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ABSTRACT

We determine the large-modulus dynamics of the U(N) doubly periodic BPS
monopole in Yang-Mills-Higgs theory, called a monopole wall. We accomplish
this by exploring its Higgs curve using the Newton polytope and amoeba. In
particular, we prove that the monopole wall splits into subwalls when any of its
moduli become large. The long-distance gauge and Higgs field interactions of
these subwalls are abelian, allowing us to derive an asymptotic metric for the
monopole wall moduli space via electromagnetic scattering. We carry out a
generalized Legendre transform to determine complex coordinates and Kéhler
potential for the asymptotic metric. We prove that the Kahler potential is
determined by the cut volume of a crystal associated with the Higgs curve, i.e.

the volume of a region enclosed by a plane arrangement in R3.
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CHAPTER 1

Introduction

1.1 Context

In 1931 [1], Dirac proposed a magnetic cousin to the electron in classical elec-
tromagnetism, now referred to as the Dirac magnetic monopole. Analogous to
the classical electron, it is a point particle with radial magnetic field that is
singular. Nearly five decades later, 't Hooft and Polyakov [2, 3] expanded the
idea of the magnetic monopole by identifying non-singular solutions now called
't Hooft-Polyakov monopoles in nonabelian Yang-Mills-Higgs theory, in which
the Yang-Mills gauge fields couple to a scalar field with the usual “winebottle”
Higgs potential. Prasad and Sommerfield [4] found an explicit static SU(2)
solution for this theory in the limit that the coefficient of the Higgs poten-
tial vanishes. Under conditions of time-independence and the vanishing of the
Higgs potential coefficient, Bogmolny [5] derived his eponymous equation. So-
lutions to the Bogomolny equation solve the Yang-Mills-Higgs field equation
and minimize energy. They are called BPS (Bogomolny-Prasad-Sommerfield)

monopoles.

Nonabelian magnetic monopoles are interesting in their own right, appearing
as they do in many contestant grand unified field theories. They have gar-

nered attention in recent decades, however, for their significance in relation to
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certain supersymmetric Yang-Mills quantum field theories and supersymmet-
ric quantum chromodynamics. One nontrivial connection to these theories is
via their moduli spaces of vacua. The moduli space of BPS Yang-Mills-Higgs
monopoles (a set of solutions that share fixed boundary conditions up to gauge
equivalence and which together form a manifold) is isometric to the Coulomb
branch of the moduli space of vacua in the associated super Yang-Mills theory
[6, 7, 8]. These moduli spaces are hyperkéhler, i.e. they are kdhler manifolds

which are holomorphically symplectic.

In early studies of BPS monopoles, their moduli spaces were used to determine
monopole dynamics. Manton established [9] that the low-energy dynamics for
BPS monopoles can be approximated as geodesic motion on their moduli space.
In the modern context, monopole moduli spaces have applications in quantum
theories. Despite their importance, few metrics on monopole moduli spaces
are known. BPS solutions in which some or all of the constituent monopoles
are closely spaced represent regions in the interior of the moduli space. BPS
solutions in which the monopoles are very widely-spaced are points on the
moduli space in its asymptotic region. Long-range abelian approximations have
been used to obtain the latter type of solution and metrics have been calculated
for the corresponding asymptotic moduli spaces, but solutions of the former
type have been mostly illusive. A notable recent contribution to solutions
for monopole Higgs and gauge fields has come from Braden and Enolski [10],
[11] and their prescription for analytical monopole solutions computed directly
from the Hitchin spectral curve. Nevertheless, most moduli space metrics that
have been produced are accurate only for the asymptotic portion of the moduli

space. The following paragraph enumerates these efforts.
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Atiyah and Hitchin [12] derived a metric on the full moduli space for two SU(2)
BPS monopoles on R3. Gibbons and Manton [13] then extended this to n BPS,
well-separated, unit charge SU(2) monopoles and found the asymptotic moduli
space metric. Lee, Weinberg, and Yi derived a similar asymptotic metric for
general gauge group [14]. Cherkis and Kapustin [15] used an approach echoing
Gibbons and Manton’s to determine the asymptotic moduli space metric for
an SU(2) monopole on R? x S! with n monopole constituents with distinct
charges, as did Hamanaka, Kanno, and Muranaka [16] for an SU(2) monopole

on R x T? with n monopole constituents with distinct charges.

Prior to discussions of moduli spaces for widely separated doubly periodic
monopoles, there is a twenty year history of exploration of doubly periodic
instantons and their dimensional reduction, doubly periodic monopoles. In
the case of the singly-periodic monopole, as in [17], the Nahm transform maps
the monopole onto a solution of the Nahm equations [18], formulating the
problem of interacting monopoles as a Nahm system and validating the abelian
approximation in the asymptotic regime [19]. This approach is unsuccessful in
the case of the doubly-periodic monopole, which is mapped to another doubly-
periodic monopole under the Nahm transform. Instead it is sensible to study
some key behaviors of the doubly-periodic monopole using the Higgs spectral
curve [20, 15, 21, 22], which allows a geometrical treatment of the monopole
interactions in the BPS limit. Still, the Nahm transform has been useful
in the study of doubly periodic instantons and their dimensional reductions

(monopoles and Hitchin systems).

In the late 1990s and early 2000s Jardim showed that one can carry out the

Nahm transform to obtain finite energy doubly periodic instantons from cer-
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tain singular solutions to Hitchin’s equations on a two-torus and that the
transform is invertible. He associated a spectral curve with the doubly peri-
odic monopole through the Hitchin’s solutions [23, 24, 25]. He and Biquard
described the moduli space for SU(2) widely separated constituent instantons
on a doubly periodic underlying space. They computed its dimension to be 8k-
4 for instanton number k, and classified the moduli spaces based on asymptotic
conditions [26, 27]. Later, Ford and Pawlowski [28, 29, 30] used analytical and
numerical methods to explore the action density for doubly periodic SU(2)
instanton configurations with radial symmetry where “radial” refers to dis-
tance in the two non-periodic directions on the underlying space. Between
2013 and 2019, Mochizuki [31, 32, 33] has extended this work and used the
Nahm transform specifically to relate doubly periodic instantons with square-
integrable field strength to solutions for Hitchin’s equations on a two-torus
with higher order singularities, i.e. where the Higgs field has singularities of
order n > 1. He also examined the dimensional reduction of these instantons

to doubly periodic monopoles and their associated Hitchin curve.

In 2005, Lee [34] introduced the concept of doubly periodic monopoles,

”

called “monopole sheets,” as infinite square lattices of 't Hooft-Polyakov type
monopoles solving the Bogomolny equation and connected these to D3 brane
configurations in type IIB string theory. A couple of years later, Ward [35] pub-
lished a set of numerically generated field solutions for a unit lattice of SU(2)
't Hooft-Polyakov monopoles. In 2011 Ward [36] produced field solutions and
energy density plots for SU(2) monowalls with distinct left and right magnetic
charges. Soon after this Cherkis and Ward invoked the Higgs spectral curve

(introduced previously in the context of periodic monopoles [15]) to establish

the monowall moduli and find the monowall moduli space dimensions. They
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related the spectral data for the Higgs spectral curve to the boundary condi-
tions on the Higgs field and gauge phases which specify the monowall moduli
space. They used the Newton polygon and real Log projection of the Higgs
spectral curve called the amoeba to illustrate these conditions. Hamanaka et
al. soon after publish their result for doubly periodic monopoles with distinct
charges [16] which were mentioned above. From this point forward, the Higgs
spectral curve becomes a standard tool used to analyze monowall behavior. In
2014, Maldonado and Ward [37] published a set of numerically generated field
solutions for a pair of doubly periodic SU(2) 't Hooft-Polyakov monopoles
with several relative charge examples and they used these results to compute
the coefficients of the metric on the moduli space of these monowalls. In [3§]
Cherkis explicitly associated phases of the monowall’s amoeba with triangu-
lations of the Newton polygon and explored the set of amoeba phases using
the secondary polytope and fan associate with the Newton polygon. He iden-
tified all monowalls with four moduli and discussed the asymptotics of their
moduli spaces. In [39] we used the Higgs spectral curve to argue for monowall
breaking when monowall moduli grow large and then generalized the results
from Hamanaka et al. to a metric on the asymptotic moduli space of a U(N)

monowall with n widely separated subwalls with distinct charges.

As mentioned earlier in this section, BPS monopoles arise in classical Yang-
Mills-Higgs theory. Their moduli spaces are argued to be isometric to moduli
spaces of vacua for SU(n) super Yang-Mills quantum gauge theories (with
boundary conditions and dimension particular to each of the monopole peri-
odicity cases). Seiberg and Witten originally discovered the existence of these
relationships in [6], following work by Seiberg and Witten [40, 41], and Intrili-
gator and Seiberg [42, 43]. Chalmers, Hanany, and Witten [7, 8] explained
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these relationships using brane dualities. Later Haghighat and Vandoren [44]
examined the compacitified five dimensional quantum field theory relevant to

doubly periodic BPS monopoles, and the underlying theory connecting them.

For n monopoles on R3, this theory is related via the relative moduli space met-
ric to the Coulomb branch of N =4 SU(n) quantum super Yang-Mills vacua
in three dimensions [6]. For two such monopoles, the relative metric is called
the Atiyah-Hitchin metric. n periodic monopoles (on R? x S1, called “monopole
chains”) are related via their moduli space metric to the Coulomb branch of
vacua for N = 2 SU(n) quantum super Yang-Mills in four dimensions which
has been compactified on a circle [17]. Similarly, n doubly-periodic monopoles
(on R x T?, called “monopole walls” or “monowalls”) are related via their
moduli space metric to the Coulomb branch of vacua for N =1 SU(n) quan-
tum super Yang-Mills in five dimensions which has been compactified on a
two-torus [22, 16, 44]. These moduli spaces of monowalls are the main subject

of this thesis.

The next step in the discussion of monowall moduli spaces is to identify com-
plex coordinates on them and explore their Kahler potentials, which are local
functions of these complex coordinates or moduli and whose second derivatives
give the metric coefficients. In the following work we use the generalized Leg-
endre transform to find complex coordinates and asymptotic Kahler potentials
for the asymptotic moduli spaces of monowalls. In 1987 Hitchin, Karlhede,
Lindstrom and Rocek [45, 46] introduced the generalized Legendre transform
as a tool for generating hyperkahler metrics and, relevantly, for metrics of n
widely-separated monopoles. Ivanov and Rocek [47] further illustrated the util-

ity of the transform for monopole metrics by reproducing the Atiyah-Hitchin
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moduli space metric for two SU(2) monopoles. In 1997 Chalmers [48] car-
ried out the generalized Legendre transform to derive moduli space metric
for widely separated monopoles on R?® and generalized from SU(2) to SU(N)
gauge symmetry. Later Houghton [49] connected the generalized Legendre
transform to monopole twistor theory. He summarized the role of the gen-
erating function and generating integrand and how to compute them for a
known hyperkahler metric. This dissertation compiles work which continues
and elaborates on the efforts listed for monowalls: Here we 1) demonstrate
that monowalls break into subwalls for large moduli and the subwall inter-
actions become approximately abelian. 2) We compute metrics and Kéhler
potentials for the asymptotic moduli spaces of subwalls and 3) relate these

Kahler potentials crystal volumes.

1.2 Yang-Mills-Higgs theory

In classical, 3+1-dimensional U(N) Yang-Mills-Higgs theory the pure Yang-
Mills action is augmented by that of a scalar with the usual symmetry-breaking

potential.
1
S = /d4xTr EFWF“” — (D,®) (D'®) — X (9 + 02)2 : (1.1)

We shall have both the gauge and Higgs fields antihermitian in the adjoint
representation. They can be expressed as linear combinations of the antiher-
mitian U(N) generators Tp: ® = &7, A, = AZTb where ®° and AZ are real
functions, b = 1, ..., N? indexes the U(N) generators, and v is a real constant.
The gauge covariant derivative is D, ® = 9,® + [A,,, @] and the field strength
is Fl,, = 0,A, — 0,A, +[A,, A
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The action-extremizing Yang-Mills-Higgs field equations are easily derived,
D*® = )\ (92 +v?) P, D, F* = [®, D", (1.2)

but we can more strongly constrain the solutions by requiring time-
independence (Jy = 0) and taking the limit A — 0. Under these conditions
the energy is minimized when the following equation, called the Bogomolny
equation, is satisfied:

B, = +D;®, (1.3)

where the magnetic field is found from the field strength: B; = —3¢,;xF7* and
i = x,p,0. Alternately, in the form of a complex and a real equation (we have

chosen the (—) case in (1.3) and will use it from now on),

(D, + iDy, D, + i®] = 0,
(1.4)
(D + Dy, (D, +iDg)"] + [D, +i®, (D, +i®)'] = 0.

These conditions are collectively known as the BPS limit and solutions to the
Bogomolny equation are static BPS magnetic monopoles [50]. Static magnetic
charge configurations are possible in this limit because the magnetic field repul-
sion is canceled by the Higgs field attraction the fields satisfy the Bogomolny
equation (1.4).

Now, a BPS solution is a static solution, i.e the Higgs and gauge field configu-
rations are time-independent. For fixed total charge and a given set of gauge
and Higgs field boundary conditions, there may be many such static solutions.
A monopole (or monowall) moduli space is the set of BPS solutions for fixed
total monowall charge and boundary conditions. If boundary conditions are

chosen appropriately it is a manifold. Each point on the manifold represents
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a BPS solution, up to gauge transformations, with associated charge distri-
bution. To identify nearby locations on the moduli space, we perturb a BPS
solution (®,A;) — (P + 0P, A; + JA;) and require that it still satisfy the

Bogomolny equation. The linearized form of the Bogomolny equation is

%aﬂf D,(64,) — Dy(6A,)] = — (D'(6®) + [5A', ®]). (1.5)
But the moduli space does not contain gauge redundancy and so these per-
turbations must also be orthogonal to small gauge transformations e which
affect the fields ® — e*®e ™ and A4, — (A, + J,)e. Expanding in A
we can write such gauge shifts as (®, A;) — (P + 6, P, A; + JpA;) where the
small gauge effects on the field are (5, ®,07A;) = ([A, @], —[D;, A]). If our
perturbed BPS fields are to lie on the moduli space adjacent to the original
solutions then the perturbations (0®,dA;) are orthogonal to the small gauge
shifts (AP, 00 A;), i.e. they must satisfy

/ T [~ (SA)D,A + (50)[A, @] = 0 (1.6)

for all small gauge transformations A. Integrating by parts reveals that this
is equivalent to the following equation, which fixes the perturbations to be

orthogonal to gauge slices:
D'(6A;) — [0®,®] = 0. (1.7)

Perturbations of BPS solutions which satisfy equations (1.5) and (1.7) will
be tangent to the moduli space and the metric on the moduli space can be
expressed as the overlap of these. We establish a set of generalized complex
coordinates on the moduli space indexed by p: (Xp, Xp). The moduli pertur-

bations which satisfy these conditions must be accompanied by a small gauge
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transformation €2 to keep the moduli perturbations orthogonal to the gauge

orbit. These perturbations take the form

Op(Ay +iA3) = 0,(A1 +1iAs) — [(D1 +1iD3), ),
(1.8)
Op(Ag +1i®) = 0,(Ay +1i®) — [Dy + 1D, )],
e
Oxp”
scribes the space of BPS solutions (®, A;) which share a set of fixed boundary

where 0, = The metric on the moduli space of monopoles which de-

conditions is’
Gpg = / Pz Tr[6,(A; +iA3)05( A1 —iAs) +6,(As+19)65(As —i®)] +h.c. (1.9)

Moduli spaces for BPS monopoles are hyperkdhler [7] and therefore once a
complex structure is chosen for a moduli space its metrics can be related to a
Kahler potential K2. A Kahler potential is a local scalar function of complex

moduli whose second derivatives give the set of metric coefficients.
9pg = apaqK. (].].0)

The metric on the moduli space is important for describing monopole dynam-
ics. If the positions of localized charge density gain very small velocities, this
motion can be approximated by geodesic motion on this moduli space [52, 51].
We allow the moduli to be time-dependent x?(¢) and the fields to possess time
dependence only through the moduli. The time component of the gauge field
is no longer zero in this case and must satisfy the component of the Yang-
Mills-Higgs field equations which is linear in time and is analogous to Gauss’

law D;F® + [D°®, ®] = 0. This is satisfied by setting it equal to the same

IThis description of the moduli space of BPS monopoles follows [51].
2Each complex structure has its own Kihler potential.
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small gauge perturbation seen above: Ay = ,x?. We can then related the

time derivatives of the fields to the moduli perturbations (6,®, d,A4;):
Foi = (51,141»))'(7’7 Do® = (51)(1)))'(19' (1.11)

The remaining fields are not affected by small time dependence up to first
order in ¢t. This implies that for small time-dependent perturbations around
BPS solutions the kinetic components of the Lagrangian give precisely the

metric on the moduli space:

L = [d Tr[FyF% + (Dy®)(D°®) — F,; F'i — (D;®)(D'®)]
(1.12)

= gpg XPX? + constants.

The monopoles are in motion now and just as a moving electric charge produces
a magnetic field, so does a moving magnetic charge produce an electric field
perpendicular to the direction of motion. An additional effect comes with this
small time-dependence, however: these magnetic charges gain electric charge
and so altogether may interact magnetically, electrically, and via the Higgs
field. This effect is controlled by a periodic phase modulus 7 associated with

each charge [9].

This effect can be seen by allowing the gauge field component Ay to include
a term proportional to the Higgs field, which satisfies Gauss’ law. We expect
Ap to be linear in time derivatives so we interpret the coefficient of this term
as a small velocity along the phase direction 7: Ay — Ay + 7®. This term

produces the following effects on the electromagnetic fields:

o Foi = 7B;, (1.13)
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which is parallel to the magnetic field, suggesting that the monopole is now a

source of electric field as well as magnetic field.

This phenomenon can be interpreted as resulting from a type of gauge trans-
formation. While we identify BPS solutions which are related by small gauge
transformations, we can introduce this phase modulus 7 explicitly to the fields
through a large gauge transformation. A large gauge transformation is one
which does not become the identity as r — oo. This function will have the
form e™® where the monopole’s position 7(t) along this phase modulus is lin-
early time dependent with a very small velocity. This creates a small contribu-
tion to the zeroth gauge component §, Ay = 7® (note that the effect appears
only when the monopole moves along the 7 direction). Due to the gauge slice
orthogonality condition (1.7), the spatial components are unchanged §,A; = 0

by this motion along the 7 direction.

We refer to objects with both electric and magnetic charge as dyons [53].
Dyons arise when we allow small time-dependent perturbations around BPS
field solutions and we can model their low-velocity dynamics with geodesic

motion on the moduli space.

In particular, we are interested here in exploring this theory in an underly-
ing three-space R x T? with two coordinates ¢ and 6 compactified on a two
torus, each with period 27 (¢,0) ~ (¢ + 2m,0) ~ (9,0 + 27), and =z € R.
Monopoles in such a space are referred to as monopole walls, or monowalls.
Certain components of the gauge field gain mass in some regions of the under-
lying space because the Higgs field is non-vanishing, and because of the gauge

field holonomies associated with the periodic directions. As x grows large, we
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choose the Higgs field to approach diagonal with at most linear growth, the
gauge holonomies to approach diagonals which are constant in space, and the
U(N) symmetry to be maximally broken to U(1)" in the asymptotic region.
Then only diagonal gauge field components, those representing the Cartan
subalgebra of U(N), remain massless. We identify the locations of magnetic
charge with positions at which partial or full gauge symmetry is restored [54].
The massive gauge field components decay exponentially with distance from

such locations.

1.3 Objectives

This dissertation pursues four goals. First we show that a BPS monowall that
has moduli (degrees of freedom) will split into distinct, well-separated subwalls
if any of its moduli becomes large. Second, we determine the moduli space
metric corresponding to the gauge field and Higgs interactions of n widely
separated, slow-moving subwalls with distinct charges by following Manton’s
method [9, 13]. Third, we use the generalized Legendre transform to identify
a generating function G from which we identify a set of complex coordinates
on the moduli space and a Kéahler potential which produces the asymptotic
moduli space metric that we found in the second part. Last, we compute the
cut volume, a function of a quarter of the moduli, and compare it with the
function G introduced above in pursuit of the third goal. We prove that the

cut volume equals G.

To accomplish the first objective, in Chapter 2 we review the construction of

the Higgs spectral curve and analyze its behavior for large, distinct moduli



25

using the Newton polygon and amoeba associated with this curve. The large-
moduli amoeba directly relates to the BPS monopole when its constituent sub-
walls are widely-spaced, so we will demonstrate that as one of the monowall’s
moduli becomes very large, the monowall breaks into subwalls which move
apart. Note that the number and charge of the constituent subwalls depends
on relative ranking and size of moduli, which will be discussed further in sec-
tion 2.2. Furthermore, we show that the symmetry breaks from U(N) to U(1)™
beyond a determined distance from each subwall. The subwalls then behave as
distinct objects and their gauge and Higgs field interactions are approximately

abelian, with exponential precision.

We reach the second objective in Chapter 3 to calculate the moduli space
metric for n well-separated subwalls by modeling the moving subwalls as planes
with scalar, magnetic, and electric abelian interactions with one another. For
these subwalls the Lagrangian reduces to purely kinetic in the slow-velocity
limit. Lagrange’s equations are now equivalent to the geodesic equation for
the monowall moduli and we can read off the moduli space metric from the

kinetic term.

Here are the defining parameters of the moduli space we will calculate. Note
that the parameters are constant quantities specifying the boundary conditions
on the fields. They distinguish monopole moduli spaces and are not themselves
moduli. The Yang-Mills-Higgs abelian asymptotic field equations imply a
harmonic Higgs field. Following [22], we constrain the Higgs field of the U(N)
monowall to diverge no more than linearly, and its eigenvalues to behave as

follows when x — Z4o00:

O;* = —i (Grz+v)) + Oz, (1.14)
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where a = 1, ..., N indexes the N unbroken U(1) factors, i.e. the N diagonal
elements of the field matrices with which the Higgs eigenvalues are in one-to-

one correspondence. The left and right magnetic charges of the monowall G-

+

- are real constants. Also

are rational constants and the subleading terms v
fixed as  — 400 are the holonomy eigenvalues e/ and e%.« associated with
the two periodic directions (p,6). We use the shorthand d* = (0, 5, d;'fa),
where the vector symbol indicates the three spatial directions and dii € [0, 2m).
Together with the locations of any singular (called Dirac) monowalls, these
constants (G, vE, c%) fully specify the moduli space. Cherkis and Ward [22]
have established necessary conditions the above parameters must satisfy for
the existence of BPS solutions to be guaranteed. These are determined using
the Newton polygon construction, which will be described later in this section.
They determined [22] that the number of real moduli is then four times the
number of integer points in the interior of the Newton polygon, which the next

subsection describes.

To reach the third objective in Chapter 4 we review the generalized Legen-
dre transform [48, 45, 46] for monopoles and the method for computing a
generating integrand G and generating function F (from which to calculate
complex coordinates on the moduli space and the Kéahler potential). We ap-
ply the generalized Legencre transform to monopoles on periodic and doubly
periodic underlying spaces in order to find the generating integrand G for the
metric on the moduli space of widely separated, slow-velocity doubly periodic

monopoles.

For the last objective, in Chapter 5 we consider a plane arrangement deter-

mined by the moduli. We compute a volume cut out by these planes called the
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cut volume (which was introduced and motivated in [38]) using the Lawrence
formula for polytope volumes [55] and compare it with the generating inte-
grand for doubly periodic monopoles and establish that they are the same

function (up to an overall factor of 1/2).
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CHAPTER 2

Higgs Curve and Crystal

2.1 Higgs Spectral Curve

This description of the Higgs spectral curve closely follows that given in [39,
Secs. 2.3 and 3]. Label the three spatial coordinates (z,6,¢) where x € R,
o~ @+ 21 and 0 ~ 6 + 2m. For each periodic coordinate ¢ and 6, define
the Higgs spectral curve (or “monopole spectral curve”) [15, 21, 22]. We will
use one of these as a tool to explore behaviors of BPS solutions in U(N)
Yang-Mills-Higgs theory. The ¢-direction Higgs curve ¥, for example, is
determined by the characteristic equation for the holonomy of the differential
operator D, 4+ i®. The fields (®, A;) are assumed to be BPS, i.e. satisfying
the Bogomolny equation (1.4). To define the holonomy, introduce a matrix
function V(x, ¢, §) which, given a solution (®, A;) of the Bogomolny equation

(1.4), solves the system of equations
(D, +i®)V = 0, (D, +iDy)V = 0. (2.1)

The consistency condition for this linear system is [D, + iDy, D, + i®] = 0
which amounts to two of the three Bogomolny’s equations. The holonomy of
D,+i® is W(z,0) = V(z,2m,0) V~'(x,0,6), which is a holomorphic function
of x + i thanks to the second equation in (2.1) [15, 22]. Since @ is periodic,

define a more convenient coordinate s = e**% € C*. The eigenvalues of the
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holonomy W (s) are finite (away from the Dirac singularities) and nonzero, the
Higgs spectral curve is described by the characteristic (eigenvalue) equation of
W (s):
N

F(s,t) :=det(t — W(s)) =0, where F(s,t) = ; ki(s)t.  (2.2)
F(s,t) is a polynomial in ¢ € C* of degree N. Given the linear boundary con-
ditions we have set on the fields [22] the functions k;(s) are rational functions
of s. Without affecting the curve ¥ : F(s,t) = 0 (i.e. without affecting the set
of roots {(s,t)|F(s,t) = 0}), we can rescale by a common denominator poly-
nomial in s to obtain a polynomial in s and ¢, labeled f(s,t). This is referred
to as the spectral polynomial [22], or Higgs spectral polynomial. The algebraic
curve produced by f(s,t) = 0 is the Higgs spectral curve and lives in C* x C*,
where C* is the complex plane with the origin omitted, s is the coordinate in

the first C* factor and ¢ is the coordinate in the second C* factor.

We now introduce the Newtgn polygon and amoeba for this polynomial, which
can be written f(s,t) = Jif a;s™it", where o + ¢’ is the number of terms in
the polynomial. The Neujtzoln polygon N'(f) is the minimal convex hull of the
points {(m;,n;)} in Z? for which the coefficients are nonzero a; # 0. The
concept generalizes to arbitrary dimension [56, 22]. Let ¢’ be the number of

integer points along the perimeter of the Newton polygon and ¢ the number

of internal points.

To obtain the amoeba, project the Higgs spectral curve ¥ C C* x C* = R% x
St x St from two complex dimensions down to two real dimensions R? by

taking the modulus of each factor of C* and applying the Log map

(s,t) = (log|s|, log |t]) = (z,y). (2.3)
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This yields a more intuitive view of the nature of the curve, particularly in
the large-z regime, as will be seen. As we shall see, when one or more of the
moduli are large, equation (2.1) simplifies significantly when the commutator
vanishes and the Higgs field becomes approximately linear in x. It is clear that
x is the noncompact coordinate on the underlying space and in this region y
corresponds to the z-linear Higgs eigenvalue magnitudes (multiplied by —27i).
When the Higgs curve is projected in this manner, the result is called the
amoeba A(f) C R? of ¥ for its distinctive appearance [57] (see for example

Figure 2.1).

We will use the p-direction Higgs curve but it should be noted that a different
spectral curve could be found by exchanging the roles of coordinates 6 and .

These curves however share the same Newton polygon [22].

20 15 -10 -5 0] 5 10 15 r

T
—_—

Figure 2.1: Newton polygon and amoeba for F(s,t) = 1.3st* + ust + (—1 +
55 + 4s%) with u = 1000.
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2.2 Multi moduli spectral curve, relationship to monowalls

Each edge of the Newton polygon is associated with a set of external amoeba
legs stretching out to infinity. Each external leg asymptotes to a normal to its
associated polygon edge, and its position is determined by the monomials of
f(s,t) associated with that edge (their powers (m, n) and coefficients). In order
to keep the boundary conditions on the fields fixed, the polynomial coefficients
corresponding to edge terms must be fixed [22]. This constraint does not apply
to points on the interior of the Newton polygon, and we may consider the
family of polynomials with fixed perimeter coefficients and a range of values
for internal coefficients. To this purpose, we begin by allowing the internal
point coefficients to vary, i.e. we consider the family of polynomials for which
the coefficient of the internal points take complex values, while the perimeter
coefficients are each fixed in the complex plane. Rather than considering each
such polynomial individually, we may look at the whole picture by treating
the internal coefficients as moduli of the curve. While the external legs are
fixed in position and slope by boundary conditions on the fields (®, A), the
internal legs of the amoeba will shift in position and thickness as the long
moduli log |ai)nt| = Ri)nt vary. We may distinguish among the phases of the
amoeba by specifying the relative magnitudes of the moduli. Fach such phase
corresponds to a regular triangulation of the Newton polygon [57, Sec 7.1.C].
This determines how many internal legs exist, their slopes, and the graph
they form. We will take a moment here to expand on how the relative size of
the internal coefficients relates to the phase of the amoeba and correspond to
triangulations of the Newton polygon. In the following subsection we assume a

fixed phase and discuss the associated amoeba, and will return to the question
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of phases of the amoeba at the end of the section.

2.2.1 Three dimensional Amoeba

In order to explore a given phase without shuffling the relative size ranking of
the moduli, we will introduce a parameter h such that the perimeter coefficients
ab®" are h-independent, while real exponentials in the internal CoefﬁClents are
scalable by modifying h. Let the internal coefficient be alpnt — ¢ +i9 Note
that R, € R>g, h € Rsp and ©, € [0,27). By taking h to be very small,
we explore the regime in which all of the internal coefficients in the Higgs
spectral polynomial are very large while preserving their relative ranking. This
corresponds to choosing a certain direction to approach infinity on the moduli
space. Let us for now treat the quantity u := e¥ as an independent variable on
par with s and ¢. This effectively increases the number of complex coordinates
of the function from two to three but demotes it from polynomial. We write
the three dimensional Higgs spectral function (from now on referred to as the

Newton function) with o + ¢’ terms as

o+ao’
F(s,t,u) Ze’e”sm"tnpuRP + Z a, st (2.4)
p=o-+1
The three-dimensional Newton polytope A ( f) associated with this Newton
function is the minimal convex hull of the points {(m,,n,, R,)scmin)} U
{(mp,1,,0)peper(ay} In Z% x R for which the coefficients are nonzero a, # 0.
We are interested in relative rankings of R, such that all o internal points ap-
pear as vertices of this hull, i.e. such that all monomials in f are represented

on the Newton polytope surface.
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The three-dimensional amoeba A(f) € R? for f(s,t,u) = 0 also has ex-
ternalities extending to infinity, known as the asymptotic three-dimensional
amoeba. According to Gelfand, Kapranov, and Zelevinski' [57] and Viro [58,
Sec. 4], this three-dimensional amoeba asymptotically approaches the core of
the amoeba exponentially fast. The amoeba approaches this core when one or
more of its internal coefficients becomes very large. The amoeba core can be
described in the following way (see Figure 2.2): Orthogonal to each edge of the
three-dimensional Newton polytope for f (s,t,u) is a continuous set of direc-
tions which form plane wedges. Wedges for different edges on a given face of
the Newton polytope intersect at and terminate on the leg associated with that
face. The three dimensional amoeba legs are a set of cylinders each normal to a
polytope face and having two-dimensional amoeba cross-sections. Recall that
x = log|s| is the non-compact spatial coordinate and that y = log |t| asymp-
totically corresponds to the Higgs eigenvalue magnitudes. The significance of
the new, third component z = log |u| is the following. The intersection of the
three-dimensional amoeba with a horizontal plane defined by a given height
of z = 1 is precisely the two-dimensional amoeba for f(s,t) (e.g. Figure 2.3)
for a given value of z. The Newton polygon for this two-dimensional amoeba
is the projection of the three-dimensional Newton polytope onto the (m,n,0)

lattice. Each subwall corresponds to a face of the three-dimensional polytope.

For a horizontal plane positioned at very large z, its intersection with the three-
dimensional amoeba is as follows: The plane intersections with the wedges of
the three-dimensional amoeba along straight lines, called amoeba lines. The
plane intersections with the three-dimensional amoeba legs, called junctions,

are sections of the amoeba legs whose cross-sections are two-dimensional amoe-

!Proposition 1.13, Ch. 6
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Figure 2.2: Three-dimensional Newton polygon and sketch of three-

dimensional amoeba core for f(s,t,u) = 1.3st? + ust + 4s*> + 5s — 1.

bas. Importantly, these sections have fixed areas asymptotically which differ
from the cylinder cross-sections by a constant factor. Each subwall (which
will be defined in detail in the following subsection), then, is associated with
and its behavior determined by a face of the Newton polytope when one or
more moduli are large. The separations/relative positions of subwalls depend

linearly on the parameter z.

Here we will make a brief note about secondary polytopes and their fans in
order to describe the phases of the amoeba and how they correspond to tri-
angulations of the Newton polytope. A useful tool for exploring the range of
values of the internal coefficients which correspond to a given triangulation of
the Newton polytope is the secondary polytope introduced in [57, Ch. 7] and
secondary fan. Let us describe the secondary polytope, an object defined by
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Figure 2.3: Three dimensional amoeba (white) and £ plane (grey). The in-
tersection (black) gives the two-dimensional amoeba for a given value of %.

the set of possible coherent triangulations (sometimes called reqular triangu-
lation) of the Newton polytope [57, Sec 7.1.C], i.e. triangulations in which
the vertices of the subdivisions of the triangulation are either vertices of the
Newton polytope or internal points with non-zero coefficients in the Newton

polytope.

For a k-dimensional Newton polytope with o internal points and ¢’ perimeter
points, its secondary polytope is generally a (0 + 0’ —k —1)-dimensional object
in a (0 + o) dimensional space—and each dimension corresponds to one of
the o + ¢’ points on the Newton polytope. More specifically, each dimension
corresponds to the real part of the coefficient of the associated point on the

Newton polytope. Each vertex of the secondary polytope corresponds to a
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coherent triangulation of the Newton polytope and the coordinates of that
vertex of the secondary polytope are determined by how each of the o + o’

Newton polytope points feature in that triangulation.

Given a triangulation and its associated vertex of the secondary polytope,
we can calculate the coordinate of that vertex along the p* direction. In this
triangulation of the Newton polytope, the p! point in the Newton polytope A/
is a vertex for some of the subdivisions of A/. The coordinate of the secondary
polytope vertex along the p'h direction is equal to the sum of the volumes
subdividing AV for which point p is a vertex. The reason the secondary polytope
is (0 + ¢/ — k — 1) dimensional rather than (¢ + ¢')-dimensional is because
shifting the Newton polytope in any of its £ dimensions does not affect the
secondary polytope, and the sum of the elements of any secondary polytope
vertex coordinate is k 4+ 1 times the total volume of the Newton polytope.
This last condition is because each simplex in the Newton polytope subdivision
(triangulation in the case of a Newton polygon) has k+1 vertices and therefore
its volume gets counted k + 1 times in the computation of the coordinate of

the secondary polytope vertex.

The fan of the secondary polytope is dual it. Each vertex of the secondary
polytope has a cone, the volume spanned between the normals of all faces
adjacent to that vertex. The relevance of the cone for a given vertex is that
it contains the range of directions in “coefficient space” that will cause the
monowall to break into the set of subwalls corresponding to that triangulation
in a large moduli limit. In other words, with each cone in the secondary

polytope fan is associated a phase of the three dimensional amoeba.
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For example, consider a square with side length 2, four perimeter points and
one internal point, as in part a of figure 2.2.1. This possesses three coherent
triangulations seen in part b of figure 2.2.1. The secondary polytope is a two
dimensional triangle in five dimensional space, as seen in part c of figure 2.2.1.
Within the plane of the triangle, the set of directions spanning between the up-
ward normal arrow and the normal arrow on the right give the set of directions
in coefficient space along which the amoeba will be in the phase corresponding
to the associated triangulation. Note that the first two triangulations given in
figure 2.2.1 correspond to small values of the internal point’s coefficient and so

are inaccessible triangulations in the limit that the internal coefficient is large.

a) , ) $

5 3 S\

(04242 02424 2222

Figure 2.4: The Newton polygon in a) has three coherent triangulations,
which can be seen in b). Its secondary polygon c) has vertices at (0 4 2 4 2),
(02424)and (42222). It is a two dimensional secondary polytope in a
five dimensional space for a two dimensional Newton polygon. Here, 0 = 1,
o'=4and k = 2.
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It is worth making explicit that these various phases of the monowall indicate
that while the monowall breaks into subwalls for large moduli, these subwalls
are not fundamental constituents in the way that, for example, quarks are
fundamental constituents of a proton. The subwalls of a particular phase do
not exist when the monowall is unbroken and the subwall may break into one
set of constituent walls in one phase, and into a completely different set of

constituent walls in a different phase.

2.2.2  Monowall breaking

We now proceed to describe the breaking of the monowall into subwalls and
how we define the subwall thickness so that we may identify the conditions
under which the monowall may be treated as a collection of constituent sub-
walls with abelian interactions. The equations giving these conditions and the
width of a subwall are respectively equations (2.11) and (2.10). In Section 2.3
we define the crystal and continue on in Chapter 4 to derive a metric on the

moduli space of these widely separated subwalls.

In the y versus x plane at z, the amoeba lines correspond to regions in x where

the Higgs eigenvalues take values linear in z, with multiplicity equal to the

_mp—my . Ry—R,
_ _ )
Np—"ny Np—"ny

denominator of the slope the Higgs eigenvalues Eig (i®) =
i.e. the height n, — n, of the associated Newton polytope edge. In such
regions, it is not the minimum difference in Higgs eigenvalues which produces
mass in the off-diagonal gauge fields, but the minimum difference in Holonomy
eigenvalues. As we will show, the U(/N) symmetry in these regions is maximally

broken to U(1)" by the non-vanishing gauge field holonomies for the ¢ and
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0 directions, and the fields are exponentially close to abelian. The junctions
correspond to regions in which the Higgs field eigenvalues are not linear in x
and the gauge field holonomies cannot be approximated well, and so we are
unable to infer fully broken symmetry; we interpret these regions as locations
of magnetic charges, or subwalls. It is necessary now to define the widths of
these subwalls, or the extents in x of their nonabelian interiors. We will define
the subwalls to be “well-separated” when their separations are much greater

than the maximal subwall width and therefore their interactions are abelian.

To accomplish this, we must quantify the decay of the off-diagonal gauge field
components which mediate nonabelian field interactions. Gauge field compo-
nents which do not commute with the Higgs field must decay exponentially at a
rate proportional to the separation of Higgs eigenvalues [59, 10.5, Ch. IV]. Here
this decay rate amounts to the Log of the ratio of eigenvalues, log (¢,/t,), for
the holonomy W(s, u) since nonvanishing gauge field holonomies can asymp-
totically generate gauge field masses analogously to the Higgs mechanism. At
the point where these non-commuting gauge field components have decayed
by some chosen fraction, we mark the edge of a subwall. We define the subwall
width as the distance at which the exponential rates for the decay of the non-
abelian gauge field components are bounded from below by some small value
To, plus the distance 1/T} at which the fields will have decreased by a factor

of 1/e (the inverse of Euler’s number).

While the behavior of the real part log |W| of the holonomy (as a function
of z) is illustrated by the amoeba, the behavior of its argument is not. We
must therefore look to the Newton function to determine the various branches

of t = T(s,u), which locally satisfy f(s,T(s,u),u) = 0. This is done by
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calculating the Newton-Puiseux expansion [60, 61] for T'(s,u) with respect to
s and u. If the two Newton polytope faces corresponding to two subwalls share
an edge, then the fields between two subwalls are governed primarily by the
two monomials in the Newton function that are associated with the edge ¢
joining the two faces. There are also smaller contributions from the remaining
monomials. The resulting expansion will take the following form and only the
first two terms in the expansion are of concern here:
To(s,u) = 1o MU + Coq ST0uMB + .
(2.5)

= (1 STU (1 + (Cga/Cla) S’Ym*’}’lu'Ysa*'Ys) 4o

Briefly, for a direction w € R? within the normal cone of an edge of the Newton

Figure 2.5: The area above the grey partial planes is the normal cone for edge
e. The normal vector n’ is normal to the front right face, while n is normal to
the rear face. The vector w is normal to edge e and lies in the wedge bounded
by n and n’. It is defined as a rotation if n through angle «.

polytope (see Figure 2.5), the Newton-Puiseux series is constructed iteratively.
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We consider first the case of an edge joining a perimeter point and an internal
point. The dominant series term solves the vanishing of the edge function
e@ryllegme e + g, s™w ™ = (), so that in the dominant term in the series,

~H/ o= amial (=) and the powers are

the coefficient is ¢;, = (—aﬂe_ep)
m=—-(m,—m,)/(n,—n,), and v3 = —R,/(n,—n,). For an edge joining two
internal points, the first series term solves the vanishing of the edge function
e fto 5o Tre e Ouqy o smu T = (), and the coefficient and powers are instead
Cra = (= 1)V 0=m) =i(Op =0 (mp=mi) 250/ (mp=mi) s — _ (1~} / (1, — 1),

and v3 = —(R, — R,)/(n, —n,).

More formally, the powers v; and 73 are the negative of the components of

e’ 77 eg

the slope vector S, = (°—1 0 e—3> = —(71,0,73) associated with a perimeter-
interior edge ¢ = (m, —m,,n, —n,, R,) or an interior-interior edge ¢ = (m, —

. . n
My, ny, — Ny, R, — R,), and the coefficient ¢; solves the equation ) a,c;” = 0,
pEe
excluding trivial solutions, where here a, is a stand-in for either constant

o,

perimeter coefficients or variable interior coeffients e’ The second term,

cos7 s is found by repeating this process for the Newton polytope for the
~ ~ ‘71 nl
function fi(s,T1,u) = f(s,Th + 18" uB,u) = > a},smfl’Tl ?. choosing an edge
p=0
¢ which maximizes —S;-w (called the order U of edge ¢ with respect to w) while

1
satisfying —S;-w < —S,-w. The coefficient ¢, solves the equation ) a,l,CZLP =0
pEE
max({apel |} {Ja,|})
min({lape [} {lap]})
Again, here a, stands in for either the constant perimeter coefficients or the

and |cy] < (1+ ) =: (5 is its maximum magnitude [62].

variable internal coefficient €’®» which may vary between -1 and 1.

Define § = (014,0,030) = (F1a — 71,0,¥30 — 73), which behave as follows in

the asymptotic limits: For s — 0 and uv — o0, d;, > 0 and d3, < 0; for
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s — oo and u — 00, 01 < 0 and d3, < 0. In other words, the quantity
s9ey%e decays in both of these limits of s and u. Given the first two terms
of the Newton-Puiseux series, the ratio of two eigenvalues T, of the holonomy

W (s,u) is written

Ta(su) _ cla 20 O1aqg, 030 _ C28 o01p,,03p
Tg(s,u) —  cig (1 + cms u 01/38 u
(2.6)
] 251(1 263&
+0 (mln(s u ))a:a,ﬂ )

In this expression, every quantity but the first term c¢j,/ci1p decays in
the asymptotic limits.  Simplifying the ratio of coeflicients c¢jn/c15 =

erile=B)/(n,=mu) “the Log of equation (2.6) becomes

2mi(a— Con a o C:
log (1) (s, = 252 + (gasfoute — fshut) .
2610, 2830
+0O (min(s*1eq*% ))a:aﬁ.

The first term in this series is constant, while in the asymptotic limit the

quantity in the parentheses is the largest decaying term in the series.

The expansion direction w € R® comes explicitly into play when determining
the relative sizes of the quantities s and u%. Along the direction w, the

variables behave as
(50, t0, o) ~ (s0€™, toe™?, ™) (2.8)

relative to some initial values (sg, g, 1) [58], where w is the vector w multiplied
by a coefficient so that its third component is w3 = z: w = W for z € R>o.

Also define the extended face normal vector n = nz—sn

We have not said very much so far about the direction vector w except that it

must lie within the normal cone of the edge e. Define it relative to the nearest
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of the two adjacent face normal vectors n (see Figure 2.5). For angle €, we

define the expansion direction as a rotation of the normal vector n of one of

the edge’s adjacent faces: w = ncose + (E|Xe|n) sine + e(ﬁi?) (1—cose). The third
term vanishes since the face normal n is orthogonal to the edge vector and
¢-n = 0. Applying this form for the vector w = —w, the largest decaying

terms in equation (2.7) are
gO1aq 980 — Sglae(V*V)Z/'LUS — Sg1a€*|u71*ﬁ1|/>\’ (29)

)1—(exn)sn1/ng|
[(exn)-d|

ers are § = (014, 0, d3,) for any o = 1,2, ..., (n, —n,). Recall that we define the

where the denominator \ = &2 is a-independent, and the pow-
order of an edge ¢ as v = y;w; +y3ws. The difference in orders of the secondary
edge ¢ and the original edge ¢ is (7 —v) = w - § and it is a-independent. The
vector component n; = —:cgZ of the rescaled normal vector is the z-distance
between the (" subwall’s position w1, and its reference position x%,, i.e. the
linearly extrapolated position of the wall when 2z = 0. We identify the subwall
initial position for edge e with the greatest magnitude as max|z9,| and that
with the smallest magnitude as min|z9,| for £ = 1, ..., n. The rightmost term in

equation (2.9) is decaying at rate A with z-distance |w; — 71| from the subwall.

caﬁel\l/kﬂ

For a U(N) monowall, we find that beyond a distance D = Xlog|=Z TN

from the wall’s position, the exponential decay rates of the off-diagonal gauge

field components are bounded by |log(T,/T3)] > m/N, where the mixed-

. . . 5
index coefficient is defined c,p = (g—“sglo‘ — 2—Zsom ) and the power of sg

is bounded by 1/N? < |61, < N2 See Figure 2.2.2. The bounded

max({|apcjlv|},{|ap|}) .
min({|apcf]\}7{|ap|}) = C2 and

lc1| > max{|a,|}" =: Ci, where P = N if max{|a,|} is greater than unity

Newton-Puiseux coefficients satisfy |cy| < (1 +

and P = 1/N if it is less than unity. The coefficient ¢,p is then limited by
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|cap] < 2%emax(xg)51. We find the following is the maximum subwall width for

a U(N) monopole on R x T? where each torus period is 27:

A 2NC,\* N
— =log 2) | 4 max]|z [ N2A + = + (max(zy) — min(z7)), (2.10)
2 wCy T

where \ = lexmhi—(exmam/na| o 1o inimum decay rate of the off-diagonal

[(exn)-d|
gauge field components. No subwall of a U(N) monowall may have a width

greater than A. Recall that the subwall separations are linear in z. We have
computed the width of the subwall, i.e. the width of the region in which the
off-diagonal gauge fields are too large to neglect and the fields are therefore
nonabelian. In order to consider the subwalls to be well-separated and their

interactions abelian, we require of the non-compact parameter

(211)

for each U(N) subwall. Since wall separations are linear in this parameter z,

when this condition is satisfied, the subwalls will be considered well-separated.

)

D Y
Figure 2.6: Beyond a distance D the off-diagonal gauge field components decay

with a minimum decay rate A. Beyond the distance D + A the off-diagonal
gauge fields are neglected.
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Our main goal in this section is to describe the large-moduli behavior of a BPS
U(N) monowall in regions away from the subwalls using the Higgs spectral
curve and its Newton polygon and amoeba. By allowing a coefficient in the
interior of the polygon to vary, we introduced a parameter z := log |u| = ; for
the monowall. Using the Newton-Puiseux series for the eigenvalues T, (s, u)
of the holonomy W(s,u) to characterize the off-diagonal gauge field decay
rates, we showed that when the modulus z is very large, the monowall breaks
into subwalls whose separations increase with z. For z >> A, the subwall
interactions reduce to N abelian interactions (i.e. U(N) breaks to U(1)V)
up to corrections exponentially small in z. In the following section, we will
derive an asymptotic moduli space metric for these well-separated subwalls

using their abelian Higgs, magnetic, and electric interactions.

2.3 Crystal

We now compute the cut volume, which was introduced in [38]. It is a three-
dimensional polytope which can be helpful to study the behavior of the amoeba
spine, and the amoeba spine allows us to approximate the positions of subwalls,
as we will show. The amoeba is a two dimensional shape in x = log|s| and
y = log|t|, but it is useful here to introduce a third dimension. Associate a
plane z = m,z + n,y + R, with each point (m,,n,) on the Newton polygon.
Here, the normal vector for the p'* plane is (m,, n,, —1) and the modulus R, is
the plane’s z-intercept. In accordance with [38] we define the cut crystal as the
region which is above all of these planes, those associated with perimeter and
internal points of the Newton polygon N. Define the crystal as the volume

above perimeter planes. The cut volume is the volume of the crystal outside
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of the cut crystal, as shown in Figure 2.3.

Figure 2.7: From left to right: The crystal, the cut crystal, the cut volume.

The bottom surface of the cut crystal is a piecewise planar surface whose
edges projected onto the (z,y)-plane coincide with the amoeba lines of the
amoeba spine and whose vertices projected onto the z=0 plane coincide with
the positions of the junctions of the amoeba spine. For moduli R; large relative
to the perimeter coefficients, all the vertex positions of this bottom surface will
depend on one, two or three moduli. Label the a'* vertex as the intersection
of planes p, p© and v. The associated subtriangle in the Newton polygon
triangulation has vertices (p, i, v) arranged in clockwise sequence. Computing

the position of the intersection of planes p, p and v gives (see figure 2.3)
nopRy + 1R, +n,,R,

— Ml — my Ry —my, Ry,

_mpnpR_mun“R_m,,n,,R
T v 0 w
m, Ny m, N, m, M,
y = ) (2.12)
. My Ny

Mpy  Npy
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The first component of this is equal to the z-position of the associated subwall,
which is used to compute the metric on the moduli space of monowalls in

Section 3.3.

Figure 2.8: Three intersecting planes. The intersections of topmost planes
are marked with dark lines. This set of lines projects down to the amoeba
skeleton. The remaining lines of intersection are not significant.



48

CHAPTER 3

Asymptotic Moduli Space

3.1 Lagrangian and fields

We have established that a monowall splits into subwalls when a modulus be-
comes large. We will now consider the regime in which the monowall is split
into n subwalls which have no remaining internal moduli, and the subwall
Higgs and gauge interactions are abelian. In order to model these abelian
long-distance interactions, we contrive a system of n abelian monowalls in
a linear Higgs background which have scalar, magnetic, and electric interac-
tions with one another and with their background. The interactions of one of
these abelian monowalls with the background and the n — 1 remaining abelian
monowalls mimics the long-distance interactions of one of the nonabelian sub-
walls with the n — 1 remaining subwalls. We will from here forward refer to
these model abelian monowalls simply as subwalls. We describe the abelian
monowall interactions using Lorentz-invariant Maxwell electromagnetism with
a scalar field. We write the Lagrangian and consider only very small subwall
velocities. We then Legendre transform from the electric charge ¢;, which is a
momentum, to its canonical coordinate given by a periodic phase modulus 7;.
The Lagrangian reduces to purely kinetic under the BPS conditions. We will

then read the monowall moduli space metric off of this kinetic Lagrangian.
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Recall that we choose a gauge in which the Higgs field is diagonal and we
have demonstrated that it is x-linear outside of the subwalls. The off-diagonal
gauge fields gain mass and are exponentially small and therefore negligible,
while the diagonal gauge field components remain massless. We will represent
the generators of the Cartan subalgebra as the N generators {H,} of N x N
imaginary diagonal matrices, and write the asymptotic fields as & = ®*H,
and A, = AfH, where (&% Af) are real and a = 1,..., N. We employ an
additional, adjoint dual gauge potential flu = flﬁHa to model magnetic inter-
actions. This dual gauge field can be related to /Yu via the usual dual field
strength F,, = 9,4, —9,A,+[A,, A, which is defined as F},, = —3E€upa FP°.
The relativistic Lagrangian for the " wall interacting with the gauge, dual

gauge, and Higgs fields (@, A,,, 121#) of the n — 1 remaining subwalls and back-

ground is
Li= —iTr|47® gi\/1+ ¢2/1 — V2

(3.1)

—47qigiA° + A7 qigiVi - A — dmg; A° + Amg;V; - A

where the three-space velocity is VZ = fz and we use the dotted time-derivative
notation & = fl—f. The magnetic, electric, and scalar charges of the i** subwall
are interpreted as (gi, ¢, gi \/W) respectively, where this form of the scalar
charge follows from the BPS conditions under which the static forces cancel
for well-separated subwalls [13]. Note that the electric charges ¢; are momenta
associated with the phase degrees of freedom 7; for subwalls. The electric
charges of the subwalls are subject to net electric charge conservation, and
individual electric charge conservation when the subwalls are well-separated
as they are here. While the magnetic charges may differ between factors of

U(1) the electric charges, which are momenta, do not.
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Recall that we allow gauge field holonomies to have non-zero, spatially uni-
form, linearly time-dependent values between the walls. Define the lin-
early time-dependent terms in the asymptotic holonomies (phases) @(t) =
sgn(z)(0, ay, ap)(t) associated with each of the periodic spatial directions, and
their dual vector c:i(w) such that @ = V x @. The effect of the phase ve-
locities @ is equivalent to that of the transverse spatial velocities ¢; and 0;:
V, = (i, —dg;, @y;). For later use, define two dual functions u(z) and @(z)
such that Vu = V x .
@(x) = bsgn() [0+ 9B, @(t) = sen(x)(a(t)p + b(1)D),
(3.2)
u(z) = [xf, a(x) = sgu(x)[~agp + 6]

Note that u(z) = u(—z), W(x) = —w(z) and d(z) = d(—x).

In addition to fields generated by subwalls, which we will write next, we include
static field backgrounds for each factor of U(1). For convenience, we split
these backgrounds into constant terms (—v?,ds, CZZ‘) and a background linear
Higgs ® with the associated linear gauge fields (A, o, A,0) required by BPS

conditions:

(—v, dy, CZ;A) = (—v*Hg, d H,, CZgHa>’ CID(O]‘(:L’) = —g5,

o) "

The gauge and Higgs fields for the j* wall moving with velocity ‘73 are Lorentz
boosted versions of those for the stationary wall. We keep only terms up to

quadratic in velocities and electric charge in the Lagrangian, so in the fields A
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and A discard terms which are higher order than linear in velocities. Similarly,
in the scalar expressions ®, A°, A° discard terms which are higher order than
quadratic in velocities. This requires approximation of the Liénard-Wiechert

denominator (7% —

(Z x V)2)Y/2 as |#| since the denominator would appear
in the scalar-type quantities with coefficients linear in velocity, resulting in
negligible terms cubic in velocity [17, 13]. In this approximation, a subwall
moving at velocity ‘_/; with respect to the origin generates the following fields

(@2, A2 Aa ).

I
@ (2) = —gful)\/1+ /1 - V2
A?’a(x) = —qgju(z) + g (ﬁ(x) : 3) - 95 (5' 3) ;

A (x) = —gfu(x) — g;g; (lﬁ(fﬁ) ' ‘7}> — 95 ( ‘

o=

Af(x) = gjii(x) — g5,

A%(2) = —q;g;0(x) — 9%3;(x) — gou(x)V.

The net gauge fields must respect the periodic boundary conditions on R x T2
and so we require that, for a coordinate shift in one of the periodic directions,
the fields be gauge-shifted under the U(1) symmetry, with gauge functions

given here.
© = p+2m, T; — 7 + mg;sgn(x)d,
(3.5)
0 — 0+ 2m, T; — T; — mg;sgn(x)e.
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3.2 Two-monowall interactions

Using these fields, we may now write the Lagrangian in a convenient form and
begin by doing so for two subwalls. For a pair of walls, define the following

relative position, phase, and charge quantities:

T =T — Ty, q=aq — g, 9% =91 — 95,
) (3.6)
C_L‘:d»l—_»g, C~L26~L1—6~L2, Ga:Zgia‘

It should be noted that the last quantity here, the total magnetic charge, is a
constant which can be expressed in terms of boundary conditions alone. The
remaining quantities are associated with individual pairs of subwalls. Neglect-
ing constant terms, suppressing the index a for U(1) factors, the symmetrized
Lagrangian for each set of U(1) interactions takes the form

9 2
(Z gi%‘) + 9192q2]

_ v
2G y
=1

2 _\?2 .
£= % [(ZlgV) + g1g2V?

-

2 oL 2 2 L =
+Z%9¢Vi'd— Z%‘gido‘i‘ Z%Vi'd

=1 =1 =1 (37)

2 2 .

D (Vf — qf) + > 9094 <u7(a:) : Vi)

i=1 i=1

+ [%u(x)(‘ﬁ —¢*) + 91929 (w(:v) : ‘7) + 9192[5— qa) - ‘7} .

To find the full Lagrangian, we add up all N of these U(1) Lagrangians.
This splits into the center of mass Lagrangian and the remainder Lagrangian,

L = Loy + Lyemn. We integrate here over the periodic coordinates ¢ and 6

from —7 to m. Because the terms with @(z) - V and a(z) - V are linear in ¢
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and 6 positions, these terms vanish after integration.! Here is the result after
separating the center of mass and remainder components of the Lagrangian,

with implicit sum over the suppressed index a:

2\ 2 2 2
Lfﬂl'\/[ = %6 [(Z;gzvz) - <z:Z:lng1> ]

|
Q
=
Q
[\]
—
!
<u
S~—
)
+
ol
/N
o
—
i
|
o
[\]
!
N———
)

Maintaining the low-velocity approximation, the Lagrangian is purely kinetic
since ¢ behaves as a velocity. We now apply the fixed asymptotic boundary
conditions constraint, which is equivalent to fixing the sums of the three-space
and periodic positions of the subwalls (i.e. fixing the center of mass, or its
analog). Incidentally, there is a physical motivation for fixing the boundary
conditions. Because the fields diverge as x — +00, so too does the energy.
Changing the boundary conditions on the fields would require infinite kinetic
energy. After fixing the center of mass, the Lagrangian reduces to the remain-

der Lagrangian (from now on referred to simply as the Lagrangian).

Currently, the Lagrangian is written in terms of the x positions of the subwalls,
their phases @, and their electric charges. The electric charge is not itself a

velocity but is a momentum conjugate to a periodic direction 7. A Legendre

! Altering the integration bounds of ¢ and @ yields different but physically equivalent

forms of the Lagrangian.
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transform, changing coordinates from ¢ to 7, produces the Lagrangian written

explicitly in terms of subwall quantities (z;, ay;, agi, 7°).
L' =L+ g (3.9)

After implementing the Legendre transform, we write the metric in Lee-

Weinberg-Yi form [14] in terms of absolute rather than relative coordinates:

4 —  1y,dit - di
(3.10)
+L oY, art+ Wik dfk} [dﬂ‘ T da}'l}
with the following tensors defined for two subwalls:
N 2
Ui = 21 9obiaTi + D GiaGja (Zi,—‘; + |z — 37j|> ;
a= =1
i#i
N
Uiy = — 21 GiaGjo <é—‘; + |@; — Ig|> ;
(3.11)
W= 2 |99~ 2 9.0.(@ — @) .
i#i
EEEDY [% 5+ g9l (@ — FLJ)] :
a=1

where the first components of the following vectors vanish dy, = Wi = W,/ =
0 and the three-space differential is expressed dZ = (dz, —db,da). The index
a = 1,...,N runs over the factors of U(1). This metric retains the U(1)
symmetries, and symmetry under the SL(2,Z) action on the ¢ and 6 phases

(ay, ap).
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3.3  Multi-monowall interactions and moduli relations

In this section we first establish linear relations between the four types
of monowall coordinates (z;,p;,0;,7;) and the four types of moduli
(Ry,V,,0,,T,) for widely separated monowalls, furthering the arguments
made in section 2.3, in equation (2.12). We then extend the arguments made

in section 3.2 from two-monowall interactions to n monowall interactions.

3.3.1 Subwall coordinates are linear in the moduli with the same coeflicients

In this brief section, we establish that the four types of subwall coor-
dinates are linear in the four types of monowall moduli with the same
coefficients (and define those coefficients), i.e. that (dz;,dy;,d0;,dg;) =
i A(dR,,d¥,,dO,,dQ,). Through the Legendre transform in equation (3.9)
gzilnecting the electric charge ¢; to the phase coordinate 7; we see that the

relation for the phase coordinates differs: 7% = > /7.
i=1

As usual, the following discussion applies to widely separated doubly periodic
monopoles whose fields far from any monopole are abelian, i.e. the U(N)
symmetry is broken to U(1)Y. We can introduce a small electric charge by
introducing a small component for Ag which are zero in the case of stationary
monowalls. Then up to small corrections, the fields take the following linear

forms in the regions between monowalls and far to the left or right of the
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monowalls:
¢l = —(Gla +vl), AL =0,
(3.12)
Al =—(Q'z+dl), Aj=Glo+dl,

where [ indexes the n + 1 regions between the walls or in the x — “+o0

n+1

regions. The static boundary conditions restrict v! and v to constants and

the center of mass position zoy = S 2 g;z; is fixed, where G = Z gi is the
=1
total magnetic charge. The index « for the U(1) factors is suppressed except

where necessary.

At the location of wall i, the Higgs eigenvalues to which the wall couples (i.e.

g® # 0) must coincide. See Figure 3.1.  This yields a set of linear relationships

(myy, )

(mpv np)

(M 1))

Figure 3.1: Subtriangle (left) for subwall a and the associated Higgs eigenvalues
(right) near its position z,.

between the individual wall charges and the Higgs slopes G, between the wall
positions x; and the v’ terms, between the wall coordinatess ¢; and the df,

terms, and so on. There are two constraints for each type of field in equation
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(3.12) associated with each subtriangle. The Higgs constraint is
Of (2;) = (), 05 (z:) = O (zy),
implying
—Grx; —of = —GBRz; — ok, —GLr; — vl = —Glz; —of. (3.13)

Because the center of mass position is fixed, reducing the number of degrees
of freedom for the wall positions from n to n — 1, this represents 2(n — 1)
constraints. This reduces the degrees of freedom for the Higgs fields from the
number of distinct v; plus (n — 1) to the number of distinct v; minus n — 1.

This gives the correct number of degrees of freedom for the moduli.?

We use these relations in equation (3.13) to express the individual wall posi-
tions in terms of G! and v! along each U(1) factor, as well as relate the fixed

G! to the wall charges:

Ty = _2911-,1 (UR B UIL) ) Lir = _2911',2 (UR - UQL) ’
(3.14)
_ GR_GL _ GR-_GL
gil = —5 Ji2 = —

In identical fashion, we obtain the following linear relations for the ¢, 8 coor-

dinates. The relations for # are derived in a different gauge in which Ay = 0

2The Euler characteristic for the triangulated convex polygon is (Vertices) — (Edges) +
(Subtriangles)+1 = 2. The number ¢’ of perimeter vertices is equal to the number of perime-
ter edges of the polygon, leaving (Internal Vertices) = (Internal Edges)—[(Subtriangles)—1].
Since the number of internal edges is equal to the number of distinct vy, this relation tells us
that the number of degrees of freedom for the monowall Higgs fields is equal to the number

of internal points in the Newton polygon.
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and A, depends linearly on 0.

wi = QQL 1 (dR dé,l) ’ wi = _2911-,2 (dg - diﬁ) ’
(3.15)
0, = 5 (df — ). 0, = 5 (df — ).

The equivalent operation for constraining the electric charges ¢; of the indi-
vidual walls requires expressing the field A} = — Z gi¢i|r — x;| — d, for each
region explicitly in terms of individual wall CODtI"lbuthIlS and comparing to
the expression for Af in equation (3.12): Q'z +d} = Z 9i¢i|r — ;| +d,. This
establishes a relationship between ¢; and the pairs of QI associated with the
subtriangle 7, as well as between the d% and ¢; and z;:.

qi = le 1 (QR Q{/) ) q; = 2912 (QR Q%) )
(3.16)

_ _ 1 (gR_ gL _ __1 (JR _ gL
qil; = " 2gi1 (dq - dq,l) ) qiTi = T 292 (dq - dq,2) ‘
Equivalently the second row of the above equation can be written more gen-
erally as a relation for each d} for each U(1) factor o

I

dyo = dy = Z 9iGiTi + Z 9iqi;. (3.17)

i=1 i=I+1
This establishes that the dé are not independent variables but are fully deter-
mined by the v! through z; and the Q! through ¢, such that A is continuous at
the wall positions z;. In these relations, the following are further restricted to

constants by the boundary and center of mass constraints: dJ,, d», dj, dj*',

Q', Q" Yom = é > 9ipis on = é > gt and Q, = > Gi,aq; Where Q is the
i=1 i=1 i=1
total electric charge along the ao U(1) factor of the constituent monowalls.

We can linearly relate these moduli to the choice of moduli in which each set

of four moduli (R,,V,,0,,Q,) are associated with a vertex in the triangula-
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tion of the Newton polynomial for a monowall. Let p index the subtriangle
vertices (m,, n,) for the subtriangle associated with the i’ wall. As discussed

in Chapter 2, the coordinates are linearly related to these moduli by

(25,0, 0i, 1) = (R, V,,0,,Q,) + (%04, 0., 00,45 90,) (3.18)

with a sum over p = 1,2, ...,0 where o is the number of internal points in the
Newton polygon. The constants z(; etc are the coordinates of the constituent
monopoles when all of the corresponding moduli are zero, R, = 0 etc. We
further introduce the phase moduli 7”7 which is the coordinate dual to the
electric charge (which acts as a momentum) moduli ¢),. These phase moduli
are linearly related to the phases 7 of the subwalls by dT” = ¢/dr; such that

the following holds with summation over ¢ and p: ¢;7° = QPTP .

These constants ¢! can be related to the coordinates of the subtriangle vertices
(m,,n,) for the subtriangle associated with the " wall and can be read off
from Equation (2.12) in Section 2.3. The associated subtriangle in the Newton
polygon triangulation has vertices (p, u,v) arranged in clockwise sequence.

With no sum over p, u, or v, the coefficients are:

p__ Ny Mo Nvp vo__ Npp

CZ — 3 CZ - 9 C'L - 9
Myp  Nyp Myp  Nyp Myp  Nuyp (3 19)
Mup Npp Mup Nyup Myp Mpp

where the determinant in the denominator is equal to twice the area of the

associated subtriangle.

We have established in this subsection that the four types of coordi-
nates of the monopoles share the same n constants of proportionality, i.e.

(dz;, dy;, db;,dg;) = ¢ (dR,,d¥,,dO,,dQ),) with sum over p = 1,2,...,0 and
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AT = cj)-‘de with sum over 7 = 1,2,...,n for the phases dual to the electric

charge (which behaves as a momentum).

3.3.2 Multi-monowall interactions

The metric (3.10) holds for the extension to n subwalls. The n-subwall tensors

are

N n
Ui = z_:l 9 GiaTi + ;giagja (é—z + |z — 5173’) )
- i
N
Uij = - Z JiaFGja (g_z + ’xl - xj‘) >

=1

] (3.20)
- .. N d . n . . . .
Wit =% |dagl — 3 gigl(a —a’)|,
a=1 =1
I i
- .. N r e . . . . .
W =30 | =g, + go92(a@ — 5])] :
a=1*-

where d} = Wi, = W%, = 0 and df = (dz, —db,da). The index a = 1,..., N
again runs over the factors of U(1). Note that we have chosen the U;; functions
to have a 1/G term. This does not present an issue in cases where G = 0, which
can be seen by making the substitution ggigjx?j =G Lio gzx?} — (Gzen)?
and using that the position of the monowall center of mass is fixed and at the
origin. We have made the choice to include the 1/G term to mimic the Yi-

Weinberg-Lee form of metric seen in [17, 16] for periodic and doubly periodic

monopoles.

When the boundary conditions of [22] are satisfied, the number of independent
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moduli reduces from 4n to 40, where o is the number of internal points in the
Newton polygon. We use the variable z to parameterize the values of x and
® in the (z,y)-plane corresponding to each of the n amoeba junctions. This
is done by finding the lines in R?® along which two adjacent three-dimensional
amoeba wedges intersect and using these to define subwall positions for each
value of z. We will from here forward refer to the two-dimensional amoeba,
which is the amoeba for the projection of the three-dimensional Newton poly-
tope onto the (m,n,0) lattice. For each value of z, there is a different two-
dimensional amoeba. Recall that each subwall corresponds to a face of the
three-dimensional polytope and therefore each subwall now corresponds to an
edge of this two-dimensional polygon. The relationships between the moduli

R, and (z,®) at the junctions are linear, for a given value of the parameter

Sl

z =

de, =S dR,, dd, = & dR,. (3.21)
p=1

We find the coefficients (¢f, &) by direct examination of the amoeba spine
i.e. we express them in terms of the points in the Newton polygon, as in
equation (2.12). Here we will elaborate on the process of computing these
coefficients. Let the lattice coordinates of the v** vertex in the Newton polygon
be written (m,,n,) € Z?, with v € Z/n running over the o + o’ vertices
of the Newton polygon. For large moduli, each sub-triangle in the Newton
polygon triangulation represents a subwall and, as we will show, can be used
to determine its motion. We choose a triangulation such that each sub-triangle
contains at least one internal point (m,,n,), and label the remaining two

vertices (m,,,n,) and (m,,n,) for the p sub-triangle, and (p, s, v) label the

three vertices of the i** subtriangle in clockwise order.

Under the Log map, the set of solutions to the polynomials for each of this
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sub-triangle form wedges which intersect along a line. This line represents
the set of positions the associated subwall may occupy in the x — y plane
for all values of the parameter z € R*. The set of common solutions can be
found by simultaneously solving the polynomials for the subtriangle’s edges.
This is equivalent to solving the following linear equation in which each line
on the right corresponds to a plane mx + ny + R = z associated with each
vertex of the subtriangle and with each associated monomial ei¥en smt. The
equation describes the location (z,y,2),m = (%i,¥i,2;) at which the three
planes intersect. The projection of this point onto the (z,y)-plane is the
position of the i* two-dimensional amoeba junction. We define a reference
point (29, 4?) by solving this equation for the case z = 0. Then, we can relate

Ry

2* and 4° to each modulus =2 in the following way:

h
dRp mp np —1 dl‘
_ dRM =|m, ny —1 dy ,
dRI/ my nl/ _1 dZ
(3.22)
dr; = =md R, + =2 d Ry + = d Ry,
dy; = —=grdR, — =redR, — =5rdR,,
where det’ = (n, — n,)(m, — m,) — (n, — n,)(m, — m,). The monowall

has o independent non-compact moduli, one for each internal point of the
Newton polygon, and the junction positions z* asymptotically depend linearly

on the three non-compact moduli R corresponding to the vertices of the i
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subtriangle:
o )\ g )\
T — 2o =y, Ry, O, — Dy, = > Ry,
=1 =1
Cp _ nu—ny C,u _ ny—ny, o = Np—"ny (323)
i det; i det; i dett
P — _mummy = _me=my G — _me=my
G = det; G det; ¢ det?

and the remaining coefficients are zero ¢} = 0 for X # p,u,v. The same

arguments and linear relationships extend to the remaining types of moduli

and subwall coordinates, as we will discuss later in section 4.3.1.

The 7" subwall has a set of N magnetic charges g which are determined by
the Newton polygon and its triangulation. The charge of a subwall is deter-
mined by the difference in slope of the Higgs eigenvalues (which correspond
to non-vertical amoeba lines) to either side of the subwall. The magnetic
field due to a single, stationary subwall is B;(z) = —V®; = ¢; sgn(z — z).
External amoeba lines have slopes (—%) normal to the corresponding
Newton polygon edge and the slopes are triangulation-independent. Internal
amoeba lines have slopes normal to lines of triangulation and are therefore
triangulation-dependent. A subwall which has no effect on the a'* eigenvalue
has zero charge ¢, = 0 with respect to the a'® factor of U(1). A subwall
which alters the slope of the o Higgs eigenvalue ®, () has charge ¢, equal
to half the change in slope. Through the amoeba, the Newton polygon and its
triangulation yield precise information about all Higgs eigenvalues {®,(z)}.
The lattice height N of the Newton polygon is the number of U(1) factors
from the maximally broken U(N), and each horizontal strip of the lattice is

associated with a U(1) factor (see Figure (3.2)). A subwall whose sub-triangle
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has lattice height H and occupies H horizontal strips is magnetically charged
with respect to each of those H factors of U(1). A Higgs eigenvalue with slope
k /¢ in some region actually represents ¢ degenerate Higgs eigenvalues. To see
this illustrated, see Figure (3.2). For example, in Figure (3.2), the charges for
subwall 1 are g} = —i and g1 = %. For contrast, subwall 2 has charges g7 = 0

and g3 = —3.

slope =0

(-1,-1) (0,-1) (1,-1)

Figure 3.2: Left: Newton polygon (black lines) with a regular triangulation
(grey lines). Right: Sketch of the amoeba for the associated U(2) monowall,
with the two Higgs eigenvalues shown in dotted and dashed lines over a range
in x.

Now that we have related the subwall coordinates to the moduli, we apply this
the metric we derived on the moduli space of monowalls. Define the vector
dX = (dR,—d©,dV). In terms of the four types of moduli (R, WV, O, T) which
correspond respectively to (x,ag, —a,,T), the metric may be written in the

Lee-Weinberg-Yi form (to restate equations (3.10), (3.20) for completeness):

a2 _

s LU,dT - dF+

(3.24)

e [dTi + Tk d:?k] [drj + WL dfl] ]
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with the following tensors defined:

N n
Uii = 2—31 gggmﬂ?i + ;giagja (é_z + ‘xl - 'TJ|> 5

‘77
JF#i
N
Uij =— 1giagja (é—i + |z — xﬂ) ;
(3.25)
N N n )
W = Zl L0 — 2o gagi(d@ —a) |,
a= =1
iz
WY = 30 | =gl + 9.94(@" — CTJ)] :
a=1 "+
T = Z C;)X:p + fi,07 (a%i’ a97i) = Z Cz'p(_@p’ qjﬂ)?
p=1 p=1
=, dQ,, TP =3 7t
p:l =1

Here, v indexes the N U(1) factors. The asymptotic parameters of the metric
and the monowall itself, the constant background Higgs, constant background
gauge holonomies, the x and phase centers of mass, the total magnetic charge,

and the slope of the linear background Higgs {(va, du, (2)™, @™, Gy, g2)} re-

o ) o )

late to the boundary conditions {(G,vE,d*)}, which are the left and right

a) Ta) o

charges, Higgs background and holonomy background. The relations are as

follows:
9% =35 (G +G,), G, =3 (G} —G,),
Vo = 5 (VF +07), 2" = =g (vh —vy), (3.26)
To= Hdd +dy) A = b (0~ d).
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In summary, we have in this section approximated the asymptotic BPS
monowall moduli space metric by modeling it as abelian interactions of well-
separated sub-monowalls in a linear Higgs background. Rather than the gen-
eral 4n moduli, boundary conditions reduce the number of moduli to four times
the number of internal points in the Newton polygon 40. We gave the explicit
example for one internal point, in which the BPS monowall has but four mod-
uli (R, ¥, 0,T). Each regular Newton polygon triangulation [57] yields a set of
subwall magnetic charges and therefore each regular triangulation corresponds
to a different sector of the moduli space. With the parameters listed above,
the monowall asymptotics in each of the N factors of U(1) are determined
by the Higgs spectral curve and Newton polygon. The metric (3.24) gives
the dynamics of well-separated sub-monowalls in terms of the moduli of the

monowall.
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CHAPTER 4

Generalized Legendre Transform

4.1 Generalized Legendre transform background

The following discussion of the generalized Legendre transform mostly follows
those presented in [45, 48]. The generalized Legendre transform is the complex
generalization of the more common real Legendre transform. Given a metric
explicitly in terms of real variables, the generalized Legendre transform may
allow us to determine a set of complex combinations of the real variables
and the Kahler potential for the metric which is a function of those complex
variables. This transform relates the generating function F with the Kéahler
potential K and relates the real variables of the monopole with the complex
variables of the Kéahler potential. A Kahler potential for a 4n-dimensional
hyperkahler metric is a function of 2n complex variables which we will label
(u', ', 2%, z') where i = 1,2,...,n. The metric is written g = K,,5,dxP dxPs
where p; = u; or z; and p; = u; or Z;. We introduce a function F' of a set of
2n+ 1 variables yi, some of which will be identified later with (z;, Z;) and some
of which will be auxiliary. Important to this construction is a relationship
between the generating function F and a family n® of order-2n polynomials

over CP!, where n is the monopole charge [48].

2n
() = (4.1)
k=0
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where CP! is represented as the Riemman sphere and ¢ is the coordinate away
from the south pole. The coordinate away from the north pole is £ and can be

written in terms ¢ on the region of overlap £ = % Similarly, the polynomial

7]592”) is valid on the southern hemisphere and can be written in the region of

(2n)
overlap as 77%2") &) = %’Tn(o This family of polynomials is chosen to obey the

condition of invariance under the antipodal map, i.e.

10) = (-1 e (-2). (4.2

This condition has consequences for the coefficients yi: 4, = (—1)k+”y2n,k.
The generating function F is related to the polynomials n™ by
1 d¢
Fly)=— ¢ G (2n) - 4.3

for some holomorphic function G of n®" and ¢. We will return to the topic of
the choosing of this function G. This along with equation (4.2) implies that
second derivatives of the generating function satisty F,,,, = Fy,ny.ny, and
therefore

F,

YrYe

— F,

Yk+a¥Yt—a

—0, (4.4)

for £, =0,1,2,...,2n and values of a = 0,1, 2, ... such that kK +a and ¢ — a

are within the interval [0, 2n].

We make identifications z* = y and v* = y! and label the remainder w; where

i = 1,2,...,n indexes the n polynomials 7™ and 7{ is the zeroth coefficient

in 7, 4 is the coefficient of ¢ in n®”, etc. The Kihler potential K is a
function of (z;, z;, u;, 4;) where % = %. We conduct a Legendre transform

with respect to the variables (v;, v;).
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The Kéhler potential K and the generating function F' are related by [48]

ukvk + ﬂk@k

K<ui7ai’zi72i) _ _F(Zi’zi’,viyz—}i’wj) i .

(4.5)

with a sum from k£ = 1 to n over repeated indices. The generating function is
also extremized with respect to the remaining variables w’, and related to the

variables (u',u’) through its first derivative
F,; =0, F, = ui, Fyi = . (46)

The complex variables for the Kéhler potential are then (z;, z;, u;, 4;), and the
relations £, = u; provide implicit relationships between the variables of the
Kahler potential and the remaining auxiliary variables v; and w;. These are
used to express v; as functions of the z and u variables on the right hand side

of (4.5).

In the limit where monopoles are widely separated and interact like point
objects, the polynomial n degenerates to a product of n polynomials of the
form

n = 2+ 22,¢ — %2 (4.7)

In this case, v; is real and we relabel it z;, and x; = x1;, 2; = 9; + 1x3; where

(21, T2, x3); is the position of the it" constituent subwall in three-space. The

relation F,, = wu; and its complex conjugate simplify to F,, = “";ﬂ", and the

Kahler potential simplifies accordingly. Recall that the electric charge of a
BPS monopole is interpreted as a canonical momentum that is conjugate to
a periodic, phase coordinate 7. The imaginary part of the complex variable

u; = uy; + i7; is this phase variable corresponding to the i*" monopole charge.

In this limit, the relation (4.4) simplifies to something very like the Laplace
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equation for the generating function,

v + FZ

_ =0 4.8
4 <] ( )

Given this relation and the Legendre transform in equation (4.5), the coeffi-
cients gp,q, = Kp,q, of the metric in terms of second derivatives of the generating

function are

inzj _
Kziij = 1 + lexk (erl’k) ! F:L’ggj7
B (4.9)
Ku-ﬂ. = —(Fxlrj)

K, 1

iZj (F:l‘kiti)_l Fil‘kzjw

The metric in terms of second derivatives of the generating function F' has
Lee-Weinberg-Yi form. Implicitly summing over repeated indices, we write

the metric

d52 = inZIJ (d&?zdﬂfj + %dZide + %dZJdZL)

—1
+ =L (dr; + iy dy — 1Fy 5, dZg) X (4.10)

(de + iijszZf — iijgldzg) .

Given the relationships between the metric coefficients and the second deriva-
tives of F' in (4.9) and our knowledge of the form this type of hyperkéhler
metric takes and our treatment of the monopoles as point objects, we expect
discontinuities in F' at the locations of these individual monopoles. For the
abelian interactions of these monopoles, the problem of solving for F} ., given
boundary conditions is a familiar one from classical electricity and magnetism.
Once a solution for F} ., has been identified, one can simply integrate it twice
to determine the generating function F for a given charge distribution (and
thereby determine the previously described generating integrand G((,n), or

simply calculate F' directly), up to a function linear in the x; variables and a
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function independent of x;. The latter function does not enter into the met-
ric or the implicit relation F,, = “F% . If the metric coefficients in equation
(4.9) are known, then the function linear in x; can be determined up to initial

positions of the monopoles [45, 48].

We now discuss application of this method to widely separated monopoles on
R3. We will begin with the case of two such monopoles and will work in terms
of relative coordinates (z,z,z) = (1 — 2,21 — 22,21 — Z2). We know that
away from any of its singularities the second derivative F, of the generating
function solves the Laplace equation, as does F,:. This can be seen taking by
the Laplace equation for F'| F,, + 4F,; = 0 and operating on it from the left
with 0% 4 40,0; = 07 + 03 + 02 = V2. We also know by comparing the metric
in terms of second derivatives of the generating function (4.9) to the metric
for two monopoles on R? (4.13) (seen later in this chapter) that F,, contains a
singularity when the two monopoles occupy the same location i.e. when r = 0,
where r is the distance between the monopoles. Near r = 0, F,, behaves like
#22 These behaviors imply that [, satisfies a relation using the Dirac delta
function:

V2E,, = —47g1920(7), (4.11)

where 77 = (x, Rez, Imz) is the separation vector between the monopoles. This
is the Poisson equation and the right hand side of (4.11) is the source term.
Its solutions are familiar from classical electricity and magnetism. Now, if the
generating function is defined as a contour integral over some path ~ of some
function of n and ( as in

1

F= i d¢G(n, ¢),
i J,

then the G can only depend on the monopole separation through n and there-
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fore we can write the relation as
1 ) 1
Foo = 5~ dCnyGun(n,C) = 9192 [v+ — |,
i J, r
where ¢; are the magnetic charges of the constituent monopoles and v is the
constant component of the Higgs field. Substituting in 7, = 2¢ using equation
(4.7), we can find an expression for G(n, (). First we solve for the component

of G, that corresponds to the constant v term:

ﬁd@CQGLm](% C) = 91927,

N 1920
where Gy, = %

and the integrating contour is a counterclockwise loop
around the origin of the ¢ plane. The component of G that corresponds to
the 1/r term requires a different integrand and contour. To obtain the 1/r
term, we integrate 1/n one that encloses either of the two roots (» = &
of n = z + 2x¢ — 2¢* [48]. To treat roots equivalently we choose a loop ~y
enclosing both poles but in opposite directions, which is accomplished with a

figure-eight shape that runs counterclockwise around ¢, and clockwise around

(_ as seen in Figure (4.1):

Re(

T—>Im§

Figure 4.1: Figure eight integration contour.

 C1C G n.0) = 22,

v
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where Gy = %%, Now that we have both components of Gy,(1, (), we can

integrate it twice with respect to n to obtain G for two monopoles:

2
B pon n (logn — 1)
G(1,¢) = g192 saE T &

This approach to computing the generating integrand G(n, ¢) provides a frame-
work for determining the generating function for known metrics for widely

separated monopoles on periodic and doubly periodic underlying spaces.

In the following sections, we will present two examples of applying this ap-
proach to widely separated monopoles, first for periodic magnetic monopoles,
those for which one of the spatial dimensions is periodic, R? x S*. We will next
carry out the generalized Legendre transform for widely separated doubly peri-
odic magnetic monopoles, those for which two of the spatial dimensions form a
torus. These are also called monopole walls or monowalls. In these examples,
we wish to determine the generating functions and Kahler potentials for n
interacting, widely separated monopoles with distinct magnetic charges. It is
helpful to first consider the simplest case of two widely separated monopoles in-
teracting, determine their metric, generating function and Kahler potential in
relative coordinates, e.g. x = x1 — x5 is the relative position in x of a monopole
at x; interacting with a monopole at x5. Once the metric, generating function
and Kéahler potential have been established for two monopoles, one can then
generalize straightforwardly to n interacting monopoles. For two widely sep-
arated monopoles on R?, their metric is the familiar Gibbons-Hawking metric
[13] with two complex variables. The metrics of two widely separated periodic
and doubly periodic monopoles follow a very similar pattern to the R?® case
and so [ refer to these metrics respectively as the periodic Gibbons-Hawking

and the doubly periodic Gibbons-Hawking metrics.
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First let us briefly review the Gibbons-Hawking metric, which gives the
monopole moduli space for two widely separated monopoles of arbitrary mag-
netic charges in R? [13]. Let the monopoles have magnetic charges g; and go
and be positioned at #; and Z5, with relative positions ¥ = ¥; — Z>. We define
the complex variable z = x5 + ix3 and the real variable x = x;. Then the

metric has Gibbons-Hawking form:

ds* U, , _ 1 2
T = o (da® + dedz) + o [dr —iWT (4.12)
where
W = 382 (2dz — zdz), U=gi9> (§+2) (4.13)

with r = V22 + 2z is the distance between the two constituent monopoles
and G = 22: g; the total monopole charge and v the constant value of the
Higgs field :fgr from either monopole. For widely separated monopoles with
U(N) fields, the gauge symmetry breaks maximally to N U(1) factors when
the Higgs field eigenvalues are all different. The two monopoles may have
different charges g; with respect to each U(1) factor. The metric for N U(1)
factors with such interactions between widely separated monopoles will be a
sum over N contributions like that in equation (4.13). We suppress the explicit

summation over U(1) factors for simplicity of notation.

The metric in (4.12) appears in the Lagrangian for widely separated monopoles
on R?® describing their kinetics and interactions [48]. As we see, this metric
can be reproduced using the generalized Legendre transform with a generating
function F' = F} + F5 in which F} corresponds to the individual monopole
kinetic energies and F3y describes the monopole interactions. As described
above, the components of the generating function can be written as integrals

over a generating integrand G(7, ¢) which is a function of ¢ and n. The relative
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monopole positions on the underlying space are encoded as coefficients of a
quadratic polynomial 7 in . For a monopole at coordinates (z;,z;) € Rx C =
R3, we define the polynomial n; = 2; + 2x;¢ — Z(?, the relative polynomial
n=mn —1n, and n = g The analogous polynomial corresponding to the
constant component of the monopole fields is V({) = 2v¢ and V = V(()/(

(later we will see a more general case of this).

The kinetic component of the generating function is

(4.14)
= 01923 ($2 - %2) .
The kinetic component of the generating function will take this form for peri-

odic and doubly periodic monopoles as well, though the position of the center

of mass is fixed in both of those cases as we will see.

The second piece of the generating function corresponds to the pairwise in-
teractions between monopoles in that its derivatives show up in the monopole
moduli space metric coefficients corresponding to interaction terms. When we
extend the generalized Legendre transform to periodic and doubly periodic
monopoles, the kinetic generating function F} is unchanged, while the inter-
action piece F5, must reflect monopole interactions. Because these interactions
are mediated by the monopole fields and the form of the fields at large dis-
tances from the monopoles is determined by the underlying space on which
the monopoles move, this piece of the generating function must reflect the
magnetic Coulomb interaction potential on the underlying space. For instance
the second derivative of this piece of the generating function F5 ,, must de-

pend inversely on the monopole separations for widely separated monopoles
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on R3, it must be logarithmic in monopole separations for widely separated
periodic monopoles and linear in monopole separation for widely separated
doubly periodic monopoles. This is because the interaction piece, which con-
tains singularities when the monopoles occupy the same position, must solve
the Poisson equation with source terms representing the monopoles. For two
widely separated monopoles on R? the interaction part of the generating func-
tion is
Fy =—5=¢ Bg190m (log(n) — 1)
(4.15)

= gig2 [-r + §log (2]
where 7 is the figure-eight contour on the ¢ plane seen in Figure (4.1). Apply-
ing relation (4.5) between the Kéhler potential K and the generating function
F| and relations (4.9) between the metric coefficients K, K. etc. and second
derivatives of the generating function, we can express the metric exclusively
in terms of second derivatives of F'. We can eliminate explicit u;-dependence
from the metric and rearrange it to reflect its Gibbons-Hawking-like form.
This is done by expanding v = wu; + ¢7, completing the square in dr, and

applying the implicit variable relation dF, = in a rearranged form

du+du
2
duy (duy — 2dzF,, — 2dzZF,;) = dx*F?2, — (dzF,. + ding)Z. This metric in
Gibbons-Hawking-like form is
ds*  Fy
!

(dzdz + da®) + (dr + idzF,, — idzF,:)* . (4.16)

AF,,

The relevant second derivatives of the generating function are

Fow = q192 [0+ 1], Foz = 01925572 (4.17)

Using equation (4.5) the Kéhler potential for this metric is a function of the

complex relative moduli (z, Z, u, @) = (21— 29, 21 — 22, U] — Uz, U —Usz). We write
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it explicitly in terms of the monopole relative position (z, z, Z) and include the

implicit relationship between (u, @) and (z, 2, 2).

K(z,z,u,u) = g16o [ (x + 5 ) ~|—r} , (4.18)

where the implicit coordinate relation as in equation (4.6) is

Fu(2,2.2) = 9195 {U:L‘-f— log (”iﬂ . (4.19)

We have identified a set of complex coordinates on the monopole moduli space
and a corresponding Kahler potential, from which all coefficients are deter-
mined for the metric on the moduli space. Extending this to n monopoles is

intuitive.

The generalization to n monopoles promotes the derivatives of the generat-
ing function to tensors in the Legendre transform, but the result has nearly

identical form. The generating function is

F= ZZQZQJ{ ( _ J2])—Tij+—2jlog(—rﬁ_‘rﬁ>:|, (4.20)
iJ iJ

a i,j=1
j<t

where @ = 1,2,..., N indexes the N factors of U(1). The metric has Lee-
Weinberg-Yi form,

% _ inx] (d%dz] i dzjdzl +da dxj)
1
—|—M(dn+zdszxlzk idz,Fy,z, ) (4.21)

X (de + idZZijze — idzeijfg) .

Including explicit summation over the N U(1) factors, the relevant second
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derivatives of the generating function are

N n N

sz‘mz: Z Z glgj |:Ua+%i|7 szx]:_zgéxg]a |:,Ua+%j:|7
a=1j,j#i a=1
N n -

Fac = 2 2 9097 307 Feizy = Z 995 T yray

(4.22)
Using equation (4.5) we express the Kéhler potential for this metric as a func-
tion of the complex moduli (z;, Z;, u;, 4;), which coincide with the monopole
positions for monopoles on R®. This is done by writing the Kéhler potential
explicitly in terms of (x;, z;, Z;) and giving the complex relationship between
(us, u;) and (z;, 24, Z;).

N nmn

ZiiZii
K(z1, z1,u1, 1y, ...) = ZZgZ g5 [ ( o’ ]2 J) —i—rij] : (4.23)

a=1 1,
J<i

Lastly, the complex coordinate relation as in equation (4.6) is

N n
. ST g o 1 Tij + Tij
iJ iJ

a=1 j,j#i

We now address periodic and doubly periodic monopoles. As with the U(N)
monopole on R?, we discuss the case for widely separated monopoles and give
the metric, generating function and Kéhler potential for a single U(1) factor

of the maximally broken gauge symmetry.
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4.2 The Generalized Legendre transform for n widely separated periodic

monopoles

Here we will use the generalized Legendre transform to derive a set of complex
variables and Kahler potential for periodic Gibbons-Hawking metric, the met-
ric for two widely separated periodic monopoles. The center of mass position is
fixed. Unlike for doubly periodic monopoles, we have not determined a gener-
ating integrand G(n, ¢) which can produce the moduli space metric for periodic
monopoles described in [17]. Instead, we determine the generating function
directly and use it to obtain the Kahler potential and implicit coordinate re-
lation for periodic monopoles. The monopoles move in a three-dimensional
space R? x S! for which we label the coordinates # € S', x5 € R and x5 € R.
We will choose one of the complex variables of the Kahler potential to be the
complex combination of the relative positions of the monopoles along the two
long directions z = x5 + ix3 € C. The periodic spatial coordinate 6 will serve
as auxiliary coordinate in the following. We are seeking a second complex
variable u, the imaginary part of which is the relative variable 7 along the
coordinate which is conjugate to the electric charges of the monopoles (recall
that when BPS monopoles move they develop an electric charge and that this

charge is interpreted as momentum).

We can represent a periodic monopole with period 27 by a string of identical
monopoles on R?® with uniform 27 separation. At large distances in x5 and z3
from this monopole, its fields mimic those of a uniformly charged wire, and
so we seck solutions to the Laplace equation (4.8) which correspond in form
to those of a charged wire. This solution is logarithmic and the argument

of the Log function is the radial distance p(z,z) = /zZ from the wire, or
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Fy99 = logp = %log(zé). Integrating this once with respect to € gives us the
implicit relation Fy = “I% + g(z, 2). One can then differentiate with respect
to the complex coordinate z and compare to the metric in order to determine
g(z,z). We find that g(z, z) = 0, so the full generating function has form

2

—aa (2 #F O o (25 .
F=gg 5G (6 5 ) + g192 1 log (22) + h(z2), (4.25)

where the total charge is G = 22: gi- The metric depends only on Fyy, and
Fp, and F3p so the function h(z,lz_i does not affect the metric. It must simply
be chosen so that this generating function satisfies Fyg + 4F,; = 0. The full
generating function for two periodic monopoles interacting at large separation
is

N " og(23) — 22 (L 1og(zz)
F= 919255 <9 5 ) + 9192 [4 log (22) 1 <2 log(2%) 1)} . (4.26)

This generating function has second derivatives

Fog = g192 [% + %log (25)] ) Fy. = £, (4.27)

22z

This metric is invariant under U(1) gauge transformations acting on the fields
(, A;) of the periodic monopole. Since this models monopoles in a periodic
space, we would expect the metric (but not necessarily its coefficients) to be
invariant under integer shifts along the periodic direction of the form 6 —
0 4 2mm for m € Z. Such shifts are equivalent to holomorphic translations of

the complex coordinate u, analogous to that mentioned in [45].

4 2 2
w—ut —2 +4( mm) log 2, (4.28)

where “2;Zﬁ = 7, and the periodic monopole’s electric charge is associated

with translations along the 7 direction. The generalization from two periodic
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monopoles to n periodic monopoles does not present complications since it is
essentially a sum of pairwise interactions. For completeness, we present these

results.

The generating function for n widely separated periodic monopoles expressed

in terms of coordinates (;, z;) for each monopole is

F= % gigj| 55 (63— 257%) +

,J=1

i<j (429)
92 _ ZiiZii —
+ log (252i) — 25 (5 log (%) — 1)

where the relative coordinates are ¢;; = 0, —0; etc, the total charge is G = i Ji,
and v is the constant component of the Higgs field. As with rnonopolzezs1 on
R3, we have suppressed the explicit overall summation over the U(1) factors.
Each U(1) factor has a different set of monopole charges g; and constant Higgs

components v.

The set of necessary second derivatives of the generating function F' which

appear in the metric coefficients are

Foo, = Zlgigj (& + 3 1og (2i;2;)]
j:

nggj = —0i9; [% + %lOg (zijzij)} ’ (430)
Fy. = i L Fy.y = —5roisz;
0z = 2z, 25) 19 0iz; 2(zi52i5) 74
JF

The implicit coordinate relation between the complex coordinates (u;, ;) and
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the monopole coordinates (6;, z;, z;) is
w; + U; v 1 _
5 Zgzg] ij [6 + 5 log (252 | (4.31)
J#Z

which follows from the definition “% := @, F

Shifts along the periodic direction # of the form 8, — 6 + 2mm correspond to

shifts in the complex coordinates

w; — u; — (27m) g; gk [% + log zzk} for 1 # k,

(4.32)
up — ug + (27m) Z 919, [ + log zkj} )

J#k

The Kahler potential is computed from this generating function via the Leg-
endre transform K (z1,Zy,uy, dq,...) = 91% — F(64, 21, 21, ...) with implicit
sum over the repeated indices.

K = Z 9i9; [% (02 sz;ij)

1,7=1

<J (4.33)

0% > ZijZij >
+- log (2i;2;) — = (5 log(2i%;) — 1) ] :

Under shifts along the periodic direction 6, — 6), + 2mm with m € Z, the

Kéhler potential transforms as
K— K+ Z [(47rm(0k —0;) + (2mm)?)
e (4.34)

Xgeg; |55 + 1 (10g zr; + log Zi;) ] } :
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The shift term that is proportional to m? is of the form f(z,u) + f(z,u) but
the term proportional to m is linear in the auxiliary coordinates #;. In order
to see that this term is also of the holomorphic plus antiholomorphic form,
we use equation (4.31) for the implicit relation for widely separated periodic

monopoles to re-express the above shifts:

K — K +(2mm)"te

) (4.35)
+ ;(27rm)2 99, [% + 1 (log z; + log ij)} :
Ik
which explicitly of form K — K + f(z,u) + f(z,u).
Explicitly, with a sum over repeated indices 7,7 = 1,2,...,n, and with an

implicit sum over all U(1) factors, the metric can be expressed as

d82 i Uij

—1
o = 7d;7;’idfj + % dg; + Wit d@] [d@i + Wik, d:sz] o (4.36)
T

with

Ui =Y 9i9k [& + 3108 (zinZar) ]
i
Uij = —9:95 [ + 3108 (zxZir) ],
(4.37)

T - 91']' ij A i A
Wi = ; 9i0i 7z, = (2502 — 23/23) |
i#i

I Gij i A ij A
Wij = 9i9i gz = (2§82 — 27 33) .
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Now one can carry out a transformation of the differential of the internal
modulus 7 without having to modify the generating function F explicitly. For

the periodic monopole, the generalized Legendre transform we have carried out

here produces a term like a = —16 (222%) = —fdyp where ¢ = tan™' (%)
is the argument of z = |z]|e*?, when what we want in order to achieve the

Cherkis-Kapustin metric [17] is @ = ¢df. This is accomplished by introducing

the coordinate change 7 = 7 + .

Let us introduce the constant phase b associated with the periodic direc-
tion 6 as in the Cherkis-Kapustin description [17] and the function ¢(z,2) =
tan~! (%) Generalizing these principles to the case of n distinct, interacting
periodic monopoles, we can carry out the following transformation.

- b .
=1
=
In the metric described in (4.36) and (4.37), we transform

; Wi .di; =— ;gigj 0 dp(zij, Zij)

(4.38)
— Zlgigj (& + (25, 2i5)] db;.
j:
i

With this transformation of the internal moduli 7;, we have obtained a Kahler
potential (4.33) and implicit relation (4.31) for n widely separated periodic
monopoles. This is the description of periodic monopoles for a single U(1)
interaction. Recall that the gauge symmetry of the fields for a monopole with
U(N) gauge symmetry breaks fully to U(1)" when all constituent subwalls are
sufficiently well separated [17] and where Higgs field has N distinct eigenval-



85

ues. This means that the interactions of widely separated periodic monopoles
in U(N) gauge theory can be obtained by summing over the N U(1) inter-
actions in a fashion analogous to that in equation (4.20) and those following
it. The above metric contains an implicit sum over the N independent U(1)
interactions which yields the full metric for widely separated U(N) periodic
monopoles. This is the U(N) generalization of the Cherkis-Kapustin met-
ric [17] for widely-separated periodic monopoles with distinct charges. The
Cherkis-Kapustin metric describes interactions of n widely separated, unit-
charge periodic monopoles in SU(2) gauge theory; that paper points out the
simplicity with which the gauge symmetry is generalized to SU(N) or U(N)

as is done here.

4.3 'The Generalized Legendre transform for n widely separated doubly peri-

odic monopoles

In this chapter we will extend the generalized Legendre transform to widely
seperated doubly periodic monopoles, which are the main subject of this dis-
sertation. First we will discuss the choice of carrying out the generalized
Legendre transform with respect to the subwall coordinates or the monowall
moduli and show that the two transforms are physically equivalent. Then we
will discuss gauge choices made in Chapter 3 and here. Next we will apply
the generalized Legendre transform to the comparatively simple case of two
widely separated constituent monowalls. Last, we will carry out the general-
ized Legendre transform with respect to each of the monopole moduli for n
widely separated monopoles and the result will reproduce our metric on the

moduli space of monowalls in equation (3.24).
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4.3.1 The Generalized Legendre transform with respect to subwall coordi-

nates versus moduli

We wish to determine that carrying out the generalized Legendre transform for
widely separated subwalls produces the same complex coordinates and metric
whether the transform is carried out with respect to the subwall coordinates
(x;,pi,0:, 1) (as if they are independent variables) or the monowall moduli
(R,,¥,,0,,T,). We will show that the Kéhler potentials produced in these
two approaches are equal up to shifts of the form f(u,z) + m where f
is holomorphic. After these arguments, we will briefly discuss gauge choices
in Section 4.3.2 and go on to apply the generalized Legendre transform with
respect to the moduli in Section 4.3.3 to compute a set of complex coordinates
and a Kahler potential for the metric on the moduli space of monowalls in

equation (3.24).

We established in subsection 3.3.1 that the four types of coordinates
of the monopoles share the same n constants of proportionality, i.e.
(dx;, d;, db;,dg;) = £ (dR,,d¥,,dO,,dQ),) with sum over p = 1,2,...,0 and
dr* = c?de with sum over j = 1,2, ...,n for the phases dual to the electric
charge (which behaves as a momentum). We now have the choice of carrying
out the generalized Legendre transform for doubly periodic monopoles with
respect to the constituent monopole coordinates (as we demonstrated here for
monopoles on R? in section 4.1 and periodic monopoles in section 4.2) or with
respect to the monopole moduli now that we have established linear relation-
ships between coordinates of widely separated constituent monopoles and the
moduli. Perhaps the most straightforward approach would be to work exclu-

sively with the moduli going forward and discard the constituent monopole
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coordinates entirely from our computations. But given that the subwall coor-
dinates are the physical observables for our monowall on the underlying space,
and also for simplicity of notation, we choose here to express our various func-
tions explicitly in terms of the subwall coordinates and therefore implicitly in
terms of the moduli. We carry out the generalized Legendre transform with

respect to the moduli, however.

Given the linear relation between coordinates and moduli, it is simple to show
with the chain rule that whether we conduct the generalized Legendre trans-
form with respect to each of the monopole coordinates or the moduli, we
obtain the same metric and implicit relation between ¥, and (U,, Z,). To
establish the equivalence of taking the generalized Legendre transform for
widely separated monowalls with respect to the coordinates (x;, 6;, ;) or the
moduli (R,, V,,0,), we consider the Kéhler potentials resulting from each ap-
proach, K (Uy, ..., 21, ..., Z,) and K (uy, ..., 71, ...z, ), given a generating function
F(z(R),2(Z)). The Kéhler potential for the coordinates:

K(uy,y .y z1,y002n) = —F + Z o F,,,
i=1
where “F% = [, The Kéahler potential for the moduli:

KU, ... 21, 2,) = —F+ Y V,Fy,
p=1

u+u
2

Ur =3 du'. The difference between the Kahler potentials is
i=1

where = Fy and the moduli are related linearly to the coordinates by

K—-K =Y ¢F, — > U,Fy,
, =
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where ¢y ; is the coordinate of the i'" constituent monopole when the relevant
moduli are all zero ®, = 0. This is of the form f(u) + f(u) with f holomorphic
with respect to the coordinates v and therefore does not affect the metric and
nor would it affect the implicit relation between u and (g, z). While we will
carry out the generalized Legendre transform with respect to the constituent

coordinates in our two-monopole example for simplicity, for the general n-

monopole case we will deal directly with the moduli.

4.3.2 Gauge differences in doubly periodic monopole metrics

In this chapter, we will apply the generalized Legendre transform to widely
seperated doubly periodic monopoles. The metric this construction corre-
sponds to is that given at the end of Chapter 3. The generating function we
have computed here, however, corresponds to a different gauge choice than
was made in Chapter 3, which presents material published previously in [39].
We will elaborate on the relationship between the phases d associated with
doubly periodic subwalls and the motion of subwalls along the periodic spatial
directions ¢ and 6 for slowly moving abelian subwalls. Recall that we assume
that the subwall velocities are very small and the subwall accelerations are van-
ishingly small. We are interested in keeping only quantities up to quadratic
in subwall velocities in the Lagrangian, which corresponds to keeping only up
to terms quadratic in velocities in the fields ® and A° and keeping only up to
terms linear in velocities in the fields A for each subwall. In this discussion all

velocities are presumed small.

We now compare the fields of a wall moving with small velocities along the
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periodic directions to a wall stationary along the periodic directions but with
small time-dependent phases (a,,, ag) and relate these two cases by gauge trans-
form. In other words, we compare the gauge field AZ and electric field Ez
produced by the i electrically and magnetically charged wall with velocities

—

v = (vll',vfp,v};) with the electric field E; produced by a wall with velocity

—

0 at

= sgn(z — 2°)(0,a’, aj). Up to quan-

= (v1,0,0) and small gauge phases , gy,

tities cubic in time derivatives the magnetic fields are not affected by small

velocities in the ¢ and 6 directions. Recall that w is a function of the spatial

coordinates (z,¢,0) and its form depends on our choice of gauge. In [39] we
sgn(x)

chose its form to be w(z, ¢, 0) = *57(0, —0, ¢) while the form which produces

the metric we have generated using the generalized Legendre transform (4.56)
is @(x, ) = sgn(z)(0,0, ).
A} = —gigilr — ;| + gi(@ - ), A? = —giqi|x — wil,

—

A. = g0 (x — ), A; = giii(x — ;) — g4d,

7

-

E; = sgn(z — 2;) (9i4i, 9i0,(W - U), giOp (W - T)),

E; = sgn(z — ;) (9:4i, 9itip, Gitie).
Comparing the last two lines of the above equation we see that for slow moving
subwalls including a small time dependent gauge phase @ in the definitions of
the gauge fields AZD and A} affects the electomagnetic fields in the same way as
velocities along the ¢ and 6 directions if we make the following identifications

between these periodic direction velocities and the gauge phases:

In [39] this corresponded to identifying up to constants %i with ay and %i

with a,. In the case discussed here, this corresponds to identifying (up to a
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constant) ¢’ with ay and setting a,, to zero. For simplicity we will refer to ay

as simply a. Then we can rewrite the metric coefficients in (4.56) as

— ~

Wy = — Zlgigj [% + aij} 0, Wi = gig; [% + aij} 0.
=
J#i

4.3.3 The Generalized Legendre transform for monowalls

Now that we have addressed these matters, we get down to the business of
computing the generating function and integrand for monowalls, our main goal
for this chapter. As with monopoles on R?, we begin the story of the generalized
Legendre transform and computing the generating function for doubly periodic
monopoles (i.e. monopoles on a R x T? underlying space) by examining the
Gibbons-Hawking-like metric and Kéhler potential for two widely separated
doubly periodic monopoles in equation (4.40) and comparing it to the metric
for two monopoles in terms of second derivatives of the generating function F

in equation (4.21).

In this case the monopole relative coordinates are encoded in a quadratic
function of ¢ with complex coefficient z = = + 0 and real coefficient ¢ where
@~ @+ 27 and 6 ~ 6 + 27 are periodic while x € R. For simplicity at this
point, we will also assume the monopole has symmetric left- and right-charges
G* = £(g1 + g2) where g; and g, are the charges of the constituent subwalls.
After this simple case is discussed we will address doubly periodic monopoles
(monowalls) with multiple constituent subwalls and asymmetric left- and right-
charges. We assign the coordinates as real ¢ and complex z = = + if where
x € R is the long spatial coordinate along which the monopoles move and ¢

and 6 are coordinates on a spatial torus, each with period 27. In [39], I demon-
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strated that when U(V) doubly periodic monopoles become widely separated,
symmetry breaking occurs between the monopoles and as x approaches 4o0.
Under maximal symmetry breaking the full U(N) interaction breaks to N sets
of U(1) interactions. We will now apply the generalized Legendre transform to
obtain a set of complex coordinates (u, @, z, Z) and a Kéhler potential for this
metric. The Gibbons-Hawking-like metric for two widely separated doubly

periodic monopoles in terms of their relative coordinates is

% = @828 4 2] (dzdz + dp?)

(4.40)

z722
m[dT—gm(%”ﬂﬂ)dmd} :

Note that a shift of 8 — 6 + 27 does not affect the metric. A shift of ¢ —

@ + 2w corresponds to a holomorphic shift of u — u — 27¢g; g2 which does not

meaningfully change our monowall description [48].

We can see that the kinetic component of the generating function satisfies

1 v z24+z
Fop, = i WanﬁGrm(n, ¢) = 9192 [6 + 7 } )

for Rez = Re(z; — 29) positive. Substituting in 7, = 2¢ as before, we can
find an expression for the generating integrand G(n, (). We first solve for the
kinetic component of G, which corresponds to the constant v term:

%d§4C2G1m(n, C) = 9192%7

0

— 192V
where Gy, = ié’cg

and the integrating contour is a counterclockwise loop
around the origin of the ¢ plane. We next must look at the second derivative
of the generating function with respect to ¢ and z and see how it incorporates

the constant ¢ and 6 phases d;t and di} associated with the doubly periodic
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monopole far to the left and right of the monopole.

9192 | do
Fam B[]

where dy = 1(d} + d;) is the average of the left and right constant phases for
the ¢ direction. The @-linear term on the right in this expression results from
the interaction term in the generating function which will be dealt with next.
It may be replaced with the phase #2a to give the metric coefficient explicitly

in terms of phases. The dy term can be introduced in the following way:

fg ACnen.Gor (1, ) = 219220

_ __ 9192d3
wheren, = 1 and Gy, = 8Ge?

defining a function of ¢ with constant coefficients V(¢) = (v+idy,)+2ds¢ — (v —

id,)¢? (compare with n = (z+16) +2¢p¢ — (x —16)(?) so that Gyin .y = %@.

. These terms can be conveniently combined by

This modification changes the generating function by quantities of the form

f(2)+ f(z) with holomorphic f. Then we write the full kinetic component of
the generating integrand as

1 1\ V() »?
=g (=0) e v

The component of the function G that corresponds to the % term requires
a different integrand but will have the same contour. To obtain the = term,

we integrate % (C — %) ? counterclockwise around the origin.

z2+Z
2 9

]4 dCAC?Gly o (1,C) = G102

o

where Gy, = % (C — %) %. Now that we have all components of G,,(n, (),
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we can integrate it twice with respect to n to obtain G:

G(n.¢) = (C - %) use [Vég) 7z + 3.43]

where V() = (v +id,) + 2dg¢ — (v — id,)C?, 7 = ¢, and V() = (CO‘ Later,
when we compare this function to the crystal volume in Chapter 5, we will
compare the cut volume with the portion of the above function of 77 only:

Gl = 22 1 20T+

B V ~2 ~3
9192[ g)g, g, (4.41)

4.3.4 The Generalized Legendre transform for n Doubly Periodic Monopoles

Generalizing the above discussion from two doubly periodic monopoles to n
such monopoles and computing the generalized Legendre transform with re-
spect to the moduli (¥,, R, +1i0,) = (V,, Z,) rather than coefficients (y;, 2;)
yields the following. To simplify our expressions without losing generality, we
choose the coordinate system such that the center of mass of the monopole
has position ¢y, = 0. The generating integrand including the possibility of

asymmetric left and right charges is

~ N
8 G, oons ) = ) |

a=1

n ~92 n
ani o Ocnl e 04771
DIEED STTLES SV LI ETE
i=1 ’ i=1

Jj<i

The generating function is

1 d 1\ ~
F(\Ijlazlw \I/U,Z ) 2_7”% é_ (é_ Z) G(ﬁlvﬁ%'“vﬁn) (443)
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in terms of the coefficients (¢, z;), which are linear functions of the moduli

(@i, 2i) = £ (¥,, Z,) with constants ¢/. It can be computed explicitly:

N n _
F(U, Vo, 21,0 Z5) = 30 |dG 3 gl (557)
=1

A ) s (4.44)
+», 2 ( 2 )(% 4)

+ Z 91 QJ (zlj+z”) ((,02] . zljz”)

7]
J<t

where z;; = x; — x; etc, G = Z gi, v is the constant background Higgs field
for this particular factor of U ( ) and dp is the p-direction phase for this U(1)

factor and a indexes the U(1) factors. We have omitted — Z (otidy)z; fﬁ(v i)z
=1

which originates from the V(() term since it contributes to the Kahler potential

only a term of the form f(Z)+ f(Z) with f holomorphic, which contributes

nothing to the metric.

The implicit relation between the auxiliary moduli ¥, and the complex moduli
U,, 2,) is

Upy+U
e = > Z dygi =35> + vg? i
a=11i=

(4.45)

+g0 gl 901 ZZ+Z~L + gz gj (pl] Zz]+Z7,] C

which follows from u,,+ap

= Oy, F'. Shifts along the periodic directions of
wi = ¢; +2mm and 0; — 0; + 2mn respectively correspond to the following
shift for complex subwall coordinates (u;, ;) introduced earlier in this chapter.

Because the wall coordinates along the periodic direction #; do not appear in
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the implicit relation, the u; are unaltered by 6 shifts

u; = u; + 2mm |vg; + gogi 22 + Z Gig; 5 Z”“” ,
]_
J#t

uk%uk—QﬂmggM

for k # i and with implicit summation over the U(1) factors on the right-hand
side. These complex coordinates are related to the complex moduli U” via
Up = ¢ with summation over j = 1,2,...,n. Shifts in the coordinates v’

correspond to the following shifts in the moduli U*:

U = 2rmc! |vg; + gogi 222 Z’+Z’ + Z 9ig; 5 Z”+Z”
Hﬁz (4.46)
—27mc! Z [Qz —ZZHZ”“],
k;éz

with implicit summation over the U(1) factors on the right-hand side.

The set of second derivatives of the generating function I’ which appear in the

metric are
F\IJP\I/A Z CPCAF‘M(PJ’ F‘I’pZ/\ Z CpC)\F‘Plzj’ (447)
j 1 j:l

where

F%‘% gogi=— ZZJFZZ + z gig;j [_ + Zij—gzij] )

n;éz
F%%‘ = —9i9; [% + @} ) (4'48)
Fozi = Zl gzzgj [ + 90@]} ) szj- = _gzg] [ + QOZJ} )
=
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with implicit summation over the U(1) factors on the right-hand side of each

equation in (4.48).
The Kéahler potential is related to the generating function by K = —F +
V,0y, F. Thus,

Fy,v,

-1
KZPZA = 4 + FZP‘I’u (F‘IJV‘I’M) F‘l’uZ_/\’

-1
KMPZ/\ - (F‘I’u‘l/p) F‘I’uz_,w KZ/{/JZ/{)\ = ( WA—WP) .

The Kéhler potential up to terms of the form f(Z,U)+ f(Z,U) with f holo-

morphic is

WACESS

(2

_ — N a
K(ulyzlyulazlv"'7u07"'>: Z %
a=1

S () (45| 450

9795 [ 2ij+%; 2 2i;%ij

1 Jg 1] 1] Z 13 <1

+ 305 () (v + =)
2¥]
J<i

From here forward in this chapter we will leave the summation over the U(1)

factors implicit. Under shifts along the periodic directions of the form
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@i = @; + 2mm and 0; — 0; + 2mn, the Kahler potential transforms as

K — K+ 3y (27rms0i + (2mm)? + an(izj_i;j)Jr(an)Z)

zZ ™ (iz; —12; )2
52 [(2mmip; + (2mm)?) (253) + Znltast)em)?]

+ kzl 9k (2mmipy, + (2mm)?) (ZatEe) (4.51)
ki

n 2n(iZip—izig)+(2mn)2
+§Zgjge( D ot )>,
=1
i+

which are linear or constant with respect to moduli and so the metric is
unchanged by integer shifts along the periodic directions. The auxiliary
variables ¢; are neither holomorphic nor antiholomorphic but the terms in
the above shift which are linear in ¢; can be expressed as being holomor-
phic/antiholomorphic, i.e. of the form K — K+ f(Z,U) +W, using the
implicit relation among the monowall coordinates as in Equations (3.18) and
(4.45). Re-expressed like this, the Kéahler potential shifts in the following way,

_ iy P
where U, = CHu; and z; = ¢} Z,,

K — K+ 39 ((27Tm)2 + 2“"(i5j—i;j)+(27rn)2>

i | 2mn(iz;—iz;)+(2mn)? = i Zik+Z;
+9(J29 [ (iz; 43) ( )]+Zggk(27rm)2( k42r k)
k=1 (4.52)

L 2mn(1Z;p—12; 27n)? Wi, 2Lz
+ 30 gy (BT ) g [ gy ]

=1

(#]

The generating function for n doubly periodic monopoles reproduces the Lee-

Weinberg-Yi type metric on the moduli space of monowalls given in [39] which
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is derived from the dynamics of widely separated monowalls.

D D) RN (4.53)

p=1 A=1

where p = 1,2,...,0, p, = U,, 2, and q, = U,, Z,. We now substitute in
the phase a; for ¢; as described in Section 4.3.1. Explicitly, with a sum over
repeated indices i, j = 1,2, ..., n, and with an implicit sum over all U(1) factors,

the metric can be expressed as

a2 (UasiR) ) gog ¢

8T

(UCC);Al

+ [dTﬁ(Vvﬂcgcﬁ)-dX"} (4.54)

X [dTp + <WQkCZC’;> . pr]

with

Uii = gogits + kilgigk [6+252],  Us=-ag [+, (45)
ki

Wi - dX# = — > 9i9; [€ + ai] dO*,

T (4.56)
Wiy X¥ = gig; [ € + ay] dO".

This is the Kéhler potential (4.50) and implicit relation (4.45) which produce
the doubly periodic monopole metric of [39] up to gauge differences, which is
a generalization of the metric derived in [16] from n identical monopoles to n
distinct monopoles and from SU(2) gauge symmetry to U(N) symmetry. As

in the previous chapter, note that we have chosen the U;; functions to have a

1/G term. This does not present an issue in cases where G = 0, which can be
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seen by making the substitution Z gigja:fj =G [ glel — (GxCM)2 and using
i>j i=0

that the position of the monowall center of mass is fixed and at the origin. We

n

have made the choice to include the 1/G term to mimic the Yi-Weinberg-Lee

form of metric seen in [17, 16] for periodic and doubly periodic monopoles.
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CHAPTER 5

Generating Integrand is Crystal Volume

5.1 General case (without compound walls)

We will relate the expression for the generating integrand as a function of the
subwall positions along the noncompact spatial direction to the cut volume.
Using the Lawrence polytope volume formula [55] we give an expression for
the cut volume which is given in terms of the x coordinates of the crystal
vertices. Asymptotically (i.e. when one or more of the moduli are very large),
the = log |s| coordinate of the cut crystal’s bottom vertices can be identified
with the positions of subwalls along the noncompact direction z in R x T2.
This identification is covered in Chapter 2.2 in which the amoeba and cut

volume are introduced.

5.1.1 Lawrence Polytope Volume Formula

We first briefly describe the Lawrence volume formula for convex polytopes in
three dimensions. Identify a plane d@, - (¥ — 7,) = 0 with every face of the
polytope and define the volume of the polytope as the region simultaneously
satisfying d, - (¥ — 7y ,) < 0 for p indexing all polytope faces (recall, each face

of this polytope which is the cut volume corresponds to a point on the Newton
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polytope). The normal to the plane is given by @, and %, shifts the plane.
Now define a reference plane ¢- (¥ — Z.) = 0 which is not part of the polytope
and which is not parallel to any of the polytope’s faces, i.e. ¢ x @, # 0. The
Lawrence formula for the volume of the polytope is written as the sum of a
set of signed sub-volumes where each sub-volume corresponds to one and only
one of the vertices of the polytope. The sub-volumes are simplices (in three
dimensions, these are tetrahedra) which are bounded by the three polytope
planes intersecting at the vertex in question and by the reference plane. The
sign of the sub-volume is positive if an even number of normal vectors for the
three planes which bound it are pointing inward in the sub-volume, and the
sub-volume is negative if an odd number of normal vectors point inward. See

figure (5.1) for a two-dimensional analogue of this.

The volume of a simplex in three dimensions with vertices at )?2-2172,3,4 is %
times the determinant of the 3 x 3 matrix whose columns are the displacement

vectors between three of the vertices and the fourth.

. (Xo—X7) (X3—X1) (X4—Xy)
Vol = gdet Y2-Y) (V3-Y)) (Ya—-Y)
(Zo—21) (Zs—21) (Za— Z1)

Associate a 3 x 3 matrix M; with each polytope vertex i whose columns are
the normal vectors d,, @, and @, of the three polytope planes intersecting at
that vertex. Define the vector ¥ = (7*,4¥,~*) whose elements solve the linear
equation ¢ = M;7y; (no sum over 7). Then the Lawrence volume formula for
convex polytopes can be expressed concisely as

n

1[c (T — 7))
Vol awrence —— o1 .
oL Zizl 31 77 det M,
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Figure 5.1: The triangular polygon and reference plane are both shown in
thick black. The sub-triangles associated with the polygon’s top, left and
right vertices are shown respectively in green, red and blue. The normal
vectors for these planes are all outward pointing for the black polygon. The
green and blue sub-volumes have positive sign since they have even numbers
of inward pointing normals (zero and two, respectively). The red sub-volume
has negative sign since it has an odd number (one) of inward pointing normals.

5.1.2 Generating Integrand

The generating integrand G (7jy, Tja, .., 7,) is a function of 7; = % where n; =

2 + 22, — Z¢%. In the polynomial n;, the coefficient x; is one of the three
real spatial positions of the i subwall and z; is a linear complex combination
of the remaining two spatial positions. We also introduce the function 7, in
which the coefficients are constants and are a real and complex combination of

the constant component v of the Higgs field and the constant phases (dp, d,,)
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associated with the two periodic directions (g, ). The noncompact direction
has coordinate z. For example, expressions for 7; and 7, might be n; = (z; +
i0;) + 2p;¢ — (z; — i6;)¢* and 1, = (v +idy,) + 2dg¢ — (v — id,)¢*. Consider
n subwalls with spatial positions given by (z;, z;) and subwall charges gZ with
i =1,..,n. We write the total charge for the o' U(1) factor as G* = Z g5

We define the difference of n polynomials as 7;; = (z; — 2;) + 2(x; — a:])C +
(z; — z;)¢?, and the function of ¢ encoding the constant Higgs v and gauge
field (d,,dy) contributions V = (v + id,) + 2de¢ — (v — id,)¢?, and further
define (7, V) = (g, %) We write the generating function for this monowall
with widely separated subwalls. With an implicit sum over the U(1) factors

"
1T 1S i n ~2 77]3 n,n ?7
G (71, Tlas woos ) = [ng +90923‘:| + ) 9ig; 30 (5.1)
=1 ;—1
1>7

To compare this expression with the cut volume we write the integrand G as
a function of the real coordinates x; of the n subwalls along and suppress the
superscript for simplicity. We substitute x; for 7; and substitute the constant
component v of the Higgs for 7,. Assume the walls are ordered such that

Tiy1 > Ij.

n

(21,29, .., Tp) = Z [ 922 + gogir ] +Zgzg] A (5.2)

=1

z>]

The subwalls may have different charges ¢ in each U(1) factor (indexed by
) and the parameters (v, d3,dg) differ as well. The summation over U(1)
factors is implicit in the above expression and the following expressions until
(5.4). We will express G(x1,...,2,) as a sum of terms in which each term

contains information about a single subwall and its corresponding subtriangle
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in the Newton polygon triangulation. Once the generating integrand is written
in these terms we will make the U(1) sum explicit in order to finally relate it

to the cut volume.

To write the generating integrand in this manner we eliminate the ordering

in the double sum over walls and take into account that the position of the

n
29w

monowall center of mass ., = “5— is fixed in each U(1) factor. An identity

is useful to apply to the first term in G/(z):

Zgigjx?j =G [Z Qzl'?] — (Gzem)® .
i=0

i>j
Using this identity we write the generating integrand as the following, (up to
constant terms which will not appear in the monowall metric)

n 3

Gy, oy mn) = > s P En Tl
n) = VG — ey — g .

i=1

But this may be rewritten in terms of the total Higgs field at the location of
the " subwall:

O(r) = —gox — X_ gjlr — x| — v,

j=1
n (5.3)
D(x;) = —goxi — X_ gjlwi| — v

7
We label ®(z;) = ®; and express the generating integrand as the following
with the sum over the N U(1) factors indexed by oo = 1,2, .., N made explicit,

N n n
~ 1 .
G(xy, .., xp) = —3 Z Z 3g°0ai®; + 29003 Z g5 sign(zy;) | - (5.4)

" a=1 i=1 j#i
Note that for a particular subwall while it may interact along several U(1)

factors and have different charges along them, its position is the same in each
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U(1) factor. For all subtriangles that do not have a horizontal leg, the value
of the net Higgs field is the same for each of the U(1) factors (at the location
of that subwall) in which the subwall has nonzero charge. The sum over U(1)
factors of the charges associated with the corresponding subwall vanishes (refer

to figure 5.2):

o _ (% (07
98 = > gt > g
a=1 aEbottom actop
— 1 (muw _ Mmpy 1 (muw _ Mmup 5.5
=TNpv 3 (nw, np,,> + Nyp 5 (nw, nM,> (5.5)

= My + My, +my, = 0.
In such cases, the first term in equation (5.4) vanishes since the summation
over the U(1) factors indexed by « only applies to the magnetic charges in
this term and the other quantities can be pulled out of the sum. (The cases
in which the i"* subtriangle does have a horizontal leg will be dealt with in
the following subsection.) In the second term in the above equation, the sum
>_; 95 sign(w;;) is equal to the half the negative of the slope of the Higgs field
S& in the o™ U(1) factor immediately to the left of the i wall plus the slope
Sit 1 immediately to the right of that wall:
Jo — Z_Zlgj + i 9j = 3[(Sny1+51) = (S2 = S1) — (S5 — 53)—
j=1 j=itl
o = (Si = Siz1) + (Size — Siz1)+
(5.6)
o+ (Spt1 — Sn)]

= —3(Si1 +8)).
The charge of the i" wall is the half the difference of these slopes g; = (S5" —
S7%)/2. We see then that the second term in (5.4) is #3/3 multiplied by the
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() \
(mp, 1p) & sM_ ’
3
/\2
(my, ) /\1

Figure 5.2: A subtriangle and the set of Higgs eigenvalues associated with it.

difference of squares of the slopes on either side of the i** wall. When this is

summed over the U(1) factors, we obtain the following expression:

= 2 2 o
(5507 (S92 = -
; ) (5% (MMM )i

where the vertices of the 7*" subtriangle in the triangulated Newton polygon are
labeled (p, i, v) in a clockwise fashion, ¢; is twice the area of the i** subtriangle
and n,, is the height of the leg of the subtriangle with endpoints at the p and
w vertices. We then obtain our final form for the generating integrand in terms

of the subwall positions,

Clar, ) = £ 30 L0
T1yeiiy Tp) = = .
b 2 Py 3NN pumpw )i

(5.7)

Using the Lawrence polytope volume formula as in [55] with the x = 0 plane

as the reference plane, we obtain the formula for the cut volume up to constant
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terms,! provided no edges of the crystal along which two faces of the crystal
intersect are parallel with the x=0 plane:
- (z:)°07

3Ny usp)i’

Vol(xy, ..., xp,) =

(5.8)

i=1

We have proved that the generating integrand G(z) in equation (5.7) is the

cut volume Vol(z) in equation (5.8) up to an overall factor of 2.

Gilz) = V012(x)

(5.9)

5.2 The case for compound subwalls

We now prove the same relation for crystal edges parallel to the x = 0 plane.
We consider the special cases when an edge, say the edge joining points
(mp,n,) and my,n,), in the Newton polygon triangulation is horizonal. In
the monowall, we refer to these as compound subwalls since in these cases two
subwalls will share a location along the x-direction and will move together
as the monowall moduli vary. Unlike before, the first term in equation (5.4)
for the contribution from subtriangle ¢ does not vanish, and the second term
omits the quantity with n,, in the denominator. If the horizontal edge in the

Newton polygon triangulation is on the polygon perimeter, then the position

'The Lawrence polytope volume formula applies to convex polytopes, which the cut
volume is generally not. The cut volume is the difference between the crystal and the cut
crystal, both of which are convex and it is in this way that we apply the Lawrence formula.
The Lawrence formula sums over vertices of the polytope in question and here we are only
interested in contributions from vertices whose positions vary with the moduli R and we

can neglect contributions from vertices whose positions are constant.
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of the associated subwall depends on the two perimeter coefficients and does
not depend on any moduli. In this case, the contribution from subwall 7 is
linear in a modulus and will not contribute to the monowall metric and may

therefore be ignored.

If the horizontal edge in the Newton polygon triangulation is on the polygon
interior, the edge is shared by two subtriangles and we address the associated

terms in the generating integrand together.

(mp, )

(1my, 1y)

=
/=

Figure 5.3: Two subtriangles sharing a horizontal edge and the set of Higgs
eigenvalues associated with them.

~ ~ N
Gila) + Gylay) = & {—3 (Z g?) 220, + Lo
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Note that we have used here that the two subwalls in question share the same
x-position x; = x;. The corresponding terms in the Lawrence volume formula
as we express it are not defined, so we raise the vertex at (m,,n,) by a small
amount such that the edge joining (m,,,n,) and (m,, n,) is tilted at small angle
€. We leave the horizontal coordinates m unaltered. Expanding the term for
the i'" crystal vertex to first order in e and taking the limit ¢ — 0 results in
the following terms:
iy (i) + 8 2) = 3~ 1)

(5.11)

3 (M3 my, mJZW\ m3,

+ZL’Z» m + n_up + == 4 A

LITHN USNY

where, recall, y is the log |¢| direction in the crystal space. Equations (5.10)
and (5.11) can be identified with one another up to a factor of 2 and the
correspondence between the generating integrand and the cut volume includes

monowalls with compound subwalls.
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CHAPTER 6

Conclusions

A doubly periodic magnetic monopole, known as a monowall, is a magnetic
monopole on R x T2, It has certain phase degrees of freedom; motion along
these phase directions generates electric charge in the monowall. In U(N)
classical Yang-Mills-Higgs gauge theory we employ the Higgs spectral curve,
its Newton polygon, and its amoeba to establish the asymptotic behavior of
a monowall that has moduli. These tools give us an intuitive picture of the
monowall in terms of its constituent charges, or subwalls, and of the sym-
metries when the charges are widely spread apart. When a modulus of the
monowall becomes large, the monowall breaks up into subwalls whose separa-
tions vary linearly with respect to the modulus. The subwalls are positioned
at locations of partially or fully restored gauge symmetry, a condition that
can be inferred from the amoeba. The size of a subwall is the width of the
region outside of which gauge and Higgs field interactions can be effectively

approximated as abelian.

Once the walls are widely separated with respect to this width, their gauge
and Higgs interactions are approximated as N U(1) interactions and emulate
classical electromagnetism with a massless Higgs. We proceed to treat the
subwalls as uniformly electrically, magnetically and scalar charged planes and

write the relativistic Lagrangian, including background gauge and Higgs fields



111

(which satisfy prescribed boundary conditions).

For small velocities, this Lagrangian reduces to purely kinetic and we can read
off the monowall moduli space metric. We write this metric for widely sepa-
rated subwalls in terms of real subwall coordinates and phases, which we have
shown are linearly dependent on the real moduli. To write the metric in terms
of complex coordinates on the moduli space and compute a Kahler potential,
we derive a generating integrand G and generating function F' using the gener-
alized Legendre transform. We then Legendre transform from the generating
function, which is a function of the real moduli to the Kahler potential for
the metric which is a local scalar function of the complex moduli and whose

second derivatives are metric coeflicients.

We introduce the cut volume, which is a polytope whose volume is a function of
the Newton polynomial coefficients that define the Higgs spectral curve. Using
the Lawrence polytope volume formula [55], we express the volume function in
terms of its vertex coordinates. We express the generating function G as a sum
over contributions from individual subwalls. Using these pieces of information
we show that the generating function, which is a differential geometric ob-
ject, is equal to the cut volume, an algebraic object. In other words, we show
that the asymptotic Kéahler potential and complex coordinates can be com-
puted from the cut volume, indicating that the Higgs spectral curve determines

asymptotic monowall dynamics and perhaps general monowall dynamics.

Subwall interactions yield hyperkahler moduli space metrics and hyperkahler
asymptotic moduli space metrics in the limit that the subwalls are well-

separated. The moduli space of a monowall is important in its own right:
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for small velocities, the subwall dynamics can be approximated as geodesic
motion on this moduli space. It has additional importance to supersymmetric
Yang-Mills quantum gauge theory, since moduli spaces of monowalls in Yang-
Mills-Higgs theories are isometric to the Coulomb branch moduli spaces of

vacua in the associated five-dimensional quantum field theories.

The asymptotic moduli space of well-separated doubly-periodic monopoles
has been addressed previously [16], and we expand on this work. In [16],
the asymptotic monowall moduli space metric was determined for subwalls of
identical magnetic charge in SU(2) theory with spatially uniform background
fields. We generalized from SU(2) theory to U(N) for subwalls of arbitrary
magnetic charge and linear background Higgs field, and additionally justify the
abelian long-distance approximation by analyzing the Higgs curve and amoeba
for large values of a modulus. We then apply the generalized Legendre trans-
form [45, 46] to widely separated monopoles which we have adapted from its
application to SU(N) monopoles on R* [48] to doubly periodic monopoles in
order to obtain a set of complex coordinates on the moduli space and a Kéhler
potential for the metric with those coordinates. We then show that the gener-
ating function for the metric is equal to the cut volume for the Higgs spectral

curve. !

Still, the approach used in this dissertation is limited to well-separated sub-
walls. While asymptotic moduli spaces have been derived for a variety of

monopoles, periodic and non-periodic, finding the interior metric on such mod-

IThis is similar to how in [54] the asymptotic Kihler potential for BPS vortices in five-
dimensional supersymmetric gauge theory on R x T? with fundamental Higgs was related
to a tetrahedron volume associated with an algebraic curve analogous to our Higgs spectral

curve.
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uli spaces remain an open problem. The corresponding supersymmetric sys-
tems, and in the case of periodic monopoles, the Higgs curve construction may
play important roles in future efforts to derive the full moduli space metrics
of monopoles. In particular, explorations of the Higgs spectral curve for mod-
uli values corresponding to phase transitions of the amoeba may shed light
on the regions of the moduli space associated with subwalls interacting at
close distances and merging. The secondary polytope described in Section
2.2.1 emerges from the coherent triangulations of the Newton polygon and the
phases of the amoeba and monowall and its faces correspond to moduli values

for these phase transitions that are of interest.
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APPENDIX A

Yang-Mills-Higgs Moduli Space Metric

This appendix is dedicated to deriving the Yang-Mills-Higgs monopole moduli
space metric in terms of a Hermitian matrix function which we will label £2. We
will re-express our field equations in terms of a complex and a real coordinate
and use the Bogomolny equation to write the gauge and Higgs fields in terms
of a matrix function S. Next we will show that while the function S possesses
the freedom in the Bogomolny equation to be rescaled by an antiholomorphic

function, the fields and the metric are invariant under such rescalings.

A.1 Complex coordinates, Bogomolny equation, and kinetic terms

In terms of a real coordinate ¢ and a complex coordinate z = x+16, z = x—10,
define 0,, = %8@, Op = %Qa and 0, = %((996 — i0p), 05 = %(Gx + i0p). The

Bogomolny equation can be written, as in equation (1.4),
[D'LLHDZ] :07 [D27D5]+[Dw7D”LD]:O' (Al)

by further defining A, = %(A@ +1id), A, = %(Am +iAy), 0 = z,w, G = Z,w,
D, = 0, + Ay, and Fy, = [Dg, D,], the Energy including kinetic terms can be
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expressed
E =mass + [ @2Tr[Fo F” 4 (Dy®)?]
(A.2)
=mass + [ PaxTr[Fy. Fos + FouwFoo)-

Note that we have not yet written Ag and Dy. In the static BPS limit, the ki-
netic terms Fy, Fos vanish. If we allow slow variations of the solutions A, with
time, then small kinetic terms appear. With these small time perturbations,
the zeroth component of the gauge field Ag, as well as A,, must satisfy the
component of the Yang-Mills-Higgs gauge field equation (1.2)b which is linear
in the time parameter. The fields A, still satisfy the Bogomolny equation
(1.4). In terms of the complex and real coordinates, this component of the
field equations is

DO'F05' + D&-FOU = 07 (AS)

with a sum over o, ¢ implied by the repeated index. It is the component
of the Yang-Mills-Higgs field equations which is equivalent to Gauss’ law in
electrodynamics (abelian Yang-Mills theory), and so we will refer to it this

way here. We will return to the question of Aj shortly.

The Bogomolny equation (A.1) implies there is a matrix function S such that

D,S =0, which allows us to solve for the fields (A,, A,) in terms of S:
Ao‘ = _80'8 : Sil; A& = —AI_ (A4)

The gauge transformations are S — US for unitary U, which gives

A, = —0,(US) - (US) ' =UA, U —0,U U,

Ay = (8, (US) - (US) ) =UA, U —0,U - U,
which is the usual gauge transformation for the vector field. The gauge trans-

formed fields still satisfy Ay = —A7.
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Note that the Bogomolny equation constrains the matrix function S only up to
antiholomorphic rescalings S — S3 (2) (holomorphic rescalings ST — 37(2)ST)
under which the field itself A, (Az) is invariant. It is necessary now to show
that the Yang-Mills-Higgs monopole metric described in the following section
is invariant under such rescalings and so we omit this 3 (z) (87(z)) factor in

the remainder of our discussion since they are not affected.

First of all, it is clear from equation (A.4), which expresses the gauge fields in
terms of the functions S and ST, that the gauge fields are invariant under these
antiholomorphic rescalings of S. Because the metric is formed by taking the
overlap of two variations of the fields (A,, A5), the metric is necessarily invari-
ant under such rescalings as well. We will take it one step further, however,
and verify that the kinetic term in the Lagrangian which yields the metric is

itself invariant under antiholomorphic rescalings of S.

These fields and functions will be functions of time only through the moduli

(xP(t), xXP(t)), i.e. the chain rule gives

o = XV, + X", (A.5)
where x is the time derivative of x and 0, and J; are variations with respect
to moduli. Let us write S = V3 (2), A = =0U - U™, p = =6V - V=1 and
label the moduli variation in terms of the antiholomorphic rescaling factor as
p = —08- 57t We may work in a specific gauge for simplicity, and choose
U = 1. In this case, the time-linear components of the field strength are

written as covariant derivatives of the variations (A, i, p).

—1 -
FOO’ = DU’ <,u15 + ,u;r? + (VT) p;; VT) Xpa

Fos = Dy (pp + b+ Vpp, V1) XP.
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We also observe that the gauge fields and covariant derivatives are (-
independent. Since 3(z) and p = —¢3 - 37! are antiholomorphic, one can ap-
ply the chain rule to show that the quantity vanishes D,(VpV ') = 0. From
there it is straightforward to apply integration by parts to [ d*zTr[Fy, Fos)
with static boundary conditions and use [D,, D5] = 0 to eliminate the p terms

from the kinetic term in the Lagrangian.

A.2 Metric and gauge perturbations

In this section, we address the gauge freedom of the fields which satisfy the
Bogomolny equation and add a new constraint which will eliminate gauge re-
dundancies from the monopole metric. For fixed boundary conditions on the
fields (@, A;), there is a continuum of static solutions to the Bogomolny equa-
tion which minimize the energy. The set of distinct gauge classes of solutions
forms a manifold, referred to as a moduli space. One of our primary goals is to
describe this surface in a way that omits gauge redundancies and to compute

its metric.

Generally, the metric on the Yang-Mills-Higgs moduli space is written

gpg = [ PrTe[(6,A:)(55A47) + (6,2)(05P)]
(A.6)
= [ dzTx[(6,45)(0;A,) + h.c],

where 9§, represent small variations with respect to the complex moduli x,.
These field variations must not only satisfy the Bogmolny equation (or the
linearized version of it, for small variations, to be given in equation (A.10)),

but must also be orthogonal to gauge slices (to be given in equation (A.11)).
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This condition can be restated as the requirement that these perturbations
0A,, which satisfy a linearized form of the Bogomolny equation, be orthogonal
to small gauge perturbations whose effects vanish as ;1 — £o00o. In terms of the
manifestly gauge-dependent field U(—9,S - S~ 1)U~ —0,U - U™, the modulus

variation is
A, = U 'D,(=6S-S T HYU+0,(=6U-U ')+
+ [U‘ng(—cSS . S_l)U_1 - 0,U - U_l, —oU - U_l] )

More concisely,

dA, = Dy(v+ N), (A.7)
where v = —§S-S~! corresponds to the physical component of the perturbation
and A\ = —6U - U~! corresponds to the gauge component. In order to require

that A, be orthogonal to gauge perturbations, we might imagine we can
simply set A = 0. This constraint does not hold in any gauge, however. We
must include a general A in the expression for A, in order to allow us the
freedom to orient § A, orthogonal to all other small gauge perturbations. These

take the form DU/N\ which vanishes as 1 — £oo:
/ BaTr[(54,)(DsX) + (5A45)(DyA)] = 0,

for arbitrary A. Using integration by parts, the gauge-fixing condition can be

re-expressed compactly as
DO—CSA& + D@-(SAO— — 0 (A8)

This constraint holds importance comparable to that of the Bogomolny equa-

tion (A.1).
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A.3 Time dependence and the moduli

Here we introduce the zeroth component of the gauge fields, which must satisfy
Gauss’ law (A.3). We then show that the kinetic term in the Yang-Mills-Higgs
Lagrangian yields the metric on the YMH monopole moduli space. When we
allow small time variations of the fields (®, A,) but restrict these variations to
be orthogonal to gauge slices, the fields depend on the small parameter time
only through the moduli x,(xo) [50]. In other words, time derivatives of the
fields are pA, = (6,A,)x*. We can now address the relationship between
the metric and the kinetic terms Fg,Fy; in the energy. We first need an
expression for the zeroth gauge field Ay, which must solve the component
of the Yang-Mills-Higgs field equation D,F* = [®, D¥®] which is linear in
time derivatives, referred to here as Gauss’ law (A.3). The solution, which is

analogous to those found in [63], is
Ao = [=6,(US) - (US) X"+ [-6,(US) - (US) '] x*. (A.9)

Showing that this A, satisfies the Yang-Mills-Higgs field equations to lowest
order in time derivatives (A.3) requires the Master equation (real Bogomolny
equation) [D,, D;| = 0 and its linearized form, which is found by taking the

first variation of the Bogomolny equation,
Dy6As — D36Ay = DyDy(—v' + \) — DDy (v + \) = 0, (A.10)

and the gauge-fixing equation, i.e. the constraint which guarantees that the
moduli variations dA; and 0A, are orthogonal to gauge variations, thereby

prohibiting gauge redundancy from the metric we are constructing:

Dy6As + Ds6Ay = DyDy(—v" + \) + DsDy(v + \) = 0, (A.11)
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with sums over ¢ in both expressions, where v = —6S - S~! and A = —0U -
U~ Together, the linearized Bogomolny (A.10) and gauge slice orthogonality
condition (A.11) imply each of the following equalities:

DO-DE-V - —DO—DE—I/T7 DO-D&V - _DO’DE)\a DO—DEVT - DO'DE')\' (A12)

The components of the field strength tensor that are linear in time derivatives

can be expressed in terms of the variations v = —(SV)V71, p = —vf =

(V)T oV, A = —(sU)U.
Foo = 065[—0,(US) - (US)xP — D, [US™6,(STU)] x*
= Do (v — p).
Similarly, its negative Hermitian conjugate can be expressed Fy; = Ds(pu—v).

The components of Yang-Mills-Higgs gauge field equations that are linear in

time derivatives, i.e. Gauss’ law, are
DUFO?7 + DéFOU = DO'D6'<,LI/ - V) + DaDO—(U — /1,)

Both terms in this expression are zero (see equation (A.12)) and so Gauss’ law

is satisfied by the solution given in equation (A.9) for Ay.

It now remains to show first that the kinetic terms yield the metric up to
total derivatives [ d*xTr [Fo, Fos] = [ d*zTr [(0,45)(0745)] XPX? + ... which is
given here, and second that the metric can be written in terms of the U(N)-
invariant Hermitian matrix function = STS which is shown in the following

subsection.

We wish to relate the kinetic term in the energy

/ d*xTr [Foe Fos) = / Pz Ty [Dy(vg + Ag) - Da(—v) + X)) XPX°
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to the metric on the Yang-Mills-Higgs monopole moduli space
Gpg = /deTr (6,45 - 04A,| = /d?’:pTr [DU(—V;r + A7) - Ds(vp + )\)p] :

The second equality here results from the form of the variation §A, given in
equation (A.7). In other words, we are asking whether the kinetic term in
the Lagrangian yields the overlap integral of tangent vectors on the monopole

moduli space.

Using the results of combining the linearized Bogomolny equation (A.10) with
the gauge-fixing conditions (A.11) (see equation (A.12) for the useful forms),
and four instances of integration by parts, we see that the kinetic term in
the Lagrangian is equal to the metric up to total spacetime derivatives, i.e.

boundary terms:
/ d*2Tr [Foe Fos] = gpaX*X? + boundary terms.

Since we have specified that we are constraining ourselves to the case where
the boundary conditions on the Yang-Mills-Higgs fields (®, A;) are static in
time, variations with respect to the time-dependent moduli x,(z¢) vanish on

the boundaries of the space and therefore so should these boundary terms.

A.4 The Yang-Mills-Higgs monopole metric in terms of (2

Given that the gauge field is written in terms of the matrix function S as
A, = —0S-S71, one can straightforwardly show that the complex field strength
tensor F,; = [D,, D;| (where p = z,u) can be expressed in terms of S and

Q=51 as F,; = —50,;(0719,9)S™! by computing F,;S. This is outlined
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in the Appendix at the end of this section. Using the solution of equation

(A.3) for the zeroth gauge field Ay in equation (A.9), we see that Fj,

[—56,(©2719,€2)S7] x. Plugging this into the kinetic term in the energy, we
obtain

E = mass + /d3xTr [Q_l 5p(0:2- Q71 Q SQ(Q_I(?UQ)] Pyl

(A.13)
The metric on the moduli space is
ds® = gpadx"dx", (A.14)
with metric tensor in terms of the Hermitian matrix function Q = StS
Gpg = / PaTr [Q71 5,02 Q1) Q0,(2710,9)] (A.15)

where ¢ = w,z and 6 = w, 2z are implicitly summed over.

This metric is
demonstrably real.
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