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Abstract
Beyond the regime of distinguishable particles,many-body quantum interferences influence quantum
transport in an intricatemanner.However, symmetries of the single-particle transformationmatrix
alleviate this complexity and even allow the analytic formulation of suppression laws, which predict
final states to occurwith a vanishing probability due to total destructive interference. Herewe
investigate the symmetries of hypercube graphs and their generalisations with arbitrary identical
subgraphs on all vertices.We find that initialmany-particle states, which are invariant under self-
inverse symmetries of the hypercube, lead to a large number of suppressed final states. The condition
for suppression is determined solely by the initial symmetry, while the fraction of suppressed states is
given by the number of independent symmetries of the initial state. Ourfindings reveal new insights
into particle statistics for ensembles of indistinguishable bosons and fermions andmay represent a
first step towardsmany-particle quantumprotocols in higher-dimensional structures.

1. Introduction

Quantum transports of single particles on discrete graphs, also referred to as continuous-time quantumwalks,
are governed by the interference of all possible pathways as provided by the graph structure. This wavelike
interference can be harnessed as an algorithmic tool in quantum computation [1], for excitation transfer in spin
chains [2–4] andmay even play a role in photosynthesis [5, 6].

Ifmultiple indistinguishable particles propagate on the same graph, one has to take their exchange symmetry
into account [7–9], which leads to correlations between the particles [10]. Generally speaking, increasing particle
numbers causes interference among a growing number ofmany-particle paths and gives rise to intricate
evolution scenarios [11], as experimentally demonstrated in planar graphs [7, 10, 12–14], as well as for two
[15, 16] and three [17] particles in two dimensions.

Symmetries of the graph can have a strong influence on transport problems. For example, in the single-
particle regime, it has been shown that symmetries permit perfect state transfer even through large spin chains
[18, 19]. In the realmofmany-particle transport, the complexity of the dynamics is substantially simplified in the
presence of symmetries in the unitary evolutionmatrix. To date, only few such symmetries have been
investigated: The discrete Fourier transform [20, 21], Sylvestermatrices [22] and the Jx lattice [23, 24]. In all these
cases, symmetries lead to analytic suppression laws, predictingwhether or not afinal particle configuration can
occur.

In this work, we consider the quantum transport ofN identical particles in hypercube graphs (HC) of
arbitrary dimension. These highly symmetric graphs attractedmuch attention in the context of single-particle
quantumwalks [25–31]. Here, we investigate how symmetries influencemany-particle transport onHCgraphs.
We show analytically that the interference conditions are solely defined by the symmetries of the graph aswell as
of the initial state and do not necessarily depend on the particular graph structure. For bosons aswell as for
fermions, we derive suppression lawswhich predict final states with a vanishing probability of occurrence, due
to destructive interference among theN-particle trajectories.We also show that the number of suppressed states
depends strictly on howmany relevant symmetries the initial state satisfies. Due to the underlying symmetries,
the suppression law persists in generalisedHCswith identical but arbitrary subgraphs on all vertices. This
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permits each node of theHC to carry internal degrees of freedom,making our approach compatible with
implementations in various systems.

This paper is structured as follows. In section 2, we start with a brief introduction tomany-body interference
and discuss consequences of particle indistinguishability and statistical differences between bosons and
fermions. A symmetric representation of the evolution scenario onHC graphs, followed by the symmetry
suppression laws and an illustrative example, is given in section 3. The generalisation toHCgraphswith
arbitrary but identical subgraphs on all vertices is shown in section 4. Finally, we discuss the results and provide
an outlook towards possible experimental implementations in section 5. For completeness, all derivations of the
discussed suppression laws are given in the appendix.

2.Many-particle interference

A continuous-time quantum evolution on a graphwith n identical vertices is governed by aHamiltonian ̂ with
elements ̂ i j, , specifying the transition rates between sites i and j. Having explicitly the evolution of quantum
states inmind, wewill refer to the vertices of the graph asmodes in the remainder of the paper. An initial
configuration ofN particles is fully described by themode occupation list = ¼( )r r r, , n1 , where each element rj
specifies the number of particles inmode j. For convenience, particle states can also be expressed by themode
assignment list

= ¼( ) ( ( ) ( )) ( )d r r rd d, ., , 1N1

with ( )rdj denoting themode number occupied by the j-th particle [11, 20]. Afinal state after projective
measurement is similarly denoted by = ¼( )s s s, , n1 and = ¼( ) ( ( ) ( ))d s s sd d, ., N1 .

After an action of theHamiltonian for some time t, a single-particle state undergoes a unitary
transformation =ˆ ( ˆ )U texp i . For the transition ofmany-particle states, however, all possibilities to
distribute the particles among the finalmodes contribute. Particle indistinguishability then requires a coherent
sumover allmany-particle paths in the calculation of the transition probability [11, 20, 22, 32],


 å s=

s
s

Î =

( ˆ )
!
!

( ) ˆ ( )( )
( )

r sP U
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r
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dB F B F
1
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2
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where the sum runs over the set of all possible permutations ( )Sd s of thefinalmode assignment list ( )d s . Due to
the bosonic (fermionic) (anti-)commutation-relation, one has s =( )sgn 1B and s s=( ) ( )sgn sgnF . Itmust be
emphasised that the number of particles for fermions is restricted to N n due to Pauli’s principle [33],
whereasmultiple bosons are allowed to occupy the samemode. By defining thematrix º ( ) ( )M U r sj k d d, ,j k

, which

contains all rows and columns of Û , corresponding to occupied initial and finalmodes, respectively, the
transition probabilities


=( ˆ )

! !
∣ ( )∣ ( )r sP U

r s
M, ,

1
perm 3

k k k
B

2

and

=( ˆ ) ∣ ( )∣ ( )r sP U M, , det 4F
2

are obtained from the permanent (determinant) of transition amplitudes in a coherentmanner. Thus,many-
particle interference arises from the indistinguishability of the particles; that is, the absence of anywhich-path
information in the process. For comparison, the transition probability for distinguishable particles [11, 20]


=( ˆ )

! !
(∣ ∣) ( )r sP U

r s
M, ,

1
perm , 5

k k k
Dist

2

contains no phase dependence and is, thus, not affected bymany-body interference.
Essentially, symmetries simplify the complex interplay inmany-body transitions and result in a structured

ordering, which individually affects the arising interferences for bosons and fermions. A closer look at the
calculation of transition probabilities according to (3) and (4) reveals, that symmetries of the unitarymatrix Û
will transfer intoM for appropriate choices of the initial and thefinal state. Consequently, the resulting
symmetries inM strongly affect the outcome in (3) and (4) [20]. In particular, total destructive interference will
occur for certain combinations of initial and final states, which is discussed forHC graphs in the following.

2
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3. Symmetry suppression lawonHCgraphs

3.1.HCunitary
The d-dimensional hypercube consists of =n 2d modes, each connected to d neighbours as illustrated in
figure 1.Note that this systemmay be seen as a generalisation of a two-site graph in d dimensions. Let

k=ˆ i j, be the transition rate for neighbouring sites i and j. For an evolution time p k= ( )t 4 , the unitary
transformationmatrix reads

=
Ä( )ˆ ( )U

n

1 1 i
i 1

. 6
d

It contains all single-particle transformation amplitudes and is the basis for calculatingmany-particle transition
probabilities according to(3)–(5). Due to the tensor power in (6), the unitary clearly exhibits stepwise
symmetries. Pertaining to equation (2), an explicit expression for the element Ûj k, is required tomake the
importance of symmetries apparent. To obtain such an expression, sign-bookkeeping instruments are
introduced.We define segmentation parameters Î ¼{ }p n2, 4, 8, , and their corresponding Rademacher
functions [34]

= -
-

( ) ( ) ( )
( )⎢⎣ ⎥⎦x j p, 1 , 7

p j
n

1

where theGaussian brackets a b⌊ ⌋evaluate the quotient of the Euclidean division a b . The Rademacher
functions, exemplified for d=3 in the first three rows of table 1, assign the value 1 (−1) tomodes Î ¼{ }j n1, ,
as determined by the segmentation value p in a symmetric and stepwise fashion, such that allmodes are clearly
grouped into two subsets of the same size.

Returning to unitary(6), each element differs by a phase shift equalling an integermultiple of p 2. The
actual phase of element Ûi j, can be calculated bymeans of the segmentations p, accounting for the accumulation
of phases in the i-th row and j-th column. Thus, the elements of the unitary can bewritten as

Figure 1. Schematic illustration ofHC graphswith up to four dimensions. All =n 2d modes (blue balls) are equally coupled (silver
connections) to dneighbouringmodes.

Table 1.Rademacher functions andWalsh functions for the three-dimensional HC. To guide the eye, the numbers 1
and−1 are shaded in dark grey and light grey, respectively.

Mode number j

Rademacher andWalsh Functions 1 2 3 4 5 6 7 8

( )x j, 2 1 1 1 1 −1 −1 −1 −1

( )x j, 4 1 1 −1 −1 1 1 −1 −1

( )x j, 8 1 −1 1 −1 1 −1 1 −1

=( ( )) ( ) ( ) j x j x j, 2, 4 , 2 , 4 1 1 −1 −1 −1 −1 1 1

=( ( )) ( ) ( ) j x j x j, 2, 8 , 2 , 8 1 −1 1 −1 −1 1 −1 1

=( ( )) ( ) ( ) j x j x j, 4, 8 , 4 , 8 1 −1 −1 1 1 −1 −1 1

=( ( )) ( ) ( ) ( ) j x j x j x j, 2, 4, 8 , 2 , 4 , 8 1 −1 −1 1 −1 1 1 −1
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as shown in appendix A. The simple phase relation in this expression is of advantage when evaluating
interference contributions for the calculation of transition probabilities in(2).

Note that the unitary(6) is equivalent to the one considered in [22] except for local phase operations.
Consequently, suppression laws have also been discovered in Sylvester interferometers for specific initial states
with particle numbers in powers of two. Aswe show in the following, however, bymaking use of theHC
symmetries, one can prove suppression laws for amuch larger class of particle configurations.

3.2. Symmetry operations
Weconsider the self-inverse symmetry operations

s= Ä ÄÄ Ä( ) ( )( ) ( ) p 11 11 , 9p
x

n plog 2 log2 2

where11denotes the 2×2 identitymatrix and sx the 2×2 Pauli spin-x-operator. These symmetry operators
aremutually commuting and act onmode occupation lists as p 2 transpositions of all p segments, according to

å= =
=

+[ ( ) ] ( ) ( )( ) rp p r r , 10j
k

n

j k k j x j p
1

, , n
p

which can be interpreted as a reflection in dimension ( )plog2 .Moreover, a consecutive action of symmetry
operationswith different p values, where each operator acts atmost once, is denoted by

 º
=

( ) ( ) ( )
∣∣ ∣ ∣

  pp , 11
p

k
k

1

with = ( )p p p, ,...1 2 and ∣∣ ∣∣p denoting the number of elements in p. Thus, the total number of possible
symmetry operations for the d-dimensionalHC corresponds to the number of subsets of ¼( )2, 4, , 2n , omitting
the empty list. These -2 1d self-inverse symmetries are key to the classification of the arisingmany-particle
interferences. Figure 2 demonstrates the case of a three-dimensional (3D)HC,where all self-inverse operations
are assigned to familiar symmetries. For compositions of symmetry operators, it is convenient to introduce
Walsh functions [35]

º
=

( ) ( ) ( )
∣∣ ∣ ∣

 pj x j p, , , 12
p

m
m

1

which assign 1(−1) to allmodes as governed by the symmetry set p, thereby partitioning allmodes into two
complementary subsets = Î ¼ = -( ) { { } ∣ ( ) } p pj n j1, , , 1 and = Î ¼¯ ( ) { { } ∣ p j n1, ,

=( ) } pj, 1 . For the sake of completeness, the lower rows in table 1 list the partitionings for any composite set
p on the 3DHC.

Figure 2. Illustration of self-inverse symmetry operations on the 3DHC. The operators ( ) 2 , ( ) 4 and ( ) 8 act as planemirror
symmetry operations, indicated on cube ( )a . Operators with =∣ ∣ ∣ ∣p 2, (( )) 2, 4 , (( )) 2, 8 and (( )) 4, 8 , are illustrated on cube
( )b and act asπ-rotations. Cube ( )c shows the action of (( )) 2, 4, 8 , which corresponds to the point reflectionwith respect to the
centre.
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3.3. Suppression law
For initial states that are invariant under the symmetry operation

=( ) ( ) p r r, 13

the symmetry of the unitary is in someway preserved inmatrixM. Note that an initial state can be invariant
under various symmetries whichmay be related to each other. In this regard, we denote the number of
independent symmetries of an initial state by η, being theminimal number of symmetry operations withwhich
one can compose all symmetry operations the initial state is invariant under1 . To satisfy condition(13), particles
must be arranged in a configurationwhich is invariant under all independent symmetries. Therefore, the particle
number is restricted to = h·N z 2 with Î z .

Under these conditions, the underlying symmetry can lead to a vanishing transition probability for certain
final states. This arises from theN-particle transition amplitudes of(2) summing up in pairs of permutations,
which cancel out due to their opposite phases. The partitioning of all nmodes according to theWalsh functions
in(12) then allows the formulation of suppression laws, that predict which final states are suppressed:

Bosons: For an initial state r ofN indistinguishable bosons, which is invariant under the symmetry operation
( ) p , such thatNmust be even, all final states s with an odd number of particles in the subset ofmodes k for which

= -( ) pk, 1, are suppressed, i.e.,

 = -  =
=

( ( ) ) ( ˆ ) ( ) s p r sd P U a, 1 , , 0. 14
j

N

j
1

B

Fermions: For an initial state r of N indistinguishable fermions, which is invariant under the symmetry
operation ( ) p , such thatNmust be even, all final states s, that do not have exactly N 2 particles in the subset of
modes k for which = -( ) pk, 1, are suppressed, i.e.,

å ¹  =
=

( ( ) ) ( ˆ ) ( ) s p r sd P U b, 0 , , 0. 14
j

N

j
1

F

The proofs of these suppression laws are given in appendix B. The direct connection of the involved
symmetries to the condition for total destructive interference is immediately apparent by comparing the
symmetry operation(11)with the partitioning(12). These symmetries simplify the underlying complexity of
many-particle evolutions in a demonstrative way (see section 3.5 for an explicit example). Even if no statement
about probabilities of non-vanishing events ismade by the suppression laws (14a) and(14b) themselves, they are
obtained purely analytically thereby permitting a predictionwhich final statesmust be suppressedwith little
computational overhead.

A deeper comparison of the suppression laws for bosons and fermions reveals an interesting connection:
First of all, fermions feature amuchmore general condition for suppression as compared to bosons, such that
the set of allowed configurations ismore restricted for the former.Whether the suppressed boson states are also
forbidden for fermions depends on the parity of N 2: For particle numbers satisfying =[ ]Nmod , 4 0 the two
suppression conditions coincide, that is, states with an odd number of particles occupying the relevant set of
modes are suppressed for both types of particles. However, for =[ ]Nmod , 4 2, the conditions are
complementary to each other. A similar effect was discovered in the studies of the discrete Fourier transform in
[20], where the particle number also determines whether or not the suppression law formany-fermion states
resembles the one for bosons.

3.4. Suppression ratio
In order to highlight the extent ofmany-body destructive interference on the considered graphs, the suppression
ratios  supp all for the derived suppression laws(14a) and(14b) are discussed in the following.Here all

denotes the total number offinal states and supp the predicted number of suppressed states.
According to the suppression law(14a), for bosonic initial states, which are invariant under a single

independent symmetry operation (h = 1), one expects the suppression of about half of all possible final states.
To respect common suppressed states of different independent symmetries, the intersection of their respective
subsets ( ) p and ¢( ) p has to be considered. From the definition of theWalsh functions in(12), onefinds
å ¢ == ( ) ( ) p pj j, , 0j

n
1 for ¹ ¢p p (for example, see table 1). Recalling that ( ) p and ¯ ( ) p are

complementary sets of equal size, this implies that subsets corresponding to different symmetry operations share
half of their elements, i.e. Ç ¢ = =∣ ( ) ( )∣ ∣ ( )∣  p p p n2 4. Thus, two different independent symmetries

1
Recalling that the symmetry operators ( ) p are self-inverse andmutually commute, we define the set G = ={ ∣ ( ) }p p r r and all

possible sets L Í G " Î G $ Í L  =Î ( ) ( ) p p pT: : pk k T jj
, which generate all symmetry operations the initial state is invariant

under. Then, the number of independent symmetries of r is given by h = L L{∣ ∣ ∣ ∣ }min , ,...1 2 . For example, if r is invariant under ( ) 2 ,
( ) 8 and (( )) 2, 8 , then L = { ( )}2, 8, 2, 81 , L = { }2, 82 , L = { ( )}2, 2, 83 , L = { ( )}8, 2, 84 and accordingly h = 2.
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have about half of all suppressed final states in common. It follows, that the suppression ratio for those bosonic
initial states can be approximated for large n by

å» = -
h

h
=

( )




1

2
1

1

2
. 15

j
j

supp
B

all
B

1

In the case of fermions, for each independent symmetry, the suppression law(14b) forces all particles to
distribute equally among the two complementary subsets, regardless to the occupationwithin each individual
subset. Furthermore, subsets corresponding to different symmetries share one half of their elements. Thus, for η
independent symmetries the total number of subsets, amongwhich particles are forced to distribute equally, is
given by 2η. Accordingly, the number of states, which are not covered by the suppression law(14b), is given by

h

h

h( )n

N

2

2

2
. Because Pauli’s principle excludesmodes withmultiple occupation, the total number offinal states

reads = ( ) n

Nall , resulting in

= - » -
h

h
h

-
h

h

h

( )
!

!
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


⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
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N

n

N

N
1

2

2
1

2
, 16

N N

supp
F

all
F

2 1

2

2

with the approximation being valid for n N . Due to symmetry reasons, fermionic initial states with particle
numbers satisfying =[ ]Nmod , 4 2 can only be invariant under atmost one independent symmetry operation.
However, states with particle numbers = hN 2 can satisfy up to η independent symmetry operations leading to a
suppression ratio » - !  N N1 N

supp
F

all
F . For comparison, figure 3 illustrates the suppression ratios for

bosons and fermions in the limit n N . It is evident how, for afixed number of independent symmetries,
more fermionic states are suppressed than for bosons and that fermionic suppression gets increasingly restrictive
for growing particle numbers.

3.5. Suppression of bosonic states on the cube
To exemplify the above suppression law, a scattering scenario ofN=8 bosons on theHC for d=3 dimensions

is considered. In total there are =+ -( ) 6435N n

N

1 possibilities to distribute the particles over the n=8modes,

whereof three initial states are chosen for discussion. For these states,figure 4 shows the transition probabilities
for all possiblefinal states s. The initial state = ( )r 3, 0, 1, 0, 0, 3, 0, 1a is only invariant under the operation

(( )) 2, 8 , causing the suppression of allfinal states with an odd number of bosons in the subset ofmodes k for
which = -( ( )) k, 2, 8 1. These states are grouped in set( )a of figure 4, where the corresponding partitioning
is visualised in the first inset. One representative of these final states is = ( )s 1, 1, 1, 2, 2, 0, 0, 1 containing
three (five) bosons inmodes k for which =( ( )) k, 2, 8 1 (−1).

The second initial state under consideration, = ( )r 0, 0, 2, 2, 0, 0, 2, 2b , is invariant under the operations
( ) 2 and ( ) 8 and accordingly also under (( )) 2, 8 . Thus, in addition to the suppressed final states for ra, states

with an odd number of bosons in the subset ofmodes k for which = -( ) k, 2 1and an odd number in the
subset ofmodeswith = -( ) k, 8 1must also be suppressed. This is shown in set( )b infigure 4. One
representative of this set is the final state = ( )s 1, 2, 0, 2, 2, 0, 0, 1 , exhibiting five (three) bosons inmodes k
for which =( ) k, 2 1 (−1) and three (five) bosons inmodes k for which =( ) k, 8 1 (−1). For clarity, the
second inset illustrates the partitionings for p=2 and p=8.

Figure 3.Estimated suppression ratio as a function of the number of independent symmetries an initial state is invariant under. Blue
circles show the suppression ratios for bosons according to equation (15)whereasmagenta, red and green triangles show the
suppression ratios forN=64,N=16 andN=4 fermions, respectively, according to equation (16). Note that in the case of
fermions, themaximal number of independent symmetries is bounded by the particle number.
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In this scattering scenario, the initial statewith the largest number of invariant symmetry operations is given
by = ( )r 1, 1, 1, 1, 1, 1, 1, 1c , the third statewe consider. Therefore, states with an odd number of bosons in
the subset ofmodes k for which = -( ) k, 4 1must also be suppressed in addition to all states already
suppressed for rb. Infigure 4, these states are grouped in set( )c , excluding those already contained in sets ( )a
and ( )b . The corresponding inset shows the partitioning for p=4. As a representative, the state
= ( )s 2, 0, 2, 0, 2, 1, 0, 1 is chosen, containing five (three) bosons inmodes k for which =( ) k, 4 1 (−1). All

remainingfinal states that are not covered by the suppression law for any p, like = ( )s 0, 1, 1, 2, 3, 0, 0, 1 , are
grouped in set( )d .

Here it becomes apparent that the symmetry ofmany-body initial states determines awell structured
appearance of total destructive interference onHCgraphs. It also highlights the interdependence of different
symmetry operations. For example, the initial state rb is invariant under two independent symmetry operations,
namely ( ) 2 and ( ) 8 . From this follows that the statemust be invariant under a composition of both operators
aswell. Thus final states, which are suppressed for ra (invariant under (( )) 2, 8 ) and covered by the suppression
law,must also be suppressed for rb. However, since ra is only invariant under (( )) 2, 8 , states which are
suppressed for rb are not necessarily suppressed for ra.

Figure 4 also demonstrates the approximated suppression ratio(15) in dependence on the number of
independent symmetries an initial state is invariant under. Since ra is only invariant under (( )) 2, 8 , half of all
final states are expected to be suppressed, as apparent by the size of set( )a in figure 4. For each further
independent symmetry, one clearly sees the additional suppression of half of the remaining final states from the
size reduction of the other sets.

4.Generalisation to arbitrary subunitaries

The derivations of the discussedHC suppression laws (see appendix B for details) are exclusively based on
symmetric connections between unitary elements with respect to predefined symmetry operations. Thus, the
suppression laws are not restricted toHCgraphs as illustrated infigure 1 and can bemade applicable to different
types of unitaries. This requires a proper redefinition of the symmetry operations(9) such that the symmetric
connections between related unitary elements remain.

4.1.Modifications of the symmetry conditions
Now, in order to generalise the derived suppression laws, d-dimensionalHC graphs are consideredwhere each
vertex consists of the same but arbitrary subgraph. Each subgraph then containsmmodes. Besides the coupling

Figure 4.Transition probabilities for three symmetric initial states withN=8 bosons on the three-dimensional HC.On the
horizontal axis, all possible final states are grouped into four sets. Set ( )a , coloured lightmagenta, contains states whichmust be
suppressed for = ( )p 2, 8 . In set ( )b , coloured light blue, suppressed states for p=2 and p=8 are grouped, excluding those already
contained in ( )a . States whichmust be suppressed for p=4 but not contained in ( )a or ( )b , are grouped in set ( )c , coloured light
green. All remaining states are contained in set ( )d , coloured grey. The ordering of states within each set is chosen arbitrarily.Magenta,
blue and green bars indicate the transition probabilities for initial states ra, rb and rc, respectively. The insets visualise the
corresponding partitionings. For clarity, only four of 6435final states are labelled, representing the characteristics of states in sets
( )a –( )d , respectively.
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within each subgraph, eachmodemust be equally coupled to its d identical counterparts in the predetermined
HCordering. This generalises themodel considerably since theHC-vertices are allowed to have diverse internal
degrees of freedom. Such scenarios can be described bymeans of am×m subunitary Â, where the overall
unitary

= Ä
Ä( )ˆ ˆ ( ) A

1

2

1 i
i 1

17
d

d

consists of 2 d2 subunitaries. In order to retain theHC symmetries for segmentations Î ¼{ }p 2, 4, 8, , 2d , the
symmetry operations(9) are generalised to

= Ä S ÄÄ Ä( ) ( )( ) ( ) p 11 11 18p
x

plog 2 log 2d
2 2

by replacing the Pauli spin-x-operator with the exchange-operator Sx of dimension ´m m2 2 , reading

S = ´ ´

´ ´

ˆ
ˆ ( )

⎛
⎝⎜

⎞
⎠⎟

0 11

11 0
. 19x

m m m m

m m m m

Here, ´0̂m m denotes them×mnullmatrix and ´11m m them×m identitymatrix. Thesemodifications are
sufficient in order tomake the symmetry suppression laws(14a) and(14b) applicable to any unitary given
by(17). The detailed proof is given in appendix C.

Remarkably, for symmetry reasons, the suppression laws for these generalised graphs require the symmetric
occupation of allmodes for initial states. However, forfinal states, only the total number of particles within the
subgraphs is relevant. Thus, the predictionwhether or not afinal statemust be suppressed, is independent on its
occupationwithin the subgraph, aswill be further discussed in the following.

4.2. Bosonic interference on a generalisedHC structure
To illustrate the generalisation, bosonic state transformations in one-dimensionalHC graphs are considered.
Figure 5 illustrates themode coupling for identical subgraphs.Here, relatedmodes of different subgraphs are
equally connected by the transition rateκ, whereas transition rates within subgraphs are arbitrary but identical.
As apparent by the unitary(17) and by comparing figures 5(a) and (b), for the suppression law, generalisedHC
graphs of the same dimension are closely related, regardless of structure and size of the subgraphs. Thus, we
restrict the discussion of the examples shown infigure 5 to the generalised graphwith triangular subgraphs.

Considering themode labelling as shown infigure 5( )a , the four-particle initial state = ( )r 2, 0, 0, 2, 0, 0a

is invariant under symmetry operation(18) for p=2. Then, for an evolution time p k= ( )t 4 , the generalised
suppression law predicts that allfinal states with an odd number of particles on any subgraphmust be
suppressed. Formally, this can be seen by considering definition(12), which gives =( ) j, 2 1 for
Î ¼{ }j m1, , and = -( ) j, 2 1 for Î + ¼{ }j m m1, , 2 withm=3 in the discussed example. Since each

mode of a particular subgraph belongs to the same subset (i.e. their partitioning value ( ) j p, is equal), the
condition for suppression appears independently of the particle occupationwithin the subgraphs. Thus, for
example thefinal states = ( )s 3, 0, 0, 0, 1, 0 and = ( )s 1, 1, 1, 0, 1, 0 must be suppressed for ra. However, in
agreementwith the formal suppression law, they appear with a non-vanishing probability for the initial state

= ( )r 2, 0, 0, 1, 1, 0b . This highlights that the condition for suppression strongly depends on the initial particle

Figure 5.Mode structuring for generalised one-dimensional HC graphs. Each vertex of theHC graph, framed by clouds, is composed
of the same but arbitrary subgraph, specified by the subunitary Â.While the transition rateswithin the subgraph can be arbitrary
(indicated by connections of different size and colour) the transition rates between the subgraphs itselfmust equalκ. In ( )a the
subgraph is composed of a triangular graph, whereas in ( )b it is composed of an arbitrary long chainwithmmodes.
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occupationwithin the subgraphs as determined by the invariance under the symmetry operations(18), which rb

does not fulfil.

5.Discussion

In this paper, we have shown that symmetries inmany-particle quantum transport onHCgraphs allow the
formulation of analytic suppression laws, which predict final states occurring with a vanishing probability due to
many-particle interference. Specifically, each symmetry of the initial state groups allmodes into two subsets of
equal size and the occupation of these subsets determines the suppression. For bosons, the suppression depends
on the parity of this occupation. For fermions, on the other hand, all events with imbalanced occupation of the
subsets are suppressed, giving rise to amuch tighter restriction on allowed events as compared to bosons. This
behaviour can be understood by regarding theHC as an extension of the 2-site coupler to higher dimensions:
The forced equipartition of fermions between the subsets,may be interpreted as a strong anti-bunching effect,
while the distribution of bosons in sets of even parity is reminiscent of themulti-photon interference at the
coupler [36, 37].Moreover, the suppression lawholds forHCswith arbitrary identical subgraphs on all vertices.
This illustrates that it is ultimately the symmetry of the unitarywhich governs the suppression, not necessarily a
particular graph structure. Strikingly, a similar observation has beenmade in single-particle quantum transport
through disordered networks, where also symmetries and certain structural features, rather than the specific
geometry of the graph, determine the transport efficiency [38, 39].

Aswe have shown here forHC graphs, the emergence of symmetries inmany-body state transformations of
indistinguishable particles causes conceptional simplifications and allows the definite exclusion of certain
outcomes. In the absence of any symmetry, however, no simple and exact examination for largemany-body
systems and their underlying dynamics is known, since the transition probabilities are governed by a coherent
superposition of an exponentially growing number of transition amplitudes [11, 40]. Thus, the suppression laws
inHCs suit the certification ofmany-particle indistinguishability in large systems as, e.g., required for the
verification of any candidate boson-sampling device [14, 41–43]. In realistic experimental scenarios particles
will be only partially indistinguishable and the unitary will deviate from the ideal structure. Clearly, the
suppression laws(14a) and (14b) do not strictly hold in this regime.However, analogously to the procedure
outlined for the Fourier suppression law in [42] the influence of both imperfections can be estimated: The
deviation from the ideal case due to particle distinguishability is bounded by a function varyingmonotonously
between zero for indistinguishable particles and the suppression ratio (see equations (15) and (16)) for fully
distinguishable particles. For imperfect unitaries one can show that the probability of a suppressed event scales
quadratically with the average relative deviation of the unitary. Ultimately, a precise calculation of the resulting
probabilities is possible using the formalisms for partially distinguishable particles introduced in [44–46]. The
questionwhether these formalisms can also benefit from symmetries remains open for future investigations.

Going beyond the single-particle regimemay further be useful for applications in quantum information: Just
as two-particle interference lies at the heart of two-qubit gates in photonic quantum computing [47], many-
particle interferencemight enhance existing or enable new types of quantum algorithms on theHC.

For realisations of high-dimensional HCs one canmake use of long-range connections [48, 49] or internal
degrees of freedom [50], even if only fewer dimensions are available in the embedding physical space.
Particularly the latter approach has proven fruitful in recent years, with experiments successfully embedding
d=2 dynamics in a d=1 atomic lattice [51, 52] and specific proposals beingmade for reducing the required
physical dimension by 1 for optomechanical (d= 3) [53] and optical systems (d = 4) [54]. Another promising
route is offered bymulti-mode-interference in optical fibres, potentially supporting graphswith high-
dimensional connectivity [55]. Besides a direct realisation of high-dimensional graph structures, theHCunitary
for afixed evolution time can also be implemented via cascaded directional couplers [56] for which sophisticated
optical platforms exist [57, 58], whichmay even be suitable for an observation of both bosonic and fermionic
statistics on the same platform [59].
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AppendixA.Derivation of the unitary elements

The derivation of the suppression laws is based on the expression of unitary elements according to(8). This is
obtained by considering the accumulation of p 2 phase terms for elements Ûj,1 due to subsequent applications
of tensor powers in(6), which leads to

åp
= -

=

ˆ [ ( )] ( )
⎛
⎝⎜

⎞
⎠⎟U

n
x j

1
exp i

4
1 , 2 . A.1j

l

d
l

,1
1

Analogously, additional phase terms are taken into account for columns k,

åp
= -

=

ˆ ˆ [ ( )] ( ) ( )
⎛
⎝⎜

⎞
⎠⎟U U x k x jexp i

4
1 , 2 , 2 . A.2j k j

m

d
m m

, ,1
1

Plugging(A.1) into(A.2) results in(8) after some algebraic steps.

Appendix B. Proofs of the hypercube suppression laws

In afixed frame, the symmetry operations(9) simply relabel themode numbers, whichmotivates the
introduction of operators ( ) pd , acting onmode numbers according to

å= +
=

( ) ( ) ( ) ( ( ) ) ( )
∣∣ ∣ ∣

 p r r rd d x d p
n

p
, . B.1

p

j j
k

j k
k

d
1

Note, that the action on elements ofmode assignment lists is indicated by the subscriptd. An important
characteristic of the Rademacher functions(7),

¢ =
- ¢ ¢ Î

¢ ¢ Ï
( ( ) )

( ( ) ( ) )
( ( ) ( ) )

( )




⎧⎨⎩r
p r p

p r p
x d p

x d p p

x d p p
,

, for

, for ,
B.2j

j

j

d

d

enables the expression of symmetric connections between unitary elements in(8),

p
f=ˆ ˆ ( ( ) ( ) ) ( )( ) ( ) ( ) ( ) ( ) ⎜ ⎟⎛

⎝
⎞
⎠r s pU U d dexp i

2
, , , B.3p r s r sd d d d j k, ,j k j kd

where the phase factor

åf =
=

( ( ) ( ) ) ( ( ) ) ( ( ) ) ( )
∣∣ ∣ ∣

r s p r sd d x d p x d p, , , , B.4
p

j k
m

j m k m
1

is defined for brevity. Furthermore, using(B.1), the symmetry condition(13) for initial states can be expressed
in terms of entries of themode assignment list. Since the transition probability(2) is independent on the
ordering of ( )d r , it can be chosen conveniently, so that

=+ ( ) ( ) ( ) ( )r p rd d B.5N j j2 d

for = ¼j N1, , 2.

B.1. Bosons
Considering s =( )sgn 1B for bosonic particles and plugging the symmetry conditions(B.5) and(B.3) into(2),
the transition probability becomes

å  p
f sµ

s
s s

Î =
++( ˆ ) ˆ ˆ ( ( ) ) ( )( ) ( )

( )

⎜ ⎟⎛
⎝

⎞
⎠r s pP U U U d r, , exp i

2
, , . B.6r r

S j

N

d d j N jB
1

2

, , 2

2

d s

j j j N j2



As the summation runs over all permutations s of thefinalmode assignment list, these permutations are either
symmetric with respect to order reversal, s s= +j N j2 , or possess a reversed-order partner s¢, satisfying
s s¢ = +j N j2 and s s= ¢ +j N j2 for = ¼j N1, , 2. In the following, the latter case is considered first, while in the
end it turns out, that final states which are covered by the suppression law cannot form symmetric permutations,
such that the former case does not apply. The contribution of each pair s and s¢ in(B.6) then yields

 p
f s

p
f sµ +

=
+

=

( ( ) ) ( ( ) ) ( )⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠r p r pd dexp i

2
, , exp i

2
, , B.7

j

N

j N j
k

N

k k
1

2

2
1

2
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 p
f s f sµ + -

=
+[ ( ( ) ) ( ( ) )] ( )⎜ ⎟⎛

⎝
⎞
⎠r p r pd d1 exp i

2
, , , , B.8

j

N

j N j j j
1

2

2

which vanishes if

å f s f s- =
=

+( ( ) ) ( ( ) ) ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥r p r pd dmod , , , , , 4 2. B.9

j

N

j N j j j
1

2

2

The condition forfinal states fulfilling(B.9) can be shown by defining the sets

= Î  =( ( )) { ∣ ( ( ) ) } ( )r p rP d p p x d p, 1 , B.10j m m j m

= Î  = -¯ ( ( )) { ∣ ( ( ) ) } ( )¯ ¯ ¯r p rP d p p x d p, 1 B.11j m m j m

withwhich the phase factors in(B.9) can be rewritten to

å åf s s s= -
Î Î

( ( ) ) ( ) ( ¯ ) ( )
( ( )) ¯ ¯ ( ( ))

r pd x p x p, , , , B.12
r r

j k
p P d

k
p P d

k

j j

å ås s= -
= Î

( ) ( ¯ ) ( )
∣∣ ∣ ∣

¯ ¯ ( ( ))
x p x p, 2 , . B.13

p

rm
k m

p P d
k

1 j

for any Î ¼{ }k N1, , . The second term in(B.13) yields

å s =
Î

( ¯ )
∣∣ ¯ ( ( ))∣∣

∣∣ ¯ ( ( ))∣∣
( )

¯ ¯ ( ( ))

⎪

⎪

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎧
⎨
⎩

r

r
x p

P d

P d
mod 2 , , 4

0 for even

2 for odd ,
B.14

rp P d

j

jj

and does not contribute to the remainder in(B.9) since

å s s- =
Î

+( ¯ ) ( ¯ ) ( )
¯ ¯ ( ( ))

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥x p x pmod 2 , , , 4 0. B.15

rp P d
j N j2

j

Condition(B.9) then becomes

åå s s- =
= =

+( ) ( ) ( )
∣∣ ∣ ∣⎡

⎣
⎢⎢

⎤
⎦
⎥⎥x p x pmod , , , 4 2. B.16

p

j

N

m
N j m j m

1

2

1
2

In order to rewrite the sums over all elements in p, we utilise the identities

å = - +
=

+

=

( ) ( ) ( ) ( )
∣∣ ∣ ∣

(∣ ∣ ∣ ∣ )
∣ ∣ ∣ ∣⎡

⎣⎢
⎤
⎦⎥x j p x j pmod , , 4 1 , 1 B.17

p
p

p

m
m

m
m

1

2 2

1

for even ∣∣ ∣∣p and

å + = - +
=

-

=

( ) ( ) ( ) ( )
∣∣ ∣ ∣

(∣ ∣ ∣ ∣ )
∣ ∣ ∣ ∣⎡

⎣⎢
⎤
⎦⎥x j p x j pmod 1 , , 4 1 , 1 B.18

p
p

p

m
m

m
m

1

1 2

1

for odd ∣∣ ∣∣p . These identities can be proven by induction on ∣∣ ∣∣p . Then, for both cases,(B.17) and(B.18),
condition(B.16) can be rewritten, using theWalsh functions(12):

å s s- =
=

+( ) ( ) ( ) 
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥p pmod , , , 4 2. B.19

j

N

N j j
1

2

2

Further, we use the identity

å s s s- = -
=

+
=

( ) ( ) ( ) ( )  
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥p p pmod , , , 4 1 , , B.20

j

N

N j j
j

N

j
1

2

2
1

which can be proven by induction onN, such that condition(B.19) becomes

 s = = -
= =

( ) ( ( ) ) ( ) p s pd, , 1. B.21
j

N

j
j

N

j
1 1

SinceN is even, this is the case if the final state ( )d s contains an odd number of particles in the subset ofmodes k
for which =( ) pk, 1. Clearly, those final states ( )d s can’t form symmetric permutations adhering to
s s= +j N j2 , which had to be shown.
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B.2. Fermions
For fermions, the sign factor s s=( ) ( )sgn sgnF needs to be considered in the calculation of transition
probabilities according to(2). By defining

= Î ¼ - -( ) { ∣ { }⧹{ }} ( )J q j j N N q N q1, , , 2 B.22

for Î ¼ -{ }q N0, , 2 1 , each permutation s can be assigned a partner permutation s( )q , for which the
elements -N q2 andN−q are exchanged,

s
s
s
s

=

Î
= -
= -

-

-

( )
( )( )

⎧
⎨⎪

⎩⎪
j J q

j N q

j N q

for

for 2

for ,

B.23j
q

j

N q

N q2

and accordingly s s= -( ) ( )( )sgn sgn q . Then, the summands of s and s( )q in(2) yield

 s -s s
= =

( ) ˆ ˆ ( )( ) ( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟U Usgn B.24r r

j

N

d
k

N

d
1

,
1

,j j k k
q

 s= -s s s s
= Î

- - - -
( ) ˆ ˆ ˆ ˆ ( )( )

( )
( ) ( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟U U U Usgn B.25r r r r

j

N

d
k J q

d d d
1

, , , ,j j k k N q N q N q N q
2 2

p
f s f sµ - +- - - -[ ( ( ) ) ( ( ) )] ( )⎜ ⎟⎛

⎝
⎞
⎠r p r pd d1 exp i

2
, , , , B.26N q N q N q N q2 2

wherewe used(B.5) and (B.3) in the last step. This contribution vanishes if

f s f s+ =- - - -[ ( ( ) ) ( ( ) ) ] ( )r p r pd dmod , , , , , 4 0. B.27N q N q N q N q2 2

Utilising(B.2) in definition(B.4), condition(B.27) becomes

f s f s- =- - - -[ ( ( ) ) ( ( ) ) ] ( )r p r pd dmod , , , , , 4 0 B.28N q N q N q N q2

which results in

s s=- -( ) ( ) ( ) p p, , B.29N q N q2

byproceeding as in(B.10)–(B.19). Thus, the summands fors ands( )q cancel eachotherout if condition(B.29)holds.
For a set = ( )q q q, ,...1 2 , where each q value is contained atmost once, we define the permutation s( )q as

s

s

s
s

=

Î

= - " Î
= - " Î

Î

-

-

⋂ ( )

( )( )

⎧
⎨
⎪⎪

⎩
⎪⎪

q

q

j J q

j N q q

j N q q

for

for 2

for .

B.30q
q

j

j
q

N q

N q2

Now, it is possible to group all !N possible permutations of the finalmode assignment list into sets
s s{ }( ) ( ), ,...q q1 2 , containing 2N 2 permutations s( )qi , where the sets qi are given by all possible subsets of

¼ -{ }N0, 1, , 2 1 including the empty list. Accordingly, for every single q, all permutations of a set
s s{ }( ) ( ), ,...q q1 2 can be grouped into pairs, whose elements -N q2 andN−q are exchanged. Then, if
condition(B.29) is fulfilled for any single q value, all permutations of the set s s{ }( ) ( ), ,...q q1 2 cancel pairwise.
Consequently, there are sets s s{ }( ) ( ), ,...q q1 2 , inwhich no pairwise cancellation occurs if and only if

s =( ) p, 1j for half of all Î ¼{ }j N1, , and s = -( ) p, 1j for the other half. Thus, allfinal states adhering to

å ¹
=

( ( ) ) ( ) s pd , 0 B.31
j

N

j
1

must be suppressed.

AppendixC.Derivation of the generalisation to arbitrary subunitaries

In order to describe the effect of symmetry operations(18) onmode numbers, the same operators as in(B.1) can
be used, however, with the restriction to segmentations Î ¼{ }p 2, 4, 8, , 2d , for which the identities(B.2) hold
aswell. The definition

= + -( ) [ ] ( )f l m l m, 1 mod 1, C.1

for = ¼l m1, , 2d ascribes the indexwithin the subunitary and satisfies

=( ( ) ( ) ) ( ( ) ) ( ) p r rf d m f d m, , . C.2j jd
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Thus, the unitary elements in(17) read

åp
= -

=

ˆ ˆ ( ) ( ) ( )( ) ( )
⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟A d x j x k

1

2
exp i

4
, 2 , 2 , C.3j k f j m f k m

d
l

d
l l

, , , ,
1

where Â denotes them×m subunitary. Expectedly, the dynamics of the subunitary Â and theHCgraph are
decoupled. By exploiting(B.2) and (C.2), the symmetric connection between unitary elements obeys

p
f=ˆ ˆ ( ( ) ( ) ) ( )( ) ( ) ( ) ( ) ( )  ⎜ ⎟⎛

⎝
⎞
⎠r s pd dexp i

2
, , . C.4p r s r sd d d d j k, ,j k j kd

Clearly, this is identical to the symmetry relation(B.3). In conclusion, the same symmetry suppression laws hold
for unitaries of the form(17)with the restriction to segmentation values Î ¼{ }p 2, 4, 8, , 2d .
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