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Abstract. The weak-coupling expansion of the QCD pressure is known up to the order
g°log g. However, at experimentally relevant temperatures, the corresponding series is
poorly convergent. In this proceedings, we discuss at which extent the gauge-invariant
resummation scheme, Hard-Thermal-Loop perturbation theory (HTLpt), improves the
apparent convergence. We first present HTLpt results for QCD thermodynamic functions
up to three-loop order at vanishing chemical potential. Then, we report a preliminary
HTLpt result of one-loop quark number susceptibility, probing the finite density equation
of state. Our results are consistent with lattice data down to 2 — 3T, reinforcing the
weakly-coupled quasiparticle picture in the intermediate coupling regime.

1 Introduction

The heavy-ion experiments that are currently running start at temperatures on the order of 7 ~
350 MeV for RHIC and T ~ 600 — 800 MeV for the LHC. In this range of temperature, the use
of conventional perturbation theory does not guaranty the convergence of the quantity under study,
since the coupling is neither infinitesimally weak, nor infinitely strong with g ~ 2, corresponding to
as ~ 0.3. Indeed, the perturbative evaluation of the pressure, which has a long history [1], turned
out to show a problem of apparent convergence, regarding the successive approximations to various
thermodynamic quantities. Interestingly enough, this problem persists even at very high temperatures
(T ~ 10° GeV). It was shown that because of the soft contribution for which the typical momentum in
a thermal medium is of order ~ g7, the total series get spoiled by a contribution in power of g. A more
detailled investigation on this problem can be found in Ref. [2]. As an illustration of this, we refer to
Fig. 1 which displays the successive weak-coupling expansion series of the pressure up to the order
¢°. The bands are obtained by varying the renormalization scale A by a factor of 2 around the value
A = 27T and we use three-loop running for a (= ¢*/4n) [3] with Ajs(Ny = 3) = 344 MeV [4]. The
oscillating behavior of the perturbative series calls the need of reorganizing the expansion, in order to
be able to use the machinery of perturbation theory in practice to give quantitative predictions for the
ongoing experiments.

In this proceedings, we address the state-of-the-art in the reorganization of the thermal QCD
perturbative series, using the framework of Hard-Thermal-Loop perturbation theory (HTLpt) which
amounts to expand around a gas of non-interacting massive quasiparticles, therefore accounting for the
main effects in a quark gluon plasma such as Debye screening, quasiparticles, and Landau damping.
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Figure 1. Weak-coupling expansion for the scaled QCD pressure with Ny = 3. Shaded bands show the result of
varying the renormalization scale A by a factor of 2 around A = 2xT.

In the following, we first briefly introduce the setup of HTLpt. Then, we discuss the three-loop
thermodynamic functions at vanishing chemical potential, and present a preliminary result on a recent
HTLpt computation of the leading order quark number susceptibility. Indeed, this type of quantities
is well known to be of great importance, since it directly probes the response of a dense medium to
the fluctuation of quark densities, while being able to be computed on the lattice. In the following, all
our results are subsequently compared to lattice data.

2 Hard-Thermal-Loop perturbation theory

Hard-Thermal-Loop perturbation theory is a self-consistent, systematic and gauge-invariant way of
reorganizing the finite temperature perturbative series of QCD. It is a generalization of Screened
Perturbation Theory (SPT) [5] to gauge theory, and it implements order by order in perturbation theory
HTL dressed propagators and vertices. Formally, one adds and subtracts a term in the Lagrangian
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density of QCD, treating the added term in the free part of the Lagrangian, while implementing the
subtracted one as an interaction. In order to preserve gauge invariance, this term can no longer be a
local mass term as in SPT, and one uses the following density Lagrangian:

L = (Locp + LutL) vis t ALyt , (D
g—\og

where ALyt contains the counter terms related to the new part Ly, which is nothing but the HTL
effective Lagrangian, that is the infinitely high temperature limit of the QCD Lagrangian. Let us
remind that this term reads:

1 vy’
Lim. = ‘5(1‘5yngn{5ﬁ”<677552F%J
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where y* is a lightlike 4-vector, mp and m, are the Debye screening mass and thermal quark mass
parameters, and ¢ is the expansion parameter amounting for the number of HTL dressed loops.

Physical observables are calculated in HTLpt by expanding them in powers of ¢, truncating at
some specified order, and then setting 6 = 1. This defines a reorganization of the perturbation series
in which the effects of m%) and m?i terms in (2) are included to all orders but then systematically
subtracted out at higher orders in perturbation theory. If we set 6 = 1, the HTLpt Lagrangian (1)
reduces to the QCD Lagrangian. If the expansion in ¢ could be calculated to all orders the final result
would not depend on mp and m, when we set 6 = 1. However, any truncation of the expansion in &
produces results that depend on mp and m,. Some prescription is required to determine mp and m, as
a function of T and a;.

In the following, we would like to make notice that for convenience, all dimensionful parameters
will be rescaled to be dimensionless as £p = 5. In addition, the free energy of non-interacting

2nT *
gluons will be denoted as:

72T

ﬁm=%M—D45-

3

With the standard normalization, we have ¢4 = N,, dy = ch -1, sr = Nf/2, dr = N:Ny, and
sop = (N? — 1)N;/4N.
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3 NNLO thermodynamics at vanishing u
3.1 Thermodynamic potential

At three-loop order, aka next-to-next-to-leading order (NNLO), and vanishing chemical potential g,
one obtains [6] for QCD with N, colors and N flavors, the following thermodynamic potential:
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which is obtained using dimensional regularization in the MS scheme with A the renormalization
scale.
3.2 Mass prescriptions

In order to get free energy from the thermodynamic potential, some prescriptions need to be imposed
to determine the mass parameters in terms of the original parameters of QCD. It is important that
one should make the choice of the mass parameters according to physical motivations. One natural
choice would be to impose the Principle of Minimum Sensitivity (PMS), which requires the computed
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quantity depends the least on the parameters. Unfortunately, it has been shown [6] that at NNLO, the
PMS gives a complex value for mp. In addition, the weak-coupling expansion for mp beyond leading
order (LO) involves the nonperturbative magnetic scale ~ g°T, which breaks down perturbation the-
ory by introducing infrared divergences. Therefore, at this order, a fairly physically motivated choice
would be to chose the next-to-leading order (NLO) electric mass computed from dimensional reduc-
tion which is well defined to all orders in perturbation theory [7], as it was done in [6]. Attributing
this value to our Debye mass parameter mp, we have:

m = Pqalo g +CiaS S LN A
D 3 ATSET T\ g T T 3 08,
4 A% (§ - é—LlogZ + zyE + zlog é)
b/d 4 3 6 6 2
5 .
e

&)

The thermal quark mass is chosen to be the solution from the NNLO PMS gap equation, and gives
my = 0. Notice that the quark contribution to the total free energy is still present, thanks to the mixed
quark and gluon contributions.

3.3 Thermodynamic functions

In this section, we present NNLO HTLpt results for pressure and trace anomaly at vanishing chemical
potential. We will focus on Ny = 3 QCD. For the strong coupling constant @, we use three-loop
running [3] with Ay = 344 MeV which for Ny = 3 gives a(5 GeV) = 0.2034 [4].

3.3.1 Pressure

In Fig. 2, we show the LO, NLO, and NNLO HTLpt predictions for the pressure of QCD with Ny = 3
normalized to that of an ideal gas as a function of 7. The band is again obtained by varying the renor-
malization scale by a factor of 2 around the central value A = 27T. The Ny = 2 + 1 lattice data from
the Wuppertal-Budapest collaboration use the stout action. Since their results show essentially no
dependence on the lattice spacing (it is smaller than the statistical errors), they provide a continuum
estimate by averaging the trace anomaly measured using their two smallest lattice spacings corre-
sponding to N, = 8 and N, = 10 [8], which were essentially on top of the N; = 6 measurement [9].!
Using standard lattice techniques, the continuum-estimated pressure is computed from an integral of
the trace anomaly. The Ny = 2 + 1 lattice data from the hotQCD collaboration are their N; = 8 results
using both the asqtad and p4 actions [10]. The hotQCD results have not been continuum extrapo-
lated and the error bars correspond to only statistical errors and do not factor in the systematic error
associated with the calculation which, for the pressure, is estimated by the hotQCD collaboration to
be between 5 - 10%. As can be seen from Fig. 2, the successive HTLpt approximations represent an
improvement over the successive approximations coming from a weak-coupling expansion; however,
the NNLO result represents a significant correction to the LO and NLO results. That being said, the

't is noted that the Wuppertal-Budapest group has published a few data points for the trace anomaly with N; = 12 and
within statistical error bars these are consistent with the published continuum estimated results.
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NNLO HTLpt result agrees quite well with the available lattice data down to temperatures on the
order of T ~ 350 MeV for QCD with Ny = 3.2
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Figure 2. Comparison of LO, NLO, and NNLO predictions for the scaled pressure of Ny = 3 QCD with
Ny = 2 + 1 lattice data from the hotQCD [10] and Wuppertal-Budapest [8] collaborations. Shaded band shows
the result of varying the renormalization scale A by a factor of 2 around A = 27T for the NNLO result.

3.3.2 Trace anomaly

In Fig. 3 we show the NNLO HTLpt prediction for the trace anomaly of QCD with Ny = 3 normalized
to T* as a function of 7. The data from both the Wuppertal-Budapest collaboration and the hotQCD
collaboration are taken from the same data sets displayed in Fig. 2 and described previously. In the
case of the hotQCD results we note that the results for the trace anomaly using the p4 action show
large lattice size affects at all temperatures shown and the asqtad results for the trace anomaly show

>The Wuppertal-Budapest and hotQCD data were obtained using a physical strange quark mass; however, HTLpt cal-
culations use massless quarks. The difference between massive and massless quarks is expected to be significant only for
T < 32MeV corresponding to the temperature where the lowest fermionic Matsubara mode equals the strange quark mass.
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large lattice size effects for T > 200 MeV. We see very good agreement between the HTLpt prediction
and the available lattice data down to temperatures on the order of 7' ~ 350 MeV.
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Figure 3. Comparison of LO, NLO, and NNLO predictions for the scaled trace anomaly of N, = 3 QCD with
Ny = 2 + 1 lattice data from the hotQCD [10] and Wuppertal-Budapest [8] collaborations. Shaded band shows
the result of varying the renormalization scale A by a factor of 2 around A = 27T for the NNLO result.

4 LO quark number susceptibility
4.1 Introduction

For simplicity, we assume in the following that all the quarks have degenerate chemical potentials.
Then, the relation between the thermodynamic potential € and the diagonal quark number suscepti-
bility y.,, reads:

QT )
w() = - —== . 6
Xuu (T) e (6)
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Due to the massless approximation for quarks in HTLpt, baryon number susceptibility, at the consid-
ered order of truncation (see in the following for further explanations), is related to the above quantity
by a simple rescaling:

Xllll
=75 @)
In addition, we would like to make notice that the introduction of a non-vanishing chemical potential u
in the derivation of the thermodynamic potential amounts to the following substitution for Matsubara
frequencies in the imaginary-time formalism:

XB

Wy, — Wy, — . (8)

4.2 LO thermodynamic potential at finite 7 and u

As a preliminary result, we give here the high temperature truncation of the full LO thermodynamic
potential at finite 7 and . Up to the truncation order O(/i2), it reads:

QT,ll d 7
LO F A2 ~4
= 1+ —1[-+304a" + 60
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4.3 Mass prescriptions

The LO gap equation from PMS is not well defined in HTLpt, we therefore identify mp and m, by
their weak-coupling values

2 4 N, + 1N T? + 2N w (10)
mp = asm|z|Ne+ = ,
b e 2 I 2
N2 -1 12
2 _ C 2
m, = asﬂ—4NC (T + _ﬂz)' (11)

Note that the gluons also carry y dependence, hence contribute to the final result.

4.4 Result

In Fig. 4 we show the LO baryon number susceptibility for Ny = 3 QCD normalized by T2 as a
function of 7' [11]. We use one-loop running with Ay = 176 MeV which is derived from a recent
lattice measurement of the strong coupling constant at 1.5 GeV [12]. The band is again obtained by
varying the renormalization scale by a factor of 2 around the central value A = 2xT. Lattice data
from both the HotQCD [13] and Wuppertal-Budapest [14] collaborations are continuum extrapolated.
From the comparison, we see that the LO result does quite a reasonable job and is consistent with the
lattice data down to 7 ~ 250 MeV.
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Figure 4. Comparison of the high T truncation of the LO HTLpt baryon number susceptibility of Ny = 3 QCD
with Ny = 2 + 1 lattice data from the HotQCD [13] and Wuppertal-Budapest [14] collaborations. Shaded band
shows the result of varying the renormalization scale A by a factor of 2 around A = 2T

5 Outlook

In this proceedings, we have briefly discussed how the gauge-invariant HTLpt reorganization for
thermal QCD could improve the convergence of perturbation expansion at experimentally accessible
temperatures, and reviewed some static results, including NNLO thermodynamic functions and LO
quark/baryon number susceptibility. It has been known that the weak-coupling expansion of real-
time dynamics is as poorly convergent as the thermodynamics case. Since HTLpt is formulated in
Minkowski space, its application to realtime dynamics is straightforward and would be relevant for
the dynamical properties of the quark gluon plasma at LHC temperatures.
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