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Abstract We revisit planar vortex solutions within a model
derived from the dimensional reduction of scalar electromag-
netism, with a quartic potential incorporating the Carroll–
Field–Jackiw term. We explore analytically and numerically
the influence of a Lorentz symmetry-breaking constant field
on these configurations and our analysis shows how this con-
stant field can produce a new asymptotic behaviour charac-
terised by damped oscillations of the electric and magnetic
fields on the edge of the vortices.

1 Introduction

The search for a theory that would clarify the origin of quan-
tum particles found a very satisfactory description with the
Weinberg–Salam–Glashow Standard Model (SM) of parti-
cles completed in the 1970s [1]. The electroweak unification
inspired by the development of superconductivity, and the
work of Anderson [2] clarifying the origin of the mass of the
gauge field (Anderson–Higgs mechanism) [3] was crowned
with the detection of the Higgs boson at the large hadron
collider (LHC) in 2013. Despite being able to successfully
describe the strong, weak, and electromagnetic interactions,
the gravitational interaction remained outside the SM and
this motivated the search for an extension of the Anderson–
Higgs mechanism through the spontaneous breaking of the
gauge symmetry given by a nonscalar field. The direct con-
sequence of this extension is the Lorentz symmetry breaking
of the theory [4–6] which was first proposed by Kostelecký
and Samuel [7] in the context of String Theory. By taking
into account the renormalizability, these proposals were col-
lected as the Standard Model Extension (SME) [8,9] and by
relaxing this condition there were several investigations out
of SME (nonminimal SME) [10–21]. Moreover, the Lorentz
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symmetry breaking effects may play an interesting role in
the context of geometric quantum phases [10,15,22–26].

Effective theories in condensed matter that describe planar
phenomena such as the Quantum Hall effect discovered in the
1980s [27] have sparked a growing interest in gauge theories.
With the discovery of graphene [28], the proposition of insu-
lators and topological superconductors gave a new descrip-
tion of fermions treated by a Dirac equation. Recently, new
materials (Weyl semi metals) [29] were discovered, and they
are described by effective theories with Violation of Lorentz
Symmetry (VSL) similar to those occurring in the SME. With
this new panorama, also topological defects with Lorentz
breaking background such as vortices have been investigated
[13,30–32].

Here we discuss planar vortices in an environment where
a possible material background can promote Lorentz Sym-
metry Violation (LSV). We consider these vortices configu-
rations in a model obtained by dimensional reduction from
a scalar electrodynamics with a Carrol–Field–Jackiw term
[5] in 3 + 1 dimensions. In Sect. 2 we discuss how this
dimensional reduction is performed and construct the model
in 2 + 1 dimensional space-time with its respective fields
and their dynamical equations and we consider an ansatz
with the adequate symmetries to study the possibility of vor-
tex configurations for the model. In Sect. 3 the asymptotic
behaviour of these fields is analysed and we show that for
certain combinations of the Lorentz breaking parameters and
the coupling constants of the model the fields may oscillate
while decaying away from the vortex’s core. In Sect. 4 we
present full numerical solutions which exhibit this damped
oscillation and in Sect. 5 we give some final remarks on this
investigation.
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2 The Maxwell–Chern–Simons–Higgs model via
dimensional reduction

The first proposed modification of 4-dimensional electrody-
namics leading to a Lorentz symmetry breaking was done
by the addition of the so-called Carroll–Field–Jackiw (CFJ)
term [5]

LCFJ = −1

4
εμναβvμAνFαβ, (1)

to the usual QED lagrangian, with Aμ being the gauge
field and Fμν = ∂μAν − ∂ν Aμ the electromagnetic field
strength, while vμ stands for the components of a constant
“anisotropy” 4-vector. In particular, for the scalar electro-
dynamics, such a Lorentz-violating model is defined by the
lagrangian

L3+1 = −1

4
Fμ̄ν̄F

μ̄ν̄ − 1

4
εμ̄ν̄ᾱβ̄vμ̄Aν̄Fᾱβ̄

+
(
Dμ̄φ

)∗
Dμ̄φ − U(|φ|), μ̄, ν̄, · · · = 0, 1, 2, 3 (2)

where the complex scalar (Higgs) field φ is minimally cou-
pled to the gauge field via the covariant derivative Dμφ =
∂μφ − ieAμφ, with e the gauge coupling constant and where
we consider the Higgs potential to be

U(|φ|) = λ

2

(
|φ|2 − a2

)2
(3)

where a is a real constant.
When the dimensional reduction is performed by restrict-

ing the spatial dimensions to x1 and x2, taking ∂3Aμ = 0 =
∂3φ, defining A3 = χ a real scalar field and v3 = s a scalar
parameter, the above lagrangian then becomes

L2+1 = −1

4
FμνF

μν − s

2
εμαβ Aμ∂αAβ + χ εμαβvμ∂αAβ

+ (
Dμφ

)∗
Dμφ + 1

2
∂μχ∂μχ − e2χ2|φ|2 − U(|φ|), (4)

withμ, ν, · · · = 0, 1, 2. So, the introduction of the anisotropy
field vμ through the CFJ term preserves the gauge symmetry
of the model leading to a Chern–Simons term in 2+1 dimen-
sions, where the electric field is defined as a vector field with
components Ei ≡ F0i , i = 1, 2, while the magnetic field
is given by the scalar B ≡ − 1

2εi j Fi j . We have obtained a
Maxwell–Chern–Simons–Higgs model where the gauge and
the Higgs fields are non-minimally coupled to a neutral scalar
field.

The dynamical equations for the fields Aμ, φ and χ read

∂μF
μν = sεναβ∂αAβ − εναβvβ∂αχ − J ν, (5a)

(� + M2
A)χ = εμαβvμ∂αAβ, (5b)

DμD
μφ = −e2χ2φ − δU(|φ|)

δφ∗ . (5c)

where we have used M2
A = 2e2|φ|2 and defined the 4-current

J ν = ie
(
φ∗Dνφ − φ (Dνφ)∗

)
.

Vortices are localized field configurations characterized
by their finite energy

E =
∫ (

1

2
(Ei Ei + B2) + (D0φ)∗ D0φ + (Diφ)∗ Diφ

+1

2
(∂iχ)2 + e2χ2|φ|2 + U(|φ|)

)
d2x

−v0

2

∫ (
εi j Ai∂ jχ − χB

)
d2x (6)

Considering the dimensionless variable ρ = ear , with r =√
xi xi , i = 1, 2 and using polar coordinates x1 = r cos θ ,

x2 = r sin θ we introduce the ansätze for the fields

φ = ag(ρ)eiNθ , A0 = aNω0(ρ), Aρ = 0,

Aθ = N

e
A(ρ), χ = aNχ(ρ) (7)

and rewrite the energy functional as

E = 2πa2
∫ ∞

0

(
N 2

{
1

2

(
ω′ 2

0 + χ ′ 2 + A′ 2

ρ2

)

+ g2
(

ω2
0 + 1

ρ2

(
1 − A

)2 + χ2
)}

+ g′ 2 + ξ

2

(
g2 − 1

)2 + N 2η

2ρ

(
Aχ ′ − χ A′)

)
ρdρ. (8)

The requirement that the energy density must be localised
in space defines the values of the profile functions g, ω0, A
and χ at spatial infinity. The vacua values of φ are given by
|φ| = a, which makes the potential vanishes, and so, g → 1
as ρ → ∞; this leads to the condition χ → 0 for the real
scalar field and the vanishing of the electromagnetic field in
this limit implies that A → 1 together with ω0 → 0.

The dynamical equations for the model (5a), (5b) and (5c)
are then written as the following system of coupled ordinary
differential equations for these functions

g′′ + 1

ρ
g′ − ξ

(
g2 − 1

)
g

+ N 2g
(
ω2

0 − χ2 − 1

ρ2

(
1 − A

)2
)

= 0, (9a)

A′′ − 1

ρ
A′ + 2g2(1 − A

) + ρ
(
ζω′

0 − ηχ ′) = 0, (9b)

ω′′
0 + 1

ρ
ω′

0 − 2g2ω0 + 1

ρ

(
ζ A′ − μχ ′) = 0, (9c)

χ ′′ + 1

ρ
χ ′ − 2g2 χ + 1

ρ

(
ηA′ − μω′

0

) = 0, (9d)

with the dimensionless parameters (notice that the radial
component of the anisotropy vector does not play any role in
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the dynamics)

η = v0

ea
, μ = vθ

ea
, ζ = s

ea
, ξ = λ

e2 . (10)

3 Asymptotic behaviour

The set of coupled equations for the profile functions can be
solved numerically as we shall discuss later. In this section we
consider the behaviour of these functions at spatial infinity
where their values are close to their vacuum values. With the
substitution

g = 1 − H A = 1 − G ω0 = −W χ = −X (11)

the system of equations for the profile functions can be lin-
earized to give

H ′′ + 1

ρ
H ′ − 2ξH = 0, (12a)

G ′′ − 1

ρ
G ′ − 2G + ζρW ′ − ηρX ′ = 0, (12b)

W ′′ + 1

ρ
W ′ − 2W + ζ

ρ
G ′ − μ

ρ
X ′ = 0, (12c)

X ′′ + 1

ρ
X ′ − 2X + η

ρ
G ′ − μ

ρ
W ′ = 0. (12d)

and also defining G = ρ f (ρ), and ρH = √
2ξ ρ, we get

ρ2
H H ′′ + ρH H ′ − ρ2

H H = 0, (13a)

ρ2 f ′′ + ρ f ′ −
(

2ρ2 − 1
)
f + ρ2(ζW ′ − ηX ′) = 0, (13b)

ρ2W ′′ + ρW ′ − 2ρ2W + ζρ
(
ρ f ′ + f

) − μρX ′ = 0,

(13c)

ρ2X ′′ + ρX ′ − 2ρ2X + ηρ
(
ρ f ′ + f

) − μρW ′ = 0. (13d)

In this approximation we find that the Eq. (13a) can be solved
by a modified Bessel function,

H =
√

π

2ρH
e−ρH =

√
π

2ρ
√

2ξ
e−√

2ξ ρ. (14)

For the remaining equations, considering only the relevant
terms in the limit of ρ → ∞, we have

f ′′ − 2 f + ζW ′ − ηX ′ = 0, (15a)

W ′′ − 2W + ζ f ′ = 0, (15b)

X ′′ − 2X + η f ′ = 0, (15c)

and writing

f (ρ) = GekGρ, W (ρ) = WekW ρ, X (ρ) = XekXρ, (16)

we end up with the following algebraic relation for the con-
stants

G =
√

ζ 2 − η2

ζ
W =

√
ζ 2 − η2

η
X , (17a)

kG = kW = kX = −
√

ζ 2 − η2 +
√

ζ 2 − η2 + 8

2
. (17b)

where the signs are chosen in order to guarantee the expected
decay of the functions. The solutions are then

G(ρ) = Gρ e
−

√
ζ2−η2 +

√
ζ2−η2+8

2 ρ
, (18a)

W (ρ) = We
−

√
ζ2−η2 +

√
ζ2−η2+8

2 ρ
, (18b)

X (ρ) = Xe
−

√
ζ2−η2 +

√
ζ2−η2+8

2 ρ
, (18c)

and the asymptotic profiles of the fields are

g = 1 −
√

π

2ρ
√

2ξ
e−√

2ξ ρ (19)

A = 1 − Gρ e
−

√
ζ2−η2 +

√
ζ2−η2+8

2 ρ
(20)

ω0 = −We
−

√
ζ2−η2 +

√
ζ2−η2+8

2 ρ
(21)

χ = −Xe
−

√
ζ2−η2 +

√
ζ2−η2+8

2 ρ
. (22)

There are three possible types of asymptotic solution
depending on the values of the parameters ζ and η in the
combination � ≡ ζ 2 − η2. For � ≥ 0 the functions will
decay exponentially, but for −8 < � < 0 the solutions
oscillate with a damping and for � ≤ −8 the solution is
oscillatory. For this last case, in particular, since G, W and
X go to zero at spatial infinity, not all configurations with
� < 0 will be acceptable.

4 Numerical support

The presence of an anisotropic background may affect the
behaviour of the fields at the border of the vortices and our
asymptotic analysis showed the existence of some limits for
the values of the parameter v0 such that the structure of this
configuration remains preserved.

In order to find the numerical solutions of the model we
consider a lattice of 1025 points regularly distributed along
the interval 0 ≤ ρ ≤ 64 and we use the gradient flow method
to solve the system of coupled Eqs. (9a), (9b), (9c) and (9d).
The boundary conditions for the profile functions at spatial
infinity are given by the requirement of finite energy, which
was discussed in Sect. 2, and the conditions at the origin are
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Fig. 1 The solutions for A (solid line) and ω (dashed line) with ζ = 0.5, ξ = 1 and N = 1 with two different values of μ. The lighter the colour
of the curve the greater is the value of η in the range η = 0.0, 0.75, 1.1, 1.25 and 1.32

Fig. 2 The profiles of the magnetic and electric fields for μ = 1 and η = 0.0, 0.75, 1.1, 1.25 and 1.32

obtained directly from the analysis of the differential equa-
tions in the limit ρ → 0: g = 0, A = 0, ω′

0 → 0 and
χ ′ → 0.

We are particularly interested in solutions which exhibit a
damped oscillatory behaviour for some of the fields far from
the vortex core. In the Fig. 1a, b we present the solutions for
the profile functions A(ρ) and ω0(ρ) for different values of
η, keeping all other parameters fixed. In fact, in the whole
discussion that follows we consider N = 1, ξ = 1 ζ = 0.5.
We see that for some values of η for which � < 0, the
behaviour of the solution is such that as η (v0) increases,
starting from the center of the vortex core, the functions will
grow faster and eventually oscillate with a damping around
their vacuum values, as predicted by the asymptotic analysis.
For even greater values of η the solution starts to oscillate
without damping and the vortex configuration is lost. The
difference between the two solutions depicted in Fig. 1a, b
is given by the values of μ, the tangent component of the
anisotropy vector. We see that for μ 
= 0 (Fig. 1b), the values
of the functions ω0 and A close to the vortex’s core are greater
than those for the solutions with μ = 0 (Fig. 1a). We notice
that ω0 is nonzero either when ζ 
= 0 with η = μ = 0 or
when η 
= 0 and μ 
= 0 with η = 0.

Following our ansatz, the electric and magnetic fields are
respectively a radial vector with component

E(ρ) = −Nω′
0(ρ) (23)

and a scalar given by

B(ρ) = N

ρ
A′(ρ). (24)

In Fig. 2 we show the profiles of the electric and magnetic
fields for different values of η with μ = 0. The effect of
the v0 component of the anisotropy vector is to produce a
damped oscillation in the fields far from the origin when
� < 0 and this can be better appreciated in Fig. 5 where we
have enhanced the points ρ where the electric and magnetic
fields change sign; their values are given in Table 1 (Fig. 3).

The solutions for the profile of the neutral scalar field
are presented in Fig. 4. If ζ = μ = 0 then, for a nonzero
configuration it is required that η 
= 0; If η = 0 then a
nonzero solution demands ζ 
= 0 and μ 
= 0. In the case we
have no background anisotropy, then the neutral field is also
zero.

Finally, the energy density function shows that at μ = 0,
the energy of the vortex increases alongside the value of η,
and its width also expands, as illustrated in Fig. 5a. When the
tangential component of the anisotropy vector is nonzero, an
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Table 1 Values of ρ where the magnetic and electric fields change sign

B(ρ) E(ρ)

2.3440273651921344 4.4676909657123085

6.734473784564999 8.92697209109877

11.173972362784362 13.375864887848005

15.61519822172264 17.822202550190518

20.05684513935638 22.26521048279338

24.49796850947826 26.638516819584922

interesting phenomenon occurs at higher values of the param-
eter η: for positive μ, the energy density does not peak at the
vortex’s core; instead, it reaches a peak at an intermediate
distance between the origin and the edge of the vortex, and
then gradually declines to zero; for negative μ, the energy
density peaks at smaller values at the origin.

5 Conclusions

Physical scenarios involving Lorentz symmetry violation
manifest across various contexts, driven by interests rang-
ing from probing potential variations in fundamental con-
stants to exploring space-time noncommutativity or devising
extensions to gravity.

In addition to the obvious motivation to analyze how the
breach of Lorentz symmetry impacts the quantum realm,
there is considerable interest in its implications for classical
solutions, notably in condensed matter physics. Among these
classical configurations, topological solitons stand out for
their particle-like attributes, particularly in the planar regime,
where in two spatial dimensions, such solitons can manifest
as vortices.

Our investigation focuses on a planar field theory derived
from the dimensional reduction of the 3 + 1-dimensional
Maxwell–Higgs model, incorporating a “φ4 potential” along
with the Carrol–Field–Jackiw term (CFJ), which induces
Lorentz symmetry breaking. With this dimensional reduc-

Fig. 3 The oscillatory behaviour of the magnetic and electric fields profiles can be observed as these functions change sign as ρ → ∞

Fig. 4 The profiles for the neutral scalar field are shown for μ = 0 on the left and for μ = 1 on the right. For each case we considered η = 0.0,
0.75, 1.1, 1.25 and 1.32. The lighter the color of the curve, the greater is the value of η. The red color specifically depicts the function for which
η = 0
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Fig. 5 The energy density profiles are shown for μ = 0 on the left and for μ = 1 on the right and μ = −1 at the bottom. For each case we took
valeus of η = 0.0, 0.75, 1.1, 1.25 and 1.32

tion, a new neutral scalar field emerges in 2 + 1 dimensions,
and the CFJ term gives rise to a Chern–Simons term, result-
ing in electrically charged vortices solutions of the dynami-
cal equations for the planar model that we have numerically
obtained, as predicted in [13].

Through asymptotic analysis, we discerned how the pres-
ence of background anisotropy can influence the behavior of
electric and magnetic fields far from the vortex’s core. Par-
ticularly, when the zeroth component of the background field
surpasses the Chern–Simons coupling constant, these fields
undergo damped oscillations, a phenomenon confirmed by
numerical solutions.

This electric and magnetic flux inversion was previously
observed, for instance in [33], for the case of a BPS vor-
tex solution of a Maxwell–Higgs model with a parity-odd
Lorentz-violating structure of the CPT-even gauge sector of
the SME and a fourth order potential without the Chern–
Simons term. Here this phenomenon is also observed for
both magnetic and electric fields in a non-BPS regime of a
CFJ supplemented Maxwell–Higgs model, suggesting that

this oscillatory damping of the fields may be a robust con-
sequence of Lorentz symmetry violation in vortices across
broader scenarios.

The tangential component of the anisotropy field alters the
values of the gauge field and the neutral scalar field within
the vortex’s core. For certain values of η with μ 
= 0, the
typical lump-shaped energy density function transforms into
one with a local minimum at the vortex’s core and a peak at
an intermediate distance from the core to the vortex’s edge, as
it declines to zero. This behaviour may indicate some change
in the stability of the solutions [34] due to the increase of the
space-time anisotropy.
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