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INITIAL CONDITIONS FOR INFLATION

Tsvi Piran and Dalia S. Goldwirth
The Racah Institute for Physics,
The Hebrew University, Jerusalem, ISRAEL

ABSTRACT

We discuss the required initial conditions for inflation. We show that a generic
kinetic term does not prevent the onset of inflation but that the gradient term might.
Domains larger than the horizon in which & > (a few } X My are required for the
onset of inflation. If we assume that the kinetic, gradient and potential terms are of
the same order large domains with & > ga. few ) X My exist and inflation can begin.
However if we assume that the scalar field is in a thermal equilibrium, the potential
term must be smaller and such domains will not be present and there is no room for
inflation. It seems that inflation does not free us completely from the need for special
initial conditions. However, Linde [1] has pointed out that inflation can be eternal.
He stresses the fact that inflation will never cease, but this also means that it did
not necessarily have a beginning. We argue that this is the simplest solution to the
initial conditions for the universe and that inflation might replace the “traditional”
singularity of the Big Bang model.



The standard big bang model faces two well known problems - the horizon prob-
lem and the flatness problem. Both problems can be considered not to be problems
if we accept the idea of very special initial conditions. We can simply declare that
there is no problem - God created a Friedmann Universe with extremely small initial
curvature and acausal homogeneity. Dicke and Peebles [2] have pointed out that to
a physicist this should seem quite unnatural. The inflationary paradigm (3] suggests
that a physical mechanism, inflation, rather than ad hoc initial conditions has lead to
the observed Universe. . i

For inflation we need a slowly varying scalar field (¢/® < R/R), whose potential
dominates the energy density of the Universe:

e L vey?
Ptotal X P3 = = 212
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The potential acts as an effective cosmological constant giving rise to a de Sitter phase
- commonly called inflation. During this phase the scale factor of the Universe, R,
increases exponentially, making the curvature term negligibly small and the horizon
exponentially large.

There are two main variants of inflation: “chaotic inflation” [4], with V(@) =
A®™, and “new inflation” [5]. In the sequel we focus on “chaotic inflation” since
the problems that we raise are only exasperated in the “new inflation” scenario. For
simplicity we use an n = 2 potential, for which A = m2/2 (m is the mass of the scalar
field). None of our arguments depends on this specific choice.

Inflation solves both the horizon and the flatness problems - but does the infla-
tionary paradigm live to its promise to free cosmology from the worry about initial
conditions? We know that inflation takes place when initially the potential dominates
the energy density piotai = ps ~ V (and when &y > (afew ) x My). In general
the kinetic term ®2/2 and the gradient term (V®)2/2R? also contribute to pg. The
central question is: what happens under initial conditions when these other terms are
comparable or larger than the potential term?

The effect of the kinetic term has been discussed quite extensively [6,7,8]. By
now it is well known that “Chaotic inflation” develops even when the kinetic term
dominates initially the energy density provided that ®o > (a few ) x M. To see this
consider the Friedmann equation:

k 8w
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and the homogenous scalar field equation:
b +3HO+V(®)=0 . (3)

When the kinetic term dominates p & 2/2 and if we ignore the curvature term in the
Friedmann equation we find:
V127

O~ b2 4
<E @

In this case .
dox1/t and & xlogt . (5)

® decreases rapidly while ® remains almost constant - the kinetic term disappears while
the potential term remains almost unchanged, and inflation begins. It is important,
for latter usage to recall that during the phase when the kinetic term dominates the
energy density, p = p, the scale factor, R, varies like t'/3 and the density decreases like



Fig. 1: Trajectories in the (<I>,<i>) plane for “Chaotic
inflation”. The horizontal curve with ® ~ 0 corresponds
to the slow rolling phase and to inflation.

RS, _The rapid decrease of & can be seen easily from the trajectory of the solution in
the (®, ®) plane (Fig. 1). The slow rolling phase, where

is an attractor and the trajectories converge to it quickly. For “chaotic inflation” this
is the inflationary phase and hence “chaotic” inflation is generic (as far as a kinetic
term is concerned).

Recently one of us [9] has shown that in “new inflation” the slow rolling phase is
also an attractor (see Fig 2), but only a small fraction of this line (a tiny region where
® < 0.010) corresponds to inflation. Hence a kinetic term might prevent the onset of
new inflation even if ® ~ 0 as required for new inflation.

The previous analysis was done in the context of a Universe in which the curvature
term can be neglected. Belinski et al 8] have pointed out that in a closed universe it is
possible that the universe will collapse before inflation starts. Recall that the curvature
‘term decrease like R™2, the kinetic term like R~® and the potential term remains
roughly constant. The fact that the density decreases faster then the curvature causes
collapse in regular Friedmann cosmology. Collapse can happen and prevent inflation
from starting if the energy density that is in the kinetic term does not become negligible
before the turnover condition: 1 8r

55 = Tz o (7)
R2 3Mp2,

is satisfied. The energy density can be related to the initial values Ry and &, using
the scaling laws that we have mentioned earlier:

p=——+V((I’0) s (8)
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Fig. 2: Trajectories in the (3,®) plane for “new in-
flation”. The azis are scaled so that the minimum of
the potential 1s at ® = 1. The dashed lines are p =
112/2+ V(®) = const lines (from p = V(0) to p = 2V (0)).
Fig. 2b is an enlargement of the region around the ori-
gin of Fig. 2a. The * corresponds to points that have N
(number of e-folds) of 21600, 100, 60, 10, and 1. It can
be seen that N drops very quickly, and only the first three
curves around zero lead to sufficient inflation.

between R and p and the initial values Ro and py. Recollapse begins when Eq. 7 is
satisfied and this can happen provided that the energy density is dominated at this
stage by the kinetic term. This lead to the following condition:

M3 $3 0
(87/3) RGBS ~ 2 ©)

which has to be satisfied in order that the universe will not recollapse before it starts
inflating. Similar condition was found numerically by Belinski et al. (8].

Until recently the onset of inflation was tested only under homogeneous initial
conditions and it was not clear what are the possible consequences of a gradient term.
However, to justify its claim to fame, inflation should be able to emerge from truly
generic inhomogeneous initial conditions. One can (7] approximate the gradient term
by an effective homogenous term §®2/A%R? in the energy density where 6® is the
magnitude of the variations in ® and A a typical comoving wavelength of these varia-
tions. If the inhomogeneous perturbations decouple from the evolution of the average
scalar field, ®, they evolve according to the approximate equation:

- . 6P
5¢+3H5¢+W=0 . (10)
and H can be approximated by:
2 gr 62

R —— . (11)
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One can easily show that 6® decays like R~! and the energy density of the gradients
decays like a radiation field, i.e. pgrqq R~*. This decay is very rapid and ® is almost
unchanged in the time that §® decays. Brandenberger et al. [10] use a more compli-
cated approximation in which they solve the inhomogeneous wave equation combined
with a homogenous Friedmann equation (for which they use the average energy density
as a source) and obtain similar results. Like with the kinetic term one has to worry, in
the case of a closed universe, whether the universe will not recollapse before inflation
starts. Using the same approach we derive the condition

M L
V(®o)RE ~ 2AR2

(12)
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Fig. 3: The scale factor, R (left) and the scalar field, ®
(right) as a function of the radial coordinate x for differ-
ent times. The solid line describes the initial data: large
gradients on top of a large ®. We see that the fluctuations
tn the scalar field decay and inflation starts.

This analysis suggests that the gradient term decays and does not interfere with
the onset of inflation. However, to explore the full effect of initial inhomogeneities
we must turn to numerical calculations [11]. A numerical solution of a spherically
inhomogeneous Universe with rapid variations of the scalar field is shown in Fig. 3.
We see that inflation occurs even in the presence of large gradients, provided that they
are superimposed on a large average scalar field (& > (a few ) x Mp).

The situation becomes more complicated and more interesting when we consider
a different inhomogeneous configuration in which at some point, say the origin, ® >
(a few ) x My while in other regions it is not so large [12]. Figs. 4 and 5 display
the evolution of two almost similar Universes that differ in the width, RA, of the
“effectively homogeneous” region over which @ is above some critical value. When this
region in large the Universe inflates (Fig. 4) but it does not inflate when this region is
narrower (Fig. 5). Generally the question whether inflation commences or not depends
on the ratio between RA and the horizon size H~!. Fig. 6 displays the expansion at
the origin as a function of RA/H_I. We see that inflation does not begin unless the
scalar field is higher than (a few ) X Mp, across several (at least 2) horizons.

Clearly, inflation solves the horizon problem by many orders of magnitude and
the initial conditions for inflation are much more general than those required for a
Friedmann Universe. But there still remains a problem with initial conditions: Is it
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Fig. 4: The scale factor, R (left) and the scalar field, ®
(right) as a function of the radial coordinate x for Gaus-
sian with RA/H~' = 4. Inflation begins at the origin but
not at the ezterior region.
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Fig. 5: The scale factor, R (left) and the scalar field, ®
(right) as a function of the radial coordinate x for Gaus-

stan with RA/H~! = 87 inflation does not appear any-
where.

reasonable to expect that regions of several horizons over which the average scalar field
will have a large value, appropriate for inflation, will exist in the pre-inﬂationar}/ era?
Suppose that at the end of the quantum era (when R ~ M_;! and p = M) the
energy of the scalar field is distributed equally between the kinetic, the gradient and
the potential terms: .
o2 N 502 m2?

o A MY
7 YAz~ g P Ma - (13)

The scalar field varies with a typical wavelength RA =~ M;l and amplitude 6@ ~ M.
With the assumption of equipartition §® is much smaller than the average value of the
scalar field, ®. To see this recall that the quantum fluctuation constraint [13]:

66/® ~ H/2r < 1074 (14)
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limits the coupling constant of the scalar field: m < M. The scalar field must have
a very large average value,

&~ M3 /m> My (15)

in order that the potential term will be in equipartition with the kinetic and gradi-
ent terms in spite of its small coupling constant. Since & > 6@, large regions with
® > (a few ) x My will exist and inflation can easily start. This can also be viewed
differently. The energy density has initially three roughly equal terms, the kinetic term
and the gradient terms decay and we are left with a dominant potential term and with
inflation.

Our conclusion can be drastically different if we assume that the scalar field ®
emerges from the quantum era in a thermal equilibrium (with T ~ Mp,) (it has been
argued [14] that a weakly coupled scalar field does not have enough time to thermalize
during the quantum era, but other workers [15] assert that the scalar field is in a
thermal equilibrium during the whole quantum phase). In this case:

32 602 .
2~ zmens Mo (16)
and 6® ~ M. But the potential energy is much lower than the kinetic energy:

m202 m?

and ® ~ My, (with R~ 1/My. @ ~ 6 for a thermal field at T > m and we do not
expect to find the required large regions with @ >> (a few ) x My. In other words, the
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kinetic term and the gradient term are much larger than the potential term. The initial
evolution is dominated by them and it is quite likely that the universe will collapse
before they decay. In any case by the time that they are comparable to the potential
term the scalar field is not large enough to lead to inflation.

We have seen that two different, but plausible, arguments have led us to opposite
conclusions. We are faced once more with the question of initial conditions. It seems
that we must understand better the conditions at the end of the pre-inflationary era, in
order to know whether inflation did take place in our Universe. We can turn to quan-
tum gravity and hope that quantum processes favor configurations in which domains
larger than the horizon with @ > (a few ) X M appear at the end of the quantum
era. However, today, practically nothing is known about inhomogeneous quantum
gravity. Lacking a clear theory the statement - “quantum gravity will provide the
necessary initial conditions for inflation” seems to be only an “idea for an idea” which,
unfortunately, cannot be pursued much further today.

The uncertainty about the initial conditions turns our attention to an attractive
alternative - perhaps there were none? Linde [1] has recently pointed out that eter-
nal inflation can take place under relatively simple conditions. Consider an inflating
Universe. Classically, ® decreases, in one e-folding time H~1, by:

M2
dchaaaical ~ ?pl . (18)

At the same time ® undergoes quantum fluctuations of the order

m®

d@quantum ~ M_pl . (19)

Evidently, if ® is large enough, (more specifically if ® > My/M,, /m), the quantum
fluctuations are larger than the classical change. The combined effect is a stochastic
random walk with an average decrease in ®. In some regions ® will decrease but
in others it will increase by d®uantum — @®classicai- The latter regions will expand
faster than the former and will contain a larger volume of the Universe. This process
repeats itself again and again every e-folding time. It is stochastic and it is impossible
to predict where ® will increase but the overall effect is clear - some regions of the
Universe will inflate for ever. Inflation can be eternal.

Once @ drops somewhere below M, /Mp;/m the classical motion takes over, ®
decreases and this region eventually exits inflation and emerge as Friedmann Universes
like the one in which we live. It seems that eternal inflation provides us with a grand
steady state cosmology, in which quantum fluctuations overcome the classical evolution
to maintain a stochastic kernel of an inflating Meta-Universe that keeps forever forming
domains which exit inflation, one of which is our Universe.

The most remarkable feature of eternal inflation is that it can be eternal on both
“ends”. It does not halt, but there is no need to turn it on either. One can, out of
conceptual inertia, assume that the eternally inflating Universe had a pre-inflationary
epoch (with an initial singularity or a quantum era) and immediately be faced with
the problem that we have just encountered: how did it start? However, this is not
necessary. One can just as well assume that there was no beginning (and that there
will be no ultimate end) and that we live in a Universe which is a minuscule part of a
steady state eternally inflating Meta-Universe.

This seems like a drastic proposal - but for the time being, and most likely for
a very long time in the future, there does not seem to be a single observational clue
- or even an idea for one - which will enable us to distinguish between a Universe
which began with a bang (and has undergone an inflationary phase later) and one
which is a part of an ever inflating Meta-Universe. The fact that there is no present
observational distinction between these two options is not necessarily a virtue: it be



1"

nice to be able to test this radical proposal. But this also means that eternal inflation
without a beginning cannot be ruled out right away. At least for the time being it
should be taken as seriously as the (by now more conventional) initial singularity or
initial quantum era proposal. Since the assumption of no initial conditions seems to
be the simplest one, Okham’s razor will tell us to prefer it and to conclude that we
live in a tiny part of a steady state inflating Meta-Universe that has existed and will
exist forever.
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THE FRACTAL STRUCTURE
OF THE QUANTUM SPACE-TIME

Laurent Nottale

CNRS.
Département d'Astrophysique Extragalactique et de Cosmologie.
Observatoire de Meudon. F-92195 Meudon Cedex. France

ABSTRACT.

We sum up in this contribution the first results obtained in an attempt at understanding
quantum physics in terms of non differential geometrical properties.!) It is proposed that the
dependance of physical laws on spatio-temporal resolutions is the concern of a scale relativity theory,
which could be achieved using the concept of a fractal space-time. We recall that the Heisenberg
relations may be expressed by a universal fractal dimension 2 of all four coordinates of quantum
"trajectories”, and that such a point particle path has a finite proper angular momentum (spin)
precisely in this case D=2. Then we comment on the possibility of a geodesical interpretation of the
wave-particle duality. Finally we show that this approach may imply a break down of Newton
gravitational law between two masses both smaller than the Planck mass.
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1.INTRODUCTION

The present contribution describes results obtained from an analysis of what
may appear as inconsistencies and incompleteness in the present state of fundamental
physics. We give here a summary of the principles to which we have been led and of
some of our main results, which are fully described in Ref. 1.

The first remark is that, following the Galileo/Mach/Einstein analysis of motion
relativity, the non absolute character of space and space-time appears as an inescapable
conclusion.?) The geometry of space-time should depend on its material and energetic
content. However present quantum physics assumes space-time to be Minkowskian,
i.e. absolute, while moreover the fundamental behaviour and properties of quantum
objects are known to be radically at variance with classical properties, from which the
Minkowskian space-time was yet derived.

The second remark is that Einstein's principle of general relativity ("the laws of
physics should apply to systems of reference in any state of motion") is still
unachieved. It is now considered, in particular, as not applying to quantum motion. To
quote Einstein in this connection, "...I am a fierce supporter, not of differential
equations, but of the principle of general relativity, whose heuristic strength is
essential to us."3)

The third remark is that the consequences of one of the radically new behaviour
of the quantum world relative to the classical one, i.e. the scale (and/or resolution)
dependance of physical laws, may still not have been fully drawn. Though an essential
part of the quantum theory through the so-called measurement theory, this scale
dependance has still not be included into the laws of physics themselves, in spite of its
clearly recognized universality based on the Heisenberg relations.

It is clear that a set of physical measurements takes its complete physical sense,
even in the classical domain, only when the measurement resolutions or "errors" have
been specified. In quantum physics, the result of a momentum measurement depends
explicitely, although in a statistical manner, of the spatial resolution, and the result of
an energy measurement depends of the temporal resolution with which the
measurement has been performed.

We suggest!l-4) that this fundamental scale dependance of physics is relevant, as
motion does, of a relativity theory. Our proposal is to introduce explicitely the
resolution in physical laws, either as a new coordinate, or better as a state of scale of
the coordinate system, in the same way as velocity and acceleration describe its state of
motion. The axes of such a generalized coordinate system can be viewed as endowed
with thickness. In such a frame one would require general covariance of physical
equations, not only on motion, but also on scale.

The hereabove generalization in the definition of coordinate systems, once
assumed universal for a consistent description of physical laws, immediately implies a
generalization of the nature of space-time itself. We postulate that the scale
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dependance of physics in the quantum domain, and more generally the quantum
behaviour itself, take their origin into an intrinsic dependance of space-time geometry
on resolution. This implies a generalized metric element where the metrics potentials
become explicit functions of resolution:

ds? = gy (xMAxA) dot dx” o))

The achievement of the hereabove working hypothesis needs the use of an
adequate geometrical mathematical tool. We have suggested that the concept of a
continuous and self-avoiding fractal space-time might be such an adequate tool.1)

2. WHY FRACTALS?

The suggestion that the quantum space-time possesses fractal structure is
supported by a lot of converging arguments. First of all, fractals are characterized by
an effective and explicit dependance on resolution. Covering a fractal domain of
topological dimension T and fractal dimension D>T by balls of radius Ax yields a
T-hypervolume measure which diverges when Ax—0 as:

V(x,Ax) = E(x,Ax).(A/Ax)P-T 0))

where &(x,Ax) is a finite fractal function and A is a fractal / non fractal scale
transition.

Second, fractals are also characterized by their non-differentiability, while it
had be realized by Einstein3) (see the hereabove quotation) that giving up
differentiability could be the price to be paid in order to apply the principle of general
relativity to microphysics, and by Feynman5) that the quantum "trajectories” of
particles can be described as continuous but non differentiable curves.

The third point is that fractals contain infinities, which may be renormalized in
a natural way.6) The correspondence between the renormalization group methods,
particularly efficient in the domain of the asymptotic behaviour of quantum field
theory, and fractals, has already been pointed out by Callan, as quoted by
Mandelbrot7). In fact the fractal approach may come as a completion of the
renormalization group theory.8)

Our working hypothesis is that the quantum space-time is a fractal self-avoiding
continuum whose geodesics define free particle trajectories. The continuum
assumption is a conservative choice allowing to keep a field approach and
representation, while the self-avoidance assumption is a necessary condition for such a
geodesical interpretation. But because of the non-differentiability of a fractal space,
the properties of geodesics will be fundamentally different from those of standard
spaces (see Ref.1 and Sec.4 hereafter).
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The fact that fractal trajectories run backward relatively to classical coordinates
also implies a loss of information in the projection from the intrinsic (fractal) to the
classical coordinates, which are defined as the result of a smoothing out of the fractal
coordinates with balls larger than the fractal/non fractal transition A (see hereafter
and Refs. 1 and 4 for the quantum interpretation of this transition). We have proposed
to describe this behaviour by a "fractal derivative":1)

ds/dx = Z; dsildx = E'(x,A%).(A /Ax)P-T 3)

the sum being performed on all proper time (fractal) intervals found in the classical
interval dx . The power D-T is found again because both the topological dimension
and the fractal dimension (nearly everywhere9)) are decreased by 1 in the projection .

3.THE FRACTAL DIMENSION OF QUANTUM TRAJECTORIES.

We now sum up some of the main results obtained or reviewed in Ref.1. The
question of the fractal dimension of a quantum mechanical path in the non relativistic
case has been considered by Abbott and Wisel0), Campesino-Romeo et alll) , Allen!2)
and others. The result is a universal value, D=2, the transition from non-fractal
(classical, D=T=1) to fractal (quantum, T=1, D=2) occuring around the de Broglie
length, Agg=#/p. Let us recall briefly the argument to show how this result is a direct
consequence of the position-momentum Heisenberg relation.

The total length travelled in the average during a set of experiments where the
successive positions of a particle are measured with a resolution Ax is given by:

L o<Vl o <Ipl>, @

in the non relativistic case. The classical case <Ipl>=po>>Ap, i.e. Ax>>A4p (since

Ax.Ap=h) yields as expected a length independant from Ax. On the contrary the
quantum case Ap<p,, (i.e. Ax<Agp) yields <Ipl>=Ap, so that the length diverges as:

L ec MAx (5)

which corresponds with 7=1 and from Eq. (1), to D=2.

The relativistic case is more difficult to deal with. A superficial analysis may
lead to the conclusion that, because of the limitation v<c, the length will become
bounded again for Ax<=A.=f/mc. However one should also account for the radically
new physical behaviour which takes place in the quantum relativistic domain, i.e.
virtual particle-antiparticle pair creation-annihilation. I have proposed to reinterpret
the virtual pairs as a manifestation of the fact that the fractal trajectory is now allowed
to run backward in time for time intervals Ar<=~t4s=H/E,.!) This is based on the
Feynman/Stueckelberg/Wheeler interpretation of antiparticles as particles running
backward in time. However here we consider electron-positron virtual pairs to be part
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of the nature of the electron itself, in agreement with the QED expression for the
electron self-energy, which contains all successive Feynman graphs.13) Indeed
consider that for a time interval At, an energy fluctuation AE=~#i/At may give rise to
the creation of n ete- pairs, with AE=2nmc2. With the hereabove reinterpretation, the
total time elapsed on the fractal trajectory is now given by the sum of the proper times
of the (2n+1) particles, i.e.:

T = (2n+l)1, = (E+AE) ty/mc? = (1+748/A0) 1, (6)

So we get a temporal non-fractal D=1 to D=2 fractal transition around the de
Broglie time 7gg.!) The argument holds also for the total distance travelled,
L=2n+1)Lo= (1+c148/Ax)ct,, which demonstrates that the spatial fractal dimension
remains D=2 in the relativistic case. Hence the transition from quantum non
relativistic to quantum relativistic may be accounted for by a purely temporal
transition. The length increase is now compensated by a time increase, which results
into the relativistic bound v<c. Finally we get a Lorentz covariant scheme with a
unique spatio-temporal transition from D=1 to D=2 around A#=fi/p#, p=0 to 3. This
result may also be obtained by the inverse argument: Starting from the hypothesis of
underlying fractal structures, the Heisenberg relations may indeed be found under the
same conditions.!)

One of the interesting consequences of this interpretation is that it precisely
accounts for the Zitterbewegung, this oscillatory motion of the center of mass of an
electron resulting from the Dirac equation. This effect is known to be the result of
interactions between the negative energy and positive energy solutions of the Dirac
equation. Though it indeed disappears if one keeps only the positive energy solutions
to describe an electron, this does not yield a satisfactory solution to the problem, since
such a positive energy electron would be completely delocalized!4). Conversely one
may set the localization assumed (or measured) for the electron, Ax=cAt=%ic/E, and
then derive the relative rate of positive and negative energy solutions. One gets:

PP, = [pc/(E+mc2))2 = (E-mc?)/(E+mc?) 7)
Now in the fractal model, for each classical time interval we have 2n+1 segments, n+1
running forward and n running backward, so that with E=(2n+1)mc2, one gets P_/P.

=n/(n+1)=(E-mc?)/(E+mc?), i.e. exactly the QED result. This relation of the
Zitterbewegung to the fractal approach will be developed in a forthcoming paper.8)

4. GEODESICAL INTERPRETATION OF THE WAVE-PARTICLE DUALITY.

Let us define the de Broglie length and time (A,7) as geometrical structures of
the fractal trajectory of a "particle": They are identified to the fractal/non fractal
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transition. Then the various classical quantities may be expressed in term of these two
geometrical quantities:

E=W7t; p=HhA; v=c2t/A ; m=hcc2r 2-12)12 @®)

This means that we do not have to endow the point particle with mass, energy,
momentum or velocity, but instead that these properties may be reduced to
geometrical structures of the resolution space. Hence the energy-momentum tensor
writes in terms of the de Broglie periods and of the Planck length Ap (with X;(§)
being four fractal functions defining the trajectory of particle i):

G Ap A
S, Jen ﬁl_:’ &x -X(S)].(d/do).do ©)

We have also demonstrated that the quantum spin itself may also be obtained as a
proper angular momentum of fractal trajectories having precisely fractal dimension
2.1) While for D<2 and D>2 the proper angular momenta of fractal curves are
respectively O and infinite, it becomes finite for the strict value D=2 and then owns all
the properties of an internal quantum number.

Let us now comment on the wave-particle duality. A fractal space-time is
characterized by an infinity of obstacles at all scales and by returns and eddies also at
all scales and for all 4 coordinates. As a consequence one expects that an infinity of
geodesics will connect any two space-time events, so that the properties of physical
objects on a fractal space-time will result in a mixing of individual properties (one
particular geodesic) and collective properties (those of families of geodesics), in
agreement with the wave-particle duality. While one may admit, without any logical
inconsistency, that a particle follows one particular geodesic (as indicated by
individual measurements of well defined particles), one must admit at the same time
that all geodesics are equiprobable, so that any prediction can be only of statistical
nature, since applying to a family of geodesics. So in such a frame we get the
possibility, at least in principle, to have both a space-time which would be stricly
determined by its material and energetic content, and non deterministic particle
trajectories. But here the statistical behaviour would not be the primeval stone on
which physical laws are based, but instead a consequence of the (fractal) nature of
space-time.

One result supporting this interpretation is that indeed beams of geodesics may
have a wave nature described by a Schrédinger-like equation in a Riemannian space-
time, even at the geometric optics approximation.l.15) A light beam in general
relativity is described at the geometric optics approximation by a congruence of null
geodesics, the equations of which have been written by Sachs.16) The cross sectional
area A of the light beam may be subjected on its way to three infinitesimal
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deformations, expansion O.da)r:d\/;l/\/f_l, rotation 2.dw=dW and shear. Considering
only the shearless case, when setting y/=\f/_1.eiW the beam propagation equation
writes, in term of an affine parameter @ and of Ricci tensor R;; and wave vector ki:1)

dy [ de? - LRk ki y=0 (10)

which has exactly the form of the one-dimensional Schrodinger equation. So a family
of geodesics, even at the geometric optics approximation, possesses the equivalent of a
quantum phase, interpreted as the beam rotation and of a probability of presence,
identified to the beam cross sectional area.

5.POSSIBLE IMPLICATIONS.

Let us consider a simple model of metrics accounting for the constraints which
have been hereabove obtained:

ds? = E(t,A1) (-1 A2 c2 dr? -di? ()

in which & is some finite fractal function (with =1 for Ar>1), 7=fi/mc? is the de
Broglie time of a system of inertial mass m and d/? is a fractal spatial element which
will not be more detailed here. This form of g,, has been chosen for the following
reasons: It yields fractal dimension 2 for At<<t, the Minkowski limit gy,=1 for
At—eo, and a singularity g,,=0 for Ar=t, thus accounting for creation/annihilation of
particles (in analogy to the cosmological primeval singularity). Consider the domain
At>>1, g,, may be expanded as g,0=1-27/At. Let us now identify Ar = r/c to the
lifetime of an exchanged virtual boson. One gets:

8oo = 1-2himcr (12)

This result holds for one particle of mass m, but also for a complex system of
total mass Xm, thanks to the universality of the de Broglie wave nature of any physical
system . However one may remark that the wave properties of a system keep a
physical sense only if one mayj, at least in a "gedanken experiment", measure them (i.e.
by a diffraction or interference experiment). But when the total mass m becomes
larger than the Planck mass mp=(#ic/G)1/2=2 10-5 g, its Compton length becomes
smaller than its Schwarzschild radius rs=Gm/c2, thus becoming unmeasurable, not
only for technological limitation, but mainly for a profound physical limitation, since
it enters into a black hole horizon.) Conversely for m<mp, the Schwarzschild radius
becomes smaller than the Compton wavelength, inside which the concept of position
itself loses its physical meaning,!3) while a black hole state can be reached only
provided the whole mass m is confined into its Schwarzschild radius. So we suggest
that both the hereabove potential g,,=1-2%/mcr and the Schwarzschild potential
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800=1-2G/c2r become unphysical, respectively for m>mp and m<mp. The
remarkable result here is that they are precisely equal for m=mp.

So our proposal is that there exists some fundamental microscopic/macroscopic
transition around the Planck mass, which would hold at macroscopic scale and would
connect the quantum behaviour to the gravitational (general relativistic) one. This is
achieved by the following phenomenological potential:

o0 = 12024120 22 (13
As an observable consequence, the Newton law should break down between two dust
particles both having mass smaller than the Planck mass.!) This could be checked in a
space experiment : For example two 2.10-5 g dust grains of density d=18 have a radius
of 0.064 mm. Their expected Newtonian free fall time for an initial relative distance
0.24 mm would be =10 mn. We expect the falling time to become smaller than the
Newtonian time for m<=mp. Such an experiment would be at the limit of the present
possibilities, needing a high control of vessel gravity gradients and of electric charges,
since the electric force would be equal to the mpxmp gravitational one for only
o-1=12x12 elementary electric charges.

The hereabove calculation is a very rough one including only temporal terms,
in which the mass considered was assumed to remain a point mass. We intend to
attempt its spatio-temporal generalization to the extended case, which should lead us to
the generalization of the Planck mass transition to a critical density transition.8) Then
astrophysical and cosmological implications, concerning e.g. the formation of
structures, are expected to be derived in such a way that the hereabove suggestion of a
transition between a quantum and a gravitationnal regime should be falsifiable.
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ABSTRACT

The stochastic dynamics of the scalar field responsible for inflation is considered in con-
nection with the statistical properties of classical curvature perturbations which are generated
by quantum fluctuations in that field. The combined effect of non-linearities in the scalar
field and of perturbations in the metric makes curvature perturbations on large scales strongly
non—Gaussian. The controversial issue of whether perturbations in our observable patch of
the inflated universe are also non-Gaussian is discussed in terms of conditional probabilities.
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INTRODUCTION

Density fluctuations generated during inflation (see, e.g., the review by A. Linde in
these Proceedings) are usually considered to be Gaussian, as a general consequence of the
required flatness of the potential for the inflaton, the scalar field which drives the accelerated
universe expansion. Recently, however, it has been shown that both isocurvature 1)~%) and
curvature perturbations ®)~% can be characterized by non-Gaussian statistics. Due to the
back-reaction of field fluctuations on the background geometry, phase correlations appear
during the stochastic evolution of horizon-size inflaton modes, thus providing non-Gaussian
initial conditions for the linear evolution of adiabatic perturbations. In fact, it has been
shown ®) that, for a wide class of potentials leading either to Linde’s chaotic inflation 19,
or to power-law inflation 11+?) | fluctuations in the scalar field are non-Gaussian distributed
around the classical trajectory: at the end of inflation the distribution for the gravitational
potential fluctuations can be highly non-Gaussian ®). This is an important conclusion for
theoretical cosmology since it opens the possibility of unexplored models for the formation
of cosmic structures which, abandoning the random-phase paradigm, preserve the simplicity
of the gravitational instability picture. Generally speaking one is faced with a new class of
models which imply more structure on large scales than the standard cold dark matter model.
Models of this type are presently under investigation in connection with their clustering
properties on large scales 13).

The mechanism for the generation of non-Gaussian adiabatic perturbations, which is
discussed here is characterized by the absence of intrinsic lengths on cosmologically relevant
scales, it therefore implies a scale-invariant fluctuation field (see, e.g., 19)1%)). Such a scale—
invariance property is properly expressed by a simple scaling (up to negligible logarithmic
corrections) of the peculiar gravitational potential ®(x) in Fourier space at every time during

matter dominance
(®(uks) ... ®(ukn))d (uk1)... & (uky) &~ pV D2 ((ky) ... ®(kn))dP k1. .. Pk (1)

where n, is the primordial spectral index. For n, = 1, Eq.(1) represents a generalization
of the Zel’dovich criterion of scale-invariance to non-Gaussian fluctuations. This immedi-
ately translates into a statement on the time evolution of the N—-point correlation functions
é(N)(xl,. ..,Xn5t) for mass fluctuations, consistently defined in terms of the Zel’dovich ap-

proximation '), up to the time of first shell-crossing
f(N)(xh'":xN;tD)mé(N)(/—"xla-'w;u'xN;t) (2)

provided that g = [b(t)/b(y)]?/("»*3), with b the growing mode of linear perturbations,
proportional to ¢2/3 in the matter dominated era and in a flat universe. This last property,
however, only applies over suitably large scales where the curvature of the primordial spectrum
introduced during the linear evolution of perturbations inside the horizon is unimportant.

Although the potential & is simply related to the linear density fluctuation §p through the
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Poisson equation

AP&(x, 1) = —4nCGa?(t)se(x, 1), (3)

with a(t) the scale-factor, we prefer to define the mass density through the Zel'dovich approx-
imation; this allows to extend the treatment to the mildly non-linear evolution and to take
into account the constraint g(x) > 0. Simple toy—model examples of scale-invariant statistics
are: the model proposed by !7), where the density fluctuation field is the convolution of two
independent scale—free Gaussian processes; a model where the density field is the square of
a Gaussian random process [as recently found by Bardeen (unpublished) in the analysis of
a two-scalar field model for inflation]. As we shall see in the following, the non-Gaussian
scale-invariant density fluctuations obtained from inflation are all of multiplicative type (see
also T)); this is an important property since a number of interesting phenomena are likely
to occur in this case. Among these there is an interesting phenomenon called intermittency
(see, e.g., '*)), which is clearly exhibited for instance by log-normal random fields; roughly
speaking, intermittency consists in the occurrence, in realizations of the random field, of spo-
radic high spots where most of the intensity is stored, separated by large regions of reduced
intensity.

A quite different mechanism for producing non—Gaussian and non-scale-invariant per-
turbations during inflation rests on the use of multiple (interacting) scalar fields during in-
flation as considered in refs. 4»7); the stochastic method has been recently extended to the
multiple scalar field case (see, e.g., 1*)29). In this case one can easily obtain non-Gaussian
and/or non-scale-invariant perturbations both of adiabatic and isocurvature type (see, e.g.,

the contribution by S. Mollerach to these Proceedings).

STOCHASTIC INFLATION
It has been shown by many authors that the dynamics of the inflaton on scales larger
than the comoving Hubble radius rg(t) ~ 1/a(t) is accurately described by a stochastic

21),22)). One defines a coarse-grained variable @x(t) which is the average

approach (see, e.g.,
of the quantum scalar field over a volume of size ~ r};(t). In the spirit of the chaotic inflation
scenario initial conditions are introduced by assuming that there are initial domains of size
~ 73(t,) characterized by a nearly homogeneous value ¢, for the scalar field. Provided
that ¢, is large enough, a few Hubble times suffice to depress both the kinetic energy and
the spatial gradients compared to the potential energy V(). The resulting coarse—grained
dynamics is friction dominated and can be described by a Langevin-type equation
1 8V(px) | H¥*(px
~sE e + T o, (4

where H(px) = 1/V(px)/30% and 0 = 1/v/8xG. In this approach x labels the coarse-grained

variable in different cells. In writing Eq.(4) one implicitly assumes a perturbed Friedmann

Px =

line-element in an appropriate synchronous gauge (see, e.g., 2%))

ds? ~ dt* — a?(x,t)dl?, (5)
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with a local scale—factor .
a(x,t) za(x,t,,)exp/ H(py)dt'. (6)
1y

Non-diagonal scalar perturbations of the metric, which are also initially present in this gauge,
are quickly depressed, on scales larger than the horizon, by the inflationary expansion. The
first term on the r.h.s. of Eq.4) plays the role of a classical convective force, while the
second one represents the diffusion process induced by fine-grained quantum fluctuations.
The dependence of H on ¢ makes the stochastic process a multiplicative one. The noise
fx(t), which has zero mean, is accurately approximated by a stationary Gaussian process

with auto—correlation function

(x(t)s(£)) = B o (Ix — x'|/raa(2)) (¢ —1"), (7

where jo is the zero order spherical Bessel function. Because of the white-noise character
of n, with respect to its time dependence, ¢(t) is Markovian. The quantity P(p,t) dp =
(6(<p — ¢[nx(t)]))n dp, yielding the (one-particle) probability that, in a randomly chosen
point X, @, takes a value in the interval ¢,p + d ¢, evolves according to a Fokker—Planck

equation (in the Einstein-Smoluchowski limit)

oP 8 [( 20 OV/? AoV B (o,
a—%[(w—w )7’ * 4 —aw%(v 7’)}' ®)

Once the inflaton potential V (¢) has been specified, one looks for a time-dependent solution
with the initial condition P (¢, t+) = 8( — ¢.) corresponding to a homogeneous configuration
. with potential energy V. ~ 30> H? (one needs H,/o < 87/v/3, in order not to exceed the
Planck energy).

It should be recalled that the solution of Eq.(8) with a delta-like initial condition is
actually a conditional probability (also called transition probability in this context): it gives
the probability that our stochastic process takes the value ¢ at time ¢ (in a randomly selected
position) given that the result of a measurement was ¢, at time ¢, (Smoluchowski called
it probability after effects). Because of the Markovian character of the process the sharp
condition at ¢, cancels any memory of the evolution preceding t,; also, for suitably short
time intervals after ¢, the form of the probability is strongly dominated by the constraint,
while for times long enough the initial distribution is essentially forgotten.

The Langevin equation (4), together with the 5 correlation function Eq.(7), actually
contains much more information than the (one-particle) probability P, for it takes into ac-
count the space—correlation properties of the distribution, that is, it allows to obtain the
whole probability density functional. The probability density functional evolves according to
a suitable functional Fokker—Planck equation [such a complete treatment has been sketched,
for instance, by Rey 24), although he completely disregarded the role of metric perturbations).
Another effect which should be taken into account when dealing with the space—distribution

of the coarse—grained field is connected with the different weights to be assigned to different
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cells due to fluctuations in the coarse-graining volume. This problem is dealt with by many
authors by multiplying the probability by the volume factor a®(x,t), obtained from Eq.(6).
This correction is at the origin ofthe so—called eternally ezisting self-reproducing inflationary
universe (see, e.g., 23)'75)); for our purposes neglecting such a correction is a minor approx-
imation since this is expected to mainly affect the global properties of the universe and the
evolution of the probability distribution at early times, when the local fluctuations of the
Hubble constant can be very large.

It has been shown ®) that the dynamics described by Eq.(8) [or Eq.(4)] presents universal
properties for a large class of models leading either to chaotic or to power-law inflation. These
can be summarized as follows. At early times the diffusion term in Eq.(8) causes the initial
delta function to spread around its maximum which starts moving, due to the convective
term. Convection, at this stage, can be approximated by a constant positive force (namely
—V'/3H evaluated at ¢,), later on, however, force gradients start to be felt: Brownian
particles which are closer to the minimum of the potential suffer smaller attraction compared
to more distant ones; at the same time the diffusion coefficient becomes smaller and smaller
as the minimum is approached and can be safely neglected. This causes a shrinking of the
distribution at late times characterizing the so called scaling regime (see, e.g., 2®)): at the
scaling time t,. the system undergoes a transition from a diffusion dominated regime (due to
quantum fluctuations) to a convection dominated regime (due to classical non-linearities),
or from a disordered phase to a macroscopically ordered phase. In this picture inflation is
described as the non-equilibrium decay of the system from the unstable state ¢, to the
minimum of the potential, with the whole coarse—grained field distribution undergoing slow—
rolling down. The peaking of the probability at the onset of the scaling regime was noticed by
a number of authors 24):27)28), During the scaling regime the distribution is strongly peaked
around the classical homogeneous configuration ¢.(t) [(the solution of Eq.(4) when 7 is set
to zero, or when & — 0], with fluctuations giving rise to classical curvature perturbations. In
this scaling limit the solution tends to a self-similar time-independent function W of a single
scaling variable & P(p,t) dp ~ W(€) dE. Such a scaling variable can be chosen so that it is,

with very good accuracy (or even exactly), Gaussian with zero mean and two—point function

1/TH(tmin)
(D (t) = — / AR (Po /K)o (Klx — x']), (9)

-2 [ra(ts)
where t,;, = min(t,t'). Only wavelengths that left the horizon during the interval tx + tmin
contribute to the integral in Eq.(9). The £ power—spectrum has a flicker-noise form P(k) =
Pok~3. The amplitude Py (which may possibly contain a residual logarithmic k—dependence)
as well as the non-linear transformation between ¢ and { depend upon the precise form of

the inflaton potential.

INFLATIONARY MODELS
We shall restrict our discussion to two simple models: chaotic inflation driven by a

quartic inflaton potential 1) and power-law inflation based on an exponential potential, as



26

first proposed in ref. 12

. Chaotic inflation can be driven by a quartic potential V(p) =
(A/4)p*. The classical solution of the ¢ dynamics in the slow-rolling down phase is described
by v.i(t) = p.exp(—24/A/3 cAt), where At =t —t,. If the expansion is dominated by the

classical homogeneous mode, the scale-factor is given by
a(t) = a.exp{(H,/40)(3/X)/?[1 — exp(—4+/A/3 cA)]}. (10)

Inflation is expected to end when the kinetic energy equals the potential energy, i.e. when
@ = £2v/20. The exponential potential V(p) = V; exp[—A(¢p — ¢.)/c], leads to power-law
inflation
a(t) = a.[1+ N H.81/2 (11)
for any A < v/2. Unless the potential is suitably modified to allow for reheating to occur,
inflation lasts forever, the ratio of kinetic and potential energy being constant along the
classical trajectory p.i(t) = ¢, + (20/2) In(1 + N2 H At/2).
For the quartic potential one can solve exactly the Langevin equation and find, for
Sox(t) = px(t) — @ci(t) [pci(t) generally differs from (p(t)) by a small, time-dependent,

space—homogeneous quantity which does not affect observable quantities]

2\ 1/4
Spx(t) =+ o (%) exp[—2v/A/3 o AL)[|1 + €x(t) 7* — 1], (12)

where the solution with the plus (minus) sign must be taken if ¢, is positive (negative).
In this case Py ~ h(\/3)Y/*(H,/o)[1 — 4()/3)/*(c/H ) 1n(k/a.H,)]. For the exponential

potential appropriate use of the scaling approzimation yields, for large times

40

va 1+ &0 1] (13)

box(t) =
and Py = (9%/16)[A%/(2 — A?)](H./o)?. The random—phase approximation in this context
would amount to expand the r.h.s. of Eqs.(12) and (13) to first order in & however ¢ can
have a large r.m.s. value, depending on the value of H,, so that such an approsimation would

fail in the general case. In the exponential potential model, for instance,

5 )1/2%

Erma(t) = (W 1o In'2(1 + A2 H,At/2), (14)

which, for times after the onset of the scaling regime At,. ~ 2(y/e —1)A72H 1, can be larger
than unity. This fact is at the origin of the non—Gaussian behaviour of 8¢ discussed by
Matarrese, Ortolan and Lucchin ®). For the quartic potential model, for times much larger
than At,. = (3/1)/%(1/80)In3, due the the large value of £,m,(t), one can approximately
write wx(t) o [€x(t)]"'/%. Positive moments of o, being related to negative moments of
a semi-Gaussian distribution (i.e., the distribution for |{|), are infinite (as for the Cauchy

distribution), except for the first one, {¢). One finds that the probability of crossing a level v
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times a suitable effective dispersion (&p':’”)l/2 is far from the Gaussian expectation already
for small v. This result holds, in the scaling regime, for suitably large values of H,/o,
independently of the value of A and of time [in disagreement with Hodges ?*), who incorrectly
used a random-phase approximation to estimate these crossing probabilities], as follows from

the scale-invariance property

Plp,t) = pP(pp,t — +/3/4Xa% Inp). (15)

For the exponential potential one finds at large times ¢x(t) o |£x(2)?/® and

_ 1 N\/[23s\V
W~ (34 7 ) (Fgg) €0, (16)

with €., given in Eq.(14). In the scaling regime the N-th connected moments normalized

to the power N /2 of the variance relax to constant non—zero values: clear evidence for non-
Gaussian scale-invariant behaviour of the statistics. These dimensionless ratios do not depend
neither on the value of ), nor on time (scale), nor on the initial condition through H,. The
role of H,, however, is more subtle: it must be large enough so that the system has well
entered the scaling regime when the cosmologically interesting scales leave the inflationary
horizon. It is clear that alow value of H, (just enough to solve the horizon problem), as that
quoted by Kofman et al. ), keeps the system in the diffusive regime, where the fluctuations
are practically Gaussian, and implies that our universe is exactly homogeneous on scales
larger than the Hubble radius. This property is much stronger than what required by the
isotropy of the cosiic microwave background, which only demands (for reasonable fluctuation
spectra) that the r.m.s. density fluctuation on the scale of the present horizon is less than
about 107%. Fluctuations on super—horizon scales only determine the local value of average

quantities.

CURVATURE FLUCTUATIONS
For scale-free inflaton potentials such as those presented in the previous section these
results can be expressed in an a simple form as follows: the scaling approximation amounts

to replacing the Langevin equation (4) by the following effective equation

#x(t) = Fu(t) px(t) + ¢ 9R(1) nx(t), (17)

where F¢(t) is some function of time, c is a constant and the power 3 depends upon the

inflaton potential. This equation is exactly solved by
Px(t) = paa(t)1 + £x(2) /OB, (18)

where () is determined by F(t) through

t
Pei(t) = p.exp / dt'Fe(t') (19)
1.
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[except for the exponential potential case, where the situation is more involved as shown by
Eq.(13), Eq.(19) is actually the definition of F(t)] and

tl)=(1-8 / e PN E) malt). (20)

In this simplified treatment the quartic potential, for which this approach is exact,
corresponds to § = 3; more in general, inflaton potentials of the type V o ¢?™ are described
by equation (17) with 8 = 3n/2 and the exponential potential, at late times, corresponds to
B = —1/2. Note that for 8 = 1 the solution of this equation yields a log—normal process,
while if B goes to zero in the equation (in the absence of boundary conditions) one gets a
Gaussian process with §px(t)/@ci(t) = €x(t). Also the model considered by Bardeen which
is derived for two interacting scalar fields is formally described by this equation for 8 = 1/2.
Therefore Eq.(17) describes a whole set of models, parametrised by 3, which goes from the
Gaussian case 3 = 0 to the extreme case of multiplicative stochastic process § = 1, leading
to the intermittency phenomenon: the log-normal process.

The coarse—grained field fluctuation §px(t) contains all wavelengths larger than the
horizon size at the time ¢. In order to obtain the peculiar gravitational potential ®(x) it
is necessary to Fourier transform ¢ at each time t keeping only that mode k =~ 1/7ry(t)
that crosses the Hubble radius then. We can obtain the Fourier modes of the gravitational
potential fluctuation field which reentered the horizon during the matter dominated era, by
using their approximate constancy (the different behaviour of fluctuations which entered the

horizon during radiation dominance is properly accounted for by the transfer function). One

has
3T(E) Halts)
5 ¢cl(t1)

where t; is the time when the wave—number k left the horizon during inflation and T'(k) is the

o(k) ~ — p(k, 1), (21)

transfer function appropriate for the type of scenario one is considering. One will therefore
find

1/2
o(k) ~ #(w) exp(—4\/:\ﬁatl)‘/da:ce_ik'xﬂl+§x(t1)|‘1/271], (22)

for the quartic potential and

o(k) ~ 51;:;“ /d3 e MR |1+ &(t)** - 1], (23)

for the exponential potential, at times much larger than the scaling time. It is clear that the
non-linear transformation from the Gaussian variable ¢ to §p implies that all Fourier modes
of £ contribute to $(k). As we have shown before, in the scaling regime one can approximately
write [|1+ &x(t)|* — 1] ~ [éx(2)|* in the r.h.s. of Eqs.(22) and (23) where a = 1/(1 — ) is
respectively —1/2 and 2/3. Note that this is the opposite of the random-phase approximation,

valid in the initial diffusion dominated regime, where one writes [|1 +&x(t)* — 1] ~a £.(1).
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Of course, if one had linearized from the beginning the evolution equation for 8¢, the coarse—-
grained fluctuations would come out proportional to £ and then Gaussian (non—Gaussian
fluctuations can be obtained in the linear approximation by interacting multiple scalar fields,
as in ref. ¥: the linear approximation for i, therefore, does not adequately follow the
dynamics during the convective regime. The non-linear transformation £ — ®(x) implies
that fluctuations of £ on all scales, even of super-horizon size (where, due to the k=2 tail
of the spectrum, € largely fluctuates) affect the present statistics of sub-horizon density
perturbations which will then be non—Gaussian. The statistics of the peculiar gravitational
potential so obtained can thus be used for building up the initial particle distribution in space
and velocity through the Zel’dovich algorithm; this can then be used for evolving an N-body
code 3), Note that the ® power—spectrum Py (k) is simply related to that for the underlying

Gaussian process £. In particular for the exponential potential model
Py (k) ox (k/ky) /G0 =310 73k k), (24)

with kx = a.H.. The logarithmic correction to the power-law spectral shape is the only
effect of the t; dependence of £4(t,) in the previous expressions; this is a general result which
allows to treat ¢ as being essentially time—independent in expressions such as (22) and (23).
We can therefore conclude that inflationary models of the type considered here give curvature
perturbations approximately described by the following form for the gravitational potential

perturbation smoothed over the scale R

®p(x) = / @y faly ~ X)|E(y)|® + const, (25)

where £(x) is now simplified to a Gaussian process with power—spectrum P (k) = Pok~3, for
k, <k < kmaz, and P(k) = 0 elsewhere, k.., being a wave-number much larger than any

mode of cosmological interest. The function fg has Fourier transform
Fr(k) o Wa(k)T (k)k(m=1/2, (26)

where Wg(k) is a suitable low—pass filter which cuts off scales much smaller than R. Equa-
tions (25) and (26) allow to perform simulations of the non-Gaussian models described here,
following standard methods (see **)). It is important to note that the arbitrary additive
constant in Eq.(25) has no observable effects.

Some authors have remarked (see, e.g., 7)) that the probability distribution for &y
derived from the Fokker—Planck equation (8) cannot be used directly to yield density fluctu-
ations for our observable patch of the inflated universe. As we have discussed here (see also
30),9)) the obtaining of the actual density fluctuation field actually requires a more complete
treatment taking into account the spatial variation of the quantum noise. This can be done
by resorting to a functional Fokker-Planck equation or by using the Langevin equation (4)

together with the n correlation function (7), as discussed so far. These authors have also
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argued that one should somehow consider a different type of initial condition for Eq.(8), or
a conditional probability that the coarse—grained field has a certain value ¢ at time ¢, i.e.,
on the scale R leaving the horizon at that time, given that it a had a particular value g
at the time tg, corresponding to the present horizon scale Ry. The time t, would typically
correspond to about 60 e-foldings before the end of inflation; this is practically equivalent to
starting to evolve the probability at ¢y from a delta function centered on a value gy << p,.
The underlying idea is that one should somehow constrain the density field to be homoge-
neous on the horizon scale, since we cannot perceive inhomogeneities on scales much larger
than Rg. It is clear that this condition prevents the system from entering the scaling regime,
because one has too little time. Fluctuations in the gravitational potential, however, still
happen to be small, because the dispersion had little time to grow. In this case one can easily
show that for most values of ¢, the fluctuations are essentially Gaussian, with the exception
of very high fluctuations, rare events which do not perceive the constraint. Also, for a few
values of the constraint ¢g, the conditional probability is highly non—Gaussian and similar
to the unconstrained one: these rare values of ¢, give in fact the dominant weight in the
unconstrained probability, as a consequence of the intermittency property, referred above.
We believe, however, that the constraint imposed by the value of the coarse-grained field ¢,
is unphysical, because it ignores the arbitrary additive constant which enters the definition
of the gravitational potential. Lucchin, Matarrese and Ortolan ®) therefore consider a differ-
ent quantity, which is not affected by this indeterminacy: the gradient of the gravitational
potential ¥, on a given scale R, this being proportional to the peculiar velocity field. For
simplicity we consider the quantity A¥ = [¥(x) — ¥o(x)] - n, with ¥, the same quantity
evaluated on the scale Ry. This quantity is proportional to the peculiar velocity, projected
along the direction n, measured by an observer placed in x in the local rest frame set by
the cosmic background radiation. Both the probability for A¥ and the one for the same
quantity conditioned by the value of ¥y = ¥, - n are highly non-Gaussian, for essentially all
values of the constraint. These non—-Gaussian distributions are characterized by power-law

tails (instead of exponential ones, like in the Gaussian case), namely
P(AY) ~ |A¥|77, P(AY[To) ~ |AR|70F, (27)

with ¥ = 14+ 1/(1 — ), which typically imply diverging moments. [More details will be
given in the paper by Lucchin, Matarrese and Ortolan #).] The physical consequence of this
fact is that high peculiar velocities on large scales are much more likely than for a Gaussian
field with the same power—spectrum. This qualitative conclusion is confirmed by numerical

simulations of initially non-Gaussian distributions for the gravitational potential 13).

CONCLUSIONS

The stochastic approach allows to study the dynamics of inflation on scales larger than
the Hubble radius. It accounts for the generation of large-scale classical fluctuations from
quantum oscillations inside the horizon, the effect of non-linearities on the evolution of infla-

ton perturbations and the back-reaction of matter fluctuations on the background geometry.
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If the spatial dependence of the fine-grained correlation function is kept, the whole spatial
pattern of the scalar field fluctuations is known: from this the statistical distribution of the
gravitational potential fluctuation field can be completely reconstructed. A generic feature
of models leading to chaotic or to power-law inflation is the occurrence of a scaling regime
where the coarse—grained distribution sharply peaks around the classical solution. In this
regime the distribution is non-Gaussian and scale-invariant, due to the dominance of the
inflaton non-linearities over the diffusion caused by quantum fluctuations. The deviation
from the Gaussian behaviour does not depend on the strength A of the non-linearity, on
time (scale), and on the initial condition, provided the latter permits the system to enter the
scaling regime. Because the probability is peaked, its bulk properties may be described by
a Gaussian centered on ¢(t) with suitable dispersion, but this approximation would fail in
estimating the likelihood of rare events for which the actual distribution is required.

The scale-invariance of the inflaton is reproduced by the peculiar gravitational potential
field, during its linear evolution. As a consequence, the N-point mass correlation functions
will obey Eq.(2), with a spectral index n,, determined by the inflationary parameters; in the
exponential potential model, for instance, n, = 1 —2X2/(2 — A?) <1 (up to negligible loga-
rithmic corrections). The non-Gaussian scaling invariance and the multiplicative character
of the primordial perturbation field will affect the properties of the universe on large scales,
in particular the probability for the occurrence of rare events, such as high peculiar veloci-
ties, large empty regions, long filaments and great attractors. Moreover, one should expect

interesting consequences for the statistics of the cosmic microwave background anisotropies.
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INFLATION AND THE BARYON ISOCURVATURE MODEL
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ABSTRACT

It hasbeen proposed that a scalar field present during the inflationary erain addition to
the inflaton, which decays into thermal radiation after the baryogenesis can produce spatial
fluctuations in the initially smooth entropy per baryon ratio. These perturbations were hoped
to be of the isocurvature type and it was expected that they may be useful to explain some
observed features of the large scale structure. However, a detailed study of the generation of
perturbations in this two-field inflationary model shows that the resulting fluctuations are not
of the isocurvature type, but that the entropy perturbation induces a curvature fluctuation
during the evolution of the perturbations outside the Hubble radius, which is larger than
the entropic one. Thus, this model is not a good candidate to provide the initial conditions
needed in the baryon isocurvature model.
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INTRODUCTION

In the simplest model, density fluctuations originated during inflation are of the adiabatic
type 1). The reason is that when the inflaton decays, reheating the universe, the fluctuations
in all the decay components follow the original inflaton fluctuations. Baryogenesis occurs
after this, thus the resulting entropy per baryon is constant in space. However, it has been
argued that this is not the only possibility. Isocurvature perturbations can also be produced
provided that there is another scalar field present during inflation besides the inflaton. This
idea has first been proposed in relation to the axion field ?), but has then been generalized
to other weakly interacting scalar fields 3). Further, it has recently been pointed out by
Peebles ¥ that if the second scalar field decays into radiation after the baryogenesis, the
density fluctuations associated to it give rise to fluctuations in the previously smooth entropy
per baryon ratio, which are absent in other models that do not modify the baryogenesis
mechanism. Another model for the origin of baryon isocurvature perturbations has been
proposed recently %), based in a new model for baryogenesis ¢), in which the baryon number
per entropy originated is a function of the space point.

On the other hand, isocurvature perturbations in phenomenological models have at-
tracted much attention recently, as some controversial points associated to the standard cold
dark matter adiabatic perturbation model ? have arisen. The problems are essentially that
in this model the fluctuations in the mass distribution are anticorrelated on scales larger than
~ 50 — 100h~* Mpc, which seems to be inconsistent with the observation of large-scale veloc-
ity fields and structures in the galaxy distribution ® and that the epoch of galaxy formation
seems to occur too late. This calls attention to alternative models for galaxy formation. It
has been argued that in models with baryon isocurvature initial perturbations *) galaxies
can form early (z ~ 30), and mass fluctuations on the scale A; can drive large scale velocity
fields ). However, detailed studies of the cosmic background radiation anisotropies impose
stringent bounds on isocurvature models and may even rule them out unless sufficient reion-
ization occurs after recombination !%). In the phenomenological models it is taken as initial
conditions that the total energy density is homogeneous in space but entropy is inhomoge-
neous (which means that the ratio of the densities corresponding to the different components
is perturbed). These initial conditions are imposed during the radiation dominated era and
the following evolution is then computed in the multicomponent universe 1),

It has recently been shown 12 that the model with an extra scalar field present during
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inflation which decaysinto radiation after baryogenesis 4), does not actually provide the initial
conditions needed in the baryon isocurvature model as was expected. The reason is that, even
if the relative fluctuations in the energy density can be much smaller for the inflaton than
for the other scalar field, which means that the fluctuations are initially of the isocurvature
type, the entropy perturbations act as source for the total density perturbations. Curvature
fluctuations induced by this source become the dominant ones at the radiation dominated
era. Other discussions related to this problem can be found in ref.1314) A similar analysis
of other models proposed in the literature to originate isocurvature perturbations shows that
the case in which the second scalar field remains as a dark matter component up to the
present, the axion model and the spontaneous baryogenesis one provide instead good initial

conditions for phenomenological isocurvature perturbations %),
TWO NON-INTERACTING SCALAR FIELDS

It has been pointed out in refs.3) that isocurvature or isothermal fluctuations are quite
generic within the inflationary scenario. In fact, many types of scalar fields appear in elemen-
tary particle theories and some of them interact very weakly with the rest of the particles.
If some of these fields were present during inflation (contributing much less than the inflaton
to the total energy density), since after the reheating their energy density decreases more
slowly than that of the radiation produced by the inflaton decay, they can give an important
contribution to the total density at a later period. We will analyse here the model proposed
by Peebles, in which the additional scalar field x decays into thermal radiation after becoming
the dominant component, giving rise to fluctuations in the number of photons per baryons.
The evolution of the background energy density of both components can be seen in the figure.

In order to study the resulting fluctuations in this model there are two main steps. The
first is to compute the perturbations in each component at the Hubble radius crossing during
the inflationary era originated by the quantum fluctuations of both fields, and the second
is to follow their classical evolution afterwards. This requires to study the evolution of the
perturbations in the multicomponent system composed by the inflaton, its decay products,
the other scalar field, and eventually the products of its decay (for example in the Peebles
model analysed here, the scalar field decays into radiation). This study is simplified if we
consider one component (denoted by «) formed by the inflaton ¢, and the radiation and
baryons in which it decays (¢+rads+bary) and another component (denoted by ) by the
other scalar field and its decay products (x+rady). The evolution of the perturbations in the

two-component system is studied using a formalism developed by Kodama and Sasaki 19).
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a az as ay na
Evolution of the background model. The dashed line corresponds to p, and the continu-
ous one to pg. a; corresponds to the scale factor at the end of the inflation, a; to that when

the x field becomes dominant, a3 to that when x decays into radiation and a4 to that when
the universe becomes matter dominated.

The most convenient variables to study this system are the comoving perturbation of
the total energy density and velocity, A and V, the entropy perturbation Sog, and the
perturbation in the relative velocity between the components V,3 defined by

ba 85

Sep= —2 %
A= w, 1+wg’

VaﬁEvQ——vg, (1)

where § 4 = 6pa/pa and wa = Pa/pa, in terms of the energy density p and the pressure p.
Sop and Vup are gauge invariant variables. A is related to the Bardeen potential &5 1*) by
by = (3/2)(k/aH)?A.

Adiabatic fluctuations are characterized by having S,s = 0, which means that all the
components fluctuate in the same way. Isocurvature fluctuations instead correspond to rel-
ative fluctuations between the different components such that the total curvature is left
invariant (A < Sqg).

Quantum fluctuations of the scalar fields lead to fluctuations in the energy density asso-
ciated to each field. However, the fact that the contribution of x to the total energy density is
small during inflation ensures that their fluctuations do not perturb the total energy density
too much (the major contribution to the total p perturbations is given by the inflaton ¢ fluc-
tuations). But it can be seen 12) that the fluctuations in the entropy density are dominated

by the second scalar field x and are typically larger than the fluctuations in the total energy



37

density. The result is that at Hubble radius crossing

H
A) L D , Vas 7w_‘DXv‘ ,
H 3H |4 H X im
v LD Mﬁﬂ’ (@)
H ¢ lu X |

(Units are chosen so that ¢ = 8wG = h = 1.) Fluctuations in both fields can be estimated
for the purpose of our study by the amplitude of quantum fluctuations of a massless scalar

field in the de Sitter spacetime

H
\/2‘7‘_103/2 * (3)

Note that expressions (2) imply that the fluctuations are of the isocurvature type when

D$ ~ Dy ~

they leave the Hubble radius during the inflationary era, as S
$,% < H).

> A‘ (during inflation
H H
The following evolution of the perturbations is determined by the set of equations

28 (3 15 1dA 3 ., 9, L[(k\)\a
W+(2——w+3c)za+(—2+3c,f12w+5w +Cs oH ﬁ,
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o K T« _WB T8 4b
da aH a 3(1+waa 14+wga)’ (46)
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k (Ga—cip)A &k 1<wana B wﬁnﬁ)_

— 4.
1+ wq 1+wﬂ ( C)

aH 1+w a aHa
where pana = §pa — 28pay ha = po + Pa and 2, = Pa/pa. These equations allow us to
follow the evolution of the perturbed variables during the different periods determined by
the equations of state of the two components. They can be solved for each period with w,
and wg approximately constant. The initial conditions are given by (2) and the matching
between periods is made by imposing continuity of all the fluctuation variables. Note that
the right hand side of eq. (4.a) vanishes when we are dealing with adiabatic perturbations.
This source term, present in the non-adiabatic multicomponent case, is due to the extra
contribution to the total pressure perturbations given by the entropic perturbation Soz and
the non-adiabatic pressure perturbation of the individual components 7, (this term can be

present, for example, when one of the components corresponds to a scalar field, because both
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the energy and the pressure perturbations are determined by the scalar field fluctuations and
there is no extra freedom to fix some relation between them). In the case of isocurvature
perturbations, we have that initially A is very small, but S4g is large, so its effects cannot be
neglected, even outside the Hubble radius. Their quantitative importance can be computed
solving the evolution equation for S, and replacing this solution in the source term of the
evolution equation for A. The presence of S,5 can make grow a perturbation A even if the
adiabatic modes are initially set to zero. When a change in the equation of state occurs,
the modes get mixed and in a following period the adiabatic modes can become excited. It
has been shown in ref. '® that in the model in which there is an additional scalar field x
present besides the inflaton, which decays into radiation after the baryogenesis, an initially

pure isocurvature fluctuation at Hubble radius crossing (H 1) during inflation,

Al ~0 S

H1l

#0, 5)
Hl

produces, by the time the perturbations reenter the Hubble radius (H2) an adiabatic mode
with amplitude

Al ~0(10%) Sup

H2

(6)

H2
Thus, the perturbations are no longer of the isocurvature type by this time and they do not

provide the initial conditions required by the phenomenological baryon isocurvature model.
The reason is that in the phenomenological model the isocurvature initial condition (A =
0, Sap # 0) is imposed at the radiation dominated epoch before baryons become the dominant
component, instead in the model proposed in ref. *) the adiabatic mode responsible for the
large density fluctuation at H2 (eq. (6)) has become significant much earlier, at the epoch
when the universe was dominated by the oscillating x field.

It can be seen, through computations similar to those in 2, that the growth of total
density fluctuations outside the Hubble radius is quantitatively important also in the models
in which the second scalar field does not decay into radiation, contributing now to the dark
matter. However, this is a good model for phenomenological isocurvature perturbations.
The point is that the isocurvature initial conditions are imposed in the radiation dominated
era, just after the decay of the inflaton, and this holds as a very good approximation in
this model. The growth of the total density perturbation becomes significant only when
the ) contribution to the total density begins to be important, which happens later. Thus
the resulting total density perturbations are correctly described within the phenomenological
models. Furthermore, much interest have been concentrated in these models because of the

possibility of getting a spectrum of fluctuations different from the scale invariant one !7).
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PSEUDO-GOLDSTONE BOSON

The other kind of model proposed for the origin of isocurvature perturbations consists of
a pseudo-goldstone boson which is non-massive during inflation and acquires a mass in a later
period. In these models the entropy perturbations are generated after the end of inflation
and thus the isocurvature condition is valid during the radiation dominated epoch. The best
known example is the axion. At very large temperatures, the axion potential is essentially
flat and it acquires a small mass through QCD non-perturbative effects at approximately
T ~ 1GeV. As the axion interacts very weakly with the rest of the matter, it oscillates around
the minimum of the potential during the following evolution of the universe, behaving like non-
relativistic particles (cold dark matter). The origin of the density fluctuations in this model
has been widely studied 2). The idea is that quantum fluctuations of the massless axion during
inflation give rise to spatial inhomogeneities of the axion distribution and when the potential
of the axion becomes non-trivial due to QCD instanton effects, these inhomogeneities are
translated into fluctuations of the axion energy density. If this process does not alter the
total energy density too much, the resulting fluctuations are of the isocurvature type. As this
condition holds during the radiation dominated era, the adiabatic modes are not excited in
this period, they only appear later, when the universe becomes axion dominated.

Finally, let us consider the spontaneous baryogenesis model. The mechanism for the
generation of energy density fluctuations is quite similar to that in the axion model. In
this case, the fluctuations produced are in the number of baryons per entropy. They arise
from B violating interactions of a pseudo-goldstone boson (the ilion) as it relaxes to the true
minimum of its potential. This occurs after the end of inflation. Thus, the isocurvature
condition (A = 0 and Sop # 0) is imposed during the radiation dominated era and, as in the
axion case, the adiabatic modes are not excited in this period. This fact makes the resulting

fluctuations a possible model for the phenomenological baryon isocurvature fluctuations.

SUMMARY

In summary, we have analysed the different models proposed for the origin of isocurvature
fluctuations. In particular, we have studied if they can provide the initial conditions needed
for the phenomenological isocurvature model, which means that the growing adiabatic mode
is not excited in the radiation dominated era. The result is that in the models with an
extra weakly interacting field present during inflation, in the case in which it decays into

radiation after inflation, the original entropy perturbations induce a large adiabatic mode by
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the radiation dominated period (when initial conditions are set in phenomenological models).
Instead, the case in which the extra scalar field remains as a dark matter component up to the
present epoch, the axions and the model of spontaneous baryogenesis are possible candidates

to originate this kind of fluctuations.

I would like to acknowledge S. Matarrese for very helpful discussions and A. Linde for
clarifying comments. The Ministero Italiano per la Ricerca Scientifica is acknowledged for

financial support.

References

(1] See for e.g.: S. Hawking, Phys. Lett. B115 (1982) 295, A. H. Guth and S.-Y. Pj,
Phys. Rev. Lett. 49 (1982) 1110, A. D. Linde, Phys. Lett. B116 (1982) 335, A. A.
Starobinski, Phys. Lett. B117 (1982) 175, A. H. Guth and S.-Y. Pi, Phys. Rev. D32
(1985) 1899, J. M. Bardeen , P. J. Steinhardt and M. S. Turner, Phys. Rev. D28 (1983)
697, V. F. Mukhanov, JETP 41 (1985) 493.

[2] M. Axenides, R. H. Brandenberger and M. S. Turner , Phys. Lett. B126 (1983) 178, A.
D. Linde, Phys. Lett. B158 (1985) 375, D. Seckel and M. S. Turner, Phys. Rev. D32
(1985) 3178.

[3] A.D. Linde, JETP Lett. 40 (1984) 1333, L. A. Kofman, Phys. Lett. B173 (1986) 400,
L. A. Kofman and A. D. Linde, Nucl. Phys. B282 (1987) 555.

[4] Peebles P.J.E., in: Large scales structures and motions in the universe (Trieste, April
1988), ed. Mezzetti, Giuricin, Mardirossian and Ramella (Kluwer Academic Plublishers,
Dordrecht, 1989) pag. 119.

[5] M. S. Turner, A. G. Cohen and D. B. Kaplan, Phys. Lett. B216 (1989) 20.

[6] A. G. Cohen and D. B. Kaplan, Nucl. Phys. B308 (1988) 913.

[7] see e.g. C. S. Frenk, S. D. M. White, M. Davis and G. Efstathiou, Astrophys. J. 327
(1988) 507 and references therein.

[8] A. Dressler et al., Astrophys. J. Lett. 313 (1987) L37, M. P. Haynes and R. Giovanelli,
Astrophys. J. Lett. 306 (1986) L55.

[9] C. J. Hogan and N. Kaiser, Astrophys. J. 274 (1983) 7, P. J. E. Peebles, Nature 327
(1987) 210.

[10] P. J. E. Peebles, Astrophys. J. 315 (1987) L73, G. Efstathiou and J. R. Bond, Month.
Not. of R. Ast. Soc. L27 (1987) 33p, K. M. Gorski and J. Silk, preprint (1989), N.
Gouda, M. Sasaki and Y. Suto, Astrophys. J. 341 (1989) 557.

[11] H. Kodama and M. Sasaki, Int. J. Mod. Phys. Al (1986) 265, H. Kodama and M.
Sasaki, Int. J. Mod. Phys. A2 (1987) 491, G. Esfstathiou and J. R. Bond, Mon. Not.
R. ast. Soc. 218 (1986) 103.

[12] S. Mollerach, (to be published in Phys. Rev. D)

[13] W. H. Press and E. T. Vishniac, Astrophys. J. 239 (1980) 1, V. N. Lukash, in: Large
scales structures and motions in the universe (Trieste, 1988), ed. Mezzetti, Giuricin,
Mardirossian and Ramella (Kluwer Academic Plublishers, Dordrecht, 1989) p. 139.

[14] J. M. Bardeen, Phys. Rev. D22 (1980) 1882.

[15] S. Mollerach, (to be published in Phys. Lett. B)

[16] H. Kodama and M. Sasaki, Prog. of Theor. Phys. Supp. 78 (1984).

[17] D. S. Salopek, J. R. Bond and J. M. Bardeen, Phys. Rev. D40 (1989) 1753, L. A.
Kofman and D. Yu. Pogosyan Phys. Lett. B214 (1988) 508.



41

PHASE TRANSITION
AND NUCLEOSYNTHESIS






43

BARYOGENESIS IN THE UNIVERSE AND BARYONIC CHARGE
CONDENSATE
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117259 Moscow, USSR

ABSTRACT

After a brief review of the basic ideas of the baryogene-
sis a model of low temperature generation of the baryon asym-
metry of the Universe is discussed. The model is based on the
assumption of baryonic charge condensate formation during in-
flationary stage. It is shown that the results crucially de-
pend upon the rate of the particle production by the condensa-
te. The model possesses two unusual features: leptonic charge
asymmetry may be large as compared to the baryonic one and the
characteristic scale of baryonic or 1leptonic charge density
variation may be relatively small. The latter can be traced by
the large scale structure of the Universe or by the helium-4
distribution respectively.



BRaryon or charge asymmetry of the Universe is now well
explained by the laws of fundamental physics. In principle one
can express the observed ratio of number densities

ﬁ =("/¢‘ Ne)/Nr=3- 10-12 1)
through the particle masses and the coupling constants of the-
ir interactions. Unfortunately there are too many different
theoretical models which give the results in reasonable agre-
ement with (1) and at the moment we don’t know what possibili -
ty is realized in Nature.

Three sacred principles of baryogenesis formulated by
Sakharov *?, i.e.

1. Raryonic charge nonconservationg

2. Breaking of charge (C and CP) symmetry, and

3. Deviation from thermal equlibrium
present sufficient conditions for generation of charge asym-
metry asymmetry in initially charge symmetric state. All these
postulates seem to be well established now either theoretical-
ly or experimentally but, what became known relatively recen-
tly, none of them is necessary.

Baryonic charge nonconservation which was the weakest po-
int originally now is quite respectable , the minor shortco-
ming being that proton decay or any other manifestations of
nonconservation of baryons in direct experiments are not vyet
observed. Almost all unification models predict a strong
B—-nonconservation at the unification scale msur. More interes-
ting is that the electroweak theory in which B is conserved at
the classical level predicts B—nonconservation due to quantum
anomaly 2. The effect is tiny (Yexp(-2u/x)) at low energy but

it is possible that at high temperatures or energies it may be



45
not suppressed. In that case electroweak reactions can drasti-
cally change baryonic charge density in the Universe at the
temperatures about 1 TeV =2,

A weighty argument in favour of B-nonconservation pre-
sents inflation. One knows that in order to solve the problems
of flatness, horizon, homogeneity and isotropy in the Friedman
cosmology there must exist a stage of the exponentially fast
expansion, a“vexp(Ht}) with duration not smaller than t«H=70.
This expansion regime is realized if the energy density in the
Universe is constant. On the other hand if B is conserved the
energy density of baryons changes as a—=<, It follows from
eq. (1} that relative baryonic energy density at T > 1 GeV is
?B/etut > 10~*9, Thus for conserved B inflation could not last
longer than six Hubble times, t+«H < &4, otherwise the condition
?tnt = canst can not be fulfilled.

At a first glance baryonic charge nonconservation is ob-
ligatory for a dynamical generation of baryon asymmetry. Black
hole evaporation however presents a counterexample to that. It
cculd give rise to an exsess of baryons over antibaryons even
if B is strictly conserved in particle interactions®?. A sim-
ple toy model of this phenomenon is the following. Let A be a
meson emitted by the black hole and let A decays into channels
A ——> Lﬁ, HL where H and L are heavy and light baryons respec-
tively, and H and L are their antiparticles. If the branching
ratio of A ——> LH is larger than that of A --> LH then the
black hole should predominantly emit baryons because the back
capture of a heavy particle by a black hole 1is larger than
that of a light one.

The necessity of nonequilibrium for baryosynthesis can be
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easily seen because the equilibrium number densities are de-

termined by mass and chemical potential of the particle,

= j(;if)ﬁg Lop (V- )2 477"

Because of CPT—-theorem masses of particle and antiparticle
must be equal., m=m, and chemical potentials p and E must va-
nish if the corresponding charge 1is not conserved. So in
equilibrium number densities of particles and antiparticles
with nonconserved charge must be the same. This is not true
however in the nonstationary case if there exists the interac-
tion of the typeS?:
! 8

Lz =F9§f]ﬂ (2)
where f is a parameter with dimension of mass, % is a scalar
ftield, and J% is nonconserved baryonic current. If * is a
classical homogeneous field, #=#(t), with time dependence de-
termined by the Univer-se expansion, interaction (2) gives rise

to the baryonic chemical potential

.

)uB: ?f‘ 153}

which is nonzero even in thermal equilibrium.

The same model permits baryosynthesis without explicite
breaking of charge symmetry but I don’t dwell on it here and
return to it in what follows because the model I am going to
discuss in this talk possesses this property.

In hystorically first models of baryogenesisi-<? it was
assumed that it proceeds at very high temperatures T=mour=101=
GeV. In this way it proves possible ensure the observed proton
stability (or-, better to say, a very long life time) with suf-

ficiently fast B-nonconserving processes. These models seem to
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be out of question, or maybe out of fashion, now. First the
reheating temperature after inflation Tm is most probably
smaller than Teur and second, as is well known, if Te > 1022
GeV one encounters the problem of overabundant relic graviti-
nos”?. Fortunately modern particle theory permits low tempera-
ture baryoproduction either at electroweak-scale Tew = 0(1TeV)
or even at smaller temperatures Tx100 GeV. The last possibili-
ty is the topic of this talk.

A low temperature scenario of baryogenesis was proposed
in ref.®’. If was assumed that there exists a scalar field ‘f
with nonzero and nonconserved baryonic charge and vanishing
all conserved charges. Such fields exist in a class of super-
symmetric models. During inflationary stage such a field gene-
rically develops a vacuum condensate if the field mass mf is
small in comparison with the Hubble parameter Hx and the sel-
finteraction is weak. Indeed quantum fluctuations of a free
massless scalar field 9’ in the de Sitter background is

known®? to rise as

3
<502\ — Ht 4)
o~ = 2
4

The increase terminates when the field potential energy
U(z) becomes of the order of kinetic energy of guantum fluctu-
ations Ek(¢)=1/2(H/2ﬁ?‘(3 d)2, If & is a massive free field,
i.e. W(@B)=m=g2/2, then

(bonf>~_> 3nt s)

3ntmt

Using the virial considerations one can evaluate the limiting
value of %2> for @-selfintraction of the form U(@)= A3+, 1In

this case



<%z> = ﬂ—z comst @
)
where const=0(1).

Since any wavelength exponentially increases during in-
flation the small scale quantum flucluations of # stretch up
and quantum field turns into a classic one. In that sence one
could speak about the field condensate on macroscopically lar-
ge scale.

If a scalar field has a conserved charge the condensate
is not developed because the density of any conserved charge
must go down as a==(t), where a(t) is the scale factor (during
inflation a ~ exp(Haxt)).

Since 'X has a nonconserved baryonic charge its density
during inflation should be of the order of H:x= (by dimensicnal
grounds). When inflation stops and the Hubble parameter bteco-
mes smaller than m

s

quarks and leptons. BRaryonic charge in the model considered is

the_}’—condensate decays int.o massless

conserved in these decays and thus the vacuum condensate of
baryonic charge is transformed into baryonic charge of quarks
giving rise to the baryon asymmetry of the Universe.

In the original version of the model ®* the value of £
was of the order of unity, i.e. ten orders of magnitude larger
than that given by observations (1). There were a few attempts
to make the model consistent with observations 11>, However as
we see in what follows, the situation is quite the opposite:
the model naturally gives very small values of £ and only for
a rather special values of the coupling constants one may ex-
pect P=0(1) »=*

Let consider the following toy model
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2 2,1 4 4 ¥4 {(7)
Vixl= m Iyl Ly (y(9L L A )
(/) srghy +4 Ay /)( /
Due to the last term the potential is not invariant with res-
pect to the phase rotation ]( ——>)( explid) and the baryonic

current of /( is not conserved
B _ =~ G B *i 4
Gujp = G L) )= D () ) ”

It is very convenient to have in mind the following mec-

hanical analogy. The equations satisfied by homogeneous field

}((f) :j(l(.{.).{.i/(p? ({') in the Robertson-Walker metric:
jf,+3F//, + [m2+/,l()w+ /\,z)-f—/; /A,—sz)]f,: 0,
}2-1- 3H/'(2 + [/4414—)'(22 (,\,1—,\2)—}-)[,1()5‘—3 )2)]/&: 0 (9)

are equivalent to the mechanical equation of motion of a point
particle in the two-dimensional plane (/(“/(’Z ) with potential
V(/() and the friction coefficient ZH. The baryonic charge in
this language is the angular momentum of the particle and its
nonconservation is enforced by the nonsphericity of the poten-
tial.

It was assumed in refs.®-7? that potential V(/() has flat
directions in which V does not rise with increasing/( . In
our model it is realized if e.g. )\'=-)‘,Z:)\> 0. If this is the
case the directions )(2: 0 and )(,: 0 are flat and }(' or /YZ.
respectively can rise along one or other flat direction in ac-
cordance with eqgs. (4) and (5). The variation Df)( in the or-
thogonal direction in governed by the potential 4)\)(;)‘)(-; . This
means that the effective mass of, say, )(2 in the state, where

classical field /(1 is developed, goes up with increasing
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<)(1>'35
M()(l): ,‘2\/&9{,5: min (fr:- \/7-/_’5-) ’7’7':‘\/:—2-5 -—%) (10)

The walls in the valley become steeper the further away is the
point from the origin.

The baryonic charge density in this state is

\/7N32>:\/<Lj032>:—,2/§)<,: O(H;/(,O) an
One can easily see from the mechanical picture that the angu-
lar momentum periodically changes sign, so that <{Ns>=0. These
oscillations are damped by the Universe expansion (Hubble
friction) and by the particle production by the time dependent
field /Kz - The first mechanism is relatively unessential. If
the particle production is not taken into account the field
]{ goes down to the origin with large baryonic charge which
ultimately transforms into baryonic charge of quarks. This ta-
kes place when jx becomes small enough so the term mzl’)([2 in
the potential dominates and nonsphericity becomes negligible.
We will show now that the friction due to particle pro-
duction is very strong for natural values of the parameters,
so, speaking in the mechanical language, the point particle
comes to the origin with vanishingly small angular momentum
and almost no charge asymmetry is generated hy-/K decays. Tt
was believed 7’ that particle pr-oduction is not essential,
when JK{ is large, since the mass of the particles produced is
prroportional to )(’ . This is not always the cacse however. The

coupling ofdf’ to fermions is of the usual Yukawa type

IS AR VSAT
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So the effective mass of fermions is of the order of g< '>.
This value is to be compared with characteristic oscillation
frequency (10). Since generically in supersymmetric models
}==D(gz) one may expect almost any result depernding upon the
exact value of the ratio gZ/) . If g2>) the production rate
is exponentially suppressed and in the opposite case it can be
large.

To make the statements more explicit let calculate par-
ticle production rate by time dependent scalar field JX )
33>, Such classical scalar field is equivalent to a time de-
pendent particle mass. We assume that the latter has a con-
stant part me and an oscilling one mi(t). The explicit analy-
tic formulae are obtained for the particular time dependence

m(t)=mo+tmicosnt 1)
but the formulae are of more general applicability.

If Q is large in comparison with me and mi the production
rate can be easily calculated in perturbation theory and coin-
cides with the width of the decay of JX into fermions. If =0
is small perturbation theory is not applicable but fortunately
in this case we can use the quasiclassical approximation. If
me>ma > an exponential suppression of particle production sho-
uld take place. As we see below it is indeed the case. If me
is small (mo<0) and mi1 increases one might naively expect that
the production rate also increases since this corresponds to
the increasing field amplitude. This is true e.g. for particle
production by electromagnetic field. However these naive ex-
pectations prove to be wrong for scalar field because the in-
crease of the field amplitude simultaneously leads to the in-

crease of the effective mass of the particles produced. The
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net result is a mild suppression of the production rate by the
factor (Q/mi1)21-=2
To do the calculations we start from the classical Lag-
rangian of a relativistic particle with a variable mass
=m{t) (1-v)2r= (14)
The corresponding Hamiltonian is #={p®+mZ(t) 122, The theory

is quantized by the path integral method:

G ()?(1{1”3?1,*;): 595/'3%7 exp ;_1 §€01f (- H)}

where G(?W,tf;?i,ti) is the Green function for particle propa-
-
gation from the space—time point {(%i,t1) to (Q;,tc).

The integration can be easily done and we get
it )= 28 eap 1476, 7)1 |t Py
G Xetp; x;)f,-): S(,‘Zﬁﬁ QX/O{LF (x}-x()- h tgo({- \/!a... mE(t) } (15

It follows from this expression that the pair creation

amplitude is
Ao (K, )=l ST exp{-i [ ot VETww ()]

where ki and k= are the momenta of the created particles. The
integration contour in the complex t—-plane is chosen in such a
way that the energy (kZ+m=)1-2 changes sign along the contour.
If m(t) is a periodic function of time the square root has an
infinite number of branching points and the total amplitude is
the sum of Ac(16) corresponding to all different contours C.
The summation results in particular in the S—function corres-
ponding to the energy conservation. For further details of the
method one could see refs.14-1>>-

Let first consider the case when me is small. The calcu-
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lation is straightforward and we get for the particle produc-

tion rate per unit time and volume:

2 ,/ +m7-,
‘%S:Z'—ng@)z"'xl’{ “L’*—[K(&’J Ely) U

§ [QSZ-:Z}',VPQWIF E (Viy7) ]

Here r=p/ (pT+mi1Z)21-2 and K(r) and E(7) are the complete ellip-

17)

tic functions (see, e.g. ref.2®’). The expression becomes very

simple if mi1 >> Q

s 3k
NI 2 o N,
T o

(18)

where Ner is the production rate in perturbation theory.
When mo is large the production probability is strongly

suppressed. The analytic calculations are easier in the case

mEL) = me® 4+ mxzroszﬁt. The result is

? Mo 3 [m (th. Qmo)] -QXP%'%"ME n
3 —QWOAQ
= 0"m, “r exp (ﬁ :oz ﬂ

These considerations can be also of interest for the Uni-

lém, (hﬂ‘—mo)

x
emr (19

verse reheating after inflation. For the latter only qualita-
tive estimates have been done %2,

Returning to the baryogenesis I would like to make the
féllowing comment. The sign of baryon asymmetry is determined
stochastically by guantum fluctuations and thus no explicit
C(CP) —violation 1s necessary. This is a kind of spontaneous
breaking of charge symmetry. The only effect of that is bary-
ogenesis. Farticle—antiparticle properties othrewise are the

same.
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In this model there are no domain walls which usually ap-
pear when a discrete symmetry is broken. The regions with po-
sitive baryonic charge are separated from those with negative
baryonic charge by baryon—-poor space. Their characteristic si-
ze can be evaluated as follows. BGuantum fluctuations Df/x du-

ring inflationary stage are

é><=/(0)7< (L)~ Hy /2w

on the scale Lo=H:i—*. This scale expands with time as L =

2

lLoexp(Hxt). The fluctuation amplitude increases in accordance
with expression (4) till it reaches limiting value )xo (6).
So the relative fluctuation amplitude becomes of the order of
unity when t‘=4ﬁfj(°2/H13=4ﬁ2:on5t/HxJ and correspond ngly
the characteristic size of the region with definite baryonic

charge to the end of inflation is
-
L= H ep{mst]
1T T / e (21

Unfortunately the exact value of the constant uwunder exponent
sign is unknown.

The present day size of such a region Lo can be evaluated
as follows. During the Friedman stage it expands as zr=Ta/T.
where To=2,78 K is the temperature of the background radiaticn
now and Tr is he reheating temperature after inflation. The
latter by the order of magnitude is Ter®* = me1®HrZ?., Hyanpce

_ | /D4
LO:ZR-Lf_ 7’0_ Hpe

T

(22)

ep (5]

The observational constraints are satisfied if (c/-M ) > S0O.

The model which is di=scucssed here npens a very interes-
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ting possibility of getting a large leptonic asymmetry along
with the small baryonic one *¥>. This is possible if (B-L) is
not conserved and baryonic "friction" due to particle produc-
tion is much larger than the leptonic one. It is possible to
achieve that with a small variation of the coupling constants
because the production rate is very sensitive to their values.
If this is the case the chemical potential! of electronic neut-
rinos enters into primordial nucleosynthesis calculations as
an extra parameter.

Jt is possihle also that the scale of leptonic charge va-
rtation is much smaller than that of baryonic charge (22). The
helium—4 abundancy in this case should be different in diffe-
rent space pnints. If this is observed it will be a good con-

firmation of the model discussed in this talk.
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Abstract

When the Universe cooled down to a temperature ~ 200 MeV, strongly interacting
matter turned from quark—gluon plasma into hadrons. The behaviour of the Uni-
verse during such transition is considered. In particular, we debate the possibility
that B can concentrate in small areas. Such isothermal inhomogeneities would
later turn into proton inhomogeneities. They may cause primeval nucleosynthesis
outputs to be somehow different from those arisingin a purely homogeneous frame-
work. The conditions for this to happen are discussed here in some detail. We
also discuss the possibility that predictions on €, may change and conclude that
it is however quite unlikely that the outcome of the cosmological quark-hadron

transition is to reconcile a purely baryonic Universe with Q, = 1.
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1. Introduction.

The concept of phase transition, formerly relegated in the realm of physics of
matter and physical chemistry, has become familiar to particle physicists when
the importance of gauge theories was fully appreciated. Gauge vector bosons,
associated to conserved quantities through local invariances, would be intrinsically
massless. Only in the abelian case could a massive vector field respect gauge
invariance (Stiickelberg, 1938). But the only abelian gauge field we directly meet

is the massless electromagnetic field.

Massless fields seem to imply long range interactions. In the standard model of
fundamental interactions, this is avoided requiring that observable particles, in
ordinary laboratory experiments, are not the quanta of the fields inscribed in the
Lagrangians. Here is where phase transitions become a necessary concept. In the
present temperature and density conditions gauge symmetries are broken, but the
theory predicts the conditions for symmetry restauration. Then the fieldsinscribed

in the Lagrangian would become directly observable.

Making recourse to the so—called Higgs’ mechanism (Higgs, 1964; Kibble, 1967), a
phase transition takes place when the degrees of freedom of the Higgs’ scalar field
turn into those of the longitudinal part of a massive vector field. Such mechanism
works in the frame of the electroweak unification and is also the basic ingredient
for grand—-unified approaches. In the former case a transition temperature T,,, ~
100 GeV is coherent with observational parameters. This range of energies is still
on the reach of laboratory physics, although in conditions very far from statistical
equilibrium. In the latter case transition temperatures Tgy ~ 10'° GeV are

involved and cosmology is required to provide possible tests of the theory.

From a theoretical point of view, the situation is even more extreme for strong
interactions. Quantum chromo-dynamics (QCD) is an unbroken gauge theory, al-
though no observable field is set in its Lagrangian. Baryons and mesons (hadrons),
which are the protagonists of laboratory strong interactions and the main ingredi-
ent of nuclear matter, are to be interpreted as composite states. Hadron hard cores
can be easily interpreted as proper volumes and this is typical of non—elementary
objects. In spite of that no laboratory experiment can separate hadrons into their

components.

This is due to a basic assumption of QCD, the so—called confinement. Spinor and
vector fields of the QCD Lagrangian have quanta which ought to remain con fined
inside hadrons. This is related to the SU(3) quantum numbers which define colour.
Colour charge is the source of forces which, unless rapidly saturated, would diverge

with distance. The saturation distance itself is approximately the hard—core size
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She ~ 10713¢m. Average distances of this order — already not much below those

in nuclear matter — may become typical in two different context.

A former case are neutron (N) star cores, that we shall not discuss here. Cos-
. mology is the other case where hadrons are expected to form only after an earlier
epoch when strongly interacting matter (SIM) was in the form of quark-gluon
plasma. This case differs from the former one being characterized by a very high

ration = S§/B ~ 10° between entropy (S) and baryon number (B).

Itis not difficult to evaluate the order of magnitude of the temperature T, for which
SIM turns form quark-gluon plasma into hadrons. At T' > m, (m,: ™ meson
mass), the 7 number-density (neglecting v mass, volume and mutual interactions)
isne = ((3)/m?3T® ~ 1.16A3(T/m,)3. This shows that distances between
quarks belonging to the same or to different nearby n’s become similar already for
T slightly above m,. Therefore, at a temperature above ~ 200 MeV, we expect

that the natural form for SIM is a quark—gluon plasma.

A further characteristic, which differenciates the quark-gluon plasma from the
hadron gas, is the behaviour in respect to chiral symmetry. Quark spinors have a
small electroweak mass. Baryon mass, instead, is originated by strong interactions.
Therefore, the passage from quark-gluon plasma into hadron gas is marked both

by the onset of confinement and by chiral symmetry breakdown.

A reasonable possibility exists that an experimental insight into its physics of Q—
H transition becomes available in a foreseable future. This is different from the
situation holding for grand—unification and even from the electroweak transition
itself. In fact the Q-H transition can be hopefully reproduced in laboratory, in

conditions quite near to statistical equilibrium, at least for short time intervals.

In this paper we wish to outline some patterns along which astrophysical data and
QCD physics can find a mutual interaction. As a consequence of quark-hadron
transition primeval nucleosynthesis may take place in the presence of significant
inhomogeneities of the proton (P) distribution. It is however important to stress
two points: i) It seems quite unlikely that P inhomogeneities can lead to a coherent
framework consistent with Qp = 1. ii) In spite of that, possible modification of
the homogeneous nucleosynthesis results lead to a possible relaxation of the limit
Qp < 0.1. Further evaluations of the limit on g, suitably varying inhomogeneity

data, can be important.

Some of the early approaches to the cosmological quark-hadron transition, while
rich of innovative ideas, were essentially aimed to find quick results. But, also in
this field, precise results need detailed work. This is true also for the question

of Qp limits, which can only be discussed on the light of a full comprehension of
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what went on when the Universe cooled down to a few hundreds MeV. In this
paper we shall try to debate the present understanding of this problem, adding
some new contributions and trying to focus their weight in the general outline of

current ideas.

2. Nature of the quark—hadron transition.

At a temperature T, ~ 200 MeV the quark-gluon plasma turns into hadron gas.
An important point is whether this is really a phase transition. In principle there
might exist a T interval during which both hadrons and quark-gluons are present.
Quite in the same way as during hydrogen (re)combination, when the ionization

rate z gradually shifts from z ~ 1 at TR 5000 K down to z ~ 10~° at T' < 2500K.
(a) - Order of the transition.

However, even though the passage from quark—gluons into hadrons is a phase
transition, it is essential to know its order. Only a first order phase transition (for
which pa(Te) = pg(Tc) while %’%(Tc) # %‘(Tc); pr and p, are the pressures of
the two phases) can be expected to cause really significant cosmological effects.
Different techniques have been applied to try to find out the order of the transition.

Renormalization group techniques are not fully reliable in this context, being how-
ever based on a perturbative approach whose results are to be applied in a regime
where the effective coupling constant a,(T') ~ 1. The pressure of the quark—-gluon
plasma calculated in this way becomes negative below a suitable T' (see Kalash-
nikov and Klimov 1979 and Kapusta 1979). This indication of a first order phase

transition is to be taken, as already stressed, with reserve.

A better insight into the physics of the transition is obtainable from Montecarlo
lattice computations. This approach has been used in various steps. Former
computations, neglecting fermions or with non—-dynamical fermions, initially using
SU(2) as colour group, then the full SU(3), indicated a first order phase transition
related to confinement. Relevant technical difficulties were to be overcome to
treat finite mass spinors. When they were solved, no evidence of a first order
phase transition connected with confinement was found if dynamical fermions have
masses so low as those of light quarks. Howeverit become soon evident that a first
order phase transition might be present because of the chiral symmetry breakdown.
We should add that more recent analyses, obtained by the APE collaboration
(Bacilieri et al. 1988, 1989) completely reopened the debate on the order of the
transition, claiming that no phase transition existed even in the presence of pure
gluons. These outputs were criticised by Ukawa (1989) and Karsch (1989). Ac-

cording to private communications, it now seems that the most recent APE collab-



61

oration results agree with initial findings. In this context it is however reasonable

to assume that a first order phase transition did take place.

Montecarlo outputs express T, in terms of the so—called string tension A which is
known only with an approximation ~ 30%. As a consequence, however, T, itself is
not known better than the heuristic arguments given in the previous section and

based on eq. (1.2) could provide it.
(b) — Thermodynamical models of phases.

It is clear that, in the vicinity of the transition neither hadrons nor quark-gluons
behave as ideal gases. We can model the expected behaviour of hadrons taking
into account their intrinsical volume. At TR m_!, hadron surfaces are almost in
contact. Inter-hadron forces can then be quite significant. However, even if these
forces are neglected and we take account of the intrinsical volumes only (Karsch
and Satz 1980, Bonometto 1983), number density, energy density and pressure are

to be modified in respect to a perfect gases.

The quark-gluon phase can hardly be analysed starting from a full QCD treatment.
Models like the MIT bag model and generalizations can then be a valid operational
approach.

For both phases it is convenient to define
$1,o(T) = Pa,q(T) T, Eng(T) = pro(T)T™* (2.1)

Similar quantities can be defined for the v component as well. Then

E(T;) = */30{g. + g()[1 + (n/3 —1)(T/Ty)"]} (2:2)
#4(Ty) = =% /90{g- + 9l — (T/Tq)"]} (2:3)
Ey(Th) = 3¢a(Tn) = 7*/30(g, + 3frid (24)
E,(T.) = 3¢.(T) = 7*/30g, (2.5)

where g = Ny + INs (Ny(s): number of boson (fermion) spin states), the index
- refers to leptons and photons, the index () refers to quarks and gluons, f,4
accounts from the difference between an ideal gas and a real pion gas, while n
and T allow to choose different self-consistent quark—gluon models. In general
T =T.1— %](1/“). For the bag model n = 4 and the bag constant B =
(w2/90)g(y)T4. As is known the bag model yields an E(T) decreasing with 7.
MonteCarlo lattice outputs do not seem to agree with this behaviour. E(T) is
increasing for n < 3. In what follows we shall therefore consider both the cases
n=4andn=2.7.



(¢) - The onset of the transition.

Owing to the large value of 7, T, can be determined equating the pressures of the
two phases. In Fig.1 typical ®, and ®; behaviours are given. They are coherent

with the requirement

palT2) > pr(T2). (2.6)
R T
P %, ]
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Fig.1 - Typical behaviours of pressures around T..

When the Universe cools down to T, its expansion can continue isothermally,
while the fraction y = V,/Vior (Viot is a large volume in order that homogene-
ity conditions hold on its scale; V; is the part of V;o; occupied by the Q-phase)
gradually increases from 1 to 0. The most convenient volume sharing, from a ther-
modynamical point of view, has been calculated by Bonometto and Sakalleriadou
(1984; see also Bonometto and Pantano 1984, Bonometto and Matarrese 1983,
Lodenquai and Dixit 1983, Bonometto and Masiero 1986), who also gave the a(t)
behaviour during the transition and showed that, in these conditions, entropy is

conserved.

However, there are at least two kinds of reasons why the transition cannot take
place in thermodynamical equilibrium. A certain amount of supercooling, in re-
spect of T,, is required to drive energy from the quark volume to the hadron
volume. As can be seen from Fig.1, requiring pp, = py at T < T, yields Ty < Ty
The amount of this physiological supercooling depends on a number of conditions

and will be discussed in the next section.

Most phase transitions, e.g. between liquid and gas, start with the nucleation of
bubbles of the new phase inside the pre-existing phase. In this case one should

expect hadron bubbles to nucleate in the quark—gluon continuum as soon as T, is
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attained. However bubble formation takes place when there is a positive surface
energy density at the boundary between the two phases. Should the creation
of boundaries imply a net absorption of energy, dendritic structures may form.
This is still an open possibility, although unlikely. In this case, most expected

cosmological effects of the transition would not take place.

In the case of bubble formation, the number of bubbles nucleated at T' < T is
Tnue = dyy e = exp[K/(Tc — T)). (2.7)

K is a constant. Once a bubble nucleates, the latent heath warms up the sur-
rounding quark region. T increases until the volume warmed (Vi = d3) becomes
too large and the cooling effect of the universal expansion takes over again. Mean-
while bubble nucleation in V,, is suppressed. When the cooling process arrives to

a temperature T, for which d,, ~ d, 4., bubble nucleation ends.

In order to determine T,. (and the corresponding average distance d; between
nearby nucleation sites) one needs to follow in detail the process of heath feeding
in the volume V,,, while the initial bubble expansion takes place. This stage of
the transition has been studied in numerical details by Miller and Pantano (1989).

This results, however, still depend on the surface tension o.

Kajantee and Karkkainen (1988, see also Kajantee et al. 1989 and Frei and Patkés
1989) tried to evaluate o on the basis of lattice computations. They find

c = a,T? (2.8)

with 0.15 0,5 10. (In spite of such wide computational uncertainties, it seems

however that this excludes dendritic structure formation.)

Still in wait of final conclusions on T',. and d;, various possibilities will be con-
sidered here. It is however unlikely that the supercooling T, — T is greater than
the physiological supercooling described in the next section. This larger patolog-
ical supercooling prevents the transition from taking place — in its initial stages
- along the pattern corresponding to a minimal entropy increase. Other possible
patologies could arise if elementary processes exist whose rates do not match the
conditions for thermodynamical equilibrium. An example could be the rates of
processes transferring B—number from the Q-phase to the H-phase. The relative
abundances of B are prescribed by chemical equilibrium requirements, but if the

rates of elementary reactions are unadequate, chemical equilibrium is not reached.

While the transition can take place even in the presence of pure volume processes

(Bonometto and Pantano, 1987), the presence of surface processes is essential to
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allow B-transfer. This is a reason to study which relative contribution surface
and volume processes can acquire. Then, among the former ones, the weight of

B-transferring processes shall be considered.
(d) — Surface processes during the transition.

Once a substancial volume of the Universe is occupied by hadronic gas, the energy

transfer between phases takes place through both surface and volume processes.

Most processes are bound to occur in a thin layer about the phase boundaries
(surface processes). Some of them (type A) will be scatters between two particles
each belonging to a different phase. If T, # Tj, type A processes produce a net

energy transfer. Rearrangements inside each phase follow such transfer.

Furthermore we expect processes like

g+q > m  g+d = 27 g+7 o et e
(type B) to realise an actual matter transfer. Most SIM in the Q—phase will turn
into leptons and photons. In fact, at T < T, g4 = 37, while, at T < T, g, ~ 3.

Meanwhile the statistical weight of leptons and photons has no change.

Foreach type A or type B process, however, the collisions per unit time and volume
is ¥p, =< Opy¥r, > nrn,. Here ., indicate particle species, or, and v,, are cross
section and impact velocity between r-th and the s-th particles. The averaging is
over possible kinematics and output products. Finally, n,, are particle number
densities. The average energy transfer per collision is £rs (T, —Th) with 0 < £, 5 1.
The average energy transfer per unit time and volume, due to surface processes,

is then fz—{,\t‘ (%)21‘,7—‘2_1‘. where A, = T, ~107"%cm and
s o,
f = A_ Zfrafrfa < )‘_;vrs >. (29)
€ rs <

Here fr = n,T./ph., s is the depth of the layer where elementary processes occur,
% is the average inter—phase surface per unit volume (see the end of the next
section). Eq. (2.9) sets the connection between the hydrodynamical rates and the
elementary processes rates plus the description of each particle species. Unfortu-
nately, for most quantities in it, only estimates are available . This suggests to

treat f as a parameter in a suitable range of values.
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(e) — Volume processes.

Around T the mean—free-path of v is A\, =~ 0.5(m,/T)cm and this is likely
to be compatible with bubble sizes. Scatterings of v’s inside each phase (volume
processes) lead to energy sharing between » and collided particle. In average this

will give place to an energy transfer similar to type A surface processes.

The smallness of the numbers

4
Nq,h = §fq,than(Pq,h +Pq,h) (2'10)

(G% = 1.310722 Mev~* is the weak interaction constant; f; 5 ~ 1, see next
section) of collisions of v’s with quarks and hadrons (per unit time and volume) is

compensated by the fact that the whole volume V¢ is to be considered.

3. Basic dynamical conditions.

Considering in detail the effects of the processes discussed in section 2-c, we can
work out the ¢ dependence of scale factor @, volume sharing y = V,/Vioe (Vg:
volume occupied by the Q-phase on a given large volume V;,¢), temperatures Ty,
Thy T,. (Clearly T, has a meaning over scales >> ),.) This can be obtained

integrating a system of differential equations that we shall now report.
(a) - Dynamical equations.
Space averaging the equation T,';.. = 0 (T} is the stress-energy tensor) in a syn-
chronous gauge, we obtain
ST (pi+p)Vi+ Vil =0 (3-1)
i=h,q,v

Here g, h and v refer to the Q—phase, the H-phase and »’s; p; are energy densities,
p; pressures and V; volumes taken by the i-th component. Neglecting B and

considering both surface and volume processes between the phases, we have

2Ty — T
T2

Pq +(Pq +Pq)% = _(T =T, )N fz)‘ (ph ) (3-2)

)]/\

Il

)ZTq - T;.

—(Th —T,)Nu + T2

. V;
An+(pn+ Ph)i;'i (3.3)
h

On the r.h.s. of these equations, the former term accounts for volume effects, the
latter one for surface effects. In the volume terms N 4 is given by eq. (2.10). The
factors fy » ~ 1, in (2.10), take account of the different relations between density
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and number—density in the two phases and of the ratio between temperature dif-
ference and average energy transfer per collision. The surface terms [the same in

(3.2) and (3.3)] account for energy transfer in the two opposite directions.

Together with (3.2) and (3.3) the Friedman equation

(EY = <8§> Glon + pu + (pg — Pr)Y] (3.4)

a

holds, while the pressure equality

Ph = Pg (3-5)

will be used to relate Th and T;. This holds at rest in respect to phase boundaries.
Boundaries, however, move with velocity v ~ (d1/t) ~ ¢(d1/ss). Correcting for
this effect, one easily sees that the pressure balance can be shifted by an amount
Ap =~ (pg — pr)(ds/sr)?. This is to be compared with the typical shifts of p,
and ps from the value p. holding at T., that we shall compute. If the condition
d;S 10% cm is satisfied, Ap turns out to be neglegible.

(b) - Analytical solution of the dynamical problem.

Bonometto and Pantano (1987) found an analytical solution to the above system,

considering volume terms only. This was based on an expansion in respect to

5
a= %Eﬁj? =310"° (';*) (8.3107%s/t;) (3.6)
after which only terms @(a) are taken into account. Here ¢; is the time when
the transition begins. The procedure can be extended, taking into account surface
terms as well. The time dependence of the scale factor a and of the volume ratio y
is still the same here as in Bonometto and Matarrese 1983, where no temperature
shift in respect to 7. was considered. Changes for a(t) and y(t) are @(a?). These

solutions read

3 2
(i) = U,sin? [(67r¢H)15 Te (t—t1)+ arcsin(Uc_%)
pl

ay m

y= (2) ara)-4 (3.7)

(the index c refers to transition temperature conditions; a; = a(t;), U =1+ %—,

A, = (—Ef%qs(—’:v; the indeces f;(g) are used to indicate the whole contents in both

phases; e.g., Eg = Eq + (7*/30)g, = E(g) + (w?/30)(gr + gv) )-
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Let us now define the fractional temperature shifts

T,—Tc Th —T. T, =T
q= Tc 9 h = Tc 5 V= Tc (3‘8)
which are O(c). Their expressions are fairly complicated and read
44, m(y) + ply) ]
= < 3.9
E 3¢qc —E < l:l +T(y’a) +“)(yaa) - ( )
By +¢ [ m(y) + p(y)
h = =X de 3.10
300, By, |17 7(4,0) + (3,0 (810)

v = p(y) + w(y) + ©(y) [ By + ¢4,

1+ 7(y,a) + w(y,a) | 3¢ — Eq. - w(y,a)} (3.11)

Here

w(y) = A(y)(En + ¢u)/(fy),  n1y) = A(Y)(EQ + ¢q)/[fr(1 —y)] (3.12)

with

- Ei(y)

(E(y) = Ex+ E, + (Eq) — E(h))cy) are related to v convection. The quantities

T(y,a) = S(y,a)[fqy(Eq + d’q)c]—l’ w(yaa) = S(y’a)[fh(l - y)(Eh + ¢h)]_1
(3.14)
with
f 5 ER

S(y,a) = a1 2
We) = 35 v 6

instead, are related to processes taking place through the surface ¥ limiting the two

(3.15)

phases in the volume V,. The expressions (3.8), taking account of the definitions
(3.9 ) - (3.15), are taken from Mariani and Bonometto (1990). These equations
solve the differential problem. The next subsection is devoted to a discussion of the
dependence of 7(y,a) and w(y,a) on —“‘% Then we shall plot the time dependence
of T;, as obtained from above relations, in a number of different cases, and shall

briefly comment about such outputs.
(c) — Evolution of inter—phase surfaces during the transition.

The transition takes place through the following steps: i) After nucleation, bubbles
expand and eventually collide. Then two bubbles turn into a single one. ii) When
~ 40% of the volume is occupied by H-phase, surface rearrangements make it the

physically connected phase. (Let us call the steps i) and ii) first stage (1S) of the
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transition.) iii) Q-bubbles shrink down [second stage: (2S)]. All through the above

steps, t.e. bubbles are assumed to be spherical.

It is theoretically possible that d; is so large that the stage i) never really occurs
and ~ 40% of V, gets occupied by H~phase before bubbles actually meet. In this
case, the final distance between nearby quark-bubble centers is ~ d;. Otherwise

dz >> d].
It is

z

7 = @mivia -y (s),

v (36r)3NPyd (25)  (3.16)
Here N, are the numbers per unit volume of hadron or quark bubbles and,
in (2S), N, = d;*(az/a)®. A similar evolution takes place early in (1S), before
bubble collision, when N}, = dl_s(al/a):’. Later, when bubbles begin to touch,
N, is controlled by the distribution of distances (d) about d;. In this paper such
distribution is assumed to be essentially Gaussian. More details on the way A

varies are given in Mariani and Bonometto (1990).

(d) - Evolution of temperatures during the transition.

According to the expressions (3.9), (3.10), (3.11), we can plot the behaviours of
Ty, Th, T, during the whole transition. Such behaviour depends on the equation
of state used for the phases (see eq. 2.5). For the H-phase this reduces to fixing
fria = 0.3. For the Q-phase, characterized by rapidly variable conditions, we take
the equations corresponding to n = 4 (bag-model) and n = 2.7. In Figs. 2-5 the
r.h.s. plot corresponds to n = 4, the Lh.s. plot to n = 2.7.

log[(Te-"Ti)/Te]
log[(Tc—Ti)/Te]

o 02 04 08 08 1 ° 02 04 o

X 6
(t-t1)/(t2-11) (L-t1)/(t2-t1)

Fig.2 — Temperature behaviours for f = 0, ¢.e.in the absence of surface processes.
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Fig.% - Temperature behaviours for f/d; = 107%, f/d; = 107°

The parameters f /dy and f/d; mix together bubble dynamics (through the values
of d; and d;) and surface process rates (see eq. 2.9).

The v temperature can either lay between T}, and T, or be below both of them.
Only in the former case v contribute to the energy transfer between phases.
Among other conclusions which can be drown from the above plots, we see which
range of parameters allow to mantain the temperatures of the phases very near
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to T¢ until the transition is over. There have been suggestions, in the literature,
that quark—gluon plasma areas might undercool significantly, in the late transition

stages. The above results seem to exclude this perspective.

4. B flows during and after the transition.

(a) - B accumulation during the transition.

That B can tend to remain in the Q-phase during the transition was first out-
lined by Witten (1984). This led him to introduce the so—called guark nuggets,
about which we shall not discuss any longer. Witten arguments were however
reelaborated by Bonometto et al. (1985) and Applegate and Hogan (1985).

A first reason leading to B concentration is related to the fact that baryons have
a mass >> T, while light quarks are lighter than T,. This point can be made
quantitative if precise models for the two phases are introduced and, in particular,
spurious effects due to the continuum spectrum

X 2

2
p(m,B) = ngéB‘B(k) Omyms + cﬁ(m—mo)T3'5 m—35 m/Te=TnB*T./30m (4.1)

k=1
(m: discrete hadron masses; m, ~ 1200 MeV: starting point for the continuum
spectrum; 4 ¢S 40) are cured considering a finite volume (e.g., Vo = (47r/3)m;53)
model for hadrons (Karsch and Satz, 1980; Bonometto, 1983) leading to the par-

tition function

+1
1
ZT'"'V“TZFII ) / & gudmip(ms, By)el“EFENTV NG (4.9)
: <

(Here the sum over N is carried up to a value >~ V/4V,; p is the chemical potential
associated to B and E? = ¢ + m?.) From Z7,v all quantities concerning the
H-phase can be worked out. In Bonometto et al. (1985) this is used to work out
the hadron free-energy, which is then compared with the quark-gluon value. At
the equilibrium temperature the chemical equilibrium requirement provides the
value for the ratioe =< B >y / < B >@. This turns out to depend on T, itself
and on the other detail of the model; its typical values range around 10~2. Further
details can be found in Bonometto et al. (1985).

Witten (1984) considered also the possibility that surface processes can be highly
suppressed during (2S), as ¥; << 4. But, according to the results of the previous
section, this does not occur. The result of this hypothetical suppression would have
been those of leaving ¥’s as the only carriers of energy off the plasma remnants. In

this way B would keep trapped in the late shrinking bubbles. Also in the presence
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of surface process this might still happen if the rate of B—carrying processes is
much lower than the rate of other surface processes. A possible reason for such
diminished rate is the need to provide somehow a 3-body reaction to create a

baryon out of quarks.

This pattern can be somehow eased by the possible existence, at least as a virtual
state, of a di-quark (DQ) system. Then the chains of reactions, causing B-flow

through the inter-phase surface, might be the following ones:
Ci: Q+Q—-DQ; Q+DQ - B, C»: Q+Q—DQ; DQ—B+DQ

The knowledge of DQ is however still limited and makes hard to give even an
estimate of the rates of the reactions here above. They might be smaller, by some
order of magnitude, than ordinary surface process rates. This kind of patology,
though preserving the behaviour of temperature trends and volume sharing de-
duced in sec. 4, would drive out from the chemical equilibrium condition requiring
e~ 1072,

Another kind of pathology, causing similar effects, would be the accumulation of
B in the proximity of the inter—phase surface, even after it has passed from the
Q-phase to the H-phase. In this case, chemical equilibrium would be established
between the interior of Q—bubbles and surronding B—enriched areas. A detailed
evaluation of this effect is again problematic, for it involves estimates of superim-

posed hydrodynamical flows and B diffusion.

On the light of previous consideration, it is however licit to conclude, that — at the
end of the Q-H transition, we can expect a situation of B inhomogeneity. Peaks
of B will have formed in the regions were late plasma bubbles died out. The value
of € characterizing such areas is likely to exceed 1072, even by a few orders of

magnitude.
(b) - B outflow after the transition.
If the transition causes the formation of B peaks, they are later unstable against

N diffusion. Until T' > 1 MeV, each baryon can be considered P or N for 50% of

its life. In a time ¢, baryons the diffuse over a distance s ~ (Dt)% with
D = (90/4n*)(g-T%on) ™! (4.3)

(g is the statistical weight of radiative matter), while the N elecromagnetic cross—

. 2
section o =~ gmr(ﬁ‘) (the value of m4 to be taken conserns u and d flavours
q

only).
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If, at the end of the transition (started at a time ¢,), B peaks had a distance d;,
the ratio between the size of B peaks and their distance, at any T' << T, reads

then
s 1 (lMeV)g(_l_ﬁz_bﬁlcm
d ~ 1075s T oN dy

This relation shows that, if d; could exceed the c¢m scale (or, at least, for those

(4.4)

late Q—bubbles whose distance from nearby objects exceeded such scale), a B ac-
cumulation is however preserved down to the T when P — N transforming reaction
freeze down. But, even for values s/d ~ 10~2, proton inhomogeneities can still be
caused. The detailed picture will depend on a number of geometrical parameter

as well on the actual value to be taken for the initial .

At T < 1 MeV, N leak out freely, but P are definitely trapped and nucleosyn-
thesis can be expected to take place in the presence of significant P distribution
inhomogeneities. Unfortunately, at this stage, the theory is still unable to give
firm details on the features and on the amplitude of such inhomogeneities. These

quantities will be necessarily treated as working parameters.

5. Nucleosynthesis and quark—hadron transition

Homegeneous big—bang nucleosynthesis has been deeply studied and there can be
little doubt that its results are a cornerstone of cosmology. Light element observed
abundances agree with its prediction in a range of 9 orders of magnitude. Its
prediction of the number of elementary particle families came well before the same
result could be achieved in LEP Z° decay experiments. Using data concerning
H? He® and Li7, the baryonic density parameter Qp is strongly constrained.
A recent discussion of the observational situation and its comparison with theo-
retical prediction based on recent rates of nuclear reactions, is contained in Kurki—
Suonio et al. (1989). For homogeneous nucleosynthesis, the full consistency inter-
val is claimed to be

3<mo<4 (5.1)

where 7,0 = (np/ny) x 10'° (ng,n,: baryon and photon number densities in the
present epoch Universe ). In turn 739 ~ 1.5102Q0gh? (h: present value of the
Hubble parameter in units of 100Km s~ Mpc™!), and this yields 255 0.1.

Current limits on Qp, obtained along this pattern, take also into account the
possible range of values of h. Lower and upper limits on Qg appear to differ
by a factor ~ 8. If observational constraints are indicated by (5.1) feelings can
arise that further modest variations of experimental rates in nuclear reactions can
dangerously narrow, or even close, the residual window. The same danger is related

to possible variations in the observational data on light nuclide abundancies. The
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residual window, however, can be not so narrow, if a number of actual uncertainties

are duly taken into account (Krauss and Romanelli, 1990).

The importance of evaluating the effects of a nucleosynthesis taking place in the
presence of P inhomogeneities, are also to be seen under this light. However, even
though the homogeneity window is expected to keep open, it aquires a critical
significance to verify which upper limit on Qg can be altogether inferred from

observed abundancies.

In homogeneous nucleosynthesis, the so—called Deuterium bottleneck becomes
accessible when the ratio between N and P numbersisn: p ~ 1 : 7. The presence
of P density peaks leads in turn to vaste areas of proton deficit, where n : p easily
exeeds unity. The opening of Deuterium bottleneck has the normal consequence
of fixing all available neutrons into H? nuclides. But, should areas whith n : p > 1
exist, once all protons are set into H? nuclides, a neutron residual will still exist.
To find P partners they have to flow back into P peak areas, as protons are
virtually inamovable. While this flow—back occurs, N decay will go on. Protons
produced at this stage will soon meet a N partner. However, apart these events,

an extra-time

~ — 2
At~ T (5.2)

will be needed in order that each N meets its P partner [D is given in (4.3)].

The effect is potentially similar to a slower expansion of the Universe and makes a
large 2 model to look like asmaller 2 one. Large d; tend to favour this effect. If we
treat d as a free parameter, however, we must be very careful not to exceed obvious
limits, above which the expected amount of  He would be altered. Keeping below
this limit areas where only H? exists and other areas with significand H? deficit

are however generated.

A general picture of the consequences of this situation can be fully reached only

on numerical bases.

According to Applegate et al. (1987) and to Alcock et al. (1987), in these conditions
the observed abundancies of He*, He® and H? could become compatible with
Qp = 1. The theoretical amount of Li’, instead, exceeds observed abundancies.
The existence of hypothetical processes able to destroy such nuclide was then
advocated. Audouze, Delburgo-Salvador and Salati (1989) and Reeves (1989)
argued against such possibility and rather tried to infer from the observed Li’

abundancies limits on the possible outputs of the quark-hadron transition.

Furthermore Malaney and Fowler (1988) stressed that these computatiuonstreated

the high P density regions and the low P density regions separately. An accurate
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evaluation of nucleosynthesis must take into account all possible neutron flowings

and, in particular, must be very accurate on the study of diffusion processes.

Taking them into account, one could hopefully be able to eliminate the excess
Lithium originated via Be decay after that the latter nuclide had been originated
in high density regions. This led to studying detailed diffusion models (Kurki—
Suonio et al., 1989; Teresawa and Sato, 1988) showing that, beside eliminating
Be, the back neutron diffusion affects other nuclides as well, and to build a
detailed dynamical code (Kurki-Suonio and Matzner, 1989) explicitly accounting

for multizone forward and backward diffusion.

Kurki-Suonio et al. (1989), making use of such dynamical code, explored a vaste
range of possible conditions ensuing the quark—hadron transition. The parameters
accounting for such possible conditions were so defined:

R: ratio between P densities inside and outside P peaks.

d: average distance between nearby P peak centers.

fo: average volume fraction taken by P peaks.
Together with these parameters, also various 7;0 parameter values were span.

Attempts were also performed to account for the possible geometries of P peaks,
but no attempt was made to account for the predictable variations in P densities
through the so—called P peaks. Sharp peak boundaries were also used and this
approximation cannot be considered completely safe a priori, while it might be

advisable to consider at least steps in the variation of R.

We shall now report the observational constraints taken into account by Kurki-
Suonio et al. (1989).

0.224 < PHe' <0254

Ptot
ngz S 10_5 M2 He3 S 10_4
nyg ng
BT < 21071 (popll) DL < 9107° (popl)
TLH nH

The range of parameters they considered is R ~ 100, 1 m < I < 103m, 0.016 <
fo <0.25,1 < ;0 < 10%.

On the basis of such choice of parameters they find an overall limit

1105 7 (5.3)

this rises the current limit on Qg to ~ 0.2.
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It must be however considered that this increase takes place at the expences of
considering d ~ 100m (at T ~ 100 MeV). It is hard to reconcile such high value

of d with current extimates of surface tension.

In our opinion it might be more significant to look for alterations of homogeneous
nucleosynthesis considering smaller values of d but higher values of R. The value of
R considered by Kurki-Suonio et al. (1989) is consistent with the B concentration
ratio between quark and hadron areas, which can be worked out during the quark-
hadron transition from the assumption of chemical equilibrium (Bonometto et al.,
1985). As outlined in the previous sections, however, the intervention of patologies

at this stage is far from unlikely, and R ~ ¢~'.

Altogether it seems useful that different areas in the parameter space are soon ex-
plored. Teresawa and Sato (1988) claimed that values R ~ 10%,10* are consistent
with Qp = 1. A similar claim by Mathews et al. (1989) seems, instead, to have

been withdrown.

Higher values of R may hopefully lead to alterations of the homogeneous picture
even for smaller d values. It seems unlikely that this may reconcile nucleosynthesis
and Qp = 1, but a shift of the upper boundary on Qg by a factor ~ 3 does not

seem out of reach.

It is known that Qp # 1 is required by a number of different astrophysical evi-
dences. E.g., it is definitely difficult to reconcile Qp = 1 and current limits on
small scale fluctuations of the CBR. On the contrary, the CDM model, very suc-
cessful to account for a large deal of cosmological evidences, is not in agreement
with some very large scale data, although its disagreement is just above the limit
acceptable on the basis of observational uncertainties. There have been proposals
trying to improve the results of CDM models adding a substantial amount (clearly

exceeding 10%) of baryonic component to them.

However, even apart the results of specific cosmological models, it is important to
connect limits on the density of the Universe and properties of SIM. In our opinion,
future work in this field is likely to set even narrower connections between such

astrophysicals and laboratory data.

Acknowledgments. — It is a pleasure to thank Ornella Pantano and Sabino Matar-
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ABSTRACT

The Universe may have undergone a vacuum phase transition subsequent to the
decoupling of the microwave background radiation with matter. Under certain circum-
stances, “soft” cosmic topological defects can form, such as domain walls, which can
lead to the formation of large scale structure. Since these structures form after decou-
pling, the constraint imposed by the observationally small anisotropy of the microwave
background radiation, §7/T < 10°, is weakened. A soft-defect scenario is a novel alter-
native to both cosmic string and inflation-produced quantum fluctuations as the origin
of structure in the Universe.
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The problem of generating struture (galaxies, clusters, voids, stars, people, etc.)
in a universe that appears very homogeneous and isotropic on the largest distance
scales and earliest times is, perhaps, the central problem in cosmology today. The dif-
ficulty faced by any proposed mechanism owes to the constraint on the initial “lumpi-
ness” of the universe from the observed smoothness of the 3° K microwave background
radiation. This radiation, a relic of the big bang, last interacted with matter at a
redshift of about z ~ 10%, and shows a surprising uniformity in temperature with
fluctuations bounded by as little as §T/T < 2 x 1875 on some angular scales.!) The
lumpiness of the universe at this time is bounded as well, since pre-existing density
fluctuations would have differentially red- and blue-shifted the background radiation,
giving rise to observable temperature fluctuations. It is well known that small initial
density fluctuations, §p/p < 1, can only grow linearly with the cosmological expansion,
[(6p/P)ioday < (1 +2)(6p/p)redshift =], due to gravitation. How, then, did the enormous
density contrasts observed today grow in the period of ~ 10° redshifts, given that the
current §T'/T limits seem to imply (6p/p)zm10s S 1074 at decoupling??!

Once the density fluctuations are of order unity, they grow very rapidly and can
produce the contrasts seen, for example, in comparing the density of a star to the
average density of matter in the universe, pgiar/Pambient ~ 1022, If linear growth started
at decoupling, then (8p/p)ioday is S 0.1, implying that we would never have attained
nonlinear growth. On the other hand, if there is non-baryonic dark matter (e.g., axions),
growth could start when parter ~ Pradiation at z ~ 10%, which might produce the start
of non-linear growth at z ~ 1. This may seem to be marginal, yet one might argue that
the spectrum of initial density fluctuations contains a small probability of having few
large fluctuations that can ultimately lead to the formation of the observed structure.
However, from the existence of quasars and galaxies at large redshiifts we see that well-
formed structure already exists at z ~ 4. Furthermore, there appears to be a large-scale
coherent streaming motion of galaxies®] on a scale of R ~ 50 to 100M pc, suggesting
the existence of exceedingly massive objects. Such objects are very difficult to form in

most models given the present limits on §7'/T. If further observations ultimately yield
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a tightening of the limit on éT/T, the situation will become even more constrained.

Previous proposals for the formation of large-scale structure have relied upon gen-
erating density fluctuations at a very early cosmological epoch (e.g. the Grand Unified
[GUT] epoch when kT ~ 10'*GeV) which survive to serve as seeds at the galaxy forma-
tion epoch at kT ~ 10~2eV. These include quantum mechanical Gaussian fluctuations
produced during inflation*] and topological defects such as cosmic strings.® In some
scenarios these seeds gravitationally accrete large quantities of non-baryonic dark mat-
ter, whereas in others they explode and push the baryons about.®) We will not go into a
detailed commentary on each of these models, noting only that the aforementioned com-
bination of observations has been difficult (but maybe not imposible) for any existing
model to satisfy.

The purpose of this article is to review and update a completely novel, if not radical,
proposal”} in which energy density fluctuations are generated after decoupling.®] This
implies a priori a minimal imprinting of the induced structure upon the microwave back-
ground radiation, i.e., a relatively small induced §T /T for any given produced structure.
The fluctuations here are associated with “soft” topological structure, typically in the
form of domain walls (though this is not the only possibility) having small internal en-
ergy densitites. The domain walls are kink-soliton, topologically stable solutions to the
equations of motion for some very weakly interacting scalar field, ¢. Random vacuum
fluctuations with large spatial scales are also a possibility. In the models considered,
the mass of the ¢ particles m is so small that the thickness of the kink, given by the
Compton wavelength, h/myc, is a cosmological distance scale. The original motiva-
tion for expecting such low-mass particles and a late-time phase transition came from a
study of possible pseudo-Goldstone bosons that naturally arise in a variety of GUT set-
tings. Pseudo-Goldstone bosons, such as massless familons®, occur when the pattern of
masses of the observed fermions is associated with a spontaneously brolen, continuous,

global (ungauged), symmetry. With further small explicit breakings of these symme-

¢ 10].

tries, familons acquire minuscule masses, as, for example, in the “schizon” models

These masses are typically of order mg ~ m}/f‘,,, where f; ~ 10! GeV to 1016GeV is
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a generic grand unification scale, and m the mass of the associated family of fermions.

In ref. [7] a specific particle-physics based model was considered which postulated
the existence of such schizons in association with the neutrinos. This tied the central
density of a domain wall to the mass of a neutrino, m,, and the thickness of the wall to
both m, and a grand-unification scale fs. For f4 ~ 10'°GeV and m, in the range 1.0
to 0.01 eV, the ratio of wall density to the ambient density of matter will then become
greater than unity at a redshift of z ~ 100. For the above parameters, the thickness of
the wall will be in a range of 10 to 10° parsecs. The phase transition sketched out in
ref. [7] is fundamentally no different than those invoked in inflationary schemes. The
key idea is that new physics is introduced here involving phenomena of extremely low
energies: much of what we say is generic to any late-time phase transition. Indeed, it is
interesting to explore further the possible connections with particle physics that harbor
such phenomena.

In the remainder of this discussion we will simply treat the domain walls as phe-
nomenological objects having characteristic thicknesses, §, and mass per unit area, o
(for the original model of ref. [7], § ~ f4/m? and 0 ~ m%8 ~ m2fs). The walls
form during a phase transition at a redshift zg. In addition, we define R as the typical
correlation scale for structures in the domain wall network. At the time of the phase
transition, the walls are randomly distributed and typically contiguous or intersecting,
with the average spacing between walls, ¢, of order 7y ~ § to ry ~ H™! depending
upon the model. As the Universe expands and cools, the system relaxes, and individ-
ual walls become well-defined kink-soliton configurations. The spacing between walls
grows and becomes r,(1 + 29)/(1 + z) at a redshift z < zo. In addition, there will be
slow recombination of structures as well as other evolutionary effects. The domain wall
network is expected to contain both closed surface walls (dubbed “vacuum bags”) and
infinite walls.

Ultimately, one expects infinite cosmic demain walls to become flat on the scale
of the horizon. If the walls have a large central encrgy density, then they give rise to

unacceptably large distortions in the microwave background and Hubble flow; this is
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the “usual” cosmic domain wall disaster and was first noted by Zel'dovich et al.’!l In
the case of soft walls, the central energy densities are very low and the large domain
walls suggest an intriguing mechanism that may account for the large-scale streaming
motion in a natural way,'2) as we shall deseribe below. It is furthermore expected that
small local structures, e.g., vacuum bags, which are spherical bubbles whose walls are
the kink-soliton, will form and become, ultimately, the nucleation sites for galaxies,

etc. Several groups!31415]

arenow actively analyzing the details of this scenario, e.g.,
behavior of vacuum bags, the evolution of domain wall networks, and the distribution
of observable structures expected in the model.

The evolution of the walls and vacuum bags is quite complicated as there are poten-
tially a very large number of processes that can come into play. The stress-energy of a
wall consists of a surface-energy density and a surface-tension of equal magnitude. This
surface tension causes vacuum bags to collapse and small-scale irregularities on infinite
walls to oscillate. In either case, the walls lose energy via ¢-particle and gravitational
radiation. In addition, if there is a background density of some other particles that
interact with ¢ (e.g., neutrinos), then it will exert a force that will tend to damp any
motion of a wall relative to the cosmic rest frame.

Press, Ryden and Spergel®®] have completed a preliminary analysis of the evolution
of a domain wall network. They find that the network quickly becomes dominated by
infinite walls that are flat on scales of order the horizon and that small local structures
quickly disappear. We note, however, that their numerical code may lack the resolution
necessary to track the ultimate fate of the vacuum bags. From the point of view of
structure formation, the fate of vacuum bags is the most interesting question. It is
important to note, moreover, that the evolution depends crucially upon the underlying
effective theory of the field which produces the domain wall kinks. In a theory with a

potential of the form:

V($) = A" - ¢?)? (1)

1.e., a “double-well” potential, the walls tend to “intercommute,” undergoing a rear-
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rangement upon interacting, and dissipating energy in the form of free ¢, and some
gravitational, radiation. Vacuum bags in these models shrink down to blobs that even-
tually disperse into free particles.!3:14l Left behind are very large walls which stretch
across the entire universe. Naively, if such structures are related to galaxy fermation
scenarios (thereby requiring puqu/p R 107*), then they would lead to a large §7/T in
conflict with observations. We view this as a less interesting scheme However, if the

model is of the theoretically favored™1%14 “sine-Gordon” type, with:

V(¢) = m*sin(¢/f) )

as always occurs in pseudo-Goldstone boson theories, then there are remarkable stability
constraints on the kink-solitons: two opposing, flat kinks in a collision are transparent
and will pass through one another. This implies that domain walls tend not to inter-
commute, unless they have large curvature, and leads moreover to a striking behavior
for vacuum bags, recently demonstrated by Widrow.!! A spherical vacuum bag will
collapse and undergo a “bounce”; in this process a small fraction of the energy is lost
to radiation. Typically the vacuum bag reexpands and continues to recollapse for many
iterations until finally only a dissipative blob, or even a black hole, remains. The sta-
bility of the vacuum bag can no doubt be enhanced by endowing it with anisotropies,
inhomogenieties, angular momentum, etc.

We should further point out that the flat infinite domain wall can be, in princi-
ple, avoided by making all domain walls unstable, as occurs in various incarnations of
the models discussed above. Consider, for example, the superposition of sine-Gordon

potentials with multiple non-degenerate minima:

V(¢) = misin(n¢/f) + mj sin(na¢/f) 3)

where n; < ns are integers. If ny/n; is noninteger, we expect domain walls to occur,
but one side will be a region of false vacuum having higher vacuum energy than the true
vacuum on the other side of the wall. Regions of false vacuum shrink clue to vacuum

pressure, and all walls eventually disappear. However, the density fluctuations cue to
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the walls may live long enough to drive structure formation. This alternative has not
been explored in detail.

The bounce behavior of vacuum bags is important, since a vacuum bag with pgeqe/p >
1 (irrespective of whether it contains true or false vacuum) persisting for a Hubble
time can drive the nonlinear accretion of the surrounding matter. Moreover, a highly
anisotropic bag would be expected to develop self-interesting points of large curvature
which are expected to lead to “fission” into smaller vacuum bags, etc. Thus, a parenting
process for the formation of local clusters of galaxies can be envisioned here in which
the matter ultimately accretes onto the remaining small vacuum bags in a neighborhood
defined by the large parent structure. Simulations of the evolution of complex vacuum
bags have not yet been carried out, but work is in progress. In the numerical simulations
of both Press et al.,'3 and Widrow,'¥ only surface tension and ¢ radiation are taken
into account. The motivation for this is both simplicity and the belief that graviational
radiation and particle-wall interactions are negligible for the models of interest. Still,
these other processes should be investigated in more detail.

Flat cosmic domain walls, owing to the presence of internal pressure as well as energy
density, actually gravitationally repel matter.!®] On the contrary, spherical vacuum bags
have net vanishing pressure and positive mass as seen from outside at distances greater
than the radii of the bubbles, and will attract matter. Accreting vacuum bags lead
to subsequent evolution of the conventional matter with collapse times that are much
more rapid than standard linear growth. Furthermore, the energy within a vacuum bag
at the end of its history could mimic the effects of dark matter. In the central core of
a collapsing bag the energy density is of order o(R32/6°%) where Ry is the initial radius
of the bag. Here, all of the initial surface energy in the bag has been localized into a
region of radius ~ §. One can even form a black hole if the Schwarzschild criterion is
satisfied.}!]

The flat, repulsive walls may actually help explain certain puzzling cosmological
obscrvations, as envisioned by Stebbins and Turner.!2) As mentioned above, a remark-

able coherent streaming motion of all local galaxies within a region ~ 1080Mpc has



84

been observed®! which is extremely difficult to explain in conventional scenarios. It has
been proposed that a “Great Attractor,”'”] a super-super-cluster of order 10" Mg, in
the general direction of Hydra-Centaurus may be required. However, in ref. [12] it
was suggested that this could arise from the great domain wall stretching across our
present Hubble volume. Moreover, the arguments of Stebbins and Turner can be used
to place a limit on the fraction of critical density in the ¢ field today, Q4, due to the
induced large-scale velocities. From the present data® on R ~ 40Mpc, we know that
Q4(1 + 29)ép/p S 0.2, where zo is the redshift of the phase transition and 6p/p is the
density variation in the ¢ field. Thus, for 6p/p ~ 1 we have Q4 < 0.2/(1 + 2,). This
constraint sets bounds on the evolution of the ¢ field structures.

The fluctuations in the microwave background for a late-time model will usually be
dominated by the effect of the propagation of the background through the gravitational
field set up by the moving wall network. One finds:

5T v
— ~ —GoR 4
T~ G (4)

where v is the velocity of the structure, v is the relativisitic factor, and G is Newton’s
constant. For vacuum bags, R ~ § and v ~ 1, so the approximate result of reference
(7, is obtained. Note that §T/T increases with R to the maximum structures produced.
Therefore, 6T /T rises with angular size 6 until encompassing the maximum scale R, and
then remains flat for larger 6. For sufficiently small o, the above expression for 6T/T
is supplanted by the Rees-Sciama'®! effect from the observed structure, but such values
of ¢ are unlikely to generate structure. In general, the walls are massive enough that
v/c <1, and v ~ 1. If evolution leads to a few dominant walls, then R ~ Ry and the
large 6T'/T problem arises as described by Press et al¥¥ or possibly a situation similar
to the one considered by Stebbins and Turner'? might arise.

Multiple minima or non-degenerate minima with decaying walls can lead to R < Ry-
If there exists an observable structure of size R, then late-time walls will tend to produce
the minimum 6T /T consistent with such a structure. However, if evolution implies even

larger structures as in ref. [13], one can encounter limiting constraints. Thus, scenarios
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whichlead to R < 100M pc are preferred. Note that if vacuum bags are produced, then
the structure they seed can be independent of the large wall structure, in which case ¢
can be reduced sufficiently even to enable GoRy to be consistent with §T/T. For the

original model of ref. [7] with R arbitrary (instead of R ~ §), we obtain:

6T m2 m 2 f R
o~ ~ 2 1 -6 v ¢ 5
T J\/IPlanckf¢R x 10 (10—26’0) (1015G6V> (10Mpc) (5)

which could easily accomodate structures of R ~ 100M pc for reasonable parameter

values.

Tests for the model vary with the specific details. The mechanism of ref. [7] re-
quires a generic pseudo-Goldstone boson which will be hard to detect directly, but its
brethren associated with charged leptons or quarks produce potentially observable new
phenomena, e.g., new compostion-dependent pseudo-Gravitational forces, as detailed
in ref. [10]. The observation of such effects and non-zero neutrino masses would be
compelling circumstantial evidence for possible cosmological effects proposed here.

Obviously, much work remains to be done to examine the details of this class of
models. In particular, the astrophysics of the detailed large-scale structure that is
generated by such late-time fluctuations is only sketched here; and full hydrodynamic
calculatins will have to be carried out. Furthermore, detailed particle physics models will
have to be developed to see if all the preferred properties really exist in a fully consistent
model. Eventually we would hope to make detailed quantitative predictions about
the model vis-a-vis large-scale structure. However, the present large-scale structure
observatrions are still quite qualitative. Quantitative statistical measures have yet to
describe definitively the apparent structure in a reproducible manner. Anecdotally,
voids, filaments, sheets, bubbles or sponges appear,!9?°! depending on the analyses used
and on the rapporteur. Conceivably, cosmic membranes could make any or all of these
structures depending on how they evolve. Hopefully, specific quantitative predictions
will be made before the observational data converge. Our purpose here is to alert

readers to the fact that an alternative to the standard galaxy formation scenarios may

exist. The physics it relies upon is not any more exotic than the GUT physics that the
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standard scenarios utilize. At low energy scales, the model might even be testable n
the laboratory. In any case, it may be the only model that can survive possible eventual

limits of order 6T/T < 1075,
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NEW RESULTS FROM BIG BANG NUCLEOSYNTHESIS

Keith A. Olive
School of Physics and Astronomy
University of Minnesota
Minneapolis, MN 55455

ABSTRACT

Recent results from big bang nucleosynthesis are presented. Changes
in 1) some of the nuclear cross-sections; 2) measurements of the neutron
half-life and 3) recent measurements of AHe and 7Li abundances, continue
to support the success of the standard model. Consistency for all the
light elements is achieved for Nu = 3 when the baryon to photon ratio,

7 = 3-4 x 1010,
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-3)

The standard big bang model for nucleosynthesis is well known1 and
I will not review it here. Instead, I will concentrate on the effects of
new data: nuclear cross-sections, the neutron mean-life, and 4He and 7Li
observations. The standard model remains the simplest theory, which can
account for the observed abundances of all the light elements, D, 3He, aHe
and 7Li.

Historically, the prime element to test the success of a cosmological
model is Z‘He‘ In the standard model, the 4He abundance Y , depends on
basically three "parameters": 1) the baryon-to-photon ratio n; 2) the
neutron mean-life T and 3) the number of light particle degrees of
freedom, commonly taken to be the number of neutrino flavors. As we will
see, all of these parameters including n are reasonably well determined.
The number of (light) neutrino flavors is now limited to three by LEP.A)
Although LEP does not exclude particles without z° interactions, any such
superweakly interacting particles can be constrained by nucleosynthesis.s)
The neutron mean-life is now quite well known primarily due to recent
measurements of Mampe et 31.6) of L 887.6 = 3 sec. Finally, recent
data and analyses of Z‘He and 7Li when combined with previous data from D
and 3He restrict 5 to values (3-4) x 10-10. As such, the fraction of
closure density in baryons is restricted to OB =0.01 - 0.1.

I will begin with a brief discussion of changes in the nuclear
reaction rates. The new compilation of nuclear rates by Caughlan and

7)

Fowler “show four rates which differ significantly from those used by
Kawano, Schramm and Steigman (KSS),8) They are: D(d,n)3He (up by 30%);
D(d,p)T (up by 30%); 4He(t,7)7Li (down by 20%); and 7Li(p,a)AHe (up by
10%). Relative to the older work by Yang et all), KSS found increases in
7Li primarily at low values of n. This was due to an increase in the 7Li
production rate 3He(a,7)7Li and a decrease in the destruction rate
7Li(p,a)4He. The 7Be rates which affect 7Li at high n were essentially
unchanged. The new data lowers the 7Li abundance at low 5 while
increasing it at higher 5. The latter effect is due to the increase in
the D(d,n)3He rate which leads to more 7Be. In addition the 7Be(n,p)7Li
has decreased which also leads to more 7Li at high 7. (7Li is more fragile
than 7Be.) The effects of uncertainties in the nuclear reaction rates was
recently examined by Krauss and Romanelli.g)
The neutron mean-life has recently been determined to very high

accuracy by Mampe et al.6), using a glass storage container coated by

Fomblin oil. This container has a very low probability for leakage



91

(2-3 x lO-s/bounce at room temperature) for ultra cold neutrons with
kinetic energies En < 10-7 eV. The measured mean lifetime in this
experiment is T 887.6 + 3 sec.

Prior to this measurement, the world average value of L= has been
steadily decreasing from = 918 + 14 from the measurement of Christensen

et al.lo)in 1972 to its present value of

r_ = 889.6 & 2.9 sec.
n

This average is based on the measurements of T listed in the table below.

918 + 14 Christensen 72
903 £ 13 Kosvintsev 86
891 + 9 Spivak 88
876 + 21 Last 88
887.6 + 3 Mampe 89
877 10 Paul 89
878 + 30 Kossakowski 89
893.6 * 5.3  Byrne 90

(References for these measurements can be found in the review of Particle

11)

Properties
12)

with the exception of the most recent measurement by Byrne
et al.
The results of the big bang nucleosynthesis calculations for the new

rates and new value of r_ are found in Figures 1-3 for AHe, D, 3He and 7Li

13, 14%

as a function of 5. The dependence of Y on 7%, and Nv can be

T
1/2
seen in Fig. 1. In Figures 2 and 3 the nucleosynthesis predictions for D,
3He and 7Li (by number) are shown as a function of n. The helium

abundance as a function of n, - and Nu is well fit by

Yp = 0.0228 + 0.010 4n 1o + 0.012 <Nu - 3)

T_- 889.6
s )

+ .185 [ TR

(2)
where 119 = n/lO-lo.

I turn now to the observations of AHe and 7Li. For a discussion on
the D and 3He isotopes see refs. 1,2,14. Recently, Pagel15 has put

together a large data sample of 33 extragalactic HII regions. In



92

T T T T T T T

£ R
o Primordial ‘He N
26 +— T, = 889.818.8 sec (2-0) —
25 [ -]
N C ]
24 = —
L B
» - ]
R -
.23 —
]
L2 [~/ P
L ]
B 1 1 1 1 t 1 il 1 T

! Mo 10

Figure 1
preparing this sample, Pagel has reanalyzed that data (starting from the
spectral line strengths) using a common set of atomic data to deduce
abundances. He has also included a correction based on collisional
6)

; ;1 . .
excitation which lowers the Z‘He abundance. Three of these objects have

been updated in ref. 17. The data set used in the figures below have
included the updated set of 33 objects with the addition of I Zw1818’19)
vee 5471°% and c6 1116 + 5121,
O/H and N/H for the SMCZO'ZZ)
There have been many attempts at finding a correlation between the

24)

helium abundance and heavy elements. The first such attempt was a

In addition changes have been made to

and to NGC 236322’23) for O/H only.

correlation of Y vs O/H. The simplest models of galactic chemical
evolution which assume that massive stars synthesize both Y and O leads to

the relation

Yp =Y - Zdy/dz (3)
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Figure 2
where Z is the metalicity which is well correlated to the oxygen
abundance. Nevertheless, it stands to reason, that a more accurate
determination of Yp can be made by looking for low Z galaxies. Early
investigations at trying to find a correlation lead to large variations in
the fitted slope and the result depended somewhat strongly on which data
points were included (most notably,the large Z values in Orion or errant
low Y measurements of I Zwl8). A more recent survey of 12 metal poor

5)

galaxies found2 effectively no correlation between Y and O/H. Kunth and
Sargent?>) found that Y = .243 £ .010 + (35 % 94)0/H but with a
correlation coefficient r = 0.055. Instead, they argued that a weighted
mean is more appropriate leading to the value Yp = 0.245 £ 0.003. The
Kunth and Sargent galaxies were included in Pagel’s data set.

13,14)

The data set for Y vs O/H is shown in Fig. 4. A two parameter

weighted fit to this data is,
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Y =0.226 £ .005 + (155 * 40)0/H. (4)
r - .55

The errors in (4) are derived from the fit using quoted errors. The
correlation coefficient for this fit is also low, r = .55.

I stress that great care must be taken in interpreting the
cetermined value of Yp from (4). To begin with, Pagel’s data sample has
included the collisional excitation correction but possibly in excess by a

factor of 217’26).

Furthermore, the uncertainties in the correction are
typically as large as the correction itself. It is also clear that
systematic errors have been neglected. Clearly there is reason to suspect
that (4) yields a value for Y which is too low and with underestimated
errors. In ref. 18, a careful study of IZwl8 was made with special

attention to the errors. This is a particularly appealing galaxy since
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its oxygen abundance is the lowest available. However, because of the
larger errors quoted, this galaxy counts very little in a fit. If we take
the quoted error on IZwlBlS) as a representative error, and take * 0.016

in Y for all points, we get the fit
Y = .229 & .007 + (122 * 57)OH (5)

The fits of the data from the table are linear fits which extend
over 2 orders of magnitude in the oxygen abundance. There is really no
good reason to expect a linear relation over such an extended range.
Provided that we had sufficient data with low O/H, we could trust the

linear approximation. With only 36 data points to begin with, it might be
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dangerous to chop off any high O/H galaxies. Nevertheless taking only the

lowest 20 galaxies with O/H =< 105 x 10-6 and with equal errors in Y gives

Y =0.232 £ 0.010 + (68 + 139)0/H (6)
r=.19
and taking only the first 10 points with 0/H < 90 x ].O-6 gives

Y = 0.228 + 0.016 + (147 £ 296)0/H (7)
r = .26

Notice the size of the "l-0" uncertainty in the fit and the very poor
correlation for low O/H galaxies. Though a poor correlation may indicate
too short of a baseline, there is no reason to believe a linear fit over
an extended baseline. What we need is more data!

It may not be surprising that we find such a poor correlation
between Y and O/H. Indeed these elements are not made by );m same stars.
Oxygen is made by the more massive stars M > 10 M@, while‘most of the
helium is made in intermediate mass stars. It has been argued that a
better tracer of helium production in stars may be either

15,17,26) 27)

nitrogen or carbon The difficulty with carbon is that there

are very few abundance measurements available. In Figure 5 the data for Y

vs N/H is shown. Carbon gives a fitla’lh)

Yp = 0.234 + 0.008 + (259 * 223)C/H (8)
r = .75

though with such little data, it is hard to draw strong conclusions from
carbon other than that it is not in conflict with the other fits. For
nitrogen, the data is fit to

Yp = 0.230 £ .004 = (2974 * 706)N/H (9
.63

r

The nitrogen fit is somewhat more stable than the oxygen fit. Taking

equal errors of 0.016 in helium for all points gives

Yp = 0.231 £ .005 + (2754 * 1135)N/H (10)

and for the first 20 objects with N/H < 36 x 10_7
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Yp = 0.226 £ .009 + (5567 * 3751)N/H (11)
r = .51
and for the first 10 objects with N/H < 25 x 10_7
Yp = 0.228 * .012 + (4010 * 7791)N/H (12)
r = .28
0.27 —— T T T y

o.2sr ) --J; . ) ( - {
ol l
o2sk [ l WP ]
PiAﬂ -
024 b A , ] ‘ ] 1 ]
iiljoe =
| | T |
ﬂ 4 —if—
023} ! 3 Harh J
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| |
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Figure 5
None of these fits show correlations which are satisfying, and it is
difficult to draw too strong of a conclusion from this data . However, it
is clear that the best value of primordial helium is below 0.25, and that
data indicates a best value = 0.23. The lack of stability of the previous

. . : .. 13,1
fits has led us to conclude that a conservative estimate for Yp is 3,14
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Yp =0.23 £0.01 (13)

7Li has been observed in halo dwarf stars, by several groups28)

giving population II abundances. In Figure 6, I show a compilation of
this data, as a function for temperature for 35 stars with metallicity
[Fe/H] < -1.3. Units in the figure are such that [Fe/H] represents the
logarithmic difference from solar values and [Li] = 12 + log(7Li/H). What
is markedly apparent in this figure is that there is a definite range T >
5500K and [Fe/H] =< -1.3 where the lithium abundance is very nearly

constant. For these 35 stars one finds
[Li] = 2.08 = 0.12 (14)

The error in (1l4) represents the scatter in the data. However, with the

3 T T T
o
oo n® B L@
nm & B n% @ g B2 aB
2| [of -
L o B
o o]
[Li) .
o
.
1| of N
.
.
0|-e -
4 . I " 1 1
4800 5200 5600 6000 6400
® upper limits
T °K

Figure 6
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assumption that the pop II abundance is the primordial lithium abundance

then the error in the mean is more significant, in which case
[Li] = 2.08 + 0.035 (15)

i.e., the mean value is quite well known. The existence of the plateau in

29)

these figures is very good evidence that depletion is not operative in
these halo stars and that these observations correspond to measurement of
primordial 7Li. I should mention that in contrast to the case for 4He,
the mean (15) is not sensitive to any particular object. In view of this
data, I would argue that there should in fact be no controversy with
regard to the 7Li abundance. One should use the pop II abundance rather
than pop I.

From Figure 3, taking a 2-o upper limit on 7Li/H <1l.4 x 10-lO from

Eq. (15), we find that n is tightly constrained
-10 -
1.9x10° 0 <y <34 %1010 (16)

Thus combining all of the limits on n from the light elements we
finat? 14

10 10

2.8 x10° < <3.4 x 107 Qan

As one can see, this is a very small range for n ensuring consistency. A

central value of n = 3.0 x 10.10 implies the following light element

abundances :
D/H - 6.2 x 10°° (18a)
JHesH - 1.5 x 107° (18b)
Y = 0.237 (18¢)
TLivi = 1.3 x 10710 (184)

There is still an important consequence of the above limits. The

limit on n can be converted to a limit on the baryon density and QB’

7 -2 3
QB =3.56 x 10 ho (T0/2.7) (19)
and using the limits on 5, Eq. (17), ho and To from (2.7 - 2.8) K we find

a range for QB
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0.01 =< QB < 0.085 . (20)

Recall that for a closed Universe @ > 1, thus from Eq. (20) we can

conclude that the Universe is not closed by baryons. Indeed, if QB =1
and hO > 0.4, T0 < 2.8 K we have n > 4 x 10-9 and the following light
element abundances: D/H < 10'7, 3He/H <5x 101_6, 7Li/H >5x 10—9 and

Y > 0.269 in clear contradiction with observations. This does not
exclude the possibility that other forms of matter (e.g., massive
neutrinos, etc.) exist in large quantities to provide for a large Q. In
fact, if @ = 1 as implied by inflation, the limit from nucleosynthesis

would indicate that some form of dark matter must exist.
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Abstract

Ireview the status of primordial nucleosynthesis in the context of the standard homogenous
big bang expansion, concentrating not only on the predictions, but the uncertainties.
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INTRODUCTION

There are two fundamental sets of observations which form the empirical basis of big bang
cosmology. The first is the observation of an isotropic thermal background of microwave
radiation, which established both that the universe is expanding, and that matter and radiation were
in thermal equilibrium at the surface of last scattering--when the radiation decoupled from matter
around 100,000 years into the big bang. The second observation is that the abundance of Helium
is everywhere around 25%. This fact suggests that our picture of the big bang expansion is
accurate back at least until the universe was about 1 minute old. Itis a direct prediction of standard
big bang cosmology that about 1/4 of the universe by mass should have been converted around that
time into Helium. Moreover, it appears impossible for so much Helium to have been created
completely during the past 15 billion years of stellar manufacturing.

The past 15 years has seen the theory of big bang nucleosynthesis (BBN) go even further. It
now appears that the inferred primordial abundance of all light elements up to and including Li can
be accounted for consistently by BBN for a narrow range of cosmological parameters which
happens to agree more or less wonderfully with the observational limits on these parameters. This
agreement between BBN theory and observation caused a flush of excitement and confidence
among cosmologists which has continued even up to the spectacular confirmation at the SLC and
LEP, described during this meeting, that the number of light neutrino species is limited to be in
more or less the same range that BBN predictions require it to be.

It is natural, of course, after the "rush” has worn off a little, to begin to examine the weak
points instead of concentrating just on the positives. Indeed, the last few years has seen several
altemnative theories of primordial nucleosynthesis vying for our affections. These include the
possibility that nucleosynthesis took place inhomogeneously, amidst a non-uniform distribution of
baryons left over after the QCD phase transition in the early universe!*d, and the possibility that a
late stage of nucleosynthesis took place several tens of thousands of seconds after standard BBN,
when hypothetical heavy unstable particles present in the universe may have decayed3). Iwillnot
describe in any detail these possibilities here. The first was briefly described by K. Olive and D.
Schramm in their lectures during this meeting, and in any case, both possibilities appear to be
severely constrained by observations. What I wantto concentrate on here instead is to what extent
we can assert that any of the predictions of BBN are what they are claimed to be. After all, if we
are going to assert based on BBN predictions that the number of neutrinos is 3, or that the baryon
density in the universe today is greater than the visible density of baryons, we had better be able to
ascribe some confidence limits for the predictions themselves. It is only if a theory is robust
enough to survive detailed investigations of its predictions that it is worth keeping around.

It is an opportune time toreconsider the predictions of BBN: (a) astronomical observations
and theory are improving so that more detailed predictions of the model might be probed; (b)
alternative models of primordial light element production described above have been explored
which make predictions which marginally differ from those in the standard BBN model, and (c)
experiments are providing ever better data to use in deriving BBN predictions. Itherefore wish to
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review here the standard BBN predictions, with an eye toward defining uncertainties and
confidence limits. The direction of this work® is governed by several factors:

(1) The original BBN computer code of Wagoncrs) has formed the basis for most work in the
field. Over the years a number of improvements, additions, and revisions have naturally taken
place. Most recently, Kawano®) undertook a major revision of the code which both updated and
added reactions, and at the same time completely revised the userinterface. This code is easy to
use, and it is straightforward to vary the input parameters.

(2) As alluded to above, many of the reactions important for BBN have been remeasured since
the original code was written, leading to revised estimates both of reaction rates and uncertainties.
Most recently, new measurments of the following reactions have taken place: 3Hc(a,y)7Bc,
t(oz,y)7Li, 7Li(p,a)4He, 7Bc(n,p)7Li. In addition, the mean value of the neutron half life has been
revised. This prompts one to examine the entire data set directly.

(3) Lithium has become an important discriminant in nucleosynthesis models. Alternative
scenarios mentioned earlier predict either much more, or much less 7Li, and most predict a
significant abundance of Li to be produced primordially. The BBN Li uncertainties, perhaps the
largest of any of the light elements, therefore are essential to accurately estimate. A number of the
new reaction rates quoted above can dramatically affect Li production.

With these factors in mind, one can performa Monte Carlo analysis, simultaneously
incorporating the experimental uncertainties associated with all of the most important imput
reactions in the BBN code, to establish with some confidence the predictions and uncertainties of
standard BBN. It is the results of this analysis®) which I will review here.

First a caveat however. Perhaps the most important uncertainties relevant to any discussion of
BBN are those based on observations which are used to infer the actual primordial abundance of
light elements which one may compare the theoretical predictions. It is difficult to parametrize this
observational uncertainty in any straightforward statistical manner, as should be clear from the talk
by Olive at this meeting. It is an important prerequisite, however, when comparing theory and
observation, to first get ones theoretical predictions straight, and I will review the standard BBN
predictions and uncertainties here. Of course, I cannot resist making some provocative statements
about the implications of these later, by comparing the predictions with various observational limits
which have been bandied about, but I will draw no categorical conclusions in that regard here.

BIG BANG NUCLEOSYNTHESIS: THE HIGHLIGHTS

The following is a brief review of those features of primordial light element formation which
will be relevant to further discussions here. The reader is referred to the literature?) for a more
complete discussion.

(1) As the early universe cools, the weak interactions which maintain a Boltzmann equilibrium
distribution between protons and neutrons fall out of equilibrium. At this point, the neutron-proton
ratio stops following its thermal equilibrium value n/p=exp (-[m,-mp)/kT ), and freezes out at a
value k¥ = exp -[my -mp [Tfreeze our]. After this time, this ratio decreases very slowly due to free
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neutron decay. The higher this ratio at the freeze-out time, i.e. the higher the freeze-out
temperature, the more neutrons will be left to combine with protons to form nuclei heavier than
hydrogen. The n/p freeze-out temperature depends upon two things---the expansion rate, and the
strength of the weak interactions. The former depends on the square root of the number of
relativistic degrees of freedom governing the expansion of the universe at the time of
nucleosynthesis. Let us call the particles in the radiation gas, aside from et and photons, Ny, to
symbolize that this gas contains the known light neutrinos. However, it could also contain
additional species, including other light, yet undiscovered particles. The greater the number of
thes, the faster the expansion rate, and the higher the temperature at which freeze-out occurs.

The strength of the weak interactions governing neutron-proton equilibrium is parametrized by
the neutron half life, Ty /5. If Ty is increased, the weak interaction rates are decreased, and n/p
freeze-out occurs at a higher value. The empirical success of BBN is based upon the
fact that, given the approximate strength of the weak interactions and the expected
number of particles in the radiation gas at at temperature of about 1 MeV, « can be
estimated to be about 1/7. Since virtually all free neutrons which survive will later be
captured to form 4He, the predicted fraction by weight of Helium compared to all baryons in the
universe is = 2x/[x+1] =1/4, in good qualitative agreement with all observations. Whenever the
freezeout temperature is increased, so that the neutron to proton ratio at freeze out is increased, the
prime beneficiary is “4He. Nevertheless, the abundance of other trace elements, deuterium and
lithium for example, will also be affected.

(2) The efficiency with which neutrons will be captured to form 4He depends also upon one
other parameter, the number density of protons and neutrons relative to photons in the universe at
the time of nucleosynthesis. This can be expressed in terms of the number density of baryons
today, which can in turn be expressed in terms of the density of photons today in the observed
cosmic microwave background. Thus, one defines the quantity M, the ratio of baryons to photons
in the universe at the time of nucleosynthesis. If one assumes no significant non-adiabatic
reheating processes since nucleosynthesis then one obtains the following relation between 1 and
Qp. the present baryon mass density as a fraction of the closure density, and the present
temperature of the microwave background T;:

Qp = 0036k, (T, /274 K)3 11 (1)
where N = 1010 1, and the Hubble constant is H,= 100k, kms'lMpc'l.

One might imagine that increasing the baryon density at the time of nucleosynthesis would
keep the weak interactions in equilibrium longer, and result in a lower freeze-out temperature, and
hence a smaller remnant “He abundance. However, another effect works more efficiently in the
opposite direction. Because the binding energy of deuterium and heavier nuclei is O(MeV) no
appreciable deuterium forms until the universe cools to a temperature of about 0.1 MeV. Only after
this "bottleneck” is passed can the formation of heavier elements proceed. As the baryonic
abundance is increased, the formation of deuterium begins slightly earlier, when the density of
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matter and radiation is higher, and the efficiency of nuclear buming to helium is greater. This
results in more helium, and less remnant deuterium (and 3He, which is also produced during the
process of burning to 4Hc). Thus, the helium fraction is a monotonically increasing function of 1,
while the D and 3He fractions are monotonically decreasing functions of 1.

(3) The mass gaps at atomic mass 5 and 8 (no stable nuclei) hinder the production of nuclei
more massive than helium by reactions of helium with itself, or with hydrogen. 7Li is the heaviest
of the stable light elements formed with an abundance of greater than one part in 1010 compared to
hydrogen in the big bang. Because the 7Li remnant abundance is so small, and because it is
produced after helium, it is more sensitive than any of the other light elements to the detailed
nuclear reaction dynamics in BBN, and hence is more sensitive to any present uncertainties in our
knowledge of the rates of these reactions. There is one feature of its predicted abundance which is
notable however. Alone among the light elements, the predicted 7Li abundance has a minimum as
a function of 1, and moreover this minimumoccurs in a physically interesting range. The presence
of this minimum is easily understood on physical grounds. Because of the increasing efficiency of
Li destruction, via the reaction 7Li(p, ot)*He, with increasing 7, the remnant abundance of directly
produced 7Li falls with n. However, TLiis also produced after BBN via the decay of the unstable
isotope 7Be. This isotope is produced with increasing efficiency as M increases, until its remnant
abundance (before it decays) exceeds that of the directly produced 7Li abundance. Thus, for low
values of 1 the 7Li abundance falls with 1), but at a certain point the TLi which is produced
indirectly by the decay of "Be begins to dominate, and the remnant 7Li abundance then begins to
grow withm. This implies that increases in reactions which create (destroy) Li increase (decrease)
its abundance for low values of M, while increases in those which create (destroy) Be increase

(decrease) the Li abundance at highm.

REACTION RATES AND UNCERTAINTIES:

Since the initial calculations of BBN, physicists have worked to determine the values of
reaction rates which are of importance in both primordial and stellar thermonuclear processes. In
the past twenty years, many of the reactionrates have been remeasured, and at the same time,
theoretical estimates have improved. It has been acommon practice when making BBN estimates
to re-evaluate primordial abundances using only the most recent experimental and theoretical
values. This can lead to misleading results. First, it is not clear that more recent experiments
always lead to improved values. Second, it is not clear from this kind of analysis how systematic
and statistical errors might affect the results. Even an approach based on incorporating
uncertainties in individual reactions does not allow one to place confidence limits on BBN
estimates. Because different reactions play a different role for different values of 1, errors need
not necessarily combine in any straightforward fashion. Finally, unless error estimates are tied to a
direct analysis of the data one cannot accurately gauge the margin for improvement.

In all, we incorporated experimental uncertainties for ten of the major BBN reactions,

including neutron decay, and directly analyzed the experimental data for those reactions which have
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recently been remeasured. We concentrated initially on the reactions related to lithium production
for several reasons. Besides the renewed importance of lithium as a discriminant for various BBN
scenarios, and the recent work on deducing the actual primordial abundances of 7Li and OLi 8), the
largest uncertainties are associated with these reactions, and as a result, recent re-measurements of
several key reactions have been undertaken. In certain cases it was clear that systematic errors
exceed statistical ones, and we dealt with these on a case by case basis. In addition, we also
utilized quoted uncertainties in reactions which have not been re-measured recently, or for which
we could not directly access the data. In all the reactions considered except three, the central values
used for reaction rates are those quoted in the previous literature (up to small (<10%) revisions in
certain cases which we have checked would leave our quantitative results essentially unchanged).

In general, experiments at best involve a measurement of 6(E), the total cross section at center
of mass energy E. From this, the low energy astrophysical S factor is calculated :

S(E) =o(E) Eexp(2nZ;Zy e Z/v) )
where Z7Z) is the product of the atomic numbers of the interaction particles, and v is their
relative velocity. This value is essentially the cross section with the Coulomb barrier removed, and
is much better behaved at lower energies than o(E). S(E) is frequently expressed as S(0)
multiplying a Taylor expansion in E:

S(E) =S(0) { 1+ (S'(0)/S(0)) E + 1/2(S"(0)/S(0))E2 +...) (3)

S(0) is also occassionally referred to as the astrophysical S factor. The more relevant quantity
for BBN is the reaction rate as a function of temperature T. This can be found as a power series in
T from the expansion for S(E) by convolving the relevant quantities with the thermal distribution
functions for the particles involved. Such rates are frequently expressed as S(0) multiplying a
function of T. The uncertainty in S(0) is used to parametrize the uncertainty in the entire rate.

In an ideal case one would consider reaction rates with uncertainties that vary as a function of
energy, or temperature. As a first step however, one can assume the reaction rate as a function of
energy as known (this is what is used to derive S(0) in the first place), and then parametrize the
effect of the measured uncertainties at different values of energy in a single fractional uncertainty in
S(0). This of course can be a dangerous procedure, since the uncertainties which contribute most
to S(0) may be those which are irrelevant to the reaction rate at the energies of interest in BBN. In
particular, low-energy resonances which might alter S(0) need not affect the behavior of S(E) in
the energyrange of interest for BBN. Indeed, this kind of mis-identification of uncertainties has
appeared in some of the previous literature. When the uncertainties vary strongly with energy, we
have used the largest uncertainty in the relevant energy range for BBN to characterize the
uncertainty of the rate, parametrized by a quoted uncertainty in S(0). Infact there are several cases
where if this is not done, the uncertainty in S(0) would lead to a mis-estimate of the actual
uncertainty relevant for BBN considerations. In any case, quoting the uncertainty this way, in
terms of S(0), gives a conservative estimate that is both physically reasonable, and easy to

implement in the computer code.
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Individual Reaction Analysis

(a) 3He(a,y)7Bc: This reaction has been one of the most carefully studied reactions because
of its importance in the solar production of 8B neutrinos. There is a good theoretical understanding
of the reaction using resonating group calculations?), as well as a wide variety of measurements for
it10), The results of these are shown in figure 1 below, displaying S(0) for the 8 measurements.

Fig. 1
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There is good agreement among seven of them, while the Krawinkel et al. 1982 data is
anomalously low. We used the seven concordant results to find an average value, and increased the
uncertainty in this average value slightly, compared to the statistically derived 1 value, to obtain a
1o overlap between all experimentally measured points and the average. We note that a factor of
two uncertainty has been quoted for this reaction in the past, due to the inclusion of the Krawinkel
data in the calculation of the rate. However, as the averaged data clearly show the 16 uncertainty is
much more like 6%. Note also that (a) because there is good agreement between the shape of the
theoretical and experimental curves, and (b) because the expermental errors do not vary strongly
with energy, the parametrization of the energy dependent error in terms of a single quoted
normalization error on S(0)---obtained by extrapolating a fit of the theoretical curve to the data---
seems a good approximation in this case. Fig. 2 displays the effect on BBN TLi production
(expressed as a fraction of H by number) of varying just this reaction within its 16 and 26 limits.
As can be seen, increasing the reactionrate increases the Li abundance at high 1, where essentially
all of the remnant Li abundance is due to decay of Be.
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Fig. 2: He(oy)"Be
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(b) (e, )7Li: This is the mirror reaction to the firstreaction. As aresult it is also reasonably
well understood thcorcticallyu), but is less well measured because of experimental difficulties in
dealing with tritium. Because of the theoretical advances, and because of new measurements, this
reactionrate has altered more since BBN estimates began than perhaps any other. Original
estimates used a straight line extrapolation from the measured lowest S(E) value to derive an S(0)
value of about 0.06 kev-barn!2), However, using the mirror reaction data and theory, a theoretical
curve going through the same data would raise this S(0) value to about 0.1 kev-barn. Beyond
this, the experimental uncertainties are such that a recent re-measurement by one group appeared to
alter S(0) by almost 50% even above this higher value. There now exist three different
measurements of this reaction, not all of which are in agreement. Following ref. 10 we took the
theoretical curve for S(E) derived from the mirror reaction and normalized it to each of the three
data sets, with S(0) as the free parameter, using a least squares fitting technique. We then found
the weighted average of S(0), and took as our uncertainty a value that incorporated all the data,
which turns out to lead to a 16 uncertainty of about 17%. This is shown in Fig. 3.

Fig. 3
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This uncertainty is larger than the statistical uncertainty one would derive, but in the presence
of measurements which are in clear disagreement, until one can argue convincingly that one of the
data sets should be discarded, this seems all that one can do. (It is likely that further re-
measurements will confirm the lower values, leading one to discard the anomalously high data set
(W. Fowler, private communication).) Also note again that because the shape of the theoretical
curve is fixed, and the errors which govern the curve fitting are not grossly energy dependent, the
uncertainty in S(0) accurately reflects the uncertainty in the rate in the energy range of interest for
BBN. Fig. 4 displays the effect on BBN TLi production of varying this reaction within its 16 and

20 limits. Here, reducing the rate has the effect of reducing the remnant Li abundance for low 7).
Fig. 4: H(apLi

(c) 7Li(p,ot)“He: This is the major lithium destruction reaction in stellar interiors and in BBN.
Rolfs and Kavanaugh (RK)!? have recently remeasured the cross-section, and have found a
substantially lower value of S(0) than previously estimated. However, this is in large part due to
new, more accurate measurements for energies less than about 100 keV, for which S(E) appears to
drop faster than previously estimated. For energies in excess of this value, S(E) is unaltered. We
compared the RK value of S(E) with the previously determined experimental values, and found the
new measurement of S(E) to be in good agreement with previous experiments. Thus, the reduced
value of S(0) does not reflect a change in the behavior of S(E) in the range of interest for BBN.
Moreover, the 16% error quoted on S(0) by RK is not appropriate for use in BBN estimates. This
large error is due to extrapolating curves through the poorly measured points at low energy. At
higher energies, relevant for BBN, the data is much better determined, with an uncertainty of 8%,
coming from an overall uncertainty in the absolute cross-section normalization. Itis this latter
uncertainty that we used in our estimates. Fig. 5 displays the effect on TLiof varying this reaction
by 1 and 26. As expected, increasing this Li destruction reaction rate reduces the remnant Li
abundance for low values of M, where the remnant abundance is primarily due to directly produced
Li, and not due to the decay of primordially produced Be.
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Fig. 5: TLa(p.a)%He
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) 7Bc(n,p)”Li: This reaction is important for determining the amount of Be which is
converted into Li before the end of BBN. Since Be is less susceptible to destruction during BBN,
an increase in this reactionrate results in a smaller remnantabundance of Li, since less remnant Be
remains to decay into Li after BBN has completed. For this reaction there appears to havebeen a
great confusion about uncertainties, with uncertainties quoted between 20% and a factor of 2. Our
initial work on Li abundances!®) utilized the reaction rate values and uncertainties quoted by
Bahcall and Fowler (BF)!9). However, recently this reaction has been remeasured, leading to an
alteration in the value of S(0) compared to that utilized in the earlier BF analysis. We re-analyzed
the data and included the updated values, leading to some slight alterations compared to the
numbers quoted in ref 14. The major change in the measurements of the 7Be(n,p)7Li reaction have
to do with the cross sections for thermal neutrons. Traditionally the reverse (p,n) reaction was
measured and reciprocity relations were used to derive the (n,p) reaction rate. However, recently a
Los-Alamos groupm) has directly measured the neutroninduced reaction rate, and found the
thermal cross section to be almost 25% smaller than the earlier quoted value, with an accuracy of
10 times that of the original measurements. The thermal neutron cross section is not directly
relevant for BBN, however. One has to determine how these new measurements affect S(E) in the
region of several tens to several hundred keV. In this region the new data is in fact in good
agreement with the older data, with uncertainties which are on same order of magnitude as the
uncertainties in the older measurements, i.e. there has been no improvement in the accuracy with
which this cross section is known in the relevant energy range. One might expect this to imply that
no change is required in the overall value of S(E), or in its uncertainty in a BBN analysis. This is
not the case however. BF calculated a theoretical curve for this reaction which, while it
incorporated certain of the higher energy data, was normalized at low energies by the old S(0)
value. Thus, when one compares their curve with the data one finds that it overestimates S(E) at
all energies. We have fit a new curve for <Gv>, the rate as a function of temperature, which is
inferred from an S(E) curve which goes through the center of all of the data at high energy (and the
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new data at low energy). This leads to a lower value of <Gv> (by about 20%) than previously
utilized. Our expression for <ov>, and hence the shape of the curve we use, is determined by
fitting the coefficients in the same polynomial expansion with temperature previously utilized in the

Kawano code for this reaction, to the <gv> curve we determined by fitting the data.
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The expression we derive is:

N p<ov> = 5.1 (1-1.515 Tg1/2 + 1.173 Tg - 0.336 Tg3/2 ) @
where N p is Avogadro's number and T9=T/109 K. The uncertainty we estimate in <ov> is given
by the variance of the data, in the energy range of interest for BBN, determined by eye from fitting
curves to the new data. It is approximately 10% and is uniform across this energy range. Thus, it
is appropriate to parametrize this uncertainty by an overall multiplicative constant in the expression
given above. Fig. 7 displays the effect of varying this reaction within its 1 and 26 ranges on Li
productionin BBN. As expected, the major effect is for high , where essentially all the remnant
Li comes from Be decay. Decreasing this reaction increases the remnant Li abundance at high n.

o Fig. 7: TBe(n.p)Li
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(e) Neutron Lifetime, t: This is the parameter which affects the overall remnant 4He



114

abundancetoday arising from BBN, as we described earlier. There has been an important change
in this parameter since most earlier analysis of BBN uncertainties and predictions®14), Namely, the
measured half life, T1/2, has decreased dramatically compared to the value quoted 5 years ago.
From a particle physics perspective, this decrease in the neutron half life, which implies a higher
ga/gy ratio for weak interaction parameters, now brings the measured value for this ratio from
neutron decay into agreement with the value obtained from other weak interaction measurements
such as hyperon beta decay. Previously this important ratio, determined from other experiments to
be about 1.259, exceeded the value obtained from neutron half life measurements. In any case,
aside from the importance of this measurement for particle physics, decreasing the neutron lifetime,
and increasing g /gy also implies that weak interactions stay in equilibrium longer during BBN,
which has the effect of reducing the remnant 4He abundance. Sincethis s one of the most
significant factors leading to quoted bounds on the number of neutrinos (or relativistic degrees of
freedom), it is important to examine the new neutron half life data in any BBN analysis. Fig. 8
presents the results from all experiments performed at the time this analysis was begun. The value
we obtained was t= 900 * 8.6 sec (t1/2 =624 * 6 sec)?.

Fig.8
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At the same time, recalculations of t utilizing both the neutron decay data and other particle
physics data were performed to update the value of < for the tables in the Review of Particle
Properties 198817). The mean value and uncertainty quoted there is T =896 +10 sec(t1/2=621 £7
sec). This value, which matched very well with our previous analysis, is what we chose to use.
Most recently, however, an experimental result appeared yielding a new, lower and apparently
more accurate measurement of T=887.6 3 sec (11, = 615 2 sec)!8). If it were amalgamated in
a straightforward statistical fashion, it would dominate in the determination of the neutron mean
lifetime and uncertainty. However, since this measurement does not overlap with some existing
data, it is not clear whether or not the error should be increased over its strict statistical values
when quoting a conservative value for the uncertainty. In any case, even incorporating this new
result directly would not greatly change our results. As will be described in a later section, what is
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most important for placing an upper limit to the number of relativistic degrees of freedom existing
during nucleosynthesis is the lowest possible value of T. The 26 lower value for T1/2 we utilize is
607 seconds, while that appropriate to this recent measurement is 611 seconds. The difference is
less than 30% of the net 26 variation we consider.

Fig. 9 displays the effect of varying the neutron lifetime within a 16 and 26 uncertainty on the
remant primordial mass fraction of 4He. For comparison purposes, we show in Fig. 10 the effect
of the same variation, using only the Mampe et al value for the mean lifetime and uncertainty.

Fig.9: 1 p Fig. 10:1),pfom Mampeetal 1949

0.26

0.24F

0201

QIRF

. L Aoy 05 wos
n 05 1L.o [B] x10 n

(f) Other Reactions: For the remaining reactions we utilized the mean values and uncertainties
quoted in earlier work. For the reaction d(p; )3He we used the analysis of Bahcall et al19) who
quote an uncertainty in S(0) of 16%. For the remaining 4 reactions, p(n,y)d, d(d,n)3He, d(d,p)t,
and t(d,n)4He, the 10% uncertainties quoted in ref 20 were used. The remnant Li abundance
behaves as one might naively expect for all reactions (i.e. increasing a reaction rate for a reaction
with an end product which contributes directly to Li production increases the remnant abundance
for low 1, while increasing a reaction rate whose product participates in a Be producing reaction
increases Li abundance at high 1) with the exception of the p(n,y)d reaction. Here a much more
complicated behavior is observed, reminding us that several competing factors are relevant when
considering the effects of initial BBN reactions. For example, increasing the p(n,y)d rate decreases
the remnant deuterium abundance as a function of . This is because while this reaction produces
deuterium, increasing the rate causes deuterium to be producedearlier, when it is then burned more
efficiently. What remains surprising, however is the sensitivity of Li to this initial BBN reaction.

A 10% variation in this reaction changes the remnant Li abundance by as much as 30%.

MONTE CARLO ALGORITHM:

A Monte Carlo analysis was performed to take into account simultaneously all uncertainties in
reaction rates and in the neutron half-life, each of which enters in a complicated way in determining
the overall abundance of light elements produced in BBN. This required generating individual
reaction rates with a gaussian distribution about the mean value, and with width determined from
the uncertainty analysis described above. The 1o uncertainties in the individual reaction rates were

taken to represent overall uncertainties in each rate. That is, a 10% | o uncertainty was taken to
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mean there is a 66% probability for the entirerate to be between 10% higher than and 10% lower
than the mean, at each temperature. This allowed us to incorporate uncertainties directly in the
code in the form of randomly generatedprefactors. For each rate, the multiplicative prefactors were
generated from a gaussian diswibution, centered around 1, with width given by the 1o uncertainty
in the rate. These prefactors then multiplied the entire rate, whose overall form was identical with
that in ref. 6, except in the cases explicitly described earlier. The gaussian distributions were
truncated so that all prefactors were positive definite, although this wasn't needed in a statistically
significant way - since the largest uncertainty used was 20%, generating a number less than 0 with
this procedure is a So event.

The procedure in terms of programming was straightforward. The initial value of 1 and the
number of neutrinos were fixed. The program then generated a random prefactor for eachrate, and
for each such set of rates the remnant light element abundance was determined. We repeated this
procedure 1000 times, for each of 20 values of M, and for 3, 4 and 5 neutrino families. Our choice
of values of 1] was made to best follow the structure of the Li vs M curve, which is the only one
which is not monotonic. The 1o curves were defined to bracket the central 66% of the final
predicted abundances, for each value ofn and Ny, and 26 curves bracketed the central 95%. This

Monte Carlo procedure required approximately 1000 hours of CPU time on a VAX 11-780.

RESULTS AND DISCUSSION:

Theresults of the analysis described here can be presented succinctly. Figs. 11-12 display
the combined 1 and 26 limit curves, described above, for various key "observable" light element
abundances: 4He/H by weight, and 7Li/H, D/H, (D+3He)/H, and 'Li/D by number. The D and
3He limits are presented in this formn because the combination is claimed to be more easily
constrained by observation than either isotopic abundance separately20).
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Even a brief inspection of Figs. 11-12 provokes two remarks. First, the "predictions" of
standard BBN must be represented by "bands" rather than lines on an abundance
versus 1] curve. This is because the presently existing experimental uncertainties are sufficiently
large so that they cannot be ignored when attempting to derive bounds from BBN on various
fundamental cosmological and particle physics parameters. Second, in spite of these experimental
uncertainties, there remains a restricted range (albeit now somewhat less restricted) over which a
general agreement of predictions and observations is possible. As aresult, bounds can clearly be
derived on quantities such as 11, and the number of relativistic degrees of freedom present at
temperatures of about 1 MeV. The advantage of using limits derived from the experimental
uncertainties in a statistically consistent manner, however, is that one then can associate for the first
time realistic confidence limits with one's predicsons.

Of course, as I have stressed, when comparing BBN predictions and observations, probably
the greatest and certainly the least quantifiable uncertainsies are associated with the observations.
Here the possible sources of error include not only those directly associated with the observations
themselves, but more importantly, those associated with the use of present observed isotopic
abundances to infer primordial values. Even in the case of the best measured element, 4He, there
is not yet a statistically clear relationship between isotopic abundance and metallicity which allows
a unique primordial value for He to be extracted with high confidence (see K. Olive's talk). I do
not have the space here to attempt to review the observasional situation in detail, and therefore
cannot quote categorical limits here. Nevertheless, it seems useful to point out what the
implications of the BBN predictions are for cosmology and particle physics, as a function of
various ranges one might hope to place on light element abundances from observation, and to
examine possibilities for the future.

Let us begin with a lower limit which might be placed on 1, the baryon to photon ratio, and
hence on the present density of baryonic matter in the universe. Extrapolating back to determine
the remnant abundance of D from present observations is subject to large uncertainties, because of
the ease with which deuterium is destroyed in stars. However because D is burned to 3He in stars,
with the latter being more difficult to destroy, the remnant abundance of (D+3Hc)/H is claimed to
give a more reliable observational upper limit which one can compare to predictions20). Using a
"safe" observational upper limit of 104 for this ratio20), shown in Fig. 13a, this crosses our 26
curve at 119=2.6. This lower bound on 7 is significantly higher than that which may be obtained
from the other light element abundances. If one chooses not to use it, then requiring that the
primordial abundance of 4He >22%, which seems a conservative assumption (see below), implies
N10=20.8 (for N,,<3), while the limit obtainable using i (see below) is closer to N 21.2. (It
should be noted that even this lower bound, when combined with lower limits on the age of the
universe, is marginally suggestive of the possible existence of at least some baryonic dark matter.)
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Fig. 13a
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The lower bound on n obtained from (D+3He)/H, has been combined with limits on 4He both
to check for consistency of standard BBN, and to derive well known limits on the number of light
relativistic degrees of freedom during BBN, including light neutrinos. FromFigs. 11-12 it can be
seen that an upper limit on primordial “4He can be used to set upper limits on 1, and more
importantly on the number of light particles in abundance at the time of nucleosynthesis. As a
result, a great deal of effort has gone into trying to determine whether more than three light
neutrino species might be consistent with BBN, or whether a fourth light family might be ruled out
by cosmology before it could be directly probed at accelerators.

This issue may now seem moot. As described at this meeting, Mark IT at SLC and four
experiments at LEP have now clearly established that four light neutrinos are ruled out by direct
measurements performed at the Z0 peak?D. However it should be stated that the BBN bound and
the Z0 limit are in some sense complementary. In particular while the Z decay measurement is
sensitive to heavy neutrinos which might not play a roleduring BBN?22), it should be pointed out
that BBN is sensitive to lightdegrees of freedom which can decouple from the Z. Hence, it is
altogether non-trivial to continue to examine the question of whether more than effectively three
neutrino species might be compatible with BBN predictions.

As described earlier, the measured neutron half life has decreased considerably in the past
several years. This reduces the predicted remnant “4He abundance from BBN. In addition, the
inclusion of the uncertainties in the predicted (D+3He)/H abundance lowers the lower bound which
might be quoted on M. This also has the effect of relaxing the BBN bounds on the number of
"neutrinos”. What is the result? Because of the importance of this limit, and its dependence on the
“4He abundance estimates which we cannot adequately critique, we prefer to present several
scenarios, depending upon one's choice of upper limit for 4He. In Fig. 19b we show the 4He 20
limit curves, and five lines, corresponding to 23.5%, 24%, 24.5%, 25%, and 25.5% respectively.
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Fig. 13b
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If one were to choose the latter, quoted in ref. 20 as a very conservative "3¢" limit, then,
using the reduced lower limit on 1 quoted above, five "neutrino” degrees of freedom would just be
marginally ruled out at the 26 level. However, as recently stressed, (i.e. see K. Olive, this
meeting) the measurements of 4He have improved in the intervening years, and it is likely that a
lower value should be used. If onereduces the upper limit on 4He to 25% and uses the bound on
1 quoted above, then five "neutrinos” is clearly ruled out, but four "neutrinos" is easily consistent.
If one reduces the value to 24.5%, which was suggested by Olive and Schramm here as a
reasonable present upper limit, then four "neutrinos" is again just marginally acceptable, but only at
both the (D+3He)/H and 4He 26 extreme limits. Finally, if one puts an upper limit of 24%, then
not only is a fourth neutrino-like degree of freedom ruled out, but there is only a _narrow range of
7) where even three neutrinos is acceptable. In particular, if one were to use the lower bound on
102 2.6 from (D+3He) quoted earlier, and the new neutron half-life experimental result then any
value of 4He <23.5% would be inconsistent with BBN with 3 neutrino species. We shall have
more to say about this later.

Finally, regarding cosmological limits on the possible consistency of BBN predictions and
observations, what about an upper bound on M? Up till now, this has been provided by estimates
of either /Li/H or LD compared to observational limits. While both the BBN uncertainties and
the observational uncertainties are greatest for Li among all the light elements, there has been a
great deal of progress in both areas inrecent years. Nevertheless, upper limits on TLi are
controversial. Recently it was argued 19) that the halo star abundance could be well fit bya
restricted range of primordial abundance, 1.09 x 10-10<7Li/H< 2.3 x 10'10, thus allowing one to
place a new upper limit on 1] by combining this limit with our uncertainty analysis. In the
meantime there have been several new developments. First, the BBN estimates have been updated
by using the new 7Be(n,p)’Li data®). This has the effect of reducing the upper bound on 1 as we

shall describe below. Deliyannis and collaborators have also discovered that an inclusion of
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rotational effects which were not previously included in their codes can raise the upper bound on
primordial Li considcrab]y23). This effect could in principle alter the upper limit by an order of
magnitude. However, since the effect of rotation is not yet clearly known, I present, merely for
comparison purposes, bounds on 1 derivable by comparing the new BBN estimates with the Li
observational limits quoted in ref 14. Using the 7Li/H limits, one finds that the 20 curve would
yield an upper bound of 11 ()=5.5, down by about 15% from the previous estimate!4). If one
instead utilized an upper limit on primordial TLi/D, which is presumably more conservative
because significant Li destruction in stars would be accompanied by even more D destruction. onc
would find an upper limit of M;(=7.3, areduction of about 10% from that previously quoted.
This would correspond to an upper limit on the fraction of the closure density in baryons of
Qph,? <.028.

However, a more stringent upper bound on 1 may be near, coming from the observational
limits on 4He. As we pointed out above, as the upper bound on 4He is lowered, it becomes
difficult to reconcile even three neutrinos with the standard BBN picture. For an upper limit of
24% by weight, one finds that the 26 prediction crosses this value forn=4.8! (This upper limit
isreduced to 4.5 if one were to utilize the new neutron lifetime measurement.) This bound would
definitively establish that Qg < 0.08 (for h21/2), confirming the need for non baryonic dark matter
to account for the dark halos in clusters. Because the neutron half-life is now measured to much
less than 1%, the impact of such a comparison of theory with observation will not change
significantly. It merely remains to improve observational limits on 4He, in order to fix almost
completely the baryon density today which is compatible with BBN. Helium once again can
become the great determinator in BBN.

There is also another amusing alternative. It is quite possible that TLi might eventually restrict
Ny to be greater than 3-4. If this is the case, and if the observational limit on 4He continues to
decrease, this would pose the first hint of a possible inconsistency in standard BBN---namely even
three neutrinos might be too many! While this possibility is interesting, however, no such
inconsistency is yet apparent. Raising the upper bound on 4He to 24.5% raises the upper bound
on M1 to about 8.5. Thus, one would have to be quite sure of one's upper limits on He before one
would be able to claim that one of the known neutrinos is too heavy to be relativistic during BBN.

Finally, where can standard BBN go from here? Which experimental and observational
improvements would be most significant? Clearly, as we have stressed above, if the observational
uncertainties in 4He can be reduced to the point where an upper or lower limit in the range of 24%
could be definitively established, this would provide perhaps the strongest restriction on
cosmology from BBN. Since the neutron half life uncertainty has been reduced, fixing the
primordial abundance of He would essentially fix 1. It is also encouraging that were it
not for the new lower limits on the neutron half life, BBN predictions would
now be inconsistent for a 4He abundance less than about 24%, for any value of

Ny9 > 2-3. Whenever new experimental results improve agreement with theory,
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this bodes well for theory.

The chief remaining area where tangible improvements might quickly come about relates to the
primordial abundance of 7Li. Here, the limits can easily be improved if several key reactions are
re-measured. Once again, by far the largest uncertainty in the use of TLiin comparing BBN
predictions with observations lies in the poorly understood theoretical situation of Li evolution in
stars. While recent work has demonstrated that no non-standard evolution is necessary to fit
observations of type II stars, if the recent results indicating that rotation can lead in some sense to a
uniform depletion of Li can be established quantitatively, then the lower limit on the 7LiBBN
abundance inferred from observation might be raised. In this case, it is possible that the lowest
part of the predicted Li valley might fall outside of the allowed range based on observation. This
would imply two disjoint regions of allowed n. Since the lowerregion is probably below that
which may be ruled out by the 3He+D limits, this could cause the new lower limit on n; from TLi
to raise up to almost 4.

Unfortunately, it is unlikely that any single experimental remeasurement will dramatically alter
the present predictive power of the standard BBN scenario. It does seems likely that modest
experimental improvments combined with improvements in observations, particularly of 4He and
TLi may, under optimistic circumstances, allow the range of N 1) to be restricted to lie between
about 4-5. This would clearly demonstrate the existence of baryonic dark matter,
but also the need for significant non-baryonic dark matter in the universe.

BBN, in its simplest, homogeneous form, has provided a spectacularly successful model of
the evolution of matter in the early universe. General agreement with the observed abundance of
light elements has been obtained, and a prediction that the number of light neutrino types was less
than 4-5 has been vindicated by the recent direct limits obtained at SLC and LEP. To go further in
the attempt to place detailed limits on various cosmological and particle physics parameters it is
necessary finally to take proper account of the uncertainties, not just in observations, but also in the
experimental parameters which serve as input into BBN calculations. Itis only in this way that
BBN as a theory with predictive power can proceed from precocious youth to full maturity. I hope
that the work described here is a step in this direction.
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Abstract

I present the static spherically symmetric gravitational equilibria of scalar fields
coupled to a U(1) gauge field and with a possible 3(¢~$)? self-interaction. These
configurationsare obtained by solving numerically the coupled system of Einstein-
Maxwell-Klein-Gordon equations for non-singular and asymptotically flat solu-
tions. Static solutions only exist for values of the gauge coupling constant such
that e€?/4r < Gym?, where m is the mass of the scalar particle. The maximum
mass of the Bose star increases with increasing value of the gauge coupling con-
stant. I discuss also the dynamical stability of the equilibrium configurations,
for which I derive a pulsation equation, which governs the time evolution of the
infinitesimal radial oscillations, as well as a variational principle for its eigen-
values. The equilibrium configurations with a central density bigger than pcri,
corresponding to the critical mass, are dynamically unstable.
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1 Introduction

The more recent developments in particle physics and cosmology suggest that scalar
fields may have played an important role in the evolution of the early universe, for in-
stance in primordial phase transitions and that they may make up part of the missing
dark matter. Models for galaxy formation using cold dark matter and the inflationary
scenario suggest that the ratio of baryonic (luminous) matter to dark matter can be of the
order of 10 %. These facts naturally raise the question whether cold gravitational equi-
librium configurations of massive scalar fields - Bose stars - may exist and whether such
configurations are dynamically stable. Spherically symmetric equilibrium configurations
of scalar fields have been found by solving the coupled Einstein-Klein-Gordon equations
without [1-4] or with a quartic self-interaction [5]. It is also possible to consider other types
of objects made up of scalar fields by the inclusion of gravity in non-topological solitons [6]
and in Q-balls (7). In all these models, if one plots the mass for equilibrium configurations
of Bose stars against their central density, one finds a behaviour very similar to that of
neutron stars. The mass quickly rises to a maximum for p = p..;, drops a little, oscillates
and approaches an asymptotic value at large central densities. A similar behaviouris found

for the particle number.

Here I discuss the static spherically symmetric solutions for a system of complex scalar
fields coupled to a U(1) gauge field {8]. I also allow for the possibility of a quartic self-
interaction. The main effect of having scalar fields coupled to a U(1) gauge field is to
increase the maximum mass with increasing gauge coupling constant e. At the same
time the binding energy per particle decreases. Static solutions only exist for e?/4r <
Gym? = €,,,/47. 1 consider also the problem of the dynamical stability of the equilibrium
configurations in the framework of general relativity [9]. I analyse the time evolution of
infinitesimal radial oscillations, which conserve the total number of particles, following
the method developed by Chandrasekhar [10]. I find an eigenvalue equation, called also
pulsation equation, which determines the normal modes of the radial oscillations and a
variational principle for determining the eigenvalues [9,11]. As in the cases without charge
[4], the particle number and mass have their extrema , in particular their maximum, at the
same value of the central density. From this fact it follows that the pulsation equation has
a zero mode, where M and N have their extrema [12,13]. Therefore one expects the central
density penit, corresponding to the maximum mass, to be the boundary between stable
(for p smaller than p..i) and unstable equilibrium configurations. However in order to
establish this fact completely one has to analyse the eigenvalues of the pulsation equation
to see if they are real and positive for central densities smaller than p.:;. M and N
as a function of the central density have other stationary points for p bigger than pcpi.

We expect the behaviour of the stability not to change there, a fact which is already
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suggested by the shape of the particle number versus radius diagram (8], which is bent
counterclockwise at the critical points A rigorous proof, however, can be given using the
variational principle; in fact one can easily find an upper bound to the lowest eigenvalue
at the stationary points of M and N for p bigger than p.,. It turns out that the upper
bounds are negative, therefore the lowest eigenvalue is negative which establishes that the

equilibrium configurations remain unstable for all p bigger than pe..

2 Equilibrium configurations

The system we consider is a complex scalar field with a U(1) charge coupled to gravity,

whose action is given by

A 1
§ = @V gl o (Du) (Dd) =~ mlol — Jidl* = (FWF™), ()

with F,, = 0,A, — 0,A,, and D¢ = 0,¢ +ieA,,¢. The action is invariant under a local
U(1) gauge transformation, thus the total particle number is conserved. We take all the

167Gy

fields as functions of r and t alone since we consider only spherically symmetric equilibrium

configurations. We express the metric in Schwarzschild coordinates
ds? = e"di? — *dr? — r2(dd® + sin?ddp?) (2)

where v and X are functions of r and t only (¢°° = —e™ and ¢g"" = e~*). We choose the
gauge field A,, such that we have only electric charges and no magnetic ones, therefore we
set A, = (A, = A4, A, = C = 0,A3 = 0,4, = 0). We write the complex scalar field as
¢ = (1 +ig2)e'*, where ¢; and ¢, are two real fields. For the equilibrium configuration
we set ¢1(r,t) = @o(r), d2(r,t) = 0 and all the other fields and metric functions are time
independent. The coupled system of equations, which can be derived from the above action
by varying with respect to the various fields, is given by the two Einstein equations

' (1- 5)‘0) A 2,1 2~ ABZ DY
Ag = - + 8rGure™{((w + edo)’e °+m’ )¢o+ ¢o+¢ 0 5 meTT), (3)
Ao _ 1 A , A2
v = G . ) + 87Gyre®[((w + edo)2e™ —m?)pZ — 54;;: + e Mo — —2" e (4)

the Maxwell equation

o+ A

+( 9

9) 45— 2e2M(w + edy) = 0, (5)

and the scalar wave equation

2 — Ag -
B4+ 2204 + (w0 + edo)’e™ —m — Adf)o = 0. (6)
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As boundary conditions we impose ¢o(0)=const, ¢4(0)=0 and @o(c0)=¢y(c0)=0 in order
to have a localized particle distribution. We allow the possibility of ¢o having nodes, giving
rise to excited states. Furthermore we demand that the electric field be absent at the origin,
giving A3(0)=0, and we normalize the potential by Ag(c0)=0. The condition en(®)=1 is
imposed to get asymptotically the ordinary Minkowski metric and the condition er0=1
is a regularity condition. With these boundary conditions the equations (3-6) form an
eigenvalue equation for w. For a detailed discussion of the equilibrium solutions see Ref.[8].

The total mass of the system is determined by the integral

o A A2
M = 41r/0 drr®|((w + edo)’e ™™ + m*)gg + g + e 0B7 + e, (7)
and the total particle number Ng, whichis related to the total charge by Q = eNy, is given

by

No = 8r /Ow drr?(w + eAg)pleln )2, (8)
The effective radius of the Bose star can be defined as
R= 81(/0 drr’(w + e.4u)¢ge““7”“)/2. (9)

Some results of the numerical solutions of the equations (3)-(6) are shown in Fig. 1-3. For

values of the charge close to the critical critical charge émtz\/l/2 (écrit and € are in units

of Mp;/v/8nrm) the maximum mass has the following asymptotic bahaviour

MZ
Mz = 0.44(8erie — )71/ 221 (10)
m

for A = 0 and _

M X
m? | 8r’

(11)

for A # 0. Similarly for the value of the radius corresponding to the maximum mass we

Moz = 0.226(Eerss — )

get
1
R~ 1.5(8eniy — €) 12— (12)
m
for A = 0 and _
A
R 2 0.415(60n; ~é)’1/2%5\/— (13)
m? V8«
for A £ 0.
Table 1: Comparison between different types of Bose stars
Mass Radius
A=0 ,é=0 |6.110°*° M, |4.210°
A=0.1, é=0 1.2 M, 5.8 10°
A=0 ,¢=0.5|9.2107"° M, | 5.6 1075
A=0.1, é=0.5 2.6 M, 8.5 10°
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The values in the table are for a boson mass m=m, ~ 139 MeV and M,=2 10°° kg is the
solar mass. The values for the radius are in metres. We notice that by suitably choosing
the parameters /_\, ¢ and the boson mass m one can construct Bose stars, which can support
very fast rotations without breaking up [14]. This because, as can be seen from the values
of the above table by comparing for instance the A # 0 case with models for neutron stars

with comparable masses, the Bose stars can be very centrally condensed.

3 Pulsation equation and variational principle

Consider now the situation where the equilibrium configuration is perturbed in a way
such that the spherical symmetry is still preserved. These perturbations will give rise
to motions in the radial direction. The equations governing the small perturbations are
obtained by expanding all functions to first order and by linearizing the equations. By
suitably combining the perturbation equations {9,11] and supposing a time-dependence of
the form e*°!, one gets the following eigenvalue equation for f; and f;, which are related
to the radial part of §¢1(r,t),6¢2(r,t) and 6C(r,t) (9]

Lijf; = o* My f; i, =12 (14)

where

Mo, = Mo (Gl 0 )

with Gy = r2el0=2)/2 and Gy = r2gleln—20)3/2,

-2G6:12 + Gy ~22((w + eAo)G1¢ho) + G1Cs
b Aw + eAg)Grdo + G1Cs -2G,2 + 6,0y )
with .
Ci(r) =e™(3e™(w + edo)’ + m* + %3%) - 81I'GN7‘¢:)2(§ +up—Xp)
- (15)
+ 827G yreX go(m’o + %qﬂ%),
Calr) :—W’; %), % - ”—“?—" - 2(%{;)2 - ¢—Z 4oz o) o) o) (s -y + 4%) +2e%eM§
~ 8rGnre™ ™ (w + edo) Pd(vh — N + %) + 327G nr(w + edo)pie™ e Al
(16)
Cafr) =~ 2630 + edo) — 87Giur(o + cAo)8(vs — Ny + )63 + 2edhod
(17)

by
+ 167G yre™(w + edo)(midy + 5¢S)¢3 + 167G nreAidpde.
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Eq.(14) is the required ”pulsation equation”. The appropriate boundary conditions are
for r — oo: fi; — 0, r?¢%f, — 0 and for » — 0: fy=const, r2f, - 0. With these boundary
conditions both the operators L,; and A,; are symmetric, this also in the case where ¢,
has nodes [9,15], and the total particle num:ber is automatically a conserved quantity [9].
The eigenvalues are real and dynamical instability will occur whenever o2 < 0.

Eq.(14) can also be obtained from the following variational principle

~ 1 o 1 1 1 1
2 —eMv(@G 2 2vdr -- ZGLF2 ~G, Z(V Ly ogn2 e 2¢;
oG Gt Gafhvde = [TLGT 4GS GG G0
+f2£1200lw + €Ag)Cy + f2£1G1Cs)dr.

A sufficient condition for dynamical instability to occur is that the right-hand side of
eq.(15) vanishes (or becomes negative) for some chosen pair of trial functions f; and f,
which satisfy the above boundary conditions. It turns out that for central densities bigger

than p.; the equilibrium configurations are unstable.
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Mass/(M&/m) and N/(MZ/m?)

®,l0)

Fig. 1: Boson star mass in units of M} /m (solid line) and particle number in units of
M2, /m? (broken line) as a function of ¢o(0). The charge e is given in units of
Mp,/(v/87m). No quartic self-coupling is present. Also the lines going through
the maxima of mass and particle number are drawn.
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Fig. 22 Boson star mass in units of AY2M32,/m (solid line) and particle number in units
of AY2ME /m? (broken line) as a function of ¢o(0)AY/? for different values of e
(in units of Mp;/v/87m) for the case A — oe. Also the lines going through the
maxima of mass and particle number are drawn.
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Fig. 3: The particle number in units of A*2M2%,/m? as a function of the effective radius
R (in units of A'/?/m) for the A # 0 case for two different values of the charge e
(in units of Mp[/\/87m).
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BARYON Q-BALLS: A NEW FORM OF MATTER?

STEPHEN B. SELIPSKY
Department of Physics
Stan ford University, Stanford, California 94305

Abstract

Hadronic effective field theories describing ordinary nuclei also contain “Q-Ball solu-
tions which can describe a new state of matter, “baryon matter”. Baryon matter is stable
in very small chunks as well as in stellar-sized objects, since it is held together by the
strong force instead of just gravity. Larger chunks, “Q-Stars”, in which gravity is impor-
tant, model neutron stars. A wide variety of Q-Star models, all consistent with known
nuclear physics, allow compact objects to have masses much larger, or rotation periods
much shorter, than is conventionally believed possible. Smaller chunks of nuclear density
baryon matter could also be astrophysically important components of the universe, and
at late times would have many properties similar to those of strange matter chunks.
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1. Introduction

There are many surprising possibilities lurking in the non- perturbative sector of field
theories. Here we add to the body of work on this topic, presenting the possibility of a
new state of matter which arises from the discovery of solutions to effective field theo-
ries describing among other things ordinary nuclei. Effective field theories of interacting
baryons and mesons have successfully reproducedlmeasured properties of nuclei as well as
results of scattering experimentsl_s). We have found4_6) non-topological classical solu-
tions to such theories: fermion Q-Balls, or Q-Stars in the case where their self-gravity is
important and gravitational effects are included. Q here stands for the conserved charge
(baryon number) which stabilizes the matter against decay. The properties of such a state
of baryon matter can be different from and essentially independent of the characteristics
of ordinary nuclei studied in the laboratory. In particular, neutron stars may have a large
binding energy per nucleon, hundreds of MeV, due mainly to nuclear forces, and may be
more massive or able to rotate faster than is suggested by currently accepted limits.7'8)
In addition, chunks of baryon matter, varying in size from 10~2cm to several kilometers,
may also exist. Structural characteristics are fairly insensitive to the effective field theory

used; classes of theories give the same equation of state.

2. Constructing Solutions

There is a simple graphical method for finding large baryon-number solutions. Con-

sider a Lagrangian for a baryon % interacting with a scalar and vector field:
L= 113[1159 - m(a) - gv‘/}#’ + %(0110)2 - U(U) + %m\zrv;tvﬂ . (2~1)

Itis a good approximation to neglect the dynamics of the vector ﬁeldl), and for a many-
fermion system we can make the Thomas-Fermi approximation (dm/dr < m?) to get a
Fermi sea of baryons described by a constant chemical potential ¢ and a Fermi momen-

tum kg slowly varying in space. The identity () = ~—(3P.1,/3m)6) gives the classical
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equation of motion

a
Vi = ——(P,-U 2.2
o 55 o =) (2:2)
where Py is the pressure of the baryons. This is equivalent to Newton’s F' = ma for a
mechanical ‘particle’ at ‘position’ ¢ at ‘time’ # moving in a potential Vepp = Py —U, with

“friction’ from the (2/7)00 /0r term negligible for large 7.

The Q-Ball solution occurs when o rolls between degenerate maximaof Vg s, where
one of the maxima is the vacuum and the height of the other is tuned by varying ep. The
o field starts at a value 0,44 at 7 = 0, close to the top of the first hill, and stays near that
value out to a large radius (since the top of the hill is flat) before quickly rolling to the
vacuum. The large baryon number Q-Ball thus has a flat interior, a radius which is a free
parameter, and a thin surface (of order the scalar Compton wavelength). The density
is determined by algebraic equations for ¢r and ojn4ide, requiring degenerate maxima:
Vegr =0 and 0V,5r/00 = 0. A Q-Ball must still have total energy E < Qmy in order to

be bound. Further details can be found in Refs. 6 and 9.

3. Application

We can apply this construction quite generally, for instance to Walecka’s Quantum
Hadro—Dynamicsl), in which the proton and neutron are fermion fields ¥; whose effective
mass is m(o) = g,0, with the free-particle my = gs00. The scalar field has a quadratic
potential U = %mf(a — 09)?, and the vector field is the w particle. This theory’s large
baryon number Q-Ball corresponds to infinite symmetric nuclear matter when N = Z.
The small baryon number solutions (nuclei) depend on the friction term in eq. (2.2); the

rolling starts above Py, — U = 0 and friction brings ¢ to rest at the vacuum value where

m =my. Fig. 1 translates the Walecka solutions into this framework.

Infinite nuclear matter is destabilized by Coulomb forces. In fact, neutrons, protons,

and electrons coexist in B-decay equilibrium, allowing local charge neutrality: kg, = kp,
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(100 Mev)*

Figure 1. Graphical representation of Q-Balls in a nuclear theory. U(e) (dots) is the scalar
field potential, Py is the baryon pressure, and Py — U is the effective potential that o ‘rolls’ in,
starting at 7 = 0 (marked by crosses).

Figure 2. Potentials U (solid lines) given in Refs. 1 and 2.

and €p, = €pp +epe. With a baryon pressure function reflecting this, a large baryon
number Q-Ball does not exist in Walecka’s theory, so strong gravity for stellar sized objects
is the only possibility. However we are still free to choose other potentials. In an effective
field theory the potential and the coupling m(o) are in general nonrenormalizable, subject
only to the symmetry of the underlying theory, and should either be fit from experiment (a
la Walecka) or derived from the underlying theory (QCD). Then m and U have quantum
corrections included in their definitions. Boguta, Strocker, and others have found many
models with renormalizable potentials which reproduce known bulk properties of nuclear
mai.terQ). Fig. 2 shows these and Walecka’s potentials; the region ‘a-b-c-d’ is the only part
relevant for nuclear data, and U is not constrained elsewhere, allowing infinitely many
altered potentials (e.g. dotted lines) that do give large baryon number Q-Balls. Only the
(currently unmeasurable) point ‘[’ determines Q-Ball bulk properties, and the rest of U
affects only the thin surface. In this way we can have stable macroscopic chunks of high
density baryon matter, of any size above Qpux where surface eflects become important.
To fix point ‘f” and the properties of ncutron stars, experiments on baryon matter chunks

would be necessary.
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The simple ‘chiral’ Q-Ball case in which the bulk-phase nucleon mass m(ongige) = 0,
has features genetic to more complicated models (which have also been solved). The
equation of stateg) for a chiral Q-Star (neglecting the electron mass and neutron-proton

mass difference) depends only on the vector repulsion strength and Up = U(Ginside):
3/2
E—3P—4lUp+av(E-P—-2Us)" =0, (3.1)

with ay = (gv/mv)231/2/7r. Only the nucleons couple to the strong forces, so charge
separation results in the surface. Structure calculations may neglect these details since
the surface width is about 10720 times smaller than the stellar radius, but the electrostatic
gap means that small Q-Balls will not absorb ordinary matter and Q-Stars can support

a crust of degenerate ordinary matter below neutron drip densities.

Since Q-Balls are a bulk phase with an equation of state, gravity can be included
simply by integrating the Oppenheimer-Volkoff equations. On dimensional grounds, when
GM/R ~ 1 a Q-Star has radius R ~ m,,lon'2 ~ 100 km and mass M ~ mf,lao_2 ~ 10 Mg,
where og ~ 100MeV is the vacuum value of o. Integrating the Oppenheimer-Volkoff
equations for eq. (3.1) gives the solid lines in Fig. 3. We also show for comparison
(dashed lines) two neutron star models (pion condensation and Walecka’s) which are
respectively among the least stiff and most stiff of conventional neutron star models. In
conventional models the stellar radius decreases as the mass and baryon number increase,

while Q-Balls have M and Q o« R®, giving the generic curlique.

Both stellar radius and mass increase as the unknown Ug decreases, allowing a large
upper limit for the neutron star mass if Uy is small. However eq. (3.1) is only valid
at densities high enough for the nuclear interactions to dominate. There seem to be no
experimental constraints on the equation of state of a large number of baryons above
white dwarf densities (< 10!%gm /cm?®), which we will take as the lowest permissible g
value. Using (3.1) down to density Uy evades the theoretical Rhoades-Ruffini limit, 3.2Mg),

which assumes some conventional equation of state below a density £ taken to be about
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M/Mg

Figure 3. Mass vs. stellar radius for chiral (solid lines) and representative nen-chiral (dotted
lines) Q-Stars, with Ug = (85A7eV)* (small curves) and (20017¢V)? (large). Central energy

density increases along the curliques; the maxima (crosses) are the last stable configurations.

nuclear density.

For (rvU;/2 = 1.23 (Walecka’s value when {7y = (1003feV)*), the upper mass limit

on a neutron star with equation of state (3.1) is

Munae = 6.68 Ujgh/* Mg, | (3.2)

where Uipp = Up/(100M eV )4. The star also reaches its maximum baryon number at this

mass: Qmaz = 22.5 UI_OZ;H x 1057, The scaling with Uy, including R ~ U(;"l/g, holds only

if ay is simultaneously scaled as U(;Nllg; for bound configurations without this scaling,
048Mo < Muax < 400Mz: 28 km < Rumax < 2300 km

0.67 x 105" < Qmax < 1.7x10°; 3.1 x 102 g cm? < Imax < 2.0 x 10°° g cm?
(3.3)

Even small Q-Balls are stable against dispersal into free particles, because of their
strong-interaction binding energy, and against adiabatic radial pulsations, since their
adiabatic index ' ~ Ug(Py + P. — U)™! > 4/3. The turning point for the stability of
this mode occurs at the point where dA7/dE cp1re1 = 0, indicated by crosses in Fig. 3,
so Q-Stars before the maximum mass in Fig. 3 are stable. For a rotating Q-Star, the

relativistic Maclaurin spheroid analysis as app]ieds) to other neutron star models shows



137

that dense Q-Stars can rotate at extremely high rates”), easily above the 0.5 ms limits
on other equations of state. At the high densities needed, an effective field theory of
baryons and mesons might not be applicable, but quark Q-Star models might apply. The
chiral Q-Ball equation of state (neglecting vector repulsion) has the form of the MIT bag
model’s strange stars and nuggotsm) (neglecting gluon exchange). The potential U/ (o)
dynamically generates the analogue of bag pressure, but the magnitude of Uy is of course

unrelated to the nucleon bag pressure.

The Q-Star model differs in important. respects from conventional neutron star models,
raising interesting astrophysical questions. In addition to the stellar structure limits
discussed above, electromagnetic properties of Q-Stars might be very different from those
of neutron stars in conventional models. The neutrino cooling rate should also be much
higher, since there is a boson condensate to absorb momentum for the first-order URCA
process. Only a restricted class of effective field theories in which U wiggles such that
there are two separate Q-Star phases (with different chemical potentials) can describe both
neutron stars with large masses (> 3A1;) and neutron stars with short rotation periods
(Prot < 0.5ms). A conventional neutron star phase is always also present in any field
theory which contains Q-Stars, and which phase is preferred will depend on the theory.
In the early universe, a hadronic phase transition may well produce Q-Balls“), which
(unlike strange nuggets) can be deeply enough bound to survive evaporation for Q > 10%.
Q-Balls absorb neutrons and inhibit. nucleosynthesis.#l In the present universe, baryonic
dark matter can reside in remaining Q-Balls; many strange matter calculations still apply
to the observability of a cosmic or galactic fluxw), since these are also approximately
nuclear-density lumps with a Coulomb barrier to fusion. For the larger Q-Balls that
survive evaporation, direct detection would be diflicult. However Q-Balls have quite a low
surface tension and tend to break up into small droplets in any violent event. Neutron

star collisions or possibly supernova explosions could produce some galactic flux of smaller

#1 Ithank Jes Madsen for discussions on these points.
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Q-Balls.
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OBSERVATIONAL CONSTRAINTS ON BARYONIC DARK MATTER
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ABSTRACT

A large fraction of the baryons in the Universe must be dark. Some of
the dark baryons may be in the form of a hot intergalactic medium, while
others may have been processed into the remnants of a first generation of
Population III stars. Such remnants might be numerous enough to provide
the dark matter in galactic halos, although halos could also contain
elementary particles relicts of the Big Bang. The remnants would need to
be either brown dwarfs or massive black holes. Evidence for the first
possibility may come from cluster cooling flows and gravitational
microlensing events. Evidence for the second could come from detecting
the background light generated by the stellar precursor of the black
holes. However, the COBE results imply that the light would need to be in
the near-IR rather than being reprocessed by dust into the far-IR.
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L. INTRODUCTION

It is well known that, while ordinary wvisible material has a density
Q, = 0.01 in units of the critical densitv, there is evidence for a much
larger density of invisible materiall!, In fact, there are four contexts in
which the existence of dark matter has been proposed: (i) There may be
local dark matterz), associated with our galactic disk. with a mass
comparable to that of the visible disk, though the need for this may sgo
away if there is a population of "thick disk" stars®). (ii) There may be
dark matter in galactic ha]os”; the associated density parameter is rather
uncertain since it depends on the unknown radius to which the typical
halo extends (averaged over all galaxies) but it is probably of order
Q, = 0.1. (ili) There may be dark matter in clusters, with a density
parameter in the range Q. = 0.2-0.3, devending on the scale of clustering.
(iv) Finally, if one accepts the inflationary scenario. there may have to be
background dark matter (unclustered on the scale of galaxies though
probably clumped on smaller scales) in order to make the total cosmological
density parameter unity.

Some of the dark matter components may be the same. For example, if
one believes that individual galaxies are stripped of their halos when they
aggregate to form clusters (thereby forming a collective cluster halo), it
would be fairly natural to identify the halo and cluster dark matter
providing the original halos were large enough. Likewise the cluster and
background dark matter could be identified if one invoked some form of
biased galaxy formation in which galaxies form in only a small fraction of
the volume of the UniverseS). On the other hand, it is also possible that
all the dark matter components are different or that they require different
mixtures of dark matter candidates.

Candidates for the dark matter may be grouped into non-barvonic
types (in which the dark object is some sort of elementary particle) and
baryonic types (in which it is something astrophysical). In the first case,
the existence of the dark object - which may be generically termed an
"ino" - goes back to the very early Universe. In the second case, the
dark object forms out of the background gas at a relatively late stage
(viz. 107-10°%y after the Big Bang); this may be termed the "Population III"
scenario. The candidates are listed explicitly in Table (1) in order of
increasing mass. The table illustrates that there are many forms of

non-luminous matter; even though some of the candidates can be rejected,
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Table (1): baryonic and non-baryonic dark matter candidates

INOS POPULATION III

Axions (IO_SeV) Snowballs ?
Neutrinos (10 eV) Brown dwarfs (<0.08 M)
Photinos (1 GeV) M~dwarfs (0.1 Mo)
Monopoles (1016GeV) White dwarfs 1 M)
Planck relicts (1019GeV) Neutron stars (2 M@)
Primordial holes  (»101%g) Stellar holes 10 M)
Quark nuggets (<1020g) VMO holes (102—105}4@)
Shadow matter ? SMO holes (7105M@)
Cosmic strings ?

several viable ones in both categories remain. It is therefore naive to
assume that all the dark matter problems will have a single explanation
and one probably needs both baryonic and non-baryonic components.

The main argument for both baryonic and non-baryonic dark matter
comes from cosmological nucleosynthesis considerations. In order to explain
the primordial light element abundances, the latest calculations®! - allowing
for a recent reduction in estimates of the neutron lifetime - require the
baryon density parameter to lie in the range 0.01h'2<9b$0.016h‘2 (where h
is the Hubble parameter Hy in units of 100 km/s/Mpc). Since H, must be at
at least 50, the upper limit implies that Qp must be well below 1, so the
inflationary model requires that the "smooth" background density be
dominated by some non-baryonic component. Whether Qp exceeds the
density of visible baryons (2,~0.01) depends crucially on the value of H,.
Most of the baryons could be visible if H,=100 but, in this case, the age of
the Universe would be less than the ages of globular clusters unless there
were a cosmological constant. On the other hand, if H,=50 (as seems more
likely), Qp must exceed Q,, byv a factor of at least 4, so there must be some
dark baryons and perhaps enough to provide galactic halos.

Much recent work has focussed on the question of whether one can
circumvent the cosmological nucleosynthesis upper limit on Q, by invoking
a lst order phase transition during the quark-hadron era’). The idea is
that the transition would generate fluctuations in the baryon density.

Neutrons would then diffuse from the overdense regions (since their



144

cross—section is less than that of the protons), leading to variations in the
neutron-proton ratio®). It is conceivable that Q,=1, in which case 99% of
barvons have turned dark®). However, this is not a view favoured by most
cosmologists and T will not discuss it further here.

The discrepancy between @ and &, could be resolved if there were an
appreciable density of intergalactic gas. We know that there must be some
neutral gas in the form of Lyman--o clocuds but the density parameter
associated with these clouds is probably no more than 0.01. If one wants
to put all the dark baryons into an intergalactic medium., then its
temperature must lie in the range 10%K to 108K, the lower limit coming
from the Gunn-Peterson test and the upper limit from the new COBE limits
on the Compton distortion of the microwave background radiation9),

The other possibility is that the dark baryons are in Population III
remnants. Note that this does not exclude the first proposal: in a biased
scenario, for example, dark baryons could be in both galactic halos and an
intergalactic medium, in which case inos could still dominate the halo
density. However, most of the emphasis in this talk will be on the
possibility that halos are dominated by Population III objects. The
suggestion that the halo dark matter could be baryonic goes against the
current trend to assume that all forms of dark matter except that in the
disk are non-baryonic. However, the arguments advanced in support of
this trend!!! are not very convincing but just reflect a prejudice that the
number of forms of dark matter should be as small as possible. Table (1)
indicates that dark matter could take as many different forms as visible
matter, so it is quite plausible that the efficiency with which baryons turn
dark exceeds the efficiency with which they turn visible. Thus the fact
that the background dark matter (if such exists) has to be non-baryonic
does not exclude the halo dark matter being baryonic. Admittedly, it might
seem strange that baryonic and non-barvonic material should have
comparable densities, although there are some scenarios where this arises
naturally!2), but this is a coincidence which pertains independent of
whether the baryons remain in mainly visible or invisible form.

In the next two sections I will discuss why one might expect
Population III objects to form (82) and what constraints observations
already place on their nature (83). The remaining sections will discuss
recent developments: in particular, the implications of the COBE results
{84}, the evidence for dark matter production in cooling flows (85) and the

cletection of dark matter through gravitational lensing effects (86).
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2. THE FORMATION OF POPULATION III OBJECTS

Although the halo and possibly cluster dark matter may be baryonic, it
cannot be in the form of ordinary gas else it would generate too many
X-rays. The gas must therefore have been processed into the dark
remnants of a generation of pregalactic or protogalactic "Population III"

13), The reason one might expect Population III stars to form is that,

stars
in most cosmological scenarios, one would expect the first bound objects to
be much smaller than galaxies. For example, in the hierarchical clustering
scenario, the first objects have a mass around 10°Mg and bind at a
redshift in the range 20-100; these clouds then cluster gravitationally to

14), A currently popular version of

make galaxies and clusters of galaxies
this model is the "Cold Dark Matter" scenario!S. In the pancake scenario!®)
the first objects to form are pancakes of cluster or supercluster scale and
they do so at a redshift in the range 3-10. Thev first fragment into clouds
of 10-10°Mp and so these clouds have to cluster before galaxies can form.
One version of this theory is the "Hot Dark Matter" scenariol?), although
this is no longer very popular because galaxies probably form too late.

In all these scenarios, an appreciable fraction of the Universe may go
into pregalactic clouds before galaxies themselves form. The question then
arises of what happens to these clouds. In some circumstances, one expects
them to be disrupted by collisions with other clouds because the cooling
time is too long for them to collapse before such collisions. However, there
is usually some mass range in which the clouds cool fast enough to
survive. For example, the range is 105—1011MQ in the CDM scenario. In this
case the clouds could face various possible fates. They might just turn
into ordinary stars and form objects like globular clusters. On the other
hand, the conditions of star formation could have been very different at

early times and several alternatives have been suggested:

* Some people argue that the first stars could have been much smaller
than at present, either because of the enhanced formation of molecular
hydrogen at early epochs!®) or because of the prevalence of high
pressure pregalactic cooling flows!2. Such cooling flows would be

20)

analagous to the cluster flows observed at the present epoch but on

a smaller scale.
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% Other people argue that the first stars could have been much larger
than at present. For example, the fragment mass could be increased
before metals formed because cooling would be less efficient2!), There is
also observational evidence that the IMF may become shallower as
metallicity decreases?2), thereby increasing the fraction of high mass
stars. Another possibility is that the effects of the microwave

background could increase the characteristic fragment mass23),

¥ One could also get a mixture of small and large stars. For example, one
proposalz‘) is that one gets the formation of massive exploding stars in
the core of the cloud, followed by the formation of low mass stars where
the gas swept up by the explosions encounters infalling gas.
Alternatively, one could envisage a scheme in which tidally induced
angular momentum effects lead to a disk of small stars around a central
very massive star23),

* It is possible that the first clouds do not fragment at all. For example,
they might collapse directly to supermassive black holes or they might
remain in purely gaseous form and become Lyman-« clouds2S), In the
latter case, the formation of the dark-matter-producing would need to be

postponed until the epoch of galaxy formation.

This discussion indicates that, while there is considerable uncertainty as
to the fate of the first bound clouds., they are likely to fragment into
stars which are either larger or smaller than the ones forming today.
(People merely disagree about the direction!) One certainly needs the stars
to be different from the ones forming now if they are to produce a lot of
dark matter. One also requires the clouds to fragment very efficiently. At
first sight, this might seem rather unlikely but there are circumstances
even in the present epoch were this occurs: for example, in starburst
galaxies or cooling flows.

We note that there is no necessity for the Population III stars to form
before galaxies just as long as some change in the conditions of star
formation alters the mass spectrum. However, the epoch of formation will
be very important for the relative distribution of baryonic and
non-baryonic dark matter, especially if the non-baryonic dark matter is
"cold" so that it can cluster in halos. This would apply, for example, if the

ino was a "Weakly Interacting Massive Particle” or WIMP. In this case, if
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the Population III stars form before galaxies, one might expect their
remnants to be distributed throughout the Universe2?®) with the ratio of
the non-baryonic and baryonic densities being the same everywhere and of
order 10. If they form at the same time as galaxies, perhaps in the first
phase of protogalactic collapse, one would expect the remnants to be
confined exclusively to halos and clusters. In this case, their contribution
to the halo density could be larger since the baryons would probably
dissipate and become more concentrated. If the inos are hot and cannot
cluster in halos, then halos would consist exclusively of machos. These
possibilities are illustrated in Figure (1). Greist has coined the term
"Massive Compact Halo Object" or MACHO for the baryonic dark object, so
the main message of Figure (1) is that we may need both machos and

wimps!

COSMOLOGI CAL Querk-hadron _ _ 5 NON-BARYONIC
. 2 - -
NUCLEOSYNTHESIS fluctuations? DARK HATTER
(0.010¢2,h* € 0.CL6) /\
Hot Cold
\r
Pregalactic WIMPS+MACHOS
/,/ pop 111 MACHOS (10:1)
BARYONIC | P
- galactic MACHOS WIMPS+MACHOS
DARK MATTER Pop 111 (3:1)
Hot 1GM WINPS

Figure (1): This indicates schematically the relative contribution to galactic
halos from baryonic and non-baryonic dark matter in various scenarios.
The ratio depends upon whether the non-baryonic dark matter is hot or
cold and on whether the Population III objects form at a pregalactic or
protogalactic epoch.

3. CONSTRAINTS ON POPULATION 111 OBJECTS

We have seen that it is difficult to predict a priori the mass of the
Population III objects. However, Table (1) shows that there is a wide range
of masses over which stars are expected to leave dark remnants. The
suggestions range from objects as small as snowballs to objects as large
as supermassive stars. We will discuss each of the possibilities in turn,
although we will find that many of them can be rejected on empirical

grounds.
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Snowballs. Condensations of cold hydrogen have been proposed but
can be probably be excluded!?!), In order to avoid being disrupted by
collisions within the age of the Universe, they must have a mass of at
least 1 g. In addition, objects in the mass range 10~3g to 107g are
excluded from providing either the local or halo dark matter by the
observed upper limit on the frequency of encounters with interstellar
meteors. Those in the mass range 107g to 10'®g are excluded by the
number of impact parameters on the Moon, while those in the mass range
1015g to 1022g are excluded by the fact that no interstellar comet has
crossed the Earth’s orbit in the last 400 years. These limits are discussed
in detail elsewhere2?)., Although there are no empirical reasons for
excluding snowballs larger than 1022g, it is difficult to envisage a scenario
in which a cloud would fragment into objects smaller than (say) the mass
of Jupiter, so snowballs are not a very plausible dark matter candidate.
Note that the argument“) that snowballs would be evaporated by the
microwave background radiation is probably incorrect2®):

Brown dwarfs. These are objects smaller than 0.08 Mg - sometimes
termed "jupiters” - which never ignite their nuclear fuel. Fragmentation
could in principle lead to objects as small as this'®), If the disk dark
matter comprises such objects, the nearest one would be at a distance of
about 6000(M/MJup)1/3AU; this distance would increase by a factor of 2 for
halo objects. Such objects might conceivably be detectable as infrared
sources, although analysis of IRAS data has found no evidence for them.
The best way to detect brown dwarfs in the halos of other galaxies may be
by their gravitational microlensing effects2®). This is because, if a galaxy
is positioned so as to image-double a distant quasar, then there is also a
high probability that an individual halo object will traverse the line of
sight of one of the images. This will give appreciable intensity fluctuations
in one but not both images. The effect would be observable for objects
larger than 10*Mg but the timescale of the fluctuations, being of order
4()(M/M)1/2y, would only show up over a reasonable period for M<0.1 Mgp.
There is also the possibility of looking for the very rare microlensing
events associated with objects in our own halo.

M-dwarfs. Nuclear-burning stars would have to be as small as 0.1 Mg
in order to have a mass-to-light ratio large enough to explain any of the
dark matter problems. However, such low mass stars could still be
detectabie as infrared sources and searches already indicate3®) that their

number density near the Sun can be at most 0.01 pc™3. This is a hundred
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times too small to explain the local dark matter problem and ten times too
small to explain the halo problem. Infrared observations3!! also indicate
that the halos of other spiral galaxies cannot consist of M-dwarfs. We
therefore reject this possibility.

White dwarfs. These would be the natural end-state of stars with
initial mass in the range 1-4 Mg and they could certainly fade below
detectability within the age of the Galaxysz). The fraction of the original
star which is left in the white dwarf remnant is rather low but one could
still have a large remnant density if there were many generations of
stars33), The problem is that their precursors would also make a lot of
helium. Despite claims to the contrarya‘”, this almost certainly precludes
their density being high enough to explain the dark matter in halos or
clusters, although it might be large enough to explain the local dark
matter.

Neutron stars. These would be the natural end-state of stars in some
mass range above 8 M. However, such precursors would also return a
large fraction of their mass to the background medium as heavy
elements®5). The fact that the poorest Population I stars have metallicity of
order 1073 therefore places an upper limit on the fraction of the
Universe's mass which can have been processed through such

precursors!3),

This limit precludes neutron stars from explaining any of
the dark matter problems.

Stellar black holes. Stars larger than some critical mass Mgy may leave
black hole rather than neutron star remnants. The value of Mpy is
uncertain®®) but it is probably around 50 M@. In this case, some of the
heavy elements generated by nucleosynthesis may be swallowed rather
than ejected but one would still expect some mass ejection, so one could
not process a large fraction of the mass of the Universe into the holes.
Note that stellar black holes can probably not provide the disk dark
matter. This is because the survival of binaries in the disk may require37)
that the local dark objects be smaller than 2 Mg, although this limit has
been disputed?®).

VMO black holes. Stars in the mass range above 100 Mg , which are
termed '"Very Massive Objects" or VMOs, would experience the
pair-instability during their oxygen-burning phaseas). This would lead to
disruption below some critical mass M. but complete collapse above it40),
VMO black holes are therefore more plausible dark matter candidates than

ordinary stellar black holes, although they do not seem to form at the
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present epoch. In the absence of rotation M =200 Mg but it could be as
high as 2x10*Mg if rotation were maximal*!), An important constraint on the
number of VMO remnants is provided by background light limits. However,
this constraint is sensitive to the redshift of star formation, as discussed
later., VMO black holes could also be detected by gravitational lensing
effects. This is because such objects would modify the ratio of the line to
continuuum output of a quasar?2?; the fluxes are affected differently
because they come from regions which act as extended and pointlike
sources, respectively. This already excludes black holes in the mass range
102-105Mo from having a critical density, though not necessarily the tenth
critical density required for galactic halos. Note that laser interferometry
could eventually detect the gravitational wave background generated by
VMO black holes, especially if they form in binary systems“").

SMO black holes. Stars larger than 10SMg are termed "Supermassive
Objects" or SMOs and would collapse directly to black holes without any
nuclear burning if they have zero metallicity due to relativistic
instabilities*4). Such holes are already supposed to reside in galactic
nuclei, although those ones would only have a tiny cosmological density. As
discussed later, halo black holes would heat up the disk stars in our own
galaxy more than is observed unless they were smaller than about IOGMO,
so they would have to lie in the narrow mass range 105—105M@. Even if the
dark matter in clusters is different from that in halos, the absence of
unexplained tidal .distortion in the visible galaxies implies‘sl that the
cluster objects must be smaller than 10°Mg. The number of SMO holes is
also constrained by gravitational lensing effects*), If one has a population
of objects with mass M and density parameter €, then the probability of
one of them image-doubling a distant quasar is @ and the separation
between the images is 10‘6(M/M@)1/2arcsec. Thus VLBI, with a resolution of
10~3arcsec, could search for objects as small as 108Mg, while limits from
the VLA, with a resolution of 0.1 arcsec, already imply that holes bigger
than 10'!Mg must have less than 0.4 of the critical density*”). Note that
the background gravitational waves produced by the formation of SMO
holes could in principle be detected by the Doppler tracking of
interplanetary spacecraft4®),

The various constraints on the form of the dark matter discussed
above are brought together in Table (2). This indicates the viable
explanations for each of the dark matter problems. The shaded regions are

excluded by either dynamical, nucleosynthetic, lensing or point-source
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Table (2): This shows the constraints on the possible dark matter
candidates, shaded regions being excluded by at least one of the limits
discussed in the text. SMO, VMO and BH refer to the black hole remnants
of Supermassive Objects, Very Massive Objects and ordinary stars;
NS=neutron star; WD=white dwarf; MD=M-dwarf; BD=brown dwarf;
PBH=primordial black hole {(here regarded as a non-baryonic candidate).

LocAL | HALO |CLUSTER |CRITICAL
Mo //// el / Zl%/

BH

NS

» RN
i 22

cold

POPULATION III

INOS

limits. Whether the dotted region is excluded depends on whether the
cosmological nucleosynthesis constraint requires that the cluster dark
matter be non-baryonic, which is marginal even in the standard scenario.
Although a critical density of baryons might be permitted in non-standard
scenarios, this is excluded in most mass ranges anyway. The constraints on
the ino candidates are all dynamical in nature and depend upon whether
the particles are hot or cold. None of the inos could be expected to
provide the local dark matter since they are non-dissipative and it seems
difficult for hot particles to cluster enough to explain galactic halos*®!,
The prime message of Table (2) is that one could not expect any single
candidate to explain all four dark matter problems. On the other hand, the
table does constrain the possible solutions: (i) the local dark matter - if it
exists - would have to be white dwarfs or brown dwarfs; (ii) the halo dark
matter could be either brown dwarfs or black holes or inos: (iii) the

cluster dark matter would need to be inos if one adopts the cosmological
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nucleosynthesis limit in its strongest form but the other halo candidates
would be viable otherwise; (iv) the background dark matter - if it exists -
would have to be inos unless one gives up the cosmological
nucleosynthesis limit altogether. Note that the halo and cluster dark matter
could well be a mixture of the different candidates, as indicated in Table
(1). Having a mixture need not imply any obvious dynamical signature,

especially if the inos (like the Population III remnants) are cold.
4. VMOS AND BACKGROUND LIGHT

The most direct evidence for a population of VMOs would come from
the detection of the background light they generate. Each VMO has a
luminosity L‘-‘10"'°(M/102Mo) erg/s and a surface temperature of about 105K
{independent of the mass M). In the absence of dust absorption, one would
therefore expect a background with a present density and peak

wavelength given by

[Q* ][1+z*]'1 {1+z*
- -6 —— - -
Qp = 4x10 oI 100 y, A =14 100] M. (1)

Here QR is measured in units of the critical density, Qx is the density of
the stars in the same units, and zx the redshift at which they burn.
Comparison with the upper limits on the background radiation density in
the near-IR to UV bandsS®) shows that VMOs with the density Q420.1
required to explain galactic halos would have to burn at a redshift
exceeding 30; otherwise Qp would be too large. This would imply that they
were necessarily pregalactic. However, if dust were present, the radiation
could be reprocessed to longer wavelengths, where the limits on the
background density are weaker. In this case, the re-emitted radiation

should have spectrum peaking at a present wavelengthsﬂ

2 ] .
Q h -1/8 r 1/s| 1+z ,j1/s
R e

*peak = 700 [ 1078 0.14 10
where rgq is the grain size, zq is the redshift of light production or grain
production (whichever is smaller) and we have assumed that the grain
opacity scales as A", For comparison, the microwave backeround peaks at
16004, The total background spectrum should thus have three parts: the
microwave background component, the far-IR or submillimetre dust

component, and the attenuated starlight component.
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There have, in fact, been two claimed detections of a far-IR
background. The first52) was based on IRAS data and suggested a
background with QR=3XIO_5h"2 at 100u. However, this was always
controversial, since it required subtracting the (very uncertain) zodiacal
emission, and the current upper limit is a factor of 3 below this. More
recently, a significant excess in the spectrum of the microwave background
radiation was reported in the submillimetre waveband, following a rocket
experiment by a team from Nagoya and Berkeley53). The background
appeared to peak at around 7004 with a density of Qp = 5x10~%h~2, This
was very exciting since it seemed to confirm the VMO prediction.

Unfortunately, the Nagoya-Berkeley excess has now been disproved by
COBES*4), However, this need not exclude the VMO scenario itself since one
can always argue that there is not enough dust to reprocess the radiation.

For example, pregalactic dust can only absorb the VMO light for

th ]—2/3{ r4 ]2/3
(3)

l4zg > 8 [10’5 0.1k

where Q4 is the dust density parameter, normalized to the value associated
with galaxies since this is presumably an upper limit to the pregalactic
abundance. It is not inevitable that condition (3) should be satisfied;
indeed there need not be any pregalactic dust at all. In order for galactic
dust to absorb the VMO light, the redshift of galaxy formation (zg) must
satisfy two independent conditions: firstly, it must exceed the value given
by eqn (3) with Q4 normalized to the mean galactic value; secondly, one
needs the galaxies to cover the sky, which - for galaxies like our own -

requires

Rg 2/3 Qg -2/3
|l

l+zg > 10 [10kpc 0.01

Here Rg is the radius and Qg is the baryonic density associated with the
galaxies. It is by no means clear that galaxies formed this early and they
would certainly not do so in the CDM scenario. We conclude that a halo
density of VMOs could still exist but, if so, their light must be in the
near-IRS®), In fact, the Japanese have also claimed to detect a background
at 2u with density €,=2x10"®h=2 and this is certainly compatible with
equation (1). They claim the background is very narrow and suggest that
it is a redshifted Lyman-« line. In this case it would need to originate at

z4=16. If 2u is just the original black-body peak, eqn (1) implies z4=50.
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It should be noted that some people have proposed that the entire
microwave background is grain-thermalized starlight57). This is possible in
principle but the grains would have to form at a very high redshift
(z>200) and be very elongated in order to thermalize at long
wavelengthsse). In this case. one would also need to invoke VMOs to
generate the observed primordial helium abundance, since the standard
cosmological nucleosynthests picture no longer applies. Although VMOs
might naturally generate a helium abundance of about 25%, one still needs
to generate the other light element abundancesss), so this scenario is not

as attractive as the standard one.
5. BROWN DWARFS AND COOLING FLOWS

X-ray observations show that many clusters contain hot gas with a
temperature of about 10°K. In clusters dominated by a central cD galaxy,
the emission is peaked at the core, indicating a high central gas density.
Since the associated cooling time is less than the Hubble time, one expects
the gas in the core to be flowing inwards, driven by the pressure of the
surrounding gas, which is too tenuous to cool appreciably. The
observational evidence for such cooling flows has been reviewed
elsewhere2®), The mass flow rate associated with the flows varies from a
few Mp y~! to 103Mg v~! and the mass appears to be deposited over a
wide range of radii. However, the gas cannot be forming stars with the
same mass spectrum as the solar neighbourhood, else the central region
would be bluer and brighter than observed. This suggests that the cooling
flows produce very low mass stars, possibly because the high pressure
reduces the Jeans mass (assumed to provide an upper limit to the mass of
the stars being formed). The important feature of a cooling flow is that it
is quasi-static, in the sense that the cooling time exceeds the dynamical
time, and it is this condition which is supposed to preserve the high
pressure.

Although cooling flows provide a natural way of turning gas into low
mass stars with high efficiency, those observed at the present epoch are
mainly confined to the central galaxies in clusters and therefore could not
in themselves be responsible for either the cluster dark matter (since this
is distributed throughout the cluster) or the halo dark matter in galaxies
outside clusters. However, one could expect analagous high pressure

quasi-static flows to occur at earlier cosmological epochs and these would
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have been on much smaller scales than clusters!®). This conclusion
pertains in either the hierarchical clustering or pancake scenario, although
we will only focus on the hierarchical case here.

The crucial point is that the amount of mass cooling quasi-statically in
a gravitationally bound cloud is maximimized when the cooling time t. is
comparable to the free-fall time ty: collapse does not proceed at all for
to>tyy whereas it is not quasi-static for t <ty Now in any particular
variant of the hierarchical clustering scenario, one can specify the mass
binding as a function of redshift. If we focus on a cloud of mass M, the
dynamical time will just be of order the Hubble time at that redshift,
whereas the cooling time will depend upon the density and virial
temperature of the cloud (which are themselves determined by M and z).
Thus one can specify a region in the (M,z) plane in which bound clouds
will cool within a dynamical time. This applies above a lower mass limit
associated with molecular hydrogen or Lyman-& cooling and below an upper
mass limit is associated with atomic hydrogen cooling. The condition t ~tg
will be satisfied at the boundary of the region and the intersection of this
boundary with the binding curve M(z) singles out two characteristic
mass-scales and redshifts. These correspond to what we term '"pervasive
pregalactic cooling flows" (PPCFs) since the amount of gas processed
through the cooling flows is maximimized. The associated mass~scales are
always of order 104-10°Mg and 10'!Mg but the redshifts depend on the
particular scenario.

The question of the scale of the cooling flows is very important
because this should also be the scale on which the dark matter aggregates
today. If the scale is of order 1011Mo, then cooling flows could make
galactic halos directly. If it is of order IOGMQ, then the first objects to
form would be dark clusters of this mass. Galactic halos would then form
as a result of the agglomeration of these objects. One might anticipate
most of the dark matter being made on the smaller scale since most of the
gas will have been consumed by the time atomic cooling becomes important.
However, this may not apply in the Cold Dark Matter picture because the
spectrum of fluctuations is very flat on subgalactic scales. Furthermore, in
some versions of the hierarchical clustering picture, M(z) is never small
enough for low mass PPCFs to occur®®). This suggests that most of the
dark matter would need to be made by high mass PPCFs. However, the
problem with this is that most of the barvons will by then have gone into

clouds with t.<tf and such clouds should not make low mass stars.



One way round this is to argue that even clouds with t <t¢ initially
can make a lot of dark matter. The idea is that gas always drops out at
such a rate as to preserve the PPCF condition t.~t;. One thus gets a
two-phase medium, with cool dense clouds embedded in hot high pressure
gas. This was originally proposed as a mechanism to make globular clusters
at a protogalactic epoch61) but one can show that sufficiently small clouds
would tend to fragment into dark clusters rather than visible clusters, at
least in the presence of molecular hydrogen®2).

The possibility that galactic halos could comprise dark clusters would
have interesting dynamical implications. Earlier we mentioned that the halo
objects must be smaller than 10°Mg else they would overheat the stars in
the stellar disk. More positively, it has been have proposedsa) that halo
objects of mass 2x106M0 could be regquired in order to generate the amount
of observed disk-heating. In particular, this would explain why the stellar
velocity dispersion increases with stellar age as t1/2 and why the radial,
azimuthal and vertical dispersions have their observed ratios. It was
originally proposed that the halo objects are single supermassive black
holes but this has problems: too many holes tend to drift into the galactic
nucleus as a result of dynamical friction, while the ones which stay in the
halo tend to generate too much radiation through accretion as they
traverse the disk®4

One way to circumvent these problems is to assume that the disk
heaters are 2x106Mo clusters of smaller objects®5). The accretion luminosity
is then reduced by a factor which is of order the number of objects per
cluster and the dynamical friction problem is avoided provided the clusters
are disrupted by collisions before they reach the galactocentric radius of
2 kpc at which they become affected by the dynamical friction of the
Galactic Spheroid. This requires that they have a radius r. exceeding
about 0.1 pc. On the other hand. in order to explain the observed
disk-heating down to 4 kpc, we need rc<d4pc. Thus r. is rather tightly
constrained. The upper limit also requires the cluster components to be
smaller than 10 Mg (else they would evaporate too quickly through Z-body
relaxation) and this suggests that they must be brown dwarfs rather than

black holes.
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6. GRAVITATIONAL LENSING

One of the most useful signatures of Population III objects would be
their gravitational lensing effects. Indeed it is remarkable that lensing
could permit the detection of Population III objects over the entire mass
range lO-SMO to 109M@. There are three distinct types of lensing effect
and we saw in 83 how each of these can be used to constrain the possible
baryonic candidates.

The multiple-imaging of a distant source like a quasar is termed
"macrolensing" and constraints on the frequency of such multiple-images
can be used to limit the density of SMOs. In fact, the data on macrolensing
by galaxies already provide evidence for dark matter in galactic halos
since the image separation usually requires a lensing mass exceeding the
mass associated with the wvisible galaxyv. In the case of 2016+112, for
example, the lens model requires that the overall mass-to-light ratio be at
least 100 and that the total matter distribution be different from the
visible distribution®), Macrolensing may also provide evidence for dark
matter in clusters. For example, the giant arc A370 is thought to be a
galaxy lensed by a rich cluster and, in this case, the cluster must have a
dark mass of 3x1014Mg, well in excess of the visible mass®7).

We saw how the absence of variations in the line-to-continuum ratio
for different images of a lensed quasar can be used to constrain the
density of VMOs. Positive evidence for such an effect could actually
indicate the nature of the dark matter. Such evidence may already exist in
the case of the double quasar 2016+112, where the different intensity
ratios for the images suggestee) that the lensing objects have a mass in
the range 3x10*Mg to 3x107Mg. It is interesting that clusters in this mass
range are a natural consequence of the pregalactic cooling flow scenario,
although they could also arise in other ways.

Intensity variations in one image of a lensed quasar due to individual

halo objects within the lensing galaxy is termed "microlensing" and we saw
how this effect may be used to constrain the density of low mass stars.
Again, there may be positive evidence for this effect since lensing by
jupiters may explain the existence of some optically violently variable
quasarsss). Rather more convincing evidence comes from a direct detection
of microlensing7°) for the quasar 2237+40305. This has four images at a
redshift of 1.7 and the lens is a galaxy at redshift 0.04. The brightest

image brightened by 0.5M from September 1987 to August 1988 and then
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dimmed by 0.15M by September 1988. There was no variation in the other
images, even though the difference in light travel-time was only hours.
The observed timescale for the variation would require a lensing mass in
the range 0.001 Mg to 0.1 M@. One proble‘m with interpreting this as
evidence for dark matter is that the variable image is almost exactly
aligned with the centre of the lensing galaxy and here the density should
be dominated by ordinary stars rather than dark matter.

Attempts to detect microlensing by objects in our own galactic halo by
looking for intensity variations in stars in the Large Magellanic Cloud’t!
are already underway and are reported upon elsewhere in this volume. In
this case, the timescale for the variation is smaller, so one can seek for
lensing masses all the way down to lO_SMO. However, the probability of an
individual star being lensed is very low, so one has to look at many stars

for a long time.
7. CONCLUSIONS

We have seen that there are good reasons for believing that many of
the baryons in the Universe have gone into dark remnants, although it is
unclear whether brown dwarfs or black holes are more plausible. The best
signature for black holes would be the background light generated by
their stellar precursors but the COBE results remove what might have
been good evidence for this. The claim that cooling flows make low mass
stars would seem to favour the brown dwarf option. However, given the
uncertainty, it is probably best to hedge one’s bets until future
observations of microlensing or the near-IR background settle the issue.
Of course, it is possible that both options are wrong since we still cannot
exclude the dark baryons being in the form of hot intergalactic gas.
Finally, it should be re-emphasized that the background dark matter,
required to make up the critical density if one accepts inflation, must be
an ino if one accepts the standard cosmological nucleosynthesis picture.
Dynamical considerations suggest that it is probably a cold particle like
the photino, in which case the halo and cluster dark matter could well be

a mixture of baryonic and non-baryonic dark matter.
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SEARCH FOR MACROSCOPIC DARK MATTER
IN THE HALO OF THE MILKY WAY
THROUGH MICROLENSING.

A FEASIBILITY STUDY

Marc Moniez

Laboratoire de I’Accélérateur Linéaire
Orsay

ABSTRACT

The possibility of searching for non-visible massive compact objects in the galactic halo
is discussed here. The discovery of such objects would solve the problem of the missing
mass in the galaxies, and the experiments which investigate for weakly interacting
particles assuming a diffuse cloud of dark matter would have to revise their limits. The
non-discovery of these objects would exclude the last possibility left for baryonic dark
matter, providing good evidence that the galactic halo has to be made of new particles.
The description of the general-relativistic microlensing effect and its application to the
search of massive compact objects are given here. A feasibility study shows that it is
possible to monitor the luminosity of several million stars in the Large Magellanic Cloud
with the required precision, in order to detect a possible microlensing phenomenon
induced by heavy compact objects (10-4 - 10-1 solar mass units). A CCD-based
experimental setup is described, which would make it possible to search for compact
objects in the 10-6 - 10-4 solar mass unit domain.
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1. DARK MATTER AND GALACTIC HALOS

It is widely accepted that the flat rotation curve of stars and interstellar matter around the cenwre of
spiral galaxies provides strong evidence for dark matter halos of yet unknown origin and
coraposition, in which the luminous part of spiral galaxies (such as our own Milky Way) is
embedded [1]. We know that these halos are not made of stars or diffuse baryonic matter because
they would have been easily detected. The only two remaining possibilities are

- Massive Compact Objects (MCOs) which could be brown dwarves (stars not massive
enough to sustain nuclear reactions in their cores), giant-planet-sized objects (Jupiters), smaller
planet-like objects, primordial black holes or massive objects made of new particles...

- Weakly Interacting Massive Particles (WIMPs) which could be either neutrinos or photinos
(the lightest supersymmetric particles)...
Although the second candidates are generally favoured from galaxy-formation considerations, the
first ones can certainly not be ruled out. In particular, the existence of MCOs is favoured by
primordial nucleosynthesis results. The MCOs represent the last possibility left for baryonic dark
matter.
An experiment sensitive to the gravitational effects of MCOs could decide between these two
possibilities. The idea is to survey for several months, at 10% accuracy or better, the luminosity of a
large number of stars in the Large Magellanic Cloud (LMC) and search for stars that undergo a
characteristic brightening due to a massive compact object passing near the line of sight and
producing a gravitational ‘microlensing’ effect, which is described in more detail below. Whatever
the results of this survey, the consequences will be important both for particle physics and
astrophysics. If some massive compact objects are indeed found, then this will give a strong
indication that there is less room for a diffuse gas of non-baryonic dark matter (like WIMPs) around
galaxies. This would mean that present searches for WIMPs are likely to be ineffective, because the
WIMPs density would be much lower than assumed in these searches. On the other hand, if such
compact objects are not found, then there is a strong incentive for all kind of WIMPs searches.

2. GRAVITATIONAL MICROLENSING

The idea of looking for massive compact objects through this phenomenon was first put forward in a
paper by B. Paczynski [2] and was recently reconsidered by C. Alcock during a seminar in Berkeley
(Nov. 89).

2.1 Description of microlensing events

When a spatially-small massive object (hereafter called a deflector D) happens to lie close enough to
the line of sight between a light source (a star S) and an observer O, then the observer collects more
light from the star than he would in the absence of this deflector. Moreover, the light comes to the
observer through two separate paths (on either side of the deflector, see figure 1). The closer the
deflector is to the line of sight, the larger the amplification is. This phenomenon, known as
gravitational microlensing, is due to the general-relativistic deflection of light by massive bodies.
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Figure 1 : the deflection of light by a massive object
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In the special case of perfect alignment of O, D and S, the observer should see a ring of light centred
on D (known as an Einstein ring). The radius Ry of this ring is given by R02= 4GMd/c?, where G is

the Newton constant, M the mass of the deflector, c the speed of light and d a distance such that
1/d = 1/dgp + 1/dps. This radius Rg sets the scale for all distances perpendicular to the line of sight,
and is thus a convenient unit. As an example, for a 1 solar mass deflector, situated 10 kpc from the
Sun (1 kpc = 1 kiloparsec ~ 3.1 1016 km), and for OS = 50 kpc (distance of the Large
Magellanic Cloud), the Einstein ring radius is Rg ~ 1.4 109 km.

If the projected position S’ of S in the plane perpendicular to OD containing D lies within a circle of
radius Rg centreed on D, then the light from the star S collected by O is amplified by a factor larger
than 1.34 (this corresponds to a brightening of the star by more than 0.32 stellar magnitude).
Figure 2 shows the amplification factor as a function of the distance DS’ (measured in units of Ry).

This amplification factor is given by
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Figure 2 : light amplification versus the distance DS', measuredin units of R,
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In any realistic case, the two light rays come to the observer at arelative angle that is very small (less
than 0.002 arc second). Thus, the two rays cannot be resolved and the only noticeable effect for the
observer is the brightening of the source star.

Given the fact that the alignment has to be very good between the observer, the source and the
deflector to get a significant effect, the relative velocity (~ 200 km/s) of these bodies makes the
brightening of the star a relatively short time scale phenomenon. For the time and distance scales
involved, the relative motion of D with respect to the line OS is linear to a very good approximation.
Thus, the time-dependent brightening curve for a given impact parameter u; , is easily obtained from
the formula for A(u) (see figure 3 taken from reference [2]). The important characteristics of this light
curve are its symmetry, uniqueness (the brightening happens only once) and its achromaticity (the
brightening is identical, whatever the radiation length emitted by the source), in contrast to all the
known light curves for intrinsic variable stars. For brightenings larger than 0.32 magnitude, 56%,
92.5% and 98.5% of the events undergo a magnitude variation smaller than 0.50, 1.00, 1.50
magnitude respectively.
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Figure 3 : light curves of a microlensing event
( from reference [2] )

All these characteristics are exact only in the limit that the deflector D and star S are pointlike and
simple (no double star, for example). We now examine how they are modified when one of these
hypotheses fails.

- D cannot be considered pointlike when its diameter is larger than its Einstein ring radius Ry.
In that case, there is an eclipse of the star rather than a brightening. With the same numerical values
used above — OD = 10 kpc and OS = 50 kpc — and for a density of 1 g/cm3 for D, this is the case

for deflector diameters smaller than 0.5 km which are objects not accessible in the proposed search.
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- S cannot be considered pointlike when its radius, projected in the deflector plane, is
comparable to, or larger than 2xRg. In this case, there is no impact parameter for which the average
amplification is larger than 1.32. In practice, this excludes from the search using LMC the very small
deflectors (smaller than 10-6 solar mass) that may only be able to significantly amplify a too restricted
population of the smallest stars.

- If S is in fact a multiple star system — this is the case for half of the stellar systems — not
resolved by the observer, then if the components are very close (projected distance in the deflectors
plane d <<Rg), the light curve is not affected. If they are very distant (d >>R), one component will
undergo the brightening and the others will remain unaffected. Thus the relative light brightening will
be smaller than in the simple case and it may go unnoticed. If d ~ R, then each component undergo
different amplifications, giving a combined brightening curve that is more complicated than the ideal
one. Moreover, if these stars have different colours (different surface temperatures), the combined
brightening is no longer achromatic.

- If D is in a multiple system, then if the components are very close (d << individual Einstein

radii) then the light curve is not changed, if they are at distances comparable to the individual Einstein
radii then the light curve becomes more complicated (not symmetric) but remains achromatic, and if
they are very far away then the light curve is the same as when the deflector is simple.
We have also studied the possibility that the deflectors are grouped in clusters of the typical size of a
globular cluster (105 to 106 solar masses). Even in this case, there are enough clusters in the Galactic
halo in front of the LMC (at least a few per square degree) and we find that the components of the
clusters can be considered as independent deflectors, because their average mutual apparent distance
is much larger than their Einstein radii. The clusters as a whole may deflect light from the monitored
stars by an amount that is larger than in an individual microlensing event, but this has no observable
consequence because this global deflection varies on a time scale much larger than the observing
period.

2.2 The expected frequency of microlensing events
The probability that a star undergoes a brightening due to microlensing with an amplification larger
than 1.34 is simply the probability that the line OS crosses one of the zones of “gravitational

influence” of area nR02 associated with a deflector. Because this area is proportional to the mass of

the deflector, it is easy to see that, at any given moment, this probability is directly proportional to the
total mass along the line of sight OS (and independent of the mass distribution of the deflectors).
Using a common halo model thatexplains the observed Galactic rotation curve (311, we estimate this
probability to be 0.1 10-6, 0.5 106 and 0.5 106 respectively for stars at the Galactic centre, in the
LMC and in the SMC (Small Magellanic Cloud). For the case of deflectors of 1 M @ (one solar
mass), figure 4 shows the distribution of the ‘transit time’, period during which the amplification is

larger than 1.34. For deflectors of mass 1021 M g, the horizontal scale of this figure should simply

1 In this model, the halo mass is 8. 101! solar masses within a radius of 100 kiloparsecs.
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be scaled by a factor 10-". Assuming a halo made of objects of the same mass, figure 5 shows the
mean value of the ‘excitation time’ and the mean number of microlensing events expected for 106

stars monitored (in the LMC) during one year as functions of the mass of the deflectors.
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2.3 Backgrounds and physics summary

The main a priori background to this search is intrinsic variable stars. The requirements of symmetry,
achromaticity and uniqueness of the brightening, however, constitute a powerful tool to reject these
backgrounds. Also, the magnitude of a star brightened by microlensing should be identical well
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before and well after the observed brightening, and the maximum brightening has a very low
probability (1.5%) of exceeding 1.50 magnitude. We presently know of no type of variable star that
could simulate the signal being searched for [4]. In any case, all candidate stars should be monitored
for intrinsic variability following the observation of a brightening that is compatible with a
microlensing effect, and the old data available on such stars should also be checked.

To summarize, we have to look for characteristic star brightenings over a wide range of ‘excitation’
times. In the case of deflectors that are low mass stars (0.1 M @) or brown dwarves, the typical
excitation time is one month so that a few million stars should be monitored with the highest possible
sampling rate (at least every 10 nights) during several months. In the case of 106 M o deflectors,
about 60 000 stars should be monitored at least every 40 minutes during 20 days (see also figure 5).
Whereas in the first case, photographic plates are needed to obtain the necessary statistics, the study
of the second case requires less statistics but a more frequent sampling of star brightnesses and thus
shorter exposure time, so that CCDs are well suited. This mass range for deflectors seems to be the
largest reasonable one, because higher mass stars are luminous and would have already been seen
(except for possible black holes) and lower mass primordial objects would most likely have
evaporated since the time of galaxy formation.

The feasibility of such a project has been studied in detail with existing photographic plates (see
below) and leads to the conclusion that it is possible using the European Southern Observatory (ESO)
facilities in La Silla, Chile.

3. PHOTOGRAPHIC PLATES

3.1 Feasibility study

Two pictures of the Large Magellanic Cloud (LMC : 30 square degrees) taken 6.5 years apart with the
1 meter Schmidt telescope at La Silla (30x30 cm? plates) were analysed in order to study the
reproducibility of the luminosity measurement. These pictures were made in similar conditions (1
hour exposure time with a Red filter). They were partially digitized (20 cm2) in steps of 10 im by
the MAMA measuring machine at the Paris Observatory (MAMA = Machine Automatique 2 Mesurer
pour I’ Astronomie). The studied region, not too far from the bar of the LMC, is a quite crowded field
(5 to 10 000 starlike objects per cm? on the plate).

The algorithm defining stellar objects on these plates that is presently used during the digitizing
procedure at the MAMA is simple but rather fast. On the other hand, it is not ideally suited for star
finding in regions that are as densely populated as the ones we are interested in, and in the future it
will be necessary to develop a more efficient algorithm for the definition of the stellar objects. In spite
of this shortcoming, we have tried to match the objects that are identified on the two plates. The
comparison between the two plates is performed in a completely automatic way. One plate’s
coordinates are geometrically adjusted with respect to those of the other using, in a first stage, pattern
recognition based on the brightest objects of each plate. In a second stage, a converging fitting
procedure is applied, using a large number of objects unambiguously associated after the first stage.
After the geometrical adjustment has been done, a large proportion of the objects from the two plates
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can be unambiguously considered as images of the same star (applying the coordinates
transformation, the two images of a star coincide with a precision better than 7um). The proportion of
stars correctly identified in that way on the two plates is 66%. The remaining (missing) 34% are
explained by the already mentioned limitations of the simple star-defining algorithm that we are
presently using in connection with the MAMA machine.

Figure 6 shows the distributions of magnitude differences measured in the two plates for objects that
are correctly associated (in 4 adjacent intervals in a magnitude range of AM = 2). These distributions
are strongly peaked at values which are related to the small differences in the recording conditions for
the two plates. Their half-widths at half-maximum are less than 0.07 unit of magnitude. For a star in
this AM = 2 range, the probability to get a magnitude variation larger than 0.32 is 0.2%, which is
compatible with the expected rate of variable stars.

280
o =0.05

240 |
200 £
160
120 ‘

80 | |

0 F |

bl ,,J)s L -
2 0 0.2
ZONE 1

€0 o = 0.055
80 F

70 E

60 £

50 F

40 |

30 F ‘

20 F

0 F

0 jﬂﬂ"“—ﬂ

ZONE 5 ZONL 4

Figure 6 : ditferences of magnitude measured in two plates for stars
in 4 adjacent intervals in a magnitude range of AM = 2

This analysis was performed using the vectorial capabilities of an IBM 3090 machine, which makes
the calculations in less than 2 minutes (CPU time) for about 100 000 objects. From the data analysed
here, and given the fact that the algorithms used need computing time proportional to the number of
objects under study, one can estimate the amount of computing resources that will be needed for a full
comparison of two Schmidt plates. The necessary computing time amounts to 1-2 hours on an IBM
3090 and a disk space of about 0.5 Giga-octets is required.

In summary, this feasibility study demonstrates that an automatic program is able to analyse pictures
with at least 4000 objects per cm? so that the goal of monitoring a few million stars can be reached.



169

Moreover, we have achieved plate photometry that, in the region where the density-magnitude
relationship is nearly linear, is reproducible to 0.07 magnitude, well below the 0.32 magnitude
threshold that we have set for the search of microlensing events. Note that (possible) non-gaussian
tails in the magnitude variation distribution cannot be a problem because of the large sampling rate of
data taking.

3.2 The observing program
The observing program consists in recording about 50 plates taken at the 1 m Schmidt telescope of
ESO (La Silla, Chile) ; two plates are needed per night, one with a B (blue) filter and about 30 mn
exposure time, the other one with a R (red) or V (visible) filter and S0 mn exposure time. All these
plates should be taken during the next period of observation of the LMC (October 1990 to March
1991), with seeing conditions better than 1.5”, following a sampling schedule which allows for
covering the considered range of ‘excitation times’.

This program would allow us to look for microlensing event durations ranging from 3 daysto a few
months, with at least 5 points measured on thelight curve above an amplification by a factor 1.34.

In order to strengthen our conclusions, any candidate star should be monitored for intrinsic
variability, either using CCDs (see next section) or photoelectric photometry. We would also compare
these plates with already existing ones taken in the last few years and would probably ask for some
plates to be taken in the year following this program.

So far, we have not discovered any background effect that could simulate the signal we are looking
for.

4. THE CCD APPROACH

Present CCD performance makes them particularly attractive for photometric observations of a
relatively large sample of stars. Their main advantages are a high quantum efficiency, good linearity
over a wide dynamic range, an extraordinary stability and reproducibility and an intrinsic digitization.
However, the number of pixels remains small with respect to conventional photography (109 pixels
on a Schmidt plate). An array of CCD’s of reasonable price can offer a few million pixels. This,
however, is enough to cover the lower part of the massrange (106 M g to 104 M ).

We propose to build an array of 16 CCD’s which will cover an area of 20 cm2. The CCD’s
developed by THOMSON-CSF (THX-31157) can be arranged side by side on three edges to
minimize the dead zones. Each pixel is 22x22 pm2 and the total number of pixels is 3.7 106. This
CCD array can be mounted in the focal plane of the existing GPO telescope (Grand Prisme Objectif)
at La Silla, Chile, which has an angular field of view of 2° by 2° and provides pictures of 16x16 cm2.
Many more CCD'’s than proposed can in fact be accommodated, if necessary, at this telescope. In the
first experimental step with 16 CCD’s in the focal plane, it will be possible to register some 60 000
stars in an exposure time of about 20 mn. In the focal plane of the GPO, one arc second corresponds
to one CCD pixel. This pixel size is of the order of the dispersion given by the seeing conditions
which is quite an optimum. The only disadvantages of the GPO are its relatively small aperture
(40 cm), its relatively poor equipment (no automatic handling) and the presence of chromatic
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aberrations (currently under investigation). With such a telescope and with the 16-CCD array, we
would be able to cover the range 106 M g to 104 M ( for the massive compact objects of the
galactic halo.

Obviously, all the software presently developed for the photographic plate analysis can be used for
the CCD picture analysis.

5. CONCLUSIONS

The two complementary approaches will cover the range 10-1M @ - 10-4 M @ (using plates) and
106 M g - 10-4 M g (using CCD’s) for massive compact objects. Combining our CCD data with
another experiment equipped with CCD’s looking at the same region of the LMC (from New-Zealand
for instance) it would be possible to follow a complete light brightening curve of 12 hours to 2-3
days, corresponding to deflectors of mass around 10-3 M g - 104 M .

We believe that no known variable star could constitute a real background (uniqueness of the
occurrence, shape of the excitation curve, achromaticity). In the case of strong indication for a
microlensing signal, it would be necessary to compare the study of the stars in LMC with a similar
study of an equivalent population of nearby stars, the only difference between these two populations
being the optical depth of the halo. The discovery of the microlensing effect on a star, well separated
from the phenomenon of variability, would in itself be a beautiful achievement independently of the
related question of dark matter.

We believe that the proposed experiment is the most crucial dark matter experiment that can be done
with present technologies. The demonstration that the halo is made of massive compact objects rather
than a cloud of weakly interacting elementary particles would eliminate one big motivation for low
mass scale supersymmetry, destroy an industry of particle theorists calculating relic densities for such
particles, and motivate a completely new approach for triggering galaxy formation. On the other
hand, the demonstration that MCOs do not exist would provide good evidence that the halo is indeed
made of weakly interacting elementary particles.

Finally, while particle theory and cosmology have progressed over the last years through extensive
exchanges between theoretical astrophysicists and particle theorists, this experiment will cement a true
collaboration between experimental particle physics and astrophysics. We believe that the interplay
between particle experimentalists well familiar with the handling of large amounts of data and
astronomers well aware of star recognition problems is a unique and invaluable feature of this
proposed experiment.
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ABSTRACT

W e show in the present contribution how some statistical effects of lensing may yield unique
information on the distribution of matter in the universe and may even probe the relative
distribution of dark and visible matter. Such a goal may be reached provided detailed information is
known on the observed foreground matter lying in the fields of any of the test sources in a sample
of "standard candles".



172

1. INTRODUCTION.

Gravitational lensing is a unique tool for probing the distribution of matter in
the universe, and in particular to detect dark matter. This is due to the fact that
either mass or surface density directly intervene in the various gravitational lensing
effects, and that all levels of the hierarchy of structures, from compact objects and
stars to the largest scales may act as lens and as source for lensing.

But clearly, if gravitational lensing may be caused by all mass scales, the
observable effects which are expected from them vary with the scale. In the present
contribution, we shall consider some of these effects (which had been mainly
studied up to now in the frame of a study of lensing itself), from the point of view
of the information they may yield about the distribution of matter in the universe. A
particular weight will be given here on statistical lensing effects. Neither the
analysis of known multiple image configurations nor microlensing are considered
here, since they have been the subject of many recent papers and reviews to which
we send the interested reader.1-4)

2. VARIOUS LENSING EFFECTS.

The most common gravitational lens effect is luminosity magnification (or

attenuation), since it is encountered whatever the physical configuration, provided
it corresponds to a perturbation relative to the Friedmann-Robertson-Walker
background average universe. To this magnification is always linked a diameter
enlargement, since Etherington' s theorem5) ensures the conservation of B(I+z)4,
where B is the surface brightness and z the redshift, this result holding in any
Riemannian universe. It thus applies to various images of a same source (z=constant
= same expected surface brightness), and also allows to relate directly the
magnitude-redshift relation to the diameter-redshift relation into any universe,
whatever inhomogeneous. The diameter-redshift relation may be obtained in the
most general frame by solving the Optical Scalar Equations (OSE) which govern
the propagation of the cross sectional area of a light beam3.5-7). In this equation, the
effects of matter and energy (i.e. equivalently, thanks to Einstein's equations, of
geometry) on the light beam propagation come from two terms:
(1) A "matter" term, based on the Ricci tensor, which is often interpreted as
describing the converging effect of a smooth density of matter included into the
light beam. However it plays in fact a far more important role, since a lot of studies
have shown that it also yields the effect of a clumpy distribution of matter lying in
the light beam 8.9), and the average effect of a clumpy distribution of matter lying
outside the beam3). Though numerical simulations confirm this last result even for
large average amplifications8.10), unfortunately an analytical demonstration is still
lacking in this case, due to the fact that it corresponds to multiple lensing.
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(i1) A shear term, based on the complete Riemann tensor and mainly due to
individual masses lying outside the beam and to density anisotropy.

It has been shown in the most general way that the luminosity magnification
may be written under the form:3)

Amp = {(1-6)? -y} 4))

where x and ¥ reduce to leading order respectively to the matter and shear terms
obtained in Einstein linearized theory8.11). We recall that the matter term writes
typically:
k=220 ([pan < pea 154 @

where 6p is the density difference between the lens and the cosmological
background universe and is integrated inside the lens along the line of sight, L(z4) is
a characteristic function of the lens redshift and A is the so-called "optical
distance"3-12), which is a monotonic function of redshift . The final term is another
expression for the usual distance term written in terms of the angular diameter
distances:

Ad
DaDaslDs = 5~ L(za) [1- 3] 3)

The luminosity magnification due to shear by a point mass lens M is defined,
in terms of the lens-image impact parameter r , by a yterm which writes:

4G M c A4
=2 H—oL(Zd) [1- I] 4)

For very large scales (superclusters, filaments, sheets of matter and most
clusters of galaxies), "Ricci" luminosity (and diameter) magnification remain the
only lensing effect. Not being related to a morphological, spectral or variability
signature, it can be identified only by statistical methods. Two of them have been
particularly considered: Perturbation of the Hubble diagram of distant sources by
foreground matter,13:14) and change in the number surface density of galaxies or
quasars,3-10:15) with the corresponding selection effects which are implied by and
related to these phenomena.

3. PERTURBATION OF HUBBLE DIAGRAM BY FOREGROUND MATTER

It has been suggested several years ago by Karoji and Nottale13) that rich
clusters of galaxies magnify in a statistically significant way the luminosity of
background sources lying behind them. Their method consisted in dividing a
sample of standard candles into two sub-samples, those which lie behind a
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foreground cluster (B) and those whose light has not crossed any inhomogeneity on
its way to the observer (A), then in comparing the relative distribution in the
Hubble diagram of subsamples (A) and (B). The so-called "Hubble modulus™:

hm = log{cqoz+eqo2go-DI-1+(1429,2)121) - 0.2m Q)

is used for such a comparison, since it characterizes the deviation from the mean
Hubble line.

The effect was later confirmed on a sample of brightest cluster galaxies by a
direct comparison with the prediction from gravitational lensing expectation.14)
Each cluster in the sample was placed relatively to foreground Zwicky clusters in
the same field, so that the distance term D4.Dy45/D; (Eq. 3) could be computed for
each configuration. From the observed impact parameters the density term I&p.dr
was also estimated (to a multiplicative constant depending on the absolute density of
lensing clusters, which was assumed constant as a first approximation), so that the
matter term & could be estimated for each relative configuration (foreground
cluster/background cluster).

Note that most of the time the redshifts (or distance classes) of foreground
and background objects are different enough to ensure that they actually do not lie
at the same distance, but that anyway the form of the distance term (Eq.3) which
vanishes when the lens comes close either of observer or of source, ensures the
vanishing of the contribution of such configurations to statistics from the point of
view of lensing.

Another remark on which to stress here is about the validity of Zwicky
clusters for leading such a study. While the Zwicky catalog may indeed be criticized
if one is interested in the identification and analysis of individual clusters, since it is
based on counts made up to a given limiting magnitude and on number surface
density excess relative to the field, this method conversely implies that it is well
adapted to statistical studying lensing effects, in particular by large scale structures.
This is because it is surface density which intervenes in the intrinsic term of the
lensing formula, so that the same global effect will be expected from several
superposed small clusters ( lying at comparable distances) or from one rich cluster
having the same integrated density.

A third point to be made is that samples of brightest cluster galaxies, and
more generally the Hubble diagram of "standard candles"”, have been given up as
useful tool for cosmology, after the chess of the various attempts to get from it the
value of qo. However it is important to notice that the Hubble diagram keeps all its
value for statistical lensing studies. Indeed the rejection came from the fact that
evolution effects were finally understood to be far larger than the searched effects
of qo, thus preventing from its measurement. So the question here is the relation of
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evolutionary effects and g, effect to the statistical effect of magnification by
lensing. First, while luminosity evolution depends only on the source redshift, it is
one of the significant signature of lensing that it depends also of lens redshift and
lens density. No other physical phenomenon may lead to correlations between what
is thought to be intrinsic to a source (its "absolute” luminosity, when lensing is not
accounted for) and the properties of foreground matter which may lie at
cosmological distances from the source. Second the effect of g, is also fixed for a
given redshift, while a dispersion is introduced in the lensing effect for given
source redshift by the various configurations which may be encountered (lens
redshift, density and angular distance).

The final result was a significant correlation between the deviation from
mean Hubble line (Eq.5) and the expectation from lensing magnification (Eq.2).14)
Unfortunately, though the existence of the effect itself was established
independantly from the initially assumed value of g, (or 0,), several uncertainties
prevented from being able to state precisely at this stage on the amount of dark
matter required for it. In fact information may be gained by this method on both g,
and o, since g, intervenes in the Mattig relation, while the unknown density term in
the lensing formula (which is given by the slope of the regression line) is directly
proportional to 0,. The results are as follows:

*The high value of g, found for the whole sample (uncorrected for lensing),
qo=1.6, falls down to qo<=0.7 when only the "isolated" (i.e. unaffected by lensing)
subsample is taken into account. This is a first indication that a selection effect is at
work, since an all sky sample randomly distributed with respect to foreground
matter should not have its Mattig relation changed in the mean because of energy
conservation.

*The slope of the regression line (between the observed and expected deviations
from Hubble line) corresponds to an apparent value of £2,>=1. However this result
should not be taken for granted, since it can be shown that the slope is
over-estimated because of a selection effect. Indeed the KSW brightest cluster
galaxies lie in regions of the sky where the number density of foreground Zwicky
clusters is 2 to 2.5 times larger than for the average catalog and where the Zwicky
clusters are significantly more compact than in the average sky.

Finally, though our results are compatible with Q,>=1, such an
interpretation does not take into account the selection effect which has been actually
evidenced independantly. On the contrary the choice ¢,=0,<=~0.2 combined with
the expected bias consisting in a preferential selection (precisely due to luminosity
magnification by lensing) of clusters situated behind the richest foreground
clusters, allows a complete interpretation of the whole set of data. We conclude that
the method should now be extended to other samples of galaxies and clusters, which
we intend to do,16) and that it will become really efficient as a probe for the density
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of the universe only once one succeeds in quantifying precisely the selection effect
by gravitational magnifications.

4. PROBING THE DISTRIBUTION OF DARKMATTER FROM LENSING.

One of the main problems of present observational cosmology is the precise
distribution of dark matter. We are now convinced that indeed most of the mass
(more than 90%, i.e. £2,=0.1, maybe 99%, i.e. £2,=1) of the Universe is dark, but
we still dont know whether it is distributed like the visible matter or in a completely
different way. Answering this question would be relevant in the understanding of
the nature of the main constituents of the Universe. In particular the extreme case of
a completely uniform density of WIMPs with =1 added on £2=0.1 baryonic matter
distributed as light is, would be extremely difficult to detect.

We propose herafter a test of such a distribution using the comparison
between dynamical measurements and lensing measurements of masses. It is based
on the theorem of energy conservation for gravitational magnifications. It was
established globally by Weinberg!7): On the whole 47 sphere, amplifications are
balanced by attenuations such that the Mattig relation is correct in the mean, and
then locally by Nottale3): the same result holds into any cone bounded by
Friedmann-Robertson-Walker null geodesics. To lowest order, this happens for
cones resting upon domains of the Universe into which the total mass equals that
which would have been found in a totally homogeneous Friedmann model of same
average density.

This result comes from the fact that the part of the matter term which is
intrinsic to the lens writes Jép.dr in the hereabove formula for « (Eq. 1 and 2), i.e.
one should integrate not over the density in the lens, but over its departure from the
mean cosmological density, 5p=p—po(/+z)3. On the contrary the measurement of
masses by dynamical methods is a local one and will not take into account a possible
very large scale component showing no density gradient at the scale of the lens. In
fact we find that both measurements would be related, for a mass My, contained
into a radius r, by the formula:

4 16p.dr =6 M9n (1.(py )23, ©

This means that when the dynamical method measures My, the lensing
method measures in fact My, [1-(po/p)2/3). Assume now that we compare the
average luminosity of sources situated behind such a lens (B) to reference sources
(A) whose light has travelled in the average background universe on its way to the
observer (following the Karoji-Nottale!3) method) and that we find that they are
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magnified by a given amount: {log(cz)-0.2m}B > {log(cz)-0.2m}a. From this
magnification one may deduce the mass of the lens.

When computing this mass, most authors use the uncorrected (thus non
energy conserving) formula. It is clear that indeed the corrective term [1-(py/p)?/3]
plays no role when the lens is a galaxy or a rich cluster of galaxy, for which
Pright>103p,tighr. Whatever the value of £, even if it is as large as 1, one gets in
these cases p/p<<I and the usual uncorrected formula holds.

Now if the lens is a supercluster or an edge-on filament or sheet of galaxies,
one may still obtain detectable amplifications thanks to the large distances over
which the density is integrated; it has been shown3) that the thin lens formula still
holds in this case. But now the eventual existence of a very large scale component of
dark matter would play an important role. Assume for example that the density of
visible matter in the lens is found to be 10 times the mean visible matter density of
the Universe. An additional very large scale flat distribution of dark matter
corresponding to £2y=1 would imply that p/p,=2 instead of 10, and the use of the
uncorrected formula would yield a discrepancy by a factor of =3 between the
dynamical and lensing masses, while they would agree if £2,=0.1.

Another way to look at the test is to remark that the corrective term may
become so important, that while a significant detection of a statistical effect of
magnification by large scale structures would be expected from their observed
density if dark matter is distributed as light is, it would become unobservable for
large 2 and strong bias. So the fact that such effects do exist in a statistically
significant way (on brightest cluster galaxies!4) and absorption line quasars3)) goes
in the direction of the exclusion of a strongly biased distribution of dark matter, in
particular in the case £2,=1. But this case would also encounter strong difficulties in
the hypothesis of light exactly tracing matter.

Indeed it has been remarked already several years ago!2.18) that, under this
last hypothesis, even in the case £2,=0.1 the richest Coma-like clusters of galaxies
may produce, when placed at optimal distance for lensing (i.e. z4=0.3-1, which
yield a maximal value for L(z4)=0.2) a matter x term which reaches the critical
value « =l i.e. very large magnifications. For example one gets for an isothermal
lens:

4G M 1 Mpc
o [.[540 dr] =[m] [_r;o_] ™

where M is the total cluster mass included into 3 Mpc radius and rp is the line of
sight impact parameter. With a 200 kpc impact parameter and maximal L4=0.2, one
gets k=M/10'5 M, while the total mass of Coma, assuming light tracing matter and
£y=1 is M=1016M,, (from an average density in 3 Mpc radius estimated to be 2000
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times the cosmological density). So even with £2,=0.2, one would get a
magnification of 1 mag. behind such a cluster, thus significantly perturbing the
Hubble diagram of more distant objects. Then we argue that if £2,=1, such an effect
could be obtained from lensing clusters =5 times less rich than Coma (i.e. Virgo-
like), which seems to be excluded from the present status of observations.

5. CONCLUSION

We have been concerned here with the possible use of some statistical
gravitational magnification effects in order to probe the distribution of dark matter
in the Universe. The present status of data does not allow yet to reach a firm
conclusion. However we believe that these methods may become in a near future
very good tools for this aim, once progress are made concerning:

(i) The quantification of selection effects due to lensing. This implies in particular a
better theoretical understanding of the statistics of lensing by all scales of the
hierarchy of structures.

(i) The increase of data, concerning in particular the observed distribution of
foreground matter around any source of a test sample. Such information is now in
progress, for example for a sample of very distant galaxies!9), and is also relevant
to point i).
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ABSTRACT

Arcs and mini-arcs (hereafter “arclets”) are gravitationaly distorted images of
high-redshift background galaxies, lensed by a rich foreground cluster of galaxies.
The study of these distorted objects should give informations on the evolution of
galaxies, the dark matter distribution in large scale structures and the cosmological
parameters. The observation of these very faint objects is extremely difficult but first
results have already been obtained on the richest clusters of galaxies. In 50% of the
cases, arcs and/or arclets have been detected leading to the measurement of some
new arc redshifts. The analysis of A1689 by Tyson confirms how powerful arclets
can be for the understanding of the dark matter distribution in clusters and is very
encouraging for the continuation of the program of arc survey in clusters of galaxies
we started a year ago.
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Observing the arcs: introduction

During the last five years, two major discoveries opened a new field of investi-
gation in observational cosmology with particular implications for the understanding
of the dark matter distribution in clusters of galaxies, the large scale structures of the
universe and related cosmological problems. The first one is the observation of arcs
and arclets which were subsequently identified as images of background galaxies gra-
vitationally distorted by rich clusters''2%, and the second is the discovery by Tyson of
a rich population of faint blue galaxies, whose redshift is still unknown but probably
larger than 14,

Arcs and arclets : Soucail et al. 'and Lynds and Petrosian? first stressed the
strange shape of the unknown structures observed in a few distant clusters of galaxies.
Finally Soucail et al® identified them as images of lensed background galaxies by
measuring the redshift of the giant arc in A370 (2=0.724), twice as large as the
cluster’s (0.374). More recently, new arc redshifts were obtained®®, all of them larger
than the cluster’s, which confirms their gravitational origin.

In a second step, Fort et al.” announced the discovery of very faint blue extended
objects in A370. These structures are not as elongated and not as bright as the giant
arc and their very low surface brightness makes the measurement of their redshifts
quite hopeless (in the near future) with present-day instrumentation. However, the
comparison of their color index with model predictions leads to the reasonable
conclusion that they are located at redshifts larger than 1. Fort et al. concluded
that their distorted shape could be a gravitional effect of the cluster-lens.

The blue Tyson's population : in 1988, Tyson* mentioned the discovery of a
high density of very faint blue galaxies which roughly fill most of his ultra-deep CCD
frames obtained in empty fields. Tyson excluded the possiblity that these objects
are nearby dwarf galaxies and concluded that they are probably galaxies at redshifts
between 1 and 3 uniformly filling the sky at a magnitude By = 28.

Although these two discoveries were made independently, it rapidly appeared
that they were certainly related. This can easily be understood as follows : if we
assume that Tyson’s population is at redshifts larger than 1 and that a rich cluster
of galaxies is on the line of sight, one can predict that the cluster-lens should
distort the background galaxies, leading to the formation of a few number of giant
arcs and numerous arclets. We simulated this configuration in the figure. In this
example we randomly paved the sky with a single redshift distribution of galaxies
at z=1.2 and a projected density given by Tyson at a limiting magnitude of B j=28.
The typical value of the field of view (2’x 2’) is the expected one on 4m-class
telescopes with ordinary CCDs and the cluster is modeled using standard parameters
(710s = 1000 km/s,r. = 200 kpc,z = 0.23). The similarity of the resulting image
with what is observed in A2218 or A2390 is amazing and suggests several comments.
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Simulated distortion grid : the sources are assumed circular and randomly
distributed at a redshift of 1.2. The cluster-lens s at a redshift of 0.23 with standard
structural and dynamical parameters as ezpected for a rich cluster of galazies. The
cluster 1s composed of two potential wells located at P1 and P2. The opposite curvature
of the arc A is a direct proof that this cluster is bimodal.
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First, one can expect that a scientific program based on ultra-deep CCD-imaging of
distant clusters of galaxies will yield a wealth of new arclets, since the clusters must
act like gravitational lenses on Tyson’s population. Second, this large number of
arclets per cluster should efficiently probe the mass distribution of the cluster itself.
The simulations show that the distorted images are not randomly distributed but
closely follow the general shape of the projected mass density. This is rather clearly
demonstrated on the figure presented here, where the bimodal shape of the cluster is
recognized throughout the distribution of the arclets.

Deep CCD-imaging and numerical modeling are the tools we need for such a
program. However, some major questions immediately arise : what kind of astro-
physical information can we expect from the observation of arclets? Moreover, the
surface brightness of the faint arclets is about 28 — 29 arcsec™2, and one can question
the feasability of the observations and the methodology of the data reduction and
processing techniques. In what follows, we try to address these points which are now
our main concern in the framework of an ESO Key-Program.

Observing the arcs : why?

The study of arcs and arclets in clusters of galaxies can give informations on
the lens (rich clusters of galaxies), the sources (high redshift background galaxies)
and Cosmology (fundamental cosmological parameters).

The lens : in the case of small deviations, the deflection angle of a transparent,
spherically symetric and stationary lens is given by o = 4G/c? M(b)/b where b is
the impact parameter and M(r) the total masse contained within the radius r. In
principle, it should be possible to infer the potential well of the deflector from the
position and curvature of giant arcs. However, models suffer from a too large number
of unconstrained parametersand in practice numerous models can reproduce a single
giant arc, as in the case of A370. More interesting results can be expected when many
arcs and arclets are observed; from an analysis of the image distortions, it should be
possible to model the projected distribution of mass within the cluster. Furthermore,
if a high density of arclets is observed, we can achieve a real mapping of the mass
distribution with a typical spatial resolution of 10”, much better than the capability
of present-day X-ray satellites.

The sources : giant arcs are extremely amplified images of background galaxies.
Such a strong amplification occurs for sources located near a critical line of the
potential, where the merging of different images can take place. Due to these large
amplification factors, and by co-adding each pixel of an arc, we have an opportunity
to get high signal-to-noise spectra of very distant galaxies and compare them with
models of galaxy evolution. As these sources are ordinary field galaxies, this approach
has the advantage of studying an unbiased sample of distant objects. Unfortunately,
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the redshifts and spectral energy distribution of 3 arcs only have been measured to
date (A370 : z, = 0.724, A2390 : z, = 0.913, Cl2244 : z, = 2.35). However, using
together spectroscopic data and infrared photometry, first preliminary constraints on
galaxy evolution have already been obtained®.

In addition, the detailled observations of microstructures in the arcs can
constrain the shape of the source. In such a case, high resolution imaging, good
photometry, spectroscopy and modeling can be used simultaneously to infer the
morphology of the background galaxy.

Finally, it should be stressed that the number of arclets observed in rich clusters
of galaxies depends on the redshift distribution of background sources. Therefore, the
occurence of arclets is a direct test of the Tyson’s conjecture that his very faint blue
galaxies really are at redshifts larger than 1.

Cosmology : in the case of an isothermal sphere, the deflection angle can be
expressed as a = 41 (0yps/c)? Dis/D,s where o, is the line of sight velocity
dispersion, Dis and D,s are the angular distance from the lens to the source and
from the observer to the source respectively :

[(1 ~ Q2)(Gi — Gj) + (GiG? — G2Gy)]
B —z)(1-2)

D,‘j = 2/H0

with z; < z; and G; = /1 — fgz;

Therefore, « is independent of Hy and in principle, one can compute the value

of Qo.

However, this technique is strongly model-dependent and in fact quite hopeless
at present. Most of the observational problems related to the estimation of the one-
dimensional velocity dispersion can be bypassed if at least two arcs are detected
since the ratio a;/a; does not depend on this quantity. But the assumption of an
isothermal sphere is rather crude, and strong constraints on the structure of the
potential are needed before we can measure €0y with any confidence. Such constraints
might be obtained in a statistical way if a large number of arclets (one hundred or
so) are observed in the cluster.

Observing the arcs: where?

A priori, any cluster of galaxies could be a good lens candidate for the detection
of arcs and arclets. Indeed, all the distorted galaxies already observed are found in the
richest clusters. Although this could be interpreted as a selection bias (only the richest
distant clusters of galaxies are observed), it is obvious that the very rich clusters will
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be the best candidates : if we assume that Tyson’s distant blue galaxies are uniformly
distributed on the sky-plane, the number of arclet candidates (galaxies which can be
lensed) depends on the surface defined by the critical radius : Nypcrer < R2. In the
case of an isothermal sphere, R. = 47 (0},/c?) Dis/Dos Therefore N « of ! This
strong dependence on the velocity dispersion shows that only the very rich and dense
clusters will be excellent candidates. The strategy for cluster selection is then dictated
by the following criteria :

N, > 100 and oy > 1000 km/s and L, > 10 erg/sec
In addition : 0.15 < zjens < 0.8

In fact, not all these data are available but for a very small number of clusters
and in order to get a significant sample we generally relaxed the contraints and pre-
selected most of the clusters which satisfy two of these criteria. In such a case we
have built a cluster-lens catalog of about 60 clusters in both hemispheres.

Observing the arcs: how?

Although presently about ten of the observerd giant arcs are rather bright
structures, most of the arclets have extremely low surface brightness and their
detection requires special observational techniques and very long integration time.

The signal-to-noise ratio depends on the integration time t as follows :

[S/N] =Vt \/C S, € s, 10[-04{m—ns)]

with :
S'¢= telescope surface
€ = total efficiency of the instrument
sp = pixel area in arcsec?
pp= surface brightness of the object
ps= surface brightness of the sky

C = calibration contant

We have neglected the readout noise of the CCD.

For instance, using a low noise CCD with a 30 pixel-size at the Prime Focus
of CFHT (F/3.7) the detection limit for an object of surface brightness equal to 28
arcsec™? (S/N=3) is reached in about 5 or 6 hours!
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We can now summarize the technical requirements as follows : 4m telescopes,
low noise CCD and shift-and-add techniques during exposure to ensure confident
detection and accurate photometry. The same technique must be applied on a
comparison field since we try to detect an excess of distorted object in the cluster
field. Therefore no more than 2 clusters can be done completely during an observing
run. The cluster candidates have to be very good ones!

Observing the arcs: so what?

The various aspects described above form the starting points of a common
program of arc survey in clusters of galaxies in collaboration with other institutions
in the USA, the UK and Spain. Final results of such a long term prograin cannot
be expected before two years and no significant statistics about the occurence of
arcs and arclets can be given, mostly because the observed sample is too small but
also because the clusters have not been observed at the same limiting magnitude.
However, more than 10 rich clusters have a giant arc near their core® and about 50%
of our sample for which deep detection have been undertaken shows arcs or arclets.

The most interesting results were obtained by Tyson in A1689'°. In this cluster
more than 60 arclets have been detected. The radial distribution of the distortion of
arclets is null at the origin, slowly increases with radius before reaching a maximum
value at a typical radius R, and decreases towards a constant value at infinity. This
behaviour is expected if the potential is isothermal with critical radius R.. The
distortion is given by :

with £ = convergence and p = shear.
For an isothermal sphere £? = (1 — (R¢/2r)?) and p? = (R/2r)%

Therefore :

1 R2
D=Dg (14 = ——c
’ ( +2r(r—Rc))

This expression nicely reproduces the shape of the observed data in A1689; this
strengthens our hopes that arclet detection can be a new diagnosis tool for the mass
distribution in clusters of galaxies. The similarity between Tyson’s observation and
the distortion distribution expected for an isothermal sphere does not guarantee that
A1689 is an isothermal sphere. However, it qualitatively agrees with the X-ray map
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which shows for this cluster a rather smooth, circular and a centrally peaked emission
pattern .

For the time being, A1689 is the only cluster of galasies for which ultra-deep
CCD imaging in two bands is now finished. In the case of A370, although one giant
arc is detected as well as 6 small arcs or arclets, the photometry is not so deep and
the diagnosis about this cluster is questionable. The analysis will probably be more
difficult since it has an elliptic shape with possibly two density peaks located on
the brightest cluster members. The best candidates which are now our priority are
A370 and A2390 for which we do observe arclets and we have already measured the
redshifts of their giant arcs. The observation of a giant arc in addition to a lot of
arclets could be essential to properly recover the potential.

Observing the arcs: concluding remarks

In this paper, we reviewed most of the questions related to the realisation of an
“arc survey in clusters of galaxies”. All the observational and data reduction problems
are now understood and solved, except bad weather conditions! However, the ultimate
step remains the determination of the potential well of the cluster and the related
problem of the dark matter distribution. First attempts to model clusters with giant
arcs lead to quantitative results on the shape of the projected mass density and the
mass—to-light ratio. However, the number of model parameters is still too large and
several different solutions are possible using the same observational data (as for the
giant arc in A370). The most promising approach is probably a statistical analysis
of the distribution of arclets in these clusters. Arclets are numerous, well distributed
everywhere in the cluster field with a good spatial resolution. Their shape (distortion)
and position are strongly dependent on the mass distribution within the lens. This
is the reason why we are now working on the determination of this mass distribution
based on arclet statistics. In a first step we are studying the simplified case of a
spherically symmetric cluster. The basic questions are : is it possible to determine in
a unique way the projected potential from the arclets distribution and properties?
And if so, how many arclets do we need to find the mass distribution at a good
confidence level ?

The observation of arclets in distant clusters of galaxies suffers from the limiting
capability of present-day detectors and telescopes. It is obvious that new telescopes
such as the HST, ROSAT or the VLT are now the most promising tools for the
realisation of the program of arc survey in clusters and the mapping of the dark
matter distribution in large scale structures.

The “arc survey in clusters of galaxies” is an international collaboration between
the Observatoire Midi-Pyrénées (B. Fort, J.-F. Leborgne, P—Y. Longaretti, G.
Mathez, Y. Mellier, J.-P. Picat, G. Soucail), the Bell Laboratories (A. J. Tyson,
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P. Guhathakurta), Princeton (E.L. Turner) the Universitat de Barcelona (R. Pello,
Y. Sanahuja) and the University of Durham (A. Aragon, R.S. Ellis).
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ABSTRACT

We summarize here briefly the properties of the Giant Luminous Arcs in two clusters
of galaxies and the inferred distribution of the dark matter in these clusters. We refer
to earlier publications for details. We also summarize results from some preliminary
work on the reconstruction of the source producing the arcs. Finally, we comment on
statistics of the arcs and we discuss the expected relative probabilities of occurrence of
arcs with various sizes and shapes and the implication of these for observations.
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I. INTRODUCTION

Of the three candidates among the sample of about forty clusters of galaxies ob-
served by Lynds, Petrosian, and Sandage (circa 1976), the giant arc in one (Abell 370
at a redshift z = 0.373) is definitely a gravitational lens image of a more distant blue
galaxy with redshift z = 0.725 1), Two different spectra of the other well defined arc
in C12244-02 (redshift z = 0.328) show a single emission line at two different frequencies
implying widely different redshifts, = = 0.83 Dand z = 22 ¥. Even though both these
redshifts are uncertain, it is unlikely that this arc is not a gravitational lens image of
a more distant galaxy. No spectral observation of the little arclets in the third cluster
(Abell 2218) is known.

Among the various other arcs or arclets discovered subsequently, the redshift of the
one in Abell 2390 is 0.913, which again is larger than z = 0.23 of the cluster ¥). A list of
the clusters containing arcs and arclets can be found in the proceedings of the Toulouse
Workshop %). Assuming that all of these objects are gravitational lens images, we have
a sizable body of data to begin to study the phenomenon and to make deductions about
the sources, lenses, and cosmological structures. It is clear that a great deal can be
learned about the relative distribution of light and dark matter in clusters and about
the nature of high redshift galaxies. We will summarize the results obtained thus far in
Section II. The details of these can be found in various journal articles and conference
proceedings, especially the two on gravitational lensing °%). In Section III we discuss
a third but not so well understood aspect of the arc phenomenon, namely the absolute
and. relative probabilities of finding arcs with different lengths and magnifications.

The number of images known at the present time is too smallfor definite conclusions
about the statistics. Furthermore, there is considerable bias in the selection of clusters,
especially for the observations subsequent to the initial discovery of the two giant arcs.
The sample of clusters among which the first three cases were discovered is 'not an ideal
sample for the task of determining absolute and relative probabilities, but nevertheless is

somewhat unbiased because it was selected for some other purpose. It is estimated that
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about onein tenof the clustersin this sample showed arcs or arclets ). Thisisin conflict
with the simple estimate of one in hundred (or less) for having a source from a population
as numerous as galaxies align within one arcsecond of a cluster center. Such an alignment
is required for both the Abell 370 and CI2244 arcs "®). Even more troublesome is that
simple arguments indicate that for every arc with magnification greater than 20 (length
20" and width 1") one would expect about four with magnification greater than 10 and
around sixteen with magnification greater than 5. This is not what is seen. Among
the original sample we see two with magnification of about 20 and in one case several

arclets of magnification less than three.

II. DARK MATTER DISTRIBUTION AND SOURCE STRUCTURE

Most of the results on these aspects of the problem by us or others have been
published. Consequently, here we only give a brief summary of the results primarily
from our work ®) and those from other publications 1%*1) which have attempted a
detailed modeling of the two well delineated arcs in Abell 370 and Cl2244.

A) Distribution of Mass in Clusters

The following conclusions, listed in order of their degree of certainty, are obtained
from the construction of images that match the shape and size of the observed two arcs.

1. It is clear that one can state unequivocally that there is dark matter in the
cluster in the sense that the mass to blue light ratio M /Lg > 200M g/ Lghso in the
central parts of these clusters (i.e. within the radius of the arcs). Here hsq is the Hubble
constant in units of 50 km s !Mpc~!. This relation for the mass to light ratio can be
obtained from the fact that for a spherically symmetriclens at the radius of the Einstein
Ring r. (the critical line of the lens mapping at which the tangential magnification is
infinite) the mean surface density 5= M(r.)/mr? must be equal to the critical density
e = ¢*D,/(4nGD;D,;), where M(r) is the mass within the radius » and D,, D;, and
D,; are the angular diameter distances to the source, the lens, and between the source

and the lens. The critical density 3. describes the redshift and cosmological dependence
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of the models and varies by less than twenty percent for cosmological models with matter
and vacuum density parameters in the range 0 < Qe < 2, 0 < Qyee < 1, and by less
than fifty percent for source redshifts in the range 0.7 < z, < 2 (note that the lens
redshifts z; are well known). The total mass to light ratio, however, could be much
higher depending on the distribution of the dark matter outside the radius of the arcs.
This is why in some cases ®°'1!) much higher masses are derived.

2. The dark matter cannot be concentrated within or immediately around the
galaxies in Abell 370 and must be distributed throughout the cluster 1),

3. For distributions with finite central surface density ¥,, effective radius r,, and
total mass M o 5,72, the effective radius r, cannot be much larger than the radius of
the arc, 74, otherwise M and therefore M/Lg become excessive 8 and ¥, —+ ¥.. The
latter condition would have to be attributed to a coincidence. Furthermore, for larger
radius 7, the lens can be approximated by an infinite uniform sheet which produces
large radial magnification (thick arcs). This means that arcs with thickness less than
one arcsecond (as is observed after correction for seeing) can be produced only by a
smaller (therefore higher surface brightness) and more closely aligned source. All these
factors decrease the theoretical probability of obtaining highly magnified arcs which as
mentioned above is already lower than that observed.

4. For a singular isothermal gas sphere models (or for nonsingular models with a
core radius 7o << Tqrc) truncated at a radius Tmaz, Tmaez can be larger than 74, and
3, > Z.. The source size is then equal to the width of the arc independent of other lens
parameters. Because of this, the above difficulties can be avoided but 7,4, still must
be less than the extent of the X-ray emitting gas (> Mpc) for M/Lg not to exceed
1000M o/Lg. The severity of the difficulties can also be reduced by a nonspherical

distribution of dark matter '°'1) but with added free parameters for the lens model.
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B) Source Structure

The following conclusion can be drawn about the source structure.

1. The source behind Abell 370 must be a fairly elongated galaxy to produce the
observed deviation of the arc from circularity !'®) and the evident variation of the width
from West to East 1'11). This conclusion is based on models used for construction of
images ® and is evident from attempts to reconstruct the source from the detailed
distribution of the image surface brightness ).

2. The image construction of Cl2244 indicates the presence of a nearly spherical
source with fairly high surface brightness (uncomfortably high for a galaxy if the higher
redshift, z, = 2.2, turns out to be correct ). The well defined surface fluctuations %)
can be very useful for source reconstruction which is being carried out now. Whether
the fluctuations are due to the merging of two images for a triple source (a spiral galaxy
with well defined core and two arms ®)) or due to the merging of three images of a
double source or due to mini lensing by small invisible galaxies or clumps in the dark

matter distribution ® remains to be seen.

III. PROBABILITY AND STATISTICS

Let p(m)dm be the probability of magnification in the range m to m + dm and
P(m) = f,:o p(m')dm' the cumulative probability of magnification greater than m. Then
the rate of occurence of arcs or images with a certain magnification will be R(m) =
R,p(m), where R, determines the absolute value of the rate and p(m) describes the
relative probabilities. Both of these depend in a complicated way on the selection of
sources and lenses, on the structure of lenses, and on various cosmological parameters.

As mentioned above there are two difficulties with the interpretation of the rate of
occurence of the arcs. The first is that the expected absolute value of the rate for arcs as
highly magnified as the ones in Abell 370 or Cl12244 is lower than observed (calculated
value of R, is too small by a factor of 10 or larger). In a well defined sample (i.e. with

known surface brightness and magnitude limits for sources and known limits on clusters



194

of galaxies), the absolute probability depends on essentially two factors. The first is
the fraction of sky covered with sources within the chosen limits and the second is the
surface mass density distribution of clusters divided by the critical density . (i.e. the
distribution of central or mean surface densities 0, = £,/Z. or @ = %/%.). These
factors are not known very precisely and a detailed analysis of them is beyond the scope
of this report and will be treated in a future work. (Some elementary discussion of these
can be found in references 7, 14, and 15). We assume here that the discrepancy of a
factor of ten or higher in the value of R, can be resolved by better understanding of
these factors and the properties of the more complex lenses needed for modeling of the
arcs. Some of the discrepancy could also be due to statistical fluctuations associated
with small size samples or in other words there was some luck involved in the initial
discovery of the two well defined and highly magnified arcs ).

Bethat asit may, we concentrate here on the second difficulty, namely the relative
probabilities or the shape of the probability function p(m). The problem here is that for
simple lenses at m > 1 we expect p(m) o m~3 or P(m) «« m~2, so that P(5): P(10) :
P(20) = 16 : 4 : 1, which is not observed. In what follows we derive the probability
distributions for various lens models.

A) Spherically symmetric lenses

Following the notation in reference 8 we write the lens equation in terms of the

angles ¢ and 8 in the source and lens plane as

¢=0-4&©), (1)

where & is the deflection angle & multiplied by D,;/D, and is given by

Qu

1 L f-§
I 3 Y] 1]
- W/o( )v«lg_@‘zdo,_day. (2)
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For a spherically symmetric surface density distribution-o(8) = o,f(8/6,), & has only

a radial component with magnitude

M(D6)

6,1
- M6 °

&(0) ——/0027rf(0’/9)0'd0':

M, = n3.D?. (3)
w6

The magnification m of an infinitesimal source is given by the inverse of the deter-

minant of the Jacobian 6076(5:

R R (R DIl @

Here the first term on the right describes the inverse of the tangential magnification m,
and the second the inverse of the radial magnification m,.

1. Point mass lens (pm): For alens withall its mass M concentrated within a small
region about the center of coordinates @ = M /(M.0) and there are always two images
with magnification m™! = £(1 — 62/8*), where 0, is the radius of the Einstein ring and
the + signs correspond to the positive and negative parity images. Using equation (1) to
eliminate 6 and solving for ¢, we find 7¢? = w(M/M,)[(1 £ m~1)"1/4 + (1 £ m~?)1/4)2
which for m > 1 is proportional to the cumulative probability P(m) for each parity
image because all sources within this area will have magnification greater than m. For
m < 1, the solution with the minus sign is not possible (so that the positive parity
image cannot have m < 1) and our expression with the plus sign then corresponds to
the cumulative probability for having a magnification between 0 and m. Differentiation
of P(m) gives

Pom(m) = T2 m 3 (m ~ 1) /0(m — 1) + (m + 1)), (5)

Here O(z) = 1 for £ > 0 and is zero for < 0. The first term corresponds to the
contribution to the probability from the positive parity image while the second is the
probability derived for the negative parity image.

2. Isothermal Gas Sphere (igs): The isothermal gas sphere strictly speaking has

infinite surface mass density at the center. In this case the bending angle is @ = a, with
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a, = v2/(2rGZ.D;), where v = (2GM/r)}/? is the constant velocity dispersion. For
source postions ¢ < «a, there are two images but for ¢ > «, the negative parity image

does not exist. Following the above procedure we obtain the probability distribution
Pigs(m) = 2ma((m — 1)7*0(m — 1) + (m + 1)°). (6)

As shown to be the case for more general lenses 1416) both of the above probability
distributions vary as m~%for large magnifications .

3. Infinite uniform sheet (ius): If the surface density is nearly constant to distances
larger than under consideration, one can use the approximation §, —+ co and f(6/6,) -+
1 so that from (3) and (4) we have &@ = g, and m™! = (1 — 0,)%. Here for given o,
there is only one image with magnification m, = (1 — 0,) 72, so that p;,, oc §(m —m,).
In this case the actual probability distribution will be determined by the distribution
of o, (i.e. both &, and EC)IG‘”).

4. More general lenses : For more realistic lenses with finite values of £, and 6,
the deflection angle is expected to initially increase (like for a uniform sheet), to reach
a maximum (if the maximum is broad, the bending angle behaves like in an igs model)
and then to decrease while approaching the point mass case at large distances (6 > 6,).
The Gaussian distribution and the distribution termed simple (5) in reference 8 satisfy
this prescription. In general, if we write the deflection angle as

0

T (0/8,)"" @

a=oc

thenn = 0, 1, and 2 correspond to the tus, igs (non-singular), and $ models, respectively.
If we let §, — oo, we obtain the ius and if §, — 0, we have for § > 6, a point
mass model. The deflection angles (7) for n = 1 or 2 do not correspond to a specific
physical model (although their general shape is what one would expect from physically
reasonable mass distributions ) but behave smoothly (no singularities at the origin) and

the magnifications can be derived analytically. Indeed, the magnification equation (4)
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reduces to a cubic in z = »™ + r} with coeflicients that depend on a,, 6,, and the
magnification.

We will discuss these solutions in general since the detailed algebraic form varies
with n while the physical interpretation is essentially the same for all n < 2 or even more
complicated lenses with the same general behaviour described above. We demonstrate
that considerable deviation of the probability distribution p(m) from the simple mono-
tonic m~* dependence (such as in equations 5 and 6) can be obtained. Asis well known
and can be verified from equation 4, for a distributed lens such as that described by
equation 7 there are two critical lines. One of these, corresponding to infinite tangential
magnification, is at the Einstein radius 8, = 6,(d, — 1)}/, and the other correspond-
ing to infinite radial magnification is at a radius #,. The variation with § of the total
magnification (4) and the ratio of the tangential to radial magnification £ = m,/m, are
plotted in Figure 1 for n = 2, 0, = 1.91, and 6, = 1.2.

For source positions ¢ > ¢; = 61 — &(0:) there is only one image at § > 6,
with 6, defined by 6, — a(6,) = &(6,) — 6.. This image has magnification m < mmpin
and is primarily tangentially magnified so that £(6) satifies {(6) > 1. The probability
p(m) for this image is obtained by differentiating the area m$? with respect to m. For
0 < ¢ < ¢1, there are three images, one of which is described by the continuation of
the right branch in Figure 1 from 6, to 6., while the other two start for ¢ = ¢; at 6,
(with infinite radial magnification) and follow for smaller ¢ the two branches to § = 0
and § = 0, as § — 0 (as indicated by the arrows). We can evaluate the probability

distribution for these images from the respective areas in the source plane. We note

that, for n = 2, the minimum magnification occurs at Omin /0o = v/2(00 —1)/(00 + 2)
and m.}, = (0o—1)(c2+ 70, —8)/(270,). In general the minimum magnification mn;x,

is equal to m(6;) since both seperate the region at which there is one solution from the
region at which there are three solutions. For given m such that m > mm;n, there are
four solutions in the lens plane, so that four source positions give us contributions to

the probability distribution at these values of m. For m < m,in, the middle branch of
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Figure 1: Variation of total magnification m = m,m; (solid line) and the magnifica-

tion ratio £ = m/m, (dashed line) with position 8 of the images in the lens plane for the
model of equation (7) with n = 2 (see text Section III.A.4).

861
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Figure 1 does not contribute and there are only two contributions to the probability.
Thus there is a discontinous increase in the probabilty distribution at m > my, ;. This
discontinuity increases the cumulative probability P(mp,) by approximately a factor
of two over that which would be expected from a simple extrapolation of the m ™3
approximation.

The discontinuity in the probability is due to the presence of a distinct radial
critical line near which the images are stretched in the radial direction. However, we
are not interested in the probability of all highly magnified images, but only those
with large tangential magnifications. Therefore, to analyze the probability of producing
tangentially elongated images we must also consider the variation of magnification ratios
£, shown in Figure 1.

It is evident that tangentially magnified images (with £ > 3 so that the arc or
arclet will be distinguishable from a lenticular unmagnified galaxy) are associated with
image positions 8,,;, < 6 < 6; and have magnifications greater than muin. This is
precisely the region of enhanced probabilities. We therefore conclude that even with
the simplest realistic (not singular like those in items 1, 2, and 3 above) surface density
distributions the probability distribution could deviate from the m~3 law significantly
at high magnifications. It is clear from Figure 1 that by simple adjustment of the
parameter 8, and o, this enhancement can be optimized to produce its largest effect
near images of size ~ 20" (m = 20). To show this, we plot in Figure 2 the ratio of
probabilities p(20,€ > 10)/p(5) divided by the same quantity for a point mass as a
function of ¢,. (The ratio is independent of 6,). Note that for o, = 1.7, we get a higher
ratio than for the point mass. At even higher o, , mp, shifts to a lower value and
the probability distribution is enhanced at lower values of m so that the curve shows
a minimum at the value of o, which corresponds to a high probability of m = 5. It
would be important to ascertain if astrophysical data favors values of o, and 6, which

correspond to a large value of the above ratio. There is some evidence that the lower
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Figure 2 The ratio p(20,£ > 10)/p(5) is plotted versus @, for the lens model described
by equation (7) with n = 2. The ratio unity corresponds to the ratio expected for a point
mass lens (see text Section II1.A.4).
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values of o, are more likely. If so, the discrepancy between the expected and observed
relative probabilities could be decreased significantly.

B) Extended sources

The above probabilities are for infinitesimal sources and not accurate at very high
magnifications. In general, the source will be extended either by being a resolvable
source (when not lensed) or due to seeing. The maximum magnification of a tangentially
elongated image will be at ¢ = 0. At that position, the magnification, given by the
ratio of area of the image to that of the source, is My, =~ m0.60/m6¢p%, where §¢ =
80(1 — da/dfle.) is the radius of the source (assumed to be a circular disk) as would
be observed without the presence of the lens and 60 = 276./¢ is the observed width of
the image. If 60 and §¢ are approximately the size of the seeing disk 8,, Mz = 0./6,.
For reasonable values of the parameters o, and 6,, 8. =~ 30", so that the probability
curves are truncated at mpy,, = 30 with the cumalitive probability P(mmq.) added to
the value of probabilities just below m,, ., consequently enhancing the probability of
observing m & mp,,. This also will alleviate the above discrepancy.

We note in passing that the probability distributions break down at the other limits
(m — 1 or m — 0) as well. Otherwise not only the differential but also the cumulative
probabilities would diverge (see equations 5 and 6). This is of course not physical and
arises because of the assumptions of infinite thin flat planes for the source and the lens.
Small values of m correspond to large values of source and image positions ¢ and 6
while the small angle approximations used in deriving the lens equation (1) are valid
for ¢ and § < 1. Thus we can ignore the divergences at m — 1 or m — 0.

C) Non-spherical Lenses

We have so far discussed spherically symmetric lenses. None of the models used to
produce the giant luminous arcs were spherically symmetric since a spherically symmet-
ric lens will produce two arcs. The deviation of the absolute probability distribution
from the simple models due to asphericity in the lens is beyond the scope of this report.

Here we present only results from a simple numerical simulation which we have carried
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number of images

Figure 3: Differential probability distribution for a point mass (dashed line) and a
lens model with Gaussian surface density distribution (solid line) which produces a good
image of the arc in Abell 370 (from reference 8). The two curves are normalized at m = 8
(see text Section III.C).
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out using one of the lens models which is able to produce the observed arc in A370. We
move a source behind the lens and compare the number of images with different lengths
(or magnifications). In Figure 3 we show the result of these numerical simulations (solid
line) for a Gaussian mass distribution with characteristic size somewhat smaller than
the angular extent of the arc (6, < ..c). The dashed line shows the expected distribu-
tion for the p(m) o m ™ approximation. As evident, the probability for the complex
lens is higher by a factor of approximately 2 and the relative probability between images
of m = 10 to those with m = 20 is also increased by a factor of 2.

In summary we see that various factors in realistic lenses can enhance the prob-
ability of occurence of highly elongated images over that expected for simple lenses.
Whether these will be the correct explanation will require further theoretical work and
a larger sample of observed arcs and arclets.
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T i
ABSTRACT

The derivation of lower mass-bounds for primordial neutrinos constituting dark
matter in galaxies is discussed on the basis of the Tremaine-Gunn phase-space
constraint and extensions thereof. A number of problems related to the unknown
nature of the coarse-grained phase-space distribution are mentioned. It is also
shown how similar phase-space constraints can be applied to primordial bosons.
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I. THE TREMAINE-GUNN CONSTRAINT ON m,.

The idea that massive neutrinos could constitute the dark matter around galax-
ies seems to date back to a paper by Markov!) from 1964. Cowsik & McClel-
land® and Marx & Szalay® demonstrated, that neutrinos in a degenerate confi-
guration with particle mass of the order of 10 eV fitted well with observed
masses and radii of galaxy clusters, and several groups refined and extended
these calculations to describe galaxy halos as well, notably a series of papers
by Ruffini and coworkers calculating properties of degenerate spheres with zero
and non-zero temperature (e.g. ref.4).

A basic feature of most of these early investigations (and a number of
later ones as well) was the fact that a degenerate neutrino sphere at tempera-
ture T=0 has a mass-radius relation

M = L1x10"MoRm:5eg 2 (1)

where R,;;=R/10kpc, and m,3,=m,/30eV. Equation (1) assumes one flavour of
neutrinos and antineutrinos, and gx 1 is the effective number of helicity states.
A neutrino mass m,3>1, close to the experimental limit for electron antineutri-
nos (and for a time even a "measured" value), gives a nice fit to galaxy radii
and masses.

However, Equation (1) is not directly useful as neutrino halos cannot be
degenerate. The observational evidence for this is the fact that the density
structure of a degenerate sphere gives rise to a rotation curve which is far
from flat, as opposed to observed rotation curves. The theoretical reason is the
fact, that the primordial neutrino distribution function is far from degeneracy
when neutrinos decouple from equilibrium with the photons, at a temperature of
order 1 MeV. For dissipationless evolution it is not possible to compress neutri-
nos in phase-space (Liouville's theorem). The coarse-grained distribution function
relevant for dark halos is created by mixing of the fine-grained distribution
function, and one can quantify the distribution of coarse-grained phase-space
density by using the procedure described by Tremaine, Hénon & Lynden-Bell®
{see also ref.6). In particular, the maximum coarse-grained phase-space density
cannot exceed the maximum fine-grained phase-space density of the primordial
distribution, which is 0.5 in units of g/h®. This was realized by Tremaine &
Gunn” and used for deriving a lower bound on the neutrino mass in galaxies
assuming the coarse-grained neutrino distribution to be an isothermal sphere
with core-radius R, and one-dimensional velocity dispersion o. On the premise
that the central (maximal) phase-space density of the isothermal sphere should
not exceed g/h3, where a factor of 2 has been included to account for one fla-
vour of particles and antiparticles, they showed that
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m, > (38eV)ol{*R:14%g 14, )
where o100= U/IOOkms-l’ and RclOERc/lokpC.

The Tremaine-Gunn limit has been applied to a number of galaxies by a
number of authors. "Typical" neutrino mass limits derived for spiral galaxies are
in the range from 5-40 eV, whereas the presence of dark matter in dwarf
spheroidals (still a somewhat controversial issue on the observational side) would
correspond to limits in the range from 100-300 eV. For comparison the upper
cosmological bound for a single stable flavour® is m,<91.5eVQhgg’!, and the
experimental limit on the mass of the electron antineutrino is® 18 eV. Different
authors have drawn different conclusions on the viability of neutrino dark
matter from these numbers.

One should be aware, that the application of Equation (2) is subject to a
number of problems.

1. It is very difficult to subtract the luminous contribution from most rota-
tion curves, thereby isolating the dark matter contribution. Only a quite
small number of galaxies are modeled in such detail, that it makes sense
to extract well-defined parameters for the dark halo. Better observations
and detailed modeling have shown, that many of the galaxies for which
neutrino mass-limits have been published (including some used by the
present author) are unsuited for that purpose (e.g. references 10 and 11).

2. The dark matter is (by definition) not directly observable. The actual
coarse-grained phase-space distribution cannot be seen, and there is no
guarantee, that the assumption of an isothermal sphere, which is a basis
of Equation (2), is correct.!?'!®) In fact it is not even known whether the
dark matter has an isotropic velocity distribution. As discussed below,
deviations from isotropy may significantly change mass-limits, thereby
weakening the Tremaine-Gunn constraint.

3. If an isothermal sphere is assumed for the dark matter, there are still
problems related to the determination of the core radius and velocity
dispersion. Using measured values for the luminous component is not
necessarily correct. In fact there are good reasons for believing, that
the dark matter is more extended than the luminous matter, so use of the
luminous core radius makes the neutrino mass limits too strong. Similar
problems relate to the velocity dispersion. For instance the neutrino
mass determined from dwarf spheroidals may be reduced to acceptable
values if the dark halos are much more extended than the stellar com-
ponent.”"“'ls)

4. Finally one should incorporate knowledge about the complete fine-grained
distribution function, and the corresponding bounds on the coarse-grained
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distribution, instead of only comparing maximum phase-space densities.
An attempt in this direction was made by Madsen & Epstein'?), who intro-
duced the concept of a maximally compact sphere of neutrinos consistent
with the neutrino distribution function at decoupling and the spherical
Jeans-equation (the construction is not a steady-state solution, but
nevertheless gives useful instantaneous limits).

The effects of anisotropies in the velocity distribution can be illustrated by
means of a simple example taken from ref.17. Consider dark matter with a dis-
tribution function of the form

f(e,L) = constantxL-2%gn"3/2, (3)

where ¢ and L are the relative energy and the angular momentum and n and «
are constants. These are the generalized polytropes first introduced by Hénon.!®
Spherical systems with «>0 have diverging densities in the center. Systems with
a=0 are the usual isotropic polytropes, and for these n=3/2 is the degenerate
sphere. For a<0 transverse velocity dispersion dominates, and the configurations
are shell-like with zero mass-density in the center. Fixing the maximum phase-
space density of the particles (to equal the maximum of the primordial fine-
grained density, which cannot be exceeded during dissipationless evolution), one
gets the interesting result, that all solutions with n>3/2 and «<0 have larger
masses for fixed radius and particle mass than the degenerate sphere. Most of
this mass is situated at large radii. It is not claimed that 'the dark matter is
described by generalized polytropes, but the example serves to illustrate, that
anisotropic systems can be more massive than isotropic ones, thus relaxing con-
straints on particle masses. Furthermore most of the mass could be situated at
large radii without "spoiling" the inner parts of the rotation curves, that are
more easily explained by luminous material.

Anisotropies in the velocity distribution can be dealt with in many different
ways. For instance Madsen & Epstein'®) used an equation of state approach to
model the most compact distribution of neutrinos that could be constructed for
different degrees of anisotropy in the outer regions of halos. The equation of
state approach does not give time-independent solutions to the Jeans-equations,
but gives an instantaneous conservative limit on the neutrino mass. Recently
Ralston & Smith’® have approached the anisotropy-issue from a somewhat dif-
ferent point of view.
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II. BOSON MASS LIMITS.

It is worth stressing, that it is not the Pauli principle, but rather the non-
increase of the maximal occupation number during dissipationless evolution that
lies behind the Tremaine-Gunn constraint. At first sight the difference may
only seem to be a factor of 21/4, but the logical difference is important. Thus a
gas of bosons with zero chemical potential obeys no Pauli principle, and there
is no maximum occupation number. The latter point led Tremaine & Gunn’ to
conclude that consequently similar constraints did not apply to bosons. However,
as nicely illustrated by Tremaine, Hénon & Lynden-Bell,” there are restrictions
on the evolution of the complete phase-space distribution, not only the maximum
occupation number, and this results in boson mass-limits very similar to those
for neutrinos, as was recently shown by Madsen® [Turner?® briefly touched
upon related ideas in connection with thermal axions]. The crucial difference is,
that the boson-limit is statistical, i.e. it must be applied to a sample of galax-
ies.

Primordial bosons decoupling from thermal equilibrium in the relativistic
regime have an occupation number distribution of the form
fer(P)=1/(exp(pe/kT)-1), where p is the momentum. (This assumes zero chemi-
cal potential; more on non-zero chemical potential and non-relativistic decou-
pling below and in ref.6). fgz diverges for small momenta, but the important
poirt is, that only a very small fraction of the particles have large occupation
numbers. Less than 10% of bosons decoupling in the relativistic regime have
fine-grained phase-space density exceeding 0.8g/h%, and less than 1% exceeds
4g/h3. Dissipationless mixing allows an increase in the fraction of particles that
may end up in regions with (coarse-grained) phase-space densities exceeding a
given number. The detailed fine- and coarse-grained distributions are given in
ref.6, calculated on the basis of the mixing theorem recipe in ref.5. In the
case of relativistic decoupling, the coarse-grained phase-space densities
corresponding to 10% and 1% of the particles are 2g/h® and 6g/h3, representing
only a mild increase relative to the fine-grained distribution. The mean value of
the occupation number is 2.4 for the densest 10% fraction. Notice that these
numbers are not very much higher than the maximum value 0.5g /h® for the fer-
mion distribution.

Parametrizing the "typical" boson fine-grained phase-space density as Tg/h3,
and comparing this to the maximal coarse-grained phase-space density for an
isothermal sphere, one obtains a relation very similar to Equation (2), putting a
lower bound on the boson mass of

my > (38eV)ojhjiRalirg /4 1/e, (4)
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Since only the fourth root of T enters in the mass-limit, the limits derived for
bosons are only slightly smaller than the corresponding limits for fermions. This
holds true also for non-relativistic decoupling, even though the relevant values
of 7 in that case may be several hundreds.®

The boson mass-limits derived from Equation (4) are statistical in the
sense, that they apply to a sample of galaxies (if one accepts the assumption of
an isothermal sphere for the coarse-grained distribution; of course all the prob-
lems noted above in the neutrino-case apply for bosons as well). For fermions
the existence of a maximum occupation number means, that Equation (2) can be
applied to individual galaxies, but for bosons some halos might be constructed
from extremely high-occupation-number bosons. However, as 10% or more of the
dark matter must be incorporated in galaxy halos, on the average the halos
must consist of low-density bosons. Selection effects can thus be avoided by
using large samples.

Zero chemical potential is an extreme situation. If bosons are their own
antiparticles and annihilate into photons, they must have u=-mgze?, and in gen-
eral the chemical potential of a boson able to annihilate with its antiparticle
into photons must have -2mge?< u=0 (restmass-terms are consistently subtracted
in the definition of energy and chemical potential). Thus in most cases w#0,
and so the occupation number has a maximum of 1/(exp(|u|/kT)-1), calculated
at the decoupling temperature. This number can be set equal to + to get a
firm, "non-statistical" mass-limit, but "statistical" limits based on the complete
distribution function will still be much stricter for relativistic decoupling. (This
is because a non-zero chemical potential is limited by -2mge?<wu=0 so that
u/RT is small at the relativistic decoupling temperature. For the same reason
the "statistical" limits obtained from the full w#0 distributions are almost ident-
ical to those for w=0). For non-relativistic decoupling the non-statistical mass-
limits are of more use, but again one should notice that if bosons are distinct
from their antiparticles, u/kT can be very small for either boson or antiboson.

At present only the axion seems to be a respectable bosonic candidate for
the dark matter, and the limit above does not apply to the standard coherent
axion or axions from decaying strings, both of which are non-thermal in origin.
The limit applies only to thermal axions and other bosons once in thermal
equilibrium.
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I1I. CONCLUSION.

Constraints on the coarse-grained phase-space distribution that can be reached
by dissipationless processes from a fine-grained distribution at decoupling leads
not only to the well-known Tremaine-Gunn limit on neutrino- (fermion-) masses,
but also to rather similar limits for dark matter bosons. The boson mass-limits
are statistical in nature due to lack of a maximum occupation number (for zero
chemical potential); i.e. they should be applied to a sample of galaxies rather
than to individual galaxies. "Non-statistical" limits can be obtained for non-zero
chemical potential.

The limits given as Equations (2) and (4) above are however subject to the
important assumption, that the dark matter distribution in halos takes the form
of an isothermal sphere. As discussed in Section I, mass-limits are generally
reduced when deviations from this shape for the distribution function are taken
into consideration. But for order-of-magnitude estimates the equations give very
useful bounds on the masses of dark matter particles, be it fermions or bosons,
assuming only that these particles evolved dissipationlessly from a thermal
equilibrium distribution at decoupling.
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COSMIC RINGS
AS A CHUMP DARK MATTER CANDIDATE?
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Abstract.

FPor spontaneous symmetry breaking at mass scales comparable with the 10'¢ G.e.v.
range predicted for grand unification, the suggestion that a resulting network of cosmic strings
(i.e. vortex defects of the vacuum) might have been of of the superconducting kind would appear
to be excluded by the consideration that they would in that case have given rise to a cosmological
mass excess due to the formation of “cosmic rings”, ie. circular rotating equilibrium states
in which the energy of a string loop attains a minimum for given values of the conserved
charge number C and the topological winding number N whose product determines the angular
momentum quantum number J = CN of the ring. A tentative preliminary estimate indicates that
the critical symmetry breaking mass scale below which the resulting cosmic ring distribution
would be cosmologically unimportant is very roughly (within a few powers of ten) of the order
of 104 G.e.v. If the symmetry breaking actually occurs at a mass scale comparable with this
critical value the resulting cosmic rings could provide an important “chump” (i.e. charged ultra
massive particle) contribution to the dark matter of the universe. Such rings would typically
have charge numbers of the same order as those of ordinary chemical elements, ~ 102, and
their typical masses would exceed the relevant symmetry breaking mass scale by a factor of the
same order. The resulting ring mass estimate of ~ 18° G.e.v. is remarkably comparable with
previously claimed lower limits for the masses of chump dark matter candidates.
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The purpose of this communicationistodraw attention to a kind of “chump” that may
conceivably fulfil the conditions for being a cosmologically important dark matter candidate, but
that has so far received less serious consideration than it would seem to deserve, as the possibility of
its existence does not appear to have been conceived before the recent work of David and Shellard!}.
The chumps in question are the cosmic ringsthat, it now seems, would occur genericlym“] as ground
state equilibrium configurations of superconducting string loops of a broad category!lls! including
the various kinds proposed by Witten!®l and many subsequent workers as vortex defects of the
vacuum in field theories with spontaneous symmetry breaking. No such equilibrium states exist in
themore thoroughly studied case of non conducting stringloops, which in thelong run must decay to
nothing by gravitational radiation. However although electromagnetic radiation can initially bring
about even faster energy loss in the case of conduction string loops, the completion of their decay
will generically be prevented by the existence of non-vanishing conserved charge and topological
winding numbers, so that durable relics will be left over in the form of rings.

Davis and Shellard remarked{!! that for symmetry breaking at the order of the “grand
unification” mass scale ~ 10'® G.e.v. the ensuing relics would give rise to a cosmological mass excess
problem analogous to the familiar monopole mass excess problem. The present work contains a first
tentative estimate of the maximum symmetry breaking mass scale below which this problem would
not arise, so that the resulting rings would not necessarily have to be “inflated away” but might
conceivably be present as a constituent of the universe now. It turns out rather remarkably (as a
coincidence of conceivably “anthropic” significance?) that the consequent estimate of the maximum
allowable value for the typical ring mass is of the same rough order (to within the uncertainties
which at this tentative stage are of several powers of ten) as the lower mass limits that have been
estimated as being presently conceivable for “chump” dark matter candidates, being something
round about 108 G.e.v.

The possibility of “chumps” as an alternative to the more commonly discussed possi-
bility of “wimps”, meaning weakly interacting massive particles, for the role of the cosmologically
dominant intergalactic dark matter contribution, has been previous! discussed!”l®! without specific
reference to string loops. We use the term chumps as an abbreviation for charged ultra-massive
particles. The qualification ultra-massive is essential if the weak interaction restriction is to be
dispensed with, and is to be interpreted in this context as meaning not too far below the T.e.v.
regime, depending on the relevant cross section. In order to be cosmologically important, particles
with more moderate masses, in the G.e.v. regime or below, must have such a high number density
n that the weak interaction qualification is necessary, to ensure that their scattering cross sections
are small compared with the geometric cross section of an atomic nucleus, which is necessary for
their collision timescale to be long compared with the age of the universel’). In the case of elec-
trically charged particles, even though they would be expected to be shielded, the effective cross
section would be much larger, at least in the positively charged case for which the sheilding would
presumably be provided by electrons in a configuration of the familiar atomic kind characterised by
the ordinary Bohr radius scale, so that the corresponding minimum mass would be proportionally
increased. It is however to be born in mind that the charges and currents of conceivable kinds of
superconducting string loop do not necessarily have to be of the electrically coupled kind but could
well be of a neutral variety (such as that made familiar by the standard Glashow Weinberg Salam
theory) in which case the less severe limit, of the order of tens of G.e.v. rather than thousands of
T.e.v., would apply.
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When the cosmological temperature O drops to the critical value
O, ~m, (1)

where m ; is the relevant (provisionally unspecified) symmetry breaking mass scale (we use Plank
units with ¢ = G = h/27 = 1) one expects®l1%] the formation of a network of string defects with
initial collective mass density

prm S M, (2)

where £ is the relevant correlation length of the phase transition and
ne ~E;° 3)

is the number density of disconnected string loops, which one would expect to be formed with
typical length of the order of the minimum value £, and hence with typical loop mass given in
order of magnitude by

M, = m*es, {4)

both the mass-energy per unit length U and the tension T of the string being expected to have
comparable order of magnitude given by

Uszmzz. (5)

A relatively small number ofloops with exceptionally highlength L >> £, would also be expected to
be formed, both during the phase transtion and later on as the result of self intersections of infinite
strings whose initial contribution to the collective mass density of the network would be expected
to be of the sameorder as theloop contribution'!). Such exceptionally long loops are the only ones
that survive to much later times in the standard non-conducting cosmic string scenarios!*® in which
the initially numerous small loops are predicted to decay to nothing by gravitational radiation.

In the case of conducting string scenarios there is a major qualitative difference that
was entirely overlooked in earlier discussions!!?l{13! having been first recognised only comparitively
recently by Davis and Shellard!!]. The essential new feature is that tife conducting string loops are
characterised by a pair of independently conserved phase and charge quantum numbers N and C say,
whose values, provided they are both non-zero, can be expected under very general conditions!!I121i3]
to determine a corresponding classically stable ground state in the form of a rotating ring with a
non-zero minimum mass-energy M(C, N). This means that while some of the string loops present at
later times will still belong to the minority formed during the phase transition with length L >> £,
or else will be loops formed later onby intersections, the numerically dominant contribution at much
later times characterised by a cosmological temperature ® << @, can be expected in the conducting

case to consist of loops belonging to the initially dominant majority with mass density
p=Mn (6)

where M is a characteristic mean mass of the individual ring states that are ultimately formed, and
n is their number density whose magnitude may be estimated directly from (3) by application of
the appropriate redshift factor, giving

n e (0/0,)n,. (M
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The question that isofinterest in the context ofthe dark matter problem is t o compare
the cosmic ring density p with the cosmological closure density p, say at the same temperature O,

which will be given by
pe = m0° (8)

where the mass scale m. is defined as the mass per black body radiation photon that would be
required for cosmological closure, which is which is observationally known to be given in rough
order of magnitude by m. = 1072¢ (= 1072 e.v.).

In order to evaluate the all important closure ratio

rM -
P GLD ®)

(which can certanly not be substantially in excess of unity, in order for us to have escaped premature
collapse of the universe) let us start by considering the conditions determining the likely value of
the typical cosmic ring mass M.

For a single isolated cosmic ring of radius r the mass is given[®I®l in terms of the
energy per unit length (in the locally preferred corrotating frame) U and the corresponding tension

T (which will be given as a function of U by a model dependent equation of state) by the expression
M = 2ar(U +T), (10)
the corresponding angular momentum value, J, being given by
J = 2rr2(UT)/2. (11)

The derivation of these equations is based on the assumption that the gravitational and electro-
magnetic self interaction of the ring on itself is negligible compared with the the direct mechanical
string tension and centrifugal forces, which will be true provided we have

U<<1 (12)

and
’<<T (13)

where I is the magnitude of the electromagnetic current in the string. In view of the relation (5)
between the magnitude of the mass energy per unit length U and the symmetry breaking mass scale
m, it follows from the presumption that the latter is small compared with the Plank mass, so that

the corresponding gravitational coupling constant satisfies
m,? << 1, (14)

(since the largest value thatone might reasonably wish to consider is the “grand unification” value
m.:2 &~ 10%) that there will never be any danger of violating the condition (12) for negligibility of
self gravitation. It also seems safe to assume that (13) will be satisfied except in rather exceptional
circumstances in view of the predictionl®l!!?} that the current in a superconducting string model

should never exceed a maximum given by

02 i mg? (15)
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where
B = I/e (16)

is the quantity identifiable![4ll%] in the “magnetic” case (i.e. when the current in the ring is space-
like) as the effective mass per unit phase winding number, as defined in terms of the corresponding
winding number per unit length v say by

p=dU/dv , a7

while e? is the relevant charge coupling constant, which in the electromagentic case will have the
moderately small value e? ~ 1/137. In a “magnetic” ring equilibrium state, these quantities de-
termine the ratio of the conserved charge and phase winding quantum numbers by a relation(?13]
expressible as

% = 27Ke, (18)

where the condensate function x and the characteristic speed of transverse perturbations c.. are
slowly varying functions of state given by

k=t =TV, (19)
14

with order of magnitude given by
KR Ky, ¢im1, (20)

where kg is the value of & in the zero currents limit, a quantity that is arguably the most impor-
tant single parameter characterising the qualitative behaviour of the string at a macroscopic level.
Although highly model dependent, the parameter ko might be typically expected to differ from
unity by at most a few orders of magnitude on dimensional grounds. So long as the magnitude
of the string tension T actually is comparable to the mass-energy per unit length U (to which it
would be exactly equal in the non-conducting case) in accordance with (5), the requirement (13)
will obviously hold automatically as a consequence of (15).

Several recent authors!!¥l11%} have demonstrated that in practice the condition (15) for
the current to remain confined within the cross sectional radius ~ m;! of the string is likely to be
unduly generous, the maximum current that can be carried in practice being more severely limited
so that the rough inequality symbol £ could most often be replaced by a strong inequality <<
in (15). Such “current saturation” effects will also!? give rise to lower limits on the value of the
tension T. It is nevertheless possible, albeit at the expense of considerable ingenuity, to contrive
particular superconducting string models in which the string tension can actually go to zero, and
for which as well as the normal cosmic ring type equilibrium states, it would also be possible to
construct an alternative strictly static (non-rotating and not necessarily circular) kind of equilibrium
statel18117] 'in which the condition (13) would of course be violated. (Such exceptionally occurring
static zero tension states have sometimes been referred to as “cosmic springs”, a term which is
rather misleading in so far as the concept of a “spring” is normally to be understood as implying
the existence of a restoring force tending to preserve a preferred configurations, whereas zero tension
string states are effectively “floppy” with no such restoring force, since any negative tension must
involve absolute instability [*l[4] except in the extreme case of a loop so small that the length L of
its circumference is comparable with the string cross sectional radius ~ m! so that its geometrical
configuration would be that of a torus so thick that description as a string would be inappropriate.)
If they occur at all, such zero tension static (“floppy” rather than “springy”) string states might
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conceivably be of cosmological interest, but the likelihood of this is very small compared with that
for the finite tension stationary (as opposed to strictly static) cosmic ring states which would appear
to exist as a generic phenomenon for all kinds of superconducting string model.

In order to calculate the exact numerical value of the ring mass M as given(21[3 by
(10), one not only needs to know the values of the conserved phase and charge numbers N and
C = Q/e (where Q is the total electric charge of the ring) by which it is specified, but one also
needs to know the equation of state giving U as a function of T (or of ») in the model. However in
the case of the angular momentum J the situation is simpler, since independently of the equation
of state one just has

J=CN. (21)

Without knowledge of the precise equation of state that is relevant, the best one can do is to use
the order of magnitude estimates (5) to evaluate the order of magnitude of the ring radius very
crudely from (10) as

e NGt (22)

and hence by (9) to obtain a corresponding crude estimate of the ring mass as
M = NY2C P, (23)

Having got to this point, it remains to form some opinion of the likely values of the
quantum numbers N and C themselves, which, if we assume that subsequent loop intersections are
not too important, will be given directly by their values during the phase transition whereby the
string loops are formed in the first place. For a provisional estimate, it would seem reasonable, on
the basis of a random walk argument, to guess that the phase numbers characterising a typical loop
would come out to be given very roughly by

N = (£./A)7? (24)

where Az is the phase correlation length of the charge carriers and & is the presumably much longer
vacuum defect correlation length as already introduced above; on the supposition that typical charge
carrier phase speeds are comparable with unity one expcts the conserved number ratio to be of the
order of the critical value!?Il3] c
— & 27MKg - 25
< ~amg (25)

We are thus tentatively lead to the crude estimates

ra (Kofz) 1/2mr—1 (26)
)‘r
and
M= (@55) Y2, (27
)‘J:
which gves m
L. M V22,1252~ (28)
Pe e

In the standard non-conducting scenario one expects in the long run to approach a
sparse string loop distribution that evolves in a self similar manner that is insensitive to the value
of the relevant correlation length £, during the phase transition, which in any case is restricted by
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causality to be less than the value R, of the Hubble radius at the time of the transition, which may

be estimated as
R, ~ 072 (29)

on the assumption that at thermal radiation dominates the dynamics of the universe at that stage,
this value of R, being commonly used as a conservative estimate for ;. However in a conducting
scenario the conservation of individual loops in the form of cosmic rings ensures that there will be
no such tendency to self-similarity, the ensuing distribution remaining at all stages very sensitive
to the value of £, as can be seen from its explicit appeareance in (28). It will therefore be of
importance to know whether £, is in fact comparable with the causal upper limit (29) or whether it
will be nearer the thermal fluctuation lengthscale which can be used as a first guess for the relevant

correlation length for the charge carrying field,
Ao =07 (30)

This lengthscale (30) wot.xld also be appropriate as an estimate for £, if the phase transition were
sufficiently rapid, and will obviously give a lower limit, the correct value lying somewhere in the
range

Ag < €z < Ry (31)

Taking account of the fact that the relevant cooling timescale is given directly by R
itself, dimensional considerations would suggest that an intermediate value given by a power law

formula of the form
£, ~ A, 0-2) g (32)

is likely to be applicable, with an index value somewhere in the range 0 < a < 3, provided that
the relevant coupling constants are not too far from unity. The plausibility of such a formula is
confirmed by a rough estimate of Kibblel® which, moreover, would appear to indicate that the
appropriate index value is given simply by « = 1.

Proceeding on this basis one obtains the very rough estimate

EI ~ 1,1,L;(1+c(/3)7 (33)

with
Ao mmg 7t (34)

Since such a crude dimensional estimate can hardly be expected to be accurate to within better
than a couple of powers of ten, it will not be very significantly different from the usual causal upper
limit estimate £, &~ m;? if the phase transition under consideration is that of “grand unification”
for which the appropriate mass scale is given by m; ~ 1072 (~ 107!® G.e.v.). However if the
relevant phase transition occurs at a much lower energy level, there will be an important distinction
between the more plausible estimate based on @ = 1 and the usual crude causal estimate which
corresponds to taking a = 3.
In view of the accumulated loss of accuracy in the successive steps taken so far, any
further loss of accuracy in assuming
Ko & 1 (35)

is unlikely to be important, so we shall adopt this further simplificaton from here on. Proceeding on
this basis, it can be seen that, on substitution of the values tentatively estimated above, one obtains
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as a first guess that the typical value of the charge and phase winding numbers in the product (21),
determining the residual value of the angular momentum in the ultimate ring equilibrium state of
the loop, will be given by

C~ Nwxmpolt (36)

The corresponding expressions for the typical radius and mass of the ensuing cosmicringstates will
thus be
T:mzAl—a/S (37)

and
M = m, =/ (38)

In order to give equilibrium configurations sufficiently extended to be considered as
thin classical “ rings” (as opposed to thick toroidal “vortons”!l) the product CN (i.e. the angular
momentum quantum number) must of course be large compared with unity. It is apparent from
(35) that this condition will be only marginally satisfied if the relevant phase transition is that of
“srand unification” with m, ~ 10~3, but that it will be satisfied by a large margin for conducting
string producing phase transitions at the very much lower energies that are the most that would
seem cosmologically allowable: it will be now be shown that a mass scale anywhere near as large
as that required for grand unification would correspond to ring production so prolific that (like
monopole production at a comparable energy scale) it would lead (as pointed out by Davis and
Shellardm) to premature collapse of the universe, which means that the appropriate field theory
must be such as to exclude the formation of such superconducting strings (and monopoles) or else
that if formed they are somehow “inflated away” so that whichever way it is, the phase transition
that would be relevant for the production of actually surviving cosmic rings (or monopoles) would
be one occuring subsequently with a mass scale m; having a considerably smaller value which we
shall now attempt to evaluate.

Substituting the above estimates into the formula (28) for the ratio of the ring distri-
bution mass density to the cosmological closure density gives

LN me " tm1+5e/6 (39)
Pe
This ratiomay certainly not substantially exceed unity, but should not be very much smaller if the
density of the cosmicring distribution is to be cosmologically significant. The phase transition mass
scale that is of interest from the point of view of these requirements is thus obtained as being given
roughly (in Plank units) by
mg &~ mS/(8+59) (40)

On the basis of the known numerical value m, = 10726 this works out very roughly, for the Kibble
value a = 1, as mg ~ 1071% ~ 10* G.e.v.

This critical mass scale (representing an upper limit on what is consistent with the
avoidance of cosmological mass excess in the formation of all except non-conducting cosmic string
varieties) is not to be confused with the typical mass M that is expected to characterise the resulting
cosmic rings themselves. Substitution of (40) in (38) gives for the typical mass of an idiviual ring
the significantly higher estimate

M = m (8-l (6+5a) (41)

which works out very roughly, for a = 1 as M = 10713 =~ 103 T.e.v.
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This expected typical mass thus obtained as a requirement for marginal cosmologjcal
closure is consistent, but only just, with the “ultra-massive” range that is required (to avoid the
observable consequences of excessive number density) for the the kinds of “chump” dark matter
candidate that has most commonly been considered in other physical contexts so farll18]. While
the mass is in this sense large, the associated typical ring radius r would nevertheless be small
compared with that of an ordinary atomic nucleus, being given by

e mc_(6+")/(6+5°‘) (42)

which, for @ = 1 works out as something like 10717 cm. This radius exceeds the microscopic cross
sectional radius of the string defect itself by a comparatively modest factor of the order of magnitude
of the winding number N and hence, on the basis of the assumption (36), also of the charge number
C, whose expected order of magnitude is obtainable from the foregoing results as

C = N =~ m,~°/(6+52) (43)

which is only very weakly dependent on a, working out numerically for @ = 1 as C ~ N =~ 102.
It is to be noticed, as another interesting (conceivably anthropic?) numerical coincidence, that the
charge numbers to be expected on the basis of the foregoing (admittedly rather tenuous) chain of
reasonning fall roughly within the same range as those of the familiar chemical elements, for whom
the upper charge number cut off is of course of the order of the inverse fine structure constant,
1/€? =~ 137 which is the highest value that can resist immediate discharge by pair creation.

I'am particularly indebted to Tsvi Piran, and also wish to thank Edmund Bertschinger,
Francois Bouchet, Nathalie Deruelle, Patrick Peter and Charling Tao for helpful discussions before
during and after the meeting.
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Abstract

In this paper we point out the possibility to use Nal(TI)
and liquid xenon scintillators as target-detectors to search
for WIMPs.
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1. Introduction

Due to the strong evidence!:2.3) that the "visible" matter
in the Universe is about two orders of magnitude lower than
expected by the dynamical analysis of astrophysical objects,
efforts are devoted to verify the "dark matter" candidate
solution. In particular, it was pointed out that this missing
mass could be justified by the existence of Weakly
Interacting Massive Particles [WIMPs(*)]4) and experiments
are in progressS:6) to detect candidates that interact by
elastic scattering on various target nuclei?.8.9). In this case
the recoil kinetic energy of the nucleus is the measurable
quantity. This recoil energy could be evaluated by the elastic
scattering kinematics10) of a WIMP - with My, mass and v

. N 1-cos6’
velocity - impinging on a M mass nucleus as: T=E; o )
with r=m‘;'—2, E1=§va2 and 6 the c.m. scattering angle. If

the WIMP velocity is equal to the virial one in our Galaxy
(v=10-3c) and My=10-200 GeV, the detectable energy is about
10+100 keV. Furthermore, assuming an isotropic ¢c.m. angular
distribution and a Maxwellian velocity distribution (with v, =
220 km/s parameter), the energy spectrum is:

dR R T . 1 2
Eﬁ=E—:rexp{— E—or} with Eg = EMWVO and Ro equal to the total

number of observed events.

(*) Notice that the LEP experiments has excluded a forth neutrino family and
agree with the "dark matter" silicium experiments in excluding some
supersymmetic new particles (possible candidates also as d.m. particles),with
masses of some tenth GeV. For this reason, also in the search of d.m. candidates
the interest is now to the detection of higher mass particles, i.e. to heavier
target nuclei (like those we propose in the following).



The "dark matter” particles could interact either by weak
coherent v-like vector currentsor by spin-dependent
strength9). The particles interacting through weak coherent
v-like vector currents, are elastically scattered from nuclei
by Z° exchange. In the non relativistic limit, the counting rate
can be obtained by the following cross section9):

2 2M2 — N
°=(2'13 x 10-35 5 %2v2)?hnvaih'>|,1)2 v (100]2
where Y is the mean value of the weak hypercharge, N is equal
to N-(1-4sin20w)Z with N and Z numbers of neutrons and
protons in the target nucleus and 6y is the Weinberg angle.
This formula does not take into account the finite size of the
nucleus that causes loss of coherence at high transferred

momenta, so that a correction factor is needed as pointed out
in ref. 11.

In case these particles interact by spin-dependent
strength, the cross section is proportional to J(J+1) where J
is the nuclear spin. Then, being J = 0 for even-even nuclei in
the ground state, any even-even nuclear state cannot allow to
detect axially coupled particles. However, notice that the
cross section values estimated in the literature are, in this
case, lesser than in the previous one9).

In table 1 we summarize the expected counting rate on
some target-nuclei®). As discussed in the following, we are
interested in using Nal(Tl) and liquid Xenon, looking to the
scintillation due to the recoil nucleus12.13).
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Table 1
A short review of typical orders of magnitude for the interaction rates 9).

Interactions with | candidate particles| target nuclei |l typical rates (kg! day 1)
nuclei
spin-independent: sneutrino; Al 150 (M5=10 GeV)
coherent weak heavy v Dirac G 700 (M3=10 GeV)
interaction Sn 1400 (M3=10 GeV)
Al 120 (Ms=100 GeV)
(e 1400 (M5=100 GeV)
Sn 4700 (M3=100 GeV)
spin-dependent photino; z-ino; Hy 5 (Ms=5 GeV)
higgsino; G 1.5 (Ms=5 GeV)
heavy Majorana v F 1 (Ms=5 GeV)
H 1 (Ms=17 GeV)
(e 0.3 (Ms=17 GeV)
F 0.4 (Msg=17 GeV)

Notice that most of the existing detectors for "dark
matter" are ionizing detectors built for other underground
experiments like double beta decay: i.e. germanium or silicium
detectors8) sensitive to recoil nuclei with energy greater
than ~12 keV. The typical background rate in these
experiments is: ~1 event kg-1 keV-1 day-1. Having zero spin
most of the isotopes in germanium and silicium, they cannot
detect axially coupled particles; furthermore, some technical
difficulties do not allow to build large dimension detectors.

Because the counting rate for WIMPs and target-nuclei
interactions is low, the most relevant problem is the
background rejection using low activity materials and
installing the experiments deep underground. It is clearly
important to use a large amount of target material.

Furthermore, a "dark matter" signal can be discriminated
from the background looking to: i) the annual modulation of
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the counting rate and of the energy spectrum; ii) the recoil
nucleus direction ( but not in the cases of scintillators); iii)
the energy spectrum shape, that gives the Eor value and an
estimate of the mass of the "dark matter" particle; iv) the
using of various target-materials and ,then, the different
cross sections for spin-dependent or spin-independent
interactions. In particular, working with scintillation
detectors the data could be analyzed looking to iii); i.e. the
experimental energy spectrum is compared with those
expected for various My and the agreement is verified by
best-fit methods8). An important confirmation could arise
looking for i) modulation.

2. Scintillators as target-nuclei

The scintillators could be interesting materials for “"dark
matter" detection, being cheap and easy to build with large
size, having good purity, a controllable light response and,
finally, opening a new set of target-nuclei (that in principle
could allow to explore also the axial coupling). In the
following, we will devote our attention to experiments with
low activity Nal(Tl) or liquid Xenon targets, where the
scintillation pulse by the recoil nucleus could be detected.

In fig. 1 the behaviour of the nucleus mean recoil energy as
a function of My in case of these materials is shown and
compared with those for germanium, silicium and hydrogen
(low pressure TPC). This figure clearly shows that the Nal(TI)
- operating with a few keV energy threshold - could allow to
detect "dark matter" particles with masses higher than 10
GeV, while the liquid Xenon become competitive when
detecting candidates with masses higher than 100 GeV.
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Fig. 1 - Mean target-nucleus recoil energy as a function of the "dark matter”
particle mass.

2.1 The Nal(Tl)

The Nal(Tl) has a high light response (that could allow a
high signal to noise ratio) and is able to reach a few keV
energy threshold13). The pulse height (i.e. the energy) due to
the 23Na recoil nucleus after elastic scattering with a 200
keV neutron has been already measured!3) to evaluate
(comparing the detected with the kinematic wvalue) the
relative ionizing efficiency; a value of 0.38 has been found.

To know how far the commercial large Nal(Tl) detectors
are from the requirements of a "dark matter" experiment, we
used a 3 Kg Nal(Tl) seen by an EMI9839B photomultiplier. This
detector was placed inside a 5 cm thick lead shield in the
Gran Sasso underground laboratory (= 3500 m.w.e.) for a short
period. In fig. 2a), b) and c) we show the response of this
counter to a 137Cs source (i.e. =~ 35 KeV X rays), to a 57Co
source (i.e. =130 KeV photons) and the underground counting
distribution. Because the ratio between high ionizing
particles and photons light outputs is about 0.5 in Nal(Tl), we



can assume that the response of a specially built crystal
could be good at least in the 30+200 KeV energy region.

C)

Fig. 2- a) Counter response to = 35 KeV X rays from '37Cs source; b)
counter response to = 130 KeV photons from 57Co source; ¢) counting
distribution deep underground.

In table 2 we report the expected rate for the "dark
matter” candidates we are interested in. It is clear from this
table that we need to use special low activity crystals and
photomultipliers, that will allow to obtain a background rate
< 5 cpd/Kg/keV (in this case, e.g. we could measure recoil
energy between 30 and 100 keV due to spin-independent
interaction of a 100 GeV mass "dark matter" particle).

Notice that Nal(Tl) could allow - in principle - to detect

also axially coupled particles, being the spin of the
3* 5+
fundamental state of 22Na > and that of '27| 5 but, we think

extremely hard to reach the background level needed to
measure such processes.
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Table 2
Measured "background" in a 3 Kg Nal(Tl) compared - as an example - with the
expected rates for 100 GeV mass spin-independent interacting "dark matter"
(the coherence factor was already taken into account)

energy range expected rates measured
(keV) for 100 GeV background
d.m. particles (cpd/kg/keV)
(cpd/kg/keV)

30-50 25.6 346
50-100 7.8. 778
100-200 0.70 864
200-300 0.02 691
300-400 - 605
400-500 - 518

2.2 The liquid Xenon.

We have already pointed out!2) the interest to use the
liquid xenon as target material because of its scintillation
properties; in fact, as in the Nal(Tl) case, we think that it
could be possible to detect the light pulse due to the recoil
nucleus.

The linearity, energy resolution and threshold value for
this kind of detectors are discussed in ref. 14; from the data
quoted therein one could think to work with a threshold
energy of about 15-20 keV and an energy resolution of about
12% at 122 keV. Furthermore, we remarks the high ratio
between the o and electrons pulse heights: (1.1£0.2) and the
low intrinsec background (radioactive nuclides <0.1 ppm);
however, we need to know the light response of the detector
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to the xenon recoil nuclei, i.e. to measure the relative
ionization efficiency at a neutron beam.

Now we are working on a 118 cc (i.e. about 61 liters of
gaseous xenon NTP) prototype!5). Because the wavelenght of
the scintillation light is in the far UV region, an efficient
light collection is a real problem; however, in our prototype
we collect this UV emission using UV photomultipliers
decoupled in vacuum from the detector UV windows. The gas
we utilize has 99.998 9% purity increased by a further
purification with oxisorb cartridge and a suitable high
temperature getter.

In fig. 3 the pulse shape recorded by a transient digitizer
LECROY 6880A from a 22Na source as seen by our detector is
shown.

o w e
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-100 — —

A I D B B
Q 100 200 300 400 500
t (ns)

Fig. 3- Pulse shape recorded by a transient digitizer LECROY 6880A from a
22Na source.

In fig. 4a) the expected counting rate as a function of Mw
and with various energy thresholds is shown, while in fig. 4b)
the expected counting rate as a function of the energy
released by the recoil nucleus, e.g. for Mw =50 GeV in three
different periods of the year (i.e. with mean velocities: 240,
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270 e 300 km/s) is reported. As mentioned above, the
presence of such an annual modulation could contribute to the
background rejection.

3000 —

3000 [—

2000

Rate {ev/kg/doy)

8)
1000

Mass (Gev)

dR/dT (ev/day/kg/keV)

T (kev)

Fig. 4 - A) The expected counting rate for "dark matter" detection. in liquid
xenon (corrected for loss of coherence) as a function of the particle mass in
case of various detection energy thresholds: a) no threshold; b) 5 keV; c) 10
keV; d) 20 keV; e) 30 keV; f) 50 keV; g) 100 keV. B) The expected counting
rate for "dark matter" detection in liquid xenon (corrected for loss of
coherence) as a function of the energy released by the recoil nucleus in case of a
50 GeV impinging particle during three different periods of the year (i.e. mean
velocities: a) 240, b) 270 and c) 300 km/s).

In table 3 we summarize the counting rate as a function of
the particle mass, Mw, in case of spin-independent
interactions (with same hypotheses than before). As one can
see, the expected counting rate in xenon is promising when
compared with other materials8). As an example, with a
threshold of about 20 keV, the counting rate on a 118 cc
detector is about 610 ev/d for 100 GeV mass particles.



Table 3
Calculated counting rates (already corrected by coherence factor) for "dark
matter" spin-independent candidates in a liquid xenon target-detector.

Mw Calculated counting rates
(GeV) {ev/Ka/dav)

101 1650

102 3756

103 571

104 56

105 6

Finally, regarding the possibility to detect axially coupled
particles, notice that the natural xenon contains the
following isotopes with non zero spin: 129Xe ( 26.4%, spin
1/2+) and '3'Xe( 21.2%, spin 3/2+)

3. Conclusions.

In conclusion, we think that low activity Nal(Tl) and liquid
xenon scintillation target-detectors could be very suitable to
contribute to the search for "dark matter" candidates. They
could allow to rule out complementary regions in the o-My
plane and to state new Mw upper limits.
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Abstract

Recent progress in bolometric techniques for astronomy and particle physics suggests the
possibility to built composite bolometers with absorber masses in the range 100 mg - 1 g ,
operating at 1 keV threshold and T' ~ 30 mK . We propose to build and test such bolometers in
view of cosmion searches: with appropriate targets (100 mg of pure Si, C,... for cosmions with
vector interaction; 1 g of F, Li... in the crystal for cosmions with axial interaction), it would be
possible to reach ~ 1 event/day . Background rejection and astronomical reliability (threshold
in galactic speed) would thus be considerably improved as compared to the potentialities of
any ionization detector. We particularly discuss a possible search for cosmions with vector
interaction, using a 100 mg silicon bolometer with a 1 keV threshold.
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1. ASTROPHYSICAL ASPECTS AND EVENT RATES

In spite of the cosmological significance of recent LEP results (1], it does not seem that
the cosmion model can be ruled out by these data. Particles coupled to hadrons, but not
to the electroweak and leptonic sectors, remain allowed. UA1l, UA2 and CDF data [2] can
also be used, but forces weak enough and coupled only to the hadronic sector would escape
observation due to the severe background from strong interactions. The astrophysical search
for particles characterized by their cross sections with protons and nuclei (able to solve the
solar neutrino problem and being in position to provide the galactic dark matter) remains
therefore well motivated. Existing experiments 3] are based on intrinsic semiconductor sili-
con, with a threshold around 1.5 keV in ionization, and a threshold in nucleus recoil of at best
5 keV according to Lindhard’s theory [4] and recent calibrations [5]. Technical improvements
may eventually yield a threshold of 0.6 keV in ionization, equivalent to 3 keV in recoil. Even
so, a cosmion of mass m = 2 GeV depositing 3 keV in a silicon detector must have a speed
with respect to earth of at least 1040 Km/s, which after subtraction of the earth galactic
velocity (about 240 Km/s), leads to a threshold of 800 Km/s in cosmion galactic speed. This
is obviously too high, as compared to the escape velocity, usually estimated to 600 Km/s .

A threshold at 1 keV would be a natural way out, leading for m = 2 GeV to a threshold in
cosmion galactic speed around 360 Km/s , which is acceptable on astronomical grounds (the
average velocity, v,m, , is often taken to be ~ 270 Km/s ). Such a threshold in nucleus recoil
cannot be reached by bulk semiconductor detectors. The expected event rate would increase
considerably by working at 1 keV threshold, and may therefore lead to a better background
rejection. Assuming a maxwellian distribution of cosmion speed in the halo, and using the
notations of (6], the differential event rate dN/dEg (Er = recoil energy) is given by:

dN/dEr = 7'%/4 Ny (Bory)' [erf(z +y) — erf(z —y)] (1)
where N, is the event rate per unit of detector mass:
Ny = 202 p/m Byc o NijA (2)

p = galactic cosmion mass density ~ 0.4 GeV cm™ , Gy ¢ = (3/2)""/? vms , & = cosmion-
nucleus cross section , Ny = Avogadro number, A = molar mass , B, = 1/2 m % ,r =
4mM(m + M)~? , M = nucleus mass, ¢ = (Eg/Eor)"/? , y = B./Bv , Be ¢ = earth galactic
speed and:

=

erf(z) = 2r7/? /l;z exp(—t?) dt (3

Theintegrated flux N(Ey;) at Egr > Ey, (threshold in recoil energy) is found to be: N(E,;) =
7122 Ny Bo/B. EZ(Ew) , where:

S(Ew) = [242_/2 — 1/4] [erf(z_) — erf(2+)] + (47)7"/% (24 exp(—22) — z_ exp(—2})] (4)

where: zy =@ + ¥y, 2. =z — y,and z, = (E/Eor)/? . The cross-section in (2) can
in principle be computed form the cosmion cross section with single protons and neutrons.
For cosmions with vector interaction, an isospin-independent interaction is often assumed,
leading for the total event rate N(E;, = 0) to a figure of merit:

A = ox(m) (m+1)P*M*m (M +m)™? (5)
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where all masses are given in hydrogen mass units and oy stands for the cross section with
hydrogen. If the cosmion interaction were coupled only to protons, the cross section with a
nucleus would be lower by a factor ~ 4 .

The situation is much less clear for the case of axial interaction, which leads to spin-spin
coupling in the non-relativistic limit. Even assuming that neutrons are coupled to the cosmion
interaction, the theoretical and experimental ambiguities on the nucleon spin structure make
it difficult to give precise predictions for nuclei were the spin would not be carried by protons.
The safest approach, in this case, would be to use odd-even nuclei such as "Li , °Be , ''B ,
19 2741 | ... for which theoretical estimates of photino cross-sections exist in the litterature
[7-9]. The figure of merit can then be expressed as:

A=oa(mM)! (6)

Typical values of masses, hydrogen cross sections, figure of merit for several target nuclei
and event rates at £y, = 1 keV , can be found in Table 1 for cosmions with vector coupling
to matter, and in Table II for the case of axial coupling. Heavier nuclei are not considered,
as they lead to very small values of Ey r .

Rate at
m oy | Target | or A Ny Eyr N/N, E > 1 keV
(GeV) | (pb) T (nb) | (pb GeV~1) | (g7} day™?) | (keV) | E >1 keV | (g7' day™!)
2 20 Li 5 381 196 0.37 0.28 55
2 20 120G 19 793 407 0.26. 0.14 56
2 20 86 | 123 2195 1125 0.13 0.008 9
3 8 Li 3 146 75 0.67 0.59 44
3 8 12¢ 12 327 168 0.51 0.46 7
3 8 285 82 976 500 0.28 0.16 80
4 1 Li 0.5 18 9 0.99 0.79 7
4 1 2¢ 2 42 22 0.80 0.68 15
4 1 28gj 15 134 69 0.47 0.40 28
5 0.6 Li | 0.36 10 5 1.31 0.89 4
5 0.6 12¢ 1.6 26 13 1.12 |- 0.83 11
5 0.6 | 2Si 12 87 45 0.69 0.61 27
6 0.5 Li |0.35 8.3 4.2 1.60 0.96 4
6 0.5 2c 1.6 22 11 1.43 0.92 10
6 0.5 | 28Si 13 78 40 | 0.94 0.75 30
7 0.4 "Li 0.3 6.4 3.3 1.88 1.02 3
7 0.4 2G 1.5 18 9 1.75 0.99 9
7 0.4 | 2Si 13 66 34 1.20 0.86 29

Table I : Typical event rates for cosmions with vector interaction at F;;, = 1 keV .
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oy (pb) | m (GeV) | 'H | "Li | °Be | !B | '°F | ¥Al
500 2 52 | 27 | 10 | 4 3 |03
220 3 20 | 20 | 11 5 7 2.5
120 4 9 | 12 7 3 7 2.5
4.5 4 04(05]03|01]03] 0.1
45 5 3 4 3 |15 3 1.5
11 5 06| 1 |07]03 |1 0.4

Table II : Approximate event rates (g~' day ') for cosmions with axial interaction, using
different targets and assuming E;;, = 1 keV . Hydrogen cross-sections are taken from [10]
and values of ) inferrred from [7-9]). Extrapolation from EMC data is used for °Be .

2. CHOICE OF DETECTOR AND STRATEGY

For cosmions with vector interaction, a 100 mg silicon detector with a 1 keV threshold
appears as the best starting point. Silicon is easy to obtain in ultrapure form, and the
technology to produce high quality crystals exists as well. Even with a background 10 times
worse than that of the Oroville experiment, the exclusion plot of Fig. 1 would be obtained and
bounds on cosmions crucially improved. One detection technique may provide the required
performance with the present status of the art: indeed, thermal composite bolometers have
produced in the last two years results [11] compatible with our goals.

Several papers on thermal bolometers and related techniques can be found in the Pro-
ceedings of the previous Moriond Astrophysics Workshop [12], and also in these Proceedings
(13]). A thermal bolometer consists essentially of a single crystal (the absorber) on which a
very sensitive thermometer (usually, a resistive one: the thermistor) is glued or implanted. In
the ideal case, where the heat capacity of the detector is dominated by that of the absorber,
its heat capacity follows a T° law and electronic as well as microphonic noise can be neglected
(which is not the case for existing prototypes), the ultimate energy resolution would be given
by thermal fluctuations and follows then the law:

AE o MV T2 @) (7

The bolometer technique has undergone spectacular progress, demonstrating in particular
the possibility to compensate an increase in detector mass by a decrease in operating tem-
perature, according to (7). From AEpiyyas ~ 36 keV for 5 - 6 MeV a particles obtained in
the early period [14] with a 0.25 mm? diamond bolometer at ' = 1.3 K , it has been possible
to reach a similar performance with a 280 g sapphire bolometer at 100 mK [15]. Particularly
relevant to our problem are two results obtained in rather different conditions:

1. The Milan group reports (16] AEpy ya; ~ 1% on the 1.2 and 1.3 MeV + rays of %°Co
with a 11 g germanium detector operated at ' ~ 30 mK . From the M‘/Z(E),_)s/2 law in (7) ,
one gets: AEpygp =~ 500 eV for 100 mg of silicon at the same temperature. This clearly
suggests that a 1 keV threshold can indeed be obtained using similar techniques.
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Fig. 1 - Exclusion plot (in terms of mass and silicon cross-section) for cosmions with
vector interaction, from a 100 mg silicon bolometer working at 1 keV threshold and with a
radioactive background of 1 evt g~! keV~! day~' . Also shown are bounds from semiconductor
silicon and germanium, obtained in experiments with much lower background rates.
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2. Already in 1988, a group of astronomers [17] reported 80 eV rms noise with a small
diamond bolometer operated at 150 mK , giving AErwaar ~ 280 eV on 5.9 keV %5Fe 7’s .
The heat capacity, at 40 mK , of the thermometer used was 3 x 107!® Joule K™! , which is
the equivalent of 20 mg of silicon at the same temperature. Again, it seems possible by a
careful tuning of thermistor size and doping, to reach a 1 keV threshold with a 100 mg silicon
bolometer operated at 30 mK . The use of NTD (neutron transmutation doped) thermistors
(18] may be an interesting possibility, due to compensation and high doping uniformity.

It therefore seems urgent to build and test (down to T =~ 30 mK) a 100 mg silicon
composite bolometer incorporating a suitable sensor. If the 1 keV threshold is reached, such a
detector installed at the Frejus laboratory will provide the first step of a long term dark matter
search based on cryogenic techniques. A small ultrapure silicon bolometer would not only
perform an efficient search for cosmions, but also measure for the first time the radioactive
background at E > 1 keV , with unprecedented energy resolution. The use of silicon is
probably safer than that of diamond, which in spite of excellent specific heat properties has
to face isotopic (**C) and chemical (for natural diamond) radioactive impurities. Next step
can be the search for cosmions with axsal coupling using a ~ 1 g LiF or boron absorber.
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ABSTRACT

It is well known that the lightest particle in the supersymmetric
standard model, the LSP, is stable, massive and can be a dark matter
candidate. It has commonly been assumed to be the photino. However, the
photino is the LSP only in a small portion of parameter space. In
general, the LSP is a mixture of two gauginos and two Higgsinos.
Nevertheless over a very large portion of the parameter space the LSP can
still be described in terms of one of a few pure states, which are

described here.
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The need for substantial amounts of dark matter in the Universe is

from both observational evidence and theoretical prejudice is well known

and I will not review it herel). Instead I will concentrate on the

candidates that are expected to arise in the supersymmetric standard
model.

Supersymmetric theories introduce several possible candidates. If R-
parity (which distinguishes between "normal"” matter and the supersymmetric
partners) is unbroken there is at least one supersymmetric particle which

3B+F+L
, a

must be stable. For example, by defining R = (-1) 11 "normal"

particles, 7, Wi, zZ, Hl’ H2, e, p, 7, v's + quarks, antiquarks and gluons
(there are two Higgs doublets in the minimal supersymmetric model,
necessary to give both up quark and down quark masses) have R = +1. All
of the supersymmetric partners, ;, ﬁt, Z, ﬁl’ HQ’ e, ﬁ, ;, v's, squarks,
antisquarks and gluinos have R = -1. The final state in the decay of an R
= -1 particle must have R odd, implying that the lightest supersymmetric

particle or LSP is stable.

. : o s 2
There are relatively few parameters in the minimal model ). One can

assume a common soft supersymmetry breaking gaugino mass at the

unification scale, say L ® Mzﬁﬁ. To avoid phenomenologically unacceptable

axions, one must introduce a Higgs mixing mass L3 eﬁlﬁz. The ratio of

Higgs expectation values, tanf = vl/vz, vy = <H1>, v, = <H2> is also a

free parameter but can be chosen to be positive without loss of

generality. 1In this notation, it is Hl which is responsible for up quark

masses so that it will be natural to assume tanB > 1. These are the only
parameters which determine the mass and composition of the LSP. However,
for the relic abundance of LSP’s, it is necessary to sepcify the Higgs
(scalar) masses which depend on one soft supersymmetry breaking parameter
say m (which is equal to the pseudoscalar mass). The sfermion masses
(which I will assume to be degenerate) must also be specified. Finally
(though it is not a parameter of the gupersymmetric model) the value of
the top quark mass is necessary.

The only neutral fermions with R = -1 which are expected to reside in

the LSP are3) the wino ﬁ3, the partner of the 3rd component of the SU(2)L

guage boson; the bino, B, the partner of the U(l)Y gauge boson; and the

two neutral Higgsinos Hl’ and HZ . Gluinos are expected to be heavier,
a

m; = (;;)sinzﬂwMz and do not mix with the other states. The

sneutrino ‘was a possibility but has been excluded by directs), indirect

6)

7
and accelerator ) searches.



245

The combination of neutralinos that make up the LSP can be found by

diagonalizaing the mass matrix

~3 ~ ~0 ~O0 =3
(W,B,H H) /s M, 0 -gyv1/42 8,V,/42 ¥
0 My glvl/Jz -glvz/./Z B
(1)
-g,v, /42 8,v1/42 0 € ﬁ‘i
8,V,/ 2 -8,/ 2 p 0 ﬁ‘{
where M1 and M2 are soft supersymmetry breaking terms giving masses to the
U(1l) and SU(2) gauginos respectively. In a unified theory Ml = M2 at the

unification scale translates to

5 4
M= 3., M @
2
at low energies. By performing a change of basis to (V‘;]3, B, T\O, §°) with
=0 ~0
v,H; - v,H
~0 11 2 2 o =
= 3 - singH; - cospi, (3)
~0 ~0
5% - Yt cosfil, + singfl %)
- v B 1 2
2 2 2 : ) cps
and v© = vi + v, the mass matrix simplifies and becomes
@ %,5°,3% M, 0 -gv, /2 0 P
0 Ml glvl/JZ 0 B
(5)
2v.v V2 v2
12 12 ~o
gzv//Z glv/./Z 5 € 5 €
v v
Vi"’% vy =0
0 0 2 € 9 ¢ S
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and can be solved analytically.
The eigenstates of (1) can be written as

ﬁ3 ~0 o

Xy =op W+ BB+ vl +6H, 6
The lightest eigenstate is the LSP. There are some limiting cases in

which the LSP is nearly a pure state. When ¢ + O, §° is the LSP with

R 12
ms 5 € 7
v
When M2 -+ 0, the photino is the LSPS) defined by
~3 =
_ glw +g,B -3 _
Y= “‘5“‘— = sinf_ W~ + cosf B (8)
Jel+e v v
152
and
2
m~ - 8 51 M
3 32,2 2 (%
8178y
When M2 is large and € >> MZ’ the bino, E, is the LSPQ) and
mE = Ml (10)
and finally when ¢ is large and M2 >> ¢ either the Higgsino stateg)
H = 1—(ﬁ° + 89 >0
(12) 22t 2 € (11)
or the state
= 1l -o =0
Hipgp = 2@y - HY €<0 (12)

is the LSP depending on the sign of €.
The relic abundance of LSP’s is determined by solving the Boltzmann

equation for the LSP number density in an expanding univergse. The

10)

is similar to that for computing the re¢ljic abundance of

11)

technique used

massive neutrinos The ratio of the LSP mass density p to the
X
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Figure 1
critical density to close the Universe, pe = 1.88){10-29 h2 gcm-3 (h =
H/100km Mpc-l 5-1 is the Hubble parameter), is ﬂx = px/pc and is
determined largely by the annihilation cross-section of x's. The LSP's

are in thermal equilibrium until their annihilation rate T « <av>A falls

below the expansion rate of the universe, H. This occurs when T ~ m_/20.

8,3,10) X

For example, in the case that the LSP is a photino the

annihilation cross-section depends on the unknown sfermion masses, <ov>A @«
Mla so as to insure that Q h2 = 1/4,

£ 10)
(corresponding to 1 = 1 and h = 1/2).

Thus it is possible to adjust Mf

This is shown in Figure 1 for

two possible quark-hadron transition temperatures, which control the
evolution of the number of degrees of freedom and hence the expansion
rate. The relic abundance for all LSP’'s is determined in a similar way,
however the annihilation cross-sections may not all have adjustable
parameters to insure 0h2 = 1/4.

In what follows, I will describe the "pure" dark matter candidates in

the standard supersymmetric model, by varying the two mass parameters, MZ
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and ¢ from 10-104 GeV and choosing typical values of tanf. In Figure
2‘12), I show the regions where the LSP is at least 99% pure along with
their mass contours. The light shaded regions correspond to parameters in
which there is a chargino (Wi, ﬁt) state with mass m~ < 45 GeV and as such
excluded by LEP13). The dark shaded region correspo:lds to a limit on M2
from the 1imit14) on the gluino mass M2 > 22 GeV. Notice that the
parameter space is dominated by the B or ﬁlZ pure states, and that the
photino (most often quoted as the LSP) only occupies a small fraction of
the parameter space as does the Higgsino combination 5° (see Ref. 15 for
further constraints on 3° from LEP). In Figure 2, tanf = 2 and ¢ > 0.
Figures 3 and 4 show the LSP pure states and masses for tanf = 2 with ¢ <

0 and for tanB = 8 and ¢ > 0 (tanf = 8 with ¢ < 0 is very similar to

Figure 4).
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For binos, as was the case for photinos, it is possible to adjust the

)

s

sfermion mass Mf I show the bino

region with sfermion’'mass contours required to make OEhZ = 1/4, for tanp

to obtain ﬂﬁhz = 1/4. 1In Figure 512

=2, € >0, the mass of the Higgs pseudoscalar is m, = 37 GeV and the top

quark mass is taken to be m_ = 78 GeV.

The right portion of the bino,
12,16)

parameter space is excluded ’ because in it, unless Mf < ME

(contrary to the assumption that the bino is the LSP) Gh™ > 1/4.

Increasing the top quark mass shifts the Mz contours somewhat.

f
If we fix the sfermion masses, higgs masses and top quark mass we can

plot contours of ﬂh2

tanf = 2,

as is shown in Figure 6, for B and HLZ'
= 78 GeV and “f = 74 GeV.

For Higgsinos, much of the lower

In Figure 6,

e >0, m = 37 GeV, m For binos, one

sees the same constraint as in Figure 5.
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part is excluded as the cross-section there is too small leaving too large
a ﬁlZ abundance. The annihilations there are dominated by Higgs scalar
final states and the <ov>, « i; , so that for large M2’ annihilations are
2

too slow. The relic abundance of H., changes dramatically as one
6,12,16) 2 2
T . Not until e ~ 3Mw does Qﬁ h" begin

12
to grow appreciably. For e¢ > 1 TeV, the higgsino abundance is again too

+
approaches the W~ threshold

large.

For ¢ < 0 (holding other parameters fixed) or for tanf > 2, the lower
excluded region for ﬁ12 shrinks somewhat. If the top mass is increased
the bino abundance is increased below m_, whereas for higgsinos the higher

top mass keeps <ov>, large at higher e, widening the area with no DM. For
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larger higgs masses, the excluded area at the bottom of the ﬁl area is

2
enlarged.

The possibilities for cosmological dark matter from LSP's is as
follows: For photino, there remains only a small corner of parameter

17)

space remaining. First from LEP

, tang > 1.2. For higher values of
12)

tanf we find
14 GeV < m; < 25 GeV tanf = 1.2 any ¢ (13a)
14 Gev < m; < 20 GeV tanf = 2 e>0 (13a)

none tanp > 3 any e (13¢)
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I stress that in the minimal supersymmetric model, there is no such thing
(nor ever was) as a 40 GeV let alone a 100 GeV mass photino. For
Higgsinos, §°, there is very little possibility left.

Binos offer the best chance for a dark matter candidate in the minimal
supersymmetric model. For fixed Mf' ﬂE > 0.05 for all mg = 20-250 GeV,
and is largely independent of tanf and the sign of €. mg > 250 GeV is
excluded for ﬂh2 < 1/4 since Mz < my in that case. For fixed nh2 = 1/4,

f

M? = 120-300 GeV for ME in the range 20-250 GeV. The important point is

that one can find Q = for a large portion of the bino parameter space.

1
For the Higgsinos ﬁ12’ the results are largely independent of Mf'
- W+W—, ZOZo is dominant and when € is small ﬁ12ﬁ12

When ¢ is large H12ﬁ12
+ H°H® is dominant. Higgsinos in the mass range mg = 45 - MW are
12
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allowed only for M2 less than some critical value of M2 which is a

function of tanf. For my = - 250 GeV, 0y = 0.05, and my = 250-
i, " S T
1000 GeV ﬂﬁ = 0.05 - 1.0 (h=1/2) but is relatively unadjustable as it is
12
largely independent of tangf. my > 1 TeV is excluded.
12
Finally, I would like to comment on the detectability of H,,'s and

18) 12

B's Binos interact in much the same way as do photinos. The photino

elastic cross section for v + p - 7 + p is

m~ m

3 L 2 _y p
£~

n Mé ¥

f

2
~+
(m7 mP)

2
f~ = 4n a T Q- A
yTAmeEQ M

where Aq is related to the spin of the proton (S; A = < p,slsglp,s >, S:

_ 1 I . .
=3 q v s q). For binos, m7 ~+ mg and f7 - fE with

Y2 +Y2

q q
L R
fE = 4wa1 z s Aq

where ay is the U(l) hypercharge fine structure construct. In the naive
quark model, UE/U; = 0.46.

For Higgsinos, we can look at the elastic cross-section for §,

2 2
_3 2 2, 2 MM
95 = on GF cos 28 &p (nrm )2
g o

(when cos2f = 1, this is the Majorana neutrino scattering cross-section).
However for ﬁlZ' cos?2B = 0! and the dominant effects come from impurities
in le, although for = 99% pure le, aﬁlz/o;m < 0.08, making detection of
these candidates rather difficult.

This work was supported in part by DOE grant DE-83ER-AC02-40105 and by a

Presidential Young Investigators Award.
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ABSTRACT
We review attempts to achieve a large neutrino magnetic
moment (pv 2 lO—llpB), while keeping neutrino light or

massless. The application to the solar neutrino puzzle is

discussed.
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INTRODUCTION

The so called solar neutrino puzzle is now more than
twenty years old. The experimenrally detectedl) flux of
neutrinos originating fromthe thermmuclear reactions in the

sun via the process

7 _
vg Co ~ e37Ar (1)

is far below the theoretical predictions.z) Whereas the
standard Solar Model (SSM) suggests the conversion rate

37c1 = (7.9 &+ 2.6) SNU (2)
the experiments give a rate roughly a factor of three

smaller

37 -
< CcL >exp (2.1 +0.3) SNU (3)

The unit 1 SNU (Solar Neutrino Unit) corresponds to 10_36

captures/atom-sec. For the experiment of Davis et al 1 SNU
is equivalent to the conversion of about 0.23 atoms of

37Ar per day, so that (3) gives a signal of about 0.5 atoms
per day. This is a rather challenging experiment andwe won’t
go into the uncertainties associated with it or the theory,
we suggest Peccei’s review for a nice discussion of whether
this is a true paradox or not. The beauty of this issue is it
touches upon the fundamental properties of neutrinos such

as their masses, mixing angles,magnetic moments etc.

4)

The most popular explanation to date is the MSW mechanism
of resonant oscillations in the interior of the sun, which
transform Vg into vu (or vt). For this to work, the masses

and the mixing angles are constrained by

Am2 = m2 (m2 ) - m2 ~n 10 7. 10_4(ev)2
v v
u e
sin2 ¢} > 10—3 (4)

We should stress that the MSW process takes place in the
radiation zone (0.04 - 0.7 R, where R is the radius

of the sun). This perfectly acceptable explanation needs
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further laboratory wverification, for we still have no clue on
the values of neutrino masses and mixing angles. A potential
death blow to this idea could come, however, from the very
observations of Davis et al. They seem to suggest an anticor-
relation between solar neutrino flux and the sun-spot activity.
At the sunspot maximum, the neutrino flux is below average

and at sun-spot minimum activity it is far above the average
value: (5.1 #1) SNU (1987-1988). The sun-spot activity is
attributed to magnetic storms in the convection zone of the
sun, near the surface (0.7- 1 RO ), when the magnetic field
near the maximum reaches the value of 103 - 104 Gauss. If

this is so, then the mass oscillation cannot be the explanation;
it has to do with the magnetic field of the sun.

Cisnerog)and Voloshirf) et al (VVO) suggests that the ele-
ctron neutrino possesses a large magnetic moment which enables
it to flip into the sterile right - handed component (or
other flavors) in the magnetic field of the sun. This seems

to work if the magnetic moment is on the order of lo_llu
B
(uB= %ﬁ_ ) , which, as we will see below, is an enormous
e
number, many orders of magnitude above the value in

the standard model (with vR).

NEUTRINO MAGNETIC MOMENT

Recall that, like the mass, magnetic moment is the heli-

city flip operator

= uv _ T uwv C
uv VR 0 vy Fuv M,V C o VI, Fuv (5)
For the VVO mechanism to work, yu is estimateds)
v
~11 -10
10 -
B, 10 Hg (6)

To get a feeling for this number, let us
campare it with the natural value for by in the standard
model”) (with vp)
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3eGFmv -19 m,
(”v)st = 575—;7 = 3.2 x 10 ( 1= )”B (7)

which is at least eight orders of magnitude smaller than the

VVO number! This number can get substantially enhanced if
there is a right-handed current, such as in left-right modelsa)
G, m
(W) = ——L sin 20 a2 x 1013 sin 26 (8)
v’ LR 5 .2 — B
2/2

where ¢ 1is the mixing angle between left and right-handed
currents, |[¢ |<0.05. Obviously, (8) is still too small. With
some optimal assumptions supersymmetry may give even larger

prediction, but still

-12

10 u (9)

(ny)gg % B

Thus we have problem at our hands: how to reconcile a
large value for Ky, with a small neutrino mass, mvﬁllOeV ?
This is quite a challenge for a model builder, one which
is hard to ignore, even if you are not very convinced with
the VVO mechanism. The idea, of course, is to uncorrelate

uv with mV , which was achieved by Babu and Mathur and

9)

Fukugita and Yanagida. They introduce an SU(2) singlet,

charged Higgs field h+, which works OK for by - The trouble
is that in their models neutrino has a bare Dirac mass, which

10)

has to be fine tuned to be small. This is not a solution

to our problem.

An ingenious way out was suggested by Voloshinlll who
postulated an SU(2)H symmetry between v and vc. Under SU(2)H
the mass term behaves as a triplet and so is forbidden, where-

as the magnetic moment interaction is allowed. Namely,

L io, CL =0
v 2
T .
L\J io, C ouva # 0 (10)
where Lv = (vc ) L This idea, unfortunately is not easy
v

to realize, since SU(2)H does not commute with SU(2)L. You
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could try to enlarge SU(Z)LX U(1l) a la Barbieri and Mohapat-
ralz), who use SU(3)L x U(l) with the basic triplet consist-
ing of e,v and vC. This jutomaticallv contains SU(Z)H, but
the scale of SU(2)H symmetry breaking is pushed above Mw! This
means that SU(2)H effectively 1loses its original role; we are

back where we started.

This may be a good place to mention some potential trou-

bles with the large value of Hye

(a) 1laboratory experimentall3) limit on is
v

-10
(uv)exp < 1.5 x 10 i (11)
(b) from the stellar cooling analysis, there is an
astrophysics boundl4)
-11
) astro & 1-1 ¥ 10 ¥g (12)
(c) also,cosmological argument due to increase in 23
number from the Vg + €+ v, + e process, induced via Wy
impliesl4)
-11
(uv)cosmol < 0.5 x10 uB (13)

(d) and finally, the energy loss of the supernovae 1987a
5)

would be too large, unless®

10712 (14)

(u.) B

v’ sn

oA

Obviously the serious problem is d) only, but there one

could try to add new interactions which would trap v so

4
even this is not a fatal blow to the VVO suggestion? Still,
we find the idea of transiticn magnetic moments far more
appealing. Here, in analogy with neutrino oscillations, one
takes vuL instead of ng . In other words , one assumes
the horizontal symmetry 16) SU(Z)H between the Weyl fields

Ve and vu, so that now

) (15)
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The invariant magnetic moment (10), with L, from (15) is now

a transition moment

T uv
F 0 1
Vo Coyy Yy # (16)

The diagonal moments vanish in the case of Weyl (Majorana)

neutrinos.

The new problem appears, though; the magnetic field of
the sun has no energy to flip the neutrinos, unless the mass

difference between v, and v, is almost vanishingl7)

- _ -7 2
A m —m\)u m v ,<\'10 (eV) (17)

The model building becomes even more challenging. The
most natural approach is to use some symmetry, such as U(1)
global symmetry Le - L]; which would imply 2 m2 = 0. In
this case, v and & group together into a Dirac neutrino.

However, we still have to achieve mJg 10eV or so.

Now SU(Z)H could be either global or local, however, in
both cases its scale of symmetry breaking MH must be large.
If it is global, the consequence of Goldstone bosons implies
MH > 107 - 108 GeV, and the local symmetry case demands
MH ’Mw. But this defies the whole purpose for imposing

SU(2)H in the first place; we need this symmetry at low
energies, so that it can play its custodial role. Ideally,
MH<<1 . GeV is what we are after. We are back where we
started. What to do?

17) is to have an

A suggestion by Leurer and Marcus
approximate SU(Z)H, broken explicitly. Encouraged by the fact
that in the standard model SU(2)H is broken only by

m -m
g = € ., 10 B terms, they demand the breaking of

H
thiis symmetry to continue being proportional to ¢ , a rather ad

hoc assumption. This would enable them to lower the value of
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m, down to eV scale.

Leurer and Goldenlg)

try a U(1), instead of SU(2)H sym—
metry. This also has its problems, in particular they need so-

me further fine tuning to achieve a small mass for mo .

Yet another possibility is to use a discrete symmetry.
The discrete symmetry certainly needs a serious motivation,
for it carries a potential disaster of domain walls. To get
rid of this, we appeal to the idea of possible symmetry non-
restoration at high temperature, as advocated by Weinberg and

especially Mohapatra and G.S.zo)

(or soft breaking, if you find
the above hard to digest). The main advantage of the discrete
symmetry is that it can be kept down to as low energies as

we wish (maybe even left unbroken?) Besides us, the discrete
symmetry approach was also tried by Babu and Mohapatrazl)and
by the wienna groupzz). Babu and Mohapatra argue that the com-
bination of supersymmetry and the Z4 subgroup of Lo - L, works,
whereas in the case of Wienna group Dirac neutrino ends up
light for somewhat accidental resons (but technically natural).
The space doesn’t permit as to discuss their work at great
length; for reasons that you will probably find obvious we

shall devote the rest of this paper to our work.

THE DISCRETE SYMMETRY AND Hy

The first fact to notice is that the custodial symmetry
must be nonabelian, if it is to forbid Vz C v. and allow

J
v ? C cuv vy - The simplest possibility would be a subgroup of

i )

Voloshin“s SU(Z)H symmetry which does the job. The ideal
candidate for this is the quaternion symmetry Q4 of 8 elements,
whose characteristics are best read off from its faithfull

two dimensional representation

(a) Quaternion symmetry Q4

Since there is always a trivial repr. (Rl), obviously
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there are four one dimensional representations Rl,...R . The

4
five classes (Cl = {ll}, C2 = {-12}, C3 = { tlol}, C4 ={x102},
C; = {iio3} in the case of a doublet representation D) are then
given by the character table
€, % G ¢ G
Rl 1 1 1 1 1
R2 1 1 1 -1 -1
R3 1 1 -1 1 -1
R4 1 1 -1 -1 1
Rg =D 2 -2 0 0 0
v
Following Voloshin, we assume L, = (v:) to be in a dou-

blet representation of Q4. In the same manner as with SU(2)H
symmetry (see eq. (10)), the mass term is forbidden, whereas
magnetic moment is allowed. The point is that the antisymmetric
transformation DT i02 D is invariant, which vanishes for m .
One can now construct one’s favourite model; all you need the
decomposition

(D x D)AS =R,

(DXD)S=R2+R3+R4

Obviously, both new fermions and Higgs fields are needed, and
it is somewhat a matter of taste of what to choose.

We shall not describe the details of our model here23),
for they are given in our paper. Let us rather concentrate on
the shortcomings of the Q4 apprgach. The main problem is the
fine tuning needed to keep Amv small. The way we construct
the model, there is no protective symmetry which could make
velvu a Dirac neutrino. The potential candidate 1is a Z, sym-
metry generated by, say icl (or any other i uk), which should
remain unbroken. Therefore, only those Higgs fields transform-
ing as R, or R2 are allowed nonvanishing ver “s. This forces

1

eR’“R to form a doublet D and the outcome is that we cannot
split e,n masses. This problem seems to remain even if we

add additional particles.

(b) dicyclic group Q6

This group consisting of 12 elements is more promising,
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since it has two doublet representations. It is generated by
elements r,s through

r6 = s4 = 1, srs = r2 (18)
Its “six class;s Cl{ 1} ,2C2 {-1}, C3 {rz,—r}, C4 {s,—sr,srz},
C5 {-s,sr,-sr"} ,C6 {r,-r"}has the following character table

G % 3 S G G
Rl 1 1 1 1 1 1
R2 1 1 1 -1 -1 1
R3 1 -1 1 i -i -1
R4 1 -1 1 -i i -1
R5 2 -2 -1 0 0 1
R6 2 2 1 0 0 -1
The explicit form of r and s for R5,R6 is
i 2nol
r5 = exp (——g~——) A s5 = 103
i 2ﬂcl
I, = exp (-—§~——) ; Sg =~ 04 (19)

It is clear that 06 is not a subgroup of SU(Z)H, but
rather U(Z)H. However, it still forbids the neutrino mass, if
we assign left-handed leptons into R5 (or (R5)+).

Our strategy is straightforward: we break Q6 down to 2

4
generated by s. This implies neutrino mass term vg C vu, or
Ami = 0. Furthermore, if you choose
ep(Ry),  up(Ry)
Ve v, . (20)
¥ o=le 4 (Rg)
then under s
°L,R " T eL,r? FL,r T 1¥,mr (21)
In other words, s is a Z4 subgroup of Lu_ Le' The dangerous

processes such as W + ey,u +reee are forbidden.
Besides the usual particles, this approach needs additio-

nal lepton doublets NL R and new Higgs fields in order to gene-
! 23)

rate large y . As in our Q4 work , the neutrino (now Dirac)
v
mass is suppressed by mQ/Mw, where mQ is the scale of Q6

symmetry breaking. In order to split m, - m,, myn m,

Q

giving us m;, in the eV region.
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The technical details of our model will be spelled out

4)

elsewher92 , together with the phenomenological implications.

It”“s major fault is the proliferation of new fields, but it
seems to work. We hope, though, that a more elegant solution
along these lines will soon emerge. Needless to say, new expe-
rimental results regarding the sun-spot activity and neutrino
solar flux are badly needed to tell us whether the anticorrela-

tion between the two is real.
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WIMPS AS A STAR COOLING SYSTEM
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Abstract

Weakly Interacting Massive Particles are hypothetical particle-candidates for
solving the dark matter problem. For a specific range of masses and cross-sections
on baryonic matter they are trapped and accumulate in the core of stars. For a
smaller range they happen to be very efficient to cool those cores. For the sun, that
could be an explanation for the low rate of detected solar neutrinos. If so, constraints
on WIMP (cosmion) parameters are very stringent and can be currently tested by
ongoing dark matter experiments.
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1 Introduction

The acronym WIMP stands for Weakly Interacting Massive Particle. It is a generic
word used for any exotic particle solving the dark matter problem. As the word itself
means it, WIMP would be a massive particle of a few GeV whose interaction with
ordinary matter would be in the realm of weakness. So far no known particle has been
discovered to be a WIMP. If in addition WIMPs solve the solar neutrino problem they
are called cosmions. All this terminology is matter of convention.

After a preliminary section in which we remind what is the solar neutrino problem,
we consider how WIMPs can be captured by stars and concentrated in their core . Then
we show how those particles are very efficient to cool the core of stars. In fine we apply
this to the sun and its neutrino problem and get strong constraints on the WIMP mass
and its cross-section on matter.

2 The Solar Neutrino Problem

Detection of solar neutrinos over 18 years by the Chlorine experiment [1] gives an
average of 0.43 neutrinos detected per day, which converted in Solar Neutrino Units
gives a rate of 2.3+0.3 SNU. Two of the major standard solar evolution codes give
respectively 7.94+0.9 SNU for Bahcall and Ulrich (2] and 5.8+1.2 SNU for the Saclay
code [3]. Despite differences between them, those two predictions are roughly a factor 3
above the observed rate. The solar neutrinos detected by the Chlorine experiment come
from the reaction e B® — v,Be® which takes place in the core of the sun and whose rate
varies as T%!. On the other hand the mainfusion reaction which starts with pp — e*v, D
varies as T'°. Therefore a small decrease of the central temperature of the sun, e.g. by a
few per cent : 3 to 8 %, will drastically decrease the rate of the Boron reaction and of its
corresponding neutrino without changing the pp fusion rate. This does offer a solution
to the Solar Neutrino Problem [4,5,6]. If they exist, and with appropriate values of
unknown quantities like their mass and cross-section, WIMPs could be very efficient to
cool the core of stars (see Section 4) and consequently could give the adequate decrease
of the sun central temperature leading to a Boron neutrino rate in accordance with
observations.

3 Capture of WIMPs by stars

In order to explain the rotation of spiral galaxies, it is necessary to suppose the existence
of a halo of dark matter surrounding those galaxies. For the Milky Way, our own galaxy,
if we assume that its halo is an isothermal gas of WIMPs, the distribution of their
velocities is gaussian : exp[-3v?/2v} , |, with a mean velocity vaq, of the order of 300
km/s (with roughly an error of 20%). In the vicinity of the sun, the WIMP mass density
Phalo 1s of the order of 0.4 GeV /em3, the error being roughly a factor 2.

When a WIMP crosses the surface of a star and gets inside it, depending on its
cross-section on matter, the WIMP can eventually interact with a nucleus and looses
its kinetic energy. After a few of those interactions and because of the gravitational
well of the star the WIMP can be trapped in its core. There is a critical value o, of
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the WIMP-matter cross-section : for cross-sections larger than this critical value, any
WIMP going inside the star will interact and be captured. This critical cross-section o
corresponds to a WIMP mean free path of the order of the star radius :

0. ~mpRYM

where m,, is the proton mass, R the star radius and M its mass. For the sun

0. = 4 1073%cm?. But in order to be really trapped in the core of the sun, WIMPs
should not evaporate, i.e. by interaction with matter they should not gain enough
kinetic energy allowing them to get out of the star. This question has been extensively
studied by Gould [7] who showed that the evaporation rate is exponentially suppressed
for WIMP masses larger than an evaporation mass m,, which depends on the WIMP-
matter cross-section ozn! : WIMP with mass m; > mey(0zn) are trapped in the core
of the star. The evaporation mass m,, is a function of o,n. In the case of the sun : for
ozn = 4 107%¥em?, m,, ~ 4GeV; whereas for 0,5 = 10~3cm?, m,, ~ 2GeV.

If WIMPs are trapped in the core of astar, in order for them to stay there in sufficient
number, it is necessary to assume also that they do not annihilate. So photinos, if
they do exist, are not good candidates to accumulate in the center of the sun. Non-
evaporation and non-annihilation conditions being assumed, the gravitational capture
rate of WIMPs by a star is proportional to [6,8,9]

Phato L

Vhalo mg
the proportionality to o,y occurring only for o,y < o.. For a WIMP with mass 4
GeV and cross-section o,y = 4 1073%cm?, the number of WIMPs captured by the sun
is of the order of 3 10%° per second. After 4.6 Gigayears, the sun lifetime, this leads
to approximately 4 10*® WIMPs presently trapped inside the sun. The WIMP radial
distribution is approximately gaussian being proportional to exp[-r’/rZ]. WIMPs are
concentrated in a central region of radius a few r; which is small as compared to the star
radius R. In the case of the sun and for a WIMP mass of 4GeV : r, ~ 0.05 R. In this
central region the number of WIMPs remains very small compared to the number of
hydrogen nuclei (10° smaller) and to the number of photons (10° smaller), but WIMPs
being very eflicient to transport energy, much more than photons, despite the smallness
of their number, they are able to cool the core of stars.

4 Energy transport by WIMPs
There exist two main regimes of energy transport by WIMPs :

4.1 Non local energy transport or Knudsen regime

In this regime the WIMP mean free path I is of the order of (or greater than) the
dimension of the region in which they are trapped. The WIMP mean free path is

1The notation o.n is correct only if the star is composed of only one type of nucleus N. In realistic
cases it should be replaced by an effective WIMP-matter cross-section which depends on the various
WIMP-nucleus cross-sections and on the composition of the star {8].
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inversely proportional to the WIMP-matter cross-section :

1

nn(r) ooN

L(r) =

which is valid for a star made with only one type of nucleus N, whose number density
at the distance r from the center is ny(r) (for a more practical formula taking account
of all different species of nuclei composing a star see ref. [10]). The Knudsen regime is
therefore defined by the condition I; > r;. It is useful to define a Knudsen number
K, - 0)
Tl'
The Knudsen regime corresponds to K, of the order or larger than 1.

In this regime a WIMP orbiting in the central region of extension order r; have at
most one interaction with matter per orbit. Therefore WIMPs are not really in thermal
equilibrium with nuclei. Press and Spergel [5] made the strong assumption that WIMPs
form an isothermal gas over their region of extension. They define a constant WIMP
temperature T; which is of the order of the nuclei temperature T'(r). At the center of
the star T; is smaller than T'(0) : so in this region the net effect of a WIMP-nucleus
collision is that the WIMP gains energy whereas the nucleus looses some. If after this
collision the WIMP goes to the outskirts of the extension region, there T} is larger than
T(r) and the net effect of a WIMP-nucleus collision will be that the WIMP will loose
the energy gained in the center of the star. This process is very efficient to evacuate the
nuclear energy from the center of a star : it can be called a ‘cooling bridge’. The energy
€z(r) transferred per unit time and unit mass from nuclei to WIMPs is proportional to

(5] .
ng(r) m (T(r) - Tz)

where n;(r) is the number density of WIMPs at distance r. The WIMP temperature
T: is fixed by the condition of non-evaporation : the total luminosity carried out of the
star by WIMPs is zero, i.e. Ly(R)=0.

The WIMP ‘cooling bridge’ effect leads to an isothermalization of the core of radia-
tive stars and consequently to a decrease of the central temperature and of its gradients.
It has also an influence on the central convection of convective stars (see talks by P.Salati
and G.Raffelt).

The isothermal gas approximation has been criticized by Nauenberg [11] and Gould
and Raffelt [10]. They argued that in the core of stars, especially in the sun, even if the
temperature gradient is small, nuclei do not constitue an isothermal gas. Moreover the
isothermal WIMP gas approximation, i.e. to consider a Maxwellian WIMP distribution,
is less and less valid as their velocity becomes larger and larger and approaches the
escape velocity. To test the Press and Spergel approximation, both groups did Monte
Carlo simulations of the Brownian motion of WIMP in the core of the sun. They
concluded that the Press and Spergel formula for the WIMP luminosity L, ps(r) could
be considered as a rather good approximation, provided it is multiplied by a factor 0.5.
So in the non local (NL) regime the WIMP luminosity satisfies

Lo ni(r) ~ 05 Lg ps(r)
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4.2 Conductive regime

In this regime the WIMP mean free path is much smaller than the dimension of the
region where they are trapped, so it corresponds to K, < 1. In practice this regime
is effective for K, < 0.1 — 0.2. In this regime WIMPs are roughly in local thermal
equilibrium with nuclei and therefore it is possible to define a WIMP temperature Ty
which equals the nuclei temperature T(r). The WIMP luminosity is proportional to

na(r) L(r) <M%<>>

Itis very similar to the photon or radiative luminosity. Gould and Raffelt[10] have solved
the Boltzmann equation for WIMP and obtained the conductive luminosity L, conp(r).

Having noted that for all values of K,, , L;nr(r) and L, conp(r) have roughly the
same shape with a maximum for r ~ r, we fit the Gould-Raffelt Monte Carlo results
with the following linear combination :

1
L =115 ry ¢
This is a reasonable WIMP luminosity valid for any value of K, ; therefore we plugged
it into the Saclay solar evolution code, incorporating, as such, the WIMP energy
transport[12].
In the Knudsen regime, when the WIMP-matter cross-section increases (at fixed
WIMP mass), the WIMP energy transport is more and more effective and so is the

enL(T) + L;conp(r)

1+ 52 K3

cooling of the star core. As the cross-section keeps on increasing we reach the inter-
mediate regime (1 > K, > 0.2) in which the conductive energy transport starts to be
effective over the non-local one, reducing the cooling effect. Then as the cross-section
ozn still continues to increase we fully enter the conductive regime : the cooling effect
decreases until it completely disappears.

For the sun, the cooling effect is effective enough to solve the solar neutrino problem
for WIMP mass between 2 GeV and 7 GeV and WIMP-matter cross-section between
1073 ¢m? and 1073* ¢cm?. Then in this case WIMPs are called cosmions.

5 Cosmion candidates

The problem is that no existing particle theory leads to candidates which enter into
the range of mass and cross-section described at the end of last section. Roughly the
cosmion-matter cross-section is too strong to be weak and too weak to be strong.

As the de Broglie wave length of cosmions with mass a few GeV and speed around
300 km/s is larger than the size of most nuclei, the scattering of cosmions on nuclei is
coherent. Using the cosmion-hydrogen cross-section o, as a free parameter, we relate
the cross-sections of cosmion on other nuclei to this free parameter in the framework of
two different coherent models[13] :

1.Axial coupling model :

AL+ mz/mp)]"’ o

4
=/ p
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where J is the nuclear spin and A the atomic number. The interaction is spin dependent,
the result of this dependence being that in this model cosmion scatters predominantly
on hydrogen.

2.Vector interaction model :

A(l +mg/m,) ?
=A2 P
OzN l:_——A T mr/mp Tzp

Unlike in the previous model, here the interaction is spin independent. Moreover the
cross-section grows very fast with the atomic number of the nuclei which leads to the fact
that cosmions scatter much more efficiently on helium than on hydrogen. In addition,
even if their abundances inside the sun are small, scatterings on nitrogen, oxygen and
carbon should not be neglected.

6 Constraints on cosmion parameters

We give results for the cosmion parameter space, in the framework of the Saclay solar
evolution code and for the vector interaction model [12]. The cosmion parameter space
is represented on figure 1 which relates the cosmion mass to its cross-section on hydro-
gen. Those cosmions decrease the solar neutrino rate from 5.8 SNU to 2 and 2.5 SNU
respectively. For the dark matter halo, we use the following input values : ppu, = 0.4
GeV/em® and vy, = 300 km/s ; errors are taken into account by a factor 2 on the ratio
Phalo/vhalo .

The interest of the vector interaction model is that it leads to cosmion cross-sections
which are much larger on heavy nuclei than on hydrogen. The figure shows that the
appropriate 0., range is roughly 10737e¢m? —1073*c¢m?. To get the range for the cosmion
cross-section on He? it is necessary to multiply 0zp by a factor which is approximately
100. For the cosmion cross-section on Si?® the factor is approximately 15000, leading to
arange : 10733c¢cm? — 10731cm? and for the cosmion cross-section on Ge the factor is
approximately 120000, leading to a range : 10732cm? — 107 ¢cm?. Present dark matter
detectors use a crystal of Germanium or Silicium, and the related cross-sections happen
to be in the ranges currently tested (see talks by C.Tao and Y.Giraud-Héraud).
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Figure 1: Cosmion parameter space for vector interaction coherent model. The abscissa
shows 10g10(0.,) With 0., expressed in picobarn=10"3%¢m?, while the ordinate shows
mg/m,. The lower gray curve is the evaporation curve : the allowed region lies above
that curve. The two curves which are just above are respectively the 2 and 2.5 SNU
curves obtained for the mean values of pjai and vhe, (see text). The upper dotted curve
is a 2.5 SNU curve whose difference with the one just below lies in the fact that the
ratio phaio/Vhato 18 multiplied by 2.
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Abstract

The existence of weakly interacting massive particles (WINIPs) has been suggested to explain
both the dark matter conundrum and the solar neutrino deficiency. Provided that they do not
annihilate, these particles can be extremely efficient. in transporting energy inside stellar cores. They
can supplement radiation and, under the specific circumstances which we analyze, even suppress
core convection. We review here the main modifications experienced by stellar evolution when
WIMPs are present. We conclude that. cold dark matter leads to an anomalous mass-to-luminosity
relation for light (Af < 0.5 M) main-sequence stars and also implies thermal pulses in horizontal
branch stars.
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1 - Introduction.

The nature of the halo dark matter is still unresolved (see forinstance [1]), but the existence of a new.
weakly interacting massive particle (hence the acronym WIMP) is one the most exciting possibilities
suggested to solve this problem. These particles may constitute the halo of galaxies and can he
accreted by stars [2]. They steadily accumulate inside stellar cores — unless they annihilate by pair
— and they can efficiently transport energy, competing with radiative transport or convection. A
lot of effort is being devoted to detect directly these particles which, through their collisions with
nuclei, might deposit energy inside terrestrial bolometers or let visible ionization tracks inside sewi-
conductors. Another promising approach is the study of the possible effects of these dark matter
particles on stellar evolution, and the search for any observational anomaly which would indirectly
sign their presence inside stellar cores. In this contribution, we try to indicate the regions of the

Hertzsprung-Russel diagram where WIMPs are expected to be most effective.

As recalled by F. de Volnay, WIMPs supplement stars with an additional mechanism of energy
transport and tend to decrease their temperature gradient. Stars such as red-giants or white dwarfs
which already possess isothermal interiors are not expected to be affected by WIMPs. More sensitive
to these particles are presumably stars with radiative cores. Because WIMPs may decrease the central
temperature of the Sun, they have been advocated as a possible solution to the solar neutrino deliciency
[3]. The Sun and other ~ 1 A stars in which the central energy transport is enhanced by WIMPs
may leave the main-sequence earlier than what is conventionally acknowledged. The age of the models
reaching the turn-off surface temperature may be reduced by the WIMPs by a factor 15-20% [4]. The
most dramatic effect of dark matter particles is the suppression of core convection inside main-sequence
and horizontal branch (HB) stars. Convection constantly replenishes the central burning region with
fresh fuel, and its suppression is therefore expected to decrease stellar lifetimes, hence a modified
stellar evolution. We give in section 2 the criterion under which central convection is suppressed by
dark matter, and analyze it for the main-sequence. Section 3 is devoted to an analytic discussion of
the thermal pulses inside the helium cores of HB stars, induced by a low central opacity - a typical

situation in the presence of WIMPs.

While WIMPs may eventually fade away, note that our discussion of low opacities and stellar
evolution is fairly generic. Trying to detect cold dark matter through its indirect signatures on stars
may eventually lead to a better understanding of their inner thermodynamics. Stars appear actually
to be much more active and, for that matter thermal pulses much more frequent, than what was

previously acknowledged.

2 - The main-sequence.

Stars are powered by nuclear reactions. In Figure 1. the energy production rate ¢, al the center of
main-sequence stars is plotted as a function of the stellar mass Af [5]. For A&/ < 1 AL... the pp chain

dominates while for heavier stars, the CNO cycle takes over, hence a steeper slope for €,,,,..

In a radiative core, the temperature gradient adjusts itself so that the nuclear energy is entirely
carried away by radiation. However, the temperature gradient cannot exceed its adiabatic value,

otherwise convection develops and transports the excess energy. Radiative transport is therefore most
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Stellar mass M in M,

Nuclear energy production rate €,,. and the maximal radiative transfer rate ¢€,,; at the center of

main-sequence stars are plotted as functions of the stellar mass Al (solid lines). and compared to
the rate of WIMP energy transfer €y, (dashed lines). Curve a corresponds to a WIMP ol mass

my- =4 m, and effective cross-section of 5 x 10737 em?. Curve b corresponds to a mass my- = 12 m,

and a cross-section of 2 X 1073% cm?. Any realistic WIMDP explanation of the solar ueutrino deficiency

would Jie in between and would lead to the suppression of core convection inside low-mass stars.
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efficient whenever the temperature gradient is adiabatic, so that the maximal amount of energy which

photons can withdraw from the stellar center is given by :

1287 Ostegan Gumy 90) . )
15 k(0)p(0) &

Ot fan 18 the Stefan-Boltzmann constant, x(0), p(0) and 7'(0) are respectively the central opacity.

€rad =

density and temperature whilst g is the mean molecular weight in units of the proton mass m,. The
evolution of ¢,,4 with M is also displayed in Figure 1. As discussed by Schwarzschild, the onset of

convection in stellar cores arises whenever €,yc1eq, €xceeds €44 :

o For stars in the range 0.7 M < M < 1.7 Mg, cores are radiative — a situation recovered in the

case of the sun by numerical simulations.

o Heavy stars, i.e., M > 1.7 Mg, have convective cores since the CNO cycle produces far more
energy than what photons are able to transport. On the other hand, it is the increase of the central
opacity of low mass stars, i.e., Al < 0.7 M, which makes them convective all the way down to the

center.

Dark matter particles are accreted during the main-sequence stage so that, depending on their
effective cross-section o and mass mw, they may dominate the energy transport inside stellar cores. If
their effective energy transfer rate ew ,,, is large enough, core convection is no longer necessary since
dark matter particles and photons are able to carry the bulk of the nuclear energy. The criterion for

core convection suppression by WIMPs is therefore :
€rad + €Wimp 2 €nuc 2 €rod - (2)

The two dotted curves of Figure 1 display the evolution of € yyin; with M for :

(a) my =4m, and ¢ = 5 x 1073 cm? and

(b) myy =12m, and 0 = 2 x 10733 cm?

Both curves exhibit a kink around 1 Mg and drop sharply for heavy stars which lifetime along the
main-sequence is too short for significant WIMP accretion. On the other hand. €15, exceeds €, by
at least two orders of magnitude in the case of low-mass stars - M < 0.7 3{;;, — which core convection is
therefore suppressed. Note that any realistic WIMP explanation of the solar neutrino deficiency would
lie between curves (a) and (b), and would inevitably lead to the suppression of core convection. Future
detailed numerical investigations should focus on stars in the mass range 0.2 — 0.5 AL.. and explore
the modifications in their structure implied by the presence of dark matter. We crudely guess that
the core readjustment, after central convection is suppressed, implies an increase by a [actor ~ 3-
of the total stellar luminosity and generates an inflation of the stellar radius by ~ 50%. Binaries [or
which the mass, luminosity and radius of each component are well determined should be scrutinized
since any departure from the conventional mass-radius relation for one of the stars would sign the

suppression of core convection and, therefore. the presence of WINPs.

3 - Horizontal branch stars.

(ore convection also plays a crucial role inside HB stars since it replenishes the small nuclear core with
the fuel from a significantly more extended region. If WIMPs are present inside HB cores. criterion

(2) is fulfilled so that dark matter particles may inhibit core convection on the horizontal branch [6].
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The helium core of a typical HB star may be divided into two zones [7]. The first is the central
burning region with mass M; = 0.05 My, temperature Ty ~ 108 &' and a positive heat capacity ¢;.
The nuclear cnergy generation rate € varies as ~ T, The second zone is the remainder of the core
with mass Af; & 0.5 My, and constitutes a gravo-thermal buffer with negative heat capacity —c;. The

temperature evolution in the two regions is modelled by a set of non-linear differential equations :

([Tl _ 1 - 4 4
7 Fl(Tl,Tz) = (m) {61]\[1 - 1\1 (Tl _TZ)} N

'% FTLTy) = (C;Ajz) (i (0 - 1Y) - Ky (1 -7, } -

where T, is the temperature outside of the core, Ky accounts for the energy transfer between regions

il

il

| and 2 by means of radiative and WIMP transfer, and K; is the thermal conductance between the
core and the envelope. This set of differential equations is supplemented by the condition that when
Ty —T; exceeds a critical value V4T ~ 2.59% 107 K, convection transports energy so efficiently that the
temperature difference remains fixed at this value and the nuclear burning energy is directly dumped
into the gravo-thermal buffer. This simple model is sufficient to account for the numerical results
which G. Raffelt will subsequently discuss. The thermal conductance Ky oc I/x; so that the core
evolution is completely specified by the opacity at the center of the HB star where exotic phenomena
(such as the presence of WIMPs) may increase the energy transport.

o i1 > Kgp : if K is chosen too small to break convection, equation (3) has a fixed point
Feonv = (Theonvs T2cony) corresponding to the usual convective equilibrium solution of stellar struc-
ture. The existence and location of this solution does not depend on the assumed value of the central
opacity. #1, while its stability does depend on the choice of ;.

o 1y < Ky ¢ if Ky is so large that convection is broken, equation (3) has a limit cycle :
[TU(8). Ty ()] 1jmie. shown in the Tj-Ty-plane of Figure 2. Note that the dashed diagonal line rep-
resents the condition for convection, Ty — Ty = V4T, so that the area below is unphysical since
over-adiabaticity is negligible. Any evolution in the presence of convection occurs therefore along this
boundary.

For a standard central opacity, k; = 0.2cm?g™!, the state E 3 of conductive equilibrium falls into

the physically forbidden regime of over-adiabaticity. For the critical value of the central opacity,

Keit = 3.1 X 1072 em? g™, (4)
it. lies on the convection line and coincides with E . while, for £y < ey, it lies well above the con-
vective border, at the crossing between curves (1) (T1 = 0) and (2) (Tz =0). For i1 = 0.0l cm?g~! <
K crits both states E cony and g are unstable and do not correspond to stationary physical configura-
tions of the star. The convective equilibrium point lies in the region of the T';-T',-plane where Ty < 0.
i.c., nuclear burning is quenched by the suppression of convection in agreement with Schwarzschild’s
criterion (2). The conductive equilibrium point lies on the unstable portion of curve (1) where T3
drops sharply with increasing T : if the star moves slightly to the left of this point, nuclear burning
gets quenched, if it moves slightly to the right, nuclear burning increases, and the nuclear core runs

thermally away until the trajectory is “intercepted” by the convection line.
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Figure 2

Several explicit. trajectories for the pulsating star in the T3-T3-plane. with xq = 0.01 cm? g," < Kerits
All trajectories approach the limit cycle.

The nature of the limit cycle is best understood if we follow one period of the pulsation explicitly.
The variation of various stellar parameters along the cycle are presented in Figure 3. The nuclear
luminosity, L3, = €1 M1, denotes the energy generated by helium burningat the center of the star. Part
of this luminosity goes into expansion work of the gravo-thermal buffer and is stored as gravitational
energy. The actual luminosity which escapes the helium core is given by L e = Ky (73 = Ti). The
upper panel presents the evolutions of Lcqe (solid curve) and L3, (dashed curve) during a pulse.
The variation of the nuclear core temperature. Ti. is displayed in the intermediate panel. and the last

diagram indicates which part of the cycle corresponds to the presence of convection.
a) The quiescent contraction (DA)

We begin at point D which is the intersection of the limit cycle with curve (1). The nuclear activity

of the central region is negligible, and the temperature of the nuclear core closely follows the gravo-
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Figure 3

Evolution ol the stellar parameters for one oscillation period according to our analvtical model with
Ky = 00lem?g™! < K. Upper panel: Core luminosity. Lge. (solid curve). and nuclear energy
production. Ly, (dashed curve). Intermediate panel: C'entral temperature. Ty. Lower panel: The
curve takes the value 0 in the absence of convection, and.l in its presence. The points 1. B, ('. and

D correspond to the points shown on the limit cycle of Iigure 2.
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thermal buffer, Ty ~ T3, and Tl ~ Tg The evolution is dominated by the gravo-thermal buffer which
slowly contracts on the Kelvin-Helmholtz timescale which is determined by its heat capacity and the
thermal conductance to the envelope, L's. The nuclear core can be thought of as being just a small part
of the gravo-thermal buffer. The core luminosity, Leere, is provided by gravitational energy liberated

hecanse of the contraction.
b) The violent nuclear eruption (AB)

In point .4, the core becomes unstable because the central temperature has reached the critical point
wlere nuclear burning cemes to life. Conduction is no longer able to cool the nuclear core efficiently
enough and it runs thermally away : its temperature, T, almost instantaneously jumps to such a
large value that convection sets in (point B). The temperature of the gravo-thermal buffer remains
alinost unchanged, the evolution is practically horizontal in the Ty-Tp-plane: the evolution of the two
zones is virtually independent of each other. The exceedingly short time scale of this phase is given
by the steep temperature variation of the triple alpha reaction, and by the small heat capacity of the
nuclear core. The central temperature, Ty, jumps brutally from ~ 1.05 x 10% K to ~ 1.4 x 105 K and

canses helium combustion to erupt violently by several orders of magnitude.
¢) The convective period (BC)

After reaching point B, convection commences, pouring the nuclear energy directly into the gravo-
therinal buffer. Nuclear reactions are extremely active on the path from B to (', but the peak central
temperature was reached at point B. The moderating effect of the buffer becomes now fully operative
as the continuous energy production leads to expansion and cooling. The action of the two regions is
anli-thetical, the nuclear core produces energy and would lead to further heating, while the expansion
of the buffer absorbs the energy and cools. The time-scale of this phase is determined by a combination
of the properties of the nuclear core and the gravo-thermal buffer, i.e., by the energy generation rate
of the nuclear core and by the (negative) heat capacity of the buffer. This time scale is much larger
than that of the preceding eruption which depended only on the (positive) heat capacity of the nuclear
core whicl is mauch smaller because of its ten times smaller mass. Since the temperature of the huffer,
T,. decreases during this phase. the overall luminosity, L .oye. also decreases as shown in the upper

panel of Figure 3 (solid line).
d) The sudden nuclcar freeze (CD)

In point: (', convection ceases to operate. and the central energy transfer proceeds again by conduction.
As the temperatnre of the inner core falls. the nuclear activity decreases. accelerating the process of
cooling because of the small heat capacity of this region. In other words. the nuclear core now “runs
away” in the opposite direction compared to .4B. and nuclear burning is quenched as can be seen on
the upper panel of Figure 3. After this sudden nuclear freeze. the star quickly reaches point D and

begins its quiescent contraction.
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4 - Conclusions.

WIMPs, and for that matter any exotic mechanism of energy transport at the cenuter of stars. may in-
duce significant observational eflects on stellar evolution, affecting specific regions of the Hertzsprong-

Russel diagram :

o On the main-sequence, low mass stars have an anomalous mass-to-radius relation which trauslates

into an increase of their luminosity by ~ a magnitude.

o Radiative stars in the range 0.7 M, — 1.7 AL;,, have an isothermal core which implies, according

to the Schoenberg-(‘handrashekar’s theorem, a shorter lifetime on the main-sequence.

o This opens the question of the sub-giant branch where fast-evolved stars from the main-sequence
gather hefore expanding as red-giants. There is either an excess of these stars in the sub-giant popula-
tion if helium core contraction towards a degenerate state requires complete hydrogen exhaustion. or
the inferred age of globular clusters is shorter than what is conventionally acknowledged on the hasis

of standard stellar evolution along the main-sequence.

o (lore convection is suppressed in stars where the nuclear energy production rate is fairly tem-
perature sensitive. The star does not settle down in a.steady state of stable conductive equilibrium
but undergoes thermal pulses. This is the case for HB stars and is also presumably true for ~ 2 7.
main-sequence ob jects inside which WIMP conduction is still fairly effective and where the ('NO cvcle

depends sensitively on the temperature.
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DARK MATTER AND THERMAL PULSES IN HORIZONTAL BRANCH STARS
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ABSTRACT

We discuss the effect of the energy transfer by dark matter (DM) particles on
horizontal branch (HB) stars, emphasizing numerical results and observational conse-
quences. For a DM density similar to that of the solar neighborhood, HB stars would
contain enough DM particles to break core convection, leading to thermal pulses on
a time scale of ~ 5x10%yrs. The overall duration of the HB phase decreases and the
luminosity dispersion of the HB increases, but neither effect is pronounced enough to
conflict with observations. The magnitude difference between the HB and the main
sequence turnoff increases and leads to an overestimate of globular cluster ages. The
observed period changes of RR Lyrae stars are consistent with, and even implied by,
our scenario.
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INTRODUCTION

Following two talks concerning the effects of DM particles on stars, I can keep
my introduction extremely brief. The main idea is that DM particles will be trapped
in stars!), build up there over the stellar lifetime (assuming they do not annihilate or
evaporate), and will contribute to the transfer of energy in the central regions. For
suitable masses and scattering cross sections, the central temperature of the Sun can be
reduced enough to solve the solar neutrino problem%), in which case our particles are
termed “cosmions”. (The relevant parameter range was discussed in the preceding talk
by F. Martin de Volnay.) Moreover, they could break core convection in HB stars?),
an effect that would lead to thermal pulses rather than to an overall reduction of the
helium burning lifetime as was shown in a paper by Dearborn, Raffelt, Salati, Silk, and
Bouquet®) on which this lecture is based. An analytic explanation for this behavior was
put forth by Salati, Raffelt, and Dearborn®), and was discussed in the preceding talk
by P. Salati. I want to discuss these effects on HB stars, emphasizing numerical results

and observational consequences.

WHICH PARTICLE PROPERTIES?

If the DM particles are supposed to transfer energy in the cores of HB stars which
consist mainly of *He, 12C, and 160, they must interact with these spin-zero nuclei.
Hence it is convenient to use the scattering cross section on helium, oge, to parametrize
the interaction. We will use a coherent interaction law where the cross-section of a

cosmion with “atomic weight” A; on a nucleus of atomic weight A; is given by

A +4 )2 (Aj)'*
i _”He(Ar+A]- 4/ )
Moreover, we must require that our particles neither annihilate nor evaporate during
the HB lifetime or during an earlier phase of evolution, a requirement which also implies

that the total number of DM particles in the star is given by the capture on the main

sequence (MS) progenitor,’7)

Ng = 2.5x10%7 :41: fus [1 - exp{—a“" }] , (2)

Ocrit
where m; is the particle mass. The factor fyg characterizes the MS progenitor and its

DM environment by

me= (oaies) OF0) (i) (). @

where ppy is the dark matter density,  its velocity dispersion, M the progenitor mass,

and fyMg the main sequence lifetime, and we have assumed that the radius of the pro-
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genitor varies as M%8, Our benchmark values for ppy and o characterize the solar
neighborhood, and the mass M = 0.8 Mg corresponds to an evolved globular cluster
star today. The capture cross section, ocap, is a weighted average of the scattering
cross sections on hydrogen and helium which are the major constituents of a MS star,
Ocap ~ 090y + 0.10ge, and oce = 3x10730 cm? is the cross section where capture
saturates, i.e., every particle impinging on the star is captured.

As a further assumption we require that oy, is so large that the energy transfer in
the core of an HB star proceeds by conduction rather than by the non-local mechanism
discussed in the previous talks. In this case the efficiency of energy transfer scales with
N;/oye which is the relevant figure of merit for our discussion. In the conduction limit,
the energy transfer can be treated exactly, in particular because the relevant thermal
condution coefficient has recently been determined®). For details we refer to Refs. 8
and 5.

12

A,
)

2
osenes e

l|||l||l|lllllllll

.001 .01 1 1 10 100

oxe [10™%em’]

Figure 1: The particle parameters must lie above the “evaporation
line” (solid curve) in order to be retained by the HB star over its lifetime
of ~ 108 yr, and to the right of the long-dashed curve so that energy
transfer proceeds by conduction. The short-dashed line gives the locus
of parameters for Dirac neutrinos. A, is the particle “atomic weight”,
i.e., its mass in GeV.

In Fig. 1 we show the relevant range for mass, m;, and cross section, oye, which
we consider. Our DM particles must lie in the white area: above the “evaporation line”
below which they would not be ratained by the HB star during its ~ 108 yr lifetime, and
to the right of the “conduction line”. For comparison we also show, as a short-dashed
line, the locus of parameters for a Dirac neutrino. This means that we require cross

sections substantially in excess of standard weak magnitude, and it is this requirement
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which constitutes the major (possibly fatal) problem of the entire cosmion scenario.
If the cross section on hydrogen is negligible, our particles solve the solar neutrino

2, i.e., our parameter range encompasses

problem for og. around a few tens of 10736 cm
cosmions. In other words, if cosmions solve the solar neutrino problem, one naturally
may expect convection breaking in HB stars. Hence, because the cosmion interpretation
of the solar neutrino problem is still the only, albeit very tentative, signature for the
existence of particle DM, it is worth investigating other observational consequences of

this hypothesis.
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Figure 2: Convective core and luminosity of zero age HB models as
a function of N;/oye for a particle mass of 4 GeV.

CONVECTION BREAKING AND THERMAL PULSES
A standard HB star consists of a helium core of ~ 0.5 M g and an extended envelope.
At the interface between core and envelope, hydrogen burns in a thin shell, providing

the major part of the total stellar energy output. In the center of the core, helium
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burns in a small region which is surrounded by a convective core which encompasses
initially about 0.12 Mg. In order to study the effect of DM particles we took a zero
age standard HB model and slowly increased the effect of the exotic transfer of energy,
i.e., slowly increased N /oye while preventing the star from evolving by keeping the
composition profile fixed. In Fig. 2 we show the resulting reduction of the convective
core and increase in surface brightness. For N;/oge = 2.4x10%! cm™ the convective
core vanishes entirely, while the brightness has increased by almost 0.5 mag, A similar
run with a larger particle mass, m; = 8 GeV, yields a much more sudden transition to
full convection breaking which occurs for N, /oge = 1.1x1081 cm™2.

For oge < 30x107%0 cm? capture on the MS is not saturated so that N; o« oge.
Expanding Eq. (2) yields N;/oge ~ 1x1082 cm™2 fiys/ Ay, i.e., convection breaking does
not depend on the chosen value for oge, but depends only on the factor fiys. Apparently
convection breaking occurs for fyms ~ 1, i.e., for a dark matter density similar to that
of the solar neighborhood. In other words, if cosmions solve the solar neutrino problem,
it is natural to expect convection breaking in HB stars.

Next we allowed a stellar model (M = 0.8 Mg, Z = 0.004) to evolve with particles
of mass m; = 4GeV and an abundance of N; = 3.3x108 cm™2 to evolve from the
zero age HB to the asymptotic giant branch (AGB). The result of this run is shown in
Fig. 3 where it is compared with the standard evolution. The most dramatic feature
are thermal pulses on the Kelvin-Helmholtz time scale of the core of ~ 5x10° yr which
were analytically interpreted in the preceding talk by P. Salati. Because of the short
bursts of convection which are associated with these pulses, the total supply of helium
for burning in the center is not much different from the standard case and the duration
of the HB is not changed much.

As helium burns to carbon and oxygen, the total efficiency of our particles to
transport energy decreases because of the assumed coherent interaction law. Therefore,
after a sufficient amount of carbon has built up in the central region, convection can
no longer be broken and the star establishes a permanent convective core, although

residual pulses pertain (see Fig. 3).

COMPARISON WITH OBSERVATIONS

One might naively expect that a behavior so dramatic as these thermal puises should
be very apparent observationally. However, while the Kelvin-Helmholtz time scale of
the core is short relative to stellar evolutionary scales, it is long in terms of a human
life span and thus one has to appeal to statistical methods in order to discuss possible
observables. From the upper panel of Fig. 3 it is apparent that the brightness dispersion

of HB stars will be increased so that the HB stars in any given globular cluster should
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Figure 3: Evolution of a HB star (M = 0.8 Mg, Z = 0.004) with
DM particles (m; = 4GeV, Ny/oge = 3.3x10%! cm_z) which follow
a coherent interaction law. (a) Surface brightness vs. time where the
lower, smooth curve is a standard model without cosmions. (b) Size
of the convective core where the smooth function is the standard case.
The steps in this curve reflect the mass shells on the computer and are
of no physical significance. (c¢) Central helium abundance.

occupy a larger range of luminosities than expected on the basis of standard evolutionary
calculations. However, if the pulsing phase lasts for only a relatively short fraction of
the entire HB evolution as in the run of Fig. 3, this effect is not pronounced enough to
be observed.

A more promising observable is the average luminosity of the HB which is shifted to
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larger values in spite of the rather short pulsing episode. For the run shown in Fig. 3 the
average increase of the HB brightness is about 0.3mag. If this effect occurs in nature,
globular clusters must be about 15% more distant (for the example of Fig. 3) than had
been thought previously, an increase that can hardly be excluded on the basis of other
evidence. Conversely, the distance of globular clusters can be gauged by comparing the
apparent brightness of the HB with theoretical values. These distance determinations
then allow one to derive the absolute brightness of the observed MS turnoff which is a
measure for the age of the cluster. In other words, the brightness difference between the
HB and the MS turnoff is a direct measure, intrinsic to the observed color magnitude
diagram, for the age of a given cluster. According to a result of Iben and Renzini?),
an anomalous brightening of the HB by 0.3mag would correspond to a decrease of the
inferred cluster age by ~ 25%. Therefore, the effect of cosmions could help explain
the notorious age problem of globular clusters which are difficult to reconcile with the
standard cosmological parameters of the Friedmann universe, and which far exceed the

age of the galactic disk as inferred from the white dwarf luminosity function.

In a certain region of luminosities and surface temperatures, HB stars exhibit dy-
namical oscillations and are identified with RR Lyrae stars. These oscillations must not
be confused with our thermal pulses on the Kelvin-Helmholtz time scale: the “clock”
for these dynamical oscillations is set by the sound travel time from the surface to the
center of the star, the period being between several hours and a day. During the pulsing
phase, our stars would cross the instability strip and would exhibit a variable dynamical
period with a time scale of change on the Kelvin-Helmholtz time scale. It is interesting
that the periods of many RR Lyrae stars do, indeed, fluctuate on such time scales! (For
a more conventional but somewhat ad hoc explanation of this effect and references to
the observations see Ref. 10.)

CONCLUSIONS

We started this investigation thinking that the effect of particle DM on HB stars
would exclude a solution of the solar neutrino problem by this mechanism. Our actual
findings indicate, on the contrary, that cosmions might kill four birds with one stone:
they could constitute the elusive DM of the galaxy, they could solve the solar neutrino
problem, they could explain the age problem of globular clusters, and they would ex-
plain the observed RR Lyrae period variations! It is unfortunate that one needs to
postulate particle properties (large scattering cross sections, small annihilation cross
sections) which are hard to produce even by heroic model builders in particle physics,
and which are hard to reconcile with the recent LEP constraints on such models (see

the contribution of L. Krauss to these proceedings).
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IS M, ~ 30eV NEUTRINO
DARK MATTER (NDM) RULED OUT?

DAVID B. CLINE

Departments of Physics & Astronomy, University of California at Los Angeles
405 Hilgard Avenue, Los Angeles, California 90024

ABSTRACT

We review the possibility that p or 7 neutrinos provide the dark matter to give Qo ~ 1.
While there is strong theoretical prejudice against this hypothesis, we show that there is no
observational evidence that contradicts the possibility of neutrino matter closing the universe.
The possible techniques to detect NDM with terrestrial and supernova detectors is reviewed.
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I. INTRODUCTION

Theissue of what makes the dark matter in the universe is perhaps the most important
in astroparticle physics today. While most proponents favor cold dark matter such as super
symmetric particle it is still possible that hot dark matter such as massive neutrinos (v, or v;)
provides the matter that gives Q = 1. This matter, being more spread out would be probed
less by rotation curves of galactic clusters. However, it is possible to get flat velocity curves

in models with neutrinos as the main contribution to § as shown in Figure 1.0

There is considerable evidence for dark matter in the universe and particle physics in-
spired models, along with inflation, suggest that  ~ 1, where as there are strong constraints

on the amount of baryonic matter in the universe from nucleosynthesis calculations that give
@, <0.15
with Qluminous matter < 0.01 {1 .[2’3]

One or more stable neutrinos, with a mass in the region of 30 eV, could supply the
missing or dark matter. The mass relationship is , = 1 for M,, = 92 h%V, where H is
the Hubble Constant (h = 1 for H = 100 km/s"'MPC~!; forh = 1/2, M,, = 23 eV to
give closure of the Universe and for h = 0.6, M,, = 33 eV). We thus consider the neutrino
mags range of 10 - 40 eV to be of cosmological significance. There are no known laboratory
techniques to uniquely detect such a mass directly. It is possible that some form of neutrino
oscillation experiment could be used to infer a mass in this range, however, this will depend
on the uncertain level of neutrino mixing. The only technique that is known to provide a

unique mass measurement is to use the difference in flight times for neutrinos from a distant

(M 2 M, \?
SEIIE

where M, and M, are measured in electro volts, E,_, E,_ are measuredin MeV and R (the

supernova that goes as

At = 51.4 Rmpc

distance to the supernova) is measured in Mega Parsecs. The p and 7 neutrinos arc expected
to have higher average energies since they escape from deep inside the supernova core.
. . . . - () ()
Figure 2 shows the expected luminosity function and mean energy of the ve, Ze, vy, vy
neutrinos from the collapse. The important times are:
(i) Prompt ve ~ (3 —6)ms
Burst
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(i) Rise time and ~ (100 — 200) ms
time internal to

acretion pulse

(ii1) Width of the ~ 400ms
acretion pulse
(iv) Explosion starts ~ (300 — 600) ms
(v) Start of ~ (300 — 600) ms
neutrino cooling
(vi) Full width of ~ (10 — 20) sec
cool-down

These times set the scale of the techniques that may be used to detect a finite neutrino
mass by the time of flight method. In Figure 3 we show the difference between a “time of

flight” mass measurement at an accelerator and using a supernova.

We assume an instantaneous source of vy neutrinos with a distribution of the form!®7}

EZ e—E,,X /T

Vx

and an assumed detection efficiency that scales as EJ_(i.e. the cross section scales like B2

and detection of secondary products like E,) gives

B, () e/ am,

&t = 51.4Rmpc JE2 eBox/T dE ©

and for the case of u, T neutrinos we expect ¥ T ~ 25/3, giving
6t = 0.037 M2 Rypc sec (10)
For a galactic supernova Rypc = 0.01MPC and for M,, = 30 eV we find
6t =330ms (11)
Note that the mean time separation and shape of the time distribution are altered in a

characteristic manner by the different neutrino masses. It is this characteristic that must be

used to extract a cosmologically significant mass from a Galactic Supernova.

There are two possibilities for the detection of a finite neutrino mass - both illustrated

in Figure 4.8l
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(i) Detection of a large time difference using an extra galactic supernova (Figure 4b)

(i1) Detection of a small time difference using a galactic supernova (Figure 4b)

The detailed time distribution for a galactic supernova is shown in Figure 5. Table 1 lists
the reactions that can be used for supernova burst detection and the experimental techniques
that can be employed. Note from Table 1 that no detector will provide information on all the
possible channels. In this note we are mainly concerned with the prospects for extracting a
neutrino mass of the p and 7 neutrino if the mass value is in the 10 - 40 eV mass range of

cosmological significance. Note also that the mean time distribution for these cases are

6t = 35 ms M,, =10 eV
6t = 590 ms M,, =40eV

In a sense the galaxy is simply too small to obtain large time differences for cosmologically
interesting neutrino mass. From Fig. 1 it is clear that the shape of the time pulse changes

with M, and that the mean width of the initial pulse is

6t ~400 ms for M, ~ 10 eV
6t~ 1sec for M,, ~40eV

and thus

(ét)pulse width > (6t)

. . (=) =) . .
time difference (—) between v’y and (u x neutrino arrival

It is clear that a very large number of events and very good time resolution is required to
resolve the effects in the lower neutrino mass range due to the shape of the time pulse near
the origin. We propose to use the derivative of the pulse to give a zero crossing estimate of

the arrival times to obtain the required accuracy.

We now consider the expected event ratio for various channels for
planned or proposed detectors for supernova detection in the 1990’s and beyond. Table
2 lists the approximate event rates for several detectors in the construction or planning stage
(ICARUS, SNO, LVD, MACRO) and for two newly proposed detectors:[+:8%10:11]

i) Super Kamiokandel!!
i1) SNBO (Supernova Neutrino Burst Observatory) as well as the existing IMB and Kamio-

kande II detectors [other detectors are likely too small to give additional information.]

We refer to Ref. [11] for discussions of the proposed Super Kamiokande detector. The SNBO
detector would have the active mass of 100,000 tons of CaCO; and would be instrumented
with a large number of neutron detectors. The detector concept has been described in Refs.

[5] and [8]. This detector is mainly sensitive to v, and v, neutrinos due to the dynamics
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of the neutral current process which strongly discriminates against lower energy v. and v,
events, thus, it is a v,, v, detector. Therefore, this zero crossing technique could be applied

to obtain the desired time resolution.

From Table 2 it is clear that most planned detectors will not have the ability to uniquely
detect a (10 — 40) eV neutrino mass signal. This is primarily due to the fact that

(i) The v, re — v, re signal rate is very small and much less than the vee - vee rate.
(ii) For the v, rd — (np)v,r rate in SNO only the time of arrival of the neutrino is measured

R . e (=)
and the uncertainly in the timing structure shown in Fig 1 and the background from v e

events may make it difficult to uniquely extract the v, or v, signature

Note that the SNBO detector could also provide a higher mass limit on one of the neutrinos
if the rate of events is considerably below the prediction. This would imply that one of the
neutrinos has a mass of > 100 eV or is unstable. The two newly proposed detectors provide
additional information that could be used to uniquely detect a v, or v, mass even in the
10 eV range. This is due to the fact that the Super Kamiokande detector gives adequate
numbers of vxe — vyie events to possibly make the separation in the high mass case and
the SNBO detector (when combined with the other detector results) provides a very large
number of pure v, and v, events. With 5000 v, and 5000 v, events it should be possible to
make a unique separation of low mass neutrinos (ie. M,, ~ 0; M,, ~ 30 eV) and mixed
cases such as (M,, ~ 10 eV, M,, ~ 30 eV). [Note that the zero crossing technique is difficult

to use in the case of a mixed, overlapping ve, vx sample.]

The construction and long term operation of such detectors in a self triggered “Supernova
Watch” detection mode is essential to determine if the 1 and 7 (and possibly ve) neutrinos
have mass values that are important for the cosmology of the universe. At this time there
appears to be no other viable proposal of techniques to carry out the important measurement.
In addition to the neutrino mass determination the detection of thousands of 7, ve and v, /v,
events from a future supernova will provide crucial information about other properties of
neutrinos (such as a magnetic moment in the range of 107! — 107 ug) and exotic vv

interactions as well as the dynamics of stellar collapse and explosion.

The SNBO could be constructed in a limestone deposit in places like Arizona. Figure
6 shows a conceptual design of such a detector. Prototype neutron detectors are being

developed by the collaboration (see Figure 7).

Now we can compare the prospects for detecting a finite mass neutrino from the use of

galactic and extra galactic supernova as given in Table 3. While the lowest mass detector is
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one using very low temperature sensors (such as 300 mK superconducting grams) the most
easily constructed is the SNBO.[Z]

There is another technique to observe a massive v or 7 neutrino through the neutrino

oscillation experiment

vy = vy v+ N 74X
mass v, or v; ~ 30eV

Two techniques have been proposed for this process using a high energy neutrino beam at
FNAL or CERN

(i) ~ 1 ton of Nuclear Emulsion
(i1) A Several Ton Liquid Argon or Krypton Detector
(by UCLA and also the ICARUS Groups)

Weillustrate the (UCLA, ICARUS) method in Table 4. Mixing angles as low as sin® 2« ~
1074,

In summary, Neutrino Dark Matter is still possible and two techniques to search for it

were reported here.
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TABLE 1

SUPERNOVA NEUTRINO DETECTION IN THE 1990’S
REACTIONS: vep —etn g€ -+ Uxe vxN — N vN — 1, N*
1
PARAMETERS:
CROSS SECTION LARGE SMALL LARGE LARGE
(K11, SK, IMB, LVD) ~E2 For Coherent Process At High E,,
(ICARUS) SNO/SNBO
NEUTRINO YES PARTIAL NO NO
ENERGY ~ Ee E,, ~f(Ee) But a threshold
ESTIMATE may set E,,
v DIRECTION NO YES NO NO
TIME INFORMATION YES YES YES YES
DOWN TIME (guess) 2 10% ~ 30% ? (could be small)
MAXIMUM 2 x 10° Tons ~ 2 x 10° Tons (H20) ? ~ 10% — 107 Tons
DETECTOR (H20) LENA or ~ 103 Tons Kilograms of CaCO; (SNBO)
SIZE £ 10* Tons Liq. Scint. (LVD) | Cryogenic (ICARUS) |No detector proposed so far | or ~ 102 Tons D2O(SNO)
BACKGROUNDS SMALL SMALL ? DEPENDS
If et and n capture detected | If directionality used on Radioactivity of material
- OK for H,0 Galactic Signal | to reject background

L6¢



TABLE 2

COMPARISION OF FUTURE SUPERNOVA v DETECTORS

PROCESS: Dep — eTn Ve — Uee  Dyxe — Uxe {VeN -+ N*we v N — N*yy
ved — ppe” x=u, T —n <=n | v, Prompt
DETECTORS:
ICARUS (3kT) - ~ 140 25 § - - 4*
SNO (1kT) ~ 500 60 20 | ~ 200 ~ 400 5*
(D20 + H20) (H20 Shield + D,0) - - 5 - 20*
LVD/MACRO (3kT) scent ~ 1000 - - - -
Kam.II/IMB (~ 480) (~ 60) (~20) | - - -
SUPER Kam. (30 kT) H,0O ~ 4000 ~ 600 200 | - - ~ 5"
SNBO (100kT) (100’s)? ~ 100’s 10,000 -
COMMENTS: measure t,, tv tv only At ~ 10 ms
E, ~E. E, estimated from E. NoE, !
No Direction O, Measured No ©,

* Depends on Energy Spectrum of Prompt ve and Detector Threshold

862



TABLE 3

To Measure M,, ~ 2eV

Must Use Extragalactic Supernova

Mass Rate(vy) | Distance | M,
: P10) 3 x 10*T (Super Kam.) | ~ 200 10Kpc | 20eV
(108 T) ~200 |0.6Mpc | 2eV
CaCO, 107 T (SNBO) 2x10% | 10Kpc | 20eV
(10T 300 0.6Mpc | 2eV
Cryogenic 10T* 30* 10Kpc* [20eV*
(T <300 MK) (104) T* 30* 0.6 Mpc* | 2eV*

* At ~ 150ms

P. Smith, private communication

66¢
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TABLE 4

A Possible Technique to Detect v, — v+
at the Sin? 2a ~ 10~* Level Using a

Liquid Argon Tracking Chamber

It is possible that m,, ~ 30eV and m,, ~ 0eV such that 6°m ~
900 eV2. In this case we would like to search for v, — v, in a high energy
neutrino beam at FNAL or CERN. We propose the following technique using
a multiton ICARUS-like tracking chamber.

(1) v»+N->7+X.
Possible rejection factor N, /N, ~ 102

(i1) Require missing transverse energy due to 7 — evw.

Possible refection factor ~ 101

(ii1) Observe effects of 7 lifetime. This requires high resolution at the vertex.
The ICARUS tests have achieved ~ 60 um in the Z direction.

Possible reduction factor ~ 10~1!.

For a 10 ton detector and 10'® protons on target we collect > 10° v,
interactions. For Sin? 2o ~ 5x10~* we sould produce ~ (10 to 20) v +N —
7 + X events. Additional calorimeters and g tracking would be required
areund the detector in order to establish the effects of the cuts (i), (ii) and

(iii).
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NEUTRINO RESONANT GGCILLATION AND SPIN-FLAVOUR PRECESSION
AND
NEW Y -STGNAL FROM GUPERNOVAE.

E.Kh. AKHMEDOV®) and 7.G. BEREZHIANIP’
a’)Kurcha.tov Insttitute of Atonic Energy. Moscow 123182, USSR
b)Inatttute of Physics of the Academy of Scliences of
Georglan SSR, Tbilisi{ 380077, USSR

ABSTRACT

We study resonant neutrino oscillations (RNO) and resonant
spin-flavor precession (RSFP) of Majorana neutrinos in supernovae.
The response of water and heavy water detectors to supernova
neutrinos is calculated for the following scenarios: (1) Standara
supernova model; (i1i) RNO; (i1ii) RSFP., and (iv) RNO+RSFP. For the
water detectors, expected event numbers are calculated using the
Kamiokande II detection efficiency. It is shown that the combinead
analysis of the 1isotropic/directional event-number ratio and
prompt neutronization burst signal will enable one to distinguish
batween all the considered possibilities provided the distance to
supernova L 18 <10 kpc. Even more rich and conclusive information
may be reached by using the DZO detector.

Presented by Z.G. Berezhiani.
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1. If neutrino (V) oscillations do occur, matter can enhance
them significantly, leading to resonant transitions between vari-
ous V .Elavor.s1 !E)Recently. it has been shown that resonant conver—
sions can also take place if the V's have transition magnetic mo-
ments M 1 33—6? In this case, in the presence of a transverse magne—
tic field, V spin rotates with its flavor changing simultaneously.
Matter can amplify resonantly such a spin-flavor precession, much
in the same manner as 1t enhances the V oscillations. Both the re-
sonant V oscillations (RNO) and resonant spin-flavor precession
(RSFP) may account for the observed solar-V deficilency.

Neutrino flavor conversions due to RNO and RSFP may have im-
portant consequences also for V's from supernovae (SN). Implicati-
ons of the RNO for SN V's were studled in a number of papers (see,
e.g.. refs. 7-9 and references therein). As concerns to RSFP, only
a few qualitative comments on 1ts consequences for 7V's from SN
were medeA's? The main goal of the present report i1s to study
these consequences in some detall and to compare them with those
of the RNO and with the predictions of the standard SN model.

We study here only the RSFP of Majorana V's; implications of
the Dirac 7V transition magnetic moments for SN dynamics and the V
slgnal from SN will be considered elsewhere.

2.We assume that all the V mixing angles are small and there 1is
a direct mass hierarchy m.v: m.v< mvT. Hence the RNO may occur for

V's and not for antineutrinos. It is only in this case that the
RNO can account for the solar-V deficilency. We also suppose that
all the 7 masses are &3402 eV, so that all the RNO and RSFP V re-
sonant conversions occur outside the V-spheres.

The Y conversions due to RNO and RSFP will be efficient only
if the corresponding adiabaticity conditions are satisfied, 1.e.
1 the osclllation or precession length at resonance is much smal-
ler than the size of the resonant enhancement regiona-G? In what
follows we shall consider four scenarios: (1) There are no
resonant VY conversions (standard model, SM), (i1) All the possible
RNO conversions are adiabatic whereas the RSFP ones are not (RNO),
(111) A1l the RSFP conversions are adiabatic whereas the RNO ones
are not (RSFP), and (iv) All the RNO and RSFP conversions are
acdliabatic (RNO+RSFP).

As SN V's move outwards from the V-spheres, they pass through

several RNO and RSFP resonances. The order of these resonances and
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their character depend crucially on the magnitude of the electron
number per nucleon Yas? The calculations show that Ye>1/3 outside
the V-spheres; 1t increases slowly with Increasing distance from
the center of SN1O)
1/3<Y <1/2 1is ahmm. in Fig. 1. It should be noted that at very low
dena:lties (p<10™ g/cm ) Y becomes >1/2. However, at such small
densities either the RNO or the RSFP or both may become

non-adiabatic;: in this case the corresponding V conversion is not

The order of the resonant transitions for

efficient and can be disregarded.

The fate of the V's in SN in each scenario can be easily read
off the scheme of the resonances given 1in Pig. 1. For the
(RNO+RSFP) scemnario it is displayed in Pig. 2. For the RNO case
the following tranamutations will result: ve—ﬂ),t. ‘ﬁe—bfe. P, —>ve.
'l_)u e v,t—w —>‘l_)u v,t—w,r. For the RSPE "i shall have ve—we.

v —»v —»vp.. vp.—w e, vp. 'IZ' ‘D,L.—>’De—>‘vu. v,t—w,t.

Vet Vg Tl e

O ]l . "2

‘vaH‘vT vava_

Fig. 1. Scheme of the RGFP and RNO resonances in SN. The preces-—
sion resonances are indicated above the axis, and those of V oscil-
lations. below 1it. Matter density decreases from the left to the
right.

v, Vo iu b ip.
v, Vo Vg i vp. vp.
”p. n Vg CR
Ch Vg N Ve
Yy R N Yy v, v,
Vo 1" Vo

Fig. 2. Neutrino trmanamutations in SN (RNO+RSPP scenario).

4. In our calculations we shall assume, following refs. 10,11,
that 8N 7V *'s have Fermi-Dirac spectra with zero chemical poten-
tials, their temperatures and luminosities being

T, = (3-6) Mev, T = 1.17,, , T, = T =T, = T = 2T
'Ve 've ve 'Uu vp' 'VT 1),1: 'Ue

1.,7: I.ve. I..vp.= n;p.= I.v't= I.,;T= In.ve. ®=2-2.5, k=1.0-1.5

(1)
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The spectrum of the prompt neutronization 'De's 18 poorly known: we
qulte arbltrarily choose 1t to be the same as the spectrum of
thermal ‘Ua's with the same mean energy. The 8N energy loss due to
the neutronization ‘Ue's is taken to be ~ 3% of the total energy EO
carried away by the V's. For Type II 8N, 1t 1s expected that E_ =
. 53 10,11) 53 o
(2-4)+10 erg i 1n our calculations we take EO=3'10 erg.
Main V-induced reactions 1n Hao detectors are the ’Ueﬁ: capture
’vep—me+ and ('l_)j)_e scattering; in the latter process V's of all the
speclies can participate. These reactions can be discriminated
experimentally by the angular distributions of the et particles:
For the ’l_)"p capture, the emitted positrons are isotropic, whereas
the recoll electrons from the (v}_e scattering are forward peaked.
Por the DZO detector, in addition to the (’U)e scattering, re-
actions on deuterons are also possible. They are charged current
G5 )

(% )—d capture and neutral current (17 d disintegration:

+ )

v d->ppe” (CC1), ¥ _a—»mne* (cC2), (iidr+np ) (NC) 2)
All these reactions can be distinguished experimentally12.) The

expressions for the event numbers in HZO and DZO detectors as well
as the relevant cross sections can be found in ref. 13.

5. Our results for the response of HZO detectors to 8N V's are
&lven iIn Tables 1-3. In Table 1, the second column glves the ex-
pected event number for v “p capture, whereas the columns 3

through 8 give event numbers for (’v;e scattering. Although 1t 1is

only the sum of all the (’vie event numbers that 1s measured, we
show these numbers separately to illustrate their changes due to
various resonant conversions. Also shown are the prompt neutroni-
zation burst (PNB) contribution, 1sotropic-to-directional event
ratio, I/D = (iep)/[zi((ﬁieHPNB]. and mean energies of recoill
electrons (positrons) for the isotropic and directional events,
)

(e) (=
1a0tr. and E” K In Tables 2 and 3 only the sum of all the 'Die

event numbers i1s given.

Table 1.
= = = = (e) (e)
Scenario(V p|V e|V e vue vua Voe|Vee PNB I/D By oot | Bair,
St. mod.|140|1.8|.39|.60|.48|.60|.48 .32 30 18 15
RNO 140(3.9|.39].60| .48 .26|.48|a.7.1072 |22 18 18
RSFP 330(1.8]|.97|.60|.24|.60|.48| .32 66 30 15
RNO+RSFP|330|3.9|.97|.31|.20| .60].48|3.6-1072 |50 30 18
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It can be seen from Tables 1-3 that the PNB signal 1s strongly
reduced whenever the RNO take place. This 1s because in the RNO
and RNO+RSFP scenarios the original ’Ue's are transformed into v,r's
or V,'s, whose Ve scattering cross sections are ~7 times smaller
than that of ‘Ua's. Therefore the suppression of the INB signal can

be considered as an indication of the RNO occurrence in SN7_9?
Table 2.
Scenario |V p|2W)e| PFNB /D |2, |l | 7, ev)
e i isotr.| dir. va

8t. mod. |220| 5.9 0.48 34 22 17

RNO 220| T.7 7.2'10-2 28 22 21 4.0
RSFP 460| 6.3 0.48 67 40 18

RNO+RSFP | 460| 8.1 5.(5'10_2 ST 40 21

8t. mod.|290| T.2 0.61 38 28 20

RNO 290| 8.7 9.2-10_2 33 28 24 5.0
RSFP 590| 7.6 0.61 71 50 20

RNO+RSFP |590| 9.2 '7.2-10-2 64 50 24

St. mod. |330| 7.7 0.66 39 30 21

RNO 330| 9.1 0.10 36 30 26 5.45
RSFP 640| 8.1 0.66 T4 54 21
RNO+RSFP|640| 9.6 7.':'0-10-a 67 54 26

The number of the isotropic 5ep events remains unaltered in
the RNO scenario as compared to the SM predictions but is sizably
increased whenever the RSFP takes place. This 1s because 1n the
RSFP and RNO+RSFP scenarios the detected 1_)e's are the original
'Up.'s. w_hose temperature 1s about twice as high as that of the ori-
ginal 'Ve's and, in addition, whose luminosity may be slightly
higher.

All the event numbers depend on the temperatures of the V Fer-
mi-Dirac distributions. Therefore the increase of (1_)ep) due to
RSFP might be simulated by the suitable increase of the ve tempe-
rature, which is known only to an accuracy of about a factor of
two (compare the event numbers for the ’l)e temperatures of 3.0 and
5.45 MeV 1n Tables 1 and 2). llowover, the distinction can be made
by examining the I/D and PNB magnitudes. 1n Table 3 we give these
values for+ the Kamiokande II (K IT) detection efficlency. To assess
possible uncertainties due to ambiguities of the SN models, we
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calculated the I/D and PNB magnitudes for R=1, 1.5 and &*=2, 2.5.

Table 3.
St.mod.| RNO RSFP RNO+RSP|T,, (MeV)
e [=]
PNB 0.32 |4.7.102| o0.32 [3.6:107°
=1, &®=2 30 22 66 50
R=1.5, *®=2 24 15 7 52 3.0
k=1, ®=2.5 28 19 78 56
k=1.5, ®=2.5 22 13 89 58
I/D
k=1, =2 39 36 T4 67
k=1.5, ®=2 33 25 8s 69
R=1, 2=2.5 38 33 89 79 5.45
k=1.5, ®=2.5 31 24 110 a1
PNB 0.66 0.10 0.66 |[7.9.107%

As 1t 1s seen from Table 3, I/D and PNB values vary with vary-
ing T, ., ® and R. However, all the I/D values can be divided 1into
e

two groups: First group, the SM and RNO scenarios., and second, the
RSFP and RNO+RSFP scenarios. Some figures inside the first group
may be confused with each other; the same is also true for the
figures inside the second group. However, no one I/D value from the
first group can be mistaken for the value from the second group
and vice versa. Therefore we can distinguish between these two
groups by measuring the I/D event ratio.

Now the guestion 18 how to discriminate between different pos-
sibilities inside each group, 1.e. between the SM and RNO, or be-
tween the RSFP and RNO+RSFP scenarios. From Table 3 1t 1s seen
that we can do that by counting the V events from PNB. Thus we can
distinguish between all the four possibilities by studying the I/D
and PNB magnitudes.

6. Our results for the response of D20 detector to SN V's are
glven in Tables 4 and 5. It can be seen from Table 4 that, given
the ve temperature, the NC signal is the same for all the four
considered scenarios. This applies not only to the thermal V's but
to the PNB V's as well. The Invariance of the NC signals stems from
the fact that the cross sections of the NC reaction (fid—’np(i;
the same for all the V species provided Ev$0 MeV. Thus the NC-mode

V signals can serve as very useful benchmarks.

are



3N

Table 4.

%) 3-5np B (NC) | V_a-—>ppe~(CC1)|V_d—>nne* T

e e cci|Nc [V

Scenario cc2|cey e

Th.phase | PNB |Th.phase| PNB (cca) (MeV)
St.mod. 380 5.4 65 12 51 1.3/5.9
RNO 380 5.4 174 o] 51 3.5[2.2| 5 4
RSFP 380 5.4 65 12 130 0.5(5.9
RNO+RSFP 380 5.4 174 o] 130 1.3]|2.2
St.mod. 820 13 150 28 130 1.2]5.4
RNO 820 13 390 o] 130 2.9|2. 5. 45
RSFP 820 13 150 28 300 0.5(5.4
RNO+RSFP 820 13 390 o] 300 1.3|2.1

All the ochanges of the event numbers due to various resonant v
oonversions ocan be easily understood oonsidering the v transmuta-
tions in eaoh soenario.

Table 5.
cc1/cc2 NC/CC1 T,
e
SM| RNO|(RSFP (RNO+RSFP| SM| RNO|RSFP|RNO+RSFP| /. o\
R=1, =2 1.3| 3.5(0.49 1.3 5.9| 2.2 5.9] 2.2
k=1.5, ®=2 1.3| 5.2/0.33| 1.3 8.3| 2.1| 8.3 2.1 3.0
k=1, ®=2.5|1.3| 4.7|0.36| 1.3 7.5] 2.1| 7.5 2.1
k=1.5, ®=2.5(1.3| 7.0/0.24]| 1.3 11| 2.0| 11 2.0
k=1, ®=2 |[1.2| 2.9]/0.51 1.3 5.4 2.1| 5.4 2.1
R=1.5, =2 1.2| 4.3|/0.34] 1.3 7.8 2.0 7.8 2.0
k=1, ®=2.5|1.2| 3.9/0.38] 1.3 6.7 2.0 6.7 2.0 5.45
k=1.5, ®=2.5(1.2| 5.8/0.26] 1.3 9.5| 1.9] 9.5 1.9

In Table 5 the event-number ratios CC1/CC2 and NC/CC1 are pre-
sented for two values of T’l) and various magnitudes of R and 2. It
can be seen from this table®that for the SM and RNO+RSFP scen-
arios, the CC1/CC2 ratio is practically the same, whereas for the
RNO (RSFP) case this ratio is noticeably larger (smaller). The NC/
CC1 ratio distinguishes the SM and RSPP scenarios from the RNO and
RNO+RSFP ones. Thus, by comparing the CC1/CC2 and NC/CC1 event ra-
tios, one will be able to discriminate between all the four con-
sidered scenarios. The PNB contributions to NC and CC1 channels can
then serve for an additional check of consistency (see Table 4).
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T. In our consideration we assumed that either all the conver-
silons of a given type are adiabatic or all of them are non-adiaba-
tic. However, this need not be the case. We have studied the most
plausible alternative possibilities. Our main conclusion 1s that
elther all the consequences colincide with those derived in Sects.
5 and 6, or there 1s a minor difference for the RNO+RSPP scenario:
The observed 've's are the original 1_)e's and therefore this case is
similar to the RSPP one; however, the RSFP and RNO+RSPP cases can
be told by the PNB signal since it should be unchanged for the
former scenario and suppressed for the latter one (see ref. 13 for
more details).

All the qualitative conclusions we derived for the DZO detec-
tor are also applicable to the 118 one14) or to any other de-
tector allowing the comparison of the NC channel with the two CC
charnels.

In conclusion, we calculated the response of water and heavy
water detectors to the V signal from SN allowing for the resonant
flavor and spin-flavor conversions of V's. It is shown that for a
nearby (LS10 kpc) SN or sufficiently large detectors the analysis
of the VY signal will allow one to reveal whether any resonant 7V
conversion occurs in SN and what its nature is. The detection of
SN V's may also shed some new light on the solar-V problem.

The authors are grateful to 8.I. Blimnikov, A. Burrows, D.K.

Nadyozhin and A.Yu. Smirnov for useful discussions.
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ABSTRACT

With LEP and SLC, particle accelerators are now able to test the cosmological
standard model in the same manner in which they test the standard model of the
particle world. In particular, LEP and SLC have now verified the cosmological models
requirement of N, ~ 3. Furthermore, LEP is now constraining possible non-baryonic
dark matter candidates in a significant way. Thus, one can say that cosmology now uses
accelerators as well as telescopes for verification of ideas.
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INTRODUCTION

Traditionally, cosmological ideas were influenced by observers using telescopes, while
particle physics ideas were influenced by experimenters using accelerators. However, in
recent years a relationship has developed where a theoretical interface between these
two fields has developed. However, this year we are beginning to see actual experimental
work in accelerator labs that has dramatic implications for cosmology. In particular,
the recent results from LEP and SLC make the particle/cosmology connection one with
experimental as well as theoretical consequences.

In some sense, LEP and SLC have positively tested the standard model of cosmology,
the Big Bang, in much the same way they have positively tested the standard model
of particle physics, SU(3) x SU(2) x U(1). LEP and SLC probe the Big Bang in two
ways:

1) through nucleosynthesis and neutrino counting; and

2) through limiting dark matter candidates.

This particular discussion will focus on the first of these, but it is important to re-
alize that the nucleosynthesis arguments are the definitive arguments for non/baryonic
matter, thus by LEP and SLC supporting the standard Big Bang Nucleosynthesis re-
sults, particle experiments are also indirectly supporting the argument for non-baryonic
matter which collider results do constrain. In this latter point (No. 2 above), LEP and
SLC are supplemented by CDF and UA2 as well as by underground searches.

As to Big Bang Nucleosynthesis (BBN) itself, it is worth remembering that along
with the 3K background radiation, the agreement of the observed light element abun-
dances with the nucleosynthetic predictions is one of the major cornerstones of the Big
Bang itself. The new COBE!! results have given renewed confidence in the 3K back-
ground argument, just as LEP has given us renewed confidence in the BBN arguments.
Because the microwave background probes events at temperatures ~ 10*K and times of
~-10° years, whereas the light element abundances probe the Universe at temperatures
~ 101°K and times of ~ 1 sec, it is the nucleosynthesis results that have led to the

particle-cosmology merger we have seen over the last decade.
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HISTORY OF BIG BANG NUCLEOSYNTHESIS

Before going into the specific argument as to sensitivity of BBN to the number
of neutrino families (N, ), let us review the history of BBN. In particular, it should be
noted that there is a symbiotic connection between BBN and the 3K background dating
back to Gamow and his associates, Alpher and Herman. The initial BBN calculations
of Gamow’s groupm assumed pure neutrons as an initial condition and thus were not
particularly accurate, but their inaccuracies had little effect on the group’s predictions
for a background radiation.

Once Hayashi (1950) recognized the role of neutron-proton equilibration, the frame-
work for BBN calculations themselves has not varied significantly. The work of Alpher,
Follin and Herman!®! and Taylor and Hoyle!*], preceeding the discovery of the 3K back-
ground, and Peeblesl®] and Wagoner, Fowler and Hoyle 8] immediately following the
discovery, and the more recent work by the Chicago group and others!”#%1% all do
essentially the same basic calculation, the results of which are shown in Figure 1. As
far as the calculation itself goes, solving the reaction network is relatively simple by the
standards of explosive nucleosynthesis calculations in supernovae, with the changes over
the last 25 years being mainly in terms of more recent nuclear reaction rates as input,
not as any great calculational insight (although the calculational techniques have been
modernized a bit{11:12],

With the exception of the effects of elementary particle assumptions to which we
will return, the real excitement for BBN over the last 25 years has not really been in
redoing the calculation. Instead, the true scientific action has focused on understanding
the evolution of the light element abundances and using that information to make
powerful conclusions. In particular, in the 1960’s, the main focus was on *He which
is very insensitive to the baryon density. The agreement between BBN predictions
and observations helped support the basic Big Bang model but gave no significant
information at that time with regard to density. In fact, in the mid-1960’s, the other light
isotopes (which are, in principle, capable of giving density information) were generally

assumed to have been made during the t-tauri phase of stellar evolution,’3) and so, were
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STANDARD BIG BANG
NUCLEOSYNTHESIS

Kawano, Schramm,
Allowed  Stelgman 1988

Window

Abundance (Mass fraction)

(Note: B,;,~2xI0%°K )

Figure 1. Big Bang Nucleosynthesis abundance yields (mass fraction) versus baryon
density for a homogeneous universe.
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not then taken to have cosmological significance. It was during the 1970’s that BBN
fully developed as a tool for probing the Universe. Here at Moriond it is particularly
appropriate to note the strong role played by the Paris group in this development.
Specifically, Ryter, Reeves, Gradstajn and Audouzel')started the 1970’s off by showing
that the t-taurl mechanism for light element synthesis failed.

Also during the 1970’s, 2H abundance determinations improved significantly with
solar wind measurements('® and the interstellar work from the Copernicus satellite.!*¢]
Reeves, Audouze, Fowler and Schramml'”] argued for cosmological 2H (and 7Ls) and
were able to place a constraint on the baryon density excluding a universe closed with
baryons. Subsequently, the 2H arguments were cemented when Epstein, Lattimer and
Schramm!'® proved that no realistic astrophysical process other than the Big Bang
could produce significant 2H. It was also interesting that the baryon density implied
by BBN was in good agreement with the density implied by the dark galactic halos.!'?]

By the late 1970’s, a complimentary argument to 2H had also developed using
3He. In particular, it was arguedm] that, unlike *H, ®He was made in stars; thus,
its abundance would increase with time. Since 3He like 2H monotonically decreased
with cosmological baryon density, this argument could be used to place a lower limit
on the baryon density[?!] using 3He measurements from solar wind’®! or interstellar
determinations.[??] Since the bulk of the 2 H was converted in stars to ® He, the constraint
was shown to be quite restrictive.8]

It was interesting that the lower boundary from ® He and the upper boundary from
2H yielded the requirement that "L: be near its minimum of "Li/H ~ 1071° which
was verified by the Pop II Li measurements of the French husband and wife team, Spite
and Spite,[?] hence, yielding the situation emphasized by Yang et alf®] that the light
element abundances are consistent over nine orders of magnitude with BBN, but only
if the cosmological baryon density is constrained to be around 6% of the critical value.

The other development of the 70’s for BBN was the explicit calculation of Steigman,
Schramm and Gunn,} showing that the number of neutrino generations, N,, had to be

small to avoid overproduction of * He. (Earlier work had noted a dependency of the * He
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abundance on assumptions about the fraction of the cosmological stress-energy in exotic
particles,254] but had not actually made an explicit calculation probing the quantity
of interest to particle physicists, N,.) To put this in perspective, one should remember
that the mid-1970’s also saw the discovery of charm, bottom and tau, so that it almost
seemed as if each new detection produced new particle discoveries, and yet, cosmology
was arguing against this “conventional” wisdom. Over the years this cosmological limit
on N, improved with * He abundance measurements, neutron lifetime measurements
and with limits on the lower bound to the baryon density; hovering at N, < 4 for most
of the 1980’s and dropping to slightly lower than 4{26% just before LEP and SLC turned
on.

BIG BANG NUCLEOSYNTHESIS: Q, AND N,

The power of Big Bang Nucleosynthesis comes from the fact that essentially all
of the physics input is well determined in the terrestrial laboratory. The appropriate
temperatures, 0.1 to 1M eV, are well explored in nuclear physics labs. Thus, what nuclei
do under such conditions is not a matter of guesswork, but is precisely known. In fact,
it 15 known for these temperatures far better than it is for the centers of stars like our
sun. The center of the sun is only a little over 1keV. Thus, temperatures are below the
energy where nuclear reaction rates yield significant results in laboratory experiments,
and only the long times and higher densities available in stars enable anything to take
place.

To calculate what happens in the Big Bang, all one has to do is follow what a
gas of baryons with density p, does as the universe expands and cools. As far as
nuclear reactions are concerned, the only relevant region is from a little above 1MeV
(~ 10'°K) down to a little below 100keV (~ 10°K). At higher temperatures, no
complex nuclei other than free single neutrons and protons can exist, and the ratio of

neutrons to protrons, n/p, is just determined by n/p = e"?/T where

Q = (mn —mp)c® ~ 1.3MeV
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Equilibrium applies because the weak interaction rates are much faster than the expan-
sion of the universe at temperatures much above 10'°K. At temperatures much below
10°K, the electrostatic repulsion of nuclei prevents nuclear reactions from proceeding
as fast as the cosmological expansion separates the particles.

Because of the equilibrium existing for temperatures much above 101°K, we don’t
have to worry about what went on in the universe at higher temperatures. Thus, we
can start our calculation at 10M eV and not worry about speculative physics like the
theory of everything (T.O.E.), or grand unifying theories (GUTs), as long as a gas of
neutrons and protons exists in thermal equilibriuim by the time the universe has cooled
to ~ 10MeV.

After the weak interaction drops out of equilibrium, a little above 10'°K, the ratio
of neutrons to protons changes more slowly due to free neutrons decaying to protons,
and similar transformations of neutrons to protons via interactions with the ambient
leptons. By the time the universe reaches 10°/ (0.1MeV), the ratio is slightly below
1/7. For temperatures above 10° K, no significant abundance of complex nuclei can exist
due to the continued existence of gammas with greater than MeV energies. Note that
the high photon to baryon ratio in the universe (~ 10'°) enables significant population
of the MeV high energy Boltzman tail until T < 0.1 MeV. Once the temperature
drops to about 10°K, nuclei can exist in statistical equilibrium through reactions such
asn+pe? H+yand H+p 3 He++ and 2D + n &3 H 4 4, which in turn
react to yield * He. Since *He is the most tightly bound nucleus in the region, the
flow of reactions converts almost all the neutrons that exist at 10°K into *He. The
flow essentially stops there because there are no stable nuclei at either mass-5 or mass-
8. Since the baryon density at Big Bang Nucleosynthesis is relatively low (much less
than 1g/cm?), only reactions involving two-particle collisions occur. It can be seen
that combining the most abundant nuclei, protons, and * He via two body interactions
always leads to unstable mass-5. Even when one combines * He with rarer nuclei like
3H or ®*He, we still get only to mass-7, which, when hit by a proton, the most abundant

nucleus around, yields mass-8. (A loophole around the mass-8 gap can be found if



322

n/p > 1 so that excess neutrons exist, but for the standard case n/p < 1). Eventually,
3H radioactively decays to *He, and any mass-7 made radioactively decays to "Li.
Thus, Big Bang Nucleosynthesis makes * He with traces of 2H, *He, and " Li. (Also, all
the protons left over that did not capture neutrons remain as hydrogen.) For standard
homogeneous BBN, all other chemical elements are made later in stars and in related
processes. (Stars jump the mass-5 and -8 instability by having gravity compress the
matter to sufficient densities and have much longer times available so that three-body
collisions can occur.) With the possible exception of 7L3,:11:27] the results are rather
insensitive to the detailed nuclear reaction rates. This insensitivity was discussed in ref.
[8) and most recently using a Monte Carlo study by Krauss and Romanelli2?”] An n/p
ratio of ~ 1/7 yields a *He primordial mass fraction,

_2n/p 1

P nfp+1 4
The only parameter we can easily vary in such calculations is the density that
corresponds to a given temperature. From the thermodynamics of an expanding universe
we know that p, ox T%; thus, we can relate the baryon density at 10'!K to the baryon
density today, when the temperature is about 3 K. The problem is that we don’t know
today’s ps, so the calculation is carried out for a range in ps. Another aspect of the
density is that the cosmological expansion rate depends on the total mass-energy density
associated with a given temperature. For cosmological temperatures much above 10* K,
the energy density of radiation exceeds the mass-energy density of the baryon gas.
Thus, during Big Bang Nucleosynthesis, we need the radiation density as well as the
baryon density. The baryon density determines the density of the nuclei and thus their
interaction rates, and the radiation density controls the expansion rate of the universe
at those times. The density of radiation is just proportional to the number of types of
radiation. Thus, the density of radiation is not a free parameter if we know how many
types of relativistic particles exist when Big Bang Nucleosynthesis occurred.
Assuming that the allowed relativistic particles at 1/MeV are photons, e, p, and 7

neutrinos (and their antiparticles), and electrons (and positrons), Figure 1 shows the
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BBN yields for a range in present p;, going from less than that observed in galaxies to
greater than that allowed by the observed large-scale dynamics of the universe. The
*He yield is almost independent of the baryon density, with a very slight rise in the
density due to the ability of nuclei to hold together at slightly higher temperatures
and at higher densities, thus enabling nucleosynthesis to start slightly earlier, when the
baryon to photon ratio is higher. No matter what assumptions one makes about the
baryon density, it is clear that * He is predicted by Big Bang Nucleosynthesis to be
around 1/4 of the mass of the universe.

As noted above, BBN yields all agree with observations using only one freely ad-
justable parameter, p,. Recent attempts to circumvent this argument!?8], by having
variable n/p ratios coupled with density inhomogeneities inspired by a first order quark-
hadron phase transition, fail in most cases to fit the Li and ¢ He, even when numerous
additional parameters are added and fine-tuned. In fact, it can be shown(?% that the
observed abundance constraints yield such a robust solution that nucleosynthesis may
constrain the quark-hadron phase transition more than the phase transition alters the
cosmological conclusions.

This narrow range in baryon density for which agreement occurs is very interesting.
Let us convert it into units of the critical cosmological density for the allowed range of
Hubble expansion rates. From the Big Bang Nucleosynthesis constraints(8:9:10:11,27,28]
the dimensionless baryon density, §1;, that fraction of the critical density that is in
baryons, is less than 0.11 and greater than 0.02 for 0.4 < hy < 0.7, where Ry is the
Hubble constant in units of 100km/sec/Mpc. The lower bound on h, comes from
direct observational limits and the upper bound from age of the universe constraints(30l.
Note that the constraint on 2, means that the universe cannot be closed with baryonic
matter. If the universeistruly at its critical density, then nonbaryonic matter is required.
This argument has led to one of the major areas of research at the particle-cosmology
interface, namely, the search for non-baryonic dark matter.

Another important conclusion regarding the allowed range in baryon density is that

it is in very good agreement with the density implied from the dynamics of galaxies,
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wncluding their dark halos. An early version of this argument, using only deuterium, was
described over ten years agol®!]. As time has gone on, the argument has strengthened,
and the fact remains that galaxy dynamics and nucleosynthesis agree at about 6% of
the critical density. Thus, if the universe is indeed at its critical density, as many of us
believe, it requires most matter not to be associated with galaxies and their halos, as
well as to be nonbaryonic. We will return to this point later.

Let us now look at the connection to N,. Remember that the yield of *He is very
sensitive to the n/p ratio. The more types of relativistic particles, the greater the
energy density at a given temperature, and thus, a faster cosmological expansion. A
faster expansion yields the weak-interaction rates being exceeded by the cosmological
expansion rate at an earlier, higher temperature; thus, the weak interaction drops out of
equilibrium sooner, yielding a higher n/p ratio: It also yields less time between dropping
out of equilibrium and nucleosynthesis at 10° K, which gives less time for neutrons to
change into protons, thus also increasing the n/p ratio. A higher n/p ratio yields more
4 He. Quark-hadron induced variations!?®! in the standard model also yield higher *He
for higher values of §;. Thus, such variants still support the constraint on the number
of relativistic species.(?%]

In the standard calculation we allowed for photons, electrons, and the three known
neutrino species (and their antiparticles). However, by doing the calculation (see Figure
2) for additional species of neutrinos, we can see when *He yields exceed observational
limits while still yielding a density consistent with the pp bounds from 2H, ® He, and now
7Li. (The new 7Li value gives approximately the same constraint on p; as the others,
thus strengthening the conclusion.) The bound on *He cories from observations of he-
liurn in many different objects in the universe. However, since * He is not only produced
in the Big Bang but in stars as well, it is important to estimate what part of the helium
in some astronomical object is primordial—from the Big Bang—and what part is due to
stellar production after the Big Bang. The pioneering work of the Peimberts!®?] showing
that *He varies with oxygen has now been supplemented by examination of how *He

varies with nitrogen[33] and carbon.34 The observations have also been systematically
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Figure 2. Helium mass fraction versus the cosmological baryon-to-photon ratio. The
vertical line is the lower bound on this ratio from considerations of 2H and ®He (see
Yang et al.) (Using 7 Li as a constraint would move the vertical line only slightly to the
left.) The horizontal line is the current upper bound of 0.24. The width of the lines for
N, = 3 and 4 is due to 7, = 890+ 4s. Note that N, = 4 appears to be excluded barring
a systematic error upward in Y, which would be contrary to current systematic trends.
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reexamined by Pagell®]. The conclusions of Pagell®], Steigman et al.**] and Walker
et al19 all agree that the * He mass fraction, Y, extrapolated to zero heavy elements,
whether using N, O, or C, is ¥, ~ 0.23 with an upper bound of 0.24. This has been
reviewed in detail at this meeting by Keith Olive.[3%]

The other major uncertainty in the * He production used to be the neutron lifetime.
However, the new world average of 7, = 890 & 45(7; /, = 10.3 min) is dominated by the
dramatic results of Mampe et al[3¢! using a neutron bottle. This new result is quite
consistent with a new counting measurement of Byrne et al.3”) and within the errors of
the previous world average of 896 + 10s and is also consistent with the precise C'4/C'y
measurements from PERKEO[®® and others. Thus, the old ranges of 10.4+0.2 min, used
for the half-life in calculations,3%:8] seem to have converged towards the lower side. The
convergence means that, instead of the previous broad bands for each neutrino flavour,
we obtain relatively narrow bands (see Figure 2). Note that N, = 4 is excluded. In
fact, the upper limit is nowN,, < 3.4.09:10]

The recent verification of this cosmological standard model prediction by LEP,
N, = 2.96 + 0.14, from the ALEPH, DELPHI, L3 and OPAL collaborations presented
elsewhere in this volume as well as the SLC results, thus, experimentally confirms our
confidence in the Big Bang. (However, we should also remember that LEP and cos-
mology are sensitive to different things.[*?] Cosmology counts all relativistic degrees of
freedom for m, S 10MeV with m, < 45GeV.

While v, and v, are obviously counted equally in both situations, a curious loophole
exists for v, since the current experimental limit m, < 35MeV could allow it not to
contribute as a full neutrino in the cosmology argument!*!]. It might also be noted that
now that we know N, = 3, we can turn the argument around and use LEP to predict
the primordial helium abundance (~ 24%) or use limits on *He to give an additional
upper limit on 4 (also § 0.10). Thus, LEP strengthens the argument that we need
non-baryonic dark matter if 2 = 1. In fact, note also that with NV, = 3, if ¥}, is ever

proven to be less than ~ 0.235, standard BBN is in difficulty. Similar difficulties occur
if Li/ H is ever found below ~ 1071, In other words, BBN is a falsifiable theory. (The
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same cannot be said for many other astrophysical theories.)

Let us now put the nucleosynthetic argument on 2 into context.

DARK MATTER

The arguments requiring some sort of dark matter fall into two separate and quite
distinct areas. First are the arguments using Newtonian mechanics applied to various
astronomical systems that show that there is more matter present than the amount
that is shining. These arguments are summarized in the first part of Table 1. It should
be noted that these arguments reliably demonstrate that galactic halos seem to have
a mass ~ 10 times the visible mass. At this Moriond meeting, the traditional dynam-
ical arguments were supplemented by gravitational lens arguments by Petrossian(*Z
and Burke,[*3] which also yielded relatively high mass-to-light ratios comparable to the
dynamic masses implied on the same scales.

Note however that Big Bang Nucleosynthesis requires that the bulk of the baryons
in the universe are dark since §2,;, << Q. Thus, the dark halos could in principle be
baryonicl'®l. Recently arguments (c.f. Bertschinger!**l) on very large scales/*) (bigger
than cluster of galaxies) hint that Q on those scales is indeed greater than Q;, thus
forcing us to need non-baryonic matter. However, until the uncertainties in these ar-
guments are fully investigated, we must look at the inflation paradigm for “proof” of
Q> Q.

This paradigm is the argument that the only long-lived natural value for  is unity,
and that inflation(*®! or something like it provided the early universe with the mechanism
to achieve that value and thereby solve the flatness and smoothness problems. (Inflation
was much discussed at this meeting, so I will not bother to expand on it here. However,
remember that up to now our need for exotica is dependent on inflation and Big Bang
Nucleosythesis and not on the existence of dark galatic halos.)

Table 2 summarizes both the baryonic and non-baryonic dark matter candidates.
Some baryonic dark matter must exist since we know that the lower bound from Big
Bang Nucleosynthesis is greater than the upper limits on the amount of visible matter

in the universe. However, we do not know what form this baryonic dark matter is in.
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TABLE I

“OBSERVED” DENSITIES

Ho
Q = p/p. where p, = 2-10"2°h2g/cmand hy = ———°
p/pc where p 0 sg/cm®and h, 100 e /sec/mpe

Newtonian Mechanics
(cf. Faber and Gallagher(63))

Visible Q ~ 0.007
(factor of 2 accuracy)

Binaries
Small groups
Extended flat relation curves Q ~0.07
(factor of 2 accuracy)
Clusters
Gravitational lenses Q ~ 0.1t00.3

Big Bang Nucleosynthesis (with #, 2 101%yrs.)
(cf. Walker et al.[1%) and ref. therein) Q = 0.065 % 0.045

Preliminary Large Scale Studies

IR AS red shift study and peculiar velocities Q203
(Ref. [45])
Density redshift counts Q~1+£0.6

(Loh and Spillarl®®])

Inflation Paradigm
(Guth!4e]) Q=1
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TABLE II

“DARK MATTER CANDIDATES”

Baryonic (BDM)

Brown Dwarfs and/or Jupiters M < 0.08M¢g
Blackholes M 2 1Mg

Hot intergalactic gas M ~1GeV, (T ~ 10°K)
Failed galaxies M 2 10°Mg

Non Baryonic

Hot (HDM)
Low Mass Neutrinos m, ~ 20+ 10eV
Cold (CDM)
Massive Neutrinos m, ~ 3GeV (2 45GeV)*
WIMPS, Lightest Supersymmetric Myysy ~ 4GeV (2 15GeV)*
Particle (Photino, Gravitino, Sneutrino)
Axions Me ~ 107 %V
Planetary mass black holes M ~10%%g —10%3%
Quark nuggets M ~10%%yg
Topological debris (monopoles M 2 10'GeV

higher dimensional knots, balls of wall, etc.)

* After LEP, etc.
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It could be either in condensed objects in the halo, such as brown dwarfs and jupiters
(objects with < 0.08Mg so they are not bright shining stars), or in black holes (which
at the time of nucleosynthesis would have been baryons); c.f. Hegyi and Olivel47],
(Recently, Mathews and Schramm!*8] have presented a galactic evolution model which
puts large amounts of early objects into the halo.) Or, if the baryonic dark matter is
not in the halo, it could be in hot intergalactic gas, hot enough not to show absorption
lines in the Gunn-Peterson test, but not so hot as to be seen in the x-rays. Evidence
for some hot gas is found in clusters of galaxies. However, the amount of gas in clusters
would not be enough to make up the entire missing baryonic matter. Another possible
hiding place for the dark baryons would be failed galaxies, large clumps of baryons that
condense gravitationally but did not produce stars. Such clumps are predicted in galaxy
formation scenarios that include large amounts of biasing where only some fraction of
the clumps shine.

Non-baryonic matter can be divided following Bond and Szalay!*] into two major
categories for cosmological purposes: hot dark matter (HDM) and cold dark matter
(CDM). Hot dark matter is matter that is relativistic until just before the epoch of
galaxy formation, the best example being low mass neutrinos with m, ~ 20eV. (Re-
member, Q,, ~ ";S—é;%l).

Cold dark matter is matter that is moving slowly at the epoch of galaxy forma-
tion. Because it is moving slowly, it can clump on very small scales, whereas HDM
tends to have more difficulty in being confined on small scales. Examples of CDM
could be massive neutrino-like particles with masses greater than several GeV or the
lightest super-symmetric particle which is presumed to be stable and might also have
masses of several GeV (see detailed discussion of ref. [50]. Following Michael Turner,
all such weakly interacting massive particles are called “WIMPS.” Axions, while very

{51 and, thus, would clump on small scales.

light, would also be moving very slowly
Or, one could also go to non-elementary particle candidates, such as planetary mass
blackholes!®? or quark nuggets of strange quark matter, also found at the quark-hadron

transition. Another possibility would be any sort of massive toplogical remnant left
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over from some early phase transition. Note that CDM would clump in halos, thus
requiring the dark baryonic matter to be out between galaxies, whereas HDM would
allow baryonic halos.

When thinking about dark matter candidates, one should remember the basic work
of Zeldovich,®%], later duplicated by Lee and Weinberg!®] and others,[®®/ which showed
for a weakly interacting particle that one can obtain closure densities, either if the
particle is very light, ~ 20eV, or if the particle is very massive, ~ 3GeV. This oc-
curs because, if the particle is much lighter than the decoupling temperature, then its
number density is the number density of photons (to within spin factors and small cor-
rections), and so the mass density is in direct proportion to the particle mass, since the
number density is fixed. However, if the mass of the particle is much greater than the
decoupling temperature, then annihilations will deplete the particle number. Thus, as
the temperature of the expanding universe drops below the rest mass of the particle,
the number is depleted via annihilations. For normal weakly interacting particles, de-
coupling occurs at a temperature of ~ 1MeV, so higher mass particles are depleted. It
should also be noted that the curve of density versus particle mass turns over again (see
Figure 3) once the mass of the WIMP exceeds the mass of the coupling boson(36:57:58]
so that the annihilation cross section varies as —E%, independent of the boson mass. In
this latter case, = 1 can be obtained for M, ~ 1TeV ~ (3K X MP,anck)U?’ where
3K and Mpignck are the only energy scales left in the calculation (see Figure 3).

A few years ago the preferred candidate particle was probably a few GeV mass
WIMP. However, LEP’s lack of discovery of any new particle coupling to the Z° with
M, S 45GeV clearly eliminates that candidatel®®%°] (see Figures 4A and 4B). In fact,
LEP also tells us that any particle in this mass range must have a coupling < 10% of
the coupling of #’s to the Z°, or it would have shown up in the N, experiments. The
consequences of this for @ = 1 dark matter are shown in Figures 4A and 4B for both
Dirac (s-wave) and Majorana (p-wave) particles. Dirac particles are further constrained
by the lack of detection in the 78Ge experiments of Caldwell et al.l%!]. The possibility of

some other WIMP not coupling to the Z° is constrained by the non-detection of other
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Figure 3. Q,h2 versus M, for weakly interacting particles showing three crossings
of Qh2 = 1. Note also how curve shifts at high M, for intereactions weaker or stronger
than normal weak interaction (where normal weak is that of neutrino coupling through
Z9). Extreme strong couplings reach a unitarity limit at M, ~ 340TeV.
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Constraints on WIMPS
(Majorana P-Wave)

Figure 4A. Constraints on WIMPS of mass M, versus sin’@,, the relative coupling
to the Z°. The constraints are shown assuming Majorana particles (p-wave interac-
tions). The diagonal lines show the combinations of M, and sin’p, that yield Q = 1.
The cross-hatched region is what is ruled out by the current LEP results. Note that
Q =1 with kg = 0.5 is possible only if M, > 15GeV and sin%¢, < 0.3. The new LEP
run should lower this bound on sin?p to < 0.1.
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Constraints on WIMPS
(Dirac  S-Wave)
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Figure 4B. This is the same as 4A but for Dirac particles (s-wave interactions), the
"6Ge region is that ruled out by the Caldwell et al. double-3 decay style experiments.
Note that while a small window for = 1, hy = 0.5, currently exists for M, ~ 10GeV,
the combination of future "®Ge experiments plus the new LEP run should eliminate this
and leave only M, 2 20GeV and sin?¢ < 0.03.
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bosons, including squarks, sleptons and/or a Z', at UA — 2 and CDF, as reported in
the particle sessions of this meeting. Thus, with the exception of a few minor loopholes,
whether the particle is supersymmetric or not, it is required to have an interaction
weaker than weak and/or have a mass greater than about 20GeV. This is discussed
in detail in Ellis et al.l®] and also by Krauss(6?l and Olivel®? in their talks at this
meeting. Future dark matter searches should thus focus on more massive and more
weakly interacting particles.

Also, as Dimopoulos®!] has emphasized, the next appealing crossing of @ = 1 (see
Figure 3) is & 1TeV (but, in any case, < 340TeV from the unitarity bound of Griest,
Kamionkowski and Turner!®®!; see also Hut and Olivel®®] for limit with matter-antimatter
assymmetry ), which can be probed by SSC and LHC as well as by underground detec-
tors. Thus, after LEP, the favoured CDM particle candidate is either a 1075eV axion
or a gaugino with a mass of many tens of GeV, or a TeV mass particle. Of course, an
HDM v, with m,, ~ 20 £+ 10eV is still a fine candidate as long as galaxy formation

proceeds by some mechanism other than adiabatic gaussian matter fluctuations®?]

CONCLUSION

Particle experiments have tested the standard cosmological model, the Big Bang, in
almost as dramatic a fashion as they have tested the standard particle model, SU; x
SU; xUy. Theresult is a continued confidence in the Big Bang and in the standard model
conclusion that £, ~ 0.06. Particle experiments have even eliminated the favoured
mass particles of a few years ago and force us to think in terms of heavier, more weakly

interacting particles or revert to axions or a 20eV tau neutrino.



336

ACKNOWLEDGMENTS

I would like to thank my recent collaborators John Ellis, Savas Dimopoulos, Gary
Steigman, Keith Olive, Michael Turner, Rocky Iolb and Terry Walker for many use-
ful discussions. I would also like to acknowledge useful communications with Denys
Wilkinson, Walter Mampe, Jim Byrne and Stuart Friedman on the neutron lifetime
and with Bernard Pagel and Jay Gallagher on helium abundances. This work was sup-
ported in part by NSF Grant # AST 88-22595 and by NASA Grant # NAGW-1321
at the University of Chicago, and by the DoE and NASA Grant # NAGW-1340 at the
NASA /Fermilab Astrophysics Center. I would also like to acknowledge the hospitality

of CERN where this paper was prepared while I was a visitor to the theory program.



10.

11.

12.

13.

14.

15.

16.

18

References

. J. Mather et «l., COBE preprint, Goddard Astrophys. J., in press (1990).

. R.A. Alpher, H. Bethe and G. Gamow Phys. Rev. 73, 803 (1948).

. R.A. Alpher, JJW. Follin and R.C. Herman Phys. Rev. 92, 1347 (1953).

. R. Taylor and F. Hoyle Nature 203, 1108 (1964).

. P.JE. Peebles Phys. Rev. Lett. 16, 410 (1966).

. P. Wagoner, W.A. Fowler and F. Hoyle Astrophys. J. 148, 3 (1967).

. D.N. Schramm and R.V. Wagoner Ann. Rev. of Nuc. Sci. 27, 37 (1977).
K. Olive, D.N. Schramm, G. Steigman, M. Turner and J. Yang Astrophys.
J. 246, 557 (1981);

A. Boesgaard and G. Steigman Ann. Rev. of Astron. and Astrophys. 23,
319 (1985).

. J. Yang, M. Turner, G. Steigman, D.N. Schramm and K. Olive Astrophys.
J. 281, 493 (1984) and references therein.

. K. Olive, D.N. Schramm, G. Steigman and T. Walker Phys. Lett B. 236,

454 (1990).

T. Walker, G. Steigman, D.N. Schramm and K. Olive Astrophys. J., sub-

mitted (1990).

L. Kawano, D.N. Schramm and G. Steigman Astrophys. J. 327, 750 (1988).

L. Kawano Let’s Go Early Universe, FNAL (1988).

W. Fowler, J. Greenstein and F. Hoyle Geophys. J.R.A.S. 6,6 (1962).

C. Ryter, H. Reeves, E. Gradstajn and J. Audouze Astron. and Astrophys.

8, 389 (1970).

J. Geiss and H. Reeves Astron. and Astrophys. 18, 126 (1971);

D. Black Nature 234, 148 (1971).

J. Rogerson and D. York Astrophys. J. 186, L95 (1973).

. H. Reeves, J. Audouze, W.A. Fowler and D.N. Schramm Astrophys. J. 179,
909 (1973).

. R. Epstein, J. Lattimer and D.N. Schramm Nature 263, 198 (1976).

337



338

19

23.

24.

25.

26.

217.
28.

29.

30.

31.

32
33

34

. J. R. Gott, III, J. Gunn, D.N. Schramm and B.M. Tinsley Astrophys. J.

194, 543 (1974).

20. R.T. Rood, G. Steigman and B.M. Tinsley Astrophys. J. 207, L57 (1976).

. J. Yang, D.N. Schramm, G. Steigman and R.T. Rood Astrophys. J. 227,
697 (1979).

.. T. Wilson, R.T. Rood and T. Bania Proc. ofthe ESO Workshop on Primor-

dial Healing, ed. P. Shaver and D. Knuth (Garching: European Southern
Observatory, 1983).

J. Spite and F. Spite Astron. and Astrophys. 115, 357 (1982);

R. Rebolo, P. Molaro and J. Beckman Astron. and Astrophys. 192, 192
(1988);

L. Hobbs and C. Pilachowski Astrophys. J. 326, L23 (1988).

G. Steigman, D.N. Schramm and J. Gunn Phys. Lett. 66B, 202 (1977).
V.F. Schvartzman JETP Letters 9, 184 (1969);

P.J.E. Peebles Physical Cosmology (Princeton University Press, 1971).
D.N. Schramm and L. Kawano Nuc. Inst. and Methods A 284, 84 (1989).
L. Krauss et al., Yale University preprint (1989).

R. Scherrer, J. Applegate and C. Hogan Phys. Rev. D 85, 1151 (1987);

C. Alcock, G. Fuller and G. Mathews Astrophys. J. 320, 439 (1987);

W_.A. Fowler and R. Malaney Astrophys. J. 333 (1988) 14.

H. Kurki-Suonio, R. Matzner, K. Olive and D.N. Schramm Astrophys. J.
353, 406 (1990);

H. Reeves, K. Satoand M. Tarasawa, U. of Tokyo preprint (1989).

K. Freese and D.N. Schramm Nucl. Phys. B233, 167 (1984).

J. Gott, J. Gunn, D.N. Schramm and B.M. Tinsley Astrophys. J. 194, 543
(1974).

. M. Peimbert and S. Torres-Peimbert Astrophys. J. 193, 327 (1974).

. B. Pagel ESO/CERN Proc. (1990).

. G. Steigman, D.M. Schramm and J. Gallagher Comments on Astrophys. 14,



35.
36.

37.
38.

39.

40.
41.

42.
43.
44.

45.

46.
47.
48.
49. R

50.
51.

52.
53.

97 (1989).

K.

Olive Proc. Rencontres de Moriond (1990).

W. Mampe, P. Ageron, C. Bates, J.M. Pendlebury and A. Steyerl Phys.

Rev. Lett. 63, 593 (1989).

J. Byrne et al. Phys. Lett. B, submitted (1990).

H.

Abele, M. Arnould, H.A. Borel, J. Dohner, D. Dubbers, S. Freedman, J.

Last and I. Reichert Proc. Grenoble Workshop on Slow Neutrons (1989).

G. Steigman, K. Olive, D.N. Schramm and M. Turner Phys. Lett. B 176,

33 (1986).

D.N. Schramm and G. Steigman Phys. Lett. B 141, 337 (1984).

E.

QYU » 2@ Z 2 EH T < »

Kolb and R. Scherrer Phys. Rev. D 25,1481 (1982);

. Chackrubat, E. Kolb and D.N. Schramm, in progress (1990).

. Petrossian Proc. Rencontres de Moriond (1990).

. Burke Proc. Rencontres de Moriond (1990).

. Bertschinger Proc. Rencontres de Moriond (1990).

. Strauss, M. Davis and A. Yahil, U.C. Berkeley preprint (1989);
. Kaiser and A. Stebbins, CITA preprint (1990);

. Bertschinger et al., MIT preprint (1990);

. Rowan-Robinson and A. Yahil Proc. Rencontres de Moriond (1989).
. Guth Phys. Rev. D 23,347 (1981).

. Hegyi and K. Olive Astrophys. J. 303, 56 (1986).

. Mathews and D.N. Schramm Astrophys. J., submitted (1990).

. Bond and A. Szalay Proc. Tezas Relativistic Astrophysical Symposium,

Austin, Tezas (1982).

M.

M. Turner, F. Wilczek and A. Zee Phys. Lett. B 125 (1983) 35; 125, 519

Srednicki, R. Watkins and K. Olive Nucl. Phys. B 310, 693 (1988).

(1983).

D.

Crawford and D.N. Schramm Nature 298, 538 (1982).

Ya. Zeldovich Adv. Astron. and Astrophys. 3, 241 (1965);

339



34

54.
55.

56.

57.
58.
59.

60.

61.
62.
63.

64.

6

5

0

H.Y. Chin Phys. Rev. Lett. 17,712 (1966).

B. Lee and S. Weinberg Phys. Rev. Lett. 39, 165 (1977).

C.P. Hut Phys. Lett. B 69, 85 (1977);

K. Sato and H. Koyayashi Prog. Theor. Phys. 58,1775 (1977).

S. Dimopoulos, R. Esmailzadeh, L. Hall and N. Tetradis Nucl. Phys. B,

submitted (1990).

D. Brahm and L. Hall Phys. Rev. D 41, 1067 (1990).

K. Griest, M. Kamionkowski and M. Turner, FNAL preprint (1990).

L. Krauss Phys. Rev. Lett., in press (1990);

K. Griest and J. Silk, U.C. Berkeley preprint (1990).

J. Ellis, D. Nanopoulos, L. Roskowski and D.N. Schramm Phys. Lett. B, in

press (1990).

Caldwell et al., Proc. La Thuile, ed. M. Greco (1990).

L. Krauss Proc. Rencontres de Moriond (1990).

P. Hut and K. Olive Phys. Lett. 878, 144 (1979).

D. N. Schramm, in Particle Astrophysics and Ezperimental Issues, ed. E.

Norman (Singapore: World Scientific, 1989).

. S.M. Faber and J.S. Gallagher Ann. Rev. Astron. and Astrophys. 17, 135
(1979).

. E. Loh and E. Spillar Astrophys. J. 329, 24 (1988).



THE IMPLICATIONS OF Z WIDTH MEASUREMENTS FOR THE
SEARCH FOR DARK MATTER

OR

THERE IS NO SUBSTITUTE FOR EXPERIMENTAL DATA
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Abstract

Ireview the implications of the Z decay measurements at SLC and LEP for the search
fordark matter: (a) The Z width measurements, when combined with non-accelerator data
rule out Dirac neutrinos, Majorana neutrinos, and sneutrinos as WIMP dark matter,
strongly constrain neutralinos, and rule out most explicit "cosmions"; (b) The limit on the
number of neutrinos, when combined with BBN estimates, could provide evidence both
for baryonic and non-baryonic dark matter; (c) direct searches for WIMPs will require new
detectors, sensitive to spin dependent interactions on possibly heavy targets, with event
rates which are 3-4 orders of magnitude smaller than those expected at present detectors.
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INTRODUCTION: THE Z WIDTH REVIEWED:

In less than a year of running, measurements of Z decay parameters at LEP and also SLC have
already significantly constrained our picture of the world. It is remarkable how even a small
amount of unambiguous data about so fundamental a system can so strongly direct theory. In
particular, the new limits on Z width constrain not only the number of light neutrino species in
nature, but also the existence of new particles of mass up to 45 GeV which might be produced in Z
decay. Among these are included many of the leading Weakly Interacting Massive Particle
(WIMP) candidates for dark matter V). Those which remain viable will be far more challenging for
experimentors to detect directly.

Before going into the detailed constraints, and because it is important for everything I will
have to say here, I will firstreview in detail how one infers a limit on the number of neutrinos from
the Z decay measurements made at SLC and LEP. Such an analysis is essential if one is to attempt
to compare and combine the results from the different experiments described in this volume, and
determine what are the limiting factors which may affect further measurements.

When Z bosons are produced at e+e- colliders, the shape of the Z resonance is most easily
determined by observing the hadronic decays of the Z, which have by far the largest branching
ratio, and so lead to the best statistics. By counting the number of decays as a function of energy,
and carefully measuring the luminosity of the machine at each energy, the cross section for Z
production can be mapped out, and compared to the standard Breit-Wigner form:

2

oF SLe (148,44 (5)] 1)
(5 ‘Mzz) +(5 /Mzz)rzz

Here, Vs is the center of mass energy, [1+8(s)] accounts for initial state radiation, and the

Oop=

Breit-Wigner resonance form is then described by 3 parameters: M,, I, and 6;,°, the mass, the

total width, and the height at the peak respectively. These are displayed in the figure below.

A

z

Not all these parameters are independent, however. In particular, in order that the integral
under the curve give the total Z production cross section, the peak height 6° and the width I" are

related, so that:
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o0 = 12wl I,
M7
whereI’, and I} are the Z partial decay widths into electrons and hadrons respectively.
The total Z width is defined to be: I'; =N Iy +31, +17, iflepton universality is
assumed. Otherwise, the sum of partial widths into charged lepton pairs may be used in the

@

definition. In any case, this defines what is meant by the "number" of neutrinos, i.e.
Ny = 1}411 3T, -T'y) 3)
v

One's naive expectation might be that to extracta limit on the number of neutrinos one would
first fit the measurements to the Breit-Wigner form (1), determine a best fit value for FZ and then
use (3). However, since each new neutrino species contributes about 6% to the width, an
uncertainty in the width determination of 6% corresponds to an uncertainty of one extra neutrino
type. Instead, since oh" depends quadratically on I, (from (2)), an extra neutrino species
contributes about 12% to the peak cross section value. Thus, assuming the uncertainty in the peak
cross section determination is no worse than that in the width, one can get twice as good a limit on
the number of neutrinos by using the fit for 6,° and then using (2) to limit the number of neutrinos
than one can get by using I, alone. Moreover, ch° is defined in (2) in terms of ratios of widths,
and is thus less sensitive to uncertainties in the widths from the standard model, such as from the

top quark mass, or the uncertainty in sin26w. Thus, using (2), we can write

Ny =te| J 20 [T 3 Thy @
roV e VL~ L

which expresses N, in terms of Gho and in terms of the ratio I';/T',, which can either be extracted

from the standard model, or more important, can be directly measured. In the latter case, the ratio
I’ /T, must be taken from theory. (There is no such thing as completely model independent bound
on N,,.) The first limits on N, essentially used (2), (or (4))2). More recently the LEP groups have
been quoting limits from (3), and combined limits from both (3) and (4) 3,

It is important, when comparing the results of different experiments, to make sure that the
limits which are quoted are derived the same way, and also to attempt to use the firmest bounds.
As an example, compare below different preliminary limits quoted at Moriond by two of the LEP
experiments (Because these were preliminary they may not appear in the articles from the

experimentors in this proceedings ).

Experiment r, o’ Combined Limit
ALEPH 3.44+0.37 not quoted 3.03%£0.15
L3 3.32+0.32 3.28+0.18 3.2940.17

As expected, the errors on the limits obtained using I", are about twice as big as those obtained
using ©},.  Also note how the I, bound can be more susceptible to systematic errors in partial

rates. Finally, note that the combined limit is at present completely dominated by the o, constraint.
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Before quoting the current fits and combined limit on N, I want to mention one aspect of the
above which will impact on limits I will later discuss. As mentioned, sensitivity of 6,° to N,,
comes from the quadratic dependence on I',. This implies however that any bound dominated by
the peak cross section constraint has an inherent insensitivity to unstable particles. For example, Z
decay into a heavy unstable fourth generation neutrino with couplings and decays to the third
generation could effectively contribute to the measured hadronic partial width, and thus contribute
to both the numerator and denominator of (2). The sensitivity to such an extra neutrino could then
be reduced by a factor of 2 compared to the quoted limits, which strictly apply to stable particles,
unless they are supplemented by other information from the.experiments.

Caveats aside, finally, what is the current combined limit on N,, from all the experiments.
Below, I display the compilation I performed based on the initial LEP preprints), and also the
most recent results, obtained from presentations at Moriond3), and later at Wisconsin®), being as
careful as possible to quote the limits derived from the same analysis in each experiment.

Experiment N,, Limit (Oct 89) N,, Limit (Mar 90)
Mark I1 2.8 +0.6 same

ALEPH 327 +£0.30 3.03%+0.15
CELPHI 24+04£05 3.05+0.28

L3 3.42 £0.48 3.11 £0.174)

OPAL 3.12+0.42 3.09 £0.19
Average 3.13 + 0.20 3.06 £ 0.09

Finally, after having gone toall the trouble to explain these results, what is the point, i.e. what
new information about dark matter may we glean? First, as I have stressed, N,, is defined by (3)
or (4). Assuch, it can represent more than just new light or massless neutrino species. In
particular, any new undetected particle which couples pairwise to the Z and is lighter than half its

mass can contribute to N,.. This includes many of the current WIMP candidates.

NEW CONSTRAINTS ON WIMPS, ETC:

We can determine the contribution of any new particle to the Z width as follows. Fermions
(mass M and coupling L = [g /2 cos 0, 1(G, yy*w+G, 'y’ v) to the Z) contribute to the Z
width as follows:

r= __lCéFfZB ViamemZ (62462 1-MMA + 3(G.2-GAMIMZE)  5)
L4

Complex scalars with mass M and L = [ig K /2 cos 0,, (¢ *"¢-(0"¢*)¢) yield
2343 3
= GF—KMZ_[1_4M2/MZZ} 2 ®)
12121
One can determine what fraction of a neutrino these might mimic, by comparing these widths
to that for a massless v.

rZ % w)=GpMz/12V21 = 165 MeV. )



345

Then, by comparing the predictions to the 2c upper bound on N,, of 3.53 (Oct.) or 3.25 (March),
one can derive limits on new particle masses and couplings of new particles so that this bound is
not exceeded. For particles which couple with the same strength as neutrinos, one finds!):

Particle Type N, <3.53 (20) N, <3.25 (20)
fermion m = 030) GeV m > 0(40) GeV (8)
scalar m=0GeV m = 0(30) GeV

We shallsee that most of the new constraints are relatively insensitive to the precise bound on
N,, which is used.

(a) Dirac Neutrinos: The prototypical WIMPs, heavy Dirac neutrinos were the first
elementary particles whose non-thermal remnant abundance was calculated in a manner identical to
that used previously to calculate successfully the remnant abundance of light elements such as
Helium produced in the big bang. The idea is simple. Heavy neutrinos maintain an equilibrium
density as long as their annihilation rate exceeds the expansion rate (assuming no particle
antiparticle asymmetry). After this time, the ratio of neutrinos to thermal photons in the universe is

frozen in at the Boltzmann factor appropriate to the temperature at freeze-out:

Z_‘{ = exp _[L} )
Y freeze out.
Thiecze out 1S fixed by the annihilation cross section. Since <Gv>= Gp2m2 for Dirac neutrinos,

it was shown in 1977°) that if m,, =2 GeV, (9) would imply a closure density of neutrinos in the
universetoday. Moreover, since the cross section increases quadratically with mass, heavier
neutrinos will annihilate more efficiently, and so will have a smaller remnant mass density today.
It is this dynamical coupling between weak interaction strength and GeV mass scale that makes
WIMPs natural candidates for dark matter. Of course, if there is a particle-antiparticle asymmetry,
this coupling is removed, and heavy neutrinos of any mass greater than 2 GeV could have a
closure density today.

‘The LEP limits require the mass of a new stable Dirac neutrino to be greater than about 40
GeV. When this is incorporated in the calculations described above one finds that the remnant
abundance of such particles, in the absence of an asymmetry, is far too small to make up all of
even the galactic halo dark matter for masses between 40 GeV and about 2 TeV. Thus, the LEP
results alone, in the absence of an asymmetry, rule out WIMP scale Dirac neutrinos as dark matter.

Fortunately, however, the LEP results can be supplemented by non-accelerator experiments,
which can directly probe for a flux of dark matter WIMPS at the earth's surface. Low background
Ge detectors are sensitive to ionization caused by energy deposited in elastic scattering off of nuclei
for masses in excess of about 12 GeV, and the nonexistence of a signal above backgroundﬁ) rules
out Dirac neutrinos as galactic halo dark matter for 12 GeV <m < 2 TeV. This bound, which
would require m < 12 GeV, is exactly complementary to the LEP bound, which requires m =
0O(40) GeV. The combination completely rules out Dirac neutrinos as WIMPs. (Note:
neutrinos with mass in excess of 2 TeV, which would be super-weakly interacting with normal
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matter, and thus are un-WIMPlike, remain viable, if they have a remnant asymmetry.)

(b) Majorana neutrinos: Majorana neutrinos are identical to their antiparticles and
therefore cannot have a primordial asymmetry. Thus, their relic abundance is entirely determined
by annihilations in the early universe. For Majorana neutrinos however, <c5v>zGF2 p2, and so
annihilation is suppressed for non-relativistic particles, leading to a slightly higher value for the
mass resulting in a closure density, of about 5 GeV?). Therelic density falls above this roughly as
m>3, Thus, the newest LEP limits imply that the fraction of closure density (€2) in Majorana
neutrinos must be less than about .01, or about equal to the visible mass density in the universe
today. Thus, the result (8) by itself rules out Majorana neutrinos as WIMPs.

(c) SUSY WIMPs:Low energy supersymmetry provides the most compelling WIMP dark
matter candidates. If the SUSY breaking scale M is tied to the weak scale, then the lightest SUSY
particle (LSP) can get a mass of order aM~0O(GeV ). Morever, since the other SUSY partners of
ordinary matter which can mediate in scattering and annihiltion processes have masses of order
M= M., the LSP can have an interaction strength which is comparable to that of an ordinary
massive neutrino. This combination makes it a natural WIMP!8) Which particle is lightest is
maodel-dependent. Those often discussed include the sneutrino---the partner of the neutrino, and a
"neutralino” ---the fermion partner of a linear combination of the photon, the Z, and the two
Higges present in SUSY models. I discuss these separately below:

(1) Scalar Neutrino: "Sneutrinos” couple to the Z with the same strength as neutrinos, and
hence, from (2) will contribute =1/2 as much to the Z width, for the same mass. Hence, while the
initial LEP results did not rule out such a particle accessible in Z decay, the newest results imply
m:2 O(30) GeV. Again, non-accelerator data provides a strong complimentary upper bound on its
mass. The WIMP directdetection experiments which limit neutrinos also limit sneutrinos to be
lighter than O(12) GeV. This limit is supplemented by data from indirect detection using proton
decay detectors. Sneutrinos are not only efficiently captured by the sun and earth?), but they
annihilate into light neutiinos, yielding a signal in proton decay detectors which is not seen,
implying m < O(3-5) GeV1®). Combining limits, sneutrinos are ruled out as WIMPs,

(2) Neutralinos: Inlow energy SUSY there are four neutral majorana fermion "partners" of
ordinary matter--the photino, the zino, and two Higgsinos--- which are expected to be among the
lightest states®). The states will mix in general, so that the mass eigenstates will be linear
combinations of the weak eigenstates. In the minimal model the masses and couplings of the inos
depend on four parameters: M; and M,, the gauge fermion mass terms, the higgsino mass
parameter H, and theratio of the two Higgs doublet expectation values v,/v,. If the model is
unified at some scale then M, and M, are related by M;=5/3 tan26wM2, leaving three free
parameters. Because of this larger freedom in model building, the constraints derivable from the Z
decay width are less easily stated. For example, the pure neutralino states tend to decouple fromZ
decay. A pure photino or a pure Zino have no diagonal Z couplings, since their boson partners
have none. It also turns out that a light pure Higgsino tends to be the linear combination which has

vanishing Z coupling.
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Nevertheless, some non-trivial constraints on the parameter space are derivable. Even in the

cases where the LSP decouples from Z decay, the other neutralinos can contribute to the Z

width! D, remembering of course that the heavier ones can decay and therefore may contribute 1/2
as much to the inferred invisible width (see above). Moreover, "charginos"”, the fermionic partners
of the charged gauge bosons and Higgses, can give even larger contributions to the Z width!2),
These particles can have triplet weak isospin quantum numbers. For a charged gaugino, the Z
decay width can be larger than that for 4 neutrinos!?. It is conventional to present constraints as
curves in M- space, for a fixed value of v;/v,. This ratio reflects the origin of electroweak
symmetry breaking. If the top quark mass term drives spontaneous symmetry breaking in the
higgs sector, then v,/v, must be greater than unity (in the limit v,/v,_, the LSP tends to pure
photino or Higgsino and thus decouples from the Z), given the current top quark mass lower limit
of 89 GeV. As v;/v, increases, the Z width constraints become more powerful.

To derive constraints on the Z width, one diagonalizes the neutralino and chargino mass
matrices, finds the weak couplings of the mass eigenstates, and plugs theminto (5)I12.13), The
largest decay branching ratios come from the charginos (see above), so that the lightest chargino is
constrained to have a m>0(M/2) before its contribution to the Z width is below the present upper
limit. The range in M- p space ruled out by the requirement that m > O(40) GeV!2), is shown
schematically below for two values of B. Also shown is the region of this parameter space which
is ruled out by the requirement that the total Z decay width into neutralinos be less than .6 Fz(v)“).
Finally, I display estimates!?) of the cosmological mass density in the neutralino LSP, with the
solid line for Q=1 and the dashed curve for Q=0.1. Squark and slepton and top masses = O(100)
GeV were assumed. Presumably the mass density of light neutralino WIMPs should lie between

these two values. As these figures show, a significant region of the M-p plane is constrained by
the Z width limit.
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For v,/v{ > 1, much of the region M,| ul < O(30) GeV is ruled out, and most of the remaining



348

cosmologically interesting range involves large positive M and 1 values. In fact!5), a large
parameter range exists for which a cosmologically relevant LSP is relatively heavy and is nearly
pure bino or Higgsino. For v,/v{ >1, the Z results are pushing neutralino WIMPs in this direction.

The Z data thus suggests that the LSP is probably heavier than O(20) GeV, and is not likely to
be a light pure photino, but rather a mix of neutralinos, whose couplings with ordinary matter
right include significant scalar contributions.

(d)Exotica/cosmions: Other than these WIMP candidates from particle physics, exotic
objects have been proposed for purely astrophysical reasons. One of these is a "cosmion", a fixed
abundance of which inside the sun might, for a mass of 4-10 GeV, lower the core temperature and
reduce the solar neutrino flux.18) This caused interest when it was suggested!?) that WIMPs might
in principle be captured in the Sun over cosmological time to produce the required abundance, thus
potentially solving both the dark matter and solar neutrino problems. However none of the
standard WIMPs fit the severe rcquircmcntslg) which may make this solution appear contrived.
Scattering cross secsions 20-100 times larger than weak are required, as is the absence of
annihilation inside the sun. However, in times of need ugliness is no obstacle, and theorists with
time on their hands have produced exotic cosmion models. I describe here how the Z decay data
can rule out many explicit models which previously appeared viable:

(a) Magnino, and Neutrino-Higgs: Raby and West proposed several cosmion models!?.
Each of these involved a Dirac neutrino with mass 5-10 GeV as a cosmion (with an additional
interaction mediated either by a large magnetic moment, or by light Higgs exchange). The Z limit
on extra massive Dirac neutrinos (and on a light Higgs) rules out both these possibilities.

(b) SUSY cosmions2 : This model requires SUSY, and also a 1-2 Higgs. The only viable
model proposed involved v,/v{ =1, M=80-105, and p=130-150 and a lightest chargino mass =30-
40 GeV. These are ruled out by the Z decay data as discussed above, as is a light Higgs particle.

(c) Eg cosmions2D: This model proposed new v's in a 27 of E¢ with no Z couplings, but
couplings to a new Z' particle. While such v's would not be produced in Z decay, there also exists
one new doublet v per family. One might naively expect their mass to be about equal to that of the
5-10 GeV singlet cosmion. In this case this model would be ruled out by the Z width limit. Also,
Z limits on light Z' particles are appearing which might also rule out such models.

(d) Colored Scalars: These models??) are the least explicit, and hence difficult to rule out.
But, all involve new colored scalars and heavy fermions. If they have standard weak quantum
numbers, the Z data would then rule them out.

THE Z WIDTH AND BARYONIC DARK MATTER

It is by now very well known that the number of light neutrinos strongly impacts upon
cosmology via primordial big bang nucleosynthesis. Traditionally, cosmologists have used the
quantitative agreement between the predicted and the observationally inferred primordial
abundances of light elements to limit the number of light neutrinos23). Now that this number has
been well established experimentally via the Z width, one can hope to use it to further constrain
other aspects of big bang cosmology. In particular, with the number of neutrinos known
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(assuming no other light states which can affect the expansion rate during helium production, but
which do not couple to the Z), the uncertainty in the predicted abundance of 4He is the smallest of
all the light elements. Below I display the BBN predictions for the fraction by mass of 4He (Yp),
for 3 and 4 neutrinos as a function of the baryon to photon ratio T]24), including the 26 uncertainty
due to our uncertainty in the BBN reaction rates (dominated by the uncertainty in the neutron half
life). Also shown for 3 neutrinos is the reduced 20 uncertainty with the most recent neutron half

life measurement included.
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Itis clear from the figure that if we can pin down the actual primordial abundance of #He we
could place strong limits from He alone on the density of baryons in the universe today. The
fraction of closure density in baryons (Qg) is determined from 1 as

Qp =.0036k, (T/2.74K)3 (1010 (10
where T is the present microwave background temperature, and h is limited by measurements of
the Hubble constant today to be between .4 and 1. For example, if we were to limit the primordial
abundance to be between 23.5 and 24% for example, then, assuming at most 3 light neutrino
equivalentsm would be constrained to be between 2.5-4.8 x 10710, This in turn would limit Qg to
be between 0.01 and 0.1. The lower bound (obtained for the extreme value h0 =1, which leads to
conflicts with limits on the age of the universe) is already suggestive that some dark matter must be
baryonic. The upper limit is only marginally in agreement with the possibility that all dark matter
inferred by virial estimates is baryonic. While such a narrow range for the primordial He
abundance cannot be inferred from the present data2), the Z width data, in combination with more
careful analyses of big bang nucleosynthesis are bringing us closer definitively limiting the amount

of baryonic dark matter in the universe.
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CONCLUSIONS: IMPLICATIONS FOR DIRECT WIMP DETECTION

The Z width data effectively rules outall known WIMP candidates which interact coherently
with total nuclear charge in low energy scattering processes. In addition, it suggests that the LSP,
if it exists, is probably heavier than 10-20 GeV, and is not likely to be a pure photino. These have
important implications for direct detection schemes, because they suggest that a viable WIMP is
likely to be orthogonal to presentdetection schemes. Much of the thrust of ongoing WIMP
detection experiments has been to develop sensitivity to probe for coherently interacting particles
with mass less than 5-10 GeV. For Dirac neutrinos and sneutrinos, the LEP results now remove
the need. Because they also rule out most cosmion models, that motivation for probing the light
mass range is at least reduced. None of the present detectors is sensitive to the small rates which
would result from the spin-dependent interactions, typical of neutralinos, and heavier neutralino
and squark mass limits will make interaction rates even smaller. Trying to maximize the recoil
energy will suggest going to heavier nuclear targets. Recent work2®) suggests that the rates in
nuclear targets is suppressed compared to original estimates. The challenge to direct detection has
increased! It may be that experimentors will have to wait first for a signal for the LSP at LEP or
the Tevatron, in order to know how to optimize their detectors.

Itis remarkable to have data which conclusively limits an area in which there has been so
much speculation over the last decade. The first results from physics at the Z have provided
powerful new limits, not just on the number of light families, but on the nature of dark matter. We
can hope that the coming years may not only yield further constraints, but that a clear signal to
guide us might emerge. If so, the identity of most of the mass of the universe could emerge from

the data now being recorded at the Z pole.
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ABSTRACT. The models of galaxy formation predict the mass distribution of galaxies
from the linear fluctuation spectrum. So the predictions are not directly comparable with the
observations which give the luminosity distribution, unless some ad hoc mass-to-light ratio
is arbitrarily fixed. This procedure is far too crude and realistic models predicting consistent
mass—to-light ratios are needed. We hereafter describe such a model of spectrophotomet-
ric evolution. Simple scenarios of evolution correctly reproduces the properties of nearby
galaxies. As for distant galaxies, faint counts give a deep insight on the properties of the
global population at high redshift. Nevertheless the straightforward interpretation of the
data with the simple scenarios gives g = 2g¢ ~ 0.10 which is inconsistent with the infla-
tionary paradigm. In order to save {}g = 2¢go = 1, one must introduce a new assumption,
for instance strong number evolution or an additional population of low-surface-brightness
galaxies. In this latter context, we discuss preliminary results of a “complete” model in which
the spectrophotometric properties are consistently derived from the CDM linear fluctuation
spectrum. Most of the objects seen in faint galaxy counts would be the low—surface-brightness
dwarfs predicted by the model.
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1. Introduction

In the models (or simulations) of galaxy formation which are currently developed, the
mass distribution and the dynamical properties of the galaxies are computed from the linear
fluctuation spectrum. But the observations give luminosity functions and colours of galaxies.
So the predictions are not directly comparable with the observations, unless some mass—
to-light ratio is arbitrarily fixed. Nevertheless, this procedure is far too crude, as we shall
see in this paper. In order to compare the predictions of these models with observations,
it is necessary to use the link of realistic models of spectrophotometric evolution. These
models give meaning mass—to-light ratios and colour distributions from the small number
of parameters which describe the star formation. The star formation parameters are to be
consistently related to the dynamical properties of the galaxies.

The steps of a “complete” model of galaxy formation and evolution would be the following
ones: (1) The particle physics give the power spectrum of the linear fluctuation field (baryonic
matter + possible non-baryonic dark matter). (2) After assuming the values of Ho and Qo,
the distribution of collapsed haloes n(M, zcou) (in Mpc™2) is computed as a function of
total halo mass and redshift of dynamical collapse, providing a Press-Schechter-like (PS)
prescription, and a collapse model such as the simple top-hat model, are given. The usual
PS prescription (Press and Schechter, 1974) would a priori be an oversimplification of reality.
Nevertheless, Efstathiou et al. (1988a) and Efstathiou and Rees (1988) found the abundance
of haloes resulting from the simulations to be in surprising agreement with the PS prediction.
(3) The dynamical parameters of the haloes are easily computed from the collapse model.
Then, if a baryonicdensity {25 is assumed and if the star formation processes arerelated to the
dynamical parameters of the haloes (or of the surroundings), the model gives the distribution
of galaxies n(My,zy,r, 7.) as a function of baryonic mass, redshift of first star formation and
characteristic time scale for star formation. (4) By means of a model of spectrophotometric
evolution, consistent mass—to-light ratios and colours are computed at each time step from
the star formation history and the ages of galaxies. Finally, the model gives the observational
luminosity functions n(L,z) and colour distributions n(c, z) at each redshift.

In fact such a program is very ambitious and a number of steps are still unclear. The
purpose of this paper is to describe step (4) more extensively. Then we propose preliminary
results for the “complete” program from steps (1) to (4), as resulting from a collaboration
with Cedric Lacey and Joe Silk. In section 2, we describe the principles of our model of
spectrophotometric evolution, referring the reader to the published papers for the techni-
cal details. In section 3, we focus on the faint galaxy counts which strongly constrain the
evolution of high-redshift galaxies and the value of the deceleration parameter go. The nat-
ural interpretation of the data with normal luminosity evolution gives 9 = 2¢y ~ 0.10, in
strong disagreement with the value of the inflationary paradigm. Some solutions to save
Qp = 2gop = 1 are explored. Finally, in section 4, we describe an attempt to build a model
which computes consistently the mass, light and colour distributions of galaxies at all red-
shifts, within an Qg = 1 universe filled with cold dark matter (CDM). Section 5 is our

conclusion.



357

2. A model of spectrophotometric evolution

2.1 Principles

The basic idea of models of spectrophotometric evolution is to compute evolving synthetic
spectra of the galaxies from their star formation history (Star Formation Rate and Initial
Mass Function). After Beatrice Tinsley’s pioneering works, the first model of this type
was proposed by Bruzual (1981). We built a new model at the IAP, which is described in
Rocca—Volmerange et al. (1981) and Guiderdoni and Rocca-Volmerange (1987). The latter
reference gives the comparison with Bruzual’s model. More recently, Yoshii and Takahara
(1988) proposed predictions at high redshift, unfortunately with too crude UV stellar data.

The principles of our model are the following ones: at each time step, stars form from
the gas content according to the classical parameters (SFR, IMF). These stars are placed in
the Zero Age Main Sequence of the HR diagram. The model uses a compilation of stellar evo-
lutionary tracks taking into account the Main Sequence and late stages of stellar evolution to
compute at each time step the distribution of the stellar populations in the HR diagram. This
distribution is combined with a library of stellar spectra in the UV and visible (220 to 10000
A) in order to estimate the synthetic spectrum of the stellar population (Rocca-Volmerange
and Guiderdoni, 1988). The internal extinction is estimated from the gas content and simple
models of metal enrichment and transfer. The nebular emission is computed from the flux
of ionizing photons. The mass—to-light ratios, apparent magnitudes and apparent colours at
redshift z are derived from the spectra after coupling with the standard cosmological models

and convolution with the response curves of filters.

2.2 Constraints from nearby and high-redshift galaxies

As shown in Table 1, the synthetic spectra satisfactorily reproduce the colours of the
Hubble sequence of spectral types, with a single parameter, namely the time scale for star
formation. The age of galaxies can be a secondary parameter. A universal IMF is used for
all galaxies, with the slope for massive stars derived by Scalo (1986). The second important
result is the large range of mass—to-light ratios predicted by the model, and shown in figure
la. The ratio of baryonic mass to blue light varies by a factor of 30 if SFR time scales and
ages are taken into account. Thus a single, arbitrary mass—to-light ratio is far from reality.
If we assume that 50 % of the baryonic gas becomes Jupiters and brown dwarfs, the model
for “old” galaxies (say older than 10 Gyr) predicts My/Lp ~ 4 for Im and late spirals and
up to ~ 15 for E, in agreement with the observations in the central parts of galaxies.

Consistent models for the formation and evolution of galaxy are now strongly necessary
to interpret the large amount of recent data on high-redshift galaxies. The strategy of
search of high-redshift galaxies mainly developed into two axes: (i) Optical and near-infrared
counterparts of powerful radiogalazies such as the 3C, 1 Jy, 4C or Parkes catalogues. The
most distant galaxies which are up to now observed have been detected by this strategy:
3C257 at z = 2.48, 0902+34 at z = 34 and 4C41.17 at z = 3.8. These objects show a
number of interesting properties. The most surprising features are the strong Ly a emission
in an extended component, which would imply very strong star formation rates if the ionizing

photons originate in OB stars, and the alignment of the optical elongated shape with the axis
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type

(1 Gyr burst)
UV-hot E/SO

Sa

9(t) = Mgaa(t)/ Meor

SF law

7(t) =1 (¢t <1 Gyr)
1g(t)

0.4¢(t)
0.3g(t)
0.19(t)
0.060

7.7 10742

B-V
at 12-16 Gyr

1.00-0.95
0.92-0.91

0.74-0.84
0.67-0.78
0.51-0.58
0.42-0.47
0.31-0.34

<B-V>
in RC2

E:0.89

0.72
0.66
0.51
0.44
0.36

Table 1: Standard scenarios of evolution for the Hubble sequence of spectral types.

7 7 M
= . 1 M, —
1,=(25,3.3,5,10,20) FR- gas (1) B
4t T -0.27
B 2.5
d
) \ 0.67
8
8 ol
@ 6 1.7
g
121
K 4.3
Q
2]
5 8 1
= 1 Gyr burst
-l 27
10 ! ! L a
0] 5 10 15
time {Gyr)
—— model b c
- M87
- _ in
oL
el
z 9
>
3 !
< v R
o
T o uje
[ MB7/S(NTHETIC SPECTRUM _+_
© 2000 40‘00 5(;00 8000 e J

ANGSTROM

Figure 1. (a) (Baryonic)-mass-to—(blue)-light ratio against time for various star forma-
tion histories. If the various time scales ¢. (in Gyr) for star formation and the age effect are
taken into account, the M;/Lp can vary by a factor ~ 30. (b) Fit of the spectrum of M87
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of the radio jet. As shown in figure 1bc, the UV-hot model gives a good fit of the UV /visible
spectrum of the nucleus of M87 (Rocca—Volmerange, 1989) and the spectrophotometry of
the high-redshift radiogalaxy 0902+34 given by Lilly (1988) is fitted by Rocca-Volmerange
and Guiderdoni (1990) with two 0.1 Gyr bursts of star formation. (ii) Faint samples of field
galazies. Figure 2ab shows that the colours predicted from the standard scenarios of evolution
for the various spectral types bracket the observational colours of a “blind” deep sample of
field galaxies. As shown in Guiderdoni and Rocca-Volmerange (1988), the reddest objects
are reproduced if the universe is old enough, that is if Qg ~ 0.10 and Ho = 50. The colours
of cluster galaxies at z ~ 0.5 are fitted with the same trend. Alternatively, it might mean
that some galaxies have a high metallicity, or are strongly extincted, or that there is some
problem with the time scales in the theoretical stellar tracks. Finally the deep CCD counts
by Tyson (1988) provide the best constraints on the properties of the global population of
galaxies at high redshift. Tyson’s counts show a large number of faint blue objects, which
might be young or primeval galaxies at large redshifts (1 < z < 4).

3. The faint galaxy counts

3.1 Standard interpretation

Among the various data sets at large z, the faint counts probe the global field population
and are likely to give constraints on the average evolution of the bulk of the galaxies. The
counts are weakly sensitive to the value of the Hubble constant, but at magnitudes fainter
than 24, they are very sensitive to the value of go. Guiderdoni and Rocca-Volmerange
(1990) proposed an analysis of the available data on the magnitude, colour and redshift
distributions of faint galaxies. The straightforward interpretation is based on the nearby
luminosity functions for each morphological type, and on the extrapolation in the past of the
standard scenarios reproducing the properties of the nearby galaxies, under the assumption
of pure luminosity and colour evolution. Figure 2cd shows the sensitivity of the standard
predictions to go and zgor. Thus the fit of the data in the number counts, colour histograms
and redshift distribution of the Durham Faint Survey (Broadhurst et al., 1988) absolutely
requires a low go (~ 0.05) and a high value of zf,, (~ 10).

3.2 Alternative interpretations

It is not easy to get rid of this conclusion. As a matter a fact, it seems to be unsensitive
to uncertainties in the inputs of the model, since Yoshii and Peterson (1990) give the same
conclusion on the basis of their model of photometric evolution which has other stellar data.
Guiderdoni and Rocca—Volmerange (1990) showed that none of the incertainties due to the
history of star formation (providing there is only luminosity and colour evolution), the IMF,
the internal extinction or the nebular component can make the results consistent with the
value Q09 = 2¢¢ = 1 required by the inflationary paradigm. This conclusion seems to be very
robust since it is due to the smaller volume elements at high redshifts for g = 1. There are
simply not enough objects in the 2y = 1 cosmological model to reproduce the data, whatever
the luminosity of these galaxies may be.

Thus if we believe in the inflationary paradigm, we must introduce a new assumption
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minosity evolution. (a) Number versus apparent magnitude. (b) Redshift distribution. (c)
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in order to reconcile the predicted counts with the data. An appealing possibility is the
introduction of a strong number evolution, in addition to the normal, unavoidable luminosity
evolution. Rocca-Volmerange and Guiderdoni (1990) introduced a phenomenological mod-
elling of the number evolution. The mass function at redshift z is the well-known Schechter

function:
aM

M J exp - M
MG TP M) M)

d(M,z)dM = ¢*(z)(

with M*(z) being the caracteristic mass at the knee, and ¢*(z) a caracteristic density. The
values M*(0) and ¢*(0) are fixed in order to fit the current luminosities and densities of
galaxies. Then M*(z) = M*(0)(1 + z)™" and ¢°(2) = ¢*(0)(1 + 2)". The parameter 7 is
free. This functional form has two interesting properties: (i) self-similarity, as suggested by
the classical PS prescription. (i) conservation of the total comoving mass density.

In this case, our grid of models with various laws of star formation (Rocca—Volmerange
and Guiderdoni, 1988), which turns out to reproduce the observed Hubble sequence, is taken
as a phenomenological description of the history of star formation in galaxies undergoing a
large number of merging events: the succession of bursts of star formation associated with
the merging averages into our continuous star formation rates. Finally the constraint on
the average redshift of the first stellar generation is unchanged with our new tracks. We
hereafter take zs,, = 10. Values zy,, < 5 are still rejected from the data, even with the
number evolution. Figures 3abc respectively show the results of the models for Qo = 1, in
the magnitude histogram down to By = 27 (a), in the redshift histogram for 20 < By < 21.5
(b) and in a colour histogram (c). The value 7 = 0 corresponds to the exclusion of Q¢ = 1 if
no number evolution is introduced. It is seen that the values n ~ 1 — 2 give fair fits of the
data. The parameters 7 = 0.5 or 2.5 (not shown in the figures) are rejected.

Thus if galaxies evolve gently as predicted from their colours, the data tell us something
about Qg, which has to be low. Conversely, if we believe in the inflationary paradigm, the
data strongly constrain the possible evolution of galaxies. These phenomenological results

are important guidelines for a subsequent modelling.

4. An attempt to build a consistent model

4.1 Principles

An alternative possibility to save the value 3o = 1 from the severe constraint of the
faint galaxy counts is the introduction of an additional population of nearby, low-surface-
brightness (LSB) dwarfs which do not appear in the existing photometric and spectroscopic
survey, except in Tyson’s (1988) observations. The parameters of the luminosity function can
be easily selected in order to fit the data. Such a large number of dwarfs is a prediction of
standard CDM models.

In collaboration with Cedric Lacey and Joe Silk, we are attempting to derive a consistent
model for the formation and evolution of galaxies, from the dynamical collapse to the for-
mation and evolution of stars. In this model, the star formation is triggered by tides due to
the neighbours. The distribution of peaks in the linear fluctuation field is computed from the
formalism developed by Bardeen et al. (1986), within the framework of the CDM model. The
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collapse of the peaks is modelled according to the simple top—hat model. The peak formalism
also give the distribution of overdensities of the background in which galaxies are located,
providing a typical size of the background with respect to the galaxies is assumed. Only
those objects which can cool before the collapse of the background fluctuation are counted as
galaxies. Star formation begins after the background collapse. The caracteristic time scale
t* for star formation (SFR=My,/t.) is proportional to the collision rate in the collapsed
group. The objects with too low an escape velocity loose the bulk of their gas in the galactic
winds produced by supernovae, and become LSB dwarfs.

With Ho = 50 and g = 2q¢ = 1, the results are sensitive to a small number of free
parameters, namely the normalisation of the power spectrum of the linear fiuctuation field
o(16Mpc) = 0.4 to 0.6, the baryonic density 0, which is constrained by nucleosynthesis
(0.044 < Q; < 0.08 if Hy = 50, from the review by Steigman, 1990) and an efficiency factor
A, relating the collision time to the star formation time scale ¢t.. Lacey and Silk (1990)
describe the principles of the models and the first results for nearby galaxies.

4.2 Predicted luminosity functions

A typical standard model has o(16 Mpc) = 0.5, A. = 8 and 0, = 0.07. Figure 4ab shows
the mass distribution of the objects and the passage to the observational luminosity func-
tion. The model satisfactorily reproduces the luminosity function of nearby, bright galaxies
(Efstathiou et al., 1988b) as well as the luminosity function of LSB dwarf galaxies observed
by Sandage et al. (1985) in the Virgo Cluster. The bell shape of the mass distribution is
enlarged and becomes flatter because of the convolution by the wide distribution of mass—to—
light ratios, giving the observed slope o = —1.07. Figure 5ab shows the predictions for the
faint counts (that is, the luminosity functions of high-redshift galaxies). Most galaxies fainter
than By = 22 are in fact LSB dwarfs. The redshift distribution at 20 < By < 22.5 observed
by Colless et al. (1990) in the LDSS is also correctly reproduced in the model, providing a
correction for isophotal magnitudes is consistently introduced into the model. Nevertheless,
there is still a number of unsolved problems. In particular the predicted colour histograms for

faint galaxies appear too blue, because most of the bright objects form at too low redshifts.

5. Conclusions

(1) The increasing number of data on high-redshift galaxies now actually sets strong
constraints on models of galaxy formation and evolution. For interpreting these data, it is
necessary to take into account properly the wide range of M/L and colours resulting from
the various SFR histories, by means of a realistic model of spectrophotometric evolution.

(2) In order to save (g = 1 from the faint galaxy counts, we introduce strong number
evolution in the overall population of galaxies, which we constrain in a phenomenological
way. Alternatively, one can introduce a population of LSB dwarfs. We describe a consistent
model of galaxy formation and evolution in a {19 = 1 universe filled with CDM. The fit of
most constraints seems to be satisfactory. Nevertheless, all the data have to be correctly
fitted. If this turned out to be impossible, it would mean that the most natural modelling of
the formation of galaxies is far too naive, or alternatively that... 1o is lower than 1.
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Abstract.

By applying the dark-to-luminous mass decomposition method for spiral galaxies pre-
sented by Persic and Salucci to 58 rotation curves (with —17.5 >Mp > —23.2), through
the deduced dynamics of dark halos we sample the galaxy—background correlation prop-
erties at short distances.

Our main results are: a) over the 20-350 hy, kpc scale, the two-point galaxy-
background correlation function (slope v = 1.71 + 0.03; clustering length 764 = (6.5 =
0.6) (1/92,)"7 hgg Mpc) mimicks the two-point galaxy-galaxy function, its marginally
smaller correlation length being a possible indication of bias (with a biasing parame-
ter b ~ 2Q,); b) correlation functions up to sixth order fit the so-called hierarchical
clustering pattern.

The main consideration which naturally follows is that on the scale of galaxies the
statistics of matter seems to be highlighted with equal effectiveness by both the luminous
point—-object distribution and the dark-matter properties underlying the halo-influenced
disk dynamics.
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1. Introduction

Dark matter (DM) has long been recognized as a fundamental component of the in-
ternal structure of galaxies!). The overall matter distribution, as revealed dynamically
by observed rotation curves, is strikingly different from the distribution of luminous
matter in the optical disk region? and extends out to large radii where no keplerian
velocity falloff is observed®*5%). Therefore huge amounts of matter, not traced by light,
dominated the overall dynamics and structure of galaxies.

In order to study the background (dark) matter statistics starting from the struc-
ture of galaxies, a general technique for decomposing the masses of spiral galaxies into
their luminous and dark components is required. By applying such a technique to
a sample of galaxies, the knowledge of the physical parameters of DM in the halos
would permit to investigate the galaxy—background correlation properties on galaxy
scales. This is particularly relevant in connection with biased scenarios for structure
formation™ which predict different though related clustering properties of matter and of
cosmic structures. A suitable method, which extracts the DM content of spiral galaxies
at the optical disk radius from the profiles of rotation curves, was recently devised by
Persic and Salucci®®, and is the starting point for the present study.

Here we review and summarize the results of our two recent papers'®, in which
cross—correlations between galaxy and the background distributions are investigated.
Qur analysis is based on the PS90 sample ®1) of 58 non-local, Sb through Sc galaxies
for which high-quality, extended rotation curves were available by the end of 1988. It
spans the magnitude interval —17.5 >Mpg > —23.2; disk radii range between 3 and 55
kpe, and peripheral velocities between 120 and 400 km s~1.

Our main results can be summarized as follows:

a) the two-point galazy-background correlation function has similar slope (y = 1.71 +
0.03) as the two-point galazy-galazy correlation function. Its smaller clustering length,
o ~ Thgg Mpc, can be interpreted as an indication of bias;

b) up to the n = 6, the correlation functions fit the hierarchical expression'?)

(n—1
E(x1, vy X)) = D Qua D H)ffz)a; (1.1)

n—trees a labelings edges
c¢) the value of @ = @3, and suitable combinations of coefficients @, . for each n = 4,

5, 6, are evaluated and compared with predictions of the BBGKY equation.

In view of the above results, we can state that the main statistical properties of
matter on the scale of galaxies are functions of observable dynamical quantities only.
Important cosmological parameters follow from observations of disk dynamics. A value

of H, =50 km s™*Mpc~ is used throughout this paper.
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2. Dark matter in the halos of galaxies.

According to Persic and Salucci® the disk-to-halo mass ratio in spiral galaxies at the
optical disk radius, R3s, is directly obtainable from the profiles of optical rotation curves.
By using a two-component mass model (spherical dark halo and exponential luminous

thin disk ) and without making assumptions on the halo density profile, we get

dlogV
Mdisk _ 0.8 - Eﬁlﬂzs (2 1)

Mo 0.1 2281, 4117

Eq. (2.1) yields the disk-to-total mass ratio at Rj; as a function of the logarithmic
derivative j«:—:g%lﬂu, that is obtainable from rotation curves. (Velocities V and distances
R will be expressed in km s~! and kpc respectively, unless otherwise stated.)

Based on eq. (2.1), an analysis of available data®® shows a number of system-
atic properties of dark matter (hereafter DM) in spiral galaxies: a) the disk kinematics
of fainter galaxies shows steeper velocity gradients, hence is mostly halo-dominated
(Maisk/ Mo ~ 0.2), while in brighter galaxies the kinematics is mostly disk-dominated
(Mayisk /Myt ~ 0.8). Between these extremes there is a continuous distribution of
Mg/ Mor values; and b) the My;q /My, distribution, owing to the correlation between
galaxy luminosity and ?TZ%'R%

In order to sample the DM distribution at scales much larger than Rys, let us define

, maps into the luminosity sequence of galaxies.

an effective halo radius, R, as the radius encompassing an amount of DM 7) times greater
than Mg;. Consequently the mean halo density at Ry is pp = 1M aisk/( %wRi). Being
the observed rotation curves nearly flat for R > R,s, with a value V(R) ~ V(Rys) =
Vas®4), the centrifugal equilibrium condition at Rp, Mgy (Rss5) = G~'V2ARas, implies
that the volume-averaged density in the spherical halo is p, = 4 x 10~%" %% The halo
radius is not directly observable. However, by our definition of R, and by eq. (2.1), it

can be related to the observable quantities R,, and %‘st’ being

d logV

0.8 — |r
R, =7 st(u%m‘» (2.2)
0.1 d lazR ist +1.1

If one takes 7 = const for all galaxies, it is the variation of Mg /M with lumi-
nosity which triggers a range of R;. In this case, if the variations of V,5 and R, were
statistically independent, a correlation p, « R;* would be found. On the contrary,
the observed increase of Vi with luminosity??), owing to the above arguments on the
Rp-luminosity correlation, turns into an increase of Vas with Rh. A rough estimate

neglecting the luminosity dependence of Mgy;sk /Myt and using the Vas — Rss correlation

f)—’c‘ - (2—2)7 (2.3)

(pe = 4.7 x 1073%h%; g cm™2 is the critical density) with v ~ 1.5 and R, ~ 10 Mpc.

given in reference 2, we get
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Figure .1: The mean halo density , pn, as a function of the effective halo radius, Ry,
for the PS90 sample.

We assume 7 = 10'3!4). Different choices for # reflect very mildly on R, and only
to the extent that 4 # 2, according to R, 7727;:; no variation of ¥ is induced if 7 is
chosen to be uncorrelated with luminosity.

We work out the extended halo parameters for the PS90 sample. By using eq.
(2.3) we compute Rj, and then g, accordingly. In Figure 1 we plot the so-computed
halo densities vs. their respective effective radii. From these outputs we calculate the
moments of mass distribution reported in Table 2 which will be used in sections 3 and

4 to work out the galaxy—background correlation functions.

3. Two—point function analysis.
We consider the galazy-background correlation function £g(r). The amount of matter

within a sphere of radius R centered on a galaxy!®) is

R
<M>p= pVp+p 47r/ ridr £q(7) (3.1)
()

(p = pcQo is the average matter density). Assuming €gu(r) = (,/7)7, in the large-
clustering (R << 7,) regime from eq. (3.1) we get
<M >n

77— E(R)K L, (3.2)

with Mg = pVa (Va = 47R%/3) and K, = 3/(3 — 7).

If R is interpreted as the halo radius, by comparing egs. (3.2) and (2.3), whereby
R, = Kll/ "r,, the quest for a power-law £z could be carried out by considering
Pn = M/Vg as a function of R for each individual galaxy (see Figure 1). However, in
view of the upcoming analyses of higher—order correlations (see Sect. 4) , we collect the
sample galaxies into 5 bins, each having the same logarithmic amplitude, x = 1.7358,

and a characteristic radius, 7, = 17.0 x kpc, which coincides with the logarithmic center
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Table 1
Correlation length and slope of the 8—point
function for different weighting in the bins.

| a ro (Mpc) | 5 ]
1 6.28 + 0.58 1.71 + 0.03
2 6.44 + 0.60 1.71 £ 0.03
3 6.59 + 0.62 1.71 £ 0.03

of the bin itself (see Table 2). Averaging eq. (3.2) over each bin, we obtain

<M >; Tkmaz
S = g [T gu(rpedr, (3.3)
Mk Tkmin
where p, o« »* is a weight function such that [(*™=pdr = 1.

Tk, min

Best—fit values of 7, and v and standard deviations (for » = 10 and Q, = 1) are
reported in Table 1 for different values of a. We find v = 1.71 £+ 0.03 independent of o,
and 7, =~ (6.5 + 0.6) M pc only slightly dependent of a.

Quite differently from what happens in usual correlation analysis, values coming
from different bins are built with different objects hence are statistically independent.

A comparison between our outputs on g and current results on the galazy covari-
ance function shows that both functions are well modeled by power laws having virtually
equal slopes (v = 1.77 % 0.04 for the galazy-galazy case'®). The respective clustering
lengths, however, seem to be marginally different, being 7, g0 < 7545 The lower value of
Togb can be interpreted as the signature of a biasing in the distribution of galaxies. The
amount of bias, measured by the biasing parameter b = £y,/€45, can be evaluated by
comparing rog and 7o, Then, b= (724)" ~ 2, consistent with Dekel and Rees’s)
expectation (b ~ 2-3), based on very general and different grounds. Due to the very
mild dependence of 7,4, on 7, our inferred value of b is hardly affected by the choice of
7. We emphasize that eq. (3.2) is the first direct estimate of the biasing parameter b

and is related to our capability of investigating the background matter statistics.

4. N—point function analysis.

In this section we test the hierarchical expression (1.1) for the n-point correlation func-
tions, up to n = 6, and deduce the numerical values for suitable combinations of the
coefficients Q.. by means of the moment method (see Appendix of reference 10).

Let us consider the n—thorder moment for the mass distribution around a galaxy
R R (nt1
<M >p= 0 [T [Vl (4.1)
b A ol

where {,(,?:oll)mn is by definition the disconnected correlation function between a galaxy

(chosen as the origin of the axes and labeled with zero in the following) and n points
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Table 2
Central moments and population of the radial bins.

ﬁ3in limits (kpc) %’i sf) sf) sgf) | 325) | Galaxies/bin |
20-40 46400 | 17552 | 16740 | 21288 | 21704 4
40-70 10100 | 4584 | 2382 | 5109 | 3361 5
70-120 4350 | 1779 | 1759 | 2416 | 2627 14
120-200 1820 955 | 1125 | 1440 | 1604 18
200-350 808 285 272 387 413 14

lying in the background. The disconnected function contains all the lower—order corre-
lation terms that yield the (n — m)-point function when m points are removed, and the
connected terms that vanish when one point is sufficiently far away'®). We average eq.
(4.1) over each bin and obtain the quantities < M™ >, that generalize the quantity
<< M >, defined in eq. (3.4), to higher correlation order.

Introducing now the central moments

M M ny 1/n
$ = ([ - === (4.2)
Mk Mk k
and using the binomial expansion, it is easy to show that
n n [ (J) J
< M™ > Z (s ) (43)
<M >} Son—5 (< M >, /M)

Eq. (4.3) gives the connection between the observational value of si") (reported in
Table 2) and the n-point correlation functions. Due to the large-clustering regime, in
what follows we forget the non-leading contributions from disconnected terms in 5&?}.
Following the procedure outlined in the Appendix of reference 10, we work out suitable

combinations of the hierarchical coeflicients up to the sixth order:
Q = 043 +0.02,

Q10 +0.36 Q4 = 0.18 + 0.02,
Qs + 11.43 Q5 +9.90 Q5. = 0.67 + 0.11,
Qe.a+18.06 Qe +13.39 Qg,c +49.50 Q6,4 +43.59 Qs.c +52.04 Q6 ; = 0.44+0.12. (4.4)

According to eqs. (4.4), we detect galaxy—-background correlations up to the sixth
order. Data on such high—order correlations are significant as they can place constraints
to the predictions of gravitational-instability evolution models. As an example, in the

next section we compare the predictions of the BBGKY equation with our outputs.



Table 3
Values of combinations of the hierarchical
coefficients, from observations and from Fry’s
and Hamilton’s solution of the BBGKY equation.

r Correlation order 4% 5 6% |
Observations 0.175+0.015 | 0.675 4+ 0.107 | 0.44 £+ 0.12
Fry 0.167 £ 0.015 | 0.567 + 0.081 | 0.70 &+ 0.13
Hamilton 0.123 +0.011 | 0.787+0.110 | 1.49 + 0.28
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5. Discussion and conclusions.

In this paper we reviewed and summarized the results of our two recent papers, in which
we studied the correlation of matter with galaxy sites through the properties of dark
halos of galaxies. Such properties were in turn deduced from the observed kinematics
of rotating disk galaxies. This procedure establishes an operational link between galaxy
structure and matter statistics which proves to be remarkably effective. Moreover, the
very nature of the galaxy—background correlation function is such that even a rather
limited sample of objects is sufficient to obtain a statistical significance. Computing
the density of one halo surrounding a galaxy is effectively analogous to counting all the
objects within a given distance of a galaxy. In addition, there is no intersection among
the information coming from individual galaxies.

The 2-point correlation function is a power law with same slope as the 2-point
galazy function. A marginal discrepancy between the respective clustering lengths might
be indicative of bias (with biasing parameter b ~ 2). The range of relevant scales widely
overlaps with the range sampled through galaxy counts, our data extending to even
slightly smaller scales.

As for the higher--order correlations, a significant point is that the hierarchical
pattern [see eq. (1.1)] is warranted by observational data up to order n=6. Suitable
combinations of the hierarchical coeflicients Q. , also are obtained. A comparison of our
outputs with analogous results from the literature (by galaxy number counts techniques)
is discussed in reference 10 for the 3- and 4-point functions. Our 5- and 6-point results
can be tentatively compared with the very recent results based on galaxy counts!”.

The statistically significant signal for the combinations of hierarchical coefficients
warrants comparison with the predictions of the two hierarchical solutions of the BBGKY
equation'® by Fry'?) and by Hamilton!®). According to Fry, all the trees in eq. (1.1) have
equal amplitudes Q,,. = Q. = (5"9)"_22""—_2. On the other hand, Hamilton argues that
eq. (1.1) can be taken as a solution of the BBGKY equation when only contributions
from snake graphs are considered. Consequently Qn snake = Q"% and Qnnon—snake = 0.

Comparison between the two sets of predictions and our outputs (see Table 3)

shows that Fry’s solutions are in significantly better agreement. In fact that model
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predicts the values of those combinations remarkably well up to the 5 order, and still
within ~ 1.5¢ for the 6* order.

As a concluding remark, our approach to the study of matter statistics involves
a different physical basis as compared to the usual analysis of galaxy clustering. The
essential feature that allows us to link rotation curves and background (dark) matter
distribution is our capability to extract the DM content of spiral galaxies at one same
physiscal radius (in galaxy lengthscale units) for all galaxies. In our opinion, our re-
sults highlight a deep underlying connection between internal structure and large-scale

distribution of galaxies.
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COSMOLOGICAL MASS FUNCTIONS: THEORY AND APPLICATIONS

J. A. Peacock

Royal Observatory, Blackford Hill, Edinburgh EHY SHJ.

Abstract. A review is given of existing analytic methods for calculating the mass dis-
tribution of bound objects which form in an expanding universe. Special emphasis is given
to results for hierarchical theories, and especially to methods applicable to Gaussian density
fields. Improvements and modifications to the Press-Schechter formalism are surveyed; the
fact that this method works so well in practice seems to be a happy accident. Some of the
pitfalls to be negotiated in making the transition from collisionless halo multiplicity functions
to luminosity functions for galaxies and clusters are described, with particular reference to
biased galaxy formation. Applications of these methods abound; among the most important
are the abundance and evolution of rich clusters, the interpretation of galaxy redshift survey
data and the quasar redshift cutoff.
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1 Introduction

The luminosity functions which are important in cosmology have long been known to display
an intriguing simplicity. Over perhaps two decades of luminosity, the distribution functions
for both galaxies and groups/clusters can be well described by the Schechter form

(L) = ¢* <%>_QE~L/L*%’ (1)

where o ~ 0.1 for galaxies (Efstathiou et al. 1988a) and a ~ 1 for groups/clusters (Bahcall
1979). Any cosmologist who fails to be challenged by this simplicity clearly lacks a soul;
unless we can explain why o and L* take the values they do, we clearly do not understand
very much about galaxy formation. If we can explain what we see, however, the possibility
opcns up of using these luminosity functions as a probe of the conditions which gave rise to

structure formation in the universe.

There are a number of choices to be made before we can proceed, given the large num-
ber of ways in which structure formation may take place. The most fundamental is whether
to work with the gravitational instability picture, in which small initial density perturbations
are amplified, or to opt for a picture where already-nonlinear perturbations are produced,
for example by topological defects. This review will concentrate on the former approach, not
only because it requires fewer assumptions, but because it is easier to do calculations leading
to testable predictions (for a review which takes the opposite approach, see Brandenberger
1990). Furthermore, we shall concentrate on density fields where structure forms ‘bottom up’
or hierarchically. In large-scale damping pictures such as pure baryon or neutrino-dominated
adiabatic universes, all structures smaller than superclusters form by dissipative fragmen-
tation, so the problem is more difficult than with a hierarchy. Although facts such as the
relatively small velocity perturbations in the local supercluster plus constraints on ages of
high-redshift galaxies may argue that galaxies do form first, we should recognise that the
main reason so much work has been done in this area may be just that people tend to pursue
the theoretical line of least resistance.

Lastly, some terminology. The comoving number density of objects in the mass range
dM will be called the mass function, and denoted by f(M). The product M? f(M) therefore
gives the contribution to the total density of objects lying in unit range of InM, and is usually
known as the multiplicity function.

2 Non-linear methods

The problem we are dealing with is inherently a non-linear one, and there have been various
attempts to meet this head-on by seeking a self-consistent description of the mass distribution
which encompasses both the multiplicity function and the clustering properties of the matter.
These take the point of view that the hierarchy of n-point correlation functions provide
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a complete description of the statistics of the density field, and so should be capable of
generating the multiplicity function.

The approach of Balian & Schaeffer (1989) is empirical, relying on the power-law
behaviour of the two-point correlation function €(r) oc 7 plus the assumption that the

n-point function may be factorised:

En(rla"'srﬂ)= an Hf(rij)‘ (2)

Given an assumed scaling law for the @, the conditional probability of having N objects
within a volume V, P(N|V'), may be calculated. Balian & Schaeffer (following Schaeffer 1987)
convert this into a luminosity function, although the details and assumptions which go into
this calculation are not yet published. This yields an expression for the galaxy luminosity
function in quite good agreement with observation. Expressed as a mass function (constant
M/ L), one case of their expression has the approximate form

f(M) (%) (mAAll*)ze—M/M'. (3)

A more direct route in this line is provided by Saslaw & Hamilton (1984), who argue
thermodynamically to reach

Py = N0 MY gy gy 4wy, (@
where IV is the mean density and b is a parameter describing the ratio of the correlation

potential and kinetic energies. However, it has to be said that this approach has generated
some controversy, and there is at present no real consensus on its applicability.

A more radical approach has been taken by Henriksen & Lachiéze-Rey (1990). They
argue on the basis of turbulence theory that a certain spectrum of structure is to be expected,
irrespective of the origins of the perturbations. In their notation, the two-point correlation
-D

function is £(7) o« 7~Pr and the mass function is predicted to be

F(M) o M=3+2/(3-D,) exp [_[M/M*]D,,/(s—zD,)] ) (5)

There are clearly some successes here, in that mass functions of the required form
(power law with quasi-exponential cutoff) are indeed generated. However, there are also
some serious problems, which can leave one wondering how seriously to take the results. In
particular, these methods are mostly restricted to self-similar distributions, and there is no
indication of how to proceed if £(r) is not exactly a power law. Also, there is no way of
relating the clustering hierarchy to any linear initial conditions; critical parameters such as
M, cannot be calculated from first principles, and so there is a lack of predictive power.
This is a serious defect if we are interested in testing inflationary models for the origin of
fluctuations.
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3 Linear-based methods

Having seen the restrictions of fully non-linear methods, we come to the area which has been
pursued most energetically in recent years: using modifications of linear theory to tackle
non-linear situations. Although this may sound a contradiction in terms, there are a number

of approaches which can yield useful results.

3.1 N-body simulations

It may seem unconventional to include these under the heading of linear theory, but such
simulations do provide the simplest method of calculating the forward evolution of a mass
distribution from linear initial conditions. During much of the 1980s, N-body simulations
were used as a primary tool to investigate the applicability of galaxy formation models such
as Cold Dark Matter (White et al. 1987a and refs therein). Although exact in principle,
they do have their limitations — mainly in lack of resolution. The largest simulations consider
~ 107 particles, but this only allows a dynamic range in mass of <100 - 300 in determining
the multiplicity function in a manner free from numerical artifacts (Efstathiou et al. 1988b).

More significantly, attention has now shifted towards simulations which follow the
dissipative processes which occur after non-linear collapse of a collisionless dark matter halo
(e.g. Carlberg & Couchman 1989, Katz & Hernquist 1989). Since no simulation can resolve
the shocks which are actually responsible for the dissipation, nor follow any subsequent star
formation, these processes are inevitably put in ‘by hand’ in a rather ad hoc manner. In
this case, one may as well abandon any pretence of exactness, and treat the gravitational

dynamics in an approximate analytic fashion also.

3.2 Burgers’ equation

Also known as the Adhesion model, this is a method which effectively modifies the well-known
approximate non-linear theory of Zeldovich (1970) to deal with the motion of sticky particles.
The use of Burgers’ equation in connection with the problem of large scale structure has been
discussed in several papers (Gurbatov, Saichev & Shandarin 1985, 1989; Shandarin, 1987).
For a review, see Shandarin & Zeldovich 1989.

The Zeldovich approximation attempts to solve the pressure-free equation of motion

by extrapolating the initial linear displacements:
z; = q; + b(t)si(q), (6)

where z; and ¢; are co-moving Eulerian and Lagrangian coordinates respectively, b(t) is a
function describing the time evolution of the growing mode of gravitational instability in the
linear approximation and s;(q) is the potential vector field

ey — 9%0(q)
si(q) = 60—%, (7)
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where @ is proportional to the initial gravitational potential:
¢ = 3aab®Po(q)- (8)
Now, by defining a new set of variables to replace peculiar velocity (V;) and density (p)

vi(zi,t) = ﬁVi(%t) ©

n(zi,t) = a®p(zi, 1) (10)

and applying the Zeldovich approximation, the equations of motion become those of a perfect
force-free fluid.

The Zeldovich approximation is exact in one dimension and works wellin 3D initially,
failing once trajectories cross (e.g. Efstathiou 1990). Gurbatov, Saichev & Shandarin realised
that the addition of an infinitesimal viscosity term to the perfect fluid equations would cause
these intersecting particles to ‘stick’, allowing the approximation to be continued to later
time. The equation then becomes a standard one in fluid mechanics (Burgers 1940, 1974)
and the solution may be found geometrically, as follows. It should be obvious that the Zel-
dovich approximation corresponds to finding the minimum with respect to q in the following
function:

2

Goxa,h) = 29 a(a) (1)
which has the geometrical interpretation that one finds the paraboloid which is tangent to
the potential function (hyper)surface at the Lagrangian point q, the Eulerian position being
at the minimum of the parabola. The adhesion model modifies this by saying that, if the
tangent parabola intersects the potential surface elsewhere, then the material at q has been
bound into a ‘pancake’; the edges of the pancakes are delimited by finding the parabolae
which are tangent at two or more points.

The advantage of the adhesion model is that it gives a solution at arbitrary time
without the need for iteration. Efficient algorithms can find the pancakes in a Burgers
simulation in a time of the same order as is needed to compute the gravitational forces in
an N-body code (~ Nln N), so Burgers wins by the number of time steps (usually ~ 10?).
Algorithms for implementing this approach in 3D have been developed by Weinberg & Gunn
(1990). Working in one dimension has some advantages, however, both because it is easier
to locate the pancakes and because of the exactness of the method in this case. Here, one
is simulating a set of self-gravitating sheets, and the force on a particle at a given time is
independent of distance from a sheet; this leads to the Zeldovich ansatz in the absence of sheet
crossings. Although less relevant to the real world, the one-dimensional adhesion model can
serve as a convenient test-bed for analytical approximations. A series of such one-dimensional
simulations has been carried out by Williams et al. (1990; WHPS) and we shall discuss some
of the results from this work in the next section.
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4 Press-Schechter and relations

The Burgers’ equation approach relies on using the linear gravitational potential; is it pos-
sible to make progress using the linear density field itself? This is the basis of the method
introduced by Press & Schechter (1974; PS), in what has proved a most influential paper.
The amount of interest in this method merits devoting a complete section to it. Most appli-
cations have been made to density fields with random phases and hence Gaussian statistics.
These fields are the most natural outcome of quantum fluctuations during inflation, as well
as being easier to analyse. The following discussion will therefore concentrate mainly on this
case; see Lucchin & Matarrese (1988) for a detailed discussion of the application of the PS
method to non-Gaussian fields.

4.1 Fundamentals

Consider some density field which is allowed to grow to non-linearity, where the initial power
spectrum contains contributions at two main wavelengths, the long wavelength term having
lower amplitude. Initially, non-linear clumps of size ~ Ayin Will form, but with a number
density modulated on the scale Aax. What is the relation of this modulation to the initial
linear large-wavelength disturbance? The PS assumption is that by filtering the non-linear
density field until §p/p < 1, one recovers a large-wavelength disturbance which will grow
according to linear theory. This seems intuitively reasonable, at least for density fields con-
taining enough large-scale power; we shall see below just how much is needed. The functional
form of the filter is arbitrary, and different forms will give different results in detail. Before
pursuing this point, we first go briefly over the original PS argument.

PS’s main assumption was that a region of space which on average had §p/p (hence-
forth simply §) of order unity would collapse to a bound object. For example, in spherical
symmetry the critical value according to linear theory with Q = 1is §. = 1.686. So, assum-
ing we know the statistics of the linear density field, we can filter the field with a function
posessing some scale size Ry and ask how the fraction of points with é > §. varies with Ry
(z.c. with mass, assigning a mass M « R:}) If § > &, is assumed to assign that point to a
system with mass > M, then this integral probability is related to the mass function f(M)
via

Mf(M)/po = |dp/dM|, (12)
where pg is the total comoving density.

The main problem with this method arises immediately: the resulting mass function
is not normalised. Even for Ry — 0, most random fields will be symmetric between over-
and under-dense regions, so that p(§ > §;) — 1/2. PS decided to renormalise, by dividing
by p(§ > 0) - z.e. multiplying by a factor 2 in the Gaussian case. For a Gaussian field, the
statistics are specified by just the variancein §: ¢2(M), and PS deduced

2, po |dlno| .,
f(M)—\/z_7”7 2 | Tmar exp(—382/0%). (13)
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For spectra of power-law form, which we will often wish to consider as an illustration,
6k ]2 o k™ (14)

the variance is 0% = (M,/M)("*+d/4 (in d dimensions) and the PS mass function takes the
form

FM) o MmO exep [ L1 0, Yt 07) (15)

Apart from the notorious normalisation problem, there is also the question of connec-
tivity. If the average density within a region of size ~ Ry has § > 6. then that whole region
collapses. However, to achieve this it is necessary only to have the filtered § > §. at one
point. The PS prescription may then assign that point to a high-mass object, even though
it is surrounded by points assigned to objects of lower mass. Given these difficulties, it is
understandable that the PS method languished in partial neglect until it began to be clear
that, whatever the problems of principle, the method works! Figure 1 illustrates the excellent
fit to N-body data.

Notice that the shape of the multiplicity function is rather sensitive to the power
spectrum, being broader for those spectra with more large-scale power (negative n). Although
there is not enough dynamic range in mass to test very well the predicted power-law behaviour
of f(M) at low masses, it is clear that the PS formula follows the variations between the
different power spectra rather well. Certainly, it will be a challenge for any other prescription
to do as good a job. As an example, consider the formula of Henriksen & Lachiéze-Rey.
Equality of low-mass slope with PS requires D, = (3n + 15)/(n + 9), which would require
much flatter correlation functions than are seen in the simulations.

4.2 Limits on spectra

The assumptions that go into PS type models are only valid for a limited range of spectral
indices. It had been previously thought by various authors (e.g. PS; Peebles 1980) that the
growth of non-linear perturbations would vary with scale factor as

M, o &20/(ntd) (16)

(where d is the number of dimensions) provided that the spectrum was flatter than the ‘min-
imal’ value n = 4 which results from rearranging uniform mass in a momentum-conserving

manner. For n > 4, it was proposed that the growth would take a limiting value given by
M, o g2d/(4+d) (17)

owing to non-linear generation of the long wavelength part of the spectrum where mode-
coupling terms dominate over any intrinsic large scale power. However, it was suggested by
Gurbatov, Saichev & Shandarin (1989) that the growth rate would only be independent of n
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Figure 1.  The multiplicity function data of nonlinear clumps from the hierarchical simu-
lations of Efstathiou et al. (1988b). The different epochs are scaled in mass and compared to
the PS formula using a spherical top-hat filter. The fitis good, especially when it i3 considered
that the mass scaling is not forced to provide a best fit. However, note that there is a tendency
for PS to over-predict the numbers of objects around the peak of the multiplicity functions

while the variance of the gravitational potential, ”‘2%7 remains finite - z.e. for n > 1 in three

dimensions and for n > 3 in one dimension, assuming a cutoff at small wavelengths.

This conclusion is backed up by the work of Kida (1979) who effectively (although
working in the context of turbulence theory) solved the Burgers model exactly in one di-
mension to obtain f(M) in the limit of very steep spectra. Not only does M, scale as al/?
rather than a2/3, but the form of f(M) is greatly different from the PS prediction. WHPS’s
simulations for spectral indices above n = 3 show that this is indeed the point where the PS
mass function breaks down in 1D. This supports previous work on one dimensional power

spectra by Kotov & Shandarin (1989).

Figure 2 shows a plot of M2f(M) for n = 1 and 10, together with PS and Kida’s
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Figure 2. The pancake multiplicity function for a Burgers’ equation stmulation in one
dimension, with (a) an n =1 spectrum; (b) n = 10. For n =1, the fit to PS is very good;
for n =10 the fit is the theoretical curve for the limit of very steep spectra from Kida (1979).
The different symbols refer to different epochs.

f(M):

T~ M x{ M\
f(M) = 2 %ay P |:—§ <M) ] (18)

where the cutoff £(a) grows as al/2. Tt is interesting to compare this to the PS mass function
under the assumption that for n > 3 in one dimension, one may use a constant value of
n = 3 in the mass function. Both mass functions give the correct low mass slope (f(Al) ~
M for M < M., where M, ~ £(a) ~ a%) but the cut-offs are different, Kida’s formula

going as exp(—(M/M.)?] whereas the PS mass function would predict a cut-off going as
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expl—+(M /ALY, i.e. PS cuts off too quickly, not producing cnough high mass objects.
NC\'ert_hcless, as Figure 2a illustrates, PS works even better in one dimension than in three,
previded n < 4 — d. In this case, we do have sufficient dynamic range in mass to confirm that
the low-mass portion of f(:\) follows very accurately the PS power law. The fact that the
PS formula works so well is immensely frustrating, given the problems with its derivation. It

is clearly worth some effort to try to understand how this can come about.

4.3 Random trajectories

Toimprove on the PS analysis, it is necessary to treat the points with § < §. explicitly. This
may be tackled by considering the trajectory taken by § at a given point as a function of R :

§(Rylx) = (2%)3/&. Fi(Rp)e ™ * &k, (19)

where V7 is the normalisation volume, F} is the k-space filter. In general this random trajec-
tory will not be a random walk: d§/dR; will be correlated with §. Now, for a set of very
widely spaced Ry values, the fields will be essentially independent random samples and, if
o(Rf) — oo as Ry — 0 (i.e. we are dealing with a hierarchical density field which lacks
a low-wavelength cutoff), then it is certain that § will exceed é. on some small scale. The
important question is then to find the largest filter value for which § is equal to the threshold,
known as the first upcrossing of the process §(Ry). This finds the largest mass which has
collapsed about that point by the present epoch, destroying in the process any sub-structure
(the ‘cloud-in-cloud’ problem). Analyses which consider this trajectory viewpoint have been
performed by Peacock & Heavens (1990) and Bond et al. (1990), and these shed considerable
light on the operation of the PS model. These are, however, restricted to Gaussian fields: the

application of such ideas to non-Gaussian fields is still an open problem.

The probability distribution for the upcrossing points may be constructed by writing

8,
c d
p(> Ry) = pol8 > ) + / B0 5er8) 8, (20)

where pg is the unconstrained distribution. This says we should divide points at Ry into
two classes. Those with § > §. clearly have § = 6. for some larger filter, and are therefore
associated with objects of scale > Ry For all points below the threshold, there is some
probability p,, that subsequent filterings might at some point result in having § above the
threshold. This prescription is automatically normalised: it is clear that p,, — 1 as we go
to very small scales. The PS argument just corresponds to taking only the first term in the
above equation and doubling it.

Solving exactly for the upcrossing probability in this way is hard, but a method for
circumventing the difficulties is given by Peacock & Heavens (1990). Once the field has been
filtered by a large amount, the result is essentially independent of the original value and the

probability of exceeding the threshold is just the unconstrained value; the same is true for
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all subsequent large filterings. The survival probability (the probability of always remaining
below the threshold; ps = 1 — pyp) is then just the product over these independent ficlds:

pa(8) = Hp,‘(ﬁ < 8,). (21)

However, this relation cannot hold for a set of fields with very similar Ry values; there must
exist the analogue of a coherence length in log Ry. This suggests the following simple ansatz
for the survival probability:

e dInR
In p, = / In p(6 < é.| Ry) L,
o A

(22)

where A is the critical increment in In R for effective independence (at this stage, A is simply

a parameter to be determined, and will depend on the power spectrum).

Peacock & Heavens (1990) show how A can be determined by looking at the set of
points which have § < 8., and evaluating p(§ > §.) for an infinitesimal amount of smoothing.
This simplifies the correlated random walk by only considering the initial step. For Gaussian
filtering, Fi = exp(—3k*R%), one obtains

A=

2 (23)

—1/2
2 4
wln?2 [02 o1 }
4
9% Y%

12 1% _ 0L
Ry

It is straightforward in principle to derive the corresponding expressions for other filter func-
tions. In general, these will involve k-space integrals over derivatives with respect to Ry of the
k-space filter function. Gaussian filtering is analytically convenient, in that these integrals
reduce to moments of the power spectrum.

It should be immediately clear that this solution to the PS problem may in general
lead to results rather different from the original PS formula. Differentiate the fundamental
equation to get the differential distribution of Ry values: in the limit of small Ry, where

Pup — 1, this becomes simply

dp :ldpup
dRy;  %*dR;’

(24)

Since the survival probability only goes to zero as a slow power law ps; oc R(fl" 2)/A’ the
possibility is raised that this term might tend to dominate the mass function for small Ry.
We now show that this is indeed the case: this formalism will usually predict more low-mass
objects than the original PS formula.

In presenting results, it is convenient to define the mass measure

LR 05
o(Ry)’ (23)

v =

where v oc M(ntd)/2d for power-law spectra. Since the multiplicity function is given by

w0y - (2e232) ()
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Figure 3.  The integral probability distribution for first upcrossing points of a Gaussian-
filtered three-dimensional random Gaussian field. The filter radius of upcrossing is speci fied
in terms of v = &./o(Ry). Three curves are shown: the fraction of mass which lies above the
threshold at a given scale (dashed); the fraction which lies below the threshold, but lies above
the threshold on some larger scale (dotted); and the total (solid). The first fraction is always
the larger, and corresponds to half the PS result.

where the second term is a constant for power-law spectra, we see that the PS result may be

written for all n as
M?F(M) ocve /2, (27)
Figure 3 shows the probability distribution for the upcrossing point in integral form.

This shows several interesting features. At large masses, v > 2, we attain exactly the
PS result without rescaling. Since we need to achieve p = 1 for very low masses, it is clear
thar the differential probability will be larger than PS at v < 1: the missing factor of 2 at
large masses must be supplied by low-mass objects. This is shown directly in Figure 4.

Although the figure considers Gaussian filtering only, it seems likely that the behaviour
will be qualitatively the same in most cases. The fact that P(> v) goes to unscaled PS for
large masses just says that, for points with § < 8. at high mass, it is very improbable that

filtering will increase §: most §(Af) trajectories will fall at high M.

The exception to the abovediscussion comes when the first derivative of k-space filter
function with respect to Ry does not exist. The main example of this case is sharp truncation
in A-space. This has been investigated recently in the context of the PS model by Bond et al.
(1990) and has some appealing properties. Crucially, the field in this case executes a random
walk from § = 0 at Ry = oo: each new slice of k-space added is independent. In this case,
one can use the following argument to deduce the survival probability (Chandrasekhar 1943).
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dp/dlnv
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Figure 4.  The total results of Fig. 3 in differential form, dp/dinv. Since M?f(M)/py =
(dp/dIlnv)(dlnv/dIn M), these plots are identical in shape to the multiplicity function. The
PS result (which 1s the same for all spectra) is shown dotted.

For § < §. the probability density of points which have upcrossed at a larger Ry must, by
the symmetry of the random walk, simply be the reflection in the threshold of those points
above the threshold. The upcrossing probability is then just

e—(6—26.)% /207 /
Pup = — gajger (28)
and the total probability of upcrossing is
& &
¢ dpe 1 ]° L (6—26.)2 /252
— Pup(8ec,8) d6 = e~ (6728)7/20% 45 — py(> 6.). 29
oodapp(':) Vor o Joo o ) (29)

Miraculously, this is just the original PS term: the analysis of Bond et al. supplies the PS
factor of 2 without needing to cheat. However, since most filter functions that one might
want to consider are differentiable, this is a rather special case.

The above results show that the solution of the original PS problem depends to an
unsatisfactory extent of the filter function used. For sharp k-space filtering (and thus a spatial
filter with large-amplitude positive and negative sidelobes), we recover the PS result, with a
low-mass slope of

M?f(M) & M(n+d)/2d7 (30)
whereas Gaussian filtering yields

M2f(M) o MV (rFd)/2d2/7 (31)

Thus, in 3D, Gaussian filtering predicts more low-mass objects than PS unless n < —2.8. As

we have argued above, a generally flatter slope probably also applies for other differentiable
filters.
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4.4 Density peaks

Tosolve the connectivity problemin PS, it is necessary to look in more detail at how structures
form in a random density field. One powerful model assumes that objects form around
mazima in the linear density field, and this has generated considerable interest in recent
years (Peacock & Heavens 1985; Bardeen et al. 1986 [BBKS]; Heavens & Peacock 1988).

Armed with expressions for the number density of peaks, and M(Rj), it is possible to
follow the PS route andlook at the fraction of mass associated with peaks above tle collapse
threshold as a function of scale. This yields a mass function with the same low-mass slope
as PS, but modified around M, (Bond 1989). However, as with PS, there is a normalisation
problem. In one dimension, the number density of all peaks is (2rR.)™! (see BBKS for

definitions of the spectral parameters . and «), which encloses a fraction

R 3+n 1/
= (2r)" 1L = 32
Fok (2m) R, < 4 ) (32)

for Gaussian filtering with A = (27)'/2pg Ry, and ignoring peak overlap. In three dimensions,
the corresponding expression (for M = (27r)3/2p0R‘}) is

n+5>3/2. (33)

for = 0.016R, *(2x)*/2 RS ~ ( B

These fractions are < 0.5 for power spectra of practical interest. What happens to the mass
outside peaks?

We can attack this problem in much the same way as we did for field points. Material
which lies outside a peak on one scale can sometimes lie inside a peak on a larger filtering
scale. For very low thresholds, the probability of this occurring clearly goes to unity. Thus,

as with field points, we can write an expression which is automatically normalised:
]7(> Rf) = fpk(‘S > 62) + (1 - fpk)pup- (34)

The critical term p,p is the analogue of the upcrossing probability: the probability that a
point outside a peak will find itself inside one on some larger filtering scale. Following our
previous reasoning, we again make the ansatz that p,, may be estimated by saying that
random fields should be effectively independent after some increment A in In R;. However,
there is no reason to suppose that the appropriate value of A for this problem will be the

same as the one we deduced for the case of field points.

For a small amount of smoothing, almost all peaks will be at essentially the same
positions and the number above a threshold will change only by a fractional amount of order
8Rs/ Ry. However, all these peaks will be more massive, owing to the increase in Ry. Thus,
to first order in § Ry, the only change in the fraction of mass which has been inside a peak

is due to the mass swept up as the peaks ‘bloat’. Since we can find the initial rate of change
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Figure 5. The mass functions for peaks in differential form, dp/dlnv (the analogue of
Fig. 4 for field points).

(a) in one dimension

(b) in three dimensions
Again, the PS result is shown dotted. Note that the numbers of low-mass objects predicted
are lower than in the field-point case.

of this fraction through the above ‘bloating’ argument, the appropriate value of A may be
deduced (Peacock & Heavens 1990):

PN 0 L EF O

FYMO) . (35)

For the small values of fpr(0) typical in three dimensions, this tends to Apx ~ 1/3, which is
roughly an order of magnitude less that Ajiciq-

We show the results of the above procedure for Gaussian-filtered power-law spectra in
Figure 5, in the form of dp/dInw.
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Comparison with the field-point results show that far fewer low-mass objects are now
predicted. In one dimension, these peak f(M) curves resemble the PS formula, although in
three dimensions there are generally still more low-mass objects than predicted by PS. The
precise slopes of these curves should not however be taken as having too much significance.
The asymptotic behaviour resulting from dp,,/dM is

—In[1=/,4(0)]

Mf(M) « M—a8— = MO/ Lo (0] (36)

which will change according to the mass estimate we use. For field points, the low-mass slope
depended on the analytic form of the filter function. For peaks, this seems less important,
but the question of the M(R/) relation (which is non-trivial for all but spherical top-hat
filters) becomes crucial. As we have seen, this formalism generally predicts more low-mass
objects than PS. However, this is only true if the above mass dependence is less rapid than
the PS value M(+d)/(2d), Thus, if

n+d
(0 —_— 37
fpk( ) > n+ 3d7 ( )
then the low-mass part of the mass function will lie below that predicted by PS. Equality of
slope requires a mass larger than (27r)3/2pgR3! by only a moderate factor: 1.7 for n = 0.

Is this reasonable? There are a variety of choices for peak mass estimates. The
simplest is just the volume of the filter function M = (27r)3/2p0R}. Note that the collapse
of this volume only requires the filtered § > §. at one point — in this respect artificial
and physical filtering differ markedly. The comparison with the spherical filter provides an
alternative method of assigning a mass to peaks. In some sense, the equivalent sphere to
(say) a Gaussian filter should be the sphere (of radius R,ps) which produces the same rms as
the applied filter of scale Ry. In k-space, the Gaussian and spherical filters agree to second
orderin k if Rgpp = \/ng. The volume of this sphere is

1
V= 5 R), (38)

which is a factor 2.97 larger than (2#)3/2}?:}. Although the detailed R,,x(R ) relation for
equal rius depends on the power spectrum, it is within 20 per cent of this factor for n < 0.5,

and so there might be some justification for taking a uniformly larger mass.

An alternative viewpoint is that non-linear development of small-scale perturbations
into collapsed objects may be thought of as acting in a sense like a genuine physical filter on
the remaining linear portion of the power spectrum. This leads us to consider the problem
of the density profile of a peak. Peacock & Heavens (1985) attempted to produce a peak
mass estimate by modelling the peaks as triaxial spheroids, and estimating the volume of the
region with § > 0. According to this prescription, there is a distribution of masses fer a given
v; however, we shall not be particularly interested in this distribution as any dispersion in

mass at a given Ry will be dominated by the fact that we are considering a wide range in
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Ry. The mean value of log M may be approximated (for values 0.5 < v < 0.8 of practical
interest) by

_ 23/2 éfPoRi
= 0.9 .
(v +(52)%7)
For a spherical peak with quadratically varying overdensity, the bound mass is a factor

(39)

(5/3)%/2 larger than the above expression.

In short, there may well be grounds for wanting to adopt a peak mass other than the
strict M = (2x)3/2 R} relation, which we have seen can have important consequences for the

mass function.

Comparing our mass functions with the simulations of Efstathiou et al. (1988b) pro-
vides some encouragement for the peak models. Forsmall n, the N-body functions undershoot
the peak of the PS distribution by a factor ~ 1.4; the peak models which use the simple mass
estimate undershoot by a larger factor than this, but the trend is qualitatively in the right
direction. The N-body simulations at present lack the dynamic range to establish the low-
mass slope directly, but simple considerations of probability tell us that there must be an
excess of low-mass objects if there is a deficit around M,.

In summary, if we believed that the appropriate mass to assign to a peak is indeed
rather larger than the filter volume, the mass function may not be so different from the PS
result. The theoretical grounds for such a choice are however hardly compelling; if the PS
curve resembles what is seen in N-body simulations, this must look more than ever like a
happy accident.

4.5 Conditional multiplicity functions

The trajectory approach allows some interesting extensions. Given an object of mass My
at epoch ag, one can ask what masses existing at some earlier epoch a; have merged to
produce the final object — this is the conditional multiplicity function. In the language of
trajectories, with all variances expressed in terms of linear values at a = 1, we are given that
a trajectory crosses §./ao at mass Mo, and require the distribution of masses M; at which the
higher threshold 6./a; is crossed. For the Bond et al. random walk model, this is a simple
generalisation to two absorbing barriers, and the solution is (Efstathiou 1990):
LI —a do
f(My,a1|Mqg,a0) = (%) _—ao;(lff?o— 03;2/2 <w87\[%> x
6%(ag — ay)?
2a3al(o? - 05] ’

This equation shows that massive groups at late times are formed from unusually massive

oo |- w

groups at early times. If we think of M as representing an Abell cluster at ag = 1 and go back
to a; ~ 0.25 when M, corresponds to a massive galaxy, this shows quantitatively that massive
galaxies form early in clusters. In section 6.2 we shall study the ‘natural bias’ mechanism
whereby this tendency, plus a hypothesised star-formation efficiency which depends on epoch,
can lead to a bias in the M/L ratios for clusters.
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5 Dissipation and galaxy mass functions

Tle interpretation of mass functions is fairly straightforward when considering only ‘haloes’
of collisionless dark matter, but is more complex for baryonic matter, where we must ask if
the matter has been able to dissipate and turn into stars. This question was analyzed in a
classic paper by Rees & Ostriker (1977), and has been reconsidered in the context of CDM
by Blumenthal et al. (1984). Essentially, the point is that in the early universe, all forming
structures can cool: a set of merging objects will create stars from the gas between them and
subscquently will be identified as a single stellar system. Baryonic substructure can thus also
be erased - unless star formation in the first generation of the hierarchy is so efficient that
all gas immediately becomes locked up in compact ~ 10® Mg clumps of stars. Clearly this
did not happen, and one has to consider all manner of complications such as mass loss from

stars and the effect of supernova-driven winds on galactic gas (e.g. White 1989).

A method for inserting these considerations into the PS prescription was suggested by
Peacock & Heavens (1990): one simply assumes that star formation at all epochs has such
a low overall efficiency that most baryonic material is always in the form of gas. This is
certainly what we see today in clusters of galaxies. Now, in order for dissipation to occur,
the redshift of collapse clearly needs to be sufficiently large that there is time for an object
to cool between its formation at redshift zcoor (When 8p/p ~ §.) and the present epoch. More
massive objects take longer to cool, and so a simple way of implementing cooling in the PS
model is to use a mass-dependent threshold: the mass exceeds M if §(M) > 8.(1 4 zcoot(M))-

The cooling function for a plasma in thermal equilibrium has been calculated by Ray-
mend, Cox & Smith (1976). For an H + He plasma with ¥ = 0.25 and some admixture of
metals, their results for the cooling time (tcoot = 3kT /2A(T)n) may be approximated as

_ 24 PB —1/2 —-3/2\ "
teoot/years = 1.8 x 10 (W) (T8 +0.5fmT; ) , (41)
where Ty = T/108 K. The T~!/2 term represents bremsstrahlung cooling and the T-3/2 term
approximates the effects of recombination radiation. The parameter f,, governs the metal
content: f, = 1 for solar abundances; f,, ~ 0.03 for no metals. Now, the density after

collapse is some multiple f. of the background density at virialisation:

pe = fepo (1 +z)°. (42)

Using po = 2.78 x 1011Qh2 MgMpc ™2, we obtain

-1

tooot/ Hy™! = 660 (£.201) ™ (14 2)™° (T + 0.5 Ty /%) (43)

The virialised potential energy for constant density is 3GM?/(5r), where the radius satisfies
4mpcr® /3 = M. This energy must equal 3MkT /(um;), where p = 0.59 for a plasma with
75% Hydrogen by mass. Hence

T/K = 10> (M/10"2Me)?/® (f.0R)Y3 (1 + z.). (44)
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The criterion for formation of a galaxy by the present is that the cosmic time since z. is some
multiple f; of tco0r (for example, a spherical body in quasi-hydrostatic equilibrium has f; = 2;
Rees & Ostriker 1977). So, for 2 = 1, we must solve

Fiteoot = %Hﬂ_l(l — (1 +2)2). (45)
If only recombination cooling was important, the solution to this would be

(14 2e) = (14 M/Meoot)*?, (46)
where

Meoot/ Mo = 10" £ £ 1120712 (47)

For high metallicity, where bremsstrahlung only dominates at T > 108 K, this equation for
z. will be a reasonable approximation up to z. ~ 10, at which point Compton cooling will
start to operate. Given that we expect at least some enrichment rather carly in the progress
of the hierarchy, we shall keep things simple by using just the above expression for z..

The effects of this cooling threshold on the mass function are illustrated in Fig. 6. At
low masses, zcoot =~ 0 and the mass function is unaffected by cooling. At high masses, the
cooling time is long for masses of order M., and M? f(M) peaks at a much smaller mass.
The sensitivity of this characteristic mass to Mcoo is not very high: for n = 0, it changes
by a factor ~ 10 when M, is altered by a factor 100. Note that including bremsstrahlung
makes little difference, since the virial temperatures of the objects near the peak in A2 f(M)
is below 108 K. Since the mass functions with and without cooling coincide for low masses,
but given that cooling of massive objects is ineffective, probability in the mass function must
accumulate at intermediate masses. Thus, the numbers of faint galaxies relative to bright are
decreased. If M o0t € M., then there is a power-law region between these two masses which
differs from the PS slope: M2f(M) M( n_‘&)+§; s.e. there is an effective change in n to
n + 4.

We should not claim too much from the above analysis, as several potentially important
points are neglected. First, erasure of baryonic sub-structure may be imperfect, which would
lead us to underestimate the numbers of low-mass objects (White & Rees 1978). Second,
the criterion of equating cooling time with look-back time will work only if an object is able
to cool undisturbed over this time; if subsequent generations of the hierarchy collapse while
the object is still cooling quasi-statically, then the gas will be reheated and collapse may
never occur (see White & Rees for this point also). Objects are immune to this effect only
if the cooling time is shorter than the free-fall time, which turns out to be simply a criterion
on mass of the same order as Moot (see e.g. Efstathiou & Silk 1983). Nevertheless, the
qualitative point that cooling should lead to a steepening of the luminosity function, simply
through probability conservation, is an important one, and may well help to reconcile the
observed galaxy luminosity function with the PS low-mass slope.
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Figure 6. The mass functions resulting from the PS formalism with the adoption of
the cooling threshold criterion (6, — 8.(1 + M/Meoot)?/®). The solid lines show the mass
functions with cooling, and the dashed lines show the mass functions without cooling; the two
sets of curves coincide only at very low masses. M, is the mass scale with o(M.) = é..

Note (a) the relative insensitivity to Mcoor and (b) that over several orders of magnitude
in mass, the relative numbers of low-mass objects are greatly reduced by cooling.

6 Biased mass functions

We now need to consider the difficult step from mass functions to luminosity functions. This

is complicated by the now common belief that galaxy formation is biased: mass does not
trace light.

Why do we believe this? Cluster blue M /L ratios of about 300k (e.g. Merritt 1987) or
the field galaxy velocity dispersion of about 300 kms~! (Bean et al. 1983) yield an apparent
2~ 0.1 - 0.2 if mass traces light. Any theoretical belief in 2 = 1 ‘proves’ the necessity for

an extra uniform mass component. Some observational backing for the idea of a high-density
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universe has been forthcoming recently through the comparison between redshift-survey and
peculiar-velocity data (e.g. Yahil 1989) — see also the contributions by Bertschinger and
Yahil at this meeting. Even in the absence of evidence for £ = 1, however, there are some
arguments which require bias, concerning whether one can produce the observed clustering
pattern purely via gravitational instability. One of the early arguments for bias was the
difficulty in producing the observed contrast in density between voids and superclusters in
N-body simulations of CDM universes (White et al. 1987a). A more general investigation
has been performed by Weinberg (1989), who considers redshift-survey data and attempts to
reconstruct linearinitial conditions from which the observed configuration could have arisen.
It is difficult to achieve this in an unbiased model, even for low values of 2. The problem is
always the same: to empty the voids sufficiently, the models must be evolved to a point where
the superclusters break up into nonlinear clumps. This conclusion arises independently of
information on velocity perturbations.

6.1 The threshold model

The dominant mechanism for achieving bias has been what is known as the threshold model
(Davis et al. 1985; BBKS). This model appears to have caused some confusion, as it is inspired
by a phenomenon which has nothing whatsoever to do with bias — the excess clustering of
Abell clusters. Although more recent determinations have weakened original estimates of
the strength of the effect (Sutherland 1988), it still appears that £(r) for richness 1 clusters
is about an order of magnitude larger than &(r) for galaxies. The explanation for this is
almost certainly the one suggested by Kaiser (1984): Abell clusters are the most massive
virialised structures in existence today, and so they must correspond to high peaks in the
mass distribution when filtered on scales ~ 1 Mpc.

For very high peaks, this density threshold amplifies any large-scale density perturba-

tions, leading asymptotically to
r

entr) 2750 (18)
(Kaiser 1984; BBKS). So, clusters do not describe the large-scale mass distribution, but this
is not what we mean by bias — the effect still operates even if mass traces light. Nevertheless,
this shows a way in which galaxy clustering could also fail to trace mass, if galaxies were
to form only at high peaks of the density field smoothed on ~ 100 kpc scales. The two
thresholds have a very different status, however. For clusters, the threshold arises because
low-v fluctuations have not yet had time to collapse; when they do, the ‘bias’ in clustering
in erased (Cole & Kaiser 1989). For galaxies, some way has to be found of making the early-
forming objects cause the later ones to be ‘still-born’. No convincing way of propagating
disruptive signals over the required distances has been found, however (e.g. Dekel & Rees
1987).

Apart from physical difficulties with its implementation, the threshold model is also
rather inconsistent with the PS philosophy. So far, we have been assuming that low-v fluc-
tuations would make objects of low mass, whereas the threshold model considers that they
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will make ‘failed’ galaxies. This is certainly a radical consequence of the threshold model,
and these dark potential wells have been appealed to e.g. in cases of gravitational lensing
where an obvious galaxy lens is lacking (Subrahmanian, Rees & Chitre 1987). However,
it seems more likely that this conclusion arises from the unrealistic limitation of trying to
characterise all galaxies by a single filter radius. Similarly,extensions of the threshold model
to produce ‘morphological’ luminosity functions where different Hubble types are associated
with different v values (e.g. Martinez-Gonzédlez & Sanz 1988; Evrard 1989a) are probably to
be viewed with some scepticism. Initial motivation for this viewpoint was the hope that high
peaks would be spun up less by tidal torques and would then form ellipticals (Blumenthal et
al. 1984); however, this turned out not to be the case in practice (Heavens & Peacock 1988).

Extensions of the threshold model have been attempted (e.g. Borgani & Bonometto
1990), in which the threshold is made fuzzy. However, this only makes a significant difference
to things if the width of the ‘selection function’ is so large that some objects form with § < 1.
In the context of the PS approach, it is very hard to see how this can come about.

6.2 Natural bias

A more promising candidate is so-called ‘natural’ bias (White et al. 1987b; Kaiser 1988; Cole
& Kaiser 1989). Here, one hypothesizes that star-formation efficiency may be a function of
epoch, so that a halo of mass A collapsing at redshift z produces a stellar luminosity

Lo M*(1+ 2)°. (49)

The model parameters o = 4/3, 8 = 2 produce a perfect theoretical ‘Faber-Jackson’ relation
L o 0%, hence the name ‘natural’.

The important point to note is that, in this model, there are no ‘failed’ galaxies:
clusters have dark haloes. In this respect, natural bias ends up looking much the same
as pictures in which the bias arises through dynamical friction (West & Richstone 1988;
Carlberg, Couchman & Thomas 1990). Thus, when we come to convert from mass functions
to luminosity functions, observed cluster M /L ratios are not relevant. PS-type mass functions
are normalised to account for the total density of the universe; similarly, ¢(L) accounts for
the total luminosity density. There is therefore no choice but to adopt the ratio

M/L ~ 20000k (50)

(in blue solar units; Efstathiou et al. 1988a). This predicts a surprisingly large mass for M,
galaxies: M, = 10'*2Qh~! Mg, but this should not be seen as a problem. PS allocate all
the mass to one object or other, but most of it lies in the outer parts of haloes, where it is
so loosely bound as to be unobservable. Studies such as Bond (1989) and Colafrancesco et
al. (1989) which use observed M/L values are therefore inconsistent: integration under their
luminosity functions will not yield the observed luminosity density.
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Figure 7. The predicted mass functions for CDM with closure M/L, using Gaussian
filtering with M = (27)%/2pR3 and 6,=1.69. (a) shows the mass function for ‘haloes’.
Working from the right at the high-mass end, the three solid curves show the peak ansatz,
PS, and the ansatz for field points. The hatched area is the group multiplicity function from
Bahcall (1979). (b) is the same as (a), but for ‘cooled’ objects. The hatched area 1s the fit to
the galazy luminosity function from Efstathiou et al. (1988a).

In fact, mass dependence of M/L has little impact on predicted luminosity functions.
The PS prescription under natural bias would predict a low-mass slope

f(L) o L‘2+ 2-{:1«:/3_(‘:{-'1), (51)

which will cause a change in slope of only < 0.2 in practice. We therefore show the mass
functions predicted for CDM under the assumption of constant M /L in Figure 7.

7 Applications

The important applications of an understanding of cosmological mass functions come both at
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the present epoch and in looking at conditions predicted for high redshifts. Data on evolution
of luminosity functions for clusters and galaxies are now becoming available that can yield

powerful constraints on models for structure formation.

7.1 Cluster mass functions

The abundance of rich clusters of galaxies is a fundamental test of the gravitational instability
picture. Given that the effective spectral index on ~ Mpc scales is fixed by observation as
ner ~ —1, the abundance of clusters is determined once the amplitude of fluctuations is set
via a normalisation on large scales. A common scheme is to specify that the rms density
fluctuation in spheres of radius 8h~! Mpc is 1/b, where b is the linear bias parameter. Since
b can be constrained directly from peculiar-velocity data, there is very little freedom of
maneuver in the allowed abundance of rich clusters. If there were too many of these, we
would have to abandon a fundamental assumption and move to non-Gaussian fluctuations,
or even reject an origin in gravitational instability. The observational situation is surveyed
by Frenk et al. (1990), who conclude that there are indeed apparently too many clusters
of very high velocity dispersion to be consistent. However, by analysis of simulated cluster
catalogues selected from a CDM simulation, they show that this excess plausibly consists of
spurious alignments of objects of lower richness. The conclusion of Frenk et al. is that the
data are consistent with a value b ~ 2.5, which they had previously preferred for matching
the large-scale clustering pattern. It remains to be seem whether there is an inconsistency
here between the values b < 1.5 preferred by direct analyses of IRAS galaxy samples (Kaiser
& Lahav 1989; see also the contributions by Bertschinger and Yahil at this meeting).

The constraints from clusters should become stronger at high redshift; M, shifts to
lower masses and very rich clusters should eventually become veryrare. Evrard (1989b) and
Peebles, Daly & Juskiewicz (1989) have pointed out that there may be some evidence for
an excess of high-o, clusters at high redshift. The problem here is that, in arguing on the
basis of a few extreme examples, the possibility of the selection biases identified by Frenk et
al. becomes an especial worry. A better way of proceeding may be to use an object such as
a radio galaxy to serve as a marker of a possible distant cluster, and then to count nearby
galaxies to estimate the richness. Yates, Miller & Peacock (1989) have shown in this way that
the average environment of radio galaxies at z ~ 0.5 is Abell R ~ 0 — certainly no lower than
at = = 0. However, searches in narrow-band filters for Lya companions to radio galaxies at
z 2 1.6 have been uniformly unsuccessful (Spinrad 1989). Although this results remains to
be quantified in terms of cluster richness, this may be the first hint of the expected dearth of
distant rich clusters.

7.2 Galaxy mass functions

A more complex problem is concerned with how the galaxy luminosity function may change
with redshift. It is reasonably well established from raw number counts that evolution of
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Figure 8. The epoch dependence of the cooled mass function in CDM from Figure 7b -
using the PS version only (dotted lines show the mass function without cooling). Note that,
forz > 3, the characteristic mass becomes < M, for galazies.

some form is needed, but until recently all attempts to fit this behaviour assumed luminosity
functions of unchanging form, with L* being brighter in the past owing to stellar evolution.
Indeed, this assumption of pure luminosity evolution was the basis of the paper by Loh &
Spillar (1986), which claimed to estimate Q ~ 1 by looking at ¢*(z).

These assumptions have, however, been overturned by redshift data. Starting with
the paper by Broadhurst et al. (1988), and continuing with unpublished deeper surveys by
the Durham group, it has been established that the luminosity function must change shape
with redshift — in the sense that there were relatively more low-luminosity galaxies in the
past. The blue population which dominate the excess at faint magnitudes turn out to be not
luminous galaxies at z ~ 1, but weaker objects at z < 0.5. Although this is such a new area
that many interpretations are possible, these observations do find a natural explanation in
hierarchical models for structure formation. Dark haloes continue to merge at all redshifts, so
is it reasonable to expect mergers of luminous objects to be important at z < 1? To attempt
to get some feeling for this, figure 8 shows how the galaxy mass function varies with epoch
in CDM, according to the ‘PS+-cooling’ model of Peacock & Heavens (1990).

On the basis of this simple model, a significant amount of galaxy merging between
z = 1 and the present appears to be feasible. Note that the curvature of the CDM pewer
spectrum means that indeed the relative numbers of low-mass galaxies is increased at high
redshift. However, the change appears to be too small to explain the galaxy redshift-survey
data; a more realistic model of merging is probably needed. This is certainly a problem
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where much theoretical effort needs to be invested to match the excitement of observational
developments.

Finally, some more speculative remarks concerning quasars. It now appears to be
becoming established that these are rarer at z ~ 4 than at z ~ 2 - the so-called ‘redshift
cutoff’ (e.g. Peacock 1985; Warren et al. 1988; Schmidt et al. 1988). The theoretical
interpretation of this effect is plausibly that outlined by Efstathiou & Rees (1988): at high
redshift onc expects that the massive galaxies needed to host luminous quasars have not yet
been assembled (c¢f. figure 8). Does this mean that we can never hope to see quasars at
z =107 Things may not be so hopeless, as a glance at figure 8 will confirm. Beyond z =~ 3,
the abundance of objects with M > 10*® Mg is indeed dropping exponentially; however, the
characteristic ‘galaxy’ mass at = = 10 is only some 10 — 30 times smaller than it was at
z = 3. By mass conservation, the number of objects of this typical mass has risen by the
same factor. The number of potential sites for an AGN at high redshift is therefore very large
— and one does not need to go impossibly faint to stand a chance of detecting them if quasar
luminosity scales as galaxy mass. This begs many questions about black hole formation, of
course, but it would still seem worth having a small bet on the z = 10 barrier being broken

one day.

8 Concluding remarks

I hope I have said enough to indicate the wealth of new developments going on in this subject.
The pace of changeis such that we can look forward over the next few years to a very fruitful

interaction between data and theory.

I thank my collaborators: Alan Heavens, Sergei Shandarin and Brian Williams, joint
work with whom is presented above. They are not to be held to blame for some of the more
speculative parts of this article.
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Summary: We investigate possible approaches to the mass function of cosmic struc-
tures and find that a general expression can be established, enabling us to understand
the validity of the Press and Schechter formalism (1974). If fragmentation of non-linear
objects is negligible and the initial fluctuations are scale-invariant, then the value of the
low-mass slope given by the PS expression is an upper limit. Taking into account the
effect of cooling, we find that cooling was too efficient to produce the present number
of galaxies if no heating mechanism is present. If heating is related to the galaxy for-
mation rate, then the luminosity function has a slope close to -1, in agreement with
observations.
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1 The mass function of cosmic structures

Analytical derivations of the mass function of cosmic structures meet several difficulties
(e.g., Press and Schechter, 1974; Peacock and Heavens, 1990). For instance, it is neces-
sary to know how a non-linear structure can be embedded into a larger one. A second
problem is that an object that becomes non-linear can fragment into smaller structures.
In this case, the mass function can be entirely dominated by fragmentation processes
(e.9., Newman and Wasserman, 1990) so we bypass this uncertainty by assuming that
fragmentation is negliglible. Let Fnr (> m) be the fraction of mass that is in non-linear
structures with masses larger than m. The mass function N(m) is related to Fnr (> m)

_ E d]:NL(>m)
m dm

N (m) dm = dm (1)
where p is the present mass density of the universe. It is possible to write a general
form for Fyg (> m) in terms of the initial fluctuation spectrum. Consider an infinite set
of random spheres that overlay all the masses in the Universe contained in the initial
fluctuations. Let

“+oo
/ Fp(v)dv
vs

be the fraction of the mass that is embedded in spheres of radius R, with mean density
contrast larger than vgo, where o is the r.m.s. linear density contrast inside a sphere of
radius R. This quantity is different from the probability that the spheres have a density
above vso. Without loss of generality, we can introduce a selection function sg () that
gives the fraction of mass in spheres between v and v + dv that has actually virialised by
now. In the absence of fragmentation, this mass will turn into objects of masses larger
than m (R). Fng (> m) is therefore

Frp(>m) = /_:" sr(ve) Fr (v) dv 2)

This equation is almost too simple, but it has the virtue of being ezact, and of solving the
cloud-in-cloud problem. The unknown behaviour of non-linear development is described
by the function sg . The mass m associated with spheres of radius R can be written

m = pA(v) R

This comes as a consequence of the assumption that fragmentation is negligible.
The standard gravitational instability scenario (assuming a Friedman-Lemaitre model
with @ = 1) provides the asymptotic behaviour of the selection function. The transition
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from the linear to non-linear regime is controlled by the density fluctuation §p/p of the
perturbation:

(Non-linear) <= ép/p > 6,

As high density contrast fluctuations necessarily produce non-linear objects, the selec-
tion function must tend towards 1(0) when § tends towards plus (minus) infinity. This
implies that the derivative s/, (6) is null outside a finite domain. The key assumption
here is that the function sg goes from zero to one on scales that typically satisfy the
criteria § ~ &5 , i.e., the transition from the linear to non-linear regime is controlled
only by the r.m.s. amplitude of the fluctuation.
The dependence on smoothing scale (Eq. 2) will never enable us to find a general
derivation of the mass function. However, for scale-invariant fluctuations there are
several simplifications. First, the distribution function F' no longer depends on the
smoothing length R. Second, the selection function does not depend on R, and third,
the mass m scales as R® in the limit ¥ — 0. The mass function can then be derived as:
N(m) dm = _p 1 do f+m s'(v) F (v)udu dm (3)
— 00

m o dm

2 The low-mass regime in hierarchical models

The behaviour of the mass function in the low-mass regime can be derived from Eq.
(8). As we have mentioned above, s’ is zero outside a finite domain. Therefore, in the
small-mass limit, the mass function is:

0 +o00
N(m) dn = _p 1 dn(o) F (0) / s' (u)udu dm (4)

m? o din(m) —o0
Therefore, the mass function on these scales is only fixed (up to a constant factor) by
the variation of the r.m.s fluctuation with mass, and therefore the low-mass dependence

of the mass function is correctly given by the PS behaviour.

It follows that a consistent derivation of the mass function is possible and that the
standard criterion for non-linearity, based on a threshold of the linear density contrast,
automatically leads to a mass function with the same low-mass slope as the PS mass
function, assuming scale-invariant fluctuations and the absence of fragmentation. It is
then tempting to conclude that the mass function should in fact have this behaviour.
However, Peacock and Heavens (1990) have pointed out one of the oversimplifications
of the PS approach. In this latter description, a fluctuation on a given linear mass
scale is assumed not to contribute to a virialised object of larger mass. This may be
incorrect because a linear fluctuation can be embedded in a larger non-linear one. We
expect such an effect to be small, since linear fluctuations should usually lie outside
non-linear regions rather than inside, but this effect can indeed change the low-mass
regime. However,

/u+°°F(V)dt/

is certainly the minimal fraction of mass that is embedded in objects with mass greater
than m, therefore it is an underestimation of Fyp (> m) and in consequence the fraction
of mass in smaller objects should be lower than the P§ one.



406

Figure 1: The fraction of potentially cooled gas against redshift. The different curves
correspond to different normalisations of the CDM sprectrum. This represents the
minimal fraction of the gas that should have been processed in stars by now.
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3 Gas evolution

Clearly, in order to interpret the meaning of the galaxy luminosity function it is nec-
essary to understand under which conditions the primeval gas has been processed into
stars, and its implications for the luminosity of haloes. A simple analysis of star for-
mation processes is sufficiently helpful. In the top-hat model for spherical collapse, the
virial temperature can be derived, assuming that the structure virialises at half the
radius at mammum expansion, as

(1(:;"1() = 155 (1+2) (ﬁ;)m (5)

At each epoch, only objects with masses in the range M, (z) to M, (z) are able to cool
in less than one Hubble time. Therefore, the fraction feo1(2) of gas in cosmic structures
that is able to cool in less than a Hubble time is

fon(2) = = [N (m)ma
cool \ 2 = = m) mam
' p i)

Figure 1 presents f,, computed with the CDM spectrum, using the PS formalism
as modified by Schaeffer and Silk (1985). The bias parameter b, is defined as

1 = ¢(8h 'Mpc)

b,
As expected, cooling is more efficient at high reshift for low b,. Figure 1 also shows
the evolution of fe,e when the cooling time is one tenth of the Hubble time, but this
makes only a small difference since cooling is very efficient and usually t., < ty at any
redshift. The cooled gas must remain in galaxies as the fraction of diffuse neutral gas
is known to be very small from the Gunn-Peterson test. We therefore expect that the

maximumvalue of fe,01(2) approximates the minimal fraction of the gas that has hitherto

‘max
cool

limits. First, f°F represents the minimal value of the fraction of the mass associated

cooled and been processed in galaxies. We can now compare with observational

with galaxies. The minimum value is justified by the fact that galaxies can contain
baryons whese outer parts have not yet cooled. Therefore

Q > max

9 = cool

where ), is the contribution from galaxies to £y . This leads to

ool < 0.01t00.03

cool
Secondly, the contribution of stars to the total density is

M

and therefore

max _ S (M/L), M)
o= ~.01-.03(L )
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Figure 2: The same quantity than in figure 1, but when the gas is assumed to be
maintained at some temperature T,. The diferents curves correspond to different tem-

perature.
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These values are much smaller than the computed ones and we conclude that in a simple
CDM model the galaxy formation rate expected when using simple cooling arguments
produces far too many galaxies. This is a rather robust conclusion, as the fraction of
cooled gas is probably underestimated.

There are two possible solutions to this problem. First, the (M /L) ratios may be under-
estimated. Dynamical studies of spiral galaxies indicate, however, that (M /L)4;,. agrees
with the M /L ratio of the stellar content, so that the evidence for dark matter intrinsic
to the disk seems very weak. Unless the production of low-mass stars is concentrated in
the outer parts of bright galxies, the fraction of primordial gas that has cooled by now
is certainly smaller than 10%.

A more likely solution is that the gas is kept hot by some heating mechanism. This
is certainly the simplest way to explain the limits on the fraction of neutral gas implied
by the Gunn-Peterson test. The mechanism of heating is not yet identified, but it is
likely to be the consequence of the formation of primordial stars, i.e., of cooling, and
therefore heating will cease when cooling becomes ineffective. Within this framework,
we can determine the temperature at which the gas is heated, in order to produce the
observed number of galaxies. In fact, if the gas is heated at a temperature greater than
10° K, the cooled fraction becomes negligible (see Fig. 2). Therefore, if there is some
efficient heating mechanism, the gas will be heated at a temperature T, close to this
value (Dekel and Silk, 1986). In order to obtain f ~ 0.01, a critical temperature of T,
~ 3x10° K is needed. Aslong as the temperature is in this range, haloes that form with
a virial temperature smaller than T, will not contain galaxies. When heating ceases at
zp, the gas cools adiabatically T = T,(1+ z)?(1+ z,)"?, allowing the “lighting” of haloes
of smaller velocity. As the gas cools star formation takes place, and these haloes will
then be identifiable as galaxies even if they will later be embedded into larger haloes.
The mass function of “luminous” haloes can now be calculated in a straightforward way.
The number of “lighted objects” of a given mass is given by the number of haloes of
that mass at the redshift of first cooling for that mass. For a mass function

N(m)dm o« (1+z)m™?dm

with I o of , and taking the relation o2 « (14 z;)m?/® , the luminosity function is
calculated as

N(L)dL « L™*dL

with @ = 14 0.5/ . This slope agrees with observations. Note, however, that this argu-
ment holds only for a finite range that corresponds to T,/ (1 + z;)? - T.. This implies
a luminosity range of (1 + z;,)l3 and a turn-off is therefore expected in the luminosity
function for luminosities fainter than M = -12 to -15

To conclude, let us highlight some of the strengths and weaknesses of this model.
We have been able to predict the right slope of the luminosity function, starting from
the reliable hypothesis that the gas is hot. We have also predicted a cut-off or at least
a turn-off in the faint-end of the luminosity function, as well as suggested that the IGM
should be at a temperature of a few 10* K. The major problem is certainly the inclu-
sion of heating and cooling details, in order to check whether the predicted evolution of
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the LF is consistent with, for instance, the constraints given by deep counts of galax-
ies. Also, it remains to be seen whether the assumption of fragmentation —our main
hypothesis—is sustained by numerical simulations.
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LARGE-SCALE MOTIONS IN THE UNIVERSE: A REVIEW
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ABSTRACT

Galaxy redshift and distance measurements may be combined to give deviations
from uniform Hubble expansion called peculiar velocities. During the last several years,
large numbers of galaxy distance measurements have been made for spiral and elliptical
galaxies. These data have now been combined and synthesized to produce maps of the
large-scale velocity, density and potential distributions. Because all matter, dark as well
as luminous, generates a gravitational field, peculiar velocity surveys provide a measure
of the matter distribution that cannot be obtained from galaxy redshift surveys alone. In
combination with the IRAS galaxy redshift survey, the peculiar velocity field maps have
been used to test the hypothesis that dark matter and galaxies are distributed similarly on
large scales. This article reviews recent observational and theoretical advances in the study

of large-scale motions.
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1. INTRODUCTION

Measurements and analysis of large-scale motions have recently developed into a
powerful new method for studying large-scale structure. Unlike galaxy redshift surveys,
which map the large-scale distribution of luminous galaxies, surveys of galaxy peculiar
motions (deviations from uniform Hubble expansion) allow the mapping of the large-scale
distribution of all matter, dark and luminous. Although the number of galaxies with
relatively accurate peculiar velocity measurements (with standard errors smaller than 25% of
the distance) is still small (about 1000) compared with the number with measured redshifts,
these data already allow us to draw significant conclusions about the large-scale distribution
of matter in the universe.

There are at least three major theoretical motivations for undertaking detailed
mapping of peculiar velocities. The first is to make a dynamical estimate of the cosmological
density parameter 2. For a given amplitude of density fluctuations, peculiar velocities
increase with € (roughly as Q4/7 if the perturbations are not strongly nonlinear; cf.
Lightman and Schechter 1990). For a long time such estimates have been based on a
single peculiar velocity only, that of the Local Group relative to the cosmic microwave
background radiation (CMB) or to the Virgo cluster of galaxies (see Davis and Peebles
1983 for a review). Extending our knowledge of peculiar velocities beyond the Local Group
offers an important consistency check on dynamical estimates of 2 and, more generally, on
gravitational instability theory.

The second theoretical motivation for peculiar velocity studies is to test whether
galaxies and dark matter are distributed similarly on large scales. In fact, dynamical
estimates of Q require assumptions about how galaxies trace mass, so this question is
related empirically to the one above. There is reason to believe that on small scales (up to
~ 10 ™! Mpc) mass is more uniformly distributed than light (i.e., galaxies). (See Dekel and
Rees 1987 for a review of this idea of biased galaxy formation.) The amount of bias, if any,
prevaling on large scales (i.e., after spatially smoothing the matter and light distributions
over scales 2 10 =1 Mpc) is presently unknown. Measuring the large-scale mass-to-light
ratio is best done by mapping the large-scale velocity field.

Both of these first two goals require combining peculiar velocity data with complete
galaxy redshift surveys. The latter are necessary for determining the galaxy density field.
Peculiar velocity surveys, based on galaxy redshifts and distances, need not be complete
because the galaxies are used only as tracers of the velocity field, much as stars or neutral
hydrogen clouds are used as tracers of velocity fields within galaxies. Some coordination
of redshift-distance surveys and complete redshift surveys is required to estimate Q and to
measure the large-scale mass-to-light ratio.

The third motivation for studying large-scale motions does not require a
commensurate redshift survey: probing the initial conditions for the formation of structure.

Up to now, most investigations of structure formation have relied on testing specific
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theoretical models, e.g., the biased cold dark matter model (cf. Frenk et al. 1989 and
references therein). However, the peculiar velocity field on large scales is expected to reflect
directly the primordial fluctuations in the linear regime, with little or no correction needed
for nonlinear evolution or biased galaxy formation. Maps of the initial peculiar velocity field,
or of the derived density and potential fields, would provide an important guide for theories
of dark matter and the origin of the initial fluctuations (e.g., the inflation paradigm). From
these maps, or more directly from the data, it should be possible to measure the primordial
power spectrum and to test whether the initial fluctuation field is a Gaussian random
process.

These are bold goals. However, progress has already been made in each of these
areas, as will be discussed in this article. Continued progress rests largely on the efforts of
many observers.

The purpose of this article is to review recent observational and theoretical advances
in the study of large-scale motions. This is not meant to be a comprehensive review; rather,
it is a progress report with the aim of encouraging further work in this productive and
important area. We begin with a review of techniques for measuring galaxy distances and
a critical discussion of their errors. Then follows a discussion of recent observations and
a comparison of velocity field measurements made by different techniques. These results
and others are used to test our fundamental assumption that galaxy distance estimates
measure peculiar velocities with reliable error estimates as opposed to measuring some
peculiar properties of galaxies unrelated to their motions. We then discuss the potential
flow reconstruction technique of Bertschinger and Dekel (1989) and review their recent
results. A brief comparison is made with the IRAS redshift survey of Strauss and Davis
(1988) and Yahil (1988), focusing on the questions of whether mass traces light on large
scales and the value of §0. After that we review several other analysis techniques and
velocity-field statistics that have been applied to redshift-distance surveys.

For a comprehensive review of observations of large-scale motions up to mid-1989,
see Burstein (1990). A thorough discussion of the Great Attractor (GA) models was given
by Faber and Burstein (1988). Earlier reviews have been given by Dressler (1987b), Rubin
(1989), and Gunn (1989).

2. GALAXY DISTANCE MEASUREMENT TECHNIQUES AND THEIR ERRORS

Two main techniques have been brought to bear for measuring distances of large
numbers of galaxies: the Tully-Fisher (luminosity-line width) relation (Tully and Fisher
1977, Aaronson, Huchra, and Mould 1979; Pierce and Tully 1988) for spirals and the
D,-o (diameter-velocity dispersion) relation (Dressler et al. 1987a; Djorgovski and Davis
1987; Dressler 1987) for ellipticals and SOs. Both of these techniques are based on
empirical correlations between a distance-dependent quantity (flux or angular diameter) and

a distance-independent quantity (circulation rotation speed or central velocity dispersion).
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The theoretical basis for these correlations is not understood.

The measured- scatter about the mean relations translates into rms errors in
estimated distance of about 21% (0.41 magnitude) for the D,-o relation and 16% (0.32
magnitude) for the infrared or red Tully-Fisher relation (Burstein 1990). Some of this
scatter is observational, arising primarily from photometric errors, implying a surprisingly
tight correlation between the kinematic and photometric properties of galaxies. These
correlations are an unexpected and unexplained gift, undoubtedly containing important
clues about the process of galaxy formation. For our present purposes, we simply borrow

them as tools for estimating distances, blissfully ignorant of their raisons d’etre.
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Fig. 1: Infrared Tully-Fisher (left) and D,-o (right) relations for the
Coma (squares) and Hydra (triangles) clusters.

Figure 1 shows the empirical infrared Tully-Fisher (IRTF) and D,-o relations for
galaxies in the Coma and Hydra clusters. Coma galaxies are smaller and fainter than Hydra
galaxies because they are more distant. The data are taken from Aaronson et al. (1986)
and Faber et al. (1989), as compiled by Burstein (1989). The relative Coma-Hydra distance
modulus derived from the offset between the distance-indicator relations for the two clusters
is 1.17 magnitudes from the D,-o relation and 1.31 magnitudes from the IRTF relation. The
ratio of redshifts in the CMB frame gives a relative distance modulus of 1.25 magnitudes.
Thus, from the D,-o distances we would infer that Hydra has an inward peculiar velocity
relative to Coma (the ratio of redshifts is greater than the ratio of distances), while the
IRTF distances lead to the opposite conclusion.

Note that peculiar velocities can be inferred without knowledge of the absolute
distance scale — the value of the Hubble constant need not be known. To see this more

clearly, note that the radial peculiar velocity is
v, = cz — Hyr . (1)

For a galaxy with large distance r;, whose peculiar velocity is much less than its redshift



415

21, we have Hgry = cz;. If other galaxy distances are measured relative to this one,

1. Hgr = (r/r1)ecz;. Accordingly, we hereafter

we obtain the distance in units of kms
measure all distances and velocities in units of kms~!. In practice it is better to define the
relative distance scale using a large number of galaxies at large distances, in order to reduce
the effects of both residual peculiar velocities and distance errors. In this way, Burstein
(1989) has determined the radial peculiar velocities of the Coma and Hydra clusters to be
—179 + 270 kms™! and —268 &+ 197 kms~!, respectively, from the D,-o distances, and
—179 4 328 kms~! and 30 + 204 kms~! from the IRTF distances. These numbers are
consistent with our conclusions about the relative peculiar velocities reached above, but we

note that the uncertainties, even for these well-sampled clusters, are large.

Figure 1 and the arguments presented above make it seem straightforward to measure
peculiar velocities. However, they also suggest two important reasons for caution: random
errors and systematic errors. Prudence is mandated by our very lack of understanding of
the Tully-Fisher and D,-o relations, so understanding the effects of errors requires careful
analysis of the empirical correlations. One should not take the accuracy of the derived

peculiar velocities for granted.

First, let us consider the possible systematic errors: Granted, there appears to be
a good correlation of internal velocity with diameter and/or luminosity in each cluster.
But, how do we know that galaxies of the same circular velocity have the same absolute
magnitude in Virgo and Coma? Perhaps, as suggested by Djorgovski et al. (1989) and
Silk (1989), the zero-point of the D,-o or Tully-Fisher relation varies with environment.
It is plausible, for example, that galaxies of the same velocity dispersion in a high-density
region might be more luminous than those in the field. This would translate into artificially
inferred outward motions for galaxies in dense regions, such as the Hydra and Centaurus
clusters, which are, in fact, inferred to be falling toward the Great Attractor. Spurious
infallis a worrisome possibility. However, careful searchesfor environmental correlations in
the Dy-o relation (Giuricin et al. 1989; Burstein et al. 1990) have found no such effects at
the level of a few percent, low enough that residual systematic errors are presently of little
concern. Similar conclusions hold for the Tully-Fisher relation (Mould et al. 1989; Burstein
1990). Also, Donnelly et al. (1990) have shown that the L x-Lopt correlation of ellipticals
is improved when D,-o distances are used. Moreover, the peculiar velocity fields inferred
separately from the D,-0 and Tully-Fisher relations are in fairly good agreement (Faber
and Burstein 1988; Burstein et al. 1990; Fig. 2 below), an unlikely outcome if both are
affected by systematic errors (Gunn 1989; but see Silk 1989 for a different view). Finally,
the consistency between the mass density field obtained below from peculiar velocities with
the galaxy density field of the IRAS redshift survey would require systematic errors to
accurately mimic the expected physical peculiar velocities, an implausible result. Although
systematic zero-point errors are undoubtedly present at some level, it appears that they

may be too small to perturb noticeably the inferred motions.
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In contrast, we know that nonnegligible random errors are present in every galaxy
distance measurement. They arise simply from the imperfect correlation of internal velocity
with luminosity or size. Given the template D,-o or luminosity-line width relation obtained
from calibrating cluster galaxies at a common distance, the best one can do for a single
measurement is to place the galaxy on the mean regression line of the relation, introducing
a random error drawn from the distribution of residuals from the mean relation. The
standard error per galaxy, about 20% of the distance, exceeds typical peculiar velocities
at distances beyond 3000 kms~!. Without a distance indicator of smaller scatter, one can
improve the signal-to-noise ratio only by measuring more galaxy distances. See Kraan-
Korteweg et al. (1988), Pierce and Tully (1988), Faber and Burstein (1988), and Burstein
and Raychaudhury (1989) for varying views on the magnitude of the scatter in the Tully-
Fisher relation.

Potentially more troublesome is a systematic error traceable to the finite scatter
of the distance-indicator relations: so-called Malmquist bias. This bias occurs only when
peculiar velocities are plotted versus estimated distance (Lynden-Bell et al. 1988). It arises
because there are more galaxies at large distance and in denser regions, giving a factor r2n(#)
that should multiply the probability distribution of true distance for given measurements,
where n is the galaxy density. Neglecting this factor causes a systematic underestimate of
galaxy distances by an amount proportional to rAZ%, where A is the standard error of In(r).
Lynden-Bell et al. (1988) show how to remove this bias for a uniform density of galaxies; this
correction is applied to most distance samples in widespread use. Because the correction is
quadratic in the random error, and is significant at large distances, it is important to know
the random errors well and to try to minimize them.

Even with the correct homogeneous Malmquist correction, however, one is still
subject to Malmquist bias arising from density gradients. For clusters of galaxies this bias
may be reduced by averaging the distance measurements and applying a reduced Malmquist
correction (Lynden-Bell et al. 1988), but it is more difficult to deal with large-scale density
gradients. Removing the residual bias requires knowing the galaxy density field, which
requires a complete sample obtained with a well-defined selection function. In practice, this
bias may not be as worrisome as feared. Using Monte Carlosimulations, Dekel et al. (1990)
estimated the systematic error in the large-scale velocity field (spatially smoothed with a
Gaussian filter of radius 1200 km s~!) due to inhomogeneous Malmquist bias to be less than
200 kms~! out to a distance of 6000 kms~. This is smaller than the random errors in the
smoothed velocity field and it has very little effect on any conclusions drawn from the data
aside from the exact location of the GA infall center (cf. Burstein et al. 1990).

There are alternative methods for estimating distances from the same data that do
not suffer from Malmquist bias. However, these methods generally require knowing the
sample selection function or having a good model for the peculiar velocity field, without

which they, too, suffer from biases. For detailed discussions of errors see Fall and Jones
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(1976), Schechter (1977, 1980), Aaronson et al. (19825, 1986), Teerikorpi (1987), Bottinelli
et al. (1988), Lynden-Bell et al. (1988), Faber and Burstein (1988), Bothun et al. (1990),
Burstein et al. (1990), and Dekel et al. (1990).

Distance errors are perhaps the most obvious and easiest to quantify of the several
sources of noise in estimates of the large-scale velocity field. However, as Dekel et al. (1990)
show, sparse and nonuniform sampling cause problems even in the absence of distance
errors. For example, if there is a steep decline in the number density of galaxies, owing
to a steep gradient in the selection function (e.g., across the Galactic plane), and if the
galaxies are given equal weight, the smoothed velocity estimated in the low-density region
will be contaminated by the velocity field from the densely sampled region, an effect Dekel
et al. call sampling gradient bias. This bias, like Malmquist bias, can be corrected for if the
galaxy sample is complete with a well-defined selection function; in practice the samples
in use are too heterogeneous to allow a simple correction. Sampling gradient bias can also
be decreased by decreasing the amount of smoothing applied to the data. Unfortunately, a
large amount of smoothing is required with present samples in order to reduce the variance
caused by random distance errors. The sampling gradient bias and the related sampling
variance (caused by Poisson sampling of a velocity field with gradients inside the smoothing
window) are particularly worrisome because they depend on the underlying velocity field
that one is trying to determine. In practice, the best compromise seems to be to weigh each
peculiar velocity measurement inversely by the sampling density, to use a moderately large
amount of smoothing to reduce the effects of measurement errors, and then to exclude from
further analysis poorly sampled regions. It should be noted that these and other biases are
not unique to the particular analysis method used by Dekel et al. , but are generic to all
analyses of large-scale peculiar velocities, including those without explicit smoothing,.

In short, workers desiring to draw cosmological conclusions from galaxy redshift and
distance measurements need to analyze carefully the effects of systematic and random errors.
These errors become less troubling as the number of distance measurements increases.
More accurate distance indicators would also help. In this regard, we look forward to
the development of the luminosity fluctuation method (Tonry et al. 1989), which may yield
substantially more accurate distances for elliptical galaxies within ~ 5000 kms™! distance
from the Local Group.

To conclude this section, we present a comparison of the radial velocity field implied
by ellipticals and SOs with that from D,-o distances (from Faber et al. 1989; Lucey
and Carter 1988; and Dressler and Faber 1990a) with spirals with IRTF distances (from
Aaronson et al. 1982q, 1986, 1989; and Bothun et al. 1984). The treatment of the data
is as was described by Bertschinger et al. (1990). We combine the individual galaxy and
group peculiar velocities, using a tensor window function, into a smooth radial velocity field
v,(r"). The distance r is, of course, the estimated distance (with homogeneous Malmquist

correction) and not the true distance, which is unknown. The Gaussian smoothing radius is
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1200kms~!. The radial velocity field is sampled on a Cartesian grid of spacing 1000 kms~?,
but only those grid points within 4000 kms~! distance from the center and with at least 4
distance measurements from both samples within a distance of 1500 kms~! from the given
grid point, are retained. In other words, the comparison is made over a relatively small
volume and only at points that are well sampled by both types of galaxies. This procedure

is carried out separately for both the E/SO and the S samples.
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Fig. 2: Smoothed peculiar radial velocities from D,-o distance measurements

versus those from IRTF distances.

The D,-0 and IRTF radial velocities are plotted against each other in Figure 2. Error
bars have been computed by making 100 noisy realizations of each data set as described in
Bertschinger et al. We see that there is general agreement, with scatter, between the Tully-
Fisher and D,-o peculiar velocity fields. There does appear to be a slight systematic offset,
with the peculiar velocities of early-type galaxies being more positive than those of spirals.
This also shows up as systematically larger redshifts for the E/SOs, at the same estimated
distance, as for the spirals. Goodness of fit was tested by performing a linear regression
of the data and computing the regression coefficients, the linear correlation coefficient and
chi squared. Monte Carlo simulations were then performed to test the hypothesis that the
measured D,-0 and IRTF velocity fields are noisy versions of the same underlying velocity
field. These simulations began by replacing the measured peculiar velocities with a model
velocity field (the Faber and Burstein 1988 GA+Virgo model), so that the underlying D,-o
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and IRTF peculiar velocity fields were identical. Noise was then added to each, and 100
realizations were made. The same statistics computed from the data were computed from
each realization, yielding the probability distribution of each statistic. The results indicate
that the measured value of chi squared shows consistency between the two velocity fields,
but that the slope and offset are significantly different (at about 95% confidence) from what
one would expect if the underlying velocity fields really are identical. The implication is
that the estimated random errors of the D,-0 and IRTF relations are about right, but that
the velocity field inferred with ellipticals is noticeably different from that of the spirals. The
simplest explanation is that there is an error in the relative zero-point calibration of the
two relations. If the distances of nearby spirals are decreased by 4% (0.08 magnitudes in
distance modulus), the offset is removed. Because the distances of nearby spirals have been
calculated by Burstein (1989) using a different Tully-Fisher relation than that used for the
cluster spirals, an error of this magnitude is not unreasonable. With this correction, the
peculiar velocity fields implied by nearby spirals and ellipticals are consistent within the

measurement errors.
3. RECENT OBSERVATIONAL RESULTS

Before summarizing new results published during the last year, it is useful to
summarize the observational status of the subject of large-scale motions as it was at
the beginning of 1989. At that time, the main question being asked was, “Is the Great
Attractor real?” Lynden-Bell et al. (1988) had published a detailed analysis of their D,-0
measurements of distances to about 400 elliptical galaxies, showing that the peculiar velocity
field within about 6000 kms~! distance from the Local Group was fit well by infall toward
a point beyond the Hydra-Centaurus supercluster, at a distance of 4350 4 350 kms~!. The
magnitude and coherence of this flow is larger than was expected by practically everyone
(although it is comparable with the original Rubin et al. 1976 result) and it poses a
strong challenge to the popular models of galaxy and structure formation (Bertschinger
and Juszkiewicz 1988). Given the thoroughness of the “Seven Samurai” (7S) in their series
of papers (see Faber et al. 1989 and references therein), it was hard to find a flaw in their
result, but most astronomers were skeptical.

If the results of the 7S were correct, then it seemed difficult to reconcile the large-
scale peculiar velocity field with the large-scale gravitational field inferred by Yahil (1988)
from the IRAS redshift survey (Strauss and Davis 1988). This redshift survey is complete
over about 90% of the sky to a given 60u flux limit and is based on galaxy identifications
from the IRAS point source catalog. It is superior to optically-selected samples in its
being little affected by Galactic dust extinction. The gravitational field predicted from the
observed distribution of IRAS galaxies contains two equally prominent peaks on the scale
of the peculiar velocity surveys, the GA peak in the direction of Hydra-Centaurus, and the

Perseus-Pisces supercluster at about the same distance on the opposite side of the sky. On
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large scales, the peculiar velocity field is expected to be proportional to the gravitational
field. As Yahil (1988) and Strauss (1989) showed by comparing the gravitational field with
the radial velocity field of 7S, there was no evidence from the galaxy distance measurements
existing then for any significant inflow into the Perseus-Pisces supercluster. This result was
confirmed by Dekel and Bertschinger (1990) by comparing the mass density field with the
galaxy density field. The second main question being asked was therefore, “What about
the Perseus-Pisces supercluster?”

Newer results have clarified these issues somewhat. First, the reality of the GA
was bolstered by the demonstration by Faber and Burstein (1988) of the agreement of the
nearby velocity field implied by D,-o distances of early-type galaxies with that obtained
from infrared Tully-Fisher distances of spirals (Aaronson et al. 1982¢; Bothun et al. 1984;
Aaronson et al. 1986). This agreement was strengthened by Aaronson et al. (1989), who
measured spiral distances to six clusters in the Hydra-Centaurus supercluster and found
large outward peculiar velocities for three of them. Staveley-Smith and Davies (1989)
also found evidence for a dipolar and quadrupolar flow directed toward the GA. This
latter study disagreed with Lynden-Bell et al. about the distance to the GA infall center,
preferring a more nearby center coincident, perhaps, with the Centaurus clusters themselves.
However, it was widely recognized that the flow in the Hydra-Centaurus supercluster itself
is complex and nonlinear (e.g., Lucey et al. 1986), making it seem plausible that the spiral
and elliptical results were not inconsistent; perhaps the spiral-rich groups do not coincide
with the elliptical-rich cluster cores. Lucey and Carter (1988) also found large outward
peculiar velocities in the Hydra-Centaurus supercluster using D,-o distances.

Another major step forward came with the completion of a new redshift survey
covering one steradian around the direction of the GA by Dressler (1988) and the subsequent
measurement of D,-0 and Tully-Fisher distances to more than 200 of these galaxies by
Dressler and Faber (1990a,5). These data confirmed the original 7S determination that
the foreground Hydra-Centaurus groups have larger outward peculiar velocities. They also
showed evidence that galaxies beyond the infall center, with peculiar velocities directed
toward us, have finally been discovered. Although the exact location of this infall center is
dependent on somewhat uncertain Malmquist corrections, its existence now seems secure
(Burstein et al. 1990; Dressler and Faber 19906). Dekel et al. (1990) and Bertschinger
et al. (1990) concluded from their analysis of the effects of distance errors that residual

! error in the velocity field near the GA

Malmquist bias produces at most a 200 kms~
smoothed with a Gaussian of radius 1200 kms~!, compared with maximum smoothed
infall velocities exceeding 600 kms~!. Although Malmquist effects are likely to be larger in
the unsmoothed redshift-distance maps of Dressler and Faber, the relatively small scatter
in these maps, especially those with Tully-Fisher distances, argues for the reality of the

“S-wave” perturbation of the Hubble flow.
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A spanner was almost thrown into the works with the rediscovery, by Scaramella
et al. (1989), of an enormous supercluster beyond the GA at a redshift of about
14000 kms~!. This concentration of rich clusters had been noticed earlier by Shapley
(1930). If these clusters are as prominent in the dark matter distribution as they are in
the galaxy distribution, they may perturb significantly the flow in the Hydra-Centaurus
supercluster (Raychaudhury 1989). Perhaps they do; that would not obviously contradict
any observations at present. However, one should be cautious in estimating the gravitational
effect of distant clusters given the lack of a complete survey. The ROSAT X-ray satellite
will help in this regard, by providing a uniform sample of X-ray emitting clusters. It
should also be noted that a void between the foreground Hydra-Centaurus supercluster and
the background “Attratore di Tutti Attratore” (Dekel 1988) would diminish the predicted
perturbations. The Shapley concentration very likely has little effect on the motion of the
Local Group (Raychaudhury 1989).

And what about Perseus-Pisces? This question is still not answered satisfactorily,
although some progress has been made. Dekel et al. (1990) and Bertschinger et al. (1990)
pointed out that the peculiar velocity field is very poorly sampled in the Perseus-Pisces
supercluster. The velocity and inferred mass density fields in this region are strongly affected
by the peculiar velocity of a single object, the Perseus cluster. Bertschinger et al. noted that
when one velocity measurement has the dominant weight in a region, the fitted velocity field
is necessarily smoother. than the true one (since one velocity determines only a bulk flow),
so that the inferred mass density perturbation (proportional to -V - ¥'in the linear regime)
is biased to lower amplitude, an unfortunate but unavoidable consequence of the sampling
gradient bias discussed above. They concluded that more distance measurements in the
Perseus-Pisces region are needed before it can be determined that there is a convincing
discrepancy between the large-scale peculiar velocity field and the galaxy distribution.

Fortunately, Haynes and Giovanelli (1988) have been undertaking a large survey
of spiral galaxies in the Perseus-Pisces supercluster using the Arecibo radiotelescope to
measure 21 cm redshifts and linewidths. The completion of this redshift survey, together
with the photometry necessary for Tully-Fisher distances, will lead to a dramatic increase in
the sampling of the velocity field in the hemisphere opposite to the GA. Many Tully-Fisher
distances have already been obtained by Willick (1990), who concludes that the groups in
the direction of Pisces are falling in toward the Local Group and hence toward the GA
with velocities comparable to those measured by Lynden-Bell et al. (1988) (several hundred
kms™1). In addition, the data show some evidence for small-scale compressional motions
toward the Pisces cluster. Although the agreement with 7S is encouraging, these results still
do not reconcile the apparent disagreement with the IRAS redshift survey. Understanding
the dynamics of the Perseus-Pisces supercluster is one of the major challenges presently

facing workers in this field.
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4. POTENTIAL FLOW RECONSTRUCTION

With the accumulation of large numbers of galaxy distance measurements during the
last few years, the need has arisen for a general, model-independent method for analyzing
these data to extract the large-scale peculiar velocity field. Such a method, based on
the assumption of potential flow, was developed by Bertschinger and Dekel (1989). This
method, nicknamed POTENT, extracts the smoothed three-dimensional velocity field from
samples of galaxy distances and redshifts. In addition, assuming that gravity is responsible
for generating the peculiar motions, the mass density and gravitational potential fields are
extracted. All of this is possible from samples of galaxy distances and redshifts. How?

A simple counting argument suggests that it should be possible to reconstruct the
smoothed three-dimensional velocity and density fields from measurements of the radial
peculiar velocity only. According to gravitational instability theory, the initial conditions
for the formation of large-scale structure were determined by one scalar field, the density
fluctuation field (or, equivalently, the gravitational potential). Radial peculiar velocity
measurements provide one constraint at each sampled point, implying that it is possible, in
principle, to recover the initial conditions and the present three-dimensional fields.

The practical implementation of this idea is based on the fact that the peculiar
velocity field is predicted by gravitational instability theory to be irrotational (curl-free)
outside of regions of orbit-crossing and dissipation, with V xo=0. (This is not in conflict
with the spinning up of galaxies by tidal torques, a process that is dependent upon orbit-
crossing on galactic scales; cf. Peebles 1969.) For an irrotational (i.e., potential) flow, the

peculiar velocity field is derived from a single scalar velocity potential ®:
T=-Vo. 2)

If potential flow prevails on the large scales of interest, then the tangential components of
the peculiar velocity field can be obtained using equation (2), with the potential determined

by integrating the radial component along radial rays:
O(r,0,¢) = — / ve(r',0,¢)dr' . (3)
0

Before equations (2) and (3) can be applied, the peculiar velocities of individual
galaxies must first be interpolated and smoothed to provide an estimate of v(7) throughout
the volume of interest. It is desirable that the smoothing procedure approximate as closely as
possible a convolution of the underlying velocity field by a uniform “window function”, e.g.,
a spherical Gaussian filter. A tensor window function is necessary because the smoothing
averages measurements made in different directions. In theory, enough smoothing is required
to filter out any vorticity created by nonlinear processes on small scales. In practice,
the peculiar velocity field is traced so sparsely by existing samples that a large degree

of smoothing is required simply to define a radial velocity field with a useful signal-to-noise
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ratio. Because of the problems introduced by random distance errors, Malmquist bias,
sampling gradient bias and sampling variance discussed above, the practical implementation
of the tensor window function smoothing requires a complicated set of compromises. A

thorough discussion of these issues has been presented by Dekel et al. (1990).

Given the smoothed radial velocity field, it is straightforward to integrate equation
(2) numerically on a grid in spherical coordinates. One recent change made in the
POTENT algorithm is that we now interpolate the velocity potential to a cubic grid before
differentiation rather than interpolating later. With sufficiently fine spherical and cubic
grids, this new procedure yields a velocity field virtually identical to the one obtained
using the method described by Dekel et al. (1990), but it makes the density reconstruction
simpler. Dekel et al. tested the potential, velocity and density reconstructions extensively in
the presence of distance errors and sparse sampling using Monte Carlo simulations based on
an N-body simulation. The outcome of their tests is that they have developed a reliable way
of estimating and/or controlling random errors and known systematic errors (Malmquist

bias and sampling gradient bias) to the extect that they affect the reconstructions.

Bertschinger et al. (1990) applied POTENT to a set of nearly 1000 galaxy distance
measurements, 56% of them being D,-0 measurements by 7S, Lucey and Carter (1988) and
Dressler and Faber (1990a), and the rest IRTF distances from Aaronson et al. (19824, 1986,
1989) and Bothun et al. (1984). These are the same samples compared in Figure 2. They
provide maps of the reconstructed velocity potential, the velocity field, and the mass density
field, along with a few global statistics of the velocity field. Their results largely confirm
the Great Attractor picture of Lynden-Bell et al. (1988). The velocity potential within a
distance of 6000 km s=! from the Local Group is found to be dominated by the GA, with the
difference in potential between the GA and the Local Group exceeding 2 x 10° ( kms—1)?,
corresponding to a mean flow amplitude of about 500 kms~! along the line of sight toward
the GA. The peak density contrast in the GA, with an effective Gaussian smoothing radius
of 1400 kms~1, is given by 24/76p/p = 1.2+0.4. As noted above, it is necessary to assume

a value of §2 in order to relate peculiar velocity to density (and vice versa).
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Fig. 3: POTENT reconstruction of the density and velocity fields
of the Local Supercluster.

Figure 3 shows a high-resolution view of the density and velocity fields in the
Supergalactic plane within 3000 kms~! (from Bertschinger et al. 1990). The contour
spacing is 0.2 in §p/p, with negative contours dotted and the zero contour heavy. The
effective Gaussian smoothing radius is 500 kms~! for the velocity and 700 kms~! for
the density. The ridge of the Local Supercluster is evident as the flattened structure at
YV =~ 1500 kms~?!, extending from Centaurus on the left, through the Virgo Southern
Extension, and to the Ursa Major cluster. The two density peaks at X = 2500 kms~!
are probably noise artifacts, arising from too few data. Comparison with the maps of the
galaxy density in the Nearby Galazies Atlas (Tully and Fisher 1987) reveals an encouraging

correlation between the distributions of light and mass.
5. COMPARISON WITH THE IRAS REDSHIFT SURVEY

The peculiar velocity field may be compared with the galaxy density field in order
to test whether mass is distributed like galaxies and, if this appears to be true, to make a
dynamical estimate of 2. As we discussed in Section 1, this requires both a peculiar velocity
survey and a complete galaxy redshift survey. At present, the best all-sky redshift survey
fer this type of comparison is the IRAS redshift survey of Strauss, Davis and Yahil (Strauss
and Davis 1988, 1990; Yahil 1988; Strauss 1989). The survey covers 88% of the sky, with
more than 2500 redshifts of galaxies with 60 micron flux greater than 1.9 Jy. The galaxies
were selected from the IRAS point source catalog using color criteria; they are almost
all late-type spirals, since the IRAS satellite was sensitive to the infrared re-radiation of
starlight absorbed by interstellar dust grains. The primary advantage of an infrared-selected

redshift survey over optical surveys is the much better sky coverage, owing to the negligible
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Galactic extinction at a wavelength of 60 microns. Optical redshift surveys become seriously
incomplete at Galactic latitudes |b| < 20°, while the IRAS survey is essentially complete for
|b] > 5°.

Given measurements of the peculiar velocity field and of the galaxy density field,
there are two ways to make the comparison of mass and light. The first way is to estimate
the gravitational field from the galaxy density field assuming that galaxies trace the mass
and then to predict the peculiar velocity field on the basis of linear or quasi-linear theory.
The second method, requiring POTENT, is to predict the mass density field from measured
peculiar velocities and then to compare with the galaxy density field. Each method has
advantages and disadvantages.

First, let us review the velocity field comparison. In practice, the predicted peculiar
velocities are used to correct the galaxy redshifts to predicted distances, so that the velocity
field comparison can be made in position space instead of redshift space. The radial
components of the predicted peculiar velocity field are then compared directly with the
measured radial peculiar velocity field. This technique has been pursued extensively by
Yahil (1988, 1990a) and Strauss (1989). The comparisons show some qualitative agreement
between mass and light but with lots of scatter and some systematic differences. The most
severe discrepancy, as noted in Section 3, appears in the relative importance of the GA
and the Perseus-Pisces supercluster. The gravity field obtained from the IRAS redshift
survey predicts that the Perseus-Pisces supercluster should have an effect on the local flows
comparable to that of the GA, while the measured peculiar velocity field shows very little
evidence for any effect of Perseus-Pisces.

The velocity field comparison has the advantage that it works directly with the
measured radial peculiar velocities, with minimal massaging of these data. Three-
dimensional peculiar velocities reconstructed from POTENT could be used equally well,
but the only additional advantage would be the possibility of applying a relatively uniform
spatial smoothing. Comparison of the mass density field reconstructed from POTENT
with the IRAS galaxy distribution suffers ffom the fact that the mass density field is
reconstructed relatively less accurately than the velocity field. This is because the mass

density field depends, in linear theory, on the gradient of the peculiar velocity field:
F(splp~ -V -7, (4)

where f(Q) &~ Q%7 (Lightman and Schechter 1990). Differentiating a noisy field makes
the noise worse. As Dekel et al. (1990) show, the mass density field reconstructed from
POTENT has a smaller signal-to-noise ratio than the velocity field, which is still noisier
than the potential (since the latter integrates the noisy velocity field).

While POTENT is stronger with the peculiar velocity field, the peculiar velocity field
predicted from the IRAS redshift survey is less well determined than the galaxy density itself.

The reason is two-fold. First, in order to determine the gravity field one needs, in principle,
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to sum over all the mass (or galaxies) over a very large volume. Second, it is easier to make
a quasi-linear estimate of the density from the velocity than vice versa. The first problem
arises in practice in two ways: first, the IRAS sample is cut at a distance of 8000 km s~ from
the Local Group, so that the gravitational effect of mass (and voids) beyond this distance
is totally absent; and, second, even within this volume the sampling of IRAS galaxies
is relatively sparse, so that Poisson sampling fluctuations (shot noise) are nonnegligible.
Because gravity is long-ranged, errors in the mass distribution at large distance affect
the predicted velocity field throughout the sample. These are difficult problems, whose
assessment requires detailed Monte Carlo simulations applying the IRAS selection effects
and estimation methods to known models. The realization of the seriousness of these
problems has led Yahil (1990a) to avoid making the velocity field comparison in the CMB
frame, since it now appears that the IRAS survey may not trace the galaxy distribution
over a large enough volume to allow the dipole motion of the Local Group to be predicted
to better than 200 km s~! or so. Once the dipole is fixed, higher-order components of the
velocity field should be predicted more accurately, at least within a distance of 4000 kms™!

of the Local Group.

Although the POTENT density reconstruction has smaller signal-to-noise ratio than
the measured velocity field, this disadvantage may be compensated for by the fact that the
galaxy density field, as traced by the IRAS redshift survey, is known rather well. Moreover,
the density field comparison is appealing because it is purely local, so that what you see
is what you get. One can test whether mass traces light point-by-point throughout the
volume surveyed. Moreover, although the errors of the POTENT density reconstruction
are relatively large, they are reasonably well understood from Monte Carlo simulations
(Dekel et al. 1990, Bertschinger et al. 1990).
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A comparison of the IRAS and POTENT density fields within a distance of about
4000 kms™! from the Local Group is presented in Figure 4. With a conservatively large
amount of smoothing, defined by a Gaussian filter of radius 1200 km s~!, the galaxy density
field and the mass density field agree remarkably well under the assumptions that 2 =1
and that the IRAS galaxies are an unbiased tracer of mass. Quantitative tests and more
details are provided by Yahil (1990b). This comparison specifically excludes the region
around Perseus, since there are too few tracers of the peculiar velocity field there to allow
a determination of its divergence. Preliminary Monte Carlo simulations indicate that the
differences between the IRAS and POTENT density fields are consistent with the effects
of distance errors in POTENT and shot noise in IRAS, and that the relative amplitudes
of the two density fields agree to within +25% (90% confidence). The results certainly do
not prove the hypotheses that 2 = 1 and that IRAS galaxies exactly trace mass on large
scales, but the overall agreement encourages one to think that the goals outlined at the
beginning of this article may be realistic. However, it is important to be cautious at this
early stage. The disagreement between the predicted velocity field and the measured one,
especially around the Perseus-Pisces supercluster, are evidence enough that we should not

have confidence that our results are as significant as the formal errors suggest.
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6. OTHER ANALYSIS TOOLS

As was emphasized in Section 1, the large-scale peculiar velocity field is ideal for
computing statistics of the large-scale matter distribution that theorists can use for testing
models. Not only are we free (one hopes!) from the usual assumptions about how mass
traces light, but linear theory is generally adequate on large scales, implying that simple
comparisons need not be complicated by nonlinear evolution. There are several statistics
that have been applied directly to the radial peculiar velocity measurements, and others that
may be applied to the three-dimensional velocity, potential and density fields reconstructed
by POTENT. A brief sampling of recent results is presented here.

The first statistic to be computed from the 7S survey was the “bulk flow” or mean
velocity averaged over a sphere of radius 6000 kms~! (Dressler et al. 1987b). The original
value (599 & 104 kms~! toward Supergalactic latitude and longitude L = 173°, B = —5°)
has decreased with the addition of new data; also, Kaiser (1988) and Regds and Szalay
(1989) showed that the effective window function volume was significantly smaller than a
tophat of radius 6000 kms~!. The most recent estimates of bulk flow, based on volume-
weighted averages of the three-dimensional velocity field, were presented by Bertschinger et
al. (1990). They measured the average velocities in spheres of radii 4000 and 6000 kms~!
centered on the Local Group (with prior, additional smoothing by a Gaussian of radius
1200 kms~?!) to be 388 &+ 67 kms~! toward L = 177°, B = —15° and 327 + 82 kms™!
toward L = 194°, B = 5°, respectively, compared with predicted rms velocities of 287 and
224 kms~—! for the unbiased cold dark matter model. Although the discrepancy with the
cold dark matter model is less severe than was thought originally (e.g., Bertschinger and
Juszkiewicz 1988), it is still serious for the highly biased b = 2.5 model.

Another statistic that measures the coherence and amplitude of the large-scale
motions is the velocity correlation function, £,(r) = (¥(0) - ¥(7)), where the average is
taken over pairs of points separated by a distance r. Estimating this from radial peculiar
velocities is somewhat tricky. Goérski et al. (1989) and Groth et al. (1989) used different
estimators but reached similar conclusions: the peculiar velocity field traced by ellipticals
with Dp-o distances measurements has a large amplitude and is coherent over scales of
at least 20 =1 Mpc. They also conclude that the velocity field of spirals (from IRTF
measurements) has smaller amplitude, but one should note that the sample volumes are
not compatible, since the spiral sample densely samples the Local Supercluster within a
distance of 2500 kms~! and is very sparse beyond, while the elliptical sample is more
uniform out to a distance of 6000 kms~!.

Ostriker and Suto (1989) introduced a new statistic called the cosmic Mach number
M = V/o, the ratio of bulk-flow velocity V in a volume to the velocity dispersion ¢ about
that bulk flow within the same volume. This statistic has the very nice feature that it
is independent, in the linear regime, of the amplitude of the primordial power spectrum,

depending only on its shape. Thus, it should allow a nice test of the primordial Zel’dovich
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spectrum. Ostriker and Suto estimate the Mach number from the data on large-scale
motions and they conclude that it is so large as to rule out the Zel’dovich spectrum with
Q =1 and cold or hot dark matter, independently of the amplitude or the linear bias factor
b. However, they caution that their observational estimates must be considered tentative.
Since they did not estimate V and o in the same volume, and they did not perform a
detailed error analysis, their estimates should not be used to reject theories at this stage.

Juszkiewicz et al. (1990) have introduced another statistic that is sensitive to power
on large scales, the potential structure function g(r) = ((®(7) — ®(0))?). This statistic has
the advantage that it is fairly insensitive to random peculiar velocity errors. Juszkiewicz et
al. test various scenarios against the measurements derived from POTENT. They conclude,
based on Monte Carlo simulations of both the observations and the theory, that the b =
2.5 cold dark matter model is rejected at the 95% confidence level but that the unbiased
amplitude cannot be excluded, based on this test.

The velocity potential may also be used to make a prediction of CMB anisotropy
under the assumption that the peculiar velocities are generated by gravity. Bertschinger,
Goérski and Dekel (1990) show how one may convert the velocity potential to the
gravitational potential and then extrapolate this back in time to obtain the gravitational
potential fluctuations present when hydrogen recombined and the universe became
transparent to the CMB. Potential fluctuations present at this time generate CMB
anisotropy via the Sachs-Wolfe effect (Sachs and Wolfe 1967). Bertschinger et al. “predict”
that a very distant observer, who is viewing the progenitor of the GA as it was at the time
of recombination, would see a maximum Sachs-Wolfe anisotropy of AT /T = 2 x 10~° on an
angular scale of 1 degree, if Q = 1. If Q < 1, the anisotropy has larger amplitude and is seen
on a smaller angular scale. This prediction neglects Doppler and adiabatic contributions
to the anisotropy, which are dominant for angular scales much less than a degree and are
expected to be similar in magnitude to the Sachs-Wolfe contribution on the 1 degree scale.
It will be difficult to push observational anisotropy limits below 1 x 107> on the degree
scale, but unless the nearby universe is significantly different from the universe at the
distance of our present horizon, at least there is now the firm prediction from gravitational
instability theory, independently of any particular theoretical models like cold dark matter,

that primordial fluctuations should be detected at this level.

7. CONCLUSIONS

It is clear that measurements and analysis of peculiar velocities have developed into
a rich industry. Most workers in the field now accept the reality of at least some of the
measured large-scale peculiar motions. This author has high hopes that future work will
allow us eventually to reach the goals set forth in Section 1. This is a major development
in extragalactic astronomy, which certainly could not have been foreseen when Rubin et al.

(1976) first announced evidence for large-scale motions nor when Burstein et al. (1986) first
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presented their results.

While there 'is little doubt of the promise afforded by peculiar velocity studies, we
must be careful about concluding too much from the present state of the measurements
and their analysis. All peculiar velocity measurements have large random errors and all
suffer from systematic errors such as Malmquist bias and zero-point errors, and probably
from environmental correlations even though there are now several lines of evidence that
environmental effects cannot entirely explain away peculiar velocities. It is very important
that observers and theorists alike keep these errors in mind and that they try to perform their
observations and analysis in a way that minimizes errors and allows them to be estimated

and, even more importantly, allows these error estimates to be checked independently.
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TIDAL INTERACTIONS AND GALAXY
SEGREGATION IN CLUSTERS
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ABSTRACT

Morphology and luminosity segregations of galaxies in clusters would be
crucial observational clues for theories of galaxy formation. If the first one is a
widely accepted fact, there is not much evidence for the second. To account for
morphological segregation, I review (and bring new) arguments in favor of tidal
interactions and mergers after the virialisation of the cluster, in opposition to
the more frequently invoked explanation involving the intergalactic hot
medium. Galaxy interactions are efficient enough to blur any segregation that
could exist before cluster formation.
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In recent years, luminosity segregation of galaxies has been actively
searched for to test and justify theoretical ideas about biased galaxy formation.
However, only morphological segregation is observed non- ambiguously.

1- Morphological segregation:

Morphological segregation is a widely accepted observational fact.
Dressler (1980) has clearly demonstrated that the fraction of all morphological
types depended smoothly on local density. He has studied 55 rich clusters of
galaxy, and derived the famous curves of fig.la. The fact that they are plotted in
function of the local surface density of galaxies and not of the distance to the
cluster-center, greatly improves the correlation: populations are clearly a
function of local rather than global conditions.

These results were confirmed and extended by Bhavsar (1981) to smaller
groups of galaxies, and by Postman, Geller (1984) to 6 orders of magnitude in
space density. Giovanelli et al (1986) again supported them by detailed
observations of the Pisces-Perseus clusters.

Recently, Binggeli et al (1990) found the same morphological segregation
among dwarfs: gas-rich dwarfs avoid the high-density regions, while dwarf
elliptical are more clustered (fig 1b).

In "bottom-up” scenarios, this morphological segregation is possible only
by environment dependent mechanisms, during or after virialisation of clusters.

2-Luminosity (or mass?) segregation:

There are several reasons to expect luminosity segregation:

1) Two-body relaxation between galaxies in clusters would lead to
equipartition: by dynamical friction, the more massive galaxies should fall
towards the center.

2) According to biased galaxy formation, diffuse dwarfs should be seen in
the voids (Dekel & Silk 1986). Indeed, they originate from small (lo) density
fluctuations, and their gravitational well is not enough to retain gas after the
first starburst. While the brighter galaxies have condensed from higher density
perturbations (3c), and should be expected more frequently in clusters and
superclusters.

Although expected by several theories, there is no real evidence for
luminosity segregation. The dwarfs distribution has recently been the object of
much controversy. Davis and Djorgovski (1985) have claimed that low surface
brightness galaxies in the UGC (Uppsala General Catalogue) are less clustered
than brighter galaxies. But this result in fact was due to the different depths
probed by their dwarf and normal galaxies sample. White et al (1988) arrived to
the: same conclusions with the NGC galaxies catalogued from an HI survey (Tully,
1988). But, as claimed by Eder et al (1989), this result is flawn by the
incompleteness of the sample. Most of the redshifts of the dwarf galaxies come
from 2lcm data, and dwarfs in clusters are gas deficient.

More numerous are the authors who, like Eder et al (1989), find the same
clustering properties for dwarfs and giant galaxies (Bothun et al, 1986; Thuan et
al, 1987). Binggeli et al (1990) find also some evidence for the opposite effect: dEs
(dwarf ellipticals) even more clustered than bright galaxies. They also remark
that dEs are always companions of giant galaxies. The formation of dEs could be
intimately related to tides.
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and high density). From Binggeli et al
(1990).
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Fig 3: Schematic representation of the
dircctions and signs of the tidal
tangential forces applied to the gas in
the induced spiral arms. a) outside
corotation, the gas will gain angular
momentum and will be stripped
outwaids; b) inside corotation, the gas
will flow inwards.
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3-Physical Mechanisms

What are the agents responsible for this firmly-stated morphological
segregation? Let us stress again that the clear correlation of galaxy types with
density is obtained with local density only.

The first and most popular explanation invokes the role of the
intergalactic medium (IGM). Galaxies are moving at high speed in the hot
intra-cluster gas, detected by X-ray observations. The ram pressure would then be
sufficient to deprive the spiral galaxies from their gas, stopping all new star
formation. The spiral galaxies could thus be transformed into lenticulars (Gunn
and Gott 1972). Or the interstellar cold medium could evaporate into the hot
intra-cluster medium (Cowie and Songaila 1977). These hypotheses however
encounter several objections, as summarised by Dressler (1980):

-there is a smooth relation between density and morphological type:
lenticulars are found regularly in clusters, even outside the regions filled with
IGM. There is no sudden threshold with the minimum IGM density.

-the same morphological segregation holds in groups and un-relaxed
clusters, where there is no (or much less) IGM.

-bulges are systematically larger in SO than in spirals (the bulge-to-disk
luminosity ratio should be unchanged after gas ablation by the IGM).

To be compatible with these observations, we must consider a mechanism
that could act more gradually, and also both on the stellar and gaseous
components. These characteristics are typical of tidal interactions and
mergers.

Galaxy-galaxy interactions are commonly thought to be inefficient in
clusters, due to the high relative velocity of the galaxies. However, the increased
density multiplies the number of collisions, such that smaller impact parameters
arc more frequent than in the field (Combes et al 1988). Already Icke (1985)
suggested that repeated tidal stripping of spirals could transform them into SO.
Also spheroidal systems could be the result of accumulated mergers: ellipticals as
well as SO bulges.

Let us summary the effects of an interaction:

-in only one non-coplanar passage, we can notice already a high
thickening of the disk (Gerin et al 1990), as is shown in fig 2.

-tides are equivalent to a cos(20) perturbation in the plane of the
victim-galaxy (fig.3). This bisymmetric perturbation creates a 2-arms spiral
structure in the gaseous component; then torques are exerted on the
non-axisymmetric structure, the sign of which depends on the relative position
of the spiral with respect to the perturbation. This phenomenon is very similar to
what happens with a bar perturbation (Combes, 1988). Inside corotation, the gas
is driven towards the center.

-outside corotation the gas is stripped outwards and lost in the background
(Combes et al 1990).

To demonstrate the efficiency of these tides even for hyperbolic
encounter, I have run an interaction simulation where the companion is
launched in an unbound orbit, whose hyperbolic equivalent would be of
excentricity of e=6. The pericenter was about 15 kpc, with a maximum velocity of
700 km/s.

The target-galaxy is represented by both self-gravitating stellar and
gaseous components. Their self-gravity is computed by a 2D N-body code, based on
the Fast Fourier Transforms method. The FFT are calculated on a 256x256 grid, but
the: useful space is restricted to 128x128 cells, to avoid images. The cell has size of
0.25 kpc. There are 4 104 particles representing the stellar component, and
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a)

b)

Fig 4: a) 2 108 yrs and b) 7 109 yrs plots for an isolated galaxy: left=stars, right= gas
c) and d) same for a tidally-perturbed galaxy (companion in an hyperbolic orbit).
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between 103 and 2 103 gaseous clouds.

The gas clouds ensemble is simulated according to the code developped by
Combes & Gerin (1985). The clouds are spread about a mass spectrum, from 10% to
107 M,; the latter represents the Giant Molecular Clouds (GMC). Small clouds grow
through collisions. The life-time of GMC against dispersion by star-formation is 4
107 yrs. Kinetic energy is re-injected in the gas component when a GMC is
dispersed. The cell (spatial resolution) of the collision grid is 130pc (240x240). The
mass fraction in the gas is Mgag/Mg = 3.6%.

Fig. 4 compares the results obtained in the control run (isolated galaxy)
with the interaction simulation: the spiral galaxy in the second case is deprived
of its gaseous disk, but also part of its stellar disk.

As a side effect, tidal interactions favorise bar instability. We should
therefore expect more barred systems in clusters: there is indeed some
observational evidence for that (Thompson 1981). Also, if spiral galaxies in
clusters are stripped of their HI gas, the molecular gas usually confined inside
corotation should not be depleted, but only more centrally- concentrated. In their
survey of the Virgo cluster in molecules, Kenney and Young (1988) indeed found
normal Hj global content.

Frequency of interactions: Order-of-magnitude estimates based on
geometric cross sections and number density of galaxies show that tidal
interactions are sufficient to transform spirals to lenticulars, even with highly
hyperbolic encounters. However a more precise estimation requests the
knowledge of galaxy orbits since the cluster virialisation, therefore needs a
modelisation of the cluster formation.

Icke (1985) has succeeded in reproducing the observed correlations
tetween morphological types and density (fig. 5). The smooth dependence of the
correlations (relative fractions vary as density to the 1/6 power) can be retrieved
by dimensional arguments:

The number of events able to transform S to SO are proportional to:

dN a 2nbdb n o (v/o) &t

where b is the impact parameter (independent of the density n), ¢ the
velocity dispersion, v the galaxian rotational velocity, and &t the time to cross a
specific volume V (= 1/n).

The factor (v/o) symbolizes the collision efficiency. &t can be expressed
by 1/ (o nl/3) while n ~ o2 /41:GMRC2 or ¢ =nl/2 (where M is a typical galaxy
mass and R; is characteristic of the cluster size of density n).

Therefore:  dN = n/ (nl/2 n 1/3) = nl/

4-Some Problems

-Dwarfs

Observers have for long noticed the close similarity of structural
parameters between all types of dwarfs: dI, dE, BCD. This has led Davis and Phillips
(1988) to suggest transformation of dIrr to dEs, via a BCD (Blue Compact Dwarfs)
starburst phase. These transformations could be favored by tidal interactions in
clusters, and explain the morphological segregation of dwarfs.

This hypothesis is opposite to the Silk et al (1987) scenario:
transformation of dE to dIrr by accretion in clusters of previously ejected gas.
This predicts dIrr clustered with giants, but not dE, contrary to observations.

In the frame of the tidal interactions scenario, there remain some
problems to be solved. Why the proportion of dwarfs should be higher at high
density, as suggested by Binggeli et al (1990)?

We can only propose two arguments:
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Fig 5. The fraction of all morphological types (S, E, and SO) in function of the
projected local density, retrieved from order-of-magnitude estimates by Icke (1985).
Curves reprcsent the best model fitted to the observed points from Dressler (1980).
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-the merging of spirals giving birth to an elliptical reduces the total
number of giant galaxies, automatically raising the percentage of dwarfs.

-mergers could produce dwarfs systems (such as famous examples like the
"Antennae").

-Equipartition

Why equipartition expected by galaxy-galaxy interactions is not observed
in clusters?

-The clue might be to consider the two concurrent phenomena:
equipartition and tidal stripping, which occur on the same time-scales (Merritt
1983-1985). The second stops the first and results in the mass depletion of the
core: background particles are expulsed away (to transport the energy). This can
lead to mass anti-segregation. But Merritt did not consider the effects of mergers.

-Mergers are a source of bias: larger galaxies are expected towards the
densest parts of the cluster (Carlberg 1988, White et al 1987). However,

galaxies of large sizes are excluded from the center (except the very
center, cD galaxies) a limitation coming from the cluster tidal field. This may
explain the absence of luminosity segregation.
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SELF-SIMILARITY
IN
GRAVITATIONNAL COLLAPSE

FABIEN MOUTARDE
Département d’Astrophysique Extragalactique et de Cosmologie,
Observatoire de Paris-Meudon, Meudon, France.

ABSTRACT

As a first step to understand general properties of gravitationnal instability of collisionless matter,
we investigate the formation of halos in an ©Q = 1 universe. We focus on the non-linear formation
of structures at the intersection of caustics. Using numerical simulations we show that a power-law
density profile progressively appears, finally reaching the form p o »~1® at the collapse time (and
p o« 711 for 2D collapse). This scale invariance is exhibited before shell-crossing, indicating that
it results from the early infall and not from the oscillations of shells through the center. We also
derive a new analytical expression giving a better approximation than Zeldovich’s, and confirming
the simulation results. After the collapse the system soon reaches a self-similar regime, therefore
conserving the same power-law profile. The conjectures and predictions of Fillmore and Goldreich?)
on such a regime are tested and mostly verified, except that in our case the slope is simply the one
established before collapse. This scale invariance and self-similarity seem to be a generic property
of collisionless gravitationnal collapse in an @ = 1 universe, and might be a clue towards the
explanation of global scale invariance observed in the distribution of galaxies.
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I Introduction

It is now well established that the major part - more than 90% - of the mass in the Universe con-
sists in dark matter. Moreover, theoretical predictions (inflationnary scenarii) and observationnal
estimations (e.g. Bertschinger, this volume) of the density parameter §, when compared to the
primordial nucleosynthesis constraints (e.g. Olive, this volume), leads to the assumption that most
of this dark matter is non-baryonic. It is also a reasonable hypothesis that the central process re-
sponsible for the formation of the large scale structures of the Universe is gravitationnal instability
in an expanding background. In this “standard” picture, the non-baryonic matter is a collisionless
and dissipationless fluid dominating the gravitationnal field in which ordinary matter falls, even-
tually forming stars and galaxies. In order to test this scenario one has first to understand the
gravitationnal dynamics of such a collisionless fluid. The linear stage can be dealt with analytically,
but the non-linear phase can be studied only with approximations or numerical simulations. Most
of the numerical works aimed at reproducing a whole part of universe in a given scenario (Hot Dark
Matter, Cold Dark Matter) and then compare it to the real Universe (e.g. White et al.?) ). This
approach allows to discriminate between different types of initial fluctuations on the basis of global
properties, but gives little insight on the nonlinear gravitationnal collapse itself. An alternative
approach consists in studying the collapse around simple isolated overdensities in order to infer
some general properties of the process. This was done for instance by Melott®) for 1D perturba-
tions (pancakes). We report here on a similar work for the formation of filaments and clusters.
In order to separate the various effects at play we first focus on the idealized case where only one
scale is present, so that the objects we are studying are forming at the intersection of caustics.
Our work is based on high resolution Particle-In-Cell simulations of the non-linear gravitationnal
collapse of collisionless matter in an Q@ = 1 expanding universe. In this new approach of the halo
formation problem we were particularly interested in checking the time and condition of appearance
of the self-similar solutions found by Fillmore and Goldreich?) (hereafter FG) and Bertschinger?)
(hereafter B85).

ITI Precollapse scale invariance
II.1  Numerical simulations

For the numerical simulations we use the Particle-In-Cell code initially developped by Bouchet et
al.%), optimized and used in Alimi et al.?), and recently transformed into a tridimensionnal code.
The initial conditions are obtained as follows: we first place the particles on a regular lattice,
generating a purely uniform background, and then imprint the desired perturbation by displacing
the particles according to the “Zeldovich algorithm”. We use 128% = 2097152 particles in a 128°
mesh (or 10242 particles in a 5122 grid for simulations of bidimensionnal collapse). The perturbation
we use consists in small amplitude (5%) sine displacement along each axis, producing a smooth and
compensated cosine density enhancement at the center of the box. The initial velocities are those
of the growing mode. Fore more details on the numerical resolution and initialization, see Alimi et
al.®) and Moutarde et al.”).

Duringthe non-linear phase, but before the collapse (i.e. before any shellhasreached the center)



Figure 1: density contrast as a function
of comoving radius d (in units of the
box length L) for different times during
3D collapse (a ~ 0.7a3D, lower curve,
a ~ 0.9¢3P, middle curve, a ~ a3P,
upper curve). The solid line is the
p oc d~18 fit for the profile at collapse.
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a power law density profile progressively appears (see figure 1). At early times the power law part
is limited to a small range of scales and its slope is small. As the system evolves the scale invariance
propagates towards smaller and smaller scales and the slope increases. The same evolution is seen
at the intersection of two caustics. At the collapse time (occuring for an expansion factor a3l ~ 12
for three caustics' and a?P ~ 15 for two)the density profile is purely scale invariant on more than
two decades of scales. It is well fitted by p oc =18 for the 3D perturbation and p o« 71 for'the 2D
case. It is capital to note that the scale invariance is obtained before shell-crossing, so that it does
not result from some asymptotic behavior of the successive shells oscillating through the center (as
in the semi-analytical approaches of FG or Bertschinger?) ). On the contrary it is due to the infall

of matter during the early formation of the condensation.

II.2 Analytical approximations

As noted in the precedent section the scale-invariance occurs before shell-crossing, so we tried to
confirm analytically the simulations results. For non purely spherical collapse, the only analytic
description of the non-linear phase is the “Zeldovich approximation” (Zeldovichs) ). It consists
in extrapolating the linear theory in the form of trajectories as a function time and Lagrangian
coordinate:

7(t, ) = a(t)q + b(1)p(9) (1)
where ¢'is the Lagrangian coordinate, a(t) is the expansion factor, p(g) is the initial perturbation
from uniformity (at a(to) = 1) and b(t) is the universal time evolution of perturbations in the linear
theory (in an = 1 cosmology, b(t) = [a(t)]? for the growing mode). The condition for equation

(1) to be the exact decription of the motion is that the two following equations are satisfied:

s [0%F
V.. (ﬁ) =A% = -4xGp (2)

lthe collapse occurs slightly later than i7" = (371’/2)2/3 (5/36,)7! ~ 10 expected for a purely spherical collapse,

because with our initial overdensity, the collapse is spherical only at the first order in the center.
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2

%, x (";T) -5 (3

equation (3) being the condition for the accelerations to derive from a potential. When the per-
turbation is unidimensionnal, (2) and (3) are fullfilled and equation (1) is the exact solution until
trajectories cross each other. The corresponding density profile progressively grows to the p o r~2/3
power-law at collapse near the plane of the pancake (Zeldovichs)) For 2D or 3D perturbations,
equation (1) is only approximate. However, power law density profiles with same slopes as in our
numerical simulations are obtained, but not at the right time because the collapse occurs only at
a(t) = 20 for the “Zeldovich approximation” instead of a(t) = a®P ~ 12. This motivated us to
compute higher order analytical approximations. We used a perturbative method, adding to the
right hand side of (1) terms determined by the requirement that (2) and (3) be satisfied at a higher
order (with respect to the magnitude of the initial perturbation). We applied this method in our
particular case of initial perturbations, and deduced a third order approximation (see Moutarde et

al?) for the formula and more details on the calculation).

Figure 2: comparison of the density
profiles at the same expansion factor
a ~ a2P for the Zeldovich approxi-
mation (open triangles), our third or-
der approximation (open squares) and
for the numerical simulation (filled cir-
cles).
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In order to compare the various approximations with the simulations we took exactly the same
set of particles as in the simulations, moved them according to the analytical formulae, and com-
puted the radial density profile as for the simulation. In figure 2, we compare the simulation, the
“Zeldovich approximation” (which is the first order in our perturbative method), and our third
order expression at the same expansion factor a = a?? ~ 12. One can see that our approximation
perfectly matches the simulation up to density contrast § < 50 and thus exhibits on this domain
the same scale-invariant profile. On the other hand the first order expression is much less evolved
at this time, diverging from the simulation for § 2 5. It should be stressed that the higher order
approximations do not consist in a simple correction of the collapse time: we checked that the
different approximations are not the same before the collapse, even when compared at the same
fraction a/acon of their respective collapse times. Furthermore the exactitude of the collapse time
should be crucial for more complicated initial perturbations (e.g. a CDM spectrum realization)

where different structures of different scales and locations are expected to collapse at different
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times.
Nevertheless, the important point for the present study is that the precollapse power-law density
profile found with the numerical simulation is confirmed analytically by kinematic type approxi-

mations.

IIT Self-similar regime

As we have mentioned above, the collapse of a pancake does yield a power-law density profile at
the collapse time, but afterwards it is replaced by a succession of high density spikes (Melotta) ).
On the contrary, the precollapse scale invariance at the intersection of two or three caustics is most
interesting since the subsequent evolution quickly becomes self-similar. As shown on figure 3, in
the case of 3D collapse,the density profile is then a power-law in space and time peom o d~'808
(pcom being the comoving density and d the comﬁving radius). The self-similarity can also be seen
on the peculiar velocities: the r.m.s. value grows as t®!3, and the peculiar velocity distribution is
invariant when scaled to this r.m.s. value: the histogram N(v/ < v? >!/2) does not depend on
time during the self-similar regime. For the filament formation (2D collapse), the density scales as
Peom o€ d=11£037 0.2

,and < 'U;Z;ec >12x t792 (see Alimi et al.®) for more details).

Figure 3: comoving density profiles
at different times after the collapse
(a ~ a2P, lower curve, a ~ 1.7a30,
middle curve, a =~ 3.3afD, upper
curve). A p o« d~!® dashed line is given
for comparison.
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Gunn® had based his analytic study of secondary infall on the crude hypothesis that after
a shell of matter separated from the general expansion (an instant named its “turnaround”), it
would oscillate through the center with a maximum radius (denominated “apapsis”) fixed to a
constant fraction of its turnaround radius. In their more general search for self-similar solutions
of gravitationnal collapse, FG assumed that the apapsis of all shells have the same power-law time
dependance. Even though the collapses we simulate are not purely cylindrical or spherical (cf.
typical trajectory, figure 4), each particle oscillates around the center in a manner similar to the
radial infall case (cf. radius evolution, figure 5) so that we can measure successive apapsis and
study their time dependance. We show in figure 6 that it is indeed very well fitted by a power-law,
as postulated by FG. We also checked that the slope is nearly the same for any test particle. In the
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3D case, it has to be noted that the apapsis is nearly constant in physical coordinates, as obtained

semi-analytically by B85 for “hatbox” initial overdensity.
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Figure 4: typical trajectory of a particle
shown in comoving coordinates (2D collapse). % 5 —
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Figure 5: comoving radius d from the center Figure 6: evolution of the apapsis (i.e. the
as a function of the expansion factor along successive maximal radii dmes) in comov-
the trajectory of figure 4. ing coordinates. The solid line shows the

dmez ¢ a~ 0% fit.

Another conjecture by FG was the existence of an adiabatic invariant J = fj* ‘;: dr where the
integral is taken between two successive extrema of r. Adapting the above expression to our case
of non radial trajectories we computed = [T™ j—f‘df for various test particles,and found that it
is roughly constant along any given trajectory. Finally, using their various hypothesis FG proved

that the parameters of apapsis variation (rme; o t?) and mass profile (M o r7t~*) are related by:
s=q(y-n+4) (4)

where n is the dimensionnality (n=2 for cylindical collapse, n=3 for spherical collapse). In our
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simulations we measure independantly s, ¥ and q. At the intersection of two caustics, ¢ ~ 0.3,
v ~ 0.9, which should imply s = 0.87 in good agreement with the measured value s ~ 0.9. For 3D

case, 8 ~ ¢ ~ 0 so that (4) is also well verified.

IV Discussion

Our work shows that self-similar solutions found and studied by FG and B85 do occur during
halo formation. Moreover, we find that this self-similar regime is established very quickly after the
collapse, due to the preparation of the system which has a scale invariant density profile just at
the collapse. This scale invariance is caused by the early infall and can be reproduced analytically
with our new improved Zeldovich-type approximation. The self-similar regime is found to have all
the properties predicted or conjectured in the semi-analytic works of FG and B85. In particular
there is an adiabatic invariant along the particles trajectories. However, the slope of the density
profile is not reached asymptotically, but results from the precollapse phase, keeping some memory
of initial conditions.

In order to test if our result is particular to the degenerate case of spherical collapse, we ran
several simulations with unequal amplitudes sine perturbations (corresponding to ellipsoidal initial
perturbations). The power law is less clean and extended than in the symmetric case, however
the qualitative behavior is the same, and the profile established when collapse just occurs in the
third direction is well fitted by p o« »~*® on a large range of scales. We also tested the influence of
small scale inhomogeneities or initial velocity dispersion (non zero temperature). In these cases a
constant density core is formed in the center, but the rest of the power-law halo remains unaffected
(see Alimi et al.®) ). This suggests that the scale invariance and self-similarity properties we have
pointed out are general, at least for structures formed at the intersection of caustics. Moreover,
we are presently trying different initial overdensities (hatbox, ...) and it seems that the qualitative
behavior is also the same: progressive formation of a power-law before collapse, and self-similarity
afterwards. But the slope and its validity domain appear to vary with the shape of the initial
perturbation. A first consequence is that characteristics of present-day galaxy or cluster halos
might give some information on their genitor perturbation. On the other hand, the common
qualitative behavior for very different initial conditions suggests that we have pointed out a generic
property of collisionless gravitationnal collapse in an 2 = 1 universe.

It is interesting to note that Alimi, Blanchard and Schaeffer'®) have recently shown by a counts-
in-cell analysis that the observed distribution of galaxies exhibits a global scale invariance. The
same property was also found by Bouchet!?) in Cold Dark Matter simulations. These two works deal
with global statistics on regions containing many collapsed structures, while we study properties of
isolated halos. However, if local collapses universally obey scale invariance and self-similarity (as

suggested by our results), this might be at the origin of the aforementionned global scale invariance.

This ongoing work is done with J.-M. Alimi (D.A.E.C., Meudon), F.R. Bouchet (I.A.P., Paris),
and R. Pellat (Centre de Physique théorique de 'Ecole Polytechnique, Palaiseau). The computa-
tionnal means we used (Cray2) were made available thanks to the scientific counsel of the ”Centre
de Calcul Vectoriel pour la Recherche” (Palaiseau).
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THE ORIENTATION OF GALAXIES IN THE SEPARATE GALAXY
STRUCTURES IN THE LOCAL SUPERCLUSTER
Wlodzimierz Godlowski
Jagiellonian University Observatory

ul.Orla 171 30-244 Krakdw Poland

Summary:

The method of investigating the orientation of galaxy
rotation axes in the Local Supercluster introduced by Jaaniste
and Saar (19773, which takes into account both galaxy position
angle and inclination, has been applied to a sample of 2227
galaxies. I analyze the orientation of galaxies in the whole
Local Supercluster and in the special groups of galaxies. I
found that the distribution of galaxy planes is anisotropic.
Galaxy planes rather tend to be perpendicular to the Local
Supercluster plane. The projection of galaxy rotation axes on
the Local Supercluster plane rather tend to point toward the
Virgo Cluster center. The distributions the spirals galaxies
are different then non-spirals. The results are compared also
with results previous workers.
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1.Introduction

The investigation of the distribution of galaxy
orientation in the Local Supercluster has a long history. Most
previous papers showed that distribution is not uniform. Nearly
all from this results could be interpreted as parallelism of
galaxy planes to the supergalactic plane. Jaaniste and Saar
1977;JS> found that galaxy rotation axes tend to be
distributed parallel to the LSC plane. They analyzed not only
the distribution of galaxy position angles p, but also took
into account their inclination i to the observer’s line-of
sight. When we studies the distribution of galaxy position
angles we may take into account only galaxies for which this
parameter has been determined. It mean that all galaxies seen
“face-on'" or nearly "face-on'" should be excluded. However, even
fcr such galaxies important information can be extracted.

The JS is full of inconsistencies as was showed by the
preliminary analysis of it. Some of them have already been
mentioned in our previous work. Moreover, JS used only angle
éD, giving the orientation of galaxy planes with respect to the
LSC plane. We used also the second important parameter, angle
n, which is the angle between the projection of rotation axis
on the supergalactic plane and the direction toward Virgo
Cluster center. We based on the projection of galaxies on the
celestial sphere. All analogous analysis of galaxy orientation
gives a 4-solution ambiguity. Consideration of rotation axes
only, instead of angular momenta, decreases this to two
solutions without loosing information about the distribution of
galaxy planes with respect to the LSC plane. Using JS approach
we may include to our analyze galaxies seen '"face-on'. It is
important because is no a priori reason for discounting those
galaxies from the analysis.
2.Observational data.

First of all I make a cross correlation between "A
Catalogue of Galaxy Red shifts"™ (Rood 1980) and catalogues
"Upsala General Catalogue of Galaxies'" (Nilson 1973, UGC) and
“Upsala Survey of ESO" (Lauberts 1982, ESO). Each galaxies with
radial velocities C(correct for solar motiond below 2600 km/s

constitute that sample search in literature for radial
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velocities of galaxies. For each galaxy I take from UGC or ESO
position on the celestial sphere in equatorial coordinates: a,
&, its magnitude, the diameters a and b of the major and minor
axes and the position angle O The inclination angle, i.e. the
angle between the normal to the galaxy plane and the observer’s
line-of-sight was computed from the formula:
coszi=Cq2—qZ)/C1—qz), which is valid for oblate spheroids
CHolmberg 19463. We also take into account galaxies denoted in
catalogs as face-on. For these galaxies i=0. The values of
observed axial ratio g=bs/a is based on UGC or ESO data, while
the true axial ratios q, are taken from H?V CHeidman et al.
1971). For peculiar galaxies it was assumed that q°=0.2. The
sample was divided into three groups according to morphological
type; groups containing spirals and lenticular galaxies are
denoted as ‘spirals', the remaining ones are denoted as
“non-spirals'. Both groups together are denoted as "all".
Investigating the distribution of galaxy in the LSC it is
convenient to express the galaxy position and theirs position
angle in the supergalactic coordinate system, instead of the
equatorial system, as in UGC. The supergalactic coordinate
system is defined (Flin, Godlowski 1986):
a: the coordinates of the supergalactic pole in the equatorial
system are: a=285°5, &=+16°
b: the basic great circle "meridian" of the supergalactic system
passes through the Virgo Cluster center with coordinates
(Sandage and Tammann 1976): a=186?25, 6=+13.1. In this system
we obtain /where p=p-n/2/ :
sin6D=—cosi*sinBtsini*cosp*cosB
sinn=(cosén)_’*C—cosi*cosB*sinL+sini*(:cosp*sinB*sinLisinp*
*cosLD
3. Angular distribution isotropy tests.

We should check if the distributions of the angles 60 and
Y are isotropic. I applied three different statistical tests,
following Hawley and Peebles (1975) and Kindez (1986)>. These
are: x? test, the Fourier test and the auto correlation test
In all tests the range of the angle 8 (where 6=6D+H/2 or nd was
divided into n bins (n=36).

Let N denotes the total number galaxies in the sample, NK
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the number of galaxies in k—-th bin N0 the mean number of
galaxies per bin and Nok expected number of galaxies in k-th
bin. In the xz—test the measure of deviation of the observed

distribution from the theoretical, isotropic distribution is
n

given by the statistics: xz=§(NK—N*pK)z/N*pK Where pKis the
probability that a chosen galaxy falls into k-th bin.

The Fourier test checks how the departure from isotropy
slowly varies with the angle 6. The model is:

NCOB D =N 3#(1+A cos26 +A_ sin26 +A cos46 +A_ sind6 D
K (] 11 K 21 K 12 K 22 K
™

™ n
A =SCN -N_ dxcos2J6 /SN xcos’236 where SN xcos’2J6 alsN
1J 1 K OK 4 10K K 10K K 2 (]

and A2J=}:_:C NK—NOK) *si nZJGK/%NOKisi nZZJGK.

The probability that the amplitude A& =C Af;A;) 2 s
greater than a certain chosen values given by formula
PC >AJ) =expC —S*NoAj) . The standard deviation of the amplitude is
cCAD =(2/n*No) 1/2. We may found the direction of departure from
isotropy or from A“ or from coefficient F considering the
model NC OK) =N0C 1 +F*coseek) s Cwhere the F-coefficient is
obtained from the fitd. 1If F<O, A“< O then an excess of
galaxies with rotvation axes parallel to the supergalactic plane
is observed, whereas for F>O0, A“> O the rotation axes tend to

ber perpendicular to the plane. The standard deviation of the
n
F-coefficient is: ¢ _=C¥CF, -F>°/nCn-1>>""%

The auto correlation test measures the correlations

between the number of galaxies in adjoining angle bins. The

™ 172
correlation function is:C=3CN -N D>CN -N J/CN N p]
1 K OK K+1 = OK+1 OK OK+1
In cease isotropic distribution we expect C=0. The
standard deviation is: cccd=n""%. The W-coefficient is:

W::=CN —N_L)/N where N and N‘L denote the number of galaxies with

] I
rotation axes parallel and perpendicular to the supergalactic

¥ = -
plane. WB—WB—WB where Wn—ifsn—l. The wA_CZIINi/pih—LJ_Ni/pin)/N'
where GCWB) =C4p“C1—p"D/N) and GCWA)M. SGGCWB).

4. The orientation of rotation axis of galaxies in the Local
Supercluster.
4.1 The distribution of the angle éD.

Results are presented in the Table 1. The anisotropy is
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observed for all and non-spirals galaxies. For ‘“spirals"™
galaxies situation is not so clear. The shapes of all
distributions are of the same character. The signs of the

F-coefficient and A“ are negative (W are positived. It mean
that galaxy rotation axes are parallel to the supergalactic
plane.

Tab 2 constitute a convincing evidence that distribution
of galaxy planes for *"face-on" galaxies and for "edge-on"
galaxies are not the same. From the structure of the LSC and
the observed positions of galaxies it follows that large
majority of galaxies is located at low supergalactic latitude.
When we take into account only galaxies seen "edge-on", with
'B|<300 we found excess galaxies with rotation axes
perpendicular to the LSC plane. The effect is growing when q is
falling off. In this sample we excluded some galaxies — mostly
with low 6D. So theoretical isotropic distribution we obtain
from computer simulations. Our result supports Jaaniste and
Saar’s c¢laim concerning the important role of ‘*“face-on"
galaxies in studies of distribution of galaxy rotation axes.
Tab.1 Distribution angles & 7 for the whole LSC
2

N |PCx IPCAD C A GCAD | W w GCW F JcCFD
11 A B B

<]
ALL |2227 |106. |0.00} 39.4|-.09}]0.02]10.09}0.06|0.01 |-.23]0. 07
SP|1565| 46. |0. 43 6.7]-.03}]0.03]0.03]|0.0210.02]1—-.09]0.05
NSP| 662|115. |0. 00} 60.4]|-.23]0.04]0.21 j0.16}0.03|-.56]0.18
n

ALL|2227| 75. |0.00}] 37.2]10.12}0.02]-.07|-.07}0. 01 {0.00}0.08
SP|1565| 42. |0.01 5.510.08}10.03|-.04|-.04]0.02(-.06}0.08
NSP| 662| 80. |0.00] 38.3}0.24]0.04}-.14}-.14}0.03}0.15}0.11
Tab.2 Distribution angles & n for edge-on galaxies and |B <30°
N PCXEIPCA) C A11 GCAD | W w oW 1 F {cCF>
A B B
)
g<.75}2114]| 65. |0.00| 23.8|0.08]|0.03|-.02]-.04]0.02]0. 01 |0. 09
g<.B60}1650| 59. [0.00]| 18.9]0.10]0.04|-.05}-.05}{0.02]0.04 |0. 09
g<.4511032| 68. [0.00]| 23.3]0.17]0.04|-.10}-.09{0.03|0.05|0.20
g<.30f 530| 61. |0.00| 21.6|0.23|0.06|-.17]-.14}0.04]0.28[0.24
n
g<. 752114 | 43. |0.46 1.2]0.04]0.03|-.01}-.01{0.02]|-.04|0.08
g<.B60]|1650| 43. |0.63| -4.2]0.03|0.04|-.01[|-.0110.02{0.02|0.12
g<.45]|1032| 46. |0.59} -8.6|-.04]|0.04]0.03|0.03]|0.03}-.06[0.14
g<.30] 530| 56. 10.17] -3.8|-.10]0.06]0.0910.08]0.04 |—-.22|0.23

4.2 The distribution of the angle n

In the case angle n the anisotropy is observed too. Even
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for spirals galaxies we observed weak anisotropy. The sign of
the Au ‘coet'ficient are positive, which means that the
projection of rotation axes on the supergalactic plane tend to
point toward center of the Virgo Cluster. For edge-on galaxies
we observed weak anisotropy only for galaxies with g<0.3
4.3 The distribution of the angles 6D and 7n for separate galaxy
st.ructures.

I has also analyzed the distribution of the angles éD and
n for separate galaxy structures within the LSC. Group A is the
Virgo Cluster itself. OGroup B is the disc of the local
Supercluster, defined as -450; +6850 km/sec from the
supergalactic plane. Group C are the non-disc galaxies. Groups

D--I are defined according Tully 1986:

D E F
V>1500 km/s V>1100 km/s V>1500 km/s
BeC ~75°, -45%> BeC -40°, -50%> BeC+12°, +14%>
Le -20°, +75%> LeC-70%, +70%> LeC -50°, +60°>
G H roughly I
V>750 km/s V>450 km/s V>1300 km/s
BeC +20°, +50°> BeC-85°, -20°> BeC -85°, -60°>
Lex +1058°, +255°> Lec +90°, +270%> Lec+90°%, +270%>
Tab3 Distrjbutions angles & n in the separate structures LSC
N [P rcar| ¢ A |locd| w | w leew ] F locem
11 A B A
5
A |1310|124. |0.00| 43.1|-.11]0.03|0.0g|0.64]0.02]|-.20]0.11
B |1341|186. |0.00|109.5]|-.18|0.03|0.13|0.08]0.02|-.12]0. 09
¢ | ess| so. |0.30| 17.4(0.05]0.03|0.02]0.03|0.02|-.40]|0.20
D 31| s8. |0.03]| 15.1]0.40(0.18]-.73|-.410.12]|2.15|0.82
E | 201 |141. |0.00| 52.3|-.07]0.07]|-.01 [0.12]0. 05|-.37|0.27
F | 154| 80. [0.02| 29.7|0.03|0.08]0.02]0.03[0.05|-.25|0.190
G 67|122. |o.00| 8.8]|-.17]|0.12|0.15|0.12|0.08|0.23]0.67
H 37| 43. |o.12| -2.8|0.08|0.16|-.19|-.08|0.11 |0.09]0. 48
I 2z|120. |o.01|-12.0|0.48|0.21 |-. 25|-.19(0.14|0.21 |0. 73
n
A [1310]113. |0. 00| B2.9(0.21 |0.03]|-.13(-.13]0.02|0.18]0.10
B |1341| 0. [0.00]| 22.90.12|0.03]|-.08]|-.08[0.02|-.01 |0. 08
¢ | ses| 54. [0.00]| 18.40.13|0.03]|-.09|-.09]0.02[0.02(0.11
D 31| 7. |0.00| 17.0]0.40|0.18]-.23|-.230.13]0.10|0.55
E | 201| 85. |0.02| 4.7|0.20]0.07|-.17|-.17]0.05|0.19]0.22
F | 154| 49. |0.17| 7.1]0.15]0.08|-.11|-.11]0.08]0.30]0.35
G 67| o3. |0.42| 4.8|0.14]0.12|-.19(|-.19]|0.0g]0.75]0.53
H 37| sa. [0.79]| -5.9(0.11 |0.168|-. 03|-.030.12]|-.72|0.B2
I 22| 31. |o.e7| 7.s|-.03|0.21|-.09]|-.09]0.15]0.83|0.54
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All result are showed in table 3.

In group D-1I anisotropy is rather observed but directions
of the depart.ure from isotropy are different in various groups.
So the generally observed alignment of galaxy rotation axes
with the Supercluster plane results from different structure
contributions. Anisotropy is greatest for the disc galaxies
then for the non-disc galaxies. Moreover, in the case of 7y
angle analyzes dgroups positions and values Au—coeft‘icient,,
permits us to say that. projection of galaxy rotation axes on
the supergalactic plane rather tends to point toward the Virgo
Clust.er center. The anisotropy is very strong for Virgo Cluster
CA>. The perpendicularity of galaxy planes to the radius vector
t.o the Virgo Cluster center has been noticed by MacGillivray
and Dodd (1984) in the case of the Virgo Cluster itself. Our
Test.s show that for Virgo Cluster region the values of the
Au—coefficient, are much greater then cCA3. This effect is
greatest. for the Virgo Cluster itself.

5. Discussion.

In our sample there are 2227 galaxies. The total number of
galaxies in which any wrong information occurred during
checking was below 1%. We don’t know of course, the number of
errors which remains in basic catalogues, but. it was estimated
to be 1% The comparison of different system of diameter
measurement in the main galaxy catalogues, carried out. by
Fisher and Tully C€1981) shows that. there is good correspondence
among them. The observed axial ratios b-/a should be converted
t.o the standard, photometric axial ratios which removes the
Holmberg effect.. For this purpose the relevant. formula from
Fouque and Paturel (1985 was applied. This results are
presented in tables 2 to 5. The sample was also analyzed
without. Holmberg effect and with galaxies treated as a flat
discs (g=0>. There was used also other formulas for Holmberg
effect. The differences between these cases were statistically
negligible. In order to study the influence that accuracy of
measurement might. have on this results, random variations of
the axes and position angles was introduced. Moreover for
“face-on" and nearly “face-on" galaxies axial ratios a/b was

created randomly. The results obtained in these cases were
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similar to the ones with original data. More detailed we
discussed our sample in FG 1986
6. Conclusions

It has been shown that the Jaaniste and Saar approach of
t.aking into account. both parameters position angles and the
inclination angles, 1is very adequate for the study galaxy
orientation. This approach, moreover, avoids some of the over
simplificat.ion inherent. in the classical one. This method is
applied to the sample of 2227 galaxies from the LSC. This
sample is uncontaminated by background objects. The
distribution of galaxy planes tend to be perpendicular to the
LSC plane. The projection of rotation axes on the supergalactic
plane tend to point toward center of the Virgo Cluster. The
anisotropy is very strong for the Virgo Cluster. This effects
are: greatest. for “non-spirals"” then for '“spirals galaxies". It
shcould be remembered that. detect.ed perpendicularity of galaxy
planes to the LSC plane can also be caused by the
perpendicularity of galaxy planes to the vector to the LSC
center. The preferred orientation depends strongly on the on
the analyzed sample of galaxies. The distribution of *face-on"
and ‘"edge-on" galaxies 1is different. The separate galaxy
st.ructiures in the LSC was analyzed too. The anisotropy is
observed but. direction of the departure from isotropy are
different in various groups.

The dependence of orientation on the morphological type is
a curious phenomenon, which we are not able to explain. Within
the framework of the tree main scenarios for origin of galaxies
Cprimeval turbulence,hierarchical clustering and pancake modeld
our result Cperpendicularity of galaxy planes to the LSC planed
excludes primeval turbulence and supports the pancake scenario.
However it cannot be excluded that complicated structure of the
LSC is due to a hybrid model or and to evolutionary effects.

It seems to me that the solution to the puzzle must be
based on further analysis of the distribution and properties of
galaxies in the LSC. Further investigation of the possible
correlat.ion bet.ween supergalactic coordinates, galay
morphological type and preferred orientation is crucial for the

real understanding of the LSC properties.



457

Acknowledgment.s
I thank Dr. P.Flin for permission using results going from
our collaborations and Dr.Herbert. J.Rood for sending his

unpublished Catalogue of Galaxy Red shifts.

References

de Vaucouleurs,G. ,de Vaucouleurs,A,.Corwin,H.G., 1976 Second
Reference Catalogue of Bright Galaxies, Texas University
Press, Austin

Fisher,J.R. ,Tully,R.B., 1981 Astrophys. Jour Suppl.Ser. 47,139

Flin,P. ,Godlowski,W., 1984 in Cluster and Groups of Galaxies
Ceds F.Mardirossian et.al.) p.65, D.Reidel, Dordrecht

Flin,P. ,Godlowski,V¥. ,1986 The orientation of galaxies in the
Local Supercluster Mon.Not.R. Astr. Soc Vazaza. p525

Flin,P. ,Godlowski,W. ,1989 The Distribution of galaxy planes in
the Local Supercluster Pisma w Astron. Zurnat. 15. 10 p867

Fouque, P. ,Paturel ,G., 1985 Astron. Astrophys. 150,192

Hawley,D.L. ,Peebles,P.J.E., 1975 Astr.Jour. 80,477

Heidmann,J. ,Heidmann,N. ,deVaucoulers,G. ,1971,Mem. R. Astr.
Soc. 75, 85

Jaaniste,J. ,Saar,E., 1977,Tartu Obser. Prreprint. A-2

Jaaniste,J. ,Saar,E., 1978, in The large scale structures of
the Universe Ceds. M. S. Longair and J.Einastod p- 488
D. Reidel, Dordrecht. CIAU Symp. 79>

Kapranidis,S. ,Sullivan III,W.T., 1983,Astron. Astroph. 118,33.

Lauberts 1982 ESO-Upsala Survey of the ESO B Galaxies Garching
b. Munchen. ESO 1982

Nilson,P.1973 Uppsala General Catalogue of Galaxies (Uppsala
Astr.Obs. Ann.V, vol. 1D

Nilson,P. 1974, Uppsala Astr.Observatory Report No 3

Rood,H. J. ,1980 A Catalogue of Galaxy Redshifts Cunpublishedd)

Tully,R.B., 1986 Astrophys. Jour V.303 p25






459
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Abstract : We have analyzed a completed sample of dwarf-LSB galaxies selected from
UGC catalogue. Wedistinguishthe Dwarf-LSB galaxy distributionin redshift space and
in real space. Dwarf-LSB galaxies appear slightly less clustered than bright galaxies.
Our results rule out certain classes of biased galaxy formation theories which predict
an uniform spatial distribution of dwarf-LSB galaxies.
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L INTRODUCTION

It was suggested by some theories of biased galaxy formation!) that low surface
brightness galaxies might cluster as the mass does, and fill in the voids seen in the
bright galaxy distribution. Whether or not the observations are in aggreement with
this predictions is not yet clear?®%), To compare statistically the spatial distribution of
the high and low surface brightness galaxies and adress such questions, it was essential to
have a reasonably complete sample of dwarf and low-surface-brightness (LSB) galaxies,
with well-understood selection effects, and with a sky coverage and a depth comparable
to that of the CfA survey of bright galaxies. Such sample was assembled from the
Uppsala General Catalog of Galaxies® by Thuanand Schneider. The aim of this paperis
to compare the spatial distribution of dwarf and LSB galaxies to that of bright galaxies.
For comparaison with our dwarf and LSB sample, we shall use the magnitude-limited
(mp < 14.5) bright galaxy sample of the CfA survey.

First, in 8§11, we discuss difficulties to measure the correlation function of galaxy
from a galaxy catalog. In §/11 we briefly present some theories of biased galaxy forma-
tion which predict explicitely the spatial dwarf and LSB galaxy distribution. Finally
in §V we present and discuss several results concerning spatial dwarf and LSB galaxy
distribution. We distinguish the analysis in redshift space and in real space.

II. GALAXY DISTRIBUTION AND CORRELATION FUNCTION

From maps of galaxy catalogs, the galaxy distribution clearly appears inhomo-
geneous. It was proposed many statistical description, for instance the percolation
technique”, but the interpretation of results of such analysis, can be misleading due
to the density dependence. White®) (1979) proposed to use the void probability func-
tion. The main emphasis of the probability Py(V') (of finding a void in a randomly
placed sphere of volume V) has been on a scaling law derived from the assumption of
hierarchical clustering. An even more powerful tool is the distribution of the counts in
cells®19), that in principle carries the complete information on the clustering of galaxies.
Fractal approach, filling factor... can also be considered. But in definitive, none of these
tools met the success of the correlation function. We will discuss in the following the
difficulties to estimate the spatial two-point correlation function from a galaxy catalog.

The probabilistic definition of the correlation function!?) is related to the probabil-
ity 6P of finding a neighboring galaxy in a volume §V at a distance r of a random
galaxy in the Universe, §P(r) = (1. + £4(r))7éV, where 7, the mean number density
of galaxies in the universe, is independent of position. The ambiguity does not concern
the definition of the two-point correlation function, but the measure of this quantity
from a galaxy catalog. In a volume-limited sample, an estimation of &, is given by'?~14),
&r) = fN% — 1., where N4 is the number of pairs in the samples, N;, the number
of pairs between the sample and a random distribution of same geometry with number
density n,. A first problem is the sampling effect, it originates from the smallness of
the present catalogues. When the correlation function is estimated from volume-limited
samples, strong variations are found within different volumes!*~16). This reflects the
fact that the available surveys are not deep enough to cancel spatial variations. An-
other important limitation comes from the normalization, that is the estimation of the
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mean number density of galaxy in the universe 7, which is generally not equal to the
number of particules in the sample divided by the total volume. 7 is estimated from the
luminosity function'”). It would be misleading to use the observed number of galaxies
in the sample'®. Finally the correlation function is perturbed by the peculiar velocity
of each galaxy'®). The correlation length estimated in redshift space is generally larger
than the real correlation length. This effect can be partly removed by the cylindri-
cal projection!?!®). The analysises from both two-dimensional and three-dimensional
data!?®) yield to the remarquable power law behavior of two-point correlation function
of bright galaxies, &(r) = (=) with o = 54 h™*Mpc and 7 ~ 1.77. This is believed
to hold in the range 0.01 — 10h~! M pec.

To study the clustering of galaxies, it is alsointeresting to consider the ratio a of the
cross—correlation functions, especially if one is interested by a segregation effect. In the
following we are interested by app, the ratio of the J; integrals of the cross-correlations
between bright galaxies and dwarf-LSB galaxies, that is, the ratio of the mean excess
number of dwarf-LSB galaxies around bright galaxies to the mean excess number of
bright galaxies around bright galaxies. In the same way we define its counterpart app.
These quantities?®) are weakly sensitive to sampling fluctuations and to normalisation
uncertainties in the measure of the correlation function and in practice weakly sensitive
to peculiar velocity effect. In addition, these quantities are easily related to the bias
parameter which caracterized the distribution of a given galaxy population (see below).

III. THEORY OF BIASED GALAXY FORMATION

Many properties of the observed galaxy distribution are well reproduced by the Cold
Dark Matter (CDM) theory of galaxy formation®!). In this theory, the power spectrum
of the density fluctuations in the early Universe seems to be precisely what is required
to explain both the small and the large-scale structure of this distribution. However,
to reconcile the value of the cosmic density parameter 2= 1 predicted by inflation with
observations, the galaxies must not trace the mass, and in this sense the distribution
of galaxies is said to be biased. In the numerical simulations, for instance, the matter
correlation function steepens in time, and the stage of the simulation to be regarded
as the present epoch is essentially determined by matching its logarithmic slope to the
observed v ~ 1.77 of galaxies. The CDM correlation length at this time turns out to be
only 7o ~ 1($2h%)~'. Hence, for the galaxies to match the observed ro = 5.4h"! Mpc,
with @ = 1., the galaxies must be biased that is the correlation function of bright
galaxies £, is amplified with respect to the correlation function of the density field,
o) = b% £,p(r) where b is the bias parameter.

The bias may be due to physical processes that took place at the time of galaxy
formation?*2%, and is also a natural feature that arises in hierarchical theories?*~2¢. For
bright galaxies (i.e., galaxies typically brighter than the magnitude M = —18.5+5logh,
where % is the Hubble constant in 100 km s~! Mpc~! units) this bias bp depends on the
specific model?”?® but must lie in the range 1.7 to 2.5 in order to make the dynamical
measures of the density parameter compatible with the value of unity predicted by
inflationary theories. By contrast, dwarf-LSB galaxies are expected to be a more reliable
tracer of the mass distribution?) than bright galaxies, and their bias parameter bp should
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therefore be much smaller than bp and closer to unity. Dekel and Silk? (1986) argue
that the bright galaxies must originate from high density peaks (20 — 30) in the initial
fluctuation field, while typical (~ 1o) peaks either cannot make a luminous galaxy at
all because the gas is too hot and too dilute to cool in time, or, if only their virial
velocity is less than ~ 100 km s~!, they make diffuse dwarf-LSB galaxies by losing a
substancial fraction of their mass in supernova-driven winds out of the first burst of
star formation. This leads to a selective bias, in which the bright galaxies are biased
towards the clusters and superclusters, while the dwarf-LSB galaxies do trace the mass,
and should provide an observational clue for the real distribution of the DM.

Davis and Djorgovski?®) (1985) have studied the two-dimensional low surface bright-
ness (LSB) and high surface brightness (HSB) galaxy distribution. The LSB galaxies
are distributed more smoothly than are these of HSB. This phenomenon is attributed
to biasing. In the opposite Bothum®® et al. (1986) show the two classes of galaxies
have qualitatively the same distribution. But, White?*) et al (1987) have demonstrated
qualitative results are misleading. In their numerical simulations for a biased CDM
models, dwarfs and giants delineate the large scale structure equally well. Only by ap-
plying quantitative measures such as correlation function can the effects of biasing be
seen. Many others related works*3!~32 are for or against biasing. Only a quantitative,
tri-dimensional and with a statistic comparable to CfA survey, analysis of dwarf-LSB
galaxy distribution would allow to know if the predictions of biased galaxy formation
models are correct.

IV. DWARF AND LSB GALAXY DISTRIBUTION
a) The redshift survey

The redshift survey was assembled from the Uppsala General Catalogue® of Galaxies
which attempts to list all northern galaxies (§ > —2°30') visible on the Palomar Sky
Survey with a blue diameter larger than 1 arcmin, with a Hubble type of Dwarf, Dwarf
Irregular, Dwarf Sipiral, Ir, Sc-Irr or S-Irr; a de Vaucouleurs type of Sd-dm, Sdm, SDm
or Im; or in the absence of these classification, a van den Bergh luminosity class of
IV —V or V. These selection criteria give a sample of 1845 galaxies. The HI detection
rate is ~ 84%, giving a total sample of 1557 galaxies with 2lcm redshifts. A more
detailed description of the observational sample and of the observing techniques can be
found in Thuan® et al. (1990). For the statistical studies, we restrict the total sample
to a galactic latitude ||b|| > 40° to eliminate effects of galactic absorption and to § > 0°,
because of the reduced sensitivity of the arecibo telecscope at its extreme declination
limit —2° < 6 < 0°. We also adopt a velocity cut-off of 10,000kms ™! because of the
large incompleteness for larger velocities. The statistical sample thus defined contains
a total of 860 galaxies. In the same region of the sky (6§ > 0°,(|b]] > 40°) and with a
velocity cut-off of 10,000kms~?, there are 2154 CfA bright galaxies. It is first important
to notice that, because the data under analysis has been obtained with a 21— c¢m redshift
survey, our results concern only HI-rich dwarf and LSB galaxies. Thus, we cannot put
constaints on the spatial distribution of HI-deficient objects such as dwarf ellipticals.

Figures 1la — 1b shows the redshift distribution of the whole statistical sample for
the dwarf-LSB galaxies and CfA bright galaxies. The shape of the two distributions
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is very similar. We observe in the two distributions two peaks, one at 1000 km s~?
which corresponds to Virgo cluster, and one more pronounced for the bright galaxies
at 5000 km s~! which corresponds to Perseus Pisces supercluster. We present also
(figures 2a — 2b) two declination slices in which the dwarf-LSB galaxies are plotted as
circles and the CfA bright galaxies as crosses. These figures seems already to indicate,
dwarf-LSB galaxies follow very closely the structures delineated by the bright galaxies
and do not fill in the voids seen in the bright galaxy distribution. But figures 3a — 3b
show up a difficulty, our sample of dwarf-LSB galaxies consists in fact of at least two
subsets: true low-luminosity dwarf galaxies and large, higher-luminosity LSB galaxies.
We use the HI width Av to distinguish between the two sub-populations. We define
now the dwarf population as composed of galaxies with Av < 100 km s~! and the LSB
population as composed of galaxies with Av > 100 km s~!. Figures 3a and 3b show
respectively the redshift distribution of the dwarf and LSB populations. The dwarf
velocity distribution is narrow and drops off sharply beyond ~ 2000 km s~!, while the
LSB velocity distribution is much broader, extending up to ~ 7000 km s~!. In the
following, we shall discuss, whenever possible, these two populations separately.
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b) The sub-samples

In this paper we only discuss the statistical analysis from completed volume limited
sub-samples. We consider four sub-samples. We define two dwarfs samples, one (labeled
as D1) which contains all dwarfs with a linear diameter d superior to 4 k™! kpc, and the
other one (D2) with d > 8 h™! kpc. With the constraint that the angular diameter be
superior to 1 arcminute, this corresponds to a superior velocity limit of 1375 km s~ for
D1 and of 2750 km s ! for D2. In the same manner, we define two volume-limited LSB
samples with d > 11.58 ™ kpc (LSB1) and d > 16 h™! kpc (LS B2) corresponding
respectively to the velocity limits of 3981 km s~! 5500 km s~1. Table 1 lists the observed
number of galaxies and the expected number of galaxies in each sub-samples with and
without Virgo Infall correction®¥). The expected number of galaxies is estimated from
selection function®), it is crucial in the estimation of the correlation function. Table 1
also presents bright CfA galaxies in the same four volumes.

TABLE 1: Completed volume-limited sub-samples for dwarf/LSB and Bright CfA galaxies.

Dwarf/LSB CfA
Vi=0 ;=22 _Vi=0 V=220
Sample  d (hlipe) vOmsl)  Nops Nexp Nops Nexp  Nobs Nexp Nobs Nexp
d>4(M<-16.2) v <1375 179 99 129 89 340 169 236 147

d28M<-17.7) v <2750 202 136 221 146 489 330 513 325
Bl d>11.58 (M<-18.5) v<3981 157 130 207 157 421 407 516 430
d216 M <-19.2) v < 5500 110 95 134 114 319 398 404 442

IS BE

—
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¢) Results in redshift space

We now calculate the auto-correlation functions for dwarf and LSB galaxies in the
complete sub-samples defined in Table 1 and that for bright CfA galaxies in the cor-
responding volumes. The calculation is done in redshift space, we assume that the
cosmological redshift is proportional to distance and neglect peculiar motions. Table
2 gives the results of the least-square power-law fits of the form £(s) = (i)_v, to the
auto-correlation functions, with the formal errors of the fits. In general, the data cannot
be fitted by a single power law over the whole radius range, so the results presented in
Table 2 refer to the 0.6 — 8.5 h~! Mpc range. The slopes of the auto-correlation func-
tions for the Dwarf-LSB samples are similar to those for the bright galaxy samples. The
correlation lenghts are systematically smaller for the Dwarf-LSB galaxies as compared

to those for the bright galaxies.
TABLE 2: The two-point corelation function for dwarf/LSB and bright CfA

galaxies in completed volume-limitcd samplcs in rcdshift space with Virgo
infall correction (Vi = 220 km s-1)

Dwarf/LSB CfA
Sample ¥ so(h-1 Mpc) Y sp(h-l Mpc)
D1 163009  429+071 1474005 655+ 070
D2 135£008  462+076 132+010 844 + 195
LSBI  150%0.17  525+176 141+008  7.50 + 1.28
LSB2  1.65: 0.8  645+2.16  1.66 0.06 6.12+0.74
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TABLE 3: The cross-correlation function for dwarf/LSB and bright CfA
galaxies in completed volume-limited samples in redshift space with Virgo

infall correction (Vj = 220 km )

Dw. B CfA
Sample ¥ sp(h-1 Mpc) ] so(tl Mpe)
D1 1.56 + 0.06 5710 +0.48 1.64 + 0.06 427 +0.41
D2 1.25+0.10 624 + 142 1.40 + 0.07 544 + 0.76
LSB1 1.46 + 0.06 5.84 +0.83 1.24 + 0.06 6.26 + 0.85

LSB2 1.70 £ 0.12 4.51 £ 1.04 1.49 = 0.07 583 £ 1.05

The cross-correlation function in redshift space between dwarf-LSB and bright galax-
ies is another way for comparing the spatial distribution of the two galaxy population.
The results of the power-law fits to the cross-correlation functions are given in table 3.
As a check, we have computed the cross-correlation functions in two ways, in one case
counting the number of dwarfs around bright galaxies ({gp) and in the other, counting
the number of bright galaxies around dwarfs (({pp). Within the errors, both methods
give the same results, which shows that the normalization of the correlation function
is done correctly. The correlation lenghts are intermediate between the dwarf-LSB and
bright galaxy redshift auto-correlation lenghts. Note that we do not see, in any of
the sub-samples analysed here, the effect discussed by Eder®? et al (1989): a drop at
small separations (s ~ 0.75 h™* Mpc) in the amplitude of the dwarf-LSB galaxy auto-
correlation function and of the dwarf/LSB-bright galaxy cross-correlation function, an
effect which Eder®? et ol (1989) attribute to the tidal disruption of low-mass irregulars
when they are too close to more massive bright galaxies. We think that the discrepancy
is due to the fact that Eder®? et al (1989) do not use the same estimator (see above §1T)
to measure the correlation function!*). We show as examples, the correlation functions
for Dwarf (open circles ) and bright CfA galaxies (filled circles ) in the D1 (figure 4).
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Comparison of Table 2 and 3 and examination of figure 4 show the existence of
slight difference between the auto-correlation of Dwarf/LSB, those of bright galaxies
and their cross-correlation functions. We would like to quantify these differences. For
this we examine the ratio app and its counterpart app (see definition in section IT).
These ratios permit to examine possible difference between various galaxy populations,
without being too sensitive to the uncertainties discussed in section II. apg and app
are both nearly constant with the distance s, independant of the Virgocentric correction
and subsample. We obtain ap/rsp-p ~ 0.7+ 0.1 and ap_p;rss ~ 1.3 £ 0.1.

If we consider that the cross-correlation function £gp and £pp and the auto-correlation
¢pp and Epp can be written as, €gp = €pp = bpbpé,, , Epp = b¢,, and €pp = bhé,,.
The quantity app yields to the ratio of the bias parameter for dwarfs (bp) to that for
bright galaxies (bg) as bp/bs ~ 0.8. If bp is 2.5, the value needed in a cold dark matter
scenario with @ = 1, then bp is 2. This value is far enough from unity that it rules
out certain classes of biased galaxy formation theories which predict an uniform spatial
distribution of dwarf-LSB galaxiesl).

d) Results in real space

Galaxies have in fact peculiar motions superposed on the Hubble expansion flow, and
as a consequence, the redshift map is not a true space map: the galaxy positions are
distorted along the line of sight. In order to assess the contribution of peculiar velocity
to é(s), we need to compute the two-dimensional correlation function §(7,, 7), in distin-
guishing the separations perpendicular (r,) and parallel (r) to the line of sight. Figure
5a show the function é(r,,7) for the complete sample D2. The contour ¢(rp, ) = 1,2
and 4 are shown. We show only the quadrant with positive 7 and 7, since the quad-
rant with negative = and positive 7, can be derived by mirror symmetry. The {(rp, )
contours are clearly elongated in the 7 direction, showing convincingly that dwarf-LSB
galaxies possess significant peculiar velocities which distort the redshift maps as com-
pared to the true spatial distribution maps. To obtain the space correlation function
&(r), we first compute the projected function w(r,) defined as w(r,) = HLO Lo dr
&(rp, ), where vy is the upper limit for the redshift difference 7. We have chosen v,
to be 1250 km s—1 for all samples. This is large enough to include nearly all corre-
lated pairs and peculiar velocities and small enough so that {(r,,7) is not too noisy.
Then we fit w(r,) to a power law model for £(r). We show as example, the projected
correlation function for Dwarf galaxies in the D2 (figure 5b). In the special case where
&(r) = (i)—v’ w(ry) = A 7;77 with A = rgT'(1/2)[((y — 1)/2]/T'(7/2). Thus a power
law fit to w(r,) yields directly 7o and 7. Table 5 lists the correlation lenght and slope
of the spatial two-point correlation, function for Dwarf/LSB and bright CfA galaxies in
completed volume-limited samples with Virgo Infall correction (V; = 220km s71).
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TABLE 4: The spatial two-point correlation function for dwarf/LSB and

bright CfA galaxies in completed volume-limited samplcs with Virgo infall

correction (V; =220 km s 1).

Dwarf/LSB aa

Sample Y sp(h! Mpc) Y sp(h'l Mpc)
D1 140 £ 0.12 4.26 + 0.31 1.67 +£0.09 6.27 £ 0.29
D2 1.62 £ 0.07 3.95 £ 0.16 1.66 + 0.06 6.68 £ 0.20
LSB1 1.72+ 0.11 3.65 +0.21 1.61 £0.03 5.90 + 0.09
LSB2 1.60+ 0.30 451 £0.75 1.94 £ 0.04 5.16 +£ 0.08
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DARK MATTER SEARCH: THE SACLAY PROGRAM

0.Besida, G.Chardin, G.Gerbier, E.Lesquoy,
J.Rich, M.Spiro, C.Tao*,D.Yvon, S.Zylberajch,
presented by C.Tao
DPhPE,CEN Saclay, France

Abstract

This report summarizes the current efforts by the Saclay group concerning
direct Dark Matter search. The emphasis in the last two years has been put on
the relatively ”easier” cosmion detection (picobarn or larger cross-sections).
The silicon experiment we (LBL /Berkeley /UCSB /Saclay Collaboration)
performed rules out large regions in mass and cross-section for would- be
cosmions with coherent vector couplings. Developments on some new detec-
tors which could be used in the search for cosmions with axial couplings are
sketched. Possible experiments searching for other dark matter candidates
are briefly described to complete the picture of the variety of interests and
efforts carried within our group.

* On leave from LPC, Collége de France
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1 Introduction

Cosmions have been invented to solve simultaneously the problem of Dark Matter
and the Solar Neutrino Puzzle. There is an ongoing debate within the astrophysical
community on the compatibility of the Cosmion hypothesis with observations. I
refer the reader to the talk of F.Martin de Volnay in these proceedings [1](and
references therein) for more details. Cosmions are WIMPs (Weakly Interacting
Massive Particles) which would form the Dark Matter Halo of our galaxy. They
would be gravitationnally trapped in the core of the Sun, transport energy from
the inner to the outer regions, cool down the center, thus lowering the Beryllium
and Boron neutrino production, and barely affect the important pp neutrino rate.
The SAGE and GALLEX experiments will provide in the next years critical and
fundamental results about the solar neutrino flux. They are however insensitive
to the Cosmion mechanisms which affect the more central regions of the Sun.
Direct detection of Cosmions (2] would be a major contribution to this debate.
As the earth moves through the galactic sea of dark matter, the particles, if they
exist, scatter from nuclei with a recoil energy T which is given by

T = Mm*v*(1 — cosb)/(m + M)?

for nuclear mass M, cosmion mass m and c.m. scattering angle §. For GeV
cosmions, T is of the order of one keV.

Recent work has been performed to set more precise constraints on Cosmions
using a solar evolution code [1]. With the picobarn cross-sections, and masses of
a few GeV, which they must have to affect the solar neutrino flux and respect
the existing known parameters of the Sun, Cosmions do not belong to the zoo
of known or commonly accepted particles: the LEP results have ruled out the
existence of a fourth family of neutral particles coupled to the Z;, thus excluding
many of the ad-hoc Cosmion models constructed by theorists in the last years. As
for neutralinos, in the minimal supersymmetric schemes, they are now expected
to be of masses above 30 GeV, much too heavy to solve the solar neutrino puzzle.
It is now commonly accepted that a positive detection of Cosmions would have

dramatic consequences on particle physics.

2 Vector Coupling Cosmions and the Silicon experiment

In these models, not only are Cosmion cross-sections about 100 times the weak
cross-sections, but cross-sections on nuclei increase roughly by the square of the
number of nucleons times the reduced mass factor. Such particles more massive
than 9 GeV/c? have already been excluded by Germanium experiments, and the
interest of replacing Germanium by a Silicon array is to lower the mass limits
(down to 3 GeV/c?).
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2.1 The Silicon set up at the Oroville Dam

The LBL/ UCSB/ Berkeley/ Saclay collaboration initiated two years ago based
on idea described in references [3]; we use the double beta Germanium apparatus
placed under 600 m.w.e. overburden in the powerhouse of the Oroville dam in
California, replacing the Germanium detector by an array of pure Silicon detectors.
Two of the original 8 Germanium detectors of 0.9 kg each remain with the Si array
inside a cavity formed by ten blocks of Nal of 15 cm thickness. This anticoincidence
shield with a threshold of 30 keV is in turn inside a very pure lead shield of 20 cm
thickness.

As it proved difficult to find very pure Silicon detectors mined underground and
protected throughout fabrication and transport from cosmic ray interactions, it
was decided to start a test run with unselected Si with relatively large backgrounds.
The digitised pulse heights and arrival times of the signals from each of the four
Si detectors, the remaining Germanium detectors, and each Nal scintillator are
recorded for off-line analysis. One Si detector has both a lower threshold and less
background than the others, and the data from that unique detector is reported
here and used to set limits. Its energy spectrum, which has been normalised in
energy by pulser information checked against known photopeaks is shown in figure
1. The gaussian electronic noise (0 = 0.22 keV) gives an effective threshold of
about 1.1 keV, which is about a factor 3 lower than the threshold obtained with
Ge. The background, however, with this unselected Si material, is two orders
of magnitude higher than what one measures with the best Ge detectors. The
background includes 3 decay spectra from Tritium (18.6 keV, 12.3 y of halflife),
328 (225 keV, 104 y halflife), and ?'°Pb (63.1 keV, 22.3 y halflife). Tritium is a
spallation product produced in the Si by cosmic rays. The presence of 32Si at a
rate of about 300 counts/kg/day indicates that the the detector was obtained from
surface sand as a starting material, since 32Si is produced in the atmosphere by
cosmic rays interacting with Argon, and falls to the surface of the earth. Silicon
obtained from a deep mine would not contain 32Si.

2.2 Calibration of Si nuclear recoil

Slow recoiling nuclei are expected to produce less ionisation than a Compton or
photoelectron of the same energy. In the sixties, neutron nuclei elastic scatter-
ing was used to calibrate the response of Germanium (C.Chasman[5]) and Silicon
(A.R. Sattler[6]) detectors. As the measurements did not extend down to the keV
region interesting for Cosmion searches, we have performed an experiment where
we have observed Silicon recoils between 3.2 and 21 keV. The 4 MeV Van de Graaf
of the Centre d’ Etudes Nucléaires de Bruyéres -le Chatel produces proton pulses
of duration 2 ns every 1 us. The time averaged current is typically 2 uA. Neu-
trons are produced via the reaction 7Li (p,n) "Be (threshold of 1.880 MeV). For
a given angle between the neutron and proton directions, the kinematics of the
(p,n) reaction fix the neutron energy. Most of our measurements were made with
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a proton beam of energy 1980 keV and a neutron target (the Si detector) placed
at 30 degrees with respect to the proton beam, yielding a mean neutron energy of
200 keV.

The known energy of **Fe X-rays (5.9 keV) and 2*!Am (13.9, 17.6, 59.5 keV) are
used to establish the energy scale. Since nuclear recoils do not produce the same
ionisation as an X-ray of the same energy, we refer to the measured energy on the
scale established by X-rays as the ”equivalent electron energy”(e.e.e.)

The energy resolution, as measured with X-rays from ** and ?#!Am sources is 410
eV (e.e.e.) (FWHM). The linearity of the system and trigger efficiency are checked
with a pulser system.

The scattering angle of neutrons is varied to select a silicon recoil energy as deter-
mined by the (p,n) and elastic scattering kinematics. The trigger is a coincidence
between the Si(Li) detector and the scintillation counter. For each event, we record
the Si(Li) pulse height, the time interval between the scintillator and Si(Li) pulses,
and the time interval between the scintillator and the proton beam pulse as deter-
mined by an inductive pickup coil.

The signal due to neutrons scattered off Silicon nuclei and detected in the scin-
tillation counters appears clearly above the background, at a time which does
correspond to the expected time of flight. After background substraction, the
signal peaks are fitted with a Gaussian to determine the mean and width of the
observed energy distribution.

Figure 2 shows the ratio between the observed energy and the calculated recoil en-
ergy as a function of the recoil energy for the 8 energies we measured. Also shown
are the 2 lowest points obtained by Sattler. The superimposed curve is taken from
Lindhard et al.[7]. There is reasonable agreement between the theoretical extrap-
olations and the observed values (Lindhard et al. state that the assumptions made
in their model may lead to errors of order 10%). The ratio between the ionisation
produced by a recoil Silicon nucleus and an electron ranges from 0.25 at 3.4 keV
up to 04 at 22 keV. Details on the experiment can be found in [4].

2.3 Limits on vector coupling Cosmions

To place limits on the Cosmion mass and cross-section on silicon, the measured
energy spectrum is compared with that expected from Cosmions. We take a halo
density of 0.3 GeV/c?/cm?® or 5 x 1072°g/cm® and a maxwellian cosmion velocity
distribution with a root mean square velocity between 260 and 300 km/s and a
velocity of the earth of 230 km/s. Those parameters reflect current estimates and
the effect of their uncertainties on the results will be discussed below.

In figure 3, we plot the exclusion region for coherent vector coupling Cosmions.
Cosmions masses and cross-sections on Silicon above and to the right of the straight
(260 km/s) or dashed-dotted (300 km/s) lines are excluded. The exclusioh contour
is obtained by two different procedures using maximum likelihood methods. One
involves fits the region -1.1 to 1.5 keV- most sensitive to light Cosmions with a
straight line, then adds a dark matter signal to the fit (allowing the parameters
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of the "background” line to change) until the fit can be rejected at a confidence
level of 95%. The other procedure uses a large region (up to 225 keV) of the data,
includes shapes of known backgrounds (such as the electronic noise and radioac-
tivities described above) plus a quadratic polynomial and an exponential. The
background model is required to give a x? compatible with the number of degrees
of freedom. Again, for each assumed Cosmion mass, a signal is added until the
fit can be rejected at the 95% confidence level. The final conclusions of the two
analyses are in close agreement.

For the assumptions given above, we plot the 2 SNU and 2.5 SNU curves ob-
tained with the Saclay standard solar evolution code described by F.Martin de
Volnay in these proceedings(1]. Cosmions with Coherent vector coupling become
very unlikely, but are still not completely ruled out, especially due to the large
uncertainties in the dark matter halo parameters.

3 Axial Coupling Cosmions and the status of a Hydrogen
TPC

For particles with spin-dependent couplings, suitable detectors do not exist yet.
We have proposed|9] and are currently studying the use of a low pressure hydrogen
Time Projection Chamber (TPC) in a magnetic field (cf figure 4).

A low pressure TPC provides the imaging capacity for keV tracks. The magnetic
field can be adjusted so that keV electrons spiral while keV protons leave a rather
straight track.

A TPC solution would allow the measurement of the direction of recoil protons. An
observed correlation with the direction opposite to the Earth’s movement relative
to the center of the galaxy would be a signature for Dark Matter which is an asset
that no other foreseen detector can present.

A TPC as small as 1 m? could be sensitive to cosmions with an interaction cross-
section of 4 pb or more at the level of 1 event/day, if the background can be kept
low enough.

3.1 Technical feasibility of a hydrogen low pressure TPC

The average kinetic energy of protons recoiling from collisions with halo particles
is around 2 keV. Proportional counters filled with hydrogen and methane are
commonly used to measure neutron fluxes of energy between 1 keV and 1 MeV in
experiments of material testing for breeder reactors. Protons down to 2 keV do
produce electron-ion pairs in hydrogen with the same efficiency as electrons and
higher energy protons (about 30 eV /ion-electron pair).

The total range of a 2 keV proton in hydrogen is less than 1 mm at normal pressure.
In order to obtain a track of a reasonable length (few cm) a low pressure chamber
is necessary. Typically at a pressure of 20 torr, 1 keV protons have a track length
of 3 cm in hydrogen and produce 15 to 20 electrons.
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3.2 Tests with a prototype

A.Breskin, ”the world expert” in low pressure chambers, convinced us that it is
possible to detect a single electron with a low pressure chamber. He even offered
one prototype which was no longer of use to his group. We first checked that we
could detect one single photoelectron produced on photocathodes by a pulsed UV
lamp.

A series of measurements convinced us that we need a second stage of amplifica-
tion in order to reach a reasonable gain and stable conditions of work. This was
implemented at the end of 1989. With this set up, we measured longitudinal and
transverse diffusions for different conditions in ethane and methane, and verified
the results by Breskin et al, obtained previously. We are now proceeding to mea-
surements with hydrogen and hydrogen mixtures and results should appear soon.
We built in parallel a small magnet (lkgauss) in which we installed the chamber
in order to check the spiralisation of electrons in a magnetic field. Indeed the mea-
sured transverse diffusions after 10 cm of drift are reduced according to expected
factors.

We have equipped the chamber with existing electronics provided by Breskin and
installed it with the magnet in the neutron beam of Bruyeres-le Chatel for a one-
week run in April. The multistep TPC is a very sensitive device and has difficulty
operating in a large background environment (every single electron is multiplied
by 10° or more). We have managed to shield the detector well enough that it could
run reliably with standard beam luminosities.

Data is being analysed and we are hoping that the foreseen improvements (with
FADC, better shielding and better alignment) will provide us in the next months
the answers necessary for deciding if a 1 m® detector for cosmion search is feasible,
ie, whether a proton of 1 or 2 keV gives a recognizable track, or not.

3.3 Background

An important effort on the choice of low radioactive material has been carried
out by the double 3 experiments. Many groups have built low radioactive drift
chambers. Their experience is important for the final design of a Dark Matter
TPC. The Orsay LAL group is helping us designing and building a series of Geiger
tubes with which we plan to measure the rates of background and if possible
identify their different origins. The test is planned for the fall 1990 in the Fréjus
Tunnel at the Modane Underground Laboratory (LSM).

4 Other Saclay Projects

4.1 Nal

Nal is cheap, exists already as veto in many underground experiments in large
quantities (above 30 kg); last but not least, the Na and I nuclei have non integer
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spins. We have investigated the potential of Nal as a Dark Matter detector!.
The major problem is that the calculations for the rates of axial couplings are not
trivial. The spin of nuclei (and not the sum of the orbital and spin components) is
the value of interest to us but its value depends on the quark content of the nuclei.
A few predictions exist but there is an ongoing controversy[11]. To compare one
nucleus to another in the choice of detectors depends on the models.

On the experimental side, we realised many interesting points: First, the single
photo electron threshold can be as low as 300 eV; the rates of the Nal veto in the
GALLEX experiment are low and the light response of proton recoils had been
measured down to 100 keV. We have performed a calibration with the neutron
beam and the preliminary results are very positive. Not only do Na recoil nu-
clei yield light down to energies of a few keV, but about one third of the recoil
energy is turned into scintillation. Furthermore we have observed different pulse
shapes between 14 keV ~ rays and 14 keV Na recoils, suggesting the possibility
for background rejections in these low energy regions. More details are provided
in reference(8].

4.2 Bolometers

Bolometers up to 280 g have been built with energy resolutions which approach
what is needed for Dark Matter searches (60 keV). It can be hoped that within a
few years, bolometers become good Dark Matter detectors. Since two of the fol-
lowing papers of this workshop discuss recent bolometer developments at length,
I only want to mention here that Saclay has started work in this field about 18
months ago and the group (Chardin and Chapellier essentially) has successfully
observed 1% resolution on « from an 24! Am source and ~ above a threshold of 10
keV[10].

We are planning a calibration run with a cryostat and a saphire or silicon bolome-
ter in a neutron beam for the end of June as well as the construction of a low
radioactive cryostat for measurements in the Modane underground Laboratory.

4.3 CHAMPS

CHAMPS (CHArged Massive Particles) have been examined by DeRujula,
Glashow and Sarid[12] as eventual Dark Matter candidates. Their conclusion
is that a window of charged particles is left open in the region 10 to 1000 TeV at
the level of 107! [10 TeV/M].

Previously Fayet had suggested that supersymmetric particles would show up as
heavy isotopes of hy drogen and this had triggered a ENS /Institut Pasteur /Saclay
collaboration[13] looking for heavy isotopes of hydrogen in deep sea water. Sam-
ples of sea water from all world oceans have been extracted and centrifugated.
Water is passed through an Uranium sieve to reduce it into hydrogen and a laser

'R. Plaga first suggested this 1dea auring a GALLEX collaboration meeting
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separates hydrogen from its heavy isotopes. The absence of signal at twice the
isotopic shift of Deuterium indicates the absence of a very heavy isotope.

The experiment started in 1987 and yields results better than 10~*% [10 TeV/M],
which already excludes the existence of CHAMPS as Dark Matter candidates.

4.4 Brown Dwarves

Macroscopic Compact Halo Objects (MACHOS a term coined recently by Kim
Griest) are a favourite among some astronomers as Dark Matter candidate. B.
Paczynski[14] suggested in 1986 that monitoring of the light intensity of one million
stars in the Large Magellanic Clouds would allow the detection of a Brown Dwarf
(or any MACHO of the right mass) if they make up the Dark Matter of our galaxy.
The MACHO would act as a gravitational lens and the resulting observed light
from a distant star would be the sum of the deflected intensities. Saclay has
initiated a collaboration between astrophysicists and particle physicists for such a
search. The reader should refer to the paper of M. Moniez in these proceedings
for details on the proposal.
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Figure 1 : Low energy region of the ionization detected in the 17 g Si(Li) detector for 3.7
kg.days of data. Also shown are the signals expected from 4 and 10 GeV/c2 Cosmions with
corresponding cross sections on the exclusion contour (Vy,s = 300 km/s) of Figure 3.
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Figure 2: Ratio between the ionisation produced by a Si recoil and the ionisation produced by
an electron of the same kinetic energy as a function of the kinetic energy. Circles are data points
from the present experiment. Squares are from Sattler [9], the curve represent the prediction by
Lindhardetal. [11].
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Figure 3 : Exclusion plots for two values of the velocity of Dark Matter particles as functions of
their mass and elastic cross section on Silicon. Also shown are the expected curves where
should lie the Cosmions for a resulting neutrino flux of 2 and 2.5 SNU’s [2].

Figure 4: A sketch of a possible low pressure hydrogenous Time Projection Cham-

ber.







THE QUEST FOR (: COMPARISON OF
DENSITY AND PECULIAR VELOCITY FIELDS

Amos Yahil
State University of New York at Stony Brook

ABSTRACT

The density field traced by the TRAS galaxies is compared with the smoothed peculiar
velocity map generated by the POTENT scheme of Bertschinger and Dekel. In regions in
which both datasets are reliable, the fields are found to be proportional to each other, as
expected in gravitational instability theory, with the constant of proportionality in the range
A= f(Q) /b =075—1.15. If the IRAS galaxies are unbiased tracers of the mass, b = 1,
then 2 = 0.6 — 1.25, but the result can also be be interpreted as a measurement of b for a
given value of §2.

Previous, lower, estimates of §2 are re-examined to determine the severity of the contra-
diction. The Virgocentric infall model is rejected, primarily because of its failure to take into
account the local void in the North Supergalactic Hemisphere. None of the other differences
seem irreconcilable. Further work is outlined on clusters of galaxies, the “Cosmic Virial The-
orem”, N-body simulations, morphological segregation, and the universality of the relation
between density and velocity.
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1. INTRODUCTION

A basic paradigm in current cosmological research is the assumption that the present
structure and motions in the universe are due to the growth of gravitational instabilities
from an initially highly homogeneous background. In particular, initial peculiar velocities
(deviations from the smooth Hubble flow) are adiabatically damped by the expansion of the
universe, and the peculiar velocity of any galaxy today is due to the gravitational pull of the
matter around it, and should thus be mirrored in the distribution of this matter.

In linear perturbation theory, the peculiar velocity of any galaxy in space is directly
proportional to the current dipole moment of the matter distribution around it. Specifically,
the peculiar velocity is given by (Peebles 1976a):

J
v = L) 5w G 1)
where Hy is the Hubble Constant, § (r') = (p(r") — po) /po is the mass density expressed in

units of the average density pg, and
f@)=dln§/dlna=Q® | (2)

is the logarithmic derivative of the amplitude of the growing mode of density perturbations,
with respect to the scale factor a. Curvature effects are neglected; it is assumed that the
dominant acceleration in Eq. (1) is due to material on scales much smaller than the horizon.

Peculiar velocities have been measured in two ways. The observed dipole anisotropy of the
cosmic microwave background (CMB), when corrected to the barycenter of the Local Group
(LG), is interpreted as due to the latter’s motion (e.g., Lubin and Villela 1986). Additionally,
many galaxies have had their distances estimated independently of their redshifts, using the
infrared Tully-Fisher relation for spiral galaxies (Aaronson et al. 1989; and references therein)
and the D, — ¢ relation for ellipticals (Lynden-Bell et al. 1988; and references therein); these
provide estimates of their peculiar velocities.

If a set of galaxies trace the mass, at least when averaged on the scales over which density
is to be resolved, then the mass density and the galaxian number (or luminosity) density are
proportional. Note that the constant of proportionality is not an issue; as seen in Eq. (1)
only relative densities are needed, and §(r') can be taken to refer to the galaxian density.
The combined measurement of peculiar velocity and galaxian density fields thus opens up
the exciting possibility of measuring a dynamic value of 2.

If the galaxies used do not trace the mass, i.e., if galaxy formation is biased, then a
prescription is needed for converting mass density into number density. (See Dekel and Rees
1987 for a review of biasing.) In the linear biasing model, the perturbation in number density
is a constant, b, times the mass perturbation. Eq. (1) therefore continues to hold, provided
that f () is replaced by A = f(£2)/b. In this approximation, therefore, it is not possible
to break the parametric degeneracy between 2 and b, and the comparison of the density

and velocity fields only yields the combination A; nonlinear effects are needed to break the
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degeneracy. In this paper I concentrate on the linear approximation, and determine A. I
usually interpret this as a measurement of §2, assuming that b = 1, but an interpretation in
terms of b, assuming, for example, that = 1, is equally valid.

The number of galaxies involved in the definitions of the velocity and density fields is in
each case already in excess of a thousand, so the comparison between the two fields is an
overconstrained problem. It can therefore also serve to test the basic paradigm that galaxies
trace the mass that has given rise to their peculiar velocities. Gravitational instability theory
predicts a universal relation between mass density and velocity, which is only a function of
the underlying cosmology. As long as galaxy formation, even if biased, is a universal process,
there is a one-to-one correspondence between mass density and galaxian density, and hence
between the observed velocity and galaxian density fields. In competing theories, on the
other hand, there are usually other local factors which affect the relation between the two,
destroying the universality of the relation between them.

Previous mappings of the local density structure, based on optically selected galaxies
(Yahil, Sandage, and Tammann 1980; Davis and Huchra 1982; da Costa et al. 1988; Tully
and Fisher 1987), have been constrained in sky coverage and depth. This paper presents
the results of a complete redshift survey of galaxies detected by the Infrared Astronomical
Satellite (IRAS),! undertaken by M. Strauss, M. Davis, J. Huchra, J. Tonry and A. Yahil.
We have obtained redshifts for a complete sample of 2649 galaxies, flux-limited to 1.936 Jy
at 60pm, which is selected over 11.06 steradians of the sky. The sample selection and biases
inherent in the JRAS database are discussed in Strauss et al. (1990).

The structure of the paper is as follows. The methodology involved in converting a
redshift survey into a density map is briefly reviewed in § 2, and the comparison with velocity
fields is discussed in § 3. The essence of the paper is the comparison, § 4, of the IRAS density
field with the observed velocity field, smoothed by the POTENT procedure, reviewed in this
volume by Bertschinger (1990). The resulting estimate of € is compared with previous,

lower, values in § &.

2. RECIPE FOR 3-D DENSITY MAPS

The transformation of a redshift survey to a 3—d density map involves a number of crucial

ingredients. Full details are given by Yahil, Strauss, and Davis (1990). The main points are:

1. Selection. The selection algorithm of the galaxies must be precisely known, and the
sample must be complete according to this algorithm. Typically one has a sample limited
by flux, angular diameter, or both. For the sake of concreteness I refer to the IRAS survey,

which is flux limited.

! The Infrared Astronomical Satellite was developed and operated by the U.S. National
Aeronautics and Space Administration (NASA), the Netherlands Agency for Aerospace Pro-
grams (NIVR), and the U.K. Science and Engineering Research Council (SERC).
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2. Eaztinction. Galactic extinction should be minimal, so the flux limit can be homoge-

neously applied.

3. Selection Function. The fraction of galaxies observed is a decreasing function of distance,
because a smaller fraction of the luminosity function falls above the flux limit at greater
distances. In order to convert the raw number counts into true densities, it is therefore
necessary to weight each observed galaxy in inverse proportion to the selection function, the
fraction of the luminosity function included in the sample at each distance. This procedure
is only valid if the luminosity function is universal (Yahil et al. 1980), i.e., if the relative
densities of galaxies of different luminosities are everywhere the same, and the normalization
of the luminosity function is a local measure of density. With this assumption, the selection
function depends only on distance from us, and the weighting scheme can be employed until
statistical noise becomes the limiting factor at large distances. In this paper I use this

procedure to a distance of 8000 km s~1.2

4. Transformation from Redshift to Configuration Space. We seek to know the density
structure in real (configuration) space. But the redshift of each galaxy (in the LG reference
frame) is a sum of its Hubble recession velocity and its peculiar velocity relative to the Local

Group, projected along the line of sight.
cz=Hor+t-(V-Vig) . (3)

Here t is the unit vector in the direction of the galaxy, and Vand Vg are the peculiar
velocity vectors of the galaxy and the LG, respectively. Gravitational instability theory,
in either its linear form, or in a nonlinear variant, is used to transform from redshift to
configuration space. For example, in the linear case self-consistent solutions are sought to

Egs. (1) and (3) for all the galaxies, given their positions and redshifts.

5. Adequate Sky Coverage. Since gravity is nonlocal, such self-consistent solutions can only
be found for samples of galaxies that adequately survey the density structures giving rise to
the gravitational field, both at the positions of the galaxies and at the Local Group. This
requires adequate sky coverage; surveys which do not satisfy this criterion, such as optical
surveys which exclude a significant zone of avoidance around the Galactic plane, need to
make use of the peculiar velocity field determined from an all-sky survey.

6. Ezcluded Zones. Even in surveys which cover essentially the entire sky, some part of the
sky is not surveyed, e.g., the IRAS survey covers 88% of the sky. It is necessary to account
for the gravity due to the excluded areas; in practice artificial “galaxies” are introduced into

these regions. The simplest law, according to which the artificial galaxies are distributed,

2 The relative density field, §, and the velocity field V are both independent of the extra-
galactic distance scale. To avoid confusion, I therefore always quote distances in km s1.
The Hubble constant is introduced for the sake of concreteness when necessary, but it cancels

out in the final results for relative density or velocity.
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assumes that the density there shows no structure. If the unsurveyed regionis narrowenough,
though, it is also possible to interpolate the density from either side.

7. Verification. The above stepsresult in a computed density field. It remains to verify a
posterior: that the underlying assumptions are satisfied. Specifically, one should check the
universality of the luminosity function, the convergence of the gravitational field, the effect of
sampling (“shot”) noise, and the reproducibility of density maps derived by different tracers.
See Yahil (1986, 1988), Yahil, Strauss, and Davis (1990), Davis, Strauss, and Yahil (1990),

and Babul and Postman (1990) for a discussion of these and other issues.

3. HOW TO COMPARE DENSITY AND VELOCITY SURVEYS

Once a density map has been created, one seeks to compare it with the observed velocity
field. The next section describes the comparison with the smooth velocity field derived from
the observed peculiar velocities using the POTENT technique. In this section I address

general issues, which are applicable to any such comparison.

1. Which Reference Frame For Peculiar Velocities? The calculation of the gravitational
field assumes that it is dominated by density inhomogeneities inside the volume surveyed,
and inhomogeneities outside it may be ignored. In a multipole expansion of the external
gravitational field, the leading term is the dipole, whose strength may be non-negligible
(Vittorio and Juszkiewicz 1987; Juszkiewicz, Vittorio and Wyse 1990; Lahav, Kaiser, and
Hoffman 1990). This dipole affects the comparison of the predicted velocity of the LG with
the one deduced from the anisotropy of the CMB. The effect of this unknown dipole term
can be removed, however, if peculiar velocities are evaluated in the LG frame, because the
dipole velocity field is constant, and cancels out for all relative velocities. Quadrupole and
higher terms due to the external field still result in systematic errors, of course, but these
fall off faster with distance than the dipole field, and are generally negligible for distances
less than half the survey limit. Note also that the transformation from redshift space to
configuration spéice, Eq. (3), involves only velocities in the LG frame.

The comparison of the predicted velocities with the observed ones thus breaks down
naturally into a prediction of the velocity of the LG relative to the CMB, and the velocities
of other galaxies relative to the LG. The observations can also be divided in this fashion. The
velocities of external galaxies are measured in the heliocentric frame, and are then converted
either to the CMB or LG frame. The advantage of the CMB frame is the accuracy with
which the solar velocity relative to it is known from measurements of the CMB dipole (Lubin
and Villela 1986), while the solar velocity relative to the barycenter of the LG is uncertain
by at least 50 km s~ and perhaps 100 km s~! (Yahil, Tammann, and Sandage 1977). When
comparing with the density field, however, the advantage of the CMB frame is offset by the
larger uncertainty in the predicted LG motion (cf., Yahil, Strauss, Davis, and Huchra 1990).

1 therefore concentrate on the velocity field in the LG frame.
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2. Compare Velocities or Densities? The observed peculiar velocity and density fields can
not be compared directly. Either the observed densities are converted to predicted velocities
which are compared with the observed velocities, or, conversely, the observed velocities are
converted to predicted densities which are compared with the observed densities. (In the
former case the velocities should all be in the LG frame, for the reasons stated above.) There
are advantages and disadvantages to both approaches.

The transformation from velocity to density requires spatial derivatives of the velocity
field, a divergence in the linear approximation, and a determinant of the Jacobian in approx-
imations based on that of Zel’dovich (1970; see also Nusser, Dekel, and Bertschinger 1990).
Since the observed velocity data are noisy, this introduces large errors, except where the
velocity field is averaged over a sufficient number of galaxies. This argues for a comparison
of velocities.

If the noise in the observed peculiar velocity field can be overcome, however, there are
several reasons for making a comparison of densities. First, the comparison is independent of
reference frame. Secondly, it is a local comparison. As such, it is both insensitive to density
structures outside the surveyed volume, and can serve to test the gravitational instability
model itself. Moreover, density comparisons can also be made with optical surveys, which
suffer from incomplete sky coverage, preventing a reliable prediction of the velocity field.
(One 1is, of course, not totally exempt from computing the velocity field, albeit from a dif-
ferent dataset, because it is required for the transformation from redshift to configuration
space.) A third advantage of a density comparison is the relative ease of computing nonlinear
corrections to the transformation from velocity to density, while the nonlinear corrections
in the reverse transformation are much more difficult (Yahil 1990; Nusser et al. 1990). Fi-
nally, errors in the transformation from redshift to configuration space can be detected by

observing the relative displacement of structures in the density field.

3. Zero Point Shift. Irrespective of whether velocities or densities are compared, there is
expected to be a zero-point shift between the compared fields. The density field is normal-
ized within its survey volume. Peculiar velocities are calculated relative to a mean Hubble
expansion of a set of galaxies, which typically do not sample the same volume. This intro-
duces a possible zero point shift, which is a constant in density space, and mimics a Hubble

expansion in velocity space.

4. COMPARISON WITH POTENT

Bertschinger and Dekel have developed a novel method for extracting a smoothed version
of the peculiar velocity field from the data, known as POTENT (Bertschinger and Dekel
1989; Dekel, Bertschinger, and Faber 1990; Bertschinger, Dekel, Faber, and Dressler 1990;
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the review by Bertschinger 1990, in this volume). In collaboration with them, this smoothed
velocity field is used here to compare with the density field derived from the JRAS survey.

The simplest comparison is between density maps. Fig. 1 shows the IRAS and POTENT
density maps in the Supergalactic Plane, smoothed by a 1200 km s~! Gaussian. There is
broad agreement between the maps, especially along the negative z-axis, in the direction of
the “Great Attractor” in the Hydra-Centaurus region. In the opposite direction, the IRAS
map shows a comparable density enhancement centered on Perseus-Pisces. The POTENT
map is unreliable there, but some structure is seen where there are data in the Pisces direc-
tion.

Unfortunately, such visual comparisons of maps can be misleading, because the errors
in each map are not obvious, except for the limits marked in the POTENT map. The rest
of this section is therefore devoted to a quantitative comparison of the density and velocity
fields, which takes full account of these errors. For both density and velocity, the comparison
between IRAS and POTENT is made on a grid spaced by 500 km s~! (in configuration
space). IRAS densities, 67, are computed at the grid points by applying a Gaussian point-
spread-function to each galaxy, whose width is independent of distance. As explained above,
the “mass” per galaxy is proportional to the inverse of the selection function at the distance
of the galaxy, and the survey extends to 8000 km s=!. (See Yahil, Strauss, and Davis 1990 for
further details.) JRAS velocities, V!, are computed from this smoothed density distribution
using linear theory, Eq. (1), with A = 1. POTENT densities, §¥, and velocities, V¥, are
computed on the same grid with a Gaussian tensor-window-function whose width is 1200 km
s~1. The potent densities are also calculated assuming A = 1.

For linear perturbations there is a simple relation between the two densities and two

velocities:

VP =avltar (4a)
6 = 261 - 3a (4b)

where A is the dynamical parameter sought, and a is the zero-point shift discussed in the
last section. An estimate of A is obtained by minimizing a weighted sum of residuals at the
grid points:
Ao { Siwi (67 — 67 — 3a)2 density (5)
Siwi (VP —avig ar)2 velocity
The weights are set equal to the inverse square of the estimated POTENT errors, based on
Monte Carlo noise simulations for these data. The sum in Eq. (5) is further restricted by
excluding grid points whose density error estimates A§” > 0.2, or which have fewer than 4
galaxies within 1500 km s~!(cf., Fig. 1). Note that the quantity A in Eq. (5) should not be
viewed as a X%, because the smoothed densities, or velocities, are correlated between adjacent
grid points; the effective degrees of freedom are much smaller than the number of grid points.
The IRAS and POTENT smoothing processes both introduce additional errors, and

the derived value of A may be biased, as illustrated in the following figures. Fig. 2 shows
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Fig. 1: Density fields in the Supergalactic Plane, smoothed by a 1200 km
s~! Gaussian: IRAS (top) and POTENT (bottom). Contours are spaced by
0.1 in 8, with positive ones solid, negative ones dashed, and the null contour,
6§ = 0, thick solid. For POTENT two extra-thick contours mark limits, one
of density error Aé < 0.2 (usually the more restrictive limit), and the other
one of the existence of 4 data points within 1500 km s~! from the grid point.
The large Cross at the origin marks the position of the Local Group.

how well POTENT and IRAS match each other if there is adequate and noiseless sampling,
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Fig. 2: Density derived by a linear version of POTENT, from the linear
velocity field predicted by IRAS on the comparison grid itself, versus the
IRAS density used to compute the velocity field.
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Fig. 3: Same as Fig. 2, but using a nonlinear version of POTENT.

In this case the velocities predicted by IRAS at the grid points themselves are used by a
linear version of POTENT. The errors are mainly due to finite differencing in POTENT,
and are negligible. Fig. 3 shows the same plot as Fig. 2, but with the standard nonlinear
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version of POTENT. The scatter is comparable, but there is a noticeable curvature, due to
incompatibility between the linear velocities predicted by JRAS and the nonlinear analysis
performed by POTENT. As discussed in detail below, this is an important source of bias,
which has not yet been fully calibrated.

1||ll]l!||]|lll

6 (POTENT 1200)

— —

_O_SJIIJ_IIIIIIIIII

-05 0 0.5 1
& (IRAS 1200)

Fig. 4: Same as Fig. 3, but with predicted TRAS velocities provided only
at the positions for which there exist observed peculiar velocities in the com-
pendium circulated by D. Burstein.

Fig. 4 shows the same plot as Fig. 3, but with the predicted IRAS velocities provided
only at the positions for which there exist observed peculiar velocities, as compiled by D.
Burstein. The scatter is significantly larger, due to sparser sampling by POTENT. More
importantly, a regression of 67 on &' gives a slope significantly smaller than unity. In fact,
it might be argued that the effective smoothing of POTENT densities is stronger than that
given nominally by the tensor window function (Dekel et al. 1990), and the comparable IRAS
smoothing should be larger. Fig. 5 is equivalent to Fig. 4 with a smoothing of 1400 km s~?,
and seems tofit better.

Finally, Fig. 6 shows the scatter diagram for the real galaxies, using the standard 1200 km
s~! tensor-window-function for POTENT, and 1400 km s~! smoothing for IRAS. There is
considerably more scatter, due to statistical uncertainties in the distances of the POTENT
galaxies, and hence their deduced peculiar velocities.

The above figures raise several questions about the correspondence between POTENT
and JRAS. How does the smoothing length in one scheme correspond to that in the other
one? Are there any additional biases? What are the confidence limits on A? These questions

can not be answered analytically, but only by Monte Carlo simulations.
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Fig. 5: Same as Fig. 4 with the IRAS data smoothed by 1400 km s~
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Fig. 6: POTENT versus IRAS densities for the real data.

In the Monte Carlo simulations used here, the IRAS density and velocity fields are

taken as the null-hypothesis, and statistical noise is introduced into both fields as follows.

The IRAS density field is varied by generating bootstrapped fields in which each galaxy is
replaced by k galaxies, where k is a Poisson deviate with an expectation value of unity. This
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replacement is only done in the final distribution in configuration space, assuming that the
bulk of the IRAS error is due to sparse sampling. Errors induced by the transformation
from redshift space to configuration space, as well as the addition of artificial “galaxies” in
the 12% of the sky not surveyed by IRAS, are not taken into account. A full bootstrap of
the original sample of observed galaxies, including all the transformations, is now underway.

Velocities predicted from linear theory, Eq. (1), are computed at the positions of the
galaxies used by POTENT from the original (not bootstrapped) IRA S density distribution,
using A = 1. This provides JRAS estimates for the distances of these galaxies. The Monte
Carlo simulations then scatter the distances using a Gaussian distribution whose standard
deviation equals the distance uncertainty in the Tully-Fisher or D, — o relation, as appropri-
ate. These distances are inputted into POTENT as though they are the observed distances.

The Monte Carlo simulations are then run through the IJRAS and POTENT procedures
in order to generate for each densities and velocities on the grid, and a linear regression of
the potent field on the TRAS field is performed by minimizing A in Eq. (5). If the procedure
is unbiased, the derived value for the slope of the regression should be the input one, A = 1.
The degree to which the simulated A’s differ from unity measures the bias, and the scatter

in their values provides confidence limits.

Table 1: Mean and Range of A from 100 Monte Carlo Simulations

Field IRAS Smoothing Mean 5th percentile 95th percentile
Density 1200 km s™! 0.78 0.56 0.97
Density 1400 km s~! 0.99 0.62 1.24
Density 1500 km s~? 1.10 0.78 1.41
Velocity 1200 km s~! 0.96 0.80 1.15
Velocity 1300 ¥km s~! 0.97 0.77 1.18

The results of 100 Monte Carlo simulations are listed in Table 1. The derived values of
A are seen to be strongly biased for the density comparisons, and mildly so for the velocity
comparisons. In order to correct for the bias, the values derived for the real data are scaled
by dividing by the mean of the Monte Carlo simulations. The results are shown in Table 2.
The confidence range is taken to be proportional to the one in the Monte Carlo simulations.

Two conclusions emerge from Table 2. First, the bias-corrected values of .\ do not
depend on the TRAS smoothing used; hence the bias seems to be adequately removed by
the Monte Carlo correction. More disturbing is the inconsistency between the values of A
derived by comparing densities and by comparing velocities. This discrepancy is not yet
fully understood, but part of the explanation undoubtedly involves nonlinear corrections.
Recall that TRAS velocities are computed from linear theory, Eq. (1), while Nature and
POTENT include nonlinear effects. For a given density structure, linear theory overestimates
peculiar velocities (Yahil 1985; Villumsen and Davis 1986; Regds and Geller 1989; Lightman
and Schechter 1990; Yahil 1990). When the IRAS predicted velocities are compared with
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Table 2: Observed and Bias-Corrected A

Field IRAS Smoothing Observed A Bias-Corrected A
Density 1200 km s~! 0.79 1.01 (40.26 -0.27)*
Density 1400 km s~! 0.99 1.00 (+0.25 —0.38)
Density 1500 km s~! 1.10 0.99 (+0.26 -0.30)
Velocity 1200 km s~! 0.72 0.74 (+0.15 -0.12)
Velocity 1300 km s~ 0.72 0.75 (+0.16 -0.15)

* 5%-95% confidence limit.

the observations, therefore, A is underestimated. At first glance it might appear that this
argument should not apply to the comparisons of the density fields, since the linear IJRAS
velocities are not used, except in the transformation from redshift to configuration space.
They are used, however, in the Monte Carlo simulations which calibrate the bias correction.
It is not easy to estimate this calibration error, or even its sign, because it can affect both A
and the zero-shift parameter a in Eq. (4). Nonlinear IRAS velocity estimates (Yahil 1990)
may help in this regard.

Until the discrepancy between the values of A derived from density and from velocity is
fully resolved, it may be safer to conclude that the true value of A probably lies between
the values obtained by the two methods, say, A = 0.75 — 1.15, to allow for both statistical
and systematic error margins. For unbiased galaxy formation this range corresponds to
Q=06-1.25.

5. OTHER DETERMINATIONS OF Q

A number of estimates of §2, or, equivalently, the bias parameter b, have been discussed
over the years (e.g., the review by Yahil 1987). Most of the estimates have been significantly
lower than the range Q = 0.6 — 1.25 determined in the last section. Are these real discrep-
ancies, or do either the new or the older values need to be re-examined? The following is a

brief compendium of previous, lower,  estimates, and problems associated with them.

1. Big-Bang Nucleosynthesis. The comparison of the observed abundances of the light
elements with the predictions of big-bang nucleosynthesis seem to provide a firm limit on the
baryonic content of the universe, 0.0097 < QBh2T2f7;‘5 < 0.016 (Olive et al. 1990; Schramm
1990, in this volume). In the standard interpretation, the difference between this value and
the total €2 is ascribed to dark matter; other possibilities include primordial black holes,
nonstandard nucleosynthesis, or remaining systematic errors in the abundances of the light

elements.

2. Halos of Galazies. If the typical masses of a galaxies were known, as well as their number
density in the universe, one could deduce the mass density in galaxies. Unfortunately, the

rotation curves of galaxies are flat to the farthest galactocentric radii observed, and show no
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Keplerian falloff (e.g., Rubin et al. 1980, 1982, 1985; van Albada et al. 1985; Carignan and
Freeman 1985), so we do not know their total masses. Nor do binary galaxies provide any
clue (e.g., Rivolo and Yahil 1981; White et al. 1983). We also do not know how to weigh
the dwarf galases, which are very numerous. A lower limit §2=20.1 is obtained by assuming
that a typical bright galaxy, L ~ L, in the language of Schechter (1976), extends to at least

100 kpc, but this estimate is very uncertain.

3. Clusters of Galazies. Recent determinations of the mass distribution in clusters of galax-
ies, taking into account both the X-ray and optical data (Hughes 1989; Fabricant, Kent, and
Kurtz 1989) show the mass-to-light ratio to be M/Lg = 200—400h Mg/ Le. Combining this
with the mean luminosity density (emissivity) of the universe, £ = 1.93“:3:3 x 108h-1 Mpc“g
(Efstathiou, Ellis, and Peterson 1988), one obtains Qg = 0.1 — 0.3. This estimate is com-
promised, however, by the change in morphological abundances in rich clusters, which are
dominated by elliptical and lenticular galaxies, whereas the bulk of the galaxies contributing
to the luminosity density of the universe are spirals (Dressler 1980).

Clusters of galaxies can also provide an estimate of the ratio of baryonic to total (dynam-
ical) mass. Hughes (1989) determined the gas mass and total mass in the inner 0.5h~! Mpc
of the Coma cluster, as well as the blue luminosity of the galaxies within that radius. (This
radius, a third of an Abell radius, was chosen because both the gas mass and the total
mass can be determined more securely, and the derived values are relatively insensitive to
assumptions.) Taking a mass-to-light ratio M/L = 10h Mg/Lg for the stellar matter in
elliptical galaxies (Lauer 1985; see the discussion in Binney and Tremaine 1987), the results
of Hughes constrain the ratio of baryonicto total mass to be in excess of 0.035h=%/2 +0.025.
The first term in this lower limit is the contribution of the gas, and the second term that
of the stars in the galaxies. If this represents a lower limit on the general baryonic fraction
in the universe, then it may be difficult to reconcile the results of big-bang nucleosynthesis
with a total @ = 1. A possible explanation might be the existence of massive cooling flows,
but the amount of gas flowing in would_need to be very large, and the present density profile

of the gas in Coma, with the well-defined core radius seen in the X-rays, argues against this.

4. “Cosmic Virial Theorem”. This method estimates 2 by comparing the r.m.s. pairwise
velocity differences of neighboring galaxies with a statistical calculation of their relative
accelerations, using the three-point galaxy correlation function (Peebles 1976b). The method
is typically applied to galaxies whose separations, projected on the plane of the sky, is less
than 1h~! Mpc. There are technical difficulties with the three-point correlation function
(Rivolo and Yahil 1981; Davis and Peebles 1983), but, more importantly, dynamical friction
can bias the estimate of . When the halos of galaxies come in contact with one another they
merge on a dynamical timescale, which is typically much smaller than the age of the universe.
What we observe as galaxies, namely the high density luminous centers, are not immediately
disrupted, but dynamical friction causes them to spiral into the bottom of the potential well
of the mass distribution. The observed galaxies are therefore more concentrated than the

mass distribution (Barnes 1983, 1984; Evrard 1986, 1987). (Note that this bias applies only
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to highly nonlinear perturbations, and is not related to biased galaxy formation in the linear
regime.) It has recently been claimed that dynamical friction also results in a slowdown of
velocities, thus further decreasing mass estimates (Carlberg and Couchman 1989; Carlberg,
Couchman, and Thomas 1990).

5. N-body Simulations. N-body simulations with Q@ = 1 systematically generate “hot”
models, in which the velocity dispersion of galaxiesis much higher than observed. Their Mach
number is too high, in the language of Ostriker and Suto (1990). In recent years attempts
have been made to overcome this problem by introducing “biasing” to the interpretation
of the simulations (e.g., Davis et al. 1985). I suspect that the fault lies in the resolution
of the simulations, in which the mass per particle is typically a galactic mass. The rapidly
improving computer technology now allows simulations in which there are many particles
per galaxy, augmented by hydrodynamics of the gas, using smooth particle hydro (SPH)
methods. These should provide a more realistic simulation of the interaction of galaxies,

including effects of merges, dynamical friction and so on.

6. Virgocentric Infall. This flow model in the Local Supercluster gave some of the strongest
early arguments for a low value of 2 = 0.1 — 0.2 (e.g., the review by Yahil 1985). We now
know that the model is too naive. The problem is not with the spherical approximation to
the potential of the density enhancement around Virgo, which is valid, but the neglect of
other sources of gravity. First, the tidal field of neighboring superclusters is important (Lilje,
Yahil, and Jones 1986), although fortuitously, owing to the alignment of these superclusters
in the vicinity of the Local Supercluster they affect the velocity of the LG relative to the Virgo
cluster very little. The real culprit is the local void in the North Supergalactic Hemisphere
(Yahil, Sandage, and Tammann 1980; Tully and Fisher 1987), which did not receive enough

attention in the early years.

7. Galazy Dipole Anisotropies versus the CMB Dipole. The comparison of dipole anisot-
ropies in the distribution of galaxies with the dipole anisotropy of the CMB has received
considerable attention in recent years. Galaxy samples have been selected both in the in-
frared (Yahil, Walker, and Rowan-Robertson 1986; Meiksin and Davis 1986; Strauss and
Davis 1988a,b; Yahil 1988; Villumsen and Strauss 1987; Strauss 1989) and optical (Lahav
1987; Dressler 1988; Lahav, Rowan-Robinson, and Lynden-Bell 1988). Q estimates are typ-
ically lower for the optical surveys than for the infrared ones. Unfortunately, the dipole
comparison is compromised by possible largescale power beyond the range surveyed by the
galaxies (Vittorio and Juszkiewicz 1987; Juszkiewicz, Vittorio and Wyse 1990; Lahav, Kaiser,
and Hoffman 1990), as well as by smallscale smoothing (Yahil, Strauss, Davis, and Huchra
1990). Irrespective of that, the optical surveys are subject to severe problems of sky coverage,
Galactic absorption, lack of redshifts, and imprecise selection by magnitude and/or angular
diameter.

8. Morphological Segregation. IRAS galaxies, which are spirals, seriously underestimate

the density in rich clusters of galaxies. Morphological segregation, however, begins only at
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densities that are a factor of a hundred or more in excess of the mean density of the universe
(Dressler 1980; Yahil, Sandage, and Tammann 1980; Postman and Geller 1984). This is
confirmed by direct comparisons of JRAS and optical densities (Yahil 1986; Strauss 1989;
Babul and Postman 1990), which show them to trace each other well, except in a few rich
clusters. Most of the galaxies are not in these high density peaks, and the effect of this bias
should not be too large. Attempts to correct for this bias by double counting galaxies in
clusters (Strauss and Davis 1988b), and also around them Strauss (1989), indeed yield lower

estimates of 2, but in some cases the double counting may have been excessive.

9. Biasing. The really nagging question, which can only be answered dynamically, is
whether any set of galaxies really trace the mass. As argued in the introduction, an impor-
tant test is the universality of the relation between the velocity and density fields, predicted
by gravitational instability theory. In order to test this universality, it is necessary to estab-
lish the relation in several density structures. The comparison performed in this paper, with
smoothing in excess of 1000 km s~!, is concentrated in the single mass conglomerate in the
“Great Attractor”. Other density structures to be probed include the Local Supercluster,
with higher resolution, and the Perseus-Pisces complex, as more peculiar velocities become

available in that region.
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