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Abstract This study extends the concept of cracking to
self-gravitating, spherically symmetric compact objects in
modified f (R, ϕ) theory of gravity, where R represents the
Ricci scalar, and ϕ is the scalar potential. In this regard,
we consider spherically symmetric spacetime characterized
with an anisotropic matter to detect the instabilities of self-
gravitating compact objects via cracking and overturning.
Further, we construct the general framework to observe the
cracking and overturning points by applying the local den-
sity perturbation technique to the configuration governed
by barotropic equation of state. The effectiveness of this
approach is assessed by analyzing its results on the data of
Her X-1, SAX J1808.4-3658, and 4U 1820-30 respectively.
It is concluded that cracking points appear in the different
interior regions of these three stars. Significantly, this study
illustrates the effectiveness of the cracking approach by high-
lighting the regions sensitive to localized density disruptions,
offering valuable insights into the structural behavior of com-
pact stars within a modified gravity framework.

1 Introduction

In modern cosmology and astrophysics, significant attention
has been directed toward understanding the spatial dynamics
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of the expanding universe, with numerous theories proposed
to explain its current accelerated expansion [1–3]. High-
redshift supernova observations provide direct evidence for
this acceleration [4], while indirect evidence emerges from
large-scale matter distribution studies, such as those involv-
ing galaxy clusters [5]. The driving force behind cosmic
expansion is dark energy (DE), characterized by a high neg-
ative pressure and accounting for approximately 68% of the
universe’s total energy. Albert Einstein’s general theory of
relativity (GR) [6] revolutionized our understanding of space,
time, and gravity and remains a foundational pillar of mod-
ern physics. However, GR exhibits limitations, including its
inability to adequately describe strong gravitational fields,
explain the accelerating expansion of the universe, or account
for dark matter, which is estimated to constitute a signifi-
cant portion of the universe’s mass. Addressing these short-
comings necessitates modifications to the classical theory,
inspiring researchers to explore modified theories of gravity
(MTG) that offer novel cosmological insights and surpass
GR in explaining specific phenomena.

In recent years, MTG have emerged as a compelling area
of research in astrophysics. MTG are essential for addressing
the limitations of general relativity, particularly in explaining
dark matter, dark energy, and extreme gravitational environ-
ments like black holes. By extending the Einstein–Hilbert
action, these theories offer new insights into cosmic phenom-
ena and potential unification with quantum mechanics. They
also provide predictions that can be tested through experi-
ments and observations, advancing our understanding of the
universe. Collaborative efforts by cosmologists and astro-
physicists have led to the development of several MTGs,
including f (R) [7,8], f (G) [9–12], f (T ) [13,14], f (G, T )

[15], f (R,G) [16,17], f (Q) [18,19], f (R, T ) [20–22], and
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f (R, ϕ) [23] theories of gravity, where R represents the Ricci
scalar and ϕ represents the scalar potential. These theories
address the limitations of classical gravity and are partic-
ularly significant for explaining phenomena such as dark
energy and the late-time acceleration of the universe [24].
The innovative frameworks provided by these theories con-
tribute to unraveling the mechanisms underlying accelerated
cosmic expansion. Buchdahl [25] introduced f (R) gravity,
where the Ricci scalar R is replaced by an arbitrary func-
tion f (R). Building on this foundation, Capozziello et al.
[26] examined the hydrostatic equilibrium of stellar struc-
tures using the Lane–Emden equation within the context of
f (R) gravity. Among recent advancements, f (R, ϕ) gravity
has gained particular prominence due to its ability to incor-
porate a scalar field ϕ, which generates a repulsive force
analogous to the effects of dark energy. Capozziello and
Laurentis [27] proposed the inclusion of a scalar function
in the Einstein–Hilbert action and explored f (R, ϕ) gravity
in depth. Furthermore, Zubair and Kousar [28] extended this
framework by presenting f (R, Rαβ Rαβ, ϕ) gravity, inves-
tigating energy bounds in this context, and examining the
thermodynamic laws of black holes [29].

In MTG, the study of compact stars provides a frame-
work for understanding how deviations from general relativ-
ity influence the structure and stability of such objects. MTG
allows for the exploration of phenomena such as anisotropic
pressures, charge distribution, and non-standard energy con-
ditions, offering new insights into the formation, stability,
and evolution of compact stars. By examining these modi-
fied gravitational models, researchers can probe the effects
of dark energy, dark matter, and gravitational modifications
on the interior structure and behavior of stellar remnants,
enhancing our understanding of astrophysical objects in the
universe. Kalm et al. [30] examined compact objects with
anisotropic matter using the Krori and Barua metric. Bhar et
al. [31] explored solutions for anisotropic stars within non-
commutative spacetime, highlighting the possibility of com-
pact stars existing in higher-dimensional frameworks. Ilyas
[32] analyzed the internal configuration of charged compact
stars in the context of f (G) gravity. Similarly, Zubair et al.
[33] investigated the formation and stability of compact stars
under f (R, T ) gravity. Abbas et al. [34] studied the physical
properties of compact stars and derived equilibrium condi-
tions in f (G) gravity. Noureen et al. [35] focused on the
dynamical instability of anisotropic gravitating systems in
f (R) gravity, concluding that higher-order curvature correc-
tions could be effectively replaced by the f (R) model. Malik
along with his collaborators [36–38] investigated the dynam-
ics of some stellar structures and moment of inertia in GR as
well as modified theories of gravity.

Investigating the stability of compact stars is a cru-
cial aspect of modern astrophysics, as it provides valuable
insights into the evolution and dynamics of celestial objects.

Compact objects are considered to be in equilibrium when
the outward and inward forces are balanced. However, this
equilibrium may be either stable or unstable. Within compact
objects, fusion processes generate energy, producing outward
pressure that counteracts gravitational collapse. However,
when this energy is depleted, the inward forces prevail, lead-
ing to collapse and the formation of compact stars. Bondi
[39] made significant contributions to the study of celestial
object stability using the adiabatic criterion. Chandrasekhar
[40] further advanced the analysis of compact object stability
by applying Bondi’s framework and incorporating the adia-
batic index. To examine the influence of dissipation on the
dynamical instability of a spherically symmetric fluid, Her-
rera et al. [41] conducted an analysis in both the Newtonian
and relativistic regimes. Chan et al. [42] demonstrated that
even a slight alteration in the anisotropy of the unperturbed
fluid can substantially affect the system’s stability in both
Newtonian and relativistic contexts. In a subsequent study
[43], the same researchers explored the impact of shearing
forces and viscosity, finding that these factors enhance the
fluid’s stability in both the Newtonian and relativistic frame-
works.

Herrera [44] was the pioneer who proposed the cracking
technique to examine the behavior of the fluid inside a com-
pact object when its equilibrium state is disturbed. Specifi-
cally, it addresses the point at which non-zero radial forces
emerge within the configuration. In the context of this tech-
nique, cracking occurs when inwardly directed radial forces
change sign at a specific point, i.e., ( δ�

δρ
< 0 → δ�

δρ
> 0).

Conversely, overturning refers to a situation where outwardly
directed forces change sign from positive to negative, i.e.,
( δ�

δρ
> 0 → δ�

δρ
< 0). Prisco et al. [45] expanded on the

cracking method by employing the Raychaudhuri equation to
identify the necessary constraints for cracking. Herrera et al.
[46] analyzed the effects of local anisotropy on the cracking
of compact objects through a Jeans instability analysis. Her-
rera and Varela [47] proposed a technique to examine crack-
ing in non-spherical systems by introducing axisymmetric
disturbances within an ideal fluid configuration. Prisco et al.
[48] analyzed cracking in self-gravitating compact objects by
perturbing the local anisotropy. Abreu et al. [49] investigated
cracking by employing perturbations in the local anisotropy
and density of compact objects using both local and non-local
equations of state (EoS). Abreu et al. [50] also explored the
presence of cracking and utilized concepts related to den-
sity fluctuations and sound speeds. Azam et al. [51] investi-
gated the effects of electromagnetic fields on the stability of
charged compact objects using the cracking technique. Malik
et al. [52–54] discussed the cracking technique by consider-
ing the anisotropic as well as isotropic stellar structures in
different modiefied theories of gravity.

To avoid common misunderstandings about the stability
and cracking in the literature, Herrera and Prisco [55] clar-
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ified that both of these concepts are distinct, despite often
being confused. They concluded that “stability” refers to the
ability of a given fluid distribution to return to equilibrium
after being disturbed. The fact that the speed of sound is not
superluminal does not guarantee the stability of the object;
it only ensures causality. “Cracking”, in contrast, refers to
the system’s tendency to ‘split’ immediately after being dis-
placed from equilibrium, with ’immediately’ meaning on a
timescale shorter than both the hydrostatic timescale and the
thermal relaxation time. What happens subsequently whether
the system enters a dynamic regime or returns to equilib-
rium is independent of the concept of cracking. However,
the occurrence of cracking will affect the future evolution of
the fluid configuration in either case. To determine whether
cracking occurs, the system must be perturbed from its equi-
librium state by applying fluctuations. In the original crack-
ing paper [44], these fluctuations were assumed to be generic
(of an ‘unspecified’ nature). The specific case of fluctuations
associated with fluid compression was considered in [50].
In this latter case, confusion between cracking and stabil-
ity may arise due to the relationship between the adiabatic
index, the speed of sound, and stability. In simple words, In a
system which is stable, i.e. a system that once removed from
equilibrium comes back to it in a timescale of the order of
hydrostatic time, cracking may occur or not, “or” after the
occurrence of cracking the system may return to equilibrium
(the system is stable) or enters into a dynamic regime (the
system is unstable).

However, the primary focus of our study is to analyze the
cracking and overturning phenomena that occur when a sys-
tem departs from equilibrium due to perturbations. The con-
cept of cracking, as discussed in our work, specially refers to
the immediate tendency of the system to split following per-
turbation, independent of whether the system is ultimately
stable or unstable. The layout of this manuscript is orga-
nized as follows: In Sect. 2, we derive the field equations and
expressions for hydrostatic equilibrium within the f (R, ϕ)

gravity framework, and apply the Krori Barua metric [56].
In Sect. 3, we apply the LDP to all physical variables and
develop the equation for radial forces to identify cracking
and overturning points. In Sect. 4, we validate this technique
using data from Her X-1, SAX J1808.4-3658, and 4U 1820-
30, along with a graphical representation of radial forces.
Finally, in Sect. 5, we present our concluding remarks, fol-
lowed by the appendix and references.

2 Basic background of f (R, ϕ) theory of gravity

The action is given as [57–59],

S = 1

2K

∫
d4x

√−g

[
f (R, ϕ) + w(ϕ)ϕ;ηϕ;η + Lm

]
, (1)

where g and LM are the determinants of the metric tensor gξη

and the lagrangian function, respectively. Furthermore, R and
ϕ ≡ ϕ(r) represent Ricci scalar and scalar potential function,
respectively. For the sake of simplicity, we use ϕ(r) ≡ ϕ,
f ≡ f (R, ϕ), and wϕ ≡ w. The field equations can be
obtained by varying the action (1) with respect to gξη as

fR Rξη − 1

2

[
f + w(ϕ)ϕ;αϕ;α

]
gξη + w(ϕ)ϕ;αϕ;α

− fR;ξη + gξη� fR = kTξη, (2)

where � ≡ ∇μ∇λ represents the D’Alembert operator and

fR = ∂ f

∂R
. An alternative form of modified field equations

in the shape of GR can be written as

Gξη = Rξη − 1

2
Rgξη = 1

fR

[
T (m)

ξη + T (D)
ξη

]
, (3)

where, Tm
ξη is the usual energy momentum tensor for

anisotropic matter configuration is illustrated as

T (m)
ξη = (ρ + pt )uξuη − pt gξη + (pr − pt )υξυη, (4)

where ρ, pt , pr denote the energy density, tangential pres-
sure, and radial pressures, respectively. Additionally, uξ =
ea/2δ0

ξ and υη = eb/2δ1
η signify velocity 4-vectors. Moreover,

T (D)
ξη can be written as

T D
ξη = 1

fR

[
− 1

2
gξηR fR + 1

2
( f + w(ϕ)ϕ;αϕ;α)gξη

−w(ϕ)ϕ;ξ ϕ;η + fR;ξη − gξη� fR

]
. (5)

For our current work, we consider the spherically symmetric
spacetime as

ds2 = eλ(r)dt2 − eζ(r)dr2 − r2(dθ2 + sin2θdϕ2), (6)

where ea(r) and eb(r) represent metric coefficients. After
some manipulations, we get the following field equations
as

G00 = eλ

fR

[
ρ − 1

2
R fR + 1

2
f − 1

2
w(ϕ)ϕ

′2e−ζ

+e−ζ f
′′
R + e−ζ

(
ζ

′

2
+ 2

r

)
f

′
R

]
, (7)

G11 = eζ

fR

[
pr + 1

2
R fR − 1

2
f − 1

2
w(ϕ)ϕ

′2e−ζ

−e−ζ

(
λ

′

2
+ ζ

′ + 2

r

)
f

′
R

]
, (8)

G22 = r2

fR

[
pt + 1

2
R fR − 1

2
f + 1

2
w(ϕ)ϕ

′2e−ζ

−e−ζ f
′′
R − e−ζ

(
λ

′

2
+ ζ

′

2
+ 2

r

)
f

′
R

]
, (9)
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G33 = r2sin2θ

fR

[
pt + 1

2
R fR − 1

2
f + 1

2
w(ϕ)ϕ

′2e−ζ

−e−ζ f
′′
R − e−ζ

(
λ

′

2
+ ζ

′

2
+ 1

r

)
f

′
R

]
. (10)

where fϕ = ∂ f

∂ϕ
and prime is derivatives with respect to

radial coordinate “r”. Moreover, the hydrostatic equilibrium
equation can be obtained as

dpr
dr

= eζ fR

[
e−2ζ

fR

(
f − R fR

2
eζ − 1

2
w(ϕ)ϕ

′2

−
(

λ
′

2
+ ζ

′ + 2

r

)
f

′
R

]
,1

− ρλ
′

2
−

(
λ

′

2
+ 2

r
+ f

′
R R

′

fRρ
′

)
pr + 2pt

r

+ e−ζ

(
− λ

′

2
− 2

r

)
f

′′
R

+ e−ζ

(
3

4
λ

′
ζ

′ + λ
′2

4
+ 3ζ

′

r
+ 2

r2 + ζ
′2
)
f

′
R

+ ζ
′
(

f − R fR
2

)
+ e−ζ

(
λ

′

2
+ ζ

′

2
+ 2

r

)
w(ϕ)ϕ

′2,

(11)

which implies to

� = −dpr
dr

+ eζ fR

[
e−2ζ

fR

(
f − R fR

2
eζ − 1

2
w(ϕ)ϕ

′2

−
(

λ
′

2
+ ζ

′ + 2

r

)
f

′
R

]
,1

− ρλ
′

2
−

(
λ

′

2
+ 2

r
+ f

′
R R

′

fRρ
′

)
pr + 2pt

r

+ e−ζ

(
− λ

′

2
− 2

r

)
f

′′
R

+ e−ζ

(
3

4
λ

′
ζ

′ + λ
′2

4
+ 3ζ

′

r
+ 2

r2 + ζ
′2
)
f

′
R

+ ζ
′
(

f − R fR
2

)
+ e−ζ

(
λ

′

2
+ ζ

′

2
+ 2

r

)
w(ϕ)ϕ

′2,

(12)

where � represents the total force acting on a fluid element,
appearing after perturbation, when the fluid is out of equilib-
rium.

3 Local density perturbation technique

This section formulates the equation for radial forces by inte-
grating the concept of local density perturbation (LDP) into
physical parameters. The LDP technique is a valuable tool for

investigating how minor fluctuations in matter density influ-
ence gravitational behavior within the framework of mod-
ified gravity theories [60]. By analyzing small deviations
from uniform density, this method enables the study of space-
time responses under various gravitational models. Such an
approach offers insights into the behavior of gravity beyond
classical theories, particularly in regimes of strong gravita-
tional fields or near compact objects. It serves as a bridge
between theoretical predictions and observed phenomena,
especially in areas where traditional gravity theories fall short
of providing a comprehensive explanation.

Additionally, this study assumes a density-dependent
nature of these parameters while simultaneously consider-
ing the barotropic equation of state (EoS), expressed as
pr = pr (ρ) and pt = pt (ρ). Cracking occurs when the
radial forces δ�

δρ
, which are directed inward ( δ�

δρ
< 0), change

sign to become δ�
δρ

> 0. Conversely, overturning occurs

when the radial forces, initially directed outward ( δ�
δρ

> 0),
change sign. Next, we introduce the density perturbation
ρ → ρ + δρ into the physical parameters as follows:

ρ(ρ + δρ) = ρ(ρ) + δρ, (13)

ρ′(ρ + δρ) = ρ′(ρ) + ρ′′

ρ′ δρ, (14)

pr (ρ + δρ) = pr (ρ) + dpr
dρ

δρ = pr (ρ) + v2
r δρ, (15)

dpr
dr

(ρ + δρ) = dpr
dr

+
[
d

dr

(
dpr
dρ

)
+ d2ρ

dr2

(
dpr
dρ

)
.
dr

dρ

]

= dpr
dr

+ v′2
r + v2

r .ρ
′′(ρ′)−1, (16)

pt (ρ + δρ) = pt (ρ) + dpt
dρ

δρ = pt (ρ) + v2
t δρ, (17)

fR(ρ + δρ) = fR(ρ) + R′

ρ′ f
′
Rδρ, (18)

f ′
R(ρ + δρ) = f ′

R(ρ) + R′

ρ′ f
′′
Rδρ, (19)

f ′′
R(ρ + δρ) = f ′′

R(ρ) + R′

ρ′ f
′′′
R δρ, (20)

f (ρ + δρ) =
[
R′

ρ′ fR + ϕ′

ρ′ fϕ
]
δρ, (21)

fϕ(ρ + δρ) = fϕ(ρ) + ϕ′

ρ′ f
′
ϕδρ, (22)

R′(ρ + δρ) = R′(ρ) + R′′

ρ′ δρ, (23)

w(ρ + δρ) = w(ρ) + ϕ′

ρ′ w
′δρ, (24)

w′(ρ + δρ) = w′(ρ) + ϕ′

ρ′ w
′′δρ, (25)

ϕ′(ρ + δρ) = ϕ′(ρ) + ϕ′′

ρ′ δρ, (26)
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Table 1 Estimated values of X, Y, M, R of compact stars

Compact stars M(M�) R/km α = M/R X/km−2 Y/km−2 Zs

Her X-I 0.88 M� 7.7 0.168 0.010 906 441 192 0.0042673646183 0.23

SAXJ1808.4-3658 1.435 M� 7.07 0.299 0.01823156974 0.014880115692 0.57

4U 1820-30 2.25 M� 10.0 0.332 0.010906441192 0.009880 9523811 0.073

ϕ′′(ρ + δρ) = ϕ′′(ρ) + ϕ′′′

ρ′ δρ. (27)

Further, v2
r and v2

t signify the radial and tangential sound
speeds, respectively, and are expressed as

v2
r = dpr

dρ
, v2

t = dpt
dρ

. (28)

Now, the radial forces δ�
δρ

arising from perturbing the system
can be determined by employing the local density perturba-
tion technique. By expanding Eq. (12), its perturbed form is
obtained as follows:

� = �0

(
ρ, ρ′, pr , p′

r , pt , fR, f ′
R, f ′′

R , R′,

× f, fϕ, ϕ′, ϕ′′, w(ϕ), w′(ϕ)

)
+ δ�,

(29)

where

δ� = ∂�

∂ρ
δρ + ∂�

∂ρ′ δρ
′ + + ∂�

∂pr
δpr

+ ∂�

∂p′
r
δp′

r + ∂�

∂pt
δpt + ∂�

∂ fR
δ fR + ∂�

∂ f ′
R

δ f ′
R + ∂�

∂ f ′′
R

δ f ′′
R

+ ∂�

∂R′ δR
′ + ∂�

∂ f
δ f + ∂�

∂ fϕ
δ fϕ + ∂�

∂ f ′
ϕ

δ f ′
ϕ

+ ∂�

∂ϕ′ δϕ
′ + ∂�

∂ϕ′′ δϕ
′′ + ∂�

∂w
δw + ∂�

∂w′ δw
′. (30)

Equation (30) further modifies to

δ�

δρ
= +∂�

∂ρ′

(
ρ′′(ρ′)−1

)
+ ∂�

∂pr

(
v2
r

)

+ ∂�

∂p′
r

(
v

′2
r + v2

r ρ′′(ρ′)−1
)

+ ∂�

∂pt

(
v2
t

)
+ ∂�

∂ fR

(
f ′
R

R
′

ρ′

)

+ ∂�

∂ f ′
R

(
f ′′
R

R
′

ρ′

)
+ ∂�

∂ f ′′
R

(
f ′′′
R

R
′

ρ′

)
+ ∂�

∂R′

(
R

′′

ρ′

)

+∂�

∂ f

(
fR

R
′

ρ′ + fϕ
ϕ

′

ρ′

)
+ ∂�

∂ fϕ

(
f ′
ϕ

ϕ
′

ρ′

)

+ ∂�

∂ϕ′

(
ϕ

′′

ρ′

)
+ ∂�

∂ϕ′′

(
ϕ

′′′

ρ′

)

+∂�

∂w

(
w

′
ϕ′

ρ′

)
+ ∂�

∂w′

(
w

′′
ϕ′

ρ′

)
. (31)

It can be noticed that the subsequent partial derivatives of Eq.
(31) can be seen in Eqs. (A1)–(A15) as written in Appendix.

4 Discussion

This section explores the effects of LDP on f (R, ϕ) theory
of gravity. To investigate these effects, we utilize Eq. (31),
which describes the perturbed state of the system. The pri-
mary objective is to identify the cracking and overturning
points by examining the changes in the signs of the per-
turbed states induced by LDP. For this analysis, we adopt
the f (R, ϕ) gravity model [57] as

f (R, ϕ) = ϕ(R + αR2). (32)

We assume that w(ϕ) = v0ϕ
n and ϕ = rβ , where α, β, and

n are non-zero constants. To validate our proposed approach
within the framework of the modified f (R, ϕ) theory of grav-
ity, we analyze the compact stars Her X-1, SAX J 1808-3658,
and 4U 1820-30. Table 1 lists the constants, radii, and masses
for each star under consideration. Furthermore, Figs. 1, 2 and
3 in the subsequent subsections provide a graphical represen-

tation of
δ�

δρ
as a function of the model parameter β for the

selected compact stars.

4.1 Star 1: Her X -1

Her X-1 was first discovered by Tananbaum and collabo-
rators [61], who identified a new pulsating X-ray source in
the constellation Hercules, characterized by a pulse period
of 1.24 s and an orbital period of 1 day. Later, in 1995, Li et
al. [62] suggested that Her X-1 is a strange star based on the
M − R relationship of strange stars.

Figure 1 presents the plots of
δ�

δρ
for Her X-1. These

plots reveal that overturning occurs within the interval β ∈
(0, 0.05], as shown in Fig. 1a–d. Additionally, the figures
indicate that cracking points are present in the interval β ∈
(0, 0.14], highlighting disruptions in radial forces under per-
turbations.

Moreover, Fig. 1e–i demonstrate that neither cracking nor
overturning occurs within the interval β ∈ (0.14, 1], suggest-
ing that the star’s configuration remains stable and resistant
to disruptions in this range. Table 2 summarizes the specific
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Fig. 1 Plots of
δ�

δρ
for Her

X-1:
X = 0.0069062764281 km2,
Y = 0.0042673646183 km2,
n = −1.5, v0 = 0.5, α = 0.168
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Fig. 2 Plots of
δ�

δρ
for SAXJI808.4-3658: X = 0.0182315697401 km2, Y = .014880115692 km2, n = −1.5, v0 = 0.5, α = 0.299
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Fig. 2 continued

values of β at which the star exhibits cracking and overturn-
ing points.

4.2 Star 2: SAXJ1808.4-3658

Zand et al. [63] identified SAX J1808.4-3658 as a compact
neutron star with an orbital period of 2 h. Subsequently, Li et
al. [64] proposed that SAX J1808.4-3658 is a candidate for
a strange star based on its M − R relation.

We have plotted
δ�

δρ
for SAX J1808.4-3658 by consid-

ering different values of β, as shown in Fig. 2. The plots
in Fig. 2a–h demonstrate that overturning occurs within the

Table 2 Cracking and overturning points in Her X-1

β Cracking points (r (km)) Overturning points (r (km))

0.001 r = 1.95879 r = 2.47562

0.05 r = 5.44825 r = 7.03499

0.1 r = 6.70768 –

0.145 – –

0.15 – –

0.35 – –

0.65 – –

0.85 – –

1 – –
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Fig. 3 Plots of
δ�

δρ
for 4U1820-30: X = 0.0109064411921 km2, Y = 0.0098809523811 km2, n = −1.5, v0 = 0.5, α = 0.332
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Fig. 3 continued

interval β ∈ (0, 0.57]. Furthermore, Fig. 2a–m reveal that
cracking points appear within β ∈ (0, 3].

These findings highlight disruptions within the respec-
tive intervals, underscoring the system’s sensitivity to applied
perturbations. Table 3 provides a summary of the values of
β at which the star exhibits cracking and overturning points.

4.3 Star 3: 4U 1820-30

Guver et al. [65] analyzed the spectral data from thermonu-
clear bursts and reported the mass and radius of 4U 1820-30
to be 1.58 ± 0.06 M� and 9.11 ± 0.40 km, respectively.

We have plotted
δ�

δρ
over a wide range of the model param-

eter β for 4U 1820-30, as shown in Fig. 3. Figure 3a–g indi-
cate that both cracking and overturning occur within the inter-
val β ∈ (0, 0.5]. Within this range, overturning points appear
exclusively in β ∈ (0, 0.5].

In contrast, Fig. 3a–k illustrate that 4U 1820-30 exhibits
cracking points throughout β ∈ (0, 3]. These findings reveal
disturbances in the configuration across the specified inter-
vals, highlighting the system’s sensitivity to the applied per-
turbations. Table 4 provides a summary of the values of β at
which the star exhibits cracking and overturning points.

Table 3 Cracking and overturning points in SAXJ1808.4-3658

β Cracking points (r (km)) Overturning points (r (km))

0.05 r = 2.77706 r = 3.18340

0.1 r = 3.553319 r = 3.88898

0.12 r = 3.92738 r = 4.16722

0.20 r = 5.07131 r = 5.29391

0.30 r = 5.94913 r = 6.21129

0.40 r = 6.73561 r = 6.93221

0.50 r = 5.64871 r = 6.42326

0.57 r = 5.59862 r = 7.00442

0.60 r = 5.58511 –

0.75 r = 5.47697 –

1 r = 4.96189 –

1.5 r = 4.45909 –

2.5 r = 3.75403 –

5 Conclusion

In this paper, we investigated the phenomenon of cracking
within the framework of the modified f (R, ϕ) theory of grav-
ity. The primary objective was to examine the conditions
under which cracking and overturning occur, analyze their
dependence on physical parameters such as density pertur-
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Table 4 Cracking and overturning points in 4U 1820-30

β Cracking points (r (km)) Overturning points (r (km))

0.005 r = 1.65991 r = 2.27967

0.010 r = 2.05934 r = 3.05045

0.020 r = 2.46891 r = 3.30982

0.040 r = 3.38050 r = 4.02068

0.20 r = 5.09601 r = 6.61629

0.35 r = 6.15279 r = 8.15512

0.5 r = 6.72753 r = 9.49001

0.65 r = 6.79087 –

0.85 r = 6.52745 –

1 r = 6.53527 –

1.5 r = 6.11803 –

1.85 r = 6.01232 –

bations, and understand their implications for the behavior
of compact stars in modified gravity scenarios.

This goal was achieved by considering an anisotropic mat-
ter distribution with spherical symmetry and deriving the
field equations, as presented in Eqs. (7)–(10). Additionally,
we derived the hydrostatic equilibrium equation using the
principle of energy conservation and adopted the spacetime
coefficients proposed by Krori and Barua [56].

To further our analysis, we formulated the radial force
equation by incorporating local density perturbations (LDP)
into the physical parameters while accounting for a barotropic
equation of state (EoS). The main focus was to evaluate
cracking and overturning points by examining the changes
in the signs of the perturbed state, as expressed in Eq. (31),
under the influence of LDP.

For validation, we employed the model f (R, ϕ) = ϕ(R+
αR2), as proposed in [57]. Three compact stars Her X-1,
SAX J1808 3658, and 4U 1820 30 were selected for this
analysis. The previous section provides the plots of radial

forces
δ�

δρ
for each star, along with accompanying observa-

tions. Tables 2 and 4 summarize the positions of cracking
and overturning for each considered star.

In conclusion, the following key findings have been
derived from our analysis:

• Her X-1 exhibits overturning and cracking within the
intervals β ∈ (0, 0.05] and β ∈ (0, 0.14], respectively.
For β ∈ (0.14, 1], neither cracking nor overturning phe-
nomena are observed.

• SAX J1808.4-3658 exhibits overturning and cracking
points within β ∈ (0, 0.57] and β ∈ (0, 3], respectively.
These observations indicate disruptions within the speci-
fied intervals, highlighting the system’s sensitivity to the
applied perturbations.

• For 4U 1820-30, overturning points are observed within
β ∈ (0, 0.5], while cracking points appear at β ∈ (0, 3].
These results underscore disruptions in the configuration
across the respective intervals, emphasizing the sensitiv-
ity of the system to perturbations.

Based on the analysis, it can be concluded that the occur-
rence of cracking and overturning phenomena is linked to
disturbances in the configuration, causing a deviation from
hydrostatic equilibrium. Our findings reveal that all the stars
under consideration are sensitive to local density perturba-
tions, which result in the formation of cracking and over-
turning points within these stars. This study is significant as
it identifies regions prone to localized density disruptions,
providing valuable insights into the structural behavior of
compact stars within modified gravity frameworks.
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′
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