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Abstract

The propagator K(xt | x"0) for a particle in a potential field is shown to be derivable from
a single classical path evolving under the field and which at time 0 starts from x° and
reaches x at time t. The wavefunction of a particle represented initially by a wavepacket
lving mainly on one side of a barrier is then propagated and supplies information about
the particle's probability and current densities on the other side. This approach to
tunnelling is seen to be performed via energetically crossover classical flights. Results
relating to the parabolic repeller and an eta potential are presencad.

1.  Introduction
In a recent paper [1] we have drawn certain comparisons between the customary WKB
treatment of the tunnelling phenomenon and the time dependent approach which we
adopt here. In this lecture we briefly review the essential points leading to the
construction of the quantal propagator from only a single particular classical path. We
further enrich the applications, presented here, by the case of an eta potential. In
addition we show, through an example, how the principle of superposition can be held
responsible for the tunnelling effect.

The discussion for the tunnelling problem will be based on the evolution in time of an
initial wavefunction taken to be a wavepacket in the form

. 1 |
O p)¥) = (2rio®)exp [ - 7 (x%6)*+ PoX] (1.1)

which by appropriate choice of Xo lies essentially on the LHS of a barrier which is
represented by a potential U(x). At the expectation value level, (1.1) represents a particle

at Xo with momentum p, . In order to restrict ourselves to tunnelling problems the
expected energy associated with (1.1) in. conjunction with U(x) has to be smaller than
the barrier's height. This is attained by an appropriate choice of the parameters X¢.Po.0-

The evolving wavefunction on the RHS of the barrier provides all essential information
about the tunnelling behaviour of our particle. In this frame we accommodate the notion
of transmission coefficient by considering the probability of finding the particle initially on
the LHS of the barrier, let it be A, and the probability that at time t the particle has
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migrated onto the other side of the barier, let it be B. The transmission coefficlent, T , is
then given as the ratio B/A. It is in general time dependent and may reach a fixed
value after a long time. With this understanting for the transmission coefficient we
procceed to see the tunnelling effect in the light of the superposition principle of
quantum mechanics. We consider a situation with a single barrier bounded by perfect
reflectrors at minus and plus infinities. The requirement of perfect reflectors enables use
of periodic eigenfunctions. It is clear that if the state of our system at a given moment is
an eigenfunction the probability of finding the particle in a specified region does not
change with time and so no tunnelling takes place. Consider, now, the case where the
particles initial state ,W(x,0), is a superposition of , say, two eigenfunctions 04,00 i.e.

Y(x,0)= C1P¢(x) + Co®y(x) (1.2)
As time proceeds the evolving wavefunction takes the form
W(xt)= Cy®4(x)exp(imqt)+ Co0p(x)exp(-iwgt) (1.3)
where W and W, equal correspondingly Eyh and Exf with E; E, being the associated
energy eigenvalues.

The transmission coefficient at time t pertaining to our situation is given by

(%] Xm
T(t) =J [ W - W(x,003dx / f IW(x,0)i%dx (1.4)
-0

*m

where Xn, is the point at which the potential barrier has its maximum.

The numerator in (1.4) represents the amount of probability B, that has migrated in
time t onto the RHS of the barrier. This quantity may be negative, as well, and in the
case of the state considered becomes

[-+] o0
B= 2{cos{[(wy-wp)]-1} Rec,cgj O, Dodx + 2sin[(01-0)] lmc1o;J 0,0, dx  (15)

Xm xm

It is the variation with time of the migration probability B that accounts for the tunneliing
effect. Note that in our considerations we have not made any assumptions as to the

magnitude of the energies EqE2. Both of these energies and, therefore, the expected

energy associated with the initial state W(x,0) can be smaller that the barrier's height, and
yet produce a nonzero value for T.

2. The propagator

The frame of the time dependent tunnelling is based on following the evolution of a
particle’s wavefunction that derives frem & given initial state. An effective way for
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obtaining the evolving wavefunction is by use of the associated propagator, which serves
as a linear transformation. In what follows we shall sketch how we can obtain the full
quantum propagator utilizihg a single particular classical path. Our considerations will
refer to one dimension, for simplicity, while generalization to many dimensions is
straightforward.

We begin with Van Vleck's expression for the semiclassical propagator [2] for a particle
whose potential energy is U(x). It has the form

D(xt | x'0) 12

Kc(xt | X'0)= [—ﬁh—_l exp [—f:—sc(xt | x'0)] {21

where Sc is the classical action, associated with the potential energy U(x), between the

space-time points (x',0) and (x,t) and
32
'0) = -——=8,(xt | x'0 (2.2)
D(xt 1 x'0) 6X8x3’°( x'0)
According to Dirac [3], D obeys a continuity equation.
Although (2.1) satisfies Schrodinger’s equation approximately, it does obey, according to
Pauli [4], the right initial condition required of the exact propagator, namely

Kixt I x’0)— 3d(xx") as t— 0 (2.3)

If we now write the full quantal propagator in the form
. i .
K(xt | X'0) = K,(xt | x 0)exp [ﬁ—Q(xt | X 0)] (2.4)

and employ Schriodinger's equation associated with U(x) we obtain the following
equation for the quantity Q which, at least for reasons of communication, we shall call
purely quantum action,

S ih 82 d 2 2
99,105 9Q _ 1,09 Fd'a 10DdQ 1 1 b, 1 9%
ot ' mox gx  2m gx’ 2m g2 D 8x 9x° 2m"2D gx’ 2D 2

(2.5)
Since K¢ satisfies the initial condition required of the propagator K (2.5) must be
solved for Q under the initial condition

Q@xtIxo) — 0 ast — 0 (2.6)
(2.5) can be solved by iteration. Utilizihg an expression for Q in the form
00
a=2 i"q, @.7)
n=2
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we are led to a hierarchy of equations all of which take the form

0Q, 1 985.90Q, . 2.8)
=T e FTa Fa(xt 1 x"0)

32
1 0D 2 1 —-—? known as well as the rest of the Fp's

. 1
with F2=2_m[(§5 _67) ) axz]

can be made known. Details of the solution can be found in [1] and attention is drawn

to a correction made to the term F2 as above. Here we shall point out certain results.
The solution of (2.8) with the appropriate boundary condition (2.6) can be obtained
through the propagator of the equation
9Q 1 9% 4a_ 2.9)
at m gx 9x
£ X, (1) = X (xt1x'0; 1) Is the classical path which our system follows form time

0 to t starting form x° and reaching x then, as has been shown in [1]. the required
propagator G(ET; xt | x'o) is given as
G = 8(8-Xq(1) (210)

which leads to the required solution of (2.8) as

t
Q, (xt I x'0) = J’dT Fo(Xe(T) T1 x70) 2.11)

o

From the above we infer that the quantal propagator can be obtained by use of a
single classical path, the path joining the end space-time points of the propagator.

3 Applications

We wish to deal with two cases; namely the parabolic repeller and a case of an eta
potential. The first instance, although a simple one, is exaclty soluble and furthermore
predicts, contrary to expectations from hitherto experience, a form of negative conductivity.
The latter being in the sense that whilst the particle in its classical motion is receding
from the potential barrier a tunnelling current may develop on the other side in the
opposite direction. The case of an eta potential has interest in that one can study to a
certain extent the ecsape through the barrier of a metastable potential for a particle
initially trapped in a potential valley.

The parabolic repeller

The parabolic repeller is represented by the potential energy

U(x)= - %_—m()x2 (3.1)
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We cite below the expressions for the probability and current densities associated with
(3.1}, while the reader is refered to [1] for the various steps leading to these expressions.
We have

2
pixY) = ————— exp [N 32)
Jen a Irg) 20° IC(t)
jx.h = 5 {Pt) + [1+(£)2}sinth Pe(xt | xp0)lp(x.t) (3.3)
mir ()l o

where X(t) and P{t) are the particie's classical position and momemtum respectively,

under the intitial conditions X(0)=Xo, P(0)= Po, and are given by

X(t)=x,coshQt + %sinhm 34)
P(t) = P, coshQt + mQxg sinhQt (3.5)
and
mQ
= - (36
P.(xt | x,0) SRt (x coshQt - x,) )

is Hamilton’s momentum under the end space-time conditions (X;,0) and (xt). A is a

characteristic length associated with the scattering processes induced by the potential
(3,1) and is given by

A=(hi2ma) "2 ®.7)

and finally I'(t) is given by

F(t) = cosh(t + i(%)zsinhnt (3.8)

Figure 1 depicts the appearance of negative conductivity, a situation obtained with pg

negative leading to a classical motion for the wavepacket away from the barrier whilst on

the other side the current initially follows the wavepacket's motion but after a while
reverses direction.

In figure 2 we have a situation in which particles enter one side of the barrier at
intervals in succession and generate a current on the other side; ballistic current
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Figure 1. Evolution of probability and current densities for a particle entering the field of
the parabolic repeller at x, = ~2A. The particle’s expected energy equals the corresponding
classical energy, in this case —7mQ*A%*/8. Curve (a) is probability density in units of
10° A ™! and (b) is current density in units of 1073Q). Although the particle classically moves
away from the barrier, after a while a tunnelling current in the opposite direction gets
established. The probability density goes down initially and then rises,
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Figure 2. Current density for ballistic tunnelling against a parabolic repeller. Entry of
particles at x,=—2A at regular intervals with zero speed. Observation at x=2A. The
expected energy for each particle equals its classical value which is —2mQ2A% Curve (a)
is entry rate of 1 particle/Q ™" and curve (b) is 2 particles/Q~". The current density (units
1) reaches a saturation value proportional to the entry rate.

Eta potential
The eta potential we consider here is made out of an oscillator well joint to a parabolic
repeller, both appropriately truncated, in the way expressed by the associated potential

energy
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;n"'x2 X < b2
Ug(x)={ (3.9)
m
i -’,gn(x-b)2 X > b/2
The point at which the two potentials are linked is b/2 and b is the point at which the

top of the parabolic repeller portion of the combined potential is located.

For the purpose of studying the tunnelling of a particle, initially trapped in the oscillator
valley, through the hump of the repelling portion we require the classical path starting
from x° and reaching x in time t with x located on the right of b. If X" is greater than
b/2 the situation is straightforward and here we shall restrict ourselves to the case when
X'< b/2. Denoting by t, the time at which the particle passes through the matching point

b/2 on its way from X, at time O, to x ,at time t, we have the required path, obtained by
Newton's equations, in the form

X4(T) Ottty
Xo(T)={ (3.10)
Xa(T) thsTst
where
b sinQr
- i : b 3.1
X4(1)=x"(cosQT -cotQt, sinQT)+ > Shat. (3.11)
b . sinhQ(1-tm) 3.12
Xo{t)=b - 5 [coshQ(T-t,)- cothQ(t-ty) sinhQ(T-tm)]+(x-b) m

It is clear from (3.11) and (3.12) that at t=t X,(t,,)=Xo(t,)=b/2. The matching time tn
is fixed by the continuity requirement that the left and right velocities be equal at the

point b/2, i.e.

d d
[d—TX1(T)]r-tm = —-?XZ(T)]Hm (8.13)

Equation (3.13) supplies by computation tp=t, (xt!1x o).

The corresponding classical action for the eta potential is obtained by use of the
action’s additivity property as
b

tm) + Sq(

b
2m 2

Scelxt 1 x'0) = Sp(xt | 5

tn | X' 0) (3.14)

To obtain S1 and S, is a simple matter and for lack of space their expressions are

omitted.
For obtaining the semiclassical propagator we need, in addition to the classical action

2
its derivative @S¢, /9dx 9x° .This involves the derivatives of ty, with respect to x and x’,
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which are explicitly obtained as functions of ty. The semiclassical propagator can now be

obtained utilizing (2.1) by inserting the appropriate classical action.

We have employed the above approximate propagator for obtaining the evolution of an
initially still wavepacket centred at the bottom of the occillator well valley. The particie’s
energy was chosen to fulfil the requirement for tunnelling and a numerical evaluation of
the evolution of the probability density has been carried out, and shown in figure 3.
Reliable results for the probability on the RHS of the barrier have been found for times
t<an/2Q. For t=n/2Q strange things are happening with the classical path; in fact ,
depending on the initial and final positions, for t very near m/2Q there may not be a
classical flight. Beyond the time t=r/2Q the situation regularises again.

2+
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Figure 3. Probability density times 10"at x=3b as a function of time. Initial
state: still wavepacket centred at well's bottom with energy 2/3 barrier s height.
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