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Observational constraints on assisted k-inflation
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Abstract
The k-inflation models can give rise to large non-Gaussianities of primordial density
perturbations because the field propagation speed is different from the speed of light.
For assisted k-inflation models in which multiple scalar fields join an effective single-
field attractor, we evaluate three observables: (i) the spectral index ns of curvature
perturbations, (ii) the tensor-to-scalar ratio r, and (iii) the non-Gaussianity parameter
fnl. This will be useful to constrain such models from future high-precision observa-
tions of the temperature anisotropies in Cosmic Microwave Background (CMB).

1 Introduction

Inflation has been the backbone of the high-energy cosmology over the past 30 years. Originally it
was proposed to solve the horizon, flatness and monopole problems plagued in Big Bang cosmology [1].
Furthermore, inflation generally predicts almost scale-invariant adiabatic density perturbations [2]. This
prediction is consistent with the observations of the CMB temperature anisotropies measured by WMAP
[3]. One can distinguish between a host of inflationary models by comparing the theoretical prediction
of the spectral index ns of curvature perturbations and the tensor-to-scalar ratio r with observations.

In the next few years, the measurement of CMB temperature anisotropies by the Planck satellite
will provide more high-precision observational data. In particular the non-Gaussianity parameter fnl of
primordial density perturbations may be constrained by about one order of magnitude better than the
bounds constrained by WMAP. This will give additional important information to discriminate between
many inflation models.

The standard inflation driven by a canonical scalar field φ with a potential V (φ) usually predicts small
non-Gaussianities with |fnl| � 1 for primordial perturbations [4, 5]. However the k-inflation models [6]
described by the Lagrangian density p(φ, X), where X = −(∇φ)2/2 is the field kinetic energy, can give
rise to large non-Gaussianities [7, 8]. This is related with the fact that for the Lagrangian including a
non-linear kinetic term of X the propagation speed cs is different from 1 (in the unit where the speed of
light is c = 1).

In the models motivated by particle physics such as superstring and supergravity theories, there are
many scalar fields that can be responsible for inflation (see e.g. [9]). In some cases, even if each field is
unable to lead to cosmic acceleration, the presence of many fields allows a possibility for the realization
of inflation through the so-called assisted inflation mechanism [10]. In Ref. [10] it was shown that many
canonical fields with exponential potentials Vi(φi) = cie

−λiφi evolve to give dynamics matching a single
field with the effective slope λeff =

(∑
i=1 1/λ2

i

)−1/2. Since λeff is smaller than λi, the presence of multiple
fields can lead to sufficient amount of inflation.

Ref. [11] showed that the Lagrangian density p =
∑n

i=1 Xig(Yi), where g(Yi) is an arbitrary function
in terms of Yi = Xie

λiφi , leads to assisted inflation as in the case of the canonical fields with exponential
potentials (see also Refs. [12, 13]). Moreover, since this assisted Lagrangian covers the k-inflation models
such as the dilatonic ghost condensate [12] and the DBI inflation [14], the primordial non-Gaussianities
can be large if c2

s � 1. We shall study the theoretical prediction of the three observables ns, r, fnl to
confront assisted k-inflation models with observations.
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2 K-inflation model

The single-field k-inflation models with non-standard kinetic terms are described by the action [6]

S =
∫

d4x
√
−g

[
M2

plR/2 + p(φ, X)
]

, (1)

where g is a determinant of the metric gµν , Mpl is a reduced Planck mass, R is a scalar curvature, p is a
general function in terms of the field φ and a kinetic term X = −gµν∂µφ∂νφ/2. The pressure p and the
energy density ρ of the scalar field are given, respectively, by

p = p(X, φ) , ρ = 2Xp,X − p , (2)

where p,X ≡ ∂p/∂X.
In the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) background with a scale factor a(t) the

equations of motion are
3M2

plH
2 = ρ , ρ̇ + 3H(ρ + p) = 0 , (3)

where H ≡ ȧ/a is the Hubble parameter. The field propagation is defined by

c2
s ≡ p,X

ρ,X
=

p,X

p,X + 2Xp,XX
, (4)

If p has a non-linear term of X, then cs is different from 1. It is convenient to introduce “slow variation
parameters”, as

ε ≡ − Ḣ

H2
, η ≡ ε̇

Hε
, s ≡ ċs

Hcs
. (5)

In Ref. [15] the primordial scalar power spectrum PS was derived, as

PS =
H2

8π2M2
pl cs ε

, (6)

where the expression is evaluated at the time of horizon exit at csk = aH (k is a comoving wavenumber).
The spectral index ns is

ns − 1 =
d lnPS

d ln k

∣∣∣∣
csk=aH

= −2ε − η − s . (7)

As long as ε, |η|, |s| are much smaller than 1, the scalar power spectrum is close to scale-invariant.
The tensor power spectrum PT and its spectral index nT are given by

PT =
2H2

π2M2
pl

, nT =
d lnPT

d ln k

∣∣∣∣
csk=aH

= −2ε . (8)

From Eqs. (7) and (8) the tensor-to-scalar ratio is

r ≡ PT /PS = 16εcs = −8csnT . (9)

The primordial scalar non-Gaussianities can be evaluated by considering three-point correlation
〈R(k1)R(k2)R(k3)〉 for the curvature perturbation R. In the equilateral case (|k1| = |k2| = |k3|)
the non-Gaussianity parameter fnl is given by [7, 8]

fnl|equilateral = 0.28
(
1 − 1/c2

s

)
− 0.02(ε/εX) s + 1.53 ε + 0.42 η , (10)

where εX ≡ −(Ẋ/H2)(∂H/∂X). Note that our sign convention of fnl coincides with that in the WMAP
paper [3].
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3 Observational constraints on inflation models

Let us proceed to recent observational constraints on the three inflationary parameters ns, r, and fnl.
From the WMAP 7 year data combined with the distance measurements from the baryon acoustic os-
cillations in the distribution of galaxies and the Hubble constant (H0) measurement, the scalar spectral
index and the tensor-to-scalar ratio, in the case of no runnings of scalar and tensor perturbations, are
constrained to be [3]

ns = 0.963 ± 0.012 (68% CL) , r < 0.24 (95% CL) . (11)

The bound on the non-Gaussianity parameter fnl|equil is

fnl|equil = 26 ± 140 (68% CL) . (12)

We can distinguish between many inflation models by comparing the theoretical prediction of these
parameters with observations.

4 Assisted k-inflation model

We consider the following Lagrangian density with n scalar fields

p =
n∑

i=1

Xi g(Yi) , (13)

where Xi = −gµν∂µφi∂νφi/2, g(Yi) is an arbitrary function in terms of Yi ≡ Xie
λiφi for each field, and

λi’s are constants. The multiple fields evolve to give dynamics matching an effective single-field model
p = Xg(Y ) with [11]

1
λ2

=
n∑

i=1

1
λ2

i

. (14)

Originally the Lagrangian density p = Xg(Y ) with Y = Xeλφ was derived for the existence of scaling
solutions [12, 13], but it was later found that the multi-field system described by (13) can lead to assisted
inflation with λ smaller than λi [11].

Considering autonomous equations of the effective single-field system with p(X,φ) = Xg(Y ), one can
show that there is an inflation attractor characterized by the condition φ̇/H = λ/p,X [11], i.e.

λ2 =
6 (g + Y g′)2

g + 2Y g′
, (15)

where a prime represents a derivative with respect to Y . The stability of this solution requires that
λ2 < 2 (g + Y g′). For given g(Y ), it follows that Y is constant. The parameters ε and c2

s are given by

ε =
3 (g + Y g′)
g + 2 Y g′

, c2
s =

g + Y g′

g + 5Y g′ + 2Y 2g′′
, (16)

which are functions of Y only. Hence we have ε = const. and c2
s = const. on the attractor, which gives

η = 0 and s = 0. Therefore the three inflationary observables reduce to

ns = 1 − 2 ε , r = 16 ε cs , fnl|equil = 0.28
(
1 − 1/c2

s

)
+ 1.53 ε . (17)

If c2
s � 1, then the non-Gaussianity parameter fnl can be large (|fnl| � 1).
The standard slow-roll inflation model with an exponential potential V (φ) = ce−λφ corresponds to

the choice g(Y ) = 1 − c/Y . In this case we obtain the following relations

c2
s = 1 , λ2 =

6Y

Y + c
, ε =

3Y

Y + c
. (18)
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The three inflationary observables can be written in terms of a single parameter λ:

ns = 1 − λ2 , r = 8λ2 , fnl = 0.765λ2 . (19)

From the observational constraint (11) we require that λ2 � 1 and hence fnl � 1. On the other hand,
the assisted k-inflation models based on the dilatonic ghost condensate [12] and the DBI inflation [14]
can give rise to large fnl accessible to the upper bound given in (12). We will leave the detailed analysis
of such cases in a separate publication [16].

5 Conclusion

We have evaluated the three observables ns, r, and fnl for the assisted k-inflation model described by
the effective single-field Lagrangian density p(X, φ) = Xg(Y ) with Y = Xeλφ. Since Y is constant on
the assisted inflation attractor, the three observables can be expressed in terms of a single parameter: Y
or λ. The field propagation speed cs is also a function of Y only and is different from 1 in general. The
non-Gaussianity parameter fnl can be large in k-inflation models, whereas fnl � 1 in standard slow-roll
inflation since cs = 1. It will be of interest to constrain the allowed parameter space of assisted k-inflation
models from the joint analysis of WMAP and other observations.
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