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Abstract

In this dissertation we exploit the AdS/CFT correspondence to describe a sys-
tem of strings suspended between giant gravitons. The strings can be in an
excited state. The excitations of the strings can be given a particle-like descrip-
tion and are known as magnons. The proposed gauge invariant operators used
to construct a complete description of this system belong to the su(2) sector
of the N' = 4 SYM. Using an open spin chain description of the suspended
strings, the states of the system we consider enjoy an SU(2|2)? symmetry. By
making use of this symmetry, we compute the all loop anomalous dimensions
of these operators. The spectrum of the dilatation operator in the su(2) sector
of the theory is reproduced in the dual gravity description. In the dual theory,
the energies of the magnons are computed using strings in a background LLM
geometry and the results are in complete agreement with the anomalous dimen-
sions of the operators we have considered. Using the symmetries enjoyed by our
system we achieve a complete determination - up to an overall phase - of the
reflection/scattering matrix between a boundary magnon and a bulk magnon.
Thus, although the open boundary conditions of the spin chain spoil integrabil-
ity, the complete determination of the S—matrix is still possible. The two-loop
subleading correction to the dilatation operator is also explored. This sublead-
ing term corresponds to a correction of the magnon energies. The computation
of this subleading term requires consideration of the giant’s backreaction on
their excitations. We find that this backreaction implies a nontrivial mixing of

the dual operators and this mixing is characterized completely.
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Chapter 1

Introduction: Background

and general overview

In this thesis, we consider N' = 4 super Yang-Mills theory (SYM) with gauge
group U(N). By making a novel use of symmetries present, we compute anoma-
lous dimension of a certain class of operators whose classical dimension goes as
O(N) in the large N limit. We will begin by developing the background from
N =4 SYM that is relevant to the study of this thesis. The discussion of the
symmetries that play a central role is carried out at the end of this section.

In N = 4 SYM theory there are 6 real scalar spin-0 fields ¢;; one spin-1
gauge field A4, and four spin—% fermionic fields ¥;. These quantum fields of the
theory are in the adjoint representation of the gauge group so that each field
is a N x N matrix. The operators with classical dimension of order N that

we consider are composed using the ¢; fields. It is usual to complexify these 6

scalar fields into three complex fields X, Y and Z as
X =¢5+igs, Y =0¢3+ids, Z=d1+ida. (1.1)

One of the uses of this rewriting is that it allows us to define closed subsectors
of the theory that do not mix when the theory is renormalized. In this situation
we can study the dilatation operator within a given subsector. In this thesis we

will focus on the su(2) sector of the theory, defined by focusing on operators



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

constructed using only the Z and Y fields. The operators we consider will be
composed of order N Z’s and order 1 Y'’s. It is a challenging problem to evaluate
their correlators at large N. This is because one encounters huge combinatoric
factors which overpower the usual ﬁ suppressions so that we can not ignore the
contribution coming from non-planar diagrams. Accordingly, the usual methods
for computing matrix model correlation functions are no longer effective. The
usual method for evaluating correlators of a generic U(N) gauge theory is due to
't Hooft [2]. Feynman diagrams are drawn as ribbon graphs and suggest that in
the limit N — oo the gauge theory is dual to a free string theory. Accordingly,
't Hooft identified % as the string coupling g;. We will review in Sec. 't
Hooft’s proposal concerning the large N limit of a gauge theory.

Although the usual method is not effective in evaluating correlation func-
tions of the operators we consider, it turns out that group representation theory
techniques provide a powerful approach to the problem. Group representation
theory techniques were first introduced by the authors of [3] to evaluate corre-
lators of operators belonging to the %—BPS sector. The study [3] is strongly
motivated by the AdS/CFT correspondence.

According to the AdS/CFT correspondence four-dimensional U(N), N = 4
SYM is dual to type IIB superstring theory on the AdSs x S° background. This
particular gauge/gravity duality is the most studied example of the AdS/CFT
correspondence. In general, the AdS/CFT correspondence claims a duality
between a gauge theory in a p—dimensional spacetime that enjoys conformal
invariance and quantum gravity on AdS,4+1 x X, where X is some compact
manifold. The AdS/CFT correspondence is a strong/weak duality. In other
words if the coupling strength is strong on one side of the correspondence, the
dual is weakly coupled. This strong/weak coupling duality is remarkably useful
since it allows us to explore strong coupling limits by using the weakly coupled
dual theory.

According to the AdS/CFT correspondence, the operators we consider in the
gauge theory have a dual interpretation in the gravity description. According
to the correspondence, operators with a classical dimension that grows like
N as we take N — oo are identified as giant gravitons in the string theory.

Giant gravitons are an example of D3-branes in the type IIB superstring theory.

4



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

The giant gravitons have a worldvolume with S3 topology so that they have
a vanishing D3 monopole moment but a non-vanishing D3 dipole moment.
In this sense, they are not typical D3—branes and in fact are only stable as
a consequence of the background RR flux. The relevant literature discussing
giant gravitons includes [4 B [6]. In the type IIB superstring theory D-branes
are non perturbative objects. To see that D-branes are non-perturbative, it is
enough to note that they are described by the Born-Infeld action with a brane
tension that is inversely proportional to the string coupling gs. In the regime
where g, vanishes, the brane tension diverges and all D-branes decouple from
the perturbative spectrum.

Giant gravitons expand in the S® or AdSs geometries. The scaling dimen-
sions in the dual gauge theory correspond to the energies of the giants. In this
way the anomalous dimensions of the gauge theory operators give the energy

spectrum of the giants.

Giant gravitons

Figure 1.1: Illustration of an excited state of 3 giants with stings stretching be-
tween them. The black nodes represent the giants and the blue curves represent

the strings. The particles excitation of the strings are called magnons.

A system of excited giant gravitons corresponds to a boundstate of giant gravi-

- 5=



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

tons with strings stretching between them. Furthermore, a string suspended
between two giant gravitons also can be excite(ﬂ so that a cartoon illustration
of some excited state of giants is given in Figure

The expansion of the giant graviton expanding in the S° geometry is limited
by the size of the S°. In contrast to this, a giant expanding in the AdS space is
not limited. The expansion of the giant is due to a Lorentz force-like coupling to
the background RR flux. The magnitude of this force is directly proportional to
the angular momentum of the giant. Accordingly, it follows that the restriction
on the size of the giant translates into a constraint on the momentum of the
giant. The giants trace out non-geodesic motion as a consequence of the force
coming from the RR flux. The size of the giant reflects this force and hence
the actual orbit followed by the giant in spacetime. The strings attached to the
giant are dragged in this non-geodesic motion. In Chapter [2| we will explain in
detail how the size of the giants affects their string excitations and the magnon
excitations of these strings.

The gauge invariant operators we consider are built from products of traces

of fields. A generic local operator we consider takes the form
s Te(ZmyYZzn - Z) Te(Z™Y Z™2 - Z) T (20 Y 2P Z) -, (1.2)

where the total number of Z’s fields is order N and the number of Y fields
is order 1. A string in the dual description is constructed using O(\/N) Z’s.
The magnon excitations correspond to the Y fields. The construction of these
gauge theory operators uses techniques from group representation theory and
they are called restricted Schur polynomials. Relevant background includes
[ 18 @ [10; [11]. We will postpone the complete description of these operators
to Chapter

We will now discuss the symmetries we use to compute the anomalous di-
mensions. Following [12} 13] the string suspended between the giants has an
open spin chain interpretation. This spin chain enjoys an SU(2|2)? symmetry.
Understanding the action of this symmetry on the operators we consider will

essentially determine the anomalous dimensions, which is our main goal. The

IThe excitations of the open strings can be given a particle-like interpretation as magnons

of a spin chain.
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details of this argument will be developed in Chapter

1.1 Novel results obtained in this study

The purpose of this section is to review the literature relevant to the class
of problems considered in this thesis. In this way we are able to situate our
results in this field of study. First, the exact correlators of the restricted Schur
polynomials, which are the operators we consider in this work, were studied by
the authors of [7; 8 @ [10; [11]. Using these operators the authors of [14; [15; [16}
17; 18 [19] computed the anomalous dimensions in the su(2) sector of N' = 4
SYM. Further, [19] managed to compute the leading higher loop anomalous
dimensions for a class of restricted Schur polynomials. This class of restricted
Schur polynomials are labeled by Young diagrams R with order N boxes that
have the following shape

HEEREEEEN

R = : ——— O(N)
omfl: ¢ om

[TTET]

In the Young diagram R illustrated above, we assume that there are p ~ O(1)
rows. Each row contains order O(N) boxes. The difference in the number
of boxes in two different rows is also of order N. We recall that each row
of the Young diagram R is identified as a giant graviton. In this way, the
Young diagram R labels a boundstate of p giant gravitons. The above limit
for the shape of Young diagram R was needed for the analysis of [I9]. In
this limit, the backreaction of the giant gravitons on their string excitations
can be ignored and the action of the leading higher loop dilatation operator is
factorized into two separate actions on the Z’s and the Y’s. In this way, one
is able to demonstrate that the eigenstates of the leading higher loop dilatation
operator are the states of a collection of harmonic oscillators. These harmonic
oscillators were introduced by the authors of [I6] and generalized in [19]. The
rigorous mathematical background needed to solve the eigenvalue problem using

the harmonic oscillators is developed in [20]. The eigenstates are called Gauss

-7 -



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

graph operators.

The studies described above manage to reproduce the expected state space
for excited giant gravitons. They do not however make contact with the semi-
classical string physics developed in [2I]. The novel results presented in this
thesis will provide this link. In particular by giving the open string a descrip-
tion as a gauge theory word composed of O(\/N ) letters we recognize the open
string as an open spin chain. Excitations of this open string are then described
using the magnon language of [21I]. Furthermore, we also compute the reflec-
tion/scattering between a boundary magnon and a bulk magnon. These results
follow by implementing the SU(2|2)? symmetry. Details of this first result are
summarized in Chapter [2] of this dissertation.

The results that we have obtained for the scattering of open string magnons
complement a number of existing results in the literature. The use of the
SU(2|2)? symmetry was pioneered in [12; [13] where the S—matrix of two bulk
magnons on a closed string was determined. In addition to this Maldacena
and Hofman considered the case of a maximal giant graviton and computed the
S—matrix of a boundary magnon and a bulk magnon [22]. The analysis again
uses the SU(2|2)? symmetry. Following these results, the reflection/scattering
S—matrix we obtain in Chapter [2]is for the case of a boundary magnon and a
bulk magnon, for giant gravitons of any size. In this way, our S—matrix results
interpolate between the results in [12} [13] and [22]. Motivated by the Maldacena
and Hofman works [22] we also compute the energies of magnon excitations of
the strings suspended between submaximal giants. In perfect agreement with
general predictions of AdS/CFT, we find that these magnon energies corre-
spond exactly with the anomalous dimensions of the operators we consider on
the gauge theory side.

Starting at the subleading two loop anomalous dilatation operator, the back-
reaction of the giants on their excitation becomes important and one has to
consider this contribution to operator mixing. This contribution results in a
mixing of Gauss graph operators under renormalization. This mixing has been
computed in detail. A discussion of these results is given in Chapter [3] of this
thesis.

To conclude this section, we now outline the remainder of this thesis. The re-

-8 -



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

maining sections in Chapter [I] provide a general review and background relevant
for the thesis. We start with a broad review of the AdS/CFT correspondence in
section [I.2] Then we review, in section [I.3] 't Hooft’s argument employing rib-
bon diagrams for the correlators of a generic U(NN) gauge theory. The section
[[4] that follows is focused on a review of the zero-dimensional matrix model
correlation functions. Our aim in this section is to explain the complexity of
large N but non-planar limits. To conclude this first chapter we consider some
basic elements of CFTs. In Chapter |2[ we will report the first novel result of
this thesis. The contents of Chapter 2| were published in JHEP 03 (2016) 156.
Chapter [3] describes further results. These results were published in Phys. Rev.
D 93, 0650057 (2016). Finally, we will conclude this dissertation in Chapter

1.2 The AdS/CFT correspondence

1.2.1 AdS space

Classically, gravity is described by General Relativity (GR). According to GR,
the equations describing gravity as a curvature of spacetime are the Einstein
equations

1

RMV - §guyR = K‘T/,LV' (13)

On the right hand side of this equation, 7},, is the energy momentum tensor. On
the left hand side R and R, are respectively the Ricci scalar and Ricci tensor.
The left hand side of describes purely intrinsic geometrical properties of
the spacetime.

AdSs is a manifold with Lorentzian signature metric. AdSs is the maximally
symmetric solution to the Einstein equation , with cosmological constant
A. To see this, start with the Einstein-Hilbert action

1
= da® —A 1.4
o [ 4V lal(R - ) (14)
and solve the classical equation of motion 5?}% =0, to find
1 A 5 A
R;w - ig;wR = _ig;wv R = gAa R;w = gg;uw (15)
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Using global coordinates

xo = Lcosh p cos,

x5 = Lcoshp sinT,

4
x; = Lsinh pz;, E 55? =1,
i=1

the metric of the AdS5 is
ds? = L(— cosh® pd7? + dp? + sinh? pdQ3). (1.6)

Above, dQ3 is the metric on a three-dimensional sphere S3. Having this metric
of the AdSs space, it is possible to see that the isometry group is SO(2,4).
S0O(2,4) is the connected conformal group in a flat four-dimensional spacetime.
Hence, we already have a hint that the AdS5 space and CFTs in 4—dimensional

spacetime might be related.

1.2.2 Symmetry argument relating NV = 4 SYM theory
and type IIB superstring theory

The AdSs x S® spacetime with N units of RR five form flux is an exact back-
ground solution of type IIB superstring theory. The AdS/CFT correspondence
claims that IIB superstring theory on this background is exactly equivalent to
N = 4 super Yang-Mills theory. The first evidence for the correspondence is an
exact match of the symmetries enjoyed by these two theories.

First, note that type IIB superstring theory and N' = 4 SYM theory are both
supersymmetric theories with the same number of supercharges. Further, N’ = 4
SYM enjoys conformal symmetry, even at the quantum level. Accordingly, we
learn that both theories have the same SO(2,4) symmetry. On the gravity side,
this symmetry is realized as the isometry group of the AdSs5 spacetime. In the
gauge theory, it is the conformal invariance of the theory.

Another obvious symmetry present in the gravity theory is the SO(6) isom-
etry of the S° geometry. In the gauge theory this is identified with the global
SU(4) ~ SO(6) R—symmetry that rotates the supercharges.

Although a matching of the symmetries of the two theories is suggestive,

~10 -



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

it is certainly not a proof of the correspondence. Indeed, although significant

evidence for the conjecture exists, it is still not proved.

1.2.3 A heuristic motivation for AdS/CFT

Following [23}[24] a convenient way to derive the full action of the D =4, A" =4
SYM is to start with D = 10, ' =1 SYM and then dimensionally reduce it to
D = 4. We will not review the full action of the D = 4, N’ = 4 SYM, instead
we only present the bosonic part. The bosonic part of the Lagrangian of the

N =4 SYM in 4—dimensional spacetime if]

L= 21 /d4x Tr (%]—"W}"‘” + D,quiD“qSi + %[(ﬁi, (zﬁj][d)i, (bj]) (1.7)
9y m

{xi}i:z;,...’g

Figure 1.2: TIllustration of a stack of NV D3—branes with strings attached to

them.

One way to motivate the AdS/CFT correspondence considers a system of N
parallel, coincident D3—branes in Type IIB string theory. This system admits
two possible descriptions. Since the D3—branes are massive charged objects,

they act as a source for supergravity fields. In particular, the D3—branes deform

2Repeated indices are summed. This summation includes the spacetime indices u,v, - - -

and the indices on the bosonic fields.

— 11 —



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

the spacetime thereby producing a nontrivial spacetime geometry. Further, they
are charged so that they source N units of RR 5-form flux. The supergravity de-
scription can be trusted at weak string coupling (when quantum corrections can
be neglected) and in the limit that we have a very large number N of D3—branes
ensuring a spacetime geometry that is approximately flat. The second possible
description for the system understands the D3—branes as boundary conditions
for open strings. In this second description, both open and closed strings play a
role. Note that in the first description, only closed strings appear. To motivate
the correspondence, we now take a low energy limit and require equivalence of
the two descriptions in this limit.

The low energy limit of the first description captures two decoupled sys-
tems. First, we have long wavelength supergravity modes propagating in the
region away from the branes, where spacetime is approximately flat. Since these
modes have a very large wavelength they are not able to resolve the D3—branes
and they do not even detect the presence of these branes. The second system
is comprised of all of the modes of the Type IIB string theory close to the
stack of branes. These modes are red-shifted to a low energy due to the huge
gravitational potential they experience in the local vicinity of the D3—branes.
The local geometry in the vicinity of the D3—branes is the AdS; x S space-
time. So, in summary, the low energy limit has produced two decoupled sec-
tors: (i) long wavelength supergravity modes propagating in 10—dimensional
Minkowski spacetime and (ii) all of the modes of Type IIB superstring theory
in the AdSs x S® geometry.

Now consider the description invoking both open and closed strings in the
Type IIB string theory. The low energy limit of the closed string states gives
long wavelength supergravity modes propagating in 10—dimensional Minkowski
spacetime. The low energy limit of the open string states is N' = 4 SYM
theory. Further, in the low energy limit, the interaction mixing the closed and
open string sectors vanish and the two sectors again decouple. So, in summary,
the low energy limit has produced two decoupled sectors: (i) long wavelength
supergravity modes propagating in 10—dimensional Minkowski spacetime and
(i) 3+1 dimensional A" =4 SYM theory.

Since we believe these two descriptions are equivalent, their low energy
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physics should also be equivalent. We are then lead to conclude that Type
IIB superstring theory on AdSs x S° is dual to A/ = 4 SYM theory.

With this discussion in hand, we have a new insight into how to interpret
the matrix valued fields of the SYM theory. The SYM theory describes the low
energy limit (i.e. the zero modes) of the open string system. The six scalar
fields of the theory describe directions transverse to the D3—branes, while the
gauge fields describe directions parallel to the D3—branes. Recall that we are
considering N D3—branes stacked on top of each other. The matrix indices
which run from 1 to N label which brane inside the stack the open string is
connected to. Diagonal elements of the matrix field describe open strings that
start and end on the same D3, while off diagonal elements of the matrix field

describe strings that stretch between two different D3—branes.

1.3 Review of the large N expansion

We review in this section the arguments [2] showing that the correlators of a
generic U(N) gauge theory are dominated by the planar diagrams of the theory.
To start with, consider the pure U(N) gauge theory with the Lagrangian

E:

— tr (F L, FHY), 1.8
e ) (19

where

]:/wg = auAvg - &,AMZ - i[AmAu]?. (1.9)
Introduce A = Ng%,,, which is the so-called 't Hooft coupling. In terms of A,

1N

L=t (FuF™). (1.10)

The Feynman rules are written in terms of ribbon graph diagrams. The double
lines keep track of the two U(N) indices present on the (matrix valued) field.

The Feynman rules are

1. For the propagator
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.« A
b d ~ 5ac 5bd

Figure 1.3: Gauge field propagator in the ribbon graph notation.

2. For the three-point and four-point vertices, one finds

N
n ~ X 5@']’ 5kl 5mn ,

m

.
R

Figure 1.4: Three-point and four-point vertices in the ribbon graph notation.

5ab 5Cd 5ef 5gh

>| =

Using the above Feynman rules it is possible determine the N and A\ dependence
of an amplitude M of some connected diagram without external legs. One can
argue that the resulting Feynman diagram is a triangulation of a 2-dimensional

surface
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Figure 1.5: Ribbon graphs define a triangulation of a two-dimensional surface.
Each polygon in this diagram contributes a factor vazl d% = N. Let E be
the total number of edges (propagators), V' the total number of vertices and
F the total number of faces (closed loops or closed polygons) in the connected

diagram. The dependence on N and A of the amplitude M is

Vv E
M~ (JAV) (2) NE = NVZErEN\E=V, (1.11)

The power of N is the famous Euler characteristic
x=V-FE+F.

This Euler characteristic is a topological number which only depends on the
topology of the diagram. Each connected diagram gives a triangulation of a
closed two dimensional connected and oriented manifold 3;, with the Euler
characteristic given by x above. The following figures illustrate some typical

examples of the ¥j’s.
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20552: \ , ZlETQZ

)

Figure 1.6: i) Xg = S? is a two-sphere - ii) X1 = T5 is a two dimensional torus
and 4i7) represent a typical X; where h is the genus of the surface (or number

of handles).

The Euler characteristic is given by
xX(Zn) =2 —2h, (1.12)

where h is the number of handles on the surface ¥j;. The amplitude of each

connected diagram without external legs is
M o N272)\E=V, (1.13)

It was 't Hooft [2], who first noted this connection between the power of N

multiplying the amplitude M and the Euler characteristic of 3j,.

a)
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) d)

Figure 1.7: We illustrate in the above figures how to go from a planar Feynman
diagram figure a) to a triangulation of a two-sphere figure b). The next figure
shows a typical non-planar Feynman diagram figure ¢) to a triangulation of a

torus figure d).

The limit N — oo with A fixed defines a systematic large N expansion of the
theory. This limit is known as the 't Hooft limit. It is clear that at large N
the only diagrams that contribute are those with A = 0. Their contribution
in the amplitude goes like N2. These diagrams are known as planar diagrams
because they can be drawn on a two dimensional plane without self-crossing.
The geometry of the Xj’s, see Figl.6] are also encountered in the quantum
theory of fundamental strings. In fact, it is attractive to identify these figures
as the world-sheets of quantum strings. For more details and a review on the
connection between gauge theory and string theory one is referred to [25; [26]

27 28].

1.4 Zero dimensional Matrix Model

In this section we consider a zero dimensional toy model to compute correlation
functions of certain operators constructed from N x N Hermitian matrices. Our
motivation for studying this toy model is to learn about the N dependence of the
correlation functions of matrices. This study will illustrate how ribbon graph
Feynman diagrams emerge in the theory. Here our focus is on the free theory for

simplicity. To begin our discussion, we start by defining the generating function
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of the correlation functions of the theory.

1.4.1 Matrix model correlation functions in terms of Z[J]

Let J and M be two N x N Hermitian matrices. Consider the generating
function
Z[J] = / [dM]e% T+ (M) -z (7 — ) =1, (1.14)

By completing the square followed by a change of variable, one can show that

this generating function is simply
Z[J] = e? "), (1.15)
A general matrix model correlation function is
(M*M2 - M) = /[dM]M;fll M Mine 30O, (1.16)

We adopt the Einstein summation convention

N
(M) =D MjJj = My.Jj,
J

so that the trace of matrix is simply written as
tr(M) = M},
Accordingly, the generating function becomes
Z[J] = /[dM]e—%M;’MHMéJf. (1.17)

This last equation leads to the relation

82

(MM} = ———2Z[J]| . (1.18)
! oJ} 0. J=0
Using Z[J] = 2 "(/*) and the identity
a 1 1
67{]}665 tr(J?) — Jlkef tlr(J2)7
a straightforward calculation yields
(MM]) = 5[5 (1.19)

(1.19)) is enough to evaluate any correlation function of matrices. The only extra

ingredient one needs is Wick’s theorem.

~ 18 —



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

1.4.2 Examples of correlation functions

Consider the following correlator

: j 84 1 2
(tr(M*)) = (MIM]MIM]) = ———————¢2 807
’ 077050107

= 673 <J.le%tr(‘]2)>
0JoJrog. N

)

J=0

J=0
0* e

= — (6108 + JfJ}) e2 )
o7 | |

J=0

9 , , , .
= [(o + 6Lo7 JE 4 ok5T T + ookl + J}Jl’fJ,g) e tr(Jz)}

= 6} + 058107 + 80£ 67,

)

J=0

= N +2N°3, (1.20)

The general pattern resulting from this calculation is summarized in terms of

Wick’s theorem [29]. In terms of the Wick contraction notation the example

(1.20) becomes

MM MEM! ;= MM MM MiMij]\|41 ]\liiMijj\lﬂ
sV MG MM = MM M M A MM My M+ MM M M
= 0,076% + 0f 6767 + 0{0f 67 = N + 2N*.
In the above notation, each Wick contracted matrices reflects the way each pair

of derivatives with respect to J act on the matrices. This can be summarized

by Feynman rules using the ribbon graph language.
1.4.3 Ribbon graph Feynman diagrams

The rules for ribbon graphs are

e For each matrix M appearing in a correlation function, draw a pair of

dots associated respectively to the upper- and lower-index of the matrix.

e For each Wick contraction connect the two pairs of dots for the two Wick

contracted matrices with a pair of lines.

e For each repeated index we sum over, connect the associated dots with a

line.
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e For each diagram associate a number N! where [ is the total number of

closed loops in the diagram.

e Finally, sum over all the possible diagrams to produce the final answer.

Using these rules, reconsider the example in (|1.20))

MIM{MIM! = N3 - ’

N

= N+ 2N3

In the above diagrams, the dotted horizontal lines do not represent anything.
They are included for clarity as we now explain. The ribbons beneath the dotted
horizontal lines represent the Wick contractions and the ones above represent

the summation that appears in the trace.

1.4.4 Higher order correlation functions

The above techniques are no longer effective for correlation functions of oper-
ators constructed using order N matrices. The difficulty is a consequence of
the huge number of Feynman diagrams that can be drawn. In this section, we
explain how this problem arises in the evaluation of higher order correlators. To
start with, it is helpful to consider two independent Hermitian N x N matrices

M and K and define

Z=25(M+iK), = Z'=2(M-iK). (1.21)

It is a simple exercise to check that
itk i i itk
(Z32V)) = 6jsF, (Ziz[)y=(Z";Z1]) =0. (1.22)
To see the general pattern for the correlators of n pairs of Z and Z! matrices,

consider the cases n = 2, n = 3 and the indices of the matrices are not summed

(i.e. we do not take their trace).
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e Case forn =2

T, | Lo |
) L kl kz L ; k‘l kz ; ; k] k‘g
<Zﬁ Z;; ZTll Zle > = Zﬁ ZJ?ZTH Zle + ZJZi Z;EZTll ZTl2
= 0;16,2051 012 + 6]162 051 5%

l2 7 j1 l17J2 7j1?

= op e st o
lo) o) Jo—1(1) lo—1(2)
€Sy

e Case forn=3

; ; ; k1 kg ’ig . ; ; k‘l kz k‘g ) . ) kl kf2 kd
(ZpZ3R23 20, 20,20 = 2R 23 25 20 20, 20, + 2 2 2 20 20, 2

1 | — | |
L i s TR ke ik — T L L
+ Z;i Z;i Z]’lg ZTlll ZTl; ZTZ: + iji Z]zj Zjl::: ZThl ZTl; ZTl;

., | T, 1. |
i 3 i Tkl Tk2 Tk3 i i i .i.k'l Tkz .i.k'3
AR A AN A AN S A S A A AN
) ) i3 ck1 cko ¢k ] ] i3 k1 cko ¢k ) 3 i3 ck1 cko ¢k
= 01, 05013 05,05, 055 + 01,010,305, 052057 + 6,6,30,765, 6520,

+ 07161202051 6h2 0k 4 57167262 55168255 4 51672675 5% 6h2 5%

l27j1 7j3 " J2 l27j2 “j3 “j1 l1 773 “j2 “j1°

=) o b g ok gk gt
Z lo() lo2) lo@) Jo—1(1) Jo—1(2) Jo—1(3)
og€S3

From these two examples, it is clear that the general formula is

iy iz gin gtk gtke ke ( B2 5 §F k oSk
<ZjiZj§ ZjnZ nZh, Z ln> - Z 5li<1)6l§(2) 0(%)5j571<1>6j571<2> 5j;1(n)'
g€S,
(1.23)

Above, S, is the permutation group of n different objects. This group has n!
elements. If n ~ O(N) the summation in is not easy to perform. This is
due to the fact that the number of terms to be summed, which is N! is huge.
This leads to huge combinatoric factors that overpower the ﬁ suppression of
higher genus ribbon graphs. It is due to this combinatorics problem that ribbon
diagrams of all genus contribute and ribbon graph techniques are no longer

effective.
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1.5 CFT

1.5.1 Introduction to CFT

Using the AdS/CFT correspondence, one hopes to learn about quantum gravity
in AdS space, by asking questions in the CFT. There also other important moti-
vations to study CFT. The study of critical phenomena is intimately connected
to conformal symmetries. Further, in Wilson’s renormalization group (RG)
scheme, CFTs are the endpoints of any RG flow and hence they are important
to understand the space of all QFTs.

One example of a conformal transformation is a scaling transformation. Con-
sider a quantum mechanical system where one chooses to fix the units by setting

h = 1. The usual commutation relation between position £ and momentum p is
[, p] = 1. (1.24)

To keep our units fixed, the action of the scaling transformation on z and p
must be

T — Az,
(1.25)

p— A"lp.
Since in special relativity, time and energy have to be treated on the same
footing as space and momentum, similar scaling transformations apply to time
and energy.
It is not difficult to apply this transformation to QFT by doing simple di-
mensional analysis. Toward this end, consider a non-interacting massless and

real scalar field in D—dimensional spacetime, with the action
S = / dPz0,,00"¢. (1.26)

A physical observable in this theory is the field ¢. In units where i = 1, the
action S is dimensionless. It follows that the scalar field has classical dimension

[¢p] = L=%¢, A, = 252 A scale transformation acts as

ot — o't = \xH,

$(x) = ¢'(Az) = [A 724 (a).

(1.27)
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Using it is straight forward to show that S[¢] = S’[¢'], i.e. the free and
massless real scalar field action is scale invariant.

The above description is classical. The field fluctuates at the quantum level.
Quantum corrections to the above description can be understood using the
Wilsonian RG scheme, [30]. RG scheme provides a rigorous demonstration that
there are only a finite number of Lagrangians (i.e QFTs) that one can write
down at low energy. In this way QFTs are just effective theories summarizing
the degrees of freedom that are present at very short distance scales. As one
flows from the UV to the IR regime, all possible interactions are organized into
a finite number of marginal and relevant interactions. The change of a coupling
constant as function of energy scale is formulated in terms of the S—function of
the theory

99a (1)

m = Ba(ga)' (1-28)

If all of the f—functions of the theory vanish, the theory is a CFT. One example
of a theory that is conformal invariant at classical and quantum level is the
N =4 SYM theory.

Conformal transformations are coordinate transformations satisfying
AN = Q(m)znpg. (1.29)

SO(2,d) is the conformal group in d—dimensions. Appendix [K| considers the
group SO(2,4). To work out the generators of the conformal group, perform an

infinitesimal transformation

zt — o't = 2t + (). (1.30)

It follows that
A 1.31
v or? - v VC : ( . )

Close to the identity we have

Qz)? =1+ 2w(x) + O(w=?). (1.32)

Plugging (1.31)) and (1.32)) into (1.29)) at first order in {(x) one finds

0uC +0,¢, =2nw(z), w(x)= 2 (P (1.33)
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This equation is called the conformal Killing vector equation. With some non-

trivial manipulations, one shows that this equation implies
0p050,¢, = 0. (1.34)

Thus, the general solution for ¢, is at most quadratic in #*. The unique solution

consistent with the above equation is
M =€ +wr, + At + Papaf — 26 aPat, (1.35)

where the parameters e/, w*’ = —w"#, X and €¢'* are constant independent of

o

x7. Setting the parameters A = 0 and €¢’* = 0, the conformal Killing vector

equation (|1.33)) reduces to
0,y + 0,C = 0. (1.36)

In addition, the scaling factor also becomes Q(x) = 1, so that (|1.29) becomes
AlpLAZnuu = Tpo- (137)

Hence, this subgroup is the Poincaré group. The parameters A and ¢'* in
are respectively the parameters for scale and special conformal transforma-
tions. € and wH” are respectively the parameters for spacetime translations
and Lorentz transformations. The total number of conformal group parameters

in d dimensions can be summarized as follows
o d for e (spacetime translation)
o @ for wh¥ = —w"* (boosts+rotations)
e 1 for A (scaling transformation)
e d for €* (special conformal transformations).

generators of the conformal group. A finite

In total, one counts %z(dm

conformal transformation is

A= 6ie“Pu+%w“”LuujLi)\DjLie/“K“. (138)
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To work out the form of the generators P,, M,,, D and K, one can expand
this finite transformation about the identity to yield

: P
P = (1 +ie' P, + §w‘“’LW +iAD + ie’“KlL) z°

o

= zf + 6x”.

Comparing this small change dx” with ([1.35) we find

P, = —id,, (1.39)
M;Ll/ = _i(x,u,au - xl/au)a (140)
D = iz, 0", (1.41)
K, = —i(z,2”0, — 2x,2,0°) (1.42)
These generators obey
i[M;UJa Ma,@] = nuaMu,B + 'r}uBMya - nuﬁMua - nMCKMVﬂ7
i[D’ P#] = P,u’
1My, Ko = Moy — Nua Ky,
(M, ] M (1.43)
i[MuuaPa] :nuaPM_nuaPua
i[P,, K] =2n,,D +2M,,,
iD,K,]  =-K,.

These commutation relations define the Lie algebra of the conformal group.
Let nyny = diag(—1,1,--- ,1,71)E| be the metric of R*»?. The isometry
group of this space is the group SO(2, d) which is generated by

Lyn = 72‘(XM8N — XN6'M)
The Lie algebra s0(2, d) satisfied by these generators is

i[Lyn, Lrs) = nvrLms + Muslve —vsLyr — nurLns. (1.44)

3Capital Latin indices M, N, - - - take valuein 0,1,2,--- ,d,d-+1. This signature of the met-
ric also follows from our adopted signature for the metric 7, of the d—dimensional physical

spacetime.
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The isomorphism between the algebra (|1.43) and the algebra (1.44]) is as follows

Py =Lay1u+ Lap,

K,=1L L s
pn — Ld+1,p0 — Ld,py _
= [Lun] = | -fuke 0 D
D = Lg1,4, PutK, D 0
PutEu _
M, =L,,.
(1.45)

This demonstrates that the conformal group is indeed SO(2,d). In this way the
non linear action of the conformal group on the physical spacetime coordinates
z* € RL! can be realized as linear Lorentz rotations on the coordinates
XM ¢ R24d,

1.5.2 Correlation functions in CFT

The observable in CFTs are correlators of local operators. Requiring the full
conformal symmetry, the two point correlation of two local operators O; and
Oy is

(O1(2)O02(y)) = m, (1.46)
where the A;’s give the scaling dimension of the operators O;. We review the
derivation of this two point correlation function of local operator in Appendix[[}

Operators in the CFT are labeled by the eigenvalues of the dilatation operator

D and the Lorentz spin operator M,,. These two operators commute
[D,M,,] =0. (1.47)

Thus, D and M,, are simultaneously diagonalizable. Primary operators are
defined by
[K,,,0%(0)] = 0. (1.48)

The representation to which the primary operator belongs is given by
[D,04(0)] = —iA00*(0),
(M, OA(0)] = i {S, 15 OF(0).

For a review of CFT see the textbook [31]. For an introductory review of CFT

and its application to string theory see [32]. Recent developments and new ideas
can be found in [33; 34; B35; B56; 37 (38 B9, 40; AT: 42 43 [44: 45].
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Chapter 2

Anomalous Dimensions of
Heavy Operators from

Magnon Energies

2.1 Outline of chapter

In this chapter we study spin chains with boundaries that are dual to open
strings suspended between systems of giant gravitons and dual giant gravitons.
Motivated by a geometrical interpretation of the central charges of su(2]2), we
propose a simple and minimal all loop expression that interpolates between
the anomalous dimensions computed in the gauge theory and energies com-
puted in the dual string theory. The discussion makes use of a description in
terms of magnons, generalizing results for a single maximal giant graviton. The
symmetries of the problem determine the structure of the magnon boundary
reflection/scattering matrix up to a phase. We compute a reflection/scattering
matrix element at weak coupling and verify that it is consistent with the an-
swer determined by symmetry. We find the reflection/scattering matrix does
not satisfy the boundary Yang-Baxter equation so that the boundary condition

on the open spin chain spoils integrability. We also explain the interpretation
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MAGNON ENERGIES

of the double coset ansatz in the magnon language. The work discussed in this

chapter was reported in JHEP 03 (2016) 156.

2.2 Chapter introduction

In this chapter we will connect two distinct results that have been achieved in
the context of gauge/gravity duality. The first result, which is motivated by the
Penrose limit in the AdSs x S° geometry [46], is the natural language for the
computation of anomalous dimensions of single trace operators in the planar
limit provided by integrable spin chains (see [47] for a thorough review). For
the spin chain models we study, using only the symmetries of the system, one
can determine the exact large N anomalous dimensions and the two magnon
scattering matrix. Using integrability one can go further and determine the
complete scattering matrix of spin chain magnons[12}; [I3]. The second results
which we will use are the powerful methods exploiting group representation
theory, which allow one to study correlators of operators whose classical dimen-
sion is of order N. In this case, the large N limit is not captured by summing
the planar diagrams. Our results allow a rather complete understanding of the
anomalous dimensions of gauge theory operators that are dual to giant graviton
branes with open strings suspended between them. These results generalize the
analysis of [2I] to systems that include non-maximal giant gravitons and dual
giant gravitons. The boundary magnons of an open string attached to a max-
imal giant graviton are fixed in place - they can not hop between sites of the
open string. In the case of non maximal giant gravitons and dual giant gravi-
tons there are non-trivial interactions between the open string and the brane,
allowing the boundary magnons to move away from the string endpoints.

The operators we focus on are built mainly out of one complex U(NN) adjoint
scalar Z, and a much smaller number M of impurities given by a second complex
scalar field Y , which are the “magnons” that hop on the lattice of the Zs. The
dilatation operator action on these operators matches the Hamiltonian of a spin
chain model comprising of a set of defects that scatter from each other. The
spin chain models enjoy an SU(2|2)? symmetry. The symmetries of the system

determines the energies of impurities, as well as the two impurity scattering
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matrix[12; [13]. The su(2]2) algebra includes two sets of bosonic generators (R%
and L%g ) that each generate an SU(2) group. The action of the generators is

summarized in the relations
a c cra 1 arc « Y Y o 1 gy

where T is any tensor transforming as advertised by its index. The algebra also

includes two sets of super charges Q5 and Sg . These close the algebra
{Qq, Sh} = 60L%s + 65 R, + 0465 C, (2.2)
where C is a central charge, and
{Qi. @y =0, {si.s5r=0. (23)

We will realize this algebra on states that include magnons. When the magnons
are well separated, each magnon transforms in a definite representation of
s5u(2|2) and the full state transforms in the tensor product of these individual
representations. Acting on the ith magnon we can have a centrally extended

representation[12} T3]

{Q5, Sk} = 60L%s + 63 R, + 6565 C, (2.4)
«@ By _ _ap ki a by ab k‘l:(
{Qa. Q) =¢€ €ab {Sa,Sﬂ} = €ape” o (2.5)

The total multimagnon state must be in a representation for which the central
charges k; , k} vanish. Thus the multi magnon state transforms under the

representation with

C=>Ci, > ki=0=> k. (2.6)
i i i

A key ingredient to make use of the s1(2]2) symmetry entails determining the
central charges k; , k} and hence the representations of the individual magnons.
There is a natural geometric description of the system, first obtained by an
inspired argument in [48] and later put on a firm footing in [22], which gives an
elegant and simple description of these central charges. The two dimensional

spin chain model that is relevant for planar anomalous dimensions is dual to the
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worldsheet theory of the string moving in the dual AdSs x S® geometry. This
string is a small deformation of a %—BPS state. A convenient description of
the $—BPS sector (first anticipated in [49]) is in terms of the LLM coordinates
introduced in [50], which are specifically constructed to describe %fBPS states
built mainly out of Zs. In the LLM coordinates, there is a preferred LLM
plane on which states that are built mainly from Zs orbit with a radius r = 1
(in convenient units). Consider a closed string state dual to a single trace
gauge theory operator built mainly from Zs, but also containing a few magnons
M. The closed string solution looks like a polygon with vertices on the unit
circle. The sides of the polygon are the magnons. The specific advantage of
these coordinates is that they make the analysis of the symmetries particularly
simple and allow a perfect match to the SU(2|2) superalgebra of the gauge
theory described above. Matching the gauge theory and gravity descriptions in
this way implies a transparent geometrical understanding of the k; and &k, as we
now explain. The commutator of two supersymmetries in the dual gravity theory
contains NS— By gauge field transformations. As a consequence of this gauge
transformation, strings stretched in the LLM plane acquire a phase which is the
origin of the central charges k; and k; . It follows that we can immediately read
off the central charges for any particular magnon from the sketch of the closed
string worldsheet on the LLM plane: the straight line segment corresponds to
a complex number which is the central charge [22].

The gauge theory operators that correspond to closed strings have a bare
dimension that grows, at most, as v/N. We are interested in operators whose
bare dimension grows as N when the large N limit is taken. These operators
include systems of giant graviton branes. The key difference as far as the sketch
of the state on the LLM plane is concerned, is that the giant gravitons can orbit
on circles of radius » < 1 while dual giant gravitons orbit on circles of radius
r > 1. The magnons populating open strings which are attached to the giant
gravitons can be divided into boundary magnons (which sit closest to the ends
of the open string) and bulk magnons. The boundary magnons will stretch from
a giant graviton located at r # 1 to the unit circle, while bulk magnons stretch
between points on the unit circle. We will also consider the case below that

the entire open string is given by a single magnon, in which case it will stretch
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between two points with r £ 1.

The computation of correlators of the corresponding operators in the field
theory is highly non-trivial. Indeed, as a consequence of the fact that we now
have order N fields in our operators, the number of ribbon graphs that can be
drawn is huge. These enormous combinatoric factors easily overpower the usual
ﬁ suppression of non-planar diagrams so that both planar and non-planar
diagrams must be summed to capture even the leading large N limit of the
correlator [5I]. This problem can be overcome by employing group represen-
tation theory techniques. The article [3] showed that it is possible to compute
the correlation functions of operators built from any number of Zs exactly, by
using the Schur polynomials as a basis for the local operators of the theory. In
[62] these results were elegantly explained by pointing out that the organiza-
tion of operators in terms of Schur polynomials is an organization in terms of
projection operators. Completeness and orthogonality of the basis follows from
the completeness and orthogonality of the underlying projectors. With these
insights [3} 52], many new directions opened up. A basis for the local operators
which organizes the theory using the quantum numbers of the global symme-
tries was given in [53} [64]. Another basis, employing projectors related to the
Brauer algebra was put forward in [55] and developed in a number of interest-
ing works [56; 57 [58; 595 [60; [61} [62]. For the systems we are interested in, the
most convenient basis to use is provided by the restricted Schur polynomials.
Inspired by the Gauss Law which will arise in the world volume description of
the giant graviton branes, the authors of [63] suggested operators in the gauge
theory that are dual to excited giant graviton brane states. This inspired idea
was pursued both in the case that the open strings are described by an open
string word [7} 8 @] and in the case of minimal open strings, with each open
string represented by a single magnon [I0} T1I]. The operators introduced in
[7; 10] are the restricted Schur polynomials. Further, significant progress was
made in understanding the spectrum of anomalous dimensions of these oper-
ators in the studies [8 [0 [64; 14} 15} 16} 20; 17]. Extensions which consider
orthogonal and symplectic gauge groups and other new ideas, have also been
achieved [65} 66} 677 68} 695 [70].

In this chapter we will connect the string theory description and the gauge
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theory description of the operators corresponding to systems of excited giant
graviton branes. Our study gives a concrete description of the central charges
k; and some of the consequences of the su(2]2) symmetry. We will see that
the restricted Schur polynomials provide a natural description of the quantum
brane states. For the open strings we find a description in terms of open spin
chains with boundaries and we explain precisely what the boundary interactions
are. The double coset ansatz of the gauge theory, which solves the problem
of minimal open strings consisting entirely of a single magnon, also has an
immediate and natural interpretation in the same framework.

There are closely related results which employ a different approach to the
questions considered in this chapter. A collective coordinate approach to study
glant gravitons with their excitations has been pursued in [71% [72} [73} [745 1].
This technique employs a complex collective coordinate for the giant graviton
state, which has a geometric interpretation in terms of the fermion droplet
(LLM) description of half BPS states [49; [50]. The motivation for this collective
coordinate starts from the observation that within semiclassical gravity, we think
of the D-branes as being localized in the dual spacetime geometry. It might
seem however, that since in the field theory the operators we write down have
a precise R—charge and a fixed energy, they are dual to a delocalized state.
Indeed, since gauge/gravity duality is a quantum equivalence it is subject to
the uncertainty principle of quantum mechanics. The R—charge of an operator
is the angular momentum of the dual states in the gravity theory, so that by the
uncertainty principle, the dual giant graviton-branes must be fully delocalized
in the conjugate angle in the geometry. The collective coordinate parametrizes
coherent states, which do not have a definite R—charge and so may permit
a geometric interpretation of the position of the D-brane as the value of the
collective coordinate. With the correct choice for the coherent states, mixing
between different states of a definite R—charge would be taken into account and
so when diagonalizing the dilatation operator (for example) the mixing between
states with different choices of the values of the collective coordinate might
be suppressed. This computation would be, potentially, much simpler than a
direct computation utilizing operators with a definite R—charge. Of course, by

diagonalizing the dilatation operator for operators dual to giant graviton brane
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plus open string states, one would expect to recover the collective coordinates,
but this may only be possible after a complicated mixing problem in degenerate
perturbation theory is solved. Some of the details that have emerged from
our study do not support this semiclassical reasoning. Specifically, we find
that the brane states are given by restricted Schur polynomials and these do
not receive any corrections when the perturbation theory problem is solved,
so that there does not seem to be any need to solve a mixing problem which
constructs localized states from delocalized ones. Our large N eigenstates do
have a definite R—charge. The nontrivial perturbation theory problem involves
mixing between operators corresponding to the same giant graviton branes, but
with different open string words attached. Thus, it is an open string state
mixing problem, solved with a discrete Fourier transform, as it was for the
closed string. However, there is general agreement between the approaches:
the Fourier transform solves a collective coordinate problem which diagonalizes
momentum, rather than position.

For an interesting recent study of anomalous dimensions, at finite IV, using
a very different approach, see [75].

This chapter is organized as follows: In section we recall the relevant
facts about the restricted Schur polynomials. The action of the dilatation op-
erator on these restricted Schur polynomials is studied in section and the
eigenstates of the dilatation operator are constructed in section Section [2.6
provides the dual string theory interpretation of these eigenstates and perfect
agreement between the energies of the string theory states and the correspond-
ing eigenvalues of the dilatation operator is demonstrated. In sections and
we consider the problem of magnon scattering, both in the bulk and off
the boundary magnons. We have checked that the magnon scattering matrix
we compute is consistent with scattering results obtained in the weak coupling
limit of the theory. One important conclusion is that the spin chain is not
integrable. In section we review the double coset ansatz and describe the
dual string theory interpretation of these results. Our conclusions and some
discussion is given in section [2.10] Some technical details are collected in the

appendices
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2.3 Giants with open strings attached

In this section we will review the gauge theory description of the operators dual
to giant graviton branes with open string excitations. In this description, each
open string is described by a word with order v/N letters. Most of the letters
are the Z field. There are however M ~ O(1) impurities which are the magnons
of the spin chain. For simplicity we will usually take all of the impurities to be
a second complex matrix Y . This idea was first applied in [76] to reproduce the
spectrum of small fluctuations of giant gravitons [77]. The description was then
further developed in [78; [79; [80); 8T} [82]. The articles [80; 81} [82] in particular
developed this description to the point where interesting dynamical questionsﬂ
could be asked and answered. The open string words are then inserted into a
sea of Zs which make up the giant graviton brane(s). Concretely, the operators

we consider are
O(R, RY, RS {n;}1, {ni}Y2, -, {ni}x)

1 i in in+1 Intk—1 Intk
= ﬁ Z XR,RY,RE (U)Zi;(n T Zio(n) (Wk)ig(n+1) e (Wz)ia('rz+k—1) (Wl)ia(n+k)

’ 0ESnik

(2.7)

where the open string words are
W)y =(YZMYZzm—™mY ...y ZM "M y)h, (2.8)

We have used the notation {n;} in to describe the integers {ny,ng, -+ ,nas, }
which appear in the I'th open string word. This is a lattice notation, which lists
the number of Zs appearing to the left of each of the Y's, starting from the
second Y: the Zs form a lattice and the n; give a position in this lattice. This
notation is particularly convenient when we discuss the action of the dilata-
tion operator. We will also find an occupation notation useful. The occupa-
tion notation lists the number of Zs between consecutive Y's, and is indicated
by placing the n; in brackets. Thus, for example O(R, R}, R}, {n1,n2,n3}) =
O(R, R}, R}, {(n1), (n2 — n1), (n3 — n2)}). R is a Young diagram with n + k
boxes. A bound state of ps giant gravitons and p, dual giant gravitons is de-

scribed by a Young diagram R with p, rows, each containing order N boxes

1For example, one could consider the force exerted by the string on the giant
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and p, columns, each containing order N boxes. Xp gk gk (o) is a restricted

character [7] given by

XR,R¥ RE (o) = TrR,R’f,Rg (Cr(0)) (2.9)

RF is a Young diagram with n boxes, that is, it is a representation of S, .
The irreducible representation R of S, 1k is reducible if we restrict to the S,
subgroup. RF is one of the representations that arise upon restricting. In
general, any such representation will be subduced more than once. Above we
have used the subscripts 1 and 2 to indicate this. We have in mind a Gelfand-
Tsetlin like labeling to provide a systematic way to describe the possible R* we
might consider. In this labeling, we use the transformation of the representation
under the chain of subgroups Sp4r O Snyk—1 D Sn+k—2 O -+ DO S,. This is
achieved by labeling boxes in R. Dropping the boxes with labels < ¢, we obtain
the representation of S, j_; to which R* belongs. We have to spell out how
this chain of subgroups are embedded in S, . Think of S, as the group which
permutes objects labeled 1,2,3,--- ,q. Here we have ¢ = n + k and the objects
we have in mind are the Z fields or the open string words. We associate an
integer to an object by looking at the upper indices in ; as an example, the
open string described by Wy is object number n 4+ k — 1. To go from Sy,1x—;
to Sp4k—i—1 , we keep only the permutations that fix n + k —¢. We can put
the states in RY and Rf into a 1-to-1 correspondence. The trace Trge gl sums
the column index over RY and the row index over R5. If we associate the row
and column indices with the endpoints of the open string, we can associate the
endpoints of the open string I with the box labeled I in R¥ and R% . The
numbers appearing in the boxes of R¥ literally tell us where the k open strings
start and the numbers in R where the k open strings end. See Figure for

an example
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<=>
W

4 4
3 2

Figure 2.1: A cartoon illustrating the R, R¥, RY labeling for an example with
k = 4 open string strings and 3 giant gravitons. The shape of the strings
stretching between the giants is not realistic - only the locations of the end
points of the open strings is accurate. The giant gravitons are orbiting on the
circles shown; the radius shown for each orbit is accurate. They wrap an S°
which is transverse to the plane on which they orbit. The smaller the radius of
the giants orbit, the larger the S it wraps. The size of the S® that the giant
wraps is given by its momentum, which is equal to the number of boxes in the
column which corresponds to the giant. The numbers appearing in the boxes of
R{ tell us where the open strings start and the numbers appearing in the boxes

of R3 where they end.

of this labeling. Each Y in an open string word is a magnon. We will take the

number of magnons M; = O(1)VI. The er(j)

system of giants and the Zs appearing in W belong to the Ith open string. It
is clear that n ~ O(N).

with 1 < 7 < n belong to the

Each giant graviton is associated with a long column and each dual giant

graviton with a long row in the Young diagrams labeling the restricted Schur
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polynomial. Our notation for the Young diagrams is to list row lengths. Thus a
Young diagram that has two columns, one of length n; and the second of length
ng with ny < my is denoted (2"2,1™17"2), while a Young diagram with two rows,
one of length n; and one of length ny (n1 > n9) is denoted (n1,ng).

We want to use the results of [7; 8 [9] to study correlation functions of these
operators. The correlators are obtained by summing all contractions between
the Zs belonging to the giants, and by grouping the open string words in pairs
and summing only the planar diagrams between the fields in each pair of the
open string words. To justify the planar approximation for the open string
words we take n; > 0 and Zle n; < O(N). For a nice careful discussion of
related issues, see [83].

We can put these operators into correspondence with normalized states

O(R, R}, R5;{ni}1, {ni}a, - {ni}x) <> [R. RY, R5; {ni}1, {nite, -+, {nite)
(2.10)
by using the usual state-operator correspondence available for any conformal

field theory. In what follows we will mainly use the state language.

2.4 Action of the Dilatation Operator

The one loop dilatation operator, in the SU(2) sector, is [84} 85]

Do %y ([Y,Z] [ d d D (2.11)

82 dY’ dZ
Our goal in this section is to review the action of this dilatation operator on
the restricted Schur polynomials, which was constructed in general in [ [0].
When we act with D on O(R, R¥, RS {n;}1,{ni}2, -+ ,{ni}x) the derivative
with respect to Y will act on a Y belonging to a specific open string word.
Thus, in the large N limit we can decompose the action of D into a sum of
terms, with each individual term being the action on a specific open string. If
we act on a magnon belonging to the bulk of the open string word, then the only
contribution comes by acting with the derivative respect to Z on a field that
is immediately adjacent to the magnon. We act only on the adjacent Z fields

because to capture the large N limit we should use the planar approximation for
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the open string word contractions. To illustrate the action on a bulk magnon,
consider the operator corresponding to a single giant graviton with a single open
string attached. The giant has momentum n so that R is a single column with
n + 1 boxes: R = 1""1. Further, R} = RY = 1™. The open string has three
magnons and hence we can describe the |17 1% 17; {n;,no}). The action on

the bulk magnon at large N is

2 N
Dbulk magnon‘1n+1a 1n7 ln; {(n1)7 <n2)}> = gY817\T42 |:2|1n+17 1n’ 1n; {(n1)7 (nZ)}>

— 1L (g = 1), (2 + DY) = 17,1717 { (a4 1), (02— 1))
(2.12)

If we act on a magnon which occupies either the first or last position of the open

string word, we realize one of the four possibilities listed below.

1. The derivative with respect to Z acts on the Z adjacent to the Y | be-
longing to the open string and the coefficient of the product of derivatives
with respect to Y and Z replaces these fields in the same order. None of

the labels of the state change. This term has a coefficient of 1 8} [].

2. The derivative with respect to Z acts on the Z adjacent to the Y | belong-
ing to the open string word and the coeflicient of the product of derivatives
with respect to Y and Z replaces these fields in the opposite order. In this
case, a Z has moved out of the open string word and into its own slot in
the restricted Schur polynomial - a hop off interaction in the terminology
of [§]. In the process the Young diagrams labeling the excited giant gravi-
ton grows by a single box. If the string is attached to a giant graviton,
the column the endpoint of the relevant open string belongs to inherits
the extra box. If the string is attached to a dual giant graviton, the row
the endpoint of the relevant open string belongs to inherits the extra box.
The coefficient of this term is given by minus one times the square root
of the factor associated with the open string box divided by N [8; [9]. We
remind the reader that a box in row ¢ and column j is assigned the factor
N —i+j.

3. The derivative with respect to Z acts on a Z belonging to the giant and the

coefficient of the product of derivatives with respect to Y and Z replaces
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these fields in the opposite order. In this case, a Z has moved from its
own slot in the restricted Schur polynomial and onto the open string word
- a hop on interaction in the terminology of [§]. In the process the Young
diagrams labeling the giant graviton shrinks by a single box. The details
of which column/row shrinks is exactly parallel to the discussion in point 2
above. The coefficient of this term is given by minus one times the square

root of the factor associated with the open string box divided by N [8;[9].

4. The derivative with respect to Z acts on a Z belonging to the giant and
the coefficient of the product of derivatives with respect to Y and Z re-
places these fields in the same order. This is a kissing interaction in the
terminology of [§]. None of the labels of the state change. The coefficient
of this term is given by the factor associated with the open string box

divided by N [8; Q).

For the example we are considering the dilatation operator has the following

large N action on the magnons closest to the string endpoints

2
Dfirst magnon 1", 17,175 {(ma), (m2)}) = B[ (141 = L)1, 17,17 {(m), (n2)})

1= TR = 1), () — (17,1771 (4 D), (02))]
(2.13)

and

2 uN n
Dtast magnon| 1", 17, 17 {(ma), (n2)}) = DL | (141 = L)1, 17, 174 {(ma), (n2)})

- H(HW’ 1" 17 L(ng), (ng — 1)) — 17,1775 1775 { (1), (ng + 1)})>}
(2.14)

There are a few points worth noting: The complete action of the dilatation
operator can be read from the Young diagram labels of the operator. The factors
of the boxes in the Young diagram for the endpoints of a given open string
determine the action of the dilatation operator on that open string. When the
labels R} # RY | the string end points are on different giant gravitons and
the two endpoints are associated with different boxes in the Young diagram

so that the action of the dilatation operator on the two boundary magnons
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is distinct. To determine these endpoint interactions we must go beyond the
planar approximation. Notice that for a maximal giant graviton we have n = N.
In this case, most of the boundary magnon terms in the Hamiltonian vanish and
the boundary magnons are locked in place at the string endpoints. The giant
graviton brane is simply supplying a Dirichlet boundary condition for the open
string. For non-maximal giants, all of the boundary magnon terms are non-
zero and, for example, Z fields that belong to the open string can wander into
slots describing the giant. Alternatively, since the split between open string and
brane is probably not very sharp, we might think that the magnons can wander
from the string endpoints into the bulk of the open string. The coefficient of
these hopping terms is modified by the presence of the giant graviton, so that
the boundary magnons do not behave in the same way as the bulk magnons do.

As a final example, consider a dual giant graviton which carries momentum

n. In this case, R is a single row of n boxes and we have

Dt magnon| + 11,5 {02, (m2)}) = ZEE (11 2 ) s { (), ()
— m(m +2,n+1,n+1;{(n1 = 1),(n2)}) = In,n = 1,n = 1;{(n1 + 1), (n2)}))

(2.15)

In the Appendix [A] we discuss the action of the dilatation operator at two loops.

2.5 Large N Diagonalization: Asymptotic States

We are now ready to construct eigenstates of the dilatation operator. We will
not construct exact large IV eigenstates. Rather, we focus on states for which all
magnons are well separated. From these states we can still obtain the anomalous
dimensions. In section we will describe how one might use these asymptotic
states to construct exact eigenstates, following [12; [13]. In the absence of inte-
grability however, this can not be carried to completion and our states are best
thought of as very good approximate eigenstates.

The Zs in the open string word define a lattice on which the Y's hop. Our

construction entails taking a Fourier transform on this lattice. The boundary
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interactions allow Zs to move onto and out of the lattice, so the lattice size is

not fixed. To implement this idea, we introduce the phases
Go=e 7" (2.16)
with k; = 0,1,---,J — 1 as well as a cut off function whose form is shown in

figure The eigenstate with two magnons is then given by

n+J m
q)) = . Mo qmlfmg 1n+J+m1—m2+1’ 1n+J+m1—m2’ 1n+J+m1—m2; mo —my
1

m2:0 m1:0

my—my |{n+J4+mi—ma+1 n+J+mi— T my—ms.
qul 2|1n +mi—ma ,ln my m2’1n mi mz7{m2_m1}>

(2.17)

For a detailed discussion of the construction, we refer the reader to Appendix

[A]l At large N it is now simple to show that

Dls(ay)) = 2054 <1 [ Y ql_l)>
Nd <1+ [1_%] _H(QI +q1_1)> (2.18)

f(z)

J J4+8J =
Figure 2.2: The cutoff function used in constructing large N eigenstates

Since both magnons are boundary magnons, the above formula shows that

boundary magnons carry momentum and it characterizes their anomalous di-

— 41 —



CHAPTER 2. ANOMALOUS DIMENSIONS OF HEAVY OPERATORS FROM
MAGNON ENERGIES

mension. The analysis for the dual giant graviton of momentum n leads to

Dlw(a) =282 (14 [1+ 2] = 1+ o+ ™)) tan)
=22 (14 [14 3] - 1t ot a ) ) @)

For the generalizations to states with more magnons and further details, the
reader should consult Appendix[A] This completes our discussion of the large N
asymptotic eigenstates. We will now consider the dual string theory description

of these states.

2.6 String Theory Description

The string theory description of the gauge theory operators is most easily de-
veloped using the limit introduced by Maldacena and Hofman [22], in which
the spectrum on both sides of the correspondence simplifies. The limit con-
siders operators of large R charge J and scaling dimension A holding A — J
and the ’t Hooft coupling A fixed. Both sides of the correspondence enjoy an
SU(2]2) x SU(2|2) supersymmetry with novel central extensions as realized by
Beisert in [12; [13]. Once the central charge of the spin-chain/worldsheet excita-
tions have been determined, their spectrum and constraints on their two body
scattering are determined. A powerful conclusion argued for in [22] using the
physical picture developed in [48] is that there is a natural geometric interpre-
tation for these central charges in the classical string theory. This geometric
interpretation also proved useful in the analysis of maximal giant gravitons in
[21]. In this section we will argue that it is also applicable to the case of non-
maximal giant and dual giant gravitons.

Giant gravitons carry a dipole moment under the RR five form flux Fjy .
When they move through the spacetime, the Lorentz force like coupling to F5
causes them to expand in directions transverse to the direction in which they
move [85]. The giant graviton orbits on a circle inside the S° and wraps an
S3 transverse to this circle but also contained in the S® . Using the complex

coordinates x = x5 + izg, y = T3 + ir4 and z = 1 + iz, the S% is described by
|2 + |2* + ]y]* =1 (2.20)
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in units with the radius of the S® equal to 1. The giant is orbiting in the 1 — 2
plane on the circle |z] = r. The size to which the giant expands is determined
by canceling the force causing them to expand, due to the coupling to the Fj
flux, against the D3 brane tension, which causes them to shrink. Since the
coupling to the Fy flux depends on their velocity, the size of the giant graviton
is determined by its angular momentum n as [4} 5} [6]

n
2l + |y =

- (2.21)

Figure 2.3: The giant is orbiting on the smaller circle shown. Each red segment
is a magnon. The arrows in the figure simply indicate the orientation of the
central charge k; of the ith magnon. The LLM disk is shaded in this and
subsequent figures. This is done to distinguish the rim of the LLM disk from

the orbits of the giant gravitons.

Using (2.20)) we see that the giant graviton orbits on a circle of radius [86]

/ n
=/1—-—=x<1 2.22
r N< ( )

Consider now the worldsheet geometry for an open string attached to a giant
graviton. Following [22], we will describe this worldsheet solution using LLM
coordinates [50]. The worldsheet for this solution, in these coordinates, is shown
in Figure 2.3l The figure shows an open string with 6 magnons. Each magnon
corresponds to a directed line segment in the figure. The first and last magnons

connect to the giant which is orbiting on the smaller circle shown. Between the
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magnons we have a collection of O(\/]V ) Zs. These are pushed by a centrifugal
force to the circle |z| = 1 giving the string worldsheet the shape shown in the
figure

In the limit that the magnons are well separated, each magnon transforms
in a definite SU(2|2) representation. The open string itself transforms as the
tensor product of the individual magnon representations. The representation of
each individual magnon is specified by giving the values of the central charges k;
, kf appearing in (2.5)). Regarding the plane shown in Figure as the complex
plane, k is given by the complex number determined by the vector describing the
directed segment corresponding to the magnon. In particular, the magnitude of
k is given by the length of the line corresponding to the magnon. The energy
of the magnon, which transforms in a short representation, is determined by

supersymmetry to be[12} 13

1
E=/1+2)\k]2= 1+)\|k|2—§)\2|k|4+-~- (2.23)

~

-
<o

Figure 2.4: A bulk magnon subtending an angle ¢ has a length of 2sin 5.

For a magnon which subtends an angle 6 as shown in figure we find [22]
0 , .
E =1+ 4\sin? 5+ ON) =1+A2—-¢€"Y —e )+ 0. (2.24)

This is in perfect agreement with the field theory answer (A.12)) if we set A = g2
and

q= eiT = e‘ = — (225)
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Thus the angle that is subtended by the magnon is equal to its momentum,
which is the well known result obtained in [22]. Consider now the boundary

magnon, as shown in Figure [2.5] The circle on which the giant orbits has a

r= H (2.26)

The large circle has a radius of 1 in the units we are using. Thus, the length

radius given by

of the boundary magnon is given by the length of the diagonal of the isosceles
trapezium shown in Figure Consequently
0
E=1+XM(1~-7)?+4rsin? 5) +0(\?)
=1+ A1+ =7 +e7) 4+ 0(\?) (2.27)

% 2sin(0/2)
“ 1—r 1—r
2rsin(6/2)

Figure 2.5: A boundary magnon subtending an angle 6 has a length
\/(l—r)2+4rsinzg.
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N

Figure 2.6: A two strings attached to two giant gravitons state. To distinguish
the two strings, one of them has been indicated with dashed lines. Both giants
are submaximal and so are moving on circles with a radius |z| < 1. One of the
strings has only two boundary magnons. The second string has two boundary
magnons and three bulk magnons. Notice that each open string has a non-
vanishing central charge. It is only for the full state that the central charge
vanishes. See [I] for closely related observations.

This is again in complete agreement with after we set 0§ = # and
recall that r = \/q This is a convincing check of the boundary terms
in the dilatation operator and of our large N asymptotic eigenstates. In the
description of maximal giant gravitons, the boundary magnon always stretches
from the center of the disk to a point on the circumference of the circle |z| = 1.
Consequently, for the maximal giant the boundary magnon subtends an angle
of zero and it never has a non-zero momentum. For submaximal giants we see
that the boundary magnons do in general carry non-zero momentum. This is
completely expected: in the case of a maximal giant graviton, the boundary
magnons are locked in the first and last position of the open string lattice. As
we move away from the maximal giant graviton, the coefficients of the boundary
terms which allow the boundary magnons to hop in the lattice, increase from
zero, allowing the boundary magnons to move and hence, to carry a non-zero

momentum. In the Appendix [B] we have checked that the two loop answer in
the field theory agrees with the O(A\?) term of (2.23)).
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Notice that the vector sum of the directed lines segments vanishes. This is

nothing but -1 the statement that our operator vanishes unless q];[l =qi1q2 - Qp—1-

This condition ensures that although each magnon transforms in a representa-
tion of SU(2|2) with non-zero central charges, the complete state enjoys an
SU(2|2) symmetry that has no central extension. It is for this reason that
the central charges must sum to zero and hence that the vector sum of the
red segments must vanish. This is achieved in an interesting way for certain
multi-string states: each open string can transform under an SU(2|2) that has
a non-zero central charge and it is only for the full state of all open strings plus
giants that the central charge vanishes. An example of this for a two string
state is given in Figure [2.6]

To conclude this section, we will consider an example involving a dual giant

graviton. In this case, the giant graviton orbits on a circle [4} 5]

[ n
=4 /1+=>1 2.2
T + N (2.28)

2rsin(6/2)

2sin(6/2)

Figure 2.7: A boundary magnon subtending an angle has a length of
\/(7“ —1)2 +4rsin® £.

The length of the line segment corresponding to the boundary magnon is

again given by the length of the diagonal of an isosceles trapezium, as shown in
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Figure Consequently
E=1+X(1—-7r)?+4rsin? g) +0(\?)
=1+ A1+ =7 +e7) 4+ 0(\?) (2.29)

which is in perfect agreement with (2.19)) after we set 8 = # and r = /1+ .

2.7 From asymptotic states to exact eigenstates

The states we have written down above are asymptotic states in the sense that
we have implicitly assumed that all of the magnons are well separated. In this
case the excitations can be treated individually and the symmetry algebra acts
as a tensor product representation. However, the magnons can come close to-
gether and even swap positions. When they swap positions, we get different
asymptotic states that must be combined to obtain the exact eigenstate. The
asymptotic states must be combined in a way that is compatible with the alge-
bra, as explained in [I2]. This requirement ultimately implies a unique way to
complete the asymptotic states to obtain the exact eigenstate.

When two bulk magnons swap positions, the corresponding asymptotic states
are combined using the two particle S—matrix. The relevant two particle
S—matrix has been determined in [12} [13]. It is also possible for a bulk magnon
to reflect /scatter off a boundary magnon. For maximal giant gravitons [21], the
reflection from the boundary preserves the fact that the boundary magnon has
zero momentum and it reverses the sign of the momentum of the bulk magnon.
In this section we would like to investigate the scattering of a bulk magnon off
a boundary magnon for a non-maximal giant graviton.

We must require that the total central charge k of the state vanishes. Thus,
after the scattering the directed line segments must still sum to zero. Further
the central charge C of the state must remain unchanged. Taken together, these
conditions uniquely fix the momentum of both bulk and boundary magnon after
the scattering.

In Figure the process of scattering a bulk magnon off the boundary
magnon is shown. After the scattering the magnons that have a different mo-

mentum, corresponding to line
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O-C

Figure 2.8: A bulk magnon scatters with a boundary magnon. In the process

the direction of the momentum of the bulk magnon is reversed.

segments that have changed and these are shown in green. In this case the
giant graviton is close enough to a maximal giant that the momentum of the
boundary magnon is reversed, so this is a reflection-like scattering. Before and
after the scattering the line segments line up to form a closed circuit, so that the
central charge k of the state before and after scattering is zero. To analyze the
constraint arising from fixing the central charge C, we parametrize the problem

as shown in figure 9. There is a single parameter which is fixed by requiring

\/1+8/\sin2<'022+\/1+8/\ ([1+r]2+4r2sin2 %)

6 6
,H+8Am92+\ﬁ+8A(D+rP+4ﬂ$¥(wl+?ﬁ>) (2.30)

which is the condition that the state has the correct central charge C. In the

b
r:wl—ﬁf (2.31)

The equation (2.30)) has two solutions, one of which is negative § = —ps and

above formula we have

describes the state before the scattering. We need to choose the solution for
which 6 # —p. Notice that for by = N this condition implies that § = ¢, which
is indeed the correct answer [21]. In this case, the bulk magnon reflects off the

boundary with a reverse in the direction of its momentum but no change in its
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magnitude. The momentum of the bulk magnon remains zero. When by = 0 the
momenta of the two magnons is exchanged which is again the correct answer
[12; 13]. When 0 < by < N we find the solution to for the momentum
of the bulk magnon interpolates between reflection like scattering (when the
momentum of the magnon is reversed) and magnon like scattering (when the
momenta of the two magnons are exchanged). In this case though, in general,
the magnitude of the momenta of the bulk and the boundary magnons are not
preserved by the scattering - the scattering is inelastic. Finally, the scattering
of a bulk magnon from a boundary magnon attached to a dual giant graviton
is always magnon like scattering. i.e. neither of the momenta change direction.

The fact that the scattering between boundary and bulk magnons is not
elastic has far reaching consequences. First, the system will not be integrable.
In the case of purely elastic scattering for all magnon scatterings, the number of
asymtotic states that must be combined to construct the exact energy eigenstate

is roughly (M — 1)! for M magnons.

/ g@l

Figure 2.9: A bulk magnon scatters with a boundary magnon. In the process
the direction of the momentum of the bulk magnon is reversed. Before the
scattering the boundary magnon subtends an angle ¢, and the bulk magnon
subtends an angle @9 . After the scattering the boundary magnon subtends an

angle 1 + @2 + 6 and the bulk magnon subtends an angle —6.
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This is the number of ways of arranging the magnons (distinguished by their
momentum) up to cyclicity. There are M magnon momenta appearing and these
momenta are the same for all the asymptotic states. The exact eigenstates can
then be constructed using a coordinate space Bethe ansatz. For the case of
inelastic scattering, the momenta appearing depend on the specific asymptotic
state one considers and there are many more than (M — 1)! asymptotic states
that must be combined to construct the exact eigenstate. In this case construct-
ing the exact eigenstates from the asymptotic states appears to be a formidable

problem.

2.8 S—matrix and boundary reflection matrix

We have a good understanding of the symmetries of the theory and the repre-
sentations under which the states transform. Following Beisert [12} [I3], this is
all that is needed to obtain the magnon scattering matrix. In this section we
will carry out this analysis.
Each magnon transforms under a centrally extended representation of the
su(2|2) algebra
k.

(@@ =y, {555} = cape”

2i
2

*
b

(2.32)

{S2,Q)} = 63 L8 + 65 R, + 6385C; (2.33)

There are also the usual commutators for the bosonic su(2) generators. There
are three central charges k;, kf, C; for each SU(2|2) factor. Following [2I] we
set the central charges of the two copies to be equal. It is useful to review how
the bosonic part of the SU(2|2)? symmetry acts in the gauge theory. N = 4
super Yang-Mills theory has 6 hermitian adjoint scalars ¢* that transform as a

vector of SO(6). We have combined them into the complex fields as follows
X:¢1+i¢2a X:¢17i¢27
Y:¢3+i¢4a X:¢3_i¢47
X =¢* +i¢%, X =¢° —i¢h. (2.34)
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The bosonic subgroup of SU(2[2)? is SU(2) x SU(2) = SO(4) that rotates
oL, &2, #3, ¢* as a vector. In terms of complex fields, Y, X and Y, X transform
under the different SU(2[2) groups. Z, Z do not transform. To specify the
representation that each magnon transforms in, following [12} [13] we specify

parameters ag, bg, ci, dp for each magnon, where

Qg|¢b> =a+ k63|¢a>7 Qg|¢ﬁ> = bk€aﬁ6ab|¢b>a

S2|e") = creape™W?,)  SLWP) = didl o),

for the kth magnon. We are using the non-local notation of [13]. Using the

representation introduced above
Q1Q3]¢%) = arQ1[¥?) = brare?e1n|d?,)  Q3Q1|07) =0, (2.35)

so that kr = 2axbr. An identical argument using the S¢ supercharges gives
ki = 2cpd. Consider next a state with a total of K magnons. If we are to
obtain a representation without central extension, we must require that the

central charges vanish

E ok K
k
325 = 2w =0,
k=1 k=1
L
k=1 k=1

To obtain a formula for the central charge C' consider

Qgsg\¢0> = cng‘ebcemhﬁ} = ckbkebceg,yeayead|¢d.> (2.37)
Now set a = b and = and sum over both indices to obtain
Qg 5a]9°) = 2bkck|d°) (2.38)

Very similar manipulations show that
SaQe16%) = 2axdy|¢°) (2.39)
so that we learn the value of the central charge Cj

{Qg7 Sg}‘¢c> = 4C‘¢c> = Q(dek + bkck)|¢c>, = Ck = %(akdk + bkck).
(2.40)
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Using
{82,Q1} =Ly Lyv?) =[v") (2.41)

we easily find

{53,Q1}v?) = (ardi — brey)|[¥') = apdi — bcy = 1. (2.42)
This is also the condition to get an atypical representation of su(2|2) [13].
Following [12], a useful parametrization for the parameters of the represen-
tation is given by

+
ap = \/gnkv bk) = \n/ffk <1 - xk) ) (243)

L,

Ck

_ Ve, Ve (1-2). (2.44)

= ¥
frad Nk )

The parameters xf are set by the momentum pj of the magnon
+
L 27py T
et = 2k (2.45)
Tk,

The parameter fj is a pure phase, given by the product Hj e'Pi | where j runs
over all magnons to the left of the magnon considered. To ensure unitarity
Ing|? = i(x, — x;). The condition apdy — brcy = 1 to get an atypical represen-

tation implies that

1 _ 1 {
A+ - = (2.40)
k k

This equation will be very useful in verifying some of the S—matrix formulas
given below. A useful parametrization for the parameters specifying the repre-
sentation for a boundary magnon is given by

+
ap = \/§77k7 bk \/gfk <1 — Txk> ; (247)

Nk xy,

cr = L dy, = \/§xk <1 - rx’“> . (2.48)

3 k
Jraf iy i
where r = /1 — & is the radius of the path on which the giant graviton of

momentum n orbitﬁ and the parameters xf are again set by the momentum

2For an open string attached to a dual giant graviton, we would have r = ,/1 + ~ Where

n is the momentum of the dual giant graviton.
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carried by the boundary magnon according to . For the boundary magnon,
fr is again a phase as described above and now |n|?> = i(rz; — z;). For a
maximal giant graviton r = 0 and the boundary magnon carries no momentum
and |nx|? = 1932' For the boundary magnon, the condition ardy — brcr, = 1 to
get an atypical representation implies that

xl*+mlljm,;g;g. (2.49)
This equation will again be useful below. Equation interpolates between
for r = 1, which is the correct condition for a bulk magnon and the

condition obtained for r = 0
" 1

which was used in [2]I] for the boundary magnon attached to a maximal giant
graviton.

Following [12} T3] one can check that the above parametrization obeys .
Finally,

apbperdy, = g*(e7 P — 1)(eP* — 1) = 4g? sin? p?k

1 1
= [(ardk + brc)® — (andy — becy)?] = 1 [(2C)? —1]  (2.51)
so that
_ 1 2 gin2 Pk
Cp,==+ 1 + 4¢2 sin 5 (2.52)

The components of an energy eigenstate in different asymptotic regions are re-
lated by the bulk-bulk and boundary-bulk magnon scattering matrices .S and R.
S and R must commute with the s1(2|2) group. The labels of the representa-
tions of individual magnons can change under the scattering but they must do
so in a way that preserves the central charges of the total state. In the picture
of the energy eigenstates provided by the LLM plane, the central charges are
given by the directed line segments (which are vectors and hence can also be
viewed as complex numbers), one for each magnon. The fact that these line
segments close into polygons is the statement that the central charges k& and
k* of our total state vanishes. The sum of the lengths squared of these line

segments determines the central charge C. By scattering these segments can
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rearrange themselves as long as the sums ), m with [; the length of
segment ¢ is preserved and so long as they still form a closed polygon
Implementing the consequences of invariance under SU(22)? is exactly par-
allel to the analysis of [12; 13} 2I]. For the S—matrix describing the scattering of
two bulk magnons, the reader is referred to [12}[13]. When considering the equa-
tions for the reflection/scattering matrix describing the reflection/scattering of
a bulk magnon from a boundary magnon, we need to pay attention to the fact
that the central charges of the representation are no longer swapped between the
two magnons. Rather, the central charges after the reflection are determined
by solving . Denote the central charge of the boundary magnon before
the reflection by pp. Denote the central charge of the bulk magnon before the
reflection by p,. Denote the central charge of the boundary magnon after the
reflection by kp. Denote the central charge of the bulk magnon after the reflec-
tion by k. Denote the reflection/scattering matrix by R. Since the S—matrix
has to commute with the bosonic su(2) generators Schurs Lemma implies that
it must be proportional to the identity in each given irreducible representation

of su(2). This immediately implies that
a b b AR a a
R, dh,) = A{E’¢,{€‘;¢k{> + Bg‘@fm@ + 5Ol eap 1/;k3¢,fb> (2.53)
a a b a b 1 a «
R|¢PB Zb> :D{z’¢i3wki>+Eg’w£Bw}i>+§F1R2€ bﬁaﬂ ¢k3¢gb> (2.54)
a b a
R, 00,) = GR|vl, 00 ) + HE3|of, 7, ) (2.55)

RIvg, 0h,) = Ki3|wis, o) ) + Lib|of, v5,) (2.56)

The analysis now proceeds as in [12} [13]. Demanding the S—matrix commutes
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with the supercharges implies

A SO mnee el (2] —a] )((z2 —ray ) (rayt —al )zl +(wy —rad)(ah Tzl;r)m;r)
12 —

77177212 x; (a: 7zl+)(z;r7:v1+)(azf(r12+7:62 )tz (rngz;r))

A1+
/(1 !’

—x3 ) (e} @l —raital") Bz

)

Bi
By = ay " (a7 - af)(2y — 2} )aialt — afad)
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7"1'2 — 1'2
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where
+ +
X : X .
L= e (2.58)
Ly Lo
+ +
L — ¢tk 2 — giks (2.59)
xll le

Figure 2.10: A bulk magnon scatters with a boundary magnon. The sum of the
momenta of the two magnons is . Here we only show two of the magnons; we
indicate them in red before the scattering and in green after the scattering. In

the process the direction of the momentum both magnons is reversed.

Thus, the S—matrix is determined up to an overall phase. Here we have simply
chosen Df, = —S9, which specifies the overall phase. This overall phase is
constrained by crossing symmetry [87]. It is simple to verify that this R matrix
is unitary for any value of r and any momenta, and further that it reproduces
the bulk S—matrix for » = 1 and the reflection matrix for scattering from a
maximal giant graviton for » = 0. In performing this check we compared to
the expressions in [88]. To provide a further check of these expressions, we have
considered the case that the boundary and the bulk magnons have momenta that
sum to 7, as shown in figure[2.10] In this situation it is very simple to compute
the final momenta of the two magnons - the final momenta are minus the initial
momenta. In Appendix [E| we have computed the value of % (1 + i—%) at one
loop. We find this agrees perfectly with the answer obtained from . To
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* in terms of p by solving z+ = 2™

perform this check, one needs to express x
and (2.49)) for the boundary magnon or ([2.46)) for the bulk magnon. Doing this

we find

— 2 1 . Db 2
xT =e'2 <Qgsin’2’ + 2gsin 2> + O(g7) (2.60)

for a bulk magnon and

b ipg, i TET L
xT = g(r_eip)-i-zge (r—e )r+eip

o) (261)
for a boundary magnon. Inserting these expansions into and keeping only
the leading order (which is ¢ ) at small g, we reproduce for any allowed
value of 7.

It is a simple matter to verify that the boundary Yang-Baxter equation is not
satisfied by this reflection matrix, indicating that the system is not integrable.
This conclusion follows immediately upon verifying that changing the order in
which the bulk magnons scatter with the boundary magnon leads to final states
in which the magnons have different momenta. Consequently, the integrability
is lost precisely because the scattering of the boundary and bulk magnons, for

boundary magnons attached to a non-maximal giant graviton, is inelastic.

2.9 Links to the Double Coset Ansatz and Open
Spring Theory

There is an interesting limiting case that we can consider, obtained by taking
each open string word to simply be a single Y | i.e. each open string is a sin-
gle magnon. In this case one must use the correlators computed in [I0; [1T]
as opposed to the correlators computed in [7]. The case with distinguishable
open strings is much simpler since when the correlators are computed, only con-
tractions between corresponding open strings contribute; when the open strings
are identical, it is possible to contract any two of them. In this case one must
consider operators that treat these “open strings” symmetrically, leading to the
operators constructed in [I0]. In a specific limit, the action of the dilatation
operator factors into an action on the Zs and an action on the Ys [15} [16]. The

action on the Y's can be diagonalized by Fourier transforming to a double coset
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which describes how the magnons are attached to the giant gravitons [16} [20].
For an operator labeled by a Young diagram R with p long rows or columns,
the action on the Zs then reduces to the motion of p particles along the real
line with their coordinates given by the lengths of the Young diagram R, inter-
acting through quadratic pair-wise interaction potentials [I7]. For interesting
related work see [89]. Our goal in this section is to explain the string theory
interpretation of these results.

The conclusion of [I6} 20] is that eigenstates of the dilatation operator given
by operators corresponding to Young diagrams R that have p long rows or
columns can be labeled by a graph with p vertices and directed edges. The
number of directed edges matches the number of magnons Y used to construct
the operator. These graphs have a natural interpretation in terms of the Gauss
Law expected from the worldvolume theory of the giant graviton branes [63)].
Since the giant graviton has a compact world volume, the Gauss Law implies
the total charge on the giants world volume vanishes. Each string end point is
charged, so this is a constraint on the possible open string configurations: the
number of strings emanating from the giant must equal the number of strings
terminating on the giant. Thus, the graphs labeling the operators are simply
enumerating the states consistent with the Gauss Law. To stress this connection
we use the language “Gauss graphs” for the labels, we refer to the vertices of
the graph as branes since each one is a giant graviton brane and we identify the
directed edges as strings since each is a magnon. The action of the dilatation
operator is nicely summarized by the Gauss graph labeling the operator. Count
the number n;; of strings (of either orientation) stretching between branes ¢ and
j in the Gauss graph. The action of the dilatation operator on the Gauss graph

operator is then given by

2
9y m
DOp,(0) = =34 Znij(amijom(a). (2.62)
1<
The operator A;; is defined in Appendix For a proof of this, see [16} 20]. To
obtain anomalous dimensions one needs to solve an eigenproblem on the R, r
labels, which has been accomplished in [I7] in complete generality.

For three open strings stretched between three giant gravitons we have to
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solve the following eigenvalue problem

2
98};\2/[ [(QN — 1 — 2 +3)0(c1,¢0,¢3) — V(N —c1 +1)(N — 2 +1)O(c1 +1,¢0 — 1, ¢3)

\/( —Cl _C2+2)O(Cl —1,02+1,C3):|

2
98);']\24 |: N — Cy — C3 +5)O(61,CQ,63) — \/(N — C2 + 1)(N — C3 + 1)0(01,62 — 1,03 + 1)

(2
— V(N =2+ 2)(N — 3+ 2)O(c1,c0 +1,¢5 — 1)]
(2

87r1\2/1 [ N —¢; —c3+4)0(c1,c0,¢3) — /(N —e34+2)(N — 1 + 1)O(cp +1,¢2,¢5 — 1)

\/ —c3+ 3)( —c1)O(cl—1,02,63+1)}

=70(c1, ¢z, c3) (2.63)

where c1, co and c3 are the lengths of the columns = momenta of the three
giant gravitons and -~y is the anomalous dimension. At large IV, approximating
for example O(cq, ¢a,¢3) = O(c1 4+ 1, ¢2, ¢3 — 1) which amounts to ignoring back

reaction on the giant gravitons, we have

2 2 2 2
gYMN C1 C2 gYMN C2 C3
872 {\/lN\/lN} Olew, ez c8) + =g [\/lN -] O es)

2 2
gy m N C3 C1
2 [\/1 N \/1 - N} O(c1, c2,¢3) = vO0(cq, ca, c3). (2.64)

The Gauss graph associated with this operator has a string stretching between
the brane of momentum c¢; and the brane of momentum c3 , a string stretching
between the brane of momentum ¢; and the brane of momentum ¢y and a string
stretching between the brane of momentum c; and the brane of momentum cs.

On the string theory side, since our magnons don’t carry any momentum, we
have three giants moving in the plane with magnons stretched radially between
them. Identifying the central charges, we find they are radial vectors with length
equal to the distance between the giants. With these central charges we can

write down the energy

E =142\ —712)2 + V14 2X(r1 —r3)2 + /1 +2\(r3 —12)2. (2.65)

Using the usual translation between the momentum of the giant graviton and

the radius of the circle it moves on

17% i=1,2,3 (2.66)
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we find that the order A\ term in the expansion of precisely matches the
gauge theory result .

If we don’t ignore back reaction on the giant graviton, we find that
leads to a harmonic oscillator eigenvalue problem. In this case, we are keeping
track of the Zs slipping past a magnon, from one giant onto the next. In this
way, one of the giants will grow and one will shrink thereby changing the radius
of their orbits and hence the length of the magnon stretched between them. In
this process we would expect the energy to vary continuously, which is exactly
what we see at large N . A specific harmonic oscillator state (see [17] for details)
corresponds to two giant gravitons executing a periodic motion. In one period,
the giants first come towards each other and then move away from each other
again. Exciting these oscillators to any finite level, we find an energy that is of
order the 't Hooft coupling divided by N . These very small energies translate
into motions with a huge period.

There is an important point worth noting. The harmonic oscillator problem
that arises from is obtained by expanding assuming that c¢; — co is
order v'N and c1, cg are of order N. The oscillator Hamiltonian then arises as a
consequence of (and depends sensitively on) the order 1 shifts in the coefficients
of the terms in . Thus to really trust the oscillator Hamiltonian we find
we must be sure that is accurate enough that we can expand it and the

order 1 term we obtain is accurate. This is indeed the case, as we discuss in

Appendix

2.10 Summary of chapter

To summarize this chapter we have used the description of the action of the
dilatation operator derived using an approach which relies heavily on group
representation theory techniques, to study the anomalous dimensions of opera-
tors with a bare dimension that grows as N , as the large N limit is taken. For
these operators, even just to capture the leading large N limit, we are forced
to sum much more than just the planar diagrams and this is precisely what the
representation theoretic approach manages to do. We have demonstrated an

exact agreement with results coming from the dual gravity description, which
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is convincing evidence in support of this approach. It gives definite correct re-
sults in a systematic large N expansion, demonstrating that the representation
theoretic methods provide a useful language and calculational framework with
which to tackle the kinds of large N but non-planar limits we have studied in
this chapter. Of course, we have mainly investigated the leading large N limit
and the computation of % corrections is an interesting problem that we hope
to return to in the future.

The progress that was made in understanding the planar limit of NV = 4
super Yang- Mills theory is impressive (see [47] for a comprehensive review).
Of course, much of the progress is thanks to integrability. There are however
results that do not rely on integrability, only on the symmetries of the theory.
In our study we clearly have a genuine extension of methods (giant magnons,
the SU(2|2) scattering matrix) that worked in the planar limit, into the large
N but non-planar setting. Further, even though integrability does not persist,
it is present when the radius r of the circle on which the graviton moves is
r = 0 (maximal giant graviton) or r = 1 (point-like giant graviton). If we
perturb about these two values of r, we are departing from integrability in a
controlled way and hence we might still be able to exploit integrability. For more
general values of r, we have managed to find asymptotic eigenstates in which the
magnons are well separated and we expect these to be very good approximate
eigenstates. Indeed, anomalous dimensions computed using these asymptotic
eigenstates exactly agree with the dual string theory energies. Without the
power of integrability it does not seem to be easy to patch together asymptotic
states to obtain exact eigenstates.

We have a clearer understanding of the non-planar integrability discovered
in [64% [14% 155 [16; 205 [17). The magnons in these systems remain separated and
hence free, so they are actually non-interacting. One of the giants would need to
lose all of its momentum before any two magnons would scatter. It is satisfying
that the gauge theory methods based on group representation theory are pow-
erful enough to detect this integrability directly in the field theory. The results
we have found here give the all loops prediction for the anomalous dimensions
of these operators. In the limit when we consider a very large number of fields

there would seem to be many more circumstances in which one could construct
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operators that are ultimately dual to free systems. This is an interesting av-
enue that deserves careful study, since these simple free systems may provide
convenient starting points, to which interactions may be added systematically.

A possible instability associated to open strings attached to giants has been
pointed out in [80]. In this case it seems that the spectrum of the spin chain
becomes continuous, the ground state is no longer BPS and supersymmetry is
broken. The transition that removes the BPS state is simply that the gap from
the ground state to the continuum closes. Of course, the spectrum of energies is
discrete but this is only evident at subleading orders in 1/N when one accounts
for the back reaction of the giant graviton-branes. The question of whether
these BPS states with given quantum numbers exist or not has been linked to
a walls of stability type description [90] in [I]. It would be interesting to see if

these issues can be understood using the methods of this chapter.
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Chapter 3

Interacting double coset

magnons

3.1 Outline of chapter

In this chapter we consider the anomalous dimensions of restricted Schur poly-
nomials constructed using n ~ O(N) complex adjoint scalars Z and m complex
adjoint scalars Y. We fix m < n so that our operators are almost half BPS. At
leading order in ”* this system corresponds to a dilute gas of m free magnons.
Adding the first correction of order 7* to the anomalous dimension, which arises
at two loops, we find nonzero magnon interactions. The form of this new op-
erator mixing is studied in detail [91] for a system of two giant gravitons with
four strings attached. The work discussed in this chapter was reported in Phys.

Rev. D 93, 0650057 (2016).

3.2 Chapter introduction

The original instance of the AdS/CFT correspondence [92] provides a defini-
tion for a class of quantum type IIB string theories: those that are embedded
in spacetimes which are asymptotically AdS5 x S® with background five form

flux. The definition for this class of string theories is in terms of the highly
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symmetric superconformal four dimensional A/ = 4 super Yang-Mills theory
with gauge group U(N). The correspondence claims a one-to-one and onto
mapping between states of the quantum gravity and quantum operators of the
gauge theory. Consequently, the mapping will identify all the objects known to
string theory, perturbative and nonperturbative, with operators in N' = 4 su-
per Yang-Mills theory. Apart from the perturbative spectrum of closed strings,
there are D-branes and their open string excitations, as well as other spacetime
geometries, living in the gauge theory. An interesting class of D-branes are the
giant graviton branes [4; [B; [6]. We now have a good idea of how to describe the
operators that correspond to certain examples of these branes. The examples
we have in mind are almost 2—Bogomol'nyi-Prasad-Sommerfield (BPS) giant
gravitons. The dual operators are built from two complex scalar fields Z and Y
of the A/ = 4 super Yang-Mills theory. We need to use order N fields, so that
these operators have a large dimension in the large N limit. For operators with
such a large classical dimension the usual large N techniques, i.e. an expansion
organized by genus of contributing ribbon graphs, is not possible [51]. New
techniques to study the large IV limit have been developed. For the free theory,
bases of operators that diagonalize the two point function to all orders in 1/N
have been identified [3; 52 53; 54 55 56} 57 6Tk [7; [10; O3]. Techniques to study
the anomalous dimension of these operators have also been developed, first for
descriptions in which the giant graviton plus open string system is treated using
words in the gauge theory to represent the open string [63} 8} @} [76} [79; [80; [82)
and second for descriptions which treat all fields in the operator democratically
[15; 16} 205 [I7]. Our operators are built using n ~ O(N) Zs and m Y's with
n > m, which implies that we are close to the %—BPS giant graviton and that

we have a new small parameter

in the game. The condition that n > m
is crucial for our approximations which is not too surprising: a systematically
small deformation of a BPS operator will be simpler than the generic operator.
Part of the motivation for this chapter is to consider the first order correction in
a systematic  expansion. In both the open string description and in the more
democratic description, there is a close connection [94] between the dynamics of

the Y fields and the LLM plane [50] description of giant magnon dynamics in the

dual string theory [2T} 48} 22]. In this study we are interested in the anomalous
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dimensions of gauge theory operators corresponding to restricted Schur poly-
nomials that treat the fields democratically. This corresponds to a dilute gas
of magnons. The spectrum of anomalous dimensions has been computed to all
loops at large N and to leading order in the small parameter 7 [94; [19]. This
all loop answer is possible thanks to supersymmetry [I2]. The result agrees with
explicit one loop computations in [16; 20], two loop computations in [18] and
even three loop computations performed in [95] using a collective coordinate
[Tt [72% (74 [1] approach. The result has an interesting structure which is worth
understanding to appreciate the results we report here. The operators we study
are labeled by irreducible representations of the symmetric group S,, that is,
by Young diagrams with n boxes. To specify the Young diagram we can write a
list of row lengths. The row lengths must sum to n, so that the Young diagram
is determined by some partition of n. Denoting the Young diagram by r the
notation “r F n” says “r is a partition of n”. The operator we are interested in

is defined by

1
Xa(ro)as(ZY) = —— Y XR(ra)es(0) Te(@Z®" @ YO™). (3.1)

0ESntm
The labels R - n+ m, r - n, s = m label irreducible representations of S;, 4,
Sp and S, respectively. (r,s) labels a representation of the subgroup S,, x Sy,.
The above polynomial is only nonzero if (r, s) arises from R after restricting to
the S, X S, subgroup. Since it may arise more than once, we need multiplicity
labels (denoted o and 8 above) to keep track of the copy we are considering.
One way to ensure that (r, s) arises after restricting to the subgroup is to realize
r by removing m boxes from Young diagram R. These removed boxes are then
reassembled to give s. Use m; to count the number of boxes that must be
removed from row i of R to get r. Assemble the m; to produce the vector
m. The vector ni is conserved to leading order in 7. In this thesis we will
study the first subleading corrections in “* to the anomalous dimension. This
explores the first contributions which induce magnon interactions for the dilute
magnon gas. If we are ever to understand the non- perturbative sectors of
string theory using the gauge theory/ gravity correspondence, it seems that we
must move beyond small deformations of %—BPS operators. One way to do

this is to construct a good understanding of this system, beyond the leading
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order in % . This is a key motivation for this chapter. There are already

corrections of order 7 to the one loop anomalous dimension. These corrections
do not lead to new operator mixing they only correct the anomalous dimension.
The first nontrivial corrections appear at two loops. Consequently, in Sec. [33]
we review the structure of the two loop dilatation operator. It is useful to
rewrite the action of the two loop dilatation operator in a basis, the Gauss graph
basis, that diagonalizes the leading order. In this way it will become apparent
that the subleading correction induces new operator mixing. In the process of
transforming to the Gauss graph basis we encounter new types of traces that
have not been computed before. In Appendix [[| we develop techniques powerful
enough to evaluate the most general trace we could encounter, which is much
more general than the traces that appear at two loops. These results will be
useful in further studies of the dynamics of Gauss graph operators. To illustrate
our results, in Sec. we consider a state of two giant gravitons with four
strings attached. Our results show a number of interesting features. Operators
labeled by different Gauss graphs start to mix implying that we do indeed
have an interacting system of magnons. As a consequence of these interactions,
the vector 1 is no longer conserved and operators with different 11 labels mix.
Finally, at the leading order in 7 and at large N, the all loop dilatation operator
factorizes into an action on the Y's times an action on the Zs. Although this
factorization was only exhibited at one loop in [I6] and at two loops in [I8], the
arguments of [19] as well as the form of the all loop anomalous dimension [12]
implies that this factorization holds to all loops; see [94] for further discussion.
The subleading term that we have evaluated does not factorize into an action on
the Y's times an action on the Zs. This proves that the action of the dilatation
operator only factorizes into an action on the Y's times an action on the Zs at
the leading order in a systematic “* expansion. In Sec. we discuss these
results and suggest a number of interesting directions in which the present study

can be extended.
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3.3 The two loop dilatation operator

The complete two loop dilatation operator in the su(2) sector is given by [85]

Dy =D + DY + DY (3.2)
where
1) _ _9.2. i i i
@ _ o2, o190 9 .
o= e[ 2] [[2. 2] ).
D = —2¢2 . Tx ([[V, Z), T U (3.3)
T ) AN
and )
_ 9y m
- 1672 (34)

)

The sum over a in Df is easily performed with the help of the identity

Te(T*ATB) = Tr(A) Tr(B). (3.5)

which follows from the completeness of the T € u(N). The size of these three
terms is easily estimated as follows: Dfll) has two derivatives with respect to Z
which act on n Z fields and one with respect to Y which acts on m Y fields.

The size of this term is thus ~ n?m. Similarly, we estimate that D) ~ nm?

and D® ~ Nnm ~ n?m. Thus, the leading order comes from D{" and D{*),
. . . 2
while the first correction to the leading term comes from D;™. In Sec. 3.3.1 we
will review the results for the action of DS) and D®). In the process we will
introduce the basis of operators, the Gauss graph operators, that diagonalizes
the action of the leading dilatation operator. Following this, we study the action
of Df) in Sec. To transform this action to the Gauss graph basis requires
that we develop new techniques to evaluate certain traces that appear. These

)

techniques are developed in Appendix [I| and the action of Df in the Gauss

graph basis is discussed in Sec. [3:3.2]

3.3.1 Leading contribution
Acting on a restricted Schur polynomial, the action of Dé(ll) is
(1) _ 2 (a) (b)
D4 XR,(r,s)ap = 9 Z(LT,(t,u)ul/;R,(r,s)'ﬂ? + LT,(t,u)ul/;1':i,(7',s)w§)XT,(75”1/«)’)“S (36)
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where
(a) drn(n —1)m
Lo = 2 G (1 ) m =y crrerm [ Tlrge (2,m+2,m + 1)

RIT

X Pg (rs)apl(l,m+2) = (L,m + 1)[(2,m + 2)Ig7n (2, m + 2)

X Pr t.uys4(2,m+2)[(m+1,2,1) = (2,m + 1,1)])

+ Tr (IT//RN 2,m+2)[(1,m+1) — (m+2,m+1)|Pg (rs)ap(l,m +2,2)Irugr
x ((L,m +1)(2,m + 2) Pp (4 u)5v(2,m + 2)(2,m + 1)

- (m+ 1527m+Q)PT,(t,u)é'y(zam+2)(271)))] (37)
and
(b) dTn n — 1
LT L(tu)pvR,(r,8)yd Z dtd dR’ n+ )CR,R’ [Tr(IT’R/[(lv m+ 2, m+ 1)PR,(r,s)ozﬁ

- (m + 27 m+ 1)PR,(T,s)o¢ﬂ(la m+ 1)]IR'T'
X [(17 m + 1)PT,(t,u)5'y - PT,(t,u)S'y(L m+ 1)])
+ Tr (IT’R/[(L m+1,m+ 2)PR,(r,s)a6 — (m +2,m+ 1)PR,(r,s)aﬁ(]—v m + 2)]

X Trep [(1,m+ 1) Pr suysy — Prowysy(L,m+1)])] (3.8)

In the above expression the traces run over the direct sum of the carrier spaces
R @& T. The Young diagrams R and 7" both label irreducible representations
of S,4+m. Primes denote Young diagrams obtained by dropping boxes, with
one box dropped for each prime. Thus, for example, 7" is an irreducible rep-
resentation of S),.,,—2, obtained by dropping two boxes from 7. The factors
It/ g and Ity are intertwining maps mapping from the carrier space T to
R’ and from T” to R” respectively. cgrpr is the factor of the box that must
be dropped from R to get R’. We use a little letter to denote dimensions of
irreducible representations of the symmetric group so that, for example, dgr
is the dimension of the symmetric group representation labeled by Young di-
agram R. Finally, Pg (;as denotes the intertwining maps which correctly
restrict the trace in R to the subspace relevant for the restricted character,
that is X&,(rs)ap(o) = Tr(Pr, (sl 1 (c)). The above result is exact in the
sense that all orders in 1/N are included. The traces appearing in the above
expression run over the direct sum of carrier spaces R®&T. To exploit the simpli-

fications of the large N limit, we now employ the distant corners approximation.
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In this approximation, the traces over R @ T are reduced to a trace over the
tensor product of the direct sum of the carrier spaces r &t and Vp®m where R
has a total of p rows and V,, is a pdimensional vector space. The trace over
r @t is rather straightforward. The bulk of the work then entails tracing over
Vp®m. From now on we will work with normalized restricted Schur polynomials

OR,(r,s)ap Which are a scaled version of the x g (r,s)as

[ hooks,. hooks,
OOR,(T,S)Qg(Zv Y)= m)(og,(,,s)aﬁ(za Y). (3.9)

To denote the length of a given row of a Young diagram, we will indicate the
Young diagram label with a subscript which identifies the row. Thus 7y is the
length of the first row of r and T is the length of the second row in T'. After

tracing over r @ t, we have
DY Og (1.5)05(2,Y)
- Zq: \/% (Tryem (B Prrsjas By Prs)
+ Tryen (B Pr s By Prnsy) 207,06y (Z,Y)  (3.10)

where

DijOr,(tuy75(Z,Y) = [V(N + Ra)(N + Ry — 1)(N + Ry = 1)(N + Ry — 2)b72 gz 60111,
+ V(N + Ry —2)(N + Ry = 3)(N + R1)(N + Ra + 1)817; 771011, 1.
— (2N =3)(V(N + Ry = 1)(N + Ry — 1)817 1017 s
+ V(N + Ry = 2)(N + Ru)81y, 7,01, )
+[2(N+ Ry —1)(N + Ry — 2) — (n— 1)(2N + n — 3)]167, g0t Or (t,u)5(Z,Y)
(3.11)

and of course n = r{ +r3. The delta functions which appear are 1 if the Young
diagram labels have the same shape and 0 otherwise. In the above formula, the
matrices Ei(jA) which appear are a basis for the representation of u(p) on Vp®m.
Concretely, E;; is a matrix with every entry equal to zero except for the entry

in the ith row and jth column, which is equal to 1. In terms of E;; we can write
EN=1010 - 0FE;8 01 (3.12)
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where E;; appears in the Ath factor of the tensor product and 1 is the p dimen-
sional unit matrix. To obtain the result (3.10) we have used

Vi =1 (142 () 613

and we have only kept the leading order. The action of Dfll) is a product of
two factors: an action on Young diagrams R, r and an independent action on
Young diagram s. To evaluate this second action explicitly, we need to trace
over Vp®m. This is most easily achieved by moving to the basis of Gauss graph
operators. Fach Gauss graph operator is labeled by an element of the double
coset H \ Sy,/H where H = Sy, X Sy, -+ X Sp,. The relation between the
Gauss graph operator [Og . (0)] and the normalized restricted Schur polynomial
is

H
Ors(0) = L 5 3 VAT @B B On s (310

7,k skm pa,pe

This transformation can be understood as a Fourier transform applied to the
double coset. The branching coefficients B;ZIH give a resolution of the projector
from the irreducible representation s of S, to the trivial representation of H
s) s—1 s—1
\H| Z ZBJ'# HBku " (3.15)
occeH n
In terms of the Gauss graph operator, we find
1
DV OR(0) = —29* 3" 1ij(0) A1 Or.1(0). (3.16)
1<J

The numbers n;; (o) can be read off of the element of the double coset element
o. For more details see Appendix [H]
After using (3.5]), the action of Df) reduces to the action of the one loop

dilatation operator. Consequently, we will not discuss this term further.

3.3.2 Subleading contribution

There are a number of different sources for the subleading contribution. Firstly,
the leading two loop terms computed above receive corrections-see equation

(3.3). These corrections do not lead to additional mixing. They only imply a
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correction to the anomalous dimension. Similarly, even the one loop anomalous
dimension receives an 7 correction [also from using the approximation given in
(3-3)], without any additional operator mixing. The first correction that implies
new operator mixing comes from the leading contribution to Df) and it will be
the focus of this subsection. This term has not been considered before.

Acting on a normalized restricted Schur polynomial, we find

_ (a) (b)
D4OR-,(7"75)0¢3(Z’ Y> - Z (MT7(t,u)uu;R,(r,s)aB - MT,(t,u)uu;R,(r,s)aﬂ

T, (t,u) v
_M§f2t,u)uu;3,(v-,8)a5 + M§ ()t w)pv; R, (r, 5)a5) Or,(t,wyu(Z,Y), (3.17)
where
(a) Z 8 rorrrrur drm(m — 1)ncrr cr rr \/ fr hooks hooks, hooks;
T,(t,u)pviR,(rs)af — P B G g dydy (m +n)(m +n — 1) \| fr hooksg hooks; hooks,

x Tr (IT//R//FR((Q,’ITL —+ 1))[FR((1,m -+ 1))7PR,(7',s)a,(3]

x I D ((1,m+ 1)) [T7((2,m + 1)), PT,(t,u>W])7

u®

5 drm(m — V)ncgr: | fr hooksy hooks, hooksg
T,(t,u)pvi R, (r,s)af — Z RT

dpdidy,(m +n) fr hooks g hooks; hooks,,
x Tr (IT/R/FR((Z,m +1)[Cr((1,m + 1)), Pr.(rsyas)

x I [Dr((1,m + 1))aPT,(t,u),uu])7

()
MT ,(t,u)pvsR,(r.s)aB

Z 5 drm(m — V)ncgr: | fr hooksy hooks, hooksg
T drdid,(m +n) fr hooks i hooks; hooks,,

x Tr (IT’R’ [FR((L m + 1))7PR7(r,s)aﬁ]rR((25 m + 1))

x Ipp [Tr((1,m+ 1))aPT,(t,u),uy])v

and
MD Z § e drm(m — V)ncgricr gy fr hooksy hooks,. hooks
T,(t,u)pv;R,(r,s)aB — e drrdidy,(m+n)(m+n—1)\ frhooksghooks; hooks,,

x Tr (IT,,R/, T r((1,m+ 1)), PrraaslTr((2,m + 1))
X IR”T” [FT(L m + 1))7PT7(t,u),ul/]]-—‘T<(27 m + 1))) .

The traces appearing above again run over the direct sum of carrier spaces

R @& T and the action given above is again correct to all orders in 1/N. To
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take advantage of the simplifications of the large N limit, we again employ the
distant corners approximation, which again leads to an expression that has a

single trace over V,¥" remaining

(a)
MT L(t,u)pvs R, (r, s)aﬁ

Z 5 drm(m — 1)nCrr Cr/ g fr hookst hooks,. hooks; dos
R dgrdid,(m +mn)(m+mn—1)\ frhooksghooks; hooks, rit

x [Trvp@am (E,g)E}f)psaﬁE(”E(i)pW) ~ Tryem (E,g.)pm EPEDp,., Jkl>

- Trvp®m (E](g?El(lz)psa,@Ei(k)pupu 6@]) + Trvp®m (E( )psaBE(k Pupv 62]6kl) :|

(b)
MT ,(t,u)pvsR,(r.s)aB T

dri Oty

Z 5 drm(m — V)ncgr: | fr hooksy hooks, hooks;
R fr hooksg hooks; hooks,,

rrdidy, (m +n)
X I:Trvp®7n (E](c}l)E(z)pbaﬁEl(Z puﬂl/) — Trvp®7n (EZS(]]:) Etgi)psaﬁEl(Zl)puHV 67]k>

— Tryon (Pun B ER poas ) + Tryon (B ES paas B pu ) |,

(e Z 5 drm(m — V)ncgr: | fr hooksy hooks, hooksg
Tt u)pviRy(rs)ef BT dpidydy(m +n) \| frhooksy hooks, hooks, "+ "'

X I:’I‘rvp@’” (E](gk)psaﬂE(l)E(Q)puuu) - Trvp®’" (psaﬂE(l)E(Q)puuu>
oy (B B 50) + Ty (B o B B ) |

and

M(d)4T,(t,u),ul/;R,(r,s)aﬁ = Z 5R”T”
R/R//

< | Tryen (B ED paas B B puw 1500 ) = Tryen (B B pean B B Dup 615

al

101ty

drm(m — 1)ncgrpr/cri g fr hooksy hooks, hooks
drididy,(m+n)(m+n—1)\ frhooksg hooks; hooks,

— Trygm (E,(CPEZ(] Dsap By BNy pus 5lk) + Trygm (E(l)Efj )pwﬂE“)E,gl)pW) }

To compute the remaining trace over Vp®m we will again move to the Gauss
graph basis. This requires computing traces that have not been considered in
previous works. Schematically, these traces are of the form

Tr(Apsuquu'yé) (318)
where A and B can be any product of the EL(I’;)S. The details of how to compute
these traces in general are given in Appendix [ To summarize the key ideas,

consider an intertwining map ps,, built on the state |71,m1) with symmetry
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group H; and the map p;ys built on the state |U2,m) with symmetry group

H,. The transformation to Gauss graph basis is given by

T= 3" > Tr(ApsuwBpuso) By By TG (01) By 7 By T (02)

ml
spvlm uydnp

:m > dvaloy (g Ava)gnlvn))va| (5 ' B ) bran o) (3.19)
Vi €Sm

The final sum over i1 and ¥, then gives

T= M|O(al)|2n b(02)nca(02)da5([01]; [02]) (320)
|H1 || Ha| ’ ‘ ’

The indices a, b, ¢, d are read from A and B as explained in Appendix [[] and
P
002 = [ nislon)! = (Ora(01) O (01)). (3.21)
ij=1
The delta function dap([o1], [02]) is defined using A and B. This is also ex-
plained in Appendix [} Using these results, we find
D Onlon) = Y. (MpgTs = METHT: = MESST? + Mp7? ) Oralow),
T t,oo

(3.22)

where

Ok, (01)[” dap([o1], [02])

\/CRR/ CR/R// CTT/ CT/T//

1
MplEe =Y Srirrbpy
s I, i ZRJ lTk

R/,R"

X l:nik(0'2)nkl(f72) — 6 Y nik(02)npa(02)

a=1

— 0 ank(UQ)nkl(UQ) + 00k Z nbk(oz)nka(og)] )

b=1 a,b=1
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Similarly

%:ﬂéﬂf Z5R'T'57’t' VCrr Crr |Opr(01 ) 0as([o1], [o2])

%me%wawzww%w

a,b=1 a,b,c=1

Zm@%@+2m@w@}

a,b=1 a,b=1

My = Z OOt/ Crr: Crr 0, (01)|* dap([o1], [02])
R/

p p
X |: E nbk(JQ nza 02 § nka 02 NGp 02)

a,b=1 a,b=1
p p
- 51]@ § nbz(02 nac 02 + § nk"t 02 nba 02):|
a,b,c=1 a,b=1

(3.23)

01,0 O 'C ’ //O /C 1
MEGE = 5R~T~5r't'¢ mw R R CITCTT 6, (01)[? 8ap (01, [02])
R/ R Rj Tl

p p
X {5@51@1 Z Ny (02)Nie(02) — 5ijznkl(02)ma(02)
a,b:l a=1
p

— O anl(UQ)nli(UQ) + ngi(o2)ni(o2) |, (3.24)
b—1

Notice that both M%‘ZIRU: and M;{‘ZlRaf depend on the length of the rows of the
Young diagrams R and T that participate. Since these lengths determine the
angular momentum of the giants, they determine the radius to which the giants
will expand. This is the first dependence of the anomalous dimensions on the

geometry of the giant graviton.

3.4 Example: A 2 giant graviton boundstate
with 4 strings attached

In this section we will consider the simplest nontrivial system that exhibits the

general structure of the subleading operator mixing problem. This problem
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is a system of two giant gravitons with four strings attached. As we have

m
n

corrections to the anomalous dimension from the one
)

explained, there are
loop contribution as well as from Dfll) and Df at two loops. These corrections
do not induce extra operator mixing, so that the Gauss graph operators continue
to have a good anomalous dimension. The only extra operator mixing comes
from the subleading contribution Df), and this is what we aim to explore.
Fach element of the Gauss graph basis is labeled by two Young diagrams
R,r as well as a Gauss graph. We will number the states according to their

Gauss graph labeling as shown below

|1, R, 7y = ’@D‘,R,T>, |2, R,7) = ‘M,R,r>, |3, R, 7y = ’..::sQ,R,r>,
|4, R,7) = ’.@.,R,T>, |5, R,r) = ‘@ Q,R,r>, |6, R, r) = ‘Q O,R,T>,
TR =|© QR BRN=|) ©Rr), BR)=|o R

The states [i) for i = 5,6,7,8,9 are BPS at the leading order in . The
subleading corrections to the anomalous dimension coming from one loop, as
well as from Dfll) and Df) at two loops is a multiplicative order 7* correction and
vanishes because the leading order anomalous dimension vanishes. Evaluating

the subleading order contribution coming from Df), we find
DPJi,R,r) =0 i=56,7,89 (3.25)

so that the states that are BPS at the leading order do not receive a subleading
correction. This is not peculiar to the example we consider and is to be expected
generally, since for the BPS states we have nyp,(02) = 0 for a # b. The state

|4, R, ) also does not mix with other states. However, for this state we have a
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nontrivial correction to the eigenvalue since

Oritr  Oryey
Dyl4, R,r) = 64|0nr o) Orrs (N e = DN s, —2)
Tt

5?”/ ’ (57-
+ 6RTﬁtl5R’l’lTl”l (N +1g, —1)(N +1g, —2) + gy
1

— 0rT0r, 1, 0R, Ty (N + IR, — 1) = OrTOry8, 0 Ry Ty (N + IR, — 2)

lr

(S,’,/t/
12 ) (N +1g, —2)V/(N +1g, —1)(N + g, — 1)

— 6 + —_— 1 1’
Ry T lRl (lR1 — 1) RY,T75

67,/ ’
21 ey (N +1g, — D)V (N + g ) (N + g, — 2)

L Tt
RET\/ZRI(ZBJ + 1)

67‘/t/
== 4 (N+ZR2_3)\/(N+ZR1)(N+IR2_2)

—5 —_— 11
RTZT le (le _ 1) R22T12

/t/
“26ry, 1y, (N + g, —2)(N + g, —3)
2

6 741
B Spyry (N + 1k, — 2V (N + g, — )(N + g, — 1)

Y S L
e V le (lR2 + 1)

+ 5R;1T5r'1t'25R'1T2' \/(N + ZR1 - 1)(N + le - 1)

+ 8 p0mu Sryry V(N + 1R, ) (N + g, —2) |4, T,8) (3.26)

The remaining states |¢) with i = 1,2, 3 mix under the action of Df). Using

a matrix notation

D4(12)|i7R7 T> = Z(Dé(lz))lj |j’ Tat 7/).] =1, 273> (327)
Tt

the action of Df) in this subspace is given by

8 0 0 010 010 00 0
DP=Aalo 4 o|+B|1 0 1|+Clo 0 1| +C"|1 0 0
00 8 010 000 01 0

where the coefficients A, B and C are quoted in Appendix [} The coefficients
A, B and C are operators that have a nontrivial action of the R,r labels of
the Gauss graph operators. It is straightforward to check that the matrix coeffi-
cients of these operators do not commute and hence they are not simultaneously
diagonalizable. This implies that the action of the dilatation operator no longer
factorizes into commuting actions on the Z and Y fields. It is this failure of fac-
torization that we were referring to when we talked about the general structure

of the mixing problem.
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3.5 Summary of chapter

Our results have a number of interesting features that deserve comment. In
the " = 0 limit, the action of the dilatation operator factorizes into an action
on the Z fields and an action on the Y fields. The subleading correction has
spoiled this factorization of the dilatation operator. This is rather natural: in
the limit 7+ = 0 we consider a giant graviton built with an infinite number
(n = o0) of Z fields, so that the backreaction of the magnons on the giant
graviton can be neglected. Without backreaction, we expect the dynamics of
the giant is completely decoupled from the dynamics of the magnons and this
is the root of the factorized action of the dilatation operator. By adding the
first correction, we are saying that n is large but not infinite. In this situation,
although backreaction is small, it is not zero. The magnons will now provide
a small perturbation to the dynamics of the giant; the action of the dilatation
operator will no longer factorize into an action on the giant (i.e. on the Zs)
times an action on the magnons (i.e. on the Ys).

The subleading correction spoiled the factorization of the dilatation opera-
tor by introducing further operator mixing. Another interesting results of our
analysis is that the subleading corrections did not induce extra mixing for the

BPS operators. Indeed, after accounting for the complete

correction to two
loops, we found our BPS operators remain uncorrected and continue to have a
vanishing anomalous dimension. Although our computation is performed in a
specific example, we argued that we expect this conclusion to be general since
for the BPS operators we have ng,(c) = 0 for a # b. Looking at the result
, it is clear that vanishing n.,(o) implies a vanishing action of Df).

The form of the action of the dilatation operator implies that when the
correction to the anomalous dimension is nonzero it will depend on the length
of the rows of the Young diagrams labeling the operator. Since these lengths
determine the angular momentum of the giants, they determine the radius to
which the giants will expand. This implies that the anomalous dimensions start
to depend on the geometry of the giant graviton.

The dynamics of open strings on the worldvolume of a giant graviton is

expected to give rise to a Yang-Mills theory at low energy. The lightest mode of
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the open strings attached to the giant becomes the gauge boson of the theory.
This suggests that within kalN = 4 super Yang-Mills theory, we should see
classes of operators whose dynamics is captured by a new emergent gauge theory.
The acronym emergent is particularly apt in this case because this new Yang-
Mills theory will be local on a space that is distinct from the space of the original
spacetime of the kalN = 4 super Yang-Mills theory. The gauge symmetry which
determines the interactions of the theory is a local symmetry with respect to this
new space and the time of the original spacetime. The space of the emergent
Yang-Mills theory is the worldvolume of the giant graviton, which itself is built
from the Zs. So this space and an associated local gauge invariance is to emerge
from the dynamics of the Z matrices in the large IV limit. For the operators dual
to giant gravitons studied in this thesis, it is natural to think that the magnons
themselves will become the gauge bosons. Indeed, the allowed state space of
the magnons is parametrized by a double coset. The structure of this double
coset is determined by the expected Gauss law of the emergent gauge theory.
To really understand the mechanism behind this emergence it is important that
we get a good handle on how the magnons interact. It is by studying these
interactions that we may hope to recognize the Yang- Mills theory that must
emerge. In this thesis we have computed the first of these interactions and we

have developed tools that allow us to study these interactions in general.
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Conclusions

In this thesis, we used the duality between the type IIB superstring theory and
the U(N), N'=4 SYM theory in a large N but non-planar limit. On the gauge
theory side of the correspondence, we computed all loop anomalous dimensions
in the restricted Schur polynomial basis. These restricted Schur polynomials
are dual to a system of excited strings suspended between giant gravitons. The
excitations of the strings are identified as magnon particles. The anomalous
dimensions compute the energy spectrum of the magnon particles. The energies
of the magnons computed in the string theory are in complete agreement with
the anomalous dimensions computed in the SYM. This result is a consequence
of the SU(2|2)? symmetry.

Another interesting result is the complete determination, up to an overall
phase, of the reflection/scattering matrix between a boundary magnon and a
bulk magnon. Recall that a boundary magnon is a magnon stretched from an
end point of a string to a giant graviton. Again, we have used the constraints
following from the SU(2|2)? symmetry to determine the S—matrix. As a con-
sequence of the boundary conditions on the open spin chain, the system is not
integrable. This result is developed in the Chapter [2] of this dissertation.

Apart from the above results we have also derived in Chapter [3] the two-
loop subleading contribution to the magnon energies. The corrections induce
a mixing of the double coset operators. The action of the leading higher-loop

dilatation operator is decoupled in terms of two separate actions on the Z’s and
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Y’s. The subleading contribution we have considered spoils this factorization.

We have given the complete formula for the interaction of Gauss graphs at
subleading order and at two loops.

There are many sectors other than the su(2) sector of N'=4 SYM. Among
these sectors, one can for instance study the su(3) sector, which was already ini-
tiated in the previous years. Other sectors that can be considered are su(2|3),
5[(2) and psu(2,2[4). In fact, especially for the case of the sl(2) and su(2|3)
sectors, a basis of operators was constructed in terms of restricted Schur poly-
nomials that take into account fermions. Another interesting problem is to

study the overall phase of the S—matrix using crossing symmetry.
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Appendix A

Large N eigenstates

In sectionvve explained that at any finite loop order () the change in length
AL = ~y of the open string word lattice is finite while the total length L of the
lattice is N. This implies that at large N the ratio % — 0 and we can treat the
lattice length as fixed. This observation is most easily used by first introducing
“simple states” that have a definite number of Zs, in the lattice associated to
each open string. This is accomplished by relaxing the identification of the
open string word with the lattice. The dilatation operators action now allows
magnons to move off the open string, mixing simple states with states that
are not simple. However, by modifying these simple states we can build states
that are closed under the action of the dilatation operator. Our simple states
are defined by taking a “Fourier transform” of the states . The simplest
system to consider is that of a single giant, with a single string attached, excited
by only two magnons (i.e. only boundary magnons - no bulk magnons). The
string word is composed using J Z fields and the complete operator using J +n

Zs. Introduce the phases

(o = e (A1)
with k, = 0,1,--- ,J — 1. As a consequence of the fact that the lattice is a

discrete structure, momenta are quantized with the momentum spacing set by

the inverse of the total lattice size. This explains the choice of phases in (A.1)).
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The simple states we consider are thus given by

J—1 ma
|q1)q2> — Z Z q’{nlqgi2|1"+m1—7>12+1’ 1n+m1—m2) 1n+m1—m2; {J —mq + m2}>

m1:O mg:()
J—1 mo
+ § : § : q;nlqgnz|1n-i-J-&-ml—mz-i-l7 1n-‘:-J-§-m1—mz7 1n+J+m1—7n2; {m2 _ m1}>

mg:O m1:0

(A.2)

This Fourier transform is a transform on the lattice describing the open string
worldsheet. The two magnons sit at positions m; and mo on this lattice. If
me > my , there are ms — my Zs between the magnons. If my > mo , there
are J + mo — my Zs between the magnons. The Zs before the first magnon
of the string and after the last magnon of the string, are mixed up with the
Zs of the giant - they do not sit on the open string word. All of the terms
in are states with different positions for the two magnons, but each is a
giant that contains precisely n Zs with an open string attached, and the open
string contains precisely J Zs. We cant distinguish where the string begins
and where the string begins and where the giant ends: the open string and
giant morph smoothly into each other. This is in contrast to the case of a
maximal giant graviton, where the magnons mark the endpoints of the open
strinéﬂ If this interpretation is consistent we must recover the expected inner
product on the lattice and we do: Consider a giant with momentum n. An open

string with a lattice of J sites is attached to the giant. The string is excited

by M magnons, at positions nq,--- ,ny — 1 and nys, with n;41 > n;. The
corresponding normalized states, denoted by |n; J;ny,ng, -+, ng) will obeyﬂ
<TL; J;nlam2a T 7mM|na J>n1>n27 T anM> = 5m2n2 T 5mknk (A3)

NE41 > Mgy M1 > M

IFor the maximal giant graviton, the boundary magnons are not able to hop and so sit
forever at the end of the open string. For a non-maximal giant graviton the boundary magnons
can hop. Even if they are initially placed at the string endpoint, they will soon explore the

bulk of the string.
2As a consequence of the fact that it is not possible to distinguish where the open string

begins and where the giant ends, there is no delta function setting the positions of the first

magnons to be equal to each other - we have put this constraint in by hand in (A.3).
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This is the statement that, up to the ambiguity of where the open string starts,
the magnons must occupy the same sites for a non-zero overlap. It is clear that

(G(X) =17T117 1% and again, nj41 > nj,mj1 > m;)

(G(n+J +m1 —ma);{mz, - ,mm}G(n+J +n1 —n2);{na, -+ ,nm})

= 6m2n2 e 5mknk

reproducing the lattice inner product. The simple states are an orthogonal set of
states. To check this, compute the coefficient c a of the state [1"Te+1 1nta 1nta. J_ q),

Looking at the two terms in (A.2) we find the following two contributions

J—1 a—1
Ca= Y @M@+ Y gt

mi=a m1=0

Jgg @ if k1 +ka=0
_ d 1 2 (A4)

0 if ki 4+ ko #0

Thus, g1 = ¢, ! to get a non-zero result. We will see that this zero lattice
momentum constraint maps into the constraint that the su(2/2) central charges
of the complete magnon state must vanish. Our simple states are then given by
setting g = ¢ 1 and are labeled by a single parameter ¢; ; denote the simple
states using a subscript s as |g1)s. The asymptotic large N eigenstates are a small
modification of these simple states. When we apply the dilatation operator to
the simple states nothing prevents the boundary magnons from “hopping past
the endpoints of the open string”, so the simple states are not closed under
the action of the dilatation operator. We need to relax the sharp cut off on
the magnon movement, by allowing the sums that appear in above to be
unrestricted. We accomplish this by introducing a “cut off” function, shown in

Figure In terms of this cut off function f(-) our eigenstates are

n+J m
|'¢(C]1)> = Z 22: f(rna)qrm—mQ’171—&-J+m1—mg+17 1n+J-&-m1—m27 1n+J+m1—m2; {m2 _ m1}>

mao =0 ma =0

mo+J n

+ 30> Fm) (T —ma +my)

ma =0 mo =0

x qml—mg ’1n+m1—m2+1’ 1n+m1—m27 1n+m1—m2; {J + Mo — m1}> (A5)

— &5 —



APPENDIX A. LARGE N EIGENSTATES

The dilatation operator can not arrange that the number of Zs between two
magnons becomes negative. Thus, any bounds on sums in the definition of our
simple states enforcing this are respected. On the other hand, the dilatation
operator allows boundary magnons to hop arbitrarily far beyond the open string
endpoint. Bounds in the sums for simple states enforcing this are not respected.
Replace these bounds enforced as the upper limit of a sum, by bounds enforced
by the cut off function. From figure[2:2] we see that the cut off function is defined
using a parameter d.JJ. We require that 67‘] — 0 as N — oo, so that at large N
the difference between these eigenstates and the simple states |¢1)s vanishes, as

demonstrated in Appendix C. We also want to ensure that
f@)=fli+1)+e Vi (A.6)

with e = 0 as N — oo. is needed to ensure that we do indeed obtain an
eigenstate. It is straight forward to choose a function f(z) with the required
properties. We could for example choose §J to be of order IV 1. Our large N
answers are not sensitive to the details of the cut off function f(z). When 1/N
corrections to the eigenstates are computed f(z) may be more constrained and
we may need to reconsider the precise form of the cut off function and how we
implement the bounds.

It is now straight forward to verify that, at large N, we have

Dlp(qr)) = 2%%;2” <1 + {1 - %} —\/1- %((h +q1_1)>

e (1 +1-%] - H(ql +q1_1)> (A7)

For the dual giant graviton of momentum n

Dl =292 (14 14 5] = \[1+ Fl+a)
= 2¢? <1+ [H—%} - 1+%(q1 +q1_1)> (A.8)

The generalization to include more magnons is straight forward. We will
simply consider increasingly complicated examples and for each simply quote

the final results. The discussion is most easily carried out using the occupation
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notation. For example, the simple states corresponding to three magnons are

g1, 42, q3) = Z Z Z 017 43%q3°|G(n + J +n1 —n3); {(n2 —n1), (n3 —n2)})

n3= 0n2 0n1 0

ni ns

+ Z S a3 ah®|G(n+ny — ng)i {(J + n2 — na), (ns — na)})

n1=0n3=0n2=0

+ Z Z Z ¢ 437 ¢5? |G (n +ny — ng)i {(n2 — na), (J +n3 —na)})

na= On1—0n3 0

(A.9)

where we have again lumped together the Young diagram labels G(r) = R, R}, R} =
12112 1%, The coefficient of the ket |G(n + J —a — b); {(a), (b)}) is given by

the sum
J-1

Z (1q203)" @5 q5+° (A.10)

TLl:O
which vanishes if ky + k2 + k3 # 0. Consequently we can set g3 = ¢ 1q2_ L

Including the cut off function, our energy eigenstates are given by

¥(q1,92)) Z Z Z @t "y f(ns)|G(n+ T+ n1 —n3); {(n2 —na), (ng —n2)})

nz= =0 ’I’LQ—O ny= =0
J+ns oo

> 2 Z @' T f () f(T 4 ns —na)|G(n 4 n1 — n3)i {(J + n2 —n1), (n3 —n2)})
n1=0 n3=0no=0

J4+ns no o

33 ST g f(ng) £ + s — )| G+ ny — ng); {(n2 — 1), (] + na — n2)})

no=0 n1=0n3=0

It is a simple matter to see that

Dp(qr,q2)) = (B1 + Ez + E3)|v(q1,92)) (A.11)

By =24 (1 +[1-%] - H(ql + q;l>)

Ey=¢"2—q2—q5")

Es = 242 (1 + [1 - %} - H(qg + Q31)) (A.12)

— 87 —

where



APPENDIX A. LARGE N EIGENSTATES

Now consider the extension to states containing many magnons: For an M

magnon state, consider all M cyclic orderings of the “magnon positions”

np<npg<ng<---<ny2<ny1<ny<J-1
ny<ni<nyg<ng<---<nya<ny1<J-1

ny—1<ny <np<np<n3<---<ny2<J-1

ng<nz3<---<ny28<ny1<ny<n<J-1 (A.13)

Construct the differences {ns —ni,n3 —na,ng—ns, -+ ,npr—np — 1,01 —npr b
Every difference except for one is positive. Add J to the difference that is
negative, i.e. the resulting differences are {Ag, Az, Ay, -+, Apr, Aq} with
n; — MNi_1 ifn; >n;_q
A= " B (A.14)
J4+n;—ni—1 ifng <myg
For each ordering in (A.13) we have a term in the simple state. This term is
obtained by summing over all values of {nj,ng,---,na} consistent with the

ordering considered, of the following summand
q{“q;“ .. _q]7\7«4M 1m+A1+17 ln—irAl7 1n+A1; {(A2)7 (A3)7 . (AM)}> (A.15)

Repeating the argument we outlined above, this term vanishes unless q;/ll =

q192 - - - qar—1 so that the summand can be replaced by

QT GETIN  T [Im A A 1AL (), (Ag), -+ (Aw)})
(A.16)

Finally, consider the extension to many string states and an arbitrary system

of giant graviton branes. Each open string word is constructed as explained
above. We add extra columns (one for each giant graviton) and rows (one for
each dual giant graviton) to R. The labels R} and R5 specify how the open
strings are connected to the giant and dual giant gravitons. When describing
twisted string states, the strings describe a closed loop, “punctuated by” the
giant gravitons on which they end. As an example, consider a two giant graviton

state, with a pair of strings stretching between the giant gravitons. The two
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strings carry a total momentum of J. Notice that we are using the two strings
to define a single lattice of J sites. One might have thought that the two strings
would each define an independent lattice. To understand why we use the two
strings to define a single lattice, recall that we are identifying the zero lattice
momentum constraint with the constraint that the su(2|2) central charges of
the complete magnon state must vanish. There is a single su(2|2) constraint on
the two string state, not one constraint for each string. We interpret this as
implying there is a single zero lattice momentum constraint for the two strings,
and hence there is a single lattice for the two strings. This provides a straight
forward way to satisfy the su(2|2) central charge constraints. The first giant
graviton has a momentum of by and the second a momentum of b;. The first
string is excited by M magnons with locations {ni,na, -+ ,nar—1,na} and the
second by M magnons with locations {1, N2, -+ ,Myy_q, Ny} where we have
switched to the lattice notation. We need to consider the M + M orderings of

the {n;} and {n;}. Given a specific pair of orderings, we can again form the

differences
ny — 77LM if ny Z ’fLM
A; =
J+n —ny ifng <ny
i — M1 if ng >n;_q
A= i=2,3,---, M
J4+n;—ni—1 ifng <myg
ny — Ny ifnpy >m
Appr =
J+n—ny ifny <my
n; — M1 if g > Mg
Apai = i=23,,M (A.17)

J+ ﬁi - ’I:Li_l if ’le < ’fli_l

For each ordering we again have a term in the simple state, obtained by summing

over all values of{ni,na, -+ ,nar—1,nar, M1, M2, - -+ , My, Ny} consistent with
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the ordering considered, of the following summand

ni _no LIV UV

Gy 42" Ay 91 927y

X |G(AL Anri); {(A2), (A3), -+, (An)} {(Anrr2) (Anrsa)s -5 (Apryin)})
(A.18)

where

LTI T ITTT]

[\

LTTTITTITTT]

In the first Young diagram above there are b; +y + 1 rows with 2 boxes in each
row and by+x —b; —y— 1 rows with 1 box in each row. Repeating the argument
we outlined above, this term vanishes unless (j]E[l =q1---qmq1- -y, SO that

the summand can be replaced by

q;zlan q;LQ*”M*”M .. "AL/[M*"M ~g2*”1€1 .. ~]TC~;;I —Mar
X |G(A1, A1) {(A2), (As), -+, (Aa) } {(Ans2), (Anrgs), - (A i) 1)

(A.20)
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Two loop computation of

boundary magnon energy

The dilatation operator, in the su(2) sector, can be expanded as [84; [85]

00 2 k o)
_ Iy M _ 2k
D_Z<167r2> Dok = _ g*" Doy, (B.1)
k=0 k=0
where the tree level, one loop and two loop contributions are
0 0
Dy=Tr | Z— Tr (Y — B.2
0 r( az>+r< 8Y>’ (B:2)
o 0
Dy=-2:Tr([Z2,Y]||=—,=—1| | : B.3
2 ([ ) ]|:aZ7aY:|> ) ( )
Dy =D + DY + D, (B.4)

o () [ 3 ]2)

0z
ot =) 7] 1)
D) = —2:Tr ([[Y, 2],1 H@?” ;Z] TD : (B.5)

The boundary magnon energy we computed above came from Dy . By com-
puting the contribution from D, we can compare to the second term in the
expansion of the string energies. Since we are using the planar approximation

when contracting fields in the open string words, in the limit of well separated
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magnons, the action of D, can again be written as a sum of terms, one for each
magnon. Thus, if we compute the action of D, on a state |1"+1, 1", 1™ {nq, n2}>
with a single string and a single bulk magnon, its a trivial step to obtain the
action of D4 on the most general state.

A convenient way to summarize the result is to quote the action of D4 on
a state for which the magnons have momenta ¢p,qs2,q3. Of course, we will
have to choose the g; so that the total central charge vanishes as explained in

L in the formulas below. We

Chapter Thus we could replace g3 — (q1g2)~
will write the answer for a general giant graviton system with strings attached.
For the boundary terms, each boundary magnon corresponds to an end point
of the string and each end point is associated with a specific box in the Young
diagram. Denote the factor of the box corresponding to the first magnon by
cr and the factor of the box associated to the last magnon by cy. A straight

forward but somewhat lengthy computation, using the methods developed in

[8: @] gives
gt [ cr\? cF CF 1
(Da)fixst magnon|¥(q1, G2, q3)) = 5 _(1 + ﬁ) - (1 + ﬁ) N (1 +q)
+ et + 2+ 07| (a1 a2, )

g4 [ Cp CFr -1 ?
=51+ 5 - ﬁ((h"‘ql) [¥(q1,42,3))

1

2

{92 (1 + cﬁF - ﬁ<QI Jrqll)ﬂ2 (a1, 42, 43))

(B.6)

in perfect agreement with (2.23)). The term Dflb) does not make a contribution
to the action on distant magnons, since we sum only the planar open string
word contractions. The remaining terms Dfla), fo) both make a contribution

to the action on distant magnons. For completeness note that

(D4)ﬁrst magnonW(qh QQ7Q3)> = —% [92 (2 - ((11 + q;l))]z W(QLQQ, Q3)> (B-7)
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Appendix C

The difference between
simple states and

eigenstates vanishes at large

N

In this section we want to quantify the claim made in section that the
difference between our simple states and our exact eigenstates vanishes in the
large N limit. We will do this by computing the difference between the simple
states and eigenstates and observing this difference has a norm that goes to zero
in the large N limit.

For simplicity, we will consider a two magnon state. The generalization to

many magnon states is straight forward. Our simple states have the form

J—1 m
|q> =N < Z Z qm1fm2|1n+m1fmz+1’ 1n+m1fmz7 1n+m17m2; {J —my + m2}>

mi1=0mo=0

J—1 my
+ § E qm17m2|1n+.]+m17m2+1’ 1n+.]+m17m2, 1n+.]+7n17m2; {m2 _ 7’771}>>

mg:O m1:0

(C.1)
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EIGENSTATES VANISHES AT LARGE N

Requiring that (¢g|¢) = 1 we find

1

With this normalization we find that the simple states are orthogonal

27k . 27ky,

1
(alqa) = Okory, + O <J) where ¢, =€ 7 ,q,=¢"7

(C.3)

This is perfectly consistent with the fact that in the planar limit the lattice
states, given by |1"+m1_m2+1, [rtmamme qndmi=me ] —my 4+ my}) are or-
thogonal and our simple states are simply a Fourier transform of these.

Our eigenstates have the form (we will see in a few moments that the nor-

malization in the next equation below is the same as the normalization in (C.2))

o0 mo
lg) =N ( Z Z f(mz)qml—m2|17L+J+m1—m2+1’ Tt —ma T m—me m1}>

m220m1:0
J+ms oo
+ Z Z f(ma)f(J —my + mZ)qm1*m2|1n+m1*m2+17 prbmasme qndmieme £ g 4 m2}>>
m1=0 mi

= lg) + [6g) (C.4)

where

n+J+1 mo

|5q> =N ( Z Z f(mz)qmlme|1n+J+m17m2+17 1?H~J+ml*mz7 1n+,]+m17m2; {m2 _ m1}>

mo=J m1=0

J+mo n+mq
+ ) D fm)f(T —ma 4 mg)g ™[I et b e yrbmamme (g m2}>>

mi=J ma=0

J—1 mi+n
+ Z Z f(J —my + mQ)qml—mg‘ln—&-ml—m2+l {ntmi—ma ntmi—ma. {J —my + m2}>>

mi1=0mso=m;1+1

J+6J mo
=N ( Z Z f(mz)qvm—"w|1n+J+m1—mz+17 1n+J+m1—m27 1n+J+m1—m2; {m2 _ m1}>

m2:J m1:0

J—1 my+90J
+ Z Z f(J—my + m2)qm1*m2‘1n+m1*m2+17 [rtmi—mae qntmi—ms, {J—mi+ m2}>>

m1=0mao=mi+1
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APPENDIX C. THE DIFFERENCE BETWEEN SIMPLE STATES AND
EIGENSTATES VANISHES AT LARGE N

and [_ is the smallest of J +my and J +6J. It is rather simple to see that |dg)
is given by a sum of O(J) terms and that each term has a coefficient of order
0J. Consequently, up to an overall constant factor cs, which is independent of

J, we can bound the norm of |dq) as

2
(alda) < ey JOIN® = csy 75 (©5)

which goes to zero in the large J limit, proving our assertion that the difference

between the simple states and the large N eigenstates vanishes in the large NV

limit.
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Appendix D

Review of dilatation

operator action

The studies [64} [14] have computed the dilatation operator action without in-
voking the distant corners approximation. The only approximation made in
these studies is that correlators of operators with p long rows/columns with op-
erators that have p long rows/columns and some short rows/columns, vanishes
in the large N limit. These results are useful since they provide data against
which the distant corners approximation could be compared. Further, we have
demonstrated that the action of the dilatation operator reduces to a set of de-
coupled harmonic oscillators in [I5} [16} 20 17]. However, to obtain this result
we needed to expand one of the factors in the dilatation operator to subleading
order. The agreement of the resulting spectrunﬂ is strong evidence that the
distant corners approximation is valid. It is worth discussing these details and
explaining why we do indeed obtain the correct large N limit. This point is not

made explicitly in [15} [16} 20; [17].

DOR,(T,S)(Z7Y): Z NR,(T,S);T,(t,u)OT,(t,u)(ZaY)
T,(t,u)

LOne can also compare the states that have a definite scaling dimension. The states ob-
tained in the distant corners approximation are in perfect agreement with the states obtained

in [64} [T4] by a numerical diagonalization of the dilatation operator.
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APPENDIX D. REVIEW OF DILATATION OPERATOR ACTION

is given by

NR,(r,s)T,(tu) = 9% Z F . S 8
(r,8)sT (8, — drydedy(n +m) || frhooksg hooks; hooks,

x Tr ([TCr((n,n+ 1)), Pros(rs)| I [Co((non+1)), Proyew] Irrr)

The above formula is exact. After using the distant corners approximation to
simplify the trace and prefactor, this becomes
) iy
DOR,(r,s)uuLz = "9ym Z Z6TﬁﬁMs(/lel)u2;uy1u2AijOR,(r,s)Vﬂ/z (Dl)
uvivy 1<j
Notice that we have a factorized action: the A;; (explained below) acts only on

the Young diagrams R, r and

(i5) - (<m,s,uz;alEff)m,uyVgsb><7ﬁ,s,u1;blE§§)Tﬁ,uyV1;CL>

SH1p2; UV V2 \/m
(s, 123 0 B v ), s, 03 BB i, w13 0)) - (D.2)

where a and b are summed, acts only on the s, u;, pe labels of the restricted
Schur polynomial. a labels states in the irreducible representation s and b labels
states in the irreducible representation ¢. To spell out the action of operator

Ay it is useful to split it up into three terms
O —
A= A,J; + Ay + Ay (D.3)

Denote the row lengths of r by r; and the row lengths of R by R;. Introduce the

Young diagram r; obtained from 7 by removing a box from row j and adding

it to row 4. Similarly 7;; 18 obtained by removing a box from row i and adding

it to row j. In terms of these Young diagrams we have

AYOR (ryuas = —(2N + R+ Ry — i = )OR (rs)yus o (D.4)
A5OR (s = /(N + Ri = )(N + By = j+1)0pgs (e 0 (D)
AGOn (s = \J (N + Ri =i+ DN + By = j)O0p— (= o (D6)
As a matrix A;; has matrix elements
AR = \J(N 4 R = ) (N + By — j + )07 56, 0 (D.7)

/(N + R — i+ DN+ Ry — )0y - 0,,— — 2N + Ri+ By — i~ j)0p. 701,
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APPENDIX D. REVIEW OF DILATATION OPERATOR ACTION

In terms of these matrix elements we can write (D.1]) as

ij 3T
DOR,(T,S)/JJNZ = 7932’M Z 26ﬁ7ﬁMs(;l,]1)u2;uy1uQAij tOR,(ﬁS)Vle (D.8)

uvivy 1<j

Although the distant corners approximation has been used to extract the large
N value of Mgﬁ?m;umw the action of Aﬁ’T;T’tis computed exactly. In partic-
ular, the coefficients appearing in are simply the factors associated with
the boxes that are added or removed by A?T;T’t, and hence in developing a
systematic large N expansion for AZ—’T;T’t we can trust the shifts of numbers of
order N by numbers of order 1.

The limit in which the dilatation operator reduces to sets of decoupled os-
cillators corresponds to the limit in which the difference between the row (or
column) lengths of Young diagram R are fixed to be Ov/N) while the row lengths
themselves are order N. The continuum variables are then
M, i=1,2,--,p—1

VR

when R has p rows (or columns) and the shortest row (or column) is R;. In

€Ty =

(D.9)

this case, the leading and subleading (order N and order v/ N) contribution to
AijOR,(r,s)u1p. vanish, leaving a contribution of order 1. This contribution is
sensitive to the exact form of the coefficients appearing in (D.7]), and it is with

these shifts that we reproduce the numerical results of [64; [14].
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Appendix E

One loop computation of
bulk /boundary magnon

scattering

In this appendix we will compute the scattering of a bulk and boundary magnon,
to one loop, using the asymptotic Bethe ansatz. See [06] where studies of this
type were first suggested and [97] for related systems. We can introduce a wave

function ¥(ly,la, - -+ ) as follows
0= %" ¥(,l,---)O(R,RY, R5; {l1,ls,- - }) (E.1)
l1,l2,---

We assume that the boundary magnon (at /;) and the next magnon along the
open string (at ls) are very well separated from the remaining magnons. These
magnons are both assumed to be Y impurities. To obtain the scattering we
want, we only need to focus on these two magnons. The time independent

Schrodinger equation following from our one loop dilatation operator is

Bun,1) = (3+ 2) b0t~ [ 2l = 1.0 +0(0 +1,2)

= (Wl le = 1) + (1,12 + 1)) (E.2)
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SCATTERING

where c is the factor of the box that the endpoint associated to the magnon at
1 belongs to. The equation (E.2) is valid whenever the two magnons are not
adjacent in the open string word, i.e. when Iy > [y + 1E| In the situation that

the magnons are adjacent, we find

c [ c
EY(ly,l1+1) = (1 + N) Yy, +1)— Nw(ll—l,lg)—i/)(lﬁrl,ll +2) (E.3)
We make the following Bethe ansatz for the wave function
w(ll’h) — etpilitipalz + 312eipl111+ip,212 (E4)

It is straight forward to see that this ansatz obeys (E.2)) as long as

=3 _|_ = / etP1 4 e—zp1 _ (eipz + e—ipz) (E5)

and

1/%(6”’1 +e ) 4P e = 1/%(6”3/1 +eT ) e peT2 (E.6)

Note that (E.5) is indeed the correct one loop anomalous dimension and (E.6))
can be obtained by equating the O()) terms on both sides of (2.30)), as it should
be. From (E.3) we can solve for the reflection coefficient R. The result is

2611)2 /< ezm +ip2 _
Rip = (E.7)

2 1[)2 /Nezpl"l‘in — 1

Two simple checks of this result are

1. We see that R1a Ry = 1.
2. If we set ¢ = N we recover the S-matrix of [96].

We will now move beyond the su(2) sector by considering a state with a
single Y impurity and a single X impurity. The operator with a Y impu-
rity at [; and an X impurity at Iy is denoted O(R, RY, R5; {l1,12,---})yx and

the operator with an X impurity at [y and a Y impurity at [l is denoted

INotice that we are associating a lattice site to every field in the spin chain and not just
to the Zs.
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SCATTERING

O(R,RE, RE: {l,,l5,---})xy. We now introduce a pair of wave functions as

follows

0= Z [dJYX(lllea - )O(R, RE, RE; {11, 12, Pyx

1o,

+¥xy(l, o, )O(R, R, RE: {11, 1o, P xy |- (E.8)

From the one loop dilatation operator we find the time independent Schrédinger
equation (E.2|) for each wave function, when the impurities are not adjacent.
When the impurities are adjacent, we find the following two time independent

Schrédinger equations

c c
Evyx(li,li+1) = (2 + N) Yy x (i, +1) — \/ﬁwyx(h -1, +1)
—Yxy (i, i+ 1) — vy x (1,51 +2) (E.9)
c c
EYxy(li,li+1) = (2 + N) Uxy (Il +1) =4/ N"/)XY(ll -1,11+1)
—Yyx(li, i+ 1) —vxy (1,11 +2) (E.10)
Making the following Bethe ansatz for the wave function
Vyx (i, +1) = eiPrlitipals | Agipilitiphle
Uxy (I, Iy +1) = Be'ih vl (E.11)

we find that the two equations of the form (E.2|) imply that both ¢ xy (I1,l2)
and ¥y x (I1,11 +1) have the same energy, which is given in (E.5)). The equations

(E.9) and (E.10) imply that

eiPh 4 eiP2 _ ] _ %eipHipé
14 /SePitirz — 2eirt
eiP2 _ oiDs

(E.12)

B = T JoonTt —gan
It is straight forward but a bit tedious to check that |A|?> 4+ |B|?> = 1 which
is a consequence of unitarity. To perform this check it is necessary to use the
conservation of momentum p; + ps = p} + p, , as well as the constraint .
We now finally obtain
A ePafeirr 1 [Tt
R 22 — |/ LZerritiv: — ]

(E.13)
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SCATTERING

This should be equal to

1 BE
“(1+ 12) (E.14)
2 ( Af

where A2 and B} are the S-matrix elements computed in section [2.8] describ-
ing the scattering between a bulk and a boundary magnon. This allows us to

perform a non-trivial check of the S-matrix elements we computed.
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Appendix F

Another check of the

S—matrix

F.1 Numerical one-loop perturbative check of
the reflection S—matrix

In this section we perform numerical checks of the analytic expression for the
S—matrix between a boundary and a bulk magnon, for various values of r €

[0,1]. Toward this end, recall the following elements the S—matrix

et s} (o —a) (o] —ra Yoot~ Jof oy —ra (e —refhait) gy
, (F.

Al = So S o =yt (o (et — )t (r— —
nnaty ¢35 (Ty —) ) (e —z) )($1 (reg —zy ) oy (rey —z3 ))
and
BR _AR 1+ 275/27(1‘/17_75#) By (F 2)
2R el @y —al) (e el —reiTal) B '
where

By =zyay" [(zy —a7)(2zy — )7 ) (232} —aiay)

_ _ _ rabt — o'
_$/1+I1 (x; —rzy ) (T — x;)} /2_7/2+
Ty — Ty
+ [ at (o7 = raf) (a7 —raf) +afay (o] — o)l - af)]etal,
_ _ _ +_ .= . I+ =
By = (roy —af) [af 2l o A= — offagay ],
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APPENDIX F. ANOTHER CHECK OF THE S—MATRIX

and the initial and final boundary momenta of the boundary magnon are coded

in 2 and 2%F. For the bulk magnon zF and z/ capture the initial and final
momenta. We denote by % (1 + Jj—%) ‘171001) the one loop piece of . To
evaluate this one loop piece we need a relation between the initial and final
momenta which can be obtained by solving the conservation of energy and

momentum conditions

p1+ p2 = pi + Db,

(F.3)
eiP1 + e~ Pt + r(eipz + e—ipz) — eipll + e—il)/l + ’I“(eipé + e—ip/g)
The solutions to (F.3)) are used in the one loop correct expressions for x+;
1.
rT =a"e? (F.4)
2. For a bulk magnon
2T =e i3 _ +2g sin(g) +0(g?). (F.5)
2gsin(%) 2
3. For a boundary magnon
- ) Cip _ipreip—l 9
T = S o) +ige P(r—e )7704_61? + O(g7). (F.6)

. 1 BE
We use (F.4), (F.5) and (F.6) to numerically evaluate 3 (1 + Ag)
The expression (E.13)) becomes

A e it ] — peiritin F
— = - — 7
R12 2eiP1 — peipitipz ] ( )

1—loop

R
We now are ready to compare (F.7) and % (1 + B”)

R
A12

1—loop

F.2 Setting up the numerical test

F.2.1 Solutions for p, =0

As a warm up example set the initial boundary magnon momentum

p2=0
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and consider a bulk magnon with initial momentum p; treated as an independent
variable. In this case one can solve the one loop conservation of energy and

momentum, and (F.3|) becomes

P+ Py =1
P (F.8)
rcos(p1 — pi) + cos(p}) = 7 + cos(p1)
The non-trivial analytic solutions to (F.8) in terms of p; are
-1 P1
| =2atan | ——t (—) F.9
P} aan(r+1 an (7 (F.9)
Py =p1— P (F.10)
F.2.2 General solutions for p; # 0
Now consider the case ps # 0. Recall the energy momentum conditions
Pr+py=p1+p
LR A (F.11)

7 cos(p) + cos(py) = 1 cos(p2) + cos(p1)

If we fix po constant and non-zero and treat p; as an independent variable, we

can solve (F.11]) analytically. We find

1

; 1 2rtan(p71)Cos(p2)+rsin(p2)frtanQ(%)sin(pg)
p; = 2atan [2 ( 147 cos(pg)—rtan(%)sin(pg)

pl

+(1 |:27‘ tan(%) cos(pz2)+rsin(p2)—r tan2(p71) sin(pg):| 2
4 147 cos(p2)—r tan(T) sin(p2)

147 cos(p2)—r tan(%) sin(pz2)

ot () (r cos(pa)—r tan( %) Sm(m)) ] (F.12)

Given 0 <7 <1 and py # 0, one finds the solutions

;o 1 2rtan(p71)cos(p2)+rsin(pg)—rtanz(%)sin(pg)
p; = 2atan lz ( 1+rcos(p2)—rtan(%l)sin(pz)

1 |:2'r tan(%) cos(pz2)+rsin(p2)—r tan2(p71) sin(pz2) :| 2
4 147 cos(pg)—rtan(%)sin(pg)

+

1
tan® (5L ) (1—r cos(ps))—r tan( %) Sin(m)) 2‘| (F.13)

147 cos(p2)—r tan(%) sin(p2)

Ph = p1+Pp2 — i (F.14)
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Setting pa = 0, one quickly checks that (F.13)) and (F.14)) reduce to (F.9) and
(F-10).

A
Now, use (.13 and (F.14)) to compare the two sets of complex numbers 7
BR
and % (1 + Tg)

F.2.3 Numerical plots for the magnitudes

The following numerical plots compare the magnitudes % ’1 + f—i

the set of values {r = 0.01,py = —3.1416}, {r = 0.55,p2 = =3}, {r = 0.8,p2 =
=27}, {r = 0.95,p2 = 2}, {r = 0.99,p; = 1.308} and {r = 1,p; = 1}. The

_A
and ’Rn ‘ for

range of the initial momentum of the bulk magnon p; is shown on the horizontal

axis of the plots.

Magnitudes for r = 0.99 and P, = 1.308 Magnitudes forr=1 and = 1

AR |
—I14B A |

R |
——— [11+B A e

0.8 1 oy
07 1 08 F
0.6 1 a5y
as J 04f
.
2 22 24 26 28 3

Py
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Magnitudes forr =095 and p, =2 Magnitudes forr = 0.8 and p, =-2.7
T T T T T T T 1 6F T
1ar
1A/R 5 AR, 5
14+ i
111+B, oA, Jha] 1014, 4, 02|
1.2 1ot
1.1
1 E
UE=] o
0.8r
ot
0.7t 1 s
. . . . . . . . nal . . . .
2.2 2.3 2.4 2.5 2.6 27 2.8 29 3 3.1 0.5 1 1.5 2 2.5 3
Py 3
Magnitudes for r = 0.55 and p,, =-3 Magnitudes forr =0.01 and p, =-3.1418
14 1R, | [ ol AR |
12 11+B, oA, el | 1014, 4, 02|

-0.4

F.2.4 Numerical plots for the phase differences

Similarly, the following numerical plots compare the phases of 3 (1 + ii;) and
(Rin) for the set of values where {r = 0.01,p; = —3.1416}, {r = 0.55,p2 =
=3}, {r = 08,ps = —2.7}, {r = 0.95,p; = 2}, {r = 0.99,p2 = 1.308} and
{r = 1,p2 = 1}. The range of the initial momentum of the bulk magnons p;

appear on the horizontal axis.
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0.8

0.7

-0.1

0.5

0.4

0.3

0.2

-0.1

-0.2

-0.4

-0.6

-0.8

Phages for r = 0.99 and py=1.308

angle (P\.’F!1 2)

anglelil +Ei1 2.’)’\1 2)."2)

Phases for r = 0.55 and [N =-3

2 22 2.4 26 2.8 3
Py
Phages for r = 0.95 and p,=2
T T T T T T T T
angletNH12)
angle(il +Ei1 24‘)’L1 2)."2)
L . L L . L L L
23 2.4 2.5 25 27 2.8 29 3 3.
Py

angle ENF!1 2)
anglelil +B1 24'A.1 2)."2)
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a3

oz

angle (AR

12:l i
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FPhases forr = 0.8 and py=-2.7

angle (AR

12:l
anglelil +B1 2."PL1 2)#’2) i

Py
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0EF
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F.2.5 Relative errors in the magnitudes

iz || (28 3
Riz
The size of the errors are due to the numerical precision offered by matlab. To

We have studied the relative errors ‘ ‘ for each of the above cases.
see this, one can change the numerical precision. The relative errors decrease
as we increase numerical precision. For example, fixing the matlab precision to

be 10716 we find the following numerical plots.

15 Felative errorz for r =099 and p,_, = 1.308 15 Felative errorsforr=1and p_ =1
% 10 2 w10 2
2 3
| AR T B A iR IAR ) | —— (AR ST B A IEIMAR |
1.5 1 281 1
1 1 H 1
0.5 1 181 1
i 1 1 1
-0.5 1 0o 1
1 1 of 1
-1.5 q -05F 4
2 L L L L L I R L . L L L L
1.8 2 2.2 2.4 2.6 2.8 3 3.2 1.8 2 22 2.4 25 2.8 3 3.2
Py 3
15 Felative errors forr =095 and p, =2 14 Relative errorsforr=0.8 and p,, =-2.7
g1a 2 1510 2

AR, HT 4B, A AR, |

IR FIT 4B, A EIAAR, |

2.2 2.3 2.4 2.5 26 2.7 2.8 29 3 3.1 0.5 1 1.5
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15 Fielative errors forr=0.55 and p, =-3 15 Relative errors forr = 0.01 and p, =-3.1416
% 10 2 w10 2

1 5

. AR T B A iR IAR ) | Al —— (AR ST B A IEIMAR | |
4

3

2

1

o
-1
-2
]
4 L 5 L L
0.5 1 1.5 2 2.5 3 3.5 1 1.5 25 3

Py

In this way, we confirm the S—matrix describing the scattering of a bulk and a

boundary magnon.
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Appendix G

No integrability

The (boundary) Yang-Baxter equation makes use of the boundary magnon (B)

and two bulk magnons (1 and 2). For our purposes, it is enough to track only

scattering between bulk and boundary magnons. The Yang-Baxter equation

requires equality between the scatterinﬂ which takes B +1 — B’ + 1’ and

then B’ +2 — B’ 4+ 2 and the scattering which B +2 — B’ 4+ 2’ and then

B’ +1 — B’ +1 For the first scattering, given the initial momenta py, p2, pg we

need to solve

\/1+8Asin2p21 + \/1+8>\ (1472 +arsin? £2)

:\/1+8)\sin2p;+\/1+8)\ ((1+r)2+4rsin2%3) (G.1)

\/1—|—8)\sin2p22 + \/1+8/\ ((1+r)2 + dr sin? g)

/ k k
= 1+8)\sin222+\/1+8)\ ((1+r)2+4rsin2 ;) (G.2)

IThere are some bulk magnon scatterings that we are ignoring as they dont affect our

argument.
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APPENDIX G. NO INTEGRABILITY

for the final momenta ki, ko, kp. For the second scattering we need to solve

\/1+8Asin2p2 + \/1+8)\ ((1+r)2 + 47 sin? %B)

2
_ 1+8)\sin2l22+\/1+8)\ ((1+r)2+4rsin2§) (G.3)

\/1+8Asm“;1 + \/1—1—8/\ ((1+r)2 + drsin® ;)

:,/1+8Asin2121+\/1+8A<(1+r)2+4rsin2l§> (G.4)

for the final momenta [y,ls,lp. It is simple to check that, in general, k1 # [j,

ko # Iy and kp # I, so the two scatterings cant possibly be equal.
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Appendix H

Double Coset background

The double coset ansatz was formulated in [20] by diagonalizing the one loop
dilatation operator. In this section we will review those aspects of [20] that are
crucial for our study

At the most basic level, the double coset ansatz follows from the fact that
there are two ways to decompose V™. To start, refine V2™ by the U(1)?

charges measured by F;;, as follows:
Vo =@F_1V; (H.1)

The vector space V; is a one-dimensional space. It is spanned by the eigenstate

of E;; with eigenvalue one. Consequently if v; € V; we have
Eijvj = 6i5v;
Eijvr = 0jx0;. (H.2)

In the restricted Schur polynomial construction of [16] for long rows, a state
in V; corresponds to a Y-box in the ith row. The U(1) charges of a restricted
Schur polynomial can be collected into the vector m, which corresponds to a

vector with m; copies of vy, mo copies of vy etc.

[0, m) = [vP"™ @ v ® -+ @ v, (H.3)
A general state with these charges is given by acting with a permutation

|vg) = J|v?’”1 QUM R ® vF"r ). (H.4)
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where

0|V, Vi, @@ Uip> = |vig(1) ® Vig(2) @ ® Via(p) > (H5)

This description enjoys a symmetry under
H =S5, X Sy X -+ X S, (H.6)
and as a consequence, not all o give independent vectors

|V5) = [voy) (H.7)

if v € H. The restricted Schur polynomials are organized by reduction mul-
tiplicities of U(p) to U(1)? , which are counted by the Kotska numbers and
resolved by the Gelfand-Tsetlin patterns. It is possible to prove the equality
of Kotska numbers and the branching multiplicity of S,,, — H. This is a very
direct indication that there are two possible ways to organize the local operators
of the theory.
We can develop the steps above at the level of a basis for Vp®m. In terms of
the branching coefficients, defined by
] ;{ %:B;;IHB;:M (H.8)

we have

‘Tﬁa Sy 15 > = ZBS_AH |Us,i,j>

= ZBHlH > F 0)|vg). (H.9)

o€ESm
The p index is a multiplicity for the reduction of S, into H. We also have

ds
m!|H |

(1, 5, p, 4| = > (e TR (@B (H10)

0ESm, k

which ensures the correct normalization
<7ﬁ,u,y;j|ﬁ,5,u;i> = 6ﬁ1ﬁ5u85ji6w/- (Hll)
Finally, the group-theoretic coefficients

Cs () = |H]| ri?( ) Byt Bt (H.12)

H1p2 ki lpo
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provide an orthogonal transformation between double coset elements labeled by
o and the restricted Schur polynomials labeled by an irreducible representation

s Fm and a pair of multiplicities p1, 2.
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Appendix 1

How to compute traces

In this appendix we will compute the traces needed to evaluate the action of
Df) in the Gauss graph basis. The generic form of the trace we need to evaluate
is

Tr(Apsyw Bpuys) (L1)

with A and B any arbitrary product of the EZ(JA )

s. If we are able to compute
this trace, we are able to evaluate the action of any differential operator that
does not change the number of Z or Y fields, on the Gauss graph operator in
the displaced corners approximation. This therefore provides a general method
to exploit the simplifications of the large N limit, for this class of operators.
The Fourier transform we want to consider maps between functions labeled
by an irreducible representation s and a pair of multiplicity labels and functions

that take values on the double coset H \ S,,/H We can choose a permutation

o to represent each class of the coset [¢]. The transform is then

F=Y Tu0)aBi " By 7 f(s.a, B). (1.2)
sa, 3

For further details the reader is referred to [20].
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I.1 Projector transformed

In this section we will Fourier transform the intertwining map used to define

the restricted Schur polynomial. The projector that participates in the trace

([.1)) can be expressed as

Pupv = Z |7ﬁ2,u,u, b><m27uayab| (13)
b

We will make use of the relations

— . ds [ - s s
sl = g D0 (il T ()BT (14)
O'ESnuk
and
sy =y Ty (0)Bi oo, i), (15)
G'ES7n7k
as well as
(@, milo|o,m) = Y 5(o) (1.6)
YyEH
and
1 )
s—1 s—lyg (s)
ZBcp Hde "= ﬁ Z ch (’7)7 (17)
p yeH

We will use the notation |v,) = o|#). It is then simple to show that

N P By BT (o) = S0 s, a) (07, s,v,al By B T (0)

ml Im
suvlm sprima

“HE X X s )

TYESm Y1,72€H
(L8)

This last equation implies that the permutation applied to the ket and the
permutation applied to the bra are related by multiplication by a permutation

representing the double coset element.

1.2 Summing over H

We consider an intertwining map ps,,,, built on the state |01, 71) with symmetry

group H; and intertwining map p¢,s built on the state |02, 172) with symmetry
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group Hs. We make no assumptions about H; and Hs. In general they will
be different groups and hence we Fourier transform p,,, and p,s to different

double cosets. Using the result obtained above, the Fourier transform of

Tr(Aps/pru'y&) (19)
is

T= ‘H1|3|H2|3 D730 D (walvaos ety A |on) (i lvioy gy Bibslvs)

Yi€EH; T, €H; Y; ESmy

\H1|3|H2|3 Z Z Z (valyeoy M athy L Aty [ur ) (w2 |tby P BT by oy |ur).

Yi€EH; T, €H; Y; ESmy
(1.10)

To get to the last line, we used the fact that the matrix element (v;|y;07 'm197 t Baba|vg)
is a real number and the permutations are represented by matrices with real el-
ements. To make the discussion concrete, it is useful to make a specific choice

for A and B. This will allow us to illustrate the argument in a very concrete
setting. In the end we will state the general result. Choose, for example,

A=EJES B=EE} (L11)

ij
Using the facts that

Ylv1) = [v1) Vv € Hy
6|’U2> = |’l}2> V,B € H2

-1
Y LEWyY = EYY W e S, (1.12)
we readily find
1
T= 7|H1HH2| Z (va|oy 1Ew2(1)E¢2(2)¢ |U1><U1|Ew2(1 E%( )1/1101|’02>
Y, €ESm
1 1, _
A D (valoy Myt Ao [on) (valy P B ot men). (1.13)
Vi €ESm

where on the last line we have written the general result. Our next task is to

compute the sums over ¥; and .
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1.3 Summing over S,

In this subsection we consider two increasing difficult examples before we state
the general result. The first example is closely related to the trace needed to
obtain the one loop dilatation operator. Since we know the result of this trace,
this example is a nice test of our ideas. The second example is a simple but
nontrivial example which will illustrate how the general case works. In the

following section we will quote the result for the general case.

1.3.1 First evaluation

Choose A = ES)) and B = E}E(ll) to get
1

— 1 1
T= i 2 o Bl Vb B o e
Vi €Sm

1
aAA > (oilyy LEL W aalvs) (o L Vo [vn). (I1.14)
i €Sm

We must turn a b vector in |v1) into an a vector (and possibly permute) to get
|v). Since the ordering of the slots in |v1) and |vg) is arbitrary, we can remove

this possible permutation by declaring
[v2) = B |} Jor) = By lea). (1.15)

Thus [in the computation below we denote by S! (52) the set of all slots in
|v1)(|ve)) that are filled with an a vector]

1
T = —— Z <1}1|1/)1 1E;/;2 )U2Eab |’U1><’Ul|El§i)Ew2(1)1/110'1|U1>
[Hi[H]

1 o
:m S (et o By Vo B jun) (i B BL Yo un)
Y ESm

|H1||H2 S (ney toa(l o2tha(1)))6 (201 ey (1,2(1))

;€S vi EH1
X Z d(oatha(1 Z d(ya(1

z€eS?2 yeSs?2

|H1||H2 Z 25710172 L2 (1))o2(1, 0212(1)))

$i€Sm vi€Hy
X Z 5 0’211)2 Z 5 d)g (116)

z€S?2 yeS2
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Now consider the final sum over 1, 15(1) is the start point of an oriented
edge in Gauss graph o9, 02102(1) is the end point of the same edge. The delta
functions on the last line ensure that both endpoints of this string are attached
to node a in the Gauss graph. This is swapped with the edge labeled 1 (i.e.
the edge in the first slot) and compared to o1. According to , the edge in
the first slot of |v1) is attached to node b. Thus the above sum is ensuring that
when a closed loop on node a of o3 is removed and reattached to node b of o5
we get 01. The above sum is nonzero only when ¢; and oy are related in this
way. The deltas only fix 15(1), so summing over Sy, the remaining “unfixed”
piece of ¥y gives (m — 1)!. The first delta will, as usual, give the norm of Gauss
graph o1 and we will get a nonzero contribution whenever ¥9(1) is one of the
values in S2. There are ny,(o9) possible values. Thus, when T is nonzero it
takes the value

T = (m —1)!nga(02)|0(01)? (L.17)

where we have assumed that both o7 and o2 have a total of p nodes and we
denote the number of oriented line segments stretching from node k to node [
of o by ngi(c). We have denoted the “norm” of the Gauss graph operator by

|O(01)|2. This is the value of the two point function of the Gauss operator

0(a1)]> = ] nij(01)! = (Orr(01) Orr(01)). (1.18)

ij=1

The value of the trace ([.17)) is in perfect agreement with the known result [? ].

I.4 Second evaluation
For the second example we consider, we choose
1) (2) 1) (2
A=EYE? B=EE} (L.19)

.

There is some freedom in the placement of the indices on A and B. To see why

this is the case, recall that we are evaluating the Fourier transform of

Tr(Apsuu Bpu'yé) (120)
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The intertwining maps p,,, and p,,s commute with any element of S,,. Con-

sequently we have

Tr(Apsuquu'ytS) = TI‘(AUU_lps;u/Bpu'yé)
= Tr(AUpSWU_prm(;) (1.21)

where o is any element in S,,,. Choosing o = (12) and using the representation

(12) = E((l}))Elgz) where a and b are summed from 1 to p, as well as the product

rule
EWEY =EJEL A+B EVEL =0,EL) (1.22)
we find
1) (2 1) (2 1) (2 1) (2
A(12) = El(ci)Ei(j)(12) = El(ci)Ei(j))E((zb)Elga) = El(ej)Ei(i) (1.23)
1) (2 1) (2) (1) (2 1) (2
(12)B = (lz)E]('l)El(k) = Et(zb)EIEa)Ej<l)El(k) = El(l )E]('k:) (1.24)

This implies that we can rather consider A = E,(c;)El(f ) and B = El(ll)Ej(.i)

without changing the value of the trace. In this case we have (argue as we did

above and use |vg) = E,(C;)\m))

1 —
T = A > (vaoy 1E§J’2(1)Eﬁf2(2)w1|v1><vz|EZ§’2(1)E§ff(2)wlal|v1>
%‘Esm
1 —
= TETE] Z (v1 ]2y 1Ef13(1)EZ§2(2)02|v2><v2|Eﬁz(1)E}ff(2)wlol|vl>.
;i €ESm

(1.25)

Notice that when E;lf(z) acts on |vg), it does not change the identity of any of
the vectors appearing in |ve). On the other hand, Eﬁf(l) will turn an e into an
e;. Thus, again up to an arbitrary permutation which we can always remove,
we must have

jv2) = EL |o1) (1.26)
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The trace now takes the value

. va(l) po2(2) ;) p) (1) p¥2(1) pa(2)
"= i X B B el o BB OB )
1 - o2t2(1) ao2t2(2 1 1 2 (1 (2
- m > (b otz O B B o) (| B B B e o)

Yi€ESm

EAE] |H2 Do D Snvi oa(oawa(1), 1)) (07 b (1,42(2))

Yi€Sm vi€H1

D awa(1),2) > 6(12(2),y) Y d(oatha(1),w) Y doaa(2)

zeS? yeS? wes? ves?

\H1||H2 Z 25710172 L2 (1))o2(1, 0212(1)))

P4 ESm vi €H1

Z5¢2 251/)2 2502% 250’2%

west ves? Wes? oy
(m —2)! P ‘ P |
- mnlk(02)nki(02) [[7aa(e)! J]  nrslon)! (1.27)
g=1 r.s=1,r#s

whenever it is nonzero.

I.5 General result

Recall that both T" and R have p long rows or columns. For the general result
we consider
D osurm Y Te(Apayu Bpuns) By By T (00) By B L ()
uyodnp

1

A Z (valoy (W3 T Ao )ibr |v1) (v2| (1 B 2)thronm |vr)  (1.28)

YiE€ESm

where A and B are each products of a collection of the E((LZ)S with 1 < a, bleqp
and 1 < a < m. We say that E((l‘;) occupies slot a. The sum over 1, sums over
the possible choices for the slots into which we place the factors of E((;Z) in A
and B. Thus, the specific slots chosen for the factors in A and B are arbitrary -
we must simply respect the relative ordering of factors in A and B, i.e. factors
sharing the same slot in one labeling share the same slot in all labelings. The
sum over 1 ensures that the relative labeling of the vectors appearing in |vy)

and |ve) is arbitrary. Thus, the specific labeling of the directed edges in the
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Gauss graph is arbitrary which ensures that the above sum is indeed defined on
the relevant double cosets to which o7 and o2 belong. There are two pieces of

information that we need to read from o; and o9, A and B:
(1) When is the sum nonzero?
(2) What is the value of the sum?

It is simplest to begin with the second question first. Towards this end, consider

the expressions for A and B. After using the algebra for the E((;Z) if needed, we

)

know that at most a single ELSZ acts per slot in both A and B. By inserting

factors of
p

Y =B = (1.29)

if necessary, we can ensure that the same set of occupied slots appears in A and
B. For concreteness, assume that q slots are occupied in both. Use 4/, (i) to
denote the row (column) indices of the E,p in the ath slot in B and use j7, (55)
to denote the row (column) indices of the Eg;, in the ath slot in A. Thanks to
the lessons we have learned from the examples treated above, when the sum is

nongzgero it is given by

m Z (valo (3t Adba )b [v1) (va| (5 P BT o) thronya fv)
$i€Sm
_ |o

a=1

If any particular n;;(o2) appears more than once, each new factor in the product
is to be reduced by 1. For example, n12(09)? would be replaced by ny2(09)(n12(0)—
1)(n12(02) — 2). By taking the transpose of ([.30), the value of the sum is not
changed because it is a real number. However, the roles of o7 and o9, as well as
of A and B are reversed on the left-hand side of . Consequently, we must

also have

1
|H1||H| D (valoy (W5t Ava)r o) (val (5 P B o)1y v
i €Sm
—o(
- \51 ||Hzg2 H Miais (1.31)
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The equality of ([.30) and ([.31) defines our delta function. We find that
dap(lo], [oa]) = 1 if

(m —@)!|O(01)? _ (m—q)"|O(02)?
[H,[| 7| [[asslon AN ) R

a=1 a=1

and it is zero otherwise.

We will sketch how the general result is proved. First, even if A and B
straddle ¢ < m slots, by using we can always introduce further Ea)s so
that all m slots are straddled. Thus, without loss of generality we can now focus
on the ¢ = m case. In this case, it is easy to prove that if [[%_; nc jr (02) is

nonzero, it is given by
H Nic jr = 10(0))? (1.33)

which again proves the general result.

1.6 Illustration of the general result

To illustrate the formula derived in the previous section consider computing the

trace for the case that

1 2 3 4 5 6
A= B Y ) £
B=ESEYESEGEY ES) (1.34)

For our example we have m = 6, ¢ = 6 and p = 3, so that (m —¢)! = 1. We

choose o1 and o4 as illustrated below

01

09 =
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From these Gauss graphs we easily read off H; = Ss x S3 and Hy = Sy X Ss.
Consequently |H;| = 12 and |Hz| = 48. If we choose the permutation

to represent the first Gauss graph, then we can choose the first factor in H; to
permute 1 and 2 and the second factor to permute 3, 4 and 5. If we choose the

permutation

to represent the second Gauss graph, then we can choose the first factor to
permute 2 and 5 and the last factor to permute 1, 3, 4 and 6.

From the row indices of A given by the ordered set {3,1,3,1,3,3} and the
column indices of B given by the ordered set {3,3,1,3,1,3}, we read off

H Nie jr. (02) = naz(o2)nz1(02)n13(02)n31(02)n13(02)n33(02)
a=1

— n33(02)(n33(02) — 1)nzi(02)(na1(02) — 1)niz(o2)(n13(o2) — 1)

=[0(02)* = 8. (1.37)

which indicates that the sum may indeed be nonzero. From the column indices
of A given by the ordered set {1,1,2,2,2,3} and the row indices of B given by
the ordered set {2,2,1,1,3,2}, we read off

q

[T 7z (01) = miz(01)m12(01)n21 (01)nar (01023 (01 )3 (o)

— ni2(01)(n12(01) — D)nai(o1)(n21(o1) — 1)nes(or)nsz(or)

=[0(o1)]* = 4. (1.38)

which indicates that the sum is indeed nonzero. We finally obtain

1 32

—1 —1 —1 T _ _
mwi;m(vﬂ% (Vg " Atha)ip1|v1) (2| (g " B ¢2)¢10171\U1>—7|H1HH2| =

(1.39)
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1.7 Results for the 2—brane 4—string system

In this section we collect the operator valued coefficients that are relevant for

the example described in Sec. III. The coeflicients are

6T’t/ 57’/75/
A= 1L 272 v (N 4+ Ry —1) (N + Ry — 2
5RT< i + R )5R12T12( + R —1)(N + Ry — 2)
57" t
+ ORT Riil Spyry (N + Ry —1)(N + Ry —2)
6T/t/
+ 6RT R222 5R/212T2//2 (N + RQ — 2)(N + RQ - 3)

- 2(6RT57-115’1 5R’1T1’ (N+R—1)+ 6RT5r;t’25R’2T2’ (N + Ry — 2))
Oty

St
BT Ri(Ry - 1)

Spyry,(N+ Ry —2)y/(N+ Ry —1)(N+ Ry — 1)

Orptr

R, T RES) (le ) ORy,TY,

Orptr

- 6 + 7(53// Tl//2
BT /Ro(Ry — 1) 2

(N+ Ry —1)\/(N+R)(N+Ry—2)

(N 4 Ry —3)\/(N+Ry)(N + Ry — 2)

Tt
— RngméR/{?TQHQ (N + RQ - 2)\/(N + Rl - 1)(N + R2 — 1)
+ 2(5RT2T5T§t'1§R’2T{ \/(N +R1)(N+Ry—2)+ 5R;'1T6Tit/253/1T2/ \/(N + R —1)(N+ Ry — 1))
(1.40)
N+R —1)(N+Rs—1
B= —85r’2t’1(5RT5R11/2T1”2\/( ! Rz.(RQ 2= 1) (1.41)
57“/ t
O == 8 5R2+1+Tm5}3/1/11¥/2 \/(N + Rl - 1)(N + Rl - 2)(N —|— R2 - 1)(N + RQ)
6T/t/
1t _ _
5T;t/

R (N+Ry—2)\/(N+R —1)(N+Ry— 1)

T ORAT T, T Ty R T

(1.42)
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(;T,t/
ct=38|é ——2 S/ (N+FR)N+R +1)(N+Ry—2)(N+Ry—3
R T i 1 2) Ry V 1)( 1+ 1)( 2 — 2)( 2 —3)
67“’75’
_5 22 (S// //N+R —3 N+R N+R _2
RY,T /R27(R1+1) R22T12( 2 )\/( 1)( 2 )
Ot}

Sy (N Ry~ DN+ RN R 9)|.
Rf,T RQ,(R1+1) R12T11( 1 )\/( 1)( 2 )

(1.43)
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Gauss graph normalization

In this Appendix we prove the formulaE]

P

(010 NI0(0)) =10(0)* = Y d(moreo™) = [] nisl)t,  (3.1)

1,72 €H i,j=1

which is the magnitude squared of a Gauss graph O(c). This formula is derived
n [98]. Recall that n;;(o) is the number of strings starting from the 7’th giant
and ending on the j'th giant. We also recall that H = Sy, X Sy, X -+ X Sy 18
the largest permutation group that leaves the Gauss graph label o € H\ S,,,/H
invariant. In this discussion, consider a concrete example and use it to define

our notation. Accordingly, consider the Gauss graph

(re—0

Figure J.1: This Gauss graph is one of the double coset elements defined by the
charge m = [2,4]. One possible label is o = (1,4)(2, 3).

This Gauss graph corresponds to an element o € H\ Sg/H, where H = S5 x S4.

It is useful to consider the following representation of a Gauss graph

IRecall that §(p) = 1 if only if p is the identity of S,, otherwise it is equal to zero.
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Figure J.2: Above, the two dashed horizontal lines are identified. In doing so,

this Gauss graph is another graphic representation of the Gauss graph in Figure

[Tl
A generic Gauss graph, specified by the charge m = [my,ma, - - - ,mp]E] is

Mo+ 1,---,90 M +1,---, M My 1+ 1,---,9M,

1

Figure J.3: Illustration of a generic Gauss graph label by 0 € H\ S,,/H. Again

the two dashed horizontal lines are identified.

In figure there are a total of m strings stretching between the p— giant
gravitons. The black nodes on the dashed-horizontal lines represent the giants.
These two lines are identified. We label the giants by the integers in the range
{1,---,p}. In this way, labels of the string end points attached to the I'th giant

2Recall that, by definition Zle mi; = m.
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Mo =0, Mk =) m,. (J.2)

According to the above discussion, it follows that 91, = m. o in Figure
permutes the integers labeling the starting points of the strings and maps them
to the integers labeling the ending points of the strings. For a concrete example

see Figure We can now prove (J.1)).

Proof. Note that the terms summed in (J.1) can be written as
Y 9, c. (J.3)
vi€H

Trade the 4(-) function in for a Kronecker delta. The sum in is
counting how many times é% = (G,. The Gauss graph has a symmetry that
we now explain. If we fix the permutation ~; € H, the graph for é,y is the
same as the Gauss graph configuration labeled by y107v2. In terms of pictures

we manipulate the graph C:'W as follow

Nz
) b
G, = o v

v 710772 LY [TV

ZANS S

Figure J.4: Graphical manipulation of the Gauss graph labeled by ;072 and

its relation to the Gauss graph labeled by o.

Accordingly, the graph é% is the same configuration as that obtained from
Gauss graph G,. The sum is counting the elements v; € H that satisfy
the graph equality G'Yi =G,.

Recall that n;;(o) counts the number of strings starting from the i’th giant

and end at the j’th giant. Hence, the following cases are clear:
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1. Given a Gauss graphs O(c) with
OS’I’LU(U)SL \V/Z,jzl,,p (J4)

the only element v; € H such that G,, = G, are 73 = v2 = 1. In
this case the sum (J.3) is trivially equal to 1 and the magnitude of the

corresponding Gauss graph is

|O(0) | = H nij(o)! = 1. (J.5)

ij=1
2. If a Gauss graph O(o) has

then the v1,v2 € H that contribute to the sum in (J.3) belong to two

isomorphic subgroups of H with order n;;(o)!.

M 1+1,...,9ﬁj

G-ny ] Ut D

O(o) =

i-1 " 1 (t+1)

M 1+ 1, ...,90

Figure J.5: Above, we have only illustrated the m;; parallel strings stretching
from the i’th giant to the j’th giant. The n;; + n;; different integers labeling
these strings belong respectively to {9t,_1 + 1,--- ,91;} for the starting points
and {9M;_1 +1,---,M;} for the ending points.

Accordingly, the permutation subgroups H; and H; are respectively con-
structed from the n;; integers in {91 +1,--- ,M;} and the n;; integers
in {9M;_1+1,---,9,}, which label the end points of the n;; strings visible
in Figure
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This is the only source of symmetry so that

= I nisto)!

i,j=1

A straightforward example illustrating (J.1]) is the trivial Gauss graph o =

1g,, which is a BPS state. Given U(1)P charge m = [mq,ma, -+,
state has
TLij =
0 i#jJ.

It follows that

O)[" = [H] = Hml

This is indeed correct since H itself leaves the graph invariant.
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Appendix K

The projective null cone in

D =6 and CFT in RS

We review the connection between conformal transformations in R'»® and Lorentz

rotations in R24. Our conventionll for the metric of R%4 is

-1

NMN =

o O O o O

o O = O O O
o = O O O O

o o o o o
o O O o ~= O
o o O = O O

-1
- < MN

The coordinates in R?>* are X™. The main idea of the projective null cone
is to embed our physical 4—dimensional space R'® in R?%. Let z* =0, 3
be the coordinates of spacetime R'3. There are two extra dimensions in the
6—dimensional space that we have to project out if we want to return to lower
dimensional space. A simple way - due to Dirac [99] - to remove dimensions in

an SO(2,4) covariant way is to restrict to the subspace {X™} defined by

mun XM XN = 0. (K.2)

IThe indices M, N --- run from 0, --- ,5
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The set of points { XM} satisfying (K.2)) defines a light cone in R%*. To build
some geometrical intuition expand (K.2|) as

(X9)? 4+ (X7)? = (X1)? + (X?)? + (X7)? + (X*)*. (K.3)

A geometrical representation of this light cone is given in the following figure.

/Y

(=

Figure K.1: This figure gives an illustration of the light cone of the spacetime
R24. The red section line is identified with the 4—dimensional spacetime R':3.
X+ are light cone coordinates defined by X+ = &\/5(4

We will use the canonical basisﬂ B = {en}m—o,... 5 for the spacetime R**. The

ey’s are 6—dimensional column vectors with components
(ear)N = o1, (K4)

An equivalent matrix representation suggested by the light cone is to use light

cone coordinates. Toward this end, define the light cone basis VeCtOI‘B ={ey}

where
] R es—es €5+ ey
é,=e, , é_= 75 é, = 7 (K.5)
2More precisely, one also needs to consider the dual basis B* = {e}Ym=o,-..,5, where
€05 = feg:s and e] |i:1,-»- 4= el =1, 4" with T : signifies taking the transpose.

3All hatted indices M, N, --- take value in {0,1,2,3,—,+}

- 134 —



APPENDIX K. THE PROJECTIVE NULL CONE IN D = 6 AND CFT IN R"?

In this light cone basis the metric of R%* becomes

-1 0 0 0 O 0
0O 1 0 0 O 0
o 0 010 0 0
0= [ax] = (K.6)
0 00 1 O 0
0 00 0 0 -1
(0 000 -1 0]
Indeed,
d82 = UMNdXMdXN
= —(dX°)? 4 (dX1)? + (dX?)? + (dX°)* + (dX")? — (dX7)?,
= —(dX°)? 4 (dX1)? + (dX?)? + (dX?)? —2dXTdX ",
=iy dXMdx N,
where
Xt X5+ X4.
V2
Following [100], define a section
X = gh,
X =z, (K.7)
Xt =1,

where 2?2 = Nurhz’. Equation gives the parametric equation of the
section illustrated as a red curve in Figure [KI] a# are the coordinates of the
4—dimensional spacetime R13. A generic section on the light cone is obtained
by ﬁxingﬂ Xt = f(z*) = const. We choose f(z*) = 1 for simplicity. The
motivation for considering the section is now explained. Following [100],
the image of a point on the section with coordinate z# € R after the action
of some Lorentz rotation A € SO(2,4) is another point z’# on the section. This
follows because the light cone has isometry group SO(2,4). It follows that any
point z* on the section is mapped by A € SO(2,4) back to the light cone

4f is a function only depending on the coordinates z# € R%:3
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but not necessarily on the section itself. One has to perform a rescaling A\(X)
to get back to the section. The two successive transformations reproduce the

conformal transformations in RY3. Consider the induced metric on the section

d§? = dx,da* — 2dXTdX (K.8)

|X+:f(r#),X*:72?€;";j)'

For the moment allow f(xz*) # 1 so that our discussion is general.
1
X'}icta

Figure K.2: Tllustration of the action of A € SO(2,4) followed by rescaling A(X)
on a small displacement in the section of the light cone, which is identified to

be the 4—dimensional space R%3.

Assume that the action of A maps z# — X'* X*T — X't = f(X'?) and
X/ X . . . .

X'~ = Ty The point X’ is not necessarily on the section R3. To return

to the section R'3 we have to perform a rescaling A\(X’). Performing a scale

transformation X’ — A\(X’) X’ at each point on the light cone is an homogeneous

transformation. To understand this, consider
AINX)X'] - dIMX)X'] = [MX)dX 4 (dX),0MN X - [MX)dX + (dX OV N X,
= \dX'-dX',

where we have used the fact that X’'-dX’ = X’- X’ = 0 on the light cone. Using

this homogeneity, we find
dX] dX" = (NX'))?da!, dz"™, (K.9)
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where 2’ are the coordinates of the section R™3. To complete the argument,
return to the original definition of the section R':3 by setting f(z*) = 1 so that
dX* = 0. Summarizing the above idea, after an action of A € SO(2,4) followed
by a rescaling A\(X), one finds

ds* = (\(x))?ds"™. (K.10)

This is indeed the definition of conformal transformations in R3.

K.1 Reproducing conformal transformations in

R1,3

In this section we will reproduce some conformal transformations in R™3 using
A € SO(2,4) followed by a scaling A(X). The group SO(2,4) is the set of 6 x 6
matrices, that satisfy

ATnA =1, det(A) =1, (K.11)

where AT is the matrix transpose of A. Work in the light cone basis. A point
P in R?* has light cone coordinates pM = (P#, P~,PT%). Furthermore, if we

restrict to a point P on the section R, it has the light cone coordinates

pro =gr,
P = %, z? =t (K.12)
Pt =1

Introduce a four vector b* = [b°, b*, b2, b%]7 and construct the matrix Asor such

that

1 0 0 O B 0
0 1 0 0 pl 0
1. O 0
. 0 0 1 0 0
Ascr=1 0 1 0| = (K.13)
- 0 0 0 1 B 0
b, L 1
0 0 0 O 0
0 31 32 123 bub!
|—b" b b° b 5 1]
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This matrix obeys
det (]\SCT) —1 (K.14)
and
R T . R
(ASCT) 77ASCT =1.

and so it is an element of the group SO(2,4).
Consider the transformation of the point P on the section defined in (K.12)).
We have

pr 1. b H
P-l=10 1 o||%], (K.15)
prt b, o1 |1
Pr =gt 4 %mQ
=P =S pe 2 (K.16)

p/+ — 1 + b#xﬂ + bu4b“' x2.

SN ~ M . .
The point P’ = (Aser)y PV, is on the light cone but does not belong to the

section RM3. Indeed,

A A b b z? b,b!
— pr+ M2 2 M 2
P pr_op P _(z + x)-(z“Jr z)22(1+bux +1»’C>’

b-bx? b, b
= 22 <1+x~b+ 496 >x2 (1+b#x“+ﬂ4x2> =0.

Knowing that P’M’ lives on the light cone, we can rescale by AMP') to recover

R13. To do this

- 1
AP = Brr’ (K.17)
to yield

. o+ ba?

Pl = gt = m (KlS)
1
2
HI1— €z
= - (K.19)
21 +b-x+22kP)

Pt =1, (K.20)
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Define a,, = %, IK.18)) becomes

B zt + at
14 2c-a+ a2x?’

x'?

(K.21)

This is a special conformal transformation in R%3.
Now, consider a translation. To reproduce a translation in R™3 from an

element A € SO(2,4) consider the matrix

1 0 0 0 0 ]
0 1 0 0 0 o
14><4 0 b'u’

. - 0 0 1 0 0
Ar=1b, 1 2= = (K.22)

0O 0 0 1 0

o0 U N A -

L0 0 0 0 0 |

Ay is an element of SO(2,4). After the action of this matrix on a point in the

section
pe Low O b0 | |2t
Pt 0 0 1 1
Pr=g/h = gk e
= PM = { pr- = %2 + byt + b”zb“ = %(xu +by) - (a + 1)
P =1.
(K.24)

It is straightforward to see that the above matrix Ay maps PM ¢ R13 to another
point P’ M’ which is already on the section R'3. Moreover, if we restrict to the
z#—direction then (K.24) tells us that A translates ## € RY3 by b* on the

section R1:3.
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Finally, consider a dilatation in R*3. Use

: (K.25)

SO O O O O

o O = O O O

SO O O O o =
o O O o = O
o O o = o ©o

where ¢ is some real parameter. The action of this matrix on a point P in the

section RM3 gives

P = e
AIJ\;I _ AL _ba?
P =P =ed2 (K.26)
Pt =e?,
It follows that one has to rescale by
AP = Lo (K.27)
B |

in order to get back to the section R3. After rescaling we find

oz = e~ Pk
P//M — P//f — 672(;5% (K28)
fp//+ 1

Again, restricting to the z#—direction the action of A, followed by rescaling
produces dilatation transformations in R*. A, takes a special form if we rotate

back to the canonical basis representation using the matrix M defined from the

change of basis (K.5)

0
0
0

(K.29)
1

0 0
0 0
0 0
0 0

0 cosh(¢) sinh(¢)
0 sinh(¢) cosh(¢)]

o O O O O
o O O O = O
o O O = O O
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Since, the direction X7 is timelike in R%4, the relation (K.29)) shows that a boost
along the direction X* with parameter ¢ in the canonical basis gives rise to a

scaling transformation in R'3.
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Review of the two point

CFT correlation function

In this Appendix, we review the two point functions of primary operators in
CFT. Concretely, we argue that given two spin-zero primary operators O; and

O, with classical dimensions Ay and Ao,

(O1(2)0a(0) = 222 (L)

The action of a conformal transformation g on a primary field with non-trivial

spin in D—dimensional spacetime is

A
D

Ox

U(g)0*(2)U'(9) = Lj(9) | 7

o Ofg ) =0 (L)

where U(g) is an unitary representation of the conformal group. L(g) is a finite

dimensional matrix. More precisely, Lg (g) is an irreducible representation spec-

v

ifying the spin transformation under the orbital transformation z# — [g~1]* z¥.

Close to the identity this transformation take the form
O (2') = 0 (x) + 604 (). (L.3)

In addition, we assume that conformal symmetry is not spontaneously broken,

i.e. the vacuum state is invariant under conformal transformations
U(g)[0) = |0). (L.4)
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FUNCTION

With the above assumptions, the statement of conformal invariance of correla-

tion functions is

(0]0F (1) 052 (w3) - - - Ot () ]0) = (0]OF (24) 052 (h) - - - O} (a),)]0),
= (0[UT(9)U(9)O1" (21)UT(9)U (9) 032 (x2)U T (g) - - - U(9) 05" () U (9)U (9) 0),
= (0|01 (21) 042 (w2) - - - O ()|0) + (01607 (1) 05 (w2) - - - Ofi (,)]0)
(0]0F (21)805 (x3) - - O (w)|0) + - - - + (0|07 (1) 032 (w2) - - - SO (,)]0).

It follows that

(016071 (21)05 (x2) - - Ot (2,)]0) + (0]OF (21)5 05 (w3) - - - Ot (@, )[0) + -+ -
+ 4 (0O (21) 052 (w2) - - - 6O (24)|0) = 0. (L.5)

Now we use (L.5) to prove (L.1). First, simplify our notation as
(01" (21)032 (22) -~ O3l (20)) = (01O (21) 052 (w2) - - O (24)[0). (L.6)

Using the above identities, we start by requiring translation invariance. Focus

on the two point function. The translation invariance coming from (L.5) is

7] 7]

BOD)0a(0)) + (01002 ) = a* (5 + 57 ) (Or(2)Oa(w) =0. (L7

This equation implies that (O (z)O2(y)) must be a function of the difference
xh — gyt ie.

(O1(2)O0a(y)) ~ f(2" —y"). (L.8)

Next, by requiring Lorentz invariance, it is not difficult to argue that f is a

function of the magnitude of the distance
(O1(2)02(y)) ~ f(lz —yl). (L.9)
Scaling invariance implies
NB1F2 (N o —y)) = f(lz —yl). (L.10)

Thus
const.

f(\l’—yD:'x_y'm- (L.11)
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FUNCTION

To determine the constant in the numerator we require invariance under a special
conformal transformation (SCT) of this function. Recall that a SCT is a compo-
sition of an inversion followed by a translation and then a second inversion. The
constraints following from invariance under special conformal transformations
are most easily obtained by requiring invariance under inversion. The inversion

transformation is

n

T

at =t = ——.
T-T

Thus, the action of an inversion on the field is

o>

Oa(z) = (w;)A(’)A(x). (L.12)

The implication of this for the two point functions is

O3) = |5

ox’

(OLa04) = sy Ty (O (@O w) (L.13)

In terms of the function f in (L.11)), the equation (L.13]) becomes

(x/z)Al(y/Q)AQ 1

|2/ — y/[AitAe T (g — y[AitAr (L.14)
It is possible to verify the identity
Ap+Ag
1 22y \ T
AtA; EID) (L.15)
|z —y|ArHae =" —y/|
Hence, invariance under inversion implies
Aj+Aoy

()2 ()2 _ (| 2y ) . (L16)

|$/__qu1+A2 x/__qu

This equation is only true if Ay = As. Thus, after a normalization of the

operators O;, we conclude that

(O1(2)0s(y)) = m (L.17)
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