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Abstract: The class imbalance problem presents a critical challenge in real-world applica-

tions, particularly in high-stakes domains such as healthcare, finance, disaster management,

and fault diagnosis, where accurate anomaly detection is paramount. Class imbalance often

disrupts the inherent symmetry of data distributions, resulting in suboptimal performance

of traditional machine learning models. Conventional approaches such as undersampling

and oversampling are commonly employed to address this issue; however, these methods

can introduce additional asymmetries, including information loss and overfitting, which

ultimately compromise model efficacy. This study introduces an innovative approach lever-

aging quantum machine learning (QML), specifically the Variational Quantum Classifier

(VQC), to restore and capitalize on the symmetrical properties of data distributions without

relying on resampling techniques. By employing quantum circuits optimized to mitigate

the asymmetries inherent in imbalanced datasets, the proposed method demonstrates

consistently superior performance across diverse datasets, with notable improvements in

Recall for minority classes. These findings underscore the potential of quantum machine

learning as a robust alternative to classical methods, offering a symmetry-aware solution

to class imbalance and advancing QML-driven technologies in fields where equitable

representation and symmetry are of critical importance.

Keywords: class imbalance problem; quantum machine learning; variational quantum

classifier; resampling method; robustness test

1. Introduction

The class imbalance problem, coupled with high dimensionality, remains a critical

challenge in applying machine learning across various real-world domains, including

medical diagnosis [1], finance [2], disaster management [3], telecommunications network

management [4], and medical diagnosis [5]. Class imbalance arises when the target class is

significantly underrepresented compared to other classes, which introduces bias in model

training and results in degraded predictive performance, particularly through an increase

in false negatives (FNs). Although data resampling techniques, such as undersampling and

oversampling, are widely used to mitigate this issue, they come with trade-offs. Under-

sampling leads to information loss, while oversampling, including advanced methods like

SMOTE [6], can introduce overfitting and still suffers from some degree of information loss.
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Algorithmic techniques such as cost-sensitive learning and thresholding adjust-

ments [7,8] offer alternative approaches but are limited by arbitrary thresholding and

the inherent challenges in balancing error types. More recently, quantum machine learning

(QML) has shown potential in addressing complex data patterns, yet its application to

class imbalance remains underexplored. While some studies report promising outcomes,

such as higher accuracy in Quantum Support Vector Machines (QSVMs), the performance

improvement for imbalanced datasets remains inconclusive [9].

In this study, we propose a novel approach to address class imbalance through quan-

tum machine learning, specifically utilizing Variational Quantum Classifiers (VQCs) op-

timized with quantum encoding and decoding techniques. Our experimental results,

conducted on real-world imbalanced datasets, consistently demonstrate that quantum

models can outperform traditional machine learning methods without the need for resam-

pling techniques. Through repeated tests on multiple benchmark datasets, we highlight the

robustness and potential of QML in resolving class imbalance, offering new directions for

improving prediction performance in domains where high precision is critical.

1.1. Class Imbalance Problem

Class imbalance problem refers to the situation where instances of a particular class are

significantly fewer than those of other classes, which can negatively affect the performance

of classification algorithms [10]. Addressing class imbalance is crucial in tasks requiring

accurate and reliable predictions, such as fraud detection and medical diagnosis. Although

many methods have been devised to tackle the class imbalance issue, achieving stable

performance on high-dimensional and imbalanced datasets remains a challenging task.

Various approaches have been introduced to handle class imbalance, including data-level

solutions, algorithm-level solutions, and ensemble learning techniques.

Among data-level methods, random sampling is one of the most widely used tech-

niques for handling imbalanced data due to its ease of implementation and potential to

offer acceptable performance. In addition to random sampling, the SMOTE (Synthetic

Minority Oversampling Technique) generates synthetic data samples for the minority class

to balance the class distribution [11]. However, data-level approaches are not limited

to SMOTE [12], which experimentally evaluates various techniques to address the class

imbalance problem, highlighting the limitations of data-level approaches and emphasizing

the importance of selecting context-appropriate methods for performance improvement.

Their study compared several methods for augmenting minority class data and showed

that traditional methods like SMOTE do not always yield optimal performance, which can

vary depending on the context of the data.

Furthermore, in Zhang’s [13] study, a GAN-based data augmentation method using the

WGAN-GP algorithm was employed to generate synthetic data samples with distributions

similar to real data in complex medical datasets, improving the model’s generalization.

Additionally, Xu [14] proposed the KNSMOTE algorithm, a refined version of the SMOTE,

which classifies the dataset using k-means clustering, removes easily misclassified boundary

samples and noisy samples, and generates more stable samples from imbalanced datasets

compared to other oversampling algorithms.

Algorithm-level approaches to handling data imbalance include techniques such as

assigning different costs to emphasize the minority class and adjusting prediction thresh-

olds to more easily classify samples that are likely to belong to the minority class. For

example, cost-sensitive learning assigns a higher cost to the minority class, training the

model to improve accuracy for that class [15]. In Esposito’s [16] study, the GHOST (Gener-

alized Threshold Shifting) approach optimized thresholds, resulting in better performance

than random undersampling of the dataset. Ensemble methods, which combine multiple
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classifiers, can mitigate prediction errors and bias. Notable examples include SMOTEBag-

ging [17] and SMOTEBoost [18]. Recently, there have been attempts to integrate imbalance

handling into ensemble methods like XGBoost to improve performance [19].

Despite advancements in handling data imbalance, traditional methods still face

challenges such as computational inefficiency and limited scalability. Moreover, advanced

pre-processing methods, such as the “Negative Branch” approach, offer improved model

performance in speech recognition tasks [20]. Quantum computing has been proposed as

a solution to overcome these limitations, sparking growing interest in whether quantum

machine learning can address the data imbalance problem and provide effective solutions.

1.2. Quantum Machine Learning

Quantum machine learning (QML) aims to leverage the unique characteristics of

quantum systems, specifically their ability to process information in atypical ways that

classical systems struggle to handle efficiently, with the goal of outperforming traditional

machine learning in terms of accuracy and inference time [21]. As a starting point to achieve

this goal, QML utilizes qubits, which scale data representation, storage, and processing

more effectively compared to classical bits. By encoding information into qubits and

employing quantum entanglement, QML forms quantum circuits and optimizes them

to achieve superior performance. In other words, QML maps classical data to quantum

mechanical states, detects patterns within the data, and processes these states through

quantum manipulation.

QML encompasses various tasks, including processing classical data using quantum

machine learning algorithms, processing quantum data using classical machine learning

algorithms, and processing quantum data with quantum machine learning algorithms [22].

However, this study focuses on processing imbalanced classical datasets using QML to

explore how it can provide superior solutions. Additionally, QML can be categorized

into four types of tasks: quantum simulation to improve existing simulations, enhanced

quantum computing to improve quantum computing itself, quantum machine perception

for sensing, and classical data analysis to enhance supervised and unsupervised learning.

Given the context of this study, we will focus on QML for classical data analysis.

The core of QML lies in converting classical data into quantum states for processing.

By utilizing quantum states, QML can learn patterns and make predictions more efficiently.

As shown in Figure 1, QML encodes the data into quantum states to take advantage of

quantum properties such as parallel computation and entanglement to enhance perfor-

mance, while conventional machine learning processes data directly through algorithms.

Moreover, quantum gates can accelerate matrix operations and reduce computational

complexity [23,24]. Therefore, QML requires an additional initial step of quantizing the

data, which is part of the state preparation process needed for analyzing data through

quantum circuits. Then, QML produces quantum data as output, which will be converted

back into classical data.

To utilize the benefits of quantum computation in QML, classical data must first be en-

coded into quantum states. Then, quantum circuits composed of quantum gates manipulate

and transform the quantum states, exploiting quantum phenomena such as superposition

and entanglement. Figure 2 illustrates an example of transforming data through a quantum

gate. Quantum gates like Hadamard, CNOT, and Pauli gates are fundamental components

for manipulating qubits in quantum computing. These gates apply unitary transformations,

preserving quantum information by keeping the total probability constant. A single qubit

state can be represented as a quantum state or vector, where coefficients α and β are proba-

bility amplitudes representing the likelihood of measuring the qubit in either the |0〉 or |1〉

state. For instance, a Pauli X gate rotates the qubit 180 degrees about the x-axis on the Bloch
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sphere. By combining such transformations, more complex probability distributions can be

represented, ultimately enabling more efficient problem-solving in quantum algorithms.

 

ffi
α β ∣ ⟩ ∣ ⟩

ffi

Figure 1. Comparison between conventional machine learning and QML.

ffi
α β ∣ ⟩ ∣ ⟩

ffi

Figure 2. Example of data transformation through quantum gate.

As a result, quantum circuits play a pivotal role in quantum machine learning (QML)

algorithms. They are responsible for the fundamental transformations and computations

that enable QML to operate, and various quantum machine learning algorithms have been

developed and proposed utilizing these circuits. These algorithms aim to perform complex

calculations more efficiently than their classical counterparts by leveraging the unique

properties of quantum circuits. Numerous quantum machine learning algorithms have

been developed and proposed to date, with a summary of the representative ones provided

in Table 1.
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Table 1. QML algorithms.

QML Algorithms References Description

QSVM (Quantum Support
Vector Machine)

[25,26]
By utilizing Grover’s algorithm for optimization, it is possible to reduce time
complexity and find optimal solutions at a faster pace in large datasets.

Q Linear Regression [27]
Quantum linear regression is the quantum version of classical linear
regression algorithms, modeling relationships between data points to
perform predictions.

Q Least Squares [28]

The Harrow–Hassidim–Lloyd (HHL) algorithm enables the rapid solution of
linear equations, offering an exponential speed advantage over classical
methods. By employing the HHL algorithm, we aim to efficiently solve
linear systems, significantly improving computation speed while
maintaining high accuracy in regression analysis.

QPCA (Quantum Principal
Component Analysis)

[29]

Quantum Principal Component Analysis (QPCA) is the quantum version of
Principal Component Analysis (PCA), a technique for identifying the
principal components of data to reduce dimensions. QPCA can identify key
patterns in large datasets more rapidly than classical PCA.

Q k-Means [30]
The Q k-means algorithm is an unsupervised learning algorithm that groups
data points into clusters, enhancing efficiency through Grover’s algorithm,
allowing for fast clustering in large datasets.

Q K-Median [31]
This algorithm finds groups of data points centered around the centroid of
each cluster, quickly determining cluster medians using Grover’s
search algorithm.

QKNN (Quantum
k-Nearest Neighbors)

[32]

The k-Nearest Neighbors (k-NN) algorithm finds the nearest k neighbors to
determine the class of a data point. Quantum k-NN (QKNN) maximizes
efficiency by leveraging the parallel processing capabilities of
quantum computing.

Q Perceptron Models [33]
The perceptron, the basic unit of neural networks, addresses binary
classification problems. The quantum perceptron uses quantum states and
gates to perform learning and classification.

Q Neural Networks [34]
Various neural network architectures, including multilayer perceptrons, are
implemented on quantum computers to enhance learning and
prediction performance.

Q Decision Tree [35]

This approach leverages the strengths of quantum computing to provide
faster learning rates and greater data processing capabilities. Quantum
decision trees generate classification rules based on data attributes, utilizing
quantum states and gates for faster classification.

Q Bayesian Network [36]
Q-CBM gives computational benefits for solving complex probabilistic
problems such as bike demand forecasting.

Circuit-centric
Quantum Classifiers

[37]

Circuit-centric quantum classifiers are classification algorithms based on
quantum circuits. They employ Parameterized Quantum Circuits (PQCs) to
learn patterns in data and perform classifications. This approach
encompasses Variational Quantum Algorithms (VQAs) and can be applied
to various machine learning problems.

Deep Reinforcement
Learning

[38]

Quantum deep reinforcement learning, the quantum version of
reinforcement learning, allows agents to learn through interaction with their
environment. Quantum reinforcement learning utilizes quantum parallelism
and is stated to enable faster and more efficient learning.

There is still no consensus on whether quantum machine learning (QML) algorithms

outperform traditional machine learning algorithms. For example, existing experiments

indicate that Quantum SVM exhibits approximately 5% higher accuracy than traditional

SVMs when evaluated on benchmark datasets such as Iris, Rain, Custom, and Adhoc [39].

However, in datasets with significant class imbalance, Quantum SVMs have been reported

to show little performance difference compared to traditional methods like XGBoost or Ran-
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dom Forest in terms of accuracy or AUC [9]. Notably, this study focused solely on Quantum

SVMs and did not explore a broader range of quantum machine learning algorithms.

Furthermore, the performance of quantum algorithms can be optimized based on

the quantization methods and the techniques used for entangling qubits, yet the specific

effects of these variations on performance have not been clearly articulated. Additionally,

the number of qubits used in quantum algorithms influences their performance [40] and

concurrently affects the computation time. Therefore, optimizing performance requires

consideration of both predictive accuracy and the number of qubits.

Moreover, the integration of quantum computing with multi-strategy fusion has

enhanced the performance of the dung beetle optimization algorithm (DPO), contributing

to improvements in global exploration and optimization capabilities in complex engineering

problems [23,24]. However, there have been few proposals for QML optimized specifically

for addressing class imbalance issues.

2. Materials and Methods

2.1. Materials

2.1.1. Implementation Environment

For the experiments, an AI GPU server, specifically the Nvidia Tesla A100 (Seoul,

Korea), was utilized. This server is equipped with a 32-core CPU, a single Nvidia Tesla

A100 GPU, 256 GB of RAM, and 5.76 TB of storage (See Figure 3). Additionally, various

backends available on the IBM Quantum Platform (including actual quantum computers

and quantum simulators) were employed to execute the algorithms. In particular, IBM

Qiskit was used for simulation, and the performance was compared with classical models.

The results confirmed that the quantum approach could enhance computational speed

while achieving nearly similar accuracy in handling complex probabilistic calculations [23].

ff

Figure 3. AI GPU server (Nvidia Tesla A100).

2.1.2. Input Dataset

To apply QML, an imbalanced dataset consisting of imported food inspection data was

utilized. This dataset is primarily composed of documentation related to imported foods,

which is used to determine whether the products pose a risk. The number of identified risk

cases is considerably low compared to the total number of cases, indicating a significant

data imbalance. The analysis focused particularly on the dataset concerning seasoning

products, which are of high consumer interest within the Food and Drug Administration

(FDA) datasets.

Before comparing Classical Support Vector Machine (SVM) and Quantum Support

Vector Machine (QSVM), additional preprocessing steps were undertaken. Initially, the

seasoning product dataset was composed of 45 features; however, dimensionality reduction
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techniques such as Principal Component Analysis (PCA) and Multiple Correspondence

Analysis (MCA) were applied to reduce the features to four. This reduction was made

with consideration for quantum speed. Additionally, for the training and evaluation of

the Classical SVM, a test dataset comprising 5881 instances and a sampled subset of 150

instances was used. This approach aimed to compare performance based on dataset size.

The properties of the dataset are summarized in Table 2.

Table 2. Information of food dataset.

Dataset
Number

of Classes

Number of Features
Train Size Test Size Total Size

Imbalance Ratio
for Dataset

Before PCA After PCA True Ratio False Ratio

Seasoning
products

2 45 4 43,047 5881 48,928 98.5% 1.5%

2.2. Method

This study proposes a quantum machine learning (QML) approach suitable for ad-

dressing the class imbalance problem. Unlike classical machine learning methods, quantum

machine learning utilizes unitary operations (Operation U) to transform classical state vec-

tors
→
x into quantum state

∣∣∣φ
(
→
x
)〉

, enabling operations in quantum space [40]. Given these

unique operations, particularly the quantum properties of superposition and entangle-

ment, it is hypothesized that QML can effectively capture the characteristics of imbalanced

datasets. Furthermore, to finely analyze the features of imbalanced data, it is deemed

necessary to have algorithms that can adjust quantum circuits according to specific prob-

lems, rather than relying on pre-designed quantum gate algorithms (e.g., Shor’s algorithm,

Grover’s algorithm) [41].

2.2.1. Model Selection

Quantum Support Vector Machines (QSVMs) and Variational Quantum Classifiers

(VQCs) are among the most widely used supervised learning-based quantum machine

learning algorithms [42]. The reason for selecting the Variational Quantum Classifier (VQC)

algorithm is as follows. First, by utilizing Parameterized Quantum Circuits, it can be

specifically designed for particular problems [41], making it a flexible algorithm. This type

of algorithm possesses a flexible structure that allows for the adjustment of parameters

determined through learning [43]. Mathematically, the Variational Quantum Classifier

(VQC) can be represented as f

(
→
x ;

→
θ

)
=

〈
Ẑ1

〉
, . . . ,

〈
Ẑm

〉
. In this framework, the input

data
→
x is utilized to prepare the initial state, and measurements along the Z-axis of the

m qubits are performed to optimize the parameters θ during the training process. These

measurement values are denoted as
〈

Ẑk

〉
, representing the expectation value of the Z-axis

for the k-th qubit. Consequently, the vector of expectation values
〈

Ẑ1

〉
, . . . ,

〈
Ẑm

〉
serves as

the foundation for the model’s predictions.

This transformation process, which involves finely tuning the parameters of quantum

gates to convert the state of qubits to specific angles or values, is believed to yield optimal

results. In contrast, the Quantum Support Vector Machine (QSVM) applies the principles of

classical SVMs within the framework of quantum computing, focusing more on establishing

decision boundaries in quantum space rather than on parameter optimization.

Secondly, at the current technology level of intermediate-scale quantum computers

(NISQ: Noisy Intermediate-Scale Quantum), it is essential to apply algorithms that can

produce results without additional error correction. The VQC is known to reduce errors

by calculating a cost function through repeated measurements, integrating noise data into
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the optimization calculations [42]. Likewise, the QSVM may be more susceptible to errors

compared to the VQC model; as the number of qubits and operations increases, the required

resources grow, and without supporting error correction based on circuit complexity, it

may not achieve proper performance. Therefore, this study has selected the VQC.

2.2.2. Variational Quantum Classifier

The Variational Quantum Classifier (VQC) is a type of quantum machine learning

(QML) algorithm that is used to distinguish significant events of interest from background

events in physics [42]. For example, in a physics experiment where one aims to identify spe-

cific traces of a particle, the VQC can effectively solve classification problems by accurately

identifying the desired event (particle detection) from the background events.

Technically, the VQC calculates the objective function of a quantum circuit through

quantum computing while leveraging classical computers to compute the circuit parame-

ters. This parameter calculation enables the identification of the minimum or maximum

values of the objective function. Mathematically, this is expressed as M(yi, ŷi), where

M represents the objective function. The actual value yi and the predicted value ŷi are

computed through the quantum machine learning model to minimize or maximize this

objective function.

In this context, the predicted value ŷi is derived from the previously described function

f

(
→
x ;

→
θ

)
. The post-processing stage involves transforming the computational results of

the quantum circuit into interpretable probability values or prediction outcomes (i.e.,

the final class of the target variable in classification tasks). This can be expressed as

ŷi = g

(
f

(
→
x ;

→
θ

))
, where the function g is applied to the function f during the post-

processing. Ultimately, the objective function incorporates the natural logarithm to compute

probabilities, enabling stable learning for the algorithm. This process can be mathematically

represented as

M(yi, ŷi) = −(yi log(ŷi) + (1 − yi) log(1 − ŷi))

Additionally, to convert the output into values between 0 and 1 during the post-

processing stage, the function g

(
f

(
→
x ;

→
θ

))
=

1+ f

(
→
x ;

→
θ

)

2 is applied.

The structure of the VQC model, as illustrated in Figure 4, generally consists of three

main components: data encoding, the Variational Quantum Circuit, and measurement.

ff

ℳ(𝑦௜ , 𝑦పෝ) 𝑀𝑦௜ 𝑦పෝ
𝑦పෝ𝑓൫𝑥⃗; 𝜃⃗൯
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ℳ(𝑦௜ , 𝑦పෝ) = −(𝑦௜ log(𝑦పෝ) + (1 − 𝑦௜) log(1 − 𝑦పෝ))

𝑔 ቀ𝑓൫𝑥⃗; θሬ⃗ ൯ቁ = ଵା௙൫௫⃗;஘ሬሬ⃗ ൯ଶ

 
Figure 4. Illustration of VQC algorithm.
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2.2.3. Feature Map Modeling

Quantum circuits are divided into two major stages: the Feature Map and the Varia-

tional Circuit [44]. The core concept of the quantum Feature Map is derived from traditional

machine learning kernel techniques [45]. By applying a kernel-based Feature Map, special

operations are applied to the initial state, significantly expanding the dimensionality of the

computational space, which allows for the identification of hyperplanes that can separate

data in the new space [42].

The primary goal of the Feature Map is to encode classical features present in the

dataset into the Hilbert space where the quantum system operates [39]. We apply the

Feature Map f

(
→
x ;

→
θ

)
to the initial state |0〉, which can be expressed mathematically as

follows, illustrating how the Feature Map operates:

∣∣∣∣ψ
(
→
x ;

→
θ

)〉
:= f

(
→
x ;

→
θ

)∣∣∣∣0
〉

Various embedding techniques exist for the transformation from classical to quantum

states [46], and the Feature Maps available for use in the Variational Quantum Circuit (VQC)

algorithm include ZFeatureMap, ZZFeatureMap, and PauliFeatureMap. The ZFeatureMap

encodes data by rotating it around the Z-axis, reflecting the state of the qubit through the

input data via the Z-axis rotation gate Rz(θ). This method is primarily used for encoding

simple linear relationships in the data and consists of single-qubit rotation gates, which do

not require entanglement. The ZZFeatureMap rotates around the Z-axis while also adding

entanglement (ZZ interaction) between the qubits. This interaction can be expressed in

the form RZZ

(
θiθj

)
, for qubits i and j. As it reflects interactions between data points, it

is suitable for problems with nonlinear characteristics. The PauliFeatureMap employs

rotation gates RX, RY, RZ for encoding. This method can create highly complex quantum

states by including various rotations and entanglements between qubits. This method

leverages multiple Pauli operators, offering greater flexibility than the Z and ZZ Feature

Maps for encoding complex data correlations, making it well suited for non-trivial datasets.

2.2.4. Variational Circuit Modeling

Once embedded into quantum states from classical states, these quantum states can

undergo further transformations within a Variational Circuit, as expressed by the follow-

ing equation [39]. This illustrates the process by which the learnable function V(θ) is

transformed through a set of quantum gates UΦ.

| ψ
(
→
x , θ

)〉
:= V(θ)UΦ(x) | 0⟩

By defining the quantum gates that compose the quantum circuit, as exemplified

in Figure 5, we can assert that this is equivalent to specifying the permitted definitions.

The reason for using four qubits (q0, q1, q2, q3) is that the number of qubits corresponds

to the number of input variables X. This can be represented mathematically as follows:

the operations of rotating the i-th qubit around the X-, Y-, and Z-axes are denoted by the

RXi
, RYi

, RZi
, respectively. Furthermore, the CNOT gate operates between the i-th qubit and

the subsequent qubit, which is (i + 1)(mod n). Consequently, using the circuit constructed

from the set of permitted gates U, we can formulate the learnable circuit V(θ) within the

aforementioned Parameterized Quantum Circuit.

U =
n⋃

i=1

{
RXi

, RYi
, RZi

, CNOTi,(i+1)(mod n)

}
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Figure 5. Illustration of Variational Quantum Circuit.

Among various quantum circuits, four learnable circuits provided by the Qiskit library

include PauliTwoDesign, RealAmplitudes, EfficientSU2, and TwoLocal. For this study,

we selected RealAmplitudes, as it is primarily used for developing classification circuits

and is more efficient than the others [47]. To facilitate data encoding, we employ the Pauli

Feature Map, enabling the input data to be operable on the quantum circuit. Operations

are performed through qubit rotations using Pauli operators (e.g., RZ, RY operators). An

example of a circuit designed using RealAmplitudes is shown in Figure 5.

It is noteworthy that RealAmplitudes applies RY rotations to all qubits by default

and establishes entanglement through the “CNOT” gate. In the circuit depicted below,

we selected the Linear entanglement pattern from three options (Linear, Circular, Full)

to determine the level of entanglement. The VQC algorithm follows the steps of data

encoding, Variational Quantum Circuit, and measurement. During the data encoding step,

Hadamard gates are applied to create superposition states, initializing the quantum state

appropriately. Subsequently, Pauli Feature Map is used to map the data into quantum states.

The quantum circuit then employs learnable RY gates, and CNOT gates are introduced to

establish entanglement between qubits, allowing the circuit to capture and analyze more

complex features of the data.

2.2.5. Measurement

Next, the measurement phase evaluates the likelihood of classifying the Y feature

as either True or False. This process involves extracting numerous samples from various

potential scenarios and calculating their average values. The measurement is conducted

through the preparation of the initial state, the training of the parameters
→
θ , and the

subsequent output of the Y variable from the trained circuit. To accomplish this, it is

necessary to incorporate a measurement equation into the design of the Variational Circuit,

which can be mathematically expressed as follows [39]. It is noteworthy that, since the Y

variable in the food safety dataset pertains to a binary classification problem, a Boolean

function is employed in the equation to reflect this characteristic.

f : {0, 1}q → {−1,+1}

z 7→ ỹ

This equation signifies the application of a function f to determine which class a given

measured state z belongs to. By utilizing the function f, the output is returned as either

−1 or +1, allowing us to ascertain the class membership based on the returned value.
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Figure 6 shows an example of measuring the probability using four qubits (i.e., variables).

It visualizes the results obtained from measuring the first row of data from the actual test

dataset using a quantum simulator. Each qubit state’s probability represents the likelihood

of that particular state being measured. For instance, if a specific classical binary state,

such as 0001 in Figure 5, has the highest probability, it implies that this state significantly

contributes to the classification outcome. This measurement process reflects the probability

distribution over different quantum states, indicating the likelihood that the output data,

derived from the quantum circuit, belong to a particular class. Consequently, classification

decisions can be made based on the measured probabilities. To ensure the reliability of

these decisions, the resilience level was set to 2, the maximum setting for error mitigation.

This helps minimize the impact of quantum noise, enhancing the model’s robustness when

deployed on real quantum hardware.

ff

tt

 

ff

ffi tt

−

θ tz
tt

ff

Figure 6. Example of measurement using qubits.

2.2.6. Optimization

After the measurement phase, the parameters of the Variational Quantum Algorithm

(VQA) circuit are optimized using classical optimization algorithms [42]. This process

involves calculating the values of the cost function (or loss function) based on the measured

results to determine the minimum. For this purpose, the Constrained Optimization by

Linear Approximations (COBYLA) method was utilized to linearly approximate the cost

function and constraints [42,48]. COBYLA allows for handling the problem’s constraints in

two different ways, ensuring a harmonious optimization process.

It is worth noting that in COBYLA, the parameters that can be specified include the

maximum number of iterations (maxiter) and the tolerance level. The maximum number of

iterations specifies the highest allowable iterations for optimization, while the tolerance

represents the convergence criterion for the optimization process.

In this experiment, a value of 100 was set for the maximum number of iterations

to avoid insufficient optimization due to too few iterations and the risk of overfitting or

excessive execution time from overly extensive optimization. The tolerance was maintained

at its default value of tol = 1 × 10−6. Below, Figure 7 illustrates an actual example of the

decreasing loss values during the optimization of the VQC algorithm through 100 iterations.

This indicates that, using the COBYLA optimizer, the rotation angles, which are the param-

eters θ of the RY gate in the RealAmplitudes ansatz, are optimized through the learning

process. In a quantum setting, cross-entropy loss serves as a probabilistic framework for
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optimizing classification performance by minimizing the difference between predicted and

actual probability distributions. By weighting the loss function to assign higher penalties

to the minority class, it is possible to balance the contributions of minority and majority

classes, thereby addressing class imbalance and improving overall model performance.

RY(θ) =


cos

(
θ
2

)
−sin

(
θ
2

)

sin
(

θ
2

)
cos

(
θ
2

)



𝑅𝑌(𝜃) = ൦𝑐𝑜𝑠 ൬𝜃2൰ − 𝑠𝑖𝑛 ൬𝜃2൰𝑠𝑖𝑛 ൬𝜃2൰ 𝑐𝑜𝑠 ൬𝜃2൰ ൪

 

ff

Figure 7. Example of loss function.

2.2.7. Evaluation Metrics

For measuring the performance of the machine learning model, Recall was selected as

the evaluation metric. In the context of imbalanced datasets, Recall is an appropriate metric

for assessing how well the model identifies the relevant cases of interest, particularly the

minority class. Recall has been particularly useful in scenarios where the consequences of

misclassification or erroneous predictions pose significant risks [12,49]. Additionally, to

compute performance metrics for imbalanced datasets, the Macro Average approach was

adopted [50]. The Macro Average method calculates the arithmetic mean of the performance

metrics for True and False predictions, ensuring that both True and False classes must have

high predicted probabilities for the overall performance to be considered high, especially

in the presence of class imbalance.

3. Results

3.1. Model Formulation

Next, Quantum Encoding was performed, during which a Feature Map was specified

for quantization. The encoding was executed for different types of Feature Maps (Z,

ZZ, Pauli FeatureMap), while varying the Feature Dimension (number of features), the

number of iterations (the depth of the quantum circuit), and operators (entanglement,

circuit transformations) to explore the optimal model.
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Subsequently, the performance was evaluated. This involved first conducting a Quan-

tum Decoding operation, followed by measurements and the conversion of the results

obtained from the quantum state into classical data. After this, the Model Optimization

phase was undertaken, which involved specifying the Feature Maps that yielded the best

performance. As a result, the Pauli Feature Map, identified as having superior performance

through the aforementioned processes, underwent hyperparameter tuning to optimize

its effectiveness.

3.2. Performance Evaluation

To evaluate the performance of the proposed quantum algorithm, a comparison was

made with traditional machine learning algorithms and the most commonly used Quan-

tum Variational Methods (QVMs) in Quantum Machine Learning (QML). The traditional

machine learning algorithms used for comparison included Random Forest, XGBoost, Extra

Trees, Gradient Boosted Trees, AdaBoost, Support Vector Machine, Ensemble Model, and

Stacking Model.

The results, as shown in Table 3, indicate that the quantum algorithm significantly

improved the Recall metric compared to traditional algorithms. Additionally, among the

Feature Maps used in QML, the Pauli Feature Map demonstrated the highest performance.

This suggests that the Pauli Feature Map exhibits greater flexibility compared to other

Feature Maps and is capable of representing complex patterns and interactions effectively.

Table 3. Performance comparison (food dataset).

Classical/Quantum Model
Precision Recall F1 Score

Time (m)
(Macro Avg.) (Macro Avg.) (Macro Avg.)

Classical (1) Random Forest 0.51 0.6 0.44 0
Classical (2) XGBoost 0.49 0.44 0.46 4
Classical (3) Extra Tree 0.51 0.62 0.45 0
Classical (4) GBT 0.49 0.4 0.44 0
Classical (5) AdaBoost 0.49 0.4 0.44 0
Classical Ensemble (1), (2), (3), (4), (5) 0.5 0.54 0.38 0
Classical Stacking (1), (2), (3), (4) 0.52 0.68 0.51 0
Classical SVM 0.49 0.48 0.49 0
Quantum
Simulator

QSVM 0.53 0.87 0.47 134

Quantum
Computer

VQC 0.52 0.87 0.47 7

Moreover, as indicated in Table 4, even when different Pauli Gates (YZ, ZY, XYZ) are

applied using the QSVM algorithm, the performance can remain consistent due to the

extensive learning achieved from the data. It is also observed that as the complexity of the

Pauli Gates increases, the training time lengthens. Furthermore, in the case of certain Pauli

Gates, poor gate selection can lead to a decrease in performance, as demonstrated by the

results of applying the Pauli X Gate.

This study also explored the impact of traditional imbalance mitigation methods on

model performance by conducting additional tests with different RandomState values for

dataset sampling from the Food and Drug Administration (FDA). Our results showed

that datasets that were difficult to learn consistently yielded low Recall scores across both

classical and quantum algorithms (e.g., RandomState-30, RandomState-70). However, the

Variational Quantum Classifier (VQC) demonstrated a distinct advantage in handling

imbalanced datasets by manipulating and transforming quantum states.
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Table 4. Performance results of quantum circuits based on Pauli Gate combinations.

Pauli Gate
Precision Recall F1 Score

Runtime (s)
(Macro Avg) (Macro Avg) (Macro Avg)

X 0.49 0.50 0.50 383.89
Y 0.52 0.85 0.46 681.67
Z 0.52 0.85 0.46 585.57

XY 0.52 0.85 0.46 1012.55
YX 0.51 0.61 0.44 1013.30
YY 0.51 0.60 0.43 1043.99
YZ 0.53 0.87 0.47 879.13
ZY 0.53 0.87 0.47 882.51
XZ 0.52 0.85 0.46 831.37
ZX 0.51 0.61 0.44 831.06

XYZ 0.53 0.87 0.47 1126.72

In one instance, optimization of the VQC algorithm, as shown in Figure 8, led to

exceptional predictive performance despite significant class imbalance. Specifically, the

VQC accurately identified all potentially hazardous food items, achieving a perfect Recall

score in this case. By systematically experimenting with a variety of hyperparameter

configurations, including adjustments to the Pauli Feature Map repetitions, the degree

of qubit entanglement, and the number of layers in the quantum Variational Circuit, we

were able to pinpoint conditions that maximized performance. For instance, in a test set

of 150 samples—where 148 were non-hazardous seasonings and only 2 were hazardous

items—the VQC model achieved a Recall of 0.75 for the non-hazardous class and 1.00 for

the hazardous class, resulting in an excellent Macro Average score.

ff

ffi

 

ffi

Figure 8. Optimization condition exploration of the VQC algorithm.
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These findings underscore the VQC’s capability to maintain high performance on

highly imbalanced datasets without relying on conventional resampling techniques, offering

a compelling alternative to traditional machine learning approaches for anomaly detection.

As visualized in Figure 9, the prediction results of the test dataset were represented in a

4 × 4 matrix format using four variables. Despite the apparent difficulty in determining the

decision boundary for the minority class of hazardous food items (represented by red dots),

the VQC algorithm, under optimized conditions, was able to interpret the characteristics of

the dataset and make accurate predictions.

 

Figure 9. Illustration of feature space: 4 × 4 matrix.

Table 5 demonstrates the significant impact of the SMOTE on improving model per-

formance in imbalanced datasets. Notably, the VQC model consistently outperforms both

classical SVMs and QSVMs, achieving a remarkable Recall of 0.98 without the SMOTE,

indicating its robustness in handling imbalanced data without the need for resampling.

While the QSVM shows substantial improvement with the SMOTE, particularly under

RandomState 50, its performance declines noticeably without the SMOTE, highlighting

its dependency on oversampling techniques. The classical SVM, though benefiting from

the SMOTE, remains inferior to quantum models across all configurations. These findings

underscore the superior capability of quantum models, particularly the VQC, in addressing

data imbalance, even in the absence of resampling techniques like the SMOTE.
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Table 5. Performance comparison with and without SMOTE.

Category Model RS *-30 RS *-40 RS *-50 RS *-60 RS *-70

Recall (Macro Avg.)

SMOTE

Classical SVM 0.60 0.49 0.72 0.47 0.48
Quantum QSVM 0.72 0.86 0.90 0.88 0.54
Quantum VQC 0.78 0.91 0.90 0.90 0.77

F1 Score (Macro Avg.)

Classical SVM 0.57 0.49 0.58 0.48 0.48
Quantum QSVM 0.47 0.44 0.50 0.45 0.45
Quantum VQC 0.54 0.49 0.49 0.48 0.39

Recall (Macro Avg.)

Non-SMOTE

Classical SVM 0.50 0.50 0.50 0.50 0.50
Quantum QSVM 0.50 0.50 0.50 0.50 0.50
Quantum VQC 0.71 0.98 0.89 0.96 0.73

F1 Score (Macro Avg.)

Classical SVM 0.49 0.50 0.49 0.50 0.49
Quantum QSVM 0.49 0.50 0.50 0.50 0.49
Quantum VQC 0.45 0.60 0.49 0.55 0.50

* RS: RandomState.

Ultimately, the key to optimizing the performance of the VQC algorithm, as observed

up to this point, lies in the data encoding method (preparation for using quantum states),

the number of repetitions, the degree of entanglement (Linear, Circular, Full), and the

number of repetitions of these entanglements. Furthermore, the rotation of qubits through

Pauli Gates plays a critical role in learning important features and patterns in the data.

3.3. Robustness Test

Through the analysis of the Food and Drug Administration (FDA) dataset, it was

determined that the quantum algorithm exhibits superior performance by optimizing

the Feature Map without relying on resampling methods to address data imbalance. To

evaluate the robustness of these results, several datasets were used to repeat the same

experiments. First, the Bank Customers dataset, which is related to a marketing campaign

(phone calls) by a Portuguese bank, was analyzed. This dataset predicts whether customers

subscribe to term deposits, with an imbalance ratio of True at 85.4% and False at 14.6%. The

dataset was sourced from Kaggle and is based on a study on predicting bank telemarketing

success based on data [51]. As shown in Table 6, the performance comparison revealed

that, with the application of the SMOTE, classical algorithms outperformed in terms of

the Recall metric, while the quantum algorithm demonstrated higher performance in the

Non-SMOTE scenario. Furthermore, regarding the F1 Score metric, classical algorithms also

performed better with the SMOTE applied, whereas the quantum algorithm outperformed

classical methods in only one of the datasets in the Non-SMOTE condition.

Table 6. Performance comparison (Bank Customers dataset).

Category Model
Recall (Macro Avg.) F1 Score (Macro Avg.)

RS *-100 RS *-300 RS *-100 RS *-300

SMOTE

Classical SVM 0.89 0.89 0.75 0.74
Quantum QSVM 0.84 0.86 0.74 0.74
Quantum VQC 0.84 0.79 0.78 0.65

Non-
SMOTE

Classical SVM 0.50 0.60 0.47 0.62
Quantum QSVM 0.58 0.55 0.60 0.56
Quantum VQC 0.77 0.64 0.79 0.65

* RS: RandomState.
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Next, experiments were conducted using the Credit Card Fraud dataset. This dataset

is related to the detection of fraudulent credit card transactions by a credit card company,

predicting charges for items that the customer did not purchase. The dataset exhibits a

severe imbalance, with True values at 99.8% and False values at 0.2%. The dataset was

sourced from Kaggle and is based on the study BankSim: A bank payment simulator for

fraud detection [52]. As shown in Table 7, it was observed that even without the application

of the SMOTE, the quantum algorithm outperformed the SMOTE-applied dataset in terms

of both Recall and F1 Score. This further confirms the potential effectiveness of the quantum

algorithm in scenarios involving highly imbalanced datasets.

Table 7. Performance comparison (Credit Card Fraud dataset).

Category Model
Recall (Macro Avg.) F1 Score (Macro Avg.)

RS *-10 RS *-20 RS *-10 RS *-20

SMOTE

Classical SVM 0.50 0.84 0.50 0.90
Quantum QSVM 0.95 0.91 0.53 0.52
Quantum VQC 0.90 0.88 0.49 0.58

Non-
SMOTE

Classical SVM 0.50 0.50 0.50 0.50
Quantum QSVM 0.50 0.50 0.50 0.50
Quantum VQC 0.99 0.95 0.69 0.58

* RS: RandomState.

4. Discussion

The issue of data imbalance is a longstanding challenge that undermines the per-

formance of machine learning models, driving the development of both data-driven and

algorithm-driven solutions. While data-driven approaches such as resampling are straight-

forward, they often introduce discrepancies, leading to potential information loss or dis-

tortion from the original dataset, which in turn can negatively affect the sustainability of

model performance. As a result, there is a growing need for methods that address data

imbalance without altering the dataset itself.

This study presents a novel algorithmic solution to the data imbalance problem using

optimized quantum machine learning (QML). By encoding multiple bits of information

into qubits and leveraging quantum entanglement via quantum circuits, QML effectively

processes and optimizes imbalanced datasets to produce accurate predictions. The flexibil-

ity of QML, specifically in terms of the quantization and entanglement methods employed,

allows for fine-tuned optimizations that outperform conventional techniques.

Specifically, the Pauli decomposition expresses a Hamiltonian as a linear combination

of Pauli matrices (e.g., X, Y, Z), which form a basis for Hermitian matrices, and is funda-

mental to quantum computing tasks [53], such as enhancing classification performance

during the encoding process. Additionally, the alignment of rotation axes with the data

distribution plays a pivotal role in improving classification performance [54]. For instance,

when data points are predominantly distributed along the x-axis, X gates are better suited

as they align with the intrinsic structure of the data, whereas Y gates are more effective

for data centered around the y-axis. Therefore, the ability to amplify class differences

through axis rotation offers a critical design principle for VQCs, especially in tasks where

separability is a key determinant of performance. Visualizations of the Bloch sphere before

and after rotation during encoding procedures using the Pauli Feature Map, as shown in

Figure 10, illustrate the effects of these rotations, offering a clear understanding of how

various rotation strategies impact the distribution of quantum states and their separability.
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Figure 10. Illustrations of Bloch sphere visualizations before and after rotation through encoding.

Through extensive experimentation, the Variational Quantum Classifier (VQC) was

identified as the most effective QML approach for addressing class imbalance. Remarkably,

the optimized QML consistently outperformed classical machine learning models that relied

on data-driven methods like the widely used SMOTE (Synthetic Minority Oversampling

Technique). Notably, QML achieved superior predictive performance without any need

for resampling techniques, maintaining the integrity of the original datasets. This finding,

demonstrated across both real-world and benchmark datasets, suggests that quantum

machine learning can offer a more robust and efficient solution to the class imbalance

problem than traditional machine learning approaches.

5. Conclusions

The QML community has been actively exploring potential application cases across

real-world problems, including diverse engineering challenges [55] and healthcare [56].

In line with these efforts, this study underscores the utility and potential of QML by

demonstrating its ability to effectively address data imbalance using real-world datasets,

rather than augmented by synthetic data. This contribution is significant for the applied

machine learning research community, which has a pressing need for successful, practical

case studies.

Although various studies have reported inconsistent results regarding the advantages

of QML over classical machine learning methods [57–59]—largely due to the current pre-

development phase of quantum computing—the potential for QML to deliver superior

performance through exponentially faster computations remains an unproven yet antic-

ipated breakthrough [60]. Our findings demonstrate that QML can outperform classical

methods in addressing class imbalance without the need for resampling techniques, thus

expanding the practical applicability of QML in handling real-world datasets characterized

by significant imbalance.

While this research has undergone extensive validation using both real and benchmark

datasets, further validation across a wider variety of real-world datasets is essential to fully

confirm the utility of QML in such scenarios. Moreover, the optimization process in QML

lacks a mathematically rich explanation for why certain quantum circuit states outperform
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others. Addressing this gap by enhancing the explainability of QML optimizations will

further solidify the credibility and applicability of this promising approach.
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