ = r2, one has

φ0(ρ) =

√
2ω

π

√
1

ρ
− ω

2
0 < ρ <

2

ω
, (9.0.23)

which no longer obeys the Wigner semi-circle distribution law.

132



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

f(
x)

Figure 9.1: Wigner semi-circle eigenvalue distribution for the two hermitian ma-

trix model in collective field theory.
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Chapter 10

Radial Sector Of Systems With

An Even Number Of Hermitian

Matrices

Earlier chapters in the main body of the work discussed the single hermitian

matrix model and the single complex model by treating the partition function

and the collective field theory Hamiltonian formalism of both matrix models in

the large N limit.

Both the single and two hermitian matrix model yielded remarkable physical

results like the manifestation of the Wigner semi-circle law, though the latter

required special treatment by restricting it to a sector strictly dependent on radial

degrees of freedom.

Also, reducing these matrix models, and decoupling any angular degrees of

freedom resulted in both systems of matrices in their respective frameworks yield-

ing a fermionic type description.

So far, we have shown remarkable parallels between the radial sector of the

single complex matrix model and the single hermitian matrix model with re-

spect to the results obtained and how uniquely the matrix systems were treated

observing the appearance of (1 + 1)-dimensional quasi-particles.

The natural question that arises is the following: Can the properties that

we observed and learnt in earlier chapters related to the single hermitian matrix

134



model and the two hermitian matrix model be generalized for a larger system of

matrices. It turns out that many of these properties can indeed be generalized

to systems of an arbitrary number of complex matrices.

The chapters that follow will be dedicated to answering the preceding ques-

tions and also develop and learn more about the richness and physical properties

of matrix models.

The main goals of this chapter are as follows:

• Provide a definition of the generalized radial sector constituted by a large

ensemble of complex matrices

• Construct an integral for the generalized radial sector (partition function)

• Develop a density description formalism for the generalized radial sector

• Obtain an expression for the Jacobian for the general ensemble of matrices

that make up the radial sector

10.1 Jacobian In The Radial Sector

In this chapter we consider a generalized model of m N ×N complex matrices

ZA A = 1, 2, ....m, (10.1.1)

or equivalently a matrix model of 2m N ×N hermitian matrices

ZA = X(2A−1) + iX(2A). (10.1.2)

We would like to look at the large N description of the system mentioned

above. Consider a Gaussian partition function

Z =

∫ ∏
A

∏
ij

(
dZ†A

)
ij

(dZA)ij e
−Sg(ZA,Z†A), (10.1.3)

where Sg(ZA, Z
†
A) is the Gaussian potential:

S(ZA, Z
†
A) =

ω2

2
Tr

(∑
A

Z†AZA

)
. (10.1.4)
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This potential has a U(N)m+1 symmetry as it is invariant under the following

transformation

ZA → VAZAV
†. (10.1.5)

The potential above depends on the positive definite hermitian matrix

∑
A

Z†AZA, (10.1.6)

whose eigenvalues can be written as follows

ρi = r2i i = 1, 2, 3, ......, N. ρi ≥ 0. (10.1.7)

Equation (10.1.7) represents the eigenvalues of our system whose dynamics

will be investigated in the large N limit.

We will consider potentials that are dependent only on ρi:

S(ZA, Z
†
A) = S(ρi). (10.1.8)

We are interested in the radial dynamics first. We expect many of these

properties not to change when angular degrees of freedom are included, as in this

construction they are dimensionless.

In addition the (radial) Gaussian potential which is the subject of more de-

tailed analysis in this thesis is relevant to LLM backgrounds [107] possibly in a

more symmetric description of the geometry.

Our main objective is to study the distribution of the eigenvalues of the fol-

lowing partition function

Z =

∫ ∏
A

∏
ij

(
dZ†A

)
ij

(dZA)ij e
−S(ZA,Z†A)

=

∫ ∏
i

dρiJ (ρi)e
−S(ρi), (10.1.9)

in the large N framework.
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In order for us to obtain the Jacobian J (ρi), we need to perform a change

of variables from the original degrees of freedom of the theory (Z†A, ZA), to the

U(N)m+1 invariant operators (Φ(ρ),Φk).

To derive the complete expression of the Jacobian J (ρi) we will use the density

description.

As a starting point, we turn to Quantum Field Theory, making use of a famil-

iar identity which can be utilized to obtain Schwinger-Dyson equations. These

Schwinger-Dyson equations occur as a result of deducing conservation laws from

the symmetries of functional integrals i.e. integrals over fields. We use an identity

from these Schwinger-Dyson equations:

∫ ∏
A

∏
ij

(dZA)†ij(dZA)ij
∂

∂(ZA)ji

(
∂Φk

∂(ZA)†ij
F [Φ]e−Sg

)
= 0

(10.1.10)

In equation (10.1.10), the function F [Φ] represents the product of invariant

operators Φ. These operators, defined in the density description, are in fact in-

variant under the symmetry of equation (10.1.5) and depend on the eigenvalues ρi

of the system. When constructing these invariant operators we use the hermitian

matrix of equation (10.1.6), defined under a trace. When referring to the opera-

tors in our system, we in fact mean operators that depend on the eigenvalues of

the system i.e.

Φ ≡ Φ(ρ). (10.1.11)

We construct the definition of our operators as follows

Φk = Tr
(
eik

∑
AZ
†
AZA
)

=
∑
i

eikρi

=
∑
i

eikr
2
i . (10.1.12)

The Fourier transform of the operator above defined in radial coordinate space

is as follows
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Φ(ρ) =

∫
dk

2π
e−ikρΦk

=
∑
i

δ(ρ− r2i ). (10.1.13)

Equations (10.1.12) and (10.1.13) are variables that are defined in the density

description which will later be used to develop a collective field theory model for

this generalized system of 2m matrices.

In the first line of equation (10.1.10) we use the standard product rule by

differentiating with respect to ∂/∂(ZA)ji, we deduce the following

∫ ∏
A

∏
ij

(dZA)†ij(dZA)ij
∂

∂(ZA)ji

(
∂Φk

∂(ZA)†ij
F [Φ]e−Sg(ZA,Z

†
A)

)
= 0

⇒
∫ ∏

A

∏
ij

(dZA)†ij(dZA)ij

(
∂2Φk

∂(ZA)ji∂(ZA)†ij
F [Φ]

)
e−Sg(ZA,Z

†
A)

+

∫ ∏
A

∏
ij

(dZA)†ij(dZA)ij

(
∂Φk

∂(ZA)†ij

∂F [Φ]

∂(ZA)ji

)
e−Sg(ZA,Z

†
A)

−
∫ ∏

A

∏
ij

(dZA)†ij(dZA)ij

(
∂Φk

∂(ZA)†ij
F [Φ]

∂Sg(ZA, Z
†
A)

∂(ZA)ji

)
e−Sg(ZA,Z

†
A)

= 0. (10.1.14)

The above equation will lead us to an equation whose time-ordered correlation

functions depend on the operators Φ,

〈
∂2Φk

∂(ZA)ji∂(ZA)†ij
F [Φ]

〉
+

〈
∂Φk

∂(ZA)†ij

∂F [Φ]

∂(ZA)ji

〉

−

〈
∂Φk

∂(ZA)†ij
F [Φ]

∂Sg(ZA, Z
†
A)

∂(ZA)ji

〉
= 0. (10.1.15)

From the functional integrals that are dependent on the invariant operators

Φ, one can obtain all the time ordered product expectation values. Therefore we

define a product expectation value for the U(N)m+1 invariant operators

〈G[Φ]〉 ≡
∫ ∏

A

∏
ij

(dZ†A)ij(dZA)ijG[Φ]e−Sg , (10.1.16)
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where we still maintain Sg ≡ Sg(ZA, Z
†
A).

With the change of variables we will require the following equation to hold

true

∫ ∏
A

∏
ij

(dZ†A)ij(dZA)ijG[Φ]e−Sg =

∫
[dΦ]J(Φ)G[Φ]e−Sg . (10.1.17)

As a result of changing variables, the above two integrals should be the same.

We will again consider an identity that will generate Schwinger-Dyson equations

under a new reformulation of the theory in terms of the invariant variables Φ

using the methods based on [116] [117] [118]. The identity is as follows

∫
[dΦ]

∫
dk′

∂

∂Φ′k

(∑
A

[
∂Φk

∂(Z†A)ij

∂Φk′

∂(ZA)ji

]
J(Φ)F [Φ]e−Sg

)
= 0. (10.1.18)

Operating with ∂/∂Φ′k we obtain,

∫
[dΦ]

∫
dk′

(
∂

∂Φ′k

[
∂Φk

∂(Z†A)ij

∂Φk′

∂(ZA)ji

]
F [Φ]

)
J(Φ)e−Sg

+

∫
[dΦ]

∫
dk′

([
∂Φk

∂(Z†A)ij

∂Φk′

∂(ZA)ji

]
∂J(Φ)

∂Φ′k

1

J(Φ)
F [Φ]

)
J(Φ)e−Sg

+

∫
[dΦ]

∫
dk′

([
∂Φk

∂(Z†A)ij

∂Φk′

∂(ZA)ji

]
∂F [Φ]

∂Φ′k

)
J(Φ)e−Sg

−
∫

[dΦ]

∫
dk′

([
∂Φk

∂(Z†A)ij

∂Φk′

∂(ZA)ji

]
F [Φ]

∂Sg
∂Φ′k

)
J(Φ)e−Sg

= 0. (10.1.19)

We obtain time-ordered correlation functions integrated over the variable k′
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∫
dk′

〈
∂

∂Φ′k

[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
F [Φ]

〉
+

∫
dk′

〈[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
∂ ln J(Φ)

∂Φ′k
F [Φ]

〉
+

∫
dk′

〈[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
∂F [Φ]

∂Φ′k

〉
−

∫
dk′

〈[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
F [Φ]

∂Sg
∂Φ′k

〉
= 0.

(10.1.20)

In the last two terms of equation (10.1.20), we integrate the variable k′ using

the chain rule. The third term becomes

∫
dk′

〈[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
∂F [Φ]

∂Φ′k

〉
=

〈[
∂Φk

∂(ZA)†ij

∂F [Φ]

∂(ZA)ji

]〉
.

(10.1.21)

We treat the last term appearing in equation (10.1.20) in a similar manner,

and we obtain

∫
dk′

〈
∂

∂Φ′k

[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
F [Φ]

〉
+

∫
dk′

〈[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
∂ ln J(Φ)

∂Φ′k
F [Φ]

〉
+〈[

∂Φk

∂(ZA)†ij

∂F [Φ]

∂(ZA)ji

]〉
−

〈[
∂Φk

∂(ZA)†ij

∂Sg
∂(ZA)ji

]
F [Φ]

〉
= 0.

(10.1.22)

Equation (10.1.15) and equation (10.1.22) are the same equations represented

in different coordinates. Naturally both equations should generate the same

Schwinger-Dyson equations for the arbitrary function F [Φ].

Therefore when comparing equations (10.1.15) and (10.1.22) the following

identity for the Jacobian must be true
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∫
dk′

∂

∂Φ′k

[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
+

∫
dk′

[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ij

]
∂ ln J(Φ)

∂Φ′k

=
∂2Φk

∂(ZA)†ij∂(ZA)ij
. (10.1.23)

Equation (10.1.23) above is the equation for the Jacobian J (ρi) = J(Φ) 5.

At this point we make use of the definitions of our invariant variables in

equation (10.1.12) and equation (10.1.13). We will apply some of the principles

we used in the collective field theory framework. We first start off by introducing

the following definitions

Ωkk′ =
∑
A

[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
, ωk =

∑
A

∂2Φk

∂(ZA)†ij∂(ZA)ij
. (10.1.24)

In the equation (10.1.24) above, Ωkk′ is the joining operator and ωk is the

splitting operator of collective field theory. We define the Fourier transforms of

equation (10.1.24) ,

Ωρρ′ =

∫
dk

2π

∫
dk′

2π
e−ikρe−ik

′ρ′Ωkk′ , ωρ =

∫
dk

2π
e−ikρωk. (10.1.25)

With the use of equations (10.1.25) and (10.1.24), we can rewrite equation

(10.1.23) in a more compact form. We start by substituting the definitions of

equation (10.1.24) into equation (10.1.23)

∫
dk′

∂

∂Φ′k

[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
+

∫
dk′

[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ij

]
∂ ln J(Φ)

∂Φ′k

=
∂2Φk

∂(ZA)†ij∂(ZA)ij

⇒
∫
dk′

∂Ωkk′

∂Φ′k
+

∫
dk′Ωkk′

∂ ln J(Φ)

∂Φ′k
= ωk (10.1.26)

5We deem this change of notation necessary to preserve consistency from earlier chapters.

Later we will return to the initial definition of the Jacobian (J (ρi)).
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Proceeding from equation (10.1.26), we substitute the Fourier transform def-

initions of equation (10.1.25) to obtain a more compact form of the equation of

the Jacobian

⇒
∫
dρ′Ωρρ′

∂ ln J(Φ)

∂Φ(ρ′)
+

∫
dρ′

∂Ωρρ′

∂Φ(ρ′)
= ωρ (10.1.27)

Equation (10.1.27) is the equation of the Jacobian J(Φ), this equation is de-

fined in terms of the collective field theory Fourier space variables Ωρρ′ and ωρ. We

recognize the equation for the Jacobian that results from collective field theory.

This approach shows that this equation can also be obtained from Schwinger-

Dyson equations [116].

As observed for the single and the two hermitian matrix model, the second

term on the left hand side of equation (10.1.27) vanishes, leaving us with the

following

∫
dρ′Ωρρ′

∂ ln J(Φ)

∂Φ(ρ′)
= ωρ. (10.1.28)

To solve for J(Φ), it would be fundamental that we explicitly express the

collective field theory operators Ωρρ′ and ωρ of equations (10.1.24) and (10.1.25).

Thus, from equation (10.1.12) we have

∂Φk

∂(ZA)ij
=

∂

∂(ZA)ij
Tr
(
eik(

∑
B Z
†
BZB)

)
= ik

(
e
∑
B(Z†B)(ZB)Z†A

)
ji
. (10.1.29)

Naturally, using a similar process to equation (10.1.29) above, we can deduce

the following to be true

∂Φk

∂(Z†A)ij
=

∂

∂(Z†A)ij
Tr
(
eik

∑
B Z
†
BZB
)

= ik
(
ZAe

ik
∑
B(Z†B)(ZB)

)
ji
. (10.1.30)

On our way to defining Ωρρ′ and ωρ, we use the above two equations (10.1.29)

and (10.1.30). We first start with the joining operator
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Ωkk′ =
∑
A

[
∂Φk

∂(ZA)†ij

∂Φk′

∂(ZA)ji

]
= ik

∑
A

(
ZAe

ik
∑
B(Z†B)(ZB)

)
ji
ik′
(
ZAe

ik′
∑
B(Z†B)(ZB)Z†A

)
ij

= −kk′Tr

(∑
A

Z†AZAe
i(k+k′)

∑
B Z
†
BZB

)
, (10.1.31)

and then its Fourier transform becomes

Ωρρ′ =

∫
dk

2π

∫
dk′

2π
e−ikρe−ik

′ρ′Ωkk′

⇒ Ωρρ′ = ∂ρ∂ρ′ [ρΦ(ρ)δ(ρ′ − ρ)] . (10.1.32)

We now wish to move on and define the splitting operator ω(ρ), for this we

start off with the definition of the splitting operator in the real k-space. This

implies that

ωk =
∑
A

∂2φk

(∂Z†A)ij(∂ZA)ji

=
∑
A

(ik)2
∫ 1

0

dα
(
eikα

∑
A Z
†
AZA
)
ii

(
ZAe

ik(1−α)
∑
B Z
†
BZBZ†A

)
jj

+ ik
(
eik

∑
A Z
†
AZA
)
ii
δjj︸︷︷︸
N

∑
A

δA,A︸ ︷︷ ︸
m

(10.1.33)

= −k2
∫ 1

0

dα
(
eikα

∑
A Z
†
AZA
)
ii

(
ZAe

ik(1−α)
∑
A Z
†
AZAZ†A

)
jj

+ ik
(
eik

∑
A Z
†
AZA
)
ii
Nm.

The treatment of equation (10.1.33) above will be no different from earlier

chapters, the only significant difference is the emergence of a constant m. We

rewrite the above equation as

ωk = −k
∑
ij

∫ k

0

dk′
(
eik
′r2i

)(
r2j e

i(k−k′)r2j
)

+ ikNm
∑
i

eikr
2
i . (10.1.34)

Equation (10.1.34) will be further simplified by extending the summation over

i and j such that
∑

ij =
∑

i +
∑

i 6=j. Therefore we obtain the following
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ωk = −k2
∑
i

r2i e
ikr2i − k

∑
i 6=j

∫ k

0

dk′eik
′r2i r2j e

i(k−k′)r2j + ikNm
∑
i

eikr
2
i .

(10.1.35)

As we mentioned earlier that the last term in equation (10.1.35) is non-trivial

and unique from the single complex matrix. With a bit of algebra, but similar to

the manipulations carried in (8.0.10), equation (10.1.35) is shown to be

ωk = −k2
∑
i

r2i e
ikr2i − 2ik

∑
i 6=j

r2j e
ikr2j

(r2i − r2j )
+ ikN(m− 1)

∑
i

eikr
2
i

+ ik
∑
i

eikr
2
i . (10.1.36)

We now proceed to define the Fourier transform of ωk

⇒ ωx =

∫
dk

2π
e−ikx

(
−k2

∑
i

r2i e
ikr2i

)
+

∫
dk

2π
e−ikx

(
−2ik

∑
i 6=j

r2j e
ikr2j

(r2i − r2j )

)

+

∫
dk

2π
e−ikx

(
ikN(m− 1)

∑
i

eikr
2
i

)
+

∫
dk

2π
e−ikx

(
ik
∑
i

eikr
2
i

)
.

(10.1.37)

Equation (10.1.37) bears a striking resemblance to the splitting operator of

equation (8.0.13) except for the (m− 1) factor in the third term. When m = 1,

we recover equation (8.0.13). The above equation will be simplified as in (8.0.13)

to get

ωx = −∂x (xΦ(x))

[
2−
∫
dyΦ(x)

(x− y)
+
N(m− 1)

x
− ∂xΦ(x)

Φ(x)

]
. (10.1.38)

As we argued previously, in the large N limit we can neglect the third term of

equation (10.1.38). Also, to return to a more common notation, we had previously

defined ρ = r2. We reset variables as follows: x = ρ, y = ρ′. In total, the density

description of the splitting operator in coordinate representation will take the

following form

ωρ = −∂ρ (ρΦ(ρ))

[
2−
∫
dρ′Φ(ρ′)

(ρ− ρ′)
+
N(m− 1)

ρ

]
. (10.1.39)

144



The definitions obtained for Ωρρ′ and ωρ, will now be put into effect in equation

(10.1.38) which will give us the following

∫
dρ′Ωρρ′

∂ ln J(Φ)

∂Φ(ρ′)
− ωρ = 0

⇒
∫
dρ′∂ρ∂ρ′ (ρΦ(ρ)δ(ρ− ρ′))∂ ln J(Φ)

∂Φ(ρ′)
+ ∂ρ

(
ρΦ(ρ)

[
2−
∫
dρ′Φ(ρ′)

ρ− ρ′

])
+ ∂ρ

(
ρΦ(ρ)

[
N(m− 1)

ρ

])
= 0

⇒ − (ρΦ(ρ)) ∂ρ
∂ ln J(Φ)

∂Φ(ρ)
+ (ρΦ(ρ))

[
2−
∫
dρ′Φ(ρ′)

ρ− ρ′

]
+ (ρΦ(ρ))

[
N(m− 1)

ρ

]
= 0

⇒ ∂ρ
∂ ln J(Φ)

∂Φ(ρ)
=

[
2−
∫
dρ′Φ(ρ′)

ρ− ρ′

]
+
N(m− 1)

ρ
. (10.1.40)

The last line of equation (10.1.40) is the equation of the Jacobian.

The Jacobian is

ln J(Φ) = −
∫
dρ−
∫
dρ′Φ(ρ)Φ(ρ′) ln |ρ− ρ′|+N(m− 1)−

∫
dρΦ(ρ) ln |ρ|,

(10.1.41)

as it can be shown to straight forwardly satisfy (10.1.40).

To shorten the notation, we will write a = m− 1. In terms of the eigenvalues

ln J(Φ) = −
∫
dρ−
∫
dρ′Φ(ρ)Φ(ρ′) ln |ρ− ρ′|+N(m− 1)−

∫
dρΦ(ρ) ln |ρ|

=
∑
i 6=j

ln
∣∣r2i − r2j ∣∣+Na

∑
i

ln
∣∣r2i ∣∣

=
∑
i 6=j

ln |ρi − ρj|+Na
∑
i

ln |ρi|.

(10.1.42)

Having expressed the equation of the Jacobian in terms of radial eigenvalues

in equation (10.1.42), we now proceed to write the Jacobian for a general even

number of 2m matrices
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ln J =
∑
i 6=j

ln |ρi − ρj|+Na
∑
i

ln |ρi|

= a
∑
i

ln (ρi) + a(N − 1)
∑
i

ln (ρi) +
∑
i 6=j

ln |ρi − ρj|

=
∑
i

ln (ρai ) +
∑
i 6=j

∑
i

ln (ρ
a/2
i ) +

∑
i 6=j

∑
j

ln (ρ
a/2
j ) +

∑
i 6=j

ln |ρi − ρj|

= ln

(
N∏
i=1

ρai

)
+
∑
i 6=j

ln
(
ρ
a/2
i ρ

a/2
j |ρi − ρj|

)
⇒ ln J = ln

[
N∏
i=1

ρai

(∏
i 6=j

ρ
a/2
i ρ

a/2
j |ρi − ρj|

)]

⇒ J =
N∏
i=1

ρm−1i

(∏
i 6=j

ρ
(m−1)/2
i ρ

(m−1)/2
j |ρi − ρj|

)

⇔ J =
N∏
i=1

ρm−1i

(∏
i>j

ρ
(m−1)/2
i ρ

(m−1)/2
j |ρi − ρj|

)2

⇒ J =
N∏
i=1

ρm−1i

∏
i>j

ρm−1i ρm−1j (ρi − ρj)2 = J (ρi). (10.1.43)

For the Jacobian J above we introduce shorthand notation such that

J (ρi) = J =
N∏
i=1

ρm−1i V2
R(ρi), (10.1.44)

where the antisymmetric term

VR(ρi) =
∏
i>j

ρ
(m−1)

2
i ρ

(m−1)
2

j (ρi − ρj)

=
∏
i>j

r
(m−1)
i r

(m−1)
j

(
r2i − r2j

)
= VR(r2i ), (10.1.45)

generalizes the commonly known Vandermonde determinant

∆ =
∏

i>j(ρi − ρj). Equation (10.1.45) represents the Jacobian for a general 2m

number of complex matrices in the radial sector.
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Earlier on we had defined a Gaussian ensemble of m N ×N complex matrices

(ZA)ij for A = 1, 2, ....,m, or equivalently 2m hermitian N ×N matrices. Funda-

mentally we were motivated by the desire to obtain the large N description of the

Gaussian partition function Z in equation (10.1.3) in terms of radial eigenvalues

of the system ρi = r2i .

In summary:

∫ ∏
A

∏
ij

(dZ†A)ij(dZA)ije
−S =

∫ ∏
i

dρiJ (ρi)e
−Sg(ρi)

= Gm

∫ ∏
i

dρi

N∏
i=1

ρm−1i

[∏
i>j

ρm−1i ρm−1j |ρi − ρj|2
]
e−Sg(ρi)

= Gm

∫ ∏
i

dρi

N∏
i=1

ρm−1i V2
R(ρi)e

−Sg(ρi), (10.1.46)

where in the last line of equation (10.1.46) Gm is some numerical constant.

On the left hand side of equation (10.1.46) is the probability density of the

Gaussian partition function in equation (10.1.3), and on the right hand side we

have defined our new measure for the Gaussian partition function using the gen-

eralized Jacobian J , for a general ensemble of 2m Gaussian N × N complex

matrices, expressed purely in terms of radial eigenvalues.

In equation (10.1.46), when we set m = 1, we recover the partition function

in equation (6.1.2) of the single complex matrix model Z.

We should remember that our generalized sector is a Gaussian ensemble of m

complex N×N matrices. The rectangular M×N Gaussian ensemble of matrices

considered in [119] [120] [121] [122], is a system of matrices that can be related

to our generalized radial sector matrix model by letting: M = mN .

The approach developed in our project treats our matrix model in a gauge

invariant manner.
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Chapter 11

Gaussian Potential For More

Complex Matrices

The generalized Jacobian J in equation (10.1.44), for a system of an even number

of 2m hermitian matrices, has been derived using variables from the density

description. We will now proceed to investigate the geometric properties of the

eigenvalue distribution associated with equation (10.1.44).

In this chapter, we aim to demonstrate the following objectives:

• Using the partition function for a general number of m complex matrices

(generalized radial sector), establish a stationary condition

• Study the solutions of the above mentioned stationary condition along a

positive single interval of the complex plane, and obtain an eigenvalue den-

sity distribution

• Investigate the solutions of the stationary condition along an extended sym-

metric interval on the complex plane, and obtain an eigenvalue density dis-

tribution and its graphic description

We recall that previously we defined our Gaussian partition function as follows

Z =
∏
A

∏
ij

(
dZ†A

)
ij

(dZA)ij e
−Sg(Z†A,ZA), (11.0.1)
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where the Gaussian potential Sg(Z
†
A, ZA) has been defined in equation (10.1.4)

for ρi = r2i .

The the Gaussian partition will be

Z =

∫ ∏
A

∏
ij

(
dZ†A

)
ij

(dZA)ij e
−Sg(Z†A,ZA)

=

∫ ∏
i

dρiJ (ρi)e
−Sg(ρi)

=

∫ ∏
i

dρie
ln J−Sg(ρi) [J (ρi) = J ]

=

∫ ∏
i

dρie
−Seff . (11.0.2)

Even though in the Gaussian case it is true that the partition function factor-

izes into the partition functions of two hermitian matrices, this is not sufficient

to fully characterize mixed matrix correlators.

In particular we are interested in the radial density which, to higher powers,

will mix the two hermitian matrices.

In the last line of equation (11.0.2) we have defined the effective action Seff

of the system

Seff = Sg(ρi)− ln J. (11.0.3)

We consider the methods of the density description which we will use to define

the Gaussian potential originally introduced in equation (10.1.4)

Sg(Z
†
A, ZA) =

ω2

2
Tr

(∑
A

Z†AZA

)
=
ω2

2

∑
i

r2i

=
ω2

2

∫
dρΦ(ρ)ρ

= Sg(ρi). (11.0.4)

First, we introduce the following constraint

∫ ∞
0

dρΦ(ρ) = N, (11.0.5)
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and we rescale the variables of our theory such that ρ → Nρ, ρ′ → Nρ′ and

Φ(ρ)→ Φ(ρ), applying these conditions, we can proceed to compute our effective

action

Seff =
ω2

2

∫
dρΦ(ρ)ρ−

∫
dρΦ(ρ)−

∫
dρ′Φ(ρ′) ln |ρ− ρ′|

− N(m− 1)

∫
dρΦ(ρ) ln |ρ|

⇒ Seff = N2

[
ω2

2

∫
dρΦ(ρ)ρ−

∫
dρΦ(ρ)−

∫
dρ′Φ(ρ′) ln |ρ− ρ′|

]
− N2

[
(m− 1)

∫
dρΦ(ρ) ln |ρ|

]
. (11.0.6)

The large N eigenvalue density configuration of our system is determined by

the following stationary condition

∂ξ
∂

∂Φ(ξ)
Seff = 0

⇒ ∂ξ
∂

∂Φ(ξ)

(
N2

[
ω2

2

∫
dρΦ(ρ)ρ−

∫
dρΦ(ρ)−

∫
dρ′Φ(ρ′) ln |ρ− ρ′|

])
−

∂ξ
∂

∂Φ(ξ)

(
N2

[
(m− 1)

∫
dρΦ(ρ) ln |ρ|

])
= 0

⇒ ∂ξ

(
ω2

2
ξ − 2−

∫
dρ′Φ(ρ′) ln |ξ − ρ′| − (m− 1) ln |ξ|

)
= 0

⇒ ω2

2
− 2−
∫
d∂′Φ(ρ′)

ξ − ρ′
− m− 1

ξ
= 0. (11.0.7)

If we let ξ = ρ, then the semi-classical radial eigenvalue distribution in the

large N limit satisfies

2−
∫
dρ′Φ(ρ′)

ρ− ρ′
=
ω2

2
− m− 1

ρ
, (11.0.8)

which is the stationary condition of the system.

On the left hand side of equation (11.0.8), we see the standard Coulomb

potential (ρ − ρ′)−1 representing the repulsion amongst eigenvalues centered at

ρ. On the right hand side of equation (11.0.8), the second term represents a

logarithmic potential whose strength varies with the number (m− 1) of matrices

in our system. The radial eigenvalues will experience a repulsion centered at
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ρ = 0 for the logarithmic potential. This is a new feature of m ≥ 2 complex

matrices.

The case for the m = 1 complex matrix Z has already been discussed in earlier

chapters, and it can be recovered from equation (11.0.8). To obtain the solution

to equation (11.0.8), which is a generalization of solutions associated with Penner

potentials [123], we use the techniques applied by BIPZ [27] to study the single

hermitian matrix model.

Due to the pole that appears on the right hand side of equation (11.0.8), the

ρ→ 0 limit has to be treated cautiously according to the methods of Tan [124].

11.1 Positive Single Cut Solution

Below we find a solution for equation (11.0.8), that is, we obtain the density of

eigenvalues for our system of m complex matrices.

As before, we first start off by introducing the analytic function

G(z) =

∫ ρ+

ρ−

dρ′Φ(ρ′)

z − ρ′
, (11.1.1)

along some support [ρ−, ρ+] for ρ+ > ρ− > 0 on the complex plain z.

The above function G(z) is defined on the complex plane of z and is analytic

along the cut [ρ−, ρ+] also defined on complex plane z. For large |z|, that is

z → ±∞, the analytic function behaves as G(z) ≈ 1/z. For small z, G(z) cannot

have a pole [124]. In addition to this, we require that the analytic function G(z)

be real for real z outside the support [ρ−, ρ+], and that when z approaches the

support [ρ−, ρ+], then the analytic function will be given by the following solution

G(ρ± iε) = −
∫ ρ+

ρ−

dρ′Φ(ρ′)

ρ− ρ′
∓ iπΦ(ρ)

=
ω2

4
− m− 1

2ρ
∓ iπΦ(ρ). (11.1.2)

The solution to equation (11.1.2) is a unique analytic function with a single

cut along the complex plane z on which all of the previously mentioned conditions
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hold for the density of eigenvalues Φ(ρ) on the support [ρ−, ρ+], and this solution

is given by

G(z) =
ω2

4
− m− 1

2ρ
− ω2

4z

√
(z − ρ−)(z − ρ+). (11.1.3)

The solution appearing in equation (11.1.3) for the analytic function G(z) will

implicitly enforce the requirement that in the limit z → 0 the function G(z) holds

and is defined. Equation (11.1.3) is the single cut ansatz for the m ≥ 2 complex

matrix model.

The derivation of equation (11.1.3) and the details of calculations that follow

are shown in Appendix E.

From the unique function in equation (11.1.3), we can obtain the equation of

the roots:

ρ2± −
8

ω2

(a
2

+ 1
)
ρ± +

4a2

ω4
= 0

⇒ ρ± =
2

ω2
(m+ 1)± 4

ω2

√
m. (11.1.4)

Equation (11.1.4) fixes the boundaries of the single cut on the complex plane

z. Using equations (11.1.3) and (11.1.4), we can obtain the density of eigenvalues

and this is shown to be

Φ(ρ) =
ω2

4πρ

√
(ρ+ − ρ)(ρ− ρ−)

=
ω2

4πρ

[
16m

ω4
−
(
ρ− 2(m+ 1)

ω2

)2
]1/2

⇒ Φ(ρ) =
1

πρ

√
m− ω4

16

(
ρ− 2(m+ 1)

ω2

)2

. (11.1.5)

As can be seen above that equation (11.1.5) is not a Wigner distribution due

to the appearance of a pole.
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11.1.1 Symmetric Solutions: Extended Domain

In this section, we will again extend the domain of integration along the real line

of the complex plane z and evaluate the stationary condition in equation (11.0.8).

This will confirm the solutions (11.1.5) for m ≥ 2. Recall that

φ(r) = φ(−r) = 2rΦ(r2)

∫ ∞
−∞

drφ(r) = 2, (11.1.6)

where φ(r) is an even/symmetric function of the radial eigenvalues r.

Previously we have obtained

−
∫ ∞
0

dρ′Φ(ρ′)

ρ− ρ′
=

1

2r
−
∫ ∞
−∞

dr′φ(r′)

r − r′
. (11.1.7)

Using equation (11.1.7) in equation (11.0.8), we observe the following

−
∫ ∞
0

dρ′Φ(ρ′)

ρ− ρ′
=

ω2

4
− (m− 1)

2ρ

=
1

2r
−
∫ ∞
−∞

dr′φ(r′)

r − r′

⇒ −
∫ ∞
−∞

dr′φ(r′)

r − r′
=

ω2r

2
− (m− 1)

r
. (11.1.8)

In the case of the extended real domain, we consider a symmetric double cut

along the complex plane of z such that [−r−,−r+] and [r−, r+] where r+ > r− > 0.

The analytic function that we introduce on the complex plane z for the last

line in equation (11.1.8) is as follows

G ′(r ± iε) = −
∫ ∞
−∞

dr′φ(r′)

r − r′
∓ iπφ(r)

=
ω2

2
r − m− 1

r
∓ iπφ(r). (11.1.9)

The analytic function G ′(z) will adhere to certain special conditions, for ex-

ample, for large z we require that G ′(z) ≈ 2/z and that the function have no
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poles when z → 0. The unique function that satisfies the properties of G ′(r ± iε)

is given by

G ′(z) =
ω2

2
z − a

z
− ω2

2z

√
(z2 − r2+)(z2 − r2−), (11.1.10)

where in the equation (11.1.10) we denoted a = m− 1.

Equation (11.1.10) above satisfies the properties of equation (11.1.9), ergo it

is the solution. From the properties of the analytic function G ′(z), we can obtain

the equations that fix the boundary conditions of the support

r4± −
4(2 + a)

ω2
r2± +

4a2

ω4
= 0

⇒ r2± = 2
(m+ 1)

ω2
± 4

ω2

√
m. (11.1.11)

The derivation of equation (11.1.10) and (11.1.11) are shown in the appendix

E.

The boundary limits of the double cut ansatz intervals where our eigenvalue

density function is defined is given by

r2− ≤ r2 ≤ r2+

⇒ 2
(m+ 1)

ω2
− 4

ω2

√
m ≤ r2 ≤ 2

(m+ 1)

ω2
+

4

ω2

√
m. (11.1.12)

Having fixed the boundaries of our double cut interval on the complex plane

and using equations (11.1.11) and (11.1.12), we can show our eigenvalue density

function to be

φ(r) =
ω2

2πr

√
(r2+ − r2)(r2 − r2−) r2− ≤ r2 ≤ r2+

=
ω2

2π

[
4

(2 + a)

ω2
− r2 − 1

r2
4a2

ω4

]1/2
⇒ φ(r) =

ω2

2π

[
4

(m+ 1)

ω2
− r2 − 1

r2
4(m− 1)2

ω4

]1/2
. (11.1.13)

Equation (11.1.13) is the generalized eigenvalue density function over the en-

tire extended real number domain for a general number of m complex matrices.
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Figure 11.1: Generalized radial sector eigenvalue distribution for m = 1.

We consider the m = 1 model for complex matrices, this implies that the constant

of the previously defined density a = m− 1 becomes zero, and we recover

φ(r) =
ω2

2π

[
8

ω2
− r2

]1/2
−
√

8

ω
≤ r ≤

√
8

ω
, (11.1.14)

graphically represented in Fig (11.1) for ω = 1/2.

Equation (11.1.13) will be plotted for different values of m as shown in figures

11.2, 11.3 and 11.4 all for ω = 1/2.

.

We return to our original variables and obtain

⇒ 2
√
ρΦ(ρ) =

ω2

2π

[
4(m+ 1)

ω2
− r2 − 1

r2
4

ω4
(m− 1)2

]1/2
⇒ Φ(ρ) =

ω2

4π

[
1

ρ

4

ω2
(m+ 1)− 1

ρ2
4

ω2
(m− 1)2 − 1

]1/2
. (11.1.15)

It is clearly evident that equation (11.1.15) is an eigenvalue density function

of an ensemble of random N×N Gaussian matrices whose eigenvalue distribution

is no longer governed by the semi-circle law of the Wigner description.
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Figure 11.2: Generalized radial sector eigenvalue distribution for m = 2.
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Figure 11.3: Generalized radial sector eigenvalue distribution for m = 3.
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Chapter 12

Laguerre vs. Hermite

Equations that characterize the generalized saddle point approximations (equa-

tion (11.0.8)) for the generalized radially restricted sector coupled to a Gaussian

potential can be related to the density of zeros of either Hermite or Laguerre

polynomials.

In this chapter we identify a relationship between the stationary condition of

the generalized radial sector and Laguerre and Hermite polynomials.

This relationship was previously demonstrated in the collective field descrip-

tion of the matrix models and supersymmetric matrix models in [125] [126].

To establish a relation to the density of zeros of our work and polynomials, we

will draw inspiration from [127] [128], whose work is largely based on the results

of [129].

The Laguerre polynomial LαN(x) satisfies a discretized equation, whose zero

modes are given by the following equation

N∑
j=1,i 6=j

1

xi − xj
=

1

2

(
1− 1 + α

xi

)
. (12.0.1)

Earlier on, we defined the stationary condition in terms of the density vari-

ables, given by equation (11.0.8) which we showed to be the following

N∑
j=1,i 6=j

1

ρi − ρj
=
ω2

4
− (m− 1)

2ρi
. (12.0.2)
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One can compare equations (12.0.1) and (12.0.2) and establish a correspon-

dence between the two equations when

xi =
ω2

2
ρi, ω2 = 2, and α = m− 2. (12.0.3)

It follows that the radial density corresponds to the density of zeros of the

Laguerre polynomial Lm−2N (ω
2

2
ρ) as N →∞.

It is also well known [127] [128] [129] that there exists a class of Hermite

polynomials H2N(r) whose equation for their zero’s is given by the following:

N∑
j=−N,i6=j

1

xi − xj
= xi. (12.0.4)

Using the techniques of semiclassical approximation, we derived the classical

condition in equation (6.3.4) for the symmetric treatment of the two hermitian

matrix model in polar coordinates which is given by

∑
i 6=j

1

ri − rj
=
ω2

2
ri. (12.0.5)

Recall that the above equation is the m = 1 case of the more general equation

(11.1.8)

∑
i 6=j

1

ri − rj
=
ω2

2
ri −

(m− 1)

rj
. (12.0.6)

Comparing (12.0.4) with (12.0.5) it follows that for m = 1, (12.0.5) is satisfied

by the zeros of H2N( ω√
2
r) [126].

The Hermite and Laguerre polynomials as they appear in equations (12.0.1)

and (12.0.4) are represented in discretized variables such that xi > 0 and the

condition: x−j = −xj is required.

With these requirements in place, the left hand side of equation (12.0.4) can

be expressed as
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N∑
j=−N,i6=j

1

ri − rj
=

N∑
j=1

1

ri + rj
+

N∑
j=1,i 6=j

1

ri − rj

=
1

2ri
+

N∑
j=1,i 6=j

2ri
r2i − r2j

, (12.0.7)

this can be used to establish the usual relationship between Hermite and

Laguerre polynomials.

159



Chapter 13

Radial Fermionisation

So far, as we observed in chapter 10, we were able to generalize the Jacobian

J for an even number of m N × N complex matrices, or 2m N × N hermitian

matrices. This, in its own right, is a remarkable result.

In this chapter, we wish to construct a fermionic picture for our multimatrix

model with a general number of m complex matrices ZA. The following objectives

are in order:

• Introduce the Laplacian operator independent from angular degrees of free-

dom for the generalized radial sector

• Set up an eigenvalue equation for the system of m complex matrices in the

radial sector

• Develop a fermionic description for the generalized radial sector

In the paper by E. Brézin et.al [27], it was shown that summing the planar

diagrams in the large N limit in one dimension corresponds to a problem of

determining the ground state energy of a Hamiltonian which is also equivalent to

solving a fermionic problem with N degrees of freedom coupled to some common

potential of the single hermitian matrix model.

Previously, for the single hermitian matrix model, we showed that the kinetic
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piece of the Laplacian when acting on a symmetric wavefunction Φ(λi)

∇S.M = −1

2

1

∆2

∂

∂ri
∆2 ∂

∂ri
Φ, (13.0.1)

where ∆ =
∏

i>j(ri − rj) is the Vandermonde determinant, became the sum

of single particle Laplacians acting on the anti-symmetric wavefunction Ψ = ∆Φ

i.e.

−1

2

∑
i

∂2

∂λ2i
Ψ. (13.0.2)

A similar result was accomplished for the single complex matrix Z = RU or

equivalently two hermitian matrix model, where the Laplacian of the matrix was

defined as

∇2
radial =

1

[∆2
MR(r2i )

∏
k rk]

∑
i

∂

∂ri
[∆2

MR(r2i )
∏
k

rk]
∂

∂ri

=
1

∆2
MR(r2i )

∑
i

1

ri

∂

∂ri
ri∆

2
MR(r2i )

∂

∂ri

=
4

∆2(ρi)

∑
i

∂

∂ρi
ρi∆

2(ρi)
∂

∂ρi
. (13.0.3)

In equation (13.0.3) above, we defined ρi = r2i and the term

∆2
MR(r2i ) =

1

2

∏
i<j

(
r2i − r2j

)2
=

1

2

∏
i<j

(ρi − ρj)2

= ∆2(ρi), (13.0.4)

is the term that generalizes the Vandermonde determinant of the single her-

mitian matrix model theory.

It was shown that when acting on the anti-symmetric wavefunction

Ψ(ρi) = ∆(ρi)Φ(ρi), the Laplacian became the sum of 2-dimensional single par-

ticle Laplacians.
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We now wish to see how our generalized model of m complex matrices would

look like if we attempt to rewrite it in a fermionic framework. With this being

said, we consider the generalized radial part of the Laplacian in 2m dimensions

which takes the following form

∇2
Radial =

∑
i

1

V2
R(r2i )

1

r2m−1i

∂

∂ri
r2m−1i V2

R(r2i )
∂

∂ri

=
1

V2
R(ρi)

∑
i

1

ρ
1/2(2m−1)
i

2
√
ρi

∂

∂ρi
ρ1/2(2m−1)2

√
ρiV2

R(ρi)
∂

∂ρi

=
∑
i

4

V2
R(ρi)

1

ρm−1i

∂

∂ρi
ρmi V2

R(ρi)
∂

∂ρi
. (13.0.5)

Recall that

VR(ρi) =
∏
i>j

ρ
(m−1)

2
i ρ

(m−1)
2

j (ρi − ρj)

=
∏
i>j

r
(m−1)
i r

(m−1)
j

(
r2i − r2j

)
= VR(r2i ). (13.0.6)

Equation (13.0.5) above generalizes the radial part of the Laplacian that we

derived earlier for the single complex matrix model Z in equation (5.1.16).

We proceed to set up the Schrödinger equation:

ĤΦ(ρi) = EΦ(ρi)(
−1

2
∇2
Radial +K(ρi)

)
Φ(ρi) = EΦ(ρi), (13.0.7)

where K(ρi) is some common potential of the system that is a function only

of the radial eigenvalues of the system.

We introduce the following wavefunctions

Ψ(ρi) = VR(ρi)Φ(ρi)

⇒ Φ(ρi) =
Ψ(ρi)

VR(ρi)
. (13.0.8)
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The wave function Ψ(ρi) is an anti-symmetric wave function that depends on

the radial eigenvalues ρi of the system. Using the wavefunction Ψ(ρi) we can

proceed to obtain a fermionic description of our model therefore we re-write the

Laplacian operator of equation (13.0.5) as follows

(∑
i

4

V2
R(ρi)

1

ρm−1i

∂

∂ρi
ρmi V2

R(ρi)
∂

∂ρi

)
Φ(ρi) = EΦ(ρi)

∑
i

4

V2
R(ρi)

1

ρm−1i

∂

∂ρi
ρmi V2

R(ρi)
∂

∂ρi

Ψ(ρi)

VR(ρi)
= E

Ψ(ρi)

VR(ρi)

4
∑
i

(
1

ρm−1i

1

VR(ρi)

∂

∂ρi
VR(ρi)

)
ρmi

(
VR(ρi)

∂

∂ρi

1

VR(ρi)

)
Ψ(ρi) = EΨ(ρi).

(13.0.9)

Our attention will now be mainly focused on the left hand side of equation

(13.0.9). We first consider the following

(
VR(ρi)

∂

∂ρi

1

VR(ρi)

)
=

(
VR(ρi)

(
−1

V2
R(ρi)

∂VR(ρi)

∂ρi

))
= − ∂

∂ρi
ln (VR(ρi))

= − ∂

∂ρi
ln (
∏
i>j

ρ
(m−1)/2
i ρ

(m−1)/2
j (ρi − ρj))

= −
∑
i>j

∂

∂ρi
ln (ρ

(m−1)/2
i ρ

(m−1)/2
j (ρi − ρj))

= − ∂

∂ρi

∑
k>j

ln (ρakρ
a
j (ρk − ρj)) let a =

m− 1

2

= −
∑
k>j

1

ρakρ
a
j (ρk − ρj)

[
∂ρak
∂ρi

ρaj (ρk − ρj) + ρak
∂ρaj
∂ρi

(ρk − ρj)
]

−
∑
k>j

1

ρakρ
a
j (ρk − ρj)

[
ρakρ

a
j

∂

∂ρi
(ρk − ρj)

]

= −

[
2a

ρi
+
∑
k>j

δki − δji
(ρk − ρj)

]

= −

[
2a

ρi
+
∑
i>j

1

ρi − ρj
−
∑
k>i

1

ρk − ρi

]

⇒
(
VR(ρi)

∂

∂ρi

1

VR(ρi)

)
= −

[
2a

ρi
+
∑
i 6=k

1

ρi − ρk

]
, (13.0.10)
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where in the second last line of equation (13.0.10) we used the following iden-

tity

∑
i>j

1

ρi − ρj
−
∑
k>i

1

ρk − ρi
=
∑
i 6=k

1

ρi − ρk
. (13.0.11)

It follows that

(
1

VR(ρi)

∂

∂ρi
VR(ρi)

)
=

1

VR(ρi)

∂VR(ρi)

∂ρi

=
∂ ln (VR(ρi))

∂ρi

⇒
(

1

VR(ρi)

∂

∂ρi
VR(ρi)

)
=

(
2a

ρi
+
∑
i 6=j

1

ρi − ρj

)
. (13.0.12)

The two identities from equations (13.0.10) and (13.0.12) are substituted into

equation (13.0.9) to simplify the equation 6. We proceed as follows

4
∑
i

(
1

VR(ρi)

1

ρm−1i

∂

∂ρi
VR(ρi)

)
ρmi

(
VR(ρi)

∂

∂ρi

1

VR(ρi)

)
=

∑
i

4

ρbi

(
∂

∂ρi
+

2a

ρi
+
∑
i 6=k

1

ρi − ρk

)
ρmi

(
∂

∂ρi
− 2a

ρi
−
∑
i 6=j

1

ρi − ρj

)
=

∑
i

4

ρbi

(
∂

∂ρi
ρmi

∂

∂ρi
− 2a

∂

∂ρi
ρbi −

∂

∂ρi
ρmi
∑
i 6=j

1

ρi − ρj
+ 2aρbi

∂

∂ρi

)
+

∑
i

4

ρbi

(
−4a2ρb−1i − 2a

∑
i 6=j

ρbi
ρi − ρj

+
∑
i 6=k

ρmi
ρi − ρk

∂

∂ρi
−
∑
i 6=k

2aρbi
ρi − ρk

)
−

∑
i

4

ρbi

(∑
i 6=k

∑
i 6=j

ρmi
ρi − ρk

1

ρi − ρj

)
. (13.0.13)

Certain terms appear in our calculation of equation (13.0.13) which can be

simplified, for instance the second term in the third last line can be simplified as

follows

6We still maintain that a = (m− 1)/2 and we introduce the notation b = m− 1.
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∂

∂ρi
ρmi

2a

ρi
= mρm−1i

∂ρi
∂ρi

2a

ρi
− ρmi

1

ρ2i

∂ρi
∂ρi

2a+ ρm−1i 2a
∂

∂ρi

= 2abρb−1i + 2aρbi
∂

∂ρi
. (13.0.14)

Similarly, we also simplify the third term in the third last line of equation

(13.0.13)

∂

∂ρi
ρmi
∑
i 6=j

1

ρi − ρj
= mρm−1i

∂ρi
∂ρi

∑
i 6=j

1

ρi − ρj
− ρmi

∑
i 6=j

1

(ρi − ρj)2
∂

∂ρi
(ρi − ρj)

+
∑
i 6=j

ρmi
ρi − ρj

∂

∂ρi
(13.0.15)

=
∑
i 6=j

mρbi
ρi − ρj

−
∑
i 6=j

ρmi
(ρi − ρj)2

+
∑
i 6=j

ρmi
ρi − ρj

∂

∂ρi
.

We therefore substitute the two simplified terms from equation (13.0.14) and

equation (13.0.15) into the respective terms that appear in the third last line of

equation (13.0.13) to obtain the following

∑
i

4

ρbi

(
∂

∂ρi
ρmi

∂

∂ρi
− 2amρb−1i + 2aρb−1i − 2aρbi

∂

∂ρi
−mρbi

∑
i 6=j

1

ρi − ρj

)
+

∑
i

4

ρbi

(∑
i 6=j

ρmi
(ρi − ρj)2

−
∑
i 6=j

ρmi
ρi − ρj

∂

∂ρi
+ 2aρbi

∂

∂ρi
− 4a2ρb−1i − 2a

∑
i 6=j

ρbi
ρi − ρj

)
+

∑
i

4

ρbi

(∑
i 6=k

ρmi
ρi − ρk

∂

∂ρi
− 2a

∑
i 6=k

ρbi
ρi − ρk

−
∑
i 6=k

∑
i 6=j

ρmi
ρi − ρk

1

ρi − ρj

)

= 4
∑
i

(
1

ρbi

∂

∂ρi
ρmi

∂

∂ρi
− 2am

ρi
+

2a

ρi
−m

∑
i 6=j

1

ρi − ρj
+
∑
i 6=j

ρm−bi

(ρi − ρj)2

)

+ 4
∑
i

(
−4a2

ρi
− 2a

∑
i 6=j

1

ρi − ρj
− 2a

∑
i 6=k

1

ρi − ρk
−
∑
i 6=k

∑
i 6=j

ρm−bi

ρi − ρk
1

ρi − ρj

)

= 4
∑
i

(
1

ρbi

∂

∂ρi
ρmi

∂

∂ρi
− 2am

ρi
+

2a

ρi
− 4a2

ρi
+
∑
i 6=j

ρm−bi

(ρi − ρj)2
−
∑
i 6=k

∑
i 6=j

ρm−bi

ρi − ρk
1

ρi − ρj

)
.

(13.0.16)

In the fourth and fifth line of equation (13.0.16), we have made use of the
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following identity

∑
i 6=j

1

(ρi − ρj)
= 0, (13.0.17)

which allowed us to simplify our problem even further.

Another identity that appears lies on the last line of equation (13.0.16) which

was already used in the context of the two hermitian matrices, and will be proved

later in appendix D, is the following

(∑
i 6=j

ρm−bi

(ρi − ρj)2
−
∑
i 6=k

∑
i 6=j

ρm−bi

ρi − ρk
1

ρi − ρj

)
=

(∑
i 6=j

ρi
(ρi − ρj)2

−
∑
i 6=k

∑
i 6=j

ρi
ρi − ρk

1

ρi − ρj

)
= 0. (13.0.18)

We resume our calculation from the last line of equation (13.0.16), putting

our identities together we obtain the following

4
∑
i

(
1

ρbi

∂

∂ρi
ρmi

∂

∂ρi
− 2am

ρi
+

2a

ρi
− 4a2

ρi
+
∑
i 6=j

ρm−bi

(ρi − ρj)2
−
∑
i 6=k

∑
i 6=j

ρm−bi

ρi − ρk
1

ρi − ρj

)

= 4
∑
i

(
1

ρbi

∂

∂ρi
ρmi

∂

∂ρi
− 2am

ρi
+

2a

ρi
− 4a2

ρi

)
= 4

∑
i

(
1

ρbi

∂

∂ρi
ρmi

∂

∂ρi
− 8a2

ρi

)
. (13.0.19)

In the last line of equation (13.0.19) we can substitute our constants

a = (m− 1)/2 and b = (m− 1) and in total this Laplacian operator of equation

(13.0.9) is now

4
∑
i

(
1

VR(ρi)

1

ρm−1i

∂

∂ρi
VR(ρi)

)
ρmi

(
VR(ρi)

∂

∂ρi

1

VR(ρi)

)
=

4
∑
i

(
1

ρbi

∂

∂ρi
ρmi

∂

∂ρi
− 8a2

ρi

)
= 4

∑
i

(
1

ρm−1i

∂

∂ρi
ρmi

∂

∂ρi
− 2

ρi
(m− 1)2

)
. (13.0.20)

Equation (13.0.20) is the Laplacian in terms of the radial eigenvalues, we

now surmise our calculation by substituting our equation (13.0.20) into equation

(13.0.9):
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4
∑
i

(
1

VR(ρi)

1

ρm−1i

∂

∂ρi
VR(ρi)

)
ρmi

(
VR(ρi)

∂

∂ρi

1

VR(ρi)

)
Ψ(ρi) = EΨ(ρi)

4
∑
i

(
1

ρm−1i

∂

∂ρi
ρmi

∂

∂ρi
− 2

ρi
(m− 1)2

)
Ψ(ρi) = EΨ(ρi)

(13.0.21)

The equation (13.0.21) exhibits the Laplacian as a sum of single particle Lapla-

cians in 2m dimensions for our matrix model of a general number of m complex

matrices, including a potential K(ρi) depending only on the radial eigenvalues,

the new Hamiltonian is

ĤΨ(ρi) = EΨ(ρi)(
−1

2
∇2
Radial +K(ρi)

)
Ψ(ρi) = EΨ(ρi)[

−

(
2
∑
i

1

ρm−1i

∂

∂ρi
ρmi

∂

∂ρi
− 4(m− 1)2

ρi

)
+K(ρi)

]
Ψ(ρi) = EΨ(ρi)

(13.0.22)

The form of the radial Laplacian

∇2
Radial =

(
4
∑
i

(
1

ρm−1i

∂

∂ρi
ρmi

∂

∂ρi
− 2

ρi
(m− 1)2

))
, (13.0.23)

is new.

One finds that in addition to the radial 2m-dimensional Laplacian, a new

(1/ρi) potential is induced which is absent when m = 1.
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Chapter 14

Hamiltonian Density Description:

Radial Sector Of An Arbitrary

Number Of Complex Matrices

In this chapter we will obtain the collective field theory description for the radial

sector of a system of an arbitrary number of m complex matrices ZA.

This chapter will be structured according to the following objectives:

• Develop the density description picture of the sector with m complex matri-

ces through the definition of density variables associated with the effective

Hamiltonian of the collective field theory formalism restricted to the radial

degrees of freedom

• Investigate the eigenvalue density function of the generalized radial sec-

tor in the collective field theory framework and demonstrate its eigenvalue

distribution on a graph for a Gaussian potential

This chapter cannot avoid some redundancy as some equations and respective

variables have already been explained in the previous chapters, but reappear as

a consequence of their importance in formulating a comprehensive theoretical

model of the radially restricted complex matrix model in the collective field theory

framework.
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For the complex, positive definite hermitian matrix model

∑
A

Z†AZA, (14.0.1)

where A = 1, 2, 3, ....,m and m is a positive integer, m > 0, we define our

collective field theory variables as follows

φk = Tr
(
eik

∑
A Z
†
AZA
)

=
∑
i

eikr
2
i =

∑
i

eikρi ;

φ(x) =

∫
dxe−ikxφk =

∑
i

δ(x− r2i ) =
∑
i

δ(ρ− ρi) = φ(ρ), (14.0.2)

where k is an arbitrary real number and the loop variables φk and φ(ρ) are

Fourier transforms of each other. Above we retained the definition that requires

that x = ρ = r2.

We remind ourselves of the effective Hamiltonian that generalizes the descrip-

tion of our complex matrix model which is

Heff [ρ; [φ]] =
1

2

∫
dρ

∫
dρ′Π(ρ)Ω(ρ, ρ′; [φ])Π(ρ′) (14.0.3)

+
1

8

∫
dρ

∫
dρ′ω(ρ; [φ])Ω−1(ρ, ρ′; [φ])ω(ρ′; [φ]) + VA[ρ, [φ]],

= ĤK +
1

8

∫
dρ

∫
dρ′ω(ρ; [φ])Ω−1(ρ, ρ′; [φ])ω(ρ′; [φ]) + VA[ρ, [φ]],

where we have introduced the conjugate momentum of the system:

Π(ρ) = ∂/i∂φ(ρ).

The following variables have been defined in preceding chapters: the “joining

operator” with its Fourier transform is

Ω(k, k′; [φ]) =
∑
A

∂φk

∂Z†A

∂φk′

∂ZA
= −kk′Tr

(
Z†AZAe

i(k+k′)
∑
A Z
†
AZA
)
, (14.0.4)

Ω(ρ, ρ′; [φ]) =

∫
dk′

2π

∫
dk

2π
e−ikρe−ik

′ρ′Ω(k, k′; [φ]) = ∂ρ∂ρ′ [ρφ(ρ)δ(ρ− ρ′)] ,

and the splitting operator with its respective Fourier transform
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ω(k, k′; [φ]) =
∂2φk

∂Z†A∂ZA
= −k2

∑
i

ρie
ikρi − 2ik

∑
i 6=j

ρje
ikρi

(ρi − ρj)

+ ikN(m− 1)
∑
i

eikρi + ik
∑
i

eikρi ,

ω(ρ; [φ]) =

∫
dk

2π
e−ikρω(k; [φ])

= ∂ρ

(
(ρφ(ρ))

[
2−
∫
dρ′φ(ρ′)

(ρ− ρ′)
+
N(m− 1)

ρ

])
. (14.0.5)

The ĤK term appearing in equation (14.0.3) is the kinetic piece of the effective

Hamiltonian Heff [ρ; [φ]] whose form can be simplified to obtain the following

ĤK =
1

2

∫
dρ

∫
dρ′Π(ρ)Ω(ρ, ρ′; [φ])Π(ρ′)

⇒ ĤK =
1

2

∫
dρ (∂ρΠ(ρ)) [ρφ(ρ)] (∂ρΠ(ρ)). (14.0.6)

Equation (14.0.6) is substituted back into equation (14.0.3) to obtain the

following

Heff [ρ; [φ]] =
1

2

∫
dρ (∂ρΠ(ρ)) [ρφ(ρ)] (∂ρΠ(ρ)) (14.0.7)

+
1

8

∫
dρ

∫
dρ′ω(ρ; [φ])Ω−1(ρ, ρ′; [φ])ω(ρ′; [φ]) + VA[ρ, [φ]].

We will now compute the first term appearing in the last line of equation

(14.0.7), which represents the repulsion amongst the radial eigenvalues of our

system. To accomplish this we consider equations (14.0.4) and (14.0.5) and define

F (ρ) =

[
2−
∫
dρ′φ(ρ′)

(ρ− ρ′)
+
N(m− 1)

ρ

]
, (14.0.8)

from equation (14.0.5).

As we observed before, the repulsion term can be shown to be

1

8

∫
dρ

∫
dρ′ω(ρ; [φ])Ω−1(ρ, ρ′; [φ])ω(ρ′; [φ]) = (14.0.9)

=
1

8

∫
dρ

∫
dρ′ (ρφ(ρ)F (ρ))

(
∂ρ∂ρ′Ω

−1(ρ, ρ′; [φ])
)
ρ′φ(ρ′)F (ρ′).
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In equation (14.0.9) above we will make use of the identity that was derived

in earlier chapters as observed in equation (4.4.17) and equation (9.0.6):

(
∂ρ∂ρ′Ω

−1
ρ,ρ′

)
=

δ(ρ− ρ′)
ρ′φ(ρ′)

. (14.0.10)

We substitute equation (14.0.10) above into equation (14.0.9), and this in turn

simplifies our equation to become

1

8

∫
dρ

∫
dρ′ (ρφ(ρ)F (ρ))

(
δ(ρ− ρ′)
ρ′φ(ρ′)

)
ρ′φ(ρ′)F (ρ′)

=
1

8

∫
dρ
(
ρφ(ρ)F 2(ρ)

)
=

1

8

∫
dρ (ρφ(ρ))

[
2−
∫
dρ′φ(ρ′)

(ρ− ρ′)
+
N(m− 1)

ρ

]2
. (14.0.11)

In the last line we see the explicit N dependence being retained.

We let ρ = x = r2 and ρ′ = y, using this we can simplify equation (14.0.11)

further (for now we ignore the 1/8 factor, we shall multiply this factor back into

equation (14.0.11) at the end of the computation):

∫
dρ

∫
dρ′ (ρφ(ρ)F (ρ))

(
∂ρ∂ρ′Ω

−1(ρ, ρ′; [φ])
)
ρ′φ(ρ′)F (ρ′)

=

∫
dρ
(
ρφ(ρ)F 2(ρ)

)
=

∫
dx
(
xφ(x)F 2(x)

)
=

∫ ∞
0

dx (xφ(x))

[
2−
∫ ∞
0

dyφ(y)

(x− y)
+
N(m− 1)

x

]2
= 4

∫ ∞
0

dx (xφ(x))

(
−
∫ ∞
0

dyφ(y)

(x− y)

)2

+ 4N(m− 1)

∫ ∞
0

dxφ(x)−
∫ ∞
0

dyφ(y)

(x− y)

+ N2(m− 1)2
∫ ∞
0

dx

[
φ(x)

x

]
. (14.0.12)

The domain of the radial eigenvalues is now extended over the entire real

line, that is, we define the radial eigenvalues r for r → ±∞. Therefore we

again induce the following definitions: x = r2, y = s2 for r > 0, s > 0 and

Φ(r) ≡ 2rφ(r2) = Φ(−r) for d(r2) = 2rdr. Using these definitions (14.0.12) takes

the form
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∫
dρ
(
ρφ(ρ)F 2(ρ)

)
= 4

∫ ∞
0

drΦ(r)r2
(
−
∫ ∞
0

dsΦ(s)

(r2 − s2)

)2

(14.0.13)

+ 4N(m− 1)

∫ ∞
0

drΦ(r)−
∫ ∞
0

dsΦ(s)

(r2 − s2)
+N2(m− 1)2

∫ ∞
0

dr

[
Φ(r)

r2

]
.

Each of the terms appearing in last two lines of equation (14.0.13) are com-

puted individually. We start with the first term of equation (14.0.13)

4

∫ ∞
0

drΦ(r)r2
(
−
∫ ∞
0

dsΦ(s)

(r2 − s2)

)2

= 4

∫ ∞
0

drΦ(r)
1

4

(
−
∫ ∞
0

ds2rΦ(s)

(r2 − s2)

)2

=

∫ ∞
0

drΦ(r)

(
−
∫ ∞
0

dsΦ(s)
2r

(r2 − s2)

)2

=

∫ ∞
0

drΦ(r)

((
−
∫ ∞
0

dsΦ(s)

(r + s)
+−
∫ ∞
0

dsΦ(s)

(r − s)

))2

=

∫ ∞
0

drΦ(r)

((
−
∫ 0

−∞

dsΦ(−s)
(r − s)

+−
∫ ∞
0

dsΦ(s)

(r − s)

))2

=

∫ ∞
0

drΦ(r)

(
−
∫ ∞
−∞

dsΦ(s)

(r − s)

)2

=
1

2

∫ ∞
−∞

drΦ(r)

(
−
∫ ∞
−∞

dsΦ(s)

(r − s)

)2

(14.0.14)

In the last line of equation (14.0.14) we now see that we are integrating over

the entire real line, r ∈ (−∞,∞), not just positive of r. We again make use of

the identity that was first seen in the calculation of the single hermitian matrix

model, that is,

(
−
∫ ∞
−∞

dsΦ(s)

(r − s)

)2

=
π2

3
Φ2(r), (14.0.15)

substituting this above identity into the last line of equation (14.0.14), it

naturally follows that

4

∫ ∞
0

drΦ(r)r2
(
−
∫ ∞
0

dsΦ(s)

(r2 − s2)

)2

=
π2

6

∫ ∞
−∞

drΦ3(r). (14.0.16)

We now shift our attention to the first term appearing in the second last line

of equation (14.0.13), that is
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4N(m− 1)

∫ ∞
0

drΦ(r)

(
−
∫ ∞
0

dsΦ(s)

(r2 − s2)

)
= 2N(m− 1)

∫ ∞
−∞

drΦ(r)

(
1

2r
−
∫ ∞
0

ds2rΦ(s)

(r2 − s2)

)
= N(m− 1)

∫ ∞
−∞

drΦ(r)
1

r

[
−
∫ 0

−∞

dsΦ(s)

r − s
+−
∫ ∞
0

dsΦ(s)

r − s

]
= N(m− 1)

∫ ∞
−∞

drΦ(r)
1

r

[
−
∫ ∞
−∞

dsΦ(s)

r − s

]
=

1

2
N(m− 1)

∫ ∞
−∞

drΦ(r)

[
−
∫ ∞
−∞

dsΦ(s)

(
2

r(r − s)

)]
.

(14.0.17)

The last line of equation (14.0.17) will be understood to be under the double

integral, we simplify the following term

2

r(r − s)
=

1

r(r − s)
+

1

r(r − s)
=

1

r(r − s)
+

1

s(s− r)
swop : r → s

⇒ 2

r(r − s)
= − 1

rs
. (14.0.18)

We will use the result of equation (14.0.18) in the last line of equation (14.0.17),

and this gives us the following expression

1

2
N(m− 1)

∫ ∞
−∞

drΦ(r)

[
−
∫ ∞
−∞

dsΦ(s)

(
2

r(r − s)

)]
=

1

2
N(m− 1)

∫ ∞
−∞

drΦ(r)

[
−
∫ ∞
−∞

dsΦ(s)

[
−1

rs

]]
= −1

2
N(m− 1)

(∫ ∞
−∞

dr
Φ(r)

r

)(
−
∫ ∞
−∞

ds
Φ(s)

s

)
= 0, (14.0.19)

because by construction Φ(r) even.

What remains now is the last term that appears in the last line of equation

(14.0.13). This term in fact works out to be simpler, such that

N2(m− 1)2
∫ ∞
0

dr

[
Φ(r)

r2

]
=

1

2
N2(m− 1)2

∫ ∞
−∞

dr

[
Φ(r)

r2

]
. (14.0.20)
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Now that we have simplified the terms that appear in the last two lines of

equation (14.0.13), we can reassemble everything and continue with our calcula-

tion of the repulsion amongst eigenvalues,

∫
dρ

∫
dρ′ω(ρ; [φ])Ω−1(ρ, ρ′; [φ])ω(ρ′; [φ])

=

∫
dρ (ρφ(ρ))

[
2−
∫
dρ′φ(ρ′)

(ρ− ρ′)
+
N(m− 1)

ρ

]2
=

π2

6

∫ ∞
−∞

drΦ3(r) +
1

2
N2(m− 1)2

∫ ∞
−∞

dr

[
Φ(r)

r2

]
. (14.0.21)

Therefore we write the effective Hamiltonian as

Heff [ρ; [φ]] =
1

2

∫
dρ (∂ρΠ(ρ)) [ρφ(ρ)] (∂ρΠ(ρ)) + VA(ρ; [φ]), (14.0.22)

where

VA(ρ; [φ]) =
1

8

[∫
dρ

∫
dρ′ω(ρ; [φ])Ω−1(ρ, ρ′; [φ])ω(ρ′; [φ])

]
+ VA[ρ, [φ]]

=
1

8

[
π2

6

∫ ∞
−∞

drΦ3(r) +
1

2
N2(m− 1)2

∫ ∞
−∞

dr

[
Φ(r)

r2

]]
+ VA[ρ, [φ]].

(14.0.23)

We consider a Gaussian ensemble of complex matrices with a Gaussian po-

tential VA[ρ, [φ]] given by

VA[ρ, [φ]] =
ω2

2
Tr

(∑
A

Z†AZA

)
=
ω2

2

∑
i

r2i

=
ω2

2

∫
dρφ(ρ)ρ

=
ω2

4

∫ ∞
−∞

drΦ(r)r2. (14.0.24)

As we observed in earlier chapters for partition functions of the single complex

matrix and the more general system of m complex matrices, the collective field

theory framework is also restricted to potentials that strictly depend on radial
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coordinates as has been emphasized. This restriction has been briefly discussed

in chapter 10 below equation (10.1.8).

Having defined our Gaussian potential, we can use this in the effective poten-

tial defined in equation (14.0.23)

VA(ρ; [φ]) =
1

8

[
π2

6

∫ ∞
−∞

drΦ3(r) +
1

2
N2(m− 1)2

∫ ∞
−∞

dr

[
Φ(r)

r2

]]
+ VA[ρ, [φ]]

=
1

8

[
π2

6

∫ ∞
−∞

drΦ3(r) +
1

2
N2(m− 1)2

∫ ∞
−∞

dr

[
Φ(r)

r2

]]
+

ω2

4

∫ ∞
−∞

drΦ(r)r2.

= VA(r; [φ]). (14.0.25)

We introduce the Lagrange functional D(η, [φ]), with the Lagrange multiplier

η:

D(η, [φ]) = VA(r; [φ]) + η

(
2N −

∫ ∞
−∞

drΦ(r)

)
=

π2

48

∫ ∞
−∞

drΦ3(r) +
1

16
N2(m− 1)2

∫ ∞
−∞

dr

[
Φ(r)

r2

]
+

ω2

4

∫ ∞
−∞

drΦ(r)r2 + η

(
2N −

∫ ∞
−∞

drΦ(r)

)
. (14.0.26)

In the large N limit where our calculation is performed, to show the N de-

pendence explicitly in the functional D(η, [φ]), we rescale the variables as follows

r →
√
Nr Φ(r)→

√
NΦ(r) η → Nη.

As a result of extending the domain of our radial eigenvalues, the following

constraint holds true in the large N limit

∫ ∞
−∞

drΦ(r) = 2. (14.0.27)

We set up the functional D(η, [φ]) which is rescaled and minimized with re-

spect to (η,Φ(r))
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D(η, [φ]) = N2

[
π2

48

∫ ∞
−∞

drΦ3(r) +
1

16
(m− 1)2

∫ ∞
−∞

dr

[
Φ(r)

r2

]]
+ N2

[
ω2

4

∫ ∞
−∞

drΦ(r)r2 + η

(
2−

∫ ∞
−∞

drΦ(r)

)]
. (14.0.28)

We now vary our functional D(η, [φ]) in equation (14.0.28) with respect to

Φ(r), and this gives us the following minima

∂

∂Φ(r)
D(η, [φ]) = 0

⇒ ∂

∂Φ(r)

(
π2

48

∫ ∞
−∞

drΦ3(r) +
1

16
(m− 1)2

∫ ∞
−∞

dr

[
Φ(r)

r2

])
+

∂

∂Φ(r)

(
ω2

4

∫ ∞
−∞

drΦ(r)r2 + η

(
2−

∫ ∞
−∞

drΦ(r)

))
= 0

⇒ Φ2(r) =
4

π2

(
4η − ω2r2 − (m− 1)2

4

1

r2

)
⇒ Φ(r) =

2

π

(
4η − ω2r2 − (m− 1)2

4

1

r2

)1/2

. (14.0.29)

In equation (14.0.29) above, when we set m = 1, we recover the equation of

the Wigner semi-circle distribution of eigenvalues.

Using the techniques adopted by [125], we can simplify equation (14.0.29)

by solving for the Lagrange multiplier η to obtain the following (normalized)

eigenvalue density function

Φ(r) =
2

π

(
ω

2
(2m− 1)− ω2r2 − (m− 1)2

4

1

r2

)1/2

r2− ≤ r2 ≤ r2+, (14.0.30)

where

r2± =
(2m− 1)

4ω
±
√

(2m− 1)2

16ω2
− (m− 1)2

4ω2
. (14.0.31)

Below, we have shown the graphical representation using equation (14.0.30)

for the cases m = 1, m = 2 and m = 3 using ω = 1/2. Figure 14.1 clearly

shows a distribution that follows the Wigner semi-circle law. In Figure 14.2, the

eigenvalues are split symmetrically about the interval where the density function

collapses.
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Figure 14.1: Generalized radial sector eigenvalue distribution in collective field

theory for m = 1.
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Figure 14.2: Generalized radial sector eigenvalue distribution in collective field

theory for m = 2.
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Figure 14.3: Generalized radial sector eigenvalue distribution in collective field

theory for m = 3.
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Chapter 15

Conclusion

The large N dynamics of matrix models studied in our work provided us with

unique, non-trivial and remarkable results. The work carried out in this project

gave us the opportunity to ask exciting and challenging questions which will

hopefully be addressed in future research work. Below we provide conclusions

drawn form the work carried out in this research project.

The single hermitian matrix model reviewed in chapter four, provided a blueprint

from which we could compare our results and observe whether new unique results

can be extrapolated for multimatrix models.

The reader would also recognize that we introduced the Hamiltonian treat-

ment of the single hermitian matrix model by providing a density description

through the collective field theory framework. Close inspection reveals that the

system of the single hermitian matrix model was treated using two methods:

• through the treatment of the partition function, ZSM , with a potential that

is invariant under angular similarity transformations and,

• through the application of the collective field theory formalism (the density

description), where gauge invariant state operators that close are identified

in the Hamiltonian formalism.

Both treatments resulted in us being able to define a background geometry in

the large N limit for the single hermitian matrix model.
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In our work, we also investigated the one-dimensional fermionic picture of the

single hermitian matrix model. We showed that this fermionic picture becomes

a one dimensional system with the Hamiltonian being reduced to a sum of N

independent Hamiltonian operators. This system can be identified with N single

particle fermions subject to some potential or equivalently as the N degrees of

freedom of a Fermi gas.

The challenge we seek(ed) to address in our work was to generalize the tem-

plate developed for the single hermitian matrix model (study the partition func-

tion, develop a fermionic picture, formulate a collective field theory formalism)

and use this template to study a large Gaussian ensemble of 2m hermitian ma-

trices or m complex matrices in a subsector of the theory which has a natural

interpretation as a radially invariant sector.

In chapter five we started off by considering the quantum mechanics of a two

hermitian matrix system X1 and X2. For this system, a “matrix valued polar

coordinate” parameterization was introduced:

Z = X1 + iX2 ≡ RU.

With this parameterization defined in the radial sector of the single com-

plex matrix, we obtained/derived the Jacobian JTMM , defined in positive definite

eigenvalues of the radial matrix R, decoupled from any angular degrees of free-

dom. This Jacobian generalized the Jacobian of the single hermitian matrix

model. In both the single hermitian and complex matrix systems, the Vander-

monde determinants preserved their anti-symmetric properties, though different

eigenvalues.

The Laplacian operator associated with the single complex matrix sector

would act on gauge invariant states

Tr
(
. . . ZnpZ†

mp
. . . ZnqZ†

mq
. . .
)
.

The above gauge invariant state operators depend strictly on the eigenvalues

of the radial matrix R and angular degrees of freedom. There is still a need to

develop our understanding on how we can construct explicit wavefunctions made
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up of these gauge invariant states and observe what type of spectrum would result

when acted upon by the Laplacian operator of the single complex matrix model.

It should be noted that the complexity of the number of degrees of freedom

increases when one compares the Laplacian of the single hermitian matrix model

(equation (4.2.2)/ (A.1.18) ) and the single complex matrix model (equation

(5.1.16)/(B.1.29)).

For the single complex matrix model, we presented a Gaussian partition func-

tion in chapter six, associated with a Gaussian potential with enhanced symmetry.

This partition function was investigated in the semi-classical large N limit and

the solutions were obtained by studying the analytical functions that satisfy spe-

cial constraints on the complex plane. This single cut ansatz resulted in a large

N background geometry whose eigenvalue distribution function did not satisfy

the Wigner semi-circle law.

It was only when the single cut was symmetrically extended to the double

cut, and redefining the eigenvalue density function, did we observe a Wigner

semi-circle distribution in the large N limit. We should point out that the type

of background distribution obtained in the large N limit depends on the potential

of the system that one chooses to specify.

The radial fermionic description was investigated in chapter seven for the

single complex matrix. In this chapter we made use of the higher dimensional

radially restricted Laplacian that we derived in chapter five that depends on the

radial eigenvalues ρi = r2i . This system would naturally depend on a potential

that has an associated U(N) × U(N) enhanced symmetry due to the imposed

radially restricted sector.

In the fermionic description of the single complex matrix, we identified an “s-

state” Schrödinger equation describingN non-interacting (2+1)-dimensional non-

relativistic fermions, a new result. This result generalized the single hermitian

matrix model fermionic description uniquely.

The density description of the single complex matrix model was developed in

chapter eight, where we introduced and defined a set of invariant states that are

restricted to the closed subsector and depend strictly on radial eigenvalues. In
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this density description, the state operators close under “joining” and “splitting”,

and were generalized from the collective field theory formalism that we presented

in chapter four for the single hermitian matrix model.

We managed to derive the Jacobian in the density description (equation

(8.0.22)) and showed that it was the same as the Jacobian derived in equation

(5.1.15) in the single complex matrix sector. This was remarkable since we ap-

plied two different treatments of the single complex matrix model, in addition,

this agreement highlights, demonstrates and emphasizes the usefulness and im-

portance of the collective field theory formalism.

The remarkable dynamics of the single complex matrix model in the density

description were further investigated where the Hamiltonian of the system was

expressed using the collective field theory formalism. By choosing a Gaussian

potential in this radially closed subsector, we managed to derive a Wigner type

semi-circle distribution for the eigenavlue density function in the large N limit.

It should be noted with keen interest that the background distribution in

the density description of the radial sector of the single complex matrix model

depends on how one chooses to specify the radially symmetric wavefunction as can

be compared in equations (6.3.12) and (6.3.13). In the radially restricted closed

subsector, one only obtains the Wigner type distribution when the wavefunction

Φ(r) is dependent on r and not ρ, and defined on an symmetrically extended

double cut interval on the real line of the complex plane.

The biggest motivation for this project was to investigate the dynamics sur-

rounding a large general ensemble of m complex matrices or 2m hermitian matri-

ces, using the template developed in chapter four. The treatment of this complex

system was carried out in chapter ten where we considered m complex matrices

ZA, A = 1, . . . ,m.

The large N limit was investigated for the positive definite, hermitian matrix

system

∑
A

Z†AZA,

which was identified as a radial coordinate.

182



Of importance in chapter ten was the identification of correlators in the radi-

ally restricted sector, that close in the subsector and this equivalently translated

to the closure of the underlying Schwinger-Dyson equation. This identification

of correlators mirrors the density description, collective field theory formalism,

treatment of this generalized radial sector and restricts us to working in a closed

subsector with an enhanced U(N)m+1 radial symmetry in higher dimensions de-

pending on the number of Gaussian ensemble of complex matrices we are working

with.

The invariant operators (Ωkk′ ,Ωρρ′ , ωkk′ , ωρρ′), restricted to the closed sector,

generalize the invariant state operators observed for the single complex matrix

sector.

Remarkably, for a system of m complex matrices, the Jacobian that describes

the change of coordinates from (Z†A;ZA) → (Φ(ρ); Φk), is shown in equation

(10.1.43)/(10.1.44). This result generalizes the Jacobian derived for the single

complex matrix model, and was derived using Schwinger-Dyson equations in the

closed subsector.

In chapter eleven, the stationary condition, equation (11.0.8), for the partition

function integrated over a general number of m complex matrices in the radial

sector was investigated. It was refreshing to observe that this stationary condition

generalized that of the single hermitian and complex matrix model.

The stationary condition, for a general system of m complex matrices, pos-

sessed the standard Coulomb potential, in addition, we also identified a new term

that represents a logarithmic potential whose strength varies according to (m−1).

One can deduce that this new feature is true strictly for m > 1, but for m = 1,

we recover the stationary condition of the single complex matrix.

When the solutions of the stationary condition, equation (11.0.8), were inves-

tigated in the large N limit, along the single cut interval (on the real line of the

complex plane), we observed an eigenvalue density function that did not satisfy a

Wigner type semi-circle distribution for the closed radially restricted subscetor.

In the double cut ansatz, the only time we observe a Wigner type eigenvalue

distribution is when m = 1, and not for m > 1.
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Chapter twelve saw us identify the density of zeros of the closed subsector,

restricted to radial degrees of freedom, related to the density of zeros of both

Laguerre and Hermite polynomials. This was a remarkable observation.

In chapter thirteen, we introduced a radially restricted Laplacian operator in

2m-dimensions associated with the Jacobian derived in chapter ten for a general

gaussian ensemble of m complex matrices. The goal to develop a fermionic de-

scription for this system of matrices was accomplished with remarkable, unique

and non-trivial results.

This fermionic description of m complex matrices yielded a radially restricted

discretized Hamiltonian operator, and we observed a singular potential centered

at zero whose strength varies according to (m−1)2. This discretized operator acts

on radially anti-symmetric wavefunctions and generalizes the results obtained for

the fermionic description of the single complex matrix model.

The penultimate chapter of our work saw us rigorously develop the Hamilto-

nian description for a Gaussian ensemble of m complex matrices. In this chapter,

we introduced a density description, making use of the collective field theory

formalism, identifying a closed radially restricted subsector.

As we observed earlier, the invariant state operators identified in this chapter

for the system of m complex matrices associated with an enhanced radial sym-

metry generalize the radial invariant state operators of the single complex matrix

density description.

Remarkably, after specializing to a Gaussian potential for system ofm complex

matrices, we managed to obtain th large N background eigenvalue density for

arbitrary m complex matrices.

Although the results derived in our work are non-trivial in their own right,

the work carried out in our project opened up a myriad of questions that should

be considered for future research. Some of the questions read as follows

• In our work we restricted ourselves (to the radial sector) to study a Gaussian

ensemble of m complex matrices or 2m hermitian matrices. How do we

define and what can we learn from studying a Gaussian ensemble of (2m+1)

hermitian matrices, a system that is important in QCD?
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• If one pays close attention, the work carried out in our project was in the

closed subsector of the radially restricted “free case” with no interactions,

that is, gYM = 0. What dynamics would be involved if we had to introduce

a coupling constant gYM associated with the potential of our system?

• What features can be extrapolated in the limit where supersymmetry could

be considered when working with a Gaussian ensemble of complex matrices?

Can we obtain exact solutions the way we did in our current project?

• We managed to successfully apply the “matrix valued polar coordinate”

parameterization into our matrix model, can we extend this application

of the radial degrees of freedom to other sectors like the AdS/CFT and

hopefully observe a particular emergence of spacetime geometry.

The work carried out in this project demonstrated the richness of matrix

models and their extensive applications. We hope that the methods carried out in

our project can be extended and applied further to investigate complex problems

associated with string theory.
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Appendix A

Single Matrix Model

A.1 Defining The Laplacian Of Single Hermi-

tian Matrix

The objective for this section of appendix A is to determine the Jacobian ∆(λ)

appearing in equation (4.1.9) and the Laplacian of the single hermitian matrix

model which will be used later in the fermionic description of the system.

We start off by computing the integration measure dM of the N × N single

hermitian matrix model M by diagonalizing the matrix M such that

M → U †λU, (A.1.1)

where U † and U are N ×N unitary matrices of the gauge group U(N).

The measure dM will be written in terms of the angular matrix U and the

eigenvalue matrix λ, and will satisfy the following

Tr
(
dM2

)
= ηµνdX

µdXν . (A.1.2)

The matrix differential element dM is given by
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dM = d(U †λU)

= dU †λU + U †dλU + U †λdU

= U †
(
dλ+ U(dU †)λ+ λ(dU)U †

)
U

= U †
(
dλ+ λ(dU)U † − (dU)U †λ

)
U

= U †
(
dλ+

[
λ, (dU)U †

])
U. (A.1.3)

In equation (A.1.3) above, we used the properties of the unitarity of the

angular matrix U such that

UU † = 1

⇒ (dU)U † + U(dU †) = 0

⇒ (dU)U † = −U(dU †). (A.1.4)

We now compute the square of the line element, Tr (dM2) = Tr
(
dMdM †),

therefore we have

Tr
(
dMdM †) = Tr

(
U †
(
dλ+

[
λ, (dU)U †

])
UU †

(
dλ+

[
λ, (dU)U †

])
U
)

= Tr
(
dλ2 + dλ

[
λ, (dU)U †

]
+
[
λ, (dU)U †

]
dλ+

[
λ, (dU)U †

]2)
= Tr

(
dλ+ (dU)U † [dλ, λ] + [dλ, λ] (dU)U † +

[
λ, (dU)U †

]2)
= Tr

(
dλ2 +

[
λ, (dU)U †

]2)
= Tr

(
dM2

)
. (A.1.5)

In the third last line of equation (A.1.5) we used the property of the cyclicity

of the trace for the real elements of the diagonal matrix λ as follows

Tr (A [B,C]) = Tr (B [C,A]) = Tr (C [A,B])

⇒ Tr
(
dλ
[
λ, (dU)U †

])
= Tr

(
(dU)U † [dλ, λ]

)
= 0

since [dλ, λ] = 0. (A.1.6)
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We introduce indices (i, j) = 1, 2, ...., N to specify the entries in our matrices.

Therefore we express the square of the line element dM2 in terms of the indices

(i, j) as follows

Tr
(
dM2

)
= Tr

(
dλ2 +

[
λ, (dU)U †

]2)
= (dλi)

2 +
[
λ, (dU)U †

]
ij

[
λ, (dU)U †

]
ji

= (dλi)
2

+
(
λi
(
(dU)U †

)
ij
−
(
(dU)U †

)
ij
λj

)
×
(
λj
(
(dU)U †

)
ji
−
(
(dU)U †

)
ji
λi

)
= (dλi)

2 + (λi − λj)
(
(dU)U †

)
ij

(λj − λi)
(
(dU)U †

)
ji

⇒ Tr
(
dM2

)
=

∑
i

(dλi)
2 −

∑
ij

(λi − λj)2
(
(dU)U †

)
ij

(
(dU)U †

)
ji
. (A.1.7)

Below we introduce and define Lie algebra valued matrices dP which are anti-

hermitian. These are expressed as follows

(dP )ij =
(
(dU)U †

)
ij

where dP = −dP †. (A.1.8)

Using (A.1.8) above, we can rewrite Tr (dM2) as follows

Tr
(
dM2

)
=

∑
i

(dλi)
2 −

∑
ij

(λi − λj)2
(
(dU)U †

)
ij

(
(dU)U †

)
ji

(A.1.9)

=
∑
i

(dλi)
2 −

∑
ij

(λi − λj)2 (dP )ij (dP )ji

=
∑
i

(dλi)
2 +

∑
i 6=j

(λi − λj)2 (dP )ij (dP ∗)ij

=
∑
i

(dλi)
2 +

1

2

∑
i 6=j

(λi − λj)2
[
(dP )ij (dP ∗)ij + (dP ∗)ij (dP )ij

]
=

∑
i

(dλi)
2 +

∑
i>j

(λi − λj)2
[
(dP )ij (dP ∗)ij + (dP ∗)ij (dP )ij

]
.
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From equation (A.1.9), we pull out the metric, which is given by

ηµν =


1 0 0

0 (λi − λj)2 0

0 0 (λi − λj)2

 . (A.1.10)

We define the Jacobian as

J =
√

det ηµν =

√∏
i>j

(λi − λj)4

=
∏
i<j

(λi − λj)2 . (A.1.11)

We see the very well known Vandermonde determinant

∆(λ) =
∏
i<j

(λi − λj) , (A.1.12)

that appears in equation (4.1.9).

Under integration, the measure of dM translates into the following

∫
dM →

∫
dλ

∫
dPJ

=

∫
dλ

∫
(dU)U †J. (A.1.13)

In the second line of equation (A.1.13), we see the unitary measure dU which

represents the normalized Haar measure of the unitary gauge group U(N). The

unitary measure dU decouples from the rest of the integral and we can integrate

it out since it is invariant under the similarity transformation

(dU)U † → (dU)

⇒
∫
dU = 1. (A.1.14)

In total our measure becomes
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∫
dM =

∫
dλ

∫
(dU)U †J

=

∫
dλ

∫
(dU)J

=

∫
dλJ

⇒
∫
dM =

∫
dλ
∏
i>j

(λi − λj)2. (A.1.15)

We will now derive the Laplacian operator ∇2 of the Hamiltonian

HSM = −1

2
∇2 +W (M), (A.1.16)

as defined in equation (4.2.2) for some eigenvalue dependent potential W (M).

We first start off with the definition of the Laplacian

∇2 =
1√

det ηµν

∂

∂Xν
ηνµ
√

det ηµν
∂

∂Xµ
. (A.1.17)

In equation (A.1.17), we substitute in the Jacobian (A.1.11) to obtain the

following

∇2 =
1√

det ηµν

∂

∂Xµ

√
det ηµνη

µν ∂

∂Xν
(A.1.18)

=
1∏

i<j(λi − λj)2
∂

∂λi

[∏
i<j

(λi − λj)2
]

∂

∂λi

+
1∏

i<j(λi − λj)2
∂

∂Pij

[∏
i<j

(λi − λj)2
∑
i>j

1

(λi − λj)2

]
∂

∂P ∗ij

+
1∏

i<j(λi − λj)2
∂

∂P ∗ij

[∏
i<j

(λi − λj)2
∑
i>j

1

(λi − λj)2

]
∂

∂Pij

=
1∏

i<j(λi − λj)2
∂

∂λi

[∏
i<j

(λi − λj)2
]

∂

∂λi

− 2∏
i<j(λi − λj)2

∂

∂Pij

[∏
i<j

(λi − λj)2
∑
i>j

1

(λi − λj)2

]
∂

∂Pji

=
1

∆2

∂

∂λi

[
∆2
] ∂

∂λi
−
∑
i 6=j

1

(λi − λj)2
∂

∂Pij

∂

∂Pji
.
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The Laplacian in equation (A.1.18) is substituted into our Hamiltonian oper-

ator HSM to obtain the following

ĤSM = −1

2
∇2 +W (M) (A.1.19)

= −1

2

1

∆2

∂

∂ri

[
∆2
] ∂

∂ri
+

1

2

∑
i 6=j

1

(ri − rj)2
∂

∂Pij

∂

∂Pji
+W (M).

In equation (A.1.19), the first term appearing in last line is the kinetic piece

of the Laplacian that is strictly dependent on the eigenvalues λi of the hermi-

tian matrix M . The second term in equation (A.1.19) represents the “angular”

component of the Laplacian that preserves the angular degrees of freedom [130].

This angular component is the non-singlet SU(N) angular momentum degrees of

freedom of the Hamiltonian operator.

We will restrict ourseles to potentials that only depend on the eigenvalues λi.

In addition we note that when the angular component of the kinetic piece acts

on ground state wavefunctions in the singlet sector of SU(N), we must get zero.

The singlet wavefunctions φ will be independent of the angular variables V and

V † and should be symmetric wavefunctions of the eigenvalues λi of M .

A.2 Single Cut Solution Of The Single Matrix

Model

In this section of the appendix, we will derive the solution appearing in equation

(4.1.19). From the saddle point equation taken in the continuum limit in equation

(4.1.11) we introduce the following analytic function

G(λ) = −
∫ α

−α
dξ

ρ(ξ)

λ− ξ
, (A.2.1)

defined on the support (−α, α) on the complex plane of λ.

Due to the constraints that must be satisfied by the analytic function appear-

ing in equation (A.2.1), there exists a unique function that provides a solution
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to equation (A.2.1) on the single cut along the real axis of the complex plane for

the specific potential W (M) defined in equation (4.1.5). This analytic function

is given by

G(z) =
1

2
z + 2gz3 −

(
qz2 + d

)√
z2 − α2, (A.2.2)

where the variables q and d are constants that we are required to solve for.

For both equation (A.2.1) and (A.2.2), we will require that as z → ±∞ then

G(z) ≈ 1/z. By taking z to be very large, we expand the right hand side of

equation (A.2.1) as follows

G(z) = −
∫ α

−α
dξ

ρ(ξ)

z − ξ

=
1

z
−
∫ α

−α
dξρ(ξ)

(
1− ξ

z

)−1
=

1

z
+

1

z2

∫ α

−α
dξρ(ξ)ξ +

1

z3
−
∫ α

−α
dξρ(ξ)ξ2 + . . . . . . . (A.2.3)

In equation (A.2.3), we used the fact that the density function ρ(ξ) is normal-

ized as follows

∫ α

−α
dξρ(ξ) = 1. (A.2.4)

We now consider equation (A.2.2) for large z

G(z) =
1

2
z + 2gz3 −

(
qz2 + d

)√
z2 − α2

= z

(
1

2
+
qα2

2
− d
)

+
1

z

(
qα4

8
+
dα2

2

)
+ z3 (2g − q)

+
1

z3

(
1

16
qα6 +

1

8
dα4

)
+ . . . . . . . (A.2.5)

Using equations (A.2.3) and (A.2.5), we compare the coefficients of the vari-

able z, and we can solve the follwing equations

z :

(
1

2
+
qα2

2
− d
)

= 0, (A.2.6)
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z3 : (2g − q) = 0, (A.2.7)

and

1

z
:

(
1

8
qα4 +

1

2
dα2

)
= 1. (A.2.8)

Solving for q and d in terms of α, we obtain the following result

G(z) =
1

z
+ 2gz3 −

(
2gz2 +

1

2
+ gα2

)√
z2 − α2. (A.2.9)

From (A.2.8)

(
1

8
qα4 +

1

2
dα2

)
= 1

⇒ 3gα4 + α2 − 4 = 0. (A.2.10)

In equation (A.2.10), the physically acceptable roots of the equation are given

by

α2 =
1

6

(
−1

g
+

√
1

g2
+

48

g

)
. (A.2.11)

In equation (A.2.11) when g = 0, we can obtain the solution for the boundary

values of the single cut interval (−α, α) along the real axis of the complex plane.

The boundary values are

α = ±2. (A.2.12)

A.3 Discretized Hamiltonian Operator

For this section of appendix A, we derive the Hamiltonian operator HSM that

appears in equation (4.2.8).

We will consider the Hamiltonian Ĥ operator that only depends on the eigen-

values ri of the single hermitian matrix M , defined as follows
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HSM = −1

2
∇2 +W (M)

= −1

2
Tr

(
∂2

∂M2

)
+W (M)

= −1

2

(
1

∆2

∂

∂ri
∆2 ∂

∂ri

)
+W (ri), (A.3.1)

defined for the Vandermonde determinant

∆ =
∏
i>j

(ri − rj) . (A.3.2)

The Laplacian operator, earlier derived in equation (A.1.18), is decoupled

from any angular degrees of freedom as it appears in equation (A.3.1).

Our Hamiltonian operator acts on symmetric singlet sector ground state wave-

functions φ(ri), giving us the ground state energy EG, this is defined by the

eigenvalue equation

HSMφ(ri) = EGφ(ri). (A.3.3)

The ground state wavefunctions φ(ri) are functions of the eigenvalues ri of

the matrix M and preserve the symmetry of the U(N) gauge group.

We introduce an anti-symmetric wavefunction Ω(ri) defined as follows

Ω(ri) = ∆φ(ri). (A.3.4)

By introducing the anti-symmetric wavefunction Ω(ri), we are implicitly re-

defining our problem to be that of N fermions in the common potential W (ri).

We consider the eigenvalue equation (A.3.3) above and consider the kinetic

operator

− 1

2

(
1

∆2

∂

∂ri
∆2 ∂

∂ri

)
φ(ri) = EGφ(ri)

−1

2

(
1

∆2

∂

∂ri
∆2 ∂

∂ri

)
Ω(ri)

∆
= EG

Ω(ri)

∆

−
(

1

∆

∂

∂ri
∆

)(
∆

∂

∂ri

1

∆

)
Ω(ri) = 2EGΩ(ri), (A.3.5)
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which now acts on the anti-symmetric wavefunction Ω(ri).

To solve the eigenvalue equation appearing in equation (A.3.5), we start with

the left hand side of the equation where we consider the following

(
1

∆

∂∆

∂ri

)
=

∂

∂ri
ln ∆

=
∂

∂ri

∑
k<j

ln (rk − rj)

=
∑
k<j

1

(rk − rj)

(
∂rk
∂ri
− ∂rk
∂ri

)
=

∑
i<j

1

(ri − rj)
−
∑
k<i

1

(rk − ri)

⇒
(

1

∆

∂∆

∂ri

)
=

∑
k 6=i

1

(ri − rk)
. (A.3.6)

Similarly, we can define the following identity from the left side of equation

(A.3.5)

∆

(
∂

∂ri

1

∆

)
= −∆

1

∆2

∂∆

∂ri
= − 1

∆

∂∆

∂ri
= − ∂

∂ri
ln ∆

⇒ ∆

(
∂

∂ri

1

∆

)
= −

∑
j 6=i

1

(ri − rj)
. (A.3.7)

Using the two preceding equations we can combine them in order to simplify

the operator on the left hand side of equation (A.3.5)
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(
1

∆

∂∆

∂ri

)(
∆

∂

∂ri

1

∆

)
=

(
∂

∂ri
+
∑
k 6=i

1

(ri − rk)

)(
∂

∂ri
−
∑
j 6=i

1

(ri − rj)

)

=
∂2

∂r2i
−
∑
i 6=j

∂

∂ri

∑
j 6=i

1

(ri − rj)
+
∑
k 6=i

1

(ri − rk)
∂

∂ri

−

(∑
k 6=i

∑
j 6=i

1

(ri − rk)
1

(ri − rj)

)

=
∂2

∂r2i
−
∑
i 6=j

∂

∂ri

∑
j 6=i

1

(ri − rj)
+
∑
k 6=i

1

(ri − rk)
∂

∂ri

−

(∑
k 6=i 6=j

1

(ri − rk)
1

(ri − rj)
+
∑
i 6=j

1

(ri − rj)2

)

=

(
∂2

∂r2i
−
∑
k 6=i 6=j

1

(ri − rk)
1

(ri − rj)
−
∑
i 6=j

1

(ri − rj)2

)

+

(∑
k 6=i

1

(ri − rk)
∂

∂ri
−
∑
i 6=j

∂

∂ri

∑
j 6=i

1

(ri − rj)

)
. (A.3.8)

We simplify the last two terms that appear in equation (A.3.8). We first start

with the two terms appearing in the last line of equation (A.3.8)

(∑
k 6=i

1

(ri − rk)
∂

∂ri
− ∂

∂ri

∑
j 6=i

1

(ri − rj)

)

=
∑
k 6=i

1

(ri − rk)
∂

∂ri
−

(
−
∑
j 6=i

1

(ri − rj)2
∂

∂ri
(ri − rj) +

∑
j 6=i

1

(ri − rj)
∂

∂ri

)

=
∑
k 6=i

1

(ri − rk)
∂

∂ri
−
∑
j 6=i

1

(ri − rj)
∂

∂ri
+
∑
j 6=i

1

(ri − rj)2

⇒

(∑
k 6=i

1

(ri − rk)
∂

∂ri
− ∂

∂ri

∑
j 6=i

1

(ri − rj)

)
=
∑
j 6=i

1

(ri − rj)2
. (A.3.9)

If we substitute equation (A.3.9) into (A.3.8), we can establish the following

result
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(
1

∆

∂∆

∂ri

)(
∆

∂

∂ri

1

∆

)
=

(
∂2

∂r2i
−
∑
k 6=i 6=j

1

(ri − rk)
1

(ri − rj)

)
. (A.3.10)

The second term appearing in the second line of equation (A.3.10) can be

shown to be zero. To demonstrate this, we will assign values to the indices such

that i, j, k = 1, 2, 3 and use these to show how this identity becomes zero. For

these 3 eigenvalues, their contribution to equation (A.3.10) is:

1

(r1 − r2)(r1 − r3)
+

1

(r2 − r1)(r2 − r3)
+

1

(r3 − r1)(r3 − r2)

=
1

(r1 − r2)

(
1

(r1 − r3)
− 1

(r2 − r3)

)
+

1

(r1 − r2)(r1 − r3)

=
1

(r1 − r2)

(
r2 − r3 − r1 + r3
(r1 − r3)(r3 − r3)

)
+

1

(r3 − r1)(r3 − r2)

=
1

(r1 − r2)
(r1 − r2)

(r1 − r3)(r2 − r3)
+

1

(r3 − r1)(r3 − r2)

= − 1

(r1 − r2)
(r1 − r2)

(r1 − r3)(r2 − r3)
+

1

(r3 − r1)(r3 − r2)

= − 1

(r1 − r3)(r2 − r3)
+

1

(r3 − r1)(r3 − r2)
= 0.

Having shown that in equation (A.3.10) the second term in the last line is

reduced zero, the kinetic operator is simply

−
∑
i

(
1

∆

∂∆

∂ri

)(
∆

(
∂

∂ri

1

∆

))
= −

∑
i

∂2

∂r2i
. (A.3.11)

The kinetic part of the Hamiltonian HSM in equation (A.3.1) has been re-

duced to an operator with N degrees of freedom. The potential W (ri) explicitly

represented in terms of eigenvalues ri is given by

W (ri) =
1

2

∑
i

r2i +
g

N

∑
i

r4i , (A.3.12)

our Hamiltonian HSM acting on the anti-symmetric wavefunction Ω(ri) can

be expressed using eigenvalue representation ri:
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HSM = −1

2

∑
i

∂2

∂r2i
+

1

2

∑
i

r2i +
g

N

∑
i

r4i

=
∑
i

Λi. (A.3.13)

Therefore using the eigenvalue of equation (A.3.5), we can have our operator

acting on the anti-symmetric wavefunction Ω(ri) i.e. a sum of decoupled single

particle Hamiltonians.
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Appendix B

Radial Sector: Polar Matrix

Model

B.1 Jacobian In Radial Sector: Parameterized

Two Matrix Model

In this appendix we derive the Jacobian, JTMM , seen in equation (5.1.14) and

the anti-symmetric term in equation (5.1.15), also the Laplacian appearing in

equation (5.1.16), all equations resulting from the parameterization of the two

hermitian matrix model. To accomplish this we first consider the two N × N

hermitian matrices X1 and X2 used to construct the complex matrix Z, expressed

as a product of a radial part and an angular part [112].

We will consider

Z = X1 + iX2

≡ ΓΩ. (B.1.1)

The matrix Γ is an N × N radial matrix representing the radial degrees of

freedom of the matrix Z and the N ×N unitary matrix Ω represents the angular

degrees of freedom of the matrix Z.

We first diagonalize the radial matrix Γ to obtain the eigenvalue representa-
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tion, this we carry out as follows

Γ = U †γDU. (B.1.2)

In equation (B.1.2) above we have used the matrices U and U † which are

unitary matrices of the gauge group U(N). The diagonal matrix γD is an N ×N

matrix consisting of the eigenvalues of Γ. Using equation (B.1.2) we have that

Z = ΓΩ

= U †γDUΩ

= U †γD (UΩ) , (B.1.3)

and similarly

Z† = Ω†Γ†

=
(
Ω†U †

)
γDU. (B.1.4)

In order for us to obtain the Jacobian for the two matrix model, we first need

to compute the following

Tr
(
dZdZ†

)
= ηµνdX

µdXν . (B.1.5)

Equation (B.1.5) is the equivalent of the squared line element in (3 + 1)-

dimensional Minkowski space, above we have presented it using the matrix dic-

tionary.

We first start by computing the matrix differential element dZ, which can be

viewed as an arbitrary distance along the matrix Z. This we carry out as follows

dZ = d (ΓΩ) = d
(
U †γUΩ

)
= dU †γUΩ + U †dγUΩ + U †γdUΩ + U †γUdΩ

= U †
(
UdU †γ + dγ + γdUU † + γUdΩΩ†U †

)
UΩ

= U †
(
dγ + γdUU † − dUU †γ + γUdΩΩ†U †

)
UΩ

⇒ dZ = U †
(
dγ +

[
γ, dUU †

]
+ γUdΩΩ†U †

)
UΩ. (B.1.6)
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The same is done for Z†, that is, we compute its matrix differential element

dZ† = Ω†U †
(
dγ +

[
γ, dUU †

]
− UdΩΩ†U †γ

)
U. (B.1.7)

In both equations (B.1.6) and (B.1.7) we used the property of the unitarity

of the matrices U and U † such that

U †αβUβς = δας and dUU † = −UdU †. (B.1.8)

In equation (B.1.6) and (B.1.7) we introduce anti-hermitian Lie algebra valued

differential matrices defined as follows

dS = dUU †

⇒ dS = −dS†, (B.1.9)

and

dN = UdΩΩ†U †

⇒ dN = −dN †. (B.1.10)

Using the Lie valued anti-hermitian differentials in equations (B.1.9) and

(B.1.10), these are substituted into equations (B.1.6) and (B.1.7) for the defi-

nitions of the matrix differential dZ and dZ†, and the following is obtained

dZ = U † (dγ + [γ, dS] + γdN)UΩ, (B.1.11)

and

dZ† = Ω†U † (dγ + [γ, dS]− dNγ)U. (B.1.12)

Using equations (B.1.11) and (B.1.12), we can now obtain Tr
(
dZdZ†

)
, this

we carry out as follows

201



Tr
(
dZdZ†

)
= Tr

(
dZ†dZ

)
= Tr

(
U † (dγ + [γ, dS] + γdN)UΩΩ†U † (dγ + [γ, dS]− dNγ)U

)
= Tr ((dγ + [γ, dS] + γdN) (dγ + [γ, dS]− dNγ))

= Tr
(
dγ2 + dγ [γ, dS]− dγdNγ + [γ, dS] dγ + [γ, dS]2

)
− Tr

(
[γ, dS] dNγ + γdNdγ + γdN [γ, dS]− γdN2γ

)
= Tr

(
dγ2 + [γ, dS] [γ, dS]− γ2dN2 + 2dγ [γ, dS]

)
+ Tr (dN [dγ, γ] + [γ, dS] [γ, dN ]) . (B.1.13)

As pointed out before:

Tr (dγ [dγ, γ]) = 0. (B.1.14)

Taking into consideration the constraints observed in equation (B.1.14), we

express equation (B.1.13) as follows

Tr
(
dZdZ†

)
= Tr

(
dγ2 + [γ, dS] [γ, dS]− γ2dN2

)
+ Tr ([γ, dS] [γ, dN ]) . (B.1.15)

Equation (B.1.15) will be expressed in terms of indices. Doing this will allow

us to obtain the entries to matrix of the metric ηµν appearing in equation (B.1.5).

Equation (B.1.15) is expressed in index notation as follows

Tr
(
dZdZ†

)
= Tr

(
dγ2
)

+ Tr ([γ, dS] [γ, dS])− Tr
(
γ2dN2

)
+ Tr ([γ, dS] [γ, dN ])

=
∑
i

(
dγ2i
)

+
∑
ij

[γ, dS]ij [γ, dS]ji −
∑
ij

γ2i dNijdNji

+
∑
ij

[γ, dS]ij [γ, dN ]ji . (B.1.16)

The terms associated with angular degrees of freedom appearing in the com-

mutators can be reduced to their eigenvalue representation, therefore we focus

our attention on the commutators appearing in equation (B.1.16)
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∑
ij

[γ, dS]ij [γ, dS]ji =
∑
ij

(γidSij − dSijγj) (γjdSji − dSjiγi)

=
∑
ij

(γi − γj) dSij (γj − γi) dSji

=
∑
ij

(γi − γj) (γj − γi) dSijdSji

= −
∑
ij

(γi − γj)2 dSijdSji, (B.1.17)

and in a similar fashion we treat the following commutator as the latter

∑
ij

[γ, dS]ij [γ, dN ]ji =
∑
ij

(γidSij − dSijγj) (γjdNji − dNjiγi)

=
∑
ij

(γi − γj) dSij (γj − γi) dNji

=
∑
ij

(γi − γj) (γj − γi) dSijdNji

= −
∑
ij

(γi − γj)2 dSijdNji. (B.1.18)

We substitute equation (B.1.17) and (B.1.18) into equation (B.1.16) to intro-

duce the eigenvalue representation into the expression of Tr
(
dZdZ†

)
, this will

give the following

Tr
(
dZdZ†

)
=

∑
i

(
dγ2i
)

+
∑
ij

[γ, dS]ij [γ, dS]ji −
∑
ij

γ2i dNijdNji

+
∑
ij

[γ, dS]ij [γ, dN ]ji

=
∑
i

(
dγ2i
)
−
∑
ij

(γi − γj)2 dSijdSji

− 1

2

∑
ij

(γi − γj)2 [dSijdNji + dNijdSji]

− 1

2

∑
ij

[
γ2i + γ2j

]
dNijdNji. (B.1.19)

In order for us to take into account all of the components that are being

summed over, we will separate the terms that appear in equation (B.1.19) into
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summations that require
∑

i=j and those that are defined by the summation∑
i 6=j, this will leave us with the following

Tr
(
dZdZ†

)
=

∑
i

(
dγ2i
)

+
∑
i

γ2i dNiidN
∗
ii +

∑
i 6=j

(γi − γj)2 dSijdS∗ij

+
1

2

∑
i 6=j

(γi − γj)2
[
dSijdN

∗
ij + dNijdS

∗
ij

]
+

1

2

∑
i 6=j

[
γ2i + γ2j

]
dNijdN

∗
ij

=
∑
i

(
dγ2i
)

+
∑
i

γ2i dNiidN
∗
ii + 2

∑
i>j

(γi − γj)2 dSijdS∗ij

+
∑
i>j

(γi − γj)2
[
dSijdN

∗
ij + dNijdS

∗
ij

]
+

∑
i>j

[
γ2i + γ2j

]
dNijdN

∗
ij. (B.1.20)

From the last three lines of equation (B.1.20) we can pull out the coefficients

of the anti-hermitian matrix differential that will be used to define the matrix of

the metric ηµν as it appears in equation (B.1.5). The respective variables that

will define the rows and columns of entries to the matrix defining metric will be(
dγi, dNii, dSij(i<j), dS

∗
ij(i<j), dNij(i<j), dN

∗
ij(i<j)

)
.

Using equation (B.1.5) and the coefficients of the matrix differentials appear-

ing in equation (B.1.20) we can obtain the matrix of the metric ηµν which defines

Tr
(
dZdZ†

)
and this is given by the following



1 0 0 0 0 0

0 γ2i 0 0 0 0

0 0 (γi − γj)2 1
2
(γi − γj)2 0 0

0 0 1
2
(γi − γj)2 1

2
(γ2i + γ2j ) 0 0

0 0 0 0 (γi − γj)2 1
2
(γi − γj)2

0 0 0 0 1
2
(γi − γj)2 1

2
(γ2i + γ2j )


. (B.1.21)

Using the matrix in equation (B.1.21), we compute the determinant of the

matrix above which we deduce as follows
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det ηµν =
∏
i

γ2i
∏
i>j

[
1

2

(
γ2i + γ2j

)
(γi − γj)2 −

1

4
(γi − γj)2 (γi − γj)2

]
×

[
1

2

(
γ2i + γ2j

)
(γi − γj)2 −

1

4
(γi − γj)2 (γi − γj)2

]
=

∏
i

γ2i
∏
i>j

[
1

4

(
γ2i + γ2j

)2
(γi − γj)4 −

1

4

(
γ2i + γ2j

)
(γi − γj)6 +

1

16
(γi − γj)8

]
=

∏
i

γ2i
∏
i>j

1

16
(γi − γj)4

[
4
(
γ2i + γ2j

)2 − 4
(
γ2i + γ2j

)
(γi − γj)2 + (γi − γj)4

]
=

∏
i

γ2i
∏
i>j

1

16
(γi − γj)4

[
2
(
γ2i + γ2j

)
− (γi − γj)2

]2
=

∏
i

γ2i
∏
i>j

1

16
(γi − γj)4

[
2γ2i + 2γ2j −

(
γ2i − γiγj − γ2j

)]2
=

∏
i

γ2i
∏
i>j

1

16
(γi − γj)4

[
γ2i + γiγj + γ2j

]2
=

∏
i

γ2i
∏
i>j

1

16
(γi − γj)4 [γi + γj]

4

=
∏
i

γ2i
∏
i>j

1

16
[(γi − γj) (γi + γj)]

4

=
∏
i

γ2i
∏
i>j

1

16

[
γ2i − γiγj + γiγj − γ2j

]4
⇒ det ηµν =

∏
i

γ2i

[∏
i>j

1

4

(
γ2i − γ2j

)2]2
. (B.1.22)

The determinant of the metric ηµν appearing in equation (B.1.22) is then

obtained from a two hermitian matrix model that was parameterized using polar

coordinates. In equation (B.1.22) we introduce a short hand notation

∆2
TMM =

∏
i>j

1

4

(
γ2i − γ2j

)2
, (B.1.23)

therefore we can rewrite equation (B.1.22) using equation (B.1.23) as follows

det ηµν =
∏
i

γ2i

[∏
i>j

1

4

(
γ2i − γ2j

)2]2
=

∏
i

γ2i
[
∆2
TMM

]2
. (B.1.24)
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To obtain the Jacobian JTMM for two hermitian matrix model in polar coor-

dinates, we will need to take the square root of equation (B.1.24), this will be

given by

JTMM =
√

det ηµν

=

√∏
i

γ2i [∆2
TMM ]

2

=
∏
i

γi∆
2
TMM

⇒ JTMM =
∏
i

γi
∏
i>j

1

4

(
γ2i − γ2j

)2
. (B.1.25)

The Jacobian JTMM is the Jacobian obtained from a measure defined by the

polar matrices Tr
(
dZdZ†

)
to a set of new variables whose measure is defined by

the Lie algebra anti-hermitian matrix differentials (dr, dS, dN) such that

dZdZ† → JTMMdrdMdN, (B.1.26)

where JTMM is given by equation (B.1.25).

We will now proceed to compute the Laplacian of the two matrix model in

polar coordinates. We start off with the definition of the Laplacian

∇2 =
1√

det gµν

∂

∂Xβ
gνµ
√

det gµν
∂

∂Xα
. (B.1.27)

Evidently, for us to apply equation (B.1.27) above, the inverse of the metric

gAB in equation (B.1.21) is necessary, and is given by the following



1 0 0 0 0 0

0 1
γ2i

0 0 0 0

0 0
4(γ2i+γ

2
j )

(γi−γj)2(γi+γj)2
−2

(γi+γj)2
0 0

0 0 −2
(γi+γj)2

4
(γi+γj)2

0 0

0 0 0 0
4(γ2i+γ

2
j )

(γi−γj)2(γi+γj)2
−2

(γi+γj)2

0 0 0 0 −2
(γi+γj)2

4
(γi+γj)2


. (B.1.28)
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The Laplacian is obtained by using equation (B.1.28) in combination with

equation (B.1.27) to obtain the following

∇2 =
1∏
k γk

1

∆2
TMM

∂

∂γi

[∏
k

γk∆
2
TMM

]
∂

∂γi
+

{
1

γ2i

∂

∂Nii

∂

∂N∗ii

}
+

∑
i 6=j

2(γ2i + γ2j )

(γ2i − γ2j )2
∂

∂Sij

∂

∂S∗ij
−
∑
i 6=j

2

(γi + γj)2

{
∂

∂Sij

∂

∂N∗ij
+

∂

∂Nij

∂

∂S∗ij

}
+

∑
i 6=j

4

(γi + γj)2
∂

∂Nij

∂

∂N∗ij

=
1∏
k γk

{
∂

∂γi

∏
k

γk

}
∂

∂γi
+

1

∆2
TMM

{
∂

∂γi
∆2
TMM

}
∂

∂γi
+

∂

∂γi

∂

∂γi

+

{
1

γ2i

∂

∂Nii

∂

∂N∗ii

}
+
∑
i 6=j

2(γ2i + γ2j )

(γ2i − γ2j )2
∂

∂Sij

∂

∂S∗ij
(B.1.29)

−
∑
i 6=j

2

(γi + γj)2

{
∂

∂Sij

∂

∂N∗ij
+

∂

∂Nij

∂

∂S∗ij

}
+
∑
i 6=j

4

(γi + γj)2
∂

∂Nij

∂

∂N∗ij
.

This is the result shown in equation (5.1.16).
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Appendix C

The Two Matrix Model

C.1 The Single Cut Ansatz

In this appendix, we will demonstrate the complete derivation of the solution

(6.2.3) and the boundary limits in equation (6.2.4) of the single cut ansatz for

the two hermitian matrix model in polar coordinates.

We first start off with the function appearing in equation (6.2.2)

F(x± iε) = −
∫ x+

x−

dx′Φ(x′)

x− x′
∓ iπΦ(x)

=
ω2

4
∓ iπΦ(x). (C.1.1)

Equation (C.1.1) appearing above satisfies special conditions that have already

been mentioned and is also defined along the interval [x−, x+] which represents a

single cut along the real axis of the complex plane z. The endpoints of the cut

satisfy x+ > x− > 0.

We first define the analytic function F(z) along the complex plane of z

F(z) =

∫ x+

x−

dx′Φ(x′)

z − x′
. (C.1.2)

To start off we require the condition F(z) ≈ 1/z for large z. With this

condition, an expansion is performed for large z, i.e. (z → ±∞). Therefore F(z)

becomes
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F(z) = −
∫ x+

x−

dx′Φ(x′)

z − x′

=
1

z
−
∫ x+

x−

dx′Φ(x′)

(
1− x′

z

)−1
=

1

z
+

1

z2

∫ x+

x−

dx′Φ(x′)x′ +
1

z3

∫ x+

x−

dx′Φ(x′)x′
2

+
1

z4

∫ x+

x−

dx′Φ(x′)x′
3

+ . . . . . . .

(C.1.3)

The eigenvalue density function Φ(x′) in equation (C.1.3) when integrated

along the single cut [x−, x+] will be required to be even, positive definite and

normalized such that

∫ x+

x−

dx′Φ(x′) = 1. (C.1.4)

The complete solution to the function in equation (C.1.1) is perturbatively

derived by introducing the following ansatz

F(z) =
ω2

4
− f

z

√
(z − x+)(z − x−), (C.1.5)

In the ansatz appearing in equation (C.1.5), we will solve for the function f

using perturbative methods that were developed for the single hermitian matrix

model. To start off, we will require that F(z) have no poles as z → 0 and that for

very large z, we must have F(z) ≈ 1/z. With these two conditions, we expand

the ansatz appearing in equation (C.1.5) as follows

F(z) =
ω2

4
− f

z

√
(z − x+)(z − x−)

=
ω2

4
− f

z
× z
√

(1− x+
z

)(1− x−
z

)

=
ω4

4
− f

(
1− 1

2z
(x+ + x−)− 1

8z2
(
x2+ − 2x+x− − x2−

))
− f

(
1

16z3
(
x3+ − x−x2+ − x2−x+ + x3−

)
− 1

64z4
(
2x−x

3
+ + x2−x

2
+ + 2x3−x+

))
+ f

(
1

128z5
(
x2−x

3
+ + x3−x

2
+

)
+

1

256z
x3−x

3
+

)
+ . . . . (C.1.6)
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We will use equations (C.1.3) and (C.1.6) to equate the coefficients of expan-

sion of the function F(z) whose expansion parameters are z0, z−1 . . . for large z.

We will start off by comparing the z0 coefficients for both equations (C.1.3) and

(C.1.6), to obtain the following

ω2

4
− f = 0

⇒ f =
ω2

4
. (C.1.7)

Equation (C.1.7) above assigns a definitive value to the function f , which we

substitute back into the ansatz to obtain the following

F(z) =
ω2

4
− ω2

4z

√
(z − x+)(z − x−). (C.1.8)

We will now proceed to obtain the end points of the single cut ansatz on the

complex plane z along the real axis.

We start off by equating the coefficients of 1/z for the function F(z) whose

expansion we performed in equations (C.1.3) and (C.1.6). We obtain

1 =
f

2
(x− + x+)

⇒ 1 =
ω2

8
(x− + x+)

⇒ (x− + x+) =
8

ω2
. (C.1.9)

Earlier we required F(z) have no pole when z → 0, we will now expand our

analytic function appearing in equation (C.1.8) for the preceding condition to

obtain the following

F(z → 0) =
ω2

4
− f(z)

z

√
(z − x+)(z − x−) = 0

= −ω
2

4z

√
x+x− = 0

⇒ x+x− = 0

⇒ x+ = 0 or x− = 0. (C.1.10)
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Since x+ > x−, x− = 0, we substitute the results of equation (C.1.10) into

equation (C.1.9) to obtain the following

x+ =
8

ω2
. (C.1.11)

These are the results quoted in equation (6.2.4).
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Appendix D

Two Matrix Model Radial

Fermionic Picture

This appendix will be dedicated to showing how the system of two hermitian

matrices in polar coordinates can be restricted to a configuration of purely radial

coordinates, therefore replicating a system of “radial fermions” with N degrees

of freedom as seen in equation (7.0.6).

We notice that the Laplacian in equation (7.0.2) possesses a strictly radial

part that only depends on the eigenvalues of R. This is the same radial piece of

the Laplacian that we derived earlier in equation (5.1.16) and (B.1.29).

The radial part of the Laplacian is represented by the following term

− 1

2
∇2 = −1

2

1

∆2
TMM(r2i )

1∏
k rk

∑
i

∂

∂ri
(
∏
k

rk)∆
2
TMM(r2i )

∂

∂ri
(D.0.1)

= −1

2

1

∆2
TMM

∑
i

1

ri

∂

∂ri
ri∆

2
TMM(r2i )

∂

∂ri
.

In the second line of equation (D.0.1), we introduce the variable ρi = r2i ,

resulting in the following

−1

2
∇2 = − 2

∆2(ρi)

∑
i

∂

∂ρi
ρi∆

2(ρi)
∂

∂ρi
, (D.0.2)

since
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∆2
TMM(r2i ) =

∏
i<j

1

4

(
r2i − r2j

)2
=

∏
i<j

1

4
(ρi − ρj)2

= ∆2(ρi). (D.0.3)

Equation (D.0.3) was generally understood to represent the modified Vander-

monde determinant when compared to the determinant of the single hermitian

matrix model.

The radial operator (D.0.2) will act on “s-state” symmetric wavefunctions Φ

that are independent of any angular degrees of freedom. We define the anti-

symmetric wavefunctions with strict radial dependence ρi as follows

Ψ = ∆(ρi)Φ

=
∏
i<j

1

4
(ρi − ρj) Φ. (D.0.4)

Therefore, the eigenvalue/eigenfunction equation in terms of the operator

(D.0.2) and the wavefunction Ψ becomes

−

(
2

∆2(ρi)

∑
i

∂

∂ρi
ρi∆

2(ρi)
∂

∂ρi

)
Ψ

∆(ρi)
= E

Ψ

∆(ρi)

−

[
2

∆(ρi)

∑
i

∂

∂ρi
∆(ρi)ρi∆(ρi)

∂

∂ρi

1

∆(ρi)

]
Ψ = EΨ. (D.0.5)

On the left hand side of equation (D.0.5), simple algebraic methods will be

used to help simplify the radial operator term. To achieve this, we expand equa-

tion (D.0.5) as follows
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− 2

∆(ρi)

∑
i

∂

∂ρi
∆(ρi)ρi∆(ρi)

∂

∂ρi

1

∆(ρi)
= (D.0.6)

−2
∑
i

(
1

∆(ρi)

∂

∂ρi
∆(ρi)

)
ρi

(
∆(ρi)

∂

∂ρi

1

∆(ρi)

)

= −2
∑
i

(
∂

∂ρi
+
∑
k 6=i

1

ρi − ρk

)
ρi

(
∂

∂ρi
−
∑
j 6=i

1

ρi − ρj

)

= −2

{∑
i

(
∂

∂ρi
ρi

∂

∂ρi
−
∑
j 6=i

1

ρi − ρj
+
∑
j 6=i

ρi
(ρi − ρj)2

)}

− 2
∑
i

(∑
k 6=i

1

ρi − ρk
ρi

∂

∂ρi
− ρi

∑
j 6=i

1

ρi − ρj
ρi

∂

∂ρi

)

+ 2
∑
i

( ∑
j 6=i,k 6=i

ρi
ρi − ρk

1

ρi − ρj

)
.

From equation (D.0.6) above, we will make use of identity terms that will help

us simplify the above expression clearly:

∑
i

∑
i 6=j

1

ρi − ρj
= 0. (D.0.7)

With the use of equation (D.0.7) in equation (D.0.6), we obtain

− 2

∆(ρi)

∑
i

∂

∂ρi
∆(ρi)ρi∆(ρi)

∂

∂ρi

1

∆(ρi)
= (D.0.8)

−2

{∑
i

∂

∂ρi
ρi

∂

∂ρi
+
∑
i 6=j

ρi
(ρi − ρj)2

−
∑
j 6=i 6=k

ρi
(ρi − ρj)(ρi − ρk)

}
.

Equation (D.0.8) above can further be simplified by observing that the fol-

lowing identity is true:

∑
i 6=j

ρi
(ρi − ρj)2

−
∑
i 6=j 6=k

ρi
(ρi − ρk)(ρi − ρj)

=
∑
i 6=j 6=k

ρi
(ρi − ρk)(ρi − ρj)

= 0.(D.0.9)

The right hand side of equation (D.0.9), can be explicitly shown to vanish by

considering any three eigenvalues ρ1, ρ2, ρ3:
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ρ1
(ρ1 − ρ2)(ρ1 − ρ3)

+
ρ2

(ρ2 − ρ1)(ρ2 − ρ3)
+

ρ3
(ρ3 − ρ1)(ρ3 − ρ2)

= (D.0.10)

1

(ρ1 − ρ2)

(
ρ1

(ρ1 − ρ3)
− ρ2

(ρ2 − ρ3)

)
+

ρ3
(ρ3 − ρ1)(ρ3 − ρ2)

=

1

(ρ1 − ρ2)

(
ρ1ρ2 − ρ1ρ3 − ρ2ρ1 + ρ2ρ3

(ρ3 − ρ1)(ρ3 − ρ2)

)
+

ρ3
(ρ3 − ρ1)(ρ3 − ρ2)

=

1

(ρ1 − ρ2)
ρ3(ρ2 − ρ1)

(ρ1 − ρ3)(ρ2 − ρ3)
+

ρ3
(ρ1 − ρ3)(ρ2 − ρ3)

=

− ρ3
(ρ1 − ρ3)(ρ2 − ρ3)

+
ρ3

(ρ1 − ρ3)(ρ2 − ρ3)
= 0.

We make use of equations (D.0.7), (D.0.9) and (D.0.10), what remains in total

is the following

− 2

∆(ρi)

∑
i

∂

∂ρi
∆(ρi)ρi∆(ρi)

∂

∂ρi

1

∆(ρi)
= −2

∑
i

∂

∂ρi
ρi

∂

∂ρi
. (D.0.11)

The right hand side of equation (D.0.11) acts as an operator on the anti-

symmetric wavefunctions defined in equation (D.0.4), giving us the following en-

ergy system

− 2

∆2(ρi)

∑
i

∂

∂ρi
ρi∆

2(ρi)
∂

∂ρi
Ψ = EΨ (D.0.12)

⇒ −2

(∑
i

ξi

)
Ψ = EΨ,

where

ξi =
∂

∂ρi
ρi

∂

∂ρi
− 1

2
V (ρi)

=
1

4

(∑
i

1

ri

∂

∂ri
ri
∂

∂ri
− 4V ′(ri)

)
. (D.0.13)

The methodology used to derive equations (D.0.12), (D.0.13) and (7.0.6) was

adopted from the procedure used to demonstrate that the single hermitian matrix

model is a model of free fermions with N degrees of freedom. The fermion picture
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was made famous by BIPZ [27] in their calculations that are based on the single

hermitian matrix model. In our work, the emergence of higher dimensionality is

new.
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Appendix E

Radial Sector: System With An

Even General Number Of

Matrices

E.1 Eigenvalue Density Function:

Single Cut Solution

In this appendix we show the calculations for the solution obtained appearing

in equation (11.1.5) which is a solution for equations (11.1.3) and (11.1.4). The

semi classical approximation in equation (11.0.8) will be solved in the large N

limit. In this limit, we will define an analytic function whose behavior along the

cut [ρ−, ρ+] is

G(ρ± iε) = −
∫ ρ+

ρ−

dρ′Φ(ρ′)

ρ− ρ′
∓ iπΦ(ρ)

=
ω2

4
− m− 1

2ρ
∓ iπΦ(ρ), (E.1.1)

as seen in equation (11.1.2).

The above analytic function satisfies the conditions discussed before, assumed

to be true along the interval [ρ−, ρ+], which is defined as a cut on the complex
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plane z where we require ρ+ > ρ− > 0. The analytic function is given by:

G(z) =

∫ ρ+

ρ−

dρ′Φ(ρ′)

z − ρ′
, (E.1.2)

which is used to obtain the solution for equation (E.1.1) and also obtain an

explicit representation of the eigenvalue density function Φ(ρ). We will require

that G(z) ≈ 1/z for large z and that it has no poles at z = 0. Using equation

(E.1.2) we perform an expansion for large z, (z → ±∞), which will give us the

following

G(z) = −
∫ ρ+

ρ−

dρ′Φ(ρ′)

z − ρ′

=
1

z
−
∫ ρ+

ρ−

dρ′Φ(ρ′)

(
1− ρ′

z

)−1
=

1

z
+

1

z2

∫ ρ+

ρ−

dρ′Φ(ρ′)ρ′ +
1

z3

∫ ρ+

ρ−

dρ′Φ(ρ′)ρ′
2

+
1

z4

∫ ρ+

ρ−

dρ′Φ(ρ′)ρ′
3

+ . . . .

(E.1.3)

In equation (E.1.3) above we have required that the eigenvalue density func-

tion Φ(ρ) be positive, normalized and even such that

∫ ρ+

ρ−

dρ′Φ(ρ′) = 1. (E.1.4)

As z approaches the support, z → [ρ+, ρ−], we will require equation (E.1.1) to

be true, therefore in order for us to find the density of eigenvalues, we will define

the following analytic function

G(z) =
ω2

4
− m− 1

2z
− q

z

√
(z − ρ−)(z − ρ+), (E.1.5)

which must satisfy all the conditions required for equation (E.1.1).

In equation (E.1.5) we will solve for the constant q, ρ+ and ρ−. We expand

G(z) perturbatively
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G(z) =
ω2

4
− m− 1

2ρ
− q

z

√
(z − ρ−)(z − ρ+)

= G(z)
ω2

4
− m− 1

2ρ
− q

z
× z
√

(1− ρ−
z

)(1− ρ+
z

)

=
ω4

4
− a

2z
− q

(
1− 1

2z
(ρ+ + ρ−)− 1

8z2
(
ρ2+ − 2ρ+ρ− − ρ2−

))
− q

(
1

16z3
(
ρ3+ − ρ−ρ2+ − ρ2−ρ+ + ρ3−

)
− 1

64z4
(
2ρ−ρ

3
+ + ρ2−ρ

2
+ + 2ρ3−ρ+

))
+ q

(
1

128z5
(
ρ2−ρ

3
+ + ρ3−ρ

2
+

)
+

1

256z
ρ3−ρ

3
+

)
+ . . . . (E.1.6)

In equation (E.1.6) above we denoted: a = m− 1.

Equations (E.1.3) and (E.1.6) are from the same analytic function. These two

equations represent a large z expansion on both sides of the analytic function

G(z), so as a result of this, we can equate the coefficients of the z terms that

appear on both sides of the expansion for G(z). We start with the z0 coefficients

in both equations (E.1.3) and (E.1.6), and this gives us

ω2

4
− q = 0

⇒ q =
ω2

4
. (E.1.7)

Using equation (E.1.7), we can rewrite equation (E.1.5) as follows

G(z) =
ω2

4
− m− 1

2z
− ω2

4z

√
(z − ρ−)(z − ρ+). (E.1.8)

In order for us to obtain the boundary limits that define the support [ρ−, ρ+],

we will again equate the coefficients of equations (E.1.3) and (E.1.6) for the

analytic function G(z). We equate the coefficients for the 1/z term

1 = −a
2

+
q

2
(ρ− + ρ+)

⇒ 1 +
a

2
=
ω2

8
(ρ− + ρ+)

⇒ (ρ− + ρ+) =
8

ω2

(a
2

+ 1
)
. (E.1.9)
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We refer back to the previous condition that requires that our analytic function

G(z) have no pole when z → 0, this condition will present us with the following

constraint for the boundary limits of the support

G(z → 0) =
ω2

4
− m− 1

2z
− q

z

√
(z − ρ−)(z − ρ+) = 0

≈ − a

2z
− ω2

4z

√
ρ−ρ+ = 0

⇒ √
ρ−ρ+ = −2

a

ω2

⇒ ρ−ρ+ =
4a2

ω4
. (E.1.10)

Therefore, using equations (E.1.9) and (E.1.10), we can define an equation

of roots for the boundary limits of the support [ρ−, ρ+]. We substitute equation

(E.1.10) into equation (E.1.9) for either ρ+ or ρ− to obtain the following

ρ2+ −
8

ω2

(
1 +

a2

2

)
ρ+ +

4a2

ω4
= 0. (E.1.11)

The same methods that were used to obtain the quadratic equation for ρ+

can be used for ρ−, whose equation of roots will be

ρ2− −
8

ω2

(
1 +

a2

2

)
ρ− +

4a2

ω4
= 0. (E.1.12)

Finding the roots of both equations (E.1.11) and (E.1.12) is straight forward

in both equations, therefore the values of the boundary limits of the support are

shown to be

ρ± =
2

ω2
(m+ 1)± 4

ω2

√
m. (E.1.13)

Equation (E.1.13) represents the boundary limits of the support [ρ−, ρ+], and

we see that these limits are related to the number of complex matrices m.
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E.2 Eigenvalue Density Function:

Symmetric Solutions

For this section of the appendix we will derive equations (11.1.10) and (11.1.11)

to obtain or define the symmetric solutions of the eigenvalue density function.

We start with equation (11.1.9), whose analytic function is defined as follows

G ′(r ± iε) = −
∫ ∞
−∞

dr′φ(r′)

r − r′
∓ iπφ(r)

=
ω2

2
r − m− 1

r
∓ iπφ(r), (E.2.1)

and has to satisfy constraints similar to those of the analytic function defined

for the single cut ansatz.

These properties will now be extended. These symmetric solutions will be

defined over the intervals: [−r+,−r−] and [r+, r−] where r+ > r− > 0, on the

complex plane z. Define the analytic function G ′(z) extended over the real domain

as follows

G ′(z) =

∫ ∞
−∞

dr′φ(r′)

z − r′
. (E.2.2)

Equation (E.2.2) will be expanded for large z as follows

G ′(z) = −
∫ ∞
−∞

dr′φ(r′)

z − r′
(E.2.3)

=
1

z
−
∫ ∞
−∞

dr′φ(r′)

(
1− r′

z

)−1
=

2

z
+

1

z2

∫ ∞
−∞

dr′φ(r′)r′ +
1

z3

∫ ∞
−∞

dr′φ(r′)r′
2

+
1

z4

∫ ∞
∞

dr′φ(r′)r′
3

+ . . . .

In the last line of equation (E.2.3) we used the definition of the normalization

of the eigenvalue density function

∫ ∞
−∞

dr′φ(r′) = 2, (E.2.4)

and required that it must be an integral that is positive, even and normalized.
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To obtain a solution for the eigenvalue density function in equation (E.2.1),

we propose the following ansatz for the analytic function

G ′(z) =
ω2

2
z − a

z
−
(
d

z
+ c

)√
(z2 − r2+) (z2 − r2−), (E.2.5)

where we have set a = m − 1. The prerequisite for the analytic function

in equation (E.2.5) is that G ′(z) ≈ 2/z for large z, using this condition we will

expand equation (E.2.5) as follows

G ′(z) =
ω2

2
z − a

z
−
(
d

z
+ c

)√
(z2 − r2+) (z2 − r2−) (E.2.6)

=
ω2

2
z − a

z
−
(
d

z
+ c

)√
z4
(

1−
r2+
z2

)1/2(
1−

r2+
z2

)1/2

=
c

2

(
r2+ + r2−

)
+ z

(
1

2
ω2 − d

)
− cz2 +

1

z

(
d

2

(
r2+ + r2−

)
− a
)

+
d

8z3
(
r4+ − 2r2+r

2
− + r4−

)
+

d

16z5
(
r6+ − r2+r4− − r4+r2− + r6−

)
+

d

64z7
(
2r2+r

6
− + r4+r

4
− − 2r6+r

2
−
)
− d

128z9
(
r4+r

6
− + r6+r

4
−
)
− d

256z11
r6+r

6
−

+
c

8z2
(
r4+ − 2r2+r

2
− + r4−

)
+

c

16z4
(
r6+ − r2+r4− − r4+r2− + r6−

)
− c

64z6
(
2r2+r

6
− + r4+r

4
− − 2r6+r

2
−
)
− c

128z8
(
r4+r

6
− + r6+r

4
−
)
− c

256z10
r6+r

6
−.

Using equations (E.2.6) and (E.2.3), we equate the coefficients of the factor

z, and we obtain the following equations

coefficient : z

(
1

2
ω2 − d

)
= 0

⇒ d =
1

2
ω2, (E.2.7)

coefficient : z2 c = 0, (E.2.8)

and

coefficient : 1/z

(
d

2

(
r2+ + r2−

)
− a
)

= 2

⇒ ω2

4

(
r2+ + r2−

)
− a− 2 = 0. (E.2.9)
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The definitions of equations (E.2.7) and (E.2.8) are substituted into the ana-

lytic function ansatz in equation (E.2.5) and we obtain the following

G ′(z) =
ω2

2
z − a

z
− ω2

2z

√
(z2 − r2+) (z2 − r2−). (E.2.10)

We have to consider the behavior of G ′(z) when z → 0. This will require

that we consider another prerequisite that has to be satisfied by our analytical

function in equation (E.2.10) above. Therefore, we require that G ′(z → 0) = 0,

this will give us the following

G ′(z → 0) =
ω2

2
z − a

z
− ω2

2z

√
(z2 − r2+) (z2 − r2−) = 0

⇒ −a
z
− ω2

2z

√
r2+r

2
− = 0

⇒
√
r2+r

2
− = 2

a

ω2

⇒ r2+r
2
− = 4

a2

ω4
. (E.2.11)

At this point we are presented with two equations that will be solved simulta-

neously, that is equations (E.2.9) and the last line of equation (E.2.11). These two

equations will be used to solve for the boundary limits of the support [−r+,−r−]

and [r+, r−].

Using the two previously mentioned equations, we can substitute equation

(E.2.11) into (E.2.9) by eliminating either r2− or r2+ to obtain the following equa-

tion of roots

r4+ −
4 (a+ 2)

ω2
r2+ +

4a2

ω4
= 0. (E.2.12)

Using the same method to derive the quadratic equation (E.1.12) for r2+, the

same can be done for r2−, we can show that

r4− −
4 (a+ 2)

ω2
r2− +

4a2

ω4
= 0. (E.2.13)
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Both equation (E.2.12) and (E.2.13) are fundamentally the same, we will

therefore introduce a short hand notation

r4± −
4 (a+ 2)

ω2
r2± +

4a2

ω4
= 0. (E.2.14)

If we treat equation (E.2.14) as a quadratic equation by defining x = r2±, the

above equation can be shown to have the following roots

r2± =
2 (2 + a)

ω2
± 4

ω2
(a+ 1)1/2

=
2 (m+ 1)

ω2
± 4

ω2
(m)1/2 . (E.2.15)

Equation (E.2.15) is the same equations as (11.1.11). For the m = 1 matrix

model, the constant a defined earlier becomes zero: a = m− 1 = 0, therefore our

boundary limits are given by

r− = 0 r2+ =
8

ω2
. (E.2.16)

as we saw earlier for the radially restricted two matrix model.
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