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Abstract. The weak-coupling expansion of the QCD pressure is known up to the order

g6 log g. However, at experimentally relevant temperatures, the corresponding series is

poorly convergent. In this proceedings, we discuss at which extent the gauge-invariant

resummation scheme, Hard-Thermal-Loop perturbation theory (HTLpt), improves the

apparent convergence. We first present HTLpt results for QCD thermodynamic functions

up to three-loop order at vanishing chemical potential. Then, we report a preliminary

HTLpt result of one-loop quark number susceptibility, probing the finite density equation

of state. Our results are consistent with lattice data down to 2 − 3Tc, reinforcing the

weakly-coupled quasiparticle picture in the intermediate coupling regime.

1 Introduction

The heavy-ion experiments that are currently running start at temperatures on the order of T ∼
350MeV for RHIC and T ∼ 600 − 800MeV for the LHC. In this range of temperature, the use

of conventional perturbation theory does not guaranty the convergence of the quantity under study,

since the coupling is neither infinitesimally weak, nor infinitely strong with g ∼ 2, corresponding to

αS ∼ 0.3. Indeed, the perturbative evaluation of the pressure, which has a long history [1], turned

out to show a problem of apparent convergence, regarding the successive approximations to various

thermodynamic quantities. Interestingly enough, this problem persists even at very high temperatures

(T ∼ 105 GeV). It was shown that because of the soft contribution for which the typical momentum in

a thermal medium is of order ∼ gT , the total series get spoiled by a contribution in power of g. A more

detailled investigation on this problem can be found in Ref. [2]. As an illustration of this, we refer to

Fig. 1 which displays the successive weak-coupling expansion series of the pressure up to the order

g5. The bands are obtained by varying the renormalization scale Λ by a factor of 2 around the value

Λ = 2πT and we use three-loop running for αs(= g
2/4π) [3] with ΛMS(Nf = 3) = 344MeV [4]. The

oscillating behavior of the perturbative series calls the need of reorganizing the expansion, in order to

be able to use the machinery of perturbation theory in practice to give quantitative predictions for the

ongoing experiments.

In this proceedings, we address the state-of-the-art in the reorganization of the thermal QCD

perturbative series, using the framework of Hard-Thermal-Loop perturbation theory (HTLpt) which

amounts to expand around a gas of non-interacting massive quasiparticles, therefore accounting for the

main effects in a quark gluon plasma such as Debye screening, quasiparticles, and Landau damping.
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Figure 1. Weak-coupling expansion for the scaled QCD pressure with Nf = 3. Shaded bands show the result of

varying the renormalization scale Λ by a factor of 2 around Λ = 2πT .

In the following, we first briefly introduce the setup of HTLpt. Then, we discuss the three-loop

thermodynamic functions at vanishing chemical potential, and present a preliminary result on a recent

HTLpt computation of the leading order quark number susceptibility. Indeed, this type of quantities

is well known to be of great importance, since it directly probes the response of a dense medium to

the fluctuation of quark densities, while being able to be computed on the lattice. In the following, all

our results are subsequently compared to lattice data.

2 Hard-Thermal-Loop perturbation theory

Hard-Thermal-Loop perturbation theory is a self-consistent, systematic and gauge-invariant way of

reorganizing the finite temperature perturbative series of QCD. It is a generalization of Screened

Perturbation Theory (SPT) [5] to gauge theory, and it implements order by order in perturbation theory

HTL dressed propagators and vertices. Formally, one adds and subtracts a term in the Lagrangian
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density of QCD, treating the added term in the free part of the Lagrangian, while implementing the

subtracted one as an interaction. In order to preserve gauge invariance, this term can no longer be a

local mass term as in SPT, and one uses the following density Lagrangian:

L = (LQCD +LHTL

) ∣∣∣∣
g→√

δg
+ ΔLHTL , (1)

where ΔLHTL contains the counter terms related to the new part LHTL, which is nothing but the HTL

effective Lagrangian, that is the infinitely high temperature limit of the QCD Lagrangian. Let us

remind that this term reads:

LHTL = −1
2
(1 − δ)m2

DTr

⎛⎜⎜⎜⎜⎝Fμα

〈
yαyβ

(y · D)2

〉
y

Fμ
β

⎞⎟⎟⎟⎟⎠
+(1 − δ) im2

qψ̄γ
μ

〈
yμ

y · D

〉
y

ψ , (2)

where yμ is a lightlike 4-vector, mD and mq are the Debye screening mass and thermal quark mass

parameters, and δ is the expansion parameter amounting for the number of HTL dressed loops.

Physical observables are calculated in HTLpt by expanding them in powers of δ, truncating at

some specified order, and then setting δ = 1. This defines a reorganization of the perturbation series

in which the effects of m2
D and m2

q terms in (2) are included to all orders but then systematically

subtracted out at higher orders in perturbation theory. If we set δ = 1, the HTLpt Lagrangian (1)

reduces to the QCD Lagrangian. If the expansion in δ could be calculated to all orders the final result
would not depend on mD and mq when we set δ = 1. However, any truncation of the expansion in δ
produces results that depend on mD and mq. Some prescription is required to determine mD and mq as

a function of T and αs.

In the following, we would like to make notice that for convenience, all dimensionful parameters

will be rescaled to be dimensionless as x̂D ≡ x
2πT . In addition, the free energy of non-interacting

gluons will be denoted as:

Ffree = −(N2
c − 1)

π2T 4

45
. (3)

With the standard normalization, we have cA = Nc, dA = N2
c − 1, sF = Nf /2, dF = NcNf , and

s2F = (N2
c − 1)Nf /4Nc.
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3 NNLO thermodynamics at vanishing μ

3.1 Thermodynamic potential

At three-loop order, aka next-to-next-to-leading order (NNLO), and vanishing chemical potential μ,
one obtains [6] for QCD with Nc colors and Nf flavors, the following thermodynamic potential:

ΩT
NNLO

Ffree

= 1 +
7

4

dF

dA
− 15

4
m̂3

D +
cAαs

3π

[
− 15

4
+
45

2
m̂D

−135
2

m̂2
D −

495

4

(
log
Λ̂

2
+

5

22
+ γE

)
m̂3

D

]

+
sFαs

π

[
− 25

8
+
15

2
m̂D + 15

(
log
Λ̂

2
− 1

2
+ γE

+2 log 2
)

m̂3
D − 90m̂2

qm̂D

]
+

(cAαs

3π

)2[45
4

1

m̂D

−165
8

(
log
Λ̂

2
− 84

55
− 72

11
log m̂D − 6

11
γE

−74
11

ζ′(−1)
ζ(−1) +

19

11

ζ′(−3)
ζ(−3)

)
+
1485

4

(
log
Λ̂

2
− 79

44

+γE + log 2 − π2

11

)
m̂D

]
+

(cAαs

3π

)( sFαs

π

)[
15

2

1

m̂D

−235
16

(
log
Λ̂

2
− 144

47
log m̂D − 24

47
γE +

319

940

+
111

235
log 2 − 74

47

ζ′(−1)
ζ(−1) +

1

47

ζ′(−3)
ζ(−3)

)
+
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4(
log
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2
− 8

7
log 2 + γE +

9

14

)
m̂D + 90

m̂2
q

m̂D

]

+

( sFαs

π

)2[5
4

1

m̂D
+
25

12

(
log
Λ̂

2
+

1

20
+
3

5
γE

−66
25

log 2 +
4

5

ζ′(−1)
ζ(−1) −

2

5
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)
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(
log
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2

−1
2
+ γE + 2 log 2

)
m̂D + 30

m̂2
q

m̂D

]
+ s2F

(
αs

π

)2
[
15

64
(35 − 32 log 2) − 45

2
m̂D

]
+ O(m̂6

D, m̂
6
q) , (4)

which is obtained using dimensional regularization in the MS scheme with Λ the renormalization

scale.

3.2 Mass prescriptions

In order to get free energy from the thermodynamic potential, some prescriptions need to be imposed

to determine the mass parameters in terms of the original parameters of QCD. It is important that

one should make the choice of the mass parameters according to physical motivations. One natural

choice would be to impose the Principle of Minimum Sensitivity (PMS), which requires the computed
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quantity depends the least on the parameters. Unfortunately, it has been shown [6] that at NNLO, the

PMS gives a complex value for mD. In addition, the weak-coupling expansion for mD beyond leading

order (LO) involves the nonperturbative magnetic scale ∼ g2T , which breaks down perturbation the-

ory by introducing infrared divergences. Therefore, at this order, a fairly physically motivated choice

would be to chose the next-to-leading order (NLO) electric mass computed from dimensional reduc-

tion which is well defined to all orders in perturbation theory [7], as it was done in [6]. Attributing

this value to our Debye mass parameter mD, we have:

m2
D =

4παs

3
T 2

⎡⎢⎢⎢⎢⎣cA + sF +
c2Aαs

3π

(
5

4
+
11

2
γE +

11

2
log
Λ̂

2

)

+
cAsFαs

π

(
3

4
− 4

3
log 2 +

7

6
γE +

7

6
log
Λ̂

2

)

+
s2Fαs

π

(
1

3
− 4

3
log 2 − 2

3
γE − 2

3
log
Λ̂

2

)
− 3

2

s2Fαs

π

⎤⎥⎥⎥⎥⎦ .
(5)

The thermal quark mass is chosen to be the solution from the NNLO PMS gap equation, and gives

mq = 0. Notice that the quark contribution to the total free energy is still present, thanks to the mixed

quark and gluon contributions.

3.3 Thermodynamic functions

In this section, we present NNLO HTLpt results for pressure and trace anomaly at vanishing chemical

potential. We will focus on Nf = 3 QCD. For the strong coupling constant αs, we use three-loop

running [3] with ΛMS = 344MeV which for Nf = 3 gives αs(5GeV) = 0.2034 [4].

3.3.1 Pressure

In Fig. 2, we show the LO, NLO, and NNLO HTLpt predictions for the pressure of QCD with Nf = 3

normalized to that of an ideal gas as a function of T . The band is again obtained by varying the renor-
malization scale by a factor of 2 around the central value Λ = 2πT . The Nf = 2 + 1 lattice data from

the Wuppertal-Budapest collaboration use the stout action. Since their results show essentially no

dependence on the lattice spacing (it is smaller than the statistical errors), they provide a continuum

estimate by averaging the trace anomaly measured using their two smallest lattice spacings corre-

sponding to Nτ = 8 and Nτ = 10 [8], which were essentially on top of the Nτ = 6 measurement [9].1

Using standard lattice techniques, the continuum-estimated pressure is computed from an integral of

the trace anomaly. The Nf = 2+ 1 lattice data from the hotQCD collaboration are their Nτ = 8 results

using both the asqtad and p4 actions [10]. The hotQCD results have not been continuum extrapo-

lated and the error bars correspond to only statistical errors and do not factor in the systematic error

associated with the calculation which, for the pressure, is estimated by the hotQCD collaboration to

be between 5 - 10%. As can be seen from Fig. 2, the successive HTLpt approximations represent an

improvement over the successive approximations coming from a weak-coupling expansion; however,

the NNLO result represents a significant correction to the LO and NLO results. That being said, the

1It is noted that the Wuppertal-Budapest group has published a few data points for the trace anomaly with Nτ = 12 and

within statistical error bars these are consistent with the published continuum estimated results.
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NNLO HTLpt result agrees quite well with the available lattice data down to temperatures on the

order of T ∼ 350MeV for QCD with Nf = 3.2

Figure 2. Comparison of LO, NLO, and NNLO predictions for the scaled pressure of Nf = 3 QCD with

Nf = 2 + 1 lattice data from the hotQCD [10] and Wuppertal-Budapest [8] collaborations. Shaded band shows

the result of varying the renormalization scale Λ by a factor of 2 around Λ = 2πT for the NNLO result.

3.3.2 Trace anomaly

In Fig. 3 we show the NNLO HTLpt prediction for the trace anomaly of QCD with Nf = 3 normalized

to T 4 as a function of T . The data from both the Wuppertal-Budapest collaboration and the hotQCD

collaboration are taken from the same data sets displayed in Fig. 2 and described previously. In the

case of the hotQCD results we note that the results for the trace anomaly using the p4 action show

large lattice size affects at all temperatures shown and the asqtad results for the trace anomaly show

2The Wuppertal-Budapest and hotQCD data were obtained using a physical strange quark mass; however, HTLpt cal-

culations use massless quarks. The difference between massive and massless quarks is expected to be significant only for

T � 32MeV corresponding to the temperature where the lowest fermionic Matsubara mode equals the strange quark mass.

EPJ Web of Conferences

00031-p.6



large lattice size effects for T � 200MeV. We see very good agreement between the HTLpt prediction

and the available lattice data down to temperatures on the order of T ∼ 350MeV.

Figure 3. Comparison of LO, NLO, and NNLO predictions for the scaled trace anomaly of Nf = 3 QCD with

Nf = 2 + 1 lattice data from the hotQCD [10] and Wuppertal-Budapest [8] collaborations. Shaded band shows

the result of varying the renormalization scale Λ by a factor of 2 around Λ = 2πT for the NNLO result.

4 LO quark number susceptibility

4.1 Introduction

For simplicity, we assume in the following that all the quarks have degenerate chemical potentials.

Then, the relation between the thermodynamic potential Ω and the diagonal quark number suscepti-

bility χuu reads:

χuu (T ) ≡ − ∂2Ω (T, μ)
∂μ2

∣∣∣∣∣∣
μ=0

. (6)
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Due to the massless approximation for quarks in HTLpt, baryon number susceptibility, at the consid-

ered order of truncation (see in the following for further explanations), is related to the above quantity

by a simple rescaling:

χB =
χuu

3
. (7)

In addition, we would like to make notice that the introduction of a non-vanishing chemical potential μ
in the derivation of the thermodynamic potential amounts to the following substitution for Matsubara

frequencies in the imaginary-time formalism:

ωn → ωn − ı̇μ . (8)

4.2 LO thermodynamic potential at finite T and μ

As a preliminary result, we give here the high temperature truncation of the full LO thermodynamic

potential at finite T and μ. Up to the truncation order O(m̂5), it reads:

Ω
T, μ
LO

Ffree

= 1 +
dF

dA

(
7

4
+ 30μ̂2 + 60μ̂4

)

−15
2

m̂2
D − 30

dF

dA

(
1 + 12μ̂2

)
m̂2

q

+30m̂3
D + 60

dF

dA

(
6 − π2

)
m̂4

q

+
45

4

(
γE − 7

2
+
π2

3
+ log

Λ̂

2

)
m̂4

D

+O(m̂6
D, m̂

6
q) . (9)

4.3 Mass prescriptions

The LO gap equation from PMS is not well defined in HTLpt, we therefore identify mD and mq by

their weak-coupling values

m2
D = αS π

[
4

3

(
Nc +

1

2
Nf

)
T 2 + 2Nf

μ2

π2

]
, (10)

m2
q = αS π

N2
c − 1

4Nc

(
T 2 +

μ2

π2

)
. (11)

Note that the gluons also carry μ dependence, hence contribute to the final result.

4.4 Result

In Fig. 4 we show the LO baryon number susceptibility for Nf = 3 QCD normalized by T 2 as a

function of T [11]. We use one-loop running with ΛMS = 176MeV which is derived from a recent

lattice measurement of the strong coupling constant at 1.5GeV [12]. The band is again obtained by

varying the renormalization scale by a factor of 2 around the central value Λ = 2πT . Lattice data

from both the HotQCD [13] and Wuppertal-Budapest [14] collaborations are continuum extrapolated.

From the comparison, we see that the LO result does quite a reasonable job and is consistent with the

lattice data down to T ∼ 250MeV.
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Figure 4. Comparison of the high T truncation of the LO HTLpt baryon number susceptibility of Nf = 3 QCD

with Nf = 2 + 1 lattice data from the HotQCD [13] and Wuppertal-Budapest [14] collaborations. Shaded band

shows the result of varying the renormalization scale Λ by a factor of 2 around Λ = 2πT .

5 Outlook

In this proceedings, we have briefly discussed how the gauge-invariant HTLpt reorganization for

thermal QCD could improve the convergence of perturbation expansion at experimentally accessible

temperatures, and reviewed some static results, including NNLO thermodynamic functions and LO

quark/baryon number susceptibility. It has been known that the weak-coupling expansion of real-

time dynamics is as poorly convergent as the thermodynamics case. Since HTLpt is formulated in

Minkowski space, its application to realtime dynamics is straightforward and would be relevant for

the dynamical properties of the quark gluon plasma at LHC temperatures.
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