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Summary

In 1973, the former Q-jump system has been repla-
ced by 8 fast and 6 slowly pulsed quadrupoles forming
4 doublets and 2 triplets respectively. They allow
presently a change of vy by » 2.3 (instead of & 0.23),
limited only by the power supply within 0.8 ms (< 0.4
ms with a new supply under construction). Transition
is crossed 50 times (instead of 5 times) faster than
without jump. More than 5 1012 p/p have been accele-
rated operationally and brought through transition
within a bunch area of % 10 mrad. In the future, it
should be possible to handle 1013 p/p within the same
bunch area. The scaling laws for achievable longl%edx—
nal den51ty ¥ (apart from logarithmic terms ¥ = N
iAyt|ﬁ for bunch matching and ¥ = N I
for negative mass instability) are in good agreement
with experiments.

1. Introduction

High longitudinal phase space density is of parti-

cular importance in the CPS as it serves as injector for

the ISR and, in the future for the SPS. The most severe
limitation occurs at transition where a blow-up due to
negative mass instability must be avoided. As shown in
chapter "The negative mass instability", the only effi-
cient method to achieve this at high intensity is to
cross transition much faster than it would be crossed
without special precautions. The method used to mani-
pulate the transition energy is the subject of chapters
2 to 5. Chapter 6 deals with bunch matching, chapter 7
with the negative mass instability leading to a simple
criterion for avoiding blow-up trouble. Chapter 8 sum-
marizes the practical experience with the new scheme.

2. The Lens Configuration

A convenient way to influence yy without affecting
the betatron tune is to form doublets : two lenses of
opposite polarity are placed half a betatron wavelength
apart. The phase advance per cell of the CPS being 7/4
and the structure being FOFDOD, the doublet lenses can
all be placed in mid-F straight sections. A doublet
leaves the amplitude function By unperturbed outside
but not the dispersion function . Two consecutive
doublets of opposite polarity form a triplet whose cen—
ter lens is twice as strong as the outer lenses.

The lens configuration consists of two superperiods,
1 triplet, 2 cells, 1 doublet, 1 cell,

each containing :

1 doublet, 6 cells. In the following three chapters,
expressionsfor B8, Xp and Y, are derived for a machine
assuming :

i) all unperturbed B and x_ values at the
lenses are equal to 8 and XpF respectively;

ii) the phase advances are precisely as required.
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3. The Excursion of the Amplitude Function

The knowledge of B is not really needed for obtain—
ing y, but we want an expression for § and we shall
prove that the Q-value remains constant. As a measure
for the lens strength we introduce the dimensionless

parameter (f : focusing

= 8F/f length)

With ¢ = fd_s the phase advance of the unperturbed

machine counted from the first quadrupole, we have in
short lens approximation with initial conditions

58 =0 and I (Aﬁ)
just before the lens
AB =- 8 A q sin 2 for small Aq.

For large q, we have

W
98 _ . i~
3q ~ B sin 2U (3.1)
~ P
where B and & are the new values such that
v "
ds = B dy = g d¥
It follows together with (3.1)
Vv Y
2 v
v i) il sin 2¥ (3.2)
d q dq

The system (3.1, 3.2) has a solution which can be writ-
ten :

q = ctg ¥ - ctg v from which

V=rnfor v = q.e.d.
g _ q
B cosh x - sinh ¥ sin(2) + arctg 2) (3.3)
B . . ~ q
E = cosh x + sinh x sin(2y - arctg 2)
9 _ g3 X
2 sinh (2)
It follows
v 5 —
B URUE> ST \/ a-
(B) e 2 +q 1+ 4
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4. The Excursion of the Dispersion Function

A simple way of treating x, is to comnsider
Ax Xpo as 2 betatron oscillation excited by
lekS ag the lenses, the magnitude of the kick being
proportional to x_ . A convenient measure for Axp is

p
- /SF Axp(w)
B(y) XoF
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E must obey the differential equation

d? ¢
+ £=- 1+ §(y
FRn q (1 + 5D 8Gk)
. . .dg P .
With complex notation z = £+ iy and the initial condi-

tions z(yy) = z, at §, = O, one finds after a lems of
strength q; at y; = O

z = <;1 - iq1(1+£19 exp(-ip) ;3 O < <« (4.1)
and after the second doublet lens of strength ~q; at
Y =7 :

z = (z) - 2iq;) exp(-iy) 3T <Y (4.2)
The term -q;€&, simy which occurs inside the doublet
deserves particular attention. As we shall see in chap-
ter 5, this term causes the Ye change. With ¢k = wk+l
- wk’ the tracing law is
(4.3)

z = (z

kel - 21qk) exp(—lvk)

k

For n doublets within a superperiod, the periodicity
condition leads to

n k-1
z, = (— ctg% + i) kgl a exp(i 12;1 (pg) (4.4)

n
where ¢ = ;{1 ¢i is the phase advance over the super-
period.

In the CPS, there are two sets of lenses powered
differently. Let g7 = -q2 =T 3 -gq3 = q4 = D, The choice
¥4 = yeliminates the term containing D? in the charac-
teristic polynominal P, (see 5.2) and simultaneously
maximizes the term containing DT if ¥, is put 37/2
(mod 27) and ¥, = 57/2 (mod 27). Modifications arise
from shifting doublets by w and reversing the polarity.
The scheme

5
@ 7 0 Fp) o3

yields with (4.3) and (4.4)

il W S S I S22 _Pr 8 g
3 > ctg 5 + 1) T+D ; 2 3 ctg 3 T-D

(4.5)
Z3#Z_D=_ . Z‘* _12 [
2—2(1+1ctg2>T1D,2 > 1+1cthT

from which results

kz=:1 q & = 4T <2n - ctg(%) T)

In the CPS, |- ctg ¢/2|could be kept small by going
to the antisymmetric disposition which makes

_6:25 -1

¢ 2

and ¢ _
2”8

o} =

- ctg
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(a corresponding scheme for the AGS is feasible with

¢ = 8.75/2:21 or —ctg $/2 = -(/2Z - 1) with lenses placed
in FD or DF straights for which the desired phase dis-
tances can be approximated rather closely i.e. : T2

3% cells; 3m/2 = 5 cellsy 7n/4 = 6 cells),

5. The new Transition Energy

As vy is defined by 1/y,2= AC/C where ACis the addi-
tional circumference of a particle with unit momentum
displacement Ap/p = 1 we have to sum over the contribu-
tions of all elements AC = 2§ Cy+ The kth doublet con-
tributes to this sum

m
%
§C = ds = - 372 g cos ¥
k o R /By [k

[+
+ ((j—i) k" qk(1+£k)> sinw} dy

33/2 i
s I ((Z%)k _ qk(mk))

(5.1)

R@

When summing over the whole circumference the only
remaining terms involve the combinations qkék leading
to

y
(-E’) = 1 - C P2
Y, P
577 ¢
x F 83 2 Yt;02
c, =8 B __ %% =~ 0.4 for the CPS (5.2)
i RZ/B F

o
]

2 T<2D+(/2-—1)T>

With this P2,Y _ can be changed to either side as with
a first order pcérturbation by keeping one set (triplets
T) fixed and pulsing the other set (doublets D). Apply-
ing reasonable criteria, tggs scheme is superior to

those studied previouslyl’

An additional application has arisen which helps
to ease debunching the beam prior to the continuous
transfer into the SPS °). The combination |Z2| I n-1
(Ap/p)'2 should be small (2 : coupling impedance;

I : beam current). As long as |z| is rather high as at
present, it is helpful to increase N via a decrease of
Y¢. The phase advance over the superperiod ¢ can be
made 6.25 T by reversing the polarity of one triplet
and of one doublet within each of the two superperiocds
so that P2 becomes

Py = - T (21) + (/241) T)

The quadratic term is so efficient now that with the
(water—cooled) triplet lenses alone, a gain of 2.5 in

" is obtained with T = 13 v, = 4.32; =60 m; &, =

23 m. The peak excursion of x, is high, but as for this
application Ap/p is small, the symchrotron width of the
beam is not excessive. Also betatron width and synchro-
tron width add in quadrature to the total beam width;
this is rigorous for the rms values of symmetric and
uncorrelated distributions, and 49 are a good measure
for the total beam width.



The scheme is fairly flexible and allows for other
modes of operation if the criteria (e.g. permissible
A
R, xp) are altered.

6. Bunch Matching

Since we shall describe the features of the nega-
tive mass instability also in terms of the matching
theory, it is justified to recall briefly the most
important facts of the matching theory“. They are

i) RF forces are linearized, so trajectories are
elliptic ;

ii) Space~charge forces are also linearized by assum-—
ing a parabolic shape for the linear density which
results from phase space density of semi-circle shape
across trajectories;

iii) Time is measured in units of the non—adiabatic
time t for ordinary transition crossing

b4 | | 1/3
Yor B 0!
=l S
v 2
4 Ver Y
and the new time given by x = t/1; d/dx = '; vy is

the y at which transition crossing occurs (i.e. vy
equals Y4 the value of the particles), ¢g the synchro-
nous phase angle and vgy the RF frequency.

iv) Manipulations on Y. are described by a function

f(x) = n/ns' where
1 1 d 2vg'
n=—y-—% and n'="—(Y_2)’-‘—'—‘§'
Yt Ys s dx s Ycr

Note that f(x) = x for Yo = const.

v) A longitudinal space-charge parameter n, is intro-
duced by

!

3n? Ip Ngo [VRF ) ?
n = —2*377— =
© 2 RraA ( '

o, = 0.772334 ng 0) ; no(O) of ref. 4.

r = classical proton radius; 2nR = machine circumfe-
rénce; N = number of particles; A = bunch area in units
of A(RY)-RF~angle (cut-off value); 8o 1+ 22n b/a
(see 7.1).

vi) A variable 6 is introduced denoting the half length
of a normalized bunch of area w. 8 is related to the
physical bunch half length ¢ by

a 2/A vRF Y; T\
¢ =————8
Y

8 obeys a second order differential equation. Far awey
from transition, the equilibrium values of © are below
(=) and above (+) transition given by

(6.1)

A large and fast jump is aimed at such that 6.is re-
established 8, = 6_ = 6. For this case, summation and

subtraction of (6.1) yields

_frE % _fAf
] —< 2) and ng —(26)

£y - |f_]. For £_ = 0,
Z(no)kl3.

(6.2)

with If = £+ [f_| and Af =
the minimum jump sizeS is Zf = f, =

The system installed now in the CPS allows at least
twice this jump.

The advantages of such a ''superjump"” are

i) The mismatch is little sensitive against space-
charge parameter variations. This is important at the
CPS since each of the four Booster rings has some indi-
viduality. Roughly one has

-3/4
3 fae
a

ii) For systematic intensity modulations from cycle

to cycle, as planned, it is sufficient to change only
the timing. This is much simpler than to change current
amplitudes too.

iii) The negative mass unstable region is crossed near
the peak of [&t], a very important aspect which leads

us to the next chapter.

7. The Negative Mass Instability

The linear region of negative mass (n.m.) insta-
bility® is characterized by the fact that (small) modu-
lations of the linear density grow exponentially with a
growth rate which is a function of both the mode number
and, in our case, of time, since we change n rapidly
with the aim of reaching the threshold before the modu-—
lations have grown too much. In order to treat the phe-
nomenon conveniently, we shall make a few assumptions
and simplifications none of which are unrealistic or
too rough.

i) The dependence of the geometrical factor g on the
mode number is given for a beam of radius a, within a
perfectly conducting pipe of radius b, at the axis by

wb
Lk -t a)
g w lw 1 1 I _E
o\ a
. ak ma h k
with w = £ R $ b
Yer® Yer
k , k, : mode number per circumference or
c’ b .
per bunch length respectively.
Ios Iy Ko Ky : modified Bessel functions.

The space-charge parameter n, contalns

B, = limg =1 + 2 &n g
w0

For larger arguments w and b/a not too big, g is appro-
ximated by

8o

g = - 2
1+ [—————
(1.6 /b + 0.52)

8o 1.6 0.52
E="3 a2t kg T Ve R( b ' a )

(7.1)
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using the simplified kernel? for the space-charge po-—
tential, together with a numerical fit,

ii) From inspecting the Vlasov equation, it can be
concluded that for ki >> 1, the coasting beam model is

a good approximation as proposed earlier by Pease8.

iii) For the unperturbed density, the same distribution
is assumed as in chapter 6.

iv) The initial modulation is assumed to be given
entirely by statistical fluctuations due to the finite
number of particles within the bunch Ny = N/h. The
small amplitude approximation being based on Fourier
decomposition, we can calculate the expectation value
of the modes when referred to the average linear den-
sity A = N/2¢ and find them independent of the mode
number and the distribution function to be (see the
Appendix)

2
@1 = 7

A detailed study of the initial value problem shows

that the behaviour after transition crossing as func—
tion of the growth rate G(x,k) is

‘ck(x)! [ck(O) I cosh fG(x,k) dx

so that after a short time

exp fG(x,k) dx

/Ny

!ck(x)! (7.2}

With these assumptions, the growth rate and the
threshold can be found via the Vlasov equation and the
dispersion relation. The threshold can be expressed con-
veniently by the parameters of chapter 6 except that

f

no

n

Nth
This relation is valid along the whole bunch and
allows to defire a threshold value f, = n® which is
always smaller than f, the value to be reached for
matching. The growth rate varies along the bunch as
the square root of the linear density and involves addi-
tional parameters. At the bunch center, the growth rate

is to be used (7.1) (7.3)

is
ko A leg o]
G(x,kc) = — - (7.4)
h s Ys 1
For 6 = const. and £ = f'x, the integral throughout the

unstable region which measures the accumulated e-folding
times of the n.m. instability is

E (k)=fG(X.k)dx
cet e ¢
2 N
k. n"6 L ‘/A [tg ¢g!
1
™YL

i

4 (7.5

-
E has a maximum E for k =k ,//5, yielding
ace acc c c
2 373 2
k = —
< 16 kc% %
A - -
E must remain smaller than some critical value E .
acc crit
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in order to avoid a blow-up which happens when
2y%
(Z]ck{ )
of equation (7.2) approaches unity.
The implied summation

g exp <2Eacc (k))

can be carried out by second order expansion of Ej..(k)

around E

kbL has to be taken in order to achieve the proper mode
spac1ng within a bunch. The sum may then be approximated
by the error integral yielding the transcendental equa-
tion for E yi¢

N

crit
. __ﬁh
Eacc(kb) Ecrit (1 ( b )

5

8 crit
_..&
exp(ZEr )erf[J 3 ] Nb
cr1t
=1
An approximate solution is
k VEn
o =% [mNy - n L SRR | U
Crl 33 1n Nb

(5 InN_ is E for only one mode; the second term
arises Prom thet presence of many modes).
The criterion for no blow-up due to n.m. instabi-
lity is then
Ketr %o ) _ 5 \/Altg bl _ 7.6
h f' T Ys crit
: Ych<1.6 0.52\ . W
with keff = ER Y + 2 3 k ff(CPS) = 2 10

This should be considered as a condition for f'
indicating how much faster transition energy is to be
crossed by the jump. If f' prooves to be insufficient,
the magnitude of the blow—up might be estimated by apply-
ing Dory's law? together with (7.4).

The inequality (7.6) allows also to study other
methods, for example, playing with ¢4. Since they only
provide factors of the order unity, at least in the good
direction, we conclude that a fast jump is indispensible,

If we put 8§ = (2-0‘ and note that n, 2 contains A 3,
we see that the longitudinal phase~space denslty scales
as N/A « N1/5 (£')2/5 (gf) 1710, The scaling law for
bunch matching taken from (6.2) goes as N/A = N1/3
(A£)2/3 (T£)~1/6 znd simplifies to N/A « NL/3(ze)¥ is
rf/Af remains constant.

* A promising method at a first glance seems to be
passive compensationl®, i,e, reducing n, via 8o

As we need really to reduce n(k) via g(k), a criti-
cal frequency characteristic of the wall impedance
over a wide range is required to achieve this with-
out over-compensationll. Since that is also sensi-
tive to the density distribution, an awkward problem
would have to be mastered.



8. Experimental observations

All quadrupoles are compact in length (< 0.25 m),
the doublet quadrupoles (except one) are also compact

in cross—section. The present power supplies allow for
D] = 0.45 and T = 0.82 corresponding to ¥y, = 7.9 and
Yt = 5.6, the jump is performed within 0.8 ms corres-—

ponding to £' = 50. (v, = 50 s71; v ' = 0.09).

The scheme came into operation smoothly. Some ini-
tial beam loss due to closed orbit perturbation could
be cured by centering carefully the mean radial position
of the beam. The pulse form of the triplet current is
rather uncritical, the peak should approximately coin-
cide with the jump. The doublet current should not rise
too quickly after the jump (see Fig. 1). The triple
switch on the RF phase gives perfect bunch matching but
a single switch is sufficient (see Fig.2). The bunch
size of the booster seems to decrease with increasing
intensity. Above 6 1012 p/p in the CPS, a negative-mass
instability blow—~up was sometimes observed at A = 8
mrad (in quantitative agreement with (7.6)). In order to
improve the situation, more powerful supplies are under
design for a larger jump and more than doubled speed
aiming at |D| > 0.55, T > 1.0, £' = 200~400. 10'3 p/p
could then be handled within a bunch area of 10 mrad or
less. The betatron tunes Qg and Qy change only by AQ =
a few 1073 in agreement with computations by a lattice
programme which also show that the real CPS yields the
analytical results of chapters 3-5 very closely, in
particular for Yo

Appendix

a
Let Ny = pumber of particles per bunch, 2¢ = bunch
length, F(¢) = bunch distribution function normali zed
A

by [

J

-6

Subdivide the bunch into M bins indexed by m (or n).
Each bin contains F(¢) AN particles where AN = Ny/M is
the average number of particles per bin. Random fluctua-
tions lead to particle numbers per bin different by &N
from that determined by the distribution function. The
expectation value of that difference is assumed to be
given by

A

F(¢) d¢ = 2¢

F

SN SN
E { AN(m) Kﬁ(n) } AN am n
The i?plied step function £(¢) = (SN/AN) (m) for (m-1)/M
< (¢+¢)/2$ < m/M represented by Fourier expansion is to
be

a0

]
_ i2nk 1
f(4) = kz=:—°° ¢ exp(—z?’- ¢>+ ¢ = F £ £(¢)
M EQ&
_ i2mk 1 E: ¥ SN
exP ( 2% ¢) 4= 35 w1 b1,y O )
—-—2Z¢
M
exp (— 1211‘ 4 + $)) do
M
_1 Z _G_N_ _ i2nkm -
"M el AN(m)eXp( M ) 7 E{Ckck}
M M
s i2rk
M ¢
1 F _ 1 F_ _
Y 221 AN 2 Jy Ny dé = N,
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The modulus of the Fourier coefficient ci is composed
of ¢ci and ¢ so that le] = 2/¥8; q.e.d.
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Figure 1

Triplet current
(upper trace).
Doublet current
(lower trace).
Sweep : 5 ms/div.

Figure 2
Wide-band pick-up
station signal,
inversely propor-
tional to bunch
length. First
peak : doublet
current starts
rising. Second
peak : Jump.

N = 5.5 1012 p/p.
Sweep : 10 ms/div.




