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The continuum limit of the dual formulation of the two-dimensional lattice SU(N) principal chiral model is
constructed. The continuum action is in general complex and appears to be a functional of an (N2 − 1)-
component non-compact scalar field. As an application of this construction we establish a relation between the
dual of the SU(2) principal chiral model and the O(3) non-linear sigma model with a θ-term in the continuum
limit. This relation is exact when the radial part of the scalar dual field is taken to be a constant. Therefore, the
dual formulation of the lattice SU(2) model with constant radial part can be regarded as a non-perturbative
regularization of the O(3) model with θ term. Furthermore, under certain conditions one could construct a
positive definite dual Boltzmann weight. This property enables us to prospect Monte Carlo simulations of O(3)
with a θ term at real values of θ.

1 Introduction

In this paper we discuss the continuum limit of the dual formulation of the two-dimensional (2D) SU(N)
principal chiral model. Our chief interest relies on the fact that upon certain condition on the dual field, the
resultant model for N = 2 turns out to be a valid discretization of the 2D O(3) non-linear sigma model with a
θ term.

While at θ = 0 the O(3) model is integrable [1] with a spectrum exhibiting a massive triplet of scalars [2,3],
the physics of this model gets notoriously enriched when the topological parameter θ is switched on. At θ = π
it has been argued that the theory is massless (Haldane conjecture) [4–10]. Then, as θ gets lower starting from
θ = π, the spectrum develops a massive singlet along with the previously mentioned triplet with masses mS(θ)

and mT (θ) respectively. In particular these masses are proportional to (π− θ)
2
3 for values of θ that are close to

π from below [11]. It has been shown, [12–15], that mS(θ) is permanently larger than mT (θ). Since at θ = 0 the
spectrum is exclusively composed by the triplet, it has been conjectured that at some critical value 0 < θc < π
the mass mS(θc) becomes exactly twice mT (θc) in such a way that for any θ < θc the singlet copiously decays
into states belonging to the triplet. Finally, as θ → 0 the value of mS(θ) should diverge, thus leaving the theory
without θ bereft of the singlet state.

Monte Carlo simulations on the lattice are a unique tool to probe the physical properties of any statistical
model. For the case at hand, numerical computer simulations could greatly help in clarifying the particle
content and the θ-dependence of their masses. However, a straightforward attempt to simulate the model by
discretizing its action is doomed to failure because the topological θ-term is pure imaginary. Only at θ = 0 the
problem completely disappears. This is a heavy drawback as importance sampling, which lies at the root of
the Monte Carlo process, applies only as long as Boltzmann weights are strictly positive. Thus, one could only
simulate the model at imaginary values of θ when the Boltzmann weight becomes positive. In [16] the Haldane
conjecture has been verified by extrapolating the mass derived at imaginary values of θ towards the real θ-axis.

The 2D O(3) non-linear sigma model with a non-zero θ term is not the only theory afflicted by the above
problem. Also QCD at finite quark density cannot be directly simulated because the chemical potential is pure
imaginary. None of the known methods provides information about the singlet state and the θ dependence of
its mass. Therefore, new simulation algorithms able to examine the model well within the region of real finite
θ would be very welcome. In this contribution we derive a non-perturbative regularization for the 2D O(3)
non-linear sigma model with θ term. This regularization enables us to construct a positive Boltzmann weight
which, thus, can be used for Monte Carlo simulations of the model.

We shall work on a 2D lattice Λ ∈ Z2 with lattice spacing a and a linear extension L. Periodic boundary
conditions are imposed in both directions. Let us define three partition functions:
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1. Partition function of the lattice SU(N) principal chiral model in the link formulation [17–19]

ZSU(N) =

∫ ∏

l

dV (l) exp

[
β
∑

l

TrV (l)

]
∏

x

[
∑

r

d(r)χr(Vx)

]
, (1)

where V (l) is the SU(N) matrix associated to the link l, d(r) is the dimension of the representation r and
χr(Vx) is the character of the r-th representation. The matrix Vx is defined as

Vx = V (l1)V (l2)V
†(l3)V

†(l4) = exp[iλk ωk(x)] . (2)

Here, li are 4 links attached to the site x. The expression
∑

r d(r)χr(Vx) is the SU(N) delta-function
which introduces the constraint Vx = 1 on the link matrices (local Bianchi identity).

2. We shall use also the following partition function

Z(β,R) =

∫ ∏

l

dV (l) exp

[
β
∑

l

TrV (l)

]
∏

x

sinR ω(x)

sinω(x)
. (3)

Here, ω(x) = (
∑3

k=1 ω
2
k(x))

1
2 and ωk(x) are the angles parameterizing the SU(2) matrix in (2). R is an

arbitrary real number. If R = 2r + 1 with r taking integer and half-integer values then the expression
under the product over x in the last formula is an SU(2) character and the partition function (3) can be
regarded as being obtained from (1) by fixing all representations to some constant. Since delta-function
is not present, we refer to the model (3) as unconstrained SU(2) model.

3. The partition function of the O(3) non-linear sigma model with a θ-term in the continuum is given by

ZO(3) =

∫ 3∏

k=1

Dσk(x) exp

[
−1

2
βO(3)

∫
d2x(∂µσk(x))

2 + iθSq

]
. (4)

The integration is performed with the constraint
∑3

k=1 σ
2
k(x) = 1. The θ-term or topological action Sq

reads

Sq =

∫
d2x

8π
ǫµνǫknm(∂µσk)(∂νσn)σm . (5)

Below we address the following problems:

• construction of the continuum limit of the SU(N) principal chiral model in the link formulation (1);

• as an application of this construction we establish an exact relation between the O(3) non-linear sigma
model with a θ-term and the continuum limit of the unconstrained SU(2) model;

• derivation of a positive definite Boltzmann weight.

2 Continuum limit of the SU(N) principal chiral model

The construction of the continuum limit of the SU(N) principal chiral model (1) uses essentially one basic fact:
when β → ∞ all link matrices perform only small fluctuations around the unit matrix (for a thorough discussion
of this property, see [18]; for a rigorous proof, see [20]). More precisely, any configuration of the link matrix for
which ωk(l) > O(1/

√
β) is exponentially suppressed and becomes singular in the continuum limit. On smooth

configurations the Bianchi constraint Vx = 1 can only be satisfied when ωk(x) = 0 for all k = 1, . . . , N2 − 1.
Therefore, the SU(N) delta-function can be replaced by the Dirac delta-functions

∑

r

d(r)χr(Vx) −→
N2−1∏

k=1

∫ ∞

−∞
eiαk(x)ωk(x) dαk(x) . (6)

Then, the continuum limit for smooth configurations can be constructed in the standard way:

1. introduce dimensionful vector potentials ωk(l) = aAk(l) and expand the action and angles ωk(x) in powers
of the lattice spacing a;

2. replace the SU(N) invariant measure by a flat measure and extend the integration region over potentials
Ak(l) to the non-compact region Ak(l) ∈ [−∞,∞];

3. in the limit a→ 0 finite differences are replaced by derivatives and sums by integrals.
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Neglecting terms which vanish in the limit a→ 0 one gets a Gaussian integral over vector fields Ak(l). Integration
over Ak(l) produces a local continuum theory for the dual scalar potentials αk(x) which can be written as

ZSU(N) =

∫ ∞

−∞
e−Seff

N2−1∏

k=1

dαk(x) . (7)

The effective continuum action reads

Seff =
1

4

∫
d2x (∂µαk(x)) M

kn
µν (∂ναn(x)) −

1

2

∫
d2x lnDetM , (8)

where the inverse of the matrix M is given by

[
Mkn
µν

]−1
= β δµν δkn − iǫµν fknm αm(x) . (9)

Here we turn our attention to the specific model with N = 2. In this case fknm = ǫknm and both DetM and
the matrixM can be easily deduced. Let us make the change of variables αk(x) = R(x) σk(x),

∑3
k=1 σ

2
k(x) = 1.

By substituting the last formulas into (7) we get for the continuum limit of the SU(2) principal chiral model

ZSU(2) =

∫ ∞

0

∏

x

R2(x)dR(x)

β (β2 +R2(x))

∫ ∏

x

[
δ(1−

3∑

k=1

σ2
k(x))

3∏

k=1

dσk(x)

]
exp

[
−
∫

d2x L(R(x), σk(x))
]
, (10)

L(R(x), σk(x)) ≡ 1

4
(∂µ[R(x)σk(x)]) M

kn
µν (∂ν [R(x)σn(x)]) , (11)

Mkn
µν =

1

β2 +R2(x)

[
δµν

(
βδkn +

R2(x)

β
σk(x)σn(x)

)
+ iR(x) ǫµν ǫknm αm(x)

]
. (12)

Consider the SU(2) model obtained above on a constant configuration R(x) = R = const. Noting that∑
k σk(x)∂µσk(x) = 0, one can see that the Lagrangian (11) becomes that of the O(3) sigma model with a θ

term. Moreover, this constant radial part R of the dual field αk(x) can be identified with the parameter R
introduced in the unconstrained SU(2) model (3). Indeed, up to terms of order O(a4) which vanish in the
continuum limit, the factor sinRω/ sinω in (3) can be represented as

sinRω

sinω
≈ R

sinRω

Rω
= R

∫
δ

(
1−

3∑

k=1

σ2
k

)
3∏

k=1

dσk e
iRωkσk . (13)

Using the above calculations for the SU(2) principal chiral model and formula (13) we can easily compute the
continuum limit of the unconstrained SU(2) model obtaining the following relation between partition functions

ZO(3) = [C(β,R)]
L2

Z(β,R) , (14)

valid in the continuum limit. The relation between the couplings in both models can be read off from the
Lagrangian (11) by taking R(x) = R and comparing it with the Lagrangian of the O(3) model. We have for
the direct relation

βO(3) =
β

2

R2

R2 + β2
, θ = 2πR

R2

R2 + β2
. (15)

3 Positive Boltzmann weight

As is seen from (14), the unconstrained SU(2) model does provide a lattice non-perturbative regularization
for the O(3) model with real θ. Its Boltzmann weight is real but not necessarily positive. Here we re-write
the model in a form such that the Boltzmann weight becomes positive definite. To do that let us consider the
following expansion into SU(2) characters

sinRω

sinω
=
∑

r

Ar(R) χr(ω) , (16)

where the sum runs over all non-negative integers and half-integers and the coefficients Ar(R) of the expansion
are given by

Ar(R) = { δ r,s , if R = 2s+ 1, s = 0, 1/2, 1, ...
2 sinπR

π

(−1)(2r+1)(2r + 1)

R2 − (2r + 1)2
, otherwise . (17)
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Then, the partition function (3) appears as

Z(β,R) =
∑

{r(x)}

∏

x

Ar(x)(R) Z̃(β,R; [r(x)]) , (18)

Z̃(β,R; [r(x)]) =

∫ ∏

l

dV (l) exp

[
β
∑

l

TrV (l)

]
∏

x

χr(x)(Vx) . (19)

Note that if R were integer then Z(β,R) = Z̃(β,R; [r(x)]).
Expressing Vx as a product of link matrices (2) the SU(2) characters turn out to be a sum over magnetic

numbers. This yields the partition function

Z̃(β,R; [r(x)]) =
∏

x




r(x)∑

{mi(x)=−r(x)}


∏

l

Q0(l) , (20)

Q0(l) =

∫
dV eβTrV V

mi(x) mi+1(x)
r(x) V

† mj(x+en) mj+1(x+en)

r(x+en)
, (21)

where Vm m′

r indicates the m,m′ matrix element of an SU(2) matrix in representation r. There are 4 magnetic
numbers mi(x) (i = 1, 2, 3, 4) per lattice site x. The result of the invariant integration can be expanded into a
Clebsch-Gordan (CG) series as (up to a sign factor which cancels after multiplication over links)

Q0(l) =
∑

J,k

CJ (β)

2J + 1
CJ k
r(x) mi(x) r(x+en) −mj+1(x+en)

CJ k
r(x) mi+1(x) r(x+en) −mj(x+en)

, (22)

with coefficients CJ (β) given by

CJ(β) =
2J + 1

β
I2J+1(2β) , (23)

where I2J+1(2β) is the modified Bessel function of first kind. Formulas (18), (20) and (22) define our represen-
tation for the partition function of the unconstrained SU(2) model. The new Boltzmann weight, Q0(l), appears
to be always positive on all allowed configurations of the magnetic numbers mi(x) and representations r(x).

4 Summary

In this paper we have calculated the continuum limit of the dual representation of the 2D SU(N) principal
chiral model. As an application we have derived a new lattice regularization for the O(3) non-linear sigma model
with the θ term. The major advantage of our regularization is that it can be written in a form with strictly
positive Boltzmann weight. This opens a possibility for numerical simulations of the model at real values of
θ and, therefore for attacking the problems listed in the Introduction from first principles. The work in this
direction is now in progress.
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