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Abstract: These lectures provide a basic introduction to the Standard Model (SM) of
particle physics. While there are several reasons to believe that the Standard Model is
just the low energy limit of a more fundamental theory, the SM has been successfully
tested at an impressive level of accuracy and provides at present our best fundamental
understanding of the phenomenology of particle physics. The perspective I will take
will not be historical, I will instead take advantage of our present understanding to
find the most direct logical motivations.
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1 Introduction
These lectures provide a basic introduction to the Standard Model (SM) of particle
physics. While there are several reasons to believe that the Standard Model is just the
low energy limit of a more fundamental theory, the SM has been successfully tested
at an impressive level of accuracy and provides at present our best fundamental
understanding of the phenomenology of particle physics. The perspective I will take
will not be historical, I will instead take advantage of our present understanding to
find the most direct logical motivations. As the level of the audience is quite diverse,
I will summarize (in a concise, qualitative, and pragmatic way) the main theoretical
preliminaries needed to make sense of what will follow. The hope is that a part
of these lectures could be useful even to undergraduate students, that people who
are already familiar with QFT and gauge theories can also benefit from them, and
people in between can have a first impact with the tools involved in a non qualitative
treatment. I will systematically use natural units, in which c = ~ = 1.

Figure 1: The SM particle content

Let us start with the very basic facts.
The main ingredients of the SM are shown
in Fig. 1. The particles involved are char-
acterized by their spin, their mass, and
the quantum numbers (charges) determin-
ing their interactions. The fermion content
(spin = 1/2) is organized in three families
with identical quantum numbers and differ-
ent masses. The heavier families are unsta-
ble and decay into the lightest one, which
makes up most of the ordinary matter (us).
The four fermions in each family are distin-
guished by their charges under strong and
electromagnetic interactions. Two of them
are quarks, which are charged under the
strong interactions, and two are leptons,

which are not. The two quarks have electromagnetic charges 2/3 (“up” quarks) and
-1/3 (“down” quarks) respectively, and the two leptons have charges -1 (charged, or
“down” leptons) and 0 (neutrinos, or “up” leptons), in units in which the electron
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charge is -1. The neutrinos are peculiar from two, probably theoretically related,
points of view: they are neutral under both the strong and the electromagnetic in-
teractions (they feel weak interactions, though) and they are at least six order of
magnitudes lighter than all the other SM fermions. The masses of the SM fermions
span a range going from the sub-eV neutrino masses to the 1.7 ·102 GeV top mass [1].
They exhibit quite a peculiar structure, with the masses of the different families be-
ing hierarchically separated. Each fermion is associated to two so-called chiralities.
Chirality is conserved for massless fermions, in which case the chirality coincides with
the helicity. That is why the two possible chiralities are called left-handed and right-
handed. From a theoretical point of view, chirality, by definition, distinguishes the
two irreducible representations of the Lorentz group that can be used to describe spin
1/2 fermions. Massive charged fermions are necessarily described by two components
of different chiralities combined in what is called a Dirac spinor. As for neutrinos,
only the left-handed chirality has been observed so far. This can be elegantly under-
stood in terms of the quantum numbers of a possible right-handed component, but
the argument goes beyond the scope of these lectures.

The SM interactions are associated to the exchange of four vector bosons (spin =
1). The photon mediates electromagnetic interactions, the gluon strong interactions,
the Z and W weak interactions. The photon and the gluons are massless, while the
Z and the W are massive, which is the reason why weak interactions are weak at
low energy (they are suppressed by powers of E/MZ,W , where E is the energy of
the process). Despite their weakness, they give rise to distinctive signatures because
they violate parity P , charge conjugation C, their combination CP , time-reversal
T , and family number, which all are symmetries of the electromagnetic and strong1

interactions. In particular, the decay of heavier into lighter families is due to weak
interactions.

The description outlined above holds at relatively low energy and has long been
known before the SM was invented. The SM description becomes necessary when
processes involving higher energies are considered. The transition from the low en-
ergy “effective” regime and the SM regime takes place around the electroweak scale
v ≈ 174 GeV. Above this scale, nature exhibits a higher degree of symmetry. The
electromagnetic and weak interactions become indistinguishable and are unified in
the “electroweak” interaction. The left-handed chirality components of up and down
fermions also become indistinguishable and are unified in electroweak doublets. The
electroweak scale is where such an “electroweak” symmetry breaks. Together with
the QCD and the Planck scale, it is one of the fundamental scales of nature known
at present. The mechanism through which the electroweak symmetry breaks is well
established, also experimentally, and is called spontaneous symmetry breaking. It is
through such a mechanism that the fermions and the massive gauge bosons acquire

1In the limit in which non-perturbative effects associated to the vacuum structure of QCD are
neglected.
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a mass proportional to the electroweak scale2. It is still not know, however, what is
the mechanism triggering the spontaneous breaking. The SM encodes the simplest
(both from the theoretical and phenomenological consistency point of view) option:
the Higgs mechanism [2]. Such a mechanism postulates the existence of a spin = 0
field, the Higgs field. Unlike all other fields, that require energy to be switched on,
the Higgs field is “on” even in the ground state, where it permeates space-time. It is
through their interactions with the Higgs field that the SM massive particles acquire
their masses, proportional to the coupling to the Higgs. The identification of the
mechanism responsible for the electroweak symmetry breaking and the stability of
the weak scale compared to the Planck scale are two central issues in today’s particle
physics and are two of the most important missions of the LHC.

In order to go beyond the qualitative picture presented so far, I need to introduce
some important theoretical tools, at least at a very basic level. The key tools are
gauge theories and their spontaneous breaking. In Section 2 I will introduce gauge
symmetries, which allow to define the SM gauge sector in Section 3. Spontaneous
breaking will be introduced in Section 4, which allows to introduce the SM Higgs
and Yukawa sectors in Section 5. In Section 6 we will discuss the phenomenological
implications of the SM and mention the open problems.

2 Gauge (and global) transformations

The SM is first of all a quantum field theory (QFT). In QFT, particles are associated
to fields φi(x), i = 1 . . . n depending on the space-time coordinates x = (x0, x1, x2, x3).
We consider only fields with spin s = 0, 1/2, 1 (no gravity), the only ones needed for
the SM, and the only ones for which we know how to write a theoretically consistent
QFT. Their dynamics is determined by an action S written in terms of a Lagrangian
density L(x) (which I will simply call “Lagrangian”) with dimension 4 in energy. The
SM Lagrangian is Lorentz-invariant and local, and it can be written as a sum of
monomials in the values of the fields and their derivatives (up to two) in a given
space-time point:

S =

∫
d4xL(x), L(x) =

∑
k

ckOk(x). (1)

In particular, the Lagrangian will contain: a term constant in the fields, which is not
physical as long as gravity is not taken into account; terms linear in the fields, which
can be reabsorbed by a shift redefinition of the fields φ(x) → φ(x) + c; terms bilinear
in the fields, the “free” Lagrangian Lfree, which account for the free propagation of
the fields and define their dimensions in energy (1 for the bosons and 3/2 for the
fermions); terms with at least three fields, the “interaction” Lagrangian Lint, which

2Except possibly the neutrinos, whose masses are likely to be quadratic in the electroweak scale.
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account for field interactions. In a perturbative regime, the amplitude of any physical
process can be expressed as an expansion in Lint represented (at a given order) by a
set of Feynman diagrams. The simplest example of interacting QFT involves a single
real, scalar field ϕ(x) with Lagrangian L = (∂φ)2/2 −m2φ2/2 − λφ4/4.

The dimension of the coefficients ck in eq. (1) is important, as it determines
the properties of the corresponding interaction. Terms with negative dimension,
c = 1/ΛD, D > 0, where Λ is an energy scale, decouple at sufficiently low energy E,
where their role is suppressed by (E/Λ)D. They are called “non-renormalizable”. Only
“renormalizable” terms with non-negative dimension of the coefficients are therefore
relevant at low enough energy. The presence of non-renormalizable terms becomes
important at high energy, where they end up making the theory incalculable. As
the amplitudes grow with (E/Λ)D, in fact, higher order in perturbative expansions
will eventually become as important as the lower orders: the theory becomes non
perturbative. This is signaled by the fact that the unitarity of the theory appears
to be violated at the perturbative level. Therefore, non-renormalizable terms can be
tolerated only in the context of an effective theory valid up to a certain energy scale
(“cutoff”) Λ. At the scale Λ, such terms should be accounted for by renormalizable
interactions, if the theory is to remain perturbative and calculable. Such theoretical
considerations played an important role in the development of the SM. The latter, as
we will see, was born from the need to express the non-renormalizable four-fermion
Fermi interaction accounting for weak interactions at low energy in terms of a renor-
malizable theory.

Let us now come to the role of symmetries. We will be dealing with SU(N) and
U(1) symmetry groups only. The generators t of the group parametrize infinitesimal
transformations u ≈ 1−iεt, form a Lee algebra, [t1, t2] = it3, [t1, [t2, t3]]+[t2, [t3, t1]]+
[t3, [t1, t2]] = 0, and in the case of SU(N) are Hermitian traceless matrices. A standard
choice of SU(N) generators is ta = σa/2, a = 1, 2, 3, for the case N = 2, where σa
are the Pauli matrices; tA = λA/2, A = 1 . . . 8, for the case N = 3, where λA are the
Gell-Mann matrices; ti, i = i . . . N2−1, with tr(titj) = δij/2, in the general case. The
structure constants fijk are defined by [ti, tj] = ifijktk and are antisymmetric.

In quantum mechanics a continuous symmetry group is represented by unitary
transformations on the states of the system that commute with the Hamiltonian.
The generators correspond to conserved quantities. In QFT, we consider symmetries
whose action on the states corresponds to a transformation of the fields φi(x) →
Uijφj(x) that is a symmetry of the Lagrangian. If U does not depend on the space-time
point x, we call the symmetry “global”, or “rigid”. The generators of the symmetry,
or, more precisely, their actions T on the quantum states, are given by Noether’s
theorem in terms of conserved currents,

T =

∫
dx j0, jµ =

∂L
∂(∂µφ)

δφ, ∂µj
µ = 0, (2)
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where δφ is the infinitesimal change of φ associated to the generator t. A global
symmetry is a true symmetry, meaning that it relates physically inequivalent states
(multiplets) with same mass and spin and their couplings. The classic example of
global symmetry in QFT is isospin, which acts on the doublet Q = (u, d)T made of
the up and down quark fields. In the limit mu = md = 0 and neglecting electro-
magnetic interactions, the SU(2) isospin transformation Q → UQ is a symmetry of
the QCD Lagrangian for u, d. The isospin currents are jµa = Qγµ(σa/2)Q (one for
each generator). The isospin symmetry relates masses and couplings of inequivalent
states. The experimental proof that isospin is indeed an (approximate) symmetry
comes from the fact that the light hadrons do organize themselves into isospin mul-
tiplets. For example, the proton and the neutron make up a isospin 1/2 doublet
with m ≈ 940 MeV, the pions an isospin 1 triplet with m ≈ 140 MeV. The effective
pion-nucleon couplings are also related by the isospin symmetry.

Gauge transformations are not symmetries in the sense in which global symmetries
are. Their action on the fields does depend on the space-time point and from the
physical point of view they do not relate inequivalent physical states. They relate on
the contrary equivalent field configurations, whose redundance should be taken into
account and factored out.

In order to have a feeling of how gauge symmetries come about, let us consider the
prototypical gauge theory, quantum electrodynamics (QED). The gauge symmetry is
first of all a property of the classical theory. We know that the physical degrees of
freedom of electrodynamics are the electromagnetic field Fµν and the current jµ, in
terms of which Maxwell equations are formulated. On the other hand, Fµν is not a
good dynamical variable, in particular it does not allow the Maxwell equations to be
obtained from a variational principle. On the other hand, it is possible to express Fµν
in terms of the vector potential Aµ as Fµν = ∂µAν − ∂νAµ. The equations of motion
can then be derived from the Lagrangian L = −1

4
FµνF

µν − jµAµ. On the other
hand, Aµ is not a physical variable, as two fields related by the gauge transformation
A(x)µ → Aµ(x)+ ∂µα(x) correspond to the same physical observable Fµν . Therefore,
the gauge transformation just defines the equivalence of configurations corresponding
to the same physical observable, it signals a redundancy in the degrees of freedom we
are using.

Let us now consider the quantum theory and consider the case in which the
electromagnetic current is associated to a single Dirac fermion ψ with charge Qe,
jµ = eQψγµψ, where e is the absolute value of the charge of the electron. The
Lagrangian will accordingly be given by

LQED = −1

4
FµνF

µν − jµAµ + ψ(iγµ∂µ −m)ψ, (3)

where the free Lagrangian of the Dirac spinor has also been added. We can now check
explicitly that: 1) the electromagnetic current jµ turns out to be the Noether cur-
rent associated to the U(1) global symmetry under which ψ(x) → e−ieQαψ(x), which
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therefore can be thought to account for the conservation of the electric charge; and
2) the U(1) symmetry turns out to be also related to gauge transformations. Let us
remember in fact that we want the Lagrangian to be invariant with respect to gauge
transformations of the vector field, or we would be able to distinguish equivalent con-
figurations. It turns out that the Lagrangian is invariant provided that ψ transforms
according to the local version of the global U(1) transformation above:

A(x)µ → Aµ(x) + ∂µα(x), ψ(x) → e−ieQα(x)ψ(x). (4)

Gauge invariance can therefore be considered as the principle underlying charge con-
servation. In order to verify the invariance of the Lagrangian, is is convenient to
define the “covariant” derivative

Dµ = ∂µ + ieQAµ, such that Dµ(e
−ieQα(x)ψ(x)) = e−ieQα(x)(Dµψ(x)). (5)

The QED Lagrangian can then be written as LQED = −1
4
FµνF

µν + ψ(iγµDµ −m)ψ.
One can go one step further and argue that not only gauge invariance is the

principle underlying charge conservation but that the QED Lagrangian itself follows
from the principle of gauge invariance. The point is that the Lagrangian in eq. (3)
can be obtained by forcing the spinor free Lagrangian ψ(iγµ∂µ − m)ψ, invariant
under global U(1) transformations ψ(x) → e−ieQαψ(x), to be invariant under local
U(1) transformations ψ(x) → e−ieQα(x)ψ(x). The argument goes as follows. In order
to make the derivative term invariant, one is forced to introduce a vector field Aµ
transforming as in eq. (4). A gauge invariant kinetic term for Aµ can then be built
in terms of the gauge invariant quantity Fµν . Gauge invariance also explains why the
photon is massless, as a mass term for Aµ would break gauge invariance.

There is also a second reason to believe that gauge invariance should be regarded
as a fundamental principle, related to the fact that the quantization of the photon
field is not straightforward. I will not enter the details of this argument, but will just
mention that promoting a vector field to a gauge field is the only known consistent
way to quantize it, and that its quantization requires adding a “gauge fixing” term,
for example −(∂µA

µ)2/(2ξ), to the Lagrangian in order to get rid of the redundant
degrees of freedom.

Given the impressive success of QED as a gauge theory (both in confronting the
experiment and in addressing the quantization of vector bosons), it is natural to
consider the generalization of the gauge principle to a generic (compact, Lie) group.
Particularly interesting is the case of non-Abelian groups, which leads to at least two
qualitative differences with the simple Abelian case of QED: the vector bosons acquire
self-interactions and the coupling (which in QFT depends on the energy scale of the
process in which it is measured) may get stronger at lower scales. Non-Abelian gauge
theories are therefore a candidate to describe strong interactions. Indeed, it turns out
that strong interactions can be described by a gauge theory based on a SU(3) gauge
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group acting on a “color” degree of freedom, quantum chromodynamics (QCD). QCD
will be addressed in the lectures by Michelangelo Mangano.

Let us then consider a general gauge theory. Having motivated the construc-
tion in some detail in the simple Abelian case, I will now just provide the result
of the generalized construction in the form of a recipe to construct a general renor-
malizable gauge theory of spin 0, 1/2, 1 fields in four space-time dimensions (up to
non-perturbative effects), without any further proof or motivation. The ingredients
that need to be specified are the following. 1) A compact gauge group G (which spec-
ifies the vector field content). 2) The scalar fields φi, i = 1 . . . ns and fermion fields
ψi, i = 1 . . . nf (collectively denoted in the following as Φ). 3) The transformations
(quantum numbers) of the latter under the action of the gauge group. 4) A renormal-
izable Lagrangian L0(Φ, ∂Φ) for the scalar and fermion fields and their derivatives
symmetric under the global (space-time independent) transformations of the fields
specified above. Before seeing how the Lagrangian is obtained in terms of the above
ingredients, let us elaborate on the specification of the fermion field content and quan-
tum numbers. The point is that the fermions are usually described in terms of Dirac
spinors ψi that, as we said in the introduction, combine two independent components
with left and right chirality respectively, ψiL = (1−γ5)ψi/2 and ψiR = (1+γ5)ψi/2 (in
a given convention for the gamma matrices), each being an irreducible representation
of the Lorentz group. Now, the only requirement on the action of the gauge group
on fermions is that it commutes with the Lorentz group. As a consequence, its most
general action is not bound to transform ψiL and ψiR in the same way: they could
have different quantum numbers. This is not the case in QED and QCD, or in any
parity conserving theory of charged particles, but turns out to be the case for the
SM. A theory like the SM, where the left and right chirality components of fermions
transform under inequivalent representations of the gauge group is called “chiral”. A
chiral theory violates parity. Actually, something even more general could happen.
Since the left and right chirality representations of the Lorentz group are conjugated
to each other, ψ∗

iR is left handed, as ψiL. Therefore, the most general action of the
gauge group on the fermions could mix the ψiL and ψ∗

iR fields. This is not the case
in the SM, but does happen in grand-unified theories. In summary, the fermion field
content should be specified in terms of the left-handed fermions, by specifying the
quantum numbers of both ψiL and ψ∗

iR(or equivalently ψiL and ψiR).

Let us now construct the Lagrangian associated to the above ingredients by the
gauge principle. The recipe is the following. Choose a basis of generators ta for the
group G as above and associate a real vector field Aaµ and a field strength F a

µν =
∂µA

a
ν − ∂νA

a
µ − gfabcA

b
µA

c
ν to it. Define the covariant derivative Dµ = ∂µ + igAaµTa,

where Ta is the action of the generator t on the fields Φ (then given a gauge transfor-
mation Φ(x) → U(x)Φ(x) we have F a

µνTa ≡ Fµν → UFµνU
−1 and Dµ(U(x)Φ(x)) =
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U(x)(DµΦ(x))). The gauge Lagrangian is then

L = −1

4
F a
µνF

µν
a + L0(Φ, DΦ) − 1

2ξ
(∂µA

µ
a)

2 + ghosts, (6)

where the first term is the so-called Yang-Mills Lagrangian for the vector fields, the
derivative has been promoted to a covariant derivative, the next to last term fixes the
gauge and the last term involves auxiliary, unphysical anticommuting scalars (ghosts)
important to preserve unitarity, whose discussion goes well beyond the purpose of
these lectures (they will not play a role in what follows). As a simple exercise one
can recover the QED Lagrangian in eq. (3) from the free Lagrangian of a Dirac
fermion. The gauge interactions between matter and gauge fields come from the
terms involving the covariant derivative, i.e. from the kinetic terms in the Lagrangian
L0 before gauging. In the case of a set of fermions Ψ = (ψ1 . . . ψnf

)T subject to an
action Ψ → TaΨ of the generators, the kinetic term Ψi∂µγµΨ gives

Ψi∂µγ
µΨ → ΨiDµγ

µΨ = Ψi∂µγ
µΨ − gAaµΨγ

µTaΨ. (7)

The gauge bosons self-interactions are gfabc∂µAaνAbµAcν − 1
4
g2fabcfab′c′A

bµAcνAb
′
µA

c′
ν .

All gauge interactions are determined in terms of a universal gauge coupling g. In the
case in which the gauge group is made of several factors (as in the case of the SM, as
we will see), there is one independent gauge coupling for each irreducible factor.

3 The SM gauge interactions
We are now ready (at last) to start presenting the Standard Model Lagrangian. As
the SM is a gauge theory, it suffices to specify the ingredients listed above to define
it completely. It is however instructive to outline some of the logic that lead to
the choice of such a model (and ingredients) to describe electroweak interactions at
energies of the order of the electroweak scale or higher. The way the SM emerges
from the experimental information that was available when it was discovered can be
considered (in quite a reductive way) as one of the nicest, and definitely most useful,
model-building exercises ever [3]. Let us then review it, following a shortcut making
use of some of our present knowledge.

Let us consider to begin with the fermion content of a single family of fermions,
whose electromagnetic, strong, and weak interactions we want to describe in the
context of a theoretically consistent theory that can be extrapolated at and beyond
what we now know to be the electroweak scale. We then have the fermion fields ν, e, u,
d. QED and QCD can be accounted for by a gauge Lagrangian based on gauge groups
U(1)em and SU(3)c respectively (“c” stands for color), where the electric charges of the
above fermions where given in the introduction and the quarks transform as triplets
under the color SU(3). We are left with weak interactions. While QED and QCD are
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parity conserving theories of charged particles and as such can be described in terms
of Dirac spinors, we know that weak interactions violate parity. In order to describe
weak interactions, we therefore expect to have to split the above spinors into left- and
right-handed components νL, eL, eR, uL, uR, dL, dR (I did not include a right-handed
neutrino component, so far unobserved). Indeed, it was known that weak interactions
could be described in terms of the effective four-fermion interaction [4]

Lweak = 4
GF√

2
jµc j

†
cµ, where G

−1/2
F ∼ 250 GeV and jµc = νLγ

µeL + uLγ
µdL (8)

only involves left-handed fields (thus breaking parity). We have written the charged
current directly in terms of quarks, thus taking advantage of our present knowledge.
The experimental determination of the Lorentz and chirality structure of the interac-
tion above had been crucial for the discovery of the SM.

The coefficient of the interaction in eq. (8) has negative energy dimension. We
are therefore dealing with a non-renormalizable interaction. The effect of such an
interaction at energies E � G

−1/2
F will be suppressed by powers of E/G−1/2

F . That’s
why weak interactions are weak at low energy. At energies comparable to the scale
G

−1/2
F and above, however, the interaction above becomes stronger and stronger and

the theory eventually becomes incalculable. This is signaled by the failure of the
perturbative calculations of unitarity. The cross section for processes induced by the
interaction in eq. (8) would in fact grow as GFE

2 at high energy, instead of falling
with 1/E2, as predicted by unitarity. In order to be able to make sense of weak
interactions at E ∼ G

−1/2
F and beyond, we need to replace the effective description

in eq. (8) with a description in terms of renormalizable interactions. This is easily
done. The effective interaction in eq. (8) can be generated by the exchange of an
heavy field with mass M , as shown in Fig. 2 for the case of the leptonic interactions.

Figure 2: Weak interactions in terms of
renormalizable physics.

When the energy E involved in the pro-
cess is smaller than M , the propaga-
tor (E2 − M2)−1 can be approximated
by −1/M2, and one recovers the effec-
tive description of weak interactions. In
other words, the wavelength of the pro-
cess is too large to probe the detailed
renormalizable structure of the interac-
tion, which appears to be pointlike, as in

the left hand side of Fig. 2. In this E < M regime, the amplitude for the process
in the Figure grows as A ∼ g2/M2 and the cross section as σ ∼ g4(E2/M4), where
g is the coupling involved in the renormalizable vertexes. On the other hand, when
the energy becomes large, E > M , the propagator (E2−M2)−1 can be approximated
by 1/E2, the amplitude goes as A ∼ g2/E2 and the cross section as σ ∼ g4/E2, in
agreement with the unitarity bound.
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We now have to identify the degrees of freedom exchanged in Fig. 2 and their
renormalizable interactions with the SM fermions. Here is where the determination
of the Lorentz and chirality structure of the effective weak interactions turns crucial.
The Lorentz structure indicates that the heavy particle exchanged is a (charged)
vector, W±

µ , and the chirality structure shows that it only couples to left-handed
fermions. We can then write the fermion-vector interaction entering the Feynman
diagram in Fig. 2 (and the corresponding quark one) as

− LW =
g√
2
W+
µ νLγ

µeL +
g√
2
W+
µ uLγ

µdL + h.c., (9)

where the
√

2 is conventional. We can then express the Fermi constant GF in terms
of the W mass MW and coupling g as GF/

√
2 = g2/(8M2

W ). We have then learned
two things. First, weak interactions involve a new vector field W±

µ . As said, vectors
should be described by means of a gauge theory. We should then find a gauge group
GSM and assign quantum numbers to the fermions in such a way that the interaction
in eq. (9) be given by a gauge Lagrangian in the form in eq. (6). Second, we will
have to understand how a vector boson, W±

µ , can get massive, as we pointed out
before that a mass term for a vector boson is not gauge invariant. This will require
the spontaneous symmetry breaking of the gauge symmetry, which we will address
in Section 4. In the meanwhile, in this Section, we will ignore the latter issue and
determine the gauge structure of the SM.

In order to determine the gauge group GSM and the fermion quantum numbers
generating the gauge interactions in eq. (9), we need to compare eq. (9) with the
general form of the vector-fermion interactions in eq. (7). Since eq. (7) involves real
vectors, we first write W±

µ = (W 1
µ ∓ iW 2

µ)/
√

2 in terms of the real vectors W 1,2
µ .

The interactions in eq. (9) can then be written as −LW = gLγµ(W 1
µT1 +W 2

µT2)L +

gQγµ(W 1
µT1 +W 2

µT2)Q, where T1,2 = σ1,2/2 and we have introduced the left handed
lepton and quark doublets

L ≡
(
νL
eL

)
Q ≡

(
uL
dL

)
. (10)

It is now easy to compare with eq. (7) and identify two of the generators of the gauge
theory we want to determine to be T1 and T2. Since the generators of a gauge theory
form a Lie algebra and [T1, T2] = iT3, with T3 = σ3/2, we conclude that T3 is also
a generator, to which a third gauge boson, W 3

µ , must be associated. Note that W 3
µ

cannot be identified with a photon or a gluon, the gauge bosons associated to QED
and QCD (the couplings to fermions are different). The gauge principle therefore
leads to the prediction of a new (neutral) interaction. The three generators above
constitute the algebra of generators of SU(2)L, which must therefore be a factor of
the gauge group, GSM ⊇ SU(2)L. The index L refers to the fact that SU(2)L only

17



Andrea Romanino The Standard Model of Particle Physics

acts on the left handed components of the fields. The latter organize themselves in
doublets of SU(2)L, as in eq. (10), whereas the right handed components should be
SU(2)R singlets, as they do not appear in LW .

Since we know that electromagnetic and strong interactions are also described by a
gauge theory, the gauge group GSM should also include the corresponding generators.
Strong interactions can be accounted for by a SU(3)c factor commuting with the rest
of the SM group, under which uL, uR, dL, dR all transform as triplets (they carry a
“color” index). We do not need to discuss them here. Let us instead concentrate on
the electromagnetic interactions. They are associated to a electric charge generator Q
(not to be confused with the quark doublet in eq. (10)), whose value on the fermions
gives their electric charges (by convention in units of e). As a linear combination of
generators is still a generator, the combination Y ≡ Q−T3 should also be a generator,
which is called “hypercharge”. The interest of Y is that it turns out to commute with
the SU(2)L generators. The hypercharges of the fermions can be computed in terms of
their electric and T3 charges. One then finds that the hypercharges of the two lepton
doublet components, νL and eL, coincide: Y (νL) = Y (eL) = −1/2. Therefore, the
hypercharge and SU(2)L generators commute on the lepton doublet L. But then they
should also commute on the quark doublet Q. This means that the hypercharges of uL
and dL should also coincide, if what we are doing makes sense. Let us then cross our
fingers and compute those hypercharge. For uL we have Y (uL) = Q(uL) − T3(uL) =
2/3 − 1/2 = 1/6 and for dL Y (dL) = Q(dL) − T3(dL) = −1/3 − (−1/2) = 1/6. This
means that we are one the right track (unfortunately, about 40 years too late for the
Nobel prize). The generator Y is therefore associated to a U(1)Y subgroup of GSM

that commutes with the rest of the group. All in all, this model building exercise
identifies the SM gauge group to be

GSM = SU(3)c × SU(2)L × U(1)Y , (11)

where the last two factors constitute the electroweak group. The weak and electro-
magnetic interactions are described by this subgroup, with the electromagnetic inter-
actions associated with a combination of SU(2)L and U(1)Y generators, Q = Y + T3.
The quantum numbers of the fermions with respect to the three factors of the group
are summarized in Table 1. The first two columns show the transformation proper-
ties under SU(3)c and SU(2)L, while the last columns shows the hypercharge of each
field. The quantum numbers are the same for the three families, which goes under
the name of family replication. We do not have a compelling explanation for such a
replication. The values of the hypercharges for the right-handed fermions are given
by Y = Q, as the SU(2)L generators vanish on the right-handed fermions. Table 1
fully specifies the SM gauge interactions of the SM fermions. We will analyze them
in detail in Section 6.
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SU(3)c SU(2)L U(1)Y
L 1 2 −1/2
eR 1 1 −1
Q 3 2 1/6
uR 3 1 2/3
dR 3 1 −1/3

Table 1: Gauge quantum numbers
of the SM fermions (one family).

Before closing this Section, let us discuss
anomalies. The quantum numbers in Table 1
have quite a peculiar pattern. What is (pleas-
ingly) surprising about it is that they satisfy the
gauge anomaly cancellation conditions. Anoma-
lies arise when a symmetry of the Lagrangian is
not preserved by quantum corrections so that the
corresponding current is conserved at the classi-
cal level but not at the quantum level. In some
case, anomalous symmetries are not a problem,

they are actually welcome. This is the case for example of the (global) chiral sym-
metry of QCD, or of scale invariance, which is broken at the quantum level by the
renormalization scale, leading to the anomalous dimensions of fields. In the case of
gauge symmetries, however, anomalies should be avoided in order not to make the
theory inconsistent. There is a simple condition that needs to be verified in order
for gauge anomalies to vanish. The presence of gauge anomalies depends on how the
gauge group generators act on the left-handed fermions (ψiL and ψ∗

iR). Let TLa give
the action of the generators on the left-handed fermions. Then the gauge symmetry
survives quantum corrections iff 0 = Tabc ≡ tr(TLa {TLb , TLc }) for each choice of gen-
erators. As a consequence of this condition, a gauge symmetry acting in the same
way on left and right chirality fermions (as QED, QCD) turns out to be automati-
cally non-anomalous. There is no guarantee, however, that a chiral theory such as
the SM be non-anomalous. In order to check whether this is the case we need to
compute Tabc for a combination of any three SM generators. It is a useful exercise
to verify that Tabc indeed always vanishes. This is a highly non-trivial property de-
pending on the fact that i) SU(3)c acts in the same way on left and right chirality
fermions, ii) the traces of SU(2) and SU(3) generators vanish, iii) three non-trivial
relations hold among the hypercharge quantum numbers: 2YQ − YuR

− YdR
= 0,

YL + 3YQ = 0, and 2Y 3
L + 6Y 3

Q − 3Y 3
uR

− 3Y 3
dR

− Y 3
eR

= 0. Moreover, the relation
2YL + 6YQ − 3YuR

− 3YdR
− YeR

= 0 accounts for the vanishing of another type of
anomaly, the gravitational one. The fact that the SM is anomaly free is reassuring.
Of course it would be nice to understand whether there is a reason, besides the can-
cellation of anomaly itself, why the values of the hypercharge we measure happen
to satisfy the anomaly cancellation condition, or, more generally, if there is a reason
for the peculiar pattern of gauge quantum numbers in Table 1. Grand-unification
theories may answer such questions.
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4 Spontaneous symmetry breaking (SSB)

In order to proceed further we need to address the puzzle of vector boson masses.
The W±

µ vector bosons leading to the effective interaction in eq. (8) have a mass of
about 80 GeV. On the other hand, the gauge symmetry prevents a mass term for
the gauge vectors. The gauge symmetry must then be somehow broken, in order for
the gauge vectors to acquire a mass. This can be done through the mechanism of
spontaneous symmetry breaking, which we discuss in this Section. Before illustrating
it, let us observe that the vector boson masses are not the only problem. The SM
fermions would also forced to be massless in the presence of an exact SU(2)L×U(1)Y
symmetry. One can in fact verify that no gauge invariant fermion mass term can be
written, given the quantum numbers in Table 1. The most general mass term couples
two left-handed fermions in a combination that, as all the terms in the Lagrangian,
must be invariant under the gauge symmetry. There are three possible types of mass
terms that can be formed: ψLψL, ψ∗

RψL, ψ∗
Rψ

∗
R. It is easy to verify that no such

combination of left or right fermions in Table 1 can be gauge invariant. This is due
to the SM gauge symmetry being chiral even when restricted to an arbitrary subset
of fermions3. Spontaneous breaking of the gauge symmetry is then needed in order to
account for the SM spectrum of both vector bosons and fermions. In the following,
I will illustrate the main features of spontaneous symmetry breaking of global and
gauge symmetries (Higgs mechanism). In the next Section we will see how this applies
to the SM.

Spontaneous symmetry breaking (SSB) is interesting and elegant because no ex-
plicit breaking of the symmetry is introduced. The equations of the dynamics are
exactly symmetric, but they admit solutions that are not. In particular, one has SSB
when the ground state of the system is not symmetric. It is then the system itself that
“spontaneously” breaks the symmetry. In the context of QFT, SSB is characterized
by i) the Lagrangian being invariant under the symmetry, ii) the currents associated
to the symmetry being conserved, also at the quantum level, iii) the vacuum (ground
state) of the theory being not invariant under the symmetry, iv) the spectrum being
not invariant. Its features are i) it allows a consistent breaking of gauge symmetries,
in particular a consistent quantization of massive vectors; ii) it turns out to be realized
in nature both in the case of global and gauge symmetries.

3From the point of view of the physics at the electroweak scale, the chiral structure of the SM is
a puzzle. From the point of view of physics at the Planck scale, however, such structure is welcome
because it explains why the SM fermions are so light with respect to the Planck scale: they are
prevented from getting a mass term until the electroweak symmetry is broken, at a much lower
scale. One can take this argument a step further and argue that this is the reason why the SM
fermions are fully chiral: because if they were not there would be no reason why they should not be
much heavier. Chiral fermions may just be the only ones surviving at low energy because of their
very chiral structure.
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Figure 3: An ex-
ample of SSB in
classical mechan-
ics.

There are several classic examples of SSB. In classical me-
chanics one can consider a ball forced to live on the symmetric
(under rotations around the central axis) surface in Fig. 3 sub-
ject to a gravitational field pointing downwards. The equations
of the dynamics are symmetric. The central point, where the
ball is in the Figure, is also symmetric, but unstable. In order to
live in a stable ground state, the system should choose a position
a the bottom of the surface, thus spontaneously breaking the ro-
tational symmetry. In quantum mechanics, one can consider a
rotationally invariant system of coupled spins (a ferromagnet).

The minimum energy state is reached when the spins are aligned. In order to live in
the ground state, therefore, the system must choose a common direction for the spins,
thus spontaneously breaking rotational invariance. In QFT, a qualitative difference
arises, as the number of degrees of freedom is not finite anymore and a quantum super-
position of degenerate vacua is not allowed: different ground states are not described
within the same Hilbert space.

We now discuss in more detail SSB in QFT. We are interested to the spontaneous
breaking of gauge invariance, but we need to discuss the spontaneous breaking of
global symmetries first. Let us call Ω the ground state of our QFT. SSB arises iff the
vacuum expectation value (vev) of the fields in the theory, 〈Φ〉 ≡ 〈Ω|Φ(x)|Ω〉, is not
invariant (therefore not vanishing) under the symmetry (〈Φ〉 is invariant if Ω is). As
we do not want to break Poincaré invariance, only scalars can get a non vanishing vev
and 〈Φ(x)〉 does not depend on the space-time coordinate x. Given a Lagrangian,
the value of the vev of the scalar fields can be easily obtained by minimizing the
effective scalar potential, i.e. the scalar potential including the so-called one-particle
irreducible quantum corrections. It is often possible to neglect quantum corrections
and just consider the minimization of the classical potential, which is what we will
do in the following. A simple explicit example of SSB in QFT can be obtained in the
theory of a complex scalar field φ with Lagrangian

L = (∂µφ)†(∂µφ) − V (φ†φ), V (φ†φ) = µ2φ†φ+
λ

2
(φ†φ)2. (12)

The Lagrangian is symmetric under a global U(1) transformation φ(x) → e−iαφ(x).
The parameter λ must be non-negative in order for the potential to be bounded from
below. We will take it to be strictly positive. On the other hand, the parameter
µ2 can have both signs (despite it is written as a square to stress that it has the
dimension of a squared mass). The shape of the potential V and the structure of
the ground state crucially depends on that sign, as shown in Fig. 4. If µ2 < 0, the
minimum of the potential corresponds to 〈φ〉 = veiθ, where
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Figure 4: Graphical repre-
sentation of the potential in
(13).

v2 = |µ2|/λ and θ parametrizes the position of φ in
the circle with radius v of degenerate minima. The sys-
tem chooses an arbitrary value of θ, thus spontaneously
breaking the U(1) symmetry. With no loss of generality,
we can assume θ = 0.

In view of the shape of the potential, it is conve-
nient to parametrize the field as φ(x) = r(x)eig(x), where
g(x) parametrizes the “flat directions” along which the
potential is constant. As V does not depend on g(x),
the corresponding real degree of freedom is massless and
only has derivative interactions. Such massless degrees
of freedom always arise in the presence of SSB in QFT.
They are called “Goldstone” bosons. One can also use
a linear parametrization of the Goldstone boson by ex-
panding φ(x) = v+φ′(x) = v+(h(x)+iG(x))/

√
2. G(x)

can be considered as the linearization of vg(x). In terms
of h and G, the potential is

V =
λ

8
(h2 +G2)2 +

λ√
2
vh(h2 +G2) + |µ2|h2 + const. (13)

We can again verify that G is massless, whereas the physical degree of freedom h
acquires a mass proportional to the symmetry breaking scale v and to its self-coupling,
m2
h = 2|µ2| = 2λv2. The two parameters µ2, λ in the potential V can be traded for v

and m2
h.

The discussion above can be generalized to the case of a generic continuous global
symmetry group G and a generic scalar field content. Here are the main features of
the generalization. Let us call H the subgroup of G that is not broken by the vev
of the scalar fields (under which the vev of the scalar fields is invariant). We can
correspondingly divide the generators of G into two sets: the unbroken ones, which
annihilate the vacuum, and the broken ones, the orthogonal set. According to the
Goldstone theorem [5] each broken generator in G/H is associated to an indepen-
dent massless scalar (Goldstone boson), carrying the same quantum numbers as the
generators.

The prototypical example of spontaneously broken global symmetry in QFT is the
chiral symmetry of QCD with two quarks. In the limit in which the up and down quark
masses coincide the QCD Lagrangian (not including electromagnetic interactions) for
u and d is invariant under independent unitary transformations of the left handed
and right handed components of the u and d fields, corresponding to the symmetry
group U(2)L×U(2)R = SU(2)L×U(1)L×SU(2)R×U(1)R. Let us call jµaL , jµL, jµaR , jµR
the currents associated to the four group factors. Then jµV = jµR + jµL is the conserved
current associated to Baryon number and jµaA = jµaR + jµaL are the conserved isospin
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currents. What about the “axial” currents jµA and jµaA ? The first one, jµA, turns out to
be broken by quantum corrections. The corresponding symmetry is anomalous. The
second current, jµaA , turns out to be conserved, on the other hand. Therefore, it either
corresponds to a symmetry or it is spontaneously broken. We do not have evidence
for jµaA to correspond to a symmetry. If it did, particles would organize themselves
in multiplets with same spin, Baryon number, parity and approximately (in the real
world in which mu 6= md, electromagnetic interactions exist, and the chiral symmetry
SU(2)L × SU(2)R is only approximate) same mass, which we do not observe. On the
other hand, we do have evidence for the symmetry to be spontaneously broken. If
that is the case, we should observe three light (not exactly massless in the real world)
pseudo- Goldstone bosons with zero Baryon number, spin, negative parity and isospin
1, as the corresponding broken generators. The lightest hadrons, the pions, have
indeed all those properties. They are therefore considered to be the pseudo- Goldstone
bosons arising because of the spontaneous breaking SU(2)L × SU(2)R → SU(2)V of
the approximate chiral symmetry of the light quark QCD Lagrangian.

We have discussed so far the spontaneous breaking of a global symmetry. We now
discuss the case we are more directly interested in, the spontaneous breaking of gauge
invariance. The main feature of such a phenomenon is that the gauge vector associated
to each broken generator gets a longitudinal component and a mass. The additional
longitudinal degree of freedom is provided by the Goldstone boson associated to the
broken generator, which gets “eaten up” by the vector. This is just what we need in
order to describe the massive vector boson we observe in nature, the W± and the Z,
in a theoretically consistent way.

In order to see how this works, let us consider the complex scalar field again and
promote the global U(1) symmetry to a gauge symmetry. Our gauge theory machinery
gives

Lgauge = −1

4
FµνF

µν+(Dµφ)†(Dµφ)−V (φ†φ)+gauge fixing, Dµ = ∂µ+igAµ. (14)

Let us break U(1) spontaneously by taking µ2 < 0. The complex field develops a vev
〈φ〉 = v, as before. Correspondingly, a mass term M2 = 2g2v2 is generated for the
vector boson, proportional to the symmetry breaking scale and to its (gauge) coupling
to φ, as can be seen from (Dµφ)†(Dµφ) = (∂µφ

′)†(∂µφ′) + M2AµAµ/2 + . . .. The
Goldstone boson gets eaten by the vector boson, of which it becomes the longitudinal
component. This can be seen by parametrizing φ(x) in terms of r(x) and g(x) as
above and by noticing that{

φ(x) = r(x)eig(x)

Aµ(x)
is equivalent to


φ(x) = r(x)

Aµ(x) −
1

g
∂µg(x)

, (15)

as the two configurations are related by a gauge transformation. We can therefore
choose a “unitary” gauge in which the field φ(x) is real, as on the right side of eq. (15),
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and does not contain g(x), which can be recognized as the longitudinal component of
Aµ(x). This can be generalized to the case of a generic continuous global symmetry
group G and a generic scalar field content. In the general case, as mentioned, the
gauge vector associated to each broken generator gets a mass by absorbing the corre-
sponding Goldstone boson. This is what goes under the name of “Higgs” mechanism.
In the context of gauge theories, unlike the case of global symmetries, the Goldstone
bosons do not correspond to physical scalar degrees of freedom. The scalar fields
spontaneously breaking the gauge symmetry are called Higgs fields.

Before closing this Section we mention that global and gauge symmetries can be
spontaneously broken without the need of scalar fields. The role of the vev of the scalar
field is then played by the condensate of a fermion bilinear that arises dynamically
as a consequence of new strong interactions. This is how chiral symmetry breaking
in QCD is thought to arise. While it is not excluded that such dynamical symmetry
breaking mechanism plays a role in the breaking of the electroweak symmetry, such a
possibility is at present disfavored. We will not further consider it in these lectures.

5 The SM Higgs and flavour

We are now ready to go back to the SM and discuss its spontaneous breaking. The
existence of fermion and vector boson masses is evidence that the SM gauge invari-
ance should be spontaneously broken. We know on the other hand that strong and
electromagnetic interactions are not broken as, for example, the electric charge is
conserved and the photon is massless. Therefore, the SSB of the SM should preserve
SU(3)c×U(1)em as an unbroken subgroup.

In order to spontaneously break the SM, we should introduce a scalar field, the
Higgs, developing a vev and specify its quantum numbers under the SM gauge group.
Such quantum numbers are dictated by the need of the fermions to get a mass term,
as we now see.

Let us consider the electron mass term, which has the form m(eReL + h.c.). As
the left component eL is contained in the lepton doublet L, that interaction should
originate from a SM invariant interaction involving the bilinear eRL. Now, such a
bilinear is not invariant under GSM. It transforms as a doublet with Y = 1/2 under
SU(2)L×U(1)Y (and is of course invariant under SU(3)c). That is why the electron
mass is not allowed by the gauge symmetry. However, eRL can be part of a gauge
invariant renormalizable interaction involving an additional field with appropriate
quantum numbers. The only possibility is the Yukawa interaction λeRLH

∗ with a
complex doublet scalar field H (conventionally taken as the conjugated of the field
appearing in the interaction), the Higgs field. H is a doublet with Y = 1/2 under
SU(2)L×U(1)Y and is a SU(3)c singlet. Its two components contract with the two
components in L. A mass term for the electron can now be generated if H gets a vev,
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once the value of the vev is substituted to the field in the Yukawa interaction above.
It turns out that one Higgs doublet H is enough to give rise to the mass of all the
SM fermions. Let us in fact write the most general Yukawa Lagrangian involving the
Higgs field. Such a Lagrangian is given by

− LY = λEijeiRLjH
∗ + λDijdiRQjH

∗ + λUijuiRQjH + h.c., (16)

where we have included all the three SM families through the family indices i, j =
1, 2, 3. As a consequence of this family structure, each of the three Yukawa couplings
in eq. (16) is a generic 3 × 3 complex matrix. Once the Higgs gets a vev, all the
SM fermions get a mass proportional to their Yukawa couplings. SU(2) and SU(3)
contractions have been understood in eq. (16). The SU(2) invariant contraction of the
doublet indices of Q and H in the up quark Yukawa interaction is obtained by means
of the 2 × 2 antisymmetric tensor εab as QH = QaεabHb (ε12 = 1). The Lagrangian
LY is the origin of the flavour structure of the SM. It is because of that Lagrangian
that we can tell for example an electron from a muon. The gauge Lagrangian, in fact,
does not make any difference between them.

In order to fully specify the SM Lagrangian we only miss the Higgs Lagrangian.
In the same spirit used for the Yukawa Lagrangian, we can simply write the most
general renormalizable Lagrangian involving the Higgs field. That turns out to be

LH = (DµH)†(DµH) − V, V = µ2H†H +
λH
2

(H†H)2. (17)

As in the SSB example with a single complex scalar field, we take λH > 0 and µ2 < 0
in order to obtain a stable, symmetry breaking potential.

This completes the definition of the SM. We have chosen the gauge group as in
eq. (11); we have specified the fermion and scalar content (the three replications of
the fermions in Table 1 and the Higgs doublet); their quantum numbers under the
SM gauge group (Table 1 and the Higgs assignment above); we have also specified
the most general renormalizable globally symmetric Lagrangian for the above fields
(the kinetic terms of all the fermions + LY + LH). The gauge theory machinery
then allows to specify the full Lagrangian as in eq. (6). We will analyze the Higgs
Lagrangian, together with the rest of the SM Lagrangian, in the next Section.

6 Analysis of the SM Lagrangian

Having defined and motivated the SM, let us know analyze the SM Lagrangian and
spell out some phenomenological implications. Let us start from where we stopped,
the Higgs sector.
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In the minimum of its potential, the Higgs doublet develops a vev. With no loss
of generality, such a vev can be written as

〈H〉 =

(
0
v

)
, with v > 0 and v2 =

|µ2|
λH

≈ (174 GeV)2. (18)

Any other form of the Higgs vev, in fact, is equivalent to that in eq. (18), up to
a SU(2)L×U(1)Y gauge transformation. The scale v ≈ 174 GeV is called the elec-
troweak symmetry breaking scale, or electroweak scale. Let us identify the unbroken
part of the SM group, or equivalently the generators that annihilate the Higgs vev.
Since the Higgs does not feel strong interactions, the latter are certainly unbroken.
Let us therefore concentrate on the electroweak group SU(2)L×U(1)Y . Its generic
generator can be written as T = aY + baTa, with a, ba real. When acting on the
Higgs, Ta = σa/2 and Y = 1/2. Therefore T 〈H〉 = (v/2)(b1 − ib2, a − b3)

T and the
unbroken generators, for which T 〈H〉 = 0, are those for which b1 = b2 = 0 and a = b3.
There is then only one (up to normalization) electroweak generator unbroken by the
Higgs vev, given by T3 + Y = Q. The electric charge is unbroken, as wished. Note
that the latter can be considered as a prediction, as the Higgs quantum numbers,
determining the unbroken generators, were fixed by independent considerations (ob-
taining a mass for the electron). Out of the 4 generators of the electroweak group
only one is unbroken, which means that 3 are broken. We then expect 3 vector bosons
to acquire a mass and 3 Higgs real degree of freedom (the Goldstones) to be eaten up
by them. Out of the 4 real (2 complex) Higgs degrees of freedom, only one then cor-
respond to a physical scalar, the Higgs boson. In order to identify the Goldstone (and
thus the physical) degrees of freedom we can use a general property of the Goldstone
bosons: they correspond to displacements from the vev along the flat directions of the
potential. We can move along the flat directions of the potential by performing GSM

transformation (which leave the potential invariant) along an arbitrary set of broken
generators. From δ〈H〉 = iεGaTa〈H〉 = ε(v/2)(iG1 +G2,−iG3)

T we see that we can
write the Higgs doublet in terms of the Goldstone components G± = (G1 ∓ iG2)/

√
2,

G0 = −G3 and the physical component h as

H =

 iG+

v +
h+ iG0

√
2

 . (19)

With respect to the CP transformation under which H → H∗, h is even and the Gold-
stones are odd. We can write the Higgs potential in the unitary gauge in which the
Goldstones are removed from the Higgs fields and incorporated in the corresponding
vector bosons as follows:

V (h) = V (H)G=0 =
m2
h

2
h2 +

λH√
2
vh3 +

λH
8
h4 + const, (20)
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where the Higgs mass is given by m2
h = 2|µ|2 = 2λHv

2 and is proportional to the
electroweak symmetry breaking scale and to the Higgs self-coupling λH .

While the electroweak scale is known from the measurement of the Fermi constant
GF , as we will see, the Higgs mass (or equivalently the Higgs coupling) is at the
moment an unknown parameter. We have however three different constraints on it.

The first is a theoretical constraint: in order to avoid a strong coupling regime,
the Higgs mass should be lighter than about a TeV. If the Higgs mass was heavier
than that, the theory would become strongly interacting before the Higgs could be
produced. This is not a priori excluded. However, keeping the theory perturbative
allows a quantitative extrapolation to higher energies. Moreover, there are constraints
from precision tests on generic effects of strong interactions at a scale as low as a
TeV. The onset of a perturbative regime can be seen as follows. One can compute
the amplitude A(WLWL → WLWL) for the scattering of the longitudinal component
of the W boson. The latter are nothing but the Goldstone bosons originally sitting in
the Higgs doublet together with the physical Higgs boson whose mass we are trying
to constrain. The expansion in partial waves gives A =

∑
l alAl, where al are partial

wave amplitudes. The s-wave amplitude is bound by unitarity to be |a0| ≤ 1. If the
physical Higgs is not taken into account, a tree level calculation, involving the gauge
boson self couplings, gives a0 ∼ s/(16πv2), where s is the center of mass squared
energy. The unitarity bound would then be saturated for s ≈ (1.2 TeV)2, unless such
a bad behaviour is cancelled by the diagrams involving the exchange of a Higgs lighter
than 1.2 TeV. Since we know that unitarity is not violated, the apparent violation
must be due to the failing of the tree level approximation, signaling in turn a strongly
interacting regime where higher order perturbative corrections are as large as the
lower order contributions.

A stronger, second constraint can be obtained by assuming that the SM holds and
is stable and perturbative up to a scale Λ. This argument uses the fact that the Higgs
coupling λH , as all the couplings in the Lagrangian, depends on the energy scale of
the process in which it is involved. Under the assumption that the SM holds up to
the scale Λ, the value of the Higgs coupling at any scale up to Λ can be calculated as
a function of the value at the electroweak scale, i.e. of the Higgs mass. It turns out
that a too large value of the Higgs mass would give rise to a steep raise of λH with
the energy, leading to a Landau-pole, i.e. a non-perturbative regime, before the scale
Λ, thus contradicting the initial hypotheses. We obtain this way an upper limit on
the Higgs mass as a function of the scale Λ. On the other hand, a too small value of
the Higgs mass would make λH negative before Λ, thus giving rise to an instability.
The Higgs potential would in fact become deeply negative for values of the Higgs field
larger than the scale at which λH becomes negative. The electroweak scale minimum
we need, eq. (18), would therefore be at best metastable (in which case, assuming we
happen to live in such a metastable vacuum, its lifetime should be larger than the
life of the universe). All this leads to a lower limit on the Higgs mass as a function
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of the scale Λ. All in all, one gets a window for the Higgs mass mh as a function
of the scale Λ. Such a window is shown in Fig. 5 for 103 GeV < Λ < 1019 GeV [6].

Figure 5: Allowed window for the Higgs
mass as a function of the scale Λ up to which
the SM is assumed to hold and be stable and
perturbative.

Let us now come to the experimen-
tal constraints on the Higgs mass. The
direct experimental limit from LEP is
mh > 114 GeV at 95% CL. Also, Teva-
tron has recently excluded the (160-
170) GeV window. On top of those,
there are indirect experimental bounds.
The Higgs mass enters in fact (loga-
rithmically) through loop corrections a
number of observables that have been
precisely measured at colliders, LEP in
particular. A global fit of such preci-
sion observables as a function of the
Higgs mass actually favors an Higgs
mass in the region excluded by LEP,
but values above the LEP bound do
not give a bad fit. All in all, the fit
favours a relatively light Higgs, mh <
163 GeV at 95% CL. The results of the
fit are summarized in the “blue band
plot” shown in Fig. 6 [7]. The fit could
be modified in the presence of new
physics.
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Figure 6: Direct (yellow exclusion regions)
and indirect (blue band χ2) experimental
bounds on the Higgs mass [7].

The existence of a scalar (Higgs)
mass parameter gives rise to the so-
called naturalness problem of the SM,
whose solution has represented in the
last decades one of the main guide-
lines for the theoretical quest for new
physics beyond the SM. This issue will
be addressed in the lectures by Alexei
Gladyshev.

Let us now come to the analysis of
the gauge sector of the SM. If the Higgs
sector of the SM is the least known part
of the SM (we do not even know if the
Higgs really exists), the gauge sector is
on the contrary the best known sector.
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The gauge interactions of SM fermions have been tested with an accuracy up to the
%� level, which is enough to probe the gauge sector at the loop level (perturbative
loop corrections are typically of order 1/(4π)2 ∼ O (%)). The fermion gauge inter-
actions can be obtained from the covariant derivative. Let us consider electroweak
interactions only, as strong interactions will be discussed elsewhere. The covariant
derivative then assumes the form Dµ = ∂µ+ igW a

µTa+ ig′BµY , where Bµ is the gauge
vector associated to the hypercharge generator. The covariant derivative involves two
independent gauge couplings, g and g′, corresponding to the two irreducible factors
of the electroweak group, SU(2)L and U(1)Y . The explicit form of the generators Ta
and Y depends on the quantum numbers of the field on which they act. For example,
when acting on the Higgs field, Dµ = ∂µ+igW a

µ (σa/2)+ig′Bµ(1/2). The vector boson
masses arise from the (Dµ〈H〉)∗(Dµ〈H〉) term in the Higgs Lagrangian. To compute
the vector boson masses, we observe that

Dµ〈H〉 =
iv

2

(
g(W 1

µ − iW 2
µ)

gW 3
µ − g′Bµ

)
=
iv

2

( √
2gW+

µ√
g2 + g′2Zµ

)
, (21)

where we have defined

W±
µ ≡

W 1
µ ∓ iW 2

µ√
2

, Zµ ≡ cWW
3
µ − sWBµ, (22)

in terms of the “Weinberg angle” θW defined by tan θW = g′/g, 0 ≤ θW ≤ π/2. The
charged and neutral vector bosons W±

µ and Zµ turn then out to have definite mass.
We have in fact (Dµ〈H〉)∗(Dµ〈H〉) = M2

WW
+
µ W

µ− + M2
ZZµZ

µ/2, with the vector
boson masses given by

M2
W =

g2

2
v2, M2

Z =
g2 + g′2

2
v2 and

GF√
2

=
g2

8M2
W

=
1

4v2
, (23)

determining the electroweak scale in terms of GF . The fourth vector boson, Aµ =
sWW

3
µ + cWBµ, the photon, does not get a mass term, as the corresponding generator

is not broken. In order to be able to write the gauge interactions in terms of the
vector bosons with definite masses, W±

µ , Zµ, Aµ, it suffices to write the covariant
derivative in terms of the latter:

Dµ = ∂µ + i
g√
2
W+
µ T

+ + i
g√
2
W−
µ T

− + ieQAµ + i
g

cW
(T3 − s2

WQ)Zµ, (24)

where e is given by e = gsW = g′cW = gg′/
√
g2 + g′2 and we have defined

T± = T1 ± iT2. From the above expression of the covariant derivative we recover
the electromagnetic interactions of the photon, proportional to the electric charge Q,
and the charged current interactions of the W±’s in eq. (9). New, “neutral current”
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interactions involving the Z boson are also predicted proportional to the coupling
(g/cW )(T3 − s2

WQ).
We note the relation

ρ ≡ M2
W

M2
Z cos2 θW

= 1 (tree level). (25)

The above relation is not a general result. It depends on the fact that we have
broken the electroweak symmetry by means of a SU(2)L doublet and not, for ex-
ample, a triplet. Indeed, the experimental verification of the above relation (where
the Weinberg angle is independently measured) rules out significant contributions
to spontaneous breaking by additional scalar triplets. The relation in eq. (25) re-
ceives small perturbative corrections and is related to a SU(2)L×SU(2)R “custodial”
symmetry of the Higgs potential.

Let us spell out in greater detail the form of the gauge interactions of the fermions,
the vector bosons, and the Higgs. The fermion gauge interactions come from the term

ΨiDµγ
µΨ = Ψi∂µγ

µΨ −
(
g√
2
jµcW

+
µ + h.c.

)
− g

cW
jµnZµ − ejµemAµ, (26)

where the charged and neutral currents jµc and jµn are given by

jµc = νiLγ
µeiL+uiLγ

µdiL, jµn =
∑
f

fXγ
µ(T 3−s2

WQ)fX (f = νi, ei, ui, di, X = L,R).

(27)

Figure 7: Vector boson gauge self-
interactions.

The vector boson gauge self-interactions
come from the “Yang-Mills” term:

−W a
µνW

µνa/4,

where

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gεabcW

b
µW

c
ν .

When expressed in terms of the vector mass
eigenstates W±, Z, A, the Yang-Mills term
gives trilinear and quartic interactions, as

shown in Fig. 7. The existence of the γW+W− and ZW+W− vertexes has been
experimentally established at LEP. Fig. 8 shows the measurement of the cross Section
of e+e− → W+W− and the corresponding theoretical predictions obtained taking into
account the exchange of a neutrino only (a), adding the exchange of a photon through
the γW+W− interactions (a+b), and further adding the exchange of a Z through the
ZW+W− vertex (a+b+c) [7].

Finally, the Higgs gauge interactions are given in unitary gauge by(√
2
h

v
+

h2

2v2

)(
M2

WW
+
µ W

µ− +
1

2
M2

ZZµZ
µ

)
. (28)
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Figure 8: Measurement of the e+e− →
W+W− cross section as a function of the
center of mass energy and comparison
with different theoretical predictions.

Having discussed to some extent the
gauge and Higgs sectors of the SM, we are
only left with the Yukawa sector. The lat-
ter will be covered by the lectures by Yossi
Nir.

We close these lectures with a summary
of the reasons why many of us believe that
the SM is not the ultimate theory of every-
thing. Although the SM has been tested
with great success, especially in its gauge
sector, but also in its flavour sector, there
exist a few experimental evidences that are
not accounted for by the SM: the existence
of dark matter, the baryon asymmetry of
the universe and, last but not least, grav-
ity itself. There are then experimental evi-

dences that, although strictly speaking do not contradict the SM, represent strong hint
for physics beyond the SM: the peculiar structure of the SM gauge quantum numbers
in Table 1, and neutrino masses. The SM quantum numbers can be nicely understood
in terms of grand-unified theories, which also lead to the successful, precise predic-
tion of the strong coupling within supersymmetric models. Neutrino masses can be
incorporated in the SM by means of an effective interaction of two lepton doublets
and two Higgses. Still, the existence of an effective, non-renormalizable interaction
represents a strong hint for new physics arising at a higher scale. There are then a
number of theoretical puzzles that do not represent a clear indication for new physics
but we would be very happy to understand in terms of physics beyond the SM: the
smallness of the electroweak scale compared to the Planck scale, family replication,
the existence of small Yukawa couplings and the peculiar pattern of fermion masses
and mixings. Finally, the SM has a number of theoretical problems. The natural-
ness/unitarity problem, related to the stability of the Higgs mass with respect to
radiative corrections in the presence of a new high scale (of which we have at least an
incontrovertible example: the Planck scale); the similar (from a QFT point of view)
problem of the smallness of the cosmological constant. The strong CP-problem.

For all the above reasons we believe that the SM is not the end of the story. I wish
the younger generations attending this school to have the opportunity to witness and
hopefully play an important role in the many developments to come.
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