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The continuum limit of the dual formulation of the two-dimensional lattice SU(N) principal chiral model is
constructed. The continuum action is in general complex and appears to be a functional of an (N? — 1)-
component non-compact scalar field. As an application of this construction we establish a relation between the
dual of the SU(2) principal chiral model and the O(3) non-linear sigma model with a #-term in the continuum
limit. This relation is exact when the radial part of the scalar dual field is taken to be a constant. Therefore, the
dual formulation of the lattice SU(2) model with constant radial part can be regarded as a non-perturbative
regularization of the O(3) model with 6 term. Furthermore, under certain conditions one could construct a
positive definite dual Boltzmann weight. This property enables us to prospect Monte Carlo simulations of O(3)
with a 0 term at real values of 6.

1 Introduction

In this paper we discuss the continuum limit of the dual formulation of the two-dimensional (2D) SU(N)
principal chiral model. Our chief interest relies on the fact that upon certain condition on the dual field, the
resultant model for N = 2 turns out to be a valid discretization of the 2D O(3) non-linear sigma model with a
0 term.

While at 8 = 0 the O(3) model is integrable [1] with a spectrum exhibiting a massive triplet of scalars [2,3],
the physics of this model gets notoriously enriched when the topological parameter 6 is switched on. At 6 =7
it has been argued that the theory is massless (Haldane conjecture) [4-10]. Then, as 0 gets lower starting from
0 = 7, the spectrum develops a massive singlet along with the previously mentioned triplet with masses mg(6)
and myp(0) respectively. In particular these masses are proportional to (7w — 9)§ for values of # that are close to
7 from below [11]. It has been shown, [12-15], that mg(f) is permanently larger than my(6). Since at § = 0 the
spectrum is exclusively composed by the triplet, it has been conjectured that at some critical value 0 < 6. < w
the mass mg(f.) becomes exactly twice mr(f.) in such a way that for any 6 < 6. the singlet copiously decays
into states belonging to the triplet. Finally, as @ — 0 the value of mg(f) should diverge, thus leaving the theory
without 6 bereft of the singlet state.

Monte Carlo simulations on the lattice are a unique tool to probe the physical properties of any statistical
model. For the case at hand, numerical computer simulations could greatly help in clarifying the particle
content and the #-dependence of their masses. However, a straightforward attempt to simulate the model by
discretizing its action is doomed to failure because the topological #-term is pure imaginary. Only at 6 = 0 the
problem completely disappears. This is a heavy drawback as importance sampling, which lies at the root of
the Monte Carlo process, applies only as long as Boltzmann weights are strictly positive. Thus, one could only
simulate the model at imaginary values of § when the Boltzmann weight becomes positive. In [16] the Haldane
conjecture has been verified by extrapolating the mass derived at imaginary values of § towards the real §-axis.

The 2D O(3) non-linear sigma model with a non-zero # term is not the only theory afflicted by the above
problem. Also QCD at finite quark density cannot be directly simulated because the chemical potential is pure
imaginary. None of the known methods provides information about the singlet state and the 6 dependence of
its mass. Therefore, new simulation algorithms able to examine the model well within the region of real finite
0 would be very welcome. In this contribution we derive a non-perturbative regularization for the 2D O(3)
non-linear sigma model with 6 term. This regularization enables us to construct a positive Boltzmann weight
which, thus, can be used for Monte Carlo simulations of the model.

We shall work on a 2D lattice A € Z2 with lattice spacing a and a linear extension L. Periodic boundary
conditions are imposed in both directions. Let us define three partition functions:
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1. Partition function of the lattice SU(N) principal chiral model in the link formulation [17-19]

Zsuny = / [Tav @) exp lﬂZTrV(l) HlZd(rm(vm) : (1)
l l x r

where V(1) is the SU(N) matrix associated to the link I, d(r) is the dimension of the representation r and
Xr(Vz) is the character of the r-th representation. The matrix V. is defined as

Ve = VI)V(I)VII)VT(ly) = explidg wi(2)] . (2)

Here, [; are 4 links attached to the site . The expression Yy d(r)x,(Vz) is the SU(N) delta-function
which introduces the constraint V,, = 1 on the link matrices (local Bianchi identity).

. We shall use also the following partition function

H sin R w(x) - 3)

sinw(x)

Z(3,R) = /HdV(l)eXp [ﬁZTrV(l)
l l

x

Here, w(x) = (22:1 w?(z))? and wy(z) are the angles parameterizing the SU(2) matrix in (2). R is an
arbitrary real number. If R = 2r + 1 with r taking integer and half-integer values then the expression
under the product over z in the last formula is an SU(2) character and the partition function (3) can be
regarded as being obtained from (1) by fixing all representations to some constant. Since delta-function
is not present, we refer to the model (3) as unconstrained SU(2) model.

The partition function of the O(3) non-linear sigma model with a f-term in the continuum is given by
3
1 2 2,
Zo(3) = H Doy (:L') exp 7550(3) d Sc(a#O'k (ZL')) + ’L@Sq . (4)
k=1

The integration is performed with the constraint Zz:1 o3(x) = 1. The 6-term or topological action S,
reads

dcx
Sy = o M e (0,01)(0yon )om - (5)
T

Below we address the following problems:

e construction of the continuum limit of the SU(N) principal chiral model in the link formulation (1);

e as an application of this construction we establish an exact relation between the O(3) non-linear sigma

model with a f-term and the continuum limit of the unconstrained SU(2) model;

e derivation of a positive definite Boltzmann weight.

2  Continuum limit of the SU(N) principal chiral model

The construction of the continuum limit of the SU(N) principal chiral model (1) uses essentially one basic fact:
when 3 — oo all link matrices perform only small fluctuations around the unit matrix (for a thorough discussion
of this property, see [18]; for a rigorous proof, see [20]). More precisely, any configuration of the link matrix for
which wy (1) > O(1/+/B) is exponentially suppressed and becomes singular in the continuum limit. On smooth
configurations the Bianchi constraint V,, = 1 can only be satisfied when wy(z) = 0 for all k = 1,..., N? — 1.
Therefore, the SU(N) delta-function can be replaced by the Dirac delta-functions

S de (V) — ] / o) o () -
T k=1 >

Then, the continuum limit for smooth configurations can be constructed in the standard way:

1.

introduce dimensionful vector potentials wy(l) = aAx (1) and expand the action and angles wy(x) in powers
of the lattice spacing a;

replace the SU(N) invariant measure by a flat measure and extend the integration region over potentials
A (1) to the non-compact region Ag(l) € [—o0, oo];

in the limit a — 0 finite differences are replaced by derivatives and sums by integrals.
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Neglecting terms which vanish in the limit a — 0 one gets a Gaussian integral over vector fields A (). Integration
over Ay (1) produces a local continuum theory for the dual scalar potentials ay () which can be written as

00 NZ2-1
Zsun) = / e S ] dan(z) . (7)
- k=1

The effective continuum action reads
Sefi = i /d2:c (Opo(x)) Mfff} (Opan(z)) — % /d2z InDetM | (8)
where the inverse of the matrix M is given by
[ME2]™ = B 0 G — i [ () (9)
Here we turn our attention to the specific model with N = 2. In this case f*"™ = "™ and both DetM and

the matrix M can be easily deduced. Let us make the change of variables ay(x) = R(z ) & (), Zk:l oi(x) = 1.
By substituting the last formulas into (7) we get for the continuum limit of the SU(2) principal chiral model

Zsu(a) = / H B 52+R2 /H[ > ot H do(x ‘|exp {/ d*x E(R(x),ok(x))}, (10)

=1

L(R(z),0r(z)) = i (Ou[R(z)on(@)]) My (0u[R(z)on(2)]) | (11)
kn 71 R2(z)0 z)o, (x iR(z) e ™™ a,.(z
M = i e (880 + oo @) ) + iRte) wie)] (12)

Consider the SU(2) model obtained above on a constant configuration R(z) = R = const. Noting that
>k Ok(x)0u0k(x) = 0, one can see that the Lagrangian (11) becomes that of the O(3) sigma model with a
term. Moreover, this constant radial part R of the dual field ag(x) can be identified with the parameter R
introduced in the unconstrained SU(2) model (3). Indeed, up to terms of order O(a*) which vanish in the
continuum limit, the factor sin Rw/sinw in (3) can be represented as

sin Rw stw
~ R =R 1—§ ||d iRwrok 13
sinw / < = 10k> Ok € (13)

Using the above calculations for the SU(2) principal chiral model and formula (13) we can easily compute the
continuum limit of the unconstrained SU(2) model obtaining the following relation between partition functions

Zow = [CB.RIY Z(BR), (14)

valid in the continuum limit. The relation between the couplings in both models can be read off from the
Lagrangian (11) by taking R(x) = R and comparing it with the Lagrangian of the O(3) model. We have for
the direct relation 8 5 )
R R
=— —— ,0=27R ———— . 1
Po,) 2 RZ+ 32 TR Rzt 32 (15)
3 Positive Boltzmann weight

As is seen from (14), the unconstrained SU(2) model does provide a lattice non-perturbative regularization
for the O(3) model with real §. Its Boltzmann weight is real but not necessarily positive. Here we re-write
the model in a form such that the Boltzmann weight becomes positive definite. To do that let us consider the
following expansion into SU(2) characters

S S AR) ) | (16)

S w

where the sum runs over all non-negative integers and half-integers and the coefficients A,.(R) of the expansion
are given by

2sinTR (—1)2 D (2r 4 1)
R?—(2r +1)2

Ar(R) = {6,,, if R=2s+1,5=0,1/2,1,... otherwise . (17)
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Then, the partition function (3) appears as

ZB,R) = > ][ Arw)(R) Z(8,R; [r(x)]) (18)
{r(z)} =
2(6,R; [r(@)) = / [[avw e |8 V0| T xewVe) (19)
l 1 x

Note that if R were integer then Z(3, R) = Z(3, R; [r(z)]).
Expressing V, as a product of link matrices (2) the SU(2) characters turn out to be a sum over magnetic
numbers. This yields the partition function

r(z)

ZB,R;[r(@)) = [1I > [T@o) , (20)
@ [ {mi(x)=—r(x)}] !

- BTrV yrmi(x) miti(z) 1,1 mj(zten) mjpi(zten)
Qull) = [ dves ™V v eyl e mateie) 1)
where V™" indicates the m, m’ matrix element of an SU(2) matrix in representation r. There are 4 magnetic
numbers m;(z) (i = 1,2, 3,4) per lattice site . The result of the invariant integration can be expanded into a
Clebsch-Gordan (CG) series as (up to a sign factor which cancels after multiplication over links)

C](/B) J k J k
Qo(l) = Z 2.7 1Cr(z) m;(z) r(zt+en) —mjtp1(z+en) Cr(z) miy1(x) r(z+en) —mj(zte,) (22)
J,k +
with coefficients C';() given by
2J+1
CsB) = —5—Lrn(20), (23)

where I741(26) is the modified Bessel function of first kind. Formulas (18), (20) and (22) define our represen-
tation for the partition function of the unconstrained SU(2) model. The new Boltzmann weight, Qo(l), appears
to be always positive on all allowed configurations of the magnetic numbers m;(x) and representations r(x).

4 Summary

In this paper we have calculated the continuum limit of the dual representation of the 2D SU(N) principal
chiral model. As an application we have derived a new lattice regularization for the O(3) non-linear sigma model
with the 6 term. The major advantage of our regularization is that it can be written in a form with strictly
positive Boltzmann weight. This opens a possibility for numerical simulations of the model at real values of
0 and, therefore for attacking the problems listed in the Introduction from first principles. The work in this
direction is now in progress.
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