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Abstract 
The propagator K(xt I x 'o) for a particle in a potential field is shown to be derivable from 

a single classical path evolving under the field and which at time 0 starts from x" and 

reaches x at time t. The wavefunction of a particle represented initially by a wavepacket 

lying mainly on one side of a barrier is then propagated and supplies information about 

the particle's probability and current densities on the other side. This approach to 

tunnelling is seen to be performed via energetically crossover classical flights. Results 

relating to the parabolic repeller and an eta potential are presencad. 

1. Introduction 

In a recent paper [1] we have drawn certain comparisons between the customary WKB 

treatment of the tunnelling phenomenon and the time dependent approach which we 

adopt here. In this lecture we briefly review the essential points leading to the 

construction of the quantal propagator from only a single particular classical path. We 

further enrich the applications, presented here, by the case of an eta potential. In 

addition we show, through an example, how the principle of superposition can be held 

responsible for the tunnelling effect. 

The discussion for the tunnelling problem will be based on the evolution in time of an 

initial wavefunction taken to be a wavepacket in the form 

(21~o2)1/4exp i 
O(Xo,Po)(x) = [ - (x-xo)2+ -~--PoX] (1.1) 

4o .2 

which by appropriate choice of Xo lies essentially on the LHS of a barrier which is 

represented by a potential U(x). At the expectation value level, (1.1) represents a particle 

at Xo with momentum Po • in order to restdct ourselves to tunnelling problems the 

expected energy associated with (1.1) in. conjunction with U(x) has to be smaller than 

the barrier's height. This is attained by an appropriate choice of the parameters xo,Po,a. 

The evolving wavefunction on the RHS of the barrier provides all essential information 

about the tunnelling behaviour of our particle. In this frame we accommodate the notion 

of transmission coefficient by considering the probability of finding the particle initially on 

the LH$ of the barrier, let it be A, and the probability that at time t the particle has 
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migrated onto the other side of the barrier, let it be B. The transmission coefficient, T , is 

then given as the ratio B/A. It is in general time dependent and may reach a fixed 

value after a long time. With this understanting for the transmission coefficient we 

procceed to see the tunnelling effect in the light of the superposition principle of 

quantum mechanics. We consider a situation with a single barrier bounded by perfect 

reflectrors at minus and plus infinities. The requirement of perfect reflectors enables use 

of periodic eigenfuncUons. It is clear that if the state of our system at a given moment is 

an eigenfunction the probability of finding the particle in a specified region does not 

change with time and so no tunnelling takes place. Consider, now, the case where the 

particle's initial state ,~(x,o), is a superposition of , say, two eigenfunctions (])1,(])2 i.e. 

LP(x,o)= Cl~)l(X) + C2(D2(x ) (1.2) 

As time proceeds the evolving wavefuncUon takes the form 

LP(x,t)= Cl~l(x)exp(-i001t)+ C2~2(x)exp(-i~2t ) (1.3) 

where o~ 1 and ~2equal correspondingly E1/h and E2Afi with E1,E 2 being the associated 

energy eigenvalues. 
The transmission coefficient at time t pertaining to our situation is given by f'° 

T(t) = iLP(x,t)l 2 _ i~(x,o)12]dx / i~(x,o)12dx (1.4) 
Xm -CO 

where Xm is the point at which the potential barrier has its maximum. 

The numerator in (1.4) represents the amount of probability B, that has migrated in 

time t onto the RHS of the barrier. This quantity may be negative, as well, and in the 

case of the state considered becomes 
Go oo 

R e C 1 C ; I  "1¢2dx + 2sin[(°°l-°)2)t] ~x ,mC,C  dx B= 2{cos[(¢Ol-O}2)t]-1 } (1.5) 

m m 

It is the variation with time of the migration probability B that accounts for the tunnelling 

effect. Note that in our considerations we have not made any assumptions as to the 

magnitude of the energies El,E2. Both of these energies and, therefore, the expected 

energy associated with the initial state ~(x,o) can be smaller that the barrier's height, and 

yet produce a nonzero value for T. 

2. The propagator 

The frame of the time dependent tunnelling is based on following the evolution of a 
particle's wavefuncUon that derives from a given initial state. An effective way for 
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obtaining the evolving wavefunction is by use of the associated propagator, which serves 

as a linear transformation. In what follows we shall sketch how we can obtain the full 
quantum propagator utilizing a single particular classical path. Our considerations will 

refer to one dimension, for simplicity, while generalization to many dimensions is 

straightforward. 

We begin with Van Vleck's expression for the semiclassical propagator [2] for a particle 

whose potential energy is U(x). It has the form 

Ko(xt I x'o)= D(x t  I x'o).i,2 t 2rdl~ J exp [ $o(xt I x'o)] (2.1) 

where So is the classical action, associated with the potential energy U(x), between the 

space-time points (x',o) and (x,t) and 

as 
D(xt I x'o) = -  a-~aSo(xt I x'o) (2.2) 

According to Dirao [3], D obeys a continuity equation. 

Although (2.1) satisfies Schro'dinger's equation approximately, it does obey, according to 

Pauli [4], the right initial condition required of the exact propagator, namely 

K ( x t l x ' o )  ) i5(x-x') as t----~ 0 (2.3) 

If we now write the full quantal propagator in the form 

K(x t l  x'o) = Ko(xt I x 'o )exp [~-Q(xt I x 'o) ]  

and employ Schrt~dinger's equation associated with 

(2.4) 

U(x) we obtain the following 

equation for the quantity Q which, at least for reasons of communication, we shall call 
purely quantum action, 

a Q + l a S o  o~Q 1 .aQ.2 i~ a=Q 1 ODaQ_ ~2 1 (3D,2 1 o~2D 
at ax ax =2~(~ - )  +2-~[a---~ D ~ - J *  ~"~[(~ "~~ " ~6 ax2] 

C2.5) 

Since K¢ satisfies the initial condition required of the propagator K (2.5) must be 

solved for Q under the initial condition 

Q (xt I x ' o )  ~ 0 as t ~ 0 (2.6) 

(2.5) can be solved by iteration. Utilizing an expression for Q in the form 
co 

Q =,~, ~ln Qn (2.7) 
n-2 
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we are led to a hierarchy of equations all of which take the form 

(3Qn 1 aS o (3 Qn 
a---E- + m a - ~ T x  - =  F.(xt I x" o) 

(2.8) 

1 2_~ a,D 2 10~2x2D ] with F 2 = ~ [ (  " ~ ' )  " 2"-D a known as well as the rest of the Fn'S 

can be made known. Details of the solution can be found in [1] and attention is drawn 

to a correction made to the term F2 as above. Here we shall point out certain results. 

The solution of (2.8) with the appropriate boundary condition (2.6) can be obtained 

through the propagator of the equation 

&Q + 1 (3 S° (3 Q= 0 (2.9) 
~t m (3x o~x 

If X c (1.) = X (xt I x 'o ;  1") is the classical path which our system follows form time 

0 to t starting form x" and reaching x then, as has been shown in [1],the required 

propagator G(~T; xt I x'o) is given as 

G = ~S(~;-Xo(T)) (2.10) 

which leads to the required solution of (2.8) as 

t 

Qn (xt I x 'o )  = f d~ Fn(Xc(T ) T I X'O) 
O 

(2.11) 

From the above we infer that the quantal propagator can be obtained by use of a 

single classical path, the path joining the end space-time points of the propagator. 

3 Applications 

We wish to deal with two cases; namely the parabolic repeller and a case of an eta 

potential. The first instance, although a simple one, is exaclty soluble and furthermore 

predicts, contrary to expectations from hitherto experience, a form of negative conductivity. 

The latter being in the sense that whilst the particle in its classical motion is receding 

from the potential barrier a tunnelling current may develop on the other side in the 

opposite direction. The case of an eta potential has interest in that one can study to a 

certain extent the ecsape through the barder of a metastable potential for a particle 

initially trapped in a potential valley. 

The parabolic repeller 

The parabolic repeller is represented by the potential energy 

1 2 U(x)= - ~-m~x (3.1) 
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We cite below the expressions for the probability and current densities associated with 

(3.1), while the reader is refered to [1] for the various steps leading to these expressions. 

We have 

1 exp (x-X(t)) 2 
p(x,t) = ~ o I['(t)l [ '2o 2 II-(t)l 2] (3.2) 

j(x,t) = 1 {P(t) * [l+(-~-)2}sinhDt '~' Pc(xt I XoO)}p(x,t ) (3.3) 
mll-(t)l 2 

where X(t) and P(t) are the particle's classical position and momemtum respectively, 

under the intitial conditions X(o)--Xo, P(o)= Po, and are given by 

X(t)=XoCOShOt + P°sinh£Jt (3.4) 
m 

P(t) = Po cosh="3t + mOxo sinhQt (3.5) 

and 

mO 
Pa(xt I XoO) = ~ (x coshQt - Xo) (3.6) 

is Hamilton's momentum under the end space-time conditions (xo,o) and (x,t). ~ is a 

charactedsUc length associated with the scattering processes induced by the potential 

(3,1) and is given by 

~.=(~/2mQ)l/2 (3.7) 

and finally r'(t) is given by 

I-(t) = cosh~t  + i(~-)2sinhf2t (3.8) 

Figure 1 depicts the appearance of negative conductivity, a situation obtained with Po 

negative leading to a classical motion for the wavepacket away from the barrier whilst on 

the other side the current initially follows the wavepacket 's motion but after a while 

reverses direction. 

In figure 2 we have a situation in which particles enter one side of the barrier at 

intervals in succession and generate a current on the other side; ballistic current 
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Figure I. Evolution of probability and current densities for a particle entering the field of 
the parabolic repeller at xo = -2A. The particle's expected energy equals the corresponding 
classical energy, in this case -Tmf~2A2/8. Curve (a) is probability density in units of 
103 X -t and (b) is current density in units of 10-~G. Although the particle classically moves 
away from the barrier, after a while a tunnelling current in the opposite direction gets 
established. The probability density goes down initially and then rises. 
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Figure 2. Current density for ballistic tunnelling against a parabolic repeller. Entry of 
panicles at x o=-2~, at regular intervals with zero speed. Observation at x = 2A. The 
expected energy for each particle equals its classical value which is -2rnll-'A 2. Curve (a) 
is entry rate of 1 particie/fl -t and curve (b) is 2 particles/ft -I. The current density (units 
G) reaches a saturation value proportional to the entry rate. 

Eta potential 

The eta potential we consider here is made out of an oscillator well joint to a parabolic 

repeller, both appropriately truncated, in the way expressed by the associated potential 

energy 
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m~2 2 
~--Ll X X ~< b/2 

Ue(X)= { (3.9) 

-~--k~m 2b2 . . ;Q(x .b )2  x >I b/2 

The point at which the two potentials are linked is b/2 and b is the point at which the 

top of the parabolic repeller portion of the combined potential is located. 

For the purpose of studying the tunnelling of a particle, initially trapped in the oscillator 

valley, through the hump of the repelling portion we require the classical path starting 

from x" and reaching x in time t with x located on the right of b. If x" is greater than 

b/2 the situation is straightforward and here we shall restrict ourselves to the case when 

x '<  b/2. Denoting by tm the time at which the particle passes through the matching point 

b/2 on its way from x °, at time 0, to x ,at time t, we have the required path, obtained by 

Newton's equations, in the form 

Xl('r) 0 ~< T ~< tm 

X~(T)={ (3.10) 

X2(T ) t m ..< T ~< t 

where 

b sinQ'r (3.11) 
Xl( 'r)=x" (cos£~'r -cotQtm sinQT)+ 2 sinQt m 

b X 2 ( T ) = b - ~ -  [cosh£~('r-tm)- coth£2(t-tm) sinhQ(T-tm)]+(x-b) sinh•(T-trn) 
sinhC2(t-trn) 

(3.12 

It is clear from (3.11) and (3.12) that at "r=trn Xl(tm)=X2(tm)=b/2. The matching time trn 

is fixed by the continuity requirement that the left and dght velocities be equal at the 

point b/2, i.e. 

d =[ddX2(T)]T=tm (3.13) [a~ x 1 (T)]T-tm 

Equation (3.13) supplies by computation tm=tm (xt l  x 'o). 

The corresponding classical action for the eta potential is obtained by use of the 

action's additivity property as 

b b 
Sce(Xt I x'o) = S2(xt I -~-tm) + Sl(~--t m I x ' o )  (3.14) 

To obtain S1 and S 2 is a simple matter and for lack of space their expressions are 

omitted. 

For obtaining the semiclassical propagator we need, in addition to the classical action 
= 

its dedvative a Sce / a x  0x" .This involves the dedvatives of tm with respect to x and x ' ,  
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which are explicitly obtained as functions of tm. The semiclassical propagator can now be 

obtained utilizing (2.1) by inserting the appropriate classical action. 

We have employed the above approximate propagator for obtaining the evolution of an 

initially still wavepacket centred at the bottom of the occillator well valley. The particle's 

energy was chosen to fulfill the requirement for tunnelling and a numerical evaluation of 

the evolution of the probability density has been carded out, and shown in figure 3. 

Reliable results for the probability on the RHS of the barrier have been found for times 

t<n/2Q. For t=W2Q strange things are happening with the classical path; in fact , 

depending on the initial and final positions, for t very near n/2Q there may not be a 

classical flight. Beyond the time t=nf2Q the situation regularises again. 

2- 

f~f 

3. 

Figure 3. Probability density times 103at x-3b as a function of time. Initial 
state: still wavepacket centred at well's bottom with energy 2/3 barrier's height. 
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