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Abstract: The class imbalance problem presents a critical challenge in real-world applica-
tions, particularly in high-stakes domains such as healthcare, finance, disaster management,
and fault diagnosis, where accurate anomaly detection is paramount. Class imbalance often
disrupts the inherent symmetry of data distributions, resulting in suboptimal performance
of traditional machine learning models. Conventional approaches such as undersampling
and oversampling are commonly employed to address this issue; however, these methods
can introduce additional asymmetries, including information loss and overfitting, which
ultimately compromise model efficacy. This study introduces an innovative approach lever-
aging quantum machine learning (QML), specifically the Variational Quantum Classifier
(VQC), to restore and capitalize on the symmetrical properties of data distributions without
relying on resampling techniques. By employing quantum circuits optimized to mitigate
the asymmetries inherent in imbalanced datasets, the proposed method demonstrates
consistently superior performance across diverse datasets, with notable improvements in
Recall for minority classes. These findings underscore the potential of quantum machine
learning as a robust alternative to classical methods, offering a symmetry-aware solution
to class imbalance and advancing QML-driven technologies in fields where equitable
representation and symmetry are of critical importance.

Keywords: class imbalance problem; quantum machine learning; variational quantum
classifier; resampling method; robustness test

1. Introduction

The class imbalance problem, coupled with high dimensionality, remains a critical
challenge in applying machine learning across various real-world domains, including
medical diagnosis [1], finance [2], disaster management [3], telecommunications network
management [4], and medical diagnosis [5]. Class imbalance arises when the target class is
significantly underrepresented compared to other classes, which introduces bias in model
training and results in degraded predictive performance, particularly through an increase
in false negatives (FNs). Although data resampling techniques, such as undersampling and
oversampling, are widely used to mitigate this issue, they come with trade-offs. Under-
sampling leads to information loss, while oversampling, including advanced methods like
SMOTE [6], can introduce overfitting and still suffers from some degree of information loss.
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Algorithmic techniques such as cost-sensitive learning and thresholding adjust-
ments [7,8] offer alternative approaches but are limited by arbitrary thresholding and
the inherent challenges in balancing error types. More recently, quantum machine learning
(OML) has shown potential in addressing complex data patterns, yet its application to
class imbalance remains underexplored. While some studies report promising outcomes,
such as higher accuracy in Quantum Support Vector Machines (QSVMs), the performance
improvement for imbalanced datasets remains inconclusive [9].

In this study, we propose a novel approach to address class imbalance through quan-
tum machine learning, specifically utilizing Variational Quantum Classifiers (VQCs) op-
timized with quantum encoding and decoding techniques. Our experimental results,
conducted on real-world imbalanced datasets, consistently demonstrate that quantum
models can outperform traditional machine learning methods without the need for resam-
pling techniques. Through repeated tests on multiple benchmark datasets, we highlight the
robustness and potential of QML in resolving class imbalance, offering new directions for
improving prediction performance in domains where high precision is critical.

1.1. Class Imbalance Problem

Class imbalance problem refers to the situation where instances of a particular class are
significantly fewer than those of other classes, which can negatively affect the performance
of classification algorithms [10]. Addressing class imbalance is crucial in tasks requiring
accurate and reliable predictions, such as fraud detection and medical diagnosis. Although
many methods have been devised to tackle the class imbalance issue, achieving stable
performance on high-dimensional and imbalanced datasets remains a challenging task.
Various approaches have been introduced to handle class imbalance, including data-level
solutions, algorithm-level solutions, and ensemble learning techniques.

Among data-level methods, random sampling is one of the most widely used tech-
niques for handling imbalanced data due to its ease of implementation and potential to
offer acceptable performance. In addition to random sampling, the SMOTE (Synthetic
Minority Oversampling Technique) generates synthetic data samples for the minority class
to balance the class distribution [11]. However, data-level approaches are not limited
to SMOTE [12], which experimentally evaluates various techniques to address the class
imbalance problem, highlighting the limitations of data-level approaches and emphasizing
the importance of selecting context-appropriate methods for performance improvement.
Their study compared several methods for augmenting minority class data and showed
that traditional methods like SMOTE do not always yield optimal performance, which can
vary depending on the context of the data.

Furthermore, in Zhang's [13] study, a GAN-based data augmentation method using the
WGAN-GP algorithm was employed to generate synthetic data samples with distributions
similar to real data in complex medical datasets, improving the model’s generalization.
Additionally, Xu [14] proposed the KNSMOTE algorithm, a refined version of the SMOTE,
which classifies the dataset using k-means clustering, removes easily misclassified boundary
samples and noisy samples, and generates more stable samples from imbalanced datasets
compared to other oversampling algorithms.

Algorithm-level approaches to handling data imbalance include techniques such as
assigning different costs to emphasize the minority class and adjusting prediction thresh-
olds to more easily classify samples that are likely to belong to the minority class. For
example, cost-sensitive learning assigns a higher cost to the minority class, training the
model to improve accuracy for that class [15]. In Esposito’s [16] study, the GHOST (Gener-
alized Threshold Shifting) approach optimized thresholds, resulting in better performance
than random undersampling of the dataset. Ensemble methods, which combine multiple
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classifiers, can mitigate prediction errors and bias. Notable examples include SMOTEBag-
ging [17] and SMOTEBoost [18]. Recently, there have been attempts to integrate imbalance
handling into ensemble methods like XGBoost to improve performance [19].

Despite advancements in handling data imbalance, traditional methods still face
challenges such as computational inefficiency and limited scalability. Moreover, advanced
pre-processing methods, such as the “Negative Branch” approach, offer improved model
performance in speech recognition tasks [20]. Quantum computing has been proposed as
a solution to overcome these limitations, sparking growing interest in whether quantum
machine learning can address the data imbalance problem and provide effective solutions.

1.2. Quantum Machine Learning

Quantum machine learning (QML) aims to leverage the unique characteristics of
quantum systems, specifically their ability to process information in atypical ways that
classical systems struggle to handle efficiently, with the goal of outperforming traditional
machine learning in terms of accuracy and inference time [21]. As a starting point to achieve
this goal, QML utilizes qubits, which scale data representation, storage, and processing
more effectively compared to classical bits. By encoding information into qubits and
employing quantum entanglement, QML forms quantum circuits and optimizes them
to achieve superior performance. In other words, QML maps classical data to quantum
mechanical states, detects patterns within the data, and processes these states through
quantum manipulation.

QML encompasses various tasks, including processing classical data using quantum
machine learning algorithms, processing quantum data using classical machine learning
algorithms, and processing quantum data with quantum machine learning algorithms [22].
However, this study focuses on processing imbalanced classical datasets using QML to
explore how it can provide superior solutions. Additionally, QML can be categorized
into four types of tasks: quantum simulation to improve existing simulations, enhanced
quantum computing to improve quantum computing itself, quantum machine perception
for sensing, and classical data analysis to enhance supervised and unsupervised learning.
Given the context of this study, we will focus on QML for classical data analysis.

The core of QML lies in converting classical data into quantum states for processing.
By utilizing quantum states, QML can learn patterns and make predictions more efficiently.
As shown in Figure 1, QML encodes the data into quantum states to take advantage of
quantum properties such as parallel computation and entanglement to enhance perfor-
mance, while conventional machine learning processes data directly through algorithms.
Moreover, quantum gates can accelerate matrix operations and reduce computational
complexity [23,24]. Therefore, QML requires an additional initial step of quantizing the
data, which is part of the state preparation process needed for analyzing data through
quantum circuits. Then, QML produces quantum data as output, which will be converted
back into classical data.

To utilize the benefits of quantum computation in QML, classical data must first be en-
coded into quantum states. Then, quantum circuits composed of quantum gates manipulate
and transform the quantum states, exploiting quantum phenomena such as superposition
and entanglement. Figure 2 illustrates an example of transforming data through a quantum
gate. Quantum gates like Hadamard, CNOT, and Pauli gates are fundamental components
for manipulating qubits in quantum computing. These gates apply unitary transformations,
preserving quantum information by keeping the total probability constant. A single qubit
state can be represented as a quantum state or vector, where coefficients « and 3 are proba-
bility amplitudes representing the likelihood of measuring the qubit in either the |0) or |1)
state. For instance, a Pauli X gate rotates the qubit 180 degrees about the x-axis on the Bloch
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sphere. By combining such transformations, more complex probability distributions can be
represented, ultimately enabling more efficient problem-solving in quantum algorithms.

Classical Quantum
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State Preparation
(Encoding)

—_— ]
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Quantum Data
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Figure 1. Comparison between conventional machine learning and QML.
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Figure 2. Example of data transformation through quantum gate.

As a result, quantum circuits play a pivotal role in quantum machine learning (QML)
algorithms. They are responsible for the fundamental transformations and computations
that enable QML to operate, and various quantum machine learning algorithms have been
developed and proposed utilizing these circuits. These algorithms aim to perform complex
calculations more efficiently than their classical counterparts by leveraging the unique
properties of quantum circuits. Numerous quantum machine learning algorithms have
been developed and proposed to date, with a summary of the representative ones provided
in Table 1.
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Table 1. QML algorithms.

QML Algorithms References Description
QSVM (Quantum Support [25,26] By utilizing Grover’s algorithm for optimization, it is possible to reduce time
Vector Machine) ! complexity and find optimal solutions at a faster pace in large datasets.

Q Linear Regression

Quantum linear regression is the quantum version of classical linear
[27] regression algorithms, modeling relationships between data points to
perform predictions.

Q Least Squares

The Harrow-Hassidim-Lloyd (HHL) algorithm enables the rapid solution of
linear equations, offering an exponential speed advantage over classical

[28] methods. By employing the HHL algorithm, we aim to efficiently solve
linear systems, significantly improving computation speed while
maintaining high accuracy in regression analysis.

QPCA (Quantum Principal
Component Analysis)

Quantum Principal Component Analysis (QPCA) is the quantum version of
Principal Component Analysis (PCA), a technique for identifying the
principal components of data to reduce dimensions. QPCA can identify key
patterns in large datasets more rapidly than classical PCA.

Q k-Means

The Q k-means algorithm is an unsupervised learning algorithm that groups
[30] data points into clusters, enhancing efficiency through Grover’s algorithm,
allowing for fast clustering in large datasets.

Q K-Median

This algorithm finds groups of data points centered around the centroid of
[31] each cluster, quickly determining cluster medians using Grover’s
search algorithm.

QKNN (Quantum
k-Nearest Neighbors)

The k-Nearest Neighbors (k-NN) algorithm finds the nearest k neighbors to
determine the class of a data point. Quantum k-NN (QKNN) maximizes
efficiency by leveraging the parallel processing capabilities of

quantum computing.

The perceptron, the basic unit of neural networks, addresses binary

Q Perceptron Models [33] classification problems. The quantum perceptron uses quantum states and
gates to perform learning and classification.
Various neural network architectures, including multilayer perceptrons, are
Q Neural Networks [34] implemented on quantum computers to enhance learning and

prediction performance.

This approach leverages the strengths of quantum computing to provide
faster learning rates and greater data processing capabilities. Quantum

Q Decision Tree (351 decision trees generate classification rules based on data attributes, utilizing
quantum states and gates for faster classification.
Q Bayesian Network [36] Q-CBM gives computational benefits for solving complex probabilistic

problems such as bike demand forecasting.

Circuit-centric
Quantum Classifiers

Circuit-centric quantum classifiers are classification algorithms based on
quantum circuits. They employ Parameterized Quantum Circuits (PQCs) to

[37] learn patterns in data and perform classifications. This approach
encompasses Variational Quantum Algorithms (VQAs) and can be applied
to various machine learning problems.

Deep Reinforcement
Learning

Quantum deep reinforcement learning, the quantum version of
reinforcement learning, allows agents to learn through interaction with their
environment. Quantum reinforcement learning utilizes quantum parallelism
and is stated to enable faster and more efficient learning.

[38]

There is still no consensus on whether quantum machine learning (QML) algorithms
outperform traditional machine learning algorithms. For example, existing experiments
indicate that Quantum SVM exhibits approximately 5% higher accuracy than traditional
SVMs when evaluated on benchmark datasets such as Iris, Rain, Custom, and Adhoc [39].
However, in datasets with significant class imbalance, Quantum SVMs have been reported
to show little performance difference compared to traditional methods like XGBoost or Ran-
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dom Forest in terms of accuracy or AUC [9]. Notably, this study focused solely on Quantum
SVMs and did not explore a broader range of quantum machine learning algorithms.

Furthermore, the performance of quantum algorithms can be optimized based on
the quantization methods and the techniques used for entangling qubits, yet the specific
effects of these variations on performance have not been clearly articulated. Additionally,
the number of qubits used in quantum algorithms influences their performance [40] and
concurrently affects the computation time. Therefore, optimizing performance requires
consideration of both predictive accuracy and the number of qubits.

Moreover, the integration of quantum computing with multi-strategy fusion has
enhanced the performance of the dung beetle optimization algorithm (DPO), contributing
to improvements in global exploration and optimization capabilities in complex engineering
problems [23,24]. However, there have been few proposals for QML optimized specifically
for addressing class imbalance issues.

2. Materials and Methods

2.1. Materials
2.1.1. Implementation Environment

For the experiments, an Al GPU server, specifically the Nvidia Tesla A100 (Seoul,
Korea), was utilized. This server is equipped with a 32-core CPU, a single Nvidia Tesla
A100 GPU, 256 GB of RAM, and 5.76 TB of storage (See Figure 3). Additionally, various
backends available on the IBM Quantum Platform (including actual quantum computers
and quantum simulators) were employed to execute the algorithms. In particular, IBM
Qiskit was used for simulation, and the performance was compared with classical models.
The results confirmed that the quantum approach could enhance computational speed
while achieving nearly similar accuracy in handling complex probabilistic calculations [23].

Figure 3. AI GPU server (Nvidia Tesla A100).

2.1.2. Input Dataset

To apply QML, an imbalanced dataset consisting of imported food inspection data was
utilized. This dataset is primarily composed of documentation related to imported foods,
which is used to determine whether the products pose a risk. The number of identified risk
cases is considerably low compared to the total number of cases, indicating a significant
data imbalance. The analysis focused particularly on the dataset concerning seasoning
products, which are of high consumer interest within the Food and Drug Administration
(FDA) datasets.

Before comparing Classical Support Vector Machine (SVM) and Quantum Support
Vector Machine (QSVM), additional preprocessing steps were undertaken. Initially, the
seasoning product dataset was composed of 45 features; however, dimensionality reduction
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techniques such as Principal Component Analysis (PCA) and Multiple Correspondence
Analysis (MCA) were applied to reduce the features to four. This reduction was made
with consideration for quantum speed. Additionally, for the training and evaluation of
the Classical SVM, a test dataset comprising 5881 instances and a sampled subset of 150
instances was used. This approach aimed to compare performance based on dataset size.
The properties of the dataset are summarized in Table 2.

Table 2. Information of food dataset.

I 1 Rati
Number of Features mbalance Ratio

Dataset 01;]2111;::; Train Size  Test Size  Total Size for Dataset
Before PCA After PCA True Ratio  False Ratio
Seasoning 45 4 43,047 5881 48,928 98.5% 1.5%
products
2.2. Method

This study proposes a quantum machine learning (QML) approach suitable for ad-
dressing the class imbalance problem. Unlike classical machine learning methods, quantum
machine learning utilizes unitary operations (Operation U) to transform classical state vec-
tors ¥ into quantum state |¢ 7)), enabling operations in quantum space [40]. Given these
unique operations, particularly the quantum properties of superposition and entangle-
ment, it is hypothesized that QML can effectively capture the characteristics of imbalanced
datasets. Furthermore, to finely analyze the features of imbalanced data, it is deemed
necessary to have algorithms that can adjust quantum circuits according to specific prob-
lems, rather than relying on pre-designed quantum gate algorithms (e.g., Shor’s algorithm,
Grover’s algorithm) [41].

2.2.1. Model Selection

Quantum Support Vector Machines (QSVMs) and Variational Quantum Classifiers
(VQCs) are among the most widely used supervised learning-based quantum machine
learning algorithms [42]. The reason for selecting the Variational Quantum Classifier (VQC)
algorithm is as follows. First, by utilizing Parameterized Quantum Circuits, it can be
specifically designed for particular problems [41], making it a flexible algorithm. This type
of algorithm possesses a flexible structure that allows for the adjustment of parameters
determined through learning [43]. Mathematically, the Variational Quantum Classifier

H A A
(VQC) can be represented as f (?, 9> = (Z1),...,{Zp). In this framework, the input

data x is utilized to prepare the initial state, and measurements along the Z-axis of the
m qubits are performed to optimize the parameters 8 during the training process. These
measurement values are denoted as (Z ), representing the expectation value of the Z-axis
for the k-th qubit. Consequently, the vector of expectation values (Z1), ..., (Z,,) serves as
the foundation for the model’s predictions.

This transformation process, which involves finely tuning the parameters of quantum
gates to convert the state of qubits to specific angles or values, is believed to yield optimal
results. In contrast, the Quantum Support Vector Machine (QSVM) applies the principles of
classical SVMs within the framework of quantum computing, focusing more on establishing
decision boundaries in quantum space rather than on parameter optimization.

Secondly, at the current technology level of intermediate-scale quantum computers
(NISQ: Noisy Intermediate-Scale Quantum), it is essential to apply algorithms that can
produce results without additional error correction. The VQC is known to reduce errors
by calculating a cost function through repeated measurements, integrating noise data into
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the optimization calculations [42]. Likewise, the QSVM may be more susceptible to errors
compared to the VQC model; as the number of qubits and operations increases, the required
resources grow, and without supporting error correction based on circuit complexity, it
may not achieve proper performance. Therefore, this study has selected the VQC.

2.2.2. Variational Quantum Classifier

The Variational Quantum Classifier (VQC) is a type of quantum machine learning
(QML) algorithm that is used to distinguish significant events of interest from background
events in physics [42]. For example, in a physics experiment where one aims to identify spe-
cific traces of a particle, the VQC can effectively solve classification problems by accurately
identifying the desired event (particle detection) from the background events.

Technically, the VQC calculates the objective function of a quantum circuit through
quantum computing while leveraging classical computers to compute the circuit parame-
ters. This parameter calculation enables the identification of the minimum or maximum
values of the objective function. Mathematically, this is expressed as M(y;, 1j;), where
M represents the objective function. The actual value y; and the predicted value 7j; are
computed through the quantum machine learning model to minimize or maximize this
objective function.

In this context, the predicted value ¥; is derived from the previously described function

—
f <?, 0 ) . The post-processing stage involves transforming the computational results of

the quantum circuit into interpretable probability values or prediction outcomes (i.e.,
the final class of the target variable in classification tasks). This can be expressed as

o
Ji =g < f (?, 0 > ) , where the function g is applied to the function f during the post-

processing. Ultimately, the objective function incorporates the natural logarithm to compute
probabilities, enabling stable learning for the algorithm. This process can be mathematically
represented as

M(yi, i) = —(yilog(¥yi) + (1 — y;) log(1 — 7))

Additionally, to convert the output into values between 0 and 1 during the post-

processing stage, the function g < f ( x;0 = ———~ is applied.

The structure of the VQC model, as illustrated in Figure 4, generally consists of three
main components: data encoding, the Variational Quantum Circuit, and measurement.

e
Classical Data Update Parameters 8

Quantum Computer| Classical Computer
__________ } S L
: v(6) L.
| f i i
1C2) —H:H:‘ i 1Z,) v:—ﬂ E 8,
1 1 ] 1
| | 1 1
1X5) —H:H: E 1Z,) 'f—ﬂ E >
; I |
) = — - 1Z5) —a i
: : Rotation Entangling : : :
ARt L EE e e 4 Evaluate Cost Function
(a) Data Encoding (b) Variational (c) Measurement

Quantum Circuit

Figure 4. Illustration of VQC algorithm.
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2.2.3. Feature Map Modeling

Quantum circuits are divided into two major stages: the Feature Map and the Varia-
tional Circuit [44]. The core concept of the quantum Feature Map is derived from traditional
machine learning kernel techniques [45]. By applying a kernel-based Feature Map, special
operations are applied to the initial state, significantly expanding the dimensionality of the
computational space, which allows for the identification of hyperplanes that can separate
data in the new space [42].

The primary goal of the Feature Map is to encode classical features present in the
dataset into the Hilbert space where the quantum system operates [39]. We apply the

%
Feature Map f (;) ; 6) to the initial state |0), which can be expressed mathematically as

follows, illustrating how the Feature Map operates:

o(5:0) )=s(5:5))o)

Various embedding techniques exist for the transformation from classical to quantum
states [46], and the Feature Maps available for use in the Variational Quantum Circuit (VQC)
algorithm include ZFeatureMap, ZZFeatureMap, and PauliFeatureMap. The ZFeatureMap
encodes data by rotating it around the Z-axis, reflecting the state of the qubit through the
input data via the Z-axis rotation gate R (0). This method is primarily used for encoding
simple linear relationships in the data and consists of single-qubit rotation gates, which do
not require entanglement. The ZZFeatureMap rotates around the Z-axis while also adding
entanglement (ZZ interaction) between the qubits. This interaction can be expressed in
the form Ryzz (Biﬂj), for qubits i and j. As it reflects interactions between data points, it
is suitable for problems with nonlinear characteristics. The PauliFeatureMap employs
rotation gates Ry, Ry, Rz for encoding. This method can create highly complex quantum
states by including various rotations and entanglements between qubits. This method
leverages multiple Pauli operators, offering greater flexibility than the Z and ZZ Feature
Maps for encoding complex data correlations, making it well suited for non-trivial datasets.

2.2.4. Variational Circuit Modeling

Once embedded into quantum states from classical states, these quantum states can
undergo further transformations within a Variational Circuit, as expressed by the follow-
ing equation [39]. This illustrates the process by which the learnable function V() is
transformed through a set of quantum gates Us.

| ¢(?,9)> = V(0)Uo (x) | 0)

By defining the quantum gates that compose the quantum circuit, as exemplified
in Figure 5, we can assert that this is equivalent to specifying the permitted definitions.
The reason for using four qubits (§o, 41, 92, 93) is that the number of qubits corresponds
to the number of input variables X. This can be represented mathematically as follows:
the operations of rotating the i-th qubit around the X-, Y-, and Z-axes are denoted by the
Rx;, Ry, Rz,, respectively. Furthermore, the CNOT gate operates between the i-th qubit and
the subsequent qubit, which is (i + 1)(mod n). Consequently, using the circuit constructed
from the set of permitted gates U, we can formulate the learnable circuit V(0) within the
aforementioned Parameterized Quantum Circuit.

n

U= U {RXi’ RYi’ RZi’ CNOTi,(i+1)(mod n)}
i=1
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Figure 5. Illustration of Variational Quantum Circuit.

Among various quantum circuits, four learnable circuits provided by the Qiskit library
include PauliTwoDesign, RealAmplitudes, EfficientSU2, and TwoLocal. For this study,
we selected Real Amplitudes, as it is primarily used for developing classification circuits
and is more efficient than the others [47]. To facilitate data encoding, we employ the Pauli
Feature Map, enabling the input data to be operable on the quantum circuit. Operations
are performed through qubit rotations using Pauli operators (e.g., Rz, Ry operators). An
example of a circuit designed using Real Amplitudes is shown in Figure 5.

It is noteworthy that RealAmplitudes applies Ry rotations to all qubits by default
and establishes entanglement through the “CNOT” gate. In the circuit depicted below,
we selected the Linear entanglement pattern from three options (Linear, Circular, Full)
to determine the level of entanglement. The VQC algorithm follows the steps of data
encoding, Variational Quantum Circuit, and measurement. During the data encoding step,
Hadamard gates are applied to create superposition states, initializing the quantum state
appropriately. Subsequently, Pauli Feature Map is used to map the data into quantum states.
The quantum circuit then employs learnable RY gates, and CNOT gates are introduced to
establish entanglement between qubits, allowing the circuit to capture and analyze more
complex features of the data.

2.2.5. Measurement

Next, the measurement phase evaluates the likelihood of classifying the Y feature
as either True or False. This process involves extracting numerous samples from various
potential scenarios and calculating their average values. The measurement is conducted

through the preparation of the initial state, the training of the parameters 8, and the
subsequent output of the Y variable from the trained circuit. To accomplish this, it is
necessary to incorporate a measurement equation into the design of the Variational Circuit,
which can be mathematically expressed as follows [39]. It is noteworthy that, since the Y
variable in the food safety dataset pertains to a binary classification problem, a Boolean
function is employed in the equation to reflect this characteristic.

f:{0,1}7 — {—1,+1}

zZ—=

This equation signifies the application of a function f to determine which class a given
measured state z belongs to. By utilizing the function f, the output is returned as either
—1 or +1, allowing us to ascertain the class membership based on the returned value.
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Figure 6 shows an example of measuring the probability using four qubits (i.e., variables).
It visualizes the results obtained from measuring the first row of data from the actual test
dataset using a quantum simulator. Each qubit state’s probability represents the likelihood
of that particular state being measured. For instance, if a specific classical binary state,
such as 0001 in Figure 5, has the highest probability, it implies that this state significantly
contributes to the classification outcome. This measurement process reflects the probability
distribution over different quantum states, indicating the likelihood that the output data,
derived from the quantum circuit, belong to a particular class. Consequently, classification
decisions can be made based on the measured probabilities. To ensure the reliability of
these decisions, the resilience level was set to 2, the maximum setting for error mitigation.
This helps minimize the impact of quantum noise, enhancing the model’s robustness when
deployed on real quantum hardware.

Measurement Probabilities for Quantum Circuit with Input Data
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Figure 6. Example of measurement using qubits.

2.2.6. Optimization

After the measurement phase, the parameters of the Variational Quantum Algorithm
(VQA) circuit are optimized using classical optimization algorithms [42]. This process
involves calculating the values of the cost function (or loss function) based on the measured
results to determine the minimum. For this purpose, the Constrained Optimization by
Linear Approximations (COBYLA) method was utilized to linearly approximate the cost
function and constraints [42,48]. COBYLA allows for handling the problem’s constraints in
two different ways, ensuring a harmonious optimization process.

It is worth noting that in COBYLA, the parameters that can be specified include the
maximum number of iterations (maxiter) and the tolerance level. The maximum number of
iterations specifies the highest allowable iterations for optimization, while the tolerance
represents the convergence criterion for the optimization process.

In this experiment, a value of 100 was set for the maximum number of iterations
to avoid insufficient optimization due to too few iterations and the risk of overfitting or
excessive execution time from overly extensive optimization. The tolerance was maintained
at its default value of tol = 1 x 107°. Below, Figure 7 illustrates an actual example of the
decreasing loss values during the optimization of the VQC algorithm through 100 iterations.
This indicates that, using the COBYLA optimizer, the rotation angles, which are the param-
eters 0 of the RY gate in the RealAmplitudes ansatz, are optimized through the learning
process. In a quantum setting, cross-entropy loss serves as a probabilistic framework for
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optimizing classification performance by minimizing the difference between predicted and
actual probability distributions. By weighting the loss function to assign higher penalties
to the minority class, it is possible to balance the contributions of minority and majority
classes, thereby addressing class imbalance and improving overall model performance.

)
(1)

Loss Function Optimization over Iterations

cos
RY(8) =

NI N

sin

1.00

0.95 -

0.90 1

0.85 A

Loss

0.80

0.754

— Loss

0.70 4

20 40 60 80 100
lterations

Figure 7. Example of loss function.

2.2.7. Evaluation Metrics

For measuring the performance of the machine learning model, Recall was selected as
the evaluation metric. In the context of imbalanced datasets, Recall is an appropriate metric
for assessing how well the model identifies the relevant cases of interest, particularly the
minority class. Recall has been particularly useful in scenarios where the consequences of
misclassification or erroneous predictions pose significant risks [12,49]. Additionally, to
compute performance metrics for imbalanced datasets, the Macro Average approach was
adopted [50]. The Macro Average method calculates the arithmetic mean of the performance
metrics for True and False predictions, ensuring that both True and False classes must have
high predicted probabilities for the overall performance to be considered high, especially
in the presence of class imbalance.

3. Results
3.1. Model Formulation

Next, Quantum Encoding was performed, during which a Feature Map was specified
for quantization. The encoding was executed for different types of Feature Maps (Z,
77, Pauli FeatureMap), while varying the Feature Dimension (number of features), the
number of iterations (the depth of the quantum circuit), and operators (entanglement,
circuit transformations) to explore the optimal model.
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Subsequently, the performance was evaluated. This involved first conducting a Quan-
tum Decoding operation, followed by measurements and the conversion of the results
obtained from the quantum state into classical data. After this, the Model Optimization
phase was undertaken, which involved specifying the Feature Maps that yielded the best
performance. As a result, the Pauli Feature Map, identified as having superior performance
through the aforementioned processes, underwent hyperparameter tuning to optimize
its effectiveness.

3.2. Performance Evaluation

To evaluate the performance of the proposed quantum algorithm, a comparison was
made with traditional machine learning algorithms and the most commonly used Quan-
tum Variational Methods (QVMs) in Quantum Machine Learning (QML). The traditional
machine learning algorithms used for comparison included Random Forest, XGBoost, Extra
Trees, Gradient Boosted Trees, AdaBoost, Support Vector Machine, Ensemble Model, and
Stacking Model.

The results, as shown in Table 3, indicate that the quantum algorithm significantly
improved the Recall metric compared to traditional algorithms. Additionally, among the
Feature Maps used in QML, the Pauli Feature Map demonstrated the highest performance.
This suggests that the Pauli Feature Map exhibits greater flexibility compared to other
Feature Maps and is capable of representing complex patterns and interactions effectively.

Table 3. Performance comparison (food dataset).

Precision Recall F1 Score

Classical/Quantum Model (Macro Avg.) (Macro Avg.) (Macro Avg.) Time (m)
Classical (1) Random Forest 0.51 0.6 0.44 0
Classical (2) XGBoost 0.49 0.44 0.46 4
Classical (3) Extra Tree 0.51 0.62 0.45 0
Classical (4) GBT 0.49 0.4 0.44 0
Classical (5) AdaBoost 0.49 04 0.44 0
Classical Ensemble (1), (2), (3), (4), (5) 0.5 0.54 0.38 0
Classical Stacking (1), (2), (3), (4) 0.52 0.68 0.51 0
Classical SVM 0.49 0.48 0.49 0
Quantum
Simulator QSVM 0.53 0.87 047 134
Quantum

Computer vVQC 0.52 0.87 047 7

Moreover, as indicated in Table 4, even when different Pauli Gates (YZ, ZY, XYZ) are
applied using the QSVM algorithm, the performance can remain consistent due to the
extensive learning achieved from the data. It is also observed that as the complexity of the
Pauli Gates increases, the training time lengthens. Furthermore, in the case of certain Pauli
Gates, poor gate selection can lead to a decrease in performance, as demonstrated by the
results of applying the Pauli X Gate.

This study also explored the impact of traditional imbalance mitigation methods on
model performance by conducting additional tests with different RandomState values for
dataset sampling from the Food and Drug Administration (FDA). Our results showed
that datasets that were difficult to learn consistently yielded low Recall scores across both
classical and quantum algorithms (e.g., RandomState-30, RandomState-70). However, the
Variational Quantum Classifier (VQC) demonstrated a distinct advantage in handling
imbalanced datasets by manipulating and transforming quantum states.
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Table 4. Performance results of quantum circuits based on Pauli Gate combinations.
Precision Recall F1 Score
Pauli Gate Runtime (s)
(Macro Avg) (Macro Avg) (Macro Avg)

X 0.49 0.50 0.50 383.89

Y 0.52 0.85 0.46 681.67

V4 0.52 0.85 0.46 585.57

XY 0.52 0.85 0.46 1012.55

YX 0.51 0.61 0.44 1013.30

YY 0.51 0.60 0.43 1043.99

YZ 0.53 0.87 0.47 879.13

zY 0.53 0.87 0.47 882.51

XZ 0.52 0.85 0.46 831.37

zX 0.51 0.61 0.44 831.06

XYZ 0.53 0.87 0.47 1126.72

In one instance, optimization of the VQC algorithm, as shown in Figure 8, led to
exceptional predictive performance despite significant class imbalance. Specifically, the
VQC accurately identified all potentially hazardous food items, achieving a perfect Recall
score in this case. By systematically experimenting with a variety of hyperparameter
configurations, including adjustments to the Pauli Feature Map repetitions, the degree
of qubit entanglement, and the number of layers in the quantum Variational Circuit, we
were able to pinpoint conditions that maximized performance. For instance, in a test set
of 150 samples—where 148 were non-hazardous seasonings and only 2 were hazardous
items—the VQC model achieved a Recall of 0.75 for the non-hazardous class and 1.00 for
the hazardous class, resulting in an excellent Macro Average score.

VQC Algorithm Performance Evaluation for Imbalanced Dataset: Recall (Macro Average)
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Figure 8. Optimization condition exploration of the VQC algorithm.
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These findings underscore the VQC’s capability to maintain high performance on

highly imbalanced datasets without relying on conventional resampling techniques, offering

a compelling alternative to traditional machine learning approaches for anomaly detection.

As visualized in Figure 9, the prediction results of the test dataset were represented in a

4 x 4 matrix format using four variables. Despite the apparent difficulty in determining the

decision boundary for the minority class of hazardous food items (represented by red dots),

the VQC algorithm, under optimized conditions, was able to interpret the characteristics of

the dataset and make accurate predictions.

° z ° °
35 a4 @ True Positive 4 4
@ True Negative
30 4 - False Positive 5 =
False Negative
_ 251 o L° 2 % ®
5 sle o e®e ol 21 ®e : ° 2 L B
5 20
E 59‘ ° - ° *"t s ™ n*;l
i 14 3 1 1
w15 ® < o L @ ] ¢
i a o e 7
10 0 ° & ° 01 e ® @ 01 [ &
5 3 . sgpecc o .
-1 L. -1 ® ) =11 ®
0- T T T ; T T T T
0 2 4 0 2 4 -2 0 2 -4 -2 0 2 4
4 ° 4 ° 4 ®
° ° ®
° 307 ] °
34 34 34
25
& 2 ® 24 ® 24 ]
£ o 1 o @
2 1 g 14 e eoB ® 14 ®
f; ™ 15 e g e °F e ‘
1 % e © , i
0 ‘:’ g’ 2, i 0 SoHab, o o § )
> o °
71_‘J’* & ° e 51 -118 L .a..eo' -11e "k ®
° ° °
T : T 0- T T T . : T
0 2 4 0 2 B -2 0 z -4 -2 0 2 )
o0 ® ) °
21 e ° 2 ° 35 2 )
° ® ° o®
1 om °® o i & }.a . 30 1 i & o
®
. .r! oe .oo e ® .- ?.a .. 25 1 . ®
g ™ o £ &l .. o 20 % o” ®
2 B o T P ] o
o ®
31 ° ° 1 o e 14 L ]
[ ] L ] [ ]
-2 P -2 ° 104 =2 L]
54
o T Pl = =31 @
T T T T 0- T T
] 2 4 0 2 4 -2 0 2 -4 -2 0 2 4
80 1
4 4 4 70
° 60
. 2] oo ] & @ 5 | R, 0 )
50 -
O
2 ]
3 o S 1Y e| oq® e% oo %0 ol ‘%".. o 4
s o o ¥ o8 ...o e 564
L] . ] L]
2{® e 24 9 . -2 1 °® 20
10
J ° Sl = 2 °
-4 T T T 4 T 4 ; T T 04
0 2 4 0 2 4 -2 0 2 -4 -2 0 2 4

Feature 1

Feature 2

Feature 3

Figure 9. Illustration of feature space: 4 x 4 matrix.

Feature 4

Table 5 demonstrates the significant impact of the SMOTE on improving model per-

formance in imbalanced datasets. Notably, the VQC model consistently outperforms both
classical SVMs and QSVMs, achieving a remarkable Recall of 0.98 without the SMOTE,
indicating its robustness in handling imbalanced data without the need for resampling.
While the QSVM shows substantial improvement with the SMOTE, particularly under
RandomState 50, its performance declines noticeably without the SMOTE, highlighting

its dependency on oversampling techniques. The classical SVM, though benefiting from

the SMOTE, remains inferior to quantum models across all configurations. These findings

underscore the superior capability of quantum models, particularly the VQC, in addressing

data imbalance, even in the absence of resampling techniques like the SMOTE.
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Table 5. Performance comparison with and without SMOTE.
Category Model RS *-30 RS *-40 RS *-50 RS *-60 RS *-70
Recall (Macro Avg.)
Classical SVM 0.60 0.49 0.72 0.47 0.48
Quantum QSVM 0.72 0.86 0.90 0.88 0.54
Quantum vQcC 0.78 091 0.90 0.90 0.77
SMOTE F1 Score (Macro Avg.)
Classical SVM 0.57 0.49 0.58 0.48 0.48
Quantum QSVM 0.47 0.44 0.50 0.45 0.45
Quantum vQC 0.54 0.49 0.49 0.48 0.39
Recall (Macro Avg.)
Classical SVM 0.50 0.50 0.50 0.50 0.50
Quantum QSVM 0.50 0.50 0.50 0.50 0.50
Quantum vQC 0.71 0.98 0.89 0.96 0.73
Non-SMOTE F1 Score (Macro Avg.)
Classical SVM 0.49 0.50 0.49 0.50 0.49
Quantum QSVM 0.49 0.50 0.50 0.50 0.49
Quantum vQcC 0.45 0.60 0.49 0.55 0.50

* RS: RandomState.

Ultimately, the key to optimizing the performance of the VQC algorithm, as observed
up to this point, lies in the data encoding method (preparation for using quantum states),
the number of repetitions, the degree of entanglement (Linear, Circular, Full), and the
number of repetitions of these entanglements. Furthermore, the rotation of qubits through
Pauli Gates plays a critical role in learning important features and patterns in the data.

3.3. Robustness Test

Through the analysis of the Food and Drug Administration (FDA) dataset, it was
determined that the quantum algorithm exhibits superior performance by optimizing
the Feature Map without relying on resampling methods to address data imbalance. To
evaluate the robustness of these results, several datasets were used to repeat the same
experiments. First, the Bank Customers dataset, which is related to a marketing campaign
(phone calls) by a Portuguese bank, was analyzed. This dataset predicts whether customers
subscribe to term deposits, with an imbalance ratio of True at 85.4% and False at 14.6%. The
dataset was sourced from Kaggle and is based on a study on predicting bank telemarketing
success based on data [51]. As shown in Table 6, the performance comparison revealed
that, with the application of the SMOTE, classical algorithms outperformed in terms of
the Recall metric, while the quantum algorithm demonstrated higher performance in the
Non-SMOTE scenario. Furthermore, regarding the F1 Score metric, classical algorithms also
performed better with the SMOTE applied, whereas the quantum algorithm outperformed
classical methods in only one of the datasets in the Non-SMOTE condition.

Table 6. Performance comparison (Bank Customers dataset).

Recall (Macro Avg.) F1 Score (Macro Avg.)
Category Model

RS *-100 RS *-300 RS *-100 RS *-300
Classical SVM 0.89 0.89 0.75 0.74
SMOTE Quantum QSVM 0.84 0.86 0.74 0.74
Quantum vQC 0.84 0.79 0.78 0.65
N Classical SVM 0.50 0.60 0.47 0.62
A I\?ITC‘;T . Quantum QSVM 0.58 0.55 0.60 0.56
Quantum vQC 0.77 0.64 0.79 0.65

*RS: RandomState.



Symmetry 2025,17, 186

17 of 21

Next, experiments were conducted using the Credit Card Fraud dataset. This dataset
is related to the detection of fraudulent credit card transactions by a credit card company,
predicting charges for items that the customer did not purchase. The dataset exhibits a
severe imbalance, with True values at 99.8% and False values at 0.2%. The dataset was
sourced from Kaggle and is based on the study BankSim: A bank payment simulator for
fraud detection [52]. As shown in Table 7, it was observed that even without the application
of the SMOTE, the quantum algorithm outperformed the SMOTE-applied dataset in terms
of both Recall and F1 Score. This further confirms the potential effectiveness of the quantum
algorithm in scenarios involving highly imbalanced datasets.

Table 7. Performance comparison (Credit Card Fraud dataset).

Recall (Macro Avg.) F1 Score (Macro Avg.)
Category Model

RS *-10 RS *-20 RS *-10 RS *-20
Classical SVM 0.50 0.84 0.50 0.90
SMOTE Quantum QSVM 0.95 0.91 0.53 0.52
Quantum vQC 0.90 0.88 0.49 0.58
N Classical SVM 0.50 0.50 0.50 0.50
SI\(/)IrCI;TE Quantum QSVM 0.50 0.50 0.50 0.50
Quantum vQC 0.99 0.95 0.69 0.58

*RS: RandomState.

4. Discussion

The issue of data imbalance is a longstanding challenge that undermines the per-
formance of machine learning models, driving the development of both data-driven and
algorithm-driven solutions. While data-driven approaches such as resampling are straight-
forward, they often introduce discrepancies, leading to potential information loss or dis-
tortion from the original dataset, which in turn can negatively affect the sustainability of
model performance. As a result, there is a growing need for methods that address data
imbalance without altering the dataset itself.

This study presents a novel algorithmic solution to the data imbalance problem using
optimized quantum machine learning (QML). By encoding multiple bits of information
into qubits and leveraging quantum entanglement via quantum circuits, QML effectively
processes and optimizes imbalanced datasets to produce accurate predictions. The flexibil-
ity of QML, specifically in terms of the quantization and entanglement methods employed,
allows for fine-tuned optimizations that outperform conventional techniques.

Specifically, the Pauli decomposition expresses a Hamiltonian as a linear combination
of Pauli matrices (e.g., X, Y, Z), which form a basis for Hermitian matrices, and is funda-
mental to quantum computing tasks [53], such as enhancing classification performance
during the encoding process. Additionally, the alignment of rotation axes with the data
distribution plays a pivotal role in improving classification performance [54]. For instance,
when data points are predominantly distributed along the x-axis, X gates are better suited
as they align with the intrinsic structure of the data, whereas Y gates are more effective
for data centered around the y-axis. Therefore, the ability to amplify class differences
through axis rotation offers a critical design principle for VQCs, especially in tasks where
separability is a key determinant of performance. Visualizations of the Bloch sphere before
and after rotation during encoding procedures using the Pauli Feature Map, as shown in
Figure 10, illustrate the effects of these rotations, offering a clear understanding of how
various rotation strategies impact the distribution of quantum states and their separability.
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Figure 10. Illustrations of Bloch sphere visualizations before and after rotation through encoding.

Through extensive experimentation, the Variational Quantum Classifier (VQC) was
identified as the most effective QML approach for addressing class imbalance. Remarkably,
the optimized QML consistently outperformed classical machine learning models that relied
on data-driven methods like the widely used SMOTE (Synthetic Minority Oversampling
Technique). Notably, QML achieved superior predictive performance without any need
for resampling techniques, maintaining the integrity of the original datasets. This finding,
demonstrated across both real-world and benchmark datasets, suggests that quantum
machine learning can offer a more robust and efficient solution to the class imbalance
problem than traditional machine learning approaches.

5. Conclusions

The QML community has been actively exploring potential application cases across
real-world problems, including diverse engineering challenges [55] and healthcare [56].
In line with these efforts, this study underscores the utility and potential of QML by
demonstrating its ability to effectively address data imbalance using real-world datasets,
rather than augmented by synthetic data. This contribution is significant for the applied
machine learning research community, which has a pressing need for successful, practical
case studies.

Although various studies have reported inconsistent results regarding the advantages
of QML over classical machine learning methods [57-59]—largely due to the current pre-
development phase of quantum computing—the potential for QML to deliver superior
performance through exponentially faster computations remains an unproven yet antic-
ipated breakthrough [60]. Our findings demonstrate that QML can outperform classical
methods in addressing class imbalance without the need for resampling techniques, thus
expanding the practical applicability of QML in handling real-world datasets characterized
by significant imbalance.

While this research has undergone extensive validation using both real and benchmark
datasets, further validation across a wider variety of real-world datasets is essential to fully
confirm the utility of QML in such scenarios. Moreover, the optimization process in QML
lacks a mathematically rich explanation for why certain quantum circuit states outperform
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others. Addressing this gap by enhancing the explainability of QML optimizations will
further solidify the credibility and applicability of this promising approach.
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