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Abstract

While mapping a quantum circuit to the physical layer one has to consider the numerous
constraints imposed by the underlying hardware architecture. Connectivity of the physical
qubits is one such constraint that restricts two-qubit operations, such as CNOT, to “connected”
qubits. SWAP gates can be used to place the logical qubits on admissible physical qubits,
but they entail a significant increase in CNOT-count. In this paper we consider the problem
of reducing the CNOT-count in Clifford+T circuits on connectivity constrained architectures,
like noisy intermediate-scale quantum (NISQ) computing devices. We “slice” the circuit at
the position of Hadamard gates and “build” the intermediate {CNOT,T} sub-circuits using
Steiner trees, significantly improving on previous methods. We compared the performance of
our algorithms while mapping different benchmark and random circuits to some well-known
architectures such as 9-qubit square grid, 16-qubit square grid, Rigetti 16-qubit Aspen, 16-
qubit IBM QX5 and 20-qubit IBM Tokyo. Our methods give less CNOT-count compared to
Qiskit transpiler as well as using SWAP gates. Assuming most of the errors in a NISQ circuit
implementation are due to CNOT errors, then our method would allow circuits with few times
more CNOT gates be reliably implemented than the previous methods would permit.

1 Introduction

Quantum computing is a computational paradigm which is predicted to provide significant speedups
for problems including, but not limited to, large number factorization [47], simulation of quantum
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systems [14] and unstructured search [17], all of which are believed to be intractable or significantly
slower on a classical computer. Somewhat similar to its classical counterpart, a quantum circuit
consisting of elementary unitary operations remains the most popular model for quantum compu-
tation. Thus we need efficient quantum compilers that map a high-level algorithm into a lower-level
form, that is, a quantum circuit consisting of quantum gates that are admissible by the hardware
constraints.

At present we do not have large-scale quantum computers. Rather the devices available today
are referred to as noisy intermediate-scale quantum (NISQ) computers [38]. The current technolo-
gies that realize these devices, such as superconducting quantum circuits [43, 56] and ion traps
[8, 6, 18, 20], impose certain connectivity constraints by which two-qubit operations are possible
only among certain pairs of physical qubits. Naively we can insert SWAP operators to move a pair
of logical1 qubits to physical positions admissible for two-qubit operations. However, this increases
the number of two-qubit operations, each of which again introduces non-negligible noise. Hence,
it is important to optimize the number of two-qubit operators while respecting the connectivity
constraints.

In this paper we consider the problem of re-synthesizing a circuit over the universal fault-tolerant
Clifford+T gate set. We designed and implemented an algorithm that reduces the number of CNOT
gates required to meet the connectivity constraints imposed by the physical hardware architectures.
The connectivity constraints are represented in the form of a graph G (called connectivity graph)
in which the vertices represent (physical) qubits and a two-qubit operation can be applied if and
only if the corresponding vertices are connected by an edge in G. We assume without loss of
generality that the desired circuit is connected (that is, we can’t break it up into non-interacting
collections of qubits).

The Clifford+T gate set is one of the most studied fault-tolerant universal gate set used to realize
a quantum operator. We consider the following gates in this set: Guniv = {CNOT,H,T,T†,S,S†,X,Y,Z},
among which CNOT is the only multi-qubit operator. If the shortest path length between vertices
corresponding to c and t in G is `, then the naive way of using SWAP gates (equivalent to 3 CNOT
gates) would require about 6(`− 1) CNOT gates (Figure 1).

Thus we devise algorithms using Steiner trees that reduce the number of CNOT gates. Steiner
trees were also used in [34] and [26] for the similar goal of reducing CNOT gates. Our algorithms
differ from these works, which we have pointed out in the following paragraphs, and give much less
CNOT-count.

Our techniques

Our approach can be described as slice-and-build. Given a circuit CI as a sequence of gates we slice
it at “suitable” points and re-synthesize or build the intermediate sliced portions in a manner such
that connectivity constraints are respected and at the same time we tried to reduce the number of
CNOT gates. We have described two methods for slice-and-build.

The first procedure, CNOT-OPT-A (Algorithm 5) described in Section 4.1, has a simple slicing
technique. We partition the circuit CI at the position of the Hadamard (H) gates. Each intermediate
sub-circuit composed of the gates Gph = Guniv \ {H} is re-synthesized using algorithms PHASE-
NW-SYNTH (Algorithm 4) and LINEAR-TF-SYNTH (Algorithm 1). For each sub-circuit we

1In NISQ systems, a “logical qubit” typically corresponds to a single individual qubit, in contrast to fault-tolerant
quantum computation where a logical qubit is encoded in many physical qubits. However, the correspondence between
the logical qubits and physical qubits on a NISQ computer can change throughout the computation.
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Figure (a): 9-qubit square grid
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|9〉 × × |1⊕ 9〉

Figure (b): CNOT1,9 with SWAPs

Figure 1: In the SWAP template SWAP gates are placed along the shortest path between two
qubits on the given connectivity graph, in this case a 9-qubit square grid (Fig a). When the
required logical qubits are on adjacent physical qubits (Fig b) then CNOT is applied. SWAP gates
are again placed to get the correct logical value on all physical qubits.

first calculate the phase polynomial P and overall linear transformation Aslice. We synthesize a
phase polynomial network circuit Cph with the gates in Gph, using PHASE-NW-SYNTH (Algorithm
4) described in Section 3.2. The algorithm draws inspiration from the parity network synthesis
algorithm in [1]. We calculate the parity network matrix in which each column stores a parity
term. The aim is to apply a series of transformations (CNOT gates) such that each parity term
occurs at least once in the circuit. Then depending on the coefficients of the parity terms we
place the gates in Gph \ {CNOT,X}. To impose connectivity constraints we construct Steiner trees
(Section 2.3) with terminals being the set of qubits (or vertices) satisfying certain conditions. Then
depending on the edge information, we perform a series of CNOT operations to get the desired
result. We emphasize that our way of placing CNOT gates according to the Steiner tree edges is
different from that described in [34]. In [26] the authors remarked that Steiner trees can be used
for synthesizing a circuit from its phase polynomial, but no detail was given.

The phase polynomial network corresponding to P has some overall transformation Aph. We
synthesize a circuit Clin that implements the “residual” linear transformation A = A−1ph Aslice

using LINEAR-TF-SYNTH (Algorithm 1), described in Section 3.1. The main motivation of this
algorithm comes from the work in [37] that synthesizes a linear reversible circuit using CNOT
gates. We follow the same reverse-engineering procedure where we (i) reduce A first to an upper
triangular form, (ii) transpose the result and then (iii) reduce it to a lower triangular form so that
we get the identity matrix I. Each linear operation corresponds to a CNOT gate and connectivity
constraints are imposed by constructing series of Steiner trees. Our procedures at steps (i) and (iii)
differ from the approach in [34, 26], and we also get less CNOT-count.

In our second procedure CNOT-OPT-B (Algorithm 6) described in Section 4.2, the slicing points
remain the H gates but the set that is partitioned is the phase polynomial PI of the entire circuit
CI . Between two H gates (including the ends) we synthesize a phase polynomial network circuit
using gates in Gph that realizes the partial phase polynomial Psub, comprising of terms in P that
become uncomputable after the H gate being placed at the end of the current slice. Here it must be
noted that by the sum-over-paths formulation (Section 2.2) new path variables are introduced after
application of each H gate. This renders some terms of the phase polynomial uncomputable after
certain points in the circuit. The synthesis of phase polynomial network is done using PHASE-
NW-SYNTH (Algorithm 4). Let Aslice be the transformation that maps the state of the qubits
in CI after the H gate at the beginning of a slice to the state of the qubits in CI before the H
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Figure 2: Connectivity graphs of some architectures that have been implemented in practice.
Images taken from [11].

gate at the end of the slice. We synthesize a circuit implementing A = A−1ph Aslice using LINEAR-
TF-SYNTH (Algorithm 1) such that between any two H gates (as well as at the ends) the linear
transformation Aslice remain unchanged. A similar kind of partitioning of the circuit according to
the phase polynomial was used in [3] where the goal was to reduce T-depth of the input circuit.

Our results

We have re-synthesized some benchmark as well as randomly generated circuits after taking into
account connectivity constraints imposed by the architectures (which have been implemented in
practice) shown in Figure 1 and 2. Here we emphasize that we have studied the performance of
our procedures as baseline algorithms. The results will likely improve if coupled with some other
procedures that handle the problem of optimal initial mapping of qubits. To be precise, we have
considered only one mapping where qubit i is mapped to vertex i of the given connectivity graphs.
Considerable amount of work has been done, which considers the optimal mapping that reduces
the resources required. So if such a procedure is done as pre-processing, then the CNOT-count will
likely reduce further. We have compared the CNOT-count overhead, that is, the increase in CNOT-
count obtained from our algorithms with the overhead obtained using SWAP-template (Figure 1)
and Qiskit transpiler. We have observed that both our algorithms give remarkable improvement in
the case of benchmark circuits (Table 2 in Section 4.3). In case of random circuits we have found
that the simple way of slicing in CNOT-OPT-A gives much less overhead (Table 1 in Section 4.3).
CNOT-OPT-B, however, fares poorly in many cases.

1.1 Related work

There have been quite a number of works that deal with the problem of CNOT optimization without
taking into account the connectivity constraints imposed by the underlying hardware architecture,
for example, [22, 49, 37, 48, 35, 59, 1].

Some authors [29, 39, 61, 23, 24] use SWAP gates along with some gate commutation and
transformation rules to obtain a circuit that respect connectivity constraints. There are algorithms
that take advantage of the restricted topology such as 1D linear nearest neighbor ([33, 19, 53, 10,
51, 42]), hypercubic [7] which rely on classical sorting networks and 2D grid ([52, 30, 61, 41]). Some
algorithms that work on general topology for NISQ devices are [62, 4, 50, 29, 9, 58]. Broadly, these
algorithms use qubit mapping technique to search for the optimal placement of SWAP gates and
qubits. The search space scales exponentially for exact algorithms such as [55, 31], making them
impractical for large NISQ devices. Thus, some authors [9, 29, 40] use heuristics to reduce the
search space. Some of these heuristics algorithms, e.g. [62], which is based on depth partitioning
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and A∗ search, are developed for specialized architectures such IBM devices. In [13] the authors
give an approach for realizing arbitrary parity-function oracles, while taking care of the underlying
topology. It has been shown in [36] that the size of the resulting circuit is very sensitive to the
original placement of the logical qubits on the device.

To reduce CNOT-count, Steiner trees have been used in [26, 34, 60, 54], while in [11] the problem
is reduced to a well-known cryptographic problem - the syndrome decoding problem.

1.2 Organization

After giving some preliminaries in Section 2 we describe our algorithms in Section 3 and 4. The
algorithms LINEAR-TF-SYNTH and PHASE-NW-SYNTH that synthesize linear reversible circuits
and phase polynomial network circuits are given in Section 3.1 and 3.2 respectively. The algorithms
CNOT-OPT-A and CNOT-OPT-B that synthesize the complete circuit over the Clifford+T gate
set is described in Section 4.1 and 4.2 respectively. Finally we conclude in Section 5.

2 Preliminaries

We write N = 2n and [K] = {1, 2, . . . ,K}. The (i, j)th entry of any matrix M is denoted by Mi,j

or Mij or M [i, j]. We denote the ith row of M by M [i, .] and the jth column by M [., j]. We denote
the n× n identity matrix by In or I if the dimension is clear from the context. The set of n-qubit
unitaries of size 2n × 2n is denoted by U(2n) or Un.

2.1 Cliffords and Paulis

The single qubit Pauli matrices are as follows:

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
. (1)

The n-qubit Pauli operators are :

Pn = {Q1 ⊗Q2 ⊗ . . .⊗Qn : Qi ∈ {I,X,Y,Z}}. (2)

The single-qubit Clifford group C1 is generated by the Hadamard and phase gate

C1 = 〈H,S〉 (3)

where

H =
1√
2

[
1 1
1 −1

]
S =

[
1 0
0 i

]
(4)

When n > 1 the n-qubit Clifford group Cn is generated by these two gates (acting on any of the n
qubits) along with the two-qubit CNOT = |0〉 〈0|⊗I+ |1〉 〈1|⊗X gate (acting on any pair of qubits).
We write CNOTc,t to denote the CNOT gate applied between qubit c (control) and t (target). The
logic realized by this gate is : CNOT |c, t〉 = |c, c⊕ t〉.
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The Clifford+T gate set consists of the n-qubit Clifford group gates along with the T gate,
where

T =

[
1 0

0 ei
π
4

]
. (5)

It is easy to verify that this set is a group since the H and CNOT gates are their own inverses and
T−1 = T7. Here we note S = T2. For n > 1 qubits a minimal generating set for this group is
{H,T,CNOT}.

2.2 Circuit-polynomial correspondence

The circuit-polynomial correspondence [32] associates a phase polynomial and a linear Boolean
transformation with every quantum circuit generated by the set {CNOT,H,T}. More precisely,

Lemma 2.1 ([3]). A unitary U ∈ U(2n) is exactly implementable by an n-qubit circuit over
{CNOT,T} if and only if

U |x1x2 . . . xn〉 = ωp(x1,x2,...,xn) |g(x1, x2, . . . , xn)〉

where ω = e
iπ
4 , x1, x2, . . . , xn ∈ F2 and

p(x1, x2, . . . , xn) =
∑̀
i=1

ci · fi(x1, x2, . . . , xn)

for some linear reversible function g : Fn
2 → Fn

2 and linear Boolean functions f1, f2, . . . , f` ∈ (Fn
2 )∗

with coefficients c1, c2, . . . , c` ∈ Z8.

For convenience, the set of n-ary linear Boolean functions Fn
2 → F2 is referred to as the dual

vector space (Fn
2 )∗ of Fn

2 .
This is called the sum-over-paths form of a circuit [12, 27, 32] and the variables x1, x2, . . . , xn are

called the path variables. p(x1, x2, . . . , xn) is referred to as the phase polynomial. Each fi(x1, . . . , xn)
is a parity term.

Thus we can fully characterize a unitary U ∈ U(2n) implemented by a {CNOT,T}-generated
circuit with a set P ⊆ Z8 × (Fn

2 )∗ of linear Boolean functions together with coefficients in Z8 and
a linear reversible output functions g : Fn

2 → Fn
2 , with the interpretation

U〈P,g〉 : |x1x2 . . . xn〉 → ω
∑

(c,f)∈P c·f(x1,x2,...xn) |g(x1, x2, . . . , xn)〉 . (6)

The set P (phase polynomial set) and g are efficiently computable given a circuit over {CNOT,T},
taking time linear in the number of qubits and gates.

The H gate is a “branching gate” and has the following effect on a basis state x1 ∈ F2.

H : |x1〉 →
1√
2

∑
x2∈F2

ω4·x1·x2 |x2〉

Here x2 is the new path variable and the variable x1 ceases to exist after H is applied. Similar to
Lemma 2.1 we can have the following result.
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Lemma 2.2 ([3]). If a unitary U ∈ U(2n) is exactly implementable by an n-qubit circuit over
{CNOT,H,T} with k H gates, then for x1x2 . . . xn ∈ Fn

2 ,

U |x1x2 . . . xn〉 =
1√
2k

∑
xn+1...xn+k∈Fk2

ωp(x1,x2,...,xn+k) |y1y2 . . . yn〉

where yi = hi(x1, x2, . . . , xn+k) and

p(x1, x2, . . . , xn+k) =
∑̀
i=1

ci · fi(x1, . . . , xn+k) + 4 ·
k∑

i=1

xn+i · gi(x1, . . . , xn+k)

for some linear Boolean functions hi, fi, gi and coefficients ci ∈ Z8. The k path variables xn+1, . . . , xn+k

result from the application of Hadamard gates.

But, unlike Lemma 2.1, the converse is not true.

2.3 Steiner tree

A graph is a pair G = (VG, EG) where VG is a set of vertices and EG is a set of pairs e = (u, v) such
that u, v ∈ VG. Each such pair is called an edge. One may define a function wEG : EG → R that
assigns a weight to each edge. The graphs we consider are simple (with at most one edge between
two distinct vertices and no self-loops i.e. (u, u) /∈ EG), undirected (edges have no direction i.e.
(u, v) ≡ (v, u)) with edge-weight 1, that is, wEG(e) = 1 for every e ∈ EG. A graph G′ = (V

′
G, E

′
G) is

a subgraph of G such that V
′
G ⊆ VG and E

′
G ⊆ EG. A tree is an undirected graph in which any two

vertices are connected by exactly one path, or equivalently a connected, acyclic, undirected graph.

Definition 2.1 (Steiner tree). Given a graph G = (VG, EG) with a weight function wE and a set
of vertices S ⊆ VG, a Steiner tree T = (VT , ET ) is a minimum weight tree that is a subgraph of G
such that S ⊆ VT .

The set of vertices in S are called terminals while those in VT \ S are called Steiner nodes.

Computing Steiner trees is NP-hard and the related decision problem is NP-complete [25].
There are a number of heuristic algorithms that compute approximate Stiener trees [45, 5], the
latter giving a solution which is within a factor of 1.39 times the optimal. A survey about different
Steiner tree approximation algorithms is given in [21]. The choice of algorithm is usually determined
by the application, and typically involves a trade-off between quality (approximation factor) and
running time.

The heuristic algorithm we use is the one given by Wang [57], which has similarity to Kruskal’s
minimum spanning tree algorithm [28]. Similar to [46] we incorporate optimization steps by Ray-
ward et al.[44]. This helps us achieve a better running time compared to the best (with respect to
quality) approximation algorithms in the literature, without sacrificing the approximation factor
much. The primary idea of the algorithm is to maintain a number of subgraphs and sequentially
merge those which are closest to each other. The distance between two subgraphs gi, gj is measured
by the length of the shortest path between any two nodes u, v such that u ∈ Vgi\Vgj and v ∈ Vgj \Vgi .
When a subgraph has all terminals then we stop the merging and remove all non-terminal nodes
of degree 1. A pseudocode of this algorithm has been given in Appendix A (Algorithm 7).

The size of the constructed Steiner tree is at most 2
(
1− 1

`

)
times the size of the minimal

Steiner tree, where ` is the number of leaves in the minimal Steiner tree. The running time is
O
(
|S|2 (|VG|+ |EG|)

)
[46].
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3 Synthesis algorithms with connectivity constraint

In this section first we describe a synthesis algorithm that generates a circuit implementing a
linear transformation using gates in the set Glin = {CNOT,X} (Section 3.1). Then we describe
an algorithm that synthesizes a circuit implementing a phase polynomial network using gates Gph
generated by the set {CNOT,X,T}.

3.1 Synthesis of {CNOT,X} circuits

Consider an n-qubit circuit built with gates in the set Glin = {CNOT,X}. We represent the overall
linear transformation by an n×n+1 “augmented” matrix A = [A

′
n×n|bn×1], whose rows represent

or are indexed by qubits. If we label the initial states of the qubits by variables x1, . . . , xn then
the first n columns represent these variables and the last column represent the variable b indicating
bit flips. Each variable x1, . . . , xn, b takes values from the set {0, 1}. The initial state of A is
[In|0n×1]n×n+1. This represents the initial state of all the qubits. When CNOTj,i is applied row j
is added (mod 2) to row i (row j remains same). The parity at qubit i is xi⊕ xj . When an X gate
is applied on qubit i then Ai,n+1 ← 1⊕Ai,n+1.

Now suppose we are given a linear transformation A = [A
′
n×n|bn×1] of a circuit and we want

to synthesise a circuit implementing this transformation. We use the same reverse engineering idea
of Patel, Markov and Hayes [37]. The procedure is similar to Gaussian elimination. (a) First we
make b = 0 by flipping the entries with 1. This corresponds to applying X on the respective qubit.
(b) We apply a series of elementary row operations (bit-wise addition) on A such that A′ is in
upper triangular form. Each row operation represents the application of a CNOT gate. (c) Then
we transpose the matrix and perform elementary row operations on AT such that A′ is I. The
output circuit is constructed as follows : first, the CNOT gates obtained in (c) with the control-
target flipped but preserving the order, then the CNOT gates obtained in (b) with control-target
preserved but reversing the order in which they were performed, and lastly the X gates obtained
in (a).

To incorporate connectivity constraints we use Steiner trees as described in LINEAR-TF-
SYNTH (Algorithm 1). We first make b = 0 by placing X gates (step 2), as described before.
Then we convert A′ into an upper triangular form (step 8) by row-operations “permitted” by the
input connectivity graph G. This is a graph whose vertices represent qubits and a two-qubit gate
such as CNOT can be placed only when there exists an edge between the corresponding vertices. For
each column of A′ (starting from the first one) we compute a minimal Steiner tree approximation
with (i) connectivity graph G′ = G \ I (excluding the vertices in I and the edges adjacent to these
vertices) where I is the set of columns which have been operated on or which have been “fixed” to
have 1 in the diagonal and 0 in the rest, and (ii) set of terminals S which are the rows below the
diagonal and having a 1. Then we invoke the procedure ROW-OP, as described in Algorithm 2.

The idea of ROW-OP is to use a set of operations such that 1 in the diagonal is “propagated”
via intermediate Steiner nodes to cancel the 1 in the terminal nodes and then use another set
of operations to cancel any 1s in the Steiner nodes. We assume the diagonal has 1, else it is
adjusted by a set of operations to propagate a 1 to the diagonal node (step 4 of Algorithm 1). The
diagonal node (let’s call it c) becomes the “pivot” node. The input Steiner tree approximation Tc,S
is separated into a set of sub-trees (step 1 of Algorithm 2) by calling the procedure SEPARATE
(Algorithm 3). The root and leaves in each such sub-tree are terminal nodes (from S) and the
rest are Steiner nodes. Then the 1 from the root of each sub-tree cancels the 1 at the leaves via
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Algorithm 1: LINEAR-TF-SYNTH

Input: (i) Linear transformation matrix An×n+1 = [A
′
n×n|bn×1], (ii) Connectivity graph G.

Output: A circuit over {CNOT,X} realizing A.
1 Y1,Y2,X ← ∅, G′ ← G // Make a copy of G ;
2 If An+1,i = 1 then X .append(Xi) and An+1,i ← 0 ;
3 for columns i = 1 . . . , n do
4 If Aii = 0, find all rows j(j > i) such that Aji = 1. Choose j with the shortest path (in G′) to i.

Suppose i is the root and j is the leaf. Y1.append(CNOTuv) if u is the child of v.
A[v, .]← A[v, .]⊕A[u, .] ;

5 S ′ = {j : j > i and Aj,i = 1}, S ← S ′ ∪ {i}. // S is the set of terminals. ;
6 Find a minimum Steiner tree approximation with connectivity graph G′ and terminals S. Let i be the

root of this tree, Ti,S . ;
7 Y ← ∅; alg ← 1 ;
8 (Y,A)← ROW-OP(A,S, i, Ti,S , alg). ;
9 Y1.append(Y), G′ ← G′ \ {i} // Remove vertex i and its edges from G′. ;

10 end
11 Transpose A and G′ ← G. ;
12 for columns i = 1 . . . , n do
13 Repeat steps 3-6 ;
14 Y ← ∅; alg ← 2 ;
15 (Y,A, T1)← ROW-OP(A,S, i, Ti,S , alg) ;
16 Y2.append(Y) ;
17 Initialize an array B of size n and B[`]← r if ` ∈ S \ {i} and r is the root of the sub-tree in which `

was a leaf ;
18 t← |T1| ;
19 for j = 0, . . . t− 1 do
20 (r, `1, . . . , `m)← T1[j] ;
21 while ∃k such that `k < r do
22 `← `k ;
23 while r > ` do
24 S ← {r, `}; Tr,S ← The shortest path between r and ` stored as tree with root r and leaf

`; Y ← ∅; alg ← 3 ;
25 (Y,A)← ROW-OP(A,S, r, Tr,S , alg) ;
26 Y2.append(Y) ;
27 B[`] = B[r], r ← B[r] ;

28 end

29 end

30 end
31 G′ ← G′ \ {i} ;

32 end

33 Y
′
2 = Y2 with control and target flipped for each CNOT gate ;

34 return Y
′
2 ∪ reverse(Y1) ∪ X as the circuit.
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Algorithm 2: ROW-OP
Input: (i) Linear transformation matrix A, (ii) Set of terminals S, (iii) Pivot node c, (iv) A minimal

Steiner tree approximation Tc,S , (v) alg ∈ Z.
Output: (i) List Y of CNOT operations, (ii) A (after the row operations), (iii)

T1 = {(r, `1, . . . , `m) : r is the root and `1, . . . , `m are the leaves in a sub-tree} if alg == 2.
1 T ←SEPARATE(Tc,S , c,S, alg) // Separate Tc,S into a set T of sub-trees Tk,Sk with root k ∈ S

and leaves Sk \ {k} ⊂ S. ;
2 T1 = {(r, `1, . . . , `m) : r is the root and `1, . . . , `m are the leaves in a sub-tree} ;
3 t← |T |; Y ← ∅ ;
4 for i = t− 1, t− 2, . . . , 0 // Starting from the last sub-tree do
5 if alg 6= 1 then
6 (Bottom-Up-1 :) Starting from the last layer till layer 1, Y.append(CNOTuv) if u is a non-root

parent node and v is a child of u. ;
7 if alg 6= 4 then
8 A[v, .]← A[v, .]⊕A[u, .]. ;
9 end

10 end
11 (Top-Down1 :) Starting from top layer till last layer, Y.append(CNOTuv) if u is parent of v. ;
12 if alg 6= 4 then
13 A[v, .]← A[v, .]⊕A[u, .]. ;
14 end
15 (Bottom-Up-2 :) Starting from the last layer till layer 0, Y.append(CNOTuv) if u is a parent node and v

is a non-leaf child node of u. ;
16 if alg 6= 4 then
17 A[v, .]← A[v, .]⊕A[u, .]. ;
18 end
19 if alg 6= 1 then
20 (Top-Down-2 :) Starting from the second layer till last layer, Y.append(CNOTuv) if u is a parent

node (that is not a child of the root) and v is a non-leaf child of u. ;
21 if alg 6= 4 then
22 A[v, .]← A[v, .]⊕A[u, .]. ;
23 end

24 end
25 if alg == 4 then
26 A[r, .]← A[r, .]⊕A[`, .], where r, ` are the root and leaf of the current sub-tree respectively. ;
27 end

28 end
29 if alg 6= 2 then
30 return (Y,A) ;
31 else
32 return (Y,A, T1) ;
33 end
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operations performed in steps 11,13 of Algorithm 2 and the 1s at Steiner nodes get cancelled by the
operations performed in steps 15, 17 of the same procedure. If in a sub-tree the root node is r and
the leaves are `1, . . . , `m then the parity at the root node and each Steiner node remains unchanged
but the parity at leaf `i become x`i ⊕ xr

⊕
j∈P xj where P is the set of Steiner nodes in the path

from r to `i. The resultant matrix A′ is in upper triangular form.
Next we transpose A′. Our goal is now to convert A′T into upper triangular form without

destroying the 0s in the upper-triangle. This in turn implies that for each non-diagonal node j we
want the parity to be x′j ⊕ x′k, where k < j and x′j , x

′
k are the parities at node j and k respectively

before the transpose step 11 in Algorithm 1. Similarly as before, we invoke the procedure ROW-
OP (Algorithm 2) but this time we include steps 6,8 and 20,22 in it, so that for each sub-tree
constructed the parity at root r and Steiner nodes remain unchanged, but the parity at each leaf
node ` becomes x′r ⊕ x′`. Now if r > ` then we perform some correction procedures (step 21-29 in
Algorithm 1). Note the parity at r is x′ri ⊕ x

′
r where ri is the root of the sub-tree in which r was

a leaf. Then if we invoke ROW-OP with the shortest path from r to ` as a tree, then the parity
at ` becomes x′ri ⊕ x

′
`. Every other parity remains unaffected. If ri > `, then we again invoke

ROW-OP with the shortest path from ri to ` as a tree. We continue doing this till the parity at `
is “corrected” i.e. it becomes x′` ⊕ x′k for some k < `. We start these correction procedures from
the first sub-tree, so we can guarantee that the parity at each node gets corrected as desired.

Algorithm 3: SEPARATE
Input: (i) Steiner tree Tc,S , (ii) Pivot c, (iii) Set of terminals S. (iv) alg ∈ Z.
Output: T = {Tk,Sk : Edge-disjoint sub-trees with root k ∈ S and leaves Sk \ {k} ⊂ S}.

1 T ← ∅, root← c, R← {root}, S.delete(c) ;
2 while S 6= ∅ do
3 Sroot ← {root}, Troot,Sroot ← ∅ // Initialize the data-structure to store a sub-tree ;
4 Starting from root, traverse Tc,S in breadth first search order. Store the vertices and edges in

Troot,Sroot ;
5 When arriving at a non-leaf terminal u, then Sroot.append(u) and store u as a leaf in Troot,Sroot ,

S.delete(u), R.append(u) ;
6 if alg 6= 4 then
7 T .append(Troot,Sroot) // Store the tree-information depth-wise.;
8 else
9 for u ∈ Sroot \ {root} do

10 Su ← {u, root} ;
11 Tu,Su ← Path from u to root // Store the tree as if u is root and root is leaf. ;

T .append(Tu,Su) ;

12 end

13 end
14 R.delete(root), root← R[0] ;

15 end
16 return T ;

Remark 3.1

The use of Steiner trees to take care of connectivity constraints was also done in [34] and [26].
Our procedures are different from both of them. While calling the procedure ROW-OP during
the reduction to upper-triangular form (before transpose in step 11 in Algorithm 1) we skipped
some steps (steps 6,8 and 20,22 in Algorithm 2) because it was not necessary and this reduced
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the CNOT count. We traverse each Steiner tree twice, so the number of CNOT gates required is
approximately 2e where e is the number of edges in the tree. In contrast the algorithm in [34] in
this phase consumes approximately 4e CNOT gates. After transposing in step 11 in Algorithm
1 our procedure is markedly different from the approach taken in [34]. Even our “correction
procedure” is different from the recursive approach taken in [26] for general graphs. Asymptotically
the complexity of LINEAR-TF-SYNTH is similar to the corresponding algorithms in [34] and [26].
There are n Steiner trees constructed for each of the n columns. Each Steiner tree approximation
will always be of size O(n). The number of CNOT gates applied is O(n). So overall complexity is
O(n2).

An illustration of LINEAR-TF-SYNTH has been shown in Appendix B, using an example given
in [34]. We re-synthesize a given linear transformation circuit using 26 CNOTs, while [34] used 43
CNOTs for re-synthesizing the same circuit.

3.2 Synthesis of circuits over {CNOT,X,T}

We consider the circuits implemented with the set of gates (Gph) generated by {CNOT,X,T}. Since
S = T2, Z = T4, T† = T7 and S† = T6, so Gph = {CNOT,X,T,T†,S,S†,Y,Z}. We know from
Lemma 2.1 in Section 2.2 that a unitary implemented over {CNOT,T} can be characterized by
a set P = {(c, f) : c ∈ Z8 and f ∈ (Fn

2 )∗} and linear reversible output functions g : Fn
2 → Fn

2

(Equation 6). This actually holds for circuits over {CNOT,X,T}.
Given an n-qubit circuit over {CNOT,X,T} with input path variables x1, x2, . . . , xn, we can

compute each P as follows: For each gate U ∈ {T,T†, S, S†,Z,Y} consider the parity,
⊕

j∈S xj ⊕ b
for S ⊆ [n], of the qubit just before U acts. Here b ∈ {0, 1} is the bit variable that takes the value
1 only after an X or Y gate acts. This is represented by the function f . The coefficient c is given
by {1, 7, 2, 6, 4, 4, 4} respectively. For (c1, f1), (c2, f2) ∈ P if f1 = f2 = f then we can merge them
into a single pair (c1 + c2 mod 8, f).

The linear reversible output function is g : Fn
2 × F2 → Fn

2 × F2 (one of the variables is the bit
flip variable b). More detail about the matrix representing g and procedures to synthesize circuits
over {CNOT,X} that realize g has been given in Section 3.1.

We follow the approach taken in [1] and [34] while re-synthesizing circuits over {CNOT,X,T}.
Both these authors consider a restricted gate set consisting of CNOT and rotation gates RZ . Given
a phase polynomial set P and matrix A corresponding to the linear reversible output function
g, they first synthesized a parity network (defined below) that realizes the parity terms (f where
(c, f) ∈ P) in P. Then they applied the rotation gates depending on the coefficients (c) in P.
After that they synthesized a circuit such that the overall linear transformation is A. While the
algorithm in [34] takes care of connectivity constraints, the one in [1] is oblivious to it.

Definition 3.1 (Parity network). A parity network for a set P = {(c, f) : c ∈ Z8 and f ∈
(Fn

2 )∗ × F2} is an n-qubit circuit over {CNOT,X} gates in which each parity term f such that
(c, f) ∈ P appears at least once.

Definition 3.2 (Phase polynomial network). A phase polynomial network for a set P =
{(c, f) : c ∈ Z8 and f ∈ (Fn

2 )∗ × F2} is an n-qubit circuit over {CNOT,X,T} such that for each
element (c, f) ∈ P the parity f appears before a gate in {T,T†, S, S†,Z,Y} when c ∈ {1, 7, 2, 6, 4, 4}
respectively.

We now describe our algorithm PHASE-NW-SYNTH (Algorithm 4) that synthesizes a phase
polynomial network given by P. We construct the parity network matrix P, which has n rows
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Algorithm 4: PHASE-NW-SYNTH

Input: (i) P ∈ {(c, f) : c ∈ Z8 and f ∈ (Fn2 )∗ × F2}, (ii) Connectivity graph G.
Output: A circuit with gates in Gph = {CNOT,X,T,T†,S, S†,Y,Z} realizing the phase polynomial

network given by P.
1 Y ′ ← ∅; I ← [n]; K ← ∅ // Initialize an empty stack K. ;
2 If (ci, xi) ∈ P or (ci, 1⊕ xi) ∈ P for i ∈ [n] then Y ′.append(U [i]) or Y ′.append(X[i]U [i]) respectively, where

U [i] ∈ Gph is determined by ci. Then delete these terms from P. ;
3 Construct the parity matrix Pn+2×p where p = number of terms in P, the first n rows of each column is a

parity term (without bit flip term), n+ 1th row stores the bit flip and n+ 2th row stores the coefficients ;

4 B ← {pi : pi = [(P[0 : n− 1, i])T ||i]T } // pi is the first n rows of ith column of P, appended by i,
the column index. ;

5 if B 6= ∅ then
6 K.push(B, I, ε) ;
7 end
8 while K 6= ∅ do
9 (B, I, i)← K.pop() ;

10 if i ∈ N then
11 S ′ ← {k ∈ [n] : k 6= i and pk = 1 ∀p ∈ B} ;
12 if S ′ 6= ∅ then
13 S = S ′ ∪ {i} ; alg ← 4 ;
14 Find a minimum Steiner tree approximation with connectivity graph G and terminals S. Let i

be the root of this tree, Ti,S ;
15 A = Matrix with columns p ∈ B′ such that (B′, I ′, i′) ∈ K ∪ (B, I, i) ;
16 Y ← ∅ ;
17 (Y,A)← ROW-OP(A,S, i, Ti,S , 4) ;
18 Y ′.append(Y) ;
19 if ∃p ∈ B′ where (B′, I ′, i′) ∈ K ∪ (B, I, i) such that pk = 0 for k ∈ [n] and k 6= i then

20 At the place in the circuit where the parity given by pthn column of P is realized, place
(append in Y ′) XU or U (accordingly) ;

21 B′.delete(p) ;

22 end

23 end

24 end
25 j ← argmaxj∈I maxx∈F2 |{p ∈ B : pj = x}| ;
26 B0 ← {p ∈ B : pj = 0}; B1 ← {p ∈ B : pj = 1} ;
27 if B1 6= ∅ then
28 if i = ε then
29 K.push(B1, I \ {j}, j) ;
30 else
31 K.push(B1, I \ {j}, i) ;
32 end

33 end
34 if B0 6= ∅ then
35 K.push(B0, I \ {j}, i) ;
36 end

37 end
38 return Y ′ ;
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corresponding to each qubit and where each column corresponds to a parity term f in P. Similar
to [1], the optimization procedure to synthesize the parity network represented by P is inspired by
Gray codes [15], which cycle through the set of n-bit strings using the exact minimal number of bit
flips. Given a set B of binary strings (step 4), we synthesize a parity network for B by repeatedly
choosing an index j (step 25) to expand and then effectively recurring on the co-factors B0 and B1

(step 26), consisting of the strings p ∈ B with pj = 0 or 1 respectively. As a subset B is recursively
expanded, CNOT gates are applied so that a designated target qubit i contains the partial parity⊕

k∈S′ xk where S ′ is the set of qubits (or row indices) such that pk = 1 (k 6= i) for all p ∈ B (step
11). Whenever a column has a single 1, it implies that the corresponding parity has been realized.
So we can remove these columns from the set B′ of “remaining parities” (steps 19-22). At this step
we can place the gate X if parity realized on circuit is 1⊕ f for some (c, f) ∈ P. We can also place
a gate in {T,T†, S, S†,Z,Y} corresponding to the value of the coefficient c.

To incorporate connectivity constraints we find a minimal Steiner tree Ti,S with connectivity
graph G and terminals S = S ′ ∪ {i} (step 14). We call the procedure ROW-OP (Algorithm 2)
with the matrix A such that its columns are the set of unrealized parities 15. ROW-OP calls the
sub-routine SEPARATE 3 which as before separates Ti,S into edge-disjoint sub-trees such that in
each tree the root and leaves belong to set of terminals S. However, unlike the previous methods,
this time each sub-tree with multiple leaves are further sub-divided such that each tree has a single
leaf. Each such tree is stored in reverse depth-first order such that the leaf becomes root and vice-
versa (steps 9-11 in Algorithm 3). Now when we perform steps 4-27 of Algorithm 2 then for each
sub-tree the parity at root is xr ⊕ x` where r, ` are the root and leaf of the sub-tree respectively
(before flipping). Now since we process the trees from last sub-tree to first, so the net parity at
node (or qubit i) is

⊕
k∈S′ xk. To maintain the invariant that the remaining parities are expressed

over the current state of the qubits, we modify the matrix A as given in step 26 of Algorithm 2.

Remark 3.2

In [34] an algorithm to synthesize parity networks over {CNOT, Rz} was described and a somewhat
similar scheme was sketched in [26]. Both used Steiner trees and the sum-over-path formualtion of
such circuits. Our algorithm is significantly different from both, especially considering the way we
assigned CNOT gates according to the constructed Steiner trees.

An illustration of PHASE-NW-SYNTH has been given in Appendix C.

4 Synthesis of circuits over {CNOT,X,T,H} gates

Finally in this section we are in a position to describe our re-synthesis algorithms that takes as
input a circuit CI over a universal fault-tolerant gate set Guniv = {CNOT,T,T†, S,S†,X,Y,Z,H}
and it outputs a circuit CO with gates in the same set, but the position of the CNOT gates are
restricted by some connectivity constraints imposed by an input connectivity graph G.

The basic format of our re-synthesis algorithms include slicing the given circuit and building the
sliced portions. We partition the given circuit at the position of the H gates and then sequentially
re-synthesize sub-circuits in each portion such that the transformation within each portion and the
overall circuit transformation remains unchanged. We investigate two methods of slicing - the first
one is a simple slice-and-build, where we partition the input circuit according to the position of
the H gate and the second one is motivated by the Tpar algorithm given in [3], where the phase
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polynomial terms are partitioned. Unlike Tpar we are not interested in reducing the T-depth of the
input circuit. So we partition the phase polynomial terms depending only on the path variables,
which indicate the parities that can be synthesized before or after a certain H gate.

4.1 Simply slice-and-build

Algorithm 5: CNOT-OPT-A

Input: (i) Circuit CI with {CNOT,T,T†, S, S†,X,Y,Z,H} gates, (ii) Connectivity graph G.
Output: Circuit CO with CNOT gates respecting connectivity constraints imposed by G.

1 CO ← ∅; i = −1; gate = START ;
2 while gate! = EOF do
3 i← i+ 1; gate = CO[i]; Q = (x1, x2, . . . , xn); P ← ∅ ;
4 while gate! = H or gate! = EOF do
5 Update Q and P according to the rules described in Section 4.1 ;
6 i← i+ 1; gate = CO[i] ;

7 end
8 Cph, Clin ← ∅ ;
9 Cph ← PHASE-NW-SYNTH(P, G) ;

10 Qph ← state of the qubits after Cph ;
11 A← linear transformation mapping Qph to Q ;
12 Clin ← LINEAR-TF-SYNTH(A, G) ;
13 CO.append(Cph, Clin,H[k]) // k is the position of H ;

14 end
15 return CO ;

In our first algorithm CNOT-OPT-A (Algorithm 5) we first partition the given circuit at the
position of H gates. Within each partition we initialize the state of the qubits Q by the path
variables (x1, x2, . . . , xn) and the phase polynomial set P as empty set (step 3). Then with the
application of each gate Ui ∈ Guniv or U(ij) ∈ Guniv, we update Q and P (step 4-step 6) by the

function Ũi : 〈P, Q〉 → 〈P, Q〉 as follows.

X̃i 〈P, Q〉 = 〈P, (q1, . . . , qi−1, 1⊕ qi, . . . , qn)〉 ;
˜CNOT(i,j) 〈P, Q〉 = 〈P, (q1, . . . , qj−1, qi ⊕ qj , . . . , qn)〉 ;

S̃i 〈P, Q〉 = 〈P ] {(2, qi)}, Q〉 ; S̃†i 〈P, Q〉 = 〈P ] {(6, qi)}, Q〉 ;

T̃i 〈P, Q〉 = 〈P ] {(1, qi)}, Q〉 ; T̃†i 〈P, Q〉 = 〈P ] {(7, qi)}, Q〉 ;
Z̃i 〈P, Q〉 = 〈P ] {(4, qi)}, Q〉 ;
Ỹi 〈P, Q〉 = 〈P ] {(4, qi)}, (q1, . . . , qi−1, 1⊕ qi, . . . , qn)〉 ;

In the above set of equations, for two sets P ′ and P ′′, P ′ ] P ′′ = {(c, f) : (c1, f) ∈ P ′, (c2, f) ∈
P ′′, c = c1 + c2 mod 8}. Here we assume that if ∃f such that (c, f) /∈ P for any c = {1, . . . , 7} and
any set P, then we say (0, f) ∈ P.

Then we synthesize the phase polynomial network (Cph) for P (step 9) by invoking the procedure
PHASE-NW-SYNTH (Algorithm 4). We calculate the linear transformation A (step 11) mapping
Qph (state of the qubits after Cph) to Q, which after steps 4-6 stores the state of the qubits at
the end of the present slice. We synthesize the circuit Clin for A (step 12) using the procedure
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LINEAR-TF-SYNTH (Algorithm 1). We append the gates from Cph, Clin followed by the H gate
(step 13). The we repeat the same steps for the next slice (till the next H gate or the end of the
given circuit).

Algorithm 6: CNOT-OPT-B

Input: (i) Circuit CI with {CNOT,T,T†, S, S†,X,Y,Z,H} gates, (ii) Connectivity graph G.
Output: Circuit CO with CNOT gates respecting connectivity constraints imposed by G.

1 CO ← ∅;
2 From CI calculate D = 〈P, Q,H〉; k ← |H|. // Described in Section 4 ;
3 Qinit = (x1, x2, . . . , xn); Qout = Q ;
4 for 1 ≤ i ≤ k do
5 h← Hi; Cph ← ∅; Clin ← ∅ ;
6 P ′ ← {(c, f) ∈ P : f ∈ span(h.QI) but f /∈ span(h.QO)} ;
7 if P 6= ∅ then
8 P.delete(P ′) ;
9 PQinit ← {(c, f) ∈ P ′ in the basis Qinit} ;

10 Cph ←PHASE-NW-SYNTH(PQinit, G) ;
11 Qph ← state of the qubits after Cph ;
12 A← linear transformation mapping Qph to h.QI ;
13 Clin ←LINEAR-TF-SYNTH(A, G) ;

14 end
15 Qinit ← h.QO ;
16 CO.append(Cph, Clin,H[k]) where k = h.Pos ;

17 end
18 Cph ← ∅; Clin ← ∅ ;
19 if P 6= ∅ then
20 PQinit = {(c, f) ∈ P in the basis Qinit} ;
21 Cph ←PHASE-NW-SYNTH(PQinit, G) ;
22 Qph ← state of the qubits after Cph ;

23 else
24 Qph ← Qinit ;
25 end
26 A← linear transformation mapping Qph to Qout ;
27 Clin ←LINEAR-TF-SYNTH(A, G) ;
28 CO.append(Cph, Clin) ;
29 return CO ;

Remark 4.1

The intuition behind this kind of slice-and-build is as follows. Suppose the number of CNOT in
the input circuit is N1.

Consider a simple method where we simply apply the SWAP-template on each CNOT gate.
Suppose we require N ′1 number of CNOT gates.

Now consider a second method. Between two H gates (as well as the portion before the first and
the portion after the last H gate) there is a phase polynomial network. If we apply the algorithm
of [1] to each such portion then we expect to get reduction in overall CNOT count from N1 to N2,
say. Since [1] is not connectivity-constraint-aware, so we apply the SWAP template on each CNOT
obtained after applying [1]. Let the number of CNOTs required be N ′2 and we can expect N ′2 < N ′1.
We are saying “expect” because [1] does not have a proof that it will reduce the CNOT-count in
all instances. The result is empirical indicating a reduction in many cases.
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Architecture #Qubits Initial SWAP-template CNOT-OPT-A CNOT-OPT-B Qiskit
Count Overhead Overhead Time Overhead Time Overhead

9q-square 9

3 560% 0.00% 0.184s 343% 0.105s 310%
5 612% 146% 0.146s 400% 0.128s 300%
10 594% 105% 0.167s 426% 0.119s 303%
20 546% 176% 0.2s 488% 0.158s 265.50%
30 596% 184.67% 0.233s 649% 0.185s 310%

16q-square 16

4 1050% 238% 0.23s 768% 0.12s 562.50%
8 840% 146.25% 0.27s 660% 0.137s 461.25%
16 817.50% 158.13% 0.43s 864% 0.225s 470.63%
32 853% 340.63% 0.41s 1213% 0.29s 493.13%
64 892.50% 220.78% 0.49s 1259% 0.65s 476.25%
128 858.75% 210.63% 0.57s 1156% 1.144s 475.31%
256 897.42% 237.5% 0.72s 1306% 1.85s 497.46%

rigetti-16q-aspen 16

4 1680% 355% 0.23s 1278% 0.115s 750%
8 1740% 253% 0.396s 1313% 0.135s 738.75%
16 1619.90% 351% 0.47s 1304% 0.162s 701.25%
32 1794% 469.48% 0.48s 1852% 0.375s 732.19%
64 1755% 399% 0.66s 1900% 0.71s 728.91%
128 1760.63% 368.13% 0.58s 1953% 1.37s 731.02%
256 1757.11% 410.9% 0.61s 1982% 1.68s 725.74%

ibm-qx5 16

4 1260% 173% 0.38s 988% 0.108s 690%
8 1035% 295% 0.36s 1065% 0.126s 712.50%
16 1042.50% 283% 0.41s 1226% 0.47s 710.63%
32 1179.38% 398.44% 0.42s 1677% 0.68s 670.31%
64 1130.63% 339.06% 0.45s 1733% 0.7s 646.88%
128 1110.94% 344.69% 0.575s 1675% 1.15s 689.30%
256 1141.17% 379.88% 0.73s 1792% 1.58s 678.52%

ibm-q20-tokyo 20

4 525% 128% 0.186s 418% 0.4s 435%
8 555% 275% 0.295s 690% 0.37s 506.25%
16 570% 88% 0.37s 663% 0.41s 472.50%
32 500.63% 154.38% 0.55s 972% 0.8s 420%
64 542.81% 136.88% 0.54s 1084% 0.82s 463.59%
128 539.53% 141.02% 0.645s 1028% 1.29s 468.05%
256 534.61% 125.27% 0.72s 1030% 2.085s 457.50%

Table 1: Performance of CNOT-OPT-A and CNOT-OPT-B for random circuits. The overhead or
increase in CNOT-count has been compared to the overhead obtained by using SWAP-template
and Qiskit transpiler.
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Architecture #Qubits Benchmark SWAP-template CNOT-OPT-A CNOT-OPT-B Qiskit
Overhead Overhead Time Overhead Time Overhead

9q-square 9

barenco-tof-5 457.14% 245.24% 0.365s 140.48% 0.52s 232.14%
grover-5 685.71% 116.67% 0.502s 105.36% 0.84s 219.64%

mod-mult-55 752.73% 321.82% 0.31s 203.64% 0.26s 256.36%
tof-5 465.31% 140.82% 0.27s 138.78% 0.24s 226.53%

16q-square 16
hwb10

977.95% −63% 8.77s −57.67% 7.25s 284.76%
rigetti-16q-aspen 16 1508.63% −36.13% 8.8s −34.29% 6.64s 356.70%

ibm-qx5 16 1099.84% −54.32% 6.18s −50.75% 8.61s 321.71%

ibm-q20-tokyo 20
ham15-high 571.44% −52.52% 0.72s −63.21% 0.66s 242.76%

hwb12 619.42% −77.58% 177.23s −74.92% 231.14s 277.82%

Table 2: Performance of CNOT-OPT-A and CNOT-OPT-B for benchmark circuits. The overhead
or increase in CNOT-count has been compared to the overhead obtained by using SWAP-template
and Qiskit transpiler.

Now consider a third method where we apply our connectivity-constraint-aware algorithm in
each phase polynomial network. This keeps the CNOT-count reduction technique of [1], while
working with multiple rows at a time. To be precise, [1] reduces one particular row of a group
of columns at a time. By “reduce” we mean flipping 1 to 0. We reduce multiple such rows at a
time. Using Steiner trees we find the shortest path that connects these nodes in the graph. Since
these two things are done together, so we can expect a further reduction in CNOT-count compared
to method 1 and 2. Thus if N ′3 is the CNOT-count obtained using our algorithm, we can expect
N ′3 < N ′2 < N ′1. Again, we say “expect” since there is no concrete mathematical proof.

4.2 A second type of slice-and-build

In this section we describe another way of slicing the given circuit, as described in procedure CNOT-
OPT-B (Algorithm 6). Unlike CNOT-OPT-A, here we first compute some necessary information
about the whole circuit and then between two H gates we try to synthesize a circuit that computes
part of the information. Similar to CNOT-OPT-A the transformations between two H gates as
well as the overall transformation remain unchanged. That is, given CI , we first compute a triple
D = 〈P, Q,H〉, where P is the phase polynomial set, Q = (q1, q2, . . . , qn) represents the state of each
qubit given as a function of the path variables and the bit flip variable b ∈ {0, 1}, and H is an array
of structures where the ith structure stores the state of the qubits before and after the application
of the ith H gate. The initial state of the qubits is Q = (x1, x2, . . . , xn) (i.e. qi = xi ∀i). Both P
and H are initialized as empty sets. With the application of each gate Ui ∈ Guniv or U(i,j) ∈ Guniv
(subscripts denote the qubit on which the gate acts) the triple D gets updated by a function

Ũ ′i : D → D. Except for the H gate, this function is similar to the function Ũi defined in Section

4.1. The array H remains unchanged after the application of Ũ ′i for each gate except H. For the H
gate the function is defined as follows.

H̃i 〈P, Q,H〉 = 〈P, Q′,H′〉 where Q′ = (q1, . . . , qi−1, xn+j+1, . . . , qn) and H′ = H ∪ {hj+1}
such that hj+1.Pos = i, hj+1.QI = Q, hj+1.QO = Q′ [ Here |H| = j.]

hj+1.Pos stores the qubit (which in the above equation is the ith one) on which the (j+1)th H gate
is applied. hj+1.QI and hj+1.QO stores the state of the qubits before and after the application of
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the (j + 1)th H gate respectively. We have introduced new path variables after application of each
H gate. We actually slice the sets P, Q and H according to some conditions and synthesize circuits
according to these slices.

For each h ∈ H we calculate the set P ′ = {(c, f) ∈ P : f ∈ span(h.QI) but f /∈ span(h.QO)} ⊆
P of parity terms that become uncomputable after placement of H at qubit h.Pos (step 6 in
Algorithm 6). We express these parities in the basis given by the state of the qubits at the beginning
of the current time slice, which is Qinit = (x1, . . . , xn) if h is the first Hadamard gate, else it is h′.QO,
the state of the qubits after the previous H gate (step 9). We then calculate the phase polynomial
network (Cph) for the set PQinit (P ′ in the new basis i.e. parity terms in P ′ as function of Qinit) by
invoking the procedure PHASE-NW-SYNTH (Algorithm 4). Let Qph is the state of the qubits after
Cph and A is the linear transformation mapping Qph to h.QI . To realize this transformation in this
portion of the circuit we call the procedure LINEAR-TF-SYNTH (Algorithm 1). We append (Cph,
Clin,H[k]) to the set of circuit gates, where Clin is the circuit returned by LINEAR-TF-SYNTH and
k = h.Pos.

After we process all the partitions till the last Hadamard gate we ensure that the complete
phase polynomial set P has been synthesized and the overall linear transformation of the output
circuit maps (x1, x2, . . . , xn) to Qout, the final output of the circuit (which was calculated at the
beginning while calculating D). For this we first synthesize the phase polynomial network Cph of
any residual parity terms (step 21 in Algorithm 6). Then we calculate the residual transformation
A (step 26) that maps Qph, state of the qubits after Cph, to Qout. And synthesize the circuit Clin
(step 27) for A.

4.3 Implementation and results

We have considered the connectivity constraints imposed by some popular architectures such as 9-
qubit square grid (Figure 1), 16-qubit square grid, Rigetti 16-qubit Aspen, 16-qubit IBM QX5 and
20-qubit IBM Tokyo (Figure 2). We have worked with some benchmark circuits (Table 2) and some
randomly generated circuits on 9, 16 and 20 qubits (Figure 1). The 9-qubit random input circuits
have CNOT-count 3, 5, 10, 20 or 30, while both the 16 and 20-qubit random input circuits have
CNOT-count 4, 8, 16, 32, 64, 128 or 256. For each of these groups we generated 10 random circuits.
We have compared the CNOT-count overhead obtained by using SWAP-template (Figure 1) and
Qiskit transpiler with the CNOT-count obtained from procedures CNOT-OPT-A (Algorithm 5)
and CNOT-OPT-B (Algorithm 6). By overhead we mean the percentage increase in CNOT-count
after taking into consideration connectivity constraints. The results for benchmark circuits and the
random circuits have been tabulated in Table 2 and 1 respectively. All the simulations have been
done in Java on a 3.1 GHz Dual-Core Intel Core i7 machine with 8GB RAM and running MacOS
Catalina 10.15.2. We find that both our algorithms perform quite well in the case of benchmark
circuits. CNOT-OPT-A performs much better than the other algorithms in the case of random
circuits.

5 Conclusion

While implementing a quantum algorithm on an actual hardware, one needs to consider the different
constraints imposed by the underlying physical architecture. One such constraint is the qubit con-
nectivity, which is more concerning for multi-qubit gates such as CNOT. In a universal fault-tolerant
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gate set such as CNOT+T, although the T-gate is the most costly to implement fault-tolerantly,
the CNOT-count is also important, especially in the NISQ era. In this work we have considered
the problem of re-synthesizing Clifford+T circuits with reduced CNOT-count compared to the
SWAP-template, while respecting the connectivity constraint. Broadly, we have taken recourse to
a slice-and-build approach, where we slice or partition the input circuit and re-synthesize the slices
with algorithms that use Steiner trees to place the CNOT gates. We have simulated benchmarks
as well as random circuits on popular architectures such as 9-qubit square grid, 16-qubit square
grid, Rigetti 16-qubit Aspen, 16-qubit IBM QX5 and 20-qubit IBM Tokyo. Our results show that
for both benchmarks and random circuits the simpler way of slicing the circuit (and not the phase
polynomial) results in much less overhead in terms of increase in CNOT-count, compared to the
overhead obtained by using SWAP-template and Qiskit transpiler.
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A Steiner tree algorithm

In this section we describe a heuristic approximation algorithm to find a minimal Steiner tree [46].
It starts by considering each terminal as a separate graph (step 1). Then sequentially we merge
the subgraphs that are closest to each other (step 3-7). The distance between two graphs fi and fj
is measured by the shortest distance between any pair of nodes ui, uj such that ui ∈ fi and uj ∈ fj
(step 4). If we have a sub-graph fi having all the terminal nodes then we construct a minimum
spanning tree (9) T on fi and remove all non-terminal nodes of degree 1 10. The resultant tree is
returned as a minimum Steiner tree.

Algorithm 7: Steiner Tree Algorithm

Input: (i) A graph G = (V,E), (ii) Terminal set S = {s1, . . . , sk} ⊆ V
Output: A Steiner tree constructed from G

1 Construct a forest F of k sub-graphs f1, . . . , fk consisting of one terminal each ;
2 while does not exist a fi ∈ F such that all terminals s1, . . . , sk infi do
3 for all i 6= j do
4 Determine the shortest path between all nodes in fi to all those in fj ;
5 end
6 Find the minimum length path P among all computed paths ;
7 Construct fn = fi ∩ fj ∩ P and add it to forest F ;

8 end
9 Construct a minimum spanning tree T on fi ;

10 Remove non-terminal nodes of degree 1 from T ;
11 return T ;

B An example for LINEAR-TF-SYNTH

In this section we illustrate Algorithm 1 (LINEAR-TF-SYNTH) with an example taken from [34].
Suppose we have the linear tranformation matrix A and connecitvity graph G, as shown in Figure
3. For simplicity, we have removed the column b (7th column of A), since it is all 0 and hence
implies there are no X gates to be placed. So this column does not affect any step of the following
computations, which are done for the placement of the CNOT gates.

B.1 Reducing to upper triangular form

We now illustrate the steps to reduce A to upper triangular form and the way the CNOTs are
placed respecting the connecitvity constraints. For each column i, the pivot row is the ith one. By
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A =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1

 G =

1 2 3

6 5 4

Figure 3: The linear transformation matrix A and connectivity graph G.

A =


1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1

 T1,{1,3,4,5}=

1 2 3

6 5 4

T1 = 1 2 3

T2 = 3 4

T3 = 4 5

Figure 4: The Steiner tree T1,S with pivot at 1 and terminals S = {1, 3, 4, 5}. T1, T2 and T3 are the
sub-trees built from it.

“fixing” a column i we mean applying a number of row operations such that Aii = 1 and Aji = 0
for every j > i. We start fixing from the first column. To save redundancies in explanations, we
will make the descriptions from the second column less explicit.

Column 1

In this column A11 = A31 = A41 = A51 = 1. So we draw a Steiner tree T1,S with terminals
S = {1, 3, 4, 5} and root/pivot at 1 (Figure 4). We call this “pivot”, to distinguish from the roots
of each sub-tree that will be built from this tree. The sub-trees T1, T2 and T3 are built by traversing
T1,S breadth-first (Algorithm 3:SEPARATE). As soon as we reach a terminal we stop and build
the next sub-tree with that terminal as the root. Thus in each sub-tree, the root and leaves are
terminals and remaining nodes are Steiner nodes.

To place the CNOTs we start from the last sub-tree T3 and use Algorithm 2 (ROW-OP). We
have to perform Top-Down-1 first and place CNOT45. The 4th row of A gets XORed with the
5th row of A. If we denote the jth row of A by A[j, .] then A[5, .] ← A[5, .] ⊕ A[4, .], remaining
rows are unchanged. There are no operations for Bottom-Up-2 in case of T3, since there are no
Steiner nodes. By similar reasoning we traverse by Top-Down-1 in T2 and place CNOT34, while
A[4, .]← A[4, .]⊕A[3, .]. There are no operations for Bottom-Up-2 in case of T2 as well. We apply
Top-Down-1 in T1 and get the sequence of operations CNOT12,CNOT23 and the corresponding
sequence of matrix operations A[2, .]← A[2, .]⊕A[1, .] and A[3, .]← A[3, .]⊕A[2, .]. Then we apply
Bottom-Up-2 and place CNOT12. The corresponding matrix operations are A[2, .]← A[2, .]⊕A[1, .].

Thus the sequence of CNOT operations obtained and the corresponding row operations can be
summarized as follows:

Y1
1 = {CNOT45,CNOT34,CNOT12,CNOT23,CNOT12}
A1

1 = {A[5, .]← A[5, .]⊕A[4, .], A[4, .]← A[4, .]⊕A[3, .], A[2, .]← A[2, .]⊕A[1, .],

A[3, .]← A[3, .]⊕A[2, .], A[2, .]← A[2, .]⊕A[1, .]}
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A =


1 1 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
0 0 1 0 0 0
0 1 0 1 0 1


1 2 3

654

Figure 5: Since A22 = 0 so we apply CNOT32 and “propagate” 1 from A32 to A22.

A =


1 1 0 1 1 0
0 1 1 1 0 0
0 1 0 0 0 1
0 1 1 1 1 0
0 0 1 0 0 0
0 1 0 1 0 1

 T2,{2,3,4,6}=

1 2 3

6 5 4

T1 = 2 5 6

3

T2 = 3 4

Figure 6: The Steiner tree T2,S with pivot at 2 and terminals S = {2, 3, 4, 6}. T1 and T2 are the
sub-trees built from it.

The matrix A after all these operations is as follows : A =



1 1 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
0 0 1 0 0 0
0 1 0 1 0 1


Column 2

Now we fix column 2. Since A22 = 0 after fixing the first column (first image in Figure 5) so we
try to propagate 1 from a row below it. In this case the nearest node to 2 in the graph, that has a
1 in the matrix, is 3. So we apply CNOT32 and the corresponding row operation is as follows:

Y2′
1 = {CNOT32}
A2′

1 = {A[2, .]← A[2, .]⊕A[3, .]}

The matrix A after this operation is as shown in the beginning of Figure 6. Now the pivot is at 2
and the set of terminal nodes is S = {2, 3, 4, 6}. We draw the Steiner tree T2,S in the graph G\{1, }
and divide it into sub-trees as shown in Figure 6, using the same procedure as described before.
Then we traverse the sub-trees using ROW-OP (Algorithm 2) and get the following sequence of
CNOTs and the corresponding row operations for A.

Y2
1 = {CNOT34,CNOT23,CNOT25,CNOT56,CNOT25}
A2

1 = {A[4, .]← A[4, .]⊕A[3, .], A[3, .]← A[3, .]⊕A[2, .],

A[5, .]← A[5, .]⊕A[2, .], A[6, .]← A[6, .]⊕A[5, .], A[5, .]← A[5, .]⊕A[2, .]}

Column 3

The state of A before fixing column 3 i.e. after applying all the previous operations is as shown
in the beginning of Figure 7. We draw the Steiner tree T3,S in the graph G \ {1, 2} using the set
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A =


1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 1 1 1 1
0 0 1 0 0 0
0 0 0 0 0 1

 T3,{3,4,5}=

1 2 3

6 5 4

T1 = 3 4

T2 = 4 5

Figure 7: The Steiner tree T3,S with pivot at 3 and terminals S = {3, 4, 5}. T1 and T2 are the
sub-trees built from it.

A =


1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 0 1 0
0 0 0 1 1 1
0 0 0 0 0 1


1 2 3

6 5 4

Figure 8: Since A44 = 0 so we apply CNOT54 and “propagate” 1 from A54 to A44.

of terminals S = {3, 4, 5}. Then we sub-divide into sub-trees and get the following sequence of
CNOTS and row operations, after traversing them according to ROW-OP (Algorithm 2).

Y3
1 = {CNOT45,CNOT34}
A3

1 = {A[5, .]← A[5, .]⊕A[4, .], A[4, .]← A[4, .]⊕A[3, .]}

Column 4

The matrix obtained after applying the previous operations in shown in Figure 8. Since A44 = 0
we have to propagate a 1 from a row below it. In this case node 5 is the nearest to node 4 and has
a 1. So we apply the following CNOT and the corresponding row operation.

Y4′
1 = {CNOT54}
A4′

1 = {A[4, .]← A[4, .]⊕A[5, .]}

After this we extract a Steiner tree T4,S from G \ {1, 2, 3} with pivot 4 and set of terminals as
S = {4, 5}. Traversing this tree (no sub-trees here) we get the following operations.

Y4
1 = {CNOT45}
A4

1 = {A[5, .]← A[5, .]⊕A[4, .]}

After these operations we find that column 5 and 6 are fixed. So A has been reduced to an upper
triangular form.

B.2 Transpose and reducing to identity

Now we transpose A, as shown in Figure 10 and fix each column such that 1 remains only in the
diagonal.
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A =


1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 0 0 0 1

 T4,{4,5}=

1 2 3

6 5 4

T1 = 4 5

Figure 9: The Steiner tree T4,S with pivot at 4 and terminals S = {4, 5}.

A =


1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 1 0 0
1 0 0 0 1 0
0 0 1 1 0 1

 T1,{1,2,4,5}=

1 2 3

6 5 4

T1 = 1 2

T2 = 2 5

T3 = 5 4

Figure 10: The Steiner tree T1,S with pivot at 1 and terminals S = {1, 2, 4, 5}. T1, T2 and T3 are
the sub-trees built from it.

Column 1

We build a Steiner tree T1,{S} (Figure 10) with pivot 1 and set of terminals S = {1, 2, 4, 5}. We
divide into sub-trees according to Algorithm 3 (SEPARATE) and do the traversals in each sub-tree,
starting from the last one built, according to ROW-OP (Algorithm 2). This time we apply Bottom-
Up-1, Top-Down-1, Bottom-Up-2 and Top-Down-2 and get the following sequence of CNOTs and
row operations on A.

Y1
2 = {CNOT54,CNOT25,CNOT12}
A1

2 = {A[4, .]← A[4, .]⊕A[5, .], A[5, .]← A[5, .]⊕A[2, .], A[2, .]← A[2, .]⊕A[1, .]}

The purpose of applying all the sub-procedures is as follows. Let the parity at root and leaf before
traversal is xr and x` respectively. After applying Bottom-Up-1, Top-Down-1, Bottom-Up-2, Top-
Down-2 the parity at leaf is x′` = xr ⊕ x`. The parities at the other nodes remain unchanged.

Thus after Bottom-Up-1+Top-Down-1+Bottom-Up-2+Top-Down-2 on sub-tree T3, which in
this case is a single CNOT54, the parity at node 4 is x′4 = x4 ⊕ x5, and parity at 5 is unchanged.
Similarly after applying the traversals in T2, the parity at 5 is x′5 = x5 ⊕ x2 and the parity at 2 is
unchanged. After traversing T1 the parity at 2 is x′2 = x2 ⊕ x1 and the parity at 1 is unchanged.

Now to avoid disturbing the upper-triangular 0s, we want that a node (row) should be XORed
with a row with a higher index, which is clearly violated in case of T3 where we have x4⊕x5 at node
4. So we apply a correction procedure, by Algorithm 1 (LINEAR-TF-SYNTH), after traversing all
sub-trees. We take the shortest path from 5 to 4, which in this case is T3, and again apply the
same traversals. Thus we get the following sequence of CNOTs.

Y1′
2 = {CNOT54}
A1′

2 = {A[4, .]← A[4, .]⊕A[5, .]}

Then the parity at 4 becomes x′4⊕ x′5 = (x4⊕ x5)⊕ (x5⊕ x2) = x4⊕ x2, which satisfies the desired
condition.
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A =


1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
0 0 1 1 0 1

 T2,{2,3,5}=

1 2 3

6 5 4

T1 = 2 3

5

Figure 11: The Steiner tree T2,S with pivot at 2 and terminals S = {2, 3, 5}.

A =


1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 1 1 0 1

 T3,{3,4,6}=

1 2 3

6 5 4

T1 = 3 4

T2 = 4 5 6

Figure 12: The Steiner tree T3,S with pivot at 3 and terminals S = {3, 4, 6}. T1 and T2 are the
sub-trees built from it.

Column 2

The state of the matrix A after applying the previous operations is shown in Figure 11. To fix
column 2, we draw a Steiner tree T2,S on the graph G \ {1}, with pivot 2 and set of terminals
S = {2, 3, 5}. We invoke procedure ROW-OP (Algorithm 2) and get the following sequence of
CNOTs and row operations.

Y2
2 = {CNOT23,CNOT25}
A2

2 = {A[3, .]← A[3, .]⊕A[2, .], A[5, .]← A[5, .]⊕A[2, .]}

This time all the rows are XORed with a row with a higher index. So no correction procedures are
required.

Column 3

The state of A after the previous operations is shown in Figure 12. As before we build a Steiner
tree T3,S on G \ {1, 2} with pivot 3 and set of terminals S = {3, 4, 6}, which is further sub-divided
into sub-trees T1 and T2. Applying the traversals according to ROW-OP (Algorithm 2) we get the
following sequence of CNOTs and corresponding row operations.

Y3
2 = {CNOT56,CNOT45,CNOT56,CNOT45,CNOT34}
A3

2 = {A[6, .]← A[6, .]⊕A[5, .], A[5, .]← A[5, .]⊕A[4, .]

A[6, .]← A[6, .]⊕A[5, .], A[5, .]← A[5, .]⊕A[4, .], A[4, .]← A[4, .]⊕A[3, .]}

After all these operations we get A = I.

B.3 The complete circuit synthesizing a linear transformation matrix

Let Y1 be the sequence (in order) of CNOTs obtained while reducing to upper triangular form.
Y2 is the sequence of CNOTs obtained after transpose and before reducing to identity. Y ′2 is the
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same sequence of CNOTs as in Y2, but with the control and target flipped. Then the final circuit
is Y = Y ′2 ◦ reverse(Y1), where ◦ means that we concatenate the reverse sequence in Y1 after Y ′2.

The number of CNOTs used by our algorithm is 26, while the algorithm in [34] used 43 CNOTs.
So our algorithm fares much better in terms of CNOT requirement.

C An example for PHASE-NW-SYNTH

In this we illustrate Algorithm 4 (PHASE-NW-SYNTH) with the connectivity graph G given in
Figure 3. The input consists of the following parity terms and their coefficients. The number of
qubits n = 6.

P = {(1, 1⊕ x1 ⊕ x4 ⊕ x5), (2, x2 ⊕ x3 ⊕ x5 ⊕ x6), (4, 1⊕ x4 ⊕ x5 ⊕ x6), (4, 1⊕ x1 ⊕ x2 ⊕ x6),
(6, 1⊕ x1 ⊕ x2 ⊕ x3), (7, 1⊕ x1 ⊕ x2 ⊕ x4 ⊕ x6), (1, x2 ⊕ x4 ⊕ x5)} (7)

P =



1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


G =

1 2 3

6 5 4

Figure 13: The parity matrix P8×7 and connectivity graph G.

The parity matrix P is a 8 × 7 matrix where each column represents a parity term in P. The
first 6 rows in each column encode the parity (without bit flip), the 7th row encodes the bit flip
term and the last row stores the coefficients. The matrix P and the connecitvity graph G has been
shown in Figure 13. We represent the set B as a matrix where each column is a parity term (p)
without the bit flip variable. We label column i by “pi”. In this section superscripts denote the
iteration we are in.

B(0) =



p1 p2 p3 p4 p5 p6 p7
1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0


We initialize an empty stack K, I = [6]. We describe each iteration of the algorithm. A stack is
a first-in and last-out data structure. From here on, we represent the stack K as an ordered set,
where the rightmost element is the last one in or the element at the top of the stack. The leftmost
element is the one at the bottom of the stack.

Iteration 1

We select j = 2 as the pivot row, according to step 25 in Algorithm 4. The 0-cofactor (B1
0) and

1-cofactor (B1
1) are the columns which has 0 and 1 in the jthe row respectively. The stack K is as
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follows.

B1
1 = {p2, p4, p5, p6, p7} and B1

0 = {p1, p3}
K =

{
(B1

1 , I \ {2}, 2), (B1
0 , I \ {2}, ε)

}
The stack contains tuples (B′, I, i), in which the first element is a subset of columns of B. The
second element I ⊆ [6] indicates which rows in B′ have not been considered as “pivot”. We divide
a set of columns into 0 and 1-cofactor, depending upon the entries in the pivot row. The third
element i is the index of the pivot row, according to which the columns in B′ became part of a
1-cofactor for the first time.

At the beginning, if no such pivot row is encountered for a set of columns (for example, in
0-cofactors) then we initialize the third element to some ε /∈ [6]. Once third element has some value
in [6], it remains unchanged for the columns in B′ throughout the algorithm, even if B′ is further
sub-divided.

Iteration 2

We pop (B1
0 , I \ {2}, ε) from the top of the stack K. We select j = 1 as the pivot row. The

0-cofactor, 1-cofactor and K are as follows.

B2
1 = {p1} and B2

0 = {p3}
K =

{
(B1

1 , I \ {2}, 2), (B2
1 , I \ {2, 1}, 1), (B2

0 , I \ {2, 1}, ε)
}

Iteration 3

We pop (B2
0 , I \ {2, 1}, ε) from the top of K and select j = 4 as the pivot row. The 0-cofactor,

1-cofactor and K is as follows.

B3
1 = {p3} and B3

0 = ∅
K =

{
(B1

1 , I \ {2}, 2), (B2
1 , I \ {2, 1}, 1), (B3

1 , I \ {2, 1, 4}, 4)
}

Iteration 4

T
(4)
4,{4,5,6}=

1 2 3

6 5 4

T flip
1 = 5 4

T flip
2 = 6 5

Figure 14: The Steiner tree T
(4)
4,{4,5,6} (iteration 4). The sub-trees T1 and T2 are are flipped such

that root becomes leaf and vice-versa.

We pop (B3
1 , I \{2, 1, 4}, 4) from the top of K. Since the third element of the tuple is an integer,

so we go to step 11 in Algorithm 4 and check if there is a set S ′ of rows such that all columns

in B3
1 = {p3} have a 1. We find S ′ = {5, 6}. We then build a Steiner tree T

(4)
4,S on G with set

S = {4, 5, 6} of terminals and “pivot node” as 4 (Figure 14). Then we divide the tree into sub-trees
as described in Algorithm 3 (SEPARATE). If a sub-tree has multiple leaves we make each path as
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B(4) =



p1 p2 p3 p4 p5 p6 p7
1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1


(a)

x1 x1
x2 x2
x3 x3

x4 XZ 1⊕ x4 ⊕ x5 ⊕ x6

x5 • x5 ⊕ x6
x6 • x6

(b)

Figure 15: (a) B after applying row operations in iteration 4. (b) The partial circuit obtained after
applying the sequence of gates obtained from iteration 4. The variables on the left and right denote
the parities before and after the application of the gates respectively.

a separate sub-tree. We flip the root and leaf of each sub-tree and invoke Algorithm 2 (ROW-OP)
where we get the sequence of CNOTs according to the 4 traversals : Bottom-Up-1, Top-Down-1,
Bottom-Up-2, Top-Down-2. The row operations invoked on B depend only on the root and leaf of
each sub-tree.

Y = {CNOT65,CNOT54}
A = {B[6, .]← B[6, .]⊕B[5, .], B[5, .]← B[5, .]⊕B[4, .]}

B after the row operations and the partial circuit has been shown in Figure 15. We find that
column p3 has been fixed i.e. there is a single 1 and rest are 0. This implies that the 3rd parity in
P is realized. Since P73 = 1, so the bit-flip variable is set to 1. The coefficient P83 = 4. So we need
to place X and Z gate at the point in the circuit where the parity has been realized. The stack
K = {(B1

1 , I \ {2}, 2), (B2
1 , I \ {2, 1}, 1)}. Also, after this point we remove the column p3 from B.

Iteration 5

T
(5)
1,{1,4,6}=

1 2 3

6 5 4

T flip
1 = 6 1

T flip
2 = 4 5 6

Figure 16: The Steiner tree T
(5)
1,{1,4,6} (iteration 5). Sub-trees T1 and T2 are flipped such that root

becomes leaf and vice-versa.

We pop (B2
1 , I \ {2, 1}, 1) from K where B2

1 = {p1}. As explained in the previous iteration we

go to step 11 in Algorithm 4 and find S ′ = {4, 6}. Thus we build a Steiner tree T
(5)
1,S on G with set

of terminals S = {1, 4, 6} and pivot node at 1 (Figure 16). Then we separate into two sub-trees

and flip them, obtaining T flip
1 and T flip

2 . After applying the traversals in Algorithm 2 (ROW-OP)
we get the following sequence of CNOTs and row operations.

Y = {CNOT56,CNOT45,CNOT56,CNOT45,CNOT61}
A = {B[4, .]← B[4, .]⊕B[6, .], B[6, .]← B[6, .]⊕B[1, .]}
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B(5) =



p1 p2 p4 p5 p6 p7
1 0 1 1 1 0
0 1 1 1 1 1
0 1 0 1 0 0
0 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 1


(a)

x1 XT 1⊕ x1 ⊕ x4 ⊕ x5

x2 x2
x3 x3

1⊕ x4 ⊕ x5 ⊕ x6 • • 1⊕ x4 ⊕ x5 ⊕ x6

x5 ⊕ x6 • • x5 ⊕ x6

x6 • x4 ⊕ x5

(b)

Figure 17: (a) B after applying row operations in iteration 5. (b) The partial circuit obtained after
applying the sequence of gates obtained from iteration 5. The variables on the left and right denote
the parities before and after the application of the gates respectively.

Applying these operations we find that p1 has been fixed (Figure 17). So we remove this column,
append the sequence of CNOTs and according to the bit flip variable value (P71 = 1) and coefficient
(P81 = 1) we place X and T gate at the place where the 1st parity in P has been realized. Now
stack has K = {(B1

1 , I \ {2, }, 2)}.

Iteration 6

We pop (B1
1 , I \ {2, }, 2) from the top of K, where B1

1 = {p2, p4, p5, p6, p7}. We select j = 1 as the
pivot row according to step 25 of Algorithm 4. Now the 0-cofactor, 1-cofactor and stack are as
follows.

B6
1 = {p4, p5, p6} and B6

0 = {p2, p7}
K =

{
(B6

1 , I \ {2, 1}, 2), (B6
0 , I \ {2, 1}, 2)

}
Iteration 7

We pop (B6
0 , I \ {2, 1}, 2) from the top of K and set j = 3 as the pivot row. The 0-cofactor,

1-cofactor and K are as follows.

B7
1 = {p2} and B7

0 = {p7}
K =

{
(B6

1 , I \ {2, 1}, 2), (B7
1 , I \ {2, 1, 3}, 2), (B7

0 , I \ {2, 1, 3}, 2)
}

Iteration 8

T
(8)
2,{2,6}=

1 2 3

6 5 4

T flip
1 = 6 5 2

Figure 18: The Steiner tree T
(8)
2,{2,6} (iteration 8). The single sub-tree is flipped such that root

becomes leaf and vice-versa.

We pop (B7
0 , I \ {2, 1, 3}, 2) from K. According to step 11, we find S ′ = {6}. So we build a

Steiner tree T
(8)
2,S on G (Figure 18), with pivot at 2 and set of terminals S = {2, 6}. Following the
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B(8) =



p2 p4 p5 p6 p7
0 1 1 1 0
1 1 1 1 1
1 0 1 0 0
0 1 0 0 0
1 0 0 1 0
1 1 0 1 0


(a)

1⊕ x1 ⊕ x4 ⊕ x5 1⊕ x1 ⊕ x4 ⊕ x5

x2 T x2 ⊕ x4 ⊕ x5

x3 x3

1⊕ x4 ⊕ x5 ⊕ x6 1⊕ x4 ⊕ x5 ⊕ x6

x5 ⊕ x6 • • x5 ⊕ x6

x4 ⊕ x5 • • x4 ⊕ x5

(b)

Figure 19: (a) B after applying row operations in iteration 8. (b) The partial circuit obtained after
applying the sequence of gates obtained from iteration 8. The variables on the left and right denote
the parities before and after the application of the gates respectively.

traversals in Algorithm 2 (ROW-OP) the sequence of CNOTs and row operations obtained as as
follows.

Y = {CNOT52,CNOT65,CNOT52,CNOT65}
A = {B[6, .]← B[6, .]⊕B[2, .]}

The state of B and the partial circuit is shown in Fig 19. According to the value of the bit-flip
variable (P77 = 0) and coefficient (P87 = 1) we place a T-gate at the place where the 7th parity
term of P is realized. The stack is K = {(B6

1 , I \ {2, 1}, 2), (B7
1 , I \ {2, 1, 3}, 2)}. Since p7 is fixed,

so we remove it from B.

Iteration 9

T
(9)
2,{2,3,5,6}=

1 2 3

6 5 4

T flip
1 = 3 2

T flip
2 = 5 2

T flip
3 = 6 5

Figure 20: The Steiner tree T
(9)
2,{2,3,5,6} (iteration 9). The sub-trees are flipped such that root

becomes leaf and vice-versa.

We pop (B7
1 , I \ {2, 1, 3}, 2) from K, where B7

1 = {p2}. Similar to iteration 8, we build a Steiner
tree T2,S on G (Figure 20) with pivot at 2 and set of terminals S = {2, 3, 5, 6}. We get the following
sequence of CNOTs and row operations from ROW-OP(Algorithm 2).

Y = {CNOT65,CNOT52,CNOT32}
A = {B[6, .]← B[6, .]⊕B[5, .], B[5, .]← B[5, .]⊕B[2, .], B[3, .]← B[3, .]⊕B[2, .]}

The state of B and the partial circuit has been shown in Figure 21. We remove p2 from B since it is
fixed. According to the bit flip variable (P72 = 0) and coefficient (P82 = 2) in P , we place S-gate at
the place where the parity of column 2 in matrix P is realized. The stack is K = {(B6

1 , I \{2, 1}, 2)}.
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B(9) =



p2 p4 p5 p6
0 1 1 1
1 1 1 1
0 1 0 1
0 1 0 0
0 1 1 0
0 1 0 0


(a)

1⊕ x1 ⊕ x4 ⊕ x5 1⊕ x1 ⊕ x4 ⊕ x5

x2 ⊕ x4 ⊕ x5 S x2 ⊕ x3 ⊕ x5 ⊕ x6

x3 • x3

1⊕ x4 ⊕ x5 ⊕ x6 1⊕ x4 ⊕ x5 ⊕ x6

x5 ⊕ x6 • x4 ⊕ x6

x4 ⊕ x5 • x4 ⊕ x5

(b)

Figure 21: (a) B after applying row operations in iteration 9. (b) The partial circuit obtained after
applying the sequence of gates obtained from iteration 9. The variables on the left and right denote
the parities before and after the application of the gates respectively.

T
(10)
2,{1,2}=

1 2 3

6 5 4

T flip
1 = 1 2

Figure 22: The Steiner tree T
(10)
2,{1,2} (iteration 10). The single sub-tree is flipped such that root

becomes leaf and vice-versa.

Iteration 10

We now pop (B6
1 , I \{2, 1}, 2), where B6

1 = {p4, p5, p6}. At step 11 of Algorithm 4 we find S ′ = {1}.
Thus we build a Steiner tree T

(10)
2,S (Figure 22) on G with pivot at 2 and terminal S = {1, 2}. As

before we flip the only sub-tree and obtain the following sequence of gates and row operations.

Y = {CNOT12}
A = {B[1, .]← B[1, .]⊕B[2, .]}

No column is fixed (Figure 23), so we go to step 25 and further divide B6
1 into 0-cofactor and

1-cofactor, by pivoting at j = 3, and push these into the stack K.

B10
1 = {p4, p6} and B10

0 = {p5}
K = {(B10

1 , I \ {2, 1, 3}, 2), (B10
0 , I \ {2, 1, 3}, 2)}

B(10) =



p4 p5 p6
0 0 0
1 1 1
1 0 1
1 0 0
1 1 0
1 0 0


(a)

1⊕ x1 ⊕ x4 ⊕ x5 • 1⊕ x1 ⊕ x4 ⊕ x5

x2 ⊕ x3 ⊕ x5 ⊕ x6 x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6

x3 x3

1⊕ x4 ⊕ x5 ⊕ x6 1⊕ x4 ⊕ x5 ⊕ x6
x4 ⊕ x6 x4 ⊕ x6
x4 ⊕ x5 x4 ⊕ x5

(b)

Figure 23: (a) B after applying row operations in iteration 10. (b) The partial circuit obtained
after applying the CNOT obtained from iteration 10. The variables on the left and right denote
the parities before and after the application of the CNOT respectively.
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T
(11)
2,{2,5}=

1 2 3

6 5 4

T flip
1 = 5 2

Figure 24: The Steiner tree T
(11)
2,{2,5} (iteration 11). The single sub-tree is flipped such that root

becomes leaf and vice-versa.

B(11) =



p4 p5 p6
0 0 0
1 1 1
1 0 1
1 0 0
0 0 1
1 0 0


(a)

1⊕ x1 ⊕ x4 ⊕ x5 1⊕ x1 ⊕ x4 ⊕ x5

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 XS† 1⊕ x1 ⊕ x2 ⊕ x3

x3 x3

1⊕ x4 ⊕ x5 ⊕ x6 1⊕ x4 ⊕ x5 ⊕ x6

x4 ⊕ x6 • x4 ⊕ x6

x4 ⊕ x5 x4 ⊕ x5

(b)

Figure 25: (a) B after applying row operations in iteration 11. (b) The partial circuit obtained
after applying the gates obtained from iteration 11. The variables on the left and right denote the
parities before and after the application of the gates respectively.

Iteration 11

We pop (B10
0 , I \ {2, 1, 3}, 2) from K, where B10

0 = {p5}. From the fifth column we find S ′ = {5}.
Thus we build a Steiner tree T

(11)
2,S (Figure 24) on G with pivot at 2 and set of terminals S = {2, 5}.

Flipping and traversing we get the following sequence of CNOTs and row operations.

Y = {CNOT52}
A = {B[5, .]← B[5, .]⊕B[2, .]}

Now the state of B and the appended circuit is shown in Figure 25, where we see that p5 has
been fixed. Since the value of the bit variable is set (P75 = 1) and coefficient is P85 = 6, so
we place a X and S† gate at the place where the 5th parity in P is realized. The stack is K =

{(B(10)
1 , I \ {2, 1, 3}, 2)}.

Iteration 12

T
(12)
2,{2,3}=

1 2 3

6 5 4

T flip
1 = 3 2

Figure 26: The Steiner tree T
(12)
2,{2,3} (iteration 12). The single sub-tree is flipped such that root

becomes leaf and vice-versa.

We pop (B10
1 , I \ {2, 1, 3}, 2) from K, where B10

1 = {p4, p6}. At step 11 of Algorithm 4 we find
that S ′ = {3}. So we build a Steiner tree T2,S (Figure 26) on G with pivot at 2 and set of terminals
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B(12) =



p4 p6
0 0
1 1
0 0
1 0
0 1
1 0


(a)

1⊕ x1 ⊕ x4 ⊕ x5 1⊕ x1 ⊕ x4 ⊕ x5

1⊕ x1 ⊕ x2 ⊕ x3 1⊕ x1 ⊕ x2

x3 • x3

1⊕ x4 ⊕ x5 ⊕ x6 1⊕ x4 ⊕ x5 ⊕ x6
x4 ⊕ x6 x4 ⊕ x6
x4 ⊕ x5 x4 ⊕ x5

(b)

Figure 27: (a) B after applying row operations in iteration 12. (b) The partial circuit obtained
after applying the gates obtained from iteration 12. The variables on the left and right denote the
parities before and after the application of the gates respectively.

as S = {2, 3}. After flipping and traversing we obtain the following sequence of CNOT gates and
row operations.

Y = {CNOT32}
A = {B[3, .]← B[3, .]⊕B[2, .]}

The state of B and the appended circuit has been shown in Figure 27. At step 25 of Algorithm 4
we sub-divide B10

1 by pivoting at j = 4. We get the following 0-cofactor, 1-cofactor, which we push
into the stack.

B12
1 = {p4} and B12

0 = {p6}
K = {(B12

1 , I \ {2, 1, 3, 4}, 2), (B12
0 , I \ {2, 1, 3, 4}, 2)}

Iteration 13

T
(13)
2,{2,5}=

1 2 3

6 5 4

T flip
1 = 5 2

Figure 28: The Steiner tree T
(13)
2,{2,5} (iteration 13). The single sub-tree is flipped such that root

becomes leaf and vice-versa.

We pop (B12
0 , I \ {2, 1, 3, 4}, 2), where B12

0 = {p6}. We get S ′ = {5} at step 11 of Algorithm

4. We build a Steiner tree T
(13)
2,S on G (Figure 28) with pivot at 2 and set of terminals S = {2, 5}.

Then flipping and traversing we get the following sequence of gates and row operations.

Y = {CNOT52}
A = {B[5, .]← B[5, .]⊕B[2, .]}

The updated B and the appended circuit has been shown in Figure 29. The column p6 is fixed, so
we remove it from B. Now P76 = 1 and we see that the circuit has the bit flip variable set to 1.
The coefficient P86 = 7, so we place T † at the place where the 6th parity in P is realized. Now the
stack is K = {(B12

1 , I \ {2, 1, 3, 4}, 2)}.
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B(13) =



p4 p6
0 0
1 1
0 0
1 0
1 0
1 0


(a)

1⊕ x1 ⊕ x4 ⊕ x5 1⊕ x1 ⊕ x4 ⊕ x5

1⊕ x1 ⊕ x2 ⊕ x3 T † 1⊕ x1 ⊕ x2 ⊕ x4 ⊕ x6

x3 x3

1⊕ x4 ⊕ x5 ⊕ x6 1⊕ x4 ⊕ x5 ⊕ x6

x4 ⊕ x6 • x4 ⊕ x6

x4 ⊕ x5 x4 ⊕ x5

(b)

Figure 29: (a) B after applying row operations in iteration 13. (b) The partial circuit obtained
after applying the gates obtained from iteration 13. The variables on the left and right denote the
parities before and after the application of the gates respectively.

Iteration 14

T
(14)
2,{2,4,5,6}=

1 2 3

6 5 4

T flip
1 = 5 2

T flip
2 = 4 5

T flip
3 = 6 5

Figure 30: The Steiner tree T
(14)
2,{2,4,5,6} and its sub-trees, flipped such that root becomes leaf and

vice-versa (iteration 14).

We pop (B12
1 , I \ {2, 1, 3, 4}, 2) from K, where B12

1 = {p4}. Now S ′ = {4, 5, 6}. So we build

a Steiner tree T
(14)
2,S on G (Figure 30) with pivot at 2 and set of terminals S = {2, 4, 5, 6}. After

flipping the 3 sub-trees and traversing according to ROW-OP (Algorithm 2) we get the following
sequence of CNOTs and row operations.

Y = {CNOT65,CNOT45,CNOT52}
A = {B[6, .]← B[6, .]⊕B[5, .], B[4, .]← B[4, .]⊕B[5, .], B[5, .]← B[5, .]⊕B[2, .]}

The state of B and the appended circuit has been shown in Figure 31. We find that the remaining
column p4 has been fixed. Depending upon the parity realized and the coefficient (obtained from
P ) we place a Z gate at the appropriate position in the circuit.

B(14) =



p4
0
1
0
0
0
0


(a)

1⊕ x1 ⊕ x4 ⊕ x5 1⊕ x1 ⊕ x4 ⊕ x5

1⊕ x1 ⊕ x2 ⊕ x4 ⊕ x6 Z 1⊕ x1 ⊕ x2 ⊕ x6

x3 x3

1⊕ x4 ⊕ x5 ⊕ x6 • 1⊕ x4 ⊕ x5 ⊕ x6

x4 ⊕ x6 • x4 ⊕ x6

x4 ⊕ x5 • x4 ⊕ x5

(b)

Figure 31: (a) B after applying row operations in iteration 14. (b) The partial circuit obtained
after applying the gates obtained from iteration 14. The variables on the left and right denote the
parities before and after the application of the gates respectively.
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