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Abstract: We deduce a non-linear commutator higher-spin (HS) symmetry algebra which encodes
unitary irreducible representations of the AdS group—subject to a Young tableaux Y (sy, . .., s;) with
k > 2 rows—in a d-dimensional anti-de Sitter space. Auxiliary representations for a deformed
non-linear HS symmetry algebra in terms of a generalized Verma module, as applied to additively
convert a subsystem of second-class constraints in the HS symmetry algebra into one with first-class
constraints, are found explicitly in the case of a k = 2 Young tableaux. An oscillator realization over
the Heisenberg algebra for the Verma module is constructed. The results generalize the method of
constructing auxiliary representations for the symplectic sp(2k) algebra used for mixed-symmetry
HS fields in flat spaces [Buchbinder, I.L.; et al. Nucl. Phys. B 2012, 862, 270-326]. Polynomial
deformations of the su(1,1) algebra related to the Bethe ansatz are studied as a byproduct. A
nilpotent BRST operator for a non-linear HS symmetry algebra of the converted constraints for
Y(s1,s) is found, with non-vanishing terms (resolving the Jacobi identities) of the third order in
powers of ghost coordinates. A gauge-invariant unconstrained reducible Lagrangian formulation for
a free bosonic HS field of generalized spin (s1, s;) is deduced. Following the results of [Buchbinder,
IL.; et al. Phys. Lett. B 2021, 820, 136470.; Buchbinder, L.L.; et al. arXiv 2022, arXiv:2212.07097],
we develop a BRST approach to constructing general off-shell local cubic interaction vertices for
irreducible massive higher-spin fields (being candidates for massive particles in the Dark Matter
problem). A new reducible gauge-invariant Lagrangian formulation for an antisymmetric massive
tensor field of spin (1,1) is obtained.

Keywords: higher spin field theory; anti-de-Sitter spaces; Lagrangian formulation; BRST operator;
cubic interaction vertices; Verma nodules; Non-linear algebras

1. Introduction

The great interest in higher-spin field theory is mainly explained by a hope to re-
examine the problems of a unified description for the variety of elementary particles and
all of the known interactions beyond the Standard Model, as well as by a possible insight
into the origin of Dark Matter [1,2] beyond the scope of models with sterile neutrinos [3]
or vector massive fields [4]. Massive higher-spin fields in constant-curvature spaces are
legitimate candidates for Dark Matter, providing a contribution to the total energy density
at the level of about 27% in a universe with the geometry of a 4D de Sitter space; see [5,6] for
a review. Such a model calls for a study involving the compactification of extra dimensions
after the Big Bang. In the case of a Big Bang singularity, this indicates that the physics
is no longer described by classical gravity but rather by a quantum version of gravity
involving higher-spin fields [7], or, perhaps, a superstring field theory model is required.
The problems of Dark Matter and Dark Energy provide insight into the inflation theory,
which consistently describes the post-Planck classical early universe and plays a crucial
role in explaining the late-time cosmic acceleration; for a review, see, for example, ref. [8]
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and the references therein. Note that the simplest candidate for Dark Energy is given by
a positive-valued Einstein cosmological constant A, constructed along with Cold Dark
Matter, which has proved to be quite successful in describing a large span of observational
data related to polarization anisotropies in Cosmic Microwave Background Radiation; see,
for example, refs. [9-11].

Should these expectations prove to be viable, it appears that the development of
higher-spin field theory will be of high relevance in view of its close relation to superstring
theory in constant-curvature spaces, which operates an infinite set of massive and massless
bosonic and fermionic HS fields subject to a multi-row Young tableaux (YT) Y (sy, ..., k),
k > 1; for a review, see, for example, refs. [12-18] and the references therein.

A description of such theories, aimed at the final purpose of Lagrangian formula-
tion, demands some advanced and sophisticated group-theoretical techniques, related
to constructing different representations of the (super)algebras underlying the theories
in question. Whereas for a Lie (super)algebra—being the case relevant to HS fields in
flat spaces—the deduction and the structure of such ingredients as Verma modules and
generalized Verma modules [19] are rather well established, the similar case of non-linear
algebraic and superalgebraic structures—which corresponds to HS fields in AdS spaces—
has not been classified until now, with the exception of totally symmetric bosonic [20,21]
and fermionic [22,23] HS fields.

There are two well-established approaches to constructing gauge-invariant Lagrangians
for higher-spin fields by using the respective metric and frame-like formulations. In
the first approach, the fields remain unconstrained, i.e., all the conditions (d’Alembert
equation, Young symmetry, absence of trace and divergence) that select an irreducible
Poincaré [24-26] or (A)dS [27-29] group representation of a given mass and spin are im-
plemented on equal footing to obtain a Lagrangian. In the second approach, some of the
conditions (normally, those related to the trace) for the fields and gauge parameters are
implemented in a consistent manner which is imposed by hand, outside the construction
of a Lagrangian. At the level of free fields, there exist two efficient approaches to the
above objectives, known as BRST methods (initially developed to quantize gauge field theo-
ries [30-32], constrained dynamical systems using the BFV-BRST procedure [33-35]), with
respective complete (e.g., [36-38]) and incomplete [39] BRST operators (implied by String
Field Theory [40,41]), whose Lagrangian descriptions for one and the same higher-spin field
in a d-dimensional Minkowski space-time are shown to be equivalent [42]. For HS fields in
AdS spaces, descriptions of irreducible representations (in the metric-like formalism) for
the (A)dS group with both integer and half-integer spins are rather different from those for
the Poincaré group in a flat space-time, even for free theories. In all of the known cases, La-
grangian descriptions for one and the same higher-spin field deduced using the constrained
(incomplete) BRST approach with additional holonomic constraints and the approach with
a complete BRST operator do not coincide. Successful Lagrangian descriptions for integer
and half-integer spins in AdS spaces using the approach of a complete BRST operator are
suggested for massless and massive particles of integer spins in [21,37], and for massive
particles of half-integer spins in [22]. Some problems of this approach have not been solved
(in view of the yet unknown form of holonomic constraints consistent with an incomplete
BRST operator), even for free fields of a given higher spin.1

The present article develops the research line initiated by [44], and its objectives
are achieved using a regular method of constructing a Verma module and a Fock space
for quadratic algebras, whose negative/positive-root vectors in a Cartan-like triangular
decomposition are entangled due to the presence of a special parameter r, being the
inverse square of the AdS radius. The resulting ingredients allow one to obtain Lagrangian
formulations (LFs) for free mixed-symmetric integer HS fields in a d-dimensional AdS
space with Y(sy, ..., sx) by using the Fronsdal metric-like formalism [45-47] in the BRST
approach. Such an LF is the starting point for an interacting HS field theory in the scope
of conventional Quantum Field Theory. An application of the BRST construction with a
complete BRST operator to a free HS field theory in AdS spaces consists of several stages and
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solves a problem being inverse to that of the method [33-35], thus reflecting the concept of BV-
BFV duality [48-50] as a particular case of the AKSZ model” [52]. First of all, the conditions
that determine representations of a given mass and spin are regarded as a topological
(having no Hamiltonian) gauge system of mixed-class operator constraints, o;, I = 1,2,.. .,
in an auxiliary Fock space H. Second, the entire system of o;, which forms a quadratic
commutator algebra, is additively converted (see [53,54] for the conversion methods) within
a deformed (in powers of the parameter r) algebra of Oy, Oy = 0j + 0}, defined in a larger
Fock space, H ® H’, with first-class constraints O, O, C O;. Third, one needs to find a
Hermitian and nilpotent BRST operator Q' for a non-linear algebra of converted operators
Oj, which contains a BRST operator Q for the subsystem O,. Fourth, a Lagrangian action S
is constructed for a given HS field through an inner product ( |K| ) in a total Hilbert space
Hiot, S ~ (x|KQ|x) so that S obeys reducible gauge transformations J|x) = Q|A), with
|x) containing the initial and auxiliary fields. As a result, the corresponding equations of
motion are to reproduce the initial AdS group conditions.

The above algorithm, as applied to bosonic [55,56] and fermionic [57,58] HS fields in
flat spaces, does not encounter any problems in view of a linear Lie structure of the initial
constraint algebra [oj, 07} = f {}0 x with structure constants f 5 Indeed, for the same algebra
of additional parts 07, it is sufficient to use the construction of a Verma module (VM) for the
integer HS symmetry algebra sp(2k) [59], which is in one-to-one correspondence with the

Lorentz so(1,d — 1) algebra of irreducible unitary representations subject to Y (sy, ..., sk),

k< {%} , for massless fields, due to the Howe duality [60]. Then, an oscillator realization

of the symplectic algebra sp(2k) in a Fock space H' [59] (orthosymplectic algebra osp(1|2k)
for half-integer massless field representations [61]) has a polynomial form as compared
to totally symmetric HS fields in AdS spaces [22,62], where the (super)algebras of o are
non-linear and different from those of 0 [20,21,23]. A problem of equal complexity arises
in constructing a BRST operator Q' for the algebra of converted constraints Oy, which, in
the transition to AdS spaces, does not have a form, being quadratic in ghost coordinates C,
and requires a complete analysis of the relations, starting from a resolution of the Jacobi
identities; see [63] for the details of finding a relevant operator Q' and [64] for classical
quadratic algebras.

The details of a Lagrangian description for mixed-symmetry massless HS tensors on
(A)dS backgrounds have been studied in a “frame-like” formulation [65-69], whereas such
descriptions for mixed-symmetry massive bosonic fields with off-shell traceless constraints
in the (A)dS case are known for a Young tableaux with two rows [70-72], the main result for
Lagrangian formulation being [72]. In a metric-like formalism, (non-Lagrangian) equations
of motion from the viewpoint of a BRST description with an incomplete BRST operator for
arbitrary massless HS fields is discussed in [73,74], whereas in the BRST-BV approach with
an incomplete BRST operator and also in the light-cone approach, mixed-symmetric HS
fields are examined in [75-78]. Diverse aspects of mixed-symmetry HS field Lagrangian
dynamics in Minkowski spaces are discussed in [79] and the references therein, and the
case of interacting mixed-symmetry HS fields in AdS spaces is considered in [80,81]. In the
case of cubic interaction (see [82-92] for the study of cubic vertices in different approaches),
irreducible higher-spin fields in flat spaces are classified by Metsaev [93] using the light-cone
formalism. We intend to follow the application of the BRST approach to Lagrangian cubic
interaction vertices for irreducible totally symmetric bosonic fields in flat spaces [38,94-96],
however, as applied to HS fields (including mixed-symmetric ones) in AdS spaces.

The article is devoted to solving the following problems. First, we deduce an HS
symmetry algebra for bosonic HS fields in a d-dimensional AdS space subject to an arbitrary
Y(s1,...,s¢); second, we develop the Verma module construction for an HS symmetry
algebra, with a two-row YT Y(sy,sp) and an oscillator realization for a given non-linear
algebra as a formal power series in the oscillators of the related Heisenberg algebra; third,
we construct a BRST operator for a converted HS symmetry algebra and an unconstrained
LF for free bosonic HS fields in AdS spaces subject to Y (s1,s,); and fourth, we develop a
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procedure for constructing cubic interaction vertices by using three copies of massive HS
fields in AdS spaces.

The article is organized as follows. In Section 2, we examine bosonic HS fields, which
includes, in Section 2.1, the construction of an HS symmetry algebra A(Y (k), AdS,;) for HS
fields subject to a Young tableaux with k rows; then an auxiliary theorem on a deformation
of polynomial general commutator algebras under an additive conversion procedure is
presented in Section 2.2. In Section 3, we deduce a manifest form of an HS symmetry
algebra of the additional parts for arbitrary HS fields, formulate the problem of Verma
module construction for the algebra A’(Y (k), AdS;) in Section 3.1 and solve it explicitly
for a quadratic algebra A’(Y(2), AdS,) of the additional parts 0} in Section 3.2. We find a
Fock space realization for A’(Y(2), AdS;) in Section 3.3. In Section 4, we manifestly deduce
a non-linear algebra A.(Y(k), AdS;) of converted operators O; in Section 4.1; we also
present the form of a BRST operator for this algebra with k = 2 in Section 4.2 and develop
an unconstrained Lagrangian formulation for massive bosonic HS fields with a two-row
Young tableaux Y (s,s;) in Section 4.3. The general concept of finding cubic interaction
vertices for massive HS fields in AdS spaces, using the approach with a complete BRST
operator, is examined in Section 5. Some examples of fields with lower spins are presented
in Section 6. In the Conclusion section, we summarize our results and discuss some open
problems. In Appendix A, we prove a certain proposition, and then in Appendix B, we
consider its application to a polynomial algebra related to the Bethe ansatz. In respective
Appendices C.1 and D, we present calculations for the Verma module construction with
the algebra A’(Y(2), AdS;) in terms of a series of lemmas and also give its oscillator
representation. Finally, in Appendix E, we prove that the resulting Lagrangian does indeed
reproduce appropriate conditions for a field to determine an irreducible representation of
the AdS group.

As a rule, we apply the notation of conventions of [38], and also the respective notation
e(F), gh(F), [H, G}, [x], 8, (5)° for the Grassmann parity and ghost number of a homoge-
neous quantity F, as well as for a supercommutator, the integer part of a real-valued x, an
integer-valued vector (s1,sy,...,5¢), and a triple (5’,%1, 5%2, 5%3)

2. HS Fields of Integer Spin in AdS Spaces

In this section, we obtain a number of special HS symmetry non-linear algebras which
encode mixed-symmetry tensor fields as elements of irreducible AdS group representations
with a generalized spin s = (sq,..., ) and mass m in AdS; space-times. We examine the
problem of a Verma module construction for one of the algebras and solve it explicitly for a
non-linear algebra with a two-row Young tableaux, as well as for a polynomial algebra of
order (n — 1). The construction of a Fock space representation for a non-linear algebra with
a resulting Verma module finalizes the solution of the problem under consideration.

2.1. HS Symmetry Algebra A(Y (k), AdS,) for Mixed-Symmetry Tensor Fields with Y (sq,...,sk)

A massive generalized integer spins = (s1,...,5¢) (51 > s3> ... > s, > 0,k < [d/2])
AdS group irreducible representation in an AdS; space is realized on mixed-symmetry

tensors @1y 12(s)),.. 1k (s) = CDH}--H% Bl (x), which correspond to the Young
tableaux — :
]/l% ]/l% . . . . . .2 . ‘I/{51 ‘
P (Mg |- -~ || |H
Pt (s1) 252 T T T @
w0
subject to the Klein—Gordon (2), divergence-free (3), tracelessness (4), and mixed-symmetry (5)
equations for f = (2;3;...;k+ 1) <= (51 > s2;51 =52 > 53;...;51 =2 = ... = 5¢) [28],

namely,
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(V2 +7[(sy —B—1+d)(s; — ; F PR 2y, k) =0 ()
vyli¢]41(Sl),]/lz(SZ),...,]/lk(Sk) - 0/ Z/] = 1/ e lkl ll/ m; = 1/ <o sSiy (3)
i, i 0 I <m
8@ (5 2(5y), ik () T 8 Lot (sy) 25 pik () = O L <, (4)
=0, i<j,1<[j<sj, ©)

O I (7 DR T Y 7 R IO
—

where the underlined brackets denote the fact that the indices inside do not take part in
symmetrization, i.e., the present symmetrization involves only the indices p'(s;), ‘uf in
. . j
{yl(si),...,yjl .. y{}
—_——

To obtain the HS symmetry algebra of o7 for a description of all integer HS fields, we
introduce, in a standard manner, a Fock space ‘H generated by k pairs of bosonic creation
j+

a;i(x) and annihilation a; (x) operators,®i,j =1,...,k, ],ti,vj =0,1...,d-1,

laly,a[] = —g,ui67, 81 =diag(1,1,...1), ®)

and a set of constraints for an arbitrary string-like vector |®) € H, which we call a
basic vector,

(=] Sk—1 51+ A+ k s +H§,
= L Z L e P, tsn (0 TTT L 0), @)
51= 052 Si= O k i=1 li:1

To|®) = (Ip +m3 +r((gh — 28— 2)g Zgo ))|®) =0, Ip=[D*—rA2k)) (g
=2

(L, 19, ¢271) |®) = (—ia), D¥, 3al,al¥, Al Taht)| @) =0, i<jii<ji, )

with particle number operators, a central charge, and a covariant derivative in H, respectively,*

,,{az+ at}, 2 =m?+rB(B+1), (10)
Dy, =9, — wy (x) (Za;;aih>, a?(ﬂ(x) = eff(x)a?(ﬂ, (11)

with a vielbein ¢/, a spin connection wl’jb, and tangent indices a,b, a = 0,1...,d — 1.

The operator D, is equivalent (as applied in H) to the covariant derivative V, with the
d’Alembertian D?> = (D, + w”;,)D". The set of k(k + 1) primary constraints (8) and (9)
with {o,} = {To, 1,14, tilfl} is equivalent to Equations (2)—(5) for all admissible values of
spin, and for the field <I>H1(S1) 2(55), i (51) with a fixed spin's = (s1,s,...,5¢), once, in
addition to (8), (9), we have to add k more constraints with gf,

« d
$hl®) = (5i-+ 5)I®). (12)

The condition for the algebra of o, to be closed under the [, |-multiplication leads to
an enlargement of o, by adding the operators g} and the Hermitian conjugates o,,

(I, 17%, ) = (—ialf D, Laifalt*, aifaht*), i < ji iy < jy, (13)

with respect to the inner product in H,
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k Si—1 Sl+ +sk

d *
/d IgIZZ ol sl e

i=1s;=

(¥ |®) )(x)qﬂll(51)#2(52),---44"(51()(x). (14)

(52)-- 1K (sk

This fact guarantees the Hermiticity of a corresponding BFV-BRST operator, with the

self-conjugate operators (I, g6+) = (lo, g})) taken into account (hence a real value of the
Lagrangian L) for the system of all the operators {04, 0", g, }. We call the algebra of these
operators an integer higher-spin (integer HS) symmetry algebra in an AdS space, with a Young
tableaux with k rows® and denote it as A(Y (k), AdS;).

The maximal Lie subalgebra of the operators I/, ¢, gf i+, 11+ is isomorphic
to the symplectic algebra sp(2k) (see [59] for details; later on, we refer to it as sp(2k)),
whereas the only nontrivial quadratic commutators in A(Y (k), AdS;)) are due to the op-
erators containing Dy: I, ]y, I't. For the purpose of an LF construction, it is sufficient
to have a simplified (having no central charge 173), so-called modified, HS symmetry al-
gebra A, (Y(k), Ade) with the operator [; (8) instead of [ so that the AdS mass term
m2+r((gh —2B—2)g8 — 21:2 g} is restored later on, as usual, within a conversion proce-
dure and an appropriate LF construction.

The algebra A, (Y (k), AdS;)) of the operators o, from the viewpoint of a Hamiltonian
analysis for dynamical systems, contains the first-class constraint /y, as well as the 2k
differential [;, liJr and 2k? algebraic tilfl,t;lrh,lif, l;]-r second-class constraints o0,, and also

the operators gé, composing an invertible matrix A ( gé) for a topological (having a zero
Hamiltonian) gauge system due to

[0, 0] = fip0c + fefoc0a + Aap(8D), 00, Lo] = fac[zo]oc + f§50}0c0d~ (15)

Here, f, f;l‘f, f;[lo], f;ﬁo], Agp are antisymmetric with respect to the permutations of

the lower indices; the constant quantities and the quantities A ( gé) form a non-vanishing
2k(k +1) x 2k(k + 1) matrix [|Ag|| in the Fock space H on the surface £ C H, [|A ||z # 0,
which is determined by the equation 0,|®) = 0. The set of o; satisfies non-linear relations,
being additional to those for sp(2k) and given by the multiplication Table 1.

Table 1. The HS symmetry non-linear algebra A, (Y (k), AdS;).

J’_

(4=} tin i1j1 lo I I+ [ [t
Fi2j2 Albj2iji Blmzlh 0 1i2 52t _Jizt g Hhpgita it ghti
i j S + {1 5in} {jit s}
22 —Bitiy,, injiioja 0 li, (5]’2 —1} 3, P} I, U 5 1, Ut 5!

o 0 0 0 Ky K} 0 0

v AL L N | X} 0 —Lifi gl
A Tt Wi A\ R i 0
lai _pidigln _pidiaghtin 0 _1plizgi) 0 Lizjn

+ i1+ si + o l 5 i

izja l{,'z (5]-2} l]-1 {jz(slz}ll 0 3 { Y ]2} 0 Litjuizj2 0

8 R U A 0 S (N R
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First of all, note that Table 1 does not include any columns with [, }-products of all o;

with g{), which can be observed from the rows containing gJO, as follows, [b,01} " = —[o], b},
with allowance for the closure of the HS algebra with respect to the Hermitian conjugation.
Second, the operators 22, tiJ;jz are defined so as to satisfy the following properties:

(tfsz,t;;jz) = (tf2f2,t;;.2)9fzi2, 0122 = (1,0) for (jo > ip, jo < i), (16)

with the Heaviside 6-symbol® /. Third, the products B;iﬁ, ARiA Fijul 122411 gre deter-
mined by the explicit relations

b2, (ol _ ol2\si2g] hoiz. ot Vs _ (prigin, 4 2. g )l
Bzz]zl.ljl — (goz _ 862)(515(5]‘5 + (tj1]29]2j1 + t]zj1 9j1]2)‘5if _ (til tzgzzil 4 tzzi1 9i1 zz)(sjf , (17)
AbiAjt = fpagii _ fhiighl Fi2ld — fhja(ght — giat), (18)
Liziir — %{51'21'15]'2]'1 {286251'2]'2 T 862 +g{)2] — oix{ia {th}izgizh} + tiz]'l}'*'gh}iz}
_giz{in [tfl}fzgfzjl} + t72f1}+911}fz] } ) (19)
They satisfy the obvious additional properties of antisymmetry and Hermitian conju-
gation
inj2,i1j1 — i1]1,i2] + — + tr. 6.
ARRM = — A2 Ai1j1,i2jz — (Allh,lz]z) t12]15211 _ 11]2512]1, (20)
(Lizfz,i1j1)+ = Lhhip F2ii+ — (Flaii)t = fhiat (ght _ gty (21)
Blz]le]l = (gé)z _3(1)2)51?5;5 <t+]26]2 + th] 6]1]2>‘512 ( i1i29i2i1 + ti2+i16i1i2>5ﬁ'(22)

Fourth, the independent quantities K, ng, X’gi in Table 1 are quadratic in o;:

Wi = [, :Zr[(g7 gl Ztmfebm+t[f’"+9m[f) pim ] (23)
Kllc — [l lk+ (4Zlkl+ll+lk+(2g0 72(Zli+t+ik9ki+li+tki9ik)>, (24)
i
X = o r(KY+ Y Kl Y K)o (25)
I=i+1 =
) ) j—1 ) ) k ) . i—1 )
—1’[4zll]l+lll—ztl]+fll— E tll+t]l_ Z tlzt]l gJ()+g0 )t]l]eq
I=1 I=i+1 l:j+1

_7[4 Zl Pl Z tl]+tlz _ Z tll+t]l Z piltglj+ + t+ g{) +g0 i 1)]9]1
I=1 I=j+1 I=i+1

In (25), we used the quantities K% j, ji=1,...k ng , composing a Casimir operator
Ko(k) for the sp(2k) algebra:

) ) k k B B .
Ko(k) = ZKO’+2ZIC”9”—2((g6)2—2g6 4y 2y Y (47 =471 — gp)). (26)

i i,j i i=1j=i+1

The algebra A, (Y (k), AdS;) may be regarded as a non-linear deformation (in powers
of r) of the integer HS symmetry algebra A(Y (k), R%~1) [59] in Minkowski space, namely,

An(Y(k), AdS;) = A(Y(k), R 1) (r) = (Tk & T @ zo) (r)® sp(2k), (27)
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for a k-dimensional commutative (in R"¥~1) algebra T = {I;} and its dual T** = {I'*},
which represents a semidirect sum of the symplectic algebra sp(2k), being an algebra of
internal derivations of (T* @ T**). For HS fields with a single spin s1, k = 1, and a two-
component spin (s1,52), k = 2, the algebra A, (Y (k), AdS;) coincides with the respective
familiar HS symmetry algebras in AdS spaces given by [20,63].

Now, we utilize the results of a special theorem, and then proceed to a conversion of
the algebra of 0] so as to obtain the algebra of O; with first-class constraints alone.

2.2. On Additive Conversion for Polynomial Algebras

In this subsection, having in mind the problem of an additive conversion for non-
linear algebras (superalgebras) with a subset of second-class constraints, we need to use an
important statement based on the following (see [23] for a detailed description).

Definition 1. A non-linear commutator superalgebra A of basis elements oy, I € A (with A being
a finite or infinite set of indices) is called a polynomial superalgebra of order n, n € N if the set
{o1} is subject to the n-th order polynomial supercommutator relations

[eS) n—1
1K Ky Ky 1K
lor, 07} = Ff§(0)ox, FS = £} + fo(]n) e T o
i=1

K

fI(F)Kl"'K" #0, ande A =0, k>mn, (28)

with structure coefficients fl(}/l)Kl"'anlK

tions of lower indices, fI(]n)KlmK" = —(—1)8(01)8(01)f](;’)K1"'K”.

of generalized antisymmetry with respect to the permuta-

Now, we are in a position to formulate our basic statement of Section 2.2, presented as
the following.

Proposition 1. Let A be a polynomial superalgebra of order n with basis elements oy defined in a
Hilbert space H. Then, for a set A’ of elements o} defined in a new Hilbert space H' (HNH' = @)
and supercommuting with oy, as well as for a direct sum of sets A. = A+ A’ of the operators Oy,
Or = o1 + 0}, defined in the tensor product H ® H', the requirement to be in involution

(01,0} = Ffj(0/,0)0k, (29)

implies that the sets {07} and {Oy} form the respective polynomial commutator superalgebra A’ of
order n and the non-linear commutator superalgebra A. with the composition laws

m

[0}, 0}} (l KlOKl + Z m 1+€K<m>fl(]m)KMK1 HO}(S, (30)
s=1

(05,0} = ( 1)1<+ Z Fu )oK, (31)

for the values €Ky EK(y) = Zg:_ll €K, (Z};Hl eK,). The structure functions Fl(}mk(o’, 0) in (30)

are constructed with respect to the coefficients f I(}")Kl“'K”’ = II?'“K'” used in (28) as follows:
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m—
S+8 K K Kgp1-K
F(m Ko HOKp + Z Koy g Rtsrt B HOK H Ok,, where (32)
p=1 I=5+1
Ks K1K5+1 Ky (KsK1Kg 1+ Kiyy Ky Ks+1K1Ks 27 Kim sKS €K R
fz] —Jij +fij (71) H A +
f‘KSHKSMK]KHZMKm (_1)€K5+1 Y €K, + (st+1KS“'Ks+2K1Ks+3"'Km (_1)€J<5+25K1 +
) 1
Ks41Ks42Ks++- K1 Ks 3K €K, o Li—1 €K €K, , 1 Lio1 €K
_|_f1]5 s s "’(_1) 542 &l=1°K] (_1) s+1 &1=1 4.4
Z;”: 18K 25:1 ek, pKsp1--KnKs---Ky
(—1)EHee 5 oo 2 g , 33)
where the sum in (33) contains % terms, with all the possible ways of arrangement for

Ks-- K1K5+1 Ko
ij
ordering of the indices’ Ksi1, ..., Kypand K, ..., Ky.

(Ksy1,- .-, Ky) among the indices (K, ..., Ky) in , without changing the separate

The correctness of the proposition is examined in Appendix A. Turning to the structure
of the superalgebra 4, we emphasize that, in contrast to A and A/, we call it a non-
homogeneous polynomial superalgebra of order n, due to the form of relations (32); see Note 15
in Appendix A for remarks. In the case of a Lie superalgebra (n = 1), the structures of
superalgebras A, A" and A, are identical, and used as the integer HS symmetry algebra
A(Y (k), R¥=1) [59]. For quadratic algebras (n = 2), the algebraic relations for A" 1, A1
and A”~! do not coincide with each other, due to the presence of structure functions
f I(]z)Kl X2 which is originally shown for the algebra A(Y(1), AdS;) with totally symmetric
HS tensors in an AdS space [21], having the form

1)K 2)K K K 2 K>K
lor,07] = fi) ok, + Fi7" ok 08, [0, 0]] = £} M0k, — £17" M0k ok (34)

[01,0)] = (£ + B (o, 0))ox, EP = £75 %0k, = (755 + 7o', - 35)

The relations (34) and (35) are sufficient to determine the form of multiplication laws
for the algebra of the additional parts 0}, A’ (Y (k), AdS;) and for the converted O, operator
algebra A.(Y (k), AdSy).

As a new result, we present an explicit form for the cubic commutator algebras A’, A,

(1)K 2)K>K 3)K3K K
[0’1,0’]} = fl Ky ol f() 2K K1 K2+f1] 3Kz 10%10%20%3,
[01,0p} = (f]] +ZFI] )OK, (36)
3)K 3)K1 KK 3)K;1 KoK 3)KK1K
1(]) = fI(]) 7270k, Ok, (f( e f 10’k Ok,
+(fl(f3)K2K1K+fI] KzKKl +f1] KKZKl)O KlO KZ, (37)

if the commutator relations for the initial algebra .A are given by (28) for n = 3.
In Appendix B, we consider the example of a polynomial 3-parametric algebra A of
order n — 1, n € N, being a polynomial deformation of the su(1,1) algebra for n > 2.

3. Auxiliary HS Symmetry Algebra A’ (Y (k), AdS;)

The procedure of additive conversion for the non-linear HS symmetry algebra A (Y (k), AdS;)
of the operators o; implies establishing, first of all, an explicit form of the algebra A’ (Y (k), AdS,)
for the additional parts 0}, and second, a representation of A’(Y(k), AdS;) in terms of
appropriate Heisenberg algebra elements acting in a new Fock space H'. The structure of
non-linear commutators of the initial algebra implies a need for converting all the operators

o in order to construct an unconstrained LF for a given HS field D) (12)sy s (16)s;
51/ Ll XA bk
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The former step is based on determining a multiplication table A’(Y (k), AdS;) for
the operators 0}, following the structure of the algebra A(Y (k), AdS;), given by (34) and
Table 1.

As a result, the required composition law for A’ (Y (k), AdS,) is the same as the one for
the algebra A(Y (k), AdS;) in its linear Lie part, i.e., for the sp(2k) subalgebra of elements
(1", 10+, ¢ t’-+- ,84), and is different in the non-linear part of Table 1, determined by
the isometry group elements [/,I'",1). The corresponding non-linear submatrix of the

multiplication matrix for A’ (Y (k), AdS;) has the form given by Table 2.

Table 2. The non-linear part of the algebra A’ (Y (k), AdS;).

(4, —} 1 Vi [t
I 0 it —rK}
i —riCT —w X}/
URs ﬂqf 7ng WéjiJr

Here, the functions IC’1’+, ICf, w/ l, W,;] o (X, X7y () have the same definition as those

in (23)—(25) for the initial operators o, albeit w1th an opposite sign for (X;ij —1),

Wél] — o [(g g Z/l] Zt/m[je[]m + t/[]ergm[I)l/l] ‘| (38)
IC (4Zl/ﬂ+l/l Lt (2g _1) lel+t/+l]9]l + l/1+t/1191])) 39)
11] . {l, _ 1’ K,Ol 2 ]C/zl 2 ]Cllz }51] (40)
I=i+1
j—1
(A 1 Yy et Y i (gl g1y ji 6"
I=1 I=i+1 I= ]+1

T e VR S ; , y
+1’{4 Zl [+ i 7Zt/1]+tlll _ Z Hil+ il _ Z il i+ + tH_(gg +38 i 1)}9;1.
I=1 I=j+1 I=i+1

Now, we can outline the points leading to an oscillator representation for the elements
of an auxiliary HS symmetry algebra.

3.1. On Representations of A’'(Y (k), AdSy)

Here, we assume that a generalization of the Poincaré-Birkhoff-Witt theorem for the
second-order algebra A’(Y(k), AdS,;) does indeed hold true (for a generalization of the
PBW theorem involving a quadratic algebra, see [19]), and so we begin to construct a Verma
module based on a Cartan-like decomposition® extended from that of sp(2k) (i < j, I < m),

A'(Y(k), AdSy) = {1, 17} & {80, Iy e {lipti,, 1} =6 @ H@ &S (41)

Distinct from the case of a Lie algebra, the element /) does not diagonalize the elements
of the upper £, (lower, &), triangular subalgebra, due to the quadratic relations (39), as in
the case of totally symmetric HS fields in AdS spaces [20,21]. Additionally, the negative-root
vectors I/, 1 ]’.+ do not commute.

Since the Verma module over a semi-simple finite-dimensional Lie algebra g (an
induced module U(g) @y (») |0)v with a vacuum vector” |0)y) is isomorphic, due to the
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PBW theorem, as a vector space to a polynomial algebra U/ (¢~ ) ®c |0)v, itis clear that g can
be realized by first-order inhomogeneous differential operators acting on these polynomials.

We examine a generalization of a Verma module for quadratic algebras: g(r) presents a
g(r)-deformation of a Lie algebra g in such a way that g(r = 0) = g. Thus, we consider a
Verma module for such non-linear algebras, assuming that the PBW theorem is valid for
g(7). The latter will be proved later on by an explicit construction of the Verma module.

Let us consider a quadratic algebra A’(Y(k), AdS;) as an r-deformation of the Lie
algebra A’(Y(k), RV~1), with (27) taken into account (see [59] for details);

A'(Y(k), AdSy) = (T’k ®T* & l{,)(r)aa sp(2k), TR={U}, TF ={I*}. (42

Therefore, according to (41), the basis vector of the Verma module |N)y has the form
IN)Yv = |ij, (7, Bn)i)v = |fij, 11, P12, - -0 Pk 12, P23 -+ ) Poks -+ -0 Pk—1ks TV

I+
ll

k k
oy =T105) 1] T (5 ) ow gcov =0
!

i<j m,m>1

with the (vacuum) highest-weight vector |0)y, non-negative integers ij, N1, Pims and arbi-
trary constants m; with the dimensionality of mass.

Now, we are in a position to construct a Verma module for the algebra A’ (Y (2), AdS;),
thus leaving the general case of an arbitrary Young tableaux with k > 2 rows out of the
scope of the paper. The solution of a similar problem for the auxiliary polynomial algebra
A’ is given by Appendix B.

3.2. Verma Module for Quadratic Algebra A' (Y (2), AdS;) with k = 2 Rows

Let us first specify a commutator multiplication law for the algebra A’ (Y(2), AdS;),
belonging to A’(Y (k), AdS,). To do so, we can choose 6/ = 6?26/, and therefore the only
surviving operators are i/ = t12, t;]f =5

As a result, the Lie part of Tables 1 and 2 for k = 2 is the same as in the case of a bosonic
Lie subalgebra in [58], once the following expressions for the non-vanishing operators

B2, AN212 pr2j pr2jt priibgp,
Bllzlz — (gé _ g%)’ A/12,12 — 0/ (Fllz,j,E FI] — t/12(5]2 _ 5]1), (44)
1/ijiizje — %{&Zilyzh [2g6251‘2j2 +g62 _._8{)2} _ sili [t125j1}15i22 + t12+5j1}25i21} (45)

_siz{in {tlz(s]ﬂgh}l + t12+(5j1}25j21} } ,

are identical to the same operators o; from the initial algebra .A(Y(2), AdS;). Since the non-
linear part of A’'(Y(2), AdS,) is determined by the same functions W;] LK, Wéj " ICfJ’Xg]

as those for arbitrary k, its manifest expression is implied directly by (38)—(40) as follows:!’
Wéij — oy [(géz — g2 iz t/12+l/22}, (46)
K = (4szﬁ+z”' 1T (2gl — 1) — 20212501 21’1+t’125f2), (47)
1
X/ij _ I K/()l' + K:/12 51] + 4 l/ll+l/l2 + ( 2 + n_ z)t/ 52511 (48
b {lo = (K" + Ko=) yo +r{[4), 80 8o 1) (48)

+r{[a ) 2T ¥ (B + gt — 2)] 6102
with the totally antisymmetric sp(2)-invariant tensor €'/, €12 = 1, and the operator Ki? =
(t1+2t12 — 4[1+2112 — ¢3) deduced from a Casimir operator for the sp(4) algebra in (26) for
k=2.
All the Lie part quantities of Table 1, except for 0}, and those of Table 2 are specified
by (44)-(48) used in the HS symmetry algebra A’(Y(2), AdS;) of the additional part o].
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The Cartan-like decomposition (41) and the Verma module basis vector (43) of the
algebra A’(Y(k), AdS;) are reduced to those for A’(Y(2), AdS;) in the form

A(Y(2),AdS,) = {lz{j 12,l/+} &) {g ZO} P {ll],tlz,l }=& OH @ &, (49)
., 2 e
IN(2))v = |fjj, n1, pra,m2)v = H(l{j*)”lf(;l”)”l (£ )Plz(l )”2|0>v, E510)y = 0. (50)
i<j

Here, in contrast to the case of a Lie algebra with totally symmetric HS fields in
AdS spaces [20,22,58], the negative-root vectors lfr, i /1y '+ do not commute, which means
that | N(2))y is not an eigenvector for the operators t’ﬁ, l;*, thereby featuring substantial
peculiarities in constructing a Verma module for A’ (Y(2), AdS;).

By definition, the highest-weight vector |0)y is an eigenvector of the Cartan-like
subalgebra H,,

(86,10)10)v = (W', m3)[0)v, (51)

with certain real numbers k!, h2, mg, whose values are to be determined later on, at the end
of LF construction, in order for the Lagrangian equations of motion to reproduce the initial
AdS group irrep conditions (2)—(5).

Then, we determine the action of negative-root vectors from the subspace &, on
the basis vector |[N(2))y, which does not present the action of the raising operators in a
manifest form and reads as

LRIN@)Y = |+ ijum, Fis)v (52)
ll/+ N(2)>V = 512H l/+ Vlzjl/+ 1], ﬁS>V +511m1‘ﬁi]'/ n + 1[ P12, le>v , ] — 1/ 2/ (53)
l<]
. 2
tEINQ@)y = H(l/+)n’] #3105, 7is)y — 2n11|nyy — Lnap + 1, na, 7 )y (54)
i<j

—nyp|ny, nip — 1,0 + 1,7s) v

Here, we used the following notation: first, 7i; = (11, p12, n2) and ﬁij = (0,0,0) in
accordance with the definition of |[N(2))y; second, Sijim = 0itdjy for i < j,1 < m so that
the vector ‘N + 5ij,lm>V in (52) is subject to the definition (50), increasing the coordinate
n;j in the vector IN)y, for i = I,j = m by a unit while leaving intact the values of the

remaining ones.
In turn, the action of Cartan-like generators on the vector |N(2))y is given by the relations

b
—
N
SN—
<

Il

(27111 + g+ + (1) pra + hl) ’N(Z)W, 1=1,2, (55)
[T )15 - ©6)

To obtain the representations (52)-(56), we used a formula for the product of operators
A, B,

bl
—
N
S—
<

|

k times

2 B” kadk A, adSA =[...[A,B}...},B}, for n>0. (57)
k,n_ ...[A,B}...},B}, > 0.
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Finally, the action of positive-root vectors from the subspace &, on the vector |[N(2))y,
according to the rule (57), reads as follows:

— 2 St
o M) =TT (5 o ()t

6ijr 0,0, 1’12>V - ;lnu

i — Oij2 + Oij 1, fis) v

i<j
+p12(ht = W —ny — p1p + 1) |y, n1, pr2 — L2y, (58)
MMN@)y = —mynuli;—djn,m +1,pr,m)y
2 2
. nio P o =,
+{H(l;j+)”ul’1 - H(z;}f)”u %nzy} 0ij, 7is) v, (59)
i<j i<j
N no
?IN@Q))y = _ml%‘”ij = dij12,m + 1, p1o, ma)y
2
1) 12 = H(l'+)"1’_‘)’f”l’+} i/ Tis)v s (60)
i<j
MIN@)y = np(mg+ng+ny — pro — 1+ 1| — 811, fis)v
np(np —1),, .
% |7iij — 26ij,12 + 6ij.00, Fis) v (61)
2
{F[(l’*)”’/l'11 2 H l”r ”ff*‘svlzt’*} 0ij, 7is)v
1<]
'"MIN@)y = f (nlz + 2 2ny +ny + hl) ) |7iij = S0, Tis)v
1 -
+§P12Tl11(h2 — W+ ny + prp — 1) [y — 85511, 11, 12 — L)y
+n11np|iti; — 8ija1 — bijp2 + 6ij2, fis)v
2 2
LT = 2 Ty Y6
11 1] 2 1 l]l s/V
z<] i<j
jas o
_hn (l/+)nij_5ij11 (5111l > ny (tg)lﬂlz t/12 0;,0,0, na)v, (62)
2 1<]
I2\N@2))y = naa(nip+na + pra +np — 1+ B2)|fi; — 80, 7is)v
n2p12

+ (p12 — 1+ 1> — b + mo) |iijj — 8jj 10,11, p12 — 1, m2)vy

2

nip(nip —1), .
% |7iij + Sij 11 — 203512, s v

1 H(l/+)n’]( I )nll/22

1<]

_ ”212 H(l/+)nij—5ij,1z (fé:) m (t’l;)lﬂu t,

l<]

_|_

0,0, p12, n2)v

6,’]‘, 0,0, 1’12>V . (63)

It is easy to see that, in order to complete the calculation in (53), (54), (59)-(63), we need
to find the action of the positive-root vectors '™, 1" m = 1,2, the Cartan-like vector Ij, and

the negative-root vectors / Mt ’1J2r on |Oij, #is)y, and also the action of the remaining operators

12, 122 on an arbitrary lﬁlm, 0,0, n,)y in terms of linear combinations of certain vectors. We
solve this rather non-trivial technical problem explicitly in Appendix C, with an introduction
of some auxiliary quantities, which we call a primary block operator, t},, (A37), (A38) and derived
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block operators, ?1;/?2+r2)j;/11r?m2r m = 1,2, (A42), (A43), (A47)~(A51), (A56), presenting the
result in the following form.

Theorem 1. A Verma module for the non-linear second-order algebra A' (Y (2), AdSy) does exist,
is determined by the relations (52), (55), (64)—(72), and is expressed using the primary t,, and
derived block operators £i5, 1%, 10, 10,1, m = 1,2, (A42), (A43), (A47)~(A51), (A56) in the
final form

thINQ@)v = pr =K —ny— pip +1)|fi,n, pra — 1, m2)y
- ;Z”IZ fiij — 0ij 1 + i1, fis) v + f’u‘N(ZDV/ (64)
INQ)y = — ;(3 — Dnyy i — 81 + Oij0, is)v + B ‘N(2)>v, (65)
FHNE@Yy = 6 |N@)+ 81y + P [N @)y, (66)
BIN@) = 1|0 iis)y 10,7 (67)
HIN@)y = 11|07y [0, ) — M |7ij — bij1, 7is + bs1)v
—%Tﬁ |7iij — bij 12, 7is) v, (68)
LINQ) = 1|0 i)y {6, ] — ml% |7ij — bij2, Tis + b51)v
—noaly" |y — ijo0, Tis v, (69)
MN@)v = nm(my+np+n1— pra — 1+ 0 i — 8ij0, 7is)v
% |7iij — 26ij,10 + Sija, 7is)v + 11| 0i, 7is)v |16, ;]
—%ﬂﬁ |7iij — ij a2, 7s) v, (70)
LNy = % ("112 + Zl:(zﬂn +np+h) - 1) |7iij — 6312, 7is) v

1 -
+§P12n11(h2 — W+ ny + pr2 — 1) [ — 85511, 11, p12 — L)y

- = /
+niinp|iti; — 8ija1 — Oijo2 + Gij12, fis)v + 11,

Oij, fis)v |[6,,-—>ﬁi,-]

—%?ﬁ |7iij — bij02, Tis) v — %ﬂz‘ﬁij — dij11,7is) v, (71)
5N@)y = nap(np+ pia+ny+nyp — 1+ 02|y — 8ij, is)v

+%(P12 — 141 = h' 4 n)|its; — 610, 7is — s12) v

+% |7iij + ij11 — 264,12, i) v +7722‘N(2)>v

_%az’ﬁzj = 6ij12, Tis)v - (72)

To obtain these relations, we applied the obvious rule

2

LT )™, 5 1)

i<j

61']', ﬁS>V = (l(,)/ l':zl ll/m) 61']’, ﬁS>V |[6ij‘>ﬁij]’ lr m,n = 1/2/ l S m, (73)

when the multipliers (ll{j*)”"f act as the only raising operators for the vectors (I, I, 1;,,,)| 0y, 7is) v .
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The above result has obvious corollaries: first of all, in the case of A’ (Y(2), AdS;) re-
duced to the quadratic algebra A’(Y (1), AdS;), given in [20] for the vanishing components

np =ny = p1p = 0,1 = 1,2, of an arbitrary VM vector ’N(1)>V = |n11,0,0,n1,0,0)y, and,

secondly, in the case of the AdS space reduced to the Minkowski space R¥~1, when the non-
linear algebra A’(Y(2), AdS;) at r = 0 turns to the Lie algebra (T2 & T'?* & 1) (0) B sp(4)
for k = 2 in (42). In the former case, we obtain the Verma module [20], familiar from
the results of Theorem 1, whereas in the latter case, we obtain a new Verma module (see
Appendix C), with the above Lie algebra being different from that for sp(4) in [55], and
also in [59] for k = 2.

3.3. Fock Space Realization of A'(Y(2), AdS,)

In this section, we obtain, on a basis of the constructed Verma module, a realization
of A'(Y(2),AdS;) as a formal power series in the creation and annihilation operators
(Ba, Bi) = ((bi, byj, d12), (b, bi‘;, d},)) in H', whose number coincides with that of second-
class constraints among o}, i.e., with dim(€, @ &,"). This task is solved by following the
results of [97] and the algorithms suggested in [98,99], initially elaborated for a simple Lie
algebra, and then enlarged to a non-linear quadratic algebra'' A(Y (1), AdS,) [20]. To this
end, we make use of the following mapping for an arbitrary basis vector in the Verma
module and the vector ‘ﬂ'i]-, #is) in a new Fock space H':

[ij fis)v > [fiy fis) =TT (bj;) " T (b)) (d13)1210), (74)

for b;j|0) = b|0) = d12|0) =0, [N(2))y_5 = 0).

Here, the vectors !ﬁij, iis) for non-negative integers n;j, 11;, p1» are the basis vectors of the
Fock space H', generated by six pairs of bosonic operators (B, BT), being the basis elements
of the Heisenberg algebra A with the standard (non-vanishing) commutation relations

[Bu/ B;_] = Ogp [b b[-‘;_n] = 5il,jm/ [bi/ b;;] = Oim, [d12/di‘_2] =1 (75)

ijs
To present the elements of the Verma module as a formal power series in the gener-
ators of the algebra Ag, we use an additive correspondence between the special Verma

§..0.0 n2>V (A30) and the Fock space H’ vector ‘61-]-, 0,0,n7); see (A87) in
l]! el

Appendix D. Summarizing, we present our basic result in the form of Theorem A1l, given
in the same Appendix D as polynomials for the trivial negative-root vectors 11" as well as
for the particle number operators g;j (A90), the remaining root vectors, and the Cartan-like
vector I from A’(Y(2), AdS;), as power series in oscillators By, B;. The latter ones are
given by (A91)-(A101). To obtain the above representations, we use the primary block
operator ?12 (A92) and the derived block operators ?ﬁ,l%,l%,l;z, m=1,2.

The additional parts 0}(B, BT), as formal power series in the oscillators (B, B), do

not obey the usual properties,

module vector |A

)" #0L5, ()T #85, (0)" #l, @) AL 1<m, (76)

if one uses the standard rules of Hermitian conjugation for the new creation and annihilation
operators, (B;) " = B,. The standard Hermitian conjugation properties for o/ are restored
by changing the inner product in H' as follows:

<q)1|q>2>new = <CI>1|K/‘CI>2> ’ (77)

for any vectors |®), |®,) with a certain non-degenerate operator K'. This operator is
determined by the condition that all the operators of the algebra should have the standard
Hermitian properties with respect to the new inner product:

(®1|K'E"¥|®y) = (Do| K'E™| D7), (®1|K'G'|®P,) = (7| K'G'|D1)%, (78)
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for (E"™;E~"*) = (I Ut 65,105, G = (gfi,15). The relations (78) determine an

It b s
operator K’ which is Hermitian with respect to the standard inner product (| ),

[0
_ 7+ _ N r P Mim
K/ =7 Z, Z = ) AZ o N(2)>V (ﬁl 0|Hb” d 12 H blrln , (79)
(i, s) =(0,0) lim=1
where (7},,)! = ni1lnpping!, (fs)! = nylnylprp!, and the normalization y(0]|0)y = 1 is
assumed.

Theorem A1 has the same consequences as those of Theorem 1, which concerns, first
of all, a flat-space limit of the algebra A’(Y(2), AdS;), and therefore a new representa-
tion for the Lie algebra (T"? @ T"* @ 1)) (0)- sp(4). Second, modulo the oscillator pairs
b, b} o, b2, by, d1n,df;, m = 1,2, the deduced representation coincides with the one for a to-
tally symmetric HS field quadratic algebra A’ (Y (1), AdS;) in [20,21] for the Weyl ordering
of quadratic combinations of Oj.

The set of equations that constitute the results of Theorems 1 and Al presents a general
solution of the second problem (mentioned in Introduction) of an LF construction for
mixed-symmetry HS tensors in AdS spaces with a given mass and spin s = (s1, sp).

4. Construction of Lagrangian Actions

In order to construct a general Lagrangian formulation for an HS tensor field of fixed
generalized spin s = (sq,...,sk), we should explicitly determine a composition law for the
deformed algebra A (Y (k), AdS;), then we have to specify this to the case of a YT with
k = 2 rows, find a BRST operator for the non-linear algebra A.(Y(2), AdS;), and, finally,
reproduce a correct gauge-invariant Lagrangian formulation for the basic bosonic field

P (1), (1),

4.1. Explicit Form of Ac(Y (k), AdSy)

As in the case of the algebra A’ (Y (k), AdS;) of 0}, it is only the multiplication law for the
quadratic part of the initial algebra A(Y (k), AdS;) that is modified, whereas the linear part
is given by the same sp(2k) algebra as for the maximal Lie subalgebra, A(Y (k), AdS;) and
A'(Y(k), AdS;), with the same form of commutators [O,, O;], O, € sp(2k). From (34), (35)
and Table 1, the non-linear part of the algebra A.(Y (k), AdS;) can be recovered using Table 3.

Table 3. The non-linear part of the converted algebra A (Y (k), AdS,).

[1,—] Lo L Lit
Lo 0 —rKi* Kt

' o+ A o fi

U K} W, X,

A

L+ —rK ~XJ —Wi




Universe 2023, 9, 495

17 of 65

Here, the functions I@g, Wél, X ] (hence, the Hermitian conjugate quantities IC”r W/ Z+)
are given by

W) = 2r{[G) G~ (s — &) LT — (G} — G}) — X, [ (1" — liyplimpm
_l/[ime]'] gj]m + (T[jm+ _ t/Um+)9m[jLi]m _ l/[imTj]erij]} }, (80)
Ry = ay {(F =)L — it (Ut - 1) 6l - 2(gf + )Lt

) Zi:l{[(LH_ _ l/i+)Tij+ _ t/ij+Li+]9ji + [(LH- _ l/i+)Tji _ t/jiLiﬂGij}l (81)
XZ] _ {LO + T[KOZ Zg Gl +4l/”+L” + 4] i+ + Z (ICll /il+Til _ t/ilTil+
I=i+1
i—1
Lqpiltpil +4l/ilLil+) +ZZ (,@(I)z _ plitli _ pliplit | gplitepli +4l/ziL1i+)} }(51‘]‘
I=1
i—1

_’{42 [ LJ” /]l+)Lli _ Z/Iile+] _]Z [(sz+ _ t/lj+)le’ _ t/IileJr]
1=

=oe

k i
_ Z [(TiH- _t/il+)le _t/]'lTiH-} _ Z [(Tli_t/li)le _t/leli]
I=i+1 I=j+1

+(Gh+ Gl — (g +8) —j— 1) T — 19(G) + Gh ) } o

i—1
—r{42 [ LJ” /]l+)Lli _l/lile+] _12[(sz+ _ t/lj+)Tli _t/ZiTz;‘+]
I=1
k . . , . T ‘ . L
_ Z [(T'H' _ t”H')T]l o tl]szH-] _ 2 [(Tzl+ _ t/zl+)Tl]+ _ t/l]+Tzl+}
I=j+1 I=i+1

+(1 — 1) (Gh+Gh) — (g +8f +i+1) T Jor. (82)

Here, the quantities K, IC i K} are the same as those of (26), albeit expressed in terms
of O I-

Let us follow our experience in the study of the (super)algebra A.(Y (1), AdS,) [20-22],
when, in order to find an exact BRST operator, we choose the Weyl (symmetric) ordering
for the quadratic combinations of Oy in the rh.s. of (80)-(82) as O;0; = %(O 105+ 0;0r) +

[O 1,0 ]] As a result, for this kind of ordering, Table 3 must contain certain quantities

bW’ ICflw, W (and W,;]VJVF , IC] + w), which have the form

Wi = r{16)- 1LY + £7[6) — Gb) — Xy, [T VelimLim 4 clmmilgim
+7~[jm+9mL]'Li]m +£[i1nTj]m+9mj]] }/ (83)
Ry = 25 e u+ ot} o ovc) + ghut - Y { (e
+Tif+Li+]9ji + [£i+Tji +T]'iLi+]9ij}’ (84)
Xzb]w _ {Lo +r [g(/)iG(i) it _opiipiit | % Zf:iﬂ (ﬁsz‘H 4 i+l

_gpittpil 4£i1Lil+) n %

;;i (TliTliJr L plitli _ gplitpli 4£liLli+>] }(Sij
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k

_7{221 [£11+Ll’—|—[,l’Lﬂ+} E;[TIJ+T11 +TIITI]+ E Z 7—11+Tﬂ

7T % Z [T+ 7T 4 3G+ G§) TP + 277 (G + Gb) } o7
i li livil 1 i—1 i li lirli 1 ” .

{2 (L LUy - 2 LTI TIT EIZJZH[TI i

—_

. 1 I 1 , , , , 3
+7 T — 2, YT T AT T 5 [T;(GgJ +Gh) + (G + Qé)Tlﬂ }eﬂ, (85)
:1+
with the notation O for the quantity O; = (Oj — 20}). Note that the ordering in (83)—(85)
does not contain any linear terms (except for Ly in the r.h.s. of the last relation) as compared
to (80)—(82).
Thus, we deduce the algebra of converted operators O; underlying an HS field subject

to an arbitrary unitary irreducible AdS group representation with spin s = (sq,...,s;) in
an AdS space so that the problem is to find a BRST operator for Ac(Y (k), AdS;).

4.2. BRST Operator for Converted Algebra A.(Y(2), AdS,)
In this section, we turn to HS fields subject to a YT with two rows. The non-linear

algebra no longer has a closed form, due to the operator functions FI(IZ)K(O’ ,0) in (35), and,
as shown in [63], this leads to an emergence of higher-order structure functions, due to
the quadratic algebraic relations (83)—-(85) and their Hermitian conjugation, corresponding
to the quantities FI(IZ)K(O/ ,0) for i,j = 1,2. In [63], new structure functions are found,

F Il}i(O), being of the third order [35] and implied by a resolution of the Jacobi identities

Oj,0q],Ok]| + cycl.perm.(I, ],K) = 0 as follows (33):
J ycil.p
{FEfc + [F", 0 + eyel.perm.(1, ], K) } = Fff§ (OxdE — JFE), (86)

for F Ij\f[ =(f IA]’I + FI(]Z)M). The structure functions Pﬁi(o’, O) are antisymmetric with respect
to a permutation of any two of the lower indices (I, ], K) and the upper ones R, S, and do
exist because of non-trivial Jacobi identities for the k(2k — 1) triples (L;, L s Ly), (Li*, L;r, Ly),
(Li s L]Jr/ LO)

The construction of a BEV-BRST operator Q' for A.(Y(2), AdS;) is studied in [63] and
has the general form

Q' =clor+ 3 (fF + EP)Pp + HCICKERR PrPp], (87)

with the (CP)-ordering for the ghost coordinates C! = {1, 7 nt i 171] 1ij, 12, 85},

and their conjugate momenta'? P; = {Pg, PL, P;, P, Pij, P+ A, A2} Explicitly, Q' is
given by

Q=0 +Q+ 7’2{’70 Zij Tliﬂjgij [% Lom (G{)n (A2 P — ALPH +iPhL (- n'P ]
—i(LjA, — LhAn) PE + 4L P Pr ) — L PLPE + 2L 24 Py

+1j0 X j ;1 {Zm ((—1)"1%@31 Y PL+2(L3, P2 — Lllpﬁ)>)t1251j52i
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+elU (1 m,, [ 1TI2A5, — 2L 2P (—1)" | P2 + 2|11, — T2PR2| P,
+2[ T P12 = L2A%, | Piy ) — T2[PLPRsY5Y + 2PV P 616 |
2 zm(—l)m[(cgpﬂ FILIpm)sligY — (G2 4 zLZZPg)(szialq Plg] + h.c.}, (88)

for el = —¢/l, €12 = 1, with the standard form of the linear Q] and quadratic Q) terms in
the ghosts C/; for details, see [63]. The Hermiticity of the nilpotent operator Q' in the total
Hilbert space Hiot = H @ H' @ Hgy, is defined by the rule

QTK=KQ fork =10 K @1, (89)
with the operator K’ given by (79), which provides the Hermiticity of o} in H'.

4.3. Lagrangian Formulation

The construction of Lagrangians for bosonic HS fields in AdS; spaces can be achieved
by partially following the algorithm of [21,37] (see also [59]), which is a particular case of
our construction, corresponding to s, = 0. As a first step, we extract the dependence of the
BRST operator Q' (88) on the ghosts 7L, Pic,

Q = Q+yL(c +h)+BPL, (90)

with certain (non-essential later on) operators B’ and a BRST operator'® Q, which corre-
sponds only to the converted first-class constraints {O;} \ {Gj},

Q=13nm0Lo+ X7 Li + Cy<m i Lim + 035 T12 + 5 Sy miPo
=05 Y (L4001, Pz + 05 Y (14 802) 2Py, + 5 L p1n A2
—3 ¥ (L4 8p) 11w Py — [O12115 P1 + 0511 P

I<m

{0 Lyt 24P +2LF i+ GhPi + 2(LoaPfy + L, P1) ooy

=01 (LoAfy + Tis Pa) — 8% (Ladan + 7'12731)}

-3%; W;r’?;reij {Zm(—l)mggfpu — (T2Pi1 + L11A2) + Ti5 P + Ezz)»fz}

+217; 1 {Zm L3, Pim — §(Tig M2 + TizA) 67 + § 9817\125j15i2] }

+7%0 X2, ninje [ 3 Ton (G [M2P3 = AP + 4Lun Py PR, ) + 2012 PP |

0 T 1 {2 Yo (L Po — L1y Py)) A126Y6% — 2T1y P11 P 6116%

+26e1((LiAro = TiaPro) P + (T Pro — LioA,) Py )

2 zm(—l)m(cgﬂpn(sliﬁf - Gompzzazizslf) Plg} } Y he.. (1)

The generalized spin operator &, = (¢!,0?), extended by ghost Wick-pair variables,
o = Gy — W =P 4y Pyt (L4 Gin) (13, Pim = i Py + (95212 = 912A35) (=1)", (92)
m
supercommutes with Q. The nilpotency Q2 = 0 entails the system of equations
Q*=2) B'o, [Q, o'} =0; (93)
i

QtK =KQ, (c')TK = Ko (94)
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We choose a representation for the Hilbert space H;o: to be coordinated with the
decomposition (90) so that the operators (1;, 17;;, 912, Po, Pi, Pij, M2, Plc) annihilate the vac-
uum vector |0), and suppose that the field vectors |x), as well as the gauge parameters |A),
do not depend on the ghosts 77",

2
x) = Z]_[ (&)™ ]_L<] b)) ()2 ()"0 T (") (P)™i (g, )" (P )
i,jl<mmn<o
(ﬁﬁ)nﬂz (/\+ )n/\12|q)( )"ﬂ)( )fi(”)pj(")flm(”)pno(”)flz(”)/\lz> ) (95)

(m);(n)ijp12

The brackets (1), (1) pj, (1) pno in (95) imply, for example, for (1)yno, the set of indices
(npn,nplz,npz2). The above sum runs over n;, n;j, p12, in the range from 0 to infinity,
as well as over the remaining n from 0 to 1. The Hilbert space H,; decomposes into a
direct sum of Hilbert subspaces with definite ghost numbers: H;y = @2:76 Hy. Denote
by [x*) € H_; the state (95) with the ghost number —k, i.e., gh(|x*)) = —k. Thus, the
physical state with the ghost number zero is [x°), and the gauge parameters |A) with
the ghost number —1 are |x'), and so on. For the vanishing of all the auxiliary creation
operators B and ghost variables 7o, 77;", P;", ..., the vector | x") must contain only the

. . . +(0)f ( )£1(0)(0) £1(0) pro (0) 712 (0) a12
physical string-like vector |®) = |®(a; )(0), (0);012 )

K = @)+ 1P 1Pa)| ey —pi gt —piimtyortimg =0 (96)
One can show, using some of the equations of motion and gauge transformations, that
the vector |®4) can be completely removed.
The equation for the physical state Q'[x”) = 0 and the tower of reducible gauge
transformations d|x) = Q'|x1), d|x) = Q'|x2), ..., 8|xC~ V) = Q'|x!®)) lead to the follow-
ing relations:

Q‘X> = 0 (o-i“I’ hi')bd =0, (ergh)(|x>) = (0/ 0)/ 97)
slyy = Q') (@ +m)x) =0, (egh)(Ix") = (1, -1), (98)
s = Q) @+ =0, (egh)(|x°) = (smod2,—s). (99)

Here, s = 5 is the maximal stage of reducibility for a massive bosonic HS field, due
to the subspaces H; = @, for all integer k < —7. The middle set of Equations (97)-(99)
determines the possible values of the parameters /' and the eigenvectors of the operators
o' Solving the spectral problem, we obtain a set of eigenvectors, [x%)7,, (X' )i,/ - - |X*)itys
ny > ny > 0, and a set of eigenvalues,

ail0m = (n+ ) )y, —h = ni+ =54 =12, m €Z, m eNg.  (100)

It is easy to see that, in order to construct a Lagrangian for a field corresponding to a
certain Young tableaux (1), the numbers n; must be equal to the numbers of boxes in the
i-th row of the corresponding Young tableaux, i.e., n; = s;. Thus, the state |x)s, contains
the physical field (7) and all of its auxiliary fields. Here, we fix some values of n; = s;,
and after the substitution i’ — hi(s;), the operator Qs, = Qjpispi(s;) becomes nilpotent in
each subspace H,s;, whose vectors satisfy (97) for (100). Having in mind the Lagrangian
equations of motion (those corresponding to (2)—(5) for k = 2), the sequence of reducible
gauge transformations acquires the form

Q§2’X0>§2 = 0’ 5|XS>§2 = Q§2|Xs+l>§2/ 5= 0/‘ ° '/5' (101)
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By analogy with the totally symmetric bosonic HS fields [21,37], one can show that the
Lagrangian action for a fixed spin 7i, = 5, is defined up to an overall factor, as follows:

O, = /dﬂo 5 (1°[Ks, Q5 X5, for |@°) = 10), (102)

where the usual inner product for the creation and annihilation operators is assumed,
with the measure d“x/|g[ over the AdS space. The vector |x°) (s), and the operator K,
in (102) are, respectively, the vector |x) (95), subject to the spin distribution relations (100)
for the HS tensor field @, (12)s, (x), and the operator K (89), where the substitution

s/
hi — —(n; + #) has been made. The corresponding LF for the bosonic field of spin s,
subject to Y (s1,57), is a reducible gauge theory of L = 6 stage of reducibility at the most.

One can prove that the equations of motion (101) reproduce only the basic condi-
tions (2)—(5) for HS fields of a given spin 5 and mass m. Indeed, the corresponding analysis
is presented in Appendix E and repeats a similar proof of the paper [59] for arbitrary
bosonic HS fields in flat spaces (with the AdS space being the only specific one), and allows
one to gauge away all the auxiliary fields so that the remaining physical vector satisfies
only the AdS group irreducible conditions (2)-(5). Therefore, the resulting equations of
motion, due to the representation (96), acquire the form

Lo|®)s, = (Io + m§)|®@)s,, (Ii,Lij, tij,)|®)s, = (0,0,0), i < j, iy < jy. (103)

The above relations allow one, in a unique way, to determine the parameter 1, in
terms of I (s;),

my=m?+r{pp+1)+ L 4 (1 —L42p) (i =3)+ (-3)}, oy

whereas the values of parameters 7, m, remain arbitrary, and can be used to provide the
characteristic properties of a Lagrangian for a given HS field.

The general action (102) presents a direct recipe to obtain a Lagrangian for any com-
ponent field D), (2)s, (x), starting from a general vector [x°);, since we only need to

calculate the vacuum expectation values of products for certain creation and annihilation
operators. Examples of applying the general action are given below in Section 6. We
emphasize that Lagrangian formulations for massive bosonic HS fields described by a
Young tableaux with two rows subject to traceless and Young constraints in (A)dS spaces
have only been known in a frame-like form: see [72].

5. BRST Approach to Cubic Interaction Vertices

Here, we follow our results on constructing general cubic vertices for massless [38,94]
and massive [96] totally symmetric fields of integer higher spin in Minkowski spaces by
using two approaches. The first one is based on an ambient formalism of embedding an
AdS; space in a (d + 1)-dimensional Minkowski space [100]; see also [43] and the references
therein. Now, we use the second of the above approaches to a description of AdS; spaces:
with no reference to flat space-times.

For completeness, we draw the reader’s attention to the results of Lagrangian cubic
vertices construction in AdS; spaces [101,102], using various methods, basically for re-
ducible interacting totally symmetric HS fields, Maxwell-like Lagrangians, and the d = 3
case [103], including interaction with gravity for a partially massless spin-2 field [104].
Also, cubic vertices deduced from the Fradkin—Vasiliev recipe [105,106] are shown to have
a smooth flat limit for AdS vertices [107,108].

To construct a cubic vertex, we consider three copies of vectors |/ >§72 and gauge pa-
rameters | X(i)1>§‘§’ ceo | )((i)6>§2 from a corresponding Hilbert space Hgé)t, with the respective

vacuum vectors |0)" and oscillators for i = 1,2, 3. This allows one to obtain a deformed
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action and a sequence of deformed reducible gauge transformations for a massive triple
(m)3 = (my,my, m3), with accuracy up to the first order in the parameter g:

(m) 1) .2 ,6 m; e) [y/(3)y(m)
%méﬁh(%x(%ﬂ)] §W'+8/11d% (X K(HVUN§;+h£J,(Nm

5 |X(i)>§é _ Q(z’)|X(i)1>gé _8/Hd’7(()i+e) (55“ <X(i+1l)K(z+1)| i <X(i+2)K(i+l)| (106)
e=1

5

+(i+10i+2))[VFH 02,

()3

5[1] |X(l)l>§12 —_ Q(l) |X(l) g / H d l+€ _+ (l+1)2K l+1)| X(l+2) (l+l)| (107)

+ﬁ+1Hi+2NV Q,

(5[1] |X(i)5>gé — Q X( )6 g/l—[dﬂowre X(z+1)6K(z+l)| ,+ <X(i+2)K(i+1)’ (108)
+(i+1<i+2) )]VS ﬁ); ,

with some unknown three-vectors ’V 3) (m)s Vl(3) ) (m)3 ,1=0,1,...,5, defined in a total

)3’ )3
is the free action (102) for the field | X(i)>§é ; Q) is the

Hilbert space ®i:1 Hgo)t Here, SO

‘ﬂ'
BRST charge ‘(91) corresponding to the spin §’é, i=1,2,3; KO is the operator K (89) related
to the spin ), i = 1,2,3 for a massive field; and g is a deformation parameter, usually
called a coupling constant. We also use the convention [i + 3 ~ i].

(m)3
UEEE
|171(3) ) E;; For this purpose, we can apply the set of fields, constraints, and ghost operators
related to the spins §},53,55, as well as the respective conditions of gauge invariance for
the deformed action under the deformed gauge transformations, and also the preservation
of the form of gauge transformations for the fields | x D) g under the first-level gauge
z)l

The construction of a cubic interaction involves finding some 3-vectors ‘V(3)

transformations Jjy ‘ 7( —'1 , having the form of /-th level gauge transformations for the

gauge parameters ] x 5»12 under the (I + 1)-th level gauge transformations Jyy ‘ x D! +1>§§
for/ =1,...,5 at the first power in g:

¢ / 11 dmgw%@(])lK(]),géﬂ (xU+D) K(]+1)’§é+2<x(]+2) K+ |Q(v3,73) =0, (109)
g / Hdno o (RUFDRRUA| o (UK QU 77) — U 7Y) ) =0, (110)
52 )
g / quo glx f+1>61<<f+1)|§£+z<x<f+2)1<<f+2>\(Q(\Zf, ) —Q<f+2>|\7§,3)>) =0, (111)
where
3

Q(VE,V3,) = Z \V}i)l)g%u(g(ﬁ(wf Tg 7)) g;s),jzl,z,S, (112)

=1 &) 2

forl = —1,...,4and VEl = V8.
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Following our results [38,94], we assume coincidence for the vertices ‘V(3)> = ’17((]3)> =

’1753) ),e=1,...,5, which provides the validity of the operator generating equations at the
first order in g (the highest orders being necessary to find the quartic and higher vertices),

Qtot‘v(3)>ggé3 — O/ (—7',51) ‘V(3)>§§;%3 — 0, (113)
along with the spin conditions as a consequence of the generalized spin Equation (100)
for each sample (with |}((’)>§42, |X(l)1>§é, e, |X(l)6>§é), providing the nilpotency of a total
BRST operator Qit =y, Q) when evaluated on the vertex, due to Equation (93) and
{QW,QU)} =0 fori # j.

A local dependence on the space-time coordinates in the vertices (given by Figure 1)

(vB)y, v implies

3 .
V) = [alx /gl 1‘[5 (x = x)VOIER T 0}, 10) = @200, (114)
j=1

for (¢, gh) V™2 = (0,0).
2

‘ %6 ) (my,ma,m3)

EEE)) -

Figure 1. The interaction vertex |V (3)) E;'% for massive fields QDL? (0 (s, Of masses m; and generalized
2 1 2

spins 5"2 fori =1,2,3. The terms in “...” correspond to the auxiliary fields of |®(?) );2 .

Here, we have a conservation law Zl 1 pi,) = 0 for the momenta associated with all
the vertices. Once again, as in the case of flat space-times [38,96], the deformed gauge
transformations form a closed algebra, which implies, after a simple calculation,

1 .
SRS = g8 1),

1y~ / qug‘“) (G KK+ (10 i+2)) - (o Xg)}|v<3>>, (115)
e=1

with the Grassmann-odd gauge parameter X; being a function of the parameters )(%, X% :
1_ 10,1 ,1
X3 = x3(x10x2)-

Equation (113) for identical vertices, V(3) = ‘7(()3) = ... = Vés), along with the
commutator of gauge transformations (115), determine the cubic interaction vertices for
irreducible massive mixed-symmetric, Y()(2) = Y(sgl), sg) ), higher-spin fields in an AdSy
space. To solve the generating Equation (114), we should find BRST-closed forms, e.g.,
having, in the flat-space limit r — 0, the following expressions, in a so-called minimal
derivative scheme for different masses m; # mj, i # j,
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. o 2 2 e

L) = pilat 4 TR0 0T L0, =123 1=12; (116)
(ii+1)+ M+ (i+1)+ 16+ (+1)+ 1 3G+D)+ ()+ bf” (i+1) bt(”m (i)

L, = a a,, - 7795 1 — Ept 7y’ + o L; — 72%“ Ly’ + O(r); (117)
i 1 i i i i i

Ly = Sl et — (172 0T 6T+ PO 4 PO o), (118)

fors,t =1,2, ﬁg) = p}(fH) p§f+2), p,(f) = sz) and Pél‘)t = P(()|)t P(()llrz) The above
operators are such as those suggested in the case of a Minkowski space-time for reducible
mixed-symmetry integer spins [89], with an incomplete BRST operator and without the
vanishing of non-dynamical algebraic (trace and mixed symmetry) constraints, as the
operator is evaluated on the vertices (see [96] for details), being, at the same time, aug-
mented by the trace and mixed-symmetry operators, according to our presentation [96] of
cubic vertices for irreducible totally symmetric higher-spin fields in R"¥~1 with a complete
BRST operator.

A solution for the cubic vertex (114) satisfying the generating Equation (113) requires
extending the operators (116)—(118) by means of mixed-symmetric oscillators, and adding
some new BRST-closed trace and mixed-symmetric operators, which poses a separate
problem outside the scope of the present article.

6. Examples

Here, we apply the general prescriptions of our Lagrangian formulation to the case of
free mixed-symmetry bosonic fields at the lowest values of rows and spins.

6.1. Spin-(s1,0) Totally Symmetric Tensor Field

Let us consider a totally symmetric field ®,(,,) corresponding to spin (51,0),i.e., to
the Young tableaux Y(s1). We suppose that our result should reduce to the one examined
in [21] for totally symmetric massive bosonic fields in an AdS space. According to our
procedure, we have n; = 51, np = 0. It can be shown that in the case n, = 0 (95), all the
components related to the second row in the Young tableaux are equal to zero, namely,

Mg = Npy = Ny = Npp1 = Ny = Nfp = Npp = Nppp = Nppp = N1 = Npla = Nfg12 = Hpe1a = 0. (119)
Therefore, the state vector reduces to
= Y@ al ) (b ) e (b)) (g ) (g ) (P ) () (P )
n

nbl OnhnOOOnfonﬂ Onﬂ]OOO

X X gy, Oy Omygo00 10) 4 (120)

which corresponds to the one of [21], with the Weyl ordering in the right-hand sides of
non-linear supercommutators for the HS symmetry algebra A(Y(1), AdS;). Then the
BRST and spin operators (supercommuting with each other) are reduced to Q and ¢:

Q = 3noLo+Xin L+ nf (L +mPr) + 517 mPo
+r{nom 2LuPf +2L1 P+ GYP1 | + 20 £ Pu b + he
7 = Gy—h' —mPy 4+ P+ 205, P — mP). (121)

The corresponding Lagrangian formulation for a free massive field of higher integer
spin is given by the action

091 = i 10s] = [ dios (xIKGI)s, (122)
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which is invariant under the reducible gauge transformations

5|X>51 = @|X1>S1/ 5|X1>S1 = Q|X2>S1/ 5|X2>S1 =0, (123)

and thus determines, at most, a first-stage reducible abelian gauge theory.
A cubic vertex for three copies of massive interacting totally symmetric fields (m;;s;),
fori =1,2,3, being determined as a solution of the generating equations

Qtot | V (m)3 =0, |V (”;)3 =0, (124)
for Qft = Y QW) , may have various structures, due to various relations among the masses,
and thus poses a separate problem. For non-coincident masses, however, the vertex may
have a structure generated by the monomials (116)—(118), fort =s = 1.

We emphasize that for massless totally symmetric fields of integer helicities A7), the
corresponding BRST and spin operators are simplified to the form presented in [37] so
that, in addition to the above restrictions (119), there are no oscillators b® b+ and thus
the additional parts o} become finite polynomials. The cubic vertices—for three massless
fields, for one massless and two massive totally symmetric HS fields, as well as for two
massless and one massive totally symmetric HS fields in an AdS space-time—can be found
according to our approach [38,94,96].

6.2. Spin-(1,1) Antisymmetric Tensor Field

Our next example is the simplest mixed-symmetry case, namely, a spin-(1,1) rank-2
totally antisymmetric tensor field. Below, we denote all the gauge parameters by primed
characters, and all of the gauge parameters of the first level for the gauge transformations,
by double-primed characters. The values of the parameters h; are equal to h; = —(#).
6.2.1. Action

Let us decompose the state vector (95), having a zero ghost number'* and obeying (100)
atny = n, = 1, in the ghost oscillators, as well as in the auxiliary creation operators by, b5,

+ g+
biy diy,

X011 = @)1+ Pl a) 11+ Py s [9a)oo + Py 195000

5P A1) 1,0 + 5P de)oo + Ay [A2)1,0 + ALy 197) 0,0
+110 (7’1 |H)o1 + Py [Ad)10 + Prilds) 11 + Prhl$10)0,0

+ AL Ta)20 + AP |<Pu>o,o), (125)

where the states | ...) in the right-hand sides depend on a+ bt df, b;, and are expanded

according to

|@)1,1 +d5|T1)20 + b |d1)00 + bi1d [ d2)0,0, (126)
|H)o1 +dhlAs)0, | T2)20 = |T2>2o+b |¢$9)0,0, (127)
(—ay"ad P (x) — ibf“;yH(z)y(x) —ibja, P A (x) + b b5 ¢19)(x))(0), (128)
(— a3 "a VT (x) — b ay " A gy, (%) + () P64 (1)) 10), (129)
(— iay " Hy (x) + b5 ¢16)(x))10), (130)
(= iay™10) Ay, (x) + b Gy (x))10), j = 1,2,3,4, (131)
dis|Pi)oo, k=38, (132)

¢y (x)]0). (133)



Universe 2023, 9, 495 26 of 65

Then the relation (102) gives the Lagrangian action in a ghost-independent form

- 1 - N
Sl [|X0>1,1} =11 <<I>|K1.1{§L0|d>>1,1 — L [H)o1 — LT |Ag)10 —

= T | Ta)ao +2r | (1 = B)Ida) 11 + (I

L ¢8)—1,1 — Liz1910)0,0
=15 (I@a)o0 + [¢5)00)
+ %(lf - l§+)|A1>1,0] } +_11 <$3|K1.1{;(L0 —2r(gs — 8019311 — LiH)o,

+ Tl 11000 — |s)—1,1 + r(t55 — 13) (Ipa)o0 + \‘Ps)o,o)} + 0,0<¢4|K1.1{(L0 - VZ(go

. 1 _
—80)|¢s)00 — L1l As)10 — [P11)00 + §|<P1o>o,o} + 0,0<<P5\K1.1{ — La[H)o,1

1
—r(ly —1)[A1)10 + §|¢10>o,o - |¢11>0,0} +1,0(A1 |K1.1{(L0 + 785 — 80 1) A2)1,0 + 2r (1

r
— 177000 + L1|T)a0 + L |¢11>00+2(f12—f1z |H)o1 — = Y30

5 —86m])|A4>1,o}

m
1
+0,0(¢s|K1. 1{L0\4’7>00 + L3I T)20 — 11)00 — §|4’1o>0,0}
— 1,0(A2|K1.1Ti2|H)o1 — 00(¢7|K11 |¢10>0,0}
1 . -
~5 (0,1<H|K1.1|H>0,1 +1,0(A4|K11 \A4>1,0) +h.c., (134)
and a tensor form (for the leading field term),
d(d—6
Sty = [ ax/lsl{@n(v* -7 D)o — 4Ty 0
+2A (4, Vo + 2H, V, @ + 1) Pl + more}. (135)
Here, the mass parameter m% (104) equals to
d(d — 10)
2 _ .2
m3 = m +r{4+ > } (136)

Let us now consider the set of gauge transformations.

6.2.2. Zero-Level Gauge Transformations

We decompose the vector (95), satisfying (100), for n; = ny = 1, and having the ghost
number —1, as follows:

X = 7)+(\H/>01‘f'd |A)1,0) + Py [A%)1,0 + Pridl01)00 + Pl oo
A (1T )20 4 b1 193)00) + AP 13 194)00
+’70(P+P2+|¢5>00+P+/\ \A/>10+P11A12|¢’6>00) (137)
where

T )20 = (—ﬂlwﬂwT/u( ) —ib; ﬂlyA/( (X )+(bf)24’fu)(x))|0>/ (138)
[H')o1 = (—iay "Hy(x) + b5 ¢y (x))[0), (139)
A = (=i “Ag) (%) + b7 ¢4 (x))10) j =1,2,3, (140)
900 = (;(x)[0). (141)
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5D,
ST (1)

OT(2)u

0A()

0Ay)

SH,

o)
0 (2)

o¢(3)

oP4)

0 s)
0 6)

0 (7)

o s)

Substituting (125), (137) into the relations (98) on the left, we obtain the following

gauge transformations for the fields:

2T}, + VH] + VAl ’75”4; o)

Nuv
T+ VAl = 59 )

d(d — 6)
<V2 -t m%) Tow = V (Al

771
”(‘P (6) +2r¢ 4y + <l>(5 ) VAl
!/ !
_ZA(l)u A(2)V H
1 5 d 17 A , ,
oy (07 {4 4]) @ = Vil @) T Ap)
+2d)

r y / ’
—|—§<Hy—2A() +Aly, (14

—2V' T}, —

2 (d+4)(d—6) 3 2
<V — 4 r(d— 2)+m0 A'(1) +A’(3)y+rA’(2)ﬂ,

4

o 2 d(d—6)
VH¢(5)+<V r 1

! ! /
M Ay, + Vud'7) + Ay

2
d(d —6)
—m A, = Vig'ig) + (Vz A
—1(Vud'(g) = Alp), + 3 —d)Aly),,),
my
m2 Ay + Vil o) = Al
rd(d 6)

+ m%) Alay

miHy, + V' g) = Algy, s
') =205
¢+
1 dd+4) 29
—VFA — (5 — V{ R } )0 )+ )+ ¢

my
1 dd—8 14
—V”H;,%—mz(m%—r{(zl+4})¢(10)—|—2r(3 d)¢’ 7,

+1 ¢ o — &y — ¢
27 (2) (4) (5)

1 d? 1
—V”Azz)y ~om (m% - [4 - 5} )(,b + 54?,(2) - 47/(4) + 4’/(5)
=2¢" 1) = ¢'2),
d-3 1

P T+ _7(m2_rM )gb’ +1§b/
2 70 p (4) m% 0 4 (1) " 272

242

did—6
<V2 —r ( 4 ) —|—771(2)) (Pl(l) +(Pl(6) +V¢/(5 21’V A(l)}t

—2r (m% —r [d(d +i) — 29} ))¢/(7) ,

7
+m+r(d— ))Al(z)y — A’(3)H +r(H,

3
+m +r(d — 2)) H;, — A’(3)y + ”A/(z)y ,

(3 d)¢’ (10)

(142)

(143)

(144)

(145)

(146)

(147)
(148)
(149)

(150)

(151)

(152)

(153)
(154)
(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)
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9¢(9)

Opro) =

dpary =

S 2)

O 13)

014
0¢(15)

d¢(16)

Sz
O (18)

019

(Vz - Vd(dT_@ + m%) ¢ 3) =9 6) —2r(¢ 4

+r(9' () + %‘Pl(s) —2(4—d)¢'11)-),

(Vz - Vd(dT_@ + m%) ¢ (2) = 29" () +2r¢ 5 + Zr{V”A’(z)y - %(3 —d)¢' ()
o o 5 ot 8T
vyAl(a)y + mil (m% -r {M] )4’ 9) (VZ - Vd(d; 6) + m%)ﬁ”’(z;) - 4),(6)
+r(2d = 3)¢' (4 + 7 (d - g>¢’(5) +2r (T’P‘V + Wll% (m% . {dZ ; 17] >¢,(11)

3—d 1 1 d(d—8)+7
+—5—¢'3 +2V”H’y+2mz<m%—r[4]>¢(m)+ (3 - d)¢()>,

= —20(;) = $(s) — —P10)-

2 dd—4) 13
= —VF ALy, (Pl — 9fa) + - (6 r[ I b"’(n) + %)

r

+2( m?mo +2¢/, +<p{8)(2d1)>,

d(d —10) — 8 3
— <v2 —re—— (A= ) + m%) Pl7) + Plo) TP + 2r1 4’(10)

_ 2 dd—6) 9 my
= (V —r——— T my+r(2d—3) Pls) — Plo) — 7| 20(7) + "724)210) ’
= m¢' 5 + (V —r——— rd=3)+m5 )¢ qg) - m*1(4’/(9)
+7’(Pl(8 ) + Tﬂﬁbl(ﬂ/
= mg) + Py,

-ty (7

d(d—6) 1
Tt m%) Pan) + 59)
mz
= mag(g) +mi¢ (19) — 14’ (11)-

Let us now turn to the gauge transformation for the gauge parameters.

6.2.3. First-Level Gauge Transformations

(163)

(164)

(165)

(166)

(167)

(168)
(169)

(170)

(171)
(172)

(173)

We decompose the vector (95), satisfying (100) at n; = np = 1 and having the ghost

number —2, according to
X1 = PIPTI¢ oo + Pl ALIA )10+ PhHAL 0 )00,

where

A" 10 = (—iaf" Al(x) + b 9lhy (x))10), 197)00 = 9/} (x)[0).

(174)

(175)

Substituting (137) and (174) into the relations (99) on the right, we find the gauge

transformations for the gauge parameters:
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1
0Th =V (u Ay = 51w (9 + 13, SAY, = —AL, (176)
dA Gy = Vidia) — Ay 0Af), = (V2= rw +m3) A, (177)
Oy = miAy + Vud(), SHy = =Vl + Ap, (178)
091y = —9() + 190y Sy = 29(2) — 293, (179)
d(d — 6) — 40
59(s) = P2) ~ "6y 89l = (v MO g, (180)
1 d>— 14 d(d—6)—20
A mj(m% — )% 0ls) = (V2 — 1=+ my) gl +2r VAL
5 1 d(d+2) — 23
9+ 370 o (78 = PR gty 107, (18D)
9(7) = ~P(a). 0(g) = mid(1) + (3, (182)
d(d — 6) — 34 o
54)29) = (V- L m%)‘l’zlg)/ 5¢E10) = —77124’2/1) - n?‘PéV (183)
1

= m(s) — 590 (184)

6.2.4. Gauge-Fixing and Partial Use of Equations of Motion

We now fix the gauge symmetry completely, using the gauge-fixing conditions (A129)
obtained in our general consideration. It is easy to see that the following fields are
gauged away:

1), P2), P9), P13), P15), P17), P18), P(19) A(5)r Acs)r A7) Hiay, Ty — 0. (185)

Then, using the equations of motion for all the fields, except the antisymmetric part
of the basic field ®,,,|, we find that we are left only with @y, so that the corresponding
Lagrangian action (134), up to a total derivative of a certain quantity f#, has the form

S @l = [ dxy/Ig1{ @) (V2 + m) @] 427,00 (77 Dy,) (156

' 1
= /ddx\/ |g|{ T3 pn//\F’“/)L + qu)[;w]q)[yv] + Vyfy}/

where Fy,, stands for the field strength of ®,,, namely,

wa\ = V,\CD[ s qu)[v)\] + Vvq)[)\y]. (187)

Hv

As a result, we obtained the gauge-invariant action (134) for a massive rank-2 antisym-
metric higher integer spin field interacting with an AdS background field g;,, containing a
complete set of auxiliary fields and gauge parameters, as well as the action of a non-gauge
formulation (186). Note that an equivalent form of the Lagrangian formulation for the field
®/,,,) is constructed in [62], using an antisymmetric basis of the initial oscillators.

7. Conclusions

In this paper, we obtained quadratic non-linear HS symmetry algebras for a description
of arbitrary integer HS fields defined in d-dimensional AdS space and subject to a k-row
Young tableaux Y(sy,...,sx). We showed that the difference of the resulting algebras
A(Y(k), AdS;), A'(Y(k), AdS;) and A.(Y(k), AdS;), corresponding, respectively, to the
initial set of operators, their additional parts, and the converted set of operators within an
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additive conversion procedure, is due to purely non-linear parts, related to the AdS radius
(v/7)71, in the set of AdS space isometry operators.

To obtain the above algebras, we start by embedding the bosonic HS fields into the
vectors of an auxiliary Fock space, regarding the fields as coordinates of Fock space vectors,
and reformulate the theory in these terms. We realize the conditions that determine an
irreducible AdS group representation of a given mass and generalized spin in terms of
differential operator constraints imposed on the Fock space vectors. These constraints
generate a closed non-linear algebra of HS symmetry, which contains, with the exception of
k basis generators in the Cartan subalgebra, a system of first- and second-class constraints.
The above algebra coincides, modulo the isometry group generators, with its Howe-dual
sp(2k) symplectic algebra. The construction of a correct Lagrangian description requires
the initial symmetry algebra to be deformed to the algebra A.(Y(k), AdS;), introducing
the algebra A’(Y(k), AdS;), different only due to the respective quadratic parts given
by (83)—(85) and Tables 1 and 2, with the use of Weyl ordering for the right-hand sides.

We generalized the method of constructing a Verma module [19], starting from Lie
(super)algebras [59,97-99] and the quadratic algebra A’(Y (1), AdS;) for totally symmetric
HS fields [20,21], to the case of a non-linear algebra underlying the mixed-symmetric HS
bosonic fields in an AdS space with a two-row Young tableaux. Theorem 1 presents our
basic result in this respect. We show, as a by-product of the Verma module construction, that
the Poincaré-Birkhoff-Witt theorem is valid in the case of the algebra in question, thereby
providing a lifting of the Verma module for the Lie algebra .A(Y(2), R1#~1)—isomorphic
to (T2 @ T?*)® sp(4)—to the Verma module for an algebra quadratic in the deformation
parameter r. The same is certainly expected to hold true in the case of the general algebra
A'(Y(k), AdS;), for which, we believe, it is pure machinery to obtain an explicit form of
the Verma module in a recursive manner by means of some new primary and derived block
operators, such as ¥, (A92) and ¥/} (A94).

We obtained a representation for 15 generators of the algebra A’(Y(2), AdS,) as a
formal power series over the Heisenberg—Weyl algebra with six pairs of Grassmann-even
oscillators, which, in the flat-space limit = 0, takes a polynomial form identical with
familiar results, at least for m = 0 [55], and appears to be novel in the massive case [56] for
k = 2[59]. Theorem Al finalizes our second basic result, solving the Fock space realization
problem for A’(Y(2), AdS;) by using the approach (A90)—(A101) of a generalized Verma
module construction.

On the basis of an exact BRST operator Q' constructed for the nonlinear algebra
Ac(Y(2), AdS;) of 15 converted constraints O; (having a third order in the ghost coor-
dinates), by analyzing the corresponding structure of Jacobi identities, we consistently
develop a construction of gauge-invariant Lagrangian descriptions for bosonic HS fields
of a given spin s = (s1,s7) and mass in an AdS; space. To this end, in the standard
manner, we extract from Q' (88) the related BRST operator Q (91), which is associated
with the converted first-class constraints alone. The latter operator is nilpotent only in
those proper subspaces of the total Hilbert space which have vanishing eigenvalues of
the spin operators & = (c?,02) (92). The corresponding Lagrangian formulation is, at
most, a 5-th-stage-reducible abelian gauge theory, and is given by (101) and (102), with a
specific mass myg (104). These last relations may be regarded as our main result in solving
the general problem of constructing a Lagrangian formulation for non-Lagrangian initial
AdS group irreducible representation relations, which describe a bosonic HS field with two
rows in the Young tableaux (2)—(5). It should be noted that unconstrained Lagrangians for
free mixed-symmetry HS fields with two rows in the Young tableaux on AdS backgrounds,
in both the metric-like and frame-like formalisms, have not been obtained until now. We
emphasize that a Lagrangian description of massive bosonic HS fields described by a
two-row Young tableaux in (A)dS spaces has been known only in the frame-like form [72],
with off-shell traceless and Young constraints.

We used these results to study a deformation procedure in the approach with a com-
plete BRST operator, along the lines of [38,94,96], so as to obtain an interacting theory, in
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particular, a system of generating Equation (112) for the cubic vertices of three copies of
initial Lagrangian formulations, with a respective set of constraints and oscillators. The
above system is shown to be specified by three Equation (113), in the particular case of
coincident cubic vertices V3 = \713 = \713“ forl = 0,...,5, so that a nontrivial solution
should be a BRST (Q)-closed three-vector with vanishing values of spin &,. By construction,
all the holonomic constraints (tracelessness and Young symmetry) are included on equal
footing with the remaining differential constraints in the total BRST operator. This guaran-
tees an equal number of physical degrees of freedom in interacting and free (undeformed)
Lagrangian formulations, thus allowing the interacting model to describe an irreducible
interacting triple of massive HS fields (see [109] for the recent progress in the necessary
and sufficient conditions for an interacting model, obtained with the use of the constrained
BRST approach so as to preserve irreducibility for interacting HS fields in flat spaces).
Unfortunately, there is no familiar application of Lagrangian dynamics in an AdS space,
even for a free HS field of a given mass and spin, in the approach with an incomplete BRST
operator, due to the absence of off-shell BRST extended constraints.

In addition, we consider a number of simple examples of the proposed Lagrangian
descriptions: we deduce one for a totally symmetric HS field obtained earlier in [21] and
another one for an antisymmetric massive tensor field of spin (1,1), whose first-stage
reducible unconstrained Lagrangian formulation with a complete set of auxiliary fields
and gauge parameters was obtained in Section 6.2. The final ungauged Lagrangian is
given by (186) after an application of partial gauge-fixing and a resolution of some of
the equations of motion and is shown to coincide with a Lagrangian given by a different
approach [62].

As a first by-product, we obtain polynomial deformations of the su(1,1) algebra
related to the conversion analyzed in Appendix B. Second, we demonstrate that a BRST
Lagrangian formulation for an HS field of mass m and spin (s1, sp) leads to equations of
motions, which are equivalent to the initial irreducibility conditions (2)—(5). Third, we
obtain a new Lagrangian formulation for the HS field of mass m and spin (s1,s7) in a
d-dimensional flat space-time starting from a general description for the same field in
an AdS space in the limit r — 0, due to new representations for the Verma and Fock
modules given, respectively, by (A63)-(A71) and (A107)~(A112), with the gauge-invariant
Lagrangian action Sg\%z = [dno 5 )(|K592 ng |x)s, for the BRST operator ng = Qg,lr=0 and
ng = Ks, |r—0. This Lagrangian is different from the one obtained in [56] in view of the
dependence on two additional mass-like parameters m;y, ;.

From the mathematical standpoint, the construction of a Verma module for the algebra
A'(Y(2), AdS;) opens a possibility of analyzing the module structure and searching for
singular and subsingular vectors in it so that, in principle, this could then allow one to
construct new (non-scalar) infinite-dimensional representations of the given algebra. The
above results allow one, certainly, to understand the problem of (generalized) Verma mod-
ule construction for the HS symmetry algebras and superalgebras underlying HS bosonic
and (respectively) fermionic fields in AdS spaces subject to a multi-row Young tableaux.

We expect, first of all, to use the deformation procedure for irreducible totally symmet-
ric massless HS fields elaborated for free fields in [37] as applied to AdS spaces, and also
anticipate the concept of BRST-BV quantization as applied to deduce interacting models
in the BRST approach, while adapting the algorithm developed in flat spaces [110], albeit
with a complete BRST operator, as in the case of a minimal BRST-BV action [111]. As a sub-
squent problem to be solved, we intend to apply our results to an explicit construction of a
generalized Verma module, a BRST operator, and an LF for irreducible massive half-integer
HS fields of spin (11 +1/2, 1, 4+ 1/2) subject to Y (n1,n3) in AdS spaces.

Among other directions of application and development of the suggested approach,
such as finding LFs and implementing free theories and cubic vertices for irreducible
massive half-integer higher-spin fields on AdS backgrounds, having in mind the possibility
of taking a flat-space limit [107] for numerous cubic vertices [105,106], one should also
mention the problems of constructing quartic and higher vertices, as well as the related
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problems of locality (see the discussions in [112-118]), which, as we believe, may be
addressed using the BRST method. We also expect that (ir)reducible HS fields can be
employed as composite fields in the recent approach [119,120].
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Appendix A. Proposition Proof

In this appendix, we examine the correctness of our proposition in Section 2.2. The
analysis is based on deriving the multiplication laws (30), (31), (33) explicitly for the
operator sets A’ of 07 and A, of O;. Namely, from the r.h.s. of (29), we find (due to the
commutativity of oj with o?) the following equations that determine the unknown structure

functions FX (o 0):

n m
(01,05} = [or,0} + 01,07} = ) f,-Ij<lmK"l [ Tox, + [0}, 07} (A1)
m=1 I=1

Expressing in (A1) the initial elements ok, . .., 0k, through the enlarged O; and addi-
tional 0} operators with the use of the o’O-ordering, we obtain a sequence of relations for
each power of ok,

K K K
fl]10K1 = fnloKl f 10%1 (A2)

Ky K K;K KKy | (KoK K

fif Pokok, = fp) 0k, Ok, — (fU1 2+f i 1)0%10K2+fU2 10,0k, (A3)

7

n
fﬁl"‘Kn E OKI — f Hm 1 + Z K1K5+1 Ky
H;:l O;(p [T, 5110k, — (=1 fI] Kl [T ok, (A%

X

K1Ks+1 <Ky Kgqq

where the hats in f : K for the quantities f K designate a set of CI! =

G-KiKeyrK
W terms, obtained using f

Ko by symmetrization as shown explicitly in (33).

First, the above system (A2)- (A4) allows one, immediately, to establish, from the above

rightmost terms in (A1)—(A4), that the set of 0} forms a polynomial algebra A" of order n,

subject to the algebraic relations (30). Second, the remaining terms in (A1)—(A4) completely
(m)

determine the structure functions F; | K(o’ ,0),m=1,...,nin the form (32) and also show

that the set of Oy actually determines the non-linear algebral5 A..
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Appendix B. Polynomial Deformations of su(1,1) Algebra

The polynomial algebra .A"~! of order n — 1, as a deformation of the algebra su(1,1)
with three bosonic elements, {or} = {q+,9-,90}, I = 1,2,3, and a central extension [121],
suggested in connection with quantum optics and the Bethe ansatz systems, determines

the non-vanishing relations!®

[90,9+] = +qx,  [3+,9-] = ¢"(q0) — 9" (g0 1), (A5)

o (x) = —H<x+l”§1>+1"[<l;”—nlz>. (A6)
I=1

n =1

The second relation (A6) can be recast in a form similar to (28) as follows:

(1) g 40 gl

dx! (x=0) dx! (x=-1) '

n—1 d
[q+.9-] = Y fVqh, (0= (A7)
1=0

The study of [121] proposed a so-called one-mode boson realization of the algebra
A"1,in terms of a pair of creation and annihilation operators, b, b, [b,b*] = 1,

bt b" 1 1
q+:( ) ’ q—- = ) ’ qo:n(b—i_b—'—n)' (AS)

The relations (A5), (A7) for A"~! show that we are within the conditions of our Proposition 1,
which implies the following composition law for the polynomial algebra of order n — 1,
A'"=1 with the elements ¢, , q"_, 4},

n—1
[90,9%] = +q%,  [dh.q] = (1)1 f0qh, (A9)
1=0

as we have chosen the value of the central extension for A" ~! to be opposite to the one for
A1 ie, (—f9)), so that the central extension of the non-homogeneous polynomial algebra
A1 FO) = (£0) — £(0)) of order n — 1 is zero. The composition law for the algebra A"~
with the elements Q+ = g+ + ¢, Qo = g0 + ¢, following the prescription (31) and (33), is
determined by

[Qo,Q+] = =£Qu, (A10)
n—1 n—1 -1 Il . B
[Q+, Q-] = l;f(l)Qé‘F l;f(l) S;(—l)sm(%)s(gé g (A11)

The relations established for the polynomial algebras A" !, A”~! can be applied to
various objectives. From the number of issues analyzed in this article, one can examine a
Verma module and obtain some new representations for each of the above algebras, as well
as constructing a BRST operator.

Appendix C. Verma Module Construction for .A’(Y(2), AdS,)

Here, we describe the details of a Verma module construction [19] for the algebra
A'(Y(2), AdS;) so as to validate the relations (64)—(72) of Theorem 1. Starting from (53),
(54), (56), (58)—(63), we formulate the following auxiliary.

Lemma A1l. The n-th power in the action of the operator ad,+ on the operators'” WélH, X2,
X[ (38)~(40) and the Casimir operator Ko(2) = Ko for the algebra sp(4),

Ko = LK 4+ 2682 = Y (5P — 258 — 41" 10) 4 21555, — 413112 — g, (A12)

1
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denoted by (K, Wé}f*", X2, X2y = ady (Ko, Wéu*, X}12, X?1), yields the following set of

bin
relations for natural numbers n:

[(n-1)/2] (11172

K = (~sri) (Khbnzn +Kidnzn-), n =1, (A3)
m=1
| o2 ‘
Kl = (—2rl’”+>[(n 2 Y (K%Zl(sn,Zm'f']C%Zl&n,mel)r n>1 (Al4)
m=1
Wizt — (—2rl’”+) 2 (wb’“ﬂsn,zm+w;,12+15n,2m_1), (A15)
m=0
(n/2) [(1£1)/2]
X2 = (—2n?t) (X526, + X{¥0n2m 1), (A16)
m=0
(/2] [(n+1)/2]
X@, = (—2nm) (X600 + X3 0n2m 1), (A17)
m=0

where the symbol [x] denotes the integer part of a real-valued x; the operators K, K12 = adl,+ g2,

k=1,2, Wéu“, X3, X3, in accordance with the rule (57) for the operation adl&, and the action
on the highest-weight vector |0)y, are defined, respectively, by (A72)—(A78) and (A79)—(A86) from

Appendix C.1.
~ The correctness of (A13)-(A17) follows from the calculations proceeding by induction
" Ihe results of Lemma A1 imply the validity of the following rather technically.
Lemma A2. The n-th power of the action of ad,y+ on any of, o] € {t13, 150, 1), £} is determined
by the relations (A18)—(A26),
()] = ) ) e R e
()T e e
Ton k- AkR),
Y] = R e )
e
SO CACEE RN ) (19
o (5)"] = o) (o) )
( ’;) [l’2+ 2 Wizt 4 sz+1wzg2+} }, (A20)
[l’l, (%)nz} _ [nzi/ ]( 271/2%) (lz:)n272m72(mi2)2m+1 y

m=0
x{ b X2+ kxR, (a21)
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[1’1171/2]

()] = TR e ) )

m=0
11+
< { Cr ot XP 4 G o X (A22)
[n2/

[1/12’ (%)”1} = 2?131 (l,;:)niill’{l(ﬂ}i — 621 mgl} <_21,l/22+)’”*1 (%)nﬁmfl y
1

2m
1%+ ~no 5112 12
X<mz> {chzmxb + sz+1sz}

1 [n1/2]
_(511

1+ m—1 [+ ny—2m—1 1 2m
3 L () () ()
1"+ ~n 21 21
{ Lo XP + A XE (A23)

[n1/2]

pit\ M _ i1 1+ np—1 5 1 m—1 1+ ny—2m—1
5. ()] = ()" B () )
m=
2m .,

my

A Wi |}, (A24)

[nj—1/2

(%)) - L ](_W)mW._M_QWHX

m=0

/]+ j
{ C2m+1

[(ni=1)/2]

()] = =) ) )

=0

W/12+ + 1 CZr’n +2W£]12+}, (A25)

X{IH Com1 K1+ 7 C2m+2’C£}' (A26)

In the above formulae, we need to take into account that CZ k= 0 for any n,k € N, and also,
in (A25), the fact that eijsﬂ = 55, e = L

It is then easy to see that the undetermined action of the remaining operators from the
subalgebra &, I,", £/} on the vector |0y, 7is) v in (53), (54) reduces to the action of ], on

the vector \61-]-, 0,0,13)y = |n2)yv. Explicitly, this is implied by the relations'®

. [n1/2] 27 " .
£ 104, i)y = ) <2> {CS,; 0;j + mdjj11, s — 2mds 1 + ds12) v
m=0 my
C;ﬁ1+1 01] + méz] 11, ns (2m + 1)55,1 + 53,2>V }

e —2r ! n (1.2 1 n
-Y | = {(sz(h —h +2P12+n2)—C2m+1)

my

x |0 + (m — 1)3i11 + 8jj12, 7is — 2mBs 1)y + Cob pro (' — 2

—ny = p12 +1) ’51']' + (m —1)dj11 + 6jj 2, 1is — 2ms1 — s 12) v }

[nl/Z l,1+ ny—2m
_ Z( ) l/+ m— 1() ”1 1/22+( )Plzt »|m2)v, (A27)

nmq
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. [n1+1/2] —2r mn .
L0 fis)y = ma ), | — | G,

ij 111, s — 2mds 1 + ds2)v
m=0 1

[n1—1/2] m+1
+m Z ( ) { (s (2 =1 4+ 2p12 4 m2) — G5 )

x |03 4+ méj11 + Gijaa, fis — (2m +1)851)v + Col g (Pl2(h1 —h?

—ny — p12 + 1) |0y + mdjj11 + Gij, s — (2m +1)851 — b5 12)v

- (_ji]' + (m+ 1)5ij,11/ﬁs —(2m+1)ds1 + 55,12>V) }

m-1/2)_ 5 +1 e
+my ) 2> (151)" 1% () Com1 (115712 |m2) v - (A28)
m=0 \"™M m

In a manifest form, the action of #|, on the vector |n;)y is determined by

Lemma A3. The operator t}, in its action on |ny)y satisfies the following recurrent relations:

thlm)v = [An)v— ), ), 3

1 1
[n2/2] [n2/2-1m—1/2] (—2rl’22+> m-+114+1
Tm=0 11— ms

xcgfm+1c;fl+21 "y —2(tm 1))y, (A29)

with a completely specified vector | Ay, )y from the Verma module,

/2 op\™ "
|A1’12>V = Z W {_C272n|1/0/m_1/0/1/n2_2m>v
m=1 2

+[C2 (K> —hY) + C

2m

n2 110,1,m —1,0,0,n5 — 2m>v}

112/2]

m
—Z( > Cy2,,110,0,m,1,0,m —2m — 1)y

[n2/2] [712/2* mfl] 5 L1141

—2r Ny n272]m71 2 1

- 120 11220 <m%> C21m+1{ {C211+1 (h —h' +ny
m= —

—2(m 411+ 1)) - C”Z‘zl’”‘l]

2 1,0,0,m —2(*m + 11+ 1))y

_C;lzlj_zllmil 11/ 0/ 1/ 7’[2 - 2(177’1 + 11 + 1)>V
+ C;%lfz’"’l 1l+1,1,0,nz—2(1m+11+1)—1>V}. (A30)

0\ 12
Considering the representation (A29), we use the commutation relation if’12 with (lrflz) (A20),

from which we obtain the first terms of | Ay, )v with single sums, denoted below by S.S., the remaining
term being a manifest example of resolving the entanglement between the negative-root vectors I,*,
with 17", due to the permuted structure opposite to that of [N (2))y (50),

, [n2/2] o2+ 1mn l£+ n272]m71,
tialna)y =85 — Y | ——5— | Ct |l 5 1o 0)y, (A31)

2
T—0 my m
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" ny—2 m—1
In order to commute | Zy in (A31) to the right through I\, one should use the
following relation, which is not difficult to establish:
np—2'm—1 ny—2'm—2/2 '
E | [n2 2 ] _op22+ i{cnrzlmﬂwﬂﬂg
o ! = ml my 21141 —_—
—2(Ym+1141)-1
ficnzlemleﬂZ-&-} E R (A32)
my 242 b2 1y ‘
and which follows from an analogue of the commutation relation (57),
n
——k —
B"A =Y Cf(adgA)B"*, adpA = [B, Al (A33)

k=0

Rearranging the terms over the figure brackets in (A31) by the rule (A33), and also using (46),
(A77), and (A86), we establish the validity of the sought-for relations (A29), (A30).

From (A31), it follows that a single application of the operator #}, to [n2)y implies, at
least, a reduction in the last component in the above vector by the value of 2, i.e., a reduction
to a vector with |0;; + 620j2,0,0, 12 — 2)y. Therefore, applying the operator action from

Lemma A3 as many as [(”22_ 1)} times, we resolve the recurrent relations (A29) in the form

k=1 . . k=1 . .
[nz/Z—;l(lm-&-’l)—(k—l)] {nz/z—;(’m#l)—km—k]

[(n2-1)/2] ( [n2/2] [n2/2—('m+1)]
taln)vy = { (-1f
k=0 Lm=0 11=0 km=0 kj=0
Y (Cm+)+k o
= cre o cm2mel 2N (k)
m% 2lm+1721+1 T T 2kml
_o(yk=1 (i, i _1y_ok,
o C;kzl 21(2111(% 1)+k=1)—2km 1‘A o . > ) (A34)
+ 0,0, (im+i1)+k,0,0,13—-2[ ¥ (im+il)+k]/ V
i=1
where |Aoomoom ) = (%) Au)v, (A35)

so that we completely determine the action of t, on the vector |1)y.

Due to Lemmas A2 and A3, we consider the action of the operator t}, on the vector
|6i]-, 0,0, n2> v as a primary block operator, which can be used to obtain the action of all O/I
on the vector ]N(Z))V

Note that, in the case of the flat-space limit r = 0, it is only the zero order in r of (A34),
(A35) that survives so that we have a term which is not originated by the sp(4) algebra:

- m -
#121057,0,0,n2) v |r—0 = _m7;n2|0ij/ 1,0,n2 = 1)y. (A36)

Then, the problem of finding the action of ¢}, on IN(2))v in (58) is readily solved in
the form
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fa|NQ@)y = pra(h' = —np — pra + 1) [iiij, n1, p1o — L ma)v

- Zlnlz
1

k=1 . . k-1 . .
[nz/Zf‘E (’m+’1)7(k71)] {nz/Zf Y (m4+1)—*m—k

= = ] s Yk (fml) 4k
£ ()

km=0 K1=0 m;

2 Cn2721m71 Cn272(2ff;11(im+il)+k71)

)3

1m=0 11=0

[(n2—1)/2] ( [n2/2] [n2/2—('m+1)]
fij — Oiji2 + Sij1, fis)v + { o

k=0

anfZ(Z;‘;f("m+il)+kfl)f2kmfl

2lm+1 2141 T T 2km1 2k1+1
<A, S (A37)
At L (1) +k]opdj mnny =2 1 (m+1)+k] 7 V
=1 =1

as we extracted from #,, the action of the Lie part t/5¢, sp(4), and also the part ;,, being

non-linear in 7,

ta|N@2))y = pra(h! =1 —ny — pra + 1), ny, pra — 1,m2)y

— Y Inpitii — 65 + 6ija1, i)y + Fo ’NQ))V, (A38)
1

in order to prove the validity of (64). The vector with a “hat”, |A,,.>V, in (A37) is constructed
using the vector |A_ )y of (A30) by the rule

Ag

~ 2 B ZH»
Ayl = T105)" (5 )y

i<j

J00m)V = 12P12 N(2) = 8s12)v

1

[n2/2] "
mq —2r n o 1 1
T . (m% ) szmH‘N(z) + mbjjpn + 051 — (27m +1)ds2)v
—

1m
_ [”iZ] ;21’ cn
ol m% 2lm

— [an (h2 — hl -+ 2p12) -+ cr2 } ‘N(Z) +51’]’,12 + (1m — 1)51']',22 —21m5512>v

N(2) + 611 + (*m = 1)8;500 + 0510 — 2'mds0)y

2lm 2lm+1

+p1aCyt, (B — k' + p1y — 1) ‘N(Z) + 'méijn — 8512 — 2'mbs0)y }

[n2/2] [12/2—(Ym+1)] oy Im4+11+1 _
L 2 <n12> Cglzmu{ {Cglel "R =k 2pn

Im=0 11=0 2
—2(Ym 41 +1)) - C;flf;’"’l} \N(z) + Gijaa + (Um 4 11)85 50 — 2(m
4 Do)y — praCiy A" (W = iy —2(m 4 14+ 1) 4 prp — 1)
X|[N@) + (4 14+ 18520 = bo12 = 2(m + 1+ 1)8,2)
—Cp 2 R@) + Gy + (D)0 + 8510 — 20 m + 1+ 1)d0) v

ol 1|
+%C§121+22m 1‘N(2)+(1m + M+ 1) +81=2("m + 11+ 3)652) v } (A39)
2
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Thus, the action of the negative-root vectors #/5, I," on |6ij, iis)v (A27), (A28), due to

Lemma A2, is completely determined, and the Corresponding terms containing t}, can be
presented as follows, in terms of the derived block operators 1}, ;" constructed from the

primary ones },, namely,

MR 1+1R (/2] —2r " 1 2
t12 |0i]',ns>v = tlJ2r|0,']',Tls>V =...— Z W C2’11t12
m=1 1

x |04 + (m — 1)8jj,11 + bij 0, Tis — 2mbs1) v, (A40)
. [m1—1/2] oy m+1
L0y, i)y = L0y, )y =...m ) <mz> Comr1

m=0 1
xF15 |03 4+ mbjj 11 + Gij o0, fis — (2m 4+ 1)d51) v . (A41)

Combining the results (53), (54), (A37) (A41), we arrive at the final representation for the

action of £}, 15" on an arbitrary vector |N(2))y, in terms of the primary block operator #,,

NE)y = —Y.(3-Dny
1
1’l1/2] m
py ( ) {ca,

*Cgﬁmmj ‘N(Z) +mbjjn — (2m+1)051 + dsp)v }

(/2] —2r " ny (1,2 1 n
_ Zl W { |:C2'r1n (}’l —h + 2p12 + 712) — C271n+1}
m= 1

I+
t12

fiij — Oij 11 + Oijr2, Tis) v

N(2) +mdjj11 — 2mds + 85 12)v

X |N(2) + (m — 1)8;511 + ij10 — 2mbs1)v + Colypra(ht — h*
—ny — pr2 + 1)[N(2) 4 (m — 1)8jj,11 + S22 — 2mbs 1 — 05 12) v }

/2] " chy
- Z Comtin

@)y = ¢ m1‘N(2)+5s,1>v

[n1+1/2] m
g ()

[n1—1/2] _o, m+1

n n

nf (G ) etz sn -G
m=

N(2) + (m —1)8;11 + Gijp0 — 2mds1) v, (A42)

It

b

1 IN(2) +md;;11N(2) — 2més1 + bs0)v

X ’N(Z) + 71151']"11 + 51']',12 — (2m + 1)53,1>V + C;;H-l (Plz(l’ll B2
—ny —pr2+1) ‘N(Z) +mdjj11 + bijo2 — (2m +1)051 — ds12) v

- ’N(Z) + (m+1)di11 — (2m +1)d1 + 55,12>V)}

[1—1/2 m+1 .
+my Z ( > 2m+l t12 N(Z) + m&,’j,ll +51‘]',22 — (Zm + 1)55,1>V} . (A43)
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lé‘mzl ”2>V

Equivalently, the above representation for t13, 15" can be written in terms of the derived

blocks t’fzr, ) +, as in the resulting formulae (65) and (66),

EEIN@) v = =Y (8 = Dy ity — 811 + 60, Tishv + E5 [N (2))v, (A44)
]
IFINQ))y = 5llm1‘ﬁ(2) +651)v + 2L INQ))y, (A45)
with allowance for the notation
2
BIN(2)v =TT(1;)"1B|0y 7is)v, B € {5,573, (Ad6)
i<j

introduced by presenting the vectors lZ’]Jr in a manner which does not affect the structure of
B|0j, fis)v; see (A40), (A41),

Lemma A4. The action Of the Opemtors l/lllll ll/Z’ I = 1,2 on the vector |6ij101 p12, ”2>V =
| p12, n2)v is given by

- 172 (g \™
=mj|0;,0, pro,mo)y —r Y, (2) {{C2m+1(2h +2p12—1)

m=0 ny

+2C2m+2}|0,0,m,0,p12,n2 —2m)y +2 2m+1|o 0,m,1,p1a + 1,13 — 2m — 1)y }

1A g\, 2 2012 1 1
2 o\ m3 C2131+2{<m0—7’[h (B" —4) + 1 + p1a(2h —3—P12)])
m=
np —2(m+1))y +r|1,0, 2(m+1))y
+2r(h! = p12 — )|0,1,m,0,p12+1,n2—2(m+1)>v}

(12-1/2] [n2/2=m=1] / _g. m _o, 1+1n o )
+2r ). ) 2 — | Cmn [C212+1 (" =" +2p12+ 1y

m=0

2(m+1)) = G|

1=0 mj m;

2(m+1+1))y

2 1
—cp 2(m+1+1))y — (pr2+1)

x[B' —h* —ny —pra+2(m+1+1)] n2—2(m+l+1)>v}
+Cp 2 L0, 0,m 4 141,1, pia + 1m0 — (m+l+1)—1>v}

m1/2] [m/2-m=1] / g \N™ [ 5. I+1

—2m—1
+2r Z Z (2) (2) Cg;iﬂcglzﬂ "
m=0 1=0 mj m;
SR 2m+1+ 1)>V, (A47)
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my 22 (2" 1,32
!/
Zl‘plZ/ ”2>V -7 mgo (m%) { 2m+l (b +h"—2)+ C2m+2}
2m—1) , A48
m-1) (A48)
[12/2] _8r [m 2 th(hz ~3)]
15| p12, = cr M —2m—1
2‘%712 n2>v m;O < "3 ) 2m+1 "y ny —2m >V
[n2/2]
my —8r 5
—= — 2he —1 2C —1,0,p1p,1p — 2 1
+4m¥1<m§> { m( )+ 2+1} p12, 2 —2m + >v
—p1211[03,0, p12 — 1, n2>v
[n2/2] 27 " m
- Y (=) @ -t —1,1Lpip+1,np—2m)y
m=0 < m% ) ZWI{ 2
*Plz —1,0,p12,m2 *2m+1>v}

my 221 oy . 1 42 2

n

+ 20 <m5> (4" = 1)C32 1 { [@p1a + 1)1 = 12 = 3p1a — pl
m=

7’12—271’!—1>V_

—1,0,p12 + 2,12 —2m—1>v

_a(nl _ _ _ _ _
2(h" = p12 —2) 1,0, p12 + 1,1y — 2m 1>V}

[n2/2] np—2m—1/2] / m+1+1

2 2m
2 = 1=0 mj

x { (o2 (1 = 1+ 2p1 +my = 2(m +1) +1) — Cp7 " |

2(m+1) —1>V

_ ~Mp—2m
C21+1 [

1,0,m+1—1,0,p1o+2,n5 —2(m+1) 71>V+ (2 =1t +ny

1y —2(m+1) — 1>V}

2(m+l+1)>v}

’ m—+I+1
—7’) (4"! _ 1)c"2 Ccl2— 2m{p12n;2[h2 _ hl

—2(m+1)—1)

np—2m

+ C21+2

+ )
m=0 1=0

2 2041
m;

[n2/2] [np—2m—1/2] <

+np + prp — 2(m +1)]

n2—2(m+l)—1>v

M
t
2

2(m—+1) — 1>V}, (A49)
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m=1

/ 1[n2/2] —2r " n 1 2 n
llz‘P1zln2>V:Z Y. £ {Czi(h +h _2)+C272n+1}

X

0,0,m—1,0, p1a + 1,12 72m>v,

léz‘ﬁlzl 712>V = —2P12132‘P12 -1, n2>v
e/ (—8r> Com  [my— (2 —3)]

2 2m+2 5 0,0,m,0, p12, 12 —2(m+1)>v

m=0 2 my

1[(”2*1)/2] —8 m
1 L (o) (@@t -nracs )
m=1 2

1[(”2*1)/2] 27 m+1m
5 L (3] @r-nick,]

m=0 ny

1,0,m — 1,0, p1a + 2,1 —2(m—|—1)>v

+2((h' = 2) = p1o)

0,1,m — 1,0, p1a + 1,1 —2(m+1)>v

+ (K2 =K' = ppp (2Kt — p1p —3))

m

1y 1

+C [7
2m+1 My

0,0,m,0, pro, 12 — 2(m + 1)>V}

0,0,m—1,1,p12+1,n272m—1)>V

—p12]0,0,m — 1,0, p12, 112 — 2m>v} }

1 [02=1)/2] [n2/2-m~1] . m+I+1 .
_ ) et
"2 <2> (4" - 1)C2r2n+1{ [C212+1 (h* — ' +2py,

m=0 1=0 mj

= 2(m +1)) = Cp 7"

0,1,m+1-1,0,p1o+1,n —2(m+l_|_1)>v
+Cor " {(plz +1)(h1 — W —prp—np+2(m+1+ 1))}

X

0,0,m +1,0, p1a, 1 —2(m+l+1)>v

_ ~m2—2m—1
C21+1

1,O,m+l—1,O,p12+2,n2—2(m+l+1)>v

ny—2m—111
+C —
2142 "o

0,0,m 41,1, p1a+1,m — 2(m +1+1) —1>V}

_‘_7
2 2m-+1>-21+1
2 ms

1 [(np—1)/2] [n2/2m1]<
m=0 1=0

m+1+1
_21’> (4m _ 1)C1’l2 anfszl

X?lz

0,0,m+1,0, p1a + 1,13 72(m+l+1)>v.

0,0,m — 1,0, p1o, 12 — 2m>v

(A50)

(A51)

The deduction of the above auxiliary formulae (A47)—-(A51) is straightforward and

relies on (A18), (A19), (A21)-(A26), (A79)—-(A86).

Using the results of Lemma A4, we introduce a new derived block operator by the

following rule, similar to that given by (A46), for I =1, 2:

o

N(Z»V = ﬁ(l;;_)"ij <lrél+1>nlc

i<j

0,0, pra, n2hv, C € {1y, 11, I}

(A52)

This allows one to completely establish the operator action on the vectors that remain

undetermined by (67)—(72) due to the following
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Lemma A5. The action of the operators l',l{, ll{]., for i,j,l = 1,2and i < j, on the vector

|6ij/ fls)y = |fs)v is given by

mq m 172] —8r fah n 7
v+ L <m§> Chtra{B] 0, 1,0), 71 — 2m+ g )

- n

7’15>V - lo
7 o Mo~ o

‘I’ 1 (m + 1/0;0)/ ng — (Zm + 1)55'1>V - 7t12 (m/ 0/ O)/ ns — (zm + 1)55,1 ‘l‘ 55’2>V

m -
~ 2 pua( — 2 —n — plz)’(m,0,0),ns —(@m+1,1, —1)>V}

A =8\ . ;
() {0 3] 2 0072 ),

12172 g\ 5
+§ Z <m2> Cgrln-s-z{lo)(m +1,0,0),1s — (2m +2)5s,1>v
m=0 1

—r([hl — pul[h' — p1o — 2] = W — pro — ny + 2p1p (k' —h* —np — pro + 1))
x‘(m+1,0,0),ﬁ5 — (2m +2)5S,1>V —Zr?gz‘(m +1,0,0), s — (2m+2,—1,0)>v
813, | (m+1,1,0), i (2m-+2)d;1) + 4Ty |(m,2,0), i (2m+2)051)

—|—27’(h2 +ny + p12 — 2)?12’(71’[, 1, 0),ﬁ5 — (Zm + 2)55’1>V

+2rp1o (K24 np+ pro—2) (W= h?— ny— p1p +1) ‘ (m,1,0),7is— (2m+2,1, o)>v}

, [?11*1/2] Y m—+1
+5 L (2) Cg%z{l’lz(l?lz—l)(hl — I —ny—p1 +2)
m=0 my

(B = h2 —ny — p12+1)‘(m,0,1),ﬁs - (2m+2,2,0)>v

+pr2(ht —h? —ny — pa + 1)912‘("1/011)/'% —(@2m+2, 1/0)>V

[12/2-" (i)~ [m2/2-"E () —Sm) i
...... y Y (—1)F

Im=0 11=0 km=0 k1=0

[(n2—1)/2] [[n2/2] [12/2—(tm+1)]
+ [

k=0

v (m4h)+k
% <_27> cm Cn2721m71

1 1
m32 2m+1 2141

k—1 (i i k—1 i [ k
chz—z(zizl (’m+’l)+k—1)cn2—2(2i:1 (‘m+'14+k—1)—-2"m—1

2km+1 2k1+1
—_—
xXt,|A o Koo > ,
(m,O,):;-‘:l(1m+’l)+k+1),ﬁ57(2m+2)55/172[_21(1m+’l)+k]65,2 1%
fn

(A53)
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01] + 77151] 11, 1s — 2mds 1)y

/2 (g
i), = 3 <mz> !

m=0 1

1 n1/2] m .
my Z( ) ;}n+l{lo’(mror0)rns_(2m+1,0,0)>v

m1 m
—7[(}11 —p)(h' —p12—2) —h* — p1o — ﬂz} ’(m, 0,0),7s — (2m + 1,0,0)>V

rpra(h — 12—y — pia+ 1)’(711,0,0),1’1’3 — 2m+ 1,0,0)>V

—r?’lz’ (m,0,0),7is — (2m +1, —1,0)>V}

[n1/2] oy m+1 N
n
—4my 2 ( 2 ) Comi1 (4m - é)liz

m=0 1

(m,1,0),7is — (2m + 1)55'1>v

m/2 g\ "
T () {cm @0t = pn) - 1) +2¢, )

my
(m —1,0,0), 7is — (2m — 1,0,0)>V

1’!1 /2] m -
_ n _ 7. —

2 ( ) )C2m{212‘(m 1,1,0), fis (2m,0,0)>v
fm2t12‘(mf 1,0,0), fis— (2m, 0, 71)>V - ml‘(mf 1,0,0), fls — (2m — 1)(551>V

_m2P12(h1 - h2 —ny — Plz)’(m - 1/O/ O)rﬁs - (Zmr 11 _1)>V}

711/2
( ) 1)C§%+1{P12(h1 —h —ny—prp+1)
’(m 0,0),7is — (2m +1)4,, > +ﬂ2‘(m,0,0),iis — (2m+1)d; +55'12>v

—41, (05 + (m — 1)8jj,11 + 2857 1, 7is — (2m + 1)(5s,1>v

—2(K* +np + p1a — 2) [Plz(hl — 1 —ny—pra+1)

x |Ojj + (m — 1)85511 + 8,12, 7is — (2m + 1)1 — 5s,12>v

B[O+ (m — 1)8ij01 + 8ija0, Tis — (2m + 1)‘55'1>v] }

[n1/2] m+1
-5 Z ( ) (4m_1)C§%+1{P12(P12—1)(h1—hz—ﬂz—P12+2)

x (W' —h? —ny — po + 1)’(”’1 —1,0,1),7s — (2m+1)ds1 — 255,12>V
+p1a(ht = —ny — p1p + 1)?12‘(”1 —1,0,1),7s — (2m +1)d;1 — 5s,12>v

[(n2— 1)/2][;12/2] [n2/2—(m+1)]

+ Z
k=0 Im=0 =0
[nz/z ): (fm+1)— ][ ):: (fm+1)— )—k} Y5 (im+1)+k
Y B SRR (=
2
km=0 k1=0 2
n Ho—2Vm— 1 1y =2(T5 T (mA- 1) 4k —1) ~np—2(25 L (fmA-1) 4k —1) =28 m—1
C212m+1C2121+1 ' Czkm+1 ' C2k1+1
Xt | A k , (A54)
12 .
(m—1,0,75 1 (imA-1) +k+1) fis— (2m+1)8s1 —2[ Y (m+il)+k]6s 0/ V
i=1
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0;; + 71151']',11, g — 2m§s,1>v

. [m+1/2] _» m P,
lé Oijrﬁs>V - Z W Czylnl
1

[”1 1/2] _op m—+1 . -
—2my ZO 7% {C2111+1112 Oi]' + (Tl’l + 1)51']‘,11, ng — (Zm + 1)65'1>V
m=

O + mdjj11 + jj1o, 7is — (2m + 1)5S'1>v

Vll /7
+Conila

61']' + méijrn, s — (2m + 1)55’1>V

1
T [C2m+1 (h' + 12+ 1y —2) + CgranrZ}?lZ

Plz( 2m+l(h1+h +ny— )+C2m+2)(h1—h2—”2—1712+1)

4
X 61] + m&i]',n, Mg — (Zm + 1)55,1 — 55/12>V}’ (A55)
1 [n1—1/2] — 8 m+1
/ n
Oy =5 ¥ <m2 ) Chtyalta| (m,1,0), 7 — 2(m + 1)d1)v
m=0 1

12 g\
~3 )y <mz> C2;11+2{P12(h1 —I? —pra—nm+1) + (h' — p12)
m=0 1

x(h' —prp—2) —h* = ppp — ﬂz} Oij -+ mdyja1, fis — 2(m + 1)d1)v

1 m 1/2] —8r " n /17
"2 Y 3 Com2lo

m=0

+1
12 g\ " S
8 Z T2 ngiwztlz

m=0 my

0ij + mdjja1, fis — 2(m + 1)1 ) v

0ij + méjjan, fis — 2(m + 1)51 + s12)v

1A g\,
3 L 57 {Ghat —pr) 1) 205, o

0ij + (m — 1)1, 7is — 2mds1 )y

C; l 01] + m(SU 11,115 — (2m + 1)551>V

1 [n1—1/2] _op m
—— ¥ () (4" — 1)sz+112‘( —1,1,0),7s — (2m + 1)ds1)v

my m=0 %
[11-1/2] "

my —2r L

o =) @ —1)C;:n+1{/t712‘(m—1,0,0),n5— (2m+1,0,—1))y
1 m=0 1

— P2 — +1)‘(m ~1,0,0), fis — (2m+1,1,—1)>v}

122 o\ .
t5 L (on ) @ =1Ch | m—1,0,0) 7 —2méq)y

1 m 1721 —2r " n 1 2
+= Z — (4711 —1)pC2}n+2p12(h —h — P12 —7’12+1)
X{z(h2+ﬂ2+P12—2)’( —1,1,0),1s — 2(m +1)ds1 — ds 12)v

— |0y + mdjj 11, s — 2(m + 1)5s1>v}

1["1—1/2} . m+1
() (4™ — 1)C2m+2{t12‘<m 0,0),7s — 2(m +1)ds1 + b5 12) v

2 2

m=0 my
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—4?12’(’”/ 1,0), s — 2(m + 1)ds1)v — 4@2‘(’“ —1,2,0),7is — 2(m +1)ds1)v

—2(h* + 1z + p12 — 2)?12’ (m—1,1,0),7s —2(m + 1)5s1>v}

1[,[1 1/2] _op m+1
+§ Z <mz> (4" — 1)Cgrln+2{ pra(pr2 — 1) (! = —nz — p1a +2)
m=0 1

(=12 =y — pio + 1)‘(m —1,0,1), 7is — 2(m +1)d, — 20,12)v
+p12 (hl —h—ny—pa+ 1)?12’(”1— 1,0,1), 15— 2(m +1)ds1— s 12) v

[(n2-1)/2] [[n2/2] [12/2=("m+1)]
+ [

k=0 1m=0 11=0

k=1 . . k=1 . .
[nz/zf Y (’m+’l)f(k71)] {nz/zf Y (fm4)—km)—k

i1 P! _op T Cmin)+k
L )y (—1>k<mz>

km=0 k1=0 2
e 21 anfZ(Z{.‘;ll("m+"l)+k71)cn272(2f;11("m+"l)+k71)72km71
2bm4-121141 T2kl 2k[+1
—_—
xth,|A o L JR (A56)
(m—1,0,55_, (m4i1)+k-+1),7s—2(m+1)8; 1 —2[ . (m+i1)+K)d527 V

i=1

0ij -+ mdjja1, fis — (2m + 1)d1)v

[m/2] / n
ﬁ8>V: *ZL (22T> C;;1+1T£
M m=o \ ™

7’[1/2]
[”1/2] " o
+ Z ( ) { Comlz

1
T [C;;L(hl +hP 4y —2)+ sz+1] [?12

12/0ij + mdij 11, s — 2més)y

6ij + (m - 1)5ij,11 + 51’]',12, ﬁs — 2m551>v

0ij + (m — 1)6;j 11, 7is — 2méq)y

+P12(h1 — K- ny — p12 + 1)

0ij + (m — 1)8ij11, 7is — 2mdgy — 5512>V} }, (A57)

Iy |fis)v = Dy [fis) v (A58)

In (A53)—(A58), we use the block operators introduced by the rule (A46), (A52) and

the below convention (A62) for the vector t/, . In establishing the validity of

#ij 1,124 > v
Lemma A5, we also intensely used (A18), (A19), (A21)—(A26), (A79)-(A86). It is only the

term (2r153 (#),)? 6ij, 0, p12,m2) v, implied by the quantity K1% for i = 1 (A75) and arising
in the proof of the relations (A53), (A54), and (A56), that calls for particular attention. To
this end, it is sufficient to use the result of the action of #|,, determined by (A38), on the
vector ’Aaiﬁqé,-j,zz,O,pu,anq>V (A39), for g = [LX_; (fm +1) 4 k], as in (A56). This is implied
by the following representation, which is not difficult to establish:
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(t/u)z’l?lz/ n)v = pa(pi2—1)(h' —h* —ny — p1o +2)
x(ht —1* —ny — pu—l—l)‘pu —2,n3)y
+p12(h! = —ny — pa + 1)?’12’1912 —1,n)y
[(1221)/2] (([n2/2] [12/2—(m+1)]
Lx

+ )
k=0

=) o\ D (D
D D (1)k<mz> ~

Im=0 1=

km=0 k1=0 2
ch2 an,zlm,l an—z():j.‘;ll (im+il)+k—1)cn2—2(2f;11 (fm+14+k—1)—2Fkm—1
2lm+1 21141 T k4l 2k141

xtgz\g (A59)

k. . k. . > } .
0+ X (m4-1)+K81i22,0,p12,m2 =2 & (fm+i1)+k] 1 V }
i=1 =1

To complete the proof, we present the final term explicitly, by using a linear combina-
tion of the primary block #,, as acting on specific vectors of the Verma module:

Aﬁij+‘75ij,22r011912,712 -2 v =

2 ‘ Aﬁi/'"‘(sij/lZ+(‘7_1)‘5ij,22/0rP121”2 —2q v

+(I3) 13,

!/
to

Aaijrorr’lzr”2*2q> & (A60)

to 61‘]', 0,p12 — 1,2 —2q)v

[12/2—q] P n 5
-(5F) fe

~ -
Aaij/ofplz,nz—2q> v = p12(n2 —2q) t1o

1,0,m —1,0,p12+1,np —2(qg +m))y

m=1 nmy

—2 -2
—(Cop (W = 1 + 2p1p) + C D H

0,1,m—1,0, p12, n2 — 2(q + m))v

+p12C;2n72q (h2 — + p12 — 1)?12

_ m
m [nz/i ‘7]<_2r> an—Zq'E/lz

0,0,m,0, p1a — 1,12 = 2(q + m))v }

0,0,m,1,p13,ny —2 -1
my =\ g 2m41 m, 1, p1a,n2 —2(q +m) — 1)y

2 21m41 21 +1

[n2/2—q] [nz/quml(
my

L1141
B B (gl
2r> 2 { [C”Z 20T (12 _ 4oy — 29+ 21y
1m=0 11=0

—2g-2L—
—2(Mm + 14 1)) = C2 29=2"m 1};/12

21142 0,1, m+"1,0,p12,my —2(q + 'm + 1+ 1))y

gl
_pucglzlﬁlq 2lm 1(h2—h1+n2—2q+p12—2(1m+1l+1)—1)

X?lz

0,0, m +1141,0, p1 — 1, —2(q+1m+1l+1)>v

. n272q721m71/7
C211+1 f12

1,0,1m+1l,0,}712+1,n2 —2(q+1m+1l+1)>v
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mq n2—2q—21m—1/7
+ o C211+2 f10

0,0, m +1+1,1, pro,ma — 2(q + 'm+ 1 +1) — 1>V}

+p12(p12 — 1) (n2 — 29) (W' — W2 — ny + 29 — p1p +2) )61‘]‘/0, P12 — 2,12 —2q9)v

ma/2=al [ o \" (1, o
Yo7 ) s et 0 -2 =t 20g 4+ m)  pra)

m=1 2

+(2 = 1+ 2p1)] + G2 |

1/01m - 1/0/ P12,12 — 2(‘7 + m)>V
—2(m —1)Cp2 %

m

1,1,m—2,0,p1a+1,ny—2(q+m))y

- (C;l’31 (1 — 1t +2p1a) + C;izﬂq) [Plz(h1 — 1 —ny +2(q+m)

—p12+1)|0,1,m—1,0,p1n — 1,np —2(q +m))y

—2(m—1)

0,2,m 2,0, pro, my = 2(q + m)) ]
+p1aChs (R —h' 4 pro = 1) [ (pr2 = 1) (' = B = o +2(g + m)

—p12 +2)

0/0/ mlol P12 — 2,7’12 _2(‘1 + T}’Z)>V

—2m

Olllm_]-/o/plz_l/nZ_2(q+m) _1>V:|}

[n2/2—4] "
mq —2r ny—2q
T o )y (2) Comia {2’”

m=0 W)

0,1,m—1,1,p1p,np —2(q +m) —1)y

—prafht —h* —np +2(q +m) — p1p + 2]

0/ 0/ m, 1/ P12 _1/ ny — 2(’1 =+ m) _1>V}
Tm+1+1

(/2] [n2/2-g—tm=1] /5
- 1y —2q 1y —2(q+1m)—1 /72 1
-r X (m) czfmﬂ{[c;lﬂ (W~ ' +nz =29
Im=0 11=0 2

I, P, ) P
+2p1p —2('m 4+ 1 +1)) — C AT 1} [plz(hl W=y +2(q+ tm + U4 1)

—p12+ 10,1, m+ 1,0, p1y — 1,y — 2(g + 'm + 114 1))y

1, 0,1m+ ll,O, P12, 12 — 2(q+ 1m+ 1Z+ 1)>V

—2(Ym+11)0,2,'m4+11—-1,0, p1o, 12 — 2(q+ 'm+ 11+ 1)>V}
I, P, Y DO
—plzcgflflq zm 1(h2 —h 4y =29+ pp—2('m+1+1)-1)

X [(Pu — 1)(h1 — W —ny +2(q+ L4114+ 1)

—p12 +2)

0,0, m 4+ +1,0,p1 —2,my —2(qg +m+ U +1))y
—2(tm411+1)

0,1, m + 11,0, pro —1,my = 2(q + 'm + 1+ 1))y |

YIS I
_C;zlflq 2tm—1 {(Plz"'_l)(hl — K —n2+2(q+1m+ 4+1)

_p12) 1,0,17”’1 + 11101 plz, npy — z(q + 1111 + 1l + 1)>V

—2(Ym+ 11)’1,1,1771 +1=1,0,p1a +1,m = 2(g + '+ +1))v |
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my —2g-2'm—1

+Ecgfl+2q " [Plz(hl—hz—n2+2(q+lm+ll+ 1)
—p12+2)10,0, m 4+ U 4+1,1,p1p — Lo —2(q +'m+ U 4+1) - 1)y
2(1m+1l+1)0,1,1m+1l,1,p12,n22(q+1m+1l+1)1>V}}, (A61)

k. .
as we have assumed g = Y (‘m +'l) + k.
i=1
Finally, adopting the notation based on (A60) and (A61), and using the conven-
tions (A46) and (A52),

— 2 I+ nq .
fp|A :H@Vﬂ@%A (A62)

ﬁij+ﬂ5ij,22/"1rplzr”2*2q>V i<

0ij+405j,22.0,p12,12—24 v

we arrive at the validity of Lemma A5, and therefore also at the validity of Theorem 1.

In the flat-space limit » = 0, we obtain a new Verma module realization for the above
Lie algebra A(Y(2), R14~1), being different from that for sp(4) in [55], as well as in [59] for
k=2,

to[N(2))y = pra(h! — 1 — np — p1a + 1)|fijj, fis — Ss12) v

— Zl?’llz
1

N(Z) + 55,1 - 53,2>V ’ (A63)

- = mi
fiij — 0iji2 + Gija1, fis) v — il

H3INQ@)y = =Y (8 = Dny i — ;11 + S0, 7is) v
1
. Mo | —

HN@) +dsn2)y —m 2 |N@) — b1 +dia)v, (A64)
[N @)y =m|N@) +o)v, 1=12, (A65)
hINQ))y = m%’N(Z»V, (A66)
. nd|
LIN@2))v = Mo N(2) = s1)v — mina |flij — &ij11, s + 651) v

Mon1s | .
—% |7iij — 6ij12, 1is + 652) v, (A67)

2
. m | - ni . "
lé‘N(Z))V = nszg‘N(Z) —3s2)v _ml¥|nij_5ij,12/ns+fss,l>V

—man i — 820, s + 85 2) v, (A68)
1IN@)y = mi(m +np +n1 — pro— 1+ 1Y) |fii; — 811, 7is)v

+w\ fijj— 20510+ 05330, Tl by — me%%nl (17— 1)‘1?1(2)— 26,1 )v

—% {‘N(Z)— Sij12+ 0s12)v — nl% ‘N(Z)— bij12— 051+ 05 2)v } (A69)
L|N@)y = % (”12 + Zl;(anz +n 40— 1) |iij — 8ij12, 7is) v

1 _,
+§P12n11(h2 — W' 41y + pr2 — 1) | — Gi11, 11, p12 — Lma)y
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nlnzm%

N(2)—6s1—6
211111112‘ () s,1 s,2>V

+n1inp|iti; — 8ija1 — bij22 + Gij12, fis) v —

_np { ’N —8ijo0 + 05 12)v — nl*‘N —0ijon — 051 + 55,2>V}

ml nznn
+7

‘N —0ij11 + 951 — 0s52)v, (A70)

Zzz‘N v = np(mz + pra + na + nop — 14 12) |y — 6500, s) v

n ~ o
+%}712(p12 —1+ h2 — h1 + 7’12) ’nij — 5i]',12' ns — (53,12>V
npp(np —1) . - na (2 — 1 N
+%]nzj +8ij11 — 20412, 1is) v — % N(2) = 202)v
mz
my Nonqo | -
+m7;% ‘N(Z) — 51‘]‘/12 + 55,1 - 55,2>V/ (A71)

whereas the action of the negative-root vectors ll’;r and that of the Cartan generators gii on

|N(2))y remains unchanged and is given by (52), (55).

Appendix C.1. Auxiliary Calculation for A'(Y(2), AdS;)

Here, we list the formulae for the operator quantities from Lemma Al:

K= K2k, (KD K) = adpe (KO, KH2L), ne N, (A72)
Ki = KY 42Kk
= {arrt g — 1)} 4 2{ 206 g1, — 211 L, (A73)
Ky = 4RO ot (A74)
KR = 21/12+X/{1i52}i+W/21+(51it/12 _52it/£>
= 2" S 42 4 2(gf — 1), | + 6 42 2 — 1)iE |
oyl (IC})Z +gél52}i) +2r{5ill/22+(t/12)2 +5i21/11+(t/£)2} ) (A75)
K = =1 r (K Kg2), (A76)
WRH = W2 i = Zr{ (502 — 1E 162 — [ — lf{l’“]&”}, (A77)
(2 x31) = (X224 XL 1) = {21 4 1512, — 2012+ 1 (A78)

The non-vanishing action of the operators (A12) and (A72)~(A76) and that of {—W,'**, X/12},
as acting on the highest-weight vector |0)y, are given by
(Ko k) loyy = ([0 (' —2) — 262) [0}y, 167
o)y = 2mh ]olm,(sﬂ,o, 52y — 2m15i2j61m, 1,10y, (A80)
KP0Yyy = M?|0)y,  M?=m}— rhl(hl —2-42), (A81)
Kyl0yy = 4M?|6",0,67,0s)y +2m7|0;,,26",0,257)y (A82)

Oy 1,1,0)y ) (A79)
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K0y, = Zr(s%{(;ﬂ —11)|0,0,6%,0)y +2(h' —2)6"0,1,0,0,1,0)y

+62[1,0,0,0,2,0)y } (A83)

KoYy = {4Mi2 +4re% (12 — hl)}) '5"1,0, 52,0y + 2m2| 0y, 20™,0,262)
+8r(h' —2)6(0,1,0,0,1,0)y + 4r62|1,0,0,0,2,0)y, (A84)
W20y, = 2r{(h2 —mH0,1,0,0:)v — [1,0,0,0, 1,0>V}, (A85)
X210y, = —2r(2+h'— 2)‘61,”, 0,1,0)y . (A86)

Appendix D. Oscillator Realization of Additional Parts: New Fock Space

In this appendix, we examine the correctness of Theorem Al for a bosonic realization of the
non-linear algebra A’ (Y(2), AdS;) over the Heisenberg algebra Ag of (b;, b;', b, b;]f, dip, d}y).
To this end, it is sufficient to show how the most involved of the Verma module relations
can be transformed to an oscillator form. Thus, the vector |A;,)y (A30) reads

m
_m —2r ()™ 2w
[An)v { 1y mX:()( m3 > (Zm—&—l)!b1 b2

m
—2r +ym—1]7,+ 1w —n! by by 7b1+1d1+2 2m
*E(m%) (bz2) [bu Gyt @m0t |2

m+1+1
_ Z 2 ;27’ 1 (b+)m+l b+{h2_hl+b;b2
m3 (2m+1)1+ 2 12 (21 +1)!

m=01=0

a

0,0, Yl2> . (A87)

b b bt d, by
_ %t }_( 11%12 ny 22 ),bfrbz} bi(m+l+1)} i

(21 +2)! 204+1)! " my (20 +2

This relation allows one to establish the form of the primary block operator }, in (A92).
Let us specify the operator related to the action of (#},)? in (A61). For instance, there is an

03, 7is) v (A53):

obvious one-to-one correspondence for the following term in [,

pm1/2 g\ " g\ R 2
n —

5 20 <m2> Comra (1)1 <n111> (t12)|0ij,0, pr2, m2) v

m= 1 ~—

. m—1/2] g8 m+1 : )

n
=3 20 <m%> Com2 lplz(Plz—l)(h —h* —ny —p1p+2)
m=

X(h1 — h2 —Nny—p2+ 1)‘(71’[,0,1),71} — (Zm —|—2,2,0)>V
+p1a(ht — h? —ny — prp + DF12|(m,0,1), s — (2m +2,1,0))y
[(nzm/ﬂ{["z/ﬂ [n2/2—('m+1)]

)
11=0

+

k=0 1m:0
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k=1 . R k=1 . .
{nz/Z—_;(’m-&-Il)—(k—l)} [nZ/Z— ; (1m+’l)—km)—k]

r Y (3

k=0 k1=0
o an_zlm_1 an—z(zlk;f(fm+fl)+k—1)cn2—2(sz;11(fm+il+k—1)—2’<m—1
2lm+1 21 +1 C k41 2k1+1

><t’12 A K >
(0,54 (Im+i1)+k+1) 7is— (2m+2)5s1—2[ ¥ (im-+i1)+k)d50 7 V

=1
m+1
=8\ (by)"by
m2 (2m +2)!

r ~
— Y {(h1 — 12— b by — diydp)diy + t’u}

m>0

X (W' — W= b by— d,d1p)d1a+ tqulz] (by)2(m+1) (bf)”r{ 0ij,0, p1a,ma).  (A88)

In particular, (A88) implies an oscillator representation for the action of (#'12)? on the
vector ‘()}p 0, p12, 12) v, due to an associative composition of the operators t|, and fgz given
by (A91) and (A92),

(12)%]05,0, pro, ma) v — [{ (h' — 1 — b by — dyd1p)d1a + P12}

X (hl— hz— b;bz— dﬁdlz)dlz—F i’/12?12‘| 6ij/ O, per 7’!2> . (A89)

By using the arguments on the oscillator realization of the quadratic terms in #}, and
the structure of the operator related to the vector |A,,)y, all of the operators 0} can be
restored in an oscillator form, given by (A90)—(A101), by virtue of the following.

Theorem A1l. An oscillator realization of the non-linear second-order algebra A’'(Y(2), AdS;)
over the Heisenberg algebra Ag does exist in terms of a formal power series in the degrees of creation
and annihilation operators, is given by the relations (A90)—(A93), (A95), and (A96)—(A101), and
is expressed using the primary block operator #;, (A92) and the derived block operators
ﬂer,lA(g,lA;n,lA;nz, m = 1,2 (A94), (A102)~(A106) as follows.

First, for trivial negative-root vectors, we have

Bt =mbf, I =0b, 86 = 2b; b + bjhb1a + (—1)'djod1n + b b; + h'. (A90)
Second, for the operator t,,(B, BY) and the primary block operator #,,(B, B*), we obtain"’

t, = (h1 12— by — dﬁdu) dyy — by b1y — 2550 + By, (A91)

?12:2

k=0 Lm—oll—o km=0k1=0

m
k(i i o b+ m
X(bfz)z’1(m+l)+k{bz+d12b2—zi 0( 27) On) pagme
m=

2
ny

[ \EP 1
2 2 Z (_1) <> H (2im+1)! (2il+])!

mj | (2m+1)!

m
—2r 1t W —nl 4+ 2di~_2d12 b;bz
+m;< m3 > ) G @
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+ 3+ +
b4, by

(2 = '+ dfydo)dro | 03"

C(2m)! (2m)!
141
En(E) e S e s
m=01= (2m +1)! 12 (2r+1)!
bz“?z b dy, b o 1k .
_(zz+z)1} R (zz+1)1<h — I+ by by +djydin)diy
m1b7 + (m+14+1) 22, (im+i1)+k)
Fon @ Loyt b (b)* =1 :

Third, for the operators t7}, 15 and the derived block operator ¥}3, we have

t/ler = _2b1+2b11 - bzrzbu +?ﬁ,
m
—2r d+ m b b
7t o= ) prym{ 2 M2 1 B
12 mZ,()( m% ) (b7) {(Zm) (2m+1) }
*Z b+ b (B— '+ 2dfydip+ b5 b)) by
i) . (2m)! @m+1)!
hl—hZ— dhd1— b3 by) b3
+( 12412 2 U2 oy 2
+b22 (27”1)' d12 + W t12 b m
+1
T o i " b5y b, (W =l 4 2dfydip + b3 by)  bihy
2 1 - m% 11 12 (2m+1)| (2m+2)'

bt (h' —h? —dyd1p — by by) PR df p2m+1
22 (2m +1)! 271 2m 1)1

m m—+1
—2p (bn)mb; ) 2}, (b+ )mb+
+m e b " 11 22 ’tY h2m+1.
2m20< n? ) TR ) B T

1

Fourth, for the Cartan-like vector 1)), the following representation holds true:
m+1
o b+ m
b= e (o) i enh
2 =\ m3 (2m+1)!

—% [Flp + (' — h* = b*Tby — dyd12)dy) by }b%m“

m
_ ;8” +\mp+ z(hl - d1+2d12) -3 Zb;rbl 2m+1
77712_)0( 2 ) (br)" by { em+1) T ams2 (0

1 g\ "y
- 7
+3 Zo<m% ) i o 1 {bﬁ Iy — rbf (10— diydua] [0~ diydio— 2]
m=

—h? — dd1y — by by +2d), (W' — W — by by — dfzdlz)du)

(A92)

(A93)

(A94)

(A95)
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—2rb By diy + 8rb b Ty + 4r(bjy)? Ty + 2rby [ (' — 12

b} by — dfydi)dr + Py | [+ 0 by + Ay 2] }b§m+2

r g\ (b )™
Y (=) b {1 = = b by — dfydin)di + F
i) mZ_:()( m%) (2m +2)! 22{{( » by — dipdia)din + o

x (W' — h*— by by— d, dlz)d12+t12tu} b2, (A96)
Fifth, the operators I}, llm, I,m=1,2,1 < mread as follows:
L= mon m1 (2m)t" 1

m (b+) _
Z( 1) ﬁl)' loir[(hl7d?—2d12)(h1*di~'2d1272)7h2

m1 m
iy — b o] — 1y [ — B~ b by — dfydva| iy — By dﬁ}b%ﬂurl
m—+1
—2r (bﬁ)mbfz m_ I\ 32m+1
_47711 mzo<m%> m(é‘: — Z) 112 bl
m
— 2(ht —didp) —1 bib
_4_@ Z ﬁ (bfl)mflbf 1( ( 12 12) ) i 191 b%'”
2 =\ m? 2 (2m)! (2m +1)!

1

m
_ ptym-1
+% 1(2;) (4"1—1)7( 1) {2b1+2?2—m1b1+
m=

(2m)!
—ma(fly + h' = I = b by — diydio)dizbg [b3"

m+1
my —2r (bﬁ)m—l . -
—2b, [(hl — 1 — by by — dj,d1n)d1n + fu} (W + b by + dyd1p — 2)

b d (B — 1 — by by — dﬁdlz)du}b%m“

m+1
m1 —2}’ (b+)m_1 1 2
2 1<2> @ =) gy (0 = = Vb — dd)
=

4'?12} (W' — H?— b3 by— dyd12)drp+ t12t12}b2m+1 (A97)

m=

2\ " ()", " (b
. —2r 1) gom_ o ()" b 17 p2m]
2 ,,IZ_:O< m%) 2m! 2 M Z m3 (2m +1)! Z k2
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!
lll

!
ll2

m—+1
- bh)m W+ 12 4+ bbby, —2 bib
—2m12< 2”) <11)?{( +h 40y 0o )+ 101

m=0

(2m+1)! (2m +2)!

}b%m+1

o (2 m“(mm (W1 +bb=2)  bib )
2 =\ m? 1 (2m +1)! (2m +2)!

m
X (h' = W2 — b} by — diydy)dpb?" ! — 71b1+b12 — 15" by,

1
~Fh b1

b=
(b11b11 + b b12 + b+b1 dEdIZ + h1>b11 + %b%z 2

1 AR = O (1 1
_ 11 77 + 7 + 1 2 +
+5 Z_;o(m%> (2m+2)!{40 + b3, 112—Z[d12(2—h —1? — by by)dyy

+h (= 2) — 1 — bi by +’t§2d1+2} }bfm“
m
_1 ;87’ (b+ )m,1b+ K — d;rzdu — % + bi"_bl b2m+1
2 =\ m? n ! (2m +1)! (2m+2) [
m m
_1 —8r (b7))" 7 - —2r (4m_1)(bf1)m 1b12’l7 b2m+1
my =\ m2 ) @m+1)! m? (2m +1)!
m
+2m-o< m%) W G

m
m —2r by ym-1
+o2 <2> (4" — 1)((211) {t12+ Zl b,z}b;bfm“
=0

zmlm my
m+1
1 —2r (b )ym—1
m=

x (hl — 12— dfydiy — b;bz)dubfm“

m+1
1 —2r (l71+1)"171 + g+ + 14+ 7
-5 mZ:;o (T%) (4™ — 1) am o)1 { by tip dyy — 4byy by Iy

—4(by)2 Ty — 2b), By (W2 + b3 by + diydys — )}b%m+2

1 —or\"" (k)" 12 o
+2mgo<m%> (4 —1)mbzz{[(h — 2~ b by — dydia)dy + Ty | X

x (B = h* — b by — d,d)d1n + tizﬂz}b%m+2f

1
(b12b12 + Z (26,5 bmm =+ by by + hm))hz + bjyb11by — 3 (£15 boo + 1 b11)
m
1 bt 1 =2r\" (B)" 5 o

+ Z (—2;’) ((b )) llzbzm+ Z <;12%r> (bﬁ()zn:n;blz ? me

m=0\ "1 m=1

(A98)

(A99)
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(W +h? + b by — 2) b by

1 —2r
+1 0 (o)™ 1{1512
4m-l( m% )

2m)! 2m +1)!
(2m) ( )
h' +h? + by by —2 b b
m)! - (2m1+11)! (' =1 = by by — difydia)dr ¢ 7", (A100)
1
ly = Iy + (bhbi +djydin + b by + byby + 1 )bzz+ b+b2 5?12 b1
+§(h2 — W 4 dydis + by by)dyobiy. (A101)

In (A96)—(A101), the derived block operators IA{), v I! o, for m = 1,2, are written as follows:"’

m
7o a2 —8r ym) 1 2

ﬂ —Z@ﬂbz me
(2m +2)! my (2m +1)! 2

1 —8r e (bz_Z)m b+ 2 hZ hZ 4 hl d+ 2d2
+§m;0 3 m{ zz(mo—r[ (" —4) + 1" — (dy;) d,

+2d i (! = 2)]) + 2l (' — diydi —2) + 1b; (d5;)? 32

+1
—8r b2+2) (bzrz)lﬂ 4 1 2(m+1+1)
2 ) Z(m%) < m3 ) (2m +1)! (21 +1)! fz diohy

m=01=0
—8r 2r b+ m+1 il —|—2d d12+b+b2—|—2]
2 - 22 *d*
+rn§01§)(m%> <m§> 2m+1)! @I 1)
byby | bh(dH)?  bh(dhdn+l) o,
B E S [t — h? — by by — dyd1o)]

(A102)

my bzzb dl?‘b bz(m+l+1)
"o (2[ + 2)

m+1
o= ™M —2r +\m g+ (' + h? — 2) b;‘b2 —_
= 2 m0< m% > (b3,) dlz{ 2m11)! + 2m+2)! b, (A103)
i i _sr\" (b,)™  [m3 — rh2(h2 — 3)] -
I, = —lidp— Z — 2
m=0 \ ™3 (2m +1)! My

m
my —8r 1 (2h2 — 1) b;bz W
+—= — | (b)) by +2 b3
4 m21< m3 ) (b2) 2 { (2m)! 2m+1) 2
+M2 -2 m+1(b+ ymdd (h! +1* —2) " by by giop2mtl
A 2/ M2 Tom 1) T @my2)! 122

m
1 am—1 g+ mlbi" B T’I’lzl’];rdlz om
> 2( ) ~Dibz) d12{(2m)! emi (7
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m+1
m —2r b)m-1
+2 ) <2> (4" — 1)%{@2 21! — 2)didns

2 =\ m2 @m + 1)
il — 12— (dfz)zd%z} — 20 (' — i — 2) = by ()2 pen !
m+1+1
2 Z @ 1) (b)) [ my by dﬁb
(2m)! my (21 +2)!

m=01]=

hZ
b, [ (

h1—|—2d d12+b+b2+2 b;rbz
@ 1) T @it

(bﬂ(dﬁ) [l —h b;bz]) pRm)+1
(2r+1)! 2

m-+I+1
m —2r " (b5H)™ (b))
3 2<2> W =D Gy @ 11

xdfy { W = '+ b by + diydiy +2 ol "M

m+1+1
5 — " (0,)" (b35)' & i ottty
2 mi £ tp dpyb , (A104)
2 m—01_0< m% ) ( ) (2111)! (21+1)! 12 4122
m
q : — cymtge § (412 =2) by by om
T W) ¢ a by", A105
12 4m_1< m% > (b) 12 (2m)! + am 1) 2 ( )
m

; I} —8r (b3)" 2 2(m+1)
Uy = —20,dip— 8 )" a0 ,
2 12412 mX_;()( 2 ) w2(am + 2! {mo r 3) b2

m
_1 ;87 (bJr )mfler 1 (2h2 — 1) + b;rbZ b2m+l
2 =\ m 2 21202m+1)! " Cm+2)! [ ?

1 2\ bt
— +\ym—1 12412 1 +
+5 EO< = ) (4" = 1)(by)" {(Zm ey [2(h' —2) — 2d},d1] b,

b+ b+ d+ Zb
+7(2m o) [hz W' —2df,dyp(h' —2) + (dﬁ)%l%z} by + é; 132) !2
m+1 _
bydjrdiz | ot | —2r (b)" ' dyy 2m+1
o (2 o 2l ) T @Dk
(2m+1)! 2my =0\ m3 (2m+1)!
+ 2 2 m-&-l—é—im - 1) (bzrz)erlfl my bi&-zbi&-di&-Zb B bil—l(di&-z)Z
2 & Cm+ 1) | my 2L +2)!12 (21 +1)!
b+
+(2z 1) (dydin + 1) (B — B> — b by — dfydip)
b (h? — ' +2d{,dyy + b3 by +2) bbb 20mt141)
(214+1)! 0+2) 2

m+1+1
+ L Z @ 1) BB o a0
2 5=0/= (2m +1)1(21 + 1)1 1271272

As a consequence, in the flat-space case r = 0, the oscillator realization of the second-
order algebra A’ (Y (2), AdS;) is reduced to a 2-parametric (with the parameters m;, [ = 1,2)
polynomial realization of the Lie algebra .A(Y(2), R1~1), with the central extension m3
given by (52), (55), and the following relations:
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to = (hl — K- dﬁdlz)dlz Zl 1bi — b ba, (A107)
= dfy =Y (83— 1bjby — 1b2 by, b = m3, (A108)
1
2
ll’+ = m;b;', ll/ = Tn—?bl — ?bfbll - lmTZb;rblZ, 1=1,2, (A109)

by m3
lil = (bﬂbll + bii_zblz + bii_bl — dﬁdu + hl)bn + %b%z — ;gb%
1

1 m
—{dt, - —zb,jbl}bu, (A110)
mg
2m1m2

=7 (blzbu + Z (2b} by + b by + hk)) bia + bjhb11bo — biby

1 1 m m
5 (1 — '+ dfydyy)bydyy — 5 {df - ijbl}bzz + Z—r’;bszbn, (A111)

b
122 = (b12b12 + d d12 + b+b2 + b bzz + hz)bzz + 11 b

1
(W2 — W' + ddyy)d b g ) b2 it by byb A112
+2( +di5d12)d1obra — 2n2 2t 5 01 D22 ( )

Appendix E. Reduction to Initial Irreducible Relations

) Here, we demonstrate that the equations of motion (2)—(5), or, equivalently, (8) for
Iy = Iy + m? and (9), can be obtained from the action (102), after gauge-fixing and removing
the auxiliary fields by using part of the equations of motion. Let us start by gauge fixing.

Appendix E.1. Gauge Fixing

Let us consider the field | X! ), forl =0,1,...,6,at certain fixed values of spin (s1,52). In
this section, we omit the subscripts associated with the eigenvalues of the o*-operators (92).
Then we extract the dependence of Q (91) on the zero-mode ghosts #g and Py,

Q = noLo+1Y mmn"Po+AQ (A113)
m

AQ = 7 Li+ Y njh L+ 95T — 05 Y (1+61)11, Pra (A114)
1<m

+015 ), (L4 6m2) 12 Py + 5 T M inAz
-3 l; (1 + S )ttt Pr — [B1203 P1 + 935115 Pa]

{ 3 77] el [Zm(—l)mgénplz — (Ti2P11 + L11A12) + T3 P2 + /322)@2}
201 | Ton £y P — § (T M1 + TiaA )89 + § 5y G M1262| | 4+ e,
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where
Lo:=LiLo+rynt [26147’1-* + 2L P+ GiPi+ 2(LiaPfy + L Pia) by (A115)
=M (LA, + Ti5 Pa) — 0% (LyA1a + 7127’1)}
+A Y, i€ [ 3 S (G [MaPsh = MyPi] + 4Lun P PR, ) + 2L PP |
X [2 T (L Pop — L1y Pyy)) A126Y62 — 2Ty Py P61 6%
+2elY62((LisAra — TiaPra) P + (T Pro — Lok, Py )
~2 5, (~1)"(G P1oYieY — G Pad®eV ) P } + e,
and do the same with the fields and gauge parameters:
') =15 + 0 B'). (A116)
Then the equations of motion and gauge transformations (101) can be recast as follows:
o) = AQIS) = Yman"|B), (A117)
i
SIBY) = Lols'y—aQB), 4x ') =0, (A118)

forl =0,...,6.
As a next step, we examine the lowest-level gauge transformation

5|S°) = AQ|S®), 5|B%) = Lo|s°), (A119)

where, due to the ghost number condition, we took into account |B®) = 0. Extracting the
dependence of the gauge parameters, and that of the operator AQ (A114), on the ghost
coordinate and momentum #11, Pﬂ,

XY = Ix0) + PiiIah). AQ = AQu1 + Ty + U Py, (A120)

where the quantities | 7(6), | )(ll>, Ty}, U11, AQ11 do not depend on 713, Pﬂ, we obtain the
gauge transformation of |S3), with the same decomposition for |S°), |S°) = [S3) +P;|S3)
as the one for |x') (A120),

oS3y = Tih1S9). (A121)

Here, we used the fact that |S§) = 0, due to the ghost number condition. Since
Tﬂ = Lfl +0(C) = b1+1 + ..., as implied by the structure of AQ in (A114), we can remove
the dependence of |S3) on the operator b}, using all of the degrees of freedom in [S$).
Therefore, after gauge fixing at the lowest level of gauge transformations, we find the
following conditions for |S3):

bin|S3) =0 <= buPhlx’) =0, (A122)

so that the theory becomes a fourth-stage reducible gauge theory.

Let us turn to the next level of gauge transformations. Extracting the explicit depen-
dence of the gauge parameters and AQ on 7711, Py, 712, P;5, and using similar arguments
as those at the previous level of gauge transformations, we find that [x*) can be subject to
the gauge

b Phxt =0, b P PhLIXY) = 0. (A123)
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To obtain these gauge conditions, one has to use all the degrees of freedom in the
gauge parameters |x°), restricted by (A122).
Proceeding with the above, step by step, first of all, for I = 3, we obtain

mPHIxX) =0, bPiPhIX) =0, bnPhPLPLIX) =0. (A124)

As we define the following set of operators used in (A122)-(A124),
I 2 2
[AT] = (bnpﬂ, b [ [P b2PSHT ] Plf) , 1=1,2,3 (A125)
i i

(where, for instance, the second component of the set [A'] is equal to A2 = by, [T? P, we
can equivalently represent the gauge conditions (A122)-(A124), and all of the subsequent
ones, which are based on decomposing the gauge parameters in all of the ghost momenta
Pl.]f, i < j, namely,

[A|x*) =0, for 1=1,23. (A126)

Next, we apply the same procedure as above, albeit starting from the gauge parameter
|x?), and carry out extraction from this parameter and from the operator AQ (A114) of the
ghost coordinates and momenta Hijs Pl;f, i <j,aswell as 7, Pf . As a result, we obtain a
set of gauge conditions for the parameter |x?):

2
(0P TT PP =o. (A127)

ij=1,i<j

In the process of further extraction, starting with the ghosts #1, 172, 731+ , 7;2+ , We obtain
two sets of gauge conditions for the parameters [x>~"), m = 1,2,

2 2 2
([A3],b1731+ I[1 PpellPs T1 731.]*)|X1>:0. (A128)

ij=1,i<j i,j=1i<j

Finally, implementing the same algorithm as the one above, albeit initiated by the
field [x°), and extracting from this field, and also from the operator AQ (A114), the ghost
coordinates and momenta 7, Py, Hijs PJ, i < j, 0, )\E, we deduce a set of gauge

conditions for the field |x°):

2 2 2 2 2
(Lot T PrbITPE T1 PraedplIPs T1 PP =0 (a129)
i,j=1,i<j m 1,j=1,i<j m 1,j=1,i<j

Let us now turn to removing the auxiliary fields by using the equations of motion.

Appendix E.2. Removal of Auxiliary Fields by Resolving Equations of Motion

As a first step, we decompose the field |S°) in the form

1S9 = |SY) +PyISY), 1Sty = 1500500 + Pi IS{g)1),  (A130)
|58> = |580> +,P1+2|581>/ |S(()0)30> = ‘S?O)5> +,P2+|S(()0)41>/
|S(()0)2> - |S(()0)20> - P2+2|S(()0)21>’ |S(()0)5> - ‘S(()O)SO> T AE|S?0)51>’

and do the same with the vector |B?),

B = PIBY) + PhIBG) +P2J§‘B(()o)21> +P1+|B(()o)31> +7D2+|B(()0)41> +/\1+2‘B(()0)51>/
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where the term independent of the ghost momenta is absent due to the spin value and the
ghost number condition gh(|B%)) = —1. Notice that, due to the spin value and the fact that
gh(|S%)) = 0, the vector |S(()O)6> does not depend on the ghost coordinates and momenta, as
a consequence of the gauge conditions (A129), |S(()0)6> = |®), with |P) being the physical
field (7) for k = 2.

Next, similar to the fields, we extract from AQ (A114) the dependence on #;1, Pﬂ,
N12, PE, 122, 772';, and then the dependence on 7, 77[4', I = 1,2, as well as on ¥, /\;’2,
respectively.

Substituting these 6 decompositions into the equation of motion

Lo|s%) — AQ|BY) =0, (A131)

and using the gauge conditions (A129), we can show that |B(()0)51> = 0, and then |B?0)41> =0,
etc., until |BY) = 0, which implies

Lo[S%) =0, |BY) = 0. (A132)
In a similar way, we consider the second equation of motion
AQIS%) =0, (A133)

where |BY) = 0is used. After the same decomposition, we deduce, step by step, the
facts that

1S0ys1) = IS{0y,1) = -+ = 1S3 = IS9) = 0. (A134)

The relations (A132) and (A134) imply that all of the auxiliary fields are zero, and then,
as a result, we have [x%) ;) = |®). The operator Lo reduces to Ly, with no dependence on
the auxiliary oscillators when acting on |®) so that the equations of motion (2) and (3)—(5)
hold true, with allowance for the mass term m3 (104). Therefore, we proved that the space
of cohomologies for the BRST operator Q (91) with a vanishing ghost number is determined
only by the constraints related to an irreducible AdS group representation.

Notes

1

9

For recent developments in the ambient flat space-time techniques of the incomplete BRST approach to totally symmetric tensor
fields in AdS spaces, see [43].

For the AKSZ model used in higher-spin gravity, see, for example, [51].

This choice of oscillators corresponds to the case of a symmetric basis, whereas there also exists another realization of an
auxiliary Fock space, generated by fermionic oscillators (antisymmetric basis) ﬁ}"fm (x), ﬁﬁn* (x), with the anticommutation relations
{ﬁf},,,,ﬁﬁ,ﬁ' }=— gymvmé’“", form,n =1,...,s1. The treatment below proceeds along the lines of [62] for totally antisymmetric
tensors withsy =s) = ... =5, = 1.

The operators a’, u?] " satisfy the usual (in the space R%~1) commutation relations [a”, u? T = —yoibi 6 forn™ = diag(+,—, ..., —).
The term higher-spin symmetry algebra, applied here to a free HS formulation, is not to be confused with the algebraic structure
known as a higher-spin algebra which arises in describing HS interactions; see, for example, [15].

There is no summation with respect to the indices 7, j» in (16), and the figure brackets for the indices iy, iy in the quantity
Al gitisgisia} imply symmetrization: Al Bitisgisia} — Al Bhisgish 4 AbBiiBgish These indices are raised and lowered using the
Euclidean metric tensors 6", 5,-]-, (5]1..

This superalgebra can be equally used for both bosonic HS fields in an antisymmetric basis and fermionic HS fields in an
AdS space.

One can choose sp(2k) in a Cartan—Weyl basis for a unified description; however, without loss of generality, the basis elements
and structure constants of the algebra under consideration are chosen as in Table 1.

Here, the symbols U(g), U (b), U(g~) denote the universal enveloping algebras, respectively, for g, for the Borel subalgebra, and
for the lower-triangular subalgebra ¢, such as &, in (41).
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10

For the first time [63], the treatment of quadratic “primed” quantities has been presented in the case of Y (s1.s3) so that the
N 3
following properties hold true: <Xg’> =X}, (XZ12)+ = XpL

In the case of a quadratic superalgebra A" f(Y(1), AdS,), elaborated for a totally symmetric fermionic HS field oscillator realization,
this is established in [22,23].

12° The momenta satisfy the independent non-vanishing anticommutation relations {12, A},} = 1, {;, P;L} =i, {Mims PIJ]F} =
1i%jm {10, Po} = 1, {17&,73’{;} = 10", as well as possessing the standard ghost number distribution gh(C!) = —gh(P;) += 1,
providing the property ¢h(Q’) = 1, and have the Hermitian conjugation properties of zero-mode pairs, (170, 17&,730, PZG> =
(170/ UIG/ _POI _P1G> .

13 Here, in the coefficients depending on 0/1, Oj, we use the convention for O adopted in (83)—(85).

14 The states (95) in the case of spin-(1, 1) have the lowest ghost number —2 due to the restriction (99), (100) at n; = ny = 1.

15 The algebraic relations (31) for the algebra A, are different from those for the polynomial algebra in view of a non-homogeneous
character of the structure functions F;}yl)K(o’ ,0) in Oj, due to the presence of the elements 0’1.

16 In the case n = 1, the corresponding algebra must be of zero order because of the relation (A6), which has the form [q4,9-] = —1;
however, in this case, we can add the unity 1 to the set of 07, as was done with the Heisenberg algebra Aj, and then remove the
element g¢ from o, due to the possibility of the representation g9 = g—q+.

17 Explicitly, W™ = 2r [} (32 — gf') — 11T t15 + 15 t,], which follows from W/!? by Hermitian conjugation.

- In (A27), (A28) and later on, for the sake of convenience, we use the following notation for an arbitrary vector: |7; j +mbij1n — 265,12,
fis — 2mbs1 + 05 12)y = |figg + (m,—2,0), s — (2m, —1,0))y = ‘N(z) + (m,—2,0,—2m,+1,0))y .

19 In (A92) for k = 0, there are no double sums. The products H?:l ... are equal to 1, and the terms inside the internal brackets,

_ m b+ m .
(by d1aby — 5 Yo (?2{) (Z(MZ:-)l)! b b3t + Y, ...), are the only ones to survive.
20 These operators are immediately determined by their action on the vector \61']', 0, p12, n2)v in (A47)—(A51).
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