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Abstract In the present communication we employ a split
programme applied to spinors belonging to the regular and
singular sectors of the Lounesto’s classification (Clifford
algebras and spinors, Cambridge University Press, Cam-
bridge), looking towards unveil how it can be built (or
defined) upon two spinors arrangement. We separate the
spinors into two distinct parts and investigate to which class
within the Lounesto’s classification each part belong. The
machinery here developed open up the possibility to bet-
ter understand how spinors behave under such classification.
As we shall see, the resulting spinor from the arrangement
of other spinors (belonging to a distinct class or not) does
not necessarily inherit the characteristics of the spinors that
compose them, as example, such characteristics stands for
the class, dynamic or the encoded physical information.

1 Introduction

Spinors are objects widely used in physics and also in
mathematics. Firstly, their importance comes from the fact
that they carry a rich information about the space-time
where they are built, besides they play the central role to
describing fermionic matter fields. Such a mathematical
objects were firstly defined by Elie Cartan [2] where he
provided the following definition to a spinor “A spinor is
thus a sort of “directed” or “polarised” isotropic vector;
a rotation about an axis through an angle 2w changes the
polarisation of this isotropic vector”. Such entities may be
defined without reference to the theory of representations of
groups [3]. Spinors can be used without reference to rela-
tivity, but they arise naturally in discussions of the Lorentz
group.

Due the importance of spinors, in a foundational work,
Lounesto had the very idea to classify them [1]. The
principle that he followed was an extensive and tedious
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algebraic analysis relating to spinors due to its bilinear
covariants (physical information). Given this mathemati-
cal procedure, Lounesto assures the existence of only six
classes of spinors, from which he denominated a group
of three classes called “Dirac spinors of the electron”
and the other remaining three spinors on a group denom-
inated as “Singular spinors with a light-like pole” or
only “Singular spinors”. Having said that, the Lounesto’s
classification is taken as an algebraic classification. Sev-
eral studies related to spinor and Lounesto’s classification
have been developed in recent times [4-9, and references
therein].

The idea behind the present essay is based on the
recent development [6], where it is shown a systematiza-
tion/categorization on how to ascertain the spinor class due
to its phases factor, without the necessity to evaluate all
the bilinear forms. Here our focus is look towards analyse
how spinors may be constituted. The mechanism that we use
comes from the assumption that a spinor can be constructed
from a arrangement of other spinors. In this vein, we inves-
tigate the conditions or the constraints that allow a spinor
composition, also we analyse what kind of combinations are
possible and what is the expected result. As we shall see,
such a mechanism shows the impossibility of a generaliza-
tion for spinor construction. Some classes are built given
some algebraic constraints and other classes, as class 6, for
example, do not guarantee that this procedure will be applied.
As highlighted in [6,8], class 6 hold a very special case of
spinors.

The paper is organized as it follows: in the next sec-
tion we show the spinors separation method to be used
along the article. In Sect. 2.1 we take advantage of the
method and investigate how spinors belonging to the reg-
ular sector of the Lounesto’s classification are composed.
Thus, in Sect. 2.2 we perform the very same analyse but
now for singular spinors. Finally, in Sect. 3, we con-
clude.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-7865-2&domain=pdf
mailto:rodolforogerio@unifei.edu.br

299 Page2of 6

Eur. Phys. J. C (2020) 80:299

2 Defining the spinorial detachment programme

The protocol that we will define, look towards searching the
physical information encoded on the spinors. For this, we
decompose a spinor as the sum of two (distinct) spinors. We
want to show that: behind this mechanism there is a general
rule — or a composition law — for spinors to belong to a
certain class and, thus, only some possible combinations of
spinors are allowed. Contrary to what can be imagined, we
show that not every combination of spinors is valid or math-
ematically possible. Besides, it is possible to show that the
physical information related to two spinors is not necessarily
carried by the resulting spinor.

The programme to be employed here, is based on a spinor
“division”. Here we impose to the phases factors the fol-
lowing requirement «, 8 € C. The last mentioned feature
allow one to write the following « = Re o + iIlm « and
B = Re B+ ilm B. Now, suppose the following spinor split

Rea ¢p . ( Ima q)R)

;= +1 , 1
Vi <Reﬁ o1 ) <Imﬁ o1 M
in other words, it may be expressed as it follows
Vi = vk + Y, (2)

note that we now have two distinct spinors, where the label
J» k and [ stands for the corresponding Lounesto’s classes of

each spinor and itruns j, k,[ = 1, ..., 6. For the purpose of
simplifying the notation, we omitted the spinor’s momentum
(p).

The relation presented in (2) is the protocol to separate a
spinor. Now, we have a spinor carrying the real part of the
phases (Re) and another spinor carrying the imaginary part
of the phases (Im). What we shall check here is whether the
combination (+) of spinors preserves the class and what is
the outcome when one sum different spinor classes. Let I" be
a set of bilinear forms of a given spinor [10,11]

I ={o,w, I, K,S}, (3)

where j stands for the spinor class. When performing the
procedure defined in (2), automatically a superposition of
the spinor’s physical information is observed — thus, such a
feature translate into

r/ =rkur’. )
Note that (4) tell us that a given set of bilinear amounts can
be obtained from an union of two distinct (or even equal) sets

of bilinear amounts. What should be clear to the reader is that
the above definition is not exactly a summation of each one of

@ Springer

the bilinear forms separately but it stands for a combination
of bilinear forms that, when added together, provide a new
set of bilinear forms.

2.1 On the regular spinors framework

A single-helicity spinor in the rest-frame referential is defined
as follows [6,12]

_(app (kM) (o (kH)
ViD= (Mg(k“))’ and () = (Mf(k“))’ ©

in which we have defined the k* rest-frame momentum as
def .
o <m lim 3), p=lpl. 6)
p—0p

Commonly, the spinorial components in the rest-frame ref-
erential reads

b e cos(0/2)e~ /2
¢R/L(kl )= ﬂ( sin(9/2)e'?/? ) )
and

_ B —sin(0/2)e~i¢/?
Oy k) = */’;( cos(0/2)e'?/? ) ’ ®)

where the phases factors « and g € C and the only require-
ment under the such factors, comes from the orthonormal
relation, it stands for the regular spinor’s case o* + a*
m, where m stands for the mass of a particle. The upper
indexes = refers to the corresponding helicity of each com-
ponent, for more details the Reader is cautioned to check
[13].

Note that if one wish to define such rest spinors in an
momentum arbitrary referential, such task is accomplished
under action of the Lorentz boosts operator, which reads

ko _ E+m (1+ g4 0 ©
2}’}’! O ]].— ag.p ’

E+m

as usually defined cosh¢ = E/m, sinhg = p/m, and ¢ =
D, yielding the following relation

Y (ph) = Y ). (10)
Now, consider the Dirac operator acting on (5)

(Yup" —m)y(p) =0, (11)

the Dirac operator acting over the 1 (p) spinor provides

YuP" ¥ (p)

_ 01 0 o-p apr(p)
‘[E<10>+”(—o-ﬁ 0 )Kﬂm(m)’“”
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where the operator o - p stands for the helicity operator, where
o stands for the Pauli matrices and p is the unit momentum
vector. In order to proceed with the calculations, we take into
account the spinors which carry positive helicity in (5) and,
then, we obtain the following relation!

+
o) =m (B98P, (13)

up to our knowledge, (11) is only fulfilled if « = S, otherwise
the Dirac dynamic is not reached. The last result combined
with Table 1 in [6] lead to the observation that only spinors
belonging to class 2 within Lounesto’s classification, under
therequirement o = B, satisfy the Dirac equation. We remark
that dynamics is maintained when combining class 2 spinors
with @« = B; in other words, the sum of two spinors that
satisfy Dirac’s dynamic necessarily provide a spinor that sat-
isfies Dirac’s equation — holding the Dirac equation linear-
ity. We emphasize that the Lounesto’s classification is geo-
metric [1], that is, it is based on the spinor bilinear forms
(physical observable) and a strong link between such quan-
tities, namely Fierz-Pauli-Kofink identities. Therefore, such
classification does not refer to dynamics. Lounesto, based
on Crawford’s bispinoral densities derived in [10, and ref-
erences therein]|, when he derives the 16 bilinear forms for
spinors that himself calls “Dirac spinors”, develops the anal-
ysis taking into account an arbitrary spinor that supposedly
satisfies Dirac’s dynamics. However, Lounesto does not ver-
ify (explicitly) if all the 3 classes of Dirac spinors satisfy
the Dirac’s equation, moreover, he does not even mention
whether this is a necessary condition for Dirac spinors to
belong to these classes. We emphasize here, is that the result
we found in Eq. (13) is important, as it shows a strong con-
dition in which only one class of spinors of the so-called *
Dirac spinors ” satisfies the Dirac dynamics. Not necessarily
every spinor that is classified as a Dirac spinor, within the
Lounesto classification, must obey Dirac’s dynamics.

Accordingly to the Table 1 of [6] we may perform the
following analysis:

1. o, B € C witha # B (class 1):

In view of the protocol introduced above, we start analysing
the first case, which lead to

[ Rea ¢ . Ima ¢gr
1= (Reﬂ m) i <Im/3 m)’ 19

! Some mathematical steps were omitted from this quick derivation,
due to recurrence this appears in the literature. However, some details
should be highlighted, to right ascertain the Eq.(13) it should be keep
in mind that ¢z (0) = £¢r (0), where the upper (lower) index stands
for particle (antiparticle) case [14—16].

thus, such mechanism brings to the light the following rela-
tion

Y1 = Y2+ Y. (15)

Note that a class 1 spinor may be built upon two spinors
belonging to class 2. However, although class 1 spinors may
be composed by class 2 spinors, they do not satisfy the Dirac’s
dynamic.

2. x € Cand B € R (class 1):

Now, note that

_ [ Rea ¢p . Ima ¢p
b= a)a(me)
leading to
Y1 =2+ Y, (17)

and, thus, we remark a new possibility to write a spinor which
belong to class 1.

3. « € Cand B € Im (class 1):

For this case at hands we have

_ [ Rea ¢p . Ima ¢g
= (RGP ) i (s o). 1s)
and the only possibility stands for
V1 = Y6 + 2. (19)

4. a, p € C witha = B (class 2):

Such constraints leads to

[ Rea ¢p . Ima ¢g
wz_(Rea ¢L)+I<Ima oL )’ (20)
the above calculations allow one to write
Yo = Yo + Y. 21)
Given the less restrictive requirements for a spinor to belong

to class 2, meantime, this is the only possibility to write them
as a combination of other spinors.

5. « € Im and B € R (class 3):

Here we find two quite peculiar situations, the above require-
ments provides the following relation

_ 0 . Ima ¢R
= (e o)+ (™) 22
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which translates into

Y3 = Y6 + Ye. (23)

6. « € R and B € Im (class 3):

It allows one to define

[ Rea ¢r . 0
1= (55 7) 1 (s 00 ) ey
leading to
Y3 = Y6 + Ye. (25)

Interestingly enough, class 3 spinors can only be defined as
a combination of two class 6 spinors.
Thus, the above results can be summarized as it follows:
We highlight that to obtain certain classes, we face some
restrictions, e.g., the impossibility to construct a spinor
belonging to class 6, it does not admit to be written as a
combination of two distinct spinors.

2.2 On the singular spinors framework

In this section, we look towards applying the previous algo-
rithm on dual-helicity spinors. Dual-helicity spinors can be
defined as [6,8,12,13]

= , 26

14 ( oz (26)

where © it the well-known Wigner Time-reversal operator
0-—1

o= ( - ) | @)

Taking advantage of Table 2 presented in [6], and the spinor
defined in (26), one is able to define the following

1. a, B € C with |a|? # |B)? (class 4):

For this case we have

_ [ Rea ©O¢7 . Ima ®¢]"i>
w“_(Reﬂ ¢L>+Z<Imﬁ ¢ )’ 29

which provide the following relations

Y4 = V4 + Y4, (29)
Y4 = Y5 + s, (30)
Ya = Y4 + Ps. (3D

showing a wide variety of combinations.

2. a, B € Cwith |«|* = |B|? (class 5):

Furnishing the following detachment

_ [ Rea ©¢] . ( Ima @qb}'i)
‘”5‘< Ref b1 )*’( mp g1 ) G2
which can be divided into
Ys = V4 + Y4, (33)
Y5 = Y5 + ¥s. (34)

Note that the Majorana spinor (which describes the neutrino)
can be written in terms of two non-neutral spinors.

3. @ € Cand B € R with |a|? # |B]? (class 4):

Note that
_ [ Rea ©O¢] . (Ima O¢]
V4 = ( Rep oL +i 0 ; (35)
yielding the following possibilities
Va = Y4 + Ve, (36)
Va = ¥s + V. (37

4. o € Cand B € R with |«|*> = |B|? (class 5):

Such conditions above allow one to write

_ [ Rea ©¢] . (Ima O¢F
o= (M )+ (7). 9

resulting in

Vs = V4 + V. (39)

5. @ € Cand B € Im with |a|> # |B]? (class 4):

Table 1 Spinorial combination

Spinorial combination

Phases constraints

for the Lounesto’s regular sector Class
1 Yo + Y2
1 Vo + Y6
2 Yo + Y2
3 Y6 + Ve

VYo, B € RorVa, g € Im

Vo e CandVB € RorVa € Cand VB € Im
a,peCla=p

Yo € Imand VB € R or Vo € Im and VB € Im

@ Springer



Eur. Phys. J. C (2020) 80:299

Page 50f6 299

Now, notice

[ Rea ©¢] . Ima O¢F
W—( 0 L>+Z<Imﬁ ¢LL>,

furnishing

Y4 = Y4 + Ve,
Y4 = Y5 + Y.

6. « € Cand B € Im with |«|> = |B|* (class 5):

Thus,

_ [ Rea ©¢] . (Ima O¢F
1ﬂs—( 0 L>+Z(Imﬂ ¢LL>,

making explicit the relation

Ys = ¥4 + Y.

7. « € Imand B € R with |a|? # |B)? (class 4):

Consequently,

_ 0 [ Ima O¢F
W_(Reﬂ ¢L)+z< 0 L>,

yielding the unique relation

Y4 = Y6 + Y.

8. « € Im and B € R with |a|?> = |8|? (class 5):

And finally we have

_ 0 [ Ima O¢F
= (s o)+ (07

which provide

¥s = Y6 + Y.

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(43)

Where two Weyl spinors (massless neutrino) together com-
pose a Majorana’s neutrino.
In general grounds we may display the above results as

3 Final remarks

In the present communication we delved into an investiga-
tion searching for complementary information about how
spinors may be constituted/constructed from an arrangement
between other spinors within Lounesto’s classification. As
one can see, spinors can be written as a combination of other
distinct spinors. Nonetheless, it does not hold true for all reg-
ular spinors classes, in which some specific classes must be
combined to lead to a certain resulting class, as the case of
classes 2 and 3, where only very restricted combinations are
valid to define them, as it can be seen in Table 1. Note that the
same do not hold true for the singular spinors, which allow
a range of possibilities of construction, check for Table 2.
Such a procedure unveils that it is possible to cover all of the
Lounesto’s classes except class 6, which do not allow to be
written as a combination of any other spinor.

Moreover, driven by the programme developed here, it is
easy to see that when the spinor detach protocol is applied,
the physical information do not necessarily is carried through
the resulting spinor, as example, it does not hold the class,
dynamic or even physical information.

Interesting enough, from an inspection of Table 2, when
dealing with the singular sector of the Lounesto’s classifica-
tion, we may construct neutral spinors from a combination
of non-neutral spinors, as the case presented in the rows 7, 9
and 10. Notice that the same akin reasoning can be extended
for the case of class 4 spinors, which can be built upon two
neutral spinors, as the case in the rows 2 and 5. We emphasize
that a similar connection between both Lounesto’s sections,
as shown in [6], can be performed here, however, no relevant
physical information is disclosed.

Table 2 Spinorial combination
for the Lounesto’s singular

Class  Spinorial combination

Phases constraints

sector

VY4 + g
Vs + ¥s
Y4+ Ys
Y4 + Ve
¥s + Y6
Y6 + Yo
Y4+ Y
Vs + ¥s
Y4 + Ve
Y6 + Yo

[TV R U S O O N

a, B € Cwith |a|> # |82

o € Cand B € R with |o|?> # |8]? ora« € C and B € Im with |a|> # |8
o« € Cand B € R with |a|> # |B|> ora € C and B € Im with |a|? # |B]?
« € Im and 8 € R with |«|? # |8]?

a, B € Cwith |a|? # |B]> ora € Cand B € R with |«|? # |B]?

a, B € C with |a|> # |B]?

o € Cand B € Im with |a|> = |8/

a € Im and B € R with |«|?> = |8]?
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