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Abstract In this work we characterize all the static and
spherically symmetric vacuum solutions in f(R) gravity
when the principal null directions of the Weyl tensor are
non-expanding. In contrast to General Relativity, we show
that the Nariai spacetime is not the only solution of this type
when general f (R) theories are considered. In particular, we
find four different solutions for the non-constant Ricci scalar
case, all of them corresponding to the same theory, given
by f(R) = r(;l ’R — 3/r§|1/2, where rg is a non-null con-
stant. Finally, we briefly present some geometric properties
of these solutions.

1 Introduction

The Nariai spacetime, presented back in the 1950’s by Nariai
[1,2], can be described in suitable coordinates by the line
element

2 2\ 7!
ds* = (1— 5 |di* = (1= =) dar’—rgdQ® (1)
"o "o

with r € (—rg, rg), where rg is a non-null constant, and
dQ? is the line element of the 2-sphere. This spacetime is
a well known static and spherically symmetric solution for
General Relativity (GR) with positive cosmological constant
A=1/r2.

This spacetime is usually characterized as a special limit
of the Schwarzschild-de Sitter solution when the event and
cosmological horizons coincide, see e.g. [3]. Nevertheless,
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this limit is not defined in a meaningful sense, as it has been
pointed out in [4]. In fact, the resulting spacetimes depend on
the coordinate choice when taking limits in the metric tensor
[5].

Therefore, we may turn to Petrov classification and the
Newman—Penrose (NP) formalism as elegant tools to fully
characterize this solution, given their usefulness in the study
of algebraically special spacetimes.

Considering the Weyl decomposition of the Riemann ten-
sor, Petrov developed a classification of spacetimes [6] exam-
ining the algebraic structure of the curvature tensor. This clas-
sification can be carried out by studying the eigenbivectors
of the Weyl tensor, which are associated to four null vectors
that determine the so called principal null directions of the
Weyl tensor. When there is at least one degeneracy between
the four principal null directions the spacetime is said to
be algebraically special. Moreover, the Petrov classification
was also studied later in terms of spinors, see e.g. [7,8], and
recently extended to higher dimensions [9].

Every spherically symmetric spacetime is algebraically
special [10], which naturally induces the use of the NP for-
malism. In particular, static and spherically symmetric space-
times are type D (or O). That is, there are two degenerated
principal null directions (or the spacetime is conformally flat,
which corresponds to type O). As it is usual in the NP for-
malism, we construct a null tetrad with two null vectors [*
and n**, which we take to be aligned with the two principal
null directions [11]. The tetrad is completed by combining
a pair of real orthogonal spacelike unit vectors to define a
complex null vector m* and its complex conjugate m*. Such
a null tetrad allows us to take advantage of the symmetries
of the Weyl tensor in algebracially special solutions.

In the spherically symmetric case, the congruences asso-
ciated to the principal null directions are indeed geodesic,
non-rotating and shear-free. In terms of the optical scalars
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in the NP formalism that is «k = w = o = 0. In particular,
for static and spherically symmetric spacetimes, p will deter-
mine the congruence expansion of / and n [12]. In this con-
text, we restrict our analysis to spacetimes whose principal
null directions are non-expanding. That is a subset of Kundt
class spacetimes, which are defined as the ones admitting a
non-expanding, non-rotating and shear-free congruence of
null geodesics, see e.g. [13]. With the previous assumptions,
p = 0 implies that the spacetime can be decomposed as the
direct product of two 2-spaces.

The Nariai spacetime, introduced in Eq. (1), is the paradig-
matic prototype for a solution with the previous properties
in GR. In fact, it is the only static and spherically symmetric
solution with non-expanding principal null directions in GR
with cosmological constant [14]. Moreover, its uniqueness
has also been recently proved in larger dimensions [15].

At this point, the following question naturally arises: is the
Nariai solution the only static and spherically symmetric vac-
uum spacetime with non-expanding principal null directions
beyond GR?

In this context, Extended Theories of Gravity (ETGs) have
been developed to approach some known problems associ-
ated to GR, such as the existence of black hole and cosmolog-
ical singularities [16] or the lack of a satisfactory description
for the accelerated expansion of the universe. Among differ-
ent ETGs (see e.g. the standard reference from Capozziello
and Faraoni [17] and references therein), two paradigmatic
examples are scalar-tensor [18] or f(R) theories [19].

In particular, f(R) theories can be useful as toy models
which allow us to study gravity modifications in a simplified
way. Even more, it is known that the only possibility to obtain
a potentially stable local modification of GR is to make the
Lagrangian an arbitrary function of the Ricci scalar [20].

Through the last years, many exact solutions of f(R) grav-
ity have been discovered [17,19,21]. For static and spheri-
cally symmetric vacuum spacetimes, the case with expand-
ing principal null directions have been studied by Multaméki
and Vilja [22] and by Sebastiani and Zerbini [23]. The non-
vacuum case has also been studied describing the equilibrium
configuration of a star [24,25].

Regarding the vacuum case, it has been shown that con-
stant Ricci scalar solutions are indeed Einstein spaces, which
is the case of the Nariai spacetime. In this case, an existence
condition for compatible f(R) theories has been given [26—
28].

Following this motivation, our aim is to fully character-
ize all the static and spherically symmetric vacuum solutions
with non-expanding principal null directions for f(R) theo-
ries.

This manuscript is organized as follows: in Sect. 2 we give
a brief introduction to the f(R) gravity formalism and the
corresponding field equations. In Sect.3 we construct the
line element for a static and spherically symmetric space-
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time when the non-expanding condition on the principal null
directions is considered. Then, we present the field equations
in the new basis constructed with the principal null directions
and we solve for the metric, giving the compatible f'(R) the-
ories. In particular, we briefly comment some relevant geo-
metric properties about the solutions. Finally, in Sect.4 we
point out the main results.

Through all the manuscript we use the signature (1,3) for
the metric and the Penrose and Rindler’s sign convention for
the Riemann curvature tensor [29].

2 f(R) gravity

For the vacuum case, the general action in f(R) formalism
is [17]

Slg] = / d*x V"5 f(R), %)

where we have set 16x G = 1, with G denoting the gravita-
tional constant.

Applying the variational principle §S = 0, the field equa-
tions for f(R) gravity are

_R/w = At/w, (3)

where we have defined the effective stress-energy tensor as
_ 1

Aty = FR)™ (= 3 f(R)gpn

ViV, - g b]F(B)). )

with F(R):=df (R)/dR. Then, the associated trace equation
is

R=F(R) ™ Qf(R) +30F(R)). ©)

In the following section we rewrite these field equations
employing the NP formalism for our particular case of study.

3 static and spherically symmetric vacuum solutions
with non-expanding principal null directions

We start with a general static and spherically symmetric
spacetime (M, g), whose line element is given by

ds® = p(r)dt* — s(r)dr? — q(r)dQ?, (6)

where p(r), s(r) and g (r) are positive functions.
In this case, the principal null directions are

1
= (p)'5(0'2,0,0).
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= - (P(r)l/z, —s()'/?,0, 0) , %) In order to state the field equations, we introduce the fol-
V2 lowing notation.

and we complete the null tetrad with

muzﬂ(0,0,l,—isiHG), ®)

V2

where [ n* = —m, m"* = 1.

Imposing the non-expanding condition on /,i.e. p = 0, it
is straightforward to verify that g(r) = rg, where ro can be
taken as a positive constant without loss of generality. Note
that this choice of g (r) assures the non-expanding property
of n.

This case cannot be transformed by a redefinition of coor-
dinates into the expanding case with ¢(r) = r2, which is
usually considered in spherical symmetry, as the aforemen-
tioned expansion, p, is independent of the coordinate choice.
Note that this distinction was discussed in detailin [13,16,30]
and more recently in [ 14]. In addition, this differentiation was
explicitly studied by Kinnersley when solving for all Type
D vacuum metrics within GR [31]. Unfortunately, the ansatz
with ¢ (r) = r? is still generally assumed as the most general
static and spherically symmetric spacetime, despite the fact
that these two cases are not related.

After considering the non-expanding condition, the result-
ing spacetime (M, g) can be decomposed as a product man-
ifold M = N x S%(ro) with g = gn @ 852(ry)» Where g is
the metric of a Lorentzian 2-surface and g2, is the metric
tensor of the Riemannian 2-sphere of radius r(.

Therefore, the change of coordinates

F(r) = / ' du (s(u) p(u))'/? )

0

transforms the metric given in Eq. (6) into

ds* = p(rdt* — p(r)~'dr* — rgdQ*, (10)

after renaming 7 as r.!

As commented in Sect. 1, we present the field equations
given in Eq. (3) in the null tetrad basis defined in Egs. (7) and
(8). Note that in these new coordinates this basis is expressed
as

1
b= 5 (P02, p0)717,0,0)
1
n, = E (p(r)l/z, —P(V)_l/za Oa 0) )
m, = %(o, 0,1, —isin6). (11)

! The function 7(r) is strictly increasing so there exists its inverse func-
tion r (7).

On one hand, the so called Ricci scalars, &, with a, b €
{0, 1, 2}, are defined as the contractions of the Ricci tensor
with the null tetrad vectors (see e.g. [11,12]). These are the
components of the Ricci tensor in the new basis introduced
in Eq. (11). For the metric given by Eq. (10) the only non-
vanishing scalar is

1
q)ll = —ERMVIMVZU +3A, (12)

where A = R/24, with R being the Ricci scalar curvature.

On the other hand, we define the physical contractions of
the effective stress-energy tensor in an analogous way as the
Ricci scalars. Using the field equations given in Eq. (3), the
only non-vanishing scalars are

1
Nt = 5 Al 1, (13)
1
ol = 5At,wll*n“ +3AP", (14)
(I)Ph _ 1A o,V
2 =3 tyontn?, (15)

with AP" = R /24, where R is now obtained in terms of
f(R) by using Eq. (5).

At this point, the only field equations which are not iden-
tically zero in the new basis are given by CDgg = @gzh =0,
@f ]h = ®; and AP" = A For convenience we will take the
following linear combinations:

h
o O = Dop

F’(r) =0, (16)
° Cl)ffl =
F'(rp'(r)+ p)F"(r) 2 "
- Fr) = % +p(r), (17)
. q’ffz_f\ph =& - A
fr)y 1 p

where F(r) = F(R(r)) and f(r) = f(R(r)).
Observe that Eq. (16) implies

F@r)=a(l +br), (19)

where a and b are constants having dimensions of one over
length.

@ Springer
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In addition, from Eq. (19) it is natural to consider two
different cases depending whether b = 0 or b # 0. Interest-
ingly, as we show along this section, b = 0 corresponds to
constant Ricci scalar and b # 0 to non-constant Ricci scalar.
This will allow us to fully characterize the solutions in terms
of the Ricci scalar.

3.1 Non-constant Ricci scalar solutions

Assuming b # 0 in Eq. (17), the solution is given by

r r2 Y

ry=c—— — — + ——=log|l + br|. 20
PO == g = ot gl 4 br] (20)

where y = 1 + czbrg, being c¢; and ¢ two arbitrary con-
stants. Indeed, their relevance on the properties of the result-
ing spacetimes is shown below.

Observe that in the limit case » — 0 on Eq. (20) the Nariai
solution is recovered as

2

lim p(r) =c| — cor — —, 21
Jm pr)=cr—c 2 (21)
which always can be transformed into Eq. (1) by a suitable
change of coordinates.

Moreover, the Ricci scalar is given by

1 14
= —(3+ —— 22
R(r) rg( +(1+br)2), (22)

and it shows a curvature singularity at r = —1/b.

Now we focus on the study of the compatible f(R) theo-
ries. Equation (18) can be written in terms of the Ricci scalar
as

3 R
- = & (23)
Ty Zf/(R)
and from this equation we deduce
1/2
o
f(R)=—|R——| , (24)
ro }”0

where « is a dimensionless non-null constant. We take o = 1
without loss of generality.> Also note that GR is not recovered
in the limit case when b — 0 shown in Eq. (21) since the
theory, determined by Eq. (24), is independent of b.

It remains to verify the consistency between Egs. (19),
(22) and (24). That is,

j—];(R(r)) = F(r), (25)

2 A constant multiple of the action does not modify the field equations
when the variational principle is applied.

@ Springer
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Fig. 1 Lambert’s W function for the two branches k € {0, 1}. The
principal and k = —1 branches are represented in solid and dashed
lines, respectively. Case I is defined when no real value of the Lambert
function exists. In case IT the real value of the two branches coin-
cides. Case IIT determines two different real values for the Lambert
W function. Finally, case IV is defined when the principal branch is the
only real value. Note that, in accordance with Eq. (28), £(c1, y) = 01is
excluded

which yields
Fo)= =25 1+ brl, (26)
20yl

from where a = sign(1+br)y |y| >/ /2. Note that a is con-
stant in each connected subinterval of the metric domain (as
r = —1/bisnotincluded). Moreover, a € R imposes y # 0.
Therefore, by Eq. (22), the Ricci scalar is non-constant.
The solution given in Eq. (20) has, if any, the following
Killing horizons generated by 9;, which are determined by

1
=y (1 £/ =y Wi(&(er, )/))) ; 27

where we have defined

1 p2,2
—1=2cb 0

| L
§le,y)=——e 7 (28)
1

and Wy is k-th branch of the Lambert’s function. As r must
be areal value, the only considered branches are k € {—1, 0}.

At this point, we differentiate into four different cases for
&(c1, y)- Each case represents the number of real values of
the Lambert W function for the two considered branches, as
Fig. 1 shows. This determines the number of Killing horizons,
according to Eq. (27).

e Case I is determined by &(c1, y) < —1/e. Under this
condition, there are no Killing horizons generated by 9,
and the metric functionis p(r) < Oforallr € R\{—1/b}.
Then, no static patch is found.

e Case IT is given by the relation £(cy, y) = —1/e. In
this situation, there are two different Killing horizons
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(these are degenerated, in the sense that the two branches
coincide) and the metric function is p(r) < 0 for all
r € R\ {—1/b}. Thus, there is no static patch in this
case.

e Case TIT is defined for —1/e < &(cy,y) < 0. There
exist four different Killing horizons, which lead to two
disconnected static patches.

A representative example of the metric function p(r) is
shown in Fig. 2 for cases I, IT and ITII. Observe thatin these
cases y > 0, so the Ricci scalar is greater than 3/ rg. More-
over, the curvature singularity lies outside the static region.

Note that by varying c; it is possible to switch between
cases I,IT and IIT, as it is shown in Fig.3. Moreover,
as the number of Killing horizons generated by d; must be
invariant under local isometries, the constant ¢; cannot be
removed under changes of coordinates.

e Case IV is determined by &£(cy, ) > 0. There are only
two different Killing horizons which lead to the existence
of one static patch. Moreover, they are independent of the
possible values of c¢y. For illustration, a representation of
p(r) is shown in Fig.4. Observe that, by Eq. (22), the
Ricci scalar changes its sign at

;- _% (1£v=v73). (29)

and is upper bounded by 3/ rg. Also notice that the con-
stant ¢ cannot be removed either by changes of coor-
dinates because by varying c; it is possible to switch
from case IV to the other cases (see Fig.3) which are
not isometric as the different range of the Ricci scalar
reveals. In addition, observe that the curvature singular-
ity at ¥ = —1/b is in this case located inside the static
region.

Finally, the constant Ricci scalar case will be briefly exam-
ined for completeness.

3.2 Constant Ricci scalar solutions

Assuming b = 0, the solution of Eq. (17) is
2

p(r)=ci+cr——, (30)
o

where ¢ and c; are arbitrary constants that can be removed
by a suitable coordinate changes. Thus, we get

2
P =1-"=, (31)
o

p(_r)

Fig. 2 Metric function p(r) against coordinate r obtained for b =
ro = 1, y = 3 and different values of ¢ in the three possible regions
with positive y. With solid line we show ¢; in region I, with dashed
line in region IT and with dot-dashed line in region III. The filled
region represents the static patch

I
|
I
I
: III
|
I
I
I
I

Iv
/q\

C1

H

14

Fig. 3 Different values of ¢ and y define different cases as shown in
Fig. 1. For y > 0, we can go through cases I, IT and IITI by varying
c1.Case IV corresponds to y < O regardless of the value of constant cy.
Note that it is possible to switch between case IV and the other cases by
varying y (or equivalently, ¢;). The case y = 0, represented in dashed
line, is excluded

which is the Nariai solution introduced in Eq. (1). Indeed,
the Ricci scalar is constant with R(r) = Ry = 4/ rg.

From Eq. (18) it can be seen that the set of compatible
f(R) theories are those functions fulfilling the one point
differential equation

df (4\ _r5 . (4
dR (rg>_ 2f(r§>' (32)

@ Springer
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Fig. 4 Metric function p(r) against coordinate r in region IV obtained
forb =r9p =1,c; =2 and y = —1. The filled region represents the
static patch

This can be rewritten as

d
Ro%(Ro) =2f(Ro), (33)

which is actually the trace equation, introduced in Eq. (5), for
constant Ricci scalar. Note that Eq. (33) was also presented
in [26-28].

At this point, we can conclude that the only constant Ricci
scalar solution to any theory satisfying Eq. (33) is the Nariai
spacetime. Note that, in general, these theories are not nec-
essarily GR although the corresponding field equations can
be interpreted, for constant R = Ry, in terms of GR with a
cosmological constant given by A = % - 2];7((1?0)) [17]. In our

particular case, Eq. (33) implies A = Rp/4 =1/ rg, which
corresponds to the cosmological constant for the Nariai solu-
tion.

4 Final remarks

This manuscript aims to extend the study carried out by Mul-
tamiki and Vilja [22] for static and spherically symmetric
vacuum spacetimes in f(R) gravity for the case of non-
expanding principal null directions, dividing our analysis in
two different cases depending on whether the Ricci scalar is
constant or not.

For the non-constant Ricci scalar case we have shown that
there exists only one f(R) theory which has the form

1/2
1 3
fR)=—|R-=| . (34)
ro rO

This theory admits four different spherically symmetric
vacuum solutions (cases I—-IV) with non-expanding princi-

@ Springer

pal null directions, which exhibit a curvature singularity at
r = —1/b. Interestingly, only two of them (cases III and
IV) present static patches.

In case I, no Killing horizons generated by 9, are found
and there is no static patch. Similarly, no static region is
defined in case I I despite there exist two Killing horizons.
In case IIT, there are four different Killing horizons which
define two static patches. Finally, in case IV there are two
Killing horizons resulting in a static region.

In cases IT-IT1T, the curvature singularity is found to be
outside the static region. On the contrary, in case IV, the
curvature singularity is located inside the static patch.

We note that our case III with ¢y = y = 1 was
recently obtained in the context of scale-dependent gravity
[32]. Given that there is a scale-dependent representation for
any f(R) theory [33], this would enable the interpretation
of all the solutions obtained in this manuscript in terms of
variable gravitational couplings. We left this for future work.

For completeness, we have considered the constant Ricci
scalar case, where the Nariai spacetime is shown to be the
only static and spherically symmetric vacuum spacetimes
with non-expanding principal null directions in f (R) gravity.

Therefore, we can finally assure that the Nariai solution is
not the only static and spherically symmetric vacuum space-
time with non-expanding principal null directions in f(R)
gravity.
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