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Abstract

The k-inflation models can give rise to large non-Gaussianities of primordial density
perturbations because the field propagation speed is different from the speed of light.
For assisted k-inflation models in which multiple scalar fields join an effective single-
field attractor, we evaluate three observables: (i) the spectral index ns of curvature
perturbations, (ii) the tensor-to-scalar ratio r, and (iii) the non-Gaussianity parameter
fni. This will be useful to constrain such models from future high-precision observa-
tions of the temperature anisotropies in Cosmic Microwave Background (CMB).

1 Introduction

Inflation has been the backbone of the high-energy cosmology over the past 30 years. Originally it
was proposed to solve the horizon, flatness and monopole problems plagued in Big Bang cosmology [1].
Furthermore, inflation generally predicts almost scale-invariant adiabatic density perturbations [2]. This
prediction is consistent with the observations of the CMB temperature anisotropies measured by WMAP
[3]. One can distinguish between a host of inflationary models by comparing the theoretical prediction
of the spectral index ng of curvature perturbations and the tensor-to-scalar ratio r with observations.

In the next few years, the measurement of CMB temperature anisotropies by the Planck satellite
will provide more high-precision observational data. In particular the non-Gaussianity parameter f,; of
primordial density perturbations may be constrained by about one order of magnitude better than the
bounds constrained by WMAP. This will give additional important information to discriminate between
many inflation models.

The standard inflation driven by a canonical scalar field ¢ with a potential V' (¢) usually predicts small
non-Gaussianities with |f,;| < 1 for primordial perturbations [4, 5]. However the k-inflation models [(]
described by the Lagrangian density p(¢, X), where X = —(V¢)2/2 is the field kinetic energy, can give
rise to large non-Gaussianities [7, 8]. This is related with the fact that for the Lagrangian including a
non-linear kinetic term of X the propagation speed c¢; is different from 1 (in the unit where the speed of
light is ¢ = 1).

In the models motivated by particle physics such as superstring and supergravity theories, there are
many scalar fields that can be responsible for inflation (see e.g. [9]). In some cases, even if each field is
unable to lead to cosmic acceleration, the presence of many fields allows a possibility for the realization
of inflation through the so-called assisted inflation mechanism [10]. In Ref. [10] it was shown that many
canonical fields with exponential potentials V;(¢;) = c;e” % evolve to give dynamics matching a single
field with the effective slope Aeg = (21:1 1/)\3) _1/2. Since Aeg is smaller than \;, the presence of multiple
fields can lead to sufficient amount of inflation.

Ref. [11] showed that the Lagrangian density p = > ; X;g(Y;), where g(Y;) is an arbitrary function
in terms of ¥; = X,e* %, leads to assisted inflation as in the case of the canonical fields with exponential
potentials (see also Refs. [12, 13]). Moreover, since this assisted Lagrangian covers the k-inflation models
such as the dilatonic ghost condensate [12] and the DBI inflation [14], the primordial non-Gaussianities
can be large if ¢ < 1. We shall study the theoretical prediction of the three observables ng,r, fu; to
confront assisted k-inflation models with observations.
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2 K-inflation model

The single-field k-inflation models with non-standard kinetic terms are described by the action [(]

5= / a2/~ [M3R/2 + p(6, X)] | (1)

where g is a determinant of the metric g,,,,, My is a reduced Planck mass, R is a scalar curvature, p is a
general function in terms of the field ¢ and a kinetic term X = —¢*”0,,¢0,¢/2. The pressure p and the
energy density p of the scalar field are given, respectively, by

p=p(X,9), p=2Xpx—p, (2)

where p x = 0p/0X.
In the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background with a scale factor a(t) the
equations of motion are

BMAH? =p,  p+3H(p+p) =0, (3)
where H = a/a is the Hubble parameter. The field propagation is defined by

2 p.x _ D.x (4)
T px  px+2Xpxx’

C

If p has a non-linear term of X, then ¢, is different from 1. It is convenient to introduce “slow variation
parameters”, as

H é és
=—— = — = . )
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In Ref. [15] the primordial scalar power spectrum Pg was derived, as
H2
= —F—, 6
Ps 87T2M31 Cs € (6)

where the expression is evaluated at the time of horizon exit at csk = aH (k is a comoving wavenumber).

The spectral index ng is

1— dInPg
dlnk

=—2—n—s. (7)
csk=aH

Ng —

As long as ¢, |n], |s| are much smaller than 1, the scalar power spectrum is close to scale-invariant.
The tensor power spectrum Pr and its spectral index np are given by

2H2 dln PT
Pr=son TSk | ®)
From Egs. (7) and (8) the tensor-to-scalar ratio is
r = Pr/Ps = 16ecs = —8csnr . (9)

The primordial scalar non-Gaussianities can be evaluated by considering three-point correlation
(R(k1)R(ka)R(ks)) for the curvature perturbation R. In the equilateral case (|ki| = |ka| = |ks|)
the non-Gaussianity parameter f,; is given by [7, &]

Fatlequitateral = 0.28 (1 — 1/¢?) — 0.02(¢/ex) s + 1.53 € + 0.427, (10)

where ex = —(X/H?)(0H/dX). Note that our sign convention of f,; coincides with that in the WMAP
paper [3].
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3 Observational constraints on inflation models

Let us proceed to recent observational constraints on the three inflationary parameters ng, r, and f;.
From the WMAP 7 year data combined with the distance measurements from the baryon acoustic os-
cillations in the distribution of galaxies and the Hubble constant (Hj) measurement, the scalar spectral
index and the tensor-to-scalar ratio, in the case of no runnings of scalar and tensor perturbations, are
constrained to be [3]

ns = 0.963 + 0.012 (68% CL), r < 0.24 (95% CL). (11)
The bound on the non-Gaussianity parameter fy;|equi is
fnl|equil =26 + 140 (68% CL) . (12)

We can distinguish between many inflation models by comparing the theoretical prediction of these
parameters with observations.

4 Assisted k-inflation model

We consider the following Lagrangian density with n scalar fields
p=>Y_ Xig(¥i), (13)
i=1

where X; = —¢"0,0,0,¢,/2, g(Y;) is an arbitrary function in terms of ¥; = X,er® for each field, and
Ai’s are constants. The multiple fields evolve to give dynamics matching an effective single-field model

p=Xg(Y) with [11]
1 "1
seinb bR (14)
i=1 "1

Originally the Lagrangian density p = Xg(Y) with Y = Xe*? was derived for the existence of scaling
solutions [12, 13], but it was later found that the multi-field system described by (13) can lead to assisted
inflation with A smaller than A; [11].

Considering autonomous equations of the effective single-field system with p(X, ¢) = Xg(Y), one can

show that there is an inflation attractor characterized by the condition ¢/H = \/p x [11], i.e.
6 Y 2
g+2Yyg

where a prime represents a derivative with respect to Y. The stability of this solution requires that
A2 <2(g+Yg'). For given g(Y), it follows that Y is constant. The parameters ¢ and ¢2 are given by

3(g+Yy) e 9+Yyg
g+2Yg "’ * g+5Yg +2Y2g"

(16)

which are functions of Y only. Hence we have € = const. and ¢ = const. on the attractor, which gives
n =0 and s = 0. Therefore the three inflationary observables reduce to

ns=1-2¢, r=16€c,, failoqui =0.28 (1 —1/c?) + 1.53€. (17)

If ¢2 < 1, then the non-Gaussianity parameter f,; can be large (| f| > 1).
The standard slow-roll inflation model with an exponential potential V' (¢) = ce™*? corresponds to
the choice g(Y) =1 —¢/Y. In this case we obtain the following relations

6Y 3Y
€= .
Y +e¢ Y +e¢

=1, M= (18)
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The three inflationary observables can be written in terms of a single parameter A:
ns=1-—\2, r=8\2%, fnr = 0.765)2 . (19)

From the observational constraint (11) we require that A> < 1 and hence f,; < 1. On the other hand,
the assisted k-inflation models based on the dilatonic ghost condensate [12] and the DBI inflation [14]
can give rise to large f,; accessible to the upper bound given in (12). We will leave the detailed analysis
of such cases in a separate publication [16].

5 Conclusion

We have evaluated the three observables ng, r, and f,; for the assisted k-inflation model described by
the effective single-field Lagrangian density p(X,¢) = Xg(Y) with Y = Xe*®. Since Y is constant on
the assisted inflation attractor, the three observables can be expressed in terms of a single parameter: Y
or \. The field propagation speed c; is also a function of Y only and is different from 1 in general. The
non-Gaussianity parameter f,; can be large in k-inflation models, whereas f,; < 1 in standard slow-roll
inflation since ¢; = 1. It will be of interest to constrain the allowed parameter space of assisted k-inflation
models from the joint analysis of WMAP and other observations.
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