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ABSTRACT: Targeted covalent inhibitors represent a promising class of drugs that form specific

chemical bonds with their biological targets. There are a multitude of molecular systems where covalent
inhibitors could address human health challenges. A high-level quantum chemical description of the
formation of the critical covalent bond could provide new mechanistic detail and insights into how the
mechanism is influenced by the surrounding biomolecular environment. However, accurately
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simulating the reactivity and binding specificity of such inhibitors remains a significant challenge. By
leveraging advances in quantum computing hardware and algorithms, we discuss how quantum
computing could benefit the design of targeted covalent inhibitors and enable more accurate
simulations of protein—ligand interactions and accelerate de novo drug discovery.

here is a resurgence of interest in targeted covalent
inhibitors in drug discovery." The importance of this class

of compounds is evident from the range of data in the
community resource CovalentInDB 2.0,” which features over
8300 experimentally confirmed covalent inhibitors, more than
110 distinct warhead chemistries, 386 protein targets amenable
to covalent inhibition, and 75 targeted covalent inhibitors
marketed as drug therapies. Recently approved covalent kinase
inhibitors include ibrutinib for B-cell cancers® and afatinib and
osimertinib, which are treatments for non-small-cell lung
carcinoma.””> One example which has been the subject of
ongoing study is the covalent inhibition of cyclin-dependent
kinase 12 (CDK12). This protein is being explored as a target
for the treatment of myotonic dystrophy type 1.° One of the
cysteine residues of CDK12 acts as a nucleophile to form a
covalent bond with inhibitor molecules, as shown in Figure 1.
Covalent inhibitors utilize a functional group with an
electrophilic center to attack nucleophilic residues within a
specific disease-relevant target protein.' In particular, the
formation of a covalent bond with its target means that strong

Cys
P
R, o) o)
Rs R,
\ Cys
Rs R g ~ Ry
Rz Rz

Figure 1. General reaction scheme of a thio-Michael addition, with
the thiol (SH) group in cysteine (Cys) acting as a nucleophile.
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potencies can be achieved with minimal effects experienced in
the presence of competing cellular substrates, as well as
stronger binding affinities beyond the noncovalent interactions
involved in drug binding.”” These factors allow such covalent
inhibitors to be administered in smaller and fewer doses, which
can significantly improve patient compliance, limit the
occurrence of unpredictable toxicities, and in many cases
reduce both production and treatment costs."

Covalent drug design, however, presents a challenging
frontier for classical computational resources, as only the
most advanced and poorly scaling quantum mechanical
methods can fully capture the key interactions at the binding
sites.”'® Accurate modeling of bond formation and bond
breaking demands a high-level quantum chemical treatment.
The size of the simulation region required to study the binding
between covalent inhibitor ligands and proteins severely limits
the applicability of these methods, and approximations often
have to be made which can suffer from spurious errors and
numerical instabilities.'" This bottleneck in classical computa-
tions therefore hampers progress in the burgeoning field of
covalent drug design."”

In the early 1980s, Feynmanl3 proposed that physics could
be simulated using a universal quantum computer, a device
that exploited inherently quantum phenomena such as
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entanglement. Rather than classical bits, which can only take
values of either 0 or 1 and are the bedrock of conventional
computers, quantum computers utilize qubits, which can
exhibit superpositions of quantum states and therefore store an
exponentially larger amount of information compared to
classical bits. In principle, quantum computers could solve
certain types of computational problems exponentially faster,
and this promise is, in part, responsible for the rapid growth of
the field of quantum computing at the start of this century. For
example, quantum algorithms such as Shor’s algorithm for
prime factorization'* and Grover’s algorithm for unstructured
searches' illustrate the potential speed-up offered by quantum
computers for tasks that are computationally impractical with
classical computers. Recently, quantum computers have been
employed to simulate a range of chemical reactions, including
the isomerization mechanism of diazene'® and the Diels—Alder
reaction.'” Current research seeks to refine the formulation of
chemical problems that may see early benefits, and advances in
quantum computing hardware, algorithm development and
software are pushing toward a practical advantage over
conventional quantum computing simulations in the near
term. One of the most fruitful areas for the promise of
quantum computing to be realized is quantum chemical
calculations."®

In this Perspective, we survey the main challenges
commonly encountered in computational simulations of
binding mechanisms of covalent inhibitors. To access the
thermodynamics of binding using computational chemistry
approaches, one needs both an adequate sampling of the
relevant conformational space as well as a level of electronic
structure theory that has a consistent accuracy across the
reaction coordinate(s) of interest.'’

Simulation Challenges. The recent emergence of targeted
covalent inhibitors in drug discovery presents new oppor-
tunities and challenges to the quantum chemical calculations of
reactivity that support discovery efforts.”® Covalent bond
formation between an inhibitor and its target enzyme occurs in
a two-step process:

k inact

k
P+ 12 P25 Pl

k

1

The inhibitor, I, binds to the target protein, P, forming a
protein—inhibitor complex, P:I. The binding equilibrium
constant, Kj, defines the binding potency, with k; (k_;) being
the on (off) rate constant for the noncovalent binding between
I and P. The rate of the second step, ie., bond formation to
form the covalently bound protein—inhibitor complex, PI, is
denoted ki, The efficiency of covalent bond formation is
described by the ratio ky,,/Kj, which is a second-order rate
constant, where ki, is determined by the free energy of
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From the Eyring equation”
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where R is the universal gas constant and T is the absolute
temperature at which the reaction takes place. An error of just

Skcalmol™ in the calculation of AGH

-t would result in an

error of 3 orders of magnitude in ki, at room temperature,
which could correspond to the difference between a selective
and a nonselective inhibitor. Thus, as is widely recognized by
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the phrase “chemical accuracy”, an accuracy of 1kcal mol™ or
better is needed for computational methods to be quantita-
tively useful in simulating the binding of targeted covalent
inhibitors.

State-of-the-Art Methods for Simulating Covalent Inhib-
itors. At the core of targeted covalent inhibitor design lies the
need for a deep understanding of molecular electronic
structure, which governs reactivity, binding, and selectivity.
Hybrid approaches such as quantum mechanics/molecular
mechanics (QM/MM) simulations have been instrumental in
studying biomolecular interactions,””** and have benefitted
from algorithmic improvements and classical computing
hardware advances.” Yet, achieving high accuracy remains
computationally demanding, often requiring approximations
that limit predictive power. In the current panoply of
computational methods, QM/MM calculations are expected
to provide the most accurate descriptions of covalent ligand
binding that can be tractably computed. Mihalovits et al.'* cite
33 QM/MM studies of covalent inhibitors on a range of
systems, including the inhibition of human cyclooxygenase-1
by aspirin®® and the inhibition of the SARS-CoV-2 main
protease by a peptidyl Michael acceptor.”” QM/MM studies
can provide insight into the nuanced interplay of entropic
effects, conformational flexibility, covalent bond formation, and
noncovalent interactions that govern the mechanisms of
targeted covalent inhibition, for example, the binding of
Bruton’s tyrosine kinase by a cyanoacrylamide derivative.”®
There are many molecular systems where covalent inhibitors
could address human health challenges and where a high-level
quantum chemical description of the critical covalent bond
could provide new mechanistic detail and insights into how the
mechanism is influenced by the surrounding biomolecular
environment.

To perform such QM/MM calculations, an optimal
combination of the QM method and QM region is required.
There can be a strong dependence between what is included
within the QM region and the obtained energies.”” Larger QM
regions tend to improve the accuracy of the QM/MM
calculation but increase the overall computational cost. The
choice of QM method can also have a dramatic effect on the
simulation, with some QM methods being better suited for
certain systems than others.”” As most QM/MM methods use
statistical mechanics to obtain properties such as the free
energy of the system,”" the amount of sampling also has an
impact. Longer simulations provide greater sampling of the
configurational space, increasing statistical convergence on the
true free energy of the system. In QM/MM calculations, a
trade-off between QM size, QM method, and simulation length
has to be made. Often, a QM benchmark is performed to
obtain the optimal QM method for the simulation, but
accurate energies for the benchmark are difficult to obtain (vide
infra). Ideally, this QM benchmark would not have to be
performed, but there are currently no universal QM methods
which are both cheap enough for use within QM/MM
methods and accurate enough to capture the properties of the
system correctly.

Density-Functional Approximations. QM/MM calcula-
tions with density functional theory (DFT)**** are based on
the assumption that the density functional approximations
(DFAs) typically employed are sufficiently accurate for the
description of the QM regions. Unfortunately, it is difficult to
make such a general assessment, especially for “off-the-shelf”
usages of DFAs, due to the nonsystematic nature in the

https://doi.org/10.1021/acs.jpclett.5c01680
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construction of most commonly available DFAs. In a 2024
perspective, Santagati et al.’* assert that “current classical
quantum chemistry algorithms fail to describe quantum
systems accurately and efficiently enough to be of practical
use for drug design”. While the previous statement might be a
little too pessimistic, QM/MM simulations are often preceded
by an extensive calibration exercise as quantitative accuracy can
be elusive, even when using modern DFAs that are high up on
Jacob’s ladder,” due to the chemical complexity of the
mechanisms.

Assessment of DFAs over large data sets of structural and
energetic properties is well-established as an approach to test
the strengths and weaknesses in DFAs. For example, the
GMTKNSS benchmark database has been used to assess 217
variations of dispersion-corrected and -uncorrected DFAs.*® A
good correlation between simulations and experiments for a
particular system may well be due to a fortuitous cancellation
of errors. For example, many DFAs struggle to describe bond
dissociation and how electrons localize on ions as the
interatomic distance increases,”’ while which DFA gives the
best treatment of CH—7 interactions is still a topic of current
discussion.”®*” Typically, to describe these complex processes
quantitatively requires either the use of hybrid DFAs that
mitigate the self-interaction error found with standard GGAs
and meta-GGAs, which are very computationally demanding,
and/or an accurate description of long-range interactions
beyond interatomic or electron density-based pairwise
approximations.*’ Despite the development of many-body
dispersion correction schemes*"** and van der Waals DFAs,*
accurately capturing both covalent and noncovalent inter-
actions in complex biomolecular systems, such as targeted
covalent inhibitors, remains a significant challenge for DFT
methods.

Correlated Wave Function Methods. Accurate and system-
atically improvable QM/MM calculations of reaction barriers
in biomolecular systems require correlated ab initio meth-
ods.**™* For instance, a projector-based embedding of a wave
function method in DFT gave a spread in barrier heights of just
0.3 kcal mol ™! compared to a 13 kcal mol™" spread calculated at
the DFT/MM level, suggesting that DFA dependence can be
eliminated by incorporating higher-level methods.** Sophisti-
cated wave function methods such as coupled cluster (CC),*
and complete active space self-consistent field (CASSCF) with
complete active space second-order perturbation theory
(CASPT2)*™* can be employed for systematic improvements.
Multiconfigurational methods, such as CASSCF, can describe
bond breaking and formation that are essential to study
covalently bonded inhibitors and electronically excited states.
The component of dynamical electron correlation absent in a
CASSCF wave function can be accounted for by multi-
reference methods, such as in the CASPT2 approach.

Bistoni et al."’ employed domain-based local pair natural
orbital CC energies evaluated on DFT/MM single-point
structures to study two enzyme-catalyzed reactions. They
found that energy barriers, computed using different DFAs,
gave qualitatively different results (variations of the order of
10kcalmol™ for both reactions), and concluded that more
reliable QM/MM predictions are obtained when CC is
employed as the QM component. QM/MM calculations
with multiconfigurational wave function approaches employed
as the QM method have also been applied to study
photoreactions in solvated molecules and in proteins. For
example, the photoinduced ring-closure/opening and isomer-
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ization reactions of a photochromic indolylfulggide in
acetonitrile solution were studied by Wang et al.*® at the
CASSCF/MM level of theory, with multistate CASPT2 used
to re-evaluate CASSCF energies. Pan et al.*’ employed
CASSCF/MM calculations, with extended dynamically
weighted CASPT?2 used to re-evaluate CASSCF energies, to
study excited-state proton transfer and the photoisomerization
processes of the red fluorescent protein mKeima. However,
such robust CC- or CAS-based QM/MM calculations are not
fast enough or sufficiently automated to be applied routinely
for screening compounds in a lead optimization study to
targeted covalent inhibition of biomolecules.

Fitted Density-Functional Approximations. DFAs can be
improved by adjusting an approximate form by fitting to
experimental data or higher-level quantum calculations, with
exact constraints incorporated to guide this parametrization.
This process can be both data-driven and manually adjusted
based on a physical and chemical understanding of the system.
Machine learning can also be used to optimize DFA fitting
beyond human-guided attempts. Modern machine-learned
DFAs offer promise for future enhancements;’””" the DM21
DFA showed general success for the data set on which it was
trained.”® However, such foundational models require
augmenting with a broader set of data for a specialized task
or to be applicable outside of their training domain. Such
limitations have been highlighted for DFAs such as DM21,
which was shown to not extrapolate for transition metals.”” To
this end, full configuration interaction and other (near-)exact
methods can, of course, be used to fit DFAs.

For generating the requisite data set, advanced computa-
tional techniques will be required beyond current capabilities,
in either conventional or quantum computing. Within
conventional computing, as well as a move into exascale
computing, algorithmic advancements continue; for instance, a
presentation at the QM in Pharma meeting in London in
September 2024°° boasted a speed-up of over 1000 times for a
conventional DFT calculation on a large molecule using
ORCA 6 (released in 2024) compared to ORCA 2.4 (released
in 2004). Meanwhile, the quantum computing community is
preparing for a transition to fault-tolerant computations,
developing both algorithms and hardware that can move
beyond current noisy intermediate-scale quantum (NISQ)
techniques. While the limitations of the NISQ_era regarding
system size and fidelity severely restrict practical application of
quantum computing to quantum chemistry currently, the
availability of fault-tolerant quantum computers and algorithms
will enable (near-)exact quantum chemical calculations.

Recent Quantum Computing Advances and Outlook.
In its early stage, quantum computing was deemed as a
theoretical construct whose physical realization was precluded
by taxing qubit-fidelity requirements for useful applications,
well beyond those attainable in the laboratory. This vision was
challenged in 1995 when Shor’* theoretically showed that
physical qubits featuring error rates below a threshold can
encode a computational space with an exponentially sup-
pressed error rate. The advent of physical platforms capable of
hosting qubits with error rates approaching the error threshold
for quantum error correction has revived the interest in the
pursuit of scalable fault-tolerant quantum computers and in
seeking useful applications in near-term NISQ devices.>” In lieu
of exhaustively reviewing current quantum computing plat-
forms, we highlight the ones which have shown significant
progress in recent years.

https://doi.org/10.1021/acs.jpclett.5c01680
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Table 1. Comparison of Major Quantum Computing Platforms by Maturity, Strengths, and Challenges

Platform Maturity Level

Superconducting  Most mature, available with more than 100 qubits

Trapped ions Commercially available, 20—50 ions

Photonic Early stage, exploratory

Neutral atoms Rapidly scaling and maturing; available for analog and

digital modes with >200 qubits

Fast gates, industrial backing

Strengths Challenges

Cryogenic, wiring

bottlenecks
High fidelity, all-to-all connectivity Slow gates, modular
scaling
Long-distance transmission, natural networking Probabilistic gates,
high loss
Large arrays (demonstrations with >1000 qubits) flexible ~Laser complexity,
connectivity, long coherence gate speed

Solid-State Platforms. Solid-state quantum circuits rely on
nanostructures connected to each other in a hardwired fashion
akin to classical electronic integrated circuits. The advantages
of this type of architectures include fast gates, possibility of
industrial fabrication, and availability of control equipment.*®
However, solid-state devices suffer from important short-
comings: limited connectivity due to their hardwired nature,
and potential loss of scalability as all qubits and their junctions
must be individually controlled. The leading solid-state
platform is superconducting qubits, among which transmons
constitute the current leading architecture®” " in terms of gate
fidelity. Semiconductor quantum-dot architectures have
recently gained some traction due to their prospective
scalability advantages over transmon qubits but the technology
maturity is relatively low.*®!

Atoms, lons, And Molecule-Based Platforms. The
technological challenge of fabricating identical qubits in
solid-state platforms is bypassed in these architectures by
employing atoms, ions or molecules instead, at the expense of
engineering control and interaction protocols between these
units. In real space, qubits are addressed by means of tunable
electromagnetic fields (traps) and mechanical fluctuations of
physical qubits are minimized by laser cooling. The leading
platforms within this family are cooled trapped ions and
neutral atoms.”””®* In the former, an ordered array of ions is
trapped and its mutual repulsion leads to the emergence of
mechanical modes, which enable full connectivity of quantum
units®* but also gives rise to scalability issues. The situation
with neutral atom platforms is opposite; Rydberg atoms are
trapped in optical fields, enabling better scalability. However,
their interactions are relatively short-ranged, which limits the
quality of pairwise operations. Trapped-ion systems have
demonstrated unparalleled qubit fidelity and all-to-all con-
nectivity in small modules, but their slower gate speeds and
multitrap complexity currently limit practical scaling. Neutral-
atom quantum computing has rapidly advanced from academic
prototypes to commercially accessible platforms, demonstrat-
ing hundreds to thousands of qubits with promising
trajectories toward scalable, fault-tolerant architectures.

Optical Platforms. In this category, quantum information is
encoded in light waves propagating in certain optical modes.*®
One of the main characteristics of light that would make it
amenable to a quantum computing scheme is its long
coherence time. However, the difficulty in engineering
nonlinear interactions between optical modes®® necessary for
the implementation of entangling gates, as well as the short
time scales at which these platforms operate, render an error-
corrected and gate-based model of computation challenging.>®
Photonic systems excel at long-distance entanglement and
quantum networking but remain at an exploratory stage for
general-purpose quantum computation, with significant
resource overhead required for reliable multiqubit operations.
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The maturity landscape of quantum hardware also varies
widely: superconducting circuits lead in commercial avail-
ability, trapped ions set the benchmark for fidelity, photonics
pioneer networking applications, and neutral atoms are
emerging as the most scalable contenders for future fault-
tolerant systems, as compared in Table 1. A more detailed
comparison between existent quantum computing platforms
can be found in The Quantum Insider.®”

Seeking Quantum Utility. There is a myriad of classically
hard problems which have been suggested to benefit from
quantum computers, including cryptography, chemistry and
materials science, optimization, machine learning, database
searching, and protein folding.68 However, considering the
overhead associated with classical data loading and the slower
gate execution afforded by quantum computers compared to
their classical counterparts, the most promising applications for
these devices should consist of small data and computationally
intensive problems,”® for which a significant quantum speed-up
can compensate for fault-tolerance overheads. Specific
instances where this is the case are quantum problems in
chemistry and material science. In particular, covalent inhibitor
modeling requires a QM framework to address the inaccurate
description through traditional MM, which fails to describe
covalent interactions and reaction mechanisms that involve
bond breaking and finding transition state structures.”’

Applying standard algorithms directly to full-scale molecular
simulation tasks will necessitate the use of fault-tolerance.
However, when full error-correction overhead is included in
cost estimation, it is evident that simulation of concrete
molecular instances are beyond today’s quantum hardware
capabilities.””~”* Due to the entwined nature of hardware and
algorithm development it cannot be said one or the other is the
dominant bottleneck. For example, the original motivation
from quantum computing came from algorithms developed in
the 1980s, devices are now being constructed, some tasks can
be run on a quantum device and algorithmic advances can
bring down resource requirements significantly (many orders
of magnitude - with further gains likely), yet improved
hardware is still needed. The convergence of hardware design
and algorithm design targeted to key requirements of an end-
use application is the main goal, where any aspect can become
a potential bottleneck. If wanting to use near-term hardware,
innovative algorithmic methods should be developed and
deployed to achieve useful molecular computations on such
devices.

Algorithmic Advancements. The most widely studied
algorithm on near-term quantum hardware for predicting
ground-state properties is the variational quantum eigensolver
(VQE),”*”* which is based on the Rayleigh—Ritz variational

characterization of the Hamiltonian () eigenvalues, as shown

in eq 3:

https://doi.org/10.1021/acs.jpclett.5c01680
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Ao(H) = T;;«www 3)

Unlike in classical variational algorithms, in VQE the state ly)
is generated, and its energy E(ly)) = <l//|(lt(|l//>, with respect

to H, is measured on a quantum computer. This requires a
suitable, efficiently preparable class of quantum states, ly(8)),
to be chosen with parameter vectors € over which to optimize.

Various ansitze have been proposed for VQE algorithms in
order to improve the accuracy of the quantumly computed trial
state, including hardware-efficient,”® unitary coupled cluster,”®
Hamiltonian variational,”’ ]astrow,78 and adaptive derivative-
assembled pseudo-Trotter (ADAPT)”’ ansitze. The Hamil-
tonian variational ansatz (HVA) is an example of VQE which
constructs the trial wave function directly based on the terms

in H. HVA allows for a more physically motivated
representation of ly), often requiring fewer parameters than
more generic ansitze, such as the unitary CC or hardware-
efficient ansatze. Furthermore, HVA naturally incorporates
symmetries of the system, which can result in potentially faster
convergence of calculations. HVA could, therefore, allow more
accurate modeling of electronic interactions and bond
formation processes, which are crucial for understanding the
reactivity and specificity of covalent inhibitors with their
targets.

As well as by making improvements to the quantum
algorithm itself, significant reductions can be achieved in
complexity by considering the overall problem of modeling
materials or chemical systems holistically. Developing an
integrated framework which considers the choice of active
space, Fermionic encoding, and algorithm design together can
enable substantial savings compared with an approach in which
each is considered separately. By following this philosophy, a
circuit depth improvement by up to 6 orders of magnitude
compared with the best previous quantum algorithm resource
estimates has been achieved for implementing a single layer of
VQE for the transition metal oxide strontium vanadate.* A
wider perspective on recent developments has been provided
by Daley et al.*'

In addition, interesting ideas have recently emerged in which
the quantum processor is regarded as a classical pipeline
enhancer, rather than the sole device executing the
computation,37'82’83 which constitute a prospective avenue to
bridge the gap to useful applications before error-correction
capabilities are incorporated in quantum computing platforms.
We discuss below one approach of this form which we are
pursuing.

Applications for Targeted Covalent Inhibitors. The focus
of QM/MM studies of covalent inhibitors has mainly been on
elucidating reaction mechanisms. However, there are wider
applications. The versatility of QM/MM approaches extends
to investigation of the effects of warhead modulation on
inhibition rate, the development of QM/MM-based scoring
functions, and the calculation of affinity and selectivity through
the use of thermodynamic integration calculations. We discuss
some of these in the context of recent studies using
conventional computers. We then survey recent quantum
computing work in this area and suggest some likely future
developments.

Rocelitinib-like covalent inhibitors of the epidermal growth
factor receptor have been studied using QM/MM,"*
addressing questions including the influence of the location
of the electrophile in the ATP binding site and the role of the
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acrylamide conformation, which can be either s-cis or s-trans.
Empirical force field molecular dynamics simulations were
performed to sample reactive conformations for subsequent
QM/MM calculations. The QM region was treated using the
MO06—2X hybrid meta-GGA and comprised over 200 atoms,
with the majority described with the 6—31G(d) split-valence
Pople basis set and the rest with a smaller basis. Two different
possible mechanisms of the inhibition of the epidermal growth
factor receptor by afatinib have been investigated using QM/
MM,** where the QM treatment was based on the Pairwise
Distance Directed Gaussian modification of the semiempirical
PM3 method.

Free-energy perturbation/umbrella sampling calculations
have been used to simulate the covalent inhibition of the
SARS-CoV-2 main protease, also known as the 3-chymo-
trypsin-like protease, by the nitrile electrophile group and by
the less reactive alkyne group.” An empirical valence bond
approach, calibrated by ab initio calculations was then applied.
The time-dependent half-maximal inhibitory concentration
(ICsy), which can be measured experimentally, was studied
using a kinetic simulation approach. Related systems have been
studied®® using alchemical techniques (imposing artificial
modifications) with an empirical MM force field and the
thermodynamic integration protocol.

Some work on the application of quantum computing to
covalent inhibitor drug discovery has focused on the resources
required for fault tolerant computations, i.e., the number of
qubits and the number of gates. Blunt et al.” considered the
binding of the anticancer drug ibrutinib to Bruton’s tyrosine
kinase. A region of over 100 atoms was defined for treatment at
a QM level. An important strategy is the definition of an active
space, whereby a subset of ‘active’ electrons and a subset of
‘active’ orbitals are identified. All possible configurations, i.e.,
arrangements of the electrons in the orbitals, are generated
within the active space. Thus, one is performing full
configuration interaction within the active space, with the
associated exponential scaling. An active space of 20 electrons
in 20 orbitals represents the limit of tractability on current
conventional computers, without resorting to bespoke super-
computers or classically approximate algorithms.®”** While
there are various techniques for tackling larger active spaces,
the desire for a fully general approach motivates the application
of quantum computing. For an active space of 32 electrons and
32 orbitals, Blunt et al.’ suggest some algorithmic enhance-
ments, including Hamiltonian truncation and sparse qubitiza-
tion, to the quantum phase estimation approach to reduce the
resources to 10° logical qubits, and 10'® T gates. Enabled by
the qubitization method, the Hamiltonian’s energies are found
by performing quantum phase estimation on a so-called walk
operator, which can be implemented with many fewer T gates
than solving the Hamiltonian simulation with a standard
Trotterized time evolution. Furthermore, the sparsity of the
Hamiltonian matrix is exploited by discarding terms with two-
body coefficients below a chosen threshold.

Recognizing limited qubit availability and measurement
noise on current quantum hardware, much more modest
resources are used in computational workflows employing an
actual quantum computer. Sotorasib is a covalent inhibitor of
the Glyl2Cys mutant of the Kirsten rat sarcoma viral
oncogene, an important cancer target. Li et al.*” have studied
this system using a hybrid quantum computing workflow, with
VQE, which has implemented molecular forces for a QM/MM
calculation. This involves measuring the one- and two-body

https://doi.org/10.1021/acs.jpclett.5c01680
J. Phys. Chem. Lett. 2025, 16, 8536—8545


pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.5c01680?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL
e
. s ,
co| &N rxo w ‘ .
¢

¥ B §
(?

€
Current quantum ground state emulation range

Desirable

1
i
|
/

l14 |30

42

Qubits

Molecular Complexity

Figure 2. Roadmap toward the quantum simulation of a covalent inhibitor, from small model systems such as lithium hydride, on the far left-hand
side, through to acrylamide at around 70 qubits, and onto a full covalent inhibitor ligand bound to a cysteine amino acid on the far right-hand side.
Emulation on current classical hardware is feasible for up to 40 qubits.

reduced density matrices of the active space, which was chosen
to be 2 electrons and 2 orbitals, to render the calculation
tractable on a 2-qubit superconducting quantum device. A
hardware-efficient R, ansatz with a single layer was employed
as the parametrized quantum circuit for VQE, with a standard
readout error mitigation to enhance the accuracy of the
measurement results.

Outlook. Quantum chemistry is a natural fit to the
quantum computing paradigm, with the benefit being most
obvious for highly correlated systems. In a bond formation
process involving a conjugated Michael acceptor, geometric
distortions may well lead to a variation in correlation energy
along the reaction pathway. Thus, for modeling covalent
inhibition, there is a clear need for a quantum chemical
approach that is as accurate as possible. Quantum computing is
still a nascent technology which has not yet been used for
practical applications,” but the speed of development of both
hardware and algorithms is cause for optimism.

In this Perspective, we have highlighted some recent
algorithmic developments, and this continues to be a very
active area of research.”"””> We are working on developing and
applying a new hybrid quantum-classical approach to the
many-body electron structure problem, namely quantum-
enhanced density functional theory (QE-DFT).”” QE-DFT
combines the complementary strengths of DFT and quantum
computation, and rather than using a quantum computer to
find the ground state itself, it is instead used to approximate
the exchange-correlation functional.’”” The quantum-enhanced
DFA is then fed into a classical DFT iteration; the quantum
computer is thus not tasked with finding the ground state itself,
but rather with steering the DFT iteration toward an accurate
solution. QE-DFT usually achieves higher accuracy over both
standalone Hartree—Fock or purely quantum approaches such
as quantum VQE.*” Moreover, QE-DFT does not necessarily
rely on quantitatively accurate quantum computations so could
provide a path (Figure 2) to quantum advantage even when
the quantum hardware is noisy.

Systematic discovery of targeted covalent inhibitors calls for
ab initio simulations that simultaneously deliver quantum-level
accuracy for covalent transition states, accommodate pharma-
cologically relevant system sizes, and span physiologically
meaningful reaction time scales. Conventional meta-GGAs and
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hybrid DFAs can systematically mis-predict activation barriers,
hampering routine conformational scans. CC with with single,
double, and perturbative triple excitations [CCSD(T)] can
potentially achieve the desired accuracy, but its O(N”) scaling
is prohibitive for screening campaigns. Multireference methods
such as CASSCF capture components of correlation yet suffer
from an exponential growth of configuration space. QE-DFT
offers a promising alternative: its functionals are trained on
data sets obtained from quantum-hardware simulations and
implicitly retain functional forms that compare to routine DFT
computations. In principle, QE-DFT makes the tractable
exploration of larger and more electronically complex chemical
spaces feasible, accelerating the search for next-generation
targeted covalent inhibitors.

Today, for a given biomolecular system of interest, one
would reach for conventional computing and, depending on
the resources available, a variety of contemporary computa-
tional chemistry methods. However, in the context of the
development and demonstration of the tools for the future,
there is a real prospect that one will be able to slot a quantum-
enhanced DFA, generated from data from quantum
computations, directly into well-established QM/MM work-
flows.
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