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Abstract

Beyond the regime of distinguishable particles, many-body quantum interferences influence quantum
transport in an intricate manner. However, symmetries of the single-particle transformation matrix
alleviate this complexity and even allow the analytic formulation of suppression laws, which predict
final states to occur with a vanishing probability due to total destructive interference. Here we
investigate the symmetries of hypercube graphs and their generalisations with arbitrary identical
subgraphs on all vertices. We find that initial many-particle states, which are invariant under self-
inverse symmetries of the hypercube, lead to alarge number of suppressed final states. The condition
for suppression is determined solely by the initial symmetry, while the fraction of suppressed states is
given by the number of independent symmetries of the initial state. Our findings reveal new insights
into particle statistics for ensembles of indistinguishable bosons and fermions and may represent a
first step towards many-particle quantum protocols in higher-dimensional structures.

1. Introduction

Quantum transports of single particles on discrete graphs, also referred to as continuous-time quantum walks,
are governed by the interference of all possible pathways as provided by the graph structure. This wavelike
interference can be harnessed as an algorithmic tool in quantum computation [1], for excitation transfer in spin
chains [2-4] and may even play a role in photosynthesis [5, 6].

If multiple indistinguishable particles propagate on the same graph, one has to take their exchange symmetry
into account [7-9], which leads to correlations between the particles [ 10]. Generally speaking, increasing particle
numbers causes interference among a growing number of many-particle paths and gives rise to intricate
evolution scenarios [11], as experimentally demonstrated in planar graphs [7, 10, 12—14], as well as for two
[15, 16] and three [17] particles in two dimensions.

Symmetries of the graph can have a strong influence on transport problems. For example, in the single-
particle regime, it has been shown that symmetries permit perfect state transfer even through large spin chains
[18, 19]. In the realm of many-particle transport, the complexity of the dynamics is substantially simplified in the
presence of symmetries in the unitary evolution matrix. To date, only few such symmetries have been
investigated: The discrete Fourier transform [20, 21], Sylvester matrices [22] and the ], lattice [23, 24]. In all these
cases, symmetries lead to analytic suppression laws, predicting whether or not a final particle configuration can
occur.

In this work, we consider the quantum transport of N identical particles in hypercube graphs (HC) of
arbitrary dimension. These highly symmetric graphs attracted much attention in the context of single-particle
quantum walks [25-31]. Here, we investigate how symmetries influence many-particle transport on HC graphs.
We show analytically that the interference conditions are solely defined by the symmetries of the graph as well as
of the initial state and do not necessarily depend on the particular graph structure. For bosons as well as for
fermions, we derive suppression laws which predict final states with a vanishing probability of occurrence, due
to destructive interference among the N-particle trajectories. We also show that the number of suppressed states
depends strictly on how many relevant symmetries the initial state satisfies. Due to the underlying symmetries,
the suppression law persists in generalised HCs with identical but arbitrary subgraphs on all vertices. This
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permits each node of the HC to carry internal degrees of freedom, making our approach compatible with
implementations in various systems.

This paper is structured as follows. In section 2, we start with a brief introduction to many-body interference
and discuss consequences of particle indistinguishability and statistical differences between bosons and
fermions. A symmetric representation of the evolution scenario on HC graphs, followed by the symmetry
suppression laws and an illustrative example, is given in section 3. The generalisation to HC graphs with
arbitrary but identical subgraphs on all vertices is shown in section 4. Finally, we discuss the results and provide
an outlook towards possible experimental implementations in section 5. For completeness, all derivations of the
discussed suppression laws are given in the appendix.

2. Many-particle interference

A continuous-time quantum evolution on a graph with 7 identical vertices is governed by a Hamiltonian 7 with
elements 7:[1-,j / h, specifying the transition rates between sites i and j. Having explicitly the evolution of quantum
states in mind, we will refer to the vertices of the graph as modes in the remainder of the paper. An initial
configuration of N particles is fully described by the mode occupation list r = (n, ..., 1,), where each element r;
specifies the number of particles in mode j. For convenience, particle states can also be expressed by the mode
assignment list

d(r) = (di(r), ....dn(r)), )]

with d; (r) denoting the mode number occupied by the j-th particle [11, 20]. A final state after projective
measurement is similarly denoted by s = (s, ...,s,) and d (s) = (di(s), ....,dn (s)).

After an action of the Hamiltonian for some time #, a single-particle state undergoes a unitary
transformation U = exp (iHt /7). For the transition of many-particle states, however, all possibilities to
distribute the particles among the final modes contribute. Particle indistinguishability then requires a coherent
sum over all many-particle paths in the calculation of the transition probability [11, 20, 22, 32],

2
Si! N o
Hk— ) sgng 5 () [T Usorno | > (2)

Py p(r, s, U) = '
Hl T TES4(s) j=1

where the sum runs over the set of all possible permutations Sy, of the final mode assignment list d (s). Due to
the bosonic (fermionic) (anti-)commutation-relation, one has sgn; (o) = 1and sgn;(o) = sgn(o). It must be
emphasised that the number of particles for fermions is restricted to N < n due to Pauli’s principle [33],
whereas multiple bosons are allowed to occupy the same mode. By defining the matrix M; x = Ug, ()4, (s)» Which
contains all rows and columns of U, corresponding to occupied initial and final modes, respectively, the
transition probabilities

Py(r, 5, U) = ——— [perm (M)’ ®

Hk rk! Sk

and

Pe(r, s, U) = |det(M)|? 4

are obtained from the permanent (determinant) of transition amplitudes in a coherent manner. Thus, many-
particle interference arises from the indistinguishability of the particles; that is, the absence of any which-path
information in the process. For comparison, the transition probability for distinguishable particles [11, 20]

Piig (1, 5, U) = —————perm(IM]?, 5)

1
Hk rk! Sk +

contains no phase dependence and is, thus, not affected by many-body interference.

Essentially, symmetries simplify the complex interplay in many-body transitions and result in a structured
ordering, which individually affects the arising interferences for bosons and fermions. A closer look at the
calculation of transition probabilities according to (3) and (4) reveals, that symmetries of the unitary matrix 0
will transfer into M for appropriate choices of the initial and the final state. Consequently, the resulting
symmetries in M strongly affect the outcome in (3) and (4) [20]. In particular, total destructive interference will
occur for certain combinations of initial and final states, which is discussed for HC graphs in the following.

2
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d=1 d=2 d=3

Figure 1. Schematic illustration of HC graphs with up to four dimensions. All # = 2¢ modes (blue balls) are equally coupled (silver
connections) to d neighbouring modes.

Table 1. Rademacher functions and Walsh functions for the three-dimensional HC. To guide the eye, the numbers 1
and —1 are shaded in dark grey and light grey, respectively.

Mode numberj
Rademacher and Walsh Functions 1 2 3 4 5 6 7 8
x(j, 2) B B &1 5 &H &L
x(j, 4) =5 B - -
x(j, 8) -1 B B -1 B

A(]) (2) 8)) = x(ja 2) x(j) 8) -1
A(j, 4, 8) = x(j, 4) x(j, 8) -1

N L
LE

A, @, 4) = x(j, 2) x(jy, 4) [ | -1
—1

[ | [ | 1 1
i N

A, (2,4, 8) = x(j, 2 x(j, 9 x(5, 8)

3. Symmetry suppression law on HC graphs

3.1. HC unitary
The d-dimensional hypercube consists of n = 29 modes, each connected to d neighbours as illustrated in
figure 1. Note that this system may be seen as a generalisation of a two-site graph in d dimensions. Let
’ﬁli,j / /2 = k be the transition rate for neighbouring sites i and j. For an evolution time t = 7/ (4k), the unitary
transformation matrix reads
0= L(? i)®d. ©)

Jn \i 1

It contains all single-particle transformation amplitudes and is the basis for calculating many-particle transition
probabilities according to (3)—(5). Due to the tensor power in (6), the unitary clearly exhibits stepwise
symmetries. Pertaining to equation (2), an explicit expression for the element 17] k isrequired to make the
importance of symmetries apparent. To obtain such an expression, sign-bookkeeping instruments are
introduced. We define segmentation parameters p € {2, 4, 8, ...,n} and their corresponding Rademacher
functions [34]

Gy p) = (—l" "], %)

where the Gaussian brackets | /3 | evaluate the quotient of the Euclidean division /3. The Rademacher
functions, exemplified for d = 3 in the first three rows of table 1, assign the value 1 (—1) tomodes j € {1,...,n}
as determined by the segmentation value p in a symmetric and stepwise fashion, such that all modes are clearly
grouped into two subsets of the same size.

Returning to unitary (6), each element differs by a phase shift equalling an integer multiple of 7w /2. The
actual phase of element U, i can be calculated by means of the segmentations p, accounting for the accumulation
of phases in the i-th row and j-th column. Thus, the elements of the unitary can be written as

3



10P Publishing

Quantum Sci. Technol. 2 (2017) 015003 CDittel et al

Figure 2. [llustration of self-inverse symmetry operations on the 3D HC. The operators S(2), S(4) and S(8) act as plane mirror
symmetry operations, indicated on cube (a). Operators with | |p|| = 2, S((2, 4)), S((2, 8)) and S((4, 8)), areillustrated on cube
(b) and act as m-rotations. Cube (c) shows the action of S((2, 4, 8)), which corresponds to the point reflection with respect to the
centre.

oo b TSR e o I
q’kﬁeXp(l4[d Zx(],Z)x(k,Z)]], (8)

I=1

as shown in appendix A. The simple phase relation in this expression is of advantage when evaluating
interference contributions for the calculation of transition probabilities in (2).

Note that the unitary (6) is equivalent to the one considered in [22] except for local phase operations.
Consequently, suppression laws have also been discovered in Sylvester interferometers for specific initial states
with particle numbers in powers of two. As we show in the following, however, by making use of the HC
symmetries, one can prove suppression laws for a much larger class of particle configurations.

3.2. Symmetry operations
We consider the self-inverse symmetry operations

S(P) — (®log,(p/2) ® o ® H®log2(n/p)) 9)

where 1 denotes the2 x 2 identity matrix and o, the 2 x 2 Pauli spin-x-operator. These symmetry operators
are mutually commuting and act on mode occupation lists as p/2 transpositions of all p segments, according to

[S(p) rlj =D SPjk 1 = Titx(jp) o (10)

k=1

which can be interpreted as a reflection in dimension log, (p). Moreover, a consecutive action of symmetry
operations with different p values, where each operator acts at most once, is denoted by

el
[T S =S, 1n
k=1

with p = (p,, p, ,...) and || p|| denoting the number of elements in p. Thus, the total number of possible
symmetry operations for the d-dimensional HC corresponds to the number of subsets of (2, 4, ...,2"), omitting
the empty list. These 2% — 1 self-inverse symmetries are key to the classification of the arising many-particle
interferences. Figure 2 demonstrates the case of a three-dimensional (3D) HC, where all self-inverse operations
are assigned to familiar symmetries. For compositions of symmetry operators, it is convenient to introduce
Walsh functions [35]

el
AGyp) = [T =G p)s 12)

m=1

which assign 1 (—1) to all modes as governed by the symmetry set p, thereby partitioning all modes into two
complementary subsets P(p) = {j € {1,...,n} | A(j, p) = —1}and P(p) = {j € {1,...,n} |

A(j, p) = 1}. For the sake of completeness, the lower rows in table 1 list the partitionings for any composite set
ponthe3DHC.
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3.3. Suppression law
For initial states that are invariant under the symmetry operation

S(p)r=r, (13)

the symmetry of the unitary is in some way preserved in matrix M. Note that an initial state can be invariant
under various symmetries which may be related to each other. In this regard, we denote the number of
independent symmetries of an initial state by 7), being the minimal number of symmetry operations with which
one can compose all symmetry operations the initial state is invariant under' . To satisfy condition (13), particles
must be arranged in a configuration which is invariant under all independent symmetries. Therefore, the particle
number isrestrictedto N = z - 2"with z € N.

Under these conditions, the underlying symmetry can lead to a vanishing transition probability for certain
final states. This arises from the N-particle transition amplitudes of (2) summing up in pairs of permutations,
which cancel out due to their opposite phases. The partitioning of all n modes according to the Walsh functions
in (12) then allows the formulation of suppression laws, that predict which final states are suppressed:

Bosons: For an initial state r of N indistinguishable bosons, which is invariant under the symmetry operation
S(p), such that N must be even, all final states s with an odd number of particles in the subset of modes k for which
A(k, p) = —1, aresuppressed, i.e.,

N
[T AdWj(s),p) =1 = Pg(r,s, U) = 0. (14a)
=1

Fermions: For an initial state r of N indistinguishable fermions, which is invariant under the symmetry
operation S(p), such that N must be even, all final states s, that do not have exactly N /2 particles in the subset of

modes k for which A(k, p) = —1, are suppressed, i.e.,

N
STAWi(s), p) =0 = Pp(r,s, U) = 0. (14b)
j=1

The proofs of these suppression laws are given in appendix B. The direct connection of the involved
symmetries to the condition for total destructive interference is immediately apparent by comparing the
symmetry operation (11)with the partitioning (12). These symmetries simplify the underlying complexity of
many-particle evolutions in a demonstrative way (see section 3.5 for an explicit example). Even if no statement
about probabilities of non-vanishing events is made by the suppression laws (14a) and (14b) themselves, they are
obtained purely analytically thereby permitting a prediction which final states must be suppressed with little
computational overhead.

A deeper comparison of the suppression laws for bosons and fermions reveals an interesting connection:
First of all, fermions feature a much more general condition for suppression as compared to bosons, such that
the set of allowed configurations is more restricted for the former. Whether the suppressed boson states are also
forbidden for fermions depends on the parity of N /2: For particle numbers satisfying mod [N, 4] = 0 the two
suppression conditions coincide, that is, states with an odd number of particles occupying the relevant set of
modes are suppressed for both types of particles. However, for mod[N, 4] = 2, the conditions are
complementary to each other. A similar effect was discovered in the studies of the discrete Fourier transform in
[20], where the particle number also determines whether or not the suppression law for many-fermion states
resembles the one for bosons.

3.4. Suppression ratio

In order to highlight the extent of many-body destructive interference on the considered graphs, the suppression
ratios Nyupp /Ao for the derived suppression laws (14a) and (14b) are discussed in the following. Here Ny
denotes the total number of final states and N, the predicted number of suppressed states.

According to the suppression law (144), for bosonic initial states, which are invariant under a single
independent symmetry operation (17 = 1), one expects the suppression of about half of all possible final states.
To respect common suppressed states of different independent symmetries, the intersection of their respective
subsets P(p) and P(p’) has to be considered. From the definition of the Walsh functions in (12), one finds
Z?:1 A, A, p') = 0for p = p’ (for example, see table 1). Recalling that P(p) and P(p) are
complementary sets of equal size, this implies that subsets corresponding to different symmetry operations share
half of their elements, i.e. [P(p) N P(p")| = |P(p)|/2 = n/4. Thus, two different independent symmetries

! Recalling that the symmetry operators S(p) are self-inverse and mutually commute, we definetheset I" = {p | S(p) r = r}andall
possiblesets Ay CI': VpeI' 3T C Ag: [] pieT S( p) = S(p), which generate all symmetry operations the initial state is invariant
under. Then, the number of independent symmejtries of risgivenby 7 = min{|A], |Ay| ,...}. For example, if r is invariant under S(2),
S(8)and S((2, 8)),then Ay = {2, 8, (2, 8)}, Ay = {2, 8}, A5 = {2, (2, 8)}, Ay = {8, (2, 8) }and accordingly = 2.
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Figure 3. Estimated suppression ratio as a function of the number of independent symmetries an initial state is invariant under. Blue
circles show the suppression ratios for bosons according to equation (15) whereas magenta, red and green triangles show the
suppression ratios for N = 64, N = 16 and N = 4 fermions, respectively, according to equation (16). Note that in the case of
fermions, the maximal number of independent symmetries is bounded by the particle number.

have about half of all suppressed final states in common. It follows, that the suppression ratio for those bosonic
initial states can be approximated for large n by
NE U
ﬂzzizl—l. (15)

B 7]
all j=1 2 2"

In the case of fermions, for each independent symmetry, the suppression law (14b) forces all particles to
distribute equally among the two complementary subsets, regardless to the occupation within each individual
subset. Furthermore, subsets corresponding to different symmetries share one half of their elements. Thus, for
independent symmetries the total number of subsets, among which particles are forced to distribute equally, is
given by 2”. Accordingly, the number of states, which are not covered by the suppression law (14b), is given by

7\ 2"
( ;//22; ) . Because Pauli’s principle excludes modes with multiple occupation, the total number of final states

reads N = (:}), resulting in

N _ | _[n/Z” Jz"(n)l oo N (16)
v ) WS ey

21

with the approximation being valid for n >> N.Due to symmetry reasons, fermionic initial states with particle
numbers satisfying mod [N, 4] = 2 can only be invariant under at most one independent symmetry operation.
However, states with particle numbers N = 27 can satisfy up to 17independent symmetry operations leading to a
suppression ratio V. fupp / NE ~1— N! / NN For comparison, figure 3 illustrates the suppression ratios for
bosons and fermions in the limit n > N.Itis evident how, for a fixed number of independent symmetries,
more fermionic states are suppressed than for bosons and that fermionic suppression gets increasingly restrictive
for growing particle numbers.

3.5. Suppression of bosonic states on the cube

To exemplify the above suppression law, a scattering scenario of N = 8 bosons on the HC for d = 3 dimensions
is considered. In total there are ( N+N” ! ) = 6435 possibilities to distribute the particles over the n = 8 modes,
whereof three initial states are chosen for discussion. For these states, figure 4 shows the transition probabilities
for all possible final states s. The initial state r, = (3, 0, 1, 0, 0, 3, 0, 1) is only invariant under the operation
S((2, 8)), causing the suppression of all final states with an odd number of bosons in the subset of modes k for
which A(k, (2, 8)) = —1. These states are grouped in set (a) of figure 4, where the corresponding partitioning
is visualised in the first inset. One representative of these final statesis s = (1, 1, 1, 2, 2, 0, 0, 1) containing
three (five) bosons in modes k for which A(k, (2, 8)) = 1(—1).

The second initial state under consideration, r, = (0, 0, 2, 2, 0, 0, 2, 2),is invariant under the operations
S(2) and S(8) and accordingly also under S((2, 8)). Thus, in addition to the suppressed final states for r,, states
with an odd number of bosons in the subset of modes k for which A(k, 2) = —1and an odd number in the
subset of modes with A (k, 8) = — 1 mustalso be suppressed. This is shown in set (b) in figure 4. One
representative of this set is the final state s = (1, 2, 0, 2, 2, 0, 0, 1), exhibiting five (three) bosons in modes k
for which A(k, 2) = 1(—1) and three (five) bosons in modes k for which A(k, 8) = 1(—1). For clarity, the
second inset illustrates the partitionings forp = 2andp = 8.
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Figure 4. Transition probabilities for three symmetric initial states with N = 8 bosons on the three-dimensional HC. On the
horizontal axis, all possible final states are grouped into four sets. Set (a), coloured light magenta, contains states which must be
suppressed for p = (2, 8). Inset (b), coloured light blue, suppressed states for p = 2and p = 8 are grouped, excluding those already
contained in (a). States which must be suppressed for p = 4 but not contained in (a) or (b), are grouped in set (¢), coloured light
green. All remaining states are contained in set (d), coloured grey. The ordering of states within each set is chosen arbitrarily. Magenta,
blue and green bars indicate the transition probabilities for initial states 1,, r1, and r, respectively. The insets visualise the
corresponding partitionings. For clarity, only four of 6435 final states are labelled, representing the characteristics of states in sets
(a)—(d), respectively.

In this scattering scenario, the initial state with the largest number of invariant symmetry operations is given
byr.= (1,1, 1, 1, 1, 1, 1, 1), the third state we consider. Therefore, states with an odd number of bosons in
the subset of modes k for which A(k, 4) = —1 must also be suppressed in addition to all states already
suppressed for ry,. In figure 4, these states are grouped in set (¢), excluding those already contained in sets (a)
and (b). The corresponding inset shows the partitioning for p = 4. As arepresentative, the state
s=1(2,0,2,0,2, 1, 0, 1)ischosen, containing five (three) bosons in modes k for which A (k, 4) = 1(—1). All
remaining final states that are not covered by the suppression law for any p,likes = (0, 1, 1, 2, 3, 0, 0, 1), are
grouped in set (d).

Here it becomes apparent that the symmetry of many-body initial states determines a well structured
appearance of total destructive interference on HC graphs. It also highlights the interdependence of different
symmetry operations. For example, the initial state 1, is invariant under two independent symmetry operations,
namely S(2) and S(8). From this follows that the state must be invariant under a composition of both operators
as well. Thus final states, which are suppressed for r, (invariant under S((2, 8))) and covered by the suppression
law, must also be suppressed for ry,. However, since 1, is only invariant under S((2, 8)), states which are
suppressed for ry, are not necessarily suppressed for t,.

Figure 4 also demonstrates the approximated suppression ratio (15) in dependence on the number of
independent symmetries an initial state is invariant under. Since r, is only invariant under S((2, 8)), half ofall
final states are expected to be suppressed, as apparent by the size of set (a) in figure 4. For each further

independent symmetry, one clearly sees the additional suppression of half of the remaining final states from the
size reduction of the other sets.

4. Generalisation to arbitrary subunitaries

The derivations of the discussed HC suppression laws (see appendix B for details) are exclusively based on
symmetric connections between unitary elements with respect to predefined symmetry operations. Thus, the
suppression laws are not restricted to HC graphs as illustrated in figure 1 and can be made applicable to different

types of unitaries. This requires a proper redefinition of the symmetry operations (9) such that the symmetric
connections between related unitary elements remain.

4.1. Modifications of the symmetry conditions
Now, in order to generalise the derived suppression laws, d-dimensional HC graphs are considered where each
vertex consists of the same but arbitrary subgraph. Each subgraph then contains m modes. Besides the coupling

7
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Figure 5. Mode structuring for generalised one-dimensional HC graphs. Each vertex of the HC graph, framed by clouds, is composed
of the same but arbitrary subgraph, specified by the subunitary A. While the transition rates within the subgraph can be arbitrary
(indicated by connections of different size and colour) the transition rates between the subgraphs itself must equal . In (a) the
subgraph is composed of a triangular graph, whereas in () it is composed of an arbitrary long chain with m modes.

within each subgraph, each mode must be equally coupled to its d identical counterparts in the predetermined
HC ordering. This generalises the model considerably since the HC-vertices are allowed to have diverse internal
degrees of freedom. Such scenarios can be described by means of am x m subunitary A, where the overall
unitary

R R S\ ®d
u:LA@s(? 1) a7)

\/? i1l

consists of 2*% subunitaries. In order to retain the HC symmetries for segmentations p € {2, 4, 8, ..., 249}, the
symmetry operations (9) are generalised to

22d

S(p) = %085/ @ ¥ ® 1®log,2%/p) (18)

by replacing the Pauli spin-x-operator with the exchange-operator 3, of dimension 2m x 2m, reading

5 = [omm lAlmw)' (19)

Ilme Ome

Here, 0, denotes the m x m null matrixand 1,,, ,, the m x m identity matrix. These modifications are
sufficient in order to make the symmetry suppression laws (14a) and (14b) applicable to any unitary given
by (17). The detailed proofis given in appendix C.

Remarkably, for symmetry reasons, the suppression laws for these generalised graphs require the symmetric
occupation of all modes for initial states. However, for final states, only the total number of particles within the
subgraphs is relevant. Thus, the prediction whether or not a final state must be suppressed, is independent on its
occupation within the subgraph, as will be further discussed in the following.

4.2. Bosonic interference on a generalised HC structure
To illustrate the generalisation, bosonic state transformations in one-dimensional HC graphs are considered.
Figure 5 illustrates the mode coupling for identical subgraphs. Here, related modes of different subgraphs are
equally connected by the transition rate «, whereas transition rates within subgraphs are arbitrary but identical.
As apparent by the unitary (17) and by comparing figures 5(a) and (b), for the suppression law, generalised HC
graphs of the same dimension are closely related, regardless of structure and size of the subgraphs. Thus, we
restrict the discussion of the examples shown in figure 5 to the generalised graph with triangular subgraphs.
Considering the mode labelling as shown in figure 5(a), the four-particle initial state r, = (2, 0, 0, 2, 0, 0)
is invariant under symmetry operation (18) for p = 2. Then, for an evolution time t = 7/ (4k), the generalised
suppression law predicts that all final states with an odd number of particles on any subgraph must be
suppressed. Formally, this can be seen by considering definition (12), which gives A(j, 2) = 1for
je{l,...,m}and A(j, 2) = —1forj € {m + 1,...,2m} withm = 3 in the discussed example. Since each
mode of a particular subgraph belongs to the same subset (i.e. their partitioning value A(j, p) is equal), the
condition for suppression appears independently of the particle occupation within the subgraphs. Thus, for
example the final states s = (3, 0, 0, 0, 1, 0)and s = (1, 1, 1, 0, 1, 0) must be suppressed for r,. However, in
agreement with the formal suppression law, they appear with a non-vanishing probability for the initial state
r, = (2, 0, 0, 1, 1, 0). This highlights that the condition for suppression strongly depends on the initial particle
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occupation within the subgraphs as determined by the invariance under the symmetry operations (18), which ry,
does not fulfil.

5. Discussion

In this paper, we have shown that symmetries in many-particle quantum transport on HC graphs allow the
formulation of analytic suppression laws, which predict final states occurring with a vanishing probability due to
many-particle interference. Specifically, each symmetry of the initial state groups all modes into two subsets of
equal size and the occupation of these subsets determines the suppression. For bosons, the suppression depends
on the parity of this occupation. For fermions, on the other hand, all events with imbalanced occupation of the
subsets are suppressed, giving rise to a much tighter restriction on allowed events as compared to bosons. This
behaviour can be understood by regarding the HC as an extension of the 2-site coupler to higher dimensions:
The forced equipartition of fermions between the subsets, may be interpreted as a strong anti-bunching effect,
while the distribution of bosons in sets of even parity is reminiscent of the multi-photon interference at the
coupler [36, 37]. Moreover, the suppression law holds for HCs with arbitrary identical subgraphs on all vertices.
This illustrates that it is ultimately the symmetry of the unitary which governs the suppression, not necessarily a
particular graph structure. Strikingly, a similar observation has been made in single-particle quantum transport
through disordered networks, where also symmetries and certain structural features, rather than the specific
geometry of the graph, determine the transport efficiency [38, 39].

As we have shown here for HC graphs, the emergence of symmetries in many-body state transformations of
indistinguishable particles causes conceptional simplifications and allows the definite exclusion of certain
outcomes. In the absence of any symmetry, however, no simple and exact examination for large many-body
systems and their underlying dynamics is known, since the transition probabilities are governed by a coherent
superposition of an exponentially growing number of transition amplitudes [11, 40]. Thus, the suppression laws
in HCs suit the certification of many-particle indistinguishability in large systems as, e.g., required for the
verification of any candidate boson-sampling device [ 14, 41-43]. In realistic experimental scenarios particles
will be only partially indistinguishable and the unitary will deviate from the ideal structure. Clearly, the
suppression laws (14a) and (14b) do not strictly hold in this regime. However, analogously to the procedure
outlined for the Fourier suppression law in [42] the influence of both imperfections can be estimated: The
deviation from the ideal case due to particle distinguishability is bounded by a function varying monotonously
between zero for indistinguishable particles and the suppression ratio (see equations (15) and (16)) for fully
distinguishable particles. For imperfect unitaries one can show that the probability of a suppressed event scales
quadratically with the average relative deviation of the unitary. Ultimately, a precise calculation of the resulting
probabilities is possible using the formalisms for partially distinguishable particles introduced in [44—46]. The
question whether these formalisms can also benefit from symmetries remains open for future investigations.

Going beyond the single-particle regime may further be useful for applications in quantum information: Just
as two-particle interference lies at the heart of two-qubit gates in photonic quantum computing [47], many-
particle interference might enhance existing or enable new types of quantum algorithms on the HC.

For realisations of high-dimensional HCs one can make use of long-range connections [48, 49] or internal
degrees of freedom [50], even if only fewer dimensions are available in the embedding physical space.
Particularly the latter approach has proven fruitful in recent years, with experiments successfully embedding
d = 2dynamicsinad = 1 atomic lattice [51, 52] and specific proposals being made for reducing the required
physical dimension by 1 for optomechanical (d = 3) [53] and optical systems (d = 4) [54]. Another promising
route is offered by multi-mode-interference in optical fibres, potentially supporting graphs with high-
dimensional connectivity [55]. Besides a direct realisation of high-dimensional graph structures, the HC unitary
for a fixed evolution time can also be implemented via cascaded directional couplers [56] for which sophisticated
optical platforms exist [57, 58], which may even be suitable for an observation of both bosonic and fermionic
statistics on the same platform [59].
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Appendix A. Derivation of the unitary elements

The derivation of the suppression laws is based on the expression of unitary elements according to (8). This s
obtained by considering the accumulation of 7 /2 phase terms for elements U; ; due to subsequent applications
of tensor powers in (6), which leads to

. 1 T ,
U= ﬁeXp(%g[l - x(j, 21)]]. (A.1)

Analogously, additional phase terms are taken into account for columns k,
N A T d
Uik = Uy exp iq > — x(k, 2M)]x(j, 2™ |. (A2)
m=1
Plugging (A.1)into (A.2)resultsin (8) after some algebraic steps.

Appendix B. Proofs of the hypercube suppression laws

In a fixed frame, the symmetry operations (9) simply relabel the mode numbers, which motivates the
introduction of operators Sy(p), acting on mode numbers according to

el "
Sa(p) di(r) = di(r) + > x(dj(r), p)—. (B.1)
k=1 P
Note, that the action on elements of mode assignment lists is indicated by the subscript d. Animportant
characteristic of the Rademacher functions (7),

| x(Sa(p) dj(r), p') forp’ €p
*Eirp )‘{xcsd(p) 4, ) for p' & p, "

enables the expression of symmetric connections between unitary elements in (8),

Usyprd, i) = Uldiirrdi(s) &P (igaﬁ(dj(r), di(s), p)), (B.3)
where the phase factor
[pll
G (d;(r), di(s), p) = Y x(dj(r), p,) x(di(5), p,) (B.4)
m=1

is defined for brevity. Furthermore, using (B.1), the symmetry condition (13) for initial states can be expressed
in terms of entries of the mode assignment list. Since the transition probability (2) is independent on the
ordering of d (r), it can be chosen conveniently, so that

dn/a4j(r) = Sa(p) dj(r) (B.5)
forj=1,..,N/2.

B.1.Bosons
Considering sgn, (o) = 1 for bosonic particles and plugging the symmetry conditions (B.5) and (B.3) into (2),
the transition probability becomes

2

N/2
. . - . o
Pg(r,s, U) o< | D7 T Udiirno Udirronar; €XP (1E¢(dj(r), ON/2+j> P)) (B.6)
€Sy j=1

As the summation runs over all permutations o of the final mode assignment list, these permutations are either
symmetric with respect to order reversal, o; = oy, Or possess a reversed-order partner o, satisfying

o; = oy,4jand o = oy sp+jfor j=1,...,N/2.Inthefollowing, thelatter case is considered first, while in the
end it turns out, that final states which are covered by the suppression law cannot form symmetric permutations,

such that the former case does not apply. The contribution of each pair o and ¢’ in (B.6) then yields

N/2 T N/2 -
O(H exp (lzqs(d] (T), ON/2+j> P)) + H exp (lg(b(dk(r)’ Ok P)) (B7)
j=1 k=1
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N/2
xl+ ] exp (lg [6(d; (), oxy2ep ) — (i), 0, p)]) (B.5)
j=1
which vanishes if
N/2
mod Z ¢(d] (r), ON/2+j> p) — (b(d] (r), Oj» p), 4= 2. (B.9)
=1
The condition for final states fulfilling (B.9) can be shown by defining the sets
P(dj(r) =A{p, | p, €p Nx(dr),p,) =1}, (B.10)
P(dj(1) = {p, | py €Pp Nx(dj(r), p;) = —1} (B.11)
with which the phase factorsin (B.9) can be rewritten to
¢(d](r)) Ok P) - Z x(O'k, P) - Z x(O'k, 13) (Blz)
PEP;(r) pel(d;(r)
I i
=>"x(6p) —2 >, x(0kP). (B.13)
m=1 PEPj(r)

forany k € {1,...,N}. Thesecond termin (B.13) yields

_ 0 for even ||P(d;(r))]|
e [ ﬁe;@l:j(r))x >P } {2 for odd ||P(d; (r)II,

and does not contribute to the remainder in (B.9) since

mod[Z > x(0j p) — x(onj2+j P)> 4} =0. (B.15)
peP;(r)
Condition (B.9) then becomes
N/2|Ipll
mod Z Z xX(ON /24> Py) — X(0)s P,)> 4| = 2. (B.16)
j=lm=1
In order to rewrite the sums over all elements in p, we utilise the identities
el lpll
mod| > x(j, p,), 4| = (—=DUPIFD2TT  x(j,p,) + 1 (B.17)
m=1 m=1
foreven ||p||and
lp]l llpll
mod|1+ > x(j, p,), 4| = (=DWPIED2TT x(j,p,) + 1 (B.18)
m=1 m=1

for odd ||p||. These identities can be proven by induction on | | p| |. Then, for both cases, (B.17) and (B.18),
condition (B.16) can be rewritten, using the Walsh functions (12):

N/2
mOdI:Z-A(UN/ZJrj» p) — A(oj, p), 4] =2. (B.19)
j=1
Further, we use the identity
N/2 N
mod| Y A(on/2+j> p) — Aloj, p), 4| =1 — [] Aloj, p), (B.20)
=1 =1

which can be proven by induction on N, such that condition (B.19) becomes

N N
[T At p) = [ AW;(s), p) = 1. (B.21)

j=1 =1

Since N is even, this is the case if the final state d (s) contains an odd number of particles in the subset of modes k
for which A(k, p) = 1. Clearly, those final states d (s) can’t form symmetric permutations adhering to
0j = ON/2+j> which had to be shown.
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B.2. Fermions
For fermions, the sign factor sgn.(c") = sgn(o') needs to be considered in the calculation of transition
probabilities according to (2). By defining

J@ =1{jilje{l,....N}\{N —¢q,N/2 — q}} (B.22)

forq € {0,...,N/2 — 1}, each permutation o can be assigned a partner permutation @, for which the
elements N/2 — gand N — qare exchanged,

o; forj e J(q)
oW =0y, forj=N/2-¢q (B.23)
ON/2—q forj=N —gq,
and accordingly sgn(o) = —sgn(o?). Then, the summands of o and o? in (2) yield
N N
Sgn(a) H Udj(r),oj - H Udk(r),a}f) (B24)
j=1 k=1
N A A A A
=sgn(@)|[[ Usmo,— Il Uiirna Ud%iq(r),UN,q UdN,q(r),(r%iq (B.25)
j=1 ke (q)
T
ol — exp (15 [@(dn—yq () ON—g» P) + D (dny2—q(1)s ON/2—gs p)]) (B.26)
where we used (B.5) and (B.3) in the last step. This contribution vanishes if
mod [¢(dn—q(1), ON—g, P) + & (dNn/2—g(1)s ON/2—gp P)> 4] = O. (B.27)
Utilising (B.2) in definition (B.4), condition (B.27) becomes
mod [(b(dN*q(r)) ON—g> P) - ¢(dN7q(r)> ON/2—q P)> 41 =0 (B.28)
which results in
A(on—g P) = Alon/2—4 P) (B.29)

by proceeding asin (B.10)~(B.19). Thus, the summands for & and @ cancel each other out if condition (B.29) holds.
Forasetq = (g, g, »...), where each g value is contained at most once, we define the permutation 0@ as

oj forje ]

9<q
oD —

j oN—q forj=N/2-qVqeq (B.30)

ONj2—q forj=N-—-qVqeq

Now, it is possible to group all N!possible permutations of the final mode assignment list into sets

{o@), o®) ,...}, containing 2V/2 permutations %), where the sets g are given by all possible subsets of

{0, 1,...,N/2 — 1}including the empty list. Accordingly, for every single g, all permutations of a set

{0, o®) ,...} can be grouped into pairs, whose elements N/2 — gand N — qare exchanged. Then, if
condition (B.29) is fulfilled for any single q value, all permutations of the set { 0¥, o(®) ,...} cancel pairwise.
Consequently, there are sets { @), g% ...}, in which no pairwise cancellation occurs if and only if

A(oj, p) = 1forhalfofall j € {1,...,N}and A(0j, p) = —1for the other half. Thus, all final states adhering to

N
> AW(s), p) = 0 (B.31)
j=1

must be suppressed.

Appendix C. Derivation of the generalisation to arbitrary subunitaries

In order to describe the effect of symmetry operations (18) on mode numbers, the same operatorsasin (B.1) can
be used, however, with the restriction to segmentations p € {2, 4, 8,..., 241, for which the identities (B.2) hold
as well. The definition

f,m)y=1+ mod[l — 1, m] (C.1)
forl = 1,...,2%m ascribes the index within the subunitary and satisfies

f(Sa(p)dj(r), m) = f (d;(r), m). (C2)
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Thus, the unitary elements in (17) read

N A 1 LT d .
u]‘,k = Af(j)m),f(k,m)ﬁexp IZ d— Z x(], 21) x(k, 21) , (C3)

I=1

where A denotes them x m subunitary. Expectedly, the dynamics of the subunitary A and the HC graph are
decoupled. By exploiting (B.2) and (C.2), the symmetric connection between unitary elements obeys

Usy(p)d () = U (1 (s) €XP (i§¢(dj(r)’ di(s), p)). (C.4)

Clearly, this is identical to the symmetry relation (B.3). In conclusion, the same symmetry suppression laws hold
for unitaries of the form (17) with the restriction to segmentation values p € {2, 4, §,..., 243,
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