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ABSTRACT

We determine the large-modulus dynamics of the U(N) doubly periodic BPS

monopole in Yang-Mills-Higgs theory, called a monopole wall. We accomplish

this by exploring its Higgs curve using the Newton polytope and amoeba. In

particular, we prove that the monopole wall splits into subwalls when any of its

moduli become large. The long-distance gauge and Higgs field interactions of

these subwalls are abelian, allowing us to derive an asymptotic metric for the

monopole wall moduli space via electromagnetic scattering. We carry out a

generalized Legendre transform to determine complex coordinates and Kähler

potential for the asymptotic metric. We prove that the Kähler potential is

determined by the cut volume of a crystal associated with the Higgs curve, i.e.

the volume of a region enclosed by a plane arrangement in R3.
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CHAPTER 1

Introduction

1.1 Context

In 1931 [1], Dirac proposed a magnetic cousin to the electron in classical elec-

tromagnetism, now referred to as the Dirac magnetic monopole. Analogous to

the classical electron, it is a point particle with radial magnetic field that is

singular. Nearly five decades later, ’t Hooft and Polyakov [2, 3] expanded the

idea of the magnetic monopole by identifying non-singular solutions now called

’t Hooft-Polyakov monopoles in nonabelian Yang-Mills-Higgs theory, in which

the Yang-Mills gauge fields couple to a scalar field with the usual “winebottle”

Higgs potential. Prasad and Sommerfield [4] found an explicit static SU(2)

solution for this theory in the limit that the coefficient of the Higgs poten-

tial vanishes. Under conditions of time-independence and the vanishing of the

Higgs potential coefficient, Bogmolny [5] derived his eponymous equation. So-

lutions to the Bogomolny equation solve the Yang-Mills-Higgs field equation

and minimize energy. They are called BPS (Bogomolny-Prasad-Sommerfield)

monopoles.

Nonabelian magnetic monopoles are interesting in their own right, appearing

as they do in many contestant grand unified field theories. They have gar-

nered attention in recent decades, however, for their significance in relation to
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certain supersymmetric Yang-Mills quantum field theories and supersymmet-

ric quantum chromodynamics. One nontrivial connection to these theories is

via their moduli spaces of vacua. The moduli space of BPS Yang-Mills-Higgs

monopoles (a set of solutions that share fixed boundary conditions up to gauge

equivalence and which together form a manifold) is isometric to the Coulomb

branch of the moduli space of vacua in the associated super Yang-Mills theory

[6, 7, 8]. These moduli spaces are hyperkähler, i.e. they are kähler manifolds

which are holomorphically symplectic.

In early studies of BPS monopoles, their moduli spaces were used to determine

monopole dynamics. Manton established [9] that the low-energy dynamics for

BPS monopoles can be approximated as geodesic motion on their moduli space.

In the modern context, monopole moduli spaces have applications in quantum

theories. Despite their importance, few metrics on monopole moduli spaces

are known. BPS solutions in which some or all of the constituent monopoles

are closely spaced represent regions in the interior of the moduli space. BPS

solutions in which the monopoles are very widely-spaced are points on the

moduli space in its asymptotic region. Long-range abelian approximations have

been used to obtain the latter type of solution and metrics have been calculated

for the corresponding asymptotic moduli spaces, but solutions of the former

type have been mostly illusive. A notable recent contribution to solutions

for monopole Higgs and gauge fields has come from Braden and Enolski [10],

[11] and their prescription for analytical monopole solutions computed directly

from the Hitchin spectral curve. Nevertheless, most moduli space metrics that

have been produced are accurate only for the asymptotic portion of the moduli

space. The following paragraph enumerates these efforts.
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Atiyah and Hitchin [12] derived a metric on the full moduli space for two SU(2)

BPS monopoles on R3. Gibbons and Manton [13] then extended this to n BPS,

well-separated, unit charge SU(2) monopoles and found the asymptotic moduli

space metric. Lee, Weinberg, and Yi derived a similar asymptotic metric for

general gauge group [14]. Cherkis and Kapustin [15] used an approach echoing

Gibbons and Manton’s to determine the asymptotic moduli space metric for

an SU(2) monopole on R2 × S1 with n monopole constituents with distinct

charges, as did Hamanaka, Kanno, and Muranaka [16] for an SU(2) monopole

on R× T 2 with n monopole constituents with distinct charges.

Prior to discussions of moduli spaces for widely separated doubly periodic

monopoles, there is a twenty year history of exploration of doubly periodic

instantons and their dimensional reduction, doubly periodic monopoles. In

the case of the singly-periodic monopole, as in [17], the Nahm transform maps

the monopole onto a solution of the Nahm equations [18], formulating the

problem of interacting monopoles as a Nahm system and validating the abelian

approximation in the asymptotic regime [19]. This approach is unsuccessful in

the case of the doubly-periodic monopole, which is mapped to another doubly-

periodic monopole under the Nahm transform. Instead it is sensible to study

some key behaviors of the doubly-periodic monopole using the Higgs spectral

curve [20, 15, 21, 22], which allows a geometrical treatment of the monopole

interactions in the BPS limit. Still, the Nahm transform has been useful

in the study of doubly periodic instantons and their dimensional reductions

(monopoles and Hitchin systems).

In the late 1990s and early 2000s Jardim showed that one can carry out the

Nahm transform to obtain finite energy doubly periodic instantons from cer-
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tain singular solutions to Hitchin’s equations on a two-torus and that the

transform is invertible. He associated a spectral curve with the doubly peri-

odic monopole through the Hitchin’s solutions [23, 24, 25]. He and Biquard

described the moduli space for SU(2) widely separated constituent instantons

on a doubly periodic underlying space. They computed its dimension to be 8k-

4 for instanton number k, and classified the moduli spaces based on asymptotic

conditions [26, 27]. Later, Ford and Pawlowski [28, 29, 30] used analytical and

numerical methods to explore the action density for doubly periodic SU(2)

instanton configurations with radial symmetry where “radial” refers to dis-

tance in the two non-periodic directions on the underlying space. Between

2013 and 2019, Mochizuki [31, 32, 33] has extended this work and used the

Nahm transform specifically to relate doubly periodic instantons with square-

integrable field strength to solutions for Hitchin’s equations on a two-torus

with higher order singularities, i.e. where the Higgs field has singularities of

order n > 1. He also examined the dimensional reduction of these instantons

to doubly periodic monopoles and their associated Hitchin curve.

In 2005, Lee [34] introduced the concept of doubly periodic monopoles,

called “monopole sheets,” as infinite square lattices of ’t Hooft-Polyakov type

monopoles solving the Bogomolny equation and connected these to D3 brane

configurations in type IIB string theory. A couple of years later, Ward [35] pub-

lished a set of numerically generated field solutions for a unit lattice of SU(2)

’t Hooft-Polyakov monopoles. In 2011 Ward [36] produced field solutions and

energy density plots for SU(2) monowalls with distinct left and right magnetic

charges. Soon after this Cherkis and Ward invoked the Higgs spectral curve

(introduced previously in the context of periodic monopoles [15]) to establish

the monowall moduli and find the monowall moduli space dimensions. They
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related the spectral data for the Higgs spectral curve to the boundary condi-

tions on the Higgs field and gauge phases which specify the monowall moduli

space. They used the Newton polygon and real Log projection of the Higgs

spectral curve called the amoeba to illustrate these conditions. Hamanaka et

al. soon after publish their result for doubly periodic monopoles with distinct

charges [16] which were mentioned above. From this point forward, the Higgs

spectral curve becomes a standard tool used to analyze monowall behavior. In

2014, Maldonado and Ward [37] published a set of numerically generated field

solutions for a pair of doubly periodic SU(2) ’t Hooft-Polyakov monopoles

with several relative charge examples and they used these results to compute

the coefficients of the metric on the moduli space of these monowalls. In [38]

Cherkis explicitly associated phases of the monowall’s amoeba with triangu-

lations of the Newton polygon and explored the set of amoeba phases using

the secondary polytope and fan associate with the Newton polygon. He iden-

tified all monowalls with four moduli and discussed the asymptotics of their

moduli spaces. In [39] we used the Higgs spectral curve to argue for monowall

breaking when monowall moduli grow large and then generalized the results

from Hamanaka et al. to a metric on the asymptotic moduli space of a U(N)

monowall with n widely separated subwalls with distinct charges.

As mentioned earlier in this section, BPS monopoles arise in classical Yang-

Mills-Higgs theory. Their moduli spaces are argued to be isometric to moduli

spaces of vacua for SU(n) super Yang-Mills quantum gauge theories (with

boundary conditions and dimension particular to each of the monopole peri-

odicity cases). Seiberg and Witten originally discovered the existence of these

relationships in [6], following work by Seiberg and Witten [40, 41], and Intrili-

gator and Seiberg [42, 43]. Chalmers, Hanany, and Witten [7, 8] explained
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these relationships using brane dualities. Later Haghighat and Vandoren [44]

examined the compacitified five dimensional quantum field theory relevant to

doubly periodic BPS monopoles, and the underlying theory connecting them.

For n monopoles on R3, this theory is related via the relative moduli space met-

ric to the Coulomb branch of N = 4 SU(n) quantum super Yang-Mills vacua

in three dimensions [6]. For two such monopoles, the relative metric is called

the Atiyah-Hitchin metric. n periodic monopoles (on R2×S1, called“monopole

chains”) are related via their moduli space metric to the Coulomb branch of

vacua for N = 2 SU(n) quantum super Yang-Mills in four dimensions which

has been compactified on a circle [17]. Similarly, n doubly-periodic monopoles

(on R × T 2, called “monopole walls” or “monowalls”) are related via their

moduli space metric to the Coulomb branch of vacua for N = 1 SU(n) quan-

tum super Yang-Mills in five dimensions which has been compactified on a

two-torus [22, 16, 44]. These moduli spaces of monowalls are the main subject

of this thesis.

The next step in the discussion of monowall moduli spaces is to identify com-

plex coordinates on them and explore their Kähler potentials, which are local

functions of these complex coordinates or moduli and whose second derivatives

give the metric coefficients. In the following work we use the generalized Leg-

endre transform to find complex coordinates and asymptotic Kähler potentials

for the asymptotic moduli spaces of monowalls. In 1987 Hitchin, Karlhede,

Lindström and Roček [45, 46] introduced the generalized Legendre transform

as a tool for generating hyperkähler metrics and, relevantly, for metrics of n

widely-separated monopoles. Ivanov and Roček [47] further illustrated the util-

ity of the transform for monopole metrics by reproducing the Atiyah-Hitchin
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moduli space metric for two SU(2) monopoles. In 1997 Chalmers [48] car-

ried out the generalized Legendre transform to derive moduli space metric

for widely separated monopoles on R3 and generalized from SU(2) to SU(N)

gauge symmetry. Later Houghton [49] connected the generalized Legendre

transform to monopole twistor theory. He summarized the role of the gen-

erating function and generating integrand and how to compute them for a

known hyperkähler metric. This dissertation compiles work which continues

and elaborates on the efforts listed for monowalls: Here we 1) demonstrate

that monowalls break into subwalls for large moduli and the subwall inter-

actions become approximately abelian. 2) We compute metrics and Kähler

potentials for the asymptotic moduli spaces of subwalls and 3) relate these

Kähler potentials crystal volumes.

1.2 Yang-Mills-Higgs theory

In classical, 3+1-dimensional U(N) Yang-Mills-Higgs theory the pure Yang-

Mills action is augmented by that of a scalar with the usual symmetry-breaking

potential.

S =

∫
d4xTr

[
1

2
FµνF

µν − (DµΦ) (DµΦ)− λ
(
Φ2 + v2

)2
]
. (1.1)

We shall have both the gauge and Higgs fields antihermitian in the adjoint

representation. They can be expressed as linear combinations of the antiher-

mitian U(N) generators Tb: Φ = ΦbTb, Aµ = AbµTb where Φb and Abµ are real

functions, b = 1, ..., N2 indexes the U(N) generators, and v is a real constant.

The gauge covariant derivative is DµΦ = ∂µΦ + [Aµ,Φ] and the field strength

is Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].
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The action-extremizing Yang-Mills-Higgs field equations are easily derived,

D2Φ = λ (Φ2 + v2) Φ, DµF
µν = [Φ, DνΦ], (1.2)

but we can more strongly constrain the solutions by requiring time-

independence (∂0 = 0) and taking the limit λ → 0. Under these conditions

the energy is minimized when the following equation, called the Bogomolny

equation, is satisfied:

Bi = ±DiΦ, (1.3)

where the magnetic field is found from the field strength: Bi = −1
2
εijkF

jk and

i = x, ϕ, θ. Alternately, in the form of a complex and a real equation (we have

chosen the (−) case in (1.3) and will use it from now on),

[Dx + iDθ, Dϕ + iΦ] = 0,

[Dx + iDθ, (Dx + iDθ)
†] + [Dϕ + iΦ, (Dϕ + iΦ)†] = 0.

(1.4)

These conditions are collectively known as the BPS limit and solutions to the

Bogomolny equation are static BPS magnetic monopoles [50]. Static magnetic

charge configurations are possible in this limit because the magnetic field repul-

sion is canceled by the Higgs field attraction the fields satisfy the Bogomolny

equation (1.4).

Now, a BPS solution is a static solution, i.e the Higgs and gauge field configu-

rations are time-independent. For fixed total charge and a given set of gauge

and Higgs field boundary conditions, there may be many such static solutions.

A monopole (or monowall) moduli space is the set of BPS solutions for fixed

total monowall charge and boundary conditions. If boundary conditions are

chosen appropriately it is a manifold. Each point on the manifold represents
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a BPS solution, up to gauge transformations, with associated charge distri-

bution. To identify nearby locations on the moduli space, we perturb a BPS

solution (Φ, Ai) → (Φ + δΦ, Ai + δAi) and require that it still satisfy the

Bogomolny equation. The linearized form of the Bogomolny equation is

1

2
εijk [Dj(δAi)−Dk(δAj)] = −

(
Di(δΦ) + [δAi,Φ]

)
. (1.5)

But the moduli space does not contain gauge redundancy and so these per-

turbations must also be orthogonal to small gauge transformations eΛ which

affect the fields Φ → eΛΦe−Λ and Aµ → eΛ(Aµ + ∂µ)e−Λ. Expanding in Λ

we can write such gauge shifts as (Φ, Ai) → (Φ + δΛΦ, Ai + δΛAi) where the

small gauge effects on the field are (δΛΦ, δΛAi) = ([Λ,Φ],−[Di,Λ]). If our

perturbed BPS fields are to lie on the moduli space adjacent to the original

solutions then the perturbations (δΦ, δAi) are orthogonal to the small gauge

shifts (δΛΦ, δΛAi), i.e. they must satisfy∫
d3xTr

[
−(δAi)DiΛ + (δΦ)[Λ,Φ]

]
= 0 (1.6)

for all small gauge transformations Λ. Integrating by parts reveals that this

is equivalent to the following equation, which fixes the perturbations to be

orthogonal to gauge slices:

Di(δAi)− [δΦ,Φ] = 0. (1.7)

Perturbations of BPS solutions which satisfy equations (1.5) and (1.7) will

be tangent to the moduli space and the metric on the moduli space can be

expressed as the overlap of these. We establish a set of generalized complex

coordinates on the moduli space indexed by p: (χp, χ̄p). The moduli pertur-

bations which satisfy these conditions must be accompanied by a small gauge
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transformation Ω to keep the moduli perturbations orthogonal to the gauge

orbit. These perturbations take the form

δp(A1 + iA3) = ∂p(A1 + iA3)− [(D1 + iD3),Ωp],

δp(A2 + iΦ) = ∂p(A2 + iΦ)− [D2 + iΦ,Ωp],

(1.8)

where ∂p = ∂
∂χp

. The metric on the moduli space of monopoles which de-

scribes the space of BPS solutions (Φ, Ai) which share a set of fixed boundary

conditions is1

gpq̄ =

∫
d3xTr

[
δp(A1 +iA3)δq̄(A1−iA3)+δp(A2 +iΦ)δq̄(A2−iΦ)

]
+h.c. (1.9)

Moduli spaces for BPS monopoles are hyperkähler [7] and therefore once a

complex structure is chosen for a moduli space its metrics can be related to a

Kähler potential K2. A Kähler potential is a local scalar function of complex

moduli whose second derivatives give the set of metric coefficients.

gpq̄ = ∂p∂q̄K. (1.10)

The metric on the moduli space is important for describing monopole dynam-

ics. If the positions of localized charge density gain very small velocities, this

motion can be approximated by geodesic motion on this moduli space [52, 51].

We allow the moduli to be time-dependent χp(t) and the fields to possess time

dependence only through the moduli. The time component of the gauge field

is no longer zero in this case and must satisfy the component of the Yang-

Mills-Higgs field equations which is linear in time and is analogous to Gauss’

law DiF
i0 + [D0Φ,Φ] = 0. This is satisfied by setting it equal to the same

1This description of the moduli space of BPS monopoles follows [51].
2Each complex structure has its own Kähler potential.
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small gauge perturbation seen above: A0 = Ωpχ̇
p. We can then related the

time derivatives of the fields to the moduli perturbations (δpΦ, δpAi):

F0i = (δpAi)χ̇
p, D0Φ = (δpΦ)χ̇p. (1.11)

The remaining fields are not affected by small time dependence up to first

order in t. This implies that for small time-dependent perturbations around

BPS solutions the kinetic components of the Lagrangian give precisely the

metric on the moduli space:

L =
∫
d3x Tr [F0iF

0i + (D0Φ)(D0Φ)− FijF ij − (DiΦ)(DiΦ)]

= gpq̄ χ̇
p ˙̄χq + constants.

(1.12)

The monopoles are in motion now and just as a moving electric charge produces

a magnetic field, so does a moving magnetic charge produce an electric field

perpendicular to the direction of motion. An additional effect comes with this

small time-dependence, however: these magnetic charges gain electric charge

and so altogether may interact magnetically, electrically, and via the Higgs

field. This effect is controlled by a periodic phase modulus τ associated with

each charge [9].

This effect can be seen by allowing the gauge field component A0 to include

a term proportional to the Higgs field, which satisfies Gauss’ law. We expect

A0 to be linear in time derivatives so we interpret the coefficient of this term

as a small velocity along the phase direction τ : A0 → A0 + τ̇Φ. This term

produces the following effects on the electromagnetic fields:

δτF0i = τ̇Bi, (1.13)
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which is parallel to the magnetic field, suggesting that the monopole is now a

source of electric field as well as magnetic field.

This phenomenon can be interpreted as resulting from a type of gauge trans-

formation. While we identify BPS solutions which are related by small gauge

transformations, we can introduce this phase modulus τ explicitly to the fields

through a large gauge transformation. A large gauge transformation is one

which does not become the identity as r → ∞. This function will have the

form eτΦ where the monopole’s position τ(t) along this phase modulus is lin-

early time dependent with a very small velocity. This creates a small contribu-

tion to the zeroth gauge component δτA0 = τ̇Φ (note that the effect appears

only when the monopole moves along the τ direction). Due to the gauge slice

orthogonality condition (1.7), the spatial components are unchanged δτAi = 0

by this motion along the τ direction.

We refer to objects with both electric and magnetic charge as dyons [53].

Dyons arise when we allow small time-dependent perturbations around BPS

field solutions and we can model their low-velocity dynamics with geodesic

motion on the moduli space.

In particular, we are interested here in exploring this theory in an underly-

ing three-space R × T 2 with two coordinates ϕ and θ compactified on a two

torus, each with period 2π: (ϕ, θ) ∼ (ϕ + 2π, θ) ∼ (ϕ, θ + 2π), and x ∈ R.

Monopoles in such a space are referred to as monopole walls, or monowalls.

Certain components of the gauge field gain mass in some regions of the under-

lying space because the Higgs field is non-vanishing, and because of the gauge

field holonomies associated with the periodic directions. As x grows large, we
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choose the Higgs field to approach diagonal with at most linear growth, the

gauge holonomies to approach diagonals which are constant in space, and the

U(N) symmetry to be maximally broken to U(1)N in the asymptotic region.

Then only diagonal gauge field components, those representing the Cartan

subalgebra of U(N), remain massless. We identify the locations of magnetic

charge with positions at which partial or full gauge symmetry is restored [54].

The massive gauge field components decay exponentially with distance from

such locations.

1.3 Objectives

This dissertation pursues four goals. First we show that a BPS monowall that

has moduli (degrees of freedom) will split into distinct, well-separated subwalls

if any of its moduli becomes large. Second, we determine the moduli space

metric corresponding to the gauge field and Higgs interactions of n widely

separated, slow-moving subwalls with distinct charges by following Manton’s

method [9, 13]. Third, we use the generalized Legendre transform to identify

a generating function G̃ from which we identify a set of complex coordinates

on the moduli space and a Kähler potential which produces the asymptotic

moduli space metric that we found in the second part. Last, we compute the

cut volume, a function of a quarter of the moduli, and compare it with the

function G̃ introduced above in pursuit of the third goal. We prove that the

cut volume equals G̃.

To accomplish the first objective, in Chapter 2 we review the construction of

the Higgs spectral curve and analyze its behavior for large, distinct moduli
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using the Newton polygon and amoeba associated with this curve. The large-

moduli amoeba directly relates to the BPS monopole when its constituent sub-

walls are widely-spaced, so we will demonstrate that as one of the monowall’s

moduli becomes very large, the monowall breaks into subwalls which move

apart. Note that the number and charge of the constituent subwalls depends

on relative ranking and size of moduli, which will be discussed further in sec-

tion 2.2. Furthermore, we show that the symmetry breaks from U(N) to U(1)N

beyond a determined distance from each subwall. The subwalls then behave as

distinct objects and their gauge and Higgs field interactions are approximately

abelian, with exponential precision.

We reach the second objective in Chapter 3 to calculate the moduli space

metric for n well-separated subwalls by modeling the moving subwalls as planes

with scalar, magnetic, and electric abelian interactions with one another. For

these subwalls the Lagrangian reduces to purely kinetic in the slow-velocity

limit. Lagrange’s equations are now equivalent to the geodesic equation for

the monowall moduli and we can read off the moduli space metric from the

kinetic term.

Here are the defining parameters of the moduli space we will calculate. Note

that the parameters are constant quantities specifying the boundary conditions

on the fields. They distinguish monopole moduli spaces and are not themselves

moduli. The Yang-Mills-Higgs abelian asymptotic field equations imply a

harmonic Higgs field. Following [22], we constrain the Higgs field of the U(N)

monowall to diverge no more than linearly, and its eigenvalues to behave as

follows when x→ ±∞:

Φ±∞a = −i
(
G±a x+ v±a

)
+O(x−1), (1.14)
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where a = 1, ..., N indexes the N unbroken U(1) factors, i.e. the N diagonal

elements of the field matrices with which the Higgs eigenvalues are in one-to-

one correspondence. The left and right magnetic charges of the monowall G±a

are rational constants and the subleading terms v±a are real constants. Also

fixed as x→ ±∞ are the holonomy eigenvalues eidϕ,a and eidθ,a associated with

the two periodic directions (ϕ, θ). We use the shorthand ~d±a = (0, d±ϕ,a, d
±
θ,a),

where the vector symbol indicates the three spatial directions and d±a,i ∈ [0, 2π).

Together with the locations of any singular (called Dirac) monowalls, these

constants (G±a , v
±
a ,
~d±a ) fully specify the moduli space. Cherkis and Ward [22]

have established necessary conditions the above parameters must satisfy for

the existence of BPS solutions to be guaranteed. These are determined using

the Newton polygon construction, which will be described later in this section.

They determined [22] that the number of real moduli is then four times the

number of integer points in the interior of the Newton polygon, which the next

subsection describes.

To reach the third objective in Chapter 4 we review the generalized Legen-

dre transform [48, 45, 46] for monopoles and the method for computing a

generating integrand G̃ and generating function F (from which to calculate

complex coordinates on the moduli space and the Kähler potential). We ap-

ply the generalized Legencre transform to monopoles on periodic and doubly

periodic underlying spaces in order to find the generating integrand G for the

metric on the moduli space of widely separated, slow-velocity doubly periodic

monopoles.

For the last objective, in Chapter 5 we consider a plane arrangement deter-

mined by the moduli. We compute a volume cut out by these planes called the
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cut volume (which was introduced and motivated in [38]) using the Lawrence

formula for polytope volumes [55] and compare it with the generating inte-

grand for doubly periodic monopoles and establish that they are the same

function (up to an overall factor of 1/2).
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CHAPTER 2

Higgs Curve and Crystal

2.1 Higgs Spectral Curve

This description of the Higgs spectral curve closely follows that given in [39,

Secs. 2.3 and 3]. Label the three spatial coordinates (x, θ, ϕ) where x ∈ R,

ϕ ∼ ϕ + 2π and θ ∼ θ + 2π. For each periodic coordinate ϕ and θ, define

the Higgs spectral curve (or “monopole spectral curve”) [15, 21, 22]. We will

use one of these as a tool to explore behaviors of BPS solutions in U(N)

Yang-Mills-Higgs theory. The ϕ-direction Higgs curve Σϕ, for example, is

determined by the characteristic equation for the holonomy of the differential

operator Dϕ + iΦ. The fields (Φ, Ai) are assumed to be BPS, i.e. satisfying

the Bogomolny equation (1.4). To define the holonomy, introduce a matrix

function V (x, ϕ, θ) which, given a solution (Φ, Ai) of the Bogomolny equation

(1.4), solves the system of equations

(Dϕ + iΦ)V = 0, (Dx + iDθ)V = 0. (2.1)

The consistency condition for this linear system is [Dx + iDθ, Dϕ + iΦ] = 0

which amounts to two of the three Bogomolny’s equations. The holonomy of

Dϕ + iΦ is W (x, θ) = V (x, 2π, θ) V −1(x, 0, θ), which is a holomorphic function

of x + iθ thanks to the second equation in (2.1) [15, 22]. Since θ is periodic,

define a more convenient coordinate s = ex+iθ ∈ C∗. The eigenvalues of the
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holonomy W (s) are finite (away from the Dirac singularities) and nonzero, the

Higgs spectral curve is described by the characteristic (eigenvalue) equation of

W (s):

F (s, t) := det(t−W (s)) = 0, where F (s, t) =
N∑
l

kl(s)t
l. (2.2)

F (s, t) is a polynomial in t ∈ C∗ of degree N . Given the linear boundary con-

ditions we have set on the fields [22] the functions kl(s) are rational functions

of s. Without affecting the curve Σ : F (s, t) = 0 (i.e. without affecting the set

of roots {(s, t)|F (s, t) = 0}), we can rescale by a common denominator poly-

nomial in s to obtain a polynomial in s and t, labeled f(s, t). This is referred

to as the spectral polynomial [22], or Higgs spectral polynomial. The algebraic

curve produced by f(s, t) = 0 is the Higgs spectral curve and lives in C∗ × C∗,

where C∗ is the complex plane with the origin omitted, s is the coordinate in

the first C∗ factor and t is the coordinate in the second C∗ factor.

We now introduce the Newton polygon and amoeba for this polynomial, which

can be written f(s, t) =
σ+σ′∑
i=1

ais
mitni , where σ + σ′ is the number of terms in

the polynomial. The Newton polygon N (f) is the minimal convex hull of the

points {(mi, ni)} in Z2 for which the coefficients are nonzero ai 6= 0. The

concept generalizes to arbitrary dimension [56, 22]. Let σ′ be the number of

integer points along the perimeter of the Newton polygon and σ the number

of internal points.

To obtain the amoeba, project the Higgs spectral curve Σ ⊂ C∗ × C∗ = R2 ×
S1 × S1 from two complex dimensions down to two real dimensions R2 by

taking the modulus of each factor of C∗ and applying the Log map

(s, t)→ (log |s|, log |t|) = (x, y). (2.3)
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This yields a more intuitive view of the nature of the curve, particularly in

the large-x regime, as will be seen. As we shall see, when one or more of the

moduli are large, equation (2.1) simplifies significantly when the commutator

vanishes and the Higgs field becomes approximately linear in x. It is clear that

x is the noncompact coordinate on the underlying space and in this region y

corresponds to the x-linear Higgs eigenvalue magnitudes (multiplied by −2πi).

When the Higgs curve is projected in this manner, the result is called the

amoeba A(f) ⊂ R2 of Σ for its distinctive appearance [57] (see for example

Figure 2.1).

We will use the ϕ-direction Higgs curve but it should be noted that a different

spectral curve could be found by exchanging the roles of coordinates θ and ϕ.

These curves however share the same Newton polygon [22].

Figure 2.1: Newton polygon and amoeba for F (s, t) = 1.3st2 + ust + (−1 +
5s+ 4s2) with u = 1000.
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2.2 Multi moduli spectral curve, relationship to monowalls

Each edge of the Newton polygon is associated with a set of external amoeba

legs stretching out to infinity. Each external leg asymptotes to a normal to its

associated polygon edge, and its position is determined by the monomials of

f(s, t) associated with that edge (their powers (m,n) and coefficients). In order

to keep the boundary conditions on the fields fixed, the polynomial coefficients

corresponding to edge terms must be fixed [22]. This constraint does not apply

to points on the interior of the Newton polygon, and we may consider the

family of polynomials with fixed perimeter coefficients and a range of values

for internal coefficients. To this purpose, we begin by allowing the internal

point coefficients to vary, i.e. we consider the family of polynomials for which

the coefficient of the internal points take complex values, while the perimeter

coefficients are each fixed in the complex plane. Rather than considering each

such polynomial individually, we may look at the whole picture by treating

the internal coefficients as moduli of the curve. While the external legs are

fixed in position and slope by boundary conditions on the fields (Φ, A), the

internal legs of the amoeba will shift in position and thickness as the long

moduli log |aint
ρ | = Rint

ρ vary. We may distinguish among the phases of the

amoeba by specifying the relative magnitudes of the moduli. Each such phase

corresponds to a regular triangulation of the Newton polygon [57, Sec 7.1.C].

This determines how many internal legs exist, their slopes, and the graph

they form. We will take a moment here to expand on how the relative size of

the internal coefficients relates to the phase of the amoeba and correspond to

triangulations of the Newton polygon. In the following subsection we assume a

fixed phase and discuss the associated amoeba, and will return to the question
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of phases of the amoeba at the end of the section.

2.2.1 Three dimensional Amoeba

In order to explore a given phase without shuffling the relative size ranking of

the moduli, we will introduce a parameter h such that the perimeter coefficients

aper
ρ are h-independent, while real exponentials in the internal coefficients are

scalable by modifying h. Let the internal coefficient be ãint
ρ = e

Rρ
h

+iΘρ . Note

that Rρ ∈ R≥0, h ∈ R≥0 and Θρ ∈ [0, 2π). By taking h to be very small,

we explore the regime in which all of the internal coefficients in the Higgs

spectral polynomial are very large while preserving their relative ranking. This

corresponds to choosing a certain direction to approach infinity on the moduli

space. Let us for now treat the quantity u := e
1
h as an independent variable on

par with s and t. This effectively increases the number of complex coordinates

of the function from two to three but demotes it from polynomial. We write

the three dimensional Higgs spectral function (from now on referred to as the

Newton function) with σ + σ′ terms as

f̃(s, t, u) =
σ∑
ρ=1

eiΘρsmρtnρuRρ +
σ+σ′∑
µ=σ+1

aµs
mµtnµ . (2.4)

The three-dimensional Newton polytope Ñ (f̃) associated with this Newton

function is the minimal convex hull of the points {(mρ, nρ, Rρ)ρ∈Int(N )} ∪
{(mρ, nρ, 0)ρ∈Per(N )} in Z2 × R for which the coefficients are nonzero aρ 6= 0.

We are interested in relative rankings of Rρ such that all σ internal points ap-

pear as vertices of this hull, i.e. such that all monomials in f̃ are represented

on the Newton polytope surface.
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The three-dimensional amoeba Ã(f̃) ∈ R3 for f̃(s, t, u) = 0 also has ex-

ternalities extending to infinity, known as the asymptotic three-dimensional

amoeba. According to Gelfand, Kapranov, and Zelevinski1 [57] and Viro [58,

Sec. 4], this three-dimensional amoeba asymptotically approaches the core of

the amoeba exponentially fast. The amoeba approaches this core when one or

more of its internal coefficients becomes very large. The amoeba core can be

described in the following way (see Figure 2.2): Orthogonal to each edge of the

three-dimensional Newton polytope for f̃(s, t, u) is a continuous set of direc-

tions which form plane wedges. Wedges for different edges on a given face of

the Newton polytope intersect at and terminate on the leg associated with that

face. The three dimensional amoeba legs are a set of cylinders each normal to a

polytope face and having two-dimensional amoeba cross-sections. Recall that

x = log |s| is the non-compact spatial coordinate and that y = log |t| asymp-

totically corresponds to the Higgs eigenvalue magnitudes. The significance of

the new, third component z = log |u| is the following. The intersection of the

three-dimensional amoeba with a horizontal plane defined by a given height

of z = 1
h

is precisely the two-dimensional amoeba for f(s, t) (e.g. Figure 2.3)

for a given value of z. The Newton polygon for this two-dimensional amoeba

is the projection of the three-dimensional Newton polytope onto the (m,n, 0)

lattice. Each subwall corresponds to a face of the three-dimensional polytope.

For a horizontal plane positioned at very large z, its intersection with the three-

dimensional amoeba is as follows: The plane intersections with the wedges of

the three-dimensional amoeba along straight lines, called amoeba lines. The

plane intersections with the three-dimensional amoeba legs, called junctions,

are sections of the amoeba legs whose cross-sections are two-dimensional amoe-

1Proposition 1.13, Ch. 6
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Figure 2.2: Three-dimensional Newton polygon and sketch of three-
dimensional amoeba core for f̃(s, t, u) = 1.3st2 + ust+ 4s2 + 5s− 1.

bas. Importantly, these sections have fixed areas asymptotically which differ

from the cylinder cross-sections by a constant factor. Each subwall (which

will be defined in detail in the following subsection), then, is associated with

and its behavior determined by a face of the Newton polytope when one or

more moduli are large. The separations/relative positions of subwalls depend

linearly on the parameter z.

Here we will make a brief note about secondary polytopes and their fans in

order to describe the phases of the amoeba and how they correspond to tri-

angulations of the Newton polytope. A useful tool for exploring the range of

values of the internal coefficients which correspond to a given triangulation of

the Newton polytope is the secondary polytope introduced in [57, Ch. 7] and

secondary fan. Let us describe the secondary polytope, an object defined by
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Figure 2.3: Three dimensional amoeba (white) and R
h

plane (grey). The in-
tersection (black) gives the two-dimensional amoeba for a given value of R

h
.

the set of possible coherent triangulations (sometimes called regular triangu-

lation) of the Newton polytope [57, Sec 7.1.C], i.e. triangulations in which

the vertices of the subdivisions of the triangulation are either vertices of the

Newton polytope or internal points with non-zero coefficients in the Newton

polytope.

For a k-dimensional Newton polytope with σ internal points and σ′ perimeter

points, its secondary polytope is generally a (σ+σ′−k−1)-dimensional object

in a (σ + σ′) dimensional space—and each dimension corresponds to one of

the σ + σ′ points on the Newton polytope. More specifically, each dimension

corresponds to the real part of the coefficient of the associated point on the

Newton polytope. Each vertex of the secondary polytope corresponds to a
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coherent triangulation of the Newton polytope and the coordinates of that

vertex of the secondary polytope are determined by how each of the σ + σ′

Newton polytope points feature in that triangulation.

Given a triangulation and its associated vertex of the secondary polytope,

we can calculate the coordinate of that vertex along the ρth direction. In this

triangulation of the Newton polytope, the ρth point in the Newton polytope N
is a vertex for some of the subdivisions of N . The coordinate of the secondary

polytope vertex along the ρth direction is equal to the sum of the volumes

subdividingN for which point ρ is a vertex. The reason the secondary polytope

is (σ + σ′ − k − 1) dimensional rather than (σ + σ′)-dimensional is because

shifting the Newton polytope in any of its k dimensions does not affect the

secondary polytope, and the sum of the elements of any secondary polytope

vertex coordinate is k + 1 times the total volume of the Newton polytope.

This last condition is because each simplex in the Newton polytope subdivision

(triangulation in the case of a Newton polygon) has k+1 vertices and therefore

its volume gets counted k + 1 times in the computation of the coordinate of

the secondary polytope vertex.

The fan of the secondary polytope is dual it. Each vertex of the secondary

polytope has a cone, the volume spanned between the normals of all faces

adjacent to that vertex. The relevance of the cone for a given vertex is that

it contains the range of directions in “coefficient space” that will cause the

monowall to break into the set of subwalls corresponding to that triangulation

in a large moduli limit. In other words, with each cone in the secondary

polytope fan is associated a phase of the three dimensional amoeba.
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For example, consider a square with side length 2, four perimeter points and

one internal point, as in part a of figure 2.2.1. This possesses three coherent

triangulations seen in part b of figure 2.2.1. The secondary polytope is a two

dimensional triangle in five dimensional space, as seen in part c of figure 2.2.1.

Within the plane of the triangle, the set of directions spanning between the up-

ward normal arrow and the normal arrow on the right give the set of directions

in coefficient space along which the amoeba will be in the phase corresponding

to the associated triangulation. Note that the first two triangulations given in

figure 2.2.1 correspond to small values of the internal point’s coefficient and so

are inaccessible triangulations in the limit that the internal coefficient is large.

Figure 2.4: The Newton polygon in a) has three coherent triangulations,
which can be seen in b). Its secondary polygon c) has vertices at (0 4 2 4 2),
(0 2 4 2 4) and (4 2 2 2 2). It is a two dimensional secondary polytope in a
five dimensional space for a two dimensional Newton polygon. Here, σ = 1,
σ′ = 4 and k = 2.
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It is worth making explicit that these various phases of the monowall indicate

that while the monowall breaks into subwalls for large moduli, these subwalls

are not fundamental constituents in the way that, for example, quarks are

fundamental constituents of a proton. The subwalls of a particular phase do

not exist when the monowall is unbroken and the subwall may break into one

set of constituent walls in one phase, and into a completely different set of

constituent walls in a different phase.

2.2.2 Monowall breaking

We now proceed to describe the breaking of the monowall into subwalls and

how we define the subwall thickness so that we may identify the conditions

under which the monowall may be treated as a collection of constituent sub-

walls with abelian interactions. The equations giving these conditions and the

width of a subwall are respectively equations (2.11) and (2.10). In Section 2.3

we define the crystal and continue on in Chapter 4 to derive a metric on the

moduli space of these widely separated subwalls.

In the y versus x plane at z, the amoeba lines correspond to regions in x where

the Higgs eigenvalues take values linear in x, with multiplicity equal to the

denominator of the slope the Higgs eigenvalues Eig (iΦ) = −mρ−mµ
nρ−nµ x−

Rρ−Rµ
nρ−nµ ,

i.e. the height nρ − nµ of the associated Newton polytope edge. In such

regions, it is not the minimum difference in Higgs eigenvalues which produces

mass in the off-diagonal gauge fields, but the minimum difference in Holonomy

eigenvalues. As we will show, the U(N) symmetry in these regions is maximally

broken to U(1)N by the non-vanishing gauge field holonomies for the ϕ and
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θ directions, and the fields are exponentially close to abelian. The junctions

correspond to regions in which the Higgs field eigenvalues are not linear in x

and the gauge field holonomies cannot be approximated well, and so we are

unable to infer fully broken symmetry; we interpret these regions as locations

of magnetic charges, or subwalls. It is necessary now to define the widths of

these subwalls, or the extents in x of their nonabelian interiors. We will define

the subwalls to be “well-separated” when their separations are much greater

than the maximal subwall width and therefore their interactions are abelian.

To accomplish this, we must quantify the decay of the off-diagonal gauge field

components which mediate nonabelian field interactions. Gauge field compo-

nents which do not commute with the Higgs field must decay exponentially at a

rate proportional to the separation of Higgs eigenvalues [59, 10.5, Ch. IV]. Here

this decay rate amounts to the Log of the ratio of eigenvalues, log (tρ/tµ), for

the holonomy W̃ (s, u) since nonvanishing gauge field holonomies can asymp-

totically generate gauge field masses analogously to the Higgs mechanism. At

the point where these non-commuting gauge field components have decayed

by some chosen fraction, we mark the edge of a subwall. We define the subwall

width as the distance at which the exponential rates for the decay of the non-

abelian gauge field components are bounded from below by some small value

T0, plus the distance 1/T0 at which the fields will have decreased by a factor

of 1/e (the inverse of Euler’s number).

While the behavior of the real part log |W̃ | of the holonomy (as a function

of x) is illustrated by the amoeba, the behavior of its argument is not. We

must therefore look to the Newton function to determine the various branches

of t = T (s, u), which locally satisfy f̃(s, T (s, u), u) = 0. This is done by
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calculating the Newton-Puiseux expansion [60, 61] for T (s, u) with respect to

s and u. If the two Newton polytope faces corresponding to two subwalls share

an edge, then the fields between two subwalls are governed primarily by the

two monomials in the Newton function that are associated with the edge e

joining the two faces. There are also smaller contributions from the remaining

monomials. The resulting expansion will take the following form and only the

first two terms in the expansion are of concern here:

Tα(s, u) = c1α s
γ1uγ3 + c2α s

γ̃1αuγ̃3α + ...

= c1α s
γ1uγ3

(
1 + (c2α/c1α) sγ̃1α−γ1uγ̃3α−γ3

)
+ ...

(2.5)

Briefly, for a direction w ∈ R3 within the normal cone of an edge of the Newton

Figure 2.5: The area above the grey partial planes is the normal cone for edge
e. The normal vector n′ is normal to the front right face, while n is normal to
the rear face. The vector w is normal to edge e and lies in the wedge bounded
by n and n′. It is defined as a rotation if n through angle ε.

polytope (see Figure 2.5), the Newton-Puiseux series is constructed iteratively.
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We consider first the case of an edge joining a perimeter point and an internal

point. The dominant series term solves the vanishing of the edge function

eiΘρuRρsmρT nρ + aµ s
mµT nµ = 0, so that in the dominant term in the series,

the coefficient is c1α =
(
−aµe−Θρ

)−1/(nρ−nµ)
e2πi·α/(nρ−nµ), and the powers are

γ1 = −(mρ−mµ)/(nρ−nµ), and γ3 = −Rρ/(nρ−nµ). For an edge joining two

internal points, the first series term solves the vanishing of the edge function

eiΘρuRρsmρT nρ+eiΘµuRµsmµT nµ = 0, and the coefficient and powers are instead

c1α = (−1)1/(nρ−nµ)e−i(Θρ−Θµ)/(nρ−nµ)e2πi·α/(nρ−nµ), γ1 = −(mρ−mµ)/(nρ−nµ),

and γ3 = −(Rρ −Rµ)/(nρ − nµ).

More formally, the powers γ1 and γ3 are the negative of the components of

the slope vector Se =
(

e1
e2
, 0, e3

e2

)
= −(γ1, 0, γ3) associated with a perimeter-

interior edge e = (mρ−mµ, nρ−nµ, Rρ) or an interior-interior edge e = (mρ−
mµ, nρ − nµ, Rρ −Rµ), and the coefficient c1 solves the equation

∑
ρ∈e
aρc

nρ
1 = 0,

excluding trivial solutions, where here aρ is a stand-in for either constant

perimeter coefficients or variable interior coeffients eiΘρ . The second term,

c2s
γ̃1uγ̃3 is found by repeating this process for the Newton polytope for the

function f̃1(s, T1, u) = f̃(s, T1 + c1s
γ1uγ3 , u) =

σ1∑
ρ=0

a1
ρs
m1
ρT

n1
ρ

1 , choosing an edge

ẽ which maximizes −Sẽ ·w (called the order ν̃ of edge ẽ with respect to w) while

satisfying −Sẽ ·w < −Se ·w. The coefficient c2 solves the equation
∑
ρ∈ẽ
a1
ρc
m1
ρ

2 = 0

and |c2| ≤
(

1 +
max({|aρcN1 |},{|aρ|})
min({|aρcN1 |},{|aρ|})

)
=: C2 is its maximum magnitude [62].

Again, here aρ stands in for either the constant perimeter coefficients or the

variable internal coefficient eiΘρ which may vary between -1 and 1.

Define δ = (δ1α, 0, δ3α) = (γ̃1α − γ1, 0, γ̃3α − γ3), which behave as follows in

the asymptotic limits: For s → 0 and u → ∞, δ1α > 0 and δ3α < 0; for
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s → ∞ and u → ∞, δ1α < 0 and δ3α < 0. In other words, the quantity

sδ1αuδ3α decays in both of these limits of s and u. Given the first two terms

of the Newton-Puiseux series, the ratio of two eigenvalues Tα of the holonomy

W̃ (s, u) is written

Tα(s,u)
Tβ(s,u)

= c1α
c1β

(
1 + c2α

c1α
sδ1αuδ3α − c2β

c1β
sδ1βuδ3β

)
+O

(
min(s2δ1au2δ3a)

)
a=α,β

.

(2.6)

In this expression, every quantity but the first term c1α/c1β decays in

the asymptotic limits. Simplifying the ratio of coefficients c1α/c1β =

e2πi(α−β)/(nρ−nµ), the Log of equation (2.6) becomes

log
(
Tα
Tβ

)
(s, u) = 2πi(α−β)

ni−nj +
(
c2α
c1α
sδ1αuδ3α − c2β

c1β
sδ1βuδ3β

)
+O

(
min(s2δ1au2δ3a)

)
a=α,β

.

(2.7)

The first term in this series is constant, while in the asymptotic limit the

quantity in the parentheses is the largest decaying term in the series.

The expansion direction w ∈ R3 comes explicitly into play when determining

the relative sizes of the quantities sδ1 and uδ3 . Along the direction w, the

variables behave as

(s0, t0, u0) ∼ (s0e
w̄1 , t0e

w̄2 , ew̄3) (2.8)

relative to some initial values (s0, t0, 1) [58], where w̄ is the vector w multiplied

by a coefficient so that its third component is w̄3 = z: w̄ = z
w3
w for z ∈ R≥0.

Also define the extended face normal vector n̄ = z
n3
n.

We have not said very much so far about the direction vector w except that it

must lie within the normal cone of the edge e. Define it relative to the nearest
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of the two adjacent face normal vectors n (see Figure 2.5). For angle ε, we

define the expansion direction as a rotation of the normal vector n of one of

the edge’s adjacent faces: w = n cos ε+ (e×n)
|e| sin ε+ e(e·n)

|e|2 (1− cos ε). The third

term vanishes since the face normal n is orthogonal to the edge vector and

e · n = 0. Applying this form for the vector w̄ = z
w3
w, the largest decaying

terms in equation (2.7) are

sδ1αuδ3α = sδ1α0 e(ν̃−ν)z/w3 = sδ1α0 e−|w̄1−n̄1|/λ, (2.9)

where the denominator λ := |(e×n)1−(e×n)3n1/n3|
|(e×n)·δ| is α-independent, and the pow-

ers are δ = (δ1α, 0, δ3α) for any α = 1, 2, ..., (nρ−nµ). Recall that we define the

order of an edge e as ν = γ1w1+γ3w3. The difference in orders of the secondary

edge ẽ and the original edge e is (ν̃ − ν) = w · δ and it is α-independent. The

vector component n̄1 = x1`−x0
3` of the rescaled normal vector is the x-distance

between the `th subwall’s position x1` and its reference position x0
1`, i.e. the

linearly extrapolated position of the wall when z = 0. We identify the subwall

initial position for edge e with the greatest magnitude as max|x0
1`| and that

with the smallest magnitude as min|x0
1`| for ` = 1, ..., n. The rightmost term in

equation (2.9) is decaying at rate λ with x-distance |w̄1− n̄1| from the subwall.

For a U(N) monowall, we find that beyond a distance D = λ log
∣∣∣ cαβeN/λππ/N

∣∣∣
from the wall’s position, the exponential decay rates of the off-diagonal gauge

field components are bounded by |log(Tα/Tβ)| ≥ π/N , where the mixed-

index coefficient is defined cαβ :=
(
c2α
c1α
sδ1α0 − c2β

c1β
s
δ1β
0

)
and the power of s0`

is bounded by 1/N2 ≤ |δ1α| ≤ N2. See Figure 2.2.2. The bounded

Newton-Puiseux coefficients satisfy |c2| ≤
(

1 +
max({|aρcN1 |},{|aρ|})
min({|aρcN1 |},{|aρ|})

)
=: C2 and

|c1| ≥ max{|aρ|}−P =: C1, where P = N if max{|aρ|} is greater than unity

and P = 1/N if it is less than unity. The coefficient cαβ is then limited by
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|cαβ| ≤ 2C2C1 e
max(x0

` )δ1 . We find the following is the maximum subwall width for

a U(N) monopole on R× T 2 where each torus period is 2π:

∆

2
= log

∣∣∣∣∣
(

2NC2

πC1

)λ∣∣∣∣∣+ max|x`|N2λ+
N

π
+
(
max(x0

`)−min(x0
`)
)
, (2.10)

where λ := |(e×n)1−(e×n)3n1/n3|
|(e×n)·δ| is the minimum decay rate of the off-diagonal

gauge field components. No subwall of a U(N) monowall may have a width

greater than ∆. Recall that the subwall separations are linear in z. We have

computed the width of the subwall, i.e. the width of the region in which the

off-diagonal gauge fields are too large to neglect and the fields are therefore

nonabelian. In order to consider the subwalls to be well-separated and their

interactions abelian, we require of the non-compact parameter

z >> ∆ (2.11)

for each U(N) subwall. Since wall separations are linear in this parameter z,

when this condition is satisfied, the subwalls will be considered well-separated.

Figure 2.6: Beyond a distance D the off-diagonal gauge field components decay
with a minimum decay rate λ. Beyond the distance D + λ the off-diagonal
gauge fields are neglected.
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Our main goal in this section is to describe the large-moduli behavior of a BPS

U(N) monowall in regions away from the subwalls using the Higgs spectral

curve and its Newton polygon and amoeba. By allowing a coefficient in the

interior of the polygon to vary, we introduced a parameter z := log |u| = 1
h

for

the monowall. Using the Newton-Puiseux series for the eigenvalues Tα(s, u)

of the holonomy W̃ (s, u) to characterize the off-diagonal gauge field decay

rates, we showed that when the modulus z is very large, the monowall breaks

into subwalls whose separations increase with z. For z >> ∆, the subwall

interactions reduce to N abelian interactions (i.e. U(N) breaks to U(1)N)

up to corrections exponentially small in z. In the following section, we will

derive an asymptotic moduli space metric for these well-separated subwalls

using their abelian Higgs, magnetic, and electric interactions.

2.3 Crystal

We now compute the cut volume, which was introduced in [38]. It is a three-

dimensional polytope which can be helpful to study the behavior of the amoeba

spine, and the amoeba spine allows us to approximate the positions of subwalls,

as we will show. The amoeba is a two dimensional shape in x = log |s| and

y = log |t|, but it is useful here to introduce a third dimension. Associate a

plane z = mρx + nρy + Rρ with each point (mρ, nρ) on the Newton polygon.

Here, the normal vector for the ρth plane is (mρ, nρ,−1) and the modulus Rρ is

the plane’s z-intercept. In accordance with [38] we define the cut crystal as the

region which is above all of these planes, those associated with perimeter and

internal points of the Newton polygon N . Define the crystal as the volume

above perimeter planes. The cut volume is the volume of the crystal outside



46

of the cut crystal, as shown in Figure 2.3.

Figure 2.7: From left to right: The crystal, the cut crystal, the cut volume.

The bottom surface of the cut crystal is a piecewise planar surface whose

edges projected onto the (x, y)-plane coincide with the amoeba lines of the

amoeba spine and whose vertices projected onto the z=0 plane coincide with

the positions of the junctions of the amoeba spine. For moduli Ri large relative

to the perimeter coefficients, all the vertex positions of this bottom surface will

depend on one, two or three moduli. Label the ath vertex as the intersection

of planes ρ, µ and ν. The associated subtriangle in the Newton polygon

triangulation has vertices (ρ, µ, ν) arranged in clockwise sequence. Computing

the position of the intersection of planes ρ, µ and ν gives (see figure 2.3)


x

y

z


a

=



nρµRν + nµνRρ + nνρRµ

−mρµRν −mµνRρ −mνρRµ

−

∣∣∣∣∣∣mρ nρ

mµ nµ

∣∣∣∣∣∣Rν −

∣∣∣∣∣∣mµ nµ

mν nν

∣∣∣∣∣∣Rρ −

∣∣∣∣∣∣mν nν

mρ nρ

∣∣∣∣∣∣Rµ


∣∣∣∣∣∣mµν nµν

mρν nρν

∣∣∣∣∣∣
. (2.12)
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The first component of this is equal to the x-position of the associated subwall,

which is used to compute the metric on the moduli space of monowalls in

Section 3.3.

Figure 2.8: Three intersecting planes. The intersections of topmost planes
are marked with dark lines. This set of lines projects down to the amoeba
skeleton. The remaining lines of intersection are not significant.
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CHAPTER 3

Asymptotic Moduli Space

3.1 Lagrangian and fields

We have established that a monowall splits into subwalls when a modulus be-

comes large. We will now consider the regime in which the monowall is split

into n subwalls which have no remaining internal moduli, and the subwall

Higgs and gauge interactions are abelian. In order to model these abelian

long-distance interactions, we contrive a system of n abelian monowalls in

a linear Higgs background which have scalar, magnetic, and electric interac-

tions with one another and with their background. The interactions of one of

these abelian monowalls with the background and the n−1 remaining abelian

monowalls mimics the long-distance interactions of one of the nonabelian sub-

walls with the n − 1 remaining subwalls. We will from here forward refer to

these model abelian monowalls simply as subwalls. We describe the abelian

monowall interactions using Lorentz-invariant Maxwell electromagnetism with

a scalar field. We write the Lagrangian and consider only very small subwall

velocities. We then Legendre transform from the electric charge qi, which is a

momentum, to its canonical coordinate given by a periodic phase modulus τi.

The Lagrangian reduces to purely kinetic under the BPS conditions. We will

then read the monowall moduli space metric off of this kinetic Lagrangian.
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Recall that we choose a gauge in which the Higgs field is diagonal and we

have demonstrated that it is x-linear outside of the subwalls. The off-diagonal

gauge fields gain mass and are exponentially small and therefore negligible,

while the diagonal gauge field components remain massless. We will represent

the generators of the Cartan subalgebra as the N generators {Hα} of N ×N
imaginary diagonal matrices, and write the asymptotic fields as Φ = ΦαHα

and Aµ = AαµHα where (Φα, Aαµ) are real and α = 1, ..., N . We employ an

additional, adjoint dual gauge potential Ãµ = ÃαµHα to model magnetic inter-

actions. This dual gauge field can be related to ~Aµ via the usual dual field

strength F̃µν = ∂µÃν−∂νÃµ+[Ãµ, Ãν ], which is defined as F̃µν = −1
2
εµνρσF

ρσ.

The relativistic Lagrangian for the ith wall interacting with the gauge, dual

gauge, and Higgs fields (Φ, Aµ, Ãµ) of the n− 1 remaining subwalls and back-

ground is

Li = −iTr

[
4πΦ gi

√
1 + q2

i

√
1− ~V 2

i

−4πqigiA
0 + 4πqigi~Vi · ~A− 4πgiÃ

0 + 4πgi~Vi · ~̃A

]
,

(3.1)

where the three-space velocity is ~Vi = ~̇xi and we use the dotted time-derivative

notation ẋ = dx
dt

. The magnetic, electric, and scalar charges of the ith subwall

are interpreted as (gi, qi, gi
√

1 + q2
i ) respectively, where this form of the scalar

charge follows from the BPS conditions under which the static forces cancel

for well-separated subwalls [13]. Note that the electric charges qi are momenta

associated with the phase degrees of freedom τi for subwalls. The electric

charges of the subwalls are subject to net electric charge conservation, and

individual electric charge conservation when the subwalls are well-separated

as they are here. While the magnetic charges may differ between factors of

U(1) the electric charges, which are momenta, do not.
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Recall that we allow gauge field holonomies to have non-zero, spatially uni-

form, linearly time-dependent values between the walls. Define the lin-

early time-dependent terms in the asymptotic holonomies (phases) ~a(t) =

sgn(x)(0, aϕ, aθ)(t) associated with each of the periodic spatial directions, and

their dual vector ~̃a(x) such that ~̇a = ~∇ × ~̃a. The effect of the phase ve-

locities ~̇a is equivalent to that of the transverse spatial velocities ϕ̇i and θ̇i:

~Vi = (ẋi,−ȧθi, ȧϕi). For later use, define two dual functions u(x) and ~w(x)

such that ~∇u = ~∇× ~w.

~w(x) = 1
2
sgn(x)

[
−θϕ̂+ ϕθ̂

]
, ~a(t) = sgn(x)(a(t)ϕ̂+ b(t)θ̂),

u(x) = |x|, ~̃a(x) = sgn(x)[−ȧθϕ+ ȧϕθ]x̂.

(3.2)

Note that u(x) = u(−x), ~w(x) = −~w(x) and ~a(x) = ~a(−x).

In addition to fields generated by subwalls, which we will write next, we include

static field backgrounds for each factor of U(1). For convenience, we split

these backgrounds into constant terms (−vα, dαµ, d̃αµ) and a background linear

Higgs Φ0 with the associated linear gauge fields (Aµ,0, Ãµ,0) required by BPS

conditions:

(−v, dµ, d̃µ) = (−vαHα, d
α
µHα, d̃

α
µHα), Φα

0 (x) = −gα0 x,

A0,α
0 (x) = 0, ~Aα0 (x) =

gα0
2

[
−θϕ̂+ ϕθ̂

]
,

Ã0,α
0 (x) = −gα0 x,

~̃Aα0 (x) = 0.

(3.3)

The gauge and Higgs fields for the jth wall moving with velocity ~Vj are Lorentz

boosted versions of those for the stationary wall. We keep only terms up to

quadratic in velocities and electric charge in the Lagrangian, so in the fields ~A
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and ~̃A discard terms which are higher order than linear in velocities. Similarly,

in the scalar expressions Φ, A0, Ã0 discard terms which are higher order than

quadratic in velocities. This requires approximation of the Liénard-Wiechert

denominator (~x2 − (~x × ~V )2)1/2 as |~x| since the denominator would appear

in the scalar-type quantities with coefficients linear in velocity, resulting in

negligible terms cubic in velocity [17, 13]. In this approximation, a subwall

moving at velocity ~Vj with respect to the origin generates the following fields

(Φα
j , A

α
µ,j, Ã

α
µ,j).

Φα
j (x) = −gαj u(x)

√
1 + q2

j

√
1− ~V 2

j ,

A0,α
j (x) = −qjgju(x) + gαj

(
~w(x) · ~Vj

)
− gαj

(
~a · ~Vj

)
,

Ã0,α
j (x) = −gαj u(x)− qjgj

(
~w(x) · ~Vj

)
− gαj

(
~̃aj(x) · ~Vj

)
, (3.4)

~Aαj (x) = gαj ~w(x)− gαj ~a,

~̃Aαj (x) = −qjgj ~w(x)− gαj ~̃aj(x)− gαj u(x)~Vj.

The net gauge fields must respect the periodic boundary conditions on R×T 2

and so we require that, for a coordinate shift in one of the periodic directions,

the fields be gauge-shifted under the U(1) symmetry, with gauge functions

given here.

ϕ→ ϕ+ 2π, τj → τj + πgjsgn(x)θ,

θ → θ + 2π, τj → τj − πgjsgn(x)ϕ.

(3.5)
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3.2 Two-monowall interactions

Using these fields, we may now write the Lagrangian in a convenient form and

begin by doing so for two subwalls. For a pair of walls, define the following

relative position, phase, and charge quantities:

~x = ~x1 − ~x2, q = q1 − q2, gα = gα1 − gα2 ,

~a = ~a1 − ~a2, ~̃a = ~̃a1 − ~̃a2, Gα =
2∑
i=1

gαi .

(3.6)

It should be noted that the last quantity here, the total magnetic charge, is a

constant which can be expressed in terms of boundary conditions alone. The

remaining quantities are associated with individual pairs of subwalls. Neglect-

ing constant terms, suppressing the index α for U(1) factors, the symmetrized

Lagrangian for each set of U(1) interactions takes the form

L
4π

= v
2G

[(
2∑
i=1

gi~Vi

)2

+ g1g2
~V 2

]
− v

2G

[(
2∑
i=1

giqi

)2

+ g1g2q
2

]

+
2∑
i=1

qigi~Vi · ~d−
2∑
i=1

qigid
0 +

2∑
i=1

gi~Vi · ~̃d

+
2∑
i=1

g0gix3,i

2

(
~V 2
i − q2

i

)
+

2∑
i=1

g0giqi

(
~w(x) · ~Vi

)
+
[
g1g2u(x)

2
(~V 2 − q2) + g1g2q

(
~w(x) · ~V

)
+ g1g2[~̃a− q~a] · ~V

]
.

(3.7)

To find the full Lagrangian, we add up all N of these U(1) Lagrangians.

This splits into the center of mass Lagrangian and the remainder Lagrangian,

L = LCM + Lrem. We integrate here over the periodic coordinates ϕ and θ

from −π to π. Because the terms with ~w(x) · ~V and ~̃a(x) · ~V are linear in ϕ
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and θ positions, these terms vanish after integration.1 Here is the result after

separating the center of mass and remainder components of the Lagrangian,

with implicit sum over the suppressed index α:

LCM
4π

= v
2G

[(
2∑
i=1

gi~Vi

)2

−
(

2∑
i=1

giqi

)2
]

+1
2

(
2∑
i=1

qi

)(
2∑
j=1

gj ~Vj · ~d

)
−
(

2∑
i=1

giqid
0

)
+

(
2∑
i=1

gi~Vi · ~̃d
)
,

Lrem
4π

= g1g2

2

(
v
G + u(x)

)
(~V 2 − q2) +

2∑
i=1

g0gixi
2

(
~V 2
i − q2

i

)
−g1g2(~a · ~V )q +

~d
2
·
(
g1
~V1 − g2

~V2

)
q.

(3.8)

Maintaining the low-velocity approximation, the Lagrangian is purely kinetic

since q behaves as a velocity. We now apply the fixed asymptotic boundary

conditions constraint, which is equivalent to fixing the sums of the three-space

and periodic positions of the subwalls (i.e. fixing the center of mass, or its

analog). Incidentally, there is a physical motivation for fixing the boundary

conditions. Because the fields diverge as x → ±∞, so too does the energy.

Changing the boundary conditions on the fields would require infinite kinetic

energy. After fixing the center of mass, the Lagrangian reduces to the remain-

der Lagrangian (from now on referred to simply as the Lagrangian).

Currently, the Lagrangian is written in terms of the x positions of the subwalls,

their phases ~a, and their electric charges. The electric charge is not itself a

velocity but is a momentum conjugate to a periodic direction τ . A Legendre

1Altering the integration bounds of ϕ and θ yields different but physically equivalent

forms of the Lagrangian.
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transform, changing coordinates from q to τ̇ , produces the Lagrangian written

explicitly in terms of subwall quantities (xi, aϕi, aθi, τ
i).

L′ = L+ qiτ̇
i. (3.9)

After implementing the Legendre transform, we write the metric in Lee-

Weinberg-Yi form [14] in terms of absolute rather than relative coordinates:

ds2

4π
= 1

2
Uijd~x

i · d~xj

+1
2

[U−1]ij

[
dτ i + ~W ik · d~xk

] [
dτ j + ~W jl · d~xl

] (3.10)

with the following tensors defined for two subwalls:

Uii =
N∑
α=1

g0
αgiαxi +

2∑
j=1
j 6=i

giαgjα

(
vα
Ga

+ |xi − xj|
) ,

Uij = −
N∑
α=1

giαgjα

(
vα
Gα

+ |xi − xj|
)
,

~W ii =
N∑
α=1

 ~dα
2
giα −

2∑
j=1
j 6=i

giαg
j
α(~ai − ~aj)

 ,
~W ij = −

N∑
α=1

[
~dα
2
gjα + giαg

j
α(~ai − ~aj)

]
.

(3.11)

where the first components of the following vectors vanish d1α = W ii
1α = W ij

1α =

0 and the three-space differential is expressed d~x = (dx,−db, da). The index

α = 1, ..., N runs over the factors of U(1). This metric retains the U(1)

symmetries, and symmetry under the SL(2,Z) action on the ϕ and θ phases

(aϕ, aθ).
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3.3 Multi-monowall interactions and moduli relations

In this section we first establish linear relations between the four types

of monowall coordinates (xi, ϕi, θi, τi) and the four types of moduli

(Rρ,Ψρ,Θρ, Tρ) for widely separated monowalls, furthering the arguments

made in section 2.3, in equation (2.12). We then extend the arguments made

in section 3.2 from two-monowall interactions to n monowall interactions.

3.3.1 Subwall coordinates are linear in the moduli with the same coefficients

In this brief section, we establish that the four types of subwall coor-

dinates are linear in the four types of monowall moduli with the same

coefficients (and define those coefficients), i.e. that (dxi, dϕi, dθi, dqi) =
σ∑
ρ=1

cρi (dRρ, dΨρ, dΘρ, dQρ). Through the Legendre transform in equation (3.9)

connecting the electric charge qi to the phase coordinate τi we see that the

relation for the phase coordinates differs: T ρ =
n∑
i=1

cρi τi.

As usual, the following discussion applies to widely separated doubly periodic

monopoles whose fields far from any monopole are abelian, i.e. the U(N)

symmetry is broken to U(1)N . We can introduce a small electric charge by

introducing a small component for A0 which are zero in the case of stationary

monowalls. Then up to small corrections, the fields take the following linear

forms in the regions between monowalls and far to the left or right of the
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monowalls:

ΦI = −(GIx+ vI), AIϕ = 0,

AI0 = −
(
QIx+ dIq

)
, AIθ = GIϕ+ dIϕ,

(3.12)

where I indexes the n + 1 regions between the walls or in the x → ±∞
regions. The static boundary conditions restrict v1 and vn+1 to constants, and

the center of mass position xCM = 1
G

n∑
i=1

gixi is fixed, where G =
n∑
i=1

gi is the

total magnetic charge. The index α for the U(1) factors is suppressed except

where necessary.

At the location of wall i, the Higgs eigenvalues to which the wall couples (i.e.

gαi 6= 0) must coincide. See Figure 3.1. This yields a set of linear relationships

Figure 3.1: Subtriangle (left) for subwall a and the associated Higgs eigenvalues
(right) near its position xa.

between the individual wall charges and the Higgs slopes GI , between the wall

positions xi and the vI terms, between the wall coordinatess ϕi and the dIϕ

terms, and so on. There are two constraints for each type of field in equation
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(3.12) associated with each subtriangle. The Higgs constraint is

ΦL
1 (xi) = ΦR(xi), ΦL

2 (xi) = ΦR(xi),

implying

−GL
1 xi − vL1 = −GRxi − vR, −GL

2 xi − vL1 = −GRxi − vR. (3.13)

Because the center of mass position is fixed, reducing the number of degrees

of freedom for the wall positions from n to n − 1, this represents 2(n − 1)

constraints. This reduces the degrees of freedom for the Higgs fields from the

number of distinct vI plus (n − 1) to the number of distinct vI minus n − 1.

This gives the correct number of degrees of freedom for the moduli.2

We use these relations in equation (3.13) to express the individual wall posi-

tions in terms of GI and vI along each U(1) factor, as well as relate the fixed

GI to the wall charges:

xi = − 1
2gi,1

(
vR − vL1

)
, xi,= − 1

2gi,2

(
vR − vL2

)
,

gi,1 =
GR−GL1

2
, gi,2 =

GR−GL2
2

.

(3.14)

In identical fashion, we obtain the following linear relations for the ϕ, θ coor-

dinates. The relations for θ are derived in a different gauge in which Aθ = 0

2The Euler characteristic for the triangulated convex polygon is (Vertices) − (Edges) +

(Subtriangles)+1 = 2. The number σ′ of perimeter vertices is equal to the number of perime-

ter edges of the polygon, leaving (Internal Vertices) = (Internal Edges)−[(Subtriangles)−1].

Since the number of internal edges is equal to the number of distinct vI , this relation tells us

that the number of degrees of freedom for the monowall Higgs fields is equal to the number

of internal points in the Newton polygon.
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and Aϕ depends linearly on θ.

ϕi = − 1
2gi,1

(
dRϕ − dLϕ,1

)
, ϕi = − 1

2gi,2

(
dRϕ − dLϕ,2

)
,

θi = − 1
2gi,1

(
dRθ − dLθ,1

)
, θi = − 1

2gi,2

(
dRθ − dLθ,2

)
.

(3.15)

The equivalent operation for constraining the electric charges qi of the indi-

vidual walls requires expressing the field AI0 = −
n∑
i=1

giqi|x − xi| − dq for each

region explicitly in terms of individual wall contributions and comparing to

the expression for AI0 in equation (3.12): QIx+ dIq =
n∑
i=1

giqi|x− xi|+ dq. This

establishes a relationship between qi and the pairs of QI associated with the

subtriangle i, as well as between the dIα and qi and xi:.

qi = 1
2gi,1

(
QR − QL

1

)
, qi = 1

2gi,2

(
QR − QL

2

)
,

qixi = − 1
2gi,1

(
dRq − dLq,1

)
, qixi = − 1

2gi,2

(
dRq − dLq,2

)
.

(3.16)

Equivalently the second row of the above equation can be written more gen-

erally as a relation for each dIq for each U(1) factor α:

dIq,α = dq −
I∑
i=1

giqixi +
n∑

i=I+1

giqixi. (3.17)

This establishes that the dIq are not independent variables but are fully deter-

mined by the vI through xi and the QI through qi such that A0 is continuous at

the wall positions xi. In these relations, the following are further restricted to

constants by the boundary and center of mass constraints: d1
ϕ, dn+1

ϕ , d1
θ, d

n+1
θ ,

Q1, Qn+1, ϕCM = 1
G

n∑
i=1

giϕi, θCM = 1
G

n∑
i=1

giθi and Qα =
n∑
i=1

gi,αqi where Q is the

total electric charge along the α U(1) factor of the constituent monowalls.

We can linearly relate these moduli to the choice of moduli in which each set

of four moduli (Rρ,Ψρ,Θρ, Qρ) are associated with a vertex in the triangula-
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tion of the Newton polynomial for a monowall. Let ρ index the subtriangle

vertices (mρ, nρ) for the subtriangle associated with the ith wall. As discussed

in Chapter 2, the coordinates are linearly related to these moduli by

(xi, ϕi, θi, qi) = cρi (Rρ,Ψρ,Θρ, Qρ) + (x0,i, ϕ0,i, θ0,i, q0,i), (3.18)

with a sum over ρ = 1, 2, ..., σ where σ is the number of internal points in the

Newton polygon. The constants x0,i etc are the coordinates of the constituent

monopoles when all of the corresponding moduli are zero, Rρ = 0 etc. We

further introduce the phase moduli T ρ which is the coordinate dual to the

electric charge (which acts as a momentum) moduli Qρ. These phase moduli

are linearly related to the phases τ i of the subwalls by dT ρ = cρi dτi such that

the following holds with summation over i and ρ: qiτ̇
i = QρṪ

ρ.

These constants cρi can be related to the coordinates of the subtriangle vertices

(mρ, nρ) for the subtriangle associated with the ith wall and can be read off

from Equation (2.12) in Section 2.3. The associated subtriangle in the Newton

polygon triangulation has vertices (ρ, µ, ν) arranged in clockwise sequence.

With no sum over ρ, µ, or ν, the coefficients are:

cρi = nµν∣∣∣∣∣∣∣∣
mνρ nνρ

mµρ nµρ

∣∣∣∣∣∣∣∣
, cµi = nνρ∣∣∣∣∣∣∣∣

mνρ nνρ

mµρ nµρ

∣∣∣∣∣∣∣∣
, cνi = nρµ∣∣∣∣∣∣∣∣

mνρ nνρ

mµρ nµρ

∣∣∣∣∣∣∣∣
,

(3.19)

where the determinant in the denominator is equal to twice the area of the

associated subtriangle.

We have established in this subsection that the four types of coordi-

nates of the monopoles share the same n constants of proportionality, i.e.

(dxi, dϕi, dθi, dqi) = cρi (dRρ, dΨρ, dΘρ, dQρ) with sum over ρ = 1, 2, ..., σ and
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dT λ = cλj dτ
j with sum over j = 1, 2, ..., n for the phases dual to the electric

charge (which behaves as a momentum).

3.3.2 Multi-monowall interactions

The metric (3.10) holds for the extension to n subwalls. The n-subwall tensors

are

Uii =
N∑
α=1

g0
αgiαxi +

n∑
j=1
j 6=i

giαgjα

(
vα
Gα

+ |xi − xj|
) ,

Uij = −
N∑
α=1

giαgjα

(
vα
Gα

+ |xi − xj|
)
,

~W ii =
N∑
α=1

 ~dα
n
giα −

n∑
j=1
j 6=i

giαg
j
α(~ai − ~aj)

 ,
~W ij =

N∑
α=1

[
− ~dα

n
gjα + giαg

j
α(~ai − ~aj)

]
.

(3.20)

where d1
α = W ii

1,α = W ij
1,α = 0 and d~x = (dx,−db, da). The index α = 1, ..., N

again runs over the factors of U(1). Note that we have chosen the Uij functions

to have a 1/G term. This does not present an issue in cases where G = 0, which

can be seen by making the substitution
n,n∑
i>j

gigjx
2
ij = G

[
n∑
i=0

gix
2
i

]
− (GxCM)2

and using that the position of the monowall center of mass is fixed and at the

origin. We have made the choice to include the 1/G term to mimic the Yi-

Weinberg-Lee form of metric seen in [17, 16] for periodic and doubly periodic

monopoles.

When the boundary conditions of [22] are satisfied, the number of independent
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moduli reduces from 4n to 4σ, where σ is the number of internal points in the

Newton polygon. We use the variable z to parameterize the values of x and

Φ in the (x, y)-plane corresponding to each of the n amoeba junctions. This

is done by finding the lines in R3 along which two adjacent three-dimensional

amoeba wedges intersect and using these to define subwall positions for each

value of z. We will from here forward refer to the two-dimensional amoeba,

which is the amoeba for the projection of the three-dimensional Newton poly-

tope onto the (m,n, 0) lattice. For each value of z, there is a different two-

dimensional amoeba. Recall that each subwall corresponds to a face of the

three-dimensional polytope and therefore each subwall now corresponds to an

edge of this two-dimensional polygon. The relationships between the moduli

Rρ and (x,Φ) at the junctions are linear, for a given value of the parameter

z = 1
h
:

dxi =
σ∑
ρ=1

cρi dRρ, dΦi = c̃ρi dRρ. (3.21)

We find the coefficients (cρi , c̃
ρ
i ) by direct examination of the amoeba spine

i.e. we express them in terms of the points in the Newton polygon, as in

equation (2.12). Here we will elaborate on the process of computing these

coefficients. Let the lattice coordinates of the νth vertex in the Newton polygon

be written (mν , nν) ∈ Z2, with ν ∈ Z/n running over the σ + σ′ vertices

of the Newton polygon. For large moduli, each sub-triangle in the Newton

polygon triangulation represents a subwall and, as we will show, can be used

to determine its motion. We choose a triangulation such that each sub-triangle

contains at least one internal point (mρ, nρ), and label the remaining two

vertices (mµ, nµ) and (mν , nν) for the ρth sub-triangle, and (ρ, µ, ν) label the

three vertices of the ith subtriangle in clockwise order.

Under the Log map, the set of solutions to the polynomials for each of this
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sub-triangle form wedges which intersect along a line. This line represents

the set of positions the associated subwall may occupy in the x − y plane

for all values of the parameter z ∈ R+. The set of common solutions can be

found by simultaneously solving the polynomials for the subtriangle’s edges.

This is equivalent to solving the following linear equation in which each line

on the right corresponds to a plane mx + ny + R = z associated with each

vertex of the subtriangle and with each associated monomial eiΨe
R
h smtn. The

equation describes the location (x, y, z)ρµν = (xi, yi, zi) at which the three

planes intersect. The projection of this point onto the (x, y)-plane is the

position of the ith two-dimensional amoeba junction. We define a reference

point (x0
i , y

0
i ) by solving this equation for the case z = 0. Then, we can relate

xi and yi to each modulus Rρ
h

in the following way:

−


dRρ

dRµ

dRν

 =


mρ nρ −1

mµ nν −1

mν nν −1



dx

dy

dz

 ,

dxi = nµ−nν
deti

dRρ + nν−nρ
deti

dRµ + nρ−nµ
deti

dRν ,

dyi = −mµ−mν
deti

dRρ − mν−mρ
deti

dRµ − mρ−mµ
deti

dRν ,

(3.22)

where deti = (nν − nρ)(mµ − mρ) − (nµ − nρ)(mν − mρ). The monowall

has σ independent non-compact moduli, one for each internal point of the

Newton polygon, and the junction positions xi asymptotically depend linearly

on the three non-compact moduli R corresponding to the vertices of the ith
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subtriangle:

xi − x0,i =
σ∑
λ=1

cλiRλ, Φi − Φ0,i =
σ∑
λ=1

c̃λiRλ,

cρi = nµ−nν
deti

, cµi = nν−nρ
deti

, cνi = nρ−nµ
deti

,

c̃ρi = −mµ−mν
deti

, c̃µi = −mν−mρ
deti

, c̃νi = −mρ−mµ
deti

,

(3.23)

and the remaining coefficients are zero cλi = 0 for λ 6= ρ, µ, ν. The same

arguments and linear relationships extend to the remaining types of moduli

and subwall coordinates, as we will discuss later in section 4.3.1.

The ith subwall has a set of N magnetic charges giα which are determined by

the Newton polygon and its triangulation. The charge of a subwall is deter-

mined by the difference in slope of the Higgs eigenvalues (which correspond

to non-vertical amoeba lines) to either side of the subwall. The magnetic

field due to a single, stationary subwall is ~Bi(x) = −~∇Φi = gi sgn(x − xi).

External amoeba lines have slopes
(
−mρ−mρ̃

nρ−nρ̃

)
normal to the corresponding

Newton polygon edge and the slopes are triangulation-independent. Internal

amoeba lines have slopes normal to lines of triangulation and are therefore

triangulation-dependent. A subwall which has no effect on the αth eigenvalue

has zero charge giα = 0 with respect to the αth factor of U(1). A subwall

which alters the slope of the αth Higgs eigenvalue Φα(x) has charge giα equal

to half the change in slope. Through the amoeba, the Newton polygon and its

triangulation yield precise information about all Higgs eigenvalues {Φα(x)}.
The lattice height N of the Newton polygon is the number of U(1) factors

from the maximally broken U(N), and each horizontal strip of the lattice is

associated with a U(1) factor (see Figure (3.2)). A subwall whose sub-triangle
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has lattice height H and occupies H horizontal strips is magnetically charged

with respect to each of those H factors of U(1). A Higgs eigenvalue with slope

k/` in some region actually represents ` degenerate Higgs eigenvalues. To see

this illustrated, see Figure (3.2). For example, in Figure (3.2), the charges for

subwall 1 are g1
1 = −1

4
and g1

2 = 1
4
. For contrast, subwall 2 has charges g2

1 = 0

and g2
2 = −1

2
.

Figure 3.2: Left: Newton polygon (black lines) with a regular triangulation
(grey lines). Right: Sketch of the amoeba for the associated U(2) monowall,
with the two Higgs eigenvalues shown in dotted and dashed lines over a range
in x.

Now that we have related the subwall coordinates to the moduli, we apply this

the metric we derived on the moduli space of monowalls. Define the vector

d ~X = (dR,−dΘ, dΨ). In terms of the four types of moduli (R,Ψ,Θ, T ) which

correspond respectively to (x, aθ,−aϕ, τ), the metric may be written in the

Lee-Weinberg-Yi form (to restate equations (3.10), (3.20) for completeness):

ds2

4π
=

[
1
2
Uijd~x

i · d~xj+

1
2

[U−1]ij

[
dτ i + ~W ik · d~xk

] [
dτ j + ~W jl · d~xl

] ] (3.24)
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with the following tensors defined:

Uii =
N∑
α=1

g0
αgiαxi +

n∑
j=1
j 6=i

giαgjα

(
vα
Gα

+ |xi − xj|
) ,

Uij = −
N∑
α=1

giαgjα

(
vα
Gα

+ |xi − xj|
)
,

~W ii =
N∑
α=1

 ~dα
n
giα −

n∑
j=1
j 6=i

giαg
j
α(~ai − ~aj)

 ,
~W ij =

N∑
α=1

[
− ~dα

n
gjα + giαg

j
α(~ai − ~aj)

]
,

(3.25)

~xi =
σ∑
ρ=1

cρi
~Xρ + ~xi,0, (aϕ,i, aθ,i) =

σ∑
ρ=1

cρi (−Θρ,Ψρ),

qi =
σ∑
ρ=1

cρiQρ, T ρ =
n∑
i=1

cρi τ
i.

Here, α indexes the N U(1) factors. The asymptotic parameters of the metric

and the monowall itself, the constant background Higgs, constant background

gauge holonomies, the x and phase centers of mass, the total magnetic charge,

and the slope of the linear background Higgs {(vα, ~dα, (x)cmα ,~acmα ,Gα, g
0
α)} re-

late to the boundary conditions {(G±α , v±α , ~d±α )}, which are the left and right

charges, Higgs background and holonomy background. The relations are as

follows:

g0
α = 1

2
(G+

α + G−α ) , Gα = 1
2

(G+
α − G−α ) ,

vα = 1
2

(v+
α + v−α ) , xcmα = − 1

2Gα
(v+
α − v−α ) ,

~dα = 1
2

(d+
α + d−α ) , ~acmα = − 1

2Gα
(d+
α − d−α ) .

(3.26)
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In summary, we have in this section approximated the asymptotic BPS

monowall moduli space metric by modeling it as abelian interactions of well-

separated sub-monowalls in a linear Higgs background. Rather than the gen-

eral 4n moduli, boundary conditions reduce the number of moduli to four times

the number of internal points in the Newton polygon 4σ. We gave the explicit

example for one internal point, in which the BPS monowall has but four mod-

uli (R,Ψ,Θ, T ). Each regular Newton polygon triangulation [57] yields a set of

subwall magnetic charges and therefore each regular triangulation corresponds

to a different sector of the moduli space. With the parameters listed above,

the monowall asymptotics in each of the N factors of U(1) are determined

by the Higgs spectral curve and Newton polygon. The metric (3.24) gives

the dynamics of well-separated sub-monowalls in terms of the moduli of the

monowall.
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CHAPTER 4

Generalized Legendre Transform

4.1 Generalized Legendre transform background

The following discussion of the generalized Legendre transform mostly follows

those presented in [45, 48]. The generalized Legendre transform is the complex

generalization of the more common real Legendre transform. Given a metric

explicitly in terms of real variables, the generalized Legendre transform may

allow us to determine a set of complex combinations of the real variables

and the Kähler potential for the metric which is a function of those complex

variables. This transform relates the generating function F with the Kähler

potential K and relates the real variables of the monopole with the complex

variables of the Kähler potential. A Kähler potential for a 4n-dimensional

hyperkähler metric is a function of 2n complex variables which we will label

(ui, ūi, zi, z̄i) where i = 1, 2, ..., n. The metric is written ds2

8π
= Kpip̄jdχ

pidχ̄p̄j

where pi = ui or zi and p̄j = ūj or z̄j. We introduce a function F of a set of

2n+1 variables yk, some of which will be identified later with (zi, z̄i) and some

of which will be auxiliary. Important to this construction is a relationship

between the generating function F and a family η(2n) of order-2n polynomials

over CP 1, where n is the monopole charge [48].

η(2n)(ζ) =
2n∑
k=0

ykζ
k, (4.1)
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where CP 1 is represented as the Riemman sphere and ζ is the coordinate away

from the south pole. The coordinate away from the north pole is ξ and can be

written in terms ζ on the region of overlap ξ = 1
ζ
. Similarly, the polynomial

η
(2n)
S is valid on the southern hemisphere and can be written in the region of

overlap as η
(2n)
S (ξ) =

η
(2n)
N (ζ)

ζ2n . This family of polynomials is chosen to obey the

condition of invariance under the antipodal map, i.e.

η(2n)(ζ) = (−1)nζ2n η(2n)

(
−1

ζ̄

)
. (4.2)

This condition has consequences for the coefficients yk: ȳk = (−1)k+ny2n−k.

The generating function F is related to the polynomials η(2n) by

F (yi) =
1

2πi

∮
G
(
ζ, η(2n)(ζ)

) dζ
ζ2
, (4.3)

for some holomorphic function G of η(2n) and ζ. We will return to the topic of

the choosing of this function G. This along with equation (4.2) implies that

second derivatives of the generating function satisfy Fyky` = Fηηηykηy` and

therefore

Fyky` − Fyk+ay`−a = 0, (4.4)

for k, ` = 0, 1, 2, ..., 2n and values of a = 0, 1, 2, ... such that k + a and ` − a
are within the interval [0, 2n].

We make identifications zi = yi0 and vi = yi1 and label the remainder wi where

i = 1, 2, ..., n indexes the n polynomials η(2n) and yi0 is the zeroth coefficient

in η(2n), yi1 is the coefficient of ζ in η(2n), etc. The Kähler potential K is a

function of (zi, z̄i, ui, ūi) where ui+ūi
2

:= ∂F
∂vi

. We conduct a Legendre transform

with respect to the variables (vi, v̄i).
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The Kähler potential K and the generating function F are related by [48]

K(ui, ūi, zi, z̄i) = −F (zi, z̄i, vi, v̄i, wj) +
ukvk + ūkv̄k

2
. (4.5)

with a sum from k = 1 to n over repeated indices. The generating function is

also extremized with respect to the remaining variables wj, and related to the

variables (ui, ūi) through its first derivative

Fwj = 0, Fvi = ui, Fv̄i = ūi. (4.6)

The complex variables for the Kähler potential are then (zi, z̄i, ui, ūi), and the

relations Fvi = ui provide implicit relationships between the variables of the

Kähler potential and the remaining auxiliary variables vi and wi. These are

used to express vi as functions of the z and u variables on the right hand side

of (4.5).

In the limit where monopoles are widely separated and interact like point

objects, the polynomial η degenerates to a product of n polynomials of the

form

ηi = zi + 2xiζ − z̄iζ2. (4.7)

In this case, vi is real and we relabel it xi, and xi = x1i, zi = x2i + ix3i where

(x1, x2, x3)i is the position of the ith constituent subwall in three-space. The

relation Fvi = ui and its complex conjugate simplify to Fxi = ui+ūi
2

, and the

Kähler potential simplifies accordingly. Recall that the electric charge of a

BPS monopole is interpreted as a canonical momentum that is conjugate to

a periodic, phase coordinate τ . The imaginary part of the complex variable

ui = u1i + iτi is this phase variable corresponding to the ith monopole charge.

In this limit, the relation (4.4) simplifies to something very like the Laplace
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equation for the generating function,

Fxixj
4

+ Fziz̄j = 0. (4.8)

Given this relation and the Legendre transform in equation (4.5), the coeffi-

cients gpiq̄i = Kpiq̄i of the metric in terms of second derivatives of the generating

function are

Kziz̄j =
Fxixj

4
+ Fzixk (Fx`xk)

−1 Fx`z̄j ,

Kuiz̄j = − (Fxkxi)
−1 Fxk z̄j , Kuiūj =

(Fxixj)
−1

4
.

(4.9)

The metric in terms of second derivatives of the generating function F has

Lee-Weinberg-Yi form. Implicitly summing over repeated indices, we write

the metric

ds2 = 1
4
Fxixj

(
dxidxj + 1

2
dzidz̄j + 1

2
dzjdz̄i

)
+
F−1
xixj

4
(dτi + iFxizkdzk − iFxiz̄kdz̄k)×(

dτj + iFxjz`dz` − iFxj z̄`dz̄`
)
.

(4.10)

Given the relationships between the metric coefficients and the second deriva-

tives of F in (4.9) and our knowledge of the form this type of hyperkähler

metric takes and our treatment of the monopoles as point objects, we expect

discontinuities in F at the locations of these individual monopoles. For the

abelian interactions of these monopoles, the problem of solving for Fxixj given

boundary conditions is a familiar one from classical electricity and magnetism.

Once a solution for Fxixj has been identified, one can simply integrate it twice

to determine the generating function F for a given charge distribution (and

thereby determine the previously described generating integrand G(ζ, η), or

simply calculate F directly), up to a function linear in the xi variables and a
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function independent of xi. The latter function does not enter into the met-

ric or the implicit relation Fxi = ui+ūi
2

. If the metric coefficients in equation

(4.9) are known, then the function linear in xi can be determined up to initial

positions of the monopoles [45, 48].

We now discuss application of this method to widely separated monopoles on

R3. We will begin with the case of two such monopoles and will work in terms

of relative coordinates (x, z, z̄) = (x1 − x2, z1 − z2, z̄1 − z̄2). We know that

away from any of its singularities the second derivative Fxx of the generating

function solves the Laplace equation, as does Fzz̄. This can be seen taking by

the Laplace equation for F , Fxx + 4Fzz̄ = 0 and operating on it from the left

with ∂2
x + 4∂z∂z̄ = ∂2

1 + ∂2
2 + ∂2

3 = ∇2. We also know by comparing the metric

in terms of second derivatives of the generating function (4.9) to the metric

for two monopoles on R3 (4.13) (seen later in this chapter) that Fxx contains a

singularity when the two monopoles occupy the same location i.e. when r = 0,

where r is the distance between the monopoles. Near r = 0, Fxx behaves like

g1g2

r
. These behaviors imply that Fxx satisfies a relation using the Dirac delta

function:

∇2Fxx = −4πg1g2δ(~r), (4.11)

where ~r = (x,Rez, Imz) is the separation vector between the monopoles. This

is the Poisson equation and the right hand side of (4.11) is the source term.

Its solutions are familiar from classical electricity and magnetism. Now, if the

generating function is defined as a contour integral over some path γ of some

function of η and ζ as in

F =
1

2πi

∮
γ

dζG(η, ζ),

then the G can only depend on the monopole separation through η and there-
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fore we can write the relation as

Fxx =
1

2πi

∮
γ

dζη2
xGηη(η, ζ) = g1g2

[
v +

1

r

]
,

where gi are the magnetic charges of the constituent monopoles and v is the

constant component of the Higgs field. Substituting in ηx = 2ζ using equation

(4.7), we can find an expression for G(η, ζ). First we solve for the component

of Gηη that corresponds to the constant v term:∮
0

dζ4ζ2G1,ηη(η, ζ) = g1g2v,

where G1,ηη = g1g2v
4ζ3 and the integrating contour is a counterclockwise loop

around the origin of the ζ plane. The component of G that corresponds to

the 1/r term requires a different integrand and contour. To obtain the 1/r

term, we integrate 1/η one that encloses either of the two roots ζ± = x∓r
z̄

of η = z + 2xζ − z̄ζ2 [48]. To treat roots equivalently we choose a loop γ

enclosing both poles but in opposite directions, which is accomplished with a

figure-eight shape that runs counterclockwise around ζ+ and clockwise around

ζ− as seen in Figure (4.1):

Figure 4.1: Figure eight integration contour.

∮
γ

dζ4ζ2G2,ηη(η, ζ) =
g1g2

r
,
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where G2,ηη = g1g2

ζ2η
. Now that we have both components of Gηη(η, ζ), we can

integrate it twice with respect to η to obtain G for two monopoles:

G(η, ζ) = g1g2

[
µ

8

η2

2!ζ2
+
η (log η − 1)

ζ2

]
.

This approach to computing the generating integrand G(η, ζ) provides a frame-

work for determining the generating function for known metrics for widely

separated monopoles on periodic and doubly periodic underlying spaces.

In the following sections, we will present two examples of applying this ap-

proach to widely separated monopoles, first for periodic magnetic monopoles,

those for which one of the spatial dimensions is periodic, R2×S1. We will next

carry out the generalized Legendre transform for widely separated doubly peri-

odic magnetic monopoles, those for which two of the spatial dimensions form a

torus. These are also called monopole walls or monowalls. In these examples,

we wish to determine the generating functions and Kähler potentials for n

interacting, widely separated monopoles with distinct magnetic charges. It is

helpful to first consider the simplest case of two widely separated monopoles in-

teracting, determine their metric, generating function and Kähler potential in

relative coordinates, e.g. x = x1−x2 is the relative position in x of a monopole

at x1 interacting with a monopole at x2. Once the metric, generating function

and Kähler potential have been established for two monopoles, one can then

generalize straightforwardly to n interacting monopoles. For two widely sep-

arated monopoles on R3, their metric is the familiar Gibbons-Hawking metric

[13] with two complex variables. The metrics of two widely separated periodic

and doubly periodic monopoles follow a very similar pattern to the R3 case

and so I refer to these metrics respectively as the periodic Gibbons-Hawking

and the doubly periodic Gibbons-Hawking metrics.
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First let us briefly review the Gibbons-Hawking metric, which gives the

monopole moduli space for two widely separated monopoles of arbitrary mag-

netic charges in R3 [13]. Let the monopoles have magnetic charges g1 and g2

and be positioned at ~x1 and ~x2, with relative positions ~x = ~x1−~x2. We define

the complex variable z = x2 + ix3 and the real variable x = x1. Then the

metric has Gibbons-Hawking form:

ds2

4π
=
U

2
(dx2 + dzdz̄) +

1

2U
[dτ − iW ]2 , (4.12)

where

W = g1g2

2r(x+r)
(zdz̄ − z̄dz) , U = g1g2

(
v
G + 1

r

)
(4.13)

with r =
√
x2 + zz̄ is the distance between the two constituent monopoles

and G =
2∑
i=1

gi the total monopole charge and v the constant value of the

Higgs field far from either monopole. For widely separated monopoles with

U(N) fields, the gauge symmetry breaks maximally to N U(1) factors when

the Higgs field eigenvalues are all different. The two monopoles may have

different charges gi with respect to each U(1) factor. The metric for N U(1)

factors with such interactions between widely separated monopoles will be a

sum over N contributions like that in equation (4.13). We suppress the explicit

summation over U(1) factors for simplicity of notation.

The metric in (4.12) appears in the Lagrangian for widely separated monopoles

on R3 describing their kinetics and interactions [48]. As we see, this metric

can be reproduced using the generalized Legendre transform with a generating

function F = F1 + F2 in which F1 corresponds to the individual monopole

kinetic energies and F2 describes the monopole interactions. As described

above, the components of the generating function can be written as integrals

over a generating integrand G(η, ζ) which is a function of ζ and η. The relative
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monopole positions on the underlying space are encoded as coefficients of a

quadratic polynomial η in ζ. For a monopole at coordinates (xi, zi) ∈ R×C =

R3, we define the polynomial ηi = zi + 2xiζ − z̄ζ2, the relative polynomial

η = η1 − η2, and η̃ = η
ζ
. The analogous polynomial corresponding to the

constant component of the monopole fields is V(ζ) = 2vζ and Ṽ = V(ζ)/ζ

(later we will see a more general case of this).

The kinetic component of the generating function is

F1 = 1
2πi

∮
0
dζ
(

1− 1
ζ2

) [
g1g2

8
Ṽ η̃2

2!

]
= g1g2

v
2

(
x2 − zz̄

2

)
.

(4.14)

The kinetic component of the generating function will take this form for peri-

odic and doubly periodic monopoles as well, though the position of the center

of mass is fixed in both of those cases as we will see.

The second piece of the generating function corresponds to the pairwise in-

teractions between monopoles in that its derivatives show up in the monopole

moduli space metric coefficients corresponding to interaction terms. When we

extend the generalized Legendre transform to periodic and doubly periodic

monopoles, the kinetic generating function F1 is unchanged, while the inter-

action piece F2 must reflect monopole interactions. Because these interactions

are mediated by the monopole fields and the form of the fields at large dis-

tances from the monopoles is determined by the underlying space on which

the monopoles move, this piece of the generating function must reflect the

magnetic Coulomb interaction potential on the underlying space. For instance

the second derivative of this piece of the generating function F2,xx must de-

pend inversely on the monopole separations for widely separated monopoles
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on R3, it must be logarithmic in monopole separations for widely separated

periodic monopoles and linear in monopole separation for widely separated

doubly periodic monopoles. This is because the interaction piece, which con-

tains singularities when the monopoles occupy the same position, must solve

the Poisson equation with source terms representing the monopoles. For two

widely separated monopoles on R3 the interaction part of the generating func-

tion is

F2 = − 1
2πi

∮
γ
dζ
ζ2 g1g2η (log(η)− 1)

= g1g2

[
−r + x

2
log
(
r+x
r−x

)]
,

(4.15)

where γ is the figure-eight contour on the ζ plane seen in Figure (4.1). Apply-

ing relation (4.5) between the Kähler potential K and the generating function

F , and relations (4.9) between the metric coefficients Kzz̄, Kzū etc. and second

derivatives of the generating function, we can express the metric exclusively

in terms of second derivatives of F . We can eliminate explicit u1-dependence

from the metric and rearrange it to reflect its Gibbons-Hawking-like form.

This is done by expanding u = u1 + iτ , completing the square in dτ , and

applying the implicit variable relation dFx = du+dū
2

in a rearranged form

du1 (du1 − 2dzFxz − 2dz̄Fxz̄) = dx2F 2
xx − (dzFxz + dz̄Fxz̄)

2. This metric in

Gibbons-Hawking-like form is

ds2

8π
=
Fxx
4

(
dzdz̄ + dx2

)
+

1

4Fxx
(dτ + idzFxz − idz̄Fxz̄)2 . (4.16)

The relevant second derivatives of the generating function are

Fxx = g1g2

[
v + 1

r

]
, Fxz̄ = g1g2

z
2r(r+x)

. (4.17)

Using equation (4.5) the Kähler potential for this metric is a function of the

complex relative moduli (z, z̄, u, ū) = (z1−z2, z̄1−z̄2, u1−u2, ū1−ū2). We write
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it explicitly in terms of the monopole relative position (x, z, z̄) and include the

implicit relationship between (u, ū) and (x, z, z̄).

K(z, z̄, u, ū) = g1g2

[
v
(
x2 +

zz̄

2

)
+ r
]
, (4.18)

where the implicit coordinate relation as in equation (4.6) is

Fx(x, z, z̄) = g1g2

[
vx+

1

2
log

(
r + x

r − x

)]
. (4.19)

We have identified a set of complex coordinates on the monopole moduli space

and a corresponding Kähler potential, from which all coefficients are deter-

mined for the metric on the moduli space. Extending this to n monopoles is

intuitive.

The generalization to n monopoles promotes the derivatives of the generat-

ing function to tensors in the Legendre transform, but the result has nearly

identical form. The generating function is

F =
N∑
α

∑
i,j=1
j<i

gαi g
α
j

[
vα

2

(
x2
ij −

zij z̄ij
2

)
− rij +

xij
2

log

(
rij + xij
rij − xij

)]
, (4.20)

where α = 1, 2, ..., N indexes the N factors of U(1). The metric has Lee-

Weinberg-Yi form,

ds2

8π
=

Fxixj
4

(
dzidz̄j

2
+

dzjdz̄i
2

+ dxidxj

)
+

(Fxixj)
−1

4
(dτi + idzkFxizk − idz̄kFxiz̄k)

×
(
dτj + idz`Fxjz` − idz̄`Fxj z̄`

)
.

(4.21)

Including explicit summation over the N U(1) factors, the relevant second
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derivatives of the generating function are

Fxixi =
N∑
α=1

n∑
j,j 6=i

gαi g
α
j

[
vα + 1

rij

]
, Fxixj = −

N∑
α=1

gαi g
α
j

[
vα + 1

rij

]
,

Fxiz̄i =
N∑
α=1

n∑
j,j 6=i

gαi g
α
j

zij
2rij(rij+xij)

, Fxiz̄j = −
N∑
α=1

gαi g
α
j

zij
2rij(rij+xij)

.

(4.22)

Using equation (4.5) we express the Kähler potential for this metric as a func-

tion of the complex moduli (zi, z̄i, ui, ūi), which coincide with the monopole

positions for monopoles on R3. This is done by writing the Kähler potential

explicitly in terms of (xi, zi, z̄i) and giving the complex relationship between

(ui, ūi) and (xi, zi, z̄i).

K(z1, z̄1, u1, ū1, ...) =
N∑
α=1

n,n∑
i,j
j≤i

gαi g
α
j

[
vα
(
x2
ij +

zij z̄ij
2

)
+ rij

]
. (4.23)

Lastly, the complex coordinate relation as in equation (4.6) is

Fxi(x1, z1, z̄1, ...) =
N∑
α=1

n∑
j,j 6=i

gαi g
α
j

[
vαxij +

1

2
log

(
rij + xij
rij − xij

)]
. (4.24)

We now address periodic and doubly periodic monopoles. As with the U(N)

monopole on R3, we discuss the case for widely separated monopoles and give

the metric, generating function and Kähler potential for a single U(1) factor

of the maximally broken gauge symmetry.
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4.2 The Generalized Legendre transform for n widely separated periodic

monopoles

Here we will use the generalized Legendre transform to derive a set of complex

variables and Kähler potential for periodic Gibbons-Hawking metric, the met-

ric for two widely separated periodic monopoles. The center of mass position is

fixed. Unlike for doubly periodic monopoles, we have not determined a gener-

ating integrand G(η, ζ) which can produce the moduli space metric for periodic

monopoles described in [17]. Instead, we determine the generating function

directly and use it to obtain the Kähler potential and implicit coordinate re-

lation for periodic monopoles. The monopoles move in a three-dimensional

space R2 × S1 for which we label the coordinates θ ∈ S1, x2 ∈ R and x3 ∈ R.

We will choose one of the complex variables of the Kähler potential to be the

complex combination of the relative positions of the monopoles along the two

long directions z = x2 + ix3 ∈ C. The periodic spatial coordinate θ will serve

as auxiliary coordinate in the following. We are seeking a second complex

variable u, the imaginary part of which is the relative variable τ along the

coordinate which is conjugate to the electric charges of the monopoles (recall

that when BPS monopoles move they develop an electric charge and that this

charge is interpreted as momentum).

We can represent a periodic monopole with period 2π by a string of identical

monopoles on R3 with uniform 2π separation. At large distances in x2 and x3

from this monopole, its fields mimic those of a uniformly charged wire, and

so we seek solutions to the Laplace equation (4.8) which correspond in form

to those of a charged wire. This solution is logarithmic and the argument

of the Log function is the radial distance ρ(z, z̄) =
√
zz̄ from the wire, or
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F2,θθ = log ρ = 1
2

log(zz̄). Integrating this once with respect to θ gives us the

implicit relation Fθ = u+ū
2

+ g(z, z̄). One can then differentiate with respect

to the complex coordinate z and compare to the metric in order to determine

g(z, z̄). We find that g(z, z̄) = 0, so the full generating function has form

F = g1g2
v

2G

(
θ2 − zz̄

2

)
+ g1g2

θ2

4
log (zz̄) + h(zz̄), (4.25)

where the total charge is G =
2∑
i=1

gi. The metric depends only on Fθθ, and

Fθz and Fz̄θ so the function h(z, z̄) does not affect the metric. It must simply

be chosen so that this generating function satisfies Fθθ + 4Fzz̄ = 0. The full

generating function for two periodic monopoles interacting at large separation

is

F = g1g2
v

2G

(
θ2 − zz̄

2

)
+ g1g2

[
θ2

4
log (zz̄)− zz̄

4

(
1

2
log(zz̄)− 1

)]
. (4.26)

This generating function has second derivatives

Fθθ = g1g2

[
v
G + 1

2
log (zz̄)

]
, Fθz = θz̄

2zz̄
. (4.27)

This metric is invariant under U(1) gauge transformations acting on the fields

(Φ, Ai) of the periodic monopole. Since this models monopoles in a periodic

space, we would expect the metric (but not necessarily its coefficients) to be

invariant under integer shifts along the periodic direction of the form θ →
θ + 2πm for m ∈ Z. Such shifts are equivalent to holomorphic translations of

the complex coordinate u, analogous to that mentioned in [45].

u→ u+
4πm+ (2πm)2

4
log z, (4.28)

where u−ū
2i

= τ , and the periodic monopole’s electric charge is associated

with translations along the τ direction. The generalization from two periodic
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monopoles to n periodic monopoles does not present complications since it is

essentially a sum of pairwise interactions. For completeness, we present these

results.

The generating function for n widely separated periodic monopoles expressed

in terms of coordinates (θi, zi) for each monopole is

F =
n,n∑
i,j=1
i<j

gigj

[
v

2G

(
θ2
ij −

zij z̄ij
2

)
+

θ2
ij

4
log (zij z̄ij)− zij z̄ij

4

(
1
2

log(zij z̄ij)− 1
) ] (4.29)

where the relative coordinates are θij = θi−θj etc, the total charge is G =
n∑
i=1

gi,

and v is the constant component of the Higgs field. As with monopoles on

R3, we have suppressed the explicit overall summation over the U(1) factors.

Each U(1) factor has a different set of monopole charges gi and constant Higgs

components v.

The set of necessary second derivatives of the generating function F which

appear in the metric coefficients are

Fθiθi =
∑
j=1
n 6=i

gigj
[
v
G + 1

2
log (zij z̄ij)

]
,

Fθiθj = −gigj
[
v
G + 1

2
log (zij z̄ij)

]
,

Fθizi =
n∑
j=1
j 6=i

θij
2(zij z̄ij)

z̄ij, Fθizj = − θij
2(zij z̄ij)

z̄ij.

(4.30)

The implicit coordinate relation between the complex coordinates (ui, ūi) and
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the monopole coordinates (θi, zi, z̄i) is

ui + ūi
2

=
n∑
j=1
j 6=i

gigjθij

[
v

G
+

1

2
log (zij z̄ij)

]
, (4.31)

which follows from the definition ui+ūi
2

:= ∂θiF .

Shifts along the periodic direction θ of the form θk → θk + 2πm correspond to

shifts in the complex coordinates

ui → ui − (2πm)gigk
[
v
G + log zik

]
for i 6= k,

uk → uk + (2πm)
n∑
j=1
j 6=k

gkgj
[
v
G + log zkj

]
.

(4.32)

The Kähler potential is computed from this generating function via the Leg-

endre transform K(z1, z̄1, u1, ū1, ...) = θi ui+ūi
2
− F (θ1, z1, z̄1, ...) with implicit

sum over the repeated indices.

K =
n,n∑
i,j=1
i<j

gigj

[
v

2G

(
θ2
ij +

zij z̄ij
2

)

+
θ2
ij

4
log (zij z̄ij)− zij z̄ij

4

(
1
2

log(zij z̄ij)− 1
) ]
.

(4.33)

Under shifts along the periodic direction θk → θk + 2πm with m ∈ Z̄, the

Kähler potential transforms as

K → K +
n∑
j=1
j 6=k

[
(4πm(θk − θj) + (2πm)2)

×gkgj
[
v

2G + 1
4

(log zkj + log z̄kj)
] ]
.

(4.34)
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The shift term that is proportional to m2 is of the form f(z, u) + f(z, u) but

the term proportional to m is linear in the auxiliary coordinates θi. In order

to see that this term is also of the holomorphic plus antiholomorphic form,

we use equation (4.31) for the implicit relation for widely separated periodic

monopoles to re-express the above shifts:

K → K +(2πm)uk+ūk
2

+
n∑
j=1
j 6=k

(2πm)2 gkgj
[
v

2G + 1
4

(log zkj + log z̄kj)
]
,

(4.35)

which explicitly of form K → K + f(z, u) + f(z, u).

Explicitly, with a sum over repeated indices i, j = 1, 2, ..., n, and with an

implicit sum over all U(1) factors, the metric can be expressed as

ds2

8π
=
Uij
2
d~xid~xj +

(Uij)
−1

2

[
dθj + ~W j` · d~x`

] [
dθi + ~W ik · d~xk

]
, (4.36)

with

Uii =
n∑
k=1
k 6=i

gigk
[
v
G + 1

2
log (zikz̄ik)

]
,

Uij = −gigj
[
v
G + 1

2
log (zikz̄ik)

]
,

~Wii = −
∑
j=1
j 6=i

gigj
θij

2zij z̄ij

(
xij3 x̂2 − xij2 x̂3

)
,

~Wij = gigj
θij

2zij z̄ij

(
xij3 x̂2 − xij2 x̂3

)
.

(4.37)
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Now one can carry out a transformation of the differential of the internal

modulus τ without having to modify the generating function F explicitly. For

the periodic monopole, the generalized Legendre transform we have carried out

here produces a term like a = − i
2
θ
(
zdz̄−z̄dz

zz̄

)
= −θdϕ where ϕ = tan−1

(
z−z̄
z+z̄

)
is the argument of z = |z|eiϕ, when what we want in order to achieve the

Cherkis-Kapustin metric [17] is ã = ϕdθ. This is accomplished by introducing

the coordinate change τ̃ = τ + θϕ.

Let us introduce the constant phase b associated with the periodic direc-

tion θ as in the Cherkis-Kapustin description [17] and the function ϕ(z, z̄) =

tan−1
(
z−z̄
z+z̄

)
. Generalizing these principles to the case of n distinct, interacting

periodic monopoles, we can carry out the following transformation.

τ̃i = τi +
∑
j=1
j 6=i

gigj

[
b

G
θ + ij + (θi − θj)(ϕi − ϕj)

]
.

In the metric described in (4.36) and (4.37), we transform

n∑
j=1
j 6=i

~W ij · d~xj = −
n∑
j=1
j 6=i

gigj θij dϕ(zij, z̄ij)

→
n∑
j=1
j 6=i

gigj
[
b
G + ϕ(zij, z̄ij)

]
dθij.

(4.38)

With this transformation of the internal moduli τi, we have obtained a Kähler

potential (4.33) and implicit relation (4.31) for n widely separated periodic

monopoles. This is the description of periodic monopoles for a single U(1)

interaction. Recall that the gauge symmetry of the fields for a monopole with

U(N) gauge symmetry breaks fully to U(1)N when all constituent subwalls are

sufficiently well separated [17] and where Higgs field has N distinct eigenval-
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ues. This means that the interactions of widely separated periodic monopoles

in U(N) gauge theory can be obtained by summing over the N U(1) inter-

actions in a fashion analogous to that in equation (4.20) and those following

it. The above metric contains an implicit sum over the N independent U(1)

interactions which yields the full metric for widely separated U(N) periodic

monopoles. This is the U(N) generalization of the Cherkis-Kapustin met-

ric [17] for widely-separated periodic monopoles with distinct charges. The

Cherkis-Kapustin metric describes interactions of n widely separated, unit-

charge periodic monopoles in SU(2) gauge theory; that paper points out the

simplicity with which the gauge symmetry is generalized to SU(N) or U(N)

as is done here.

4.3 The Generalized Legendre transform for n widely separated doubly peri-

odic monopoles

In this chapter we will extend the generalized Legendre transform to widely

seperated doubly periodic monopoles, which are the main subject of this dis-

sertation. First we will discuss the choice of carrying out the generalized

Legendre transform with respect to the subwall coordinates or the monowall

moduli and show that the two transforms are physically equivalent. Then we

will discuss gauge choices made in Chapter 3 and here. Next we will apply

the generalized Legendre transform to the comparatively simple case of two

widely separated constituent monowalls. Last, we will carry out the general-

ized Legendre transform with respect to each of the monopole moduli for n

widely separated monopoles and the result will reproduce our metric on the

moduli space of monowalls in equation (3.24).
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4.3.1 The Generalized Legendre transform with respect to subwall coordi-

nates versus moduli

We wish to determine that carrying out the generalized Legendre transform for

widely separated subwalls produces the same complex coordinates and metric

whether the transform is carried out with respect to the subwall coordinates

(xi, ϕi, θi, τi) (as if they are independent variables) or the monowall moduli

(Rρ,Ψρ,Θρ, Tρ). We will show that the Kähler potentials produced in these

two approaches are equal up to shifts of the form f(u, z) + f(u, z) where f

is holomorphic. After these arguments, we will briefly discuss gauge choices

in Section 4.3.2 and go on to apply the generalized Legendre transform with

respect to the moduli in Section 4.3.3 to compute a set of complex coordinates

and a Kähler potential for the metric on the moduli space of monowalls in

equation (3.24).

We established in subsection 3.3.1 that the four types of coordinates

of the monopoles share the same n constants of proportionality, i.e.

(dxi, dϕi, dθi, dqi) = cρi (dRρ, dΨρ, dΘρ, dQρ) with sum over ρ = 1, 2, ..., σ and

dT λ = cλj dτ
j with sum over j = 1, 2, ..., n for the phases dual to the electric

charge (which behaves as a momentum). We now have the choice of carrying

out the generalized Legendre transform for doubly periodic monopoles with

respect to the constituent monopole coordinates (as we demonstrated here for

monopoles on R3 in section 4.1 and periodic monopoles in section 4.2) or with

respect to the monopole moduli now that we have established linear relation-

ships between coordinates of widely separated constituent monopoles and the

moduli. Perhaps the most straightforward approach would be to work exclu-

sively with the moduli going forward and discard the constituent monopole
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coordinates entirely from our computations. But given that the subwall coor-

dinates are the physical observables for our monowall on the underlying space,

and also for simplicity of notation, we choose here to express our various func-

tions explicitly in terms of the subwall coordinates and therefore implicitly in

terms of the moduli. We carry out the generalized Legendre transform with

respect to the moduli, however.

Given the linear relation between coordinates and moduli, it is simple to show

with the chain rule that whether we conduct the generalized Legendre trans-

form with respect to each of the monopole coordinates or the moduli, we

obtain the same metric and implicit relation between Ψρ and (Uρ,Zρ). To

establish the equivalence of taking the generalized Legendre transform for

widely separated monowalls with respect to the coordinates (xi, θi, ϕi) or the

moduli (Rρ,Ψρ,Θρ), we consider the Kähler potentials resulting from each ap-

proach, K(U1, ...,Z1, ...,Zσ) and K̃(u1, ..., z1, ...zn), given a generating function

F
(
x(R), z(Z)

)
. The Kähler potential for the coordinates:

K̃(u1, ..., z1, ...zn) = −F +
n∑
i=1

ϕiFϕi ,

where ui+ūi
2

= Fϕi . The Kähler potential for the moduli:

K(U1, ...,Z1, ...,Zσ) = −F +
σ∑
ρ=1

ΨρFΨρ ,

where U+Ū
2

= FΨ and the moduli are related linearly to the coordinates by

Uρ =
n∑
i=1

cρiu
i. The difference between the Kähler potentials is

K̃ −K =
n∑
i=1

ϕiFϕi −
σ∑
ρ=1

ΨρFΨρ

=
n∑
i=1

ϕ0,i
ui+ūi

2
,
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where ϕ0,i is the coordinate of the ith constituent monopole when the relevant

moduli are all zero Φρ = 0. This is of the form f(u)+f(u) with f holomorphic

with respect to the coordinates u and therefore does not affect the metric and

nor would it affect the implicit relation between u and (ϕ, z). While we will

carry out the generalized Legendre transform with respect to the constituent

coordinates in our two-monopole example for simplicity, for the general n-

monopole case we will deal directly with the moduli.

4.3.2 Gauge differences in doubly periodic monopole metrics

In this chapter, we will apply the generalized Legendre transform to widely

seperated doubly periodic monopoles. The metric this construction corre-

sponds to is that given at the end of Chapter 3. The generating function we

have computed here, however, corresponds to a different gauge choice than

was made in Chapter 3, which presents material published previously in [39].

We will elaborate on the relationship between the phases ~a associated with

doubly periodic subwalls and the motion of subwalls along the periodic spatial

directions ϕ and θ for slowly moving abelian subwalls. Recall that we assume

that the subwall velocities are very small and the subwall accelerations are van-

ishingly small. We are interested in keeping only quantities up to quadratic

in subwall velocities in the Lagrangian, which corresponds to keeping only up

to terms quadratic in velocities in the fields Φ and A0 and keeping only up to

terms linear in velocities in the fields ~A for each subwall. In this discussion all

velocities are presumed small.

We now compare the fields of a wall moving with small velocities along the
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periodic directions to a wall stationary along the periodic directions but with

small time-dependent phases (aϕ, aθ) and relate these two cases by gauge trans-

form. In other words, we compare the gauge field ~Ai and electric field ~Ei

produced by the ith electrically and magnetically charged wall with velocities

~vi = (vi1, v
i
ϕ, v

i
θ) with the electric field ~Ei produced by a wall with velocity

~vi = (vi1, 0, 0) and small gauge phases ~ai = sgn(x− xi)(0, aiϕ, aiθ). Up to quan-

tities cubic in time derivatives the magnetic fields are not affected by small

velocities in the ϕ and θ directions. Recall that ~w is a function of the spatial

coordinates (x, ϕ, θ) and its form depends on our choice of gauge. In [39] we

chose its form to be ~w(x, ϕ, θ) = sgn(x)
2

(0,−θ, ϕ) while the form which produces

the metric we have generated using the generalized Legendre transform (4.56)

is ~w(x, ϕ) = sgn(x)(0, 0, ϕ).

A0
i = −giqi|x− xi|+ gi(~w · ~vi), A0 = −giqi|x− xi|,

~Ai = gi ~w(x− xi), ~Ai = gi ~w(x− xi)− gi~a,

~Ei = sgn(x− xi) (giqi, gi∂ϕ(~w · ~v), gi∂θ(~w · ~v)),

~Ei = sgn(x− xi) (giqi, giȧϕ, giȧθ).

Comparing the last two lines of the above equation we see that for slow moving

subwalls including a small time dependent gauge phase ~a in the definitions of

the gauge fields Aiϕ and Aiθ affects the electomagnetic fields in the same way as

velocities along the ϕ and θ directions if we make the following identifications

between these periodic direction velocities and the gauge phases:

∂ϕ(~w · ~v) = ȧϕ, ∂θ(~w · ~v) = ȧθ. (4.39)

In [39] this corresponded to identifying up to constants ϕi

2
with aθ and θi

2

with aϕ. In the case discussed here, this corresponds to identifying (up to a
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constant) ϕi with aθ and setting aϕ to zero. For simplicity we will refer to aθ

as simply a. Then we can rewrite the metric coefficients in (4.56) as

~Wii = −
∑
j=1
j 6=i

gigj
[
dθ
G + aij

]
θ̂, ~Wij = gigj

[
dθ
G + aij

]
θ̂.

4.3.3 The Generalized Legendre transform for monowalls

Now that we have addressed these matters, we get down to the business of

computing the generating function and integrand for monowalls, our main goal

for this chapter. As with monopoles on R3, we begin the story of the generalized

Legendre transform and computing the generating function for doubly periodic

monopoles (i.e. monopoles on a R × T 2 underlying space) by examining the

Gibbons-Hawking-like metric and Kähler potential for two widely separated

doubly periodic monopoles in equation (4.40) and comparing it to the metric

for two monopoles in terms of second derivatives of the generating function F

in equation (4.21).

In this case the monopole relative coordinates are encoded in a quadratic

function of ζ with complex coefficient z = x + iθ and real coefficient ϕ where

ϕ ∼ ϕ + 2π and θ ∼ θ + 2π are periodic while x ∈ R. For simplicity at this

point, we will also assume the monopole has symmetric left- and right-charges

G± = ±(g1 + g2) where g1 and g2 are the charges of the constituent subwalls.

After this simple case is discussed we will address doubly periodic monopoles

(monowalls) with multiple constituent subwalls and asymmetric left- and right-

charges. We assign the coordinates as real ϕ and complex z = x + iθ where

x ∈ R is the long spatial coordinate along which the monopoles move and ϕ

and θ are coordinates on a spatial torus, each with period 2π. In [39], I demon-
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strated that when U(N) doubly periodic monopoles become widely separated,

symmetry breaking occurs between the monopoles and as x approaches ±∞.

Under maximal symmetry breaking the full U(N) interaction breaks to N sets

of U(1) interactions. We will now apply the generalized Legendre transform to

obtain a set of complex coordinates (u, ū, z, z̄) and a Kähler potential for this

metric. The Gibbons-Hawking-like metric for two widely separated doubly

periodic monopoles in terms of their relative coordinates is

ds2

8π
= g1g2

2

[
v
G + z+z̄

2

]
(dzdz̄ + dϕ2)

+ 1

2g1g2[ vG + z+z̄
2 ]

[
dτ − g1g2

(
d3

G + ϕ
)
dz−dz̄

2i

]2
.

(4.40)

Note that a shift of θ → θ + 2π does not affect the metric. A shift of ϕ →
ϕ+ 2π corresponds to a holomorphic shift of u→ u− 2πg1g2z which does not

meaningfully change our monowall description [48].

We can see that the kinetic component of the generating function satisfies

Fϕϕ =
1

2πi

∮
γ

dζη2
xGηη(η, ζ) = g1g2

[
v

G
+
z + z̄

2

]
,

for Rez = Re(z1 − z2) positive. Substituting in ηx = 2ζ as before, we can

find an expression for the generating integrand G(η, ζ). We first solve for the

kinetic component of Gηη which corresponds to the constant v term:∮
0

dζ4ζ2G1,ηη(η, ζ) = g1g2
v

G
,

where G1,ηη = g1g2v
4Gζ3 and the integrating contour is a counterclockwise loop

around the origin of the ζ plane. We next must look at the second derivative

of the generating function with respect to ϕ and z and see how it incorporates

the constant ϕ and θ phases d±θ and d±ϕ associated with the doubly periodic
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monopole far to the left and right of the monopole.

Fϕz =
g1g2

2

[
dθ
G

+ ϕ

]
,

where dθ = 1
2
(d+
θ + d−θ ) is the average of the left and right constant phases for

the ϕ direction. The ϕ-linear term on the right in this expression results from

the interaction term in the generating function which will be dealt with next.

It may be replaced with the phase g1g2

2
a to give the metric coefficient explicitly

in terms of phases. The dθ term can be introduced in the following way:∮
0

dζηxηzG1′,ηη(η, ζ) =
g1g2

2

dθ
G
,

where ηz = 1 andG1′,ηη = g1g2d3

8Gζ2 . These terms can be conveniently combined by

defining a function of ζ with constant coefficients V(ζ) = (v+idϕ)+2dθζ−(v−
idϕ)ζ2 (compare with η = (x+iθ)+2ϕζ−(x−iθ)ζ2) so that Gkin,ηη = g1g2

8G
V(ζ)
ζ

.

This modification changes the generating function by quantities of the form

f(z) + f(z) with holomorphic f . Then we write the full kinetic component of

the generating integrand as

Gkin =
1

8ζ

(
ζ − 1

ζ

)
V(ζ)

Gζ
η2

2!ζ2
.

The component of the function G that corresponds to the z+z̄
2

term requires

a different integrand but will have the same contour. To obtain the z+z̄
2

term,

we integrate 1
ζ

(
ζ − 1

ζ

)
η
ζ

counterclockwise around the origin.∮
γ

dζ4ζ2G2,ηη(η, ζ) = g1g2
z + z̄

2
,

where G2,ηη = 1
ζ

(
ζ − 1

ζ

)
η

8ζ3 . Now that we have all components of Gηη(η, ζ),
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we can integrate it twice with respect to η to obtain G:

G(η, ζ) =
(
ζ − 1

ζ

)
g1g2

8ζ

[
V(ζ)
Gζ

η2

2!ζ2 + η3

3!ζ3

]
=
(
ζ − 1

ζ

)
g1g2

8ζ

[
Ṽ(ζ)

G
η̃2

2!
+ η̃3

3!

]
,

where V(ζ) = (v + idϕ) + 2dθζ − (v − idϕ)ζ2, η̃ = η
ζ
, and Ṽ(ζ) = V(ζ)

ζ
. Later,

when we compare this function to the crystal volume in Chapter 5, we will

compare the cut volume with the portion of the above function of η̃ only:

G̃(η̃) =
g1g2

8

[
Ṽ(ζ)

G
η̃2

2!
+
η̃3

3!

]
. (4.41)

4.3.4 The Generalized Legendre transform for n Doubly Periodic Monopoles

Generalizing the above discussion from two doubly periodic monopoles to n

such monopoles and computing the generalized Legendre transform with re-

spect to the moduli (Ψρ, Rρ + iΘρ) = (Ψρ,Zρ) rather than coefficients (ϕi, zi)

yields the following. To simplify our expressions without losing generality, we

choose the coordinate system such that the center of mass of the monopole

has position xCM = 0. The generating integrand including the possibility of

asymmetric left and right charges is

8 G̃(η̃1, ..., η̃n) =
N∑
α=1

[
Ṽα(ζ)

n∑
i=1

gαi
η̃2
i

2!
+

n∑
i=1

gα0 g
α
i

η̃3
i

3!
+

n,n∑
j<i

gαi g
α
j

η̃3
ij

3!

]
. (4.42)

The generating function is

F (Ψ1,Z1, ...Ψσ,Zσ) =
1

2πi

∮
0

dζ

ζ

(
ζ − 1

ζ

)
G̃(η̃1, η̃2, ..., η̃n) (4.43)
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in terms of the coefficients (ϕi, zi), which are linear functions of the moduli

(ϕi, zi) = cρi (Ψρ,Zρ) with constants cρi . It can be computed explicitly:

F (Ψ1, ...,Ψσ,Z1, ...,Zσ) =
N∑
α=1

[
dαθ

n∑
i=1

gαi ϕi
(
zi+z̄i

2

)
+vα

2

n∑
i=1

gαi
(
ϕ2
i − ziz̄i

2

)
+

n∑
i=1

gα0 g
α
i

2

(
zi+z̄i

2

) (
ϕ2
i − ziz̄i

4

)
+
∑
i,j
j<i

gαi g
α
j

2

( zij+z̄ij
2

) (
ϕ2
ij −

zij z̄ij
4

) ]
.

(4.44)

where xij = xi − xj etc, G =
n∑
i=1

gi, v is the constant background Higgs field

for this particular factor of U(1), and dθ is the ϕ-direction phase for this U(1)

factor and α indexes the U(1) factors. We have omitted −
n∑
i=1

(v+idϕ)z̄2
i +(v−idϕ)z2

i

16

which originates from the V(ζ) term since it contributes to the Kähler potential

only a term of the form f(Z) + f(Z) with f holomorphic, which contributes

nothing to the metric.

The implicit relation between the auxiliary moduli Ψρ, and the complex moduli

(Uρ,Zρ) is

Uρ+Ūρ
2

=
N∑
α=1

n∑
i=1

[
dαθ g

α
i
zi+z̄i

2
+ vgαi ϕi

+gα0 g
α
i ϕi

zi+z̄i
2

+ gαi g
α
j ϕij

zij+z̄ij
2

]
ciρ.

(4.45)

which follows from Uρ+Ūρ
2

:= ∂ΨρF . Shifts along the periodic directions of

ϕi → ϕi + 2πm and θj → θj + 2πn respectively correspond to the following

shift for complex subwall coordinates (ui, ūi) introduced earlier in this chapter.

Because the wall coordinates along the periodic direction θi do not appear in
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the implicit relation, the ui are unaltered by θ shifts

ui → ui + 2πm

vgi + g0gi
zi+z̄i

2
+

n∑
j=1
j 6=i

gigj
zij+z̄ij

2

 ,
uk → uk − 2πmgigk

zik+z̄ik
2

,

for k 6= i and with implicit summation over the U(1) factors on the right-hand

side. These complex coordinates are related to the complex moduli Uρ via

Uρ = cρju
j with summation over j = 1, 2, ..., n. Shifts in the coordinates ui

correspond to the following shifts in the moduli Uρ:

Uρ = 2πmcρi

vgi + g0gi
zi+z̄i

2
+

n∑
j=1
j 6=i

gigj
zij+z̄ij

2


−2πmcρi

n∑
k=1
k 6=i

[
gigk

zik+z̄ik
2

]
,

(4.46)

with implicit summation over the U(1) factors on the right-hand side.

The set of second derivatives of the generating function F which appear in the

metric are

FΨρΨλ =
n,n∑
i=1
j=1

cρi c
λ
jFϕiϕj , FΨρZλ =

n,n∑
i=1
j=1

cρi c
λ
jFϕizj , (4.47)

where

Fϕiϕi = g0gi
zi+z̄i

2
+
∑
j=1
n6=i

gigj
[
v
G +

zij+z̄ij
2

]
,

Fϕiϕj = −gigj
[
v
G +

zij+z̄ij
2

]
,

Fϕizi =
n∑
j=1
j 6=i

gigj
2

[
dθ
G + ϕij

]
, Fϕizj = −gigj

2

[
dθ
G + ϕij

]
,

(4.48)
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with implicit summation over the U(1) factors on the right-hand side of each

equation in (4.48).

The Kähler potential is related to the generating function by K = −F +

Ψρ∂ΨρF . Thus,

KZρZ̄λ =
FΨρΨλ

4
+ FZρΨµ

(
FΨνΨµ

)−1
FΨνZ̄λ ,

KUρZ̄λ = −
(
FΨµΨρ

)−1
FΨµZ̄λ , KUρUλ =

(FΨλΨρ)
−1

4
.

(4.49)

The Kähler potential up to terms of the form f(Z,U) + f(Z,U) with f holo-

morphic is

K(U1,Z1, Ū1, Z̄1, ...,Uσ, ...) =
N∑
α=1

[
vα

2

n∑
i=1

gαi
(
ϕ2
i + ziz̄i

2

)

+
n∑
i=1

gα0 g
α
i

2

(
zi+z̄i

2

) (
ϕ2
i + ziz̄i

4

)
+
∑
i,j
j<i

gαi g
α
j

2

( zij+z̄ij
2

) (
ϕ2
ij +

zij z̄ij
4

) ]
.

(4.50)

From here forward in this chapter we will leave the summation over the U(1)

factors implicit. Under shifts along the periodic directions of the form
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ϕi → ϕi + 2πm and θj → θj + 2πn, the Kähler potential transforms as

K → K + v
2
gi

(
2πmϕi + (2πm)2 +

2πn(iz̄j−izj)+(2πn)2

2

)
+g0gi

2

[
(2πmϕi + (2πm)2)

(
zi+z̄i

2

)
+

2πn(iz̄j−izj)+(2πn)2

4

]
+

n∑
k=1
k 6=i

gigk
2

(2πmϕik + (2πm)2)
(
zik+z̄ik

2

)

+
n∑̀
=1
` 6=j

gjg`

(
2πn(iz̄j`−izj`)+(2πn)2

4

)
,

(4.51)

which are linear or constant with respect to moduli and so the metric is

unchanged by integer shifts along the periodic directions. The auxiliary

variables ϕi are neither holomorphic nor antiholomorphic but the terms in

the above shift which are linear in ϕi can be expressed as being holomor-

phic/antiholomorphic, i.e. of the form K → K + f(Z,U) + f(Z,U), using the

implicit relation among the monowall coordinates as in Equations (3.18) and

(4.45). Re-expressed like this, the Kähler potential shifts in the following way,

where Uρ = ciρui and zi = cρiZρ,

K → K + v
2
gi

(
(2πm)2 +

2πn(iz̄j−izj)+(2πn)2

2

)
+g0gi

2

[
2πn(iz̄j−izj)+(2πn)2

4

]
+

n∑
k=1
k 6=i

gigk
2

(2πm)2
(
zik+z̄ik

2

)

+
n∑̀
=1
6̀=j

gjg`

(
2πn(iz̄j`−izj`)+(2πn)2

4

)
+ 2π

[
ui+ūi

2
− dθ zi+z̄i2

]
.

(4.52)

The generating function for n doubly periodic monopoles reproduces the Lee-

Weinberg-Yi type metric on the moduli space of monowalls given in [39] which
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is derived from the dynamics of widely separated monowalls.

gpρp̄λ
8π

=
σ∑
ρ=1

σ∑
λ=1

∂pρ∂p̄λK, (4.53)

where ρ = 1, 2, ..., σ, pρ = Uρ,Zρ and q̄ρ = Ūρ, Z̄ρ. We now substitute in

the phase ai for ϕi as described in Section 4.3.1. Explicitly, with a sum over

repeated indices i, j = 1, 2, ..., n, and with an implicit sum over all U(1) factors,

the metric can be expressed as

ds2

8π
=

(Uijciρcjλ)
2

d ~Xρd ~Xλ

+
(Ucc)−1

ρλ

2

[
dTλ +

(
~Wj`c

j
λc
`
ν

)
· d ~Xν

]
×
[
dTρ +

(
~Wikc

i
ρc
k
ρ

)
· d ~Xρ

]
(4.54)

with

Uii = g0gixi +
n∑
k=1
k 6=i

gigk
[
v
G +

zij+z̄ij
2

]
, Uij = −gigj

[
v
G +

zij+z̄ij
2

]
, (4.55)

~Wii · d ~Xµ = −
∑
j=1
j 6=i

gigj
[
dθ
G + aij

]
dΘµ,

~Wij · ~Xµ = gigj
[
dθ
G + aij

]
dΘµ.

(4.56)

This is the Kähler potential (4.50) and implicit relation (4.45) which produce

the doubly periodic monopole metric of [39] up to gauge differences, which is

a generalization of the metric derived in [16] from n identical monopoles to n

distinct monopoles and from SU(2) gauge symmetry to U(N) symmetry. As

in the previous chapter, note that we have chosen the Uij functions to have a

1/G term. This does not present an issue in cases where G = 0, which can be
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seen by making the substitution
n,n∑
i>j

gigjx
2
ij = G

[
n∑
i=0

gix
2
i

]
−(GxCM)2 and using

that the position of the monowall center of mass is fixed and at the origin. We

have made the choice to include the 1/G term to mimic the Yi-Weinberg-Lee

form of metric seen in [17, 16] for periodic and doubly periodic monopoles.
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CHAPTER 5

Generating Integrand is Crystal Volume

5.1 General case (without compound walls)

We will relate the expression for the generating integrand as a function of the

subwall positions along the noncompact spatial direction to the cut volume.

Using the Lawrence polytope volume formula [55] we give an expression for

the cut volume which is given in terms of the x coordinates of the crystal

vertices. Asymptotically (i.e. when one or more of the moduli are very large),

the x = log |s| coordinate of the cut crystal’s bottom vertices can be identified

with the positions of subwalls along the noncompact direction x in R × T 2.

This identification is covered in Chapter 2.2 in which the amoeba and cut

volume are introduced.

5.1.1 Lawrence Polytope Volume Formula

We first briefly describe the Lawrence volume formula for convex polytopes in

three dimensions. Identify a plane ~aρ · (~x − ~x0,ρ) = 0 with every face of the

polytope and define the volume of the polytope as the region simultaneously

satisfying ~aρ · (~x− ~x0,ρ) < 0 for ρ indexing all polytope faces (recall, each face

of this polytope which is the cut volume corresponds to a point on the Newton
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polytope). The normal to the plane is given by ~aρ and ~x0,ρ shifts the plane.

Now define a reference plane ~c · (~x− ~xc) = 0 which is not part of the polytope

and which is not parallel to any of the polytope’s faces, i.e. ~c × ~aρ 6= 0. The

Lawrence formula for the volume of the polytope is written as the sum of a

set of signed sub-volumes where each sub-volume corresponds to one and only

one of the vertices of the polytope. The sub-volumes are simplices (in three

dimensions, these are tetrahedra) which are bounded by the three polytope

planes intersecting at the vertex in question and by the reference plane. The

sign of the sub-volume is positive if an even number of normal vectors for the

three planes which bound it are pointing inward in the sub-volume, and the

sub-volume is negative if an odd number of normal vectors point inward. See

figure (5.1) for a two-dimensional analogue of this.

The volume of a simplex in three dimensions with vertices at ~Xi=1,2,3,4 is 1
3!

times the determinant of the 3×3 matrix whose columns are the displacement

vectors between three of the vertices and the fourth.

Vol =
1

3!
det


(X2 −X1) (X3 −X1) (X4 −X1)

(Y2 − Y1) (Y3 − Y1) (Y4 − Y1)

(Z2 − Z1) (Z3 − Z1) (Z4 − Z1)

 .

Associate a 3 × 3 matrix Mi with each polytope vertex i whose columns are

the normal vectors ~aρ, ~aµ and ~aν of the three polytope planes intersecting at

that vertex. Define the vector ~γ = (γx, γy, γz) whose elements solve the linear

equation c = Miγi (no sum over i). Then the Lawrence volume formula for

convex polytopes can be expressed concisely as

VolLawrence =
n∑
i=1

1

3!

[~c · (~xi − ~xc)]3

γxi γ
y
i γ

z
i detMi

.
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Figure 5.1: The triangular polygon and reference plane are both shown in
thick black. The sub-triangles associated with the polygon’s top, left and
right vertices are shown respectively in green, red and blue. The normal
vectors for these planes are all outward pointing for the black polygon. The
green and blue sub-volumes have positive sign since they have even numbers
of inward pointing normals (zero and two, respectively). The red sub-volume
has negative sign since it has an odd number (one) of inward pointing normals.

5.1.2 Generating Integrand

The generating integrand G̃ (η̃1, η̃2, ..., η̃n) is a function of η̃i = ηi
ζ

where ηi =

zi + 2xiζ − z̄iζ
2. In the polynomial ηi, the coefficient xi is one of the three

real spatial positions of the ith subwall and zi is a linear complex combination

of the remaining two spatial positions. We also introduce the function ηv in

which the coefficients are constants and are a real and complex combination of

the constant component v of the Higgs field and the constant phases (dθ, dϕ)
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associated with the two periodic directions (ϕ, θ). The noncompact direction

has coordinate x. For example, expressions for ηi and ηv might be ηi = (xi +

iθi) + 2ϕiζ − (xi − iθi)ζ2 and ηv = (v + idϕ) + 2dθζ − (v − idϕ)ζ2. Consider

n subwalls with spatial positions given by (xi, zi) and subwall charges gi with

i = 1, ..., n. We write the total charge for the αth U(1) factor as Gα =
n∑
i=1

gαi .

We define the difference of η polynomials as ηij = (zi − zj) + 2(xi − xj)ζ +

(z̄i − z̄j)ζ
2, and the function of ζ encoding the constant Higgs v and gauge

field (dϕ, dθ) contributions V = (v + idϕ) + 2dθζ − (v − idϕ)ζ2, and further

define (η̃, Ṽ) =
(
η
ζ
, V
ζ

)
. We write the generating function for this monowall

with widely separated subwalls. With an implicit sum over the U(1) factors

it is

G̃ (η̃1, η̃2, ..., η̃n) =
n∑
i=1

[
Ṽgi

η̃2
i

2!
+ g0gi

η̃3
i

3!

]
+

n,n∑
i=1
j=1
i>j

gigj
η̃3
ij

3!
. (5.1)

To compare this expression with the cut volume we write the integrand G̃ as

a function of the real coordinates xi of the n subwalls along and suppress the

superscript for simplicity. We substitute xi for η̃i and substitute the constant

component v of the Higgs for η̃v. Assume the walls are ordered such that

xi+1 > xi.

G̃(x1, x2, ..., xn) =
n∑
i=1

[
vgi

x2
i

2!
+ g0gi

x3
i

3!

]
+

n,n∑
i=1
j=1
i>j

gigj
x3
ij

3!
. (5.2)

The subwalls may have different charges gαi in each U(1) factor (indexed by

α) and the parameters (vα, dαϕ, d
α
θ ) differ as well. The summation over U(1)

factors is implicit in the above expression and the following expressions until

(5.4). We will express G̃(x1, ..., xn) as a sum of terms in which each term

contains information about a single subwall and its corresponding subtriangle
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in the Newton polygon triangulation. Once the generating integrand is written

in these terms we will make the U(1) sum explicit in order to finally relate it

to the cut volume.

To write the generating integrand in this manner we eliminate the ordering

in the double sum over walls and take into account that the position of the

monowall center of mass xcm =

n∑
i
gixi

G is fixed in each U(1) factor. An identity

is useful to apply to the first term in G̃(x):

n,n∑
i>j

gigjx
2
ij = G

[
n∑
i=0

gix
2
i

]
− (GxCM)2 .

Using this identity we write the generating integrand as the following, (up to

constant terms which will not appear in the monowall metric)

G̃(x1, ..., xn) =
n∑
i=1

[
vgi

x2
i

2!
+ g0gi

x3
i

3!
+

1

2

n∑
j=1

gigj
|xij|3

3!

]
.

But this may be rewritten in terms of the total Higgs field at the location of

the ith subwall:

Φ(x) = −g0x−
n∑
j=1

gj|x− xj| − v,

Φ(xi) = −g0xi −
n∑
j=1
j 6=i

gj|xij| − v.
(5.3)

We label Φ(xi) = Φi and express the generating integrand as the following

with the sum over the N U(1) factors indexed by α = 1, 2, .., N made explicit,

G̃(x1, ..., xn) = − 1

3!

N∑
α=1

n∑
i=1

[
3gαi x

2
iΦi + 2gαi x

3
i

n∑
j 6=i

gαj sign(xij)

]
. (5.4)

Note that for a particular subwall while it may interact along several U(1)

factors and have different charges along them, its position is the same in each
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U(1) factor. For all subtriangles that do not have a horizontal leg, the value

of the net Higgs field is the same for each of the U(1) factors (at the location

of that subwall) in which the subwall has nonzero charge. The sum over U(1)

factors of the charges associated with the corresponding subwall vanishes (refer

to figure 5.2):

N∑
α=1

gαi =
∑

α∈bottom

gαi +
∑
α∈top

gαi

= nρν
1
2

(
mµν
nµν
− mρν

nρν

)
+ nµρ

1
2

(
mµν
nµν
− mµρ

nµρ

)
= mµν +mρµ +mνρ = 0.

(5.5)

In such cases, the first term in equation (5.4) vanishes since the summation

over the U(1) factors indexed by α only applies to the magnetic charges in

this term and the other quantities can be pulled out of the sum. (The cases

in which the ith subtriangle does have a horizontal leg will be dealt with in

the following subsection.) In the second term in the above equation, the sum∑
j g

α
j sign(xij) is equal to the half the negative of the slope of the Higgs field

Sαi in the αth U(1) factor immediately to the left of the ith wall plus the slope

Sαi+1 immediately to the right of that wall:

g0 −
i−1∑
j=1

gj +
n∑

j=i+1

gj = 1
2
[(Sn+1 + S1)− (S2 − S1)− (S3 − S2)−

...− (Si − Si−1) + (Si+2 − Si+1)+

...+ (Sn+1 − Sn)]

= −1
2
(Si+1 + Si).

(5.6)

The charge of the ith wall is the half the difference of these slopes gi = (Si,αR −
Si,αL )/2. We see then that the second term in (5.4) is x3

i /3 multiplied by the
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Figure 5.2: A subtriangle and the set of Higgs eigenvalues associated with it.

difference of squares of the slopes on either side of the ith wall. When this is

summed over the U(1) factors, we obtain the following expression:

N∑
α=1

(SαR)2
i − (SαL)2

i =
δ2
i

(nρµnµνnνρ)i
,

where the vertices of the ith subtriangle in the triangulated Newton polygon are

labeled (ρ, µ, ν) in a clockwise fashion, δi is twice the area of the ith subtriangle

and nρµ is the height of the leg of the subtriangle with endpoints at the ρ and

µ vertices. We then obtain our final form for the generating integrand in terms

of the subwall positions,

G̃(x1, ..., xn) =
1

2

n∑
i=1

(xi)
3δ2
i

3!(nρµnµνnνρ)i
. (5.7)

Using the Lawrence polytope volume formula as in [55] with the x = 0 plane

as the reference plane, we obtain the formula for the cut volume up to constant
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terms,1 provided no edges of the crystal along which two faces of the crystal

intersect are parallel with the x=0 plane:

Vol(x1, ..., xn) =
n∑
i=1

(xi)
3δ2
i

3!(nρµnµνnνρ)i
. (5.8)

We have proved that the generating integrand G̃(x) in equation (5.7) is the

cut volume Vol(x) in equation (5.8) up to an overall factor of 2.

G̃(x) =
Vol(x)

2
(5.9)

5.2 The case for compound subwalls

We now prove the same relation for crystal edges parallel to the x = 0 plane.

We consider the special cases when an edge, say the edge joining points

(mρ, nρ) and mµ, nµ), in the Newton polygon triangulation is horizonal. In

the monowall, we refer to these as compound subwalls since in these cases two

subwalls will share a location along the x-direction and will move together

as the monowall moduli vary. Unlike before, the first term in equation (5.4)

for the contribution from subtriangle i does not vanish, and the second term

omits the quantity with nµρ in the denominator. If the horizontal edge in the

Newton polygon triangulation is on the polygon perimeter, then the position

1The Lawrence polytope volume formula applies to convex polytopes, which the cut

volume is generally not. The cut volume is the difference between the crystal and the cut

crystal, both of which are convex and it is in this way that we apply the Lawrence formula.

The Lawrence formula sums over vertices of the polytope in question and here we are only

interested in contributions from vertices whose positions vary with the moduli R and we

can neglect contributions from vertices whose positions are constant.
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of the associated subwall depends on the two perimeter coefficients and does

not depend on any moduli. In this case, the contribution from subwall i is

linear in a modulus and will not contribute to the monowall metric and may

therefore be ignored.

If the horizontal edge in the Newton polygon triangulation is on the polygon

interior, the edge is shared by two subtriangles and we address the associated

terms in the generating integrand together.

Figure 5.3: Two subtriangles sharing a horizontal edge and the set of Higgs
eigenvalues associated with them.

G̃i(xi) + G̃j(xj) = 1
3!

[
−3

(
N∑
α=1

gαi

)
x2
iΦi + 1

2
x3
i

(
m2
ρµ

nρµ
+

m2
νρ

nνρ

)]
+ 1

3!

[
−3

(
N∑
α=1

gαj

)
x2
jΦj + 1

2
x3
j

(
m2
µλ

nµλ
+

m2
λν

nλν

)]
= 1

2
1
3!

[
3mµνx

2
i (Φi − Φj)

+x3
i

(
m2
ρµ

nρµ
+

m2
νρ

nνρ
+

m2
µλ

nµλ
+

m2
λν

nλν

)]
.

(5.10)
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Note that we have used here that the two subwalls in question share the same

x-position xi = xj. The corresponding terms in the Lawrence volume formula

as we express it are not defined, so we raise the vertex at (mν , nν) by a small

amount such that the edge joining (mµ, nµ) and (mν , nν) is tilted at small angle

ε. We leave the horizontal coordinates m unaltered. Expanding the term for

the ith crystal vertex to first order in ε and taking the limit ε → 0 results in

the following terms:

lim
ε→0

(Ni(xi, ε) +Nj(xj, ε)) = 1
3!

[
3mµνx

2
i (yi − yj)

+x3
i

(
m2
ρµ

nρµ
+

m2
νρ

nνρ
+

m2
jµλ

nµλ
+

m2
λν

nλν

)] (5.11)

where, recall, y is the log |t| direction in the crystal space. Equations (5.10)

and (5.11) can be identified with one another up to a factor of 2 and the

correspondence between the generating integrand and the cut volume includes

monowalls with compound subwalls.



110

CHAPTER 6

Conclusions

A doubly periodic magnetic monopole, known as a monowall, is a magnetic

monopole on R × T 2. It has certain phase degrees of freedom; motion along

these phase directions generates electric charge in the monowall. In U(N)

classical Yang-Mills-Higgs gauge theory we employ the Higgs spectral curve,

its Newton polygon, and its amoeba to establish the asymptotic behavior of

a monowall that has moduli. These tools give us an intuitive picture of the

monowall in terms of its constituent charges, or subwalls, and of the sym-

metries when the charges are widely spread apart. When a modulus of the

monowall becomes large, the monowall breaks up into subwalls whose separa-

tions vary linearly with respect to the modulus. The subwalls are positioned

at locations of partially or fully restored gauge symmetry, a condition that

can be inferred from the amoeba. The size of a subwall is the width of the

region outside of which gauge and Higgs field interactions can be effectively

approximated as abelian.

Once the walls are widely separated with respect to this width, their gauge

and Higgs interactions are approximated as N U(1) interactions and emulate

classical electromagnetism with a massless Higgs. We proceed to treat the

subwalls as uniformly electrically, magnetically and scalar charged planes and

write the relativistic Lagrangian, including background gauge and Higgs fields



111

(which satisfy prescribed boundary conditions).

For small velocities, this Lagrangian reduces to purely kinetic and we can read

off the monowall moduli space metric. We write this metric for widely sepa-

rated subwalls in terms of real subwall coordinates and phases, which we have

shown are linearly dependent on the real moduli. To write the metric in terms

of complex coordinates on the moduli space and compute a Kähler potential,

we derive a generating integrand G and generating function F using the gener-

alized Legendre transform. We then Legendre transform from the generating

function, which is a function of the real moduli to the Kähler potential for

the metric which is a local scalar function of the complex moduli and whose

second derivatives are metric coefficients.

We introduce the cut volume, which is a polytope whose volume is a function of

the Newton polynomial coefficients that define the Higgs spectral curve. Using

the Lawrence polytope volume formula [55], we express the volume function in

terms of its vertex coordinates. We express the generating function G as a sum

over contributions from individual subwalls. Using these pieces of information

we show that the generating function, which is a differential geometric ob-

ject, is equal to the cut volume, an algebraic object. In other words, we show

that the asymptotic Kähler potential and complex coordinates can be com-

puted from the cut volume, indicating that the Higgs spectral curve determines

asymptotic monowall dynamics and perhaps general monowall dynamics.

Subwall interactions yield hyperkähler moduli space metrics and hyperkähler

asymptotic moduli space metrics in the limit that the subwalls are well-

separated. The moduli space of a monowall is important in its own right:
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for small velocities, the subwall dynamics can be approximated as geodesic

motion on this moduli space. It has additional importance to supersymmetric

Yang-Mills quantum gauge theory, since moduli spaces of monowalls in Yang-

Mills-Higgs theories are isometric to the Coulomb branch moduli spaces of

vacua in the associated five-dimensional quantum field theories.

The asymptotic moduli space of well-separated doubly-periodic monopoles

has been addressed previously [16], and we expand on this work. In [16],

the asymptotic monowall moduli space metric was determined for subwalls of

identical magnetic charge in SU(2) theory with spatially uniform background

fields. We generalized from SU(2) theory to U(N) for subwalls of arbitrary

magnetic charge and linear background Higgs field, and additionally justify the

abelian long-distance approximation by analyzing the Higgs curve and amoeba

for large values of a modulus. We then apply the generalized Legendre trans-

form [45, 46] to widely separated monopoles which we have adapted from its

application to SU(N) monopoles on R3 [48] to doubly periodic monopoles in

order to obtain a set of complex coordinates on the moduli space and a Kähler

potential for the metric with those coordinates. We then show that the gener-

ating function for the metric is equal to the cut volume for the Higgs spectral

curve.1

Still, the approach used in this dissertation is limited to well-separated sub-

walls. While asymptotic moduli spaces have been derived for a variety of

monopoles, periodic and non-periodic, finding the interior metric on such mod-

1This is similar to how in [54] the asymptotic Kähler potential for BPS vortices in five-

dimensional supersymmetric gauge theory on R × T 2 with fundamental Higgs was related

to a tetrahedron volume associated with an algebraic curve analogous to our Higgs spectral

curve.
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uli spaces remain an open problem. The corresponding supersymmetric sys-

tems, and in the case of periodic monopoles, the Higgs curve construction may

play important roles in future efforts to derive the full moduli space metrics

of monopoles. In particular, explorations of the Higgs spectral curve for mod-

uli values corresponding to phase transitions of the amoeba may shed light

on the regions of the moduli space associated with subwalls interacting at

close distances and merging. The secondary polytope described in Section

2.2.1 emerges from the coherent triangulations of the Newton polygon and the

phases of the amoeba and monowall and its faces correspond to moduli values

for these phase transitions that are of interest.
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APPENDIX A

Yang-Mills-Higgs Moduli Space Metric

This appendix is dedicated to deriving the Yang-Mills-Higgs monopole moduli

space metric in terms of a Hermitian matrix function which we will label Ω. We

will re-express our field equations in terms of a complex and a real coordinate

and use the Bogomolny equation to write the gauge and Higgs fields in terms

of a matrix function S. Next we will show that while the function S possesses

the freedom in the Bogomolny equation to be rescaled by an antiholomorphic

function, the fields and the metric are invariant under such rescalings.

A.1 Complex coordinates, Bogomolny equation, and kinetic terms

In terms of a real coordinate ϕ and a complex coordinate z = x+iθ, z̄ = x−iθ,
define ∂w = 1

2
∂ϕ, ∂w̄ = 1

2
∂ϕ and ∂z = 1

2
(∂x − i∂θ), ∂z̄ = 1

2
(∂x + i∂θ). The

Bogomolny equation can be written, as in equation (1.4),

[Dw, Dz] = 0, [Dz, Dz̄] + [Dw, Dw̄] = 0. (A.1)

by further defining Aw = 1
2
(Aϕ + iΦ), Az = 1

2
(Ax + iAθ), σ = z, w, σ̄ = z̄, w̄,

Dσ = ∂σ +Aσ, and F0σ = [D0, Dσ], the Energy including kinetic terms can be
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expressed

E = mass +
∫
d3xTr[F0iF

0i + (D0Φ)2]

= mass +
∫
d3xTr[F0zF0z̄ + F0wF0w̄].

(A.2)

Note that we have not yet written A0 and D0. In the static BPS limit, the ki-

netic terms F0σF0σ̄ vanish. If we allow slow variations of the solutions Aσ with

time, then small kinetic terms appear. With these small time perturbations,

the zeroth component of the gauge field A0, as well as Aσ, must satisfy the

component of the Yang-Mills-Higgs gauge field equation (1.2)b which is linear

in the time parameter. The fields Aσ still satisfy the Bogomolny equation

(1.4). In terms of the complex and real coordinates, this component of the

field equations is

DσF0σ̄ +Dσ̄F0σ = 0, (A.3)

with a sum over σ, σ̄ implied by the repeated index. It is the component

of the Yang-Mills-Higgs field equations which is equivalent to Gauss’ law in

electrodynamics (abelian Yang-Mills theory), and so we will refer to it this

way here. We will return to the question of A0 shortly.

The Bogomolny equation (A.1) implies there is a matrix function S such that

DσS = 0, which allows us to solve for the fields (Az, Aw) in terms of S:

Aσ = −∂σS · S−1, Aσ̄ = −A†σ. (A.4)

The gauge transformations are S → US for unitary U , which gives

Aσ → −∂σ(US) · (US)−1 = UAσU
−1 − ∂σU · U−1,

Aσ̄ → (∂σ̄(US) · (US)−1)
†

= UAσ̄U
−1 − ∂σ̄U · U−1,

which is the usual gauge transformation for the vector field. The gauge trans-

formed fields still satisfy Aσ̄ = −A†σ.
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Note that the Bogomolny equation constrains the matrix function S only up to

antiholomorphic rescalings S → Sβ (z̄) (holomorphic rescalings S† → β†(z)S†)

under which the field itself Aσ (Aσ̄) is invariant. It is necessary now to show

that the Yang-Mills-Higgs monopole metric described in the following section

is invariant under such rescalings and so we omit this β (z̄) (β†(z)) factor in

the remainder of our discussion since they are not affected.

First of all, it is clear from equation (A.4), which expresses the gauge fields in

terms of the functions S and S†, that the gauge fields are invariant under these

antiholomorphic rescalings of S. Because the metric is formed by taking the

overlap of two variations of the fields (Aσ, Aσ̄), the metric is necessarily invari-

ant under such rescalings as well. We will take it one step further, however,

and verify that the kinetic term in the Lagrangian which yields the metric is

itself invariant under antiholomorphic rescalings of S.

These fields and functions will be functions of time only through the moduli

(χp(t), χ̄p(t)), i.e. the chain rule gives

∂0 = χ̇pδp + ˙̄χpδp̄, (A.5)

where χ̇ is the time derivative of χ and δp and δp̄ are variations with respect

to moduli. Let us write S = V β (z̄), λ = −δU · U−1, µ = −δV · V −1, and

label the moduli variation in terms of the antiholomorphic rescaling factor as

ρ = −δβ · β−1. We may work in a specific gauge for simplicity, and choose

U = 1. In this case, the time-linear components of the field strength are

written as covariant derivatives of the variations (λ, µ, ρ).

F0σ = Dσ

(
µp̄ + µ†p̄ +

(
V †
)−1

ρ†p̄ V
†
)

˙̄χp,

F0σ̄ = Dσ̄

(
µp + µ†p + V ρp V

−1
)
χ̇p.
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We also observe that the gauge fields and covariant derivatives are β-

independent. Since β(z̄) and ρ = −δβ · β−1 are antiholomorphic, one can ap-

ply the chain rule to show that the quantity vanishes Dσ(V ρV −1) = 0. From

there it is straightforward to apply integration by parts to
∫
d3xTr[F0σF0σ̄]

with static boundary conditions and use [Dσ, Dσ̄] = 0 to eliminate the ρ terms

from the kinetic term in the Lagrangian.

A.2 Metric and gauge perturbations

In this section, we address the gauge freedom of the fields which satisfy the

Bogomolny equation and add a new constraint which will eliminate gauge re-

dundancies from the monopole metric. For fixed boundary conditions on the

fields (Φ, Ai), there is a continuum of static solutions to the Bogomolny equa-

tion which minimize the energy. The set of distinct gauge classes of solutions

forms a manifold, referred to as a moduli space. One of our primary goals is to

describe this surface in a way that omits gauge redundancies and to compute

its metric.

Generally, the metric on the Yang-Mills-Higgs moduli space is written

gpq̄ =
∫
d3xTr[(δpAi)(δq̄A

i) + (δpΦ)(δq̄Φ)]

=
∫
d3xTr[(δpAσ̄)(δq̄Aσ) + h.c.],

(A.6)

where δp represent small variations with respect to the complex moduli χp.

These field variations must not only satisfy the Bogmolny equation (or the

linearized version of it, for small variations, to be given in equation (A.10)),

but must also be orthogonal to gauge slices (to be given in equation (A.11)).
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This condition can be restated as the requirement that these perturbations

δAσ, which satisfy a linearized form of the Bogomolny equation, be orthogonal

to small gauge perturbations whose effects vanish as x1 → ±∞. In terms of the

manifestly gauge-dependent field U(−∂σS ·S−1)U−1−∂σU ·U−1, the modulus

variation is

δAσ = U−1Dσ (−δS · S−1)U−1 + ∂σ (−δU · U−1) +

+ [U−1Dσ(−δS · S−1)U−1 − ∂σU · U−1,−δU · U−1] .

More concisely,

δAσ = Dσ(ν + λ), (A.7)

where ν = −δS·S−1 corresponds to the physical component of the perturbation

and λ = −δU · U−1 corresponds to the gauge component. In order to require

that δAσ be orthogonal to gauge perturbations, we might imagine we can

simply set λ = 0. This constraint does not hold in any gauge, however. We

must include a general λ in the expression for δAσ in order to allow us the

freedom to orient δAσ orthogonal to all other small gauge perturbations. These

take the form Dσλ̃ which vanishes as x1 → ±∞:∫
d3xTr[(δAσ)(Dσ̄λ̃) + (δAσ̄)(Dσλ̃)] = 0,

for arbitrary λ̃. Using integration by parts, the gauge-fixing condition can be

re-expressed compactly as

DσδAσ̄ +Dσ̄δAσ = 0. (A.8)

This constraint holds importance comparable to that of the Bogomolny equa-

tion (A.1).
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A.3 Time dependence and the moduli

Here we introduce the zeroth component of the gauge fields, which must satisfy

Gauss’ law (A.3). We then show that the kinetic term in the Yang-Mills-Higgs

Lagrangian yields the metric on the YMH monopole moduli space. When we

allow small time variations of the fields (Φ, Aσ) but restrict these variations to

be orthogonal to gauge slices, the fields depend on the small parameter time

only through the moduli χp(x0) [50]. In other words, time derivatives of the

fields are ∂0Aσ = (δpAσ)χ̇p. We can now address the relationship between

the metric and the kinetic terms F0σF0σ̄ in the energy. We first need an

expression for the zeroth gauge field A0, which must solve the component

of the Yang-Mills-Higgs field equation DµF
µν = [Φ, DνΦ] which is linear in

time derivatives, referred to here as Gauss’ law (A.3). The solution, which is

analogous to those found in [63], is

A0 =
[
−δp(US) · (US)−1

]
χ̇p +

[
−δp(US) · (US)−1

]† ˙̄χp. (A.9)

Showing that this A0 satisfies the Yang-Mills-Higgs field equations to lowest

order in time derivatives (A.3) requires the Master equation (real Bogomolny

equation) [Dσ, Dσ̄] = 0 and its linearized form, which is found by taking the

first variation of the Bogomolny equation,

DσδAσ̄ −Dσ̄δAσ = DσDσ̄(−ν† + λ)−Dσ̄Dσ(ν + λ) = 0, (A.10)

and the gauge-fixing equation, i.e. the constraint which guarantees that the

moduli variations δAσ̄ and δAσ are orthogonal to gauge variations, thereby

prohibiting gauge redundancy from the metric we are constructing:

DσδAσ̄ +Dσ̄δAσ = DσDσ̄(−ν† + λ) +Dσ̄Dσ(ν + λ) = 0, (A.11)
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with sums over σ in both expressions, where ν = −δS · S−1 and λ = −δU ·
U−1. Together, the linearized Bogomolny (A.10) and gauge slice orthogonality

condition (A.11) imply each of the following equalities:

DσDσ̄ν = −DσDσ̄ν
†, DσDσ̄ν = −DσDσ̄λ, DσDσ̄ν

† = DσDσ̄λ. (A.12)

The components of the field strength tensor that are linear in time derivatives

can be expressed in terms of the variations ν = −(δV )V −1, µ = −ν† =(
V †
)−1

δV̄ , λ = −(δU)U−1.

F0σ = δp̄ [−∂σ(US) · (US)−1] ˙̄χp −Dσ

[
US−1†δp(S

†U−1)
]
χ̇p

= Dσ(ν − µ).

Similarly, its negative Hermitian conjugate can be expressed F0σ̄ = Dσ̄(µ−ν).

The components of Yang-Mills-Higgs gauge field equations that are linear in

time derivatives, i.e. Gauss’ law, are

DσF0σ̄ +Dσ̄F0σ = DσDσ̄(µ− ν) +Dσ̄Dσ(ν − µ).

Both terms in this expression are zero (see equation (A.12)) and so Gauss’ law

is satisfied by the solution given in equation (A.9) for A0.

It now remains to show first that the kinetic terms yield the metric up to

total derivatives
∫
d3xTr [F0σF0σ̄] =

∫
d3xTr [(δpAσ̄)(δq̄Aσ)] χ̇p ˙̄χq̄ + ... which is

given here, and second that the metric can be written in terms of the U(N)-

invariant Hermitian matrix function Ω = S†S which is shown in the following

subsection.

We wish to relate the kinetic term in the energy∫
d3xTr [F0σF0σ̄] =

∫
d3xTr

[
Dσ(νq̄ + λq̄) ·Dσ̄(−ν†p + λ)p

]
χ̇p ˙̄χq



121

to the metric on the Yang-Mills-Higgs monopole moduli space

gpq̄ =

∫
d3xTr

[
δpAσ̄ · δ̄qAσ

]
=

∫
d3xTr

[
Dσ(−ν†q̄ + λq̄) ·Dσ̄(νp + λ)p

]
.

The second equality here results from the form of the variation δAσ given in

equation (A.7). In other words, we are asking whether the kinetic term in

the Lagrangian yields the overlap integral of tangent vectors on the monopole

moduli space.

Using the results of combining the linearized Bogomolny equation (A.10) with

the gauge-fixing conditions (A.11) (see equation (A.12) for the useful forms),

and four instances of integration by parts, we see that the kinetic term in

the Lagrangian is equal to the metric up to total spacetime derivatives, i.e.

boundary terms:∫
d3xTr [F0σF0σ̄] = gpq̄χ̇

p ˙̄χq + boundary terms.

Since we have specified that we are constraining ourselves to the case where

the boundary conditions on the Yang-Mills-Higgs fields (Φ, Ai) are static in

time, variations with respect to the time-dependent moduli χp(x0) vanish on

the boundaries of the space and therefore so should these boundary terms.

A.4 The Yang-Mills-Higgs monopole metric in terms of Ω

Given that the gauge field is written in terms of the matrix function S as

Aσ = −∂S·S−1, one can straightforwardly show that the complex field strength

tensor Fσρ̄ = [Dσ, Dρ̄] (where ρ = z, u) can be expressed in terms of S and

Ω = S†S as Fσρ̄ = −S∂ρ̄(Ω−1∂σΩ)S−1 by computing Fσρ̄S. This is outlined



122

in the Appendix at the end of this section. Using the solution of equation

(A.3) for the zeroth gauge field A0 in equation (A.9), we see that F0σ =[
−Sδ̄p(Ω−1∂σΩ)S−1

]
˙̄χp. Plugging this into the kinetic term in the energy, we

obtain

E = mass +

∫
d3xTr

[
Ω−1 δp(∂σ̄Ω · Ω−1) Ω δ̄q(Ω

−1∂σΩ)
]
χ̇p ˙̄χq. (A.13)

The metric on the moduli space is

ds2 = gpq̄dχ
pdχ̄q̄, (A.14)

with metric tensor in terms of the Hermitian matrix function Ω = S†S

gpq̄ =

∫
d3xTr

[
Ω−1 δp(∂σ̄Ω · Ω−1) Ω δ̄q(Ω

−1∂σΩ)
]

(A.15)

where σ = w, z and σ̄ = w̄, z̄ are implicitly summed over. This metric is

demonstrably real.
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