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Abstract 

Principal curves are smooth one dimensional curves that pass through the middle of a p dimensional 

data set. They minimise the distance from the points, and provide a non-linear summary of the 

data. The curves are non-parametric and their shape is suggested by the data. Similarly, principal 

surfaces are two dimensional surfaces that pass through the middle of the data. The curves and 

surfaces are found using an iterative procedure which starts with a linear summary such as the usual 

principal component line or plane. Each successive iteration is a smooth or local average of the p 

dimensional points, where local is based on the projections of the points onto the curve or surface of 

the previous iteration. 

A number of linear techniques, such as factor analysis and errors in variables regression, end 

up using the principal components as their estimates (after a suitable scaling of the co-ordinates). 

Principal curves and surfaces can be viewed as the estimates of non-linear generalisations of these 

procedures. We present some real data examples that illustrate these applications. 

Principal Curves (or surfaces) have a theoretical definition for distributions: they are the Self 

Consistent curves. A curve is self consistent if each point on the curve is the conditional mean of 

the points that project there. The main theorem proves that principal curves are critical values of 

the expected squared distance between the points and the curve. Linear principal components have 

this property as well; in fact, we prove that if a principal curve is straight, then it is a principal 

component. These results general&e the usual duality between conditional expectation and distance 

minimieation. We also examine two sources of bias in the procedures, which have the satisfactory 

property of partially cancelling each other. 

We compare the principal curve and surface procedures to other generalisations of principal 

components in the literature; the usual generalisations transform the space, whereas we transform 

the model. There are also strong ties with multidimensional scaling. 

l Work supported by the Department of Energy under contracts DE-AC03.76SF00515 and DEATOS-6l.ERlO645, 

and by the Office of Naval Research tmdcx contract ONR N00014.El-K-0340 and ONR N0014.63.K-0472, and by 

the U.S. Army Research Offics under contract DAAG29.62.K-0056. 
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Chapter I 

Introduction 

Consider a data set consisting of n observations on two variables, z and y. We can 

represent the n points in a scatterplot, as in figure 1.1. It is natural to try and summarize 

the joint behaviour exhibited by the points in the scatter-plot. The form of summary we 

chose depends on the goal of our analysis. A trivial summary is the mean vector which 

simply locates the center of the cloud but conveys no information about the joint behaviour 

of the two variables. 
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Figure 1.1 A bivariate data set represented by a scatterplot. 

It is often sensible to treat one of the variables as a response variable, and the other 

as an explanatory variable. The aim of the analysis is then to seek a rule for predicting the 

response (or average response) using the value of the explanatory variable. Standard linear 

regression produces a linear prediction rule. The expectation of y is modeled as a linear 
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function of z and is estimated by least squares. This procedure is equivalent to finding the 

lime that minimizes the sum of vertical squared errors, as depicted in figure 1.2a. 

When looking at such a regression line, it is natural to think of it as a summary of the 

data. However, in constructing this summary we concerned ourselves only with errors in 

the response variable. In many situations we don’t have a preferred variable that we wish 

to label response, but would still like to summarize the joint behaviour of z and y. The 

dashed line in figure 1.2a shows what happens if we used z as the response. So simply 

assigning the role of response to one of the variables could lead to a poor summary. An 

obvious alternative is to summarize the data by a straight line that treats the two variables 

symmetrically. The first principal component line in figure 1.2b does just this - it is found 

by minimizing the orthogonal errors. 

Linear regression has been generalized to include nonlinear functions of z. This has 

been achieved using predefined parametric functions, and more recently non-parametric 

scatterplot smoothers such as kernel smoothers, (Gasser and Muller 1979), nearest neighbor 

smoothers, (Cleveland 1979, F’riedman and Stuetzle 1981), and spline smoothers (Reinsch 

1967). In general scatterplot smoothers produce a smooth curve that attempts to minimize 

the vertical errors as depicted in figure 1.2~. The non-parametric versions listed above 

allow the data to dictate the form of the non-linear dependency. 

In this dissertation we consider similar generalizations for the symmetric situation. 

Instead of summarizing the data with a straight line, we use a smooth curve; in finding the 

curve we treat the two variables symmetrically. Such curves will pass through the middle 

of the data in a smooth way, without restricting smooth to mean linear, or for that matter 

without implying that the middle of the data is a straight line. This situation is depicted 

in figure 1.2d. The figure suggests that such curves minimize the orthogonal distances to 

the points. It turns out that for a suitable definition of middle this is indeed the case. We 

name them Principal Curves. If, however, the data cloud is ellipsoidal in shape then one 

could well imagine that a straight line passes through the middle of the cloud. In this case 

we expect our principal curve to be straight as well. 

The principal component line plays roles other than that of a data summary: 

. In errors in variable8 regression the explanatory variables are observed with error (as 

well as the response). This can occur in practice when both variables are measurements 

of some underlying variables, and there is error in the measurements. It also occurs in 

observational studies where neither variable is fixed by design. If the aim of the analysis 
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is prediction of y or regression and if the z variable is never observed without error, then 

the best we can do is condition on the observed z’s and perform the standard regression 

analysis (Madansky 1959, Kendall and Stuart 1961, Lindley 1947). If, however, we do 

expect to observe z without error then we can model the expectation of y as a linear 

function of the systematic component of z. After suitably scaling the variables, this 

model is estimated by the principal component lime. 

l Often we want to replace a number of highly correlated variables by a single vari- 

able, such ss a normalized linear combination of the original set. The first principal 

component is the normalized linear combination with the largest variance. 

l In factor analysis we model the systematic component of the data as linear combina- 

tions of a small subset of new unobservable variables called factors. In many cases 

the models are estimated using the linear principal components summary. Variations 

of this model have appeared in many different forms in the literature. These include 

linear functional and structural models, errors in variables and total leaet squares. 

(Anderson 1982, Golub and van Loan 1979). 

In the same spirit we propose using principal curves as the estimates of the systematic 

components in non-linear versions of the models mentioned above. This broadens the scope 

and use of such curves considerably. This dissertation deals with the definition, description 

and estimation of such principal curves, which are more generally one dimensional curves 

in p-space. When we have three or more variables we can carry the generalizations further. 

We can think of modeling the data with a 2 or more dimensional surface in p space. Let us 

first consider only three variables and a Zsurfsce, and deal with each of the four situations 

in figure 1.2in turn. 

l If one of the variables is a response variable, then the usual linear regression model 

estimates the conditional expectation of a, given z = (zi,zz) by the least squares 

plane. This is a planar response surface which is once again obtained by minimizing 

the squared errors in y. These errors are the vertical distances between y and the point 

on the plane vertically above or below y. 

l Often a linear response surface does not adequately model the conditional expectation. 

We then turn to nonlinear two dimensional response surfaces which are smooth surfaces 

that minimize the vertical errors. They are estimated by surface smoothers that are 

direct extensions of the scatterplot smoothers for curve estimation. 
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Figure 1.2a The linear regression line mini- Figure 1.2b The principal component line 
mises the sum of squared errors in the response minimises the sum of squared errors in all the 
variable. variables. 

Figure 1.2~ The smooth regression curve 
minimises the sum of squared errors in the 
response variable, subject to smoothness con 
straints. 

Figure 1.2d The principal curve minimises 
the sum of squared errors in all the variables, 
subject to smoothness constraints. 
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l If all the variables are to be treated symmetrically the principal component plane passes 

through the data in such a way that the sum of squared distances from the points to 

the plane is minimized. This in turn is an estimate for the systematic component in a 

Zdimensional linear model for the mean of the three variables. 

l Finally, in this symmetric situation, it is often unnatural to assume that the best two 

dimensional summary is a plane. Principal surfaces are smooth surfaces that pass 

through the middle of the data cloud; they minimize the sum of squared distances 

between the points and the surface. They can also be thought of as a an estimate for 

the two dimensional systematic component for the means of the three variables. 

These surfaces are easily generalized to 2-dimensional surfaces in p space, although they 

are hard to visualize for p > 3. 

The dissertation is organized as follows: 

l In chapter 2 we discuss in more detail the linear principal components model, as well 

as the linear relationship model hinted at above. They are identical in many cases, 

and we attempt to tie them together in the situations where this is possible. We then 

propose the non-linear generalizations. 

l In Chapter 3 we define principal curves and surfaces in detail. We motivate an al- 

gorithm for estimating such models, and demonstrate the algorithm using simulated 

data with very definite and difficult structure. 

l Chapter 4 is theoretical in nature, and proves some of the claims in the previous chap 

ters. The main result in this chapter is a theorem which shows that curves that pass 

through the middle of the data are in fact critical points of a distance function. The 

principal curve and surface procedures are inherently biased. Thii chapter concludes 

with a discussion of the various forms and severity of this bias. 

l Chapter 5 deals with the algorithms in detail. There is a brief discussion of scatterplot 

smoothers, and we show how to deal with the problem of finding the closest point on 

the curve. The algorithm is explained by means of simple examples, and a method for 

span selection is given. 

l Chapter 6 contains six examples of the use and abilities of the procedures using real 

and simulated data. Some of the examples introduce special features of the procedures 

such as inference using the bootstrap, robust options and outlier detection. 
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. Chapter 7 provides a discussion of related work in the literature, and gives details of 

some of the more recent ideas. This is followed by some concluding remarks on the 

work covered in this dissertation. 



Chapter 2 

Background and Motivation 

Consider a data matrix X with n rows and p columns. The matrix consists of n points or 

vectors with p coordinates. In many situations the matrix will have arisen as n observations 

of a vector random variable. 

2.1. Linear Principal Components. 

The first (linear) principal component is the normalized linear combination of the p variables 

with the largest sample variance. It is convenient to think of X as a cloud of n points in 

pspace. The principal component is then the length of the projection of the n points onto 

a direction vector. The vector is chosen so that the variance of the projecbd points along 

it is largest. Any line parallel to this vector will have the same property. To tie it down we 

insist that it passes through the mean vector. This line then has the appealing property of 

being the line in pspace that is closest to the data. Closest is in terms of average squared 

euclidian distance. We think of the projection as being the best linear one dimensional 

summary of the data X. Of course this linear summary might be totally inadequate locally 

but it attempts to provide a reasonable global summary. 

The theory and practical issues involved in linear principal components analysis are 

well known (Barnett 1981, Gnanadesikan 1977), and the technique is originally due to 

Spearman (1994), and then later developed by Hotelling (1933). We can find the the 

second component, orthogonal to the first, that has the next highest variance. The plane 

spanned by the two vectors and including the mean vector is the plane closest to the data. 

In general we can find the WI < p dimensional hyperplane that contains the most variance, 

and is closest to the data. 

The solution to the problem is obtained by computing the singular value decomposi- 

tion or basic structure of X, (centered with respect to the sample mean vector), or equiva- 

lently the eigen decomposition of the sample covariance matrix (Golub and Reinsch 1970, 

Greenacre 1984). Without any loss in generality we assume from now on that X is centered. 

If this is not the case, we can center X, perform the analysis, and uncenter the results by 
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adding back the mean vector. 

In particular, the first principal component direction vector a is the largest normalized 

eigenvector of S, the sample covariance matrix. The principal component itself is Xa, an 

n vector with elements 4 = z:o where 21 is the ith row of X and Xi is the one dimensional 

summary variable for the ith observation. The coordinates in pspace of the projection of 

the ith observation on o are given by * 

OXi = OO’Zi (2.1) 

There is no underlying model in the above. We merely regard the first component 

as a good summary of the original variables if it accounts for a large fraction of the total 

variance. 

2.2. A linear model formulation. 

In this section we describe a linear model formulation for the p variables. This formulation 

includes many familiar models such as linear regression and factor analysis. We end up 

showing in 2.2.2 that the estimation of the systematic component of some of these models 

is once again the principal component procedure. 

2.2.1. Outline of the linear model. 

Consider a model for the observed data 

Zi = Ui + Ci (2.2) 

where Ui is an unobservable systematic component and ei an unobservable random com- 

ponent (We only get to see their sum). We usually impose some linear structure on tli, 

namely 

Ui = uo + A& (2.3) 

where uo is constant location vector, A is a p x m matrix and & is an m-vector. For the 

procedures considered ug is always estimated by the sample mean vector 5; without loss of 

generality we will simply assume that X has been centered and ignore the term ug. We also 

* If X is not centered we center it by forming 2 = X - 12. Then the principal component is 
X = 2a and the estimate in p space for the projection of the ith observation onto the principal 
component line 2 + 07 is 2 + O~i = 2 + oo’(2i - 2) 
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assume that q are mutually independent and identically distributed random vectors with 

mean 0 and covariance matrix !P and are independent of the &. 

If the & are considered to be random as well, the model is referred to as the linear 

structural model, or more commonly as the factor analysis model. If the & are fixed it is 

referred as the linear functional model. The model (2.3) includes some familiar models as 

special cases: 

l Let A be p x (p - 1) with rank (p - 1). We can write A as 

0’ 0 I 

where a is a (p - 1) vector and I is (p - 1) x (p - 1) since we can post-multiply A by 

an arbitrary non-singular (p - 1) x (p - 1) matrix and pre-multiply & by its inverse. 

Thus we can write the model (2.3) as 

where E(ei) = 0 and assume Cou(ei) = diag(of,a&. . . ,u:). If 17: = oi = . . . = U: = 0 

then we have the usual linear regression model with response Zri and regressor variables 

2%. 

l If the variances are not zero we have the errors in variables regression model. The idea 

is to find a (p - 1) dimensional hyperplane in pspace that approximates the data well. 

The model takes care of errors in all the variables, whereas the usual linear regression 

model considers errors only in the response variable. This is a form of linear functional 

analysis. 

l When the & are random we have the usual factor analysis model, which includes the 

random effects Anova. This is also referred to as the linear structural model. 

l If all the variances are zero and the & are random and A is p x p the model represents 

the principal component change of basis. In this situation it is clear that the Xji are 

each functions of the Zi. 

For a full treatment of the above models see Anderson (1982). 
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2.2.2. Estimation. 

We return for simplicity to the case where m = 1. Thus 

Zi = di + Ci (2.5) 

The systematic components aXi are points in pspace confined to the line defined by a 

multiple & of the vector a. We need to estimate A’ for each observation, and the direction 

vector. 

We now state some results which can be found in Anderson (1982). 

If either 

l the ei are jointly Normal with a scalar covariance cl, where c ia possibly unknown, 

and if & are random or fixed, and we estimate by maximum likelihood 

or 

l as above but we drop the Normal assumption and estimate by least squares, 

then the estimate of & is once again the first principal component and that of a the principal 

component direction vector. In both cases the quantity we wish to minimize is 

RSS(X, 0) = 2 lIZi - dil12. (2.6) 
i=l 

It is easy to see that for any D the appropriate value for & is obtained by projecting the 

point Zi onto a. Thus equation (2.6) reduces to 

RSS(a) = fJ l/Zi - Oa’Zill* 
i=l 

= tr XX’ - 0’X’Xa 
(2.7) 

The normalized solution to (2.7) is the largest eigenvector of X’X. 

If the error covariance rk is general but known, we can transform the problem to the 

previous case. This is the same as using the Mahalanobis distance defined in terms of !P. 

In particular when * is diagonal the procedure amounts to finding the line that minimizes 

the weighted distance to the points and ia depicted in figure (2.1) below. 

If the error covariance is unknown and not scalar then we require replicate observations 

in order to estimate it. 
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Figure 2.1 If g = diag(af,o,2) then we minimiw the weighted 

distance Ci(ei/af + &i/o:) from the points to the line. 

2.2.3. Units of measurement. 

It is often a problem in multivariate data analysis that variables have different error vari- 

ances, even though they are measured in the same units. A worse situation is that often 

the variables are measured in completely different and incommensurable units. When we 

use least squares to estimate a lower dimensional summary, we explicitly combine the errors 

on each variable using the usual sum of components loss function, as in (2.6) . This then 

gives equal weight to each of the components. The solution is thus not invariant to changes 

in the scale of any of the variables. This is easily demonstrated by considering a spherical 

point cloud. If we scale up one of the co-ordinates au arbitrary amount, we can create 

as much linear structure as we like. In this situation we would really like to weigh the 

errors in the estimation of our model according to the variance of the measurement errors, 

which is seldom known. The safest procedure in this situation is to standardize each of the 

coordinates to have unit variance. This could destroy some of the structure that exists but 

without further knowledge about the scale of the components this yields a procedure that 

is invariant to coordinate scale transformations. 

If, on the other hand, it is known that the variables are measured in the same units, 

we should not do any scaling at all. An apparent counter-example occurs if we make 
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measurements of the same quantities in different situations, with different measurement 

devices. An example might be taking seismic readings at different sights at the same 

instances with different recording devices. If the error variances of the two devices are 

different, we would want to scale the components differently. 

To sum up so far, the principal component summary, besides being a convenient data 

reduction technique, provides us with the estimate of a formal parametric linear model 

which covers a wide variety of situations. An original example of the one factor model 

given here is that of Spearman (1904). The Zi are scores on psychological tests and the Xi 

is some underlying unobservable general intelligence factor. 

The estimation in all the cases amounts to finding a m-dimensional hyperplane in 

pspace that is closest to the points in some metric. 

2.3. A non-linear generalization of the linear model. 

The above formulation is often very restrictive in that it assumes that the systematic com- 

ponent in (2.2) is linear, as in (2.3). It is true in some cases that we can approximate a 

nonlinear surface by its first order linear component. In other cases we do not have sufficient 

data to estimate any more than a linear component. Apart from these cases, it is more 

reasonable to assume a model of the form 

Zi = f (Ai) + Ci (2.8) 

where & is a m-vector ss before and f is a pvector of functions, each with m arguments. The 

functions are required to be smooth relative to the errors. This is a natural generalization 

of the linear model. 

This dissertation deals with a generalization of the linear principal components. In- 

stead of finding lines and planes that come close to the data, we find curves and surfaces. 

Just as the linear principal components are estimates for the variety of linear models listed 

above, so will our non- linear versions be estimates for models of the form (2.8) . So in 

addition to having a more general summary of multidimensional data, we provide a means 

of estimating the systematic component in a large class of models suitably generalized to 

include non-linearities. We refer to these summaries as principal curves and surfaces. 

So far the discussion has concentrated on data sets. We can just as well formulate the 

above models for p dimensional probability distributions. We would then regard the data set 
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as a sample from this distribution and the functions derived for the data set will be regarded 

as estimates of the corresponding functions defined for the distribution. These models then 

define one and two dimensional surfaces that summarize the p dimensional distribution. 

The point f(A) on the surface that corresponds to a general point e from the distribution 

is a p dimensional random variable that can be summarized by a two dimensional random 

variable A. 

2.4. Other generalizations. 

There have been a number of generalizations of the principal component model suggested 

in the literature. 

l UGeneralized principal components” usually refers to the adaptation of the linear model 

in which the coordinates are first transformed, and then the standard principal com- 

ponent analysis is carried out on the transformed coordinates. 

l Multidimensional scaling (MDS) finds a low dimensional representation for the high 

dimensional point cloud, such that the sum of squared interpoint distances are pre- 

served. This constraint has been modified in certain cases to cater only for points that 

are close in the original space. 

l Proximity analysis provides parametric representations for data without noise. 

l Non-linear factor analysis is a generalization similar to ours, except parametric co 

ordinate functions are used. 

We have been deliberately brief in listing these alternatives. Chapter 7 contains a detailed 

discussion and comparison of each of the above with the principal curve and surface models. 



Chapter 3 

The Principal Curve and Surface models 

In this chapter we define the principal curve and surface models, first for a p dimensional 

probability distribution, and then for a p dimensional finite data set. In order to achieve 

some continuity in the presentation, we motivate and then simply state results and theorems 

in this chapter, and prove them in chapter 4. 

3.1. The principal curves of a probability distribution. 

We first give a brief introduction to one dimensional surfaces or curves, and then define the 

principal curves of smooth probability distributions in p space. 

3.1.1. One dimensional curves. 

A one dimensional curve f is a vector of functions of a single variable, which we denote by 

X. These functions are called the coordinate functions, and X provides an ordering along 

the curve. If the coordinate functions are smooth, then f will be a smooth curve. We can 

clearly make any monotone transformation to X, say m(x), and by modifying the coordinate 

functions appropriately the curve remains unchanged. The parametrization, however, is 

different. There is a natural parametrization for curves in terms of the arc-length. The 

arc-length of a curve f from &J to X1 is given by 

If Ilf’(.z)ll z 1 then 1 = Xl--Xc. This is a rather desirable situation, since if all the coordinate 

variables are in the same units of measurement, then X is also in those units. The vector 

f’(X) is tangent to the curve at X and is sometimes called the velocity vector at X. A curve 

with I\f’ll E 1 is called a unit speed parametrized curve. We can always reparametrize any 

smooth curve to make it unit speed. If w is a unit vector, then f(X) = 00 + Xo is a unit 

speed straight curve. 

The vector f”(X) is called the acceleration of the curve at X, and for a unit speed 

curve, it is easy to check that it is orthogonal to the tangent vector. In this case jr’/ Ilf”ll 
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Figure (3.1) The radius of curvature is the radius of the circle 

tangent to the curve with the same acceleration as the curve. 

is called the principal normal of the curve at X. Since the acceleration measures the rate 

and direction in which the tangent vector turns, it is not surprising that the curvature of 

a parametrized curve is defined in terms of it. The easiest way to think of curvature is in 

terms of a circle. We fit a circle tangent to the curve at a particular point and lying in the 

plane spanned by the velocity vector and the principal normal. The circle is constructed to 

have the same acceleration as the curve, and the radius of curvature of the curve at that 

point is defined as the radius of the circle. It is easy to check that for a unit speed curve 

we get 

r,(X) dgf radius of curvature off at X 

= 11 lIf”(9II 
The center of curvature of the curve at X is denoted by cj(X) and is the center of this circle. 

3.1.2. Definition of principal curves. 

We now define what we mean by a curve that passes through the middle of the data -what 

we call a principal curve. Figure 3.2 represents such a curve. At any particular location 

on the curve, we collect all the points in p apace that have that location as their closest 

point on the curve. Loosely speaking, we collect all the points that project there. Then 

the location on the curve is the average of these points. Any curve that has this property 
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Figure (3.2) Each point on a principal curve is the average of the 
points that project there. 

is called a principal curve. One might say that principal curves are their own conditional 

expectation. We will prove later these curves are critical points of a distance function, as 

are the principal components. 

In the figure we have actually shown the points that project into a neighborhood on 

the curve. We do this because usually for finite data sets at most, one data point projects 

at any particular spot on the curve. Notice that the points lie in a segment with center at 

the center of curvature of the arc in question. We will discuss this phenomenon in more 

detail in the section on bias in chapter 4. 

We can formalize the above definition. Suppose X is a random vector in p-space, 

with continuous probability density h(z). Let 5 be the class of differentiable l-dimensional 

curves in IRP, parametrized by A. In addition we do not allow curves that form closed loops, 

so they may not intersect themselves or be tangent to themselves. Suppose X E Af for each 

f in 5. For f E 5 and z E lRp, we define the projection index Xf : IRp H Af by 

Xf (4 = yxCX : lb - f(Ul = i;f 112 - f(P)ll). (3.lj 
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The projection index Xf(z) of z is the value of X for which f(X) is closest to z. There might 

be a number of such points (suppose f is a circle and z is at the center), so we pick the 

largest such value of X. We will show in chapter 4 that Xf(z) is a measureable mapping 

from RP to R’, and thus Xl(X) is a random variable. 

Definition 

The Principal Curve8 of h are those members of $ which are 8elf consi8tent. A curve f E 5 
is self consistent if 

E(XlXf(X)=X)= f(X) V&Af 

We call the class of principal curves 7(h). 

3.1.3, Existence of principal curves. 

An immediate question might be whether such curves exist or not, and for what kinds of 

distributions. it is easy to check that for ellipsoidal distributions, the principal components 

are in fact principal curves. For a spherically symmetric distribution, any line through the 

mean vector is a principal curve. 

What about data generated from a model as in equation 2.8, where Xi is 1 dimensional? 

Is f a principal curve for this distribution? The answer in general is no. Before we even 

try to answer it, we have to enquire about the distribution of Xi and ei. Suppose that the 

data is well behaved in that the distribution of si has tight enough support, so that no 

points can fall beyond the centers of curvature of f. This guarantees that each point has 

a unique closest point to the curve. We show in the next chapter that even under these 

ideal conditions (spherically symmetric errors, slowly changing curvature) the average of 

points that project at a particular point on the curve from which they are generated lies 

outside the circle of curvature at that point on the curve. This means that the principal 

curve will be different from the generating curve. So in this situation an unbiased estimate 

of the principal curve will be a biased estimate of the functional model. This bias, however, 

is small and decreases to zero as the variance of the errors gets small relative to the radius 

of curvature. 

3.1.4. The distance property of principal curves. 

The principal components are critical points of the squared distance from the points to their 

projections on straight curves (lines). Is there any analogous property for principal curves? 



18 Section 3.1: The principal curve8 of a probability distribution 

It turns out that there is. Let d(z, f) denote the usual euclidian distance from a point z to 

its projection on the curve f: 

(3.2) 

and define the function D’ : 5 + pi’ by 

D’(f) g Ed’(X, f). 

We show that if we restrict the curves to be straight lines, then the principal components 

are the only critical values of D’(f). Critical value here is in the variational sense: if f and 

g are straight lines and we form ft = f +eg, then we define f to be a critical value of D2 iff 

dD2(f,)/d&o = o. 

This means that they 8re minima, maxima or saddle points of this distance function. If we 

restrict f and g to be members of the subset of 5 of curves defined on a compact A, then 

principal curves have this property as well. In this case f6 describes a class of curves about 

f that shrink in as 6 gets small. The corresponding result is: dD2(fs)/d&~ = 0 iff f is 

a principal curve of h. This is a key property and is 8n essential link to all the previous 

models and motivation in chapter 2. This property is similar to that enjoyed by conditional 

expectations or projections; the residual distance is minimized. Figure (3.3) illustrates the 

idea, and in fact is almost a proof in one direction. 

Suppose L: is not a principal curve. Then the curve defined by f(X) = E(X IX,(X) = 

X) certainly gets closer to the points in any of the neighborhoods than the original curve. 

This is the property of conditional expectation. Now the points in any neighborhood defined 

by XL might end up in different neighborhoods when projected onto f, but this reduces the 

distances even further. This shows that k cannot be a critical value of the distance function. 

An immediate consequence of these two results is that if a principal curve is a straight 

line, then it is a principal component. Another result is that principal components are self 

consistent if we replace conditional expectations by linear projections. 

3.1.4.1 A smooth subset of principal curves. 

We have defined principal curves in a rather general fashion without any smoothness re- 

strictions. The distance theorem tells us that if we have a principal curve, we will not find 

any curves nearby with the same expected distance. We have a mental image of what we 
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Figure 3.3 The conditional expectation curve gets at least as close 
to the points as the original curve. 

would like the curves to look like. They should pass through the data smoothly enough so 

that each data point has an unambiguous closest point on the curve. This smoothness will 

be dictated by the density h. It turns out that we can neatly summarize this requirement. 

Consider the subset 7,(h) c 7(h) of p rincipal curves of h, where f E z(h) ifF f E 7(h) 

and Xf(z) is continuous in z for all points z in the support of h. In words this says that if 

two points z and y are close together, then their points of projection on the curve are close 

together. This has a number of implications, some of which are obvious, which we will list 

now and prove later. 

l There is only one closest point on the principal curve for each z in the support of h. 

l The curve is globally well behaved. This means that the curve cannot bend back and 

come too close to itself since that will lead to ambiguities in projection. (If we want 

to deal with closed curves, such as a circle, a technical modification in the definition 

of X is required). 

l There are no points at or beyond the centers of curvature of the curve. This says that 

the curve is smooth relative to the variance of the data about the curve. This has 

intuitive appeal. If the data is very noisy, we cannot hope to recover more than a very 

smooth curve (nearly a straight line) from it. 
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i 

(4 (b) 

Figure 3.4 The continuity constraint avoids global ambiguities (a) 
and local ambiguities (b) in projection. 

Figure 3.4 illustrates the way in which the continuity constraint avoids global and local 

ambiguities. Notice that 7,(h) depends on the density h of X. We say in the support of 

h, but if the errors have an infinite range, this definition would only allow straight lines. 

We can make some technical modifications to overcome thii hurdle, such 8s insisting that h 

has compact support. This rules out any theoretical consideration of curves with gaussian 

errors, although in practice we always have compact support. Nevertheless, the class 7,(h) 

will prove to be useful in understanding some of the properties of principal curves. 

3.2. The principal surfaces of a probability distribution. 

3.2.1. Two dimensional surfaces. 

The level of difficulty increases dramatically 88 we move from one dimensional surfaces or 

curves to higher dimensional surfaces. In this work we will only deal with %-dimensional sur- 

faces in p space. In fact we shall derrl only with Zsurfaces that admit a global parametriza- 

tion. This allows us to define f to be a smooth 2-dimensional globally parametrized surface 
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if f : A I-+ RP for A c R2 is a vector of smooth functions: 

fd4 

f(A) = fy) il fPW 

fl(h~2) 

= fzh~z) 

i i I fpPl,b) 

(3.3) 

Another way of defining a 2-surface in p space is to have p - 2 constraints on the p coordi- 

nates. An example is the unit sphere in IRS. It can be defined as {z : z E IRS, llzll = 1). 

There is one constraint. We will call this the implicit definition. 

Not all Zsurfaces have implicit definitions (mijbius band), and similarly not all surfaces 

have global parametrizations. However, locally an equivalence can be established (Thorpe 

1978). 

The concept of arc-length generalizes to surface area. However, we cannot always re- 

parametrize the surface so that units of area in the parameter space correspond to units of 

area in the surface. Once again, local parametrizations do permit this change of units. 

Curvature also takes on another dimension. The curvature of a surface at any point 

might be different depending on which direction we look from. The way this is resolved 

is to look from all possible directions, and the first principal curvature is the curvature 

corresponding to the direction in which the curvature is greatest. The eecond principal 

curvature corresponds to the largest curvature in a direction orthogonal to the first. For 

2-surfaces there are only two orthogonal directions, so we are done. 

3.2.2. Definition of principal surfaces. 

Once again let X be a random vector in p-space, with continuous probability density h(z). 

Let 5’ be the class of differentiable 2-dimensional surfaces in IRP, parametrized by A E Af, 

a 2-dimensional parameter vector. 

For f E 52 and z E IRP, we define the projection index +(z) by 

Xf (2) = m”;“m$X : II2 - f (WI = $f 11% - f(cr)ll). (3.4) 
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The projection index definea the closest point on the surface; if there is more than one, it 

picks the one with the largest first component. If this is still not unique, it then maximizes 

over the second component. Once again Xr(z) is a measureable mapping from W’ into R*, 

and +(X1 is a random vector. 

Definition 

The Principal Surfaces of h are those members of 5’ which are self consistent: 

E (X I+(X) = 4 = f(X) 

Figure (3.5) demonstrates the situation. 

Figure 3.5 Each point on a principal surface is the average of the 
points that project there. 

The plane spanned by the first and second principal components minimizes the distance 

from the points to their projections onto any plane. Once again let d(z, f) denote the usual 

euclidian distance from a point z to its projection on the surface f, and D’(f) = E@(X, f). 

If the surfaces are restricted to be planes, then the planes spanned by any pair of principal 
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components are the only critical values of D*(f). There is a result analogous to the one 

to be proven for principal curves. If we restrict f to be the members of $* defined on 

connected compact sets in R’, then the principal surfaces of A are the only critical values 

of D*(f). 

Let 7*(h) c GZ denote the class of principal %-surfaces of h. Once again we consider a 

smooth subset of this class. Form the subset q*(h) c 7*(h), where f E 7:(h) iff f f 7*(h) 

and Ar(z) is continuous in z for all points z in the support of h. Surfaces in %*(!A) have 

the following properties. 

l There is only one closest point on the principal surface for each z in the support of h. 

. The surface is globally well behaved, in that it cannot fold back upon itself causing 

ambiguities in projection. 

l We saw that for principal curves in 7,(h), there are no points at or beyond the centers 

of curvature of the curve. The analogous statement for principal surfaces in Y:(h) is 

that there are no points at or beyond the centers of normal curvature of any unit speed 

curve in the surface. 

3.3. An algorithm for finding principal curves and surfaces. 

We are still in the theoretical situation of finding principal curves or surfaces for a probability 

distribution. We will refer to curves (l-dimensional surfaces) and 2-dimensional surfaces 

jointly as surfaces in situations where the distinction is not important. 

When seeking principal surfaces or critical values of D*(f), it is natural to look for a 

smooth curve that corresponds to a local minimum. Our strategy is to etart with a smooth 

curve and then to look around it for a local minimum. Recall that 

D*(f) = E 11x - fP/(X))l/* 

= Ex,(x) E [11x- f(Aj(X))ll* bj(x)] . 

We can write this as a minimization problem in f and A: find f and X such that 

(3.5) 

(3.6) 

D:(f ,A) = E Ilx - f Wll* (3.7) 

is a minimum. Clearly, given any candidate solution f and A, f and Xf is at least as good. 

Two key ideas emerge from this: 
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l If we knew f as a function of A, then we could minimize (3.7) by picking X = At(z) 

at each point z in the support of h. 

s Suppose, on the other hand, that we had a function A(z). We could rewrite (3.7) as: 

G(f 3 XI = EA(x) f: E[(Xj - fdV))* I A(X)1 (3.8) 
j=l 

We could minimize 0: by choosing each fj separately so as to minimize the corre- 

sponding term in the sum in (3.8) . This amounts to choosing 

fj(X) = E(Xj IA(X) = A). (3.9) 

In this last step we have to check that the new f is differentiable. One can construct many 

situations where this is not the case by allowing the starting curve to be globally wild. On 

the other hand, if the starting curve is well behaved, the sets of projection at a particular 

point in the curve or surface lie in the normal hyperplanes which vary smoothly. Since the 

density h is smooth we can expect that the conditional expectation in (319) will define a 

smooth function. We give more details in the next chapter. The above preamble motivates 

the following iterative algorithm. 

Principal surface algorithm 

initialization: Set f(O)(X) = AA h w ere A is either a column vector (principal 

curves) and is the direction vector of the first linear principal 

component of h or A is a p x 2 matrix (principal surfaces) con- 

sisting of the first two principal component direction vectors. 

Set A(O) = A jco). 

repeat: over iteration counter j 

1) Set f(j)(.) = E(X IW1)(x) = .). 

2) Choose A(j) = x jb’. 

3) Evaluate D*(j) = Di(f(j),A(j)). 

until: D* (j) fails to decrease. 

Although we start with the linear principal component solution, any reasonable starting 

values can be used. 



Chapter 3: The Principal Curve and Surface models 25 

It is easy to check that the criterion D2 (j) must converge. It is positive and bounded 

below by 0. Suppose we have f(j-l) and X(j-l). N ow D;(f(i),x(i-1)) 5 D:(f(i-l),A(i-1)) 
by the properties of conditional expectation. Also Di(f(j), X(j)) 5 D:(f(j),X(jA1)) since the 

A(j) are chosen that way. Thus each step of the iteration is a decrease, and the criterion 

converges. This does not mean that the procedure has converged, since it is conceivable that 

the algorithm oscillates between two or more curves that are the same expected distance 

from the points. We have not found an example of this phenomenon. 

The definition of principal surfaces is suggestive of the above algorithm. We want a 

smooth surface that is self consistent. So we start with the plane (line). We then check 

if it is indeed self consistent by evaluating the conditional expectation. If not we have a 

surface as a by-product. We then check if this is self consistent, and so on. Once the self 

consistency condition is met, we have a principal surface. By the theorem quoted above, 

this surface is a critical point of the distance function. 

3.4. Principal curves and surfaces for data sets. 

So far we have considered the principal curves and surfaces for a continuous multivariate 

probability distribution. In reality, we usually have a finite multivariate data set. How do 

we define the principal curves and surfaces for them? Suppose then that X is a n x p matrix 

of n observations on p variables. We regard the data set as a sample from an underlying 

probability distribution, and use it to estimate the principal curves and surfaces of that 

distribution. We briefly describe the ideas here and leave the details for chapters 5 and 6. 

l The first step in the algorithm uses linear principal components as starting values. 

We use the sample principal components and their corresponding direction vectors as 

initial estimates of AI and f(O). 

l Given functions j(j-l) we can find for each Zi in the sample a value Ai -(j-l) = xt~-l,(Zi). 

This can be done in a number of ways, using numerical optimization techniques. In 

practice we have j(j-l) evaluated at n values of X, in fact at nfm2’, if-“, ..a, ;\g-‘). 
j(j-1) is evaluated at other points by interpolation. To illustrate the idea let us con- 

sider a curve for which we have j(i-l) evaluated at Xi *(je2), for i = l,*.*,n. For each 

point i in the sample we can project z; onto the line joining each pair (f(j-1)(iF-2)), 
j(i-l)(QJ~~J)). s uppose the distance to the projection is dir, and if the point projects 

beyond either endpoint, then & is the distance to the closest endpoint, Correspond- 

ing to each & is a value &r; E [~~-2),~~~~)]. We then let ip-‘) be the Air that 
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corresponds to the smallest value of 4~. This is an O(n2) procedure, and as such is 

rather naive. We use it M an illustration and will describe more efficient algorithms 

later. 

l We have to estimate f(j) (A) = E (X ) X(j-‘1 = A). W e restrict ourselves to estimating 

this quantity at only n values of A(i-ll, namely if-‘), -. . , $‘lwhich we have already 

estimated. We require E(X lA(j-‘l = if-“). Th’ is says that we have to gather all 

the observations that project onto j(j-‘) at $-‘l, and find their mean. Typically 

we have only one such observation, namely zi. It is at this stage that we introduce 

the scatterplot smoother, the fundamental building block in the principal curve and 

surface procedures for finite data sets. We estimate the conditional expectation at 

A!-‘) by averaging all the observations 2~ in the sample for which @-‘l is close to 

iii-l). As long as these observations are close enough and the underlying density is * 
smooth, the bias introduced will be small. On the other hand, the variance of the 

estimate decreases as we include more observations in the neighborhood. Figure (3.6) 

demonstrates this local averaging. Once again we have just given the ideas here, and 

will go into details in later chapters. 

Figure 3.6 We estimate the conditional expectation 
E(X 1 A(i-1) = fiy-‘)) b y averaging the observations zk for which 

$+l) b =lose to $i-1) I . 
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l One property of scatterplot smoothers in general is that they produce smooth curves 

and surfaces as output. The larger the neighborhood used for averaging, the smoother 

the output. Since we are trying to estimate differentiable curves and surfaces, it is 

convenient that our algorithm, in seeking a conditional expectation estimate, does 

produce smooth estimates. We will have to worry about how smooth these estimates 

should be, or rather how big to make the neighborhoods. Thii becomes a variance 

versus bias tradeoff, a familiar issue in non-parametric regression. 

l Finally, we estimate D2 (j) in the obvious way, by adding up the distances of each point 

in the sample from the current curve or surface. 

3.5. Demonstrations of the procedures. 

We look at two examples, one for curves and one for surfaces. They both are generated 

from an underlying true model so that we can easily check that the procedures are doing 

the correct thing. 

3.5.1. The circle in two-space. 

The series of plots in figure 3.7 show 100 data points generated from a circle in 2 dimensions 

with independent Gaussian errors in both coordinates. In fact, the generating functions are 

(::)=(;::;)+(::> 
where X is uniformly distributed on [0,2a] and el and e2 are independent J/(0,1). 

The solid curve in each picture is the estimated curve for the iteration ss labelled, and 

the dashed curve is the true function. The starting curve is the first principal component, 

in figure 3.7b. Figure 3.7a gives the usual scatterplot smooth of 22 against 21, which is 

clearly an inappropriate summary for this constructed data set. 

The curve in figure 3.7k does substantially better than the previous iterations. The 

figure caption gives us a clue why - the span of the smoother is reduced. This means that 

the size of the neighborhood used for local averaging is smaller. We will see in the next 

chapter how the bias in the curves depends on this span. 

The square root of the average squared orthogonal distance is displayed at each iter- 

ation. If the true curve was linear the expected orthogonal distance for any point would 

be m = 1. We will see in chapter 4 that for this situation, the true circle does not 
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Figure 3.7a The dashed curve ia the usual 

scatterplot smooth. D(S) = 3.35 

Figure 3.7~ D(](‘)) = 3.34 

Figure 3.7b The dashed curve is the 
principal component line. 0(3(O)) = 3.43 

Figure 3.7d D(i@)) = 3.03 
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Figure 3.7e D(f@)) = 2.64 

Figure 3.7g D(j@)) = 2.25 
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Figure 3.7b D(i@)) = 1.91 
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Figure 3.7i D(i(‘)) = 1.64 

Figure 3.7k D(i(“)) = 0.97. The span is 

automatically reduced at this stage. 

Figure 3.7j D(j@)) = 1.60 

Figure 3.71 D(jW) = 0.96 
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minimize the distance, but rather a circle with slightly larger radius. Then the minimizing 

distance is approximately us(l - 1/4p2) = .99. Our final distance is even lower. We still 

have to adjust for the overfit factor or number of parameters used up in the fitting proce- 

dure. This deflation factor is of the order n/(n - 4) where p is the number of parameters. 

In linear principal components we know q. In chapter 6 we suggest some rule of thumb 

approximations for q in this non-parametric setting. 

This example presents the principal curve procedure with a particularly tough job. 

The starting value is wholly inappropriate and the projection of the points onto this line 

does not nearly represent the final ordering of the points projected onto the solution curve. 

At each iteration the coordinate system for the i(j) is transferred from the previous curve 

to the current curve. Points initially project in a certain order on the starting vector, as 

depicted in figure 3.8a. The new curve is a function of i(O) measured along this vector 

as in figure 3.8b obtained by averaging the coordinates of points local in A(‘). The new 

i(l) values are found by projecting the points onto the new curve. It can be seen that the 

ordering of the projected points along the new curve can be very different to the ordering 

along the previous curve. This enables the successive curves to bend to shapes that could 

not be parametrized in the original principal component coordinate system. 

3.5.2. The half-sphere in three-space. 

Figure 3.9 shows 150 points generated from the surface of the half-sphere in 3-D. The 

simulated model in polar co-ordinates is 

(3.11) 

for X1 E [0,2r] and X2 E [0,x/2). The vector e of errors is simulated from a U(0, I) 

distribution, and the values of X1 and X2 are chosen so that the points are distributed 

uniformly in the surface. Figure 3.9a shows the data and the generating surface. The 

expected distance of the points from the generating half-sphere is to first order 1, which is 

the expected squared length of the residual when projecting a spherical standard gaussian 

3-vector onto a plane through the origin. Ideally we would display this example on a motion 

graphics workstation in order to see the 3 dimensions.* 

l This dissertation is accompanied by a motion graphics movie called Principal Curves and 
Surfcrccs. The kslf-spkere is one of 4 examples demonstrated in the movie. 
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(4 (b) 

Figure 3.8 The curve of the the iirst iteration is a function of i(O) 
measured along the starting vector (a). The curve of the the second 
iteration is a function of i(l) measured along the curve of the first 
iteration (b). 

3.6. Principal surfaces and principal components. 

In this section we draw some comparisons between the principal curve and surface models 

and their linear counterparts in addition to those already mentioned. 

3.0.1. A Variance decomposition. 

Usually linear principal components are approached via variance considerations. The first 

component is that linear combination of the variables with the largest variance. The second 

component is uncorrelated with the first and has largest variance subject to this constraint. 

Another way of saying this is that the total variance in the plane spanned by the first two 

components is larger than that in any other plane. By total variance we mean the sum of 

the variances of the data projected onto any orthonormal basis of the subspace defined by 

the plane. The following treatment is for one component, but the ideas easily generalize to 

two. 
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Figure 3.9a. The generating surface and 
the data. D(S) = 1.0 

Figure 3.9b. Th$ principal component 
plane. I@“)) = 1.59 

. . -..:*- . -..:*- . 

/ / 

Figure 3.9c. ~(j(l)) = 1.20 Figure 3.9d. D(](‘)) = 0.78 
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If x = (A,,... , A,)’ is the first principal component of X, a n x p data matrix, and 

o is the corresponding direction vector, then the following variance decomposition is easily 

derived: 

2 Vm(Zj) = VU(X) f E 112 - OXlIz 

j=l 

(3.12) 

where Var (e) and E(e) refer to sample variance and expectation. If the principal component 

was defined in the parent population then the result is still true and Var(-) and E(-) have 

their usual meaning. The second term on the right of (3.12) is the expected squared 

distance of a point to its projection onto the principal direction.* 

The total variance in the original p variables is decomposed into two components: the 

variance explained by the linear projection and the residual variance in the distances from 

the points to their projections. We would like to have a similar decomposition for principal 

curves and surfaces. 

Let w now be any random variable. Standard results on conditional expectation show 

that: 

If w = X,(z) 

k VW(Z~) = f: E(Zj - E(Zj 1~))~ +f: Var( E(zj 1~)). (3.13) 
j=l j=l j=l 

and f is a principal curve so that E(Zj IA,(Z)) = fj(Af(Z)), we have 

$ Vm(zj) = E 112 - f(~~(zIIll’ + 2 V~(fj(X,(z))). (3.14) 
j=l 

This gives us an analogous result to (3.12) in the distributional case. That is, the total 

variance in the p coordinates is decomposed into the variance explained by the true curve 

and the residual variance in the expected squared distance from a point to its true position 

on the curve. The sample version of (3.14) holds only approximately: 

2 Vm(Zj) W 2 IlZi - j($)ll' +k VU(jj(Ki)). 

j=l i=l j=l 

The reason for this is that most practical scatterplot smoothers are not projections, whereas 

conditional expectations are. 

We make the following observations: 

* We keep in mind that X is considered to be centered, or alternativly that E(r) = 0. The 
above results are still true if this is not the case, but the equations are messier. 
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l if fj(X) = +A, the linear principal component function, then 

2 vm(fj(xf(z))) = f:a: Vm(Xa(z)) 
j=l j=l 

= Var(X) 

since o has length 1. Here we have written X for the function X,(z) = o’z. 

l if the fj are approximately linear we can use the Delta method to obtain 

$ V~(fj(Xf(z))) FJ L(fi( E(Xf(z))12 vm(Xf(z)) 
j=l 

= VW- (Q(4) 

since we restrict our curves to be unit speed and thus we have have Ilf’ll = 1. 

3.6.2. The power method. 

We already mentioned that when the data is ellipsoidal the principal curve procedure yields 

linear principal components. We now show that if our smoother fits straight lines, then 

once again the principal curve procedure yields linear principal components irrespective of 

the starting line. 

Theorem 3.1 

If the smoother in the principal curve procedure produces least squares straight line fits, 

and if the initial functions describe a straight line, then the procedure converges to the first 

principal component. 

Proof 

Let o(O) be any starting vector which has unit length and is not orthogonal to the largest 

principal component of X, and assume X is centered. We find A,!‘) by projecting zi onto 

o(O) which we denote collectively by 

where A(‘) is a n vector with elements Xi , i = 1 (0) (1) , . . . , n. We find aj by regressing or 

projecting the vector Zj = (Zrj, . . . , Znj)’ onto X(O): 

a!‘) = 
A(O)‘2 j 

J ~w’xP) 
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or 

o(1) _ X(O)'X - 
Awxw 

X’Xo(O) 
= 0(O)‘X’X0(O) 

and o(l) is renormalized. It can now be seen that iteration of this procedure is equivalent 

to finding the largest eigenvector of X’X by the power method (Wilkinson 1965). 1 



Chapter 4 

Theory for principal curves and surfaces 

In this chapter we prove the results referred to in chapter 3. In most cases we deal only 

with the principal curve model, and suggest the analogues for the principal surface model. 

4.1. The projection index is measureable. 

Since the first thing we do is condition on Xl(X), t i might be prudent to check that it is 

indeed a random variable. To this end we need to show that the function Xf : IRP H lR’ 

is measureable. * 

Let f(X) be a unit speed parameterized continuous curve in pspace, defined for X E 

[X,,X1] = A. Let 

where 

D(z) = jn% {d(z, f(X))} Vz E JRp 

d(% f(4) = 112 - f ONI, 
the usual euclidean distance between two vectors. Now set 

M(z) = {A ; 42, f(N) = D(4). 

Since A is compact, M(z) is not empty. Since f, and hence d(z, f(X)) is continuous, MC(z) 

is open, and hence M(z) is closed. Finally, for each z in Rp we define the projection index: 

A# = supM(2) 

X,(z) is attained because M(z) is closed, and we have avoided ambiguities. 

Theorem 4.1 

X,(z) is a measureable function of z. 

* I am grateful to H. Kiinsch of ETH, Ziirich, for getting me started on this proof. 
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Proof 

In order to prove that Xf(z) is measureable we need to show that for any c E A, the set 

{z 1 At(z) 5 c} is a measureable set. 

Now z E {z IX,(z) 5 c} +=+ f or any X E (c, Xr] there exists a X’ E [&cl such 

that d(z, f(X)) > d(z, f(X’)). (i.e. if there was equality then by our convention we choose 

Xf(z) = X > c.) In symbols we have 

12 IA# 5 cl = n u b Id(z,f(4) > d(%f(X’))) 
XE(C,Xll A’E[AO,C] 

dd 
= A, 

The first step in the proof is to show that 

where Q is the set of rational numbers. Since for each X 

u (2 142, f(4) ’ d(z, fV’))l 2 u {z (d(z, f(X)) > d(z, f(Q)}, 
X’E[Xo,cl X$[hCl”Q 

it follows that B, E A,. We need to show that B, > A,. Suppose z E A, i.e. for any given 

X E (c,Xr] 3 X E [Xe,c] such that 

For any given such X and X’ we can find an c > 0 such that 

d(z, f(X)) = 42, f@‘)) + e 

Now since f is continuous and the rationals are dense in R’ we can find a Xi E Q such 

that Xb 5 X’ and d(f(X’), f($,)) < c . (If X’ E Q we need go no further). This implies that 

d(z, f(X)) > d(z, f(J!b)) by the Pythagorean property of euclidean distance. This in turn 

implies that z E B, and thus & C B,, and therefore A, = B,. 
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The second step is to show that 

Now clearly B, c D,. Suppose then that z E D,, i.e. for every X, E (c, XI] n Q, there 

is a Ai E [X,,c] n Q such that d(z,f(X,)) > d(z,f(Xb)). Once again by continuity off and 

because the rationals are dense in R’ we can find another A; E Q, A; > A, such that 

for all X E [A,, A;]. This means that 

for every A, E (c,Xr] nQ. In other words 

and we have that D, = Be. Finally, each of the sets in D, is a half space, and thus 

measureable, D, is a countable union and intersection of measurable sets, and is thus itself 

measurable. I 

4.2. The stationarity property of principal curves. 

We first prove a result for straight lines. This will lead into the result for curves. The 

straight line theorem says that a principal component line ia a critical point of the expected 

distance from the points to itself. The converse is also true. 

We first establish come more notation. Suppose f(X) : 6 H $ ia a unit speed con- 

tinuously differentiable parametrized curve in IRP, where A is an interval in IR’. Let g(X) 

be defined similarly, without the unit speed restriction. An z perturbed version of f is 

fC ‘kf f(X) + q(X). Suppose X has a continuous density in IRP which we denote by h, and 
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let D’(h,f,) be defined as before by 

D*(hfc) = E/s 11X - f&#))ll* 

where At=(X) parametrizes the point on fC closest to X. 

Definition 

The curve f is a critical point of the &tance function in the class 5 iff 

dD*h fc) 
de 

=o VgEQ. 
r=O 

(We have to show that this derivative exists.) 

Theorem 4.2 

Let f(X) = EX + Xuc with Ilt)oll = 1, and suppose we restrict g(X) to be line= as well. 

So g(X) = Aa, JJuJJ = 1 and 9 = t, the class of all unit speed straight lines. Then f is a 

critical point of the distance function in f.? iff uc is an eigenvector of C = COV(X). 

Note: 

l WLOG we assume that EX = 0. 

l Ilull = 1 is simply for convenience. 

Proof 

The closest point from z to any line Xw through the origin is found by projecting z onto 

ts and has parameter value 

Then 

Upon taking expected values we get 

We now apply the above to fC instead of tw, but first make a simplifying assumption. We 

can assume w.1.o.g that we = cl since the problem is invariant to rotations. 
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We split u into a component u, = ccl along cl and an orthogonal component v* . Thus 

u = cue + w* where e’Iv* = 0. So fC = A((1 + cc)q + co*). We now plug this into (4.1) to 

get 

D*(h, fL) = tr C - 
((1 + cc)el + cu’)‘ZC((l + cc)er + err’) 

(1 + cc)’ + c* 
= tr c _ (1 + ce)*erI;Cel + 2e(l+ ce)dICn* + c*tP’Du’ 

(1+ cq + c* 

Differentiating w.r.t. e and setting e = 0 we get 

(4.2) 

dD*(h, fe) 
de I = -2eiCv’. cc0 

If el is a principal component of C then this term is zero for all w’ and hence for all U. 

Alternatively, if this term, and hence the derivative, is zero for all u and hence all u*‘er = 0, 

we have 
tP’Ce1 = 0 V u*‘el = 0 

*Ccl = ccl 

=ker is an eigenvector of II 

I 

Note: 

Suppose u is in fact another eigenvector of C, with eigenvalue d, then 

D*(h, A) - D*(h, f) = &k: -d*) 

This shows that f might be a maximum, a minimum or a saddle point. 

Theorem 4.3 

Let 9 be the class of unit speed differentiable curves defined on A, a closed interval of the 

form [o, b]. The curve f is a principal curve of h iff f is a critical point of the distance 

function in the class 5. 

We make some observations before we prove theorem 4.3. Figure 4.lillustrates the situation. 

The curve f6 wiggles about f and approaches f as c approaches 0. In fact, we can see that 

the curvature of ft is close to that of f for small e. The curvature of fC is given by 

l/‘j*(X) = f:‘N . WI 
llf:w12 
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Figure (4.1) jc(A) depicted as a function of j(X). 

where N(X) is the normal vector to the curve at A. Thus l/rj<(X) 5 I\j:‘(X)ll / \lj:(X)ll* since 

the curve is not unit speed and so the acceleration vector is slightly off normal. Therefore 

we have rj<(X) 2 IIf’ + cg’(X)II* / /f”(A) + cg”ll which converges to rj(X) as c + 0. 

The theorem is stated only for curves f defined on compact sets. This is not such a 

restriction as it might seem at first glance. The notorious epace filling curves are excluded, 

but they are of little interest anyway. If the density h has infinite support, we have to boz it 

in lRr in order that f, defined on a compact set, can satisfy either statement of the theorem. 

(We show this later.) In practice thii is not a restriction. 

Proof of theorem 4.3. 

We use the dominated convergence theorem (Chung, 1974 pp 42) to show that we can 

interchange the orders of integration and differentiation in the expression 

-$D*(Ml = $ Eh 1(X - f~(~j~(X)l(l*. (4.3) 

We need to find a random variable Y which is integrable and dominates almost surely the 

absolute value of 

z, = 
IIX - mjp)ll)* - J/x - f(QWlJ2 

f 
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for all E > 0. Notice that by definition 

if this limit exists. Now 

z, 5 
I/x - feOj(X))I12 - 11x - fPj(X))l12 

c 

Expanding the first norm we get 

)1x - f&j(X))l12 = )1x - f(~j(X))1/*+f* /jr(xf(X))lj2 -2e (x - f(~j(W) Y7(~j(Xh 

and thus 

where Yr is some bounded random variable. 

Similarly we have 

& 2 
11x - f&jc(X))I12 - I/x - f(~j~W)jj2 

e 

We expand the first norm again, and get 

zc 2 -2 (x - m,<(x))) * gP j.(X)) + z ((go j<(x)ll~* 
1 yz 

where Y2 is once again some bounded random variable. These two bounds satisfy the con- 

ditions of the dominated convergence theorem, and so the interchange is justified. However, 

from the form of the two bounds, and because f and g are continuous functions, we see 

that the limit lirx~~c Z, exists whenever Arc(X) is continuous in c at e = 0. Moreover, this 

limit is given by 

= -2 (x - f(~j(XN) d~j(X)). 
We show in lemma 4.3.1 that this continuity condition is met almost surely. 
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We denote the distribution function of Aj(X) by hx, and get 

-$*@, f.11 = -2 EhA ( E (X IX j(X) = 4 - f(4) - id-% (4.4) 
r=O 

If f(A) is a principal curve of h, then E (X I At(X) = A) = f(X) for all X in the support 

of hA, and thus 

-$“(h,fe)~ = 0 V differentiable g. 
c=o 

Alternatively, suppose that 

for all differentiable g. In particular we COL rid pick g(X) = E(X IAt = A) -f(X). Then 

Ehr E(X - f(x) ( I A j(X) = 4 * P(4) = 0 (4.5) 

and consequently j is a principal curve. This choice of g, however, might not be differen- 

tiable, so some approximation is needed. 

Since (4.5) holds for all differentiable g we can use different g’s to knock ofl different 

pieces of E(X I At(X) = A) - f(X). I n ac we can do it one co-ordinate at a time. For f t 

example, suppose E(X1 IAj(X) = A) p t is osi ive for almost every X E (Xc,Xr). We suggest 

why such an interval will always exist. We will show that Xl(z) is continuous at almost 

every z. The set {X I At(X) = X E (X0, Xl)} is th e set of X which exist in an open connected 

set in the normal plane at A, and these normal planes vary smoothly as we move along the 

curve. Since the density of X1 is smooth, it does not change much as we move from one 

normal plane to the next, and thus its expectation does not change much either. We then 

pick a differentiable 91 so that it is also positive in that interval, and zero elsewhere, and 

set 92 E ..a E gP E 0. We apply the theorem and get E(X1 IXj(X) = A) = fl(X) for 

X E (Xe,Xr). We can do this for all such intervals, and for each co-ordinate, and thus the 

result is true. I 

Corollary 

If a principal curve is a straight line, then it is a principal component. 
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Proof 

If f is a principal curve, then theorem 4.3 is true for all g, in particular for g(X) = Xv. We 

then invoke theorem 4.2. I 

In order to complete the proof, we need to prove the following 

Lemma 4.3.1 

The projection function Xj,(z) is continuous at E = 0 for almost every z in the support of 

h. 

Proof 

Let us consider first where it will not be continuous. Suppose there are two points on f 

equidistant from z, and no other points on f are as close to z. Thus 3 X, > X1 , Xl(z) = X0 

and 112 - f(Ao)ll = ((2 - f(Xl)(l. It is easy to pick g in this situation such that At.(z) is not 

continuous at c = 0. We call such points ambiguous. However, we prove in lemma 4.3.2 

that the set of all ambiguity points for a finite length differentiable curve has measure zero. 

We thus exclude them. 

Suppose w > 0 is given, and there is no point on the curve as close to z as f(Xf(z)) = 

f(Xo). Thus 112 - ~(&)I[ < llz - f(Xr)ll V X1 E [a,b] n (Xo - w,Xu + w)‘. (Notice that at 

the boundaries the w interval can be suitably redefined.) Since this interval is compact, 

and the distance functions are differentiable, we can find a 6 > 0 such that 112 - f(Xo)ll 5 

llz - f(h)11 - 6. Let ~4 = supXE[o,b] IIg(A)ll and CO = 6/(2M). Then 112 - fL(Ao)II < 

112 - f@l)(( v Xl E [a$] n (X0 - (4x0 + wy and Ve 5 ~0. This implies that XjC(z) E 

(Xc - w, Xc + w), and the continuity is established. I 

Lemma 4.3.2 

The set of ambiguity points has probability measure zero. 

Proof 

We prove the lemma for a curve in a-space, but the proof generalizes to higher dimensions. 

Referring to figure 4.2, suppose o is an ambiguity point for the curve f at A. We draw the 

circle with center o and tangent to f at A. This means that f must be tangent to the circle 

somewhere else, say at t(Y). If ) on the normal at f(X) is also an ambiguity point, we can 

draw a similar circle for it. But this contradicts the fact that f(X) is the closest point. to o, 
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Figure 4.2 There are at most two ambiguity points on the normal 
to the curve; one on either side of the curve. 

since the circle for b lies entirely inside the circle for o, and by the ambiguity of b we know 

the curve must touch this inner circle somewhere other than at f(A). 

Let I(X) be an indicator function for the set of ambiguity points. Since there are at 

most two at each A, we have that E(I(X) I xi(X) = A) = 0. But this also implies that the 

unconditional expectation is zero. I 

Corollary 

The projection index At(z) is continuous at almost every z. 

Proof 

We show that if At(z) is not continuous at z, then z is an ambiguity point. But this set 

has measure zero by lemma 4.3.2. 

If Xj(z) is not continuous at z, there exists a ee > 0 such that for every 6 > 0 3 ZJ 

such that IIz - z~)l < S but l~j(z) - ~j(q)J > co. Letting 6 go to zero, we see that z must 
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Figure 4.3 The set of points to the right of j(a) that project there 
has measure rero. 

be equidistant to At(z) and at least one other point on the curve with pro&&ion index at 

least cc from X j(2). a 

Theorem 4.3 proves the equivalence of two statements: f is a principal curve and f 

is a critical value of the distance function. We needed to assume that f is defined on a 

compact set A. This means that the curve has two ends, and any data beyond the ends 

might well project at the endpoints. This leaves some doubt as to wether the endpoint can 

be the average of these points. The next lemma shows that for either statement of the 

theorem to be true, some truncation of the support of h might be necessary (if the support 

is unbounded). 

Lemma 4.3.3 

If f is a principal curve, then (z - f(Aj(z))) . j’(Xj(z)) = 0 8.8. for z in the support of 

h. If- = 0 V differentiable g, then the same is true. By j’(a) we mean the 
r=O 

derivative from the right, and similarly from the left for f’(b). 

Proof 

If Xl(z) E (a,b) the proof is immediate. Suppose then that At(z) = o. Rotate the cp 

ordinates so that j’(o) = er. No points to the left of j(a) project there. Suppose f is a 
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principal curve. Thii then implies that the set of points that are to the right of f(a) and 

project at f(a) has conditional measure zero, else the conditional expectation would be to 

the right. Thus they also have unconditional measure zero. 

Alternatively, suppose that there is a set of z of positive measure to the right of f(a) 

that projects there. We can construct g such that g(a) = f’(a), and zero everywhere else. 

For such a choice of g it is clear that the derivative cannot be zero. However, this choice of 

g is not continuous. But we can construct a version of g that is differentiable and does the 

same job as g. We have then reached a contradiction to the claim that w =o v 

differentiable g. 
SC0 

a 

4.3. Some results on the subclass of smooth principal curves. 

We have defined a subset 7,(h) of principal curves. These are principal curves for which 

At(z) is a continuous function at each z in the support of h. In the previous section we 

showed that irAt is not continuous at z, then z is an ambiguity point. We now prove the 

converse: no points of continuity are ambiguity points. This will prove that the continuity 

constraint indeed avoids ambiguities in projection. 

In figure 4.4a the curve is smooth but it wraps around so that points close together 

might project to completely different parts of the curve. This reflects a global property of 

the curve and presents an ambiguity that is unsatisfactory in a summary of a distribution. 

Theorem 4.4 

If Xi(z) is continuous at z, then z is not an ambiguity point. 

Proof 

We prove by contradiction. Suppose we have an z, and X1 # Xz such that 

112 - f(W = 112 - f(X*)ll 

= d(z, f) 

It is easy to see that if X1 yields the closest point on the curve for Z, then Xl is the position 

that yields the minimum for all z,, = cqf(X1) + (1 - cq)~ for Q E (0,l). Similarly for X2. 

Now the idea is to let ~1 and az get arbitrarily small, and thus llz,, - z,,II geta small, but 

x j(“aJ - x j(4 = constant and this violates the continuity of At(.) a 

Figure 4.4b represents the other ambiguous situation, this time caused by a local 

property of the curve. We consider only points inside the curve. If such points can occur at 
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(4 (b) 

Figure 4.4 The continuity constraint avoids global ambiguities (a) 
and local ambiguities (b) in projection. 

the center of curvature, then there is no unique point of projection on the curve. By inside 

we mean that the inner product (z - f(Xf(z))) . (cr(Ar(z)) - j(Xt(z))) is non-negative, 

where cr(X) is the center of curvature of j at the point j(X). 

Theorem 4.5 

If Xi(z) is continuous at z, then z is not at the center of curvature of j at A. 

Proof 

The idea of the proof is illustrated in figure 4.4b. If a point at cr(X) projects at A, then it 

will project at many other points immediately around A, since locally j(A) behaves like the 

arc of a circle with center c,(X). This would contradict the continuity of XI. Furthermore, 

if a point at t beyond c,(X) projects at A, we would expect that points on either side of z 

would project to different harts of the curve, and this would also contradict the continuity 

OfXf. 
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We now make these ideas precise. Assume z projects at Xi(z) = &, where 

and 6 2 0. Thus z is on or beyond the center of curvature of j at Xo. Let q(X) dz 1) j(X) - zll. 

By hypothesis q(X) 2 q(X0) with equality holding iff X = As. (Otherwise there would be at 

least two points on the curve the same distance from z and this would violate the continuity 

of At). This implies that 

(1) qV0) = 0 

(2) q”(X0) > 0 for a strict minimum to be achieved. 

We evaluate these two conditions: 

q’(X0) = j’(A0) * (j&lo) - 4 

q”(X0) = f”(Xo) * (f(Ao) - z) + f’(Xo) - fV0) 
= - Ilf”(~O)II 6 
50 

which contradicts (2) above. 

4.4. Some results on bias. 

The principal curve procedure is inherently biased. There are two forms of bias that can 

occur concurrently. We identify them as model bias and estimation bias. 

Model bias occurs in the framework of a functional model, where the data is generated 

from a model of the form z = j(X) + e, and we wish to recover j(X). In general, starting 

at j(X), the principal curve procedure will not have j(X) as its solution curve, but rather 

a biased version thereof. This bias goes to zero with the ratio of the noise variance tothe 

radius of curvature. 

Estimation bias occurs because we use scatterplot smoothers to estimate conditional 

expectations. The hiss is introduced because we average over neighborhoods, and this 

usually has a flattening effect. 
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I 

Figure 4.5 The data is generated from the arc of a circle with 
radius p and with iid N(0,u2Z) errors. The location on the circle is 
selected uniformly. 

4.4.1. A simple model for investigating bias. 

The scenario we shall consider is the arc of a circle in P-space. This can be parametrized 

by a unit speed curve j(X) with constant curvature l/p, where p is the radius of the circle: 

m = P-0/P) 
( 1 p sin(Vp) ’ (4.6) 

for X E [-X,,Xf] E [-x.p,rp]. For th e remainder of this section we will denote intervals of 

the type [-Ae,Ae] by A@. 

The points z are generated as follows: First a X is selected uniformly from A!. Given 

this value of X we pick the point z from some smooth symmetric distribution with first two 

moments (j(X),a’I) where u has yet to be specified. Intuitively it seems that more mass 

gets put outside the circle than inside, and so the circle, or arc thereof, that gets closest 

to the data has radius larger than p. Consider the points that project onto a small arc of 

the circle (see figure 4.5). They lie in a segment which fans out from the origin. As we 

shrink this arc down to a point, the segment shrinks down to the normal to the curve at 

that point, but there is always more mass outside the circle than inside. So when we take 

conditional expectations, the mean lies outside the circle. 

One would hope that the principal curve procedure, operating in distribution space 



52 Section 4.4: Some result8 on bias 

and starting at the true curve, would converge to this minimizing distance circle in this 

idealized situation. It turns out that this is indeed the case. 

Figure 4.5 depicts the situation. We have in mind situations where the ratio u/p is 

small enough to guarantee that P(lel > p) = 0. This effectively keeps the points local; 

they will not project to a region on the circle too far from where they were generated. 

Theorem 4.6 

Let j(X), X E A/ be the arc of a circle as described above. The parameter X is distributed 

uniformly in the arc, and given X, z= j(X) + e where the components of e are iid with mean 

0 variance u2. We concentrate on a smaller arc A0 inside A,, and assume that the ratio 

a/p is small enough to guarantee that all the points that project into A# actually originated 

from somewhere within Af. 

Then f-8 E(+f(z)EAs)= o 0 
where 

re = r* sWl2) 
e/2 ’ 

X~fp = 612 and 

Finally r’ + p as o/p -+ 0. 

r’ = [iore 

= Ed-- 

(4.7) 

Lemma 4.6.1 

Suppose Xf = xp. (We have a full circle.) The radius of the circle, with the same center 

as f(X), that minimizes the expected squared distance to the points is* 

r*= E\/(p+e#+ei 

’ P. 

Also r* --* p aa u/p --) 0. 

* I thank Art Owen for suggesting this result. 
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Proof of lemma 4.6.1 

The situation is depicted in Figure 4.5. For a given point z the squared distance from a 

circle with radius r is the radial distance and is given by 

d2(z, r) = (11~11 - r)2. 

The expected drop in the squared distance using a circle with radius r instead of p is given 

by 
EAD’(z,r,p) = Ed2(z,p) - Ed2(z,r) 

= E(ll~ll - ~1~ - E(ll4l - r12 
We now condition on X = 0 and expand (4.8) to get 

(4.8) 

Differentiating w.r.t. r we see that a maximum is achieved for 

rr = P E d(l -t cl/p)’ + (en/p)2 

2 P E II+ edpI 

2 P I E(1 + edp)l (Jensen) 

=P 

with strict inequality iff Var(q/p) = u2/p2 = 0. Note that 

EAD’(z,r*,p) = (P - Edo2 (4.9) 

which is non-negative. 

When we condition on some other value of X, we can rotate the system around so that 

X = 0 since the distance is invariant to such rotations, and thus for each value of X the same 

r’ maximizes EAD2(z,r,p IX), and thus maximizes EAD’(z,r,p). I 

Note: We can write the expression for r* as 

r* = P E If----= (1+ cl) + ez (4.10) 
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where ei = ei/p, ei y (O,S), and 6 = u/p. Expanding the square root expression using the 

Taylor’s expansion we get 

r* FJ p + u2/(2p). (4.11) 

This yields an expected squared distance of 

Ed’(X,r*) EJ uz - u4/(4p2) 

which is smaller than the usual u2. This expression was also obtained by Efron (1984). 

Proof of theorem 4.6. 

We will show that in a segment of size 4 the expected distance from the points in the 

segment to their mean converges to the expected radial distance as 4 + 0. If we consider 

all such segments of size 4, the conditional expectations will lie on the circumference of 

a circle. By definition the conditional expectations miniie the squared distances to the 

points in their segments, and hence in the limit the radial distance in each segment. But 

so did r’, and the results follow. 

Suppose that 4 is chosen so that 2x14 is a positive integer. We divide the circle up 

into segments each with arc angle 4. Consider E (z 1 Xi(z) E A+), where A+ and X+ are 

defined above. 

Figure 48depicts the situation. The points are symmetrical about the zr-axis, so the 

expectation will be of the form (r,O)‘. By the rotational invariance of the problem, if we 

End these conditional expectations for each of the segments in the circle, we end up with a 

circle of points, spaced 4 degrees apart with radius r. 

We first show that as 4 + 0, r --) r*. In order to do this, let ua compare the distance 

of points from their mean vector r = (r, 0)’ in the segment, to their radial distance from the 

circle with radius r. If we let r(z) denote the radial projection of z onto the circle, we have 

Elk - E(z IXf(4 E 4)’ I+(4 E 41 = Elk- rj2 I$(4 EM 
2 E I(= - +)J2 1 At(z) E 41 

(4.12) 

Also, we have 

E[(z - r12 IQ(“) E 41 
= E b - r(4)’ I Xfb) E AA+ E [(r(z) - r12 I Xf(4 E 41 
- 2 E (IN - 4 12 - 44 co4tW) I Q(4 E 4) 

(4.13) 
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Figure 4.6 The conditional expectation of z, given At(z) E A+. 

where +(z) are the angles as depicted in figure 4.6. The second term on the right of (4.13) 

is smaller than (r4/2)2. We treat separately the case when z is inside the circle, and when 

z is outside. 

l When z is inside the circle, 4(z) is acute and hence cos(G(z)) > 0. Thus 

E lb - r)* I X j(z) E 41 

I E I@ - r(4)’ I X j(z) E Ad+ O(4) 

l When z is outside the circle, q(z) is obtuse and cos(+(z)) < 0. Since - cos($(z)) = 

sin($(z) - x/2) and from the figure 9(z) - n/2 5 +/4, we have that -cos($(z)) 5 

sin(+/4) = O(4). Now E [(]r(z) - rl . ]z - r(z)]) ] At(z) E A+] is bounded since the 

errors are assumed to have finite second moments. Thus (4.14) once again holds. 

So from (4.12) and (4.14) , as I$ + 0, the expected squared radial distance in the segment 

and the expected squared distance to the mean vector converge to the same limit. Suppose 

E (z (Xj(z) = 0) = r** 
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Since the conditional expectation r” minimizes the expected squared distance in the seg- 

ment, this tells us that a circle with radius r** minimizes the radial distance in the segment. 

Since, by rotational symmetry, this is true for each such segment, we have that r” minimizes 

E+ Wdl - 4” I+) = 4 = E(ll4l - 4”. 

This then implies that r** = r* by lemma 4.6.1 and thus 

;y E(z IXj(z) E A#) = E(z [Xl(z) = 0) 

= r* 

This is the conditional expectation of points that project to a an arc of size 0 or simply a 

point. In order to get the conditional expectation of points that project onto an arc of size 

0, we simply integrate over the arc: 

E(z IXj(z) E Ae) = Ex~(~)GQ E(x Ixj(“) = A) 

Suppose X corresponds to an angle z, then 

E(z Pj(4 = 4 = 
( 

r* cos(z) 
r*sin(z) 

Thus 

(4.15) 

Corollary 

The above results generalize exactly for the situation where data is generated from a sphere 

in IIt’. The sphere that gets closest to the data has radius 

and this is exactly the conditional expectation of 21 for points whose projection is at (p, 0,O)‘. 
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Corollary 

If the data is generated from the circumference of a circle as above, the principal curve 

procedure converges after one iteration if we start at the model. This is also true for the 

principal surface procedure if the data is generated from the surface of a sphere. 

Proof 

After one iteration, we have a circle with radius r’. All the points project at exactly the 

same position, and so the conditional expectations are the same. This is also true for the 

principal surface procedure on the sphere. I 

4.4.2. From the circle to the helix. 

The circle gives us insight into the behaviour of the principal curve procedure, since we 

can imagine any smooth curve as being made up of many arcs of circles. Equation (4.15) 

clearly separates and demonstrates the two forms of bias: 

. Model bias since r* 2 p. 

l Estimation bias since the coordinate functions are shrunk by a factor sin(B/2)/(6/2) 

when we average within arcs or spans of size 8. 

For a sufficiently large span, the estimation bias will dominate. Suppose that in the present 

setup, o = p/4. Then from (4.11) we have that r* = 1.031~. From (4.7) we see that 

a smoother with span corresponding to 0.27~ or 14% of the observations will cancel this 

effect. This is considered a small span for moderate sample sizes. Usually the estimation 

bias will tend to flatten out curvature. This is not always the case, as the circle example 

demonstrates. In this special setup, the center of curvature remains fixed and the result of 

flattening the co-ordinate functions is to reduce the radius of the circle. The central idea is 

still clear: model bias is in a direction away from the center of curvature, and estimation 

bias towards the center. 

We can consider a circle to be a flattened helix. We show that as we unflatten the helix, 

the effect of estimation bias changes from reducing the radius of curvature to increasing it. 

To fix ideas we consider again the circle in IR’. As we have observed the result of 

estimation and model bias is to reduce the expected radius from 1 to r (for a non-zero span 
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smoother such that r < 1). Thus we have 

10 = 
r cos(X) 

( ) rsin(X) ’ 

with Il&(X)II E r. The reparameterized curve is given by 

j= 
r cos(A/r) 

( ) r sin(X/r) ’ 

and by definition the radius of curvature is r < 1. Here the center of curvature remains the 

same, but this is not usually the case. 

A unit speed helix in lRs can be represented by 

cos(X/c) 

f(X) = sill(X/c) 

( 1 bX/c 

wherec2=l+b2. Itisessytocheckthatrj=1+b2, so even though the helix looks like a 

circle with radius 1 when we look down the center, it has a radius of curvature larger than 

1. This is because the osculating plane, or plane spanned by the normal vector and the 

velocity vector, makes an angle with the zr - zs plane. In the csse of a circle, the effect of 

the smoothing was to shrink the co-ordinates by a factor r. For a certain span smoother, 

the helix co-ordinates will become (r cos(X/c), r sin(X/c), bX/c)‘. Notice that straight lines 

are preserved by the smoother. Thus the new unit speed curve is given by 

r cos(X/c’) 

j(X) = rsin(X/c’) , 

i 1 bX/c’ 

where c* = r2 + b2. The radius of curvature is now (r2 + b2)/r. If we look at the difference 

in the radii we get 
r2 + b2 

‘? - rf = 
-1+b2 

= (1 L r)(b2 - r) 
r 

> 0 if b2 > r 

This satisfies our intuition. For small b the helix is almost like a circle and so we expect 

circular behaviour. When b gets large, the helix is stretched out and the smoothed version 

has a larger radius of curvature. 
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4.4.3. One more bias demonstration. 

We conclude this section with one further example. So far we have discussed bias in a rather 

oversimplified situation of constant curvature. 

3C’ I I ’ ‘-I 

2 . ‘..,.. *- 
l I . ..;.I.;&. :.y::., 
0 _ :/ ..:: 

-1 

1 . 
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-2 
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Figure 4.7 The thick curve is the the principal curve using conditional expectations at the 

model, and shows the model bias. The two dashed cuTyes show the compounded effect of model 

and estimation bias at spans of 39% and 40%. 

A sine wave in R2 does not have constant curvature. In parametric form we have 

j(X) = Xr ( 1 sin(Xr) ’ 

A simple calculation shows that the radius of curvature rj(X) is given by 

1 sin(Xa) 
qq = (1 + coss(xs))s/s ’ 

and achieves a minimum radius of 1 unit. The model for the data is X = f(X) + c where 

x - U[O, 21 and c - 1(&I/4) independent of X. Figure 4.7shows the true model (solid 

curve), and the points are a sample from the model, included to give an idea of the error 

structure. The thick curve is E(X ] xi(X) = X). H ere is a situation where the model 

bias results in a curve with more curvature, namely a minimum radius of 0.88 units. .This 
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curve was found by simulation, and is well approximated by 1/0.88sin(Xx). There are two 

dashed curves in the figure. They represent E (X ) X!(X) E Ad(X)), where A,(X) represents 

a symmetric interval of length eA about X (Boundary effects were eliminated by cyclically 

extending the range of X.) We see that at s = 30% the estimation bias approximately 

cancels out the model bias, whereas at s = 40% there is a residual estimation bias. 

4.5. Principal curves of elliptical distributions. 

We have seen that for elliptical distributions the principal components are principal curves. 

Are there any more principal curves ? We first of all consider the uniform disc with no holes. 

For this distribution we propose the following: 

Figure (4.8) The only principal curves in jr=(h) of a uniform disk 
are the principal components. 

Proposition 

The only principal curves in 7,(h) are straight lines through the center of the disk. 

An informal proof of this claim is ss follows: 

l Any principal curve must enter the disk once and leave it once. This must be true 

since if it were to remain inside it would have to circle around. But this would violate 

the continuity constraint imposed by z(h) since there would have to exist points at 
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the centers of curvature of the curve at some places. Furthermore, it cannot end inside 

the disk for re=ns similar to those used in lemma 4.3.3. 

l The curve enters and leaves the disk normal to the circumference. For symmetry 

reasons this must be true. As it enters the disk there must be equal mass on both 

sides. 

l The curve never bends (see figure 4.8). At the first point of curvature, the normal 

to the curve will be longer on one side than the other. The set of points that project 

at this spot will not be conditionally uniformly distributed along the normal. This 

is because the set is the limit of a sequence of segments with center at the center of 

curvature of the curve at the point in question. Also, all points in the segment will 

project onto the arc that generates the segment; if not the continuity constraint would 

be violated. So in addition to the normal being longer, it will have more mass on the 

long side as well. This contradicts the fact that the mean lies on the curve. 

Thus the only curves allowed are straight lines, and they will then have to pass through the 

center of the disk. 

Suppose now that we have a convex combination of two disks of different radii but the 

same centers. A similar argument can be used to show that once again the only principal 

curves are the lines through the center. This then generalizes to any mixture of uniform 

disks and hence to any spherically symmetric distribution of this form. 

We conjecture that for ellipsoidal distributions the only principal curves are the prin- 

cipal components. 



Chapter 5 

Algorithmic details 

In this chapter we describe in more detail the various constituents of the principal curve 

and surface algorithms. 

5.1. Estimation of curves and surfaces. 

We described a simple smooth or local averaging procedure in chapter 4. There it was 

convenient to describe the smoother as a method of averaging in p space, although it has 

been pointed out that we can do the smoothing co-ordinate wise. That simplifies the 

treatment here, since we only need to discuss smoothers in their more usual regression 

context. 

Usually a scatterplot smoother is regarded as an estimate of the conditional expectation 

E(Y IX), where Y and X are random variables. For our purposes X may be one or two 

dimensional. We will discuss one dimensional smoothers first, since they are easier to 

implement than two dimensional smoothers. 

5.1.1. One dimensional smoothers. 

The following subset of smoothers evolved naturally as estimates of conditional expectation, 

and are listed in order of complexity and computational cost. 

5.1.1.1 Moving average smoothers. 

The simplest and most natural estimate of E(Y IX) is the moving average smoother. 

Given a sample (vi, Zi), i = 1,. . . , n, with the zi in ascending order, we define 

SmOOa8(Y I%)= & C Yj (54 
ZjE[zi-k,zi+rl 

where k = [(ns - 1)/Z] and s E (O,l] is called the span of the smoother. An estimate of 

the conditional expectation at Zi is the average of the Yj for all those observations with z 

value equal to xi. Since we usually only have one such observation, we average the yj for 
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all those observations with z value close to zi. In the definition above, close is defined in 

the ordinal scale or in ranks. We can also use the interval scale or simply distance, but this 

is computationally more expensive. This moving average smoother suffers from a number 

of drawbacks. It does not produce very smooth fits and does not even reproduce straight 

lines unless the xi are equispaced. It also suffers from bias effects on the boundaries. 

5.1.1.2 Local linear smoothers. 

An improvement on the moving average smoother is the local linear smoother of Friedman 

and Stuetzle (1981). Here the smoother estimates the conditional expectation at xi by 

the fitted value from the least squares line fit of y on z using only those points for which 

xj E (xi-k, xi+t). This suffers less from boundary bias than the moving average and always 

reproduces straight lines exactly. The cost of computation for both of the above smoothers 

is O(n) operations. Of course we can think of fitting local polynomials as well, but in 

practice the gain in bias is small relative to the extra computational burden. 

5.1.1.3 Locally weighted linear smoothers. 

Cleveland (1979) suggested using the local linear smoother, but also suggested weighting 

the points in the neighborhood according to their distance in z from zi. This produces even 

smoother curves at the expense of an increased computation time of O(kn) operations. (In 

the local linear smoother, we can obtain the fitted value at xi+1 from that at xi by applying 

some simple updating algorithm to the latter. If local weighting is performed, we can no 

longer use updating formulae.) 

5.1.1.4 Kernel smoothers. 

The kernel smoother (Ganser and Muller, 1979) applies a weight function to every observa- 

tion in calculating the fit at xi. A variety of weight functions or kernels exist and a popular 

choice is the gaussian kernel centered at xi. They produce the smoothest functions and are 

computationally the most expensive. The cost is O(n*) operations, although in practice 

the kernels have a bounded domain and this brings the cost down to O(en) for some 8 that 

depends on the kernel and the data. 

In all but the kernel smoother, the span controls the smoothness of the estimated 

function. The larger the span, the smoother the function. In the case of the kernel smoother, 

there is a scale parameter that controls the spread of the kernel, and the larger the spread, 

the smoother the function. We will discuss the choice of spans in section 5.4. 
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For our particular application, it was found that the locally weighted linear smoother 

and the kernel smoother produced the most satisfactory results. However, when the sample 

size gets large, these smoothers become too expensive, and we have to sacrifice smoothness 

for computational speed. In this case we would use the faster local linear smoother. 

5.1.2. Two dimensional smoothers. 

There are substantial differences between one and two dimensional smoothers. When we 

find neighbors in two space, we immediately force some metric on the space in the way we 

define distance. In our algorithm we simply use the euclidean distance and assume the two 

variables are in the same scale. 

It is also computationally harder to find neighbors in two dimensions than in one. The 

k-d tree ( Friedman, Bently and Finkel, 1976) is an efficient algorithm and data structure for 

finding neighbors in k dimensions. The name arises from the data structure used to speed 

up the search time - a binary tree. The technique can be thought of as a multivariable 

version of the binary search routine. Friedman et al show that the computation required 

to build the tree is O(kn log n) and the expected search time for the m nearest neighbors 

of any point is O(log n). 

5.1.3. The local planar surface smoother. 

We wish to find Smooth (y 1 zc) where zc is a a-vector not necessarily present in the sample. 

The following algorithm is analogous to the local linear smoother: 

l Build the 2-d tree for the n pairs (zrr,z2i),-- a, (xl,,, 2~~). 

l Find the ns nearest neighbors of zo, and fit the least squares plane through their 

associated y values. 

l The smooth at 20 is defined to be the fitted value at ze. 

This algorithm does not allow updating as in the one-dimensional local linear smoother. 

The computation time for one fitted value is O(log n + ns). For this reason, we can include 

weights at no extra order in computation cost. We use gaussian weights with covariance 

h21 and centered at zo, and h is another parameter of the procedure. 

A simpler version of this smoother uses the (gaussian weighted) average of the y values 

for the ns neighbors. In the one dimensional case, we find that fitting local straight lines 

reduces the bias at the boundaries. In surface smoothing, the proportion of points on the 
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boundary increases dramatically as we go from one to two dimensions. This provides a 

strong motivation for fitting planes instead of simple averages. 

5.2. The projection step. 

The other step in the principal curve and surface procedures is to project each point onto 

the current surface or curve. In our notation we require i(jl(zJ for each i. We have already 

described the exact approach in chapter 3 for principal curves, which we repeat here for 

completeness. 

5.2.1. Projecting by exact enumeration. 

We project Zi into the line segment joining every adjacent pair of fitted values of the curve, 

and find the closest such projection. Into implies that when projecting we do not go beyond 

the two points in question. This procedure is exact but computationally expensive (O(n) 

operations per search.) Nonetheless, we have used this method on the smaller data sets 

(5 150 observations.) There is no analogue for the principal surface routine. 

5.2.2. Projections using the k-d tree. 

At each of the n values of 1 we have a fitted p vector. This is true for either the principal 

curve or surface procedure. We can build a pd tree, and for each xi, find its nearest 

neighbor amongst these fitted values. We then proceed differently for curves and surfaces. 

l For curves we project the point into the segments joining this nearest point and its 

left neighbor. We do the same for the right neighbor and pick the closest projection. 

l For surfaces we find the nearest fitted value as above. Suppose this is at j(j)(if-“). 

We then project xi onto the plane corresponding to this fitted value and get a new 

value A*. (This plane has already been calculated in the smoothing step and is stored.) 

We then evaluate i(jl(A’) and check if it is indeed closer. (This precautionary step 

is similar to projecting xi into the line segments in the case of curves.) If it is, we 

set A?) = A’, f&e we set i!j) = iv-“. * One could think of iterating this procedure, 

which is similar to a gradient search. Alternatively one could perform a Newton- 

Raphson search using derivative information contained in the least squares planes. 

These approaches are expensive, and in the many examples tested, made little or no 

difference to the estimate. 
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5.2.3. Resealing the X’s to arc-length. 

In the principal curve procedure, as a matter of practice, we always rescale the X’s to arc- 

length. The estimated X’s are then measured in the same units as the observations. Let fil 

denotes the resealed ~~)‘s, and suppose iy’ are sorted. We define @ recursively as follows: 

i 

-1’ ” ” ” ” ” ” ” 1 
-1 0 1 

Unscaled X 

Figure (5.1) A X plot for the circle example. Along the vertical axis 
we plot the final values for Ii, after resealing the 1% at every iteration 
in the principal curve procedure. Along the horisontal axis we have 
the final i’s using the principal curve procedure with no resealing. 

In general there is no analogue of resealing to arc-length for surfaces. Surface area is the 

corresponding quantity. We can adjust the parameters locally so that the area of a small 

region in parameter space has the same area as the region it defines on the surface. But 

this adjustment will be different in other regions of the surface having the same values for 

one of the parameters. The exceptions are surfaces with zero gaussian curvature. (These 

are surfaces that can be obtained by smoothly denting a hyperplane to form something like 

a corrugated sheet. One can imagine that such a resealing is then possible). 
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Figure (5.2) Each iteration approximately preserves the metric 
from the previous one. The starting curve is unit speed, and so the 
final curve ia approximately so, up to a constant. 

Even though it is not possible to do such a resealing for surfaces, it would be comforting 

to know that our parametrization remains reasonably consistent over the surface as we go 

through the iterations. 

Figure 5.1 demonstrates what happens if we use the principal curve procedure on the 

circle example, and do not rescale the parameter estimates at each iteration. The metric 

gets preserved, up to a scalar. Figure 5.2shows why this is so, The original metric gets 

transferred from one iteration to the next. As long as the curves do not change dramatically 

from one iteration to the next, there will not be much distortion. 

5.3. Span selection. 

We consider there to be two categories of spans corresponding to two distinct stages in the 

algorithm. 

5.3.1. Global procedural spans. 

The first guess for f is a straight line. In many of the interesting situations, the final 

curve will not be a function of the arc length of this initial curve. The final curve is 

reached by successively bending the original curve. We have found that if the initial spans 

of the smoother are too small, the curve will bend too fast, and may get lost! The most 
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successful strategy has been to initially use large spans, and then to decrease them slowly. 

In particular, we start with a span of 0.5n, and let the procedure converge. We then drop 

the span to 0.4n and converge again. Finally the same is done at 0.3n by which time the 

procedure has found the general shape of the curve. We then switch to mean square error 

(MSE) span selection mode. 

5.3.2. Mean squared error spans. 

The procedure has converged to a self consistent curve for the span last used. If we reduce 

the span, the average distance will decrease. This situation arises in regression as well. In 

regression, however, there is a remedy. We can use cross-validation (Stone 1977) to select 

the span. We briefly outline the idea. 

5.3.2.1 Cross-validation in regression. 

Suppose we have a sample of n independent pairs (yi,zi) from the model Y = f(X) + e. 

A nonparametric estimate of f(zo) is f,(ze) = S mooth,(y 1~). The expected squared 

prediction error is 

EPE = E(Y - i(X))’ (5.2) 

where the expectation is taken over everything random (i.e. the sample used to estimate 

f(a) and the future pairs (X,Y)). We use the residual sum of squares, 

RSS(8) = k(Yi - !a(%))‘, 
i=l 

as the natural estimate of EPE. This is however, a biassed estimate, as can be seen by 

letting the span s shrink down to 0. The smooth then estimates yi by itself, and RSS is 

zero. We call this bias due to ouerjitting since the bias is due to the influence yi has in 

forming its own prediction. This also shows us that we cannot use RSS to help us pick the 

span. We can, however, use the cross-validated residual sum of squares (CVRSS). This is 

defined as 

C?‘RSS(s) = g(y; - Smootht)(y 1 zi))‘, (5.3) 
i=l 

where Smooth !I” (y 1 zi) is the smooth calculated from the data with the pair (vi, Zi) re- 

moved, and then evaluated at Zi. It can be shown that this estimate is approximately 

unbiazsed for the true prediction error. In minimizing the prediction error, we also mini- 
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mize the integrated mean square error EMSE given by 

EMSE(e) = E(j,(X) - f(X))2 

since they differ by a constant. We can decompose this expression into a sum of a variance 

and bias terms, namely 

EMS%) = El v~(~.(x)l+ E[( E(h(X) IX) - f(XN2] 
= VAR(e) + BIAS2(s). 

A5 s gets smaller the variance gets larger (averaging over less points) but the hiss gets 

smaller (width of the neighborhoods gets smaller), and vice versa. Thus if we pick s to 

minimize CVRsS(5) we are trying to minimize the true prediction error or equivalently to 

find the span which optimally mixes bias and variance. 

Getting back to the curves, one thought is to cross-validate the orthogonal distance 

function. This, however, will not work because we would still tend to u5e span zero. (In 

general we have more chance of being close to the interpolating curve than any other curve). 

Instead, we crone-validate the co-ordinates separately. 

5.3.2.2 Cross-validation for principal curves. 

Suppose j is a principal curve of h, for which we have an estimate f based on a sample 

Z1,...,Zn. 

A natural requirement is to choose 8 to minimize EMSE(s) given by 

= k %( V&&,(x)) I$(“)) + EhA Ilf(+(x)) - j$t(X))j\2 (5.4) 
j=l 

which is once again a trade-off between bias and variance. Notice that were we to look at the 

closest distance between these curves, then the interpolating curve would be favored. As in 

the regression case, the quantity EPE(e) = Eh IIx - j8(xr(x))l12 estimates EMSE(s) + 

WI, where WI = E 11~ - f(~~(x))((‘. It is thus equivalent to choose 5 to minimize 

EMSE(s) or EPE(8). A5 in the regression case, the cross-validated estimate 

- Smoothpl(zj IXi))2 1 , (5.5) 
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where Xi = Ai( attempts to do this. Since we do not know &, we pick Xi = Aic.t,(ti) 

where I@) is the (non cross-validated) estimate of f. In practice, we evaluate CVRSS(s) 

for a few values of s and pick the one that gives the minimum. 

From the computing angle, if the smoother is linear one can easily find the cross- 

validated fits. In this case fi = Cy for some smoother matrix C, and the cross-validated fit 

o(i) is given by $(<l = &+ e (Wahba 1975). 

There are a number of issues connected with the algorithms that have not yet been 

mentioned, such as a robustness and outlier detection, what to display and how to do it, 

and bootstrap techniques. The next chapter consists of many examples, and we will deal 

with these issues as they arise. 



Chapter 6 

Examples 

This chapter contains six examples that demonstrate the procedures on real and simulated 

data. We also introduce some ideas such as bootstrapping, robustness, and outlier detection. 

Example 6.1. Gold assay pairs. 

This real data example illustrates: 

l A principal curve in 2-space, 

l non-linear errors in variables regression, 

l co-ordinate function plots, and 

l bootstrapping principal curves. 

A California based company collects computer chip waste in order to sell it for its content 

of gold and other precious metals. Before bidding for a particular cargo, the company takes 

a sample in order to estimate the gold content of the the whole lot. The sample is split in 

two. One sub-sample is assayed by an outside laboratory, the other by their own inhouse 

laboratory. (The names of the company and laboratory are withheld by request). The 

company wishes to eventually use only one of the assays. It is in their interest to know 

which laboratory produces on average lower gold content assays for a given sample. 

The data in figure 6.la consists of 250 pairs of gold assays. Each point is represented 

by 
zli 

2; = 
( 1 3% 

where zji = log(1 + assay yield for ith assay pair for lab j) and where j = 1 corresponds 

to the inhouse lab and j = 2 the outside lab. The log transformation tends to stabilize the 

variance and produce a more even scatter of points than in the untransformed data. (There 

were many more small assays (1 oz per ton) than larger ones (> 10 oz per ton)). 
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Inhouse Laboratory 

Figure &la Plot of the log assays for the 
inhouse and outside labs. The solid curve is the 
principal curve, the dashed curve the scatter- 
plot smooth. 

/ 
0 .,..‘,.,.‘,..,‘,,,,‘,.,,‘,,,, 0 1 2 3 4 6 6 

ii 

Figure 6.lb Estimated ‘coordinate func- 
tions. The dashed curve ia the outside lab, the 
solid curve the inhouse lab. 

A standard analysis might be a paired t-test for an overall difference in assays. This 

would not reflect local differences which can be of great importance since the higher the 

level of gold the more important the difference. 

The data was actually analyzed by smoothing the differences in log assays against the 

average of the two assays. This can be considered a form of symmetric smoothing and was 

suggested by Cleveland (1983). W e d iscuss the method further in chapter 7. 

The model presented here for the above data is 

(6.1) 

where ri is the unknown true gold content for sample i (or any monotone function thereof), 

fj(ri) is the expected assay result for lab j, and eji is measurement error. We wish to 

analyze the relationship between fr and fr for different true gold contents. 

This is a generalization of the errors in variables model or the structural model (if we 
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regard the r; themselves as unobservable random variables), or the functional model (if the 

ri are considered fixed). This model is traditionally expressed as a linear model: 

(1:;) = (rr:,?) + (1:) (6.2) 

where fz(ri) = zi and 

fl(G) = fl"fi-'(Zi) (assuming fz is monotone) 

=a+pZi 

It suffers, however, from the same drawback as the t-test in that only global inference is 

possible. 

We assume that the ej; are pairwise independent and that * 

Va(eli) = VFS(e*i) V i. 

The model is estimated using the principal curve estimate for the data and is repre- 

sented by the solid curve in figure 6.la. The dashed curve is the usual scatterplot smooth 

of zz against zi and is clearly misleading as a scatterplot summary. The curve lies above 

the 45” line in the interval 1.4 to 4 which represents an untransformed assay interval of 3 to 

15 oz/ton. In this interval the inhouse average assay is lower than that of the outside lab. 

The difference is reversed at lower levels, but this is of less practical importance since at 

these levels the cargo is less valuable. This is more clearly seen by examining the estimated 

coordinate function plots in figure 6.lb. 

A natural question arising at this point is wether the kink in the curve is real or not. 

If we had access to more data from the same population we could simply calculate the 

principal curves for each and see how often the kink is reproduced. We could then perhaps 

construct a 95% confidence tube for the true curve. 

In the absence of such repeated samples, we use the bootstrap (Efron 1981, 1982) to 

simulate them. We would like to, but cannot, generate samples of size n from F, the true 

distribution of z. Instead we generate samples of size n from @, the empirical or estimated 

distribution function, which puts mass l/n on each of the sample points xi. Each such 

sample, which samples the points Zi with replacement, is called a bootstrap sample. 

* In the linear model one usually requires that Var(eji) = con~tantj. This assumption can be 
relaxed here. 
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Inhouse Laboratory 

Figure 6.1~ 25 bootstrap curves. The data X is sampled 25 times 

with replacement, each time yieldiig a bootstrap sample X’. Each 

curve is the principal curve of such a sample. 

Figure 6.1~ shows the principal curves obtained for 25 such bootstrap samples. The 

45” line is included in the figure, and we see that none of the curves cross the line in the 

region of interest. This provides strong evidence that the kink is indeed real. 

When we compute a particular bootstrap curve, we use the principal curve of the 

original sample as a starting value. Usually one or two iterations are all that is required 

for the procedure to converge. Also, since each of the bootstrap points occurs at one of the 

sample sites, we know where they project onto this initial curve. 

It is tempting to extract from the procedure estimates of ii, the true gold level for 

sample i. However, ii need not be the true gold level at all. It may be any variable that 

orders the pairs f(ii) along the curve, and is probably some monotone function of the true 

gold level. It is clear that both labs could consistently produce biased estimates of the true 

gold level and there is thus no information at all in the data about the true level. 

Estimates of ri do provide us with a good summary variable for each of the pairs, if 
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that is required: 

since we obtain Pi by projecting the point Zi onto the curve. Finally we observe that the 

above analysis could be extended in a straightforward way to include 3 or more laboratories. 

It is hard to imagine how to tackle the problem using standard regression techniques. 

Example 6.2. The helii in three-space. 

This is a simulated example illustrating: 

l A principal curve in Bspace, 

l co-ordinate plots, and 

l cross-validation and span selection. 

We looked at the bias of the principal curve procedure in estimating the helix in chapter 4. 

We now demonstrate the procedure by generating data from that model. We have 

I(4 = 

where X - U[O, l] and e .., U(0, .31). This situation does not present the principal curve 

procedure with any real problems. The reason is that the starting vector passes down the 

middle of the helix and the data projects onto it in nearly the correct order. Table 6.lshows 

the steps in the iterations as the procedure converges at each of the procedural spans shown. 

At a span of s = .2 we use cross-validation to find the minimum mae epan. 

Figure 6.2~ shows the CVRSS curve used to select the span, which is 0.1 with a 

value of CVRSS of 0.1644. One more step is performed and the procedure is terminated. 

Figure 6.2d shows the estimated coordinate functions for this choice of span. We see 

that the estimate of the linear co-ordinate is rather wiggly. It is clear that a small span 

was required to estimate the sinusoidal coordinates, but a large span would sui5c.e for 

the linear co-ordinate. This suggests a different scheme for cross-validationAoosing the 

spans separately for each co-ordinate. The results are shown in figures 6.2e and 6.2f. As 

predicted, a larger span is chosen for the linear co-ordinate, and its estimate is no longer 

wiggly. This is the final model referred to in the table and represented in figure 6.2. 
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Figure 6.2a Data generated from a he- 
lix with independent errors on each coordinate. 
The dashed curve is the original helix, the solid 
curve is the principal curve estimate. 

Figure 6.2b Another view of the helix, the 
data and the principal curve. 

Table 6.1. The steps in the iterations. Initially the procedure 
goes through a regimen of procedural spans. Then the final span is 
found by crow-validation. 

Iteration # Span Da d.o.f. Comments 
I I I 1 

procedural spans 
I I t 

1.0 

0.4 0.740 4.2 
0.4 0.565 4.6 
0.4 0.550 4.7 
0.4 0.549 4.7 

1.110 1 2.0 1 principal component line 1 

initial span 

converged 

0.3 
0.3 
0.3 

0.376 

I 

5.1 

I 

reduce span 

0.361 5.4 0.360 5.4 converged 

0.2 
0.2 
0.2 

mse spans 

0.222 7.3 
0.217 6.9 
0.217 6.9 

0.07, 0.09, 0.35 0.162 9.7 
0.189 

reduce span 

crowvalidated I 
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0.05 0.1 0.15 0.2 

Span s Estimated h 

Figure 6.2~ The cross-validation curve Figure 6.2d The estimated co-ordinate 
shows CVRSS(s) as a function of the span s. functions for the helix, using the span found in 
One span is used for all 3 co-ordinates. figure 6.2~. 
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Figure 6.2e The cross-validation curve Figure 6.2f The estimated co-ordinate func- 
shows CVRSSi(a) as a function of the span s. 
A separate span is found for each co-ordinate. 

tions for the helix, using the spans found in fig- 
ure 6.2f. 
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The entry labelled d.o.f. in table 6.lis an abbreviation for degrees of freedom. In 

linear regression the number of parameters used in the fit is given by tr (H) where H is the 

projection or hat matrix. If the response variables w are iid with variance a’, then 

i=l i=l 
= o*tr (H’H) 

= o*tr (H) 

We can do the same calculation for a linear smoother matrix C, and in fact for the local 

straight lines smoother we even have tr (C’C) = tr (C). As the span decreases, the diagonal 

entries of C get larger, and thus the variance of the estimates increases, as we would expect. 

One can also approach this from the other side by looking at the residual sum of squares. 

In the absence of bias we have 

ERSS = E I[(1 - C)yl[* 

= Ey’(Z - C)‘(Z - C)y 

= tr [(I - C)‘(Z - C) Cov (y)] 
(6.3) 

= (fl - tr (C))a* 

if tr (C’C) = tr (C). * More motivation for regarding tr (C) ss the number of parameters or 

d.o.f. can be found in Cleveland (1979) and Tibshirani (1984). Some calculations similar to 

those in 3.5.1 show that the expected squared distance of X from the true f is D* w 2u*, or 

more precisely D* M 20’ -cr’/(4p*) where p is the radius of curvature, which in our example 

is 1 + l/r’. Thus D* = 0.18. The cross validated residual estimate c CVRSSj was found 

to be 0.189. The orthogonal distance from the final curve is D*(“) = 0.162. This is deflated 

due to overfitting. The average value of d.o.f for the final curve is (one for each co-ordinate) 

9.7, or a total of 29.1. Some simple heuristics show that the we should scale this value up by 

by 2n/(2n - d.o.f) = 300/(300 - 29.1) = 1.11. We then get 2n/(2n - d.o.f)D*(“) = 0.179 

which is back in the correct ballpark. 

It is more convenient to view the 3 dimensional examples on a color graphics system 

(such as the Chromatics system of the Orion group, Stanford University). This allows one 

to rotate the points in real time and thus see the 3rd dimension. 

* For our smoothers, each row of C is the row of a projection matrix, and hence c:ci = cii. 
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Example 6.3. Geological data. 

This real data example illustrates: 

l Data modelling in 3 dimensions, 

l non-linear factor analysis, and 

l outlier detection and robust fitting. 

The data in this example consists of measurements of the mineral content of 64 core samples, 

each taken at different depths (Chernoff, 1973). M easurements were made of 10 minerals 

in each sample. We simply label the minerals Xl, * *. , Xro, and analyze the first three. 

Mineral X, 

Figure 6.3a The principal curve for the mineral data. (Variable 
Xe is into the page). The spikes join the points to their projection 
on the curve. The 4 ontliers are joined to the curve with the broken 

lines. 

Figure 6.3a shows the data and the solution curve. (A final span of 0.35 was manually 

selected.) In 3-D the picture looks like a dragon with its tail pointing to the left and the 
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Figure 6.3b The values Xi(Zi) are plotted against the depth 
order of the core samples. 

long (outlier) spikes could be a mane. The linear principal component explains 55% of the 

variance, whereas this solution explains 82%. 

The spikes join the observations to their closest projections on the curve. This is a 

useful device for spotting outliers. A robust version of the principal curve procedure was 

used in this example. After the first iteration, points receive a weight which is inversly 

proportional to their distance from the curve. In the smoothing step, a weighted smooth 

is used, and if the weight is below a certain threshhold, it is set to 0. Four points were 

identified as outliers, and are labelled differently in figure 6.3~3 . We would really consider 

them model outliers, since in that region of the curve the model does not appear to fit very 

well. 

Figure 6.3b shows the relationship between the order of the points on the curve, and 

the depth order of the core samples. The curve appears to recover this variable for the most 

part. The area where it does not recover the order is where the curve appears to fit the 

data badly anyway. So here we have uncovered a hidden variable or factor that we are able 

to validate with the additional information we have about the ordering. The co-ordinate 
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Estimated h 

Figure 6.3~ The estimated co-ordinate functions or factor loading 

curves for the three minerals. 

plots would then represent the mean level of the particular mineral at different depths (see 

figure 6.3~ ). Usually one would have to use these coordinate plots to identify the factors, 

just as one uses the factor loadings in the linear case. 

Example 6.4. The uniform ball. 

This example illustrates: 

l A principal surface in 3 space, and 

l a connection to multidimensional scaling. 

The data is artificially constructed, with no noise, by generating points uniformly from the 

surface of a sphere. It is the same data used by Shepard and Carroll (1966) to demonstrate 

their parametric mapping algorithm. (see reference and chapter 7). We simply use it here 

to demonstrate the ability of the principal surface algorithm to produce surfaces that are 

not a function of the starting plane (in analogy to the circle example in chapter 3). 

There are 61 data points, as shown in figure 6.48. One point is placed at each 

intersection of 5 equally spaced parallels and 12 equally spaced meridians. The extra point 
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f 

Figure 6.4a The data points are placed 
in a uniform pattern on the surface of a sphere. 
The south pole is missing. 

*. . . 
**. . . :* 

Figure 6.4~ An intermediate stage in the 
iterations. 

Figure 6.4b The second iteration of the 
principal surface procedure finds a surface that 
is a function of the first iteration. 

Figure 6.4d The final surface produced by 
the principal surface routine. 
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Estimated X, 

Figure 6.4e Another view of the final prin- 
cipal surface. 

Figure 6.4f The X map is a two dimensional 
summary of the data. It resembles a stereo 
graphic map of the world. 

is placed at the north pole. (If we placed a point at the south pole the principal surface 

procedure would never move from the starting plane, which is in fact a principal surface.) 

Figures 6.4b to 6.4d show various stages in the iterative procedure, and figure 6.4e shows 

another view of the final surface. Figure 6.4f is a parameter map of the two dimensional A. 

It resembles a stereographic map of the earth. (A stereographic map is obtained by placing 

the earth, or a model thereof, on a piece of paper. Each point on the surface is mapped 

onto the paper by extrapolating the line segment joining the north pole to the point until 

it reaches the paper.) Points in the southern hemisphere are mapped on the inside of a 

circle, points in the northern hemisphere on the outside, and there is a discontinuity at the 

north pole. Points close together on this map are close together in the original space, but 

the converse is not necessarily true. This map provides a two dimensional summary of the 

original data. If we are presented with any new observations, we can easily locate them on 

the map by finding their closest position on the surface. 

Example 6.5. One dimensional color data. 

This almost real data example illustrates: 
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First principal axis 
-2OYJ.1 

Estimated h (wavelength) 

Figure 6.5a The 4 dimensional color data Figure 6.5b The estimated co-ordinate 
projected onto the iirst principal component plane. functions plotted against the arc length of the 
The principal curve, found in the original four- principal curve. This i will be monotone with 
space, is also projected onto this plane. the true wavelength. 

l A principal curves in 4space, and 

l a one dimensional MDS example. 

These data were used by Shepard and Carroll (1966) (who cite the original source as Boynton 

and Gordon (1965)) to illustrate a version of their parametric data representation techniques 

called proximity analysis. We give more details of this technique in chapter 7. 

Each of the 23 observations represents a spectral color at a specific wavelength. Each 

observation has 4 psychological variables associated with it. They are the relative frequen- 

cies with which 100 observers named the color blue, green, yellow and red. As can be seen in 

figure 6.5a, there is very little error in this data, and it is one dimensional by construction. 

Since the color changes slowly with wavelength, so should these relative frequencies, and 

they should thus fall on a one dimensional curve, as they do. The data, by construction lies 

in a 3 dimensional simplex since the four variables add up to 1. The pictures we show are 

projections of this simplex onto the 2-D subspace spanned by the first two linear principal 

components. Figure 6.5a shows the solution curve and figure 6.5b shows the recovered 

parameters and co-ordinate functions. This solution is in qualitative agreement with the 

data and with the solution produced by Shepard and Carroll. 
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Example 6.6. Lipoprotein data. 

This real data example illustrates: 

l A principal surface in 3 space with some interpretations, 

l a principal curve suggested by the surface, and 

l coordinate plots for surfaces. 

Williams and Krauss (1982) conducted a study to investigate the inter-relationships between 

the serum concentrations of lipoproteins at varying densities in sedentry men. We focus 

on a subset of the data, and consider the serum concentrations of LDL 3-4 (Low Density 

Lipoprotein with flotation rates between 513 - 4), LDL 7-8, and HDL 3 (High Density 

Lipoprotein) in the sample of 81 men. Figures 6.6a-d are different views of the principal 

surface found for the data. Quantitively this surface explains 97.4% of the variability in the 

data, and accounts for 89% of the residual variance unexplained by the principal component 

plane. Qualitatively, we see that the surface has interesting structure in only two of the 

co-ordinates, namely LDL 3-4 and LDL 7-8. We can infer from the the surface that the 

bow shaped relationship between these two variables does not change for varying levels of 

HDL 3. It exhibits an independent behaviour. We have included a co-ordinate plot (figure 

6.6e) of the estimated co-ordinate function for the variables LDL 7-8 which helps confirm 

this claim. The relationship between LDL 7-8 and (Ai, &) depends mainly on the level of 

1,. Similar information is conveyed by the other coordinate plots, or can be seen from the 

estimated surface directly. This suggests a model of the form 

As specified X2 is confounded with HDL 3, and is thus unidentifiable. We need to estimate 

the first two components of the model. This is a principal curve model, and figure 6.6f 

shows the estimated curve. It exhibits the same dependence between LDL 7-8 and LDL 3-4 

as did the surface. The curve explains 92.6% of the variance in the two variables, whereas 

the principal component line explains only 89%. 

Williams and Krauss performed a similar analysis looking at pairs of variables at a 

time. We discuss their techniques in chapter 7. Their results are qualitatively the same as 

ours for the LDL pair. 
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Figure 6.6a The principal surface for the 
serum concentrations LDL 7-8, LDL 3-4 and 
HDL 3 in a sample of 81 sedentary men. Vari- 
able HDL 3 is into the page. 
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Figure 6.6~ The principal surface as in 
figure 6.6a from a different viewpoint. Variable 
LDL 3-4 is into the page. 

Figure 6.6b The principal surface ae in 
figure 6.6a from a d&rent viewpoint. Variable 
LDL 7-8 is into the page. 

Figure 6.6d The principal surface as in 

figure 6.6, from a slightly oblique perspective. 
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Figure 6.6e The estimated cwordmate Figure 6.6f The principal curve for the 
function for LDL 7-8 versus i. 12 has little serum concentrations LDL 7-8 and LDL 3-4 in 
effect. a sample of 81 sedentry men. 



Chapter 7 

Discussion and conclusions 

In this chapter we discuss some of the existing techniques for symmetric smoothing, as well 

as the various generalizations of principal components and factor analysis. We compare 

these techniques with the methodology developed here. The chapter concludes with a 

summary of the uses of principal curves and surfaces. 

7.1. Alternative techniques. 

Other non-linear generalizations of principal components exist in the literature. They can 

be broadly classified according to two dichotomies. 

l We can estimate either the non-linear manifold or the non-linear constraint that defines 

the manifold. In linear principal components the approaches are equivalent. 

l The non-linearity can be achieved by transforming the space or by transforming the 

model. 

The principal curve and surface procedures model the non-linear manifold by transforming 

the model. 

7.1.1. Generalized linear principal components. 

This approach corresponds to modeling either the nonlinear constraint or the manifold by 

transforming the space. The idea here is to introduce some extra variables, where each new 

variable is some non-linear transformation of the existing co-ordinates. One then seeks a 

subspace of this non linear co-ordinate system that models the data well. The subspace 

is found by using the usual linear eigenvector solution in the new enlarged space. This 

technique was first suggested by Gnanadesikan & Wilk (1966,1968), and a good description 

can be found in Gnanadesikan (1977). They suggested using polynomial functions of the 

original p coordinates. The resulting linear combinations are then of the form ( for p = 2 

and quadratic polynomials) 

4 = aljzl + a2jz2 + WjZlZ2 + a4jZ: + asjzi (7.1) 
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and the oi will be eigenvectors of the appropriate covariance matrix. 

This model has appeal mainly as a dimension reducing tool. Typically the linear 

combiiation with the smallest variance is set to zero. This results in an implicit non-linear 

constraint equation as in (7.1) where we set X = 0. We then have a rank one reduction 

that tells us that the data lies close to a quadratic manifold in the original coordinates. 

The model has been genera&ed further to include more general transformations of 

the co-ordinates other than quadratic, but the idea is essentially the same es the above; a 

linear solution is found in a transformed space. Young, Takane & de beeuw (1978) and later 

Friedman (1983) suggested different forms of this generalization to include non-parametric 

transformations of the co-ordinates. The problem can be formulated as follows: Find o and 

S’(2) = (81(21),“’ , s,,(z,,)) such that 

E 118(Z) - 00’8(~)~~~ = min! (7.2) 

or alternatively such that 

Var [o’s(z)] = max! (7.3) 

where ESj(Zj) = 0, 0’0 = 1 and ES;(q) = 1. The idea is to transform the coordinates 

suitably and then find the linear principal components. If in (7.3) we replaced mar by min 

then we would be estimating the constraint in the transformed space. 

The estimation procedure alternates between finding the Sj(.) and finding the linear 

principal components in the transformed space. 

. For a fixed vector of functions s(e), we chose o to be the first principal component of 

the covariance matrix Es(z)r(z)‘. 

l For a known, (7.2) can be written in the form 

k E[Sl(c?Jl) - ~bljSj(Zj)]'-i- b?rlllS ill 82(‘),-*-,Sp(*), (7.4) 
j=2 

and bji are functions of o above. If 82,. . . , sP are known, equation (7.4) is minimized 

by 

j=P 

This is true for any Sj, and suggests an inner iterative loop. This inner loop is very 

similar to the ACE algorithm (Breiman and Friedman, 1982), except the normalization 
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is slightly different. Breiman and Friedman proved that the ACE algorithm converges 

under certain regularity conditions in the distributional case. 

The disadvantages of this technique are: 

l The space is transformed, and in order to understand the resultant fit, we usually 

would need to transform back to the original space. This can only be achieved if the 

transformations are restricted to monotone functions. In the transformed space the 

estimated manifold is given by 

h(a) (4 = m's(2). 

444 

Thus if the Sj(*) are monotone, we get untransformed estimates of the form 

where t = o’s(z). Equation (7.5) defines a parametrized curve. The curve is not 

completely general since the cc+ordinate functions are monotone. For the same reason, 

Gnanadesikan (1978) expressed the desirability of having procedures for estimating 

models of the type proposed in this dissertation. 

l We are estimating manifolds that are close to the data in the transformed co-ordinates. 

When the transformations are non-linear this can result in distortion of the error 

variances for individual variables. What we really require is a method for estimating 

manifolds that are close to the data in the original p co-ordinates. Of course, if the 

functions are linear, both approaches are identical. 

An advantage of the technique is that it can easily be generalized to take care of higher 

dimensional manifolds, although not in an entirely general fashion. This is achieved by 

replacing a with A where A is p x q . We then get a q dimensional hyperplane in the 

transformed space given by AAIr( H owever, we end up with a number of implicit 

constraint equations which are hard to deal with and interpret. Despite the problems 

associated with generalized principal components, it remains a useful tool for performing 

rank 1 dimensionality reductions. 
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7.1.2. Multi-dimensional scaling. 

This is a technique for finding a low dimensional representation of high dimensional data. 

The original proposal was for data that consists of (;) d issimilarities or distances between n 

objects. The idea is to find a m (m small, 1, 2 or 3) dimensional euclidean representation for 

the objects such that the inter-object distances are preserved as well as possible. The idea 

wss introduced by Torgerson (1958), and followed up by Shepard (lQ62), Kruskal (lQ64a 

,1964b), Shepard & Kruskal (1961) and Shepard C Carroll (1966). Gnanadesikan (1978) 

gives a concise description. 

The procedures have also been suggested for situations where we simply want a lower 

dimensional representation of high dimensional euclidean data. The lower dimensional 

representation attempts to reproduce the interpoint distances in the original space. We 

fit a principal curve to the color data in example 6.5; these data were originally analyzed 

by Shepard and Carroll (1966) using MDS techniques. Although there have been some 

intriguing examples of the technique in the literature, a number of problems exist. 

l The solution consists of a vector of m co-ordinates representing the location of points 

on the low dimensional manifold, but only for the n data points. What we don’t get, 

and often desire is a mapping of the whole space. We are unable, for example, to find 

the location of new points in the reduced space. 

l The procedures are computationally expensive and unfeasible for large n (nm > 300 

is considered large). They are usually expressed as non-linear optimization problems 

in nm parameters, and differ in the choice of criterion. 

The principal curve and surface procedures partially overcome both the problems listed 

above; they are unable to find structures as general as those that can be found by the MDS 

procedures due to the averaging nature of the scatterplot smoothers, but they do provide 

a mapping for the space. We have demonstrated their ability to model MDS type data in 

examples 6.4 and 6.5. They do not, however, provide a model for dissimilarities which was 

the original intention of multidimensional scaling. 

7.1.3. Proximity models. 

Shepard k Carroll (1966) suggested a functional model similar in form to the model we 

suggest. They required only to estimate the n vectors of m parameters for each point, and 

considered the data to be functions thereof. The parameters (nm altogether) are found 
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by direct search as in h4DS, with a different criterion to be minimized. Their procedure, 

however, was geared towards data without error, as in the ball data in example 6.4. This 

becomes evident when one examines the criterion they used, which measures the continuity 

of the data as a function of the parameters. When the data is not smooth, as is usually the 

case, we need to estimate functions that vary smoothly with the parameters, and are close 

to the data. 

7.1.4. Non-linear factor analysis. 

More recently, Etezadi-Amoli and McDonald (1983) approached the problem of non-linear 

factor analysis using polynomial functions. They use a model of the form 

X = f(X) + e 

where f is a polynomial in the unknown parameters or factors. Their procedure for esti- 

mating the unknown factors and coefficients is similar to ours in this restricted setting. * 

Their emphasis is on the factor analysis model, and once the appropriate polynomial terms 

have been found, the problem is treated as an enlarged factor analysis problem. They do 

not estimate the X’s as we do, using the geometry of the problem, but instead perform a 

search in nq parameter space, where q is the dimension of X and n is the number of obser- 

vations. Our emphasis is on providing one and two dimensional summaries of the data. In 

certain situations, these summaries can be used as estimates of the appropriate non-linear 

functional and factor models. 

7.1.5. Axis interchangeable smoothing. 

Cleveland (1983) describes a technique for symmetrically smoothing a scatterplot which he 

calls ati.9 interchangeable smoothing ( which we will refer to as AI smoothing). We briefly 

outline the idea: 

l standardize each coordinate by some (robust) measure of scale. 

l rotate the coordinate axes by 45’. (if the correlation is positive, else rotate through 

-457. 

l smooth the transformed y against the transformed z. 

* Their paper was published in the September, 1983 issue of Psychometrika, whereaz Hastie 
(1983) appeared iu July. 
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. rotate the axes back. 

l unstandardize. 

If the standardization uses regular standard deviations, then the rotation is simply a change 

of basis to the principal component basis. The resulting curve minimizes the distance from 

the points orthogonal to this principal component. It has intuitive appeal since the principal 

component is the line that is closest in distance to the points. We then allow the points 

to tug in the principal component line. It is simple and fast to compute the AI Smooth, 

and for many scatterplots it produces curves that are very similar to the principal curve 

solution. This is not surprising when we consider the following theorem: 

Theorem 7.1 

If the two variables in a scatterplot are standardized to have unit standard deviations, 

and if the smoother used is linear and reproduces straight lines exactly, then the axis 

interchangeable smooth is identical to the curve of the first iteration of the principal curve 

procedure. 

Proof 

Let the variables z and y be standardized as above. The AI Smooth transforms to two 

new variables 
=* _ (2 + u) 

g _ c.5, . 
(7.6) 

t/z 
Then the AI Smooth replaces (z’, v’) by (z’, Smooth(y* 12’)). But Smooth(z’ 12”) = 

2’ since the smoother reproduces straight lines exactly.* Thus the AI Smooth transforms 

p = ( Smooth (2’ ) z’) + Smooth (y’ ) 2’) 

4 

$= 
( Smooth (2’ ( 2’) - Smooth (y’ ( 2”)) 

\/z 
Since the smoother is linear, and in view of (7.6) , (7.7) becomes 

4 = Smooth (2 12’) 

0 = Smootb(y Iz‘)’ 

(7.7) 

* Any weighted local linear smoother has this property. Local averages, however, do not unless 
the predictors are evenly spaced. 
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This is exactly the curve found after the first iteration of the principal curve procedure, 

since i(O) = 2.. I 

Williams and Krauss (1982) extended the AI smooth by iterating the procedure. At 

the second step, the residuals are calculated locally by finding the tangent to the curve at 

each point and evaluating the residuals from these tangents. The new fit at that point is 

the smooth of these residuals against their projection onto the tangent. This procedure 

would probably get closer to the principal curve solution than the AI smooth (we have 

not implemented the Williams and Krauss smooth). Analytically one can see that the 

procedures differ from the second step on. 

This particular approach to symmetric smoothing (in terms of residuals ) suffers from 

several deficiencies : 

l the type of curves that can be found are not as general as those found by the principal 

curve procedure. 

l they are designed for scatterplots and do not generalize to curves in higher dimensions. 

l they lsck the interpretation of principal curves as a form of conditional expectation. 

7.2. Conclusions. 

In conclusion we summarize the role of principal curves and surfaces in statistics and data 

analysis. 

l They generalize the one and two dimensional summaries of multivariate data usually 

provided by the principal components. 

l When the principal curves and surface are linear, they are the principal component 

summaries. 

l Locally they are the critical points of the usual distance function for such summaries; 

this gives an indication that there are not too many of them. 

l They are defined in terms of conditional expectations which satisfies our mental image 

of a summary. 

l They provide the least squares estimate for generalized versions of factor analysis, 

functional models and the errors in variables regression models. The non-linear errors 
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in variables model has been used successfully a number of times in practical data 

analysis problems (notably calibration problems). 

l In some situations they are a useful alternative to MDS techniques, in that they provide 

a lower dimensional summary of the space as opposed to the data set. 

l In some situations they can be effective in identifying outliers in higher dimensional 

space. 

l They are a useful data exploratory tool. Motion graphics techniques have become 

popular for looking at 3 dimensional point clouds. Experience shows that it is often 

impossible to identify certain structures in the data by simply rotating the points. A 

summary such as that given by the principal curve and surfaces can identify structures 

that would otherwise be transparent, even if the data could be viewed in a real three 

dimensional model. 

Acknowledgements 

My great appreciation goes to my advisor Werner Stuetzle, who guided me through all 

stages of this project. I also thank Werner and Andreas Buja for suggesting the problem, 

and Andreas for many helpful discussions. Rob Tibshirani helped me a great deal, and some 

of the original ideas emerged whilst we were suntanning alongside a river in the Californian 

mountains. Brad Efron, as usual, provided many insightful comments. Thanks to Jerome 

Friedman for his ideas and constant support. In addition I thank Persi Diaconis and Iain 

Johnstone for their help and comments, and Roger Chaffee and Dave Parker for their 

computer assistence. Finally I thank the trustees of the Queen Victoria, the Sir Robert 

Kotze and the Sir Harry Crossley scholarships for their generous assistence. 



Bibliography 

Anderson, T.W. (1982), E&mating Linear Structural Relotionahips, Technical Report # 

389, Institute for Mathematical studies in the Social Sciences, Stanford University, 

California. 

Barnett, V. (Ed) (1981), Interpreting Multivariate Data, Wiley, Chichester. 

Becker, R.A. and Chambers, J.M. (1984), S: An Interactive Environment for Data Analysis 

and Graphice, Wadsworth, California. 

Boynton, R.M. and Gordon, J. (lQ65), Bezold-Brike Hue Shift Measured by Color-Naming 

Technique, J. Opt. Sot. Amer, 55 , 78-86. 

Breiman, L. and Friedman, J.H. (1982), Estimating Optimal fiansformatione for Multiple 

Regression and Correlation, Dept. of Statistics Tech. Rept, Orion 16, Stanford 

University. 

Chernoff, H. (1973), The use of Faces to Represent Points in k-dimensional Space Graphi- 

cally, Journal of the American Statistical Association, 68, #342, 361-368. 

Chung, K.L. (1974), A Course in Probability Theory, Academic Press, New York. 

Cleveland, W.S. (1979), Robust Locally Weighted Regresnion and Smoothing Scatterplots. 

Journal of the American Statistical Association, 74, 824836. 

Cleveland, W.S. (1983), The Many Facee of a Scatterplot, Submitted for publication. 

Craven, P. and Wahba, G. (1979), Smoothing Noisy Data with Spline Fun&one: Estimating 

the Correct Degree of Smoothing by the Method of Generalized Cross-validation, Numer. 

Math., 31, 377-403. 

do Carmo, M.P. (1976), Dafierential Geometry of Curves and Surfacea, Prentice HalI, New 

Jersy. 

Etezadi-Amoli, J. and McDonald, R.P. (1983), A S econd Generation Nonlinear Factor Anal- 

yeis, Paychometrika, 48, #3, 315-342. 

Efron, B. (1981), Non-parametric Standard Errors and Confidence Intervals, Canadian Jour- 

nal of Statistics, 9, 139172. 



Bibliography 91 

Efron, B. (1982), The Jacknife, the Bootstrap and other Reeampling Plane, SIAM-CBMS, 

38. 

Efron, B. (1984), Bootstrap Confidence Interval8 for Parametric Probleme, Technical Report 

#90, Division of Biostatistics, Stanford University. 

Friedman, J.H. (1983), Personal communication. 

Friedman, J.H, Bently, J.L. and Finkel, R.I. (1976), An Algorithm for Finding Best Matches 

in Logarithmic Ezpected Time. STAN-CS-75-482, Stanford University. 

Friedman, J.H. and Stuetzle, W. (1982), Smoothing of Scatterplot8, Dept. of Statistics 

Tech. Rept. Orion 3, Stanford University. 

Gamer, Th. and Muller, H.G. (1979), Kernel Estimation of Regreeeion finctione, in 

Smoothing Technique8 for Curve Eetimation, Proceedings, Heidelberg, Springer Ver- 

lag. 

Gnanadesikan, R. (1977), Methods for Statistical Data Analysie of Multivariate Obaerva- 

tions, Wiley, New York. 

Gnanadesikan, R. and Wilk, M.B. (1969), Data Analytic Methods in Multivariate StatMtical 

Analyeirr, in Multivariate Analysis II (P.R. Krishnaiah, ea.), Academic Press, New 

York. 

Golub, G.H. and Reins&, C. (1970), Singular Value Decomposition and Leaet Square8 So- 

lutione, Numer. Math. 14, 403-420 

Golub, G.H. and van Loan, C. (1979), Total Least Squaree, in Smoothing Technique8 for 

Curve Eetimation, Proceedings, Heidelberg, Springer Verlag. 

Greenacre, M. (19&4), Theory and Application8 of Correspondence Analycrie, Academic 

Press, London. 

Hastie, T.J. (1983), Principal Curve8, Dept. of Statistics Tech. Rept. Orion 24, Stanford 

University. 

Hastie, T.J. and Stuetzle, W. (1984), Principal Curves and Surfaces, (Motion Graphics 

Movie), Dept. of Statistics, Stanford University. 

Hotelling, H. (1933), Analye&? of a Complez of Statistical Variable8 into Principal Compo- 

nents, J. Educ. Psych., 24, 417-441, 498-520. 



98 Bibliography 

Kendall, M.G. and Stuart, A. (1961), The Advanced Theory of Statistice, Volume 2, Hafner, 

New York. 

Kruskal, J.B. (1964a), Multidimensional Scaling by Optimizing Goodneee of Fit to a Non- 

metric Hypothe8i8, Psychometrika, 29, #1, l-27. 

Kruskal, J.B. (1964b), Nonmetric Multidimemrional Scaling: a Numerical Method, Psy- 

chometrika, 29, #2, 115129. 

Lindley, D.V. (1947), Regreseion Line8 and the Linear Functional Relationship, Journal of 

the Royal Statistical Society, Supplement, 9, 219-244. 

Madansky, A. (1959), The Fitting of Straight Line8 when both Variables are Subject to Error, 

Journal of the American Statistical Society, 54, 173-205. 

Mosteller, F. and Tukey, J. (1977), Data Analysis and Eegresclion, Addison Wesley, Mas- 

sachusetts. 

Reinsch, C. (1967), Smoothing by Spline Functioncr, Numer. Math., 10, 177-183. 

Shepard, R.N. (1962), The Analyei8 of Prozimities: Multidimensional Scaling with an un- 

known Dietanee Function, Psychometrika, 27, 123-139, 214246. 

Shepard, R.N. and Carrol, J.D. (1966), P arametric Representation8 of Non- Linear Data 

Structureq in Multivariate Analysi8 (Krishnaiah, P.R.ed), Academic Press, NewYork. 

Shepard, R.N. and Kruskal, J.B. (1964), Non-metric Method8 for Scaling and for Factor 

Analysis, Amer. Psychologist, 19, 557-558. 

Spearman, C. (1904), Generol Intelligence, Objectively determined and Meaeure8, American 

Journal of Psychology, 15,201~293. 

Stone, M. (1977), An Asymptotic choice of Model by Crocre-validation and Akaike’8 Crite- 

rion, Roy. Stat. Sot. B, 7,44-47. 

Thorpe, J.A. (1978), Efementary Topics in Differential Geometry, Springer-Verlag, New 

York. Undergraduate Text in Mathematics. 

Tibshirani, R.J. (1984), Bootstrap Conjidence Intervals, Technical Report #91, Division of 

Biostatistics, Stanford University. 

Torgeson, W.S. (1958), Theory and Method8 of Scaling, Wiley, New York. 

Wilkinson, J.H. (1965), The Algebraic Eigenvalue Problem, Clarendon Press, Oxford. 



Bibliography 99 

Wahba, G. and Wold, S. (1975)’ A Completely Automatic lifench Curve: Fitting Spline 

Function8 by Croecr-validation, Comm. Statistics, 4, 1-7. 

Williams, P.T. and Krauss, R.M. (1982)’ Graphical Analysi8 of the Sectional Znterrelation- 

ship8 among Subfraction8 of Serum Lipoprotein8 in Middle Aged Men, unpublished 

manuscript, Stanford University. 

Young, F.W, Takane, Y, and de Leuuw, J. (1978)’ The Principal Components of Mized Mea- 

surement Level Multivariate Data: an Alternating Least Square8 Method with Optimal 

Scaling Feature8, Psychometrika, 43, no.2. 


