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Resumo
Nesta dissertação desenvolvemos três tópicos. No primeiro tópico estudamos o método
da braquistócrona adiabática quântica (QAB) para otimizar dinâmicas adiabáticas. Na
primeira parte desse estudo investigamos o carregamento e o descarregamento de uma
bateria quântica supercondutora transmon de três níveis. O processo de carga dessa bateria
foi acelerado usando o método da QAB, de onde fizemos uma análise sobre a aplicação de
vínculos nas funções de interpolação. Completamos o estudo descrevendo o processo de
auto-descarga da bateria, que é como ela perde sua carga para o ambiente, e verificamos
que ele é não-Ôhmico. Além disso, aplicamos a QAB ao algorítimo de Grover adiabático
para quando há limitação de recursos para sua execução, por exemplo quando há limite na
potência máxima dos campos externos ou na energia total disponível. A segunda parte da
dissertação é sobre a teoria do computador quântico da D-Wave e suas limitações, como
a falta de conexões globais entre os qubits. Para avaliar o estado da arte da tecnologia,
resolvemos nesse computador o problema do caixeiro viajante. Além disso, fizemos um
revisão bibliográfica sobre os problemas que o annealer quântico pode resolver e sobre
as estratégias para superar suas limitações experimentais. Por último, no terceiro tópico
provamos que a descrição da interação entre luz e matéria usando flutuações quânticas
leva a ambiguidades para casos com muitos modos de luz. Mostramos que a interferência
clássica surge na ótica quântica pelo comportamento coletivo dos modos de luz, de onde
emerge os estados bright a dark da luz. No caso de muitos modos, o critério para um
átomo no estado fundamental ser excitado é a existência de projeções em estados não dark,
e não as flutuações quânticas.

Palavras-chaves: Teorema Adiabático Quântico. Braquistócrona Adiabática Quântica.
Busca Adiabática Quântica. Baterias Quânticas Supercondutoras. Recozimento Quântico.
Interferência Quântica.



Abstract
In this master’s thesis, we developed three different topics. In the first topic, we studied
the quantum adiabatic brachistochrone method (QAB) for optimizing adiabatic dynamics.
In the first part of this study, we reported the investigation of the charging and discharging
processes of a transmon superconducting three-level quantum battery. The charging process
was enhanced using the QAB method, in which we analyzed the effect of constraining
the interpolation functions. We completed the battery study by showing that its self-
discharging process, which is how the device loses its charge to the environment, is non-
Ohmic. Furthermore, we considered the application of the QAB method to the adiabatic
Grover algorithm for times when there is limited resources for its execution, for instance
when there is a limit on the maximum power of the external fields or in the available total
energy. The second part is concerned with the theory of the D-Wave’s quantum annealer
and its limitations, as the lack of global connections between the qubits. For evaluating
the state-of-the-art of this quantum simulator, we solved the traveling salesman problem
on it. Moreover, we did a literature review about problems this processor can handle
and different strategies to avoid its limitations. Finally, in the third topic, we proved
that describing light-matter interaction using quantum fluctuations yields ambiguities for
multi-modes of light. We showed that classical interference emerges in quantum optics
due to collective bright and dark states of light. In a multi-mode case, the criterion for a
ground-state atom to be excited is the existence of a projection on non-dark states rather
than quantum fluctuations.

Key-words: Quantum Adiabatic Theorem. Quantum Adiabatic Brachistochrone. Quan-
tum Adiabatic Search. Superconducting Quantum Batteries. Quantum Annealing. Quan-
tum Interference.
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1 Introduction

The quantum revolution is commonly based on established technologies, such as
batteries, communication channels, and thermal engines [1–6]. However, in the on going
revolution not only did we need to build devices on a very small scale, but we need to
use genuine quantumness as well. For example, classical computers fail to simulate large
quantum systems due to the scaling size of the Hilbert space, but when using quantum bits,
this problem vanishes [7, 8]. Nonetheless, we are in the noisy intermediate-scale quantum era
(NISQ) [9], meaning that our quantum devices are affected by the measurement apparatus
and noise. Although we are far from the quantum supremacy [10], we see a Moore-like law
in the increasing of the quantum computational power [11]. The new quantum devices
explore a range of different systems, such as trapped ions [12], quantum dots [13], and
cavity quantum electrodynamics [14]. A technology that has an increasing interest and
usage by the community is the superconducting devices [15, 16]. They have a plethora
of applications, for instance, in quantum computing [17] and quantum batteries [1, 18].
Particularly, the experimental setups of Chapters 4 and 5 are built using them.

A relevant quantum control method applicable to different quantum technologies is
the quantum adiabatic theorem. Different from adiabaticity in thermodynamics [19], which
regards a process without heat exchanging with external environments, adiabaticity in this
work is about a slow variation of a time-dependent system. This theorem states that if a
quantum system evolves adiabatically, the Schrödinger-eigenspaces evolve uncoupled from
each other [20–22]. Therefore, the system will be in the same instantaneous state during the
entire time evolution. This theorem has a crucial role in quantum annealing [23], digitized
quantum computing [24], quantum thermodynamics [25], stimulated Raman adiabatic
passage (STIRAP) [26], and in quantum information processing [27]. The adiabaticity
is achieved by respecting a quantitative adiabatic condition that imposes a time scale,
τ , to the dynamics total time [28–35]. The adiabatic condition can be achieved using
different evolution protocols, and, naturally, some of them are better than others. For
instance, the adiabatic Grover’s algorithm has a quadratic speedup over its classical
version, but if this algorithm is executed with a naive protocol, it loses its quantum
improvement [36]. Methods have been developed to hasten these processes, some of them
are based on machine learning [37], optimal control theory [38], etc [36, 39]. In this
dissertation (Chapters 3 and 4), we will focus on the Quantum Adiabatic Brachistochrone
(QAB) [40]. This method has a further generalization for quantum open system [41] and it
was implemented experimentally [1].

Moreover, the application of adiabatic dynamics to quantum computing gives rise
to the Turing complete paradigm of computation called adiabatic quantum computation
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(AQC) [42]. Although this paradigm has some qualities, such as robustness against relax-
ation phenomena, problems with dephasing, thermal effects or engineering limitation bring
delays for building this kind of computer. Despite these drawbacks, there is the quantum
annealing technique, which is a NISQ version of QAC that uses adiabatic evolutions for
solving binary optimization problems [3, 43]. This class of problems is present in areas
such as condensed matter systems [44], complex networks, and logistic problems [45, 46].
Quantum annealing technologies are being led by the D-Wave Company [47]. In its first
generations of quantum processors, we saw that indeed they were capable of correctly
solving problems, notwithstanding their small scale [23, 48, 49]. Now, we see some real-
ist prospectives and problems wherein quantum annealer performs better than classical
algorithms [44, 46]. In Chapter 5 we describe how to use this computer and we briefly
introduce the related technology.

Moving to fundamentals of physics, we have a description of interference of elec-
tromagnetic (EM) waves based on the superposition of EM fields [50], but when light is
quantum, this description fails, since there are interfering states with no EM field. The
quantum explanation for this phenomenon was based on quantum fluctuations of the EM
field [51]. However, there exist some ambiguities when we consider multi-modes of light,
where collective behaviour emerges. In Chapter 6, we accurately addressed this problem
with a new collective quantum basis of the light modes [52].

Thus, this Master’s thesis has three projects in four Chapters and is organized
as follows: In Chapter 2, we make a review of the physical and mathematical tools,
quantum adiabatic dynamics, we will use in Chapters 3, 4, and 5. Also, Chapter 2
describes the quantum adiabatic brachistochrone optimization method for adiabatic
dynamics we use in Chapters 3 and 4. In Chapter 3, we analyse the performance of
the adiabatic Grover algorithm for scenarios with limited resources for its execution,
which is a characteristic of the NISQ devices. In Chapter 4, we present the theoretical and
experimental characterization of a superconducting transmon quantum battery [1]. Chapter
5 concerns the usage and the basic description of the D-Wave’s quantum annealer [53].
Additionally, we described the simulated annealing algorithm and we argue that its solutions
are good references for the quantum annealing solutions [54]. Finally, in Chapter 6, we
integrally reproduce our paper [52] in which it is demonstrated that classical interference
of light is accurately modeled using a collective quantum basis of the modes of light and
not quantum fluctuations. In this introduction, we made general considerations about the
main themes we studied, but every Chapter, with results, has its contextualization and
historical details.
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2 Basic Tools

2.1 Adiabatic Theorem

2.1.1 Classical Adiabatic Theorem

Before we go to the formalism of adiabatic evolutions in quantum systems, we will
review the classical (non-quantum) adiabatic invariants, which are quantities that do not
change during adiabatic evolutions. The adiabatic invariants are the classical analog of
the quantum adiabatic theorem [20].

Since the property of being integrable is an exception in multidimensional mechani-
cal systems, many approximated methods are being developed to understand, at least, the
global behavior of these systems. Further, the theory of adiabatic invariants is a method
that is valid when a sufficiently slow perturbation is acting on the system, keeping one or
more quantities quasi-conserved during the dynamics.

A given Hamiltonian varies slowly if

∂H
∂t

= O
(1
τ
H
)

, (2.1)

for a natural time scale τ , for instance the oscillation period of a oscillator. This equation
means that if the slowness of the perturbation divided by the system characteristic time is
nearly zero, we are in the adiabatic regime [20, 55]. Moreover, beyond the dependence on
generalized variables, the Hamiltonian might be a function of a set of parameters λi(t),
which are arbitrary functions of time. We say that if λi(t) adiabatically changes the system,
if the variation of the parameter is small compared with a time scale τ of the system.
Mathematically, the relation λ̇i/λi � τ must stand. Therefore, if λi obeys the adiabatic
condition, it will be possible, without knowing the explicit form of λi, to define invariants,
from which we find the global behavior of the system. As an example, we will look at a
mechanical system, which is under a generalized force [56].

Let us suppose a system described by the Lagrangian L and by its generalized
variables, q1, q2, q̇1, q̇2. The Lagrange equations, when a generalized conservative force,
Q1, is acting on the coordinate q1, are

d
dt
∂L
∂q̇1
− ∂L
∂q1

= Q1,
d
dt
∂L
∂q̇2
− ∂L
∂q2

= 0 , (2.2)

where q̇i = dqi/dt for i = 1, 2. Owing to strong physical interpretation the Hamiltonian
formalism, i.e. the total energy1, we will change to this frame by applying a Legendre
1 If the system is conservative.
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transform on L, which consists in defining pi = ∂L/∂q̇i and H = piq̇i − L. Thereafter,
evaluating the differential of H and using Eq. (2.2), we find

dH = q̇idpi + pidq̇i −
∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i

= q̇idpi + pidq̇i −
∂L
∂qi

dqi − pidq̇i

= q̇1dp1 + q̇2dp2 + (Q1 − ṗ1) dq1 − ṗ2dq2 ,

(2.3)

from which we find the Hamilton equations,

∂H
∂q1

= −ṗ1 +Q1,
∂H
∂p1

= q̇1,
∂H
∂q2

= −ṗ2,
∂H
∂p2

= q̇2 . (2.4)

Dividing Eq. (2.3) by dt and using the Eq. (2.4), we find the time derivative of the total
energy

dH
dt = Q1q̇1 , (2.5)

which is the generalized work of the force Q1. However, if the force is time independent,
we can write dH = Q1dq1. Therefore, assuming that the variable q1 is just slowly varied
due to the force Q1 [56], the derivative of the canonical momentum ṗ1 will be negligible
against Q1 and the motion equation will be approximately

∂H
∂q1

= −ṗ1 +Q1 ≈ Q1 . (2.6)

We can apply this method in the following physical system: Suppose we have a
mass m oscillating in a vertical plane and bounded at the origin by a wire with initial
length L. The wire is pulled by the force Q, therefore having its length being shortened. For
this system, we have the Hamiltonian

H = p2
L

2m + p2
θ

2mL2 −mgL cos(θ) , (2.7)

where pL is the canonical momentum in the direction of the wire, pθ is the canonical
momentum in the angular direction and the rightmost term in the equation is the gravita-
tional energy. Since we know that the parameter that adiabatically changes the system is
L, by using the Eq. (2.6) we find

QL = −p2
θ/
(
mL3

)
−mg cos(θ) (2.8)

Hence, evaluating the mean values of a oscillation period, we find

dH = 〈Q1〉dq1

= −
〈

p2
θ

mL2 +mgL cos (θ)
〉

dL
L

= −3E
2

dL
L

,

(2.9)



Chapter 2. Basic Tools 13

since the variation of L is very small in an oscillation period, we used the mean values for
a pendulum with fixed length〈

p2
θ

2mL2

〉
= 〈mgL cos (θ)〉 = E

2 . (2.10)

So, in this adiabatic approximation we say that the mean energy of a pendulum is equal
to a quasi-conserved quantity2 E, since the external force is very small. Finally, from
Eq. (2.9) and considering dH = dE we find the adiabatic invariant,

dE
E

= −3
2

dL
L
→ EL3/2 = C, C ∈ R . (2.11)

The physical interpretation of this equation is the following: When the wire length decreases,
the energy increases by a power of 3/2. Thus, the quantity EL3/2 is an adiabatic invariant.
In conclusion, the adiabatic treatment has enabled us to find the behaviour of the system
energy without solving the Hamilton equations, Eq (2.3).

2.1.2 The quantum adiabatic theorem

We now move to quantum mechanical description of the adiabatic theorem. In
this subsection, we will enunciate and prove the quantum adiabatic theorem, which is the
foundation of Chapters 3, 4 and 5. There are many versions of the adiabatic theorem,
some more formal or general than others, but in this master’s thesis we will work with
the Max Born and Vladimir Fock formulation and proof given in 1928 [21]. Although
we will describe a simple version of the adiabatic theorem, the proof that is concluded
with the derivation of the adiabatic condition is sufficient for our applications and many
others [28–35, 57]. We hereby will consider ~ = 1 for simplifying the notation.

We start by defining the adiabatic dynamics, through which we state the adiabatic
theorem [29].

Definition 1 (Adiabatic Dynamics). A closed quantum system, whose Hamiltonian is
given by H(t), is subjected to an adiabatic dynamics if its Hilbert space can be decoupled into
Schrödinger-eigenspaces with distinct, time-continuous, and non-crossing instantaneous
eigenvalues of H(t).

A Schrödinger-eigenspace is a set of orthonormal eigenvectors with the same
eigenvalue in the Hilbert space of H(t). In the case where the system is nondegenerate, the
Schrödinger-eigenspaces are unidimensional and all the eigenvectors evolve uncoupled to
each other. Therefore, a system that evolves according to an adiabatic dynamics definition
will remain in its instantaneous state while its eigenvalues evolve continuously. This
consequence of the adiabatic dynamics is the adiabatic theorem [21, 58].
2 This means that the variation in a time period is very small, i.e. according to the condition in Eq. (2.1).
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Let us begin the proof of the theorem with a time dependent Hamiltonian H(t)
with a discrete spectrum. The system spectrum is given by the eigenvalue equation,
H(t) |ψn(t)〉 = En(t) |ψn(t)〉, and its time evolution is given by the Schrödinger equation,
H(t) |Ψ(t)〉 = i∂t |Ψ(t)〉. Thus, the general form of an instantaneous state is

|Ψ(t)〉 =
∑
n

cn(t)eiθn(t) |ψn(t)〉 , (2.12)

where θn(t) ≡ −
t∫

0
En(t′)dt′.

The application of the Schrödinger equation on |Ψ(t)〉 yields

∂t |Ψ〉 = i
∑
n

{
ċn |ψn〉+ cn

∣∣∣ψ̇n〉− iEncn |ψn〉} eiθn =
∑
n

cnEn |ψn〉 eiθn . (2.13)

We have omitted the time dependence in the former equations and we will specify it just
when necessary. The third term of the second equation cancels out the right hand side of
the equation, resulting in ∑

n

{
ċn |ψn〉+ cn

∣∣∣ψ̇n〉} eiθn = 0 . (2.14)

The multiplication of Eq. (2.14) by an arbitrary “bra”, 〈ψm|, yields∑
n

{
ċnδnm + cn

〈
ψm|ψ̇n

〉}
eiθn = 0 ,

∴ ċm = −
∑
n 6=m

cn
〈
ψm|ψ̇n

〉
e−i

∫
(En−Em)dt.

(2.15)

It is possible to evaluate
〈
ψm|ψ̇n

〉
, for m 6= n, by performing a derivative on the eigenvalue

equation,

dt (H |ψn〉) = dt (En |ψn〉) ,〈
ψm

∣∣∣Ḣ∣∣∣ψn〉+ Em
〈
ψm|ψ̇n

〉
= En

〈
ψm|ψ̇n

〉
,

(2.16)

so 〈
ψm|ψ̇n

〉
=

〈
ψm

∣∣∣Ḣ∣∣∣ψn〉
En − Em

, ∀ n 6= m . (2.17)

Substituting Eq. (2.17) in Eq. (2.14) we obtain the exact equation for the coefficients
dynamics,

ċm = −cm
〈
ψm|ψ̇m

〉
−
∑
n6=m

cn

〈
ψm

∣∣∣Ḣ∣∣∣ψn〉
En − Em

e−i
∫

(En−Em)dt , (2.18)

where the summation is over all pairs of the system eigenstates. This result shows that the
coupling between the eigenstate coefficients is given by the second term on the right-hand
side of the equation, which means that the population flow between eigenstates is limited
by it. Thus, if the rightmost term in Eq. (2.18) can be neglected, the dynamical coefficients
will be described purely by the differential equation,

ċm = −cm
〈
ψm|ψ̇m

〉
, (2.19)
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that has a simple solution, cm(t) = cm(0)eγm , where γm =
t∫

0

〈
ψm(t′)|ψ̇m(t′)

〉
dt′ is the

geometric phase [59]. We can find the nature of γ by doing the following procedure,

〈ψm|ψm〉 = 1 ,
d
dt 〈ψm|ψm〉 =

〈
ψ̇m|ψm

〉
+
〈
ψm|ψ̇m

〉
= 2Re

[〈
ψm|ψ̇m

〉]
= 0 .

(2.20)

Hence, we conclude that γ is a purely imaginary number.

Therefore, if the initial state is the superposition of eigenvectors |ψm(0)〉, the
adiabatically evolved state will be

|Ψ(t)〉 =
∑
m

cm(0) |ψm(t)〉 eiθm(t)−γm(t). (2.21)

The exponentials multiplying the eigenvectors are purely imaginary, thereby keeping its
modulus equal to one.

2.1.3 The traditional adiabatic condition

One may ask why or when it is possible to neglect the second term on the right-hand
side of the Eq. (2.18). With the aim of understanding this action, we will use Eq. (2.17) to
rewrite Eq. (2.18) as

e−γm
d
dt (cmeγm) = −

∑
n6=m

cn

〈
ψm

∣∣∣Ḣ∣∣∣ψn〉
∆nm

e−i
∫ t

0 (∆nm(t′))dt′ , (2.22)

where ∆nm = En − Em, is the energy difference between the eigenstates. Now, to set a
time scale to our problem, let us define the parametrized time, s ≡ t/τ , where τ is the
total evolution time. In addition, after defining the quantity

Fnm(s) ≡ cn(s) 〈ψm |dsH|ψn〉 , (2.23)

we find the expression for the dynamical coefficients of a time-dependent Hamiltonian,

cm(s)eγm = cm(0)−
∑
n6=m

s∫
0

Fnm
∆nm

e−iτ
∫ s′

0 ∆nm(s′′)ds′′ . (2.24)

The term in the sum contains our subject, whereby we will derive means to find an adiabatic
condition. Specifically, we will find a way to turn the second term in the right-hand side of
the former equation negligible.

Let us take the integral

I(s) =
s∫

0

Fnm
∆nm

e−iτ
∫ s′

0 ∆mn(s′′)ds′′ds′ , (2.25)
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In order to rewrite the integral, we consider the derivative

d
ds′

(
Fnm
∆2
nm

e−iτ
∫ s′

0 ∆mn(s′′)ds′′
)

= d
ds′

(
Fnm
∆2
nm

)
e−iτ

∫ s′
0 ∆mn(s′′)ds′′

+ Fnm
∆2
nm

e−iτ
∫ s′

0 ∆mn(s′′)ds′′ (−iτ∆nm(s)) ,

= d
ds′

(
Fnm
∆2
nm

)
e−iτ

∫ s′
0 ∆mn(s′′)ds′′ − iτ Fnm∆nm

e−iτ
∫ s′

0 ∆mn(s′′)ds′′ ,

(2.26)

thus

Fnm
∆nm

e−iτ
∫ s′

0 ∆mn(s′′)ds′′ = −i
τ

[
d

ds′

(
Fnm
∆2
nm

e−iτ
∫ s′

0 ∆mn(s′′)ds′′
)

− d
ds′

(
Fnm
∆2
nm

)
e−iτ

∫ s′
0 ∆mn(s′′)ds′′

]
.

(2.27)

I(s) then becomes

I(s) = − i
τ

 Fnm(s)
∆2
nm(s)e

−iτ
∫ s

0 ∆nmds′ − Fnm(0)
∆nm(0) −

s∫
0

d
ds′

(
Fnm(s′)
∆2
nm(s′)

)
e−iτ

∫ s′
0 ∆nmds′′ds′

 .
(2.28)

In the rightmost term, we can use the Riemann-Lebesgue lemma [60] to say that for a
large τ the integrand oscillates in a very high frequency, approaching the integral to zero3.
Consequently, for an adiabatic evolution we must have,

τ � max
n,m

[
max
0<s<1

∣∣∣∣∣〈ψm(s) |dsH(s)|ψn(s)〉
∆2
nm(s)

∣∣∣∣∣
]
, (2.29)

where ds ≡ d/ds. Also, as we can also find in the literature,

max
n,m

[
max
0<s<1

∣∣∣∣∣1τ 〈ψm(s) |dsH(s)|ψn(s)〉
∆2
nm(s)

∣∣∣∣∣
]
≤ ε , (2.30)

where ε� 1 is an arbitrary small real constant. The traditional adiabatic condition states
that the total time of evolution is inversely proportional to the square of the energy
difference between the considered eigenvalues. Therefore, if the condition is satisfied, the
Eq. (2.19) is valid.

The global adiabatic condition we found can be used to derive a local adiabatic
condition. However, we first need to define the concept of interpolation speed. Let s(t) now
be a curve parametrized by the time variable, t, such that

s(t) : {t ∈ [0, τ ] 7−→ [0, 1] ∈ R, s(0) = 0, s(τ) = 1} . (2.31)
3 We can not use the Riemann-Lebesgue lemma in Eq. (2.25) because we will not have a time scale τ for

adiabaticity.
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The interpolation speed is
v(t) ≡ ds

dt , (2.32)

so, this quantity represents how fast the curve s(t) changes as a function of time t.

With this concept in mind together with Eq. (2.30) we can define the local adiabatic
condition,

v(s) |Fmn(s)|
∆2
mn(s) ≤ ε, ∀ s ∈ [0, 1] . (2.33)

This means that the interpolation velocity can increase (decrease) when the quantity
|Fnm(s)|/ (ε∆nm(s)2) decrease (increase) for keeping the global adiabatic condition valid.

It is noteworthy that the adiabatic theorem is exactly satisfied for a time-dependent
system only if the total evolution time goes to infinity. Thus, for finite evolution times, the
final state will always deviate from the desired one. To account for the overlap between
the evolved state, |φ(τ)〉, and the actual instantaneous state, |Ψ(τ)〉, both in time τ , it is
convenient to define the Fidelity between them

F = |〈φ(τ)|Ψ(τ)〉| . (2.34)

Hence, F is equal one if, and only if, the total time of evolution goes to infinity. Nonetheless,
it is possible to find very good approximations to adiabaticity, F ≈ 1, in a finite and
reasonable total dynamics time [61].

2.1.3.1 The adiabatic theorem as a infinite series

The adiabatic approximation can be thought of as a perturbation series in 1/τ and
in the former subsection we found just the first term of the series. Although the adiabatic
condition we calculated up to first order is sufficient for ensuring adiabaticity [28–35, 57],
we can go further and repeat the procedure for finding higher orders of the expansion. To
calculate the next term, let us consider the integral

s∫
0

d
ds′

(
Fnm
∆2
nm

)
e−iτ

∫ s′
0 ∆nmds′′ds′ . (2.35)
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The integrand can be rewritten as

d
ds′

[
d

ds′

(
Fmn
∆3
mn

)
e−iτ

∫ s′
0 ∆mnds′′

]

=
{

d2

ds′2

(
Fmn
∆3
mn

)
− (iτ∆mn) d

ds′

(
Fmn
∆3
mn

)}
e−iτ

∫ s′
0 ∆mnds′′

=
{

d2

ds′2

(
Fmn
∆3
mn

)
+ (−iτ∆mn)

[
F ′mn
∆3
mn

− 3Fmn∆′mn
∆4
mn

]}
e−iτ

∫ s′
0 ∆mnds′′

=
{

d2

ds′2

(
Fmn
∆3
mn

)
− iτ

(
F ′mn
∆2
mn

− 3Fmn∆′mn
∆3
mn

)
− iτ

(
Fmn∆′mn

∆3
mn

− Fmn∆′mn
∆3
mn

)}
e−iτ

∫ s′
0 ∆mnds′′

=
{

d2

ds′2

(
Fmn
∆3
mn

)
− iτ

(
F ′mn
∆2
mn

− 2Fmn∆′mn
∆3
mn

)
+ iτ

Fmn∆′mn
∆3
mn

}
e−iτ

∫ s′
0 ∆mnds′′

=
{

d2

ds′2

(
Fmn
∆3
mn

)
− iτ d

ds′

(
Fmn
∆2
mn

)
+ iτ

Fmn∆′mn
∆3
mn

}
e−iτ

∫ s′
0 ∆mnds′′ .

(2.36)

Therefore, Eq. (2.35) becomes
s∫

0

d
ds′

(
Fnm
∆2
nm

)
e−iτ

∫ s′
0 ∆nmds′′ds′

= i

τ

[
d

ds′

(
Fmn
∆3
mn

)
e−iτ

∫ s′
0 ∆ds′′

]∣∣∣∣∣
s

0
− i

τ

s∫
0

e−iτ
∫ s′

0 ∆ds′′
[

d2

ds′2

(
Fmn
∆3
mn

)
− iτ Fmn∆′mn

∆3
mn

]
ds′ .

(2.37)

After the application of the Riemann-Lebesgue lemma, the integral in Eq. (2.25) is
expanded in a series of the total dynamics time

s∫
0

Fnm
∆nm

e−iτ
∫ s′

0 ∆mn(s′′)ds′′ds′ = −i
τ

Fnm(s)
∆2
nm(s)e

−iτ
∫ s

0 ∆nmds′
∣∣∣∣∣
s

0

− 1
τ 2

[
d

ds′

(
Fmn
∆3
mn

)
e−iτ

∫ s′
0 ∆ds′′

]∣∣∣∣∣
s

0
+ O(τ−3) ,

(2.38)

and the adiabatic condition will now be a maximization over the terms

τ � max
n,m

{
max
0<s<1

[
Fmn(s)
∆2
mn(s) ,

1
τ

d
ds

(
Fmn(s)
∆3
mn(s)

)]}
. (2.39)

2.2 Calculus of variations: The Brachistochrone
In the following, we will formulate the quantum adiabatic brachistochrone. For

this purpose, we will start with a resume of the history of the brachistochrone problem.
Further, we will review the basis of calculus of variations, which will be applied to the
classical brachistochrone problem. Finally, in the following section, the quantum adiabatic
brachistochrone will be defined using an analogy with the classical brachistochrone curve.
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Let us suppose that there are two fixed points, A and B, in distinct vertical
positions. If a mass m slides without friction from A to B, the trajectory time will depend
on the shape of the curve connecting the two points. Finding the curve that leads to
the shortest time is know as the Brachistochrone problem. This term, Brachistochrone,
comes from old Greek and it is an agglutination of two words, “brákhistos” and “khrónos”,
meaning “shortest” and “time”, respectively.

This problem was first formulated by Galileo Galilei who guessed that this curve
would be an arch of a circle. Although it was a very good guess, as represented in Fig. 1(b),
it was wrong [62]. Moreover, the modern formulation and the first solution were given by
Johann Bernoulli in 1696. In his proof, he identified one symmetry in this problem that
also occurs when light propagates through a media with a variable refraction index. Hence,
he used Fermat’s principle, saying if the particle was a light ray it would go through the
shortest time curve, the brachistochrone. During his development, he realized that this was
a challenging task and he decided to send letters inviting the best mathematicians of his
time to face this problem. As expected, due to its difficult, just five letters were respond:
Newton, Jakob Bernoulli (Johann’s brother), Gottfried Leibniz, Ehrenfried Walther von
Tschirnhaus, and Guillaume de l’Hôpital. In spite of the fact that all solutions were
remarkable, the one provided by Jakob Bernoulli was refined by Leonhard Euler and
becomes the foundation of the calculus of variations [63].

The problem of finding the Brachistochrone curve was not the first that opened
the road for the creation of the Calculus of Variation theory, which was Newton’s minimal
resistance problem. However, due to the importance of the Brachistochrone curve and the
impact it had on the scientific community, this problem is a landmark for the calculus of
variations.

2.2.1 Calculus of Variations

The Calculus of Variations concerns finding the extrema of a functional, which can
be a minimum, a maximum of a saddle point. Differently from a function that receives
a point or a vector as input, a functional receives a function as input and returns a real
value. As examples of functionals, we have inner products or definite integrals. Here we
will study definite integrals as functionals using a simplified formulation [64], even though
adequate for our purposes.

Definition 2 (Functional). Let {f(q(s), q′(s), s) : R3 7→ R} be a sufficiently differentiable
known function and q(s) be a function such that{

q : s ∈ [a, b] 7→ R, q ∈ C2, q(a) = qa, q(b) = qb
}

. (2.40)
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Arc. Cycloid

Poly(2)
Linear

Arc. Circle

Exp.

(a) (b)

Figure 1 – (a) An illustration showing the variation of a curve, δq = q − q̄ = εη. (b)
Representation of different curves that obeys the boundary conditions, thereby
being solution of the functional T . Source: Made by the author.

A functional is defined,

A [q] =
b∫
a

f(q, q′, s)ds . (2.41)

In order to minimize a functional, let us define a variation of the function q, as
represented in Fig. 1(a),

Definition 3 (Variation). If η(s) is a twice differential function and obeys the boundary
condition η(a) = η(b) = 0, a neighboring curve of q is

q̄(s) = q(s) + εη(s) , (2.42)

where ε is a real constant. The boundary conditions for η are necessary to ensure that the
neighboring curves also pass through the endpoints, (a, q(a)), (b, q(b)).

Additionally, if q(s) is a known function and an extremum of A[•], then A[q̄]
becomes a function of ε ,

ξ(ε) = A [q̄] =
b∫
a

f(q̄(s), q̄′(s), s)ds . (2.43)

Thus, by construction, the function ξ(ε) must have an extremum in ε = 0. Hence, a
necessary condition for q̄ be an extremum of A[•], is

dξ
dε

∣∣∣∣∣
ε=0

=
b∫
a

(
∂f

∂q

∂q̄

∂ε
+ ∂f

∂q′
∂q̄′

∂ε

)
ε=0

ds = 0 , (2.44)

where we used that q(s) = q̄(s) when ε = 0. Although this result is correct it can be
simplified. Firstly, by using the definition of neighboring curves, Eq. (2.42), one finds that
∂q̄/∂ε = η and ∂q̄′/∂ε = η′. Thus

dξ
dε

∣∣∣∣∣
ε=0

=
b∫
a

(
∂f

∂q̄
η + ∂f

∂q̄′
η′
)

ds = 0 . (2.45)
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Secondly, we can perform an integration by part of the second term inside the integral to
remove η′,

b∫
a

η′
∂f

∂q′
ds = ∂f

dq′η
∣∣∣∣∣
b

a

−
b∫
a

η
d
ds

(
∂f

∂q′

)
ds = −

b∫
a

η
d
ds

(
∂f

∂q′

)
ds , (2.46)

where the left term after the first equality signal is zero due to the boundary conditions
that η is subjected. Thus, Eq (2.44) reads

b∫
a

[
∂f

∂q
− d

ds

(
∂f

∂q′

)]
ηds = 0 ,

∴
∂f

∂q
− d

ds

(
∂f

∂q′

)
= 0 ,

(2.47)

where the second expression, the Euler-Lagrange equation (ELE), was found after the
application of the fundamental Lemma of the Calculus of Variations. When considering
functions, the first derivative test yields the stationary points, but it does not provide
information whether this point is a maximum, a minimum, or a saddle point. This
characteristic can be found using the second derivative test. To determine if the solution
of the ELE is a local minimum, a maximum or a saddle point, one has to apply the second
derivative test [65], (see Appendix A for more details).

The method we used to derive the Euler-Lagrange equation is analog to using
the Gateaux derivative concept [65], but the method we used, as present in analytical
mechanics text books [64], is more intuitive and easy to comprehend for the purpose of
this master’s thesis.

2.2.2 The Classical Brachistochrone Curve

Now, our goal is to understand the meaning of a time functional, which will be
achieved by the formulation and solving the problem of finding the Brachistochrone curve
in a classical mechanics system.

The problem is described as follows: There are two points, A and B, in different
heights, but not in the same vertical line. Then, for a particle that is subjected just to the
gravitational force, what is the curve wherein the moving body travel time is smaller?

This problem requires the minimization of the time, then we can write the total
travel time as an integral,

T =
∫ T

0
dt =

∫ B

A

ds
v(s) . (2.48)

Since we are considering no dissipation, we can evoke the conservation of energy law,
mgy = mv2

2 , thus v =
√

2gy. Moreover, rewriting the space differential as ds =
√

1− x′2dy,
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where x′ = dx/dy, the integral reads

T =
B∫
A

ds
v(s) = 1√

2g

y0∫
0

√
1 + x′2

y
dy . (2.49)

Here we indeed have a functional, because we can choose distinct curves to evaluate this
integral, as Fig 1(b) shows. For instance, we can choose the straight line, a polynomial,
the arc of a circle, etc.

In this problem we have f(x, x′, y) =
√

(1 + x′2)/y, thus the ELE yields

∂f

∂x
− d

dy′

(
∂f

∂x′

)
= 0,

d
dy′

∂
√

(1 + x′2) /y
∂x′

 = d
dy′

 x′√
y (1 + x′2)

 = 0,

∴
x′√

y (1 + x′2)
= C, C ∈ R.

(2.50)

This differential equation can be approached by introducing a parameter α, x′ = tan (α).
Hence,

y = 1
C2

tan (α)2

1 + tan (α)2 = 1
C2 sin (α)2 = 1

2C2 [1− cos (2α)] . (2.51)

In addiction, since x′ = dx/dy,

dx = tan (α) dy

= 2
C2 tan (α) sin (α) cos (α) dα

= 1
C2 [1− cos (2α)] dα

∴ x = 1
2C2 [2α− sin (2α)] +D, D ∈ R.

(2.52)

Finally, noting that D = 0 since y = 0 for x = 0 and rewriting α as θ = 2α we find the
equation of the curve that connects the point A to the point B,

x (θ) = 1
2C2 [θ − sin (θ)] , y (θ) = 1

2C2 [1− cos (θ)] . (2.53)

Therefore, the Brachistochrone we found is an arc of a cycloid. Curiously, the arc of a
cycloid is also the Tautochrone, which is a curve wherein the travel time is invariable by
moving the initial position along it.

2.3 Adiabatic Quantum Brachistochrone
When we proved the quantum adiabatic theorem, we saw that the fidelity between

the evolved state and the target one is 1 if, and only if, the total dynamics time, τ , goes
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to infinity. However, there are no information about τ for when we want to reach fidelities
nearly equal to one. On the other hand, some interpolation functions will fit better to the
adiabatic condition, as the local adiabatic condition shows, thus indicating that τ might be
a function of {qi(s)}. For searching the optimal way, regarding τ , to adiabatically evolve a
quantum system, the authors in the Ref. [40] proposed a method based on the calculus of
variations, on the local adiabatic condition, and on the classical Brachistochrone curve,
the “Quantum Adiabatic Brachistochrone” (QAB).

The time functional for the quantum adiabatic brachistochrone method is defined
with the same arguments used for finding the classical Brachistochrone curve, Sec. 2.2.2.
Thus, we write a time functional based on a speed

τ =
τ∫

0

dt =
1∫

0

ds
v(s) . (2.54)

where s will be a curve parametrized by time, Eq. (2.31). Differently from the classical
problem, here we do not have an expression for v(s), nevertheless we can give an ansatz
for it. Using the expression of the local adiabatic condition, Eq. (2.33), we can define
the adiabatic speed as vad(s) = ε∆2/|Fnm|. Hence, for a quantum system described by
the time dependent Hamiltonian H(s) = ∑

i qi(s)Hi, where the set {qi(s)} is the set of
interpolation functions and Hi are static Hamiltonians, the QAB functional reads

τ [q(s),q′(s)] =
τ∫

0

ds
vad(s) =

1∫
0

Fmn
ε∆2 ds = 1

ε

1∫
0

L′ (q,q′) ds . (2.55)

where L′ (q,q′) is the Lagrangian defined by the equation,

L′ (q,q′) = ||dsH(s)||
∆2(s) . (2.56)

Within the Lagrangian, we changed | 〈ψm(s) |dsH(s)|ψn(s)〉 | by the Frobenius norm
||A|| =

√
Tr(A†A) as to enable a geometric treatment, which investigation is beyond

the scope of this text, though. Additionally, It is noteworthy that the inclusion of the
Frobenius norm does not change the physical meaning of the Lagrangian. To show this, in
Appendix D we prove the identity Tr

[
A†A

]
= ∑

ij |aij|2, where (A)ij = aij. Additionally,
we can write the eigenstates of H using the eigenstates of dsH

|ψj〉 =
∑
i

ai |φi〉 , (2.57)

where (dsH) |φi〉 = λi |φi〉 and λi is the eigenvalue of the Hamiltonian derivative. Thus,

〈ψm |dsH|ψn〉 = 〈ψm|
∑
i,j

(dsH)i,j |φi〉 〈φj| |ψn〉

=
∑
i,j

a∗i bj(dsH)i,j .
(2.58)
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Figure 2 – Scheme for the quantum adiabatic brachistochrone interpretation, where q(s) is
derived from the optimization of the time functional through the Euler-Lagrange
equations. The speed to the interpolation v(s) yielded by the Euler-Lagrange
equation will adapt itself to the local adiabatic condition used in the ansatz,
Eq. (2.60). Since the Lagrangian is not explicitly time-dependent, it will be a
constant resulting the relation on the blue box. Source: Made by the author.

Since the coefficients a and b are normalized, we have

|
∑
i,j

a∗i bj(dsH)i,j| ≤
√∑

ij

|(dsH(s))ij|2 , (2.59)

that is triangular-like inequality. Therefore, when we extremize the Lagrangian with
the Frobenious, we find interpolation functions that also extremize the matrix elements
(dsH(s))ij, thereby optimizing a Lagrangian with the norm | 〈ψn |dsH|ψm〉 |.

For avoiding the square-root of the Frobenius norm, we can square the Lagrangian,
because it is not explicitly time-dependent (see Appendix C). Therefore, the quantum
adiabatic Lagrangian is given by the equation

L (q,q′) = ||dsH(s)||2
∆4(s) . (2.60)

Since the constant ε is arbitrarily small and does not contribute to the Euler-
Lagrange equations, the integration of the functional in Eq. (2.55) will not yield the exact
total time of the dynamics, which is found after integrating the Schrödinger equation.
Therefore, we can physically interpret τ [q, q′] as a functional, whose extremization yields
the functions that will better fit to the adiabatic condition used in the ansatz vad(s). Fig. 2
illustrates this interpretation. The population flow from the instantaneous eigenstate to the
closest one, concerning the lowest energy gap, is proportional to the adiabatic coefficient

γ = ||dsH(s)||
∆2(s) , (2.61)

and when it increases (decreases), the dynamics, given by v(s), slowdown (speed up).
With this interpretation, the QAB method allows us to define different Lagrangians by
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using others adiabatic conditions, thereby being a heuristic-like method for finding optimal
interpolation functions.
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3 Adiabatic Grover algorithm with resources
limitations

Quantum computing uses quantum systems to perform computation [66–68]. The
digital logic gates paradigm [69–72] executes algorithms by applying a sequence of quantum
gates. This Turing complete computation method can be implemented using supercon-
ducting qubits [17], trapped ions [73], photonics systems [74], etc [13, 75]. Two benchmark
algorithms of this method that paved the way for quantum computing were the Shor
algorithm [76], that factors numbers in polynomial time, and the Grover algorithm [77],
that provides a quadratic speed up over the classical unstructured search. Similarly, the
adiabatic quantum computing (AQC) [78] is an analog quantum computation paradigm [78–
80] that explores adiabatic evolutions [22, 81] to implement a Turing complete formalism
of computation. This model of quantum computation has been implemented in quan-
tum annealers for optimization tasks, allowing, in the same cases, for speeding up the
information processing over its classical counterpart [3, 43, 82, 83].

In AQC, an algorithm is formulated by choosing a set of time-dependent functions,
{qn(t)}, used to define a driver Hamiltonian, H(t) = q0(t)H0 + q1(t)H1, where H0 has a
trivial ground state and H1 encodes the problem solution in its ground state. Although the
AQC can explore quantum advantages to speed up computational tasks, they demand an
adequate choice of the set {qn(t)}. For example, the adiabatic Grover algorithm [84] is as
efficient counterpart by logic gates, but if non adequate interpolation functions are chosen,
the algorithm loses its quantum advantage [36]. Furthermore, concerning the experimental
implementation of this algorithm, we see that it also has some potential problems to
achieve it in large scales. The main drawback is to build a scalable oracle-like projector
for which it is necessary a system with an infinite dimension [85]. In spite of that, some
implementations were made [86, 87]

Here, we addressed the Quantum Adiabatic Brachistochrone (QAB) for optimizing
the adiabatic Grover algorithm [84]1. This algorithm has being studied for the last two
decades [36, 84, 88, 89], nonetheless the QAB for a general set of interpolation functions
has not been found yet and analysis concerning executions of the algorithm with limited
resources are missing. The purpose of this Chapter is to perform a numerical analysis of
the QAB method applied to the adiabatic Grover algorithm. We imposed constraints to
the functions based on experimental constraints. Also, we considered all the interpolation
functions expanding the same energy during the Grover’s execution. This Chapter is
organized as follows: We first review the mathematical formulation of the Grover algorithm.
1 Preliminary results.
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In Sec. II, we demonstrate the correspondence between the method for finding {qn(t)}
using a local evolution and the QAB. Additionally, we define a Lagrangian for a general
polynomial and find the Hamilton equations for the non-constrained Lagrangian. In section
III we analyse the energy efficiency of the interpolation functions and their efficiency when
energy is a limited resource.

3.1 Adiabatic Grover algorithm
The Grover algorithm in the adiabatic quantum computation assumes the form of

the time-dependent Hamiltonian,

H(s) = q0(s) (I − |ψ〉 〈ψ|) + q1(s) (I − |m〉 〈m|) , (3.1)

where we used ~ = 1, |ψ〉 = 1/
√
N
∑
i |i〉 is the superposition of all eigenstates of the

identity operator, |m〉 is the target eigenstate, and s is the parametrized time, Eq. (2.31).
We also have the function that performs the interpolation, thereby having the boundary
conditions q0(0) = q1(1) = 1 and q0(1) = q1(0) = 0.

The eigenvalues of this Hamiltonian can be found by defining a state |m⊥〉, that is
perpendicular to |m〉, such that |ψ〉 is given by

|ψ〉 = α|m⊥〉+ β |m〉 . (3.2)

The coefficients are then calculated by exploring the internal product between the target
state, |m〉, and |ψ〉

〈m|ψ〉 = 〈m|
N∑
i=1

1√
N
|i〉 = 1√

N

N∑
i=1
〈m|i〉 = 1√

N
. (3.3)

The other coefficient is β =
√

(N − 1)/N due to the normalization condition. Now, it is
possible to define a subspace of the Hamiltonian using these two orthogonal states,

H|m⊥〉,|m〉 =
 〈m |H|m〉 〈m|H|m⊥〉
〈m⊥|H|m〉 〈m⊥|H|m⊥〉

 . (3.4)

The first matrix element is,

〈m |H|m〉 = 〈m| [q0(s) (1− |ψ〉 〈ψ|) + q1(s) (1− |m〉 〈m|)] |m〉

= q0(s)
(

1− 1
N

)
.

(3.5)

The off-diagonal elements are equal due to the Hamiltonian hermicity and they are

〈m|H|m⊥〉 = 〈m| [q0(s) (1− |ψ〉 〈ψ|) + q1(s) (1− |m〉 〈m|)] |m⊥〉

= q0(s)
√N − 1

N2

 (3.6)
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Finally, the last element is〈
m⊥ |H|m⊥

〉
=
〈
m⊥

∣∣∣ [q0(s) (1− |ψ〉 〈ψ|) + q1(s) (1− |m〉 〈m|)]
∣∣∣m⊥〉

= q0(s)
(

1− N − 1
N

+ q1(s)
)

= q1(s) + q0(s)
N

.

(3.7)

The diagonalization of the subspace of the Hamiltonian, Eq. (3.4), yields the energies,

E± =
q0(s) + q1(s)±

√
(q0(s)− q1(s))2 − 4q0(s)q1(s)/N

2 . (3.8)

The other eigenvalues of the Grover’s Hamiltonian are found by considering an eigenvector,
|u〉 out of the subspace formed by |m〉 and |m⊥〉, which means that 〈u|m〉 = 〈u|m⊥〉 = 0.
Therefore,

〈u |H|u〉 = q0(s) + q1(s) . (3.9)

Since the Hamiltonian has N eigenstates, we will have N − 2 eigenvectors with energy
equal to q0(s) + q1(s). In summary, the energies of the Grover Hamiltonian are

E± =
q0(s) + q1(s)±

√
(q0(s)− q1(s))2 − 4q0(s)q1(s)/N

2 ,

EN−2 = q0(s) + q1(s) .
(3.10)

From the energy gap, ∆(s) = E+ − E−, and the set of eigenstates of H(s), it is
possible to estimate the adiabatic time Tad from the standard condition to adiabaticity
given by [29, 30]

τ � Tad = max
n,m

[
max
s∈[0,1]

(
| 〈En(s)|H ′(s) |Em(s)〉 |

∆2
nm(s)

)]
, (3.11)

where |Em(s)〉 are the eigenstates of H(s) and ∆nm(s)=En(s)− Em(s) is the energy gap
between |En(s)〉 and |Em(s)〉. Here, the parameter s= t/τ is the normalized time and we
denote f ′(s) = df(s)/ds. From the above equation, we obtain the adiabatic constraint
over the total evolution time τ , in which the adiabatic evolution is expected to be achieved
only when τ�Tad. Because Tad is obtained from an maximization in time, it is clear the
role of a good choice of the functions qn(s).

Moreover, we can find that 〈E+ |dsH(s)|E−〉 ≤ 1, meaning that this term does
not scale with the number of elements in the database. Now, using the global adiabatic
condition, Eq. (3.11), and the linear ‘ramp’ interpolation (q0(t) = 1− t/τ and q1(t) = t/τ)
we find Tad = N , which is a loss of the quantum speed up over the classical unstructured
search [36].

Alternatively, we can derive a better parametrization if we idealize a curve that can
adapt to the system eigenspectrum, which is done by using the local adiabatic condition,
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Eq. (2.33). Let us consider q0(s) = 1 − s(t) and q1(s) = s(t). Further, from the local
adiabatic condition, we give a ansatz for a interpolation speed

v(s) 1
ε∆(s)2 ≤ ε → vad(s) = ε∆(s)2 . (3.12)

Hence, we have the ordinary differential equation

ds
dt = ε∆(s)2 = ε

[
1− 4s (1− s) N − 1

N

]
, (3.13)

that, when integrated from 0 to t, yields

t = 1
2ε

N√
N − 1

{
arctan

[√
N − 1 (s− 1)

]
+ arctan

(√
N − 1

)}
. (3.14)

Evaluating Eq. (3.14) in s(τ) = 1 and expanding it for N � 1 we find

τ � O
(√

N
)

, (3.15)

where, by construction, we considered ε � 1. This result means that it is possible to
find an interpolation process that improves the algorithm order of complexity to O(

√
N),

showing, as expected, that the adiabatic quantum computing and the quantum logic gates
paradigm are equivalent. In addition, the inversion of Eq. (3.14) becomes

t/τ = 1
2

arctan
[√
N − 1 (2s− 1)

]
arctan

[√
N − 1

] + 1
2 ,

∴ s(t) = 1
2 +

tan
[
(2t/τ − 1) arctan

(√
N − 1

)]
2
√
N − 1

.

(3.16)

The method we used in this section to optimize the adiabatic interpolation does
not comprehend all features of the physical system, since we had to set a linear constraint
to the interpolation functions, q0(s) = 1− q1(s), for finding the optimization. In the next
section, we will use the quantum adiabatic brachistochrone, Sec. 2.3, for generalizing this
procedure.

3.2 Grover brachistochrone
A more general method for finding interpolation functions is the quantum adia-

batic brachristochrone [40], as we described in Sec. 2.3. In the former section, we find
an optimization for the Grover algorithm by defining a differential equation from the
interpolation speed and solving it. For the QAB, the interpolation functions are found by
solving the Euler-Lagrange equations of the QAB time functional. The Lagrangian of the
adiabatic Grover algorithm reads

L =
(q′0 + q′1)2 − 2

N
q′0q
′
1[

(q0 − q1)2 + 4
N
q0q1

]2 , (3.17)
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where we omitted the dependence of s in the interpolation functions q0 and q1, for simplicity.
Again, the energy gap ∆(s) between the instantaneous ground state and first excited one
is

∆(s) = E+(s)− E−(s) =
√

(q0(s)− q1(s))2 + 4
N
q0(s)q1(s) . (3.18)

3.2.1 Constraints

The Euler-Lagrange equations of the Lagrangian as it is in Eq. (3.17), as far as we
know, do not have an analytical solution. Nonetheless, we can impose constraints to the
functions for finding analytical solutions and then study their physics. These constraints
are, in general, mathematical tricks without any physical interpretation, but they can be
determined based on physical characteristics of the problem, as we will see in the next
subsection.

For a general polynomial constraint, qα0 + qα1 = 1, where α is a real constant, the
Lagrangian is expressed as

L = q′02

[
1− (1− qα0 ) 1

α
−1qα−1

]2
+ 2

N
(1− qα0 ) 1

α
−1qα−1

0[
(q0 − (1− qα0 ) 1

α )2 + 4
N
q0(1− qα0 ) 1

α

]2 . (3.19)

Using that the Lagrangian is not explicitly time-dependent and the Beltrami’s identity
(see Appendix B)

L − q′0
∂L
∂q0

= C . (3.20)

Then, we can use C = −1, since the Euler-Lagrange equations are invariant by multiplica-
tive factors. Therefore, the new Euler-Lagrange equation reads

1 = q′20

[
1− (1− qα0 ) 1

α
−1qα−1

0

]2
+ 2

N
(1− qα0 ) 1

α
−1qα−1

0[
(q0 − (1− qα0 ) 1

α )2 + 4
N
q0(1− qα0 ) 1

α

]2 , (3.21)

from which it is derived the expression

s(q) =
∫ q

0

√
gdq , (3.22)

where

g =

[
1− (1− qα0 ) 1

α
−1qα−1

0

]2
+ 2

N
(1− qα0 ) 1

α
−1qα−1

0[
(q0 − (1− qα0 ) 1

α )2 + 4
N
q0(1− qα0 ) 1

α

]2 . (3.23)

To find q0(t), it is necessary to solve the integral in Eq. (3.22) and then invert the function
s(q0). We solved it numerically using the SciPy library [90].

The linear constraint, α = 1, yields the same interpolation function given in
Eq. (3.16), showing that ignoring the term | 〈ψn |dsH(s)|ψm〉 | is equivalent to considering
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the Lagrangian formalism. Thus, we conclude that the QAB is a generalization of the
optimization proposed in the Ref. [36]. For the quadratic constraint, α = 2, it is possible to
find the interpolation function numerically. We also can solve this problem by performing
the change of variables q0 = cos(ω(s)) and solve numerically the Euler-Lagrange equation
for the new canonical variable ω(s) ∈ {0, π/2} [89].

3.2.2 The unconstrained case

For the general Lagrangian, Eq. (3.17), the Euler Lagrange equations are not
separable, which makes the numerical treatment non straightforward. In order to simplify
the equations and the numerical method, we do a Legendre transform on L with respect
to q′0 and q′1, which yields the Hamiltonian

H =
1∑
i=0

q′ipi − L

= ∆4
[
β (p0 + p1)2 + ηp0p1

]
= L(q0, q1, q

′
0, q
′
1)|pi=∂L/∂q′ ,

(3.24)

where pi = ∂L/∂q′i, β = N2/(4(N−1)(2N−1)), and η = −N/(2(N−1)). Let us note that
H is equal to L, implying that dH/ds = dL/ds = 0. Then, the Euler-Lagrange equations
derived from the Lagrangian L′ = ||H′(s)||

∆2(s) and L = L′2 will have the same motion equations
(see Appendix C). For L, the Hamilton canonical equations read

p′0 = 4
[
ηp0p1 + β(p0 + p1)2

] (
q1 − q0 −

2
N
q1

)
∆3 ,

p′1 = 4
[
ηp0p1 + β(p0 + p1)2

] (
q0 − q1 −

2
N
q0

)
∆3 ,

q′0 = ∆4 [ηp1 + 2β(p0 + p1)] ,
q′1 = ∆4 [ηp0 + 2β(p0 + p1)] ,

(3.25)

and can be approached by standard numerical methods. In this master’s thesis, we solved
this boundary value problem using the SciPy python library [90].

3.2.3 Fixed power constraint

In laboratories, there can be physical limitations, such as a limitation of resources
available for a temporal evolution, that reflect in the experiment results. For instance,
in the Ref. [1] the interpolation functions were constrained by power limitation by the
arbitrary-wave generator (see Sec. 4.4 for more details). By considering this restriction on
the instantaneous energy variation, one can impose a constant power constraint (CPC),
which will fix the instantaneous power consumption during all the evolution. The mean
energy cost to drive the Hamiltonian from 0 to τ [91–93] is given by

Στ = 1
τ

τ∫
0

||H(t)||dt =
1∫

0

||H(s)||ds . (3.26)
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The power required to move the system from t to t+ dt is the energy variation

P(t) = d
dt (Στ )

∝ ||H(t)|| ,
(3.27)

but since we will equal this quantity to a constant, we will consider, without loss of
generalization,

|H(s)||2 = (q0(s) + q1(s))2 − 2q0(s)q1(s)
N

= 1 . (3.28)

After fixing ||H(s)||2, thus fixing P(t) = ‘constant’, the function q1(s) becomes

q1(s) = −q0(s)
(

1− 1
N

)
±
√

1 + q2
0(s)1− 2N

N2 . (3.29)

To establish a relationship with the linear constraint, one can take just the plus sign before
the square root, since in the limit N � 1 the fixed power constraint is approximated to
the linear constraint. The Lagrangian for the CPC reads,

LCPC = q′20[
N − q2

0

(
2− 1

N

)]
× 1[

N − 2q0
(
2− 3

N

) (
q0
(
1− 1

N

)
+
√

1 + q2
0

1−2N
N2

)]2 ,
(3.30)

which was solved numerically using the Beltrami’s identity scheme presented in Sec. 3.2.1.

3.2.4 Results

The Fig. 3(a) shows the dynamics total time for a fixed fidelity, F = 0.99, between
the evolved state and the target one |m〉, as a function of

√
N for different interpolation

functions. In this graph we consider the same boundary conditions, q0(0) = q1(τ) = 1
and q0(τ) = q1(0) = 0, for all protocols. The unconstrained brachistochrone yielded a
greater efficiency, while the linear function, q0 = 1− s = 1− q1 the worst. Additionally,
the quadratically constrained brachistochrone yielded an algorithm time complexity equal
to O(N0.64), Fig. 3(c), thereby increasing the algorithm time complexity in almost 50%.
This behaviour may be due to the non-linearity this constraint introduces in the motion
equations. The physical interpretation of these results is supported by Fig. 3(b), which
shows the adiabatic time Tad, Eq. (3.11), as a function of the square-root of the numbers
of items in the database. The curves in the Fig. 3(b) have the same inclination for the
scaling time of the algorithm, indicating that evaluating the quantity τad. is a possible
and efficient method for comparing different sets of functions {q0, q1} without solving the
dynamics, consequently saving computational resources.
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a

Figure 3 – (a) and (b) dynamics time for reaching the fidelity between the target state
and the evolved state fixed in 0.99 and the adiabatic time, respectively, as
functions of

√
N for different interpolation functions. The purple circles repre-

sent the linear interpolation, the blue diamonds represent the unconstrained
brachistochrone, the red squares the brachistochrone with the linear constraint,
the black hexagons the brachistochrone with the constant power constraint,
and green inverted triangle quadratically constrained brachistochrone. (c) the
partial simulations for the quadratic brachistochrone for the fidelity between
the target state and the envolved state fixed in 0.99 as function of

√
N for N

scaling up to 550, wherein we find that τqb ∝ N0.64±0.1. Source: Made by the
author.

3.3 Energetic and power cost of quantum evolutions
Another resource that must be taken into account is the mean energy cost for

executing the algorithm. For example, when the energy is not a limited resource, it
is possible to reach a constant time complexity, O(1), by exchanging time for energy
expenditure by using short-cuts to adiabaticity [91]. For measuring this resource usage, we
will consider the mean energy cost as defined in Eq (3.26),

Στ =
1∫

0

√
||H(s)||ds =

1∫
0

√
E2

+(s) + E2
−(s) + (N − 2)E2

d(s)ds . (3.31)

The quantity Στ of the linear interpolation, q0 = (1 − s) and q1 = s, has an analytical
solution

Σlinear
τ = 1

4

√
N − 1
N

[
2
√
N +

√
2 (2N − 1) arctanh

(
1√
2N

)]
, (3.32)

which, for N � 1 is Σlinear
τ ∝

√
N . For all interpolation functions, the mean energies were

computed, as Fig. 4(b) shows. All of them scale with
√
N , but with different inclinations.
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Figure 4 – (a) τ for reaching a fixed fidelity equal to 0.99 times Στ as a function of
the square root of the number of items in the database. (b) Στ for different
interpolation functions as a function of

√
N . The purple circles represent the

linear interpolation, the diamonds the unconstrained brachistochrone, the
squares the brachistochrone with the linear constraint, the black hexagons the
brachistochrone with the cpc, and the green inverted triangles the quadratically
constrained brachistochrone. Source: made by the author.

The unconstrained brachistochrone has almost the same energy expenditure of the linear,
but the quadratically constrained brachistochrone shows higher values for Στ . The Fig. 4(a),
shows that the curves for the mean energy times the total dynamics time do not diverge
from the curves in Fig. 3(a), indicating that resource τΣτ , in the scenario where all the
interpolation functions have the same boundary conditions, is not a good parameter to
evaluate the efficiency of the algorithm, since it does not give further information regarding
the scaling. Also, Fig. 4(b) shows that the quadratically brachistochrone curve spends
more energy for the evolution, although having the same scaling, Σqc ∝

√
N . This indicates

that there is not a clear relation between the energy the process demands and its time
efficiency.

3.3.1 Fixed Στ scenario

For establishing a reference, we set to all adiabatic processes the energy expenditure
of the linear function. The Fig. 5(a) shows the total dynamics time, τ for a fixed process
fidelity, as a function of the number of items in the database when all the interpolation
functions have the same mean energy, Σlinear

τ . The results show that the protocols with the
linear constrained and the CPC Brachistochrones become faster than the others functions.
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Figure 5 – (a) Total dynamics time for reaching the fidelity between the target state and
the evolved state fixed in 0.99 and (b) the adiabatic time in function of

√
N for

different interpolation functions with the same energy cost. The purple circles
represent the linear interpolation, the diamonds represent the unconstrained
brachistochrone, the squares the brachistochrone with the linear constraint,
the black hexagons the brachistochrone with the constant power constraint,
and green inverted triangle quadratically constrained brachistochrone. Source:
Made by the Author.

This result demonstrates that the linear constrained and the CPC brachistochrones have
a greater energy efficiency among all the others functions considered here. In other words,
the curves of these constraints fit better to the adiabatic condition without spending as
much energy as the non-constrained brachistochrone.

3.4 Conclusion of this Chapter
We analyzed the application of the quantum adiabatic brachistochrone to the

adiabatic Grover algorithm for testing mathematical and physical constraints and also the
performance of the algorithm for when the mean energy cost and instantaneous power
consumption are limited. Through the Beltrami’s identity, we showed that the procedure
carried out in the Ref. [36] for optimizing the evolution is equivalent to consider the
QAB method with the linear constraint. Since finding the scaling of the algorithm by
solving the Schrödinger equation is a computationally expensive task, we demonstrated
that one can use the adiabatic time for satisfactorily finding this property. This means
that it is necessary just to find the interpolation functions. We found the unconstrained
brachistochrone numerically, which has yielded the smaller algorithm time execution, as
our simulations indicates for the scale of N we tested, although no qualitative gain over
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the linear and constant power constraints was observed. Concerning the analysis with
mean energy limitation, we showed that the simple linear function, the linear constrained
and the CPC brachistochrone curves present almost the same mean energy, while the
unconstrained brachistochrone is slightly higher. When we impose the same energies for all
interpolation functions, the linear brachistochrone and the one with fixed power become
the most efficient functions, despite being qualitatively the same as the brachistochrone
with no constraints.
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4 Superconducting quantum battery

Mastering industrial processes for building smaller transistors powered up the devel-
opment of computer sciences, from which modern science relies on. Now, the development
and expansion of quantum information and quantum thermodynamics as general areas
have been instigating the engineering of quantum devices, which have been yielding new
theoretical findings and applications [94]. These new quantum technologies are showing
to be relevant in many areas. For example, in quantum metrology [95] these devices
were crucial in measuring the gravitational waves [96]. In quantum cryptography, it was
established a secure communication channel between two locations 1000 km apart [97].
Furthermore, quantum computing has a promising role in solving physics, chemical, and
logistic problems that are untreatable by classical computers [98].

Moreover, in classical circuits there are components storing energy, like capacitors.
Similarly, this class of device will also have an important role in quantum engines. However,
in quantum apparatus, the device that stores energy must store energy in a quantum way
for preserving the desired characteristic of this regime, such as coherence and correlation.
Many quantum system were proposed for storing extractable energy, some of them use as
resource quantum coherence [99, 100], entanglement [101] or atomic excitation [18, 100].
Differently for classical devices, quantum devices are sensible to the charging process, which
means that it must be done according to some rules. For instance, quantum batteries that
use adiabatic dynamics in their charging process, must respect the adiabatic condition and,
for ensuring time efficiency, it is necessary to optimize the charging protocols. Additionally,
as same as classical batteries, quantum batteries lose charge to the environment, but due
to decoherence. Since the capacity to a system retains its charge will be a threshold for
potential applications, it is necessary to characterize its self-discharging behavior.

In this Chapter, we theoretically describe the experiment about the charging process
of a quantum battery and its self-discharging process we reported in collaboration with
Prof. Dapeng Yu’s research group [1]. Our quantum battery is a superconducting transmon
qubit, that simulates a three-level atom. Therefore, the charging process means to drive
the atom population that is initially on the ground state to the second excited one. This
dynamics can explore the dark-state of the system, allowing a stable charging process or it
can explore the unstable charging process, which populates the first excited state during the
time evolution. For optimizing this process, we used the quantum adiabatic brachistochrone,
described in Sec. 2.3. We finish this Chapter by showing that the self-discharging process
of our quantum battery has a super-capacitive behaviour.
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4.1 Three-level quantum battery
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Figure 6 – (a) Illustration of the transmon superconducting that can be used, indeed it
was what we used to implement our system. The device is composed by a
superconductor, a Josephson junction that introduces an anharmonicity, the
readout line and the XY line that connects classical microwave fields that will
couple the eigenstates. Source: Made by the author.

In a superconductor [15, 16], the Cooper’s pairs move freely and, when one couples
a resonant field to this system, the electrons start to behave as harmonic oscillators, where
we have the same energy energy gap between all the transitions. Thus, when a field couples
with a transition level, it couples with all transition levels, therefore it is not possible
to select the atomic levels we want. In the transmon superconducting device, Fig. 6(a),
there is a Josepheson Junction, that imposes a potential barrier to the electrons. This
effect will make part of the wave function transmit through this barrier and part of the
electrons will be reflected, thereby introducing an anharmonicity to the system. In the
new Hamiltonian, the transition frequencies between eigenstates will be different and a
field coupling the transition from the group state to the first excited one will not see the
other transitions in the system. Therefore, with two fields we implemented the charging
process of the three-level quantum battery.

The Hamiltonian that describes the quantum battery and the time-dependent
system that will inject energy in the system is

H(t) = H0 +Hc(t) , (4.1)

for

H0 =
2∑

n=1
~ωn−1,n |εn〉 〈εn| ,

Hc(t) = ~Ω0(t)e−iω1t/~ |ε0〉 〈ε1|+ ~e−iω2t/~Ω1(t) |ε1〉 〈ε2|+ h.c. .
(4.2)

H0 represents the Hamiltonian of a three level system with a ladder-like energy level
configuration, ε0 < ε1 < ε2, |εn〉 is the state of the n-th energy level, ~ωn−1,n = εn, and we
consider ε0 = 0. The time-dependent Hamiltonian, Hc(t), is responsible for charging the
battery. Also, we note that the omegas ωi are the field frequency, which are in resonance
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with the respectively atomic transitions, ω1 = ω0,1 and ω2 = ω1,2, and the Ωi(t) is the
Rabi frequency. Since we are interested in charging the battery, we can study the dynamic
process due to the charging Hamiltonian, which can be done in the rotation frame

Hrf = eiH0t/~ [H0 +Hc(t)] e−iH0t/~ + i~
d
dt
(
eiH0t/~

)
e−iH0t/~

= eiH0t/~Hc(t)e−iH0t/~

= ~Ω0(t) |ε0〉 〈ε1|+ ~Ω1(t) |ε1〉 〈ε2|+ h.c.

(4.3)

Expressed as a matrix, we have

Hrf = ~


0 Ω0(t) 0

Ω0(t) 0 Ω1(t)
0 Ω1(t) 0

 , (4.4)

which has the eigenvalues

E±(t) = ±∆(t), E0 = 0 , (4.5)

where ∆(t) = ~
√

Ω2
0(t) + Ω2

1(t) is the energy gap between subsequent eigenvectors. Also,
the eigenstates of Hrf are

|E±〉 = 1√
2

[
Ω0(t)
∆(t) |ε0〉 ± |ε1〉+ Ω1(t)

∆(t) |ε2〉
]
, |E0〉 = Ω1(t)

∆(t) |ε0〉 −
Ω0(t)
∆(t) |ε2〉 . (4.6)

The results in the equation above show that it is possible to charge the battery in two
distinct ways. The first protocol is using the superposition of the states with non-zero
energy, which is the bright state and it reads∣∣∣ψbright(t)

〉
= 1√

2
(|E+(t)〉+ |E−(t)〉) . (4.7)

For completeness, we emphasize that
∣∣∣ψbright(0)

〉
= |ε0〉 and

∣∣∣ψbright(τ)
〉

= |ε2〉. The dark
state protocol uses the zero-energy state,∣∣∣ψdark

〉
= |E0(t)〉 . (4.8)

Experimentally, for implementing the bright or dark states the boundary conditions

“bright passage”,

Ω0(0) = Ω1(τ) = 1

Ω0(τ) = Ω1(0) = 0
, “dark passage”

Ω0(0) = Ω1(τ) = 0

Ω0(τ) = Ω1(0) = 1
. (4.9)

Therefore, using both boundary condition one can drive the population of the battery
from the ground state to the second excited state.

So far we have described the battery charging process. Now, for measure the amount
of extractable work in the battery we will use the ergotropy [102]

E(t) = Tr [ρ(t)H0]−min
U∈U

{
Tr
[
Uρ(t)U †H0

]}
, (4.10)
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where the second term in the right-handed side of the equation is a minimization over all
the unitary operators acting on the system. Since the battery population is initially on
the ground state and the charging, the ergotropy after the charging is over is

E(t) = Tr [ρ(t)H0]− Tr [ρ0H0]
= Tr [ρ(t)H0]− ε0 .

(4.11)

The maximum value that the ergotropy can assume is Emax = ε2 − ε0, which is achieved
when the battery is fully charged.

Suppose we perform a Schrödinger adiabatic evolution using the bright charging
protocol, the evolved states will be

∣∣∣ψbright(t)
〉

= 1√
2

{
e−(i/~)

∫ t
0 E+(t′)dt′ |E+(t)〉+ e−(i/~)

∫ t
0 E−(t′)dt′ |E−(t)〉

}

= e−(i/~)
∫ t

0 E+(t′)dt′

√
2

[
Ω0(t)
∆(t) |ε0〉+ |ε1〉+ Ω1(t)

∆(t) |ε2〉
]

+ e−(i/~)
∫ t

0 E−(t′)dt′

√
2

[
Ω0(t)
∆(t) |ε0〉 − |ε1〉+ Ω1(t)

∆(t) |ε2〉
]
,

(4.12)

and, regrouping the terms

∣∣∣ψbright(t)
〉

=
cos

(
θ̃(t)

)
∆(t) [Ω0(t) |ε0〉+ Ω1(t) |ε2〉]− i sin

(
θ̃(t)

)
|ε1〉 , (4.13)

where θ̃(t) =
∫ t
0 ∆(t′)dt′. Evaluating the system ergotropy for this initial state, we find

that

Ebright(t) =
〈
ψbright(t) |H0|ψbright(t)

〉
− 〈ε0 |H0| ε0〉

= ε2
cos2

(
θ̃(t)

)
∆2(t) Ω2

1(t) + ε1 sin2
(
θ̃(t)

)
.

(4.14)

where we used ε0 = 0, as we defined in Eq. (4.2). In the quantity Ebright we see harmonic
terms (sin and cos), which have a defined period τc. Therefore, if the total charging time,
τ , is exactly τc, the battery will be fully charged. However, if τ > τc then Ebright(τ) < Emax.
The unstable behaviour of the ergotropy for the bight-state charging protocol is due
destructive and constructive interference processes that happens during the evolution of
the complex phases, which can both enhance and diminish the injection of ergotropy in
the battery.

Furthermore, the dark state adiabatic evolution yields the very same dark state∣∣∣ψdark(t)
〉

= e−(i/~)
∫ t

0 E0(t′)dt′
∣∣∣ψdark(0)

〉
= |E0(t)〉 ,

(4.15)
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since E0 = 0. Thus, an adiabatic evolution stating with the dark state leads to the
ergotropy

Edark(t) =
〈
ψdark(t) |H0|ψdark(t)

〉
− 〈ε0 |H0| ε0〉

= ε2Ω2
0(t) + ε0Ω2

1(t)
∆2(t)

= ε2Ω2
0(t)

∆2(t) .

(4.16)

From the ergotropy analysis, we note the different natures of the charging protocols
and how they change the behaviour of the charging process. In the bright passage, the
ergotropy exhibit the oscillatory behavior, but, if the battery is already characterized,
one can fully charge it and then turn of the fields, thereby keeping the maximum stored
energy until decoherence acts on the system. On the other hand, the dark state charging
allows the to keep the fields on, increasing the robustness of the battery against relaxation
process.

4.2 The Brachistrochrone
As we saw in the former section, the charging protocol we want demands the initial

state, |ε1〉 therefore, our interpolation functions are the fields that couple the system states,
Ω0 and Ω1. Additionally, the energy gap is ∆(s)2 = Ω2

0(s) + Ω2
1(s). With this information,

we can derive the Lagrangian for the quantum battery charging process. The Lagrangian
numerator, for f ′ = df/ds, is

dsHint(s) = ~Ω′0(s) |ε1〉 〈ε2|+ ~Ω′1(s) |ε2〉 〈ε3|+ h.c. , (4.17)

which, multiplied by its conjugated yields the quantity

dsH†intdsHint = 2~2
(
Ω′ 21 + Ω′ 20

)
|ε2〉 〈ε2|+ ~2Ω† ′0 Ω† ′1 |ε3〉 〈ε1|+ ~2Ω′0Ω′1 |ε1〉 〈ε3| ,

∴ Tr
[
dsH†int(s)dsHint(s)

]
= 2~2

(
Ω′ 20 + Ω′ 21

)
,

(4.18)

where we omitted the s dependence for simplicity. Thus, the Lagrangian for this system is

L = Ω′ 20 (s) + Ω′ 21 (s)
[Ω2

0(s) + Ω2
1(s)]2

, (4.19)

where we removed the multiplicative constant 2/~2, since the Euler-Lagrange equations are
invariant to them. The Euler-Lagrange equations applied to Eq. (4.19) yield the system of
coupled second-order differential equations

(Ω2
1 + Ω2

2)Ω̈1 − 2
(
2Ω2Ω̇1Ω̇2 + Ω1(Ω̇2

1 − Ω̇2
2)
)

= 0,

(Ω2
1 + Ω2

2)Ω̈2 − 2
(
2Ω2Ω̇1Ω̇2 − Ω2(Ω̇2

1 − Ω̇2
2)
)

= 0 ,
(4.20)
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which, as far as we know, do not have an analytical solution, but it is possible to solve it
using the standard numerical methods, as it is in Fig. (7).

Now, for solving the Euler-Lagrange equations, we can use the linear constraint,
Ω̃0(s) + Ω̃1(s) = 1, for Ω̃i = Ωi/Ωmax. The Lagrangian now reads

L = 2 Ω̃′ 20[(
1− Ω̃0

)2
+ Ω̃2

0

]2 , (4.21)

and its Euler-Lagrange equation, using the Beltrami’s identity, is

Ω̃′0(s) = C
[(

1− Ω̃0
)2

+ Ω̃2
0

]
. (4.22)

After integrating this equation and adjusting the integration constants to the boundary
value problem, we find the interpolation

Ω0 = Ωmax

2 + Ωmax

2 tan
[
π (1− 2s)

4

]
, (4.23)

for finding Ω1 one has to substitute Ω0 is the constraint. Let us note that Ω0, as is the former
equation, concerns the charging process using the bright passage. In the dark passage, since
we turn on Ω1(s) first, we have Ωdark

1 (s) = Ωbright
0 (s), where the superscript regards the

type one the charging process. The motivation for applying the linear constraint does not
come from a physical interpretation, but it is a mathematical tool, that allows us to solve
the Euler-Lagrange equation analytically without introduce any additional non-linearity
to the problem. Moreover, we can evoke some physical characteristic for this system for
defining constraints. One important resource in the charging, is the instantaneous power
need to move the system from s to s+ ds [91–93]

P(s) = ||H(s)||2

= ~2
[
Ω2

0(s) + Ω2
1(s)

]
.

(4.24)

Therefore, if we want to invert the system populating adiabatically using the same power
in every time interval, we need to use the quadratic constraint, Ω2

0(s) + Ω2
1(s) = Ω2

max.
Again, we define Ω̃i = Ωi/Ωmax to write the Lagrangian with the quadratic constraint as

L = Ω̃′0(s)
1− Ω̃2

0(s)
. (4.25)

The Euler-Lagrange equation is then

Ω̃′0(s) = C
√

1− Ω̃2
0(s) , (4.26)

from which we find the solution for the bright passage

Ω0(s) = Ωmax sin
(
sπ

2

)
. (4.27)
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Figure 7 – The parametrization curves (a), and the energy gap (b) as a function of the
normalized time s for the interpolation functions: linear, Ωl (linear), brachis-
tochrone with the linear constraint, Ωlb , brachistochrone with the quadratic
constraint, Ωqb, and the brachistochrone with no constraints Ωnc. (c) and (d)
show the normalized ergotropy as a function of the total dynamics times, τ for
the stable and unstable charging protocols, respectively. Parameters: ε0 = 1,
ε1 = 0.5, and ε2 = 1.05. Source: Made by the author.

Fig. 7(a) shows the interpolation functions when considering the same initial
conditions. In this scenario, the power consumption will vary in each protocol, also the
energy expending. Further, Fig. 7(b) shows the energy gap in function of the normalized
time s, in which we see that the non-monotonicity of the brachistochrone with no constraints
increase the energy gap, thus decreasing the population flow to others eigenstates. Also,
as expected by the quadratic constrain, the energy gap is a constant. The other notable
behavior is the similarity between the energy gap of the linear interpolation and the linear
brachistochrone. Furthermore, Fig. 7(c) and (d) show the normalized ergotropy for the
stable and unstable charging process, respectively. The first thing we note is that for small
τ , before the black horizontal line, the adiabatic regime is not achieved, since the ergotropy
is not in its maximum. The unstable protocol reaches the maximum ergotropy using nearly
half of time that the stable uses. Additionally, in the conditions we simulated the system,
i.e using the same initial conditions for every interpolation function, the brachistochrone
with no constraint speedup the adiabatic process. We physically understand this results
through the growth of the energy gap during the dynamics.

4.3 Self-discharging process
As we have already discussed in the introduction, every battery exhibits a self-

discharging process. Quantum batteries lose their charge due to decoherence. The equation
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that will describe these process is the Lindbladian master equation [103]

ρ̇(t) = − i
~

[H0, ρ(t)] +
∑
n,m

Γnm
2 [2σnmρ(t)σmn − {σnn, ρ(t)}] , (4.28)

where the first term in the right-handed side of the equation is the Liouvillian that describes
an unitary evolution and the other term a non-unitary one. This equation can be solved
numerically if we consider all non-unitary effects, such as |ε2〉 → |ε0〉 and relation events.
However, in the system we will study the time scales for these former process are greater
than the adiabatic time scale [1, 18]. Also, dephasing do not take a role in this process,
since the population is all initially in the second excited state and we see not coherence in
the self-discharging process [1, 18]. Hence, for solving the master equation we will consider
just the cascade-like process, |ε2〉 → |ε1〉 → |ε0〉. Furthermore, since we will evaluate the
stored amount of extractable work through the decaying process, we have the instantaneous
ergotropy , Eq. (4.11),

E(t) =



ε1(ρ1 − ρ0) + ε2(ρ2 − ρ1) if ρ2>ρ1>ρ0

(ρ2 − ρ1)(ε2 − ε1) if ρ2>ρ0≥ρ1

ε2(ρ2 − ρ0) if ρ0>ρ2>ρ1

0 if ρ0>ρ1>ρ2

, (4.29)

where ρi = ρi(t) is the population of the state i in time t. Analysing the ergotropy equation,
we see that the only relevant terms to calculate in the master equation are the diagonal
ones. Considering the collapses operators |0〉 〈1| and |1〉 〈2|, after some math, we find the
system of coupled differential equations

ρ̇1(t) = −Γ10ρ1(t) + Γ21ρ2(t) , (4.30)
ρ̇2(t) = −Γ21ρ2(t) . (4.31)

Using a simple integration we find that ρ2(t) = e−tΓ21 . The solution of the equation for
ρ1(t) can be approached by considering the homogeneous part, that yields the solution
ρh1(t) = Ae−Γ10t. The form of the solution will be a linear combination of the homogeneous
solution and the non-homogeneity

ρ1(t) = Ae−tΓ10 +Be−tΓ21 , (4.32)

but, since we must have the final condition condition ρ1(0) = 0, A = −B. For finding A we
have to substitute the partial solution, Eq. (4.32) in the differential equation, Eq. (4.30),
and apply the initial condition again. This procedure will ensure that we will find the
general solution of the problem. Thereafter, the population of each eigenstate, during the
self-discharging process, will be described by the functions

ρ2(t) = e−tΓ21

ρ1(t) = Γ10

Γ10 − Γ21

(
e−tΓ21 − e−tΓ10

)
ρ0(t) = 1− (ρ1 + ρ2) .

(4.33)
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Figure 8 – Interpolation functions, Ω0 (continuum line) and Ω1 (dashed line) as a function
of the normalized time for (a) a linear ramp, brachistochrone with (b) linear and
(c) no constraint, and the brachistochrone with the quadratic constraint (d).
(e–f) Experimental result for the ergotropy as a function of the total evolution
time τ (as a multiple of Emax ≈ 51µeV ) for (e) stable and (f) unstable charging
processes. In the experiment we have set Ωmax = 2π×10MH. Other parameters:
Γ10 ≈ 51.5KHz, Γ21 ≈ 79.7KHz, ω0,1 = 2π×6.26GHz, and ω2,1 = 2π×6.011GHz.
Source: Ref [1].

4.4 The experimental results
In the former section, we talked about the charging process when considering a

theoretical scenario where all the interpolation functions have the same initial conditions.
In this section, we will describe the physical details of the experiment we reported in
Ref. [1] and its results. Further details concerning the experimental setup can be found
in [1].

Previously, we simulate the system dynamics considering the same initial conditions
for every interpolation function. However, in the experiment we implemented the charging
process, the quantities Ω were generated by an arbitrary-wave generator, which had an
experimental limitation. The same equipment generates both Ω0(t) and Ω1(t), and it can
only work with a limited instantaneous power, thus the charging process in the experiment
had the constraint

Ω2
0(t) + Ω2

1(t) ≤ Ω2
max . (4.34)

This means that we have to change the initial conditions of all functions. It is noteworthy
that the brachistochrone with the quadratic constraint uses the full capacity of the
arbitrary-wave generator throughout the evolution.
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Figure 9 – Instantaneous ergotropy (as a multiple of Emax ) in the self-discharging process.
The change of population is sketched in each step of the discharging. Inset we
highlight the time interval in which the ergotropy changes due to the population
inversion, as predicted from Eq. (4.33). The decay rates are Γ21 ≈ 51.4KHz
and Γ32 ≈ 79.7KHz. Source: Ref [1].

In the Figs 8(a)-(d) we have the interpolation function and we see that the initial
condition of the non-constrained brachistochrone are smaller than one. Further, in Figs 8(e)-
(f) there are the charging process. We note that the experimental results, represented by the
circles, are in accordance with the numerical simulations, represented by the lines. In the
experiment, the charging process using the brachistochrone with the quadratic constraints is
faster, approximately 10%, than the non constrained brachistochrone, followed by the other
functions. Physically, we understand this change of performance of the non-constrained
brachistochrone as due to the constraint of the experimental apparatus. More specifically,
this functions uses more power to adjust itself to the adiabatic condition in a trade off,
while the trigonometric functions use less power but they are less fitted to the adiabatic
condition. Thus, in the scenario where power is a limited resource, the sine and cosine
execute the population inversion faster.

Following to the self-discharge process, the battery is fully charged and then the
fields, Ω0 and Ω1, are turned off. Then we measure the ergotropy as a function of time, t,
as indicated in Fig. 9. The insets highlight the changing of the curve inclination that are
consequences of the sum of the exponential decays. This particular characteristic classifies
the transmon quantum battery to have a super-capacitive behaviour, which is due to the
multi-level nature of the atom and to the asymmetric decaying rates, Γ21 6= Γ10.
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4.5 Conclusion of this Chapter
In this Chapter, we presented the joint work with Professor Dapeng Yu’s group

wherein we fully characterized a three-level superconducting transmon quantum battery.
We began by exploring the charging process, performed by coupling the transmon three-
level system with external classic fields. Through the charging Hamiltonian, we derive the
two different ways to invert the population from the ground state to the second excited
one (charging process). We showed that there are the dark and bright charging process
and both allows the battery to attain to its maximum charge. From the comparison of
the charging protocols, we find out that the dark one is stable, concerning the ergotropy,
and it is approximately two times slower than the other charging protocol. The ergotropy
injection was enhanced by means of the quantum adiabatic brachistochrone optimization
method. In the analysis wherein we setted the same initial values for the fields Ω, the non-
constrained brachistochrone was the most efficient, nonetheless due to physical constraints
in the experiment, the quadratically constrained brachistochrone was the most efficient in
the laboratory. In addition, since our experiment has a good controllability, we can use
the unstable population inversion with the quadratically constrained brachistochrone to
hasten charging process. We completed the battery characterization when we described
its self-discharging process. By solving the master equation with some approximations,
we find a effective non-Ohmic discharging, from which we can understand a three-level
quantum battery, regarding its loss of energy to the environment, as a supercapacitor.
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5 Solving the traveling salesman problem us-
ing quantum computing: the quantum an-
nealer

Optimization problems consist in finding the extrema of a function. They can
be found in many areas of knowledge, ranging from fundamental physics [104], passing
through biology [105], to operations research [106] . For example, all dynamical processes in
physics emerge from the extremization of the action functional [64]. Furthermore, logistic
problems like inventory organization [107] and the traveling salesman problem [108] also
are in the optimization problem category. For doing a complete study of optimization
algorithms, we have to take into account the computational complexity theory [69]. A main
open problem in this field is to answer if or whether a non-deterministic polynomial-time
problem (NP) can be reduced to a polynomial one, which will open paths to new and
revolutionary technologies in many fields [109]. Furthermore, there is the class of NP
problems that can be formulated as a binary combinatorial problems [45], which are the
kind of problem we will work with in this Chapter.

The studies we did in this chapter served as a basis for applications that are
currently being developed in our research group, in particular those directly linked to
the extension project of our group in partnership with the Center for Advanced Research
Wernher von Braun., whose goal is to study quantum computation applied to industrial
problems, with a focus on the D-Wave’s quantum annealer. In this new field of quantum
computing, there are some bias in the actual stage of quantum computation. For instance,
algorithms that just solve one part of the problem, but says that it has speedup over the
classical computers [110]. Also, in quantum annealing we do not see an improvement in the
algorithm complexity. So, for a fair comparison between classical and quantum paradigms
of computation, it is necessary to evaluate as many aspects as possible of the algorithms.

This Chapter is based on a paper that we publish on the Revista Brasileira de
ensino de Física [53] and in a preprint [54]. This part of this Thesis is organized as following:
We start by giving an introduction to the D-Wave’s quantum processor, giving some details
and references concerning its experimental aspects. Then, we define the kind of problem
that the D-Wave’s quantum processor can solve, which are Ising-like problems. Further, we
formulate an optimization problem in a spin Hamiltonian and we give the path (and the
codes [111]) to solve it using the Amazon Braket platform [112]. Additionally, we describe
the simulated annealing meta-heuristic [113, 114], a classical analog of quantum annealing.
This technique is a good strategy to validate the quantum solutions, since it has a well
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defined physical behavior and its physical interpretation is based on fluctuations, as the
quantum annealing.

5.1 Quantum annealing and the D-Wave Co.
Adiabatic quantum computing is Turing complete paradigm [115], however, as we

mentioned in the Chapter 3, it has some experimental limitations such as the demand
for system with quasi-infinite dimensions. On the other hand, quantum annealing [116]
can be understood as a NISQ [9] version of the adiabatic quantum computing, since it
works with Hamiltonian with low dimension connections and there is the presence of noise.
This technique was first proposed as a meta-heuristic algorithm that makes use of classical
simulation of quantum systems to solve combinatory optimization problems [117, 118],
but due the intrinsic difficulty to simulate quantum systems, this class of algorithm has
limitations in classical computers. However, the D-Wave company developed a quantum
annealing experiment in which one implements a dynamical transverse Ising field [119–121]
that can be used to solve binary combinatory optimization problems. The D-Wave’s qubits
are build using compound-compound Josephson-junction radio frequency superconducting
quantum interferences devices (CCJJ rf-SQUIDs), that are micro superconducting circuits
that work in the radio-frequency regime and these qubits are connected by other supercon-
ducting devices [120, 122]. Due to engineering limitations, it is not possible to build a full
connected network of qubits, but we have topologies as Fig. 10 shows. Particularly, it is a
problem when we try to solve realistic problems in this processor, because they demand
a system wherein every qubit is connected to everyone. To surpass this problem, it is
possible to perform a technique called minor embedding [123] that takes a full connected
graph and embed it on another graph that does not have all connections. This procedure
it-self is NP, but the there are heuristics that find approximate solutions for it. A full
connected graph with N vertices will be embedded in another graph with at maximum
N2 connections. Also, the embedding process increases the annealing time by polynomial
factors [124]. In spite of these drawbacks, it is possible to solve problems in this computer as
the references show [48, 49, 125, 126]. Additionally, we find realistic speedups over classical
algorithms [46, 83]. Furthermore, there are other advantages such as the generation of
pure random numbers [127] and energy saving [128]. One can access the D-Wave computer
using the Amazon Braket platform [112] and the Leap [129], by D-Wave itself.

Speaking about mathematical details, the Hamiltonian that is implemented by the
D-Wave reads

H(s) = A(s)
∑
i

σxi +B(s)
∑

i,j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

 , (5.1)

where σαi are the Pauli matrices α = x, y, z for the i-th site, Jij is the coupling between
the spin i and j, and hi is a local field applied to the spin in the i-th site. A(s) and B(s)
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(a) (b)

Figure 10 – (a) Topology of the D-Wave’s quantum processor 2000Q, that has 2048 q-bits
connected 6 to 6 by the Chimera topology. In (b) we have the D-Wave’s next
generation, the Advantage processor, that has over 5000 qubits connected 15
to 15 by the topology Pegasus. Source: [53]

are the interpolation function, that obey the boundary conditions A(0) ∝ B(1) 6= 0 and
A(1) = B(0) = 0, and s is the normalized time. Experimentally, the function A(s) is
generated by a magnetic field in the x-direction that fades with time, while B(s) is a global
increasing in the coupling Jij . This Hamiltonian is a Ising-like Hamiltonian, or a quadratic
unconstrained binary optimization (QUBO) problem if we replace σz to xi = (1− σzi )/2,
which has binaries eigenvalues, zero or one.

5.1.1 The Traveling Salesman Problem

In this subsection, we will study how one can formulate a optimization problem
as a Ising or a QUBO problem, and we will use the NP-hard traveling salesman problem
as an example [130]. We used the Ref. [45] for this study, which describes in details how
one can formulate some NP-hard and NP-complete problems, including the Karp’s 21
NP-complete problems.

Let us first define the traveling salesman problem (TSP). For a given set of cities
and the distance between them, what is the shortest route that a traveling salesperson visits
every city just once and return to the initial city?

Using a classical computer, it is possible to solve the TSP using exact and approxi-
mated methods. An efficient approach for exact solution, in relation to the naive solution,
is a dynamical programming algorithm [131] that reduces the time complexity from O(N !)
to N22N and the memory usage to N2N , where N is the number of cities. Using this
algorithm, researchers found the optimal solution of instance with 85900 cities [132], using
a supercomputer, which toked 139 CPU-years1. The approximated algorithms can find
1 One CPU second is the time to execute one million of floating points operations
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solutions with 5% of error for problems with 3× 106 cities in few hours of CPU time [133].
In the quantum domain, we have some algorithms, for example there is one that has a
quadratic speedup over classical dynamical programming, if the graph is sparse [134].

For formulating this problem as a QUBO one [126] we can define the binary
variable xi,l, which assumes 1 when the salesman is in the city i in the time instant l, and
0 otherwise. Thus, the problem Hamiltonian reads

HIsing =
∑
i,j∈E

Jij
N∑
l

xi,lxj,l+1 , (5.2)

where Jij is the distance between city i and city j and E is the set of the connections
between the cities. This formulation demands N spins for the cities and N spins for the
time instants, thereby requiring N2 spins in total. We note that Jij ≥ 0, ∀{i, j} ∈ E, then
ground state of HIsing is when all the spins are zero, considering the spins collapsed in
classical states, which is wrong according to the TSP conditions. For adding the restrictions
of the TSP, we need to use Hamiltonians that introduce energy penalties for these solutions.
Thus, we have

Hpenal = λ

 N∑
l=1

(
1−

N∑
i=1

xi,l

)2

+
N∑
i=1

(
1−

N∑
l=1

xi,l

)2

+
∑

(i,j)6∈E

N∑
l=1

xi,lxj,l+1

 ,
(5.3)

where the first term in the right-hand side of the equation increases the energy of solutions
in which the salesperson is in more than one city at same time (or in none), the second one
increases the energy for trips wherein the agent remains in the same city or never passes
there, and the last one raise the energy of trajectories that passes through connections that
does not exist. Also, λ, called Lagrange parameter, will give the scale of Ĥpenal. We note
that if λ is too big, the ground state of Hpenal will be the actual solution of the annealing.
Actually, finding a good λ is another problem and it can be approached using classical
methods like the one presented in Ref. [46]. Then, the total Hamiltonian for the Traveling
salesman problem as a QUBO of Ising is

Ĥ(s) = A(s)
∑
i,l

xi,l +B(s)
(
Ĥising + Ĥpenal

)
. (5.4)

Since this problem itself requires N2 qubits and more, at most, N2 qubits for the
embedding, it is not possible to solve a problem with more than 10 cities on the D-Wave
advantage. However, it is possible to develop a heuristic strategy based on the divide and
conquer technique, which divides the TSP into smaller TSP instances, solves the smaller
problems and then connects the solution as they were cities [126, 135].

We solved a traveling salesman problem, with six randomly distributed cities as
Fig. 11 shows. The codes we used can be found in the online repository [111]. In this
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a) b)

Figure 11 – Six cities distributed randomly in the space. (a) shows the nodes with all
possible connections and (b) shows the solution yielded by the D-Wave, which
is the optimum solution. Source: [53]

task, we execute the algorithm 500 times, with annealing time of 20 microseconds. The
Lagrange factor, λ was chosen based on the average value of tour length [136], given by
the equation

λ0 = N
∑
Jij

Nc

, (5.5)

where Nc is the number of connections in the problem. This equation does not yield the
best λ, but the company recommends to use a λ in the set {0.75λ0, 1.5λ0}. In our problem,
the solution was found using λ = 1.05.

5.2 Simulated annealing
In the past section, we studied the D-Wave systems and how to formulate problems

to solve on it. However, this quantum processor does not guarantee that the solution is
the optimum one, since it is a NISQ device [9]. Also, dynamical programming algorithms
do not allow to solve problems with many items, due to the exponential scaling times.

There are many strategies for approximately find ‘good’ solutions for binary
combinatory problems, for instance we have genetic algorithms [137], greed algorithms [138],
and methods of cross-entropy [139]. Also, there is the simulated annealing meta-heuristic [54,
140, 141] that can be understood as a classical analog of the quantum annealing, since
it uses thermal fluctuations and a cooling process to drive an objective function to its
lowest energy configuration. It can handle with the scale of problems that the D-Wave
solves [142], also it compose more sophisticate algorithms [143]. Due to these properties,
we will use the classical solutions of the simulated annealing algorithm as a comparison
for the quantum solutions of the D-Wave quantum annealing.

In this section, we will formalize this technique using non-equilibrium stochastic
processes and markov chains to prove its convergence to the optimal solution [140, 144, 145].
Also, we will apply it for a TSP to verify its performance and precision.
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5.2.1 Markov chains

A stochastic process is defined as a set of random variables, {xt, t ∈ T = R∗},
that evolve with time. When the variables are discrete, {x(ti) = ni, i ∈ {1, 2, · · · , l}}, the
stochastic process is defined by the joint probability distribution

pl (n1, n2, · · · , nl) , (5.6)

where l is the number of time intervals. The conditional distribution,

pl (nl|n1, n2, · · · , nl−1) , (5.7)

gives the probability of x assume the value nl given that it assumed the sequence of events
n0, n1, · · · , nl−1. A Markovian process is defined by the property

pl (nl|n1, n2, · · · , nl−1) = pl (nl|nl−1) , (5.8)

which says that the probability of the next event depends on the present one only, and we
can understand pl(nl|nl−1) as the transition probability from the state nl−1 to the state nl.
Using Eq. (5.8) we write

pl(nl) =
∑
nl−1

pl (nl|nl−1) pl−1 (nl−1) . (5.9)

In terms of matrices, the former equation reduces to

|Pl〉 = T |Pl−1〉 , (5.10)

for T (m,n) being the transition probabilities p(m|n) and |Pl〉 is a column vector where the
element pi gives the probability of the event i in time l. More specifically, T is stochastic
matrix that has the properties

(1) T (n,m) ≥ 0, ∀ m,n ∈ E ,
(2)

∑
n

T (n,m) = 1 , (5.11)

which are the axiomatic conditions for probabilities and E is the set of states in the system.
Using the properties of T and the Perron-Frobenius theorem [146] we have

|P 〉 = T̂ |P 〉 , (5.12)

where |P 〉 is the stationary probability vector of the system, which satisfy the equation

p(n) =
∑
m

T (n,m)p(m)

∴
∑
m

{T (n,m)p(m)− T (m,n)p(n)} = 0,
(5.13)
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since∑m T (m,n) = 1. Therefore, we say that |P 〉 satisfy the detailed balance principle [147,
148],

T (n,m)p(m)− T (m,n)p(n) = 0 . (5.14)

Yet, we described an arbitrary stochastic process, now we will connect it to thermodynamics.

Let us consider Eq. (5.10) with Eq. (5.14)

pl+1(n) =
∑
m

T (m,n) p(n)
p(m)pl(m),

pl+1(n)
p(n) =

∑
m

T (m,n)pl(m)
p(m) .

(5.15)

Furthermore, a convex function f(x) has the property

f

(∑
m=0

xmpm

)
≤

N∑
m=0

pmfm(xm) , (5.16)

where pm is a probability. Thus, if pm = T (m,n) and xm = pl(m)/p(m), we get

f

(
pl+1(n)
p(n)

)
≤
∑
m

T (m,n)f
(
pl(m)
p(m)

)
. (5.17)

Finally, multiplying it by p(n) and summing in n, we find

∑
n

p(n)f
(
pl+1(n)
p(n)

)
≤
∑
n

∑
m

p(n)T (m,n)f
(
pl(m)
p(m)

)

=
∑
m

f

(
pl(m)
p(m)

)∑
n

p(n)T (m,n)

=
∑
m

p(m)f
(
pl(m)
p(m)

)
.

(5.18)

Finally, if f(x) = x ln x, then

∑
n

pl+1(n) ln pl+1(n)
p(n) ≤

∑
m

pl(m) ln pl(m)
p(m)

∴ Sl+1 ≥ Sl,

(5.19)

where Sl = −k∑n pl(n) ln pl(n) + C is the Shannon entropy, for k and C constants. We
note that when the system reaches the stationary regime, Sl+1 = Sl, we say that the system
is thermalized. Also, this equation says that a Markovian process drives the system to the
configuration of maximum entropy, and thus to the thermal equilibrium, as the second law
of thermodynamics dictates. It is also indicates the proof of convergence of the Metropolis
algorithm [149], which is an intermediate part of the simulated annealing. Although this
equations proves the convergence of a Markovian process, it gives no information about
how far the system is from the equilibrium, which is a characteristic of heuristic algorithms.
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5.2.2 The algorithm

Monte Carlo methods are a set of computational techniques that make use of
probabilistic simulations to solve numeric problems [150]. Particularly, simulated annealing
algorithms are efficient because they use a Monte Carlo strategy over the possible states
of a system to calculate expected values of thermodynamic systems, therefore increasing
the possibility to reach the maximum entropy level of our system.

For concluding our algorithm formulation, we need to find a rule for sampling and
for generating the stochastic process. Let us consider the probability

p(s) = 1
Z
e−βH(s), (5.20)

where H(s) is the energy of the of system for the configuration s, Z = ∑
s e
−βH(s) is the

partition function and β = 1/T is the inverse temperature in natural unities (Boltzmann
constant equal to one). Now, using Eq. (5.20), as we find in statistical mechanics [151], in
Eq. (5.10) we find T solving the equation

T (s, s′) = e−β(H(s)−H(s′)) . (5.21)

Nonetheless, if H(s′) > H(s), the transition probability is greater than one. One can define
the ad hoc strategy and redefine T as

T (s, s′) ≡


1
Z
e−β[H(s)−H(s′)], for H(s) > H(s′) ,

1
Z
otherwise .

(5.22)

We note that T as defined in Eq. (5.22) obeys the properties defined in Eq. (5.14).

The parameter β will impose an energy scale to the system, which physically
dictates the range of the transitions between the system states. Thus, if β is big, the
fluctuations are small and the probability to long walks through the system configurational
space is low, and if β is small all the states are equally likely to be accessed. The Fig. 12
illustrates the configurational space, in which we see that the system configuration jumps
through the states and, if the thermal fluctuations are small, it shall not pass the energy
barriers.

This strategy has some problems that will give to it the heuristic characteristic.
Firstly, it is not possible to continuously and smoothly drive the system to absolute zero
and we have to consider that during the cooling process the system can be arrested in
a local minimum. However, it is possible to perform the cooling process slowly enough
to reach sufficiently lower temperatures, thus the system will have a chance to be in its
thermal equilibrium. Also, we must lower the temperature of the system only when it has
thermalized, but during the execution of the algorithm there is no way to know when this
condition is reached. So, we have to do it approximately.
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Figure 12 – A scheme to represent the simulated annealing algorithm. The horizontal axis
represents the ‘configurations’ of the system and the vertical one represents
the correspondent energies. The red circle is the configuration of the system in
time t and the blurred circle is the previously configuration of the system. The
arrow connecting the circles represents the thermal fluctuation that moves the
system from the configuration to configuration. Source: [54].

We defined and gave arguments about all parts of the simulated annealing. Now,
let us summarize the algorithm for a Ising-like Hamiltonian,

H =
∑
i

hixi +
∑
<i,j>

Jijxixj , (5.23)

where xi is a binary variable, hi is an anisotropy in the site i and Jij is the coupling
between the sites i and j. In the simulated annealing, the fluctuations change the value of
xi from 0 to 1 or vice versa, as Eq. (5.22) says. Thus, the algorithm follows the steps:

1. Define an initial state randomly, s, and a initial temperature T0;

2. Chose a site randomly and change the value of xi, thus finding a new state s′;

3. If H(s′) < H(s): accept the new state;

4. Else: sample a random number, η, between 0 and 1.

• If η < T (s′, s) accept the state s′,

• otherwise, keep the state s;

5. For ni steps given, decrease the temperature, Ti+1 = τTi, for τ being the cooling
coefficient and τ ∈ {0 < y < 1, y ∈ R};

6. Set a stopping condition, for instance the total number of steps Nt.

5.3 Simulations and results
To analyse the performance of the simulated annealing we will use the traveling

salesman problem, as we did for the quantum annealing. First, we have to study the
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(a) (b)

Figure 13 – (a) 20 cities distributed in a 1 × 1 square and the optimal solution that
we found using a dynamical programming algorithm. (b) Heat map of the
normalized solution by the optimal one in function of τ and nt. Parameters
used: T0 = 1 and Nt = 105.

parameters for finding a guideline for the algorithm. We note that the algorithm, as
we defined in this dissertation, asks for five parameters: the initial configuration (S0),
initial temperature (T0), cooling ratio (τ), iterations in the same temperature (ni), and
total number of iterations (Nt). The initial configuration can be any and it is not a good
option using a faster optimization algorithm, for example the greedy algorithm, to find
a ‘good’ first guess since it can be in a local minimum. Also, in high temperature this
guess will be lost since the states are effectively equiprobables. Thus we can use a random
initial configuration. The initial temperature can be chosen based on the scale of the
system energy, which can be evaluated by finding the average trajectory length using
Eq. (5.5). Further, the cooling coefficient τ is the percentage of temperature decreasing.
The interactions with the same temperature is the number of markovian iterations in
the same temperature that will lead the system to the thermal equilibrium and the total
number of iterations is the total number of steps of the optimization process.

We note that finding the best set of parameters for one instance of the travelling
salesman problem will be a computational expensive task. However, we can fix some
parameters and work with some others. The Fig. 13(a) shows the best route of a 20
cities traveling salesman problem and Fig 13(b) shows a heat map where we fixed the
all the parameters, but τ and nt. This fist analysis shows that there are a good region
of parameters that yielded the optimal solution and, in the right bottom region we see
that using τ ≈ 1 we can reduce the number of steps given by the algorithm, therefore
decreasing the execution time. To test this method in a more realistic scenario, concerning
the number of cities, we can place the cities in a regular square grid.

Fig. 14(a) shows the optimal tour that we get from Ref. [152] and, Fig. 14(b)
shows the result of a simulated annealing algorithm. The approximated solution we get



Chapter 5. Solving the traveling salesman problem using quantum computing: the quantum annealer 58

(a) Optimal tour: Distance = 10 (b) SA tour: Distance = 10.43

Figure 14 – Two solutions of a instance of the traveling salesman problem with the cities
regularly setted in a grid. (a) the optimal solution and (b) the approximated
solution from the simulated annealing algorithm. The black circle in Fig (b)
highlights a crossing in the tour, which indicates that the solution is not the
optimal one. Parameters used: T0 = 1, τ = 0.995, Nt = 106, and ni = 500.

is nearly four percent longer than the optimal tour. We call attention for the detail
that the simulated annealing took the order of 106 iterations, while the optimal solution
via dynamical programming would take 1032 iterations. We observe that the simulated
annealing algorithm can found theses suboptimal tours with less resources since they are
more abundant and, for finding the optimal solution the number of interaction will also
increase exponentially.

Concerning the D-Wave quantum computer, the state-of-the-art processor, the
Advantage can only support instances of the travelling salesman problem with 12 cities
and it can solve find satisfactory solutions with 9 cities.

5.4 Conclusion of the Chapter
In this Chapter, we reviewed the D-wave’s new quantum technology for solving

binary combinatory optimization problems that is already working and have been showing
a fast development. Although there is no evidence of quantum speedup over the classical
solver, it has been paving the way to adiabatic quantum computing technologies. Also, it
demands less resources than the classical supercomputers, and it is instigating the research
for new physics, as superconducting atoms and cryogenics. Here we showed how to use the
D-Wave supercomputer, we gave details and references of its engineering and we presented
an efficient heuristic method for making a comparison between quantum and classical
solutions.

Concerning this part of this thesis, we published an educational paper in the Revista
Brasileira de Ensino de Física [53] and we are preparing another manuscript to the same
journal about the simulated annealing [54].
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6 Bright and Dark States of Light: The Quan-
tum Origin of Classical Interference

The former Chapters are correlated to optimization and adiabatic evolutions, thus
they share the same mathematical tools and physics background. However, this Chapter
of this thesis concerns a study on the relation between quantum and classical interference
of light. As a results of this project, we posted on ArXiv a theoretical paper wherein we
show that classical interference of light emerges due to a collective phenomena of light
modes interacting with an atom. Therefore, in the following, we will integrally reproduce
our paper [52].

6.1 Introduction
Interference phenomena are fundamental to understanding how electromagnetic

waves combine in our environment to eventually interact with matter. If one considers
two electromagnetic waves with the same polarization, with complex electric fields E1 and
eiδφE1 at the position of an atom with an electric dipole moment, the resulting total field
reads (1 + eiδφ)E1. Consequently, interference is said to be constructive for in-phase fields
and destructive for out-of-phase fields (see Fig. 15(a)). This reflects the importance of
the relative phase of the electric field δφ for the atom-light coupling, since the atom can
experience an amplified, or diminished, total field due to this interference pattern.

The advent of quantum optics brought new fundamental insights on how light
interacts with matter. According to this theory, the picture of a dipole moment generated
by an average electric field 〈E〉 is incomplete, when not completely wrong. Indeed, even
when one considers a single light mode coupled to the particle, a Fock state |N〉 yields
〈E〉 = 0 for any number of photons N , but it does generate non-trivial light-atom dynamics.
The most accepted solution to this conundrum comes from the work developed by Glauber
in the Ref. [153], which gave the mathematical framework to determine the probability
of existing light and matter interaction. However, the physical interpretation supported
by quantum optics textbooks [51, 154–156], argues that Fock states possess an electric
field variance 〈δE2〉 = 〈E2〉 − 〈E〉2 ∝ 2N + 1, which is nonzero, even for the vacuum
state (N = 0). This sounds reasonable since, as any observable in quantum mechanics, the
electric field is fully described only when considering all of its moments 〈En〉. Classical
optics addresses the lowest moment (n = 1), with all higher moments which are intrinsically
given by 〈En〉 = 〈E〉n. Quantum-mechanically, this corresponds to a coherent state in the
limit of large photon numbers [157].
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In this context, the concept of interference which describes the summation of fields
in classical optics has little relevance; if classical optics fails to describe the coupling of
a particle to a single-mode Fock state, how could it properly describe the combination
of several such modes? This highlights an important gap in the classical understanding
for the summation of fields, and their joint interaction with matter. While the concept of
interference presents a rather intuitive picture in the classical world, no clear equivalent
exists to describe the summation of quantum fields.

In this work, we bridge this gap by showing that a decomposition of the total state
of the radiation field on a collective Dicke-like bosonic basis offers a natural interpretation
of constructive and destructive interferences, in terms of bright (or superradiant) and
dark (or subradiant) states. Using this framework, we prove that quantum fluctuations
are not the key ingredient to explain the light-atom coupling. The necessary and sufficient
condition instead is the existence of at least one finite projection on a non-dark state.
Such a criterion justifies why even a single Fock state couples to an atom without invoking
quantum fluctuations. Furthermore, the collective basis for bosonic modes predicts a
vast class of entangled states which couple to the atom with intermediate superradiant
transition rates, with no counterpart in classical theory.

The manuscript is organized as follows: In Sec. 6.2, we introduce the collective
basis, with a particular attention to perfectly dark and maximally superradiant states. In
Sec. 6.3, we discuss how these states relate to destructive and constructive interference in
classical theory. We also discuss why classical interference is unable to properly describe the
excitation of an atom, whereas our approach provides a natural explanation. In Sec. 6.4,
we revisit the double-slit experiment using the collective basis. Then, in Sec. 6.5, we
discuss the different interference patterns obtained in a Mach-Zehnder interferometer when
employing quantum and classical fields, interpreting the results in terms of collective states.
In Sec. 6.6, we extend our formalism to M modes and, in Sec. 6.7, we discuss how our
predictions could be observed using trapped ions or cavity QED setups. Application of
dark and bright states in quantum information processing is presented in Sec. 6.8. The
conclusions and perspectives are presented in Sec. 6.9, and a detailed derivation of the
analytical expressions presented in the main text can be found in the Appendices.

6.2 Two-mode collective basis
Let us consider two light modes A and B, with annihilation (creation) operators

a (a†) and b (b†), coupled resonantly to a two-level atom. The raising (lowering) atomic
operator σ+ (σ−) realizes transitions between ground |g〉 and excited |e〉 states, and the
coupling constant g is assumed identical for both modes, for simplicity. Such an atom-modes
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Figure 15 – (a) Double slit experiment: Two waves ψ1(φ1 = kr1) and ψ2(φ2 = kr2) meet to
form fringes which can be interpreted in terms of interference in the classical
theory, and of dark and bright states in our approach. (b) Dicke-like ladder
for two light modes with the left side containing the maximally superradiant
states (MSS, in blue), and the right one with the perfectly dark states (PDS,
in red). Differently from the atomic case, the number of excitations is not
bounded (N →∞).

system is described by the following Hamiltonian in the interaction picture:

H = g(a+ b)σ+ + g(a† + b†)σ−. (6.1)

The dimensionless total electric field operator at the atom position is given by the
superposition of the two fields:

E = (a+ b) +
(
a† + b†

)
. (6.2)

The atom acts as a probe for the field resulting from the combination of the fields at its
position. Yet, as we shall see later, the particle may not be excited even by a nontrivial field,
in which case other ways are required to detect the state of the fields (see Sec. 6.7). From
a classical point of view, all operators in (6.2) must be replaced by complex amplitudes,
and the atom is not excited only if the total electric field is zero. Quantum mechanically,
as discussed in the introduction, the atom can be excited by light modes with zero electric
field expectation value (such as Fock states), a phenomenon attributed to the quantum
fluctuations of the field. Yet, it turns out that there exist two-mode fields with nonzero
quantum fluctuations, other than the vacuum, which do not excite the atom. Hence,
quantum fluctuations cannot be the only explanation of why the emitter is excited by a
superposition of light modes

Let us illustrate the apparent inconsistency between the coupling of combined
fields with matter in the classical and quantum pictures. To this end we first consider
the coherent states |α〉 and |−α〉 in the modes A and B. Using the eigenvalue relations
a |α,−α〉 = α |α,−α〉 and b |α,−α〉 = −α |α,−α〉, we obtain

H |α,−α〉 |g〉 = g (α− α) |α,−α〉 |e〉 = 0, (6.3)
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making clear that the state |α,−α〉 is unable to excite the atom1. This can be explained
invoking classical interference, since the sum of the nonzero expectation values of the
electric field from each mode actually cancels out:

〈E〉 = 〈a+ a†〉+ 〈b+ b†〉,

= (α + α∗) + (−α− α∗) = 0. (6.4)

However, such an explanation fails for the state

|Υ〉 = 1
2 (|0〉+ |1〉)A (|0〉 − |1〉)B , (6.5)

which also has a zero total electric field expectation value, but survives the action of the
Hamiltonian: H |Υ〉 |g〉 6= 0. Therefore, the atom-field coupling does not cancel for state
|Υ〉.

As pointed out in the introduction, quantum fluctuations would be the next natural
candidate to explain why two different states with 〈E〉 = 0 affect the atom in such disparate
ways. However, the scenario becomes even more puzzling when we compute the variance
of E for the states |α,−α〉 and |Υ〉: it gives 〈∆E2〉 = 2 for both cases, which is the same
as the two-mode vacuum state. Therefore, the two states here presented with 〈E〉 = 0
exhibit nonzero quantum fluctuation, yet only |Υ〉 is able to excite the atom. These simple
examples naturally lead us to the following question: Why do some states of the radiation
field couple to matter, and others do not? If the explanation is not the average field and
fluctuations, then what is the proper criterion for such a coupling to occur?

To address this question, we introduce the following set of two-mode N -photon
states: ∣∣∣ψNn 〉 =

N∑
m=0

CN
m,n |m,N −m〉 , (6.6)

where |nA, nB〉 refers to the product Fock state with nA photons in mode A and nB in
mode B. The coefficients CN

m,n of these collective states are given by (see Appendix F.1)

CN
m,n =

√
n!(N − n)!

2N (6.7)

×
qmax∑
q=qmin

(−1)m−q
√
m! (N −m)!

q!(n− q)! (m− q)!(N − n−m+ q)! ,

with qmin = max(0, n+m−N) and qmax = min(m,n). States (6.6) are derived from the
symmetric (a+ b) /

√
2 and antisymmetric (−a+ b) /

√
2 collective operators [158, 159],

and constitute a complete basis which satisfies the following coupling relation:

H
∣∣∣ψNn 〉 |g〉 = g

√
2n
∣∣∣ψN−1
n−1

〉
|e〉 . (6.8)

1 We note that this condition we use H |ψ〉 = 0 for the absence of light-matter interaction is equivalent
to what is defined in the Ref. [153].
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The physical process described by (6.8) corresponds to the excitation of the atom through
the transition from state

∣∣∣ψNn 〉 to
∣∣∣ψN−1
n−1

〉
, see Fig. 15(b).

The collective basis (6.6) presents a strong analogy to the N -excitation Dicke basis
for multi-atom systems [160, 161]. In analogy to the “cooperation number” for Dicke states,
the
√

2n factor represents the cooperativity of the emission, where the
√

2 factor comes
from the fact that there are two modes interacting with the atom. In particular, the n = 0
case corresponds to the perfectly dark state (PDS) for the subspace of N photons

∣∣∣ΨN
0

〉
=
√
N !
2N

N∑
m=0

(−1)m√
m! (N −m)!

|m,N −m〉 , (6.9)

which does not couple to the atom. It was coined subradiant by Dicke since H
∣∣∣ψN0 〉 |g〉 = 0.

Oppositely, the n = N state
∣∣∣ΨN

N

〉
=
√
N !
2N

N∑
m=0

1√
m! (N −m)!

|m,N −m〉 (6.10)

presents a transition rate g
√

2N , which is
√

2 times that of the single-mode result:
HJC |g〉 |N〉 = g

√
N |e〉 |N − 1〉 [162], with HJC the Jaynes-Cummings Hamiltonian. State

(6.10) is the analogue of the symmetric superradiant mode, studied by Dicke in the decay
cascade [160, 163], and represents the most superradiant of the states with N photons. We
here refer to this state as the maximally superradiant state (MSS). Finally, states within
the range 0 < n < N present intermediate transition rates. As opposed to the two-level
atom case, the present Hilbert space is unbounded, even for a finite number of field modes,
since each one can support an arbitrary number of photons [161], see Fig.15(b).

6.3 Connection with classical interference
Let us now discuss how this basis articulates with the concept of interference,

starting with two-mode coherent states. When considering in-phase coherent states, one
obtains a state that decomposes exclusively on the MSS subspace:

|α, α〉 = e−|α|
2
∞∑
N=0

√
2N
N !α

N
∣∣∣ψNN〉 . (6.11)

This implies that the emission is enhanced by a factor 2 as compared to a single coherent
state: H |α, α〉 |g〉 = 2αg |α, α〉 |e〉 against H |α, 0〉 |g〉 = gα |α, 0〉 |e〉, respectively. This
result is here interpreted as the signature of a state which projects on the MSS subspace
only, but from a classical perspective, it corresponds to a constructive interference for
in-phase fields. As for the state describing two coherent fields with opposite phases, it
decomposes in terms of PDSs only:

|α,−α〉 = e−|α|
2
∞∑
N=0

√
2N
N !α

N
∣∣∣ψN0 〉 . (6.12)
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This state presents a suppressed interaction H |α,−α〉 |g〉 = 0, which can be interpreted
either as belonging to the PDS subspace or, classically, as a destructive interference for
two fields with the same amplitude, but opposite phases.

Less intuitively, the introduced basis provides an explanation for the coupling
of state |Υ〉 from Eq. (6.5) to the atom, despite it having zero average electric field (a
destructive interference from the classical perspective) and the same electric field variance
as state |α,−α〉. Indeed, it decomposes along MSS and PDS subspaces as

|Υ〉 = 1
2

[∣∣∣ψ0
0

〉
−
√

2
∣∣∣ψ1

0

〉
+ 1√

2
(∣∣∣ψ2

0

〉
−
∣∣∣ψ2

2

〉)]
, (6.13)

so the finite projection on the MSS |ψ2
2〉 is responsible for the nontrivial action of the

Hamiltonian.

The PDS subspace is a remarkable class of states. On the one hand, from a classical
perspective, destructive interference is considered an absence of field, which explains the
absence of a generated dipole moment. On the other hand, fluctuations in the electric
field operator are usually invoked to explain the excitation of an atom in the absence of a
field expectation value, as illustrated by the emblematic single-mode Fock states. Perfectly
dark states are transverse to these characteristics since they possess nonzero fluctuations
(〈∆E2〉 = 2, see Appendix F.2), an energy proportional to their photon number N , and yet
they do not excite the atom. In other words, they go beyond the classical interpretation of
destructive interference, for which the fields simply cancel out.

Naturally, a coherent state in only one of the two modes does not provide any
collective feature: H |α, 0〉 |g〉 = gα |α, 0〉 |e〉. In the collective basis, it decomposes as

|α, 0〉 = e−|α|
2/2

∞∑
N=0

N∑
n=0

(−1)N−nαN√
2Nn!(N − n)!

∣∣∣ψNn 〉 , (6.14)

which is a combination of modes of various transition rates, averaging out as the transition
rate of a single coherent mode. The situation is equivalent to that of two atoms with a single
one excited, |eg〉, which decomposes equally on the superradiant [|+〉 = (|eg〉+ |ge〉)/

√
2]

and subradiant [|−〉 = (|eg〉 − |ge〉)/
√

2] states as |eg〉 = (|+〉+ |−〉)/
√

2. Therefore, its
radiation averages into the single-atom one.

6.4 Revisiting the double-slit experiment
A key experiment in evidencing the wave nature of light is the Young slit experiment

or, equivalently, the Mach-Zehnder interferometer. The fundamental result is that both
classical and single-photon coherent sources produce the same fringe pattern, despite
the very different natures of these fields, and despite the latter source is composed of a
single quantum of energy. To revisit this experiment using the collective basis, one can
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consider, in the far field limit, two equal-weight light modes, as previously. Without loss
of generality, we assume that the waves with wave vectors k1 and k2, with |k1| = |k2| = k,
reach the two slits with the same phase. Then, kr1 and kr2 are the phases acquired by
the respective fields when propagating from slits 1 and 2, respectively, until the detection
point (see Fig. 15).

For modes in coherent states, the field on the detector writes

∣∣∣eikr1α, eikr2α
〉

= e−|α|
2
∞∑
N=0

√
2N
N !

(
eikr2α

)N ∣∣∣χN (δφ)
〉
, (6.15)

whereas for single-photon states

|S (δφ)〉 = cos (δφ/2)
∣∣∣ψ1

1

〉
− i sin (δφ/2)

∣∣∣ψ1
0

〉
, (6.16)

where δφ = k(r1 − r2) represents the phase difference due to the distinct light paths until
the detector. In Eq. (6.15), we have defined the phase-dependent state

∣∣∣χN (δφ)
〉

=
√
N !
2N

N∑
m=0

e−imδφ√
m! (N −m)!

|m,N −m〉 , (6.17)

which corresponds to a MSS when the two modes are in phase,
∣∣∣χN (2lπ)

〉
=
∣∣∣ψNN〉,

and to a PDS when in opposite phases,
∣∣∣χN ((2l + 1)π)

〉
=
∣∣∣ψN0 〉, with l = 0,±1,±2, ....

The single-photon state |S (δφ)〉, which decomposes as a sum of PDS or MSS only [see
Eq. (6.16)], presents the same feature. Therefore, the decomposition in PDSs and MSSs
straightforwardly explains why single-photon sources and classical fields exhibit the same
fringe pattern, for a ground state atom. The particular case of the slits actually points
toward a more general result: states of light composed of PDSs and MSSs only exhibit
the same interference patterns as those derived from linear optics or, equivalently, for
high-photon-number coherent states.

6.5 Mach-Zehnder interferometer (MZI)
To pursue the discussion on the detection of light states of different natures, let

us now consider the MZI setup with two input fields which are either classical fields,
with Rabi frequencies Ωa = Ω and Ωb = eiθΩ, or quantum fields which belong to the
PDS subspace, or to the MSS subspace. The latter can be written in terms of creation
operators as f

(
a† + eiθb†

)
|0, 0〉 (see Appendix F.1). For classical (quantum) fields, θ = 0

corresponds to the case of constructive interference (MSSs only), and θ = π to destructive
interference (PDSs only). For either kind of state, the output intensity is (see Appendix
C)

I±out = Iin (1± cos θ sinϕ) , (6.18)
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where +/− refers to the arm a/b, Iin is the intensity of the input field and ϕ the relative
phase shift between the two arms of the interferometer. Eq. (6.18) shows that classical
and quantum fields exhibit the same fringe pattern through MZI as the phase ϕ is varied.
Differently, state |Υ〉 has a projection on both MSS and PDS subspaces and it leads to
the following output in the MZI:

(
I±out

)
|Υ〉 = 1

4 (2∓ sinϕ) . (6.19)

This fringe pattern is qualitatively different from the one obtained for classical fields, and
for pure PDSs or MSSs, since the intensity does not cancel. Its minimum is

(
I±out

)
|Υ〉(ϕ =

±π/2) = 1/4, with a visibility

V|Υ〉 = Imax − Imin

Imax + Imin
= 1

2 , (6.20)

which is half the value of 1 obtained for classical states and PDS-only or MSS-only. This
finite minimum of the intensity can be interpreted in terms of the Hong-Ou-Mandel
effect [51, 154], where the projection of |Υ〉 on the two-indistinguishable-photon state
|1, 1〉ab automatically leads to a nonzero intensity in the MZI.

According to our predictions, PDSs and MSSs provide the same signatures as
classical fields through interferometric setups, despite their quantum nature – the states
which compose the PDS and MSS basis are photon-number states. Combined with the
fact that the “classical” state |α, α〉 (or |α,−α〉) decomposes as MSSs (or PDSs) only,
this shows that the collective basis offers a natural frame for the concept of interference.
Independently of the (classical or quantum) nature of the light, MSSs and arbitrary
combinations of them correspond to constructive interference, whereas PDSs result in
destructive interference. While for the other states, such as |Υ〉, more elements from the
collective basis are necessary to properly assess their coupling to matter.

Our collective basis (6.6) reveals a broad family of “intermediate” states, which are
neither perfectly dark nor maximally superradiant (

∣∣∣ψNn 〉 for n 6= 0, N). By injecting such
states in the MZI, one obtains interference patterns which cannot be described by classical
theory. For instance, considering the input (entangled) state |ψ2

1〉 = 1/
√

2 (|0, 2〉 − |2, 0〉),
the output in arm a is Iout = 1, independently of the relative phase ϕ of the MZI (see
Appendix F.4). In this case, the fringes have completely disappeared, and the visibility
is zero. In Fig. 16, we plot the output intensity in arm a as a function of the phase ϕ,
which highlights the qualitative difference between the different states of light considered.
Note that while the PDS considered here is a combination of two out-of-phase coherent
(classical) fields, any PDS will provide the same interference pattern, whether classical or
quantum. Differently, states |ψ2

1〉 and |Υ〉 present patterns that are different from those
obtained with classical states, where the intensity cancels. In this sense, the reduction of
visibility here stems from the quantum nature of the field.
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Figure 16 – Light intensity in the output mode A of a MZI as a function of the relative
phase ϕ and for different initial states: |Υ〉, given by Eq. (6.13), and the PDS,
|α,−α〉 (with α = 1/

√
2), both with total average number of photon equal to

1, and the state |ψ2
1〉 = (1/

√
2)(|0, 2〉 − |2, 0〉) which has exactly two photons,

for comparison. Note that the fringes obtained for the PDS state considered
here are the same as those obtained for any PDS.

Inspired by the collective basis, let us now introduce a protocol to identify the
nature of the light field. As a slight alteration of these setups, we now consider an atom
in the excited state |e〉 to locally probe the field. In this case, two classical fields with
the same amplitude, but with opposite phase, do not act on the atom since the classical
Hamiltonian simply cancels. Alternatively, a quantum field with a small average number
of photons, even in a superposition of PDSs, does exchange energy with the atom. This
can be easily demonstrated using the evolution operator U(t) = e−iHt, with H given by
Eq. (6.1), and by noticing that any superposition of PDSs can be written as f(a†−b†) |0, 0〉
(see Appendix F.1). Using the commutation relation [H, (a† − b†)] = 0, one obtains

U(t)f(a† − b†) |0, 0〉 |e〉 = f(a† − b†)U(t) |0, 0〉 |e〉 , (6.21)

which, in general, is nonzero. Hence, PDSs exchange energy with an atom in the excited
state, just as the two-mode vacuum state does. Thus, the slit experiment combined with a
two-level emitter as a probe appears as a new tool to probe the nature of the probe field.
This makes field-field correlations appropriate tools to probe the quantum nature of light,
instead of the usual intensity-intensity correlations [51, 154]. From a fundamental point
of view, this difference between few- (quantum) and many-photon (classical) fields stems
from the difference between classical and quantum vacuum. In essence, it is related to the
non-commutation relation between a and a†, which implies that the addition and then the
subtraction of a photon differs completely from the subtraction followed by the addition
of a photon [164, 165].

The similarities between the “true” vacuum state |0, 0〉 and PDSs raises the question
of whether it is possible to distinguish the two, since neither a ground-state nor an excited-
state atom can differentiate them. However, it is sufficient to observe that a change in
the balance between the two modes (not achievable in free space, where the atom-field
coupling g is very small) would immediately change the nature of the mode (provided it
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is not the vacuum state), giving the new mode a nonzero projection onto bright states.
For example, in a two-mode cavity, taking into account the transverse shape of the modes
means that a transverse displacement of the emitter would allow for the atom to radiate,
as long as the two cavities are not in the vacuum state. In particular, such an experiment
could help investigate the existence of a “dark-like energy”, since PDSs have an energy
proportional to their number of photons (in addition to the energy of the true vacuum
state), yet no coupling to the matter. Note that the discussion on the coupling of an atom
with a field which locally cancels is reminiscent of the finite momentum diffusion for an
atom at the crossing of two lasers, where the fields interfere destructively. The existence
of heating is, in that case, related to the spatial gradient of the field, rather than to its
quantum fluctuations [166, 167].

6.6 Generalization to M modes
Let us now discuss how our approach generalizes to an arbitrary number of light

modes. For M modes equally coupled to the atom, the interaction Hamiltonian reads:

HM = g
M∑
j=1

(ajσ+ + a†jσ
−), (6.22)

with aj (a†j) the annihilation (creation) operator for the j−th light mode. Then, the
following generalized coupling relation can be derived (see Appendix F.5):

HM

∣∣∣ψNn1,n2,...,nM

〉
|g〉 = g

√
Mn1

∣∣∣ψN−1
n1−1,n2,...,nM

〉
|e〉 , (6.23)

where we have defined the collective M -mode basis
∣∣∣ψNn1,n2,...,nM

〉
=

M∏
j=1

1√
nj!

(
M∑
k=1

Ojka
†
k

)nj
|0, 0, . . . , 0〉 , (6.24)

for the subspace of ∑M
k=1 nk = N photons. In Eq.(6.24), we define O the orthogonal matrix

of dimension M ×M , with M even, whose elements in the first row are O1k = 1/
√
M ,

while the elements in the second row satisfy the rule O2k = (−1)k−1/
√
M (see Appendix

F.5). Consequently, we identify the MSSs as

∣∣∣ψNN,0,...,0〉 = 1√
N !MN

(
M∑
m=1

a†m

)N
|0, 0, . . . , 0〉 , (6.25)

associated with the largest transition rate g
√
MN . The anti-symmetric PDSs read

∣∣∣ψN0,N,...,0〉 = 1√
N !MN

(
M∑
m=1

(−1)m−1 a†m

)N
|0, 0, . . . , 0〉 . (6.26)
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As for the two-mode case, we are now able to expand the M -mode in-phase coherent state
in terms of MSSs only:

|α, α, . . . , α〉 = e−M |α|
2/2

∞∑
N=0

√
MN

N ! α
N
∣∣∣ψNN,0,...,0〉 , (6.27)

which leads to the coupling relation HM |α, α, ..., α〉|g〉 = gMα|α, α, ..., α〉|e〉. Therefore,
the exchange of energy between the atom and the modes in coherent states isM times faster
than the case of a single cavity mode. Finally, the M -mode coherent state corresponding
to destructive interference decomposes in the PDS subspace only:

|α,−α, . . . , α,−α〉 = e−M |α|
2/2

∞∑
N=0

√
MN

N ! α
N
∣∣∣ψN0,N,...,0〉 , (6.28)

implying immediately the dark state condition HM |α,−α, . . . , α,−α〉 |g〉 = 0.

Considering the more general case of M modes, one can now identify that the
single mode case (M = 1) presents a unique PDS, namely, the vacuum state |0〉. This
case may sound trivial since there is no photon to excite the atom, yet its interest lies
in its unicity: any other state excites the atom. The multimode case is fundamentally
different since it possesses an infinite family of dark states, with arbitrarily high photon
numbers, yet which do not couple to the emitter in the ground state. This scenario is
analogous to the case of two-level atoms, where the single-atom (spontaneous) emission
always occurs, whereas the emission from a couple of atoms is suppressed in their dark
state |−〉 = 1/

√
2(|e, g〉 − |g, e〉). In this context, the collective basis is the natural frame

to understand why single-mode Fock states couple to matter (since they do not belong
to the PDS subspace), whereas two-mode PDSs states with quantum fluctuations do
not. Alternatively, dark states can be produced using single emitters with a multilevel
structure [168], in particular in Electromagnetically Induced Transparency [169].

6.7 Detection scheme
The two-mode or M -mode light-matter interaction discussed in the present work

suggests an implementation in setups where the electromagnetic environment is reduced
to a few modes. Examples are optical cavities coupled to a two-level atom [170, 171],
trapped ions where a single emitter can be coupled to its two vibrational modes [12, 172],
or superconducting circuits [173]. We point out that an important example of the present
discussion is the case of two coherent states with the same photon number but opposite
phases; these light modes possess nonzero quantum fluctuations, but do not couple to the
emitter. A crossed detection of the atom dynamics (for example, from its fluorescence)
coupled to a detection of the statistics of the cavity modes, would allow unambiguous
measurement of the features discussed in this work. Note that the cavity’s finite finesse
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(and thus nonzero cavity decay rate) and the atom’s spontaneous emission (atomic decay
rate) are not expected to affect these features, since they are purely diagonal terms.
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Figure 17 – (a) Field population 〈a†a〉 in modes A (same as in mode B) and (b) population
of the excited state 〈σee〉 as a function of the normalized time gt. The initial
states considered are |α, α〉|g〉 (solid red curve), |α,−α〉|g〉 (dashed black
curve) and |Υ〉 |g〉 (blue dash-dotted curve). Parameters used: ga = gb = g,
κa = κb = g/100, γ = g, and α = 1/

√
2.

We study the dynamics of the atom coupled to two cavity modes using a quantum
master equation, which takes into account the atom and mode dissipation:

ρ̇ = −i [H, ρ] + Latom (ρ) + La (ρ) + Lb (ρ) , (6.29)

with
Latom (ρ) = (γ/2) (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (6.30)

and
Lβ (ρ) = (κβ/2)

(
2β†ρβ − β†βρ− ρβ†β

)
, (6.31)

with β = a, b, and where γ and κβ are the atomic and field decay rates, respectively. This
master equation is the standard one employed to study atom-cavity dynamics and is valid
under the Rotating Wave Approximation (RWA), where the atom-field coupling energy is
much smaller than the free energy of the modes and of the atom, and Born and Markov
approximations [51].

Considering an intermediate (g ∼ κ, γ) or strong (g � κ, γ) atom-field coupling,
the results predicted in this work could be observed by monitoring the modes and atomic
populations, see Fig. 17. Starting with the atom in the ground state |g〉, state |α, α〉
exchanges energy with the atom while the state |α,−α〉 does not. On the other hand, state
|Υ〉 excites the atom despite its zero average electric field, and electric field fluctuations
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Figure 18 – Excited state population 〈σee〉 as a function of the parametrized time gt
considering the semi-classical (dashed blue line) and the quantum approaches
(solid red line) and the atom initially in the excited state. In the panel
(a) both fields are in the constructive interference scenario, i.e., in-phase
classical fields with initial amplitude (collective mode) αc(0) =

√
2α and

|α, α〉 for the quantum approach. Oppositely, in the figure (b), the fields
concern the destructive interference case, i.e., out-of-phase classical fields with
initial amplitude (collective mode) αc(0) = 0 and |α,−α〉 for the quantum
description. Parameters: α = 1/

√
2, ga = gb = g, κa = κb = g/100, and γ = g.

equal to those of the |α,−α〉 states. Thus, by monitoring the excited atomic state population
one could distinguish the states considered here, see Fig. 17(a). One could also observe
the atom-field coupling/non-coupling by monitoring the cavity mode emission, since the
atom acts as an extra source of decay for the cavity modes (that is, for the states which
couples to the atom), with an effective decay rate κeff = g2/2γ [174, 175]. In Fig. 17(a)
we plot the average number of photons in the cavity mode A (which is the same as in
mode B), which shows that the cavity emission depends on the mode state, as expected.
In particular, the state |α,−α〉 remains completely unaffected by the presence of the atom.

Let us now discuss further how the interference experiment presented in Sec. 6.5
allows one to distinguish PDSs from classical fields, provided a two-level detector in the
excited state is used. In Fig. 18, considering an atom initially in the excited state |e〉, we
present the evolution of the excited state population for different field states, described by
either a quantum model, derived from Eq. (6.29), or a semi-classical one. The latter is
obtained by deriving from Eq. (6.29) the equations of motion for the atomic and the cavity
field operators. Then, the expected value for the collective operator of the radiation field
c = (a + b)/

√
2 is replaced by time-dependent complex amplitude αc(t) (see Appendix

F.6 for details). The panels (a) and (b) in Fig. 18 describe, respectively, in-phase (|α, α〉
and αc(0) =

√
2α, for quantum and semi-classical models, respectively) and out-of-phase
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(|α,−α〉 and αc(0) = 0, for quantum and semi-classical models, respectively) fields, and
they exhibit a qualitative difference between the two approaches. One observes that the
semi-classical model predicts a monotonic decay, while the quantum one predicts an
oscillating decay: this shows that a quantum and a classical field can be distinguished
with this protocol.

6.8 Application: Controlled-Phase Gate
One can take advantage of the bright and dark states of the cavity modes for

quantum information processing. To illustrate this point, let us now present how to
implement a controlled phase gate on atomic states. On the one hand, since the dark
states do not interact with the atom, they do not introduce any phase on the atomic state.
On the other hand, the bright states do interact with the atom, so they modify the atomic
state.

Our protocol requires a three-level atom in a Λ configuration (with two ground states
|g1〉 and |g2〉, and an excited state |e〉) interacting with both cavity modes of frequency ωc.
We assume that only the transition |g1〉 ↔ |e〉 (with transition frequency ω0) is coupled to
the cavity modes. To avoid transfer of atomic population to the unstable excited state,
the atom-modes interaction is detuned from the atomic transition: ωc = ω0 + ∆, In the
limit of large detuning (|∆| � g), the excited state will be marginally excited, and one
can assume the atomic state to be restricted to the ground state subspace {|g1〉 , |g2〉}. An
effective Hamiltonian can then be derived from Eq. (6.1) [176]:

Heff '
g2

∆
(
a† + b†

)
(a+ b) |g1〉 〈g1| . (6.32)

For simplicity, we consider single-excitation bright and dark states (|ψ1
1〉 and |ψ1

0〉, respec-
tively). The evolved states are

e−iHefft |g2〉
∣∣∣ψ1

0

〉
= |g2〉

∣∣∣ψ1
0

〉
, (6.33)

e−iHefft |g1〉
∣∣∣ψ1

0

〉
= |g1〉

∣∣∣ψ1
0

〉
, (6.34)

e−iHefft |g2〉
∣∣∣ψ1

1

〉
= |g2〉

∣∣∣ψ1
1

〉
, (6.35)

e−iHefft |g1〉
∣∣∣ψ1

1

〉
= e−iξ |g1〉

∣∣∣ψ1
1

〉
, (6.36)

where we have introduced ξ = 2g2/∆t. Adjusting the interaction time t one is able to
adjust the phase ξ, thus realizing a Controlled-Phase gate. Combined with single qubit
operations (see Appendix F.7), one can implement other more complex gates such as the
C-Not gate, eventually achieving universal quantum processing.
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6.9 Conclusion
In conclusion, we have discussed how a description of multimode light in terms of

maximally superradiant or perfectly dark collective states offers a natural interpretation
for constructive and destructive interference. Remarkably, this Dicke-like bosonic basis
applies to classical and non-classical states of light, thus going beyond the simple classical
approach of average fields. Differently from the classical approach, where no assumption on
the matter is necessary to describe the sum of electromagnetic fields, we have shown that
interference are intimately related to the light-matter coupling properties from a quantum
perspective, since bright and dark states stem from this coupling. One can interpret this as
a manifestation of the measurement problem in quantum mechanics, where an observable
expectation value also depends on the features of the measuring apparatus [177, 178].
Within this framework, we have revisited the double-slit and MZI experiments to provide
an explanation of the similarities and differences expected in these interference setups,
when employing quantum or classical light fields.

Moreover, our approach allowed us to identify a necessary and sufficient condition
for an atom in its ground state to couple to a light field. While the common wisdom,
present in many textbooks, suggests that the coupling of the emitter to light states with
zero average electric field is due to the quantum fluctuations of the field, we have shown
that this explanation fails for multimode field states. Indeed, the true condition for this
coupling is a finite projection out of the PDS subspace. Oppositely, a light state that only
decomposes on PDSs does not couple to the atom, despite its fluctuations. These PDSs
with nonzero energy thus give rise to a kind of “dark energy”, which cannot be detected
through usual techniques, that is, they are transparent to the atom.

Our results could be observed in a cavity QED setup (using optical cavities or,
equivalently, trapped ions or circuit QED), by monitoring the excited atomic population.
On the one hand, a ground state atom is excited only when the initial mode state has
a projection out of the PDS subspace. On the other hand, for a PDS-only light state,
one could detect the presence of a non-trivial field only using some twists. In a cavity
QED setup, these states could be probed by unbalancing the coupling between the modes
and the two-level atom, since the PDS nature of a light state is related to a specific
set of couplings between the atom and the modes. Our work could thus bring a new
understanding of interference effects in general, especially for quantum light fields, since it
provides a toolbox to identify, for example, light fields with finite fluctuations yet protected
from decoherence through the emitters. This could help the engineering of light-matter
interactions and their applications, for instance, in quantum gates and quantum memories
for quantum information science [14, 179, 180].
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Conclusion

In this master dissertation, we have approached three different topics. In the first
topic, we applied the quantum adiabatic brachistochrone method to optimize two types of
adiabatic evolutions, the adiabatic quantum search algorithm and the charging process
of a quantum battery. Concerning the adiabatic quantum search, we showed that the
imposing constraints to the interpolation function can increase the total dynamics time,
thus reducing the quadratic speedup over the classical search algorithm. Also, we use
a Legendre transformation in the Lagrangian to find the Hamiltonian of the quantum
adiabatic brachistochrone, by which we firstly find the non-constrained quantum adiabatic
brachistochrone for the adiabatic Grover algorithm. We showed that the non-constrained
brachistochrone is qualitative equal to the linear constrained brachristochrone to execute
the algorithm. In the quantum battery, in collaboration with Prof. Dapeng Hu’s research
group, we fully characterize the transmon superconducting three-level quantum battery. We
demonstrated that the quadratic constrained brachistochrone with the unstable charging
protocol can enhance the ergotropy injection in the artificial atom. The characterization
is then concluded with the experiment and theoretical description of the self-discharging
process of the battery, which has a non-Ohmic behavior.

The second topic is a study about the D-Wave quantum annealer. We firstly
presented its engineering and experimental setup, further we investigated the techniques to
formulate QUBO and Ising algorithms and then we solved the traveling salesman problem
on the D-Wave quantum computer. This study was published on the Revista Brasileira de
Ensino de Física [53]. To give a classical alternative to this quantum process and also to
have a method for comparing classical and quantum solutions, we described the simulated
annealing, which is an algorithm that simulates an approximated slow and smooth cooling
process of a thermodynamics system to solve optimization problems. Using the traveling
salesman problem, we showed that the simulated annealing can indeed find good solutions,
with less than five percent of error in relation to the optimal one for instances with 100
cities, while the present day quantum annealer can not handle with tours containing more
than 10 cities. Thus, our analysis corroborate to the literature that states that there is
still no evidence of quantum speed up over classical computers using annealers.

In the third topic, we introduced a quantum interpretation of classical interference.
We showed that describing light-matter interaction using quantum fluctuations leads to
inaccurate predictions. Our new treatment has an unambiguous approach to describe
light-matter interaction based on super- and sub-radiance and it can be applied to classical
and non-classical states of light. The classical approach does not make any assumption
regarding the measurement apparatus for detecting interference phenomena, while we
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showed that taking into consideration the light-matter coupling is fundamental to correctly
describe interference behavior in classical and non-classical light.

Moreover, throughout the development of this work, we find some relevant questions
that might have interesting answers:

1) Generalization of the ladder-like quantum battery. We know that the charging
Hamiltonian for a qudit have analytical solutions, which may also enable analytical
solutions for describing the self-discharging behavior. A comparison between the
total dynamics time between the new charging protocols will lead to new experiments
concerning this kind of device. Systems like the one presented in Ref. [181] will find
applications of the study we proposed here.

2) Single photons generation (SPG) is a important task for quantum information and
communication [182]. In the Refs. [4, 183] the authors experimentally showed that
it is possible to generate single photons by using the Λ-STIRAP technique. The
quantum system used for SPG is a three-level atom with one branch driven by a
laser and the other coupled to a cavity mode. The application of the QAB to this
system can yield more efficient technologies for SPG.

3) A Quantum memory is a system that stores and retrieves a quantum state. This
kind of system can be created by coupling two macro-atoms via an optical resonator,
then one can transfer a magnon in one macro-atom to the other, using adiabatic
dark-state transfer [184, 185], which can be accelerated with the QAB.

4) The quantum adiabatic brachistochrone method was recently generalized to open
quantum systems [41] and it was successfully tested for small systems, such as
the three-level battery and Deutsch-Jozsa algorithm. However, there are analytical
solutions of the energy gap (as required for finding analytical motion equations)
in just few cases. It will be interesting to develop an efficient numerical method,
exact or approximated, for applying this method for larger systems, which will have
applications to the NISQ adiabatic quantum computing and technology.

5) Approximated quantum adiabatic brachistochrone. Since the task of finding the en-
ergy gap is not generally achieved analytically for the QAB, approximated techniques
may be helpful. For example, it is possible to find the eigenvalues of the adiabatic
Grover algorithm, but if not, we could solve the dynamics for a set of small N to fit
the Gap as a function of N . Therefore, for this case we will approximately find the
motion equations. The gain will concern computational resources, since when the
energy gap is not available, one has to diagonalize the system in every time interval
for solving the motion equations of the QAB.

6) Some methods for speed up adiabatic dynamics make use of an additional Hamiltonian
for increasing the energy gap during time evolutions [91]. Then the total Hamiltonian
reads H(t) = q0(t)H0 + qsc(t)Hsc + q1(t)H1 where ‘sc’ stands for shortcut and
qsc(0) = qsc(τ) = 0. In this scheme, the QAB method is still to be tested.
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APPENDIX A – Second derivative test

The solution of the Euler-Lagrange equations give us functions that extremises the
functional. However, we can not say if the solution is a local minimum, a local maximum or
a saddle point. For getting this information it is necessary to apply the second derivative
test. We have to evaluate the equation
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(A.1)

where we used that d2q̄/dε2 = d2q̄′/dε2 = 0, due to the definition. Now, applying the chain
rule,
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Evaluating the equation when ε = 0 we find

d2ξ
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ds . (A.3)

An important difference that appears in the second derivative of the functional is the
persistent dependency on η. In this case, it is necessary to evaluate d2ξ/dε2|ε=0 for every
function in the set of functions that satisfy the boundary conditions of the problem. Thus,
calculating the second derivative test is a task that is possible to do analytically for few
cases.
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The meaning of the functional value fallows the idea of the second derivative test
in multi-variable calculus. For understanding it better, we can use a Taylor’s expansion
for functionals

A[q(s) + εη(s)] = A[q(s)] + dA[q(s)]
dε

∣∣∣∣∣
ε=0

+ 1
2!

d2A[q(s) + εη]
dε2

∣∣∣∣∣
ε=0

+ · · · . (A.4)

Since we q is a extremum of A[q(s)], we can write

A[q(s) + εη(s)]− A[q(s)] ≈ 1
2!

d2A[q(s) + εη]
dε2

∣∣∣∣∣
ε=0

. (A.5)

Then

• if d2
εξ > 0, q and q′ are, at least, a local minimum of f ,

• if d2
εξ < 0, q and q′ are, at least, a local maximum of f ,

• if d2
εξ = 0, q and q′ are a saddle ‘point’ of f ,

where d2
εξ = (d2ξ/dε2)ε=0.
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APPENDIX B – Beltrami Identity

We will now prove the Beltrami identity that is a relation useful when there is no
explicit time dependence in the functional. Let us take the Euler-Lagrange equations

d
dt
∂L
∂q̇
− ∂L
∂q

= 0 . (B.1)

We can multiply it by q̇,

q̇
d
dt
∂L
∂q̇
− q̇ ∂L

∂q
= 0 (B.2)

The chain rule states that

dL
dt = ∂L

∂q
q̇ + ∂L

∂q̇
q̈ + ∂L

∂t
, (B.3)

and we can write
q̇
∂L
∂q

= dL
dt −

∂L
∂q̇
q̈ − ∂L

∂t
, (B.4)

Now, substituting Eq. (B.4) in Eq. (B.2), we get

q̇
d
dt
∂L
∂q̇

= dL
dt −

∂L
∂q̇
q̈ − ∂L

∂t
, (B.5)

but we can express the left-handed size of this equation as

d
dt

(
∂L
∂q̇
q̇

)
= q̇

d
dt
∂L
∂q̇

+ ∂L
∂q̇
q̈ . (B.6)

Therefore, the Euler-Lagrange equation becomes

d
dt

(
∂L
∂q̇
q̇

)
− ∂L
∂q̇
q̈ = dL

dt −
∂L
∂q̇
q̈ − ∂L

∂t

d
dt

(
∂L
∂q̇
q̇

)
= dL

dt −
∂L
∂t

d
dt

(
L − ∂L

∂q̇
q̇

)
= ∂L

∂t
.

(B.7)

This a form to express the Euler-Lagrange equation. However, if L is not explicit time
dependent, i.e L = L(q(t), q̇(t)) the motion equation becomes

d
dt

(
L − ∂L

∂q̇
q̇

)
= 0

∴ L − q̇ ∂L
∂q̇

= C ,
(B.8)

which is the Beltrami identity and C is a constant that depends on the initial conditions.



94

APPENDIX C – Equivalent squared
Lagrangian

In the Quantum Adiabatic Brachistochrone section 2.3, we used an equivalent
Lagrangian defined as L′ = L2. But, in which conditions this will lead to the equivalents
motion equations? When considering the Euler-Lagrange equation to L′ we have,

d
dt
∂L2

∂q̇
− ∂L2

∂q
= 0

d
dt2L

∂L
∂q̇
− 2L∂L

∂q
= 0

2L
(

d
dt
∂L
∂q̇
− ∂L
∂q

)
+ 2∂L

∂q̇

dL
dt = 0 .

(C.1)

Therefore, if dL/dt = 0 we have a necessary and sufficient condition to L′ has an equivalent
motion equation of L.

In this thesis, the all the Lagrangians that we use has the form

L =
∑
i

q̇2
i fi(q0, q1) + q̇0q̇1g(q0, q1) , (C.2)

where q0 and q1 are functions of a parametrized time s. A Legendre transform action of L
with respect to q̇i yields

H(q0, q1, p0, p1) =
∑
i

q̇ipi − L . (C.3)

The new canonical variables read

p0 = ∂L
∂q̇i

= 2q̇0f0(q0, q1) + q̇1g(q0, q1) ,

p1 = ∂L
∂q̇i

= 2q̇1f1(q0, q1) + q̇0g(q0, q1) .
(C.4)

The Hamiltonian then becomes
H =

∑
i

q̇ipi − L

= q′0 [2q̇0f0(q0, q1) + q̇1g(q0, q1)] + q̇1 [2q̇1f1(q0, q1) + q̇0g(q0, q1)]− L
= 2L − L
= L .

(C.5)

We find that the Hamiltonian is not explicitly time-dependent, thus dH/dt = 0. Since we
proved that the Lagrangian is equal to the Hamiltonian we will have

dL
dt = 0 . (C.6)

Therefore, the squared Lagrangian do not changes the length of the curve yielded by the
Euler-Lagrange equations.
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APPENDIX D – Frobenious norm identity

In this appendix we will prove an identity concerning the Frobenious norm, which
will help us will the physical interpretation of the procedure to change the norm in the
Lagrangian of the quantum adiabatic brachistochrone.

The Frobenious norm of an operator A reads

FA = ||A†A|| = Tr
[
A†A

]
. (D.1)

Equivalently, considering Cik = (A†A)ik = ∑
j a
∗
i,jaj,k, we can expand the trace as

Tr
[
A†A

]
=
∑
i

∑
j,k

〈i| cjk |j〉 〈k| |i〉

=
∑
i

∑
j,k

cjkδijδki

=
∑
i,j

ci,jδi,j

=
∑
i

ci,i

=
∑
i,j

a∗i,jaj,i .

(D.2)

Therefore, for a hermitian matrix A,

Tr
[
A†A

]
=
∑
i,j

|ai,j|2 . (D.3)
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APPENDIX E – Lindblad equation

In this Master’s thesis we talk about quantum open-systems in two situations, one
regarding the self-discharging process of a three-level quantum battery and the other in
the simulations of quantum optics dynamics in decaying in the atom and in the cavity.
Therefore, for giving self-consistency for this thesis, we will derive the Lindblad equation
used to describe these phenomenon.

The method we will use fallows the reference [186]. The derivation starts with the
Lioville-von Newumann equation in which we will perform a Markovian approximation to
find the Born-Markov master equation. Finally, we will introduce a Jaynes-Commings-like
interaction and thereafter we will trace out the degrees of freedom of the bath.

The system we have interest in is composed by main system, an infinite bath and
a interaction Hamiltonian,

H(s) = Hs +Hb + αHsb , (E.1)

where Hs = Hs⊗ I is the Hamiltonian of the main system, Hb = I⊗Hb is the Hamiltonian
of the bath and Hsb = Hs ⊗Hb is the interaction between the bath and the system and
α is the intensity of this former interaction. The motion equation for the global density
operator ρbs is given by the Liouville-von Neuman equation, which is a generalization of
the Heisenberg equation for composed systems,

dρbs
dt = − i

~
[Hs +Hb + αHsb, ρbs] . (E.2)

Further, we can write the Hamiltonian in the interaction picture, therefore

HI(t) = ei(Hs+Hb)t/~Hsbe
−i(Hs+Hb)t/~ and ρ(t) = ei(Hs+Hb)t/~ρsbe

−i(Hs+Hb)t/~ . (E.3)

The motion equation for the density operator in the interaction picture reads

dρ(t)
dt = −iα

~
[HI(t), ρ(t)] , (E.4)

and its integration leads to

ρ(t) = ρ(0)− iα

~

t∫
0

[HI(t), ρ(t)] dt . (E.5)

We can make a recursive procedure by substituting Eq. (E.5) in Eq. (E.4)

dρ(t)
dt = −iα

~
[HI(t), ρ(0)]− α

~2

HI(t),
t∫

0

[Hi(t′), ρ(t′)] dt′
 . (E.6)
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This is the Born approximation and we will stop in the second order. Further, always it is
possible to manage the initial conditions of the problem for the first term after de equality
to be zero. Also, we want the density operator of the system, thus we will trace the bath
out

dρs(t)
dt = − α

~2 Trb


HI(t),

t∫
0

[Hi(t′), ρ(t′)] dt′
 . (E.7)

Now, we can make three approximations: consider ρ(t) = ρs(t) ⊗ ρb, ρ(t) = ρ(t′) and
t→∞. In the first approximation we consider that the bath is not affected by the system
and that the bath does not evolves in time. The variable changing in ρ does not affect
the Born approximation, since ρ(t) − ρ(t′) is also in the second order in α. The third
consideration is the Markov approximation and in it we consider that the correlation time
is very short, in other words we consider that the system has a short memory. The motion
equation for the density operator of the system is now the Born-Markov equation and it is
expressed as

dρs(t)
dt = − 1

~2

∞∫
0

Trb {[HI(t), [Hi(t′), ρ(t)]]} dt′ , (E.8)

where we set α = 1 because we are now evaluating just the interaction and its magnitude
will not change its behavior.

Furthermore, to calculate the commutator we will set the interaction Hamiltonian
to have Jaynes-Cummings-like form. Hence,

Hsb = ~
(
S†B + SB†

)
, (E.9)

where the operator S acts in the main system and the operator B acts in the bath. In
addition we are considering that the system operator does not evolves in time, which
means that the interaction will the bath does to chances the structure of the system, thus

[S,HS] = 0 . (E.10)

The Hamiltonian of the bath is then given by

Hb = ~
∑
k

ωka
†a , (E.11)

where ωk is the frequency of the mode k, a and a† are the annihilator and creator operators,
respectively. The bath operator is then

B =
∑
k

g∗kak , (E.12)
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where gk are complex coefficients that gives the coupling strange. For finding B in the
interaction picture we can use the Baker-Campbell-Hausdorff relation

B(t) = eiHbt/~Be−iHbt/~

= B +
[
iHbt

~
, B
]

+ 1
2!

[
iHbt

~
,
[
iHbt

~
, B
]]

+ · · ·

= B +
∑
k,z

iωkg
∗
zt
[
a†kak, az

]
+ 1

2!
∑
k,z

iωkg
∗
zt
[
iHbt

~
,
[
a†kak, az

]]
+ · · ·

= B −
∑
k

iωkg
∗
ktak + 1

2!
∑
k

ω2
kg
∗
kt

2
[
a†kak, ak

]
+ · · ·

=
∑
k

g∗kake
−iωkt ,

(E.13)

where we use that [N, a] = −a.

Now we can evaluate the commutators. The first one is

[H(t), [H(t′), ρb ⊗ ρs(t)]] = ~
[
SB†(t), [H(t′), ρb ⊗ ρs(t)]

]
+ ~

[
S†B(t), [H(t′), ρb ⊗ ρs(t)]

]
(E.14)

After the expansions we find that the first term in the right-hand side of the equation is[
SB†(t), [H(t′), ρb ⊗ ρs(t)]

]
= ~2SSρs(t)B†(t)B†(t′)ρb + ~2SS†ρs(t)B†(t)B(t′)ρb
− ~2Sρs(t)SB†(t)ρbB†(t′)− ~2Sρs(t)S†B†(t)ρbB(t′)
− ~2Sρs(t)SB†(t′)ρbB†(t)− ~2S†ρs(t)SB(t′)ρbB†(t)
+ ~2ρs(t)SSρbB†(t′)B†(t) + ~2ρs(t)S†SρbB(t′)B†(t) .

(E.15)

The other term is[
S†B(t), [H(t′), ρb ⊗ ρs(t)]

]
= ~2S†Sρs(t)B(t)B†(t′)ρb + ~2S†S†ρs(t)BB†(t′)ρb
− ~2S†ρs(t)SBρbB†(t′)− ~2S†ρs(t)S†B(t)ρbB(t′)
− ~2Sρs(t)S†B†(t′)ρbB(t)− ~2S†ρs(t)S†B(t′)ρbB†(t)
+ ~2ρs(t)SS†B†(t′)ρbB(t)− ~2ρs(t)S†S†ρbB(t′)B†(t) .

(E.16)

For the traces, we can first note that

Trb [B(t)B(t′)ρb] = Trb
[
B†(t)B†(t′)ρb

]
= 0,∀ t and t′ . (E.17)

Also, using the cyclic property of the trace we can reduce our terms to

Trb {[H(t), [H(t′), ρb ⊗ ρs(t)]]} = ~2
[
SS†ρs(t)− S†ρs(t)S

]
Tr
[
B†(t)B(t′)ρb

]
+ ~2

[
ρs(t)SS† − Sρs(t)S†

]
Tr
[
B(t′)B†(t)ρb

]
+ ~2

[
S†Sρs(t)− Sρs(t)S†

]
Tr
[
B(t)B†(t′)ρb

]
+ ~2

[
ρs(t)S†S − S†ρs(t)S

]
Tr
[
B†(t′)B(t)ρb

]
.

(E.18)
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For simplifying the notation we can define the functions

F (t) =
t∫

0

dt′Trb
{
B(t)B†(t′)ρb

}
, G(t) =

t∫
0

dt′Trb
{
B†(t′)B†(t)ρb

}
. (E.19)

If we consider the vacuum to be initial state of the bath we get

Trb
{
B(t)B†(t′)ρb

}
=
∑
b

〈b|B(t)B†(t′) |0, 0, · · ·〉 〈· · · , 0, 0| |b〉

=
∑
b

〈· · · , 0, 0|b〉 〈b|B(t)B†(t′) |0, 0, · · ·〉

= 〈· · · , 0, 0|
[∑

b

|b〉 〈b|
]
B(t)B†(t′) |0, 0, · · ·〉

= 〈· · · , 0, 0|B(t)B†(t′) |0, 0, · · ·〉 .

(E.20)

Now, we can expand the bath operators

Trb
{
B(t)B†(t′)ρb

}
= 〈· · · , 0, 0|

[∑
k

g∗kake
iωkt

∑
z

gza
†
ze
−iωzt′

]
|0, 0, · · ·〉

=
∑
k,z

eiωkt−iωzt
′
gzg
∗
k 〈· · · , 0, 0| aka†z |0, 0, · · ·〉

=
∑
k,z

eiωkt−iωzt
′
gzg
∗
k 〈· · · , 0, 0| (δkz + a†kaz) |0, 0, · · ·〉

=
∑
k

|gz|2e−iωz(t−t′) .

(E.21)

For the trace in G(t) we have

Trb
{
B(t′)†B(t)ρb

}
= 〈· · · , 0, 0|

[∑
k

gka
†
ke
−iωkt′

∑
z

g∗zaze
iωzt

]
|0, 0, · · ·〉

=
∑
k,z

e−iωkt+iωzt
′
g∗zgk 〈· · · , 0, 0| a

†
kaz |0, 0, · · ·〉

= 0

(E.22)

Therefore
F (t) =

∑
k

|gk|2
∫ t

0
dt′e−iωk(t−t′), G(t) = 0 . (E.23)

Again, we can use the Markov approximation in F

F (t) =
∑
k

|gk|2
∫ t

0
dt′e−ωk(t−t′) ≈

∑
k

|gk|2
∫ ∞

0
dt′e−ωk(t−t′) ≡ γ

2 , (E.24)

where γ is a real constant. The differential equation for the density matrix of the system
is then

d
dtρs(t) = γ

[
Sρs(t)S† −

1
2
{
S†S, ρs(t)

}]
. (E.25)

Note that the lest term is an anti-commutator. Finally, in the lest act we will return to the
Schrödinger picture. For this, let us consider ρs(t) = eiHst/~ρse

−iHst/~, then the left-handed
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size of the equation is
d
dte

iHst/~ρse
−iHst/~ = iHs

~
eiHst/~ρse

−iHst/~ − eiHst/~ρse−iHst/~
iHs

~
+ eiHst/~

dρs
dt e

−iHst/~

= eiHst/~
{

dρs
dt + i

~
[Hs, ρ]

}
e−iHst/~ .

(E.26)

The right-handed side of the equation is

γ
[
Sρs(t)S† −

1
2
{
S†S, ρs(t)

}]
= γeiHbt/~

[
SρsS

† − 1
2
{
S†S, ρs

}]
e−iHbt/~ . (E.27)

Therefore, the Lindblad equation for more than one bath is generalized to
d
dtρs = −1

~
[Hs, ρs] +

∑
i

γi

[
Liρs(t)L† −

1
2
{
L†L, ρs(t)

}]
. (E.28)

where L is the system operator, just like S, and is known as Lindbladian.

The Lindblad equation is a generalization of the Schrödinger equation, since it can
describe decoherence, dissipation and quantum measurements process and, when the bath
is ignored, we find the von Neumann equation. Although this equation can be applied
to a wide range of system, the approximations we did to derive it dictates the regime
of validity of this equation. This equation is valid when the bath-system interaction is
markovian, when the bath has infinity degrees of freedom and when γ is small comparing to
[Hs, ρs]. The master equation was derived, but it has some differences concerning quantum
mechanics for closed system. For instance, for non unitary evolutions appears the concept
of super-operators, which increases the dimension of the system. In the following we will
describe a method for solving this equation while we show these differences. In order to
write the operators in using matrices, let us we define

L(A)[ρ] = Aρ, R(A)[ρ] = ρA, , (E.29)

where we have the left- and right-multiplication super-operators, respectively. With this
two super-operators we can represent all terms in the Lindblad equation, such as the
commutator

[H, ρ] = L(H)[ρ]−R(H)[ρ] . (E.30)

Now, we have to flatten the density operator by performing the transformation

ρ =
∑
ij

ρij |i〉 〈j| → % =
∑
ij

ρij |i〉 ⊗ |j〉 , (E.31)

which means that now we have an vector and the new space of the system operator has
the dimension D2 ×D2. For illustrating this for a system initially with dimension D, let
us evaluate the action of L in %,

L(A)[%] =
∑
ij

ρij(A |i〉)⊗ |b〉

=
∑
ij

ρij(A⊗ I) |i〉 ⊗ |b〉 ,
(E.32)
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where I is the identity matrix of dimension D. Further, the right-multiplication super-
operator action is

R(A)[%] =
[
R(A†)[%]

]†
= (I ⊗ A†)% .

(E.33)

With this, it is possible to derive the matrix elements of the problem and solve it, using
numerical or analytic approaches.
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APPENDIX F – Quantum optics

F.1 Derivation of the two-mode collective basis
Considering the two-mode Fock basis {|m,N −m〉} for the operators a and b,

where N is the total number of photons in both modes, our goal is to find a collective
basis of states ∣∣∣ψNn 〉 =

N∑
m=0

CN
n,m |m,N −m〉 , (F.1)

which fulfill the following relation:

H |g〉
∣∣∣ψNn 〉 = gη |e〉

∣∣∣ψN−1
n′

〉
. (F.2)

with 0 ≤ n′ ≤ N − 1. Eq. (F.2) describes the process of a single-photon absorption by the
atom from any of the modes, where η represents a coupling factor, to be determined in the
next steps. In this context, three classes of collective states are of general interest when
considering two modes: Perfectly Dark states (PDS) (η = 0), Maximally Superradiant
(MSR) States (η = ηmax as large as possible), and the intermediate states (0 < η < ηmax).
For η = 0, the exchange of photons never happens between atom and modes.

In order to find the complete set
{∣∣∣ψNn 〉}, let us define the symmetric and antisym-

metric collective operators, respectively:

c ≡ 1√
2

(a+ b) , d ≡ 1√
2

(−a+ b) . (F.3)

One can straightforwardly verify that the transformation (F.3) corresponds to orthogonal
operators, preserves the canonical commutation relations, and conserves the total number
of photons:

c†c+ d†d = a†a+ b†b. (F.4)

In the space of these new operators, note that the Jaynes-Cummings Hamiltonian H turns
into

H =
√

2~gcσ+ + H.c, (F.5)

where only the collective mode c couples to the atom. The multiplicative factor
√

2 serves
as a reminder that, despite the simplicity of Eq.(F.5), we are still dealing with a two-mode
configuration.

Finally, we prove that operators c and d share the same vacuum state as the
previous operators a and b: c

d

 |0, 0〉 = 1√
2

 a+ b

−a+ b

 |0, 0〉 =
 0

0

 . (F.6)
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Therefore, the vacuum state is unique (|0, 0〉c,d = |0, 0〉a,b) and all elements of the new
collective basis can be built from it:∣∣∣ψNn 〉 ≡ |n,N − n〉c,d , (F.7)

=

(
c†
)n (

d†
)N−n√

n! (N − n)!
|0, 0〉 , (F.8)

=

(
a† + b†

)n (
−a† + b†

)N−n√
2Nn! (N − n)!

|0, 0〉 , (F.9)

with 0 ≤ n ≤ N . Using the binomial expansion for operators, we can finally obtain the
probability amplitudes (6.7) given in the main text. Although the new basis

∣∣∣ψNn 〉 =
|n,N − n〉c,d still requires two modes, the transformed Hamiltonian (F.5) does not depend
on the operator d. As a result, the condition (F.2) can be easily calculated from (F.7):

H |g〉
∣∣∣ψNn 〉 = g

√
2n |e〉

∣∣∣ψN−1
n−1

〉
, (F.10)

H |g〉 |n〉c = g
√

2n |e〉 |n− 1〉c , (F.11)

with the whole description concentrated only in the symmetric mode |n〉c. Finally, we are
able to recognize the MSSs (n = N) and PDSs (n = 0) discussed in the main text.

F.2 〈E〉 and 〈∆E〉 in the two-mode collective basis
The expectation value of the total electric field operator E, for an arbitrary element

of the collective basis, can now be calculated by using the symmetric operators only:

〈E〉 =
〈
ψNn

∣∣∣ (a+ b) +
(
a† + b†

) ∣∣∣ψNn 〉 , (F.12)
=
√

2 〈n,N − n| c+ c† |n,N − n〉c,d , (F.13)
= 0. (F.14)

This property is not surprising since
∣∣∣ψNn 〉 are states with perfectly defined photon numbers,

like Fock states for single modes. Similarly, we can calculate the second moment,〈
E2
〉

=
〈
ψNn

∣∣∣ [(a+ b) +
(
a† + b†

)]2 ∣∣∣ψNn 〉 , (F.15)

= 2 〈n,N − n|
(
c+ c†

)2
|n,N − n〉c,d , (F.16)

= 2 (2n+ 1) , (F.17)

which is precisely the two-mode variance 〈∆E〉2 = 2 (2n+ 1) of the total electric field
operator. The generalization of this procedure allows us to obtain straightforwardly 〈E〉
and 〈∆E〉 for any state expanded in terms of the two-mode collective basis.
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(b)

Figure 19 – Mach-Zehnder interferometer. BS1 and BS2 are 50/50 symmetrical beam
splitters. Fields that go through mode "B" acquire an adjustable phase ϕ.

F.3 Classical and quantum interference - Mach-Zehnder Interfer-
ometer
We here discuss the output from a Mach-Zehnder interferometer (MZI) when PDSs,

MSSs, or superpositions of them, are the input states, see Fig. 19. In particular, we show
how MSSs and PDSs yield fringe patterns which do not depend on whether “classical”
high-photon-number coherent states, or “quantum” number states, are interacting with a
ground-state atom. Yet other states, such as the |Υ〉, present clearly different fringes as
compared to any classical state.

We consider a MZI with two symmetric 50/50 beam splitters (BS), where the
transmission t and reflection r coefficients transforms the input modes according to the
rule

a → ta+ irb = a+ ib√
2
, (F.18)

b → tb+ ira = b+ ia√
2
. (F.19)

Interference of classical fields – Firstly we consider classical fields as inputs, with
Rabi frequencies ΩA = Ω and ΩB = eiθΩ. Constructive (destructive) interference is
obtained by setting θ = 0 (θ = π). After crossing the first BS, we obtain the following
transformed fields ΩA → Ω′A and ΩB → Ω′B:

Ω′A = Ω1− ieiθ√
2

, (F.20)

Ω′B = Ωe
iθ − i√

2
. (F.21)



APPENDIX F. Quantum optics 105

Then, the field Ω′B acquires a phase shift ϕ, turning into Ω′Beiϕ. Finally, both fields cross
the second BS, transforming Ω′A (Ω′B) into Ω′′A (Ω′′B) such that

Ω′′(AB) = −iΩeiϕ/2
[
sin

(
ϕ

2

)
± eiθ cos

(
ϕ

2

)]
, (F.22)

Eq.(F.22) leads to Eq.(6.18) of the main text, which is valid for any θ. The special case
θ = 0 (θ = π) corresponds to constructive (destructive) interference.

Interference of quantum fields – Two-mode states expanded only in terms of PDSs
or MSSs can be expressed as a function f of creation operators (see Appendix A):

|Ψ〉 = f
(
a† + eiθb†

)
|0, 0〉 , (F.23)

where θ = 0 for MSSs and θ = π for PDSs. Using the rules (F.18) and (F.19), as
applied before to the classical case, we transform twice the combined state of the fields:
|Ψ〉 → |Ψ′〉 → |Ψ′′〉. The result reads:

|Ψ′〉 = f

[(
a† − ib†√

2

)
+ eiθ

(
b† − ia†√

2

)]
|0, 0〉 , (F.24)

|Ψ′′〉 = f
{
−ieiϕ/2

[
eiθ cos

(
ϕ

2

)
+ sin

(
ϕ

2

)]
a†

−ieiϕ/2
[
cos

(
ϕ

2

)
− eiθ sin

(
ϕ

2

)]
b†
}
|0, 0〉 . (F.25)

The sequence of states above generates exactly the same fringe pattern predicted for
classical fields, see Eq.(6.18). We can thus conclude that, when the input of the MZI are
two out-of-phase classical fields, or two out-of-phase phase coherent fields, or any quantum
field by with projection only on PDSs or only on MSSs, the interference pattern will always
be the same. Hence, there is no way to distinguish classical from quantum fields in these
families.

When quantum states have a projection on both PDSs and MSSs, as it happens
with state |Υ〉 (see Eq. (6.13)), the interference pattern is clearly distinguishable from the
one obtained from classical fields. Indeed, if state |Υ〉 is injected in the MZI, the output
state

|Υ′′〉 = eiϕ√
2

sin
(
ϕ

2

)
cos

(
ϕ

2

)
(|2, 0〉 − |0, 2〉)

+ie
iϕ/2

2

[
cos

(
ϕ

2

)
− sin

(
ϕ

2

)]
|1, 0〉

−ie
iϕ/2

2

[
cos

(
ϕ

2

)
+ sin

(
ϕ

2

)]
|0, 1〉

+1
2
(
|0, 0〉+ eiϕ cosϕ |1, 1〉

)
(F.26)

generates the average numbers of photons〈
n(AB)

〉
|Υ〉

= 1
4 (2∓ sinϕ) . (F.27)
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This fringe pattern is qualitatively similar to the case of out-of-phase coherent states (see
Fig.16), 〈

n(AB)
〉
|α,−α〉

= |α|2 (1∓ sinϕ) . (F.28)

However, if we measure only one of the outputs, in mode A for instance, we observe an
interesting difference. For |α|2 = 1/2 and ϕ = π/2, classical or coherent fields predicts
zero intensity 〈nA〉|α,−α〉 = 0, while we obtain 〈nA〉|Υ〉 = 1/4 for the quantum state |Υ〉.
Thus, measuring the intensity rather than intensity-intensity correlations is sufficient to
distinguish the quantum and classical fields discussed above. The explanation for this
difference can be found on the decomposition on dark and superradiant states, by observing
that |Υ〉 always has a finite projection on a MSS.

F.4 General output for a MZI
Let us consider an arbitrary state of the collective basis,

∣∣∣ψNn 〉 =

(
b† + a†

)n (
b† − a†

)N−n√
2Nn! (N − n)!

|0, 0〉 (F.29)

as the input for the MZI. After the BS1, the light field acquires the phase shift ϕ, turning
into ∣∣∣ψ′Nn 〉 =

(
a† + b†eiϕ

)n (
b†eiϕ − a†

)N−n
ei(2n−N)π/4

√
2Nn! (N − n)!

|0, 0〉 . (F.30)

The final state after BS2 is then
∣∣∣ψ′′Nn 〉

=

√√√√ 2N
n! (N − n)!

×
[
b† cos

(
ϕ+ π

2
2

)
+ a† cos

(
ϕ− π

2
2

)]n

×
[
b† cos

(
ϕ− π

2
2

)
− a† cos

(
ϕ+ π

2
2

)]N−n
× |0, 0〉 , (F.31)

where we have omitted an irrelevant global phase factor. Note now that the outputs (6.18)
can be easily recovered by simply setting n = 0 (PDS) or n = N (MSS), accompanied by
the suitable value of the phase θ. In particular, the case of the intermediate quantum state
|ψ2

1〉, discussed in the main text, simplifies to the final state
∣∣∣ψ′′21

〉
= eiϕ

[
cosϕ√

2
(|0, 2〉 − |2, 0〉) + sinϕ |1, 1〉

]
. (F.32)

It provides the same average number of photons for mode A and B: 〈nA〉|ψ2
1〉 = 〈nB〉|ψ2

1〉 = 1.
In other words, no fringe is observed for such a state.
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F.5 M -mode collective basis
Considering the ordinary M -mode Fock basis {|m1,m2, . . .mM〉} for the operators

a1, a2, . . . , aM , with total number of photons ∑M
k=1mk = N , our goal is to find a collective

basis of states which fulfill the following relation:

HM

∣∣∣ψNn1,n2,...,nM

〉
|g〉 = gη

∣∣∣ψN−1
n′1,n

′
2,...,n

′
M

〉
|e〉 , (F.33)

with ∑M
k=1 n

′
k = N − 1. Eq. (F.33) describes the process of a single-photon absorption by

the atom from any of the M modes, and η represents a coupling factor.

In order to derive the properM -mode collective basis, we define the set of collective
operators

cj =
M∑
k=1

Ojkak, (F.34)

where O is an orthogonal matrix of dimension M × M , with M even, such that all
elements of its first row are O1k = 1/

√
M , and the elements of the second row satisfy

the rule O2k = (−1)k−1/
√
M . The other rows can be obtained by considering all possible

combinations of ±1 which satisfy the linear independence of the rows. For M = 4, for
example, a possible orthogonal matrix reads:

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , (F.35)

In particular, the orthogonality ensures the preservation of the canonical commutation
relations

[
cj, c

†
l

]
= δjl, and guarantees the conservation of the total number of photons:

M∑
j=1

c†jcj =
M∑
j=1

a†jaj. (F.36)

Using transformation (F.34), the M -mode Hamiltonian becomes

HM =
√
M~gc1σ

+ + H.c., (F.37)

which recovers the Jaynes-Cummings Hamiltonian, since only the first mode c1 =∑M
k=1 ak/

√
M couples to the atom. Moreover, the presence of M modes modifies the

atom-light coupling by a factor
√
M .

Just as for two modes, the basis on which the operators cj act can also be built
from the fact that the vacuum state is unique:

cj |0, 0, . . . , 0〉 =
M∑
k=1

Ojkak |0, 0, . . . , 0〉 = 0. (F.38)
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Therefore, the elements of the M -mode basis can be expanded as follows:∣∣∣ψNn1,n2,...,nM

〉
≡ |n1, n2, . . . , nM〉c ,

=
M∏
j=1

1√
nj!

(
c†j
)nj |0, 0, . . . , 0〉 ,

=
M∏
j=1

1√
nj!

[
M∑
k=1

Ojka
†
k

]nj
|0, 0, . . . , 0〉 ,

(F.39)

with ∑M
k=1 nk = N . As the transformed Hamiltonian (F.37) depends only on the first

operator c1, the condition (F.33) simply reads:

HM

∣∣∣ψNn1,n2,...,nM

〉
|g〉 = g

√
Mn1

∣∣∣ψN−1
n1−1,n2,...,nM

〉
|e〉 ,

HM |n1〉c1
|g〉 = g

√
Mn1 |n1 − 1〉c1

|e〉 ,
(F.40)

which allows us to easily identify the MSS state (n1 = N) and all PDS states (n1 = 0) of
the main text.

Finally, we would like to highlight that there are other matrices which connect
different Fock spaces. For example, the matrix

1√
M

j = 1,∀k
1−j√
j(j−1)

k = j ≥ 2
1√
j(j−1)

k < j

0 k > j

(F.41)

also satisfies the orthogonality condition and holds forM either odd or even. Yet it does not
provide a straightforward expansion of M -mode coherent states in terms of its associated
Fock basis.

F.6 Semiclassical Model
By considering the Hamiltonian (F.5), it is possible to derive the dynamical

equations for the operators expectation values from the quantum master equation. Defining
the atomic decay rate as γ and the cavity dissipation rate as κ (assumed to be the same
for both cavity modes), we obtain

〈ċ〉 = −κ〈c〉 − ig
√

2〈σge〉, (F.42)
〈σ̇ge〉 = −γ〈σge〉+ ig

√
2〈cσz〉, (F.43)

〈σ̇z〉 = −2γ (1 + 〈σz〉) + 2ig
√

2
(
〈c†σge〉+ 〈cσeg〉

)
. (F.44)

Neglecting quantum correlations, the operators can be factorized, i.e., 〈cσ〉 = 〈c〉〈σ〉, thus
describing the classical dynamics. With the definitions 〈c〉 = αc, the initial conditions are
αc(0) = 0 for out-of-phase classical fields and αc(0) =

√
2α for in-phase fields.
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F.7 Arbitrary Single Qubit Rotations
As mentioned in Section 6.8, bright and dark states of light, together with the

atomic states, can be employed to implement the operations required for universal quantum
computing. In addition to the Controlled-Phase gate described in Section 6.8, it is necessary
to operate arbitrary rotations on the atomic and mode states individually. Regarding the
atomic system, such rotations can be implemented using two classical fields driving a Raman
transition, to which an effective Hamiltonian is associated with: Hat = Ωeff/2 |g1〉 〈g2|+H.c.,
with Ωeff the Rabi frequency of the desired transition. On the other hand, arbitrary rotations
on the light states (bright and dark states) can be achieved using an auxiliary atom placed
in a given position to interact (non-resonantly) with only one of the modes. Focusing on
mode A, the effective Hamiltonian (6.32) reduces to HA = g2/∆a†a |g2

1〉 〈g2
1|, where |g2

1〉
is the ground state of the second atom. This interaction is not able to change the state
of the second atom, but it introduces a relative phase in the collective two-mode state
only when there is one excitation in mode A, thus allowing us to implement arbritrary
rotations involving the bright and dark single excitation states. For instance, starting the
modes in the bright state, the evolved state becomes

e−iHAt
∣∣∣ψ1

1

〉 ∣∣∣g2
1

〉
= e−iθ

(
cos(θ)

∣∣∣ψ1
1

〉
− i sin(θ)

∣∣∣ψ1
0

〉) ∣∣∣g2
1

〉
, (F.45)

with θ = g2/∆t. This corresponds to the desired rotation from the bright to the dark
state.
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