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Jing-Ling Chen ®*4, Xi-Lin Wang ® **J & Hui-Tian Wang ® '2®

Quantum information masking (QIM) allows encoding quantum information in multipartite systems.
Complete QIM is of great significance in quantum foundation and application. However, the realization
of complete QIM, even for single-qubit encoded information, is still lacking. Here, we propose to
demonstrate complete QIM with 4-qubit entangled states. The proposed QIM can be readily extended
to multipartite systems with arbitrary number of subsystems, enabling quantum secret sharing (QSS)
and quantum teleportation between multiplayers. In experiment, we build up a 4-qubit hyperentangled
state to implement complete QIM. The trace distance of 16 encoded single-qubit states falls within the
range of 0.12 + 0.02 to 0.03 = 0.02. Furthermore, we implement QSS between six players by
expanding the 4-qubit state to a 6-qubit state entangled in hybrid manner, in which we observe an
average fidelity 0.85 = 0.03 of the recovered states. Our results open the door towards QIM-enabled

quantum information processing and provide applications in quantum communications.

Quantum information is a significant extension of classical information field
and provides another perspective for understanding the quantum world.
Many quantum information protocols have no classical counterparts, while
some natural processes in classical information are forbidden in quantum
cases by the so-called no-go theorem. A typical quantum example is
quantum teleportation"?, in which an unknown quantum state is transferred
from one place to another without physical transmission of the object itself.
Quantum teleportation was prompted by the famous no-cloning principle
(the first no-go theorem), which states that no physical process can perfectly
duplicate any pure state*’. In addition to no-cloning theorem linked to the
linearity of the quantum world, there is also the no-deleting theorem’ from
the unitarity of the quantum. They are limiting that the quantum infor-
mation can be neither created nor destroyed. The no-cloning theorem has
an extension, the no-propagation theorem’, which introduces the incom-
patibility of the local identity channels. Arising from the black-hole infor-
mation paradox, the no-hiding theorem” proves that hiding quantum state
in quantum correlations is impossible. Recently, a no-go theorem, no-
masking principle’, was found in quantum information masking (QIM).
Both no-hiding theorem and no-masking principle are associated with the

conservation law of quantum information. They all investigate whether the
isometry exists which from original Hilbert space to bipartite Hilbert space.
For the hiding case, quantum information from one of the subspaces of the
bipartite Hilbert space is independent of original quantum state. While for
the masking case, quantum information from any subspace is independent
of original quantum state’.

QIM provides a methodology to hide quantum information from
subsystems and to spread it over the nonlocal correlation in multipartite
systems. The initial information can be reconstructed from this correlation.
Initially, no-masking principle® stipulated that quantum information per-
taining to an arbitrary qubit state could not be masked in a bipartite
quantum system while hidden from its subsystems. Subsequently, various
studies of the maximal maskable set of quantum states'""* were reported.
This no-masking theorem tells us that complete QIM, which enables to
mask the quantum information to the maximally mixed state of an arbitrary
qubit state, is impossible in a bipartite scenario. However, recent theoretical
studies show that complete QIM is realizable in multipartite scenarios®'*",
implying that no-masking principle is significantly different from other no-
go theorems. In practical experiments, QIM of a special set of qubit states
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has been demonstrated'>", while achieving complete QIM for all states on
the Bloch sphere remains an ongoing challenge.

More than just a no-go theorem in quantum theory, QIM is intimately
connected to various quantum information processing tasks, such as
quantum state identification'’, quantum bit commitment'”'"*, and quantum
secret sharing (QSS)". And it is deeply rooted in fundamental principles
such as conservation of information™. The primary objective of QSS is to
share secret quantum information in a system involving as many partici-
pants as possible and where the full initial information must be obtained
with the cooperation of multiple participants'®*"*>. Many attempts to share
information in quantum systems have been reported in the literature, such
as experimental realizations of classical information®” and quantum
information in three-”** or four-party systems”. However, the experi-
mental realization of QSS with more participants is still a challenge.

Since quantum information tasks such as QSS can be seen as an
expression of the versatility and scalability of QIM. Both the deepening of
theoretical understanding in the realm of QIM and advancements in
experimental realization have played important roles in propelling the field
of QSS forward. In 2018, the proof of the unmaskability theorem provided
valuable insights to help dealers choose substrates for secret sharing of
classical or quantum information®. In 2021, the realization of photonic
masking machines contributes to the proposal of QSS scheme that is
independent of entanglement between receivers and is not affected by
decoherence'”. Here, we not only experimentally demonstrate complete
QIM, but also implement QSS with up to six participants experimentally
realistic, which is based on the extension of the most frugal case.

Results

Complete QIM

For a set of quantum states {|a), } in the Hilbert space H}, a unitary operator
S performs the mapping

SHO

where {|®),} is in the Hilbert space ®'7:1Hj. AllH;(j=1,...,n) have the
same dimension as H;. If any local system H; contains no information about
|a);,S is said to be a masker that masks quantum informationin {|®),},and
this QIM process refers to complete QIM. The unitary property of S implies
that the initial information can be extracted from {|®),}.

Here we propose complete QIM to mask an arbitrary qubit state
|y>1 = a,|0); + a;|1); (where the amplitudes satisfy |ao|* +
four qubits, which is the minimal number of qubits required to achieve the
complete QIM for a qubit'’. Qubits 2 and 3 are initially prepared in the Bell
state of |(p>23 f(|00 + |11)),3. Our complete QIM is realized in three

steps. First, a controlled-not (CNOT) gate C,, is operated on qubits 1 and 2
(where qubit 2 acts as the control qubit and qubit 1 is the target qubit). Then
the three-qubit state becomes |D),; = % [0(1000) + |111))+

«,(]011) +|100))]. Thus, the reduced density matrix of qubit 1 is
p; = 1[I+ 2Re(ayat})o, |, and qubsits 2 and 3 are in the maximally mixed
states with p, = p; = I/2, where I and o, are the identity and Pauli matrices,
respectively. In the first step, the CNOT gate C,; masks the diagonal terms
representing the amplitude of qubit 1.

To further obscure the remaining non-diagonal coherent terms, the
second step involves introducing an ancillary qubit A, prepared in |0). In the
third step, a CNOT gate C, , is operated on qubits 1 and A (where qubit 1
acts as the control qubit and qubit A is the target qubit). Then the 4-qubit
masked state is in the form of

|0> ® |ad; = | D)y, 1

|0¢1|2 =1)in

1
|D) 4103 = 7 [a0(10000) + [1111)) 4 @, (J0011) 4 [1100))].  (2)

We can see that all the four local states are maximally mixed with ps 1,3 =1/2,
indicating that the initial quantum information is spreading over quantum

correlation in |®) ,;,; and the complete QIM is achieved. The most basic
scheme in a 4-qubit system can be formulated as

C14Cy110) 4ly) 1 |‘P>z3

We choose the polarization degree of freedom (DoF) of photons to
carry qubit information for qubit 1. The quantum state to be masked can be
substituted with the polarized state of the photon following the corre-
spondences of |[H) <> |0) and |V)) <> |1), with |H) and | V) indicating the
horizontally and vertically linear polarization states of the photon, respec-
tively. Qubit 2 and 3 are also encoded in the polarization DoF, while the
ancillary qubit A is encoded in the orbital angular momentum (OAM) DoF
with the correspondences of | + 1) <> |0) and | — 1) < [1), where | 4+ 1)
and | — 1) refer to the right-handed and the left-handed OAMs of + 7 and
— h. Then the 4-qubit masked state can be represented as: |D) 4,3 =
Jlao(l + 1HHH) + | = 1VVV)) + (I + 1HVV) + | — 1VHH))].

|®) 41,5 is entangled in three photons with four DoFs, which is called the
hyperentangled state.

= [D) o15- (3)

Here, we show that our scheme includes both complete QIM and
unmasking process to reconstruct the masked information, which is quantum
teleportation in the 4-qubit system, as shown in Fig. 1. The |®) 4,,; can be
unmasked back to qubit 1 by using the inverse operation (C, ,C,;)' = C,C, 4.
Similar operations can unmask the quantum information to any of the four
parts according to the symmetry of |®) 4,,5. For example,

Ci3C3|D) g1 = |‘P>A1|0)2|Y>3 4)

reconstructs the initial state in qubit 3. Furthermore, two arbitrary
high-dimensional QIM in the 4-qubit system and an odd high-dimensional
QIM version in the tripartite system are shown in Supplementary Note 1.

We indicate that the total masking scenario for a single qubit that we
propose for the no-masking theorem can be generalized to quantum infor-
mation encoded in multipartite systems. In a multipartite systems, if the
quantum information is encoded in a direct product state, we can attach a set
of masking systems to each qubit to achieve the total QIM. If the quantum
information is in an entangled state between different systems, any subsystems
will be in a mixed state, which is a mixture of different pure states. Since our
QIM scheme applies to any pure state on the Bloch sphere, it also applies to
their mixed states. For entangled systems, we can also match the masking
systems for each subsystem and perform masking procedures to finalize the
total QIM. The total QIM is an unitary process, and the unmasking can be
implemented by the inverse operation, which is also a unitary process. So that
our scenario can be extended to more multipartite systems.

Teleportation

Hyperentanglement state

OH @|V)
[+ @ -1

w N = >

Fig. 1 | The complete QIM process in the 4-qubit system. The two steps of QIM and
unmasking can compose the process of quantum teleportation. For the QIM scheme, the
initial state which is encoded in the polarization and represented by the green and blue
spheres will pass through the two CNOT gates C,; and C; 4 and the initial state will be
completely masked in the 4-qubit hyperentangled state. The protocol of unmasking will
transmit the initial state to an arbitrary qubit and finish quantu.m teleportation. The photon
pair (photon-2, photon-3) is prepared in the Bell state of - (|HH + VV))y3.
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Complete QIM enables QSS and quantum teleportation
Since masking protocols can be viewed as a basis for QSS?, our QIM protocol, in
which the arbitrary initial state |y ) | canbe masked in the minimal Hilbert space
with the help of the Bell state |¢) ,; and an ancillary qubit A, can be easily scaled
up in multipartite systems with an arbitrary number of participants involved.
This enhanced scalability makes QSS implementation more straightforward.
Starting from our masked state |®) 4,5, the second and third steps in our
complete QIM scheme can be iterated multiple times to add more qubits
involved. The involved CNOT gates are operated on the added qubits and the
existing qubits, where the added qubits are the target qubits, and the control
qubits can be any qubits of the existing sharing states. To illustrate, let us
consider an example of a 6-qubit QSS state. On top of the masked state |D) 41,3,
we add two qubits 2 and 3’ prepared in |0) and do the gate operation C,, and
Cs5, respectively. Then the 6-qubit QSS state can be written as

1
[D) g1z = 7 [ (1000000) + [111111)) + e, (J001111) + |110000))].

(©)

Like the complete QIM, the quantum teleportation in quantum
information science is another protocol that requires the arbitrariness of
qubit state, i.e., the state set covering the whole Bloch sphere. Quantum
information schemes and their extensions are widely studied”*™ and
applied in various branches of quantum information from fundamental
quantum physics such as loophole-free test of Bell inequality violation™ to
practical applications such as quantum repeater’” and quantum
networks™ ™. So far, the implementation of quantum teleportation in
multiparty systems remains an intriguing and open area of research.

Our work reveals that quantum teleportation can be viewed as a
combined process of complete QIM and unmasking. Besides the general
unmasking approach above, in the 2% system given by Eq. (5), the

unmasking process can be achieved by some simple Hadamard gates. This
process is simpler than the standard paradigm of unmasking. First, the six
qubits in the entangled state are divided into two groups (A, 1) and
(2,2/,3,37). Then, the Hadamard gates are executed on all qubits of the
group except for the qubit that receives the initial information, and the
qubits without Hadamard gate operation can acquire the initial state by a
local operation indicated by a measurement on the computational basis of
the qubits of the other group. The details of the unmasking process to an
arbitrary subsystem are shown in Supplementary Note 2.

Experiment of complete QIM process

We consider the physical realization of complete QIM. The polarization
degree of freedom (DoF) of photons is used to carry qubit information. The
quantum state to be masked can be substituted with the polarized state of the
photon following the correspondences of |[H) <> [0) and |V) <> |1), with
|H) and |V) indicating the horizontal and vertical polarizations of the
photon, respectively. The experimental setup for arbitrary qubits QIM is
shown in Figure 2. The femtosecond (fs) laser with a central wavelength of
390 nm and a repetition rate of 80 MHz pumps successively one single
2 mm-thick -barium borate (BBO) crystal and standard Kwiat source (ie.,
glued two 0.6 mm-thick BBO crystals with perpendicular optical axes) for
type-I spontaneous parametric down-conversion (SPDC)*™**', among which
the first photon pair (photon-1 and photon-trigger) is prepared in the
product state |[HH) pumped by | V), and the second photon pair (photon-2
and photon-3) is the Bell state of %fz (|HH) + |VV)),; pumped by |H + V),
which is regarded as the masking channel. The photon-1 is used to prepare
the state that will be masked and its twin photon serves as a trigger to herald
the photon-1. Furthermore, we utilize two DoFs of a single photon to encode
qubits, namely, the polarization and orbital angular momentum (OAM).
The ancillary qubit A is encoded as OAM DoF of the photon-1.

Trigger R A C_)'_FF_’(_)___i “““ % ‘7&")‘ """"" \“ [ TC-YVO,
3 1 AQ " b it ‘ e
Kwiat i r AL ‘ . % v (L aplate
BBO Source ; ”_6— = _G—.OTPC —‘»0_9—%%') \ -
1 2 - oG- 1B PBS

H— {3

H)__r —§-ore - ?g 10

WL

-
OTPC —{;4)—3:—}0
>

. EESD

Preparation

Masking

[H)lg) = |H)|+1)

g} = V)-1)
AQ: OAM polarization entanglement

Fig. 2 | Experimental setup to mask an arbitrary qubit and 6-qubit QSS. An
ultrafast fs laser beam successively passes through two separate sources. The first one
is a single BBO crystal to generate correlated photon pair |HH) and the other one is
standard Kwiat source to generate the entangled photon pairﬁ(lHH )+ VV))ys.
SC-YVO, and TC-YVOj, represent spatial compensation (SC) and temporal com-
pensation (TC) YVOy crystals. The polarization CNOT gate is combined by three

L&

OTPC: OAM-to-polarization converter

Unmasking

: [H)|+1) = |H)g)
[H)=1) = [V)Ig)

PDBSs and two HWPs. AQ (auxiliary qubit, see “Methods” for details) is the
combination of a g-plate sandwiched by QWPs and prepares the OAM polarization
entanglement. OTPC (the OAM-to-polarization converter, see “Methods” for
details) is utilized to read the photonic OAM qubit. 6-qubit QSS is realized when the
combination of AQ and OTPC acts on both photon-2, photon-3 simultaneously.

Communications Physics| (2025)8:30


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-01942-4

Article

To prepare an arbitrary initial state of |y), for masking, the photon-1
passes through a half-wave plate (HWP) sandwiched between two quarter-
wave plates (QWPs) to achieve an arbitrary unitary polarization rotation,
which can map an initial state to any point on the Bloch sphere. In our QIM
scenario, the photon-1 undergoes three steps: two CNOT gates and intro-
duction of an ancillary qubit. We apply the first CNOT gate C,; on the
photon-1 and photon-2 to mask the diagonal elements of the reduced
density matrix of the initial state, where the photon-1 is the target qubit and
the photon-2 serves as the control qubit. The CNOT gate with a success
probability of 1/9 is composed of the controlled-phase (C-phase) gate and
two Hadamard gates (HWP at an angle of 22.5°), as shown in Fig. 2. The
C-phase gate is combined by three polarization-dependent beam splitters
(PDBSs) with one primary PDBS (T = 1 and Ty = 1/3) and two secondary
PDBSs (T =1and T = 1/3)*. In our experiment, the process fidelity of the
CNOT operation*** is measured to be F € [0.87 +0.02,0.92 +0.01] (see
Supplementary Note 3).

The subsequent CNOT gate C, , is performed on different DoFs of
photon-1, namely, polarization and OAM, where polarization DoF is the
control qubit and OAM DoF (qubit A) acts as the target qubit, with the
correspondences | + 1) <> |0) and | — 1) <> |1), where| + 1) and | — 1)
refer to the right- and the left-handed OAMs of + # and — 4. The
interfered photon-1 passes through the sandwich structure of a QWP, a
g-plate, and a QWP. Such an architecture® can easily make |H) photon
carry the OAM of + A, while |V) photon carries the OAM of — 4, i.e,,
|g>A|H)1 — |+ 1)4|H); and |g>A|V)1 — | = 1)4]V), (see “Methods”
for details), where |g) represents the Gaussian mode of the photon. Then
the desired masked 4-qubit hyperentangled state in Eq. (2) can be
generated.

After completing the QIM process, one needs to analyze the
masked quantum information by the projection measurement of the
final state. Polarization qubits 1, 2, and 3 are read out with a standard
polarization analyzer, which consists of one HWP, one QWP, and one
polarizing beam splitter (PBS). For the qubit A, which is encoded in
OAM, a swap gate is employed to transform the OAM information to
polarization. Subsequently, another polarization analyzer is used™.
Finally, the photons are collected by single-mode fibers (SMFs) and sent
to the single-photon avalanche detectors for four-fold coincidence
counting.

The density matrix of any point on the Bloch sphere can be
expressed as a linear superposition of the Pauli matrices'>". To reveal
that our work can be completely masked for any qubit on the Bloch
sphere, we select 16 initial states (see Supplementary Note 4 for their
details). Figure 3a shows all the selected 16 initial states by the two-
dimensional ‘Map’ representation instead of the three-dimensional
Bloch sphere, which is prepared by combining QWP, HWP, and QWP
(for details, see Supplementary Note 4). We measure the fidelity of the
hyperentangled states after QIM for each initial state by representing the
density matrix of the hyperentangled state with the identity and Pauli
matrices and measuring the corresponding expectation values. The
average fidelity of the masking-resulted states is 0.84 + 0.01 (see Sup-
plementary Note 4 for the fidelities of all the 16 states). The initial state
|H) after QIM is the 4-qubit GHZ state. Figure 3b illustrates the mea-
surement results under the computational basis {|H), |V)} to calculate
the population and the expectation values of the corresponding entan-
glement witness operators to calculate the coherence. With the calcu-
lated population and coherence, we can easily obtain the fidelity*’. We
present the reduced density matrices of the masked qubits after passing
the first and second CNOT gates in Fig. 3c, respectively. The reduced
density matrices can be obtained by measuring the expectation of the
three Pauli matrices as the measurement operators. After the first CNOT
gate, the diagonal terms in the reduced density matrices of the qubits
represent the amplitudes that have been masked. For some states,
however, the non-diagonal terms representing the coherence terms are
still not completely masked. After the second CNOT gate, the reduced
density matrix of any single qubit is the maximally mixed state. We

calculate the trace distance T(p;, p;) = 3 Trlp; — p;|"" from the masked
qubit to the maximally mixed state with T € [0.12+0.02,0.03 £ 0.02].
This outcome indicates that the information of any single qubit is
masked in the 4-qubit hyperentangled state and no information about
the initial state can be obtained from any single qubit (see Supplemen-
tary Note 4 for details).

Furthermore, building upon the foundation of complete QIM in the
4-qubit system, we further repeat the second and the third steps twice in
our QIM scheme to introduce two ancillary qubits 2/ and 3/, which are
encoded in the OAM DoF of the photon-2 and photon-3, respectively.
Then we perform the CNOT gates C,,, and Cs;, via AQ, as shown in
Fig. 2. This configuration allows us to prepare the 6-qubit QSS state
shown by Eq. (5). We share the six states (|+), |—), [R), |L), |H), and | V))
within the 6-qubit QSS system. Figure 4a presents the measurements of
the trace distance from the reduced density matrix of each qubit to the
maximally mixed state with the average trace distance of 0.06 + 0.03. For
every qubit, we measure the reduced density matrices by the expectation
values of the Pauli matrices. In our proposal, the initial state being shared
can be recovered to any qubit by local operations and classical com-
munication. We transfer the six initial states to A, 1, 2, 2/, 3, 3/ qubits,
respectively. The data shown in Fig. 4b produces the average tele-
portation fidelity of 0.85 +0.03, which is obtained by the projection
measurements on the unmasked qubit. The fidelity of the unmasking
process is mainly limited by the first CNOT gate C,, . Using deterministic
CNOT gate or increasing the visibility of quantum interference can
further improve the fidelity. Unmasking process in a 4-qubit system is
demonstrated (see Supplementary Note 5 for details).

Conclusion

We have proposed two QIM schemes for the 4-partite system and one for
the tripartite system, going beyond no-masking theorem. Experimen-
tally, we have verified the existence of a complete quantum masker in the
4-qubit system and meticulously tested the theoretical predictions,
therefore extending the QIM scheme to the multiqubit regime and
providing a solid foundation for future verification of high-dimensional
quantum information processing’'~>**®. We present an experimental
implementation of QIM-based 6-qubit QSS, which also shows the wide
application prospect of QIM in the information security. In ref. 15, a
stronger version of k-uniform QIM in multipartite systems has been
proposed, which requires that the original information remains inac-
cessible to any subset of subsystems containing k or fewer participants.
Our work can be regarded as a 1-uniform QIM, and stronger QIM is
expected in the future.

Methods

Introducing the ancillary qubit and C,,

The operations in the second and third steps of QIM could be written as
following:

second step
(0(|H>1 T ﬁlv>1) Ig>1 muodudngqubitA(“lH>l + ﬁlv}l)l T 1)A
(6)
third step
oNotC, alH) 1+ Dy + BV —1)4

In the experiment, the introduction of the ancillary qubit A encoded in
the orbital angular momentum (OAM) degree of the photon-1 and the
implementation of the second CNOT gate C, , are together implemented by
the combination of a g-plate sandwiched by two quarter-wave plates
(QWPs) in the following state transfer process:

(o) + BIV)) lg) 2% (alL) + BIR)) g) <25 alR)] + 1) + BIL)| — 1)

AT M+ 1) + BIVY — 1).

@)
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Fig. 3 | Experimental results for the complete QIM of the arbitrary qubit. a The 16
initial states selected on the Bloch sphere, for implementing the QIM experiment, are

mapped to the “Map” representation for clarity. b For the initial state |H), QIM result is
4-qubit GHZ state. We show the four-photon coincidence counts in {|H), |V)} basis and
the expectation values of M$* = (cos 60, + sin 9(7},)@4 obtained by the measurement in

0/4

the basis of% (|H) + €9 V)), where 6 = kn/4 (k = 0, 1, 2, 3). The error bar indicates

1 standard deviation (obtained from the Poissonian statistics of the detected four-photon
counts). ¢ The reduced density matrix of the qubit carrying the initial quantum information
at the different stages of the QIM process: before QIM (initial), passing through the first
CNOT gate (partially masked), and after QIM (masked).

All the above three processes in expression (7) are deterministic, therefore,
the overall operation in the second and third steps of QIM is also in a
deterministic manner.

OTPC: the OAM-to-polarization converter
The OAM-to-polarization converter (OTPC) is combined by a HWP, an
interferometer, a Q-plate and a QWP as shown in Fig. 2. The interferometer
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Fig. 4 | QIM enables 6-qubit QSS. a We share six a
eigenstates of three Pauli matrices into a 6-qubit 0.15 ]
hyperentangled system and show the trace distance 0.10
of the reduced density matrix of each qubit from the ® 0.05 ] i
maximally mixed state. b The experimental results e 01—
of unmasking. We pass each of the six initial states to ) 1
g . . . 0 0.10
six different qubits and display the fidelity of each 5 1 {
process. The error bar indicates 1 standard deviation ® 0.05 ]
(obtained from the Poissonian statistics of the 8 01—
detected four-photon counts). I: 0.10 1
0.05
0-—
A
b 1.0

o
®
1

Fidelity of teleportation
o o o o
o N B [o)]
L | L | L | L

=
7
=
= I
= —
s _

consists two double-path PBS, two Dove prisms rotated by + 7/8 with
respect and an HWP. States transform in the interferometer obey the fol-
lowing rules from the input mode to the output mode:

[H)| + 1) > ™4V — 1),
[H) = 1) = e V)| + 1),
®)
)
)

W+ 1) —> e 4 H)| — 1),
V)| = 1) — ™4 H)| + 1).

)
)
)
)

The transform process is guided by polarization DOF and such a
transform is deterministic. Therefore, the state transform in the inter-
ferometer is also in a deterministic manner. Then, the state conversion
process by our element of OTP could be written step by step in the following
form:

IH) (el + 1) +pl = 1))
HWP 1
ﬁ('m +IV)(ad + 1) + Bl = 1)),
interferometer 1

% [aef”/4|v>| — 1)+ B VY| + 1) + aeAH)| — 1) + B/ H)| + 1)] ,

o/

=7 [a(lH) + V)] — 1) + BGIH) + [V)] + 1)]
S Tall) = V) + B=il) + V)] ).

O (alH) + V) lg).

(€)

As every step is deterministic, the whole conversion process is deterministic
in the form:

[H) (ol + 1) + Bl — 1)) — (alH) + BIV)) Ig). (10)

Data availability

All data supporting the findings of this study are available in the main text
and Supplementary Information (https://doi.org/10.6084/m9.figshare.
28029728.v1). The data are also available from the corresponding authors
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