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Abstract

In this dissertation we exploit the AdS/CFT correspondence to describe a sys-

tem of strings suspended between giant gravitons. The strings can be in an

excited state. The excitations of the strings can be given a particle-like descrip-

tion and are known as magnons. The proposed gauge invariant operators used

to construct a complete description of this system belong to the su(2) sector

of the N = 4 SYM. Using an open spin chain description of the suspended

strings, the states of the system we consider enjoy an SU(2|2)2 symmetry. By

making use of this symmetry, we compute the all loop anomalous dimensions

of these operators. The spectrum of the dilatation operator in the su(2) sector

of the theory is reproduced in the dual gravity description. In the dual theory,

the energies of the magnons are computed using strings in a background LLM

geometry and the results are in complete agreement with the anomalous dimen-

sions of the operators we have considered. Using the symmetries enjoyed by our

system we achieve a complete determination - up to an overall phase - of the

reflection/scattering matrix between a boundary magnon and a bulk magnon.

Thus, although the open boundary conditions of the spin chain spoil integrabil-

ity, the complete determination of the S−matrix is still possible. The two-loop

subleading correction to the dilatation operator is also explored. This sublead-

ing term corresponds to a correction of the magnon energies. The computation

of this subleading term requires consideration of the giant’s backreaction on

their excitations. We find that this backreaction implies a nontrivial mixing of

the dual operators and this mixing is characterized completely.
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Chapter 1

Introduction: Background

and general overview

In this thesis, we consider N = 4 super Yang-Mills theory (SYM) with gauge

group U(N). By making a novel use of symmetries present, we compute anoma-

lous dimension of a certain class of operators whose classical dimension goes as

O(N) in the large N limit. We will begin by developing the background from

N = 4 SYM that is relevant to the study of this thesis. The discussion of the

symmetries that play a central role is carried out at the end of this section.

In N = 4 SYM theory there are 6 real scalar spin-0 fields φi; one spin-1

gauge field Aµ and four spin- 1
2 fermionic fields ψI . These quantum fields of the

theory are in the adjoint representation of the gauge group so that each field

is a N × N matrix. The operators with classical dimension of order N that

we consider are composed using the φi fields. It is usual to complexify these 6

scalar fields into three complex fields X, Y and Z as

X = φ5 + iφ6, Y = φ3 + iφ4, Z = φ1 + iφ2. (1.1)

One of the uses of this rewriting is that it allows us to define closed subsectors

of the theory that do not mix when the theory is renormalized. In this situation

we can study the dilatation operator within a given subsector. In this thesis we

will focus on the su(2) sector of the theory, defined by focusing on operators

3



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

constructed using only the Z and Y fields. The operators we consider will be

composed of order N Z’s and order 1 Y ’s. It is a challenging problem to evaluate

their correlators at large N . This is because one encounters huge combinatoric

factors which overpower the usual 1
N2 suppressions so that we can not ignore the

contribution coming from non-planar diagrams. Accordingly, the usual methods

for computing matrix model correlation functions are no longer effective. The

usual method for evaluating correlators of a generic U(N) gauge theory is due to

’t Hooft [2]. Feynman diagrams are drawn as ribbon graphs and suggest that in

the limit N →∞ the gauge theory is dual to a free string theory. Accordingly,

’t Hooft identified 1
N as the string coupling gs. We will review in Sec. 1.3 ’t

Hooft’s proposal concerning the large N limit of a gauge theory.

Although the usual method is not effective in evaluating correlation func-

tions of the operators we consider, it turns out that group representation theory

techniques provide a powerful approach to the problem. Group representation

theory techniques were first introduced by the authors of [3] to evaluate corre-

lators of operators belonging to the 1
2−BPS sector. The study [3] is strongly

motivated by the AdS/CFT correspondence.

According to the AdS/CFT correspondence four-dimensional U(N), N = 4

SYM is dual to type IIB superstring theory on the AdS5×S5 background. This

particular gauge/gravity duality is the most studied example of the AdS/CFT

correspondence. In general, the AdS/CFT correspondence claims a duality

between a gauge theory in a p−dimensional spacetime that enjoys conformal

invariance and quantum gravity on AdSp+1 × X, where X is some compact

manifold. The AdS/CFT correspondence is a strong/weak duality. In other

words if the coupling strength is strong on one side of the correspondence, the

dual is weakly coupled. This strong/weak coupling duality is remarkably useful

since it allows us to explore strong coupling limits by using the weakly coupled

dual theory.

According to the AdS/CFT correspondence, the operators we consider in the

gauge theory have a dual interpretation in the gravity description. According

to the correspondence, operators with a classical dimension that grows like

N as we take N → ∞ are identified as giant gravitons in the string theory.

Giant gravitons are an example of D3-branes in the type IIB superstring theory.

– 4 –



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

The giant gravitons have a worldvolume with S3 topology so that they have

a vanishing D3 monopole moment but a non-vanishing D3 dipole moment.

In this sense, they are not typical D3−branes and in fact are only stable as

a consequence of the background RR flux. The relevant literature discussing

giant gravitons includes [4; 5; 6]. In the type IIB superstring theory D-branes

are non perturbative objects. To see that D-branes are non-perturbative, it is

enough to note that they are described by the Born-Infeld action with a brane

tension that is inversely proportional to the string coupling gs. In the regime

where gs vanishes, the brane tension diverges and all D-branes decouple from

the perturbative spectrum.

Giant gravitons expand in the S5 or AdS5 geometries. The scaling dimen-

sions in the dual gauge theory correspond to the energies of the giants. In this

way the anomalous dimensions of the gauge theory operators give the energy

spectrum of the giants.

Figure 1.1: Illustration of an excited state of 3 giants with stings stretching be-

tween them. The black nodes represent the giants and the blue curves represent

the strings. The particles excitation of the strings are called magnons.

A system of excited giant gravitons corresponds to a boundstate of giant gravi-

– 5 –



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

tons with strings stretching between them. Furthermore, a string suspended

between two giant gravitons also can be excited1 so that a cartoon illustration

of some excited state of giants is given in Figure 1.1.

The expansion of the giant graviton expanding in the S5 geometry is limited

by the size of the S5. In contrast to this, a giant expanding in the AdS space is

not limited. The expansion of the giant is due to a Lorentz force-like coupling to

the background RR flux. The magnitude of this force is directly proportional to

the angular momentum of the giant. Accordingly, it follows that the restriction

on the size of the giant translates into a constraint on the momentum of the

giant. The giants trace out non-geodesic motion as a consequence of the force

coming from the RR flux. The size of the giant reflects this force and hence

the actual orbit followed by the giant in spacetime. The strings attached to the

giant are dragged in this non-geodesic motion. In Chapter 2 we will explain in

detail how the size of the giants affects their string excitations and the magnon

excitations of these strings.

The gauge invariant operators we consider are built from products of traces

of fields. A generic local operator we consider takes the form

· · ·Tr(Zn1Y Zn2 · · ·Z) Tr(Zm1Y Zm2 · · ·Z) · · ·Tr(Zp1Y Zp2 · · ·Z) · · · , (1.2)

where the total number of Z’s fields is order N and the number of Y fields

is order 1. A string in the dual description is constructed using O(
√
N) Z’s.

The magnon excitations correspond to the Y fields. The construction of these

gauge theory operators uses techniques from group representation theory and

they are called restricted Schur polynomials. Relevant background includes

[7; 8; 9; 10; 11]. We will postpone the complete description of these operators

to Chapter 2.

We will now discuss the symmetries we use to compute the anomalous di-

mensions. Following [12; 13] the string suspended between the giants has an

open spin chain interpretation. This spin chain enjoys an SU(2|2)2 symmetry.

Understanding the action of this symmetry on the operators we consider will

essentially determine the anomalous dimensions, which is our main goal. The

1The excitations of the open strings can be given a particle-like interpretation as magnons

of a spin chain.

– 6 –



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

details of this argument will be developed in Chapter 2

1.1 Novel results obtained in this study

The purpose of this section is to review the literature relevant to the class

of problems considered in this thesis. In this way we are able to situate our

results in this field of study. First, the exact correlators of the restricted Schur

polynomials, which are the operators we consider in this work, were studied by

the authors of [7; 8; 9; 10; 11]. Using these operators the authors of [14; 15; 16;

17; 18; 19] computed the anomalous dimensions in the su(2) sector of N = 4

SYM. Further, [19] managed to compute the leading higher loop anomalous

dimensions for a class of restricted Schur polynomials. This class of restricted

Schur polynomials are labeled by Young diagrams R with order N boxes that

have the following shape

In the Young diagram R illustrated above, we assume that there are p ∼ O(1)

rows. Each row contains order O(N) boxes. The difference in the number

of boxes in two different rows is also of order N . We recall that each row

of the Young diagram R is identified as a giant graviton. In this way, the

Young diagram R labels a boundstate of p giant gravitons. The above limit

for the shape of Young diagram R was needed for the analysis of [19]. In

this limit, the backreaction of the giant gravitons on their string excitations

can be ignored and the action of the leading higher loop dilatation operator is

factorized into two separate actions on the Z’s and the Y ’s. In this way, one

is able to demonstrate that the eigenstates of the leading higher loop dilatation

operator are the states of a collection of harmonic oscillators. These harmonic

oscillators were introduced by the authors of [16] and generalized in [19]. The

rigorous mathematical background needed to solve the eigenvalue problem using

the harmonic oscillators is developed in [20]. The eigenstates are called Gauss

– 7 –



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

graph operators.

The studies described above manage to reproduce the expected state space

for excited giant gravitons. They do not however make contact with the semi-

classical string physics developed in [21]. The novel results presented in this

thesis will provide this link. In particular by giving the open string a descrip-

tion as a gauge theory word composed of O(
√
N) letters we recognize the open

string as an open spin chain. Excitations of this open string are then described

using the magnon language of [21]. Furthermore, we also compute the reflec-

tion/scattering between a boundary magnon and a bulk magnon. These results

follow by implementing the SU(2|2)2 symmetry. Details of this first result are

summarized in Chapter 2 of this dissertation.

The results that we have obtained for the scattering of open string magnons

complement a number of existing results in the literature. The use of the

SU(2|2)2 symmetry was pioneered in [12; 13] where the S−matrix of two bulk

magnons on a closed string was determined. In addition to this Maldacena

and Hofman considered the case of a maximal giant graviton and computed the

S−matrix of a boundary magnon and a bulk magnon [22]. The analysis again

uses the SU(2|2)2 symmetry. Following these results, the reflection/scattering

S−matrix we obtain in Chapter 2 is for the case of a boundary magnon and a

bulk magnon, for giant gravitons of any size. In this way, our S−matrix results

interpolate between the results in [12; 13] and [22]. Motivated by the Maldacena

and Hofman works [22] we also compute the energies of magnon excitations of

the strings suspended between submaximal giants. In perfect agreement with

general predictions of AdS/CFT, we find that these magnon energies corre-

spond exactly with the anomalous dimensions of the operators we consider on

the gauge theory side.

Starting at the subleading two loop anomalous dilatation operator, the back-

reaction of the giants on their excitation becomes important and one has to

consider this contribution to operator mixing. This contribution results in a

mixing of Gauss graph operators under renormalization. This mixing has been

computed in detail. A discussion of these results is given in Chapter 3 of this

thesis.

To conclude this section, we now outline the remainder of this thesis. The re-

– 8 –



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

maining sections in Chapter 1 provide a general review and background relevant

for the thesis. We start with a broad review of the AdS/CFT correspondence in

section 1.2. Then we review, in section 1.3, ’t Hooft’s argument employing rib-

bon diagrams for the correlators of a generic U(N) gauge theory. The section

1.4 that follows is focused on a review of the zero-dimensional matrix model

correlation functions. Our aim in this section is to explain the complexity of

large N but non-planar limits. To conclude this first chapter we consider some

basic elements of CFTs. In Chapter 2 we will report the first novel result of

this thesis. The contents of Chapter 2 were published in JHEP 03 (2016) 156.

Chapter 3 describes further results. These results were published in Phys. Rev.

D 93, 0650057 (2016). Finally, we will conclude this dissertation in Chapter 4.

1.2 The AdS/CFT correspondence

1.2.1 AdS space

Classically, gravity is described by General Relativity (GR). According to GR,

the equations describing gravity as a curvature of spacetime are the Einstein

equations

Rµν −
1

2
gµνR = κTµν . (1.3)

On the right hand side of this equation, Tµν is the energy momentum tensor. On

the left hand side R and Rµν are respectively the Ricci scalar and Ricci tensor.

The left hand side of (1.3) describes purely intrinsic geometrical properties of

the spacetime.

AdS5 is a manifold with Lorentzian signature metric. AdS5 is the maximally

symmetric solution to the Einstein equation (1.3), with cosmological constant

Λ. To see this, start with the Einstein-Hilbert action

S =
1

16πG5

∫
dx5
√
|g|(R− Λ), (1.4)

and solve the classical equation of motion δS
δgµν = 0, to find

Rµν −
1

2
gµνR = −Λ

2
gµν , R =

5

3
Λ, Rµν =

Λ

3
gµν . (1.5)

– 9 –



CHAPTER 1. INTRODUCTION: BACKGROUND AND GENERAL OVERVIEW

Using global coordinates

x0 = L cosh ρ cos τ,

x5 = L cosh ρ sin τ,

xi = L sinh ρ x̂i,

4∑
i=1

x̂2
i = 1,

the metric of the AdS5 is

ds2 = L(− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
3). (1.6)

Above, dΩ2
3 is the metric on a three-dimensional sphere S3. Having this metric

of the AdS5 space, it is possible to see that the isometry group is SO(2, 4).

SO(2, 4) is the connected conformal group in a flat four-dimensional spacetime.

Hence, we already have a hint that the AdS5 space and CFTs in 4−dimensional

spacetime might be related.

1.2.2 Symmetry argument relating N = 4 SYM theory

and type IIB superstring theory

The AdS5 × S5 spacetime with N units of RR five form flux is an exact back-

ground solution of type IIB superstring theory. The AdS/CFT correspondence

claims that IIB superstring theory on this background is exactly equivalent to

N = 4 super Yang-Mills theory. The first evidence for the correspondence is an

exact match of the symmetries enjoyed by these two theories.

First, note that type IIB superstring theory and N = 4 SYM theory are both

supersymmetric theories with the same number of supercharges. Further, N = 4

SYM enjoys conformal symmetry, even at the quantum level. Accordingly, we

learn that both theories have the same SO(2, 4) symmetry. On the gravity side,

this symmetry is realized as the isometry group of the AdS5 spacetime. In the

gauge theory, it is the conformal invariance of the theory.

Another obvious symmetry present in the gravity theory is the SO(6) isom-

etry of the S5 geometry. In the gauge theory this is identified with the global

SU(4) ∼ SO(6) R−symmetry that rotates the supercharges.

Although a matching of the symmetries of the two theories is suggestive,
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it is certainly not a proof of the correspondence. Indeed, although significant

evidence for the conjecture exists, it is still not proved.

1.2.3 A heuristic motivation for AdS/CFT

Following [23; 24] a convenient way to derive the full action of the D = 4, N = 4

SYM is to start with D = 10, N = 1 SYM and then dimensionally reduce it to

D = 4. We will not review the full action of the D = 4, N = 4 SYM, instead

we only present the bosonic part. The bosonic part of the Lagrangian of the

N = 4 SYM in 4−dimensional spacetime is2

LB =
1

g2
YM

∫
d4xTr

(
1
2FµνF

µν +DµφiD
µφi + 1

2 [φi, φj ][φ
i, φj ]

)
(1.7)

Figure 1.2: Illustration of a stack of N D3−branes with strings attached to

them.

One way to motivate the AdS/CFT correspondence considers a system of N

parallel, coincident D3−branes in Type IIB string theory. This system admits

two possible descriptions. Since the D3−branes are massive charged objects,

they act as a source for supergravity fields. In particular, the D3−branes deform

2Repeated indices are summed. This summation includes the spacetime indices µ, ν, · · ·
and the indices on the bosonic fields.
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the spacetime thereby producing a nontrivial spacetime geometry. Further, they

are charged so that they source N units of RR 5-form flux. The supergravity de-

scription can be trusted at weak string coupling (when quantum corrections can

be neglected) and in the limit that we have a very large number N of D3−branes

ensuring a spacetime geometry that is approximately flat. The second possible

description for the system understands the D3−branes as boundary conditions

for open strings. In this second description, both open and closed strings play a

role. Note that in the first description, only closed strings appear. To motivate

the correspondence, we now take a low energy limit and require equivalence of

the two descriptions in this limit.

The low energy limit of the first description captures two decoupled sys-

tems. First, we have long wavelength supergravity modes propagating in the

region away from the branes, where spacetime is approximately flat. Since these

modes have a very large wavelength they are not able to resolve the D3−branes

and they do not even detect the presence of these branes. The second system

is comprised of all of the modes of the Type IIB string theory close to the

stack of branes. These modes are red-shifted to a low energy due to the huge

gravitational potential they experience in the local vicinity of the D3−branes.

The local geometry in the vicinity of the D3−branes is the AdS5 × S5 space-

time. So, in summary, the low energy limit has produced two decoupled sec-

tors: (i) long wavelength supergravity modes propagating in 10−dimensional

Minkowski spacetime and (ii) all of the modes of Type IIB superstring theory

in the AdS5 × S5 geometry.

Now consider the description invoking both open and closed strings in the

Type IIB string theory. The low energy limit of the closed string states gives

long wavelength supergravity modes propagating in 10−dimensional Minkowski

spacetime. The low energy limit of the open string states is N = 4 SYM

theory. Further, in the low energy limit, the interaction mixing the closed and

open string sectors vanish and the two sectors again decouple. So, in summary,

the low energy limit has produced two decoupled sectors: (i) long wavelength

supergravity modes propagating in 10−dimensional Minkowski spacetime and

(ii) 3+1 dimensional N = 4 SYM theory.

Since we believe these two descriptions are equivalent, their low energy
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physics should also be equivalent. We are then lead to conclude that Type

IIB superstring theory on AdS5 × S5 is dual to N = 4 SYM theory.

With this discussion in hand, we have a new insight into how to interpret

the matrix valued fields of the SYM theory. The SYM theory describes the low

energy limit (i.e. the zero modes) of the open string system. The six scalar

fields of the theory describe directions transverse to the D3−branes, while the

gauge fields describe directions parallel to the D3−branes. Recall that we are

considering N D3−branes stacked on top of each other. The matrix indices

which run from 1 to N label which brane inside the stack the open string is

connected to. Diagonal elements of the matrix field describe open strings that

start and end on the same D3, while off diagonal elements of the matrix field

describe strings that stretch between two different D3−branes.

1.3 Review of the large N expansion

We review in this section the arguments [2] showing that the correlators of a

generic U(N) gauge theory are dominated by the planar diagrams of the theory.

To start with, consider the pure U(N) gauge theory with the Lagrangian

L = − 1

4g2
YM

tr (FµνFµν) , (1.8)

where

Fµνab = ∂µAνab − ∂νAµ
a
b − i[Aµ,Aν ]ab . (1.9)

Introduce λ = Ng2
YM , which is the so-called ’t Hooft coupling. In terms of λ,

L = −1

4

N

λ
tr (FµνFµν) . (1.10)

The Feynman rules are written in terms of ribbon graph diagrams. The double

lines keep track of the two U(N) indices present on the (matrix valued) field.

The Feynman rules are

1. For the propagator
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Figure 1.3: Gauge field propagator in the ribbon graph notation.

2. For the three-point and four-point vertices, one finds

Figure 1.4: Three-point and four-point vertices in the ribbon graph notation.

Using the above Feynman rules it is possible determine the N and λ dependence

of an amplitude M of some connected diagram without external legs. One can

argue that the resulting Feynman diagram is a triangulation of a 2-dimensional

surface
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Figure 1.5: Ribbon graphs define a triangulation of a two-dimensional surface.

Each polygon in this diagram contributes a factor
∑N
i=1 δ

i
i = N . Let E be

the total number of edges (propagators), V the total number of vertices and

F the total number of faces (closed loops or closed polygons) in the connected

diagram. The dependence on N and λ of the amplitude M is

M∼
(
N

λ

)V (
λ

N

)E
NF = NV−E+FλE−V . (1.11)

The power of N is the famous Euler characteristic

χ = V − E + F.

This Euler characteristic is a topological number which only depends on the

topology of the diagram. Each connected diagram gives a triangulation of a

closed two dimensional connected and oriented manifold Σh, with the Euler

characteristic given by χ above. The following figures illustrate some typical

examples of the Σh’s.
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Figure 1.6: i) Σ0 = S2 is a two-sphere - ii) Σ1 = T2 is a two dimensional torus

and iii) represent a typical Σh where h is the genus of the surface (or number

of handles).

The Euler characteristic is given by

χ(Σh) = 2− 2h, (1.12)

where h is the number of handles on the surface Σh. The amplitude of each

connected diagram without external legs is

M∝ N2−2hλE−V . (1.13)

It was ’t Hooft [2], who first noted this connection between the power of N

multiplying the amplitude M and the Euler characteristic of Σh.
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Figure 1.7: We illustrate in the above figures how to go from a planar Feynman

diagram figure a) to a triangulation of a two-sphere figure b). The next figure

shows a typical non-planar Feynman diagram figure c) to a triangulation of a

torus figure d).

The limit N → ∞ with λ fixed defines a systematic large N expansion of the

theory. This limit is known as the ’t Hooft limit. It is clear that at large N

the only diagrams that contribute are those with h = 0. Their contribution

in the amplitude goes like N2. These diagrams are known as planar diagrams

because they can be drawn on a two dimensional plane without self-crossing.

The geometry of the Σh’s, see Fig1.6, are also encountered in the quantum

theory of fundamental strings. In fact, it is attractive to identify these figures

as the world-sheets of quantum strings. For more details and a review on the

connection between gauge theory and string theory one is referred to [25; 26;

27; 28].

1.4 Zero dimensional Matrix Model

In this section we consider a zero dimensional toy model to compute correlation

functions of certain operators constructed from N×N Hermitian matrices. Our

motivation for studying this toy model is to learn about the N dependence of the

correlation functions of matrices. This study will illustrate how ribbon graph

Feynman diagrams emerge in the theory. Here our focus is on the free theory for

simplicity. To begin our discussion, we start by defining the generating function
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of the correlation functions of the theory.

1.4.1 Matrix model correlation functions in terms of Z[J ]

Let J and M be two N × N Hermitian matrices. Consider the generating

function

Z[J ] =

∫
[dM ]e−

1
2

tr(M2)+tr(MJ), Z[J = 0] = 1, (1.14)

By completing the square followed by a change of variable, one can show that

this generating function is simply

Z[J ] = e
1
2 tr(J2). (1.15)

A general matrix model correlation function is

〈M i1
j1
M i2
j2
· · ·M in

jn
〉 =

∫
[dM ]M i1

j1
M i2
j2
· · ·M in

jn
e−

1
2 tr(M2). (1.16)

We adopt the Einstein summation convention

(MJ)ik =

N∑
j

M i
jJ

j
k ≡M

i
jJ

j
k ,

so that the trace of matrix is simply written as

tr(M) = M i
i .

Accordingly, the generating function (1.14) becomes

Z[J ] =

∫
[dM ]e−

1
2
Mi
jM

j
i +M l

kJ
k
l . (1.17)

This last equation leads to the relation

〈M i
jM

k
l 〉 =

∂2

∂Jji ∂J
l
k

Z[J ]

∣∣∣∣
J=0

. (1.18)

Using Z[J ] = e
1
2 tr(J2) and the identity

∂

∂J lk
e

1
2 tr(J2) = Jkl e

1
2 tr(J2),

a straightforward calculation yields

〈M i
jM

k
l 〉 = δilδ

k
j . (1.19)

(1.19) is enough to evaluate any correlation function of matrices. The only extra

ingredient one needs is Wick’s theorem.
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1.4.2 Examples of correlation functions

Consider the following correlator

〈tr(M4)〉 = 〈M i
jM

j
kM

k
l M

l
i 〉 =

∂4

∂Jji ∂J
k
j ∂J

l
k∂J

i
l

e
1
2 tr(J2)

∣∣∣∣
J=0

,

=
∂3

∂Jji ∂J
k
j ∂J

l
k

(
J lie

1
2 tr(J2)

) ∣∣∣∣
J=0

,

=
∂2

∂Jji ∂J
k
j

[(
δllδ

k
i + Jkl J

l
i

)
e

1
2 tr(J2)

] ∣∣∣∣
J=0

,

=
∂

∂Jji

[(
0 + δlkδ

j
i J

k
l + δkkδ

j
l J

l
i + δllδ

k
i J

j
k + J liJ

k
l J

j
k

)
e

1
2 tr(J2)

] ∣∣∣∣
J=0

,

= δii + δkkδ
j
jδ
i
i + δllδ

k
kδ
j
j ,

= N + 2N3. (1.20)

The general pattern resulting from this calculation is summarized in terms of

Wick’s theorem [29]. In terms of the Wick contraction notation the example

(1.20) becomes

: M i
jM

j
kM

k
l M

l
i : ≡M i

jM
j
kM

k
l M

l
i +M i

jM
j
kM

k
l M

l
i +M i

jM
j
kM

k
l M

l
i ,

= δikδ
j
i δ
k
j + δkkδ

j
jδ
i
i + δllδ

k
kδ
j
j = N + 2N3.

In the above notation, each Wick contracted matrices reflects the way each pair

of derivatives with respect to J act on the matrices. This can be summarized

by Feynman rules using the ribbon graph language.

1.4.3 Ribbon graph Feynman diagrams

The rules for ribbon graphs are

• For each matrix M appearing in a correlation function, draw a pair of

dots associated respectively to the upper- and lower-index of the matrix.

• For each Wick contraction connect the two pairs of dots for the two Wick

contracted matrices with a pair of lines.

• For each repeated index we sum over, connect the associated dots with a

line.
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• For each diagram associate a number N l where l is the total number of

closed loops in the diagram.

• Finally, sum over all the possible diagrams to produce the final answer.

Using these rules, reconsider the example in (1.20)

In the above diagrams, the dotted horizontal lines do not represent anything.

They are included for clarity as we now explain. The ribbons beneath the dotted

horizontal lines represent the Wick contractions and the ones above represent

the summation that appears in the trace.

1.4.4 Higher order correlation functions

The above techniques are no longer effective for correlation functions of oper-

ators constructed using order N matrices. The difficulty is a consequence of

the huge number of Feynman diagrams that can be drawn. In this section, we

explain how this problem arises in the evaluation of higher order correlators. To

start with, it is helpful to consider two independent Hermitian N ×N matrices

M and K and define

Z = 1√
2
(M + iK), ⇒ Z† = 1√

2
(M − iK). (1.21)

It is a simple exercise to check that

〈ZijZ†
k

l 〉 = δilδ
k
j , 〈ZijZkl 〉 = 〈Z†ijZ†

k

l 〉 = 0. (1.22)

To see the general pattern for the correlators of n pairs of Z and Z† matrices,

consider the cases n = 2, n = 3 and the indices of the matrices are not summed

(i.e. we do not take their trace).
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• Case for n = 2

〈Zi1j1Z
i2
j2
Z†

k1

l1 Z
†k2

l2 〉 = Zi1j1Z
i2
j2
Z†

k1

l1 Z
†k2

l2 + Zi1j1Z
i2
j2
Z†

k1

l1 Z
†k2

l2

= δi1l1 δ
i2
l2
δk1
j1
δk2

l2
+ δi1l2 δ

i2
l1
δk1
j2
δk2
j1
,

=
∑
σ∈S2

δi1lσ(1)
δi2lσ(2)

δk1
jσ−1(1)

δk2

lσ−1(2)

• Case for n = 3

〈Zi1j1Z
i2
j2
Zi3j3Z

†k1

l1 Z
†k2

l2 Z
†i3
j3〉 = Zi1j1Z

i2
j2
Zi3j3Z

†k1

l1 Z
†k2

l2 Z
†k3

l3 + Zi1j1Z
i2
j2
Zi3j3Z

†k1

l1 Z
†k2

l2 Z
†k3

l3

+ Zi1j1Z
i2
j2
Zi3j3Z

†k1

l1 Z
†k2

l2 Z
†k3

l3 + Zi1j1Z
i2
j2
Zi3j3Z

†k1

l1 Z
†k2

l2 Z
†k3

l3

+ Zi1j1Z
i2
j2
Zi3j3Z

†k1

l1 Z
†k2

l2 Z
†k3

l3 + Zi1j1Z
i2
j2
Zi3j3Z

†k1

l1 Z
†k2

l2 Z
†k3

l3 ,

= δi1l1 δ
i2
l2
δi3l3 δ

k1
j1
δk2
j2
δk3
j3

+ δi1l2 δ
i2
l1
δi3l3 δ

k1
j2
δk2
j1
δk3
j3

+ δi1l2 δ
i2
l3
δi3l1 δ

k1
j3
δk2
j1
δk3
j2

+ δi1l1 δ
i2
l3
δi3l2 δ

k1
j1
δk2
j3
δk3
j2

+ δi1l3 δ
i2
l1
δi3l2 δ

k1
j2
δk2
j3
δk3
j1

+ δi1l3 δ
i2
l2
δi3l1 δ

k1
j3
δk2
j2
δk3
j1
,

=
∑
σ∈S3

δi1lσ(1)
δi2lσ(2)

δi3lσ(3)
δk1
jσ−1(1)

δk2
jσ−1(2)

δk3
jσ−1(3)

.

From these two examples, it is clear that the general formula is

〈Zi1j1Z
i2
j2
· · ·ZinjnZ

†k1

l1 Z
†k2

l2 · · ·Z
†kn
ln 〉 =

∑
σ∈Sn

δi1lσ(1)
δi2lσ(2)

· · · δinσ(n)δ
k1
jσ−1(1)

δk2
jσ−1(2)

· · · δkn
j−1
σ (n)

.

(1.23)

Above, Sn is the permutation group of n different objects. This group has n!

elements. If n ∼ O(N) the summation in (1.23) is not easy to perform. This is

due to the fact that the number of terms to be summed, which is N ! is huge.

This leads to huge combinatoric factors that overpower the 1
N2 suppression of

higher genus ribbon graphs. It is due to this combinatorics problem that ribbon

diagrams of all genus contribute and ribbon graph techniques are no longer

effective.
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1.5 CFT

1.5.1 Introduction to CFT

Using the AdS/CFT correspondence, one hopes to learn about quantum gravity

in AdS space, by asking questions in the CFT. There also other important moti-

vations to study CFT. The study of critical phenomena is intimately connected

to conformal symmetries. Further, in Wilson’s renormalization group (RG)

scheme, CFTs are the endpoints of any RG flow and hence they are important

to understand the space of all QFTs.

One example of a conformal transformation is a scaling transformation. Con-

sider a quantum mechanical system where one chooses to fix the units by setting

~ = 1. The usual commutation relation between position x and momentum p is

[x, p] = i. (1.24)

To keep our units fixed, the action of the scaling transformation on x and p

must be x→ λx,

p→ λ−1p.
(1.25)

Since in special relativity, time and energy have to be treated on the same

footing as space and momentum, similar scaling transformations apply to time

and energy.

It is not difficult to apply this transformation to QFT by doing simple di-

mensional analysis. Toward this end, consider a non-interacting massless and

real scalar field in D−dimensional spacetime, with the action

S =

∫
dDx∂µφ∂

µφ. (1.26)

A physical observable in this theory is the field φ. In units where ~ = 1, the

action S is dimensionless. It follows that the scalar field has classical dimension

[φ] = L−∆φ , ∆φ = D−2
2 . A scale transformation acts asx

µ → x′µ = λxµ,

φ(x)→ φ′(λx) = |λ|−∆φφ(x).
(1.27)
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Using (1.27) it is straight forward to show that S[φ] = S′[φ′], i.e. the free and

massless real scalar field action is scale invariant.

The above description is classical. The field fluctuates at the quantum level.

Quantum corrections to the above description can be understood using the

Wilsonian RG scheme, [30]. RG scheme provides a rigorous demonstration that

there are only a finite number of Lagrangians (i.e QFTs) that one can write

down at low energy. In this way QFTs are just effective theories summarizing

the degrees of freedom that are present at very short distance scales. As one

flows from the UV to the IR regime, all possible interactions are organized into

a finite number of marginal and relevant interactions. The change of a coupling

constant as function of energy scale is formulated in terms of the β−function of

the theory
∂ga(µ)

∂ log(µ)
= βa(ga). (1.28)

If all of the β−functions of the theory vanish, the theory is a CFT. One example

of a theory that is conformal invariant at classical and quantum level is the

N = 4 SYM theory.

Conformal transformations are coordinate transformations satisfying

ΛµρΛνσηµν = Ω(x)2ηρσ. (1.29)

SO(2, d) is the conformal group in d−dimensions. Appendix K considers the

group SO(2, 4). To work out the generators of the conformal group, perform an

infinitesimal transformation

xµ → x′µ = xµ + ζµ(x). (1.30)

It follows that

Λµν =
∂x′µ

∂xν
= δµν + ∂νζ

µ. (1.31)

Close to the identity we have

Ω(x)2 = 1 + 2$(x) +O($2). (1.32)

Plugging (1.31) and (1.32) into (1.29) at first order in ζ(x) one finds

∂µζν + ∂νζµ = 2ηµν$(x), $(x) =
1

d
∂ρζ

ρ. (1.33)
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This equation is called the conformal Killing vector equation. With some non-

trivial manipulations, one shows that this equation implies

∂ρ∂σ∂νζµ = 0. (1.34)

Thus, the general solution for ζµ is at most quadratic in xµ. The unique solution

consistent with the above equation is

ζµ = εµ + ωµνxν + λxµ + ε′µxρx
ρ − 2ε′ρx

ρxµ, (1.35)

where the parameters εµ, ωµν = −ωνµ, λ and ε′µ are constant independent of

xσ. Setting the parameters λ = 0 and ε′µ = 0, the conformal Killing vector

equation (1.33) reduces to

∂µζν + ∂νζµ = 0. (1.36)

In addition, the scaling factor also becomes Ω(x) = 1, so that (1.29) becomes

ΛµρΛνσηµν = ηρσ. (1.37)

Hence, this subgroup is the Poincaré group. The parameters λ and ε′µ in (1.35)

are respectively the parameters for scale and special conformal transforma-

tions. εµ and ωµν are respectively the parameters for spacetime translations

and Lorentz transformations. The total number of conformal group parameters

in d dimensions can be summarized as follows

• d for εµ (spacetime translation)

• d(d−1)
2 for ωµν = −ωνµ (boosts+rotations)

• 1 for λ (scaling transformation)

• d for ε′µ (special conformal transformations).

In total, one counts (d+2)(d+1)
2 generators of the conformal group. A finite

conformal transformation is

Λ = eiε
µPµ+ i

2ω
µνLµν+iλD+iε′µKµ . (1.38)
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To work out the form of the generators Pµ, Mµν , D and Kµ one can expand

this finite transformation about the identity to yield

x′ρ =

(
1 + iεµPµ +

i

2
ωµνLµν + iλD + iε′µKµ

)ρ
σ

xσ

= xρ + δxρ.

Comparing this small change δxρ with (1.35) we find

Pµ = −i∂µ, (1.39)

Mµν = −i(xµ∂ν − xν∂µ), (1.40)

D = ixµ∂
µ, (1.41)

Kµ = −i(xρxρ∂µ − 2xµxσ∂
σ) (1.42)

These generators obey

i[Mµν ,Mαβ ] = ηναMµβ + ηµβMνα − ηνβMµα − ηµαMνβ ,

i[D,Pµ] = Pµ,

i[Mµν ,Kα] = ηναKµ − ηµαKν ,

i[Mµν , Pα] = ηναPµ − ηµαPν ,

i[Pµ,Kν ] = 2ηµνD + 2Mµν ,

i[D,Kµ] = −Kµ.

(1.43)

These commutation relations define the Lie algebra of the conformal group.

Let ηMN = diag(−1, 1, · · · , 1,−1)3 be the metric of R2,d. The isometry

group of this space is the group SO(2, d) which is generated by

LMN = −i(XM∂N −XN∂M ).

The Lie algebra so(2, d) satisfied by these generators is

i[LMN , LRS ] = ηNRLMS + ηMSLNR − ηNSLMR − ηMRLNS . (1.44)

3Capital Latin indices M,N, · · · take value in 0, 1, 2, · · · , d, d+1. This signature of the met-

ric also follows from our adopted signature for the metric ηµν of the d−dimensional physical

spacetime.
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The isomorphism between the algebra (1.43) and the algebra (1.44) is as follows

Pµ = Ld+1,µ + Ld,µ,

Kµ = Ld+1,µ − Ld,µ,
D = Ld+1,d,

Mµν = Lµν .


⇒ [LMN ] =


(Mµν) Pµ−Kµ

2 −P
µ+Kµ

2

−Pµ−Kµ2 0 D

Pµ+Kµ
2 −D 0

 .
(1.45)

This demonstrates that the conformal group is indeed SO(2, d). In this way the

non linear action of the conformal group on the physical spacetime coordinates

xµ ∈ R1,d−1 can be realized as linear Lorentz rotations on the coordinates

XM ∈ R2,d.

1.5.2 Correlation functions in CFT

The observable in CFTs are correlators of local operators. Requiring the full

conformal symmetry, the two point correlation of two local operators O1 and

O2 is

〈O1(x)O2(y)〉 =
δ∆1,∆2

|x− y|∆1+∆2
, (1.46)

where the ∆i’s give the scaling dimension of the operators Oi. We review the

derivation of this two point correlation function of local operator in Appendix L.

Operators in the CFT are labeled by the eigenvalues of the dilatation operator

D and the Lorentz spin operator Mµν . These two operators commute

[D,Mµν ] = 0. (1.47)

Thus, D and Mµν are simultaneously diagonalizable. Primary operators are

defined by

[Kµ,OA(0)] = 0. (1.48)

The representation to which the primary operator belongs is given by

[D,OA(0)] = −i∆OOA(0),

[Mµν ,OA(0)] = i {Σµν}AB O
B(0).

For a review of CFT see the textbook [31]. For an introductory review of CFT

and its application to string theory see [32]. Recent developments and new ideas

can be found in [33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45].
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Chapter 2

Anomalous Dimensions of

Heavy Operators from

Magnon Energies

2.1 Outline of chapter

In this chapter we study spin chains with boundaries that are dual to open

strings suspended between systems of giant gravitons and dual giant gravitons.

Motivated by a geometrical interpretation of the central charges of su(2|2), we

propose a simple and minimal all loop expression that interpolates between

the anomalous dimensions computed in the gauge theory and energies com-

puted in the dual string theory. The discussion makes use of a description in

terms of magnons, generalizing results for a single maximal giant graviton. The

symmetries of the problem determine the structure of the magnon boundary

reflection/scattering matrix up to a phase. We compute a reflection/scattering

matrix element at weak coupling and verify that it is consistent with the an-

swer determined by symmetry. We find the reflection/scattering matrix does

not satisfy the boundary Yang-Baxter equation so that the boundary condition

on the open spin chain spoils integrability. We also explain the interpretation
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of the double coset ansatz in the magnon language. The work discussed in this

chapter was reported in JHEP 03 (2016) 156.

2.2 Chapter introduction

In this chapter we will connect two distinct results that have been achieved in

the context of gauge/gravity duality. The first result, which is motivated by the

Penrose limit in the AdS5 × S5 geometry [46], is the natural language for the

computation of anomalous dimensions of single trace operators in the planar

limit provided by integrable spin chains (see [47] for a thorough review). For

the spin chain models we study, using only the symmetries of the system, one

can determine the exact large N anomalous dimensions and the two magnon

scattering matrix. Using integrability one can go further and determine the

complete scattering matrix of spin chain magnons[12; 13]. The second results

which we will use are the powerful methods exploiting group representation

theory, which allow one to study correlators of operators whose classical dimen-

sion is of order N . In this case, the large N limit is not captured by summing

the planar diagrams. Our results allow a rather complete understanding of the

anomalous dimensions of gauge theory operators that are dual to giant graviton

branes with open strings suspended between them. These results generalize the

analysis of [21] to systems that include non-maximal giant gravitons and dual

giant gravitons. The boundary magnons of an open string attached to a max-

imal giant graviton are fixed in place - they can not hop between sites of the

open string. In the case of non maximal giant gravitons and dual giant gravi-

tons there are non-trivial interactions between the open string and the brane,

allowing the boundary magnons to move away from the string endpoints.

The operators we focus on are built mainly out of one complex U(N) adjoint

scalar Z, and a much smaller number M of impurities given by a second complex

scalar field Y , which are the“magnons” that hop on the lattice of the Zs. The

dilatation operator action on these operators matches the Hamiltonian of a spin

chain model comprising of a set of defects that scatter from each other. The

spin chain models enjoy an SU(2|2)2 symmetry. The symmetries of the system

determines the energies of impurities, as well as the two impurity scattering
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matrix[12; 13]. The su(2|2) algebra includes two sets of bosonic generators (Rab

and Lαβ ) that each generate an SU(2) group. The action of the generators is

summarized in the relations

[Rab, T
c] = δcbT

a − 1

2
δabT

c, [Lαβ , T
γ ] = δγβT

α − 1

2
δαβT

γ (2.1)

where T is any tensor transforming as advertised by its index. The algebra also

includes two sets of super charges Qαa and Sbβ . These close the algebra

{Qαa , Sbβ} = δbaL
α
β + δαβR

a
b + δbaδ

α
βC, (2.2)

where C is a central charge, and

{Qαa , Q
β
b } = 0, {Saα, Sbβ} = 0. (2.3)

We will realize this algebra on states that include magnons. When the magnons

are well separated, each magnon transforms in a definite representation of

su(2|2) and the full state transforms in the tensor product of these individual

representations. Acting on the ith magnon we can have a centrally extended

representation[12; 13]

{Qαa , Sbβ} = δbaL
α
β + δαβR

a
b + δbaδ

α
βC, (2.4)

{Qαa , Q
β
b } = εαβεab

ki
2
, {Saα, Sbβ} = εαβε

ab k
∗
i

2
. (2.5)

The total multimagnon state must be in a representation for which the central

charges ki , k∗i vanish. Thus the multi magnon state transforms under the

representation with

C =
∑
i

Ci,
∑
i

ki = 0 =
∑
i

k∗i . (2.6)

A key ingredient to make use of the su(2|2) symmetry entails determining the

central charges ki , k∗i and hence the representations of the individual magnons.

There is a natural geometric description of the system, first obtained by an

inspired argument in [48] and later put on a firm footing in [22], which gives an

elegant and simple description of these central charges. The two dimensional

spin chain model that is relevant for planar anomalous dimensions is dual to the
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worldsheet theory of the string moving in the dual AdS5 × S5 geometry. This

string is a small deformation of a 1
2−BPS state. A convenient description of

the 1
2−BPS sector (first anticipated in [49]) is in terms of the LLM coordinates

introduced in [50], which are specifically constructed to describe 1
2−BPS states

built mainly out of Zs. In the LLM coordinates, there is a preferred LLM

plane on which states that are built mainly from Zs orbit with a radius r = 1

(in convenient units). Consider a closed string state dual to a single trace

gauge theory operator built mainly from Zs, but also containing a few magnons

M . The closed string solution looks like a polygon with vertices on the unit

circle. The sides of the polygon are the magnons. The specific advantage of

these coordinates is that they make the analysis of the symmetries particularly

simple and allow a perfect match to the SU(2|2) superalgebra of the gauge

theory described above. Matching the gauge theory and gravity descriptions in

this way implies a transparent geometrical understanding of the ki and k∗i , as we

now explain. The commutator of two supersymmetries in the dual gravity theory

contains NS−B2 gauge field transformations. As a consequence of this gauge

transformation, strings stretched in the LLM plane acquire a phase which is the

origin of the central charges ki and k∗i . It follows that we can immediately read

off the central charges for any particular magnon from the sketch of the closed

string worldsheet on the LLM plane: the straight line segment corresponds to

a complex number which is the central charge [22].

The gauge theory operators that correspond to closed strings have a bare

dimension that grows, at most, as
√
N . We are interested in operators whose

bare dimension grows as N when the large N limit is taken. These operators

include systems of giant graviton branes. The key difference as far as the sketch

of the state on the LLM plane is concerned, is that the giant gravitons can orbit

on circles of radius r < 1 while dual giant gravitons orbit on circles of radius

r > 1. The magnons populating open strings which are attached to the giant

gravitons can be divided into boundary magnons (which sit closest to the ends

of the open string) and bulk magnons. The boundary magnons will stretch from

a giant graviton located at r 6= 1 to the unit circle, while bulk magnons stretch

between points on the unit circle. We will also consider the case below that

the entire open string is given by a single magnon, in which case it will stretch
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between two points with r 6= 1.

The computation of correlators of the corresponding operators in the field

theory is highly non-trivial. Indeed, as a consequence of the fact that we now

have order N fields in our operators, the number of ribbon graphs that can be

drawn is huge. These enormous combinatoric factors easily overpower the usual

1
N2 suppression of non-planar diagrams so that both planar and non-planar

diagrams must be summed to capture even the leading large N limit of the

correlator [51]. This problem can be overcome by employing group represen-

tation theory techniques. The article [3] showed that it is possible to compute

the correlation functions of operators built from any number of Zs exactly, by

using the Schur polynomials as a basis for the local operators of the theory. In

[52] these results were elegantly explained by pointing out that the organiza-

tion of operators in terms of Schur polynomials is an organization in terms of

projection operators. Completeness and orthogonality of the basis follows from

the completeness and orthogonality of the underlying projectors. With these

insights [3; 52], many new directions opened up. A basis for the local operators

which organizes the theory using the quantum numbers of the global symme-

tries was given in [53; 54]. Another basis, employing projectors related to the

Brauer algebra was put forward in [55] and developed in a number of interest-

ing works [56; 57; 58; 59; 60; 61; 62]. For the systems we are interested in, the

most convenient basis to use is provided by the restricted Schur polynomials.

Inspired by the Gauss Law which will arise in the world volume description of

the giant graviton branes, the authors of [63] suggested operators in the gauge

theory that are dual to excited giant graviton brane states. This inspired idea

was pursued both in the case that the open strings are described by an open

string word [7; 8; 9] and in the case of minimal open strings, with each open

string represented by a single magnon [10; 11]. The operators introduced in

[7; 10] are the restricted Schur polynomials. Further, significant progress was

made in understanding the spectrum of anomalous dimensions of these oper-

ators in the studies [8; 9; 64; 14; 15; 16; 20; 17]. Extensions which consider

orthogonal and symplectic gauge groups and other new ideas, have also been

achieved [65; 66; 67; 68; 69; 70].

In this chapter we will connect the string theory description and the gauge
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theory description of the operators corresponding to systems of excited giant

graviton branes. Our study gives a concrete description of the central charges

ki and some of the consequences of the su(2|2) symmetry. We will see that

the restricted Schur polynomials provide a natural description of the quantum

brane states. For the open strings we find a description in terms of open spin

chains with boundaries and we explain precisely what the boundary interactions

are. The double coset ansatz of the gauge theory, which solves the problem

of minimal open strings consisting entirely of a single magnon, also has an

immediate and natural interpretation in the same framework.

There are closely related results which employ a different approach to the

questions considered in this chapter. A collective coordinate approach to study

giant gravitons with their excitations has been pursued in [71; 72; 73; 74; 1].

This technique employs a complex collective coordinate for the giant graviton

state, which has a geometric interpretation in terms of the fermion droplet

(LLM) description of half BPS states [49; 50]. The motivation for this collective

coordinate starts from the observation that within semiclassical gravity, we think

of the D-branes as being localized in the dual spacetime geometry. It might

seem however, that since in the field theory the operators we write down have

a precise R−charge and a fixed energy, they are dual to a delocalized state.

Indeed, since gauge/gravity duality is a quantum equivalence it is subject to

the uncertainty principle of quantum mechanics. The R−charge of an operator

is the angular momentum of the dual states in the gravity theory, so that by the

uncertainty principle, the dual giant graviton-branes must be fully delocalized

in the conjugate angle in the geometry. The collective coordinate parametrizes

coherent states, which do not have a definite R−charge and so may permit

a geometric interpretation of the position of the D-brane as the value of the

collective coordinate. With the correct choice for the coherent states, mixing

between different states of a definite R−charge would be taken into account and

so when diagonalizing the dilatation operator (for example) the mixing between

states with different choices of the values of the collective coordinate might

be suppressed. This computation would be, potentially, much simpler than a

direct computation utilizing operators with a definite R−charge. Of course, by

diagonalizing the dilatation operator for operators dual to giant graviton brane
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plus open string states, one would expect to recover the collective coordinates,

but this may only be possible after a complicated mixing problem in degenerate

perturbation theory is solved. Some of the details that have emerged from

our study do not support this semiclassical reasoning. Specifically, we find

that the brane states are given by restricted Schur polynomials and these do

not receive any corrections when the perturbation theory problem is solved,

so that there does not seem to be any need to solve a mixing problem which

constructs localized states from delocalized ones. Our large N eigenstates do

have a definite R−charge. The nontrivial perturbation theory problem involves

mixing between operators corresponding to the same giant graviton branes, but

with different open string words attached. Thus, it is an open string state

mixing problem, solved with a discrete Fourier transform, as it was for the

closed string. However, there is general agreement between the approaches:

the Fourier transform solves a collective coordinate problem which diagonalizes

momentum, rather than position.

For an interesting recent study of anomalous dimensions, at finite N , using

a very different approach, see [75].

This chapter is organized as follows: In section 2.3 we recall the relevant

facts about the restricted Schur polynomials. The action of the dilatation op-

erator on these restricted Schur polynomials is studied in section 2.4 and the

eigenstates of the dilatation operator are constructed in section 2.5. Section 2.6

provides the dual string theory interpretation of these eigenstates and perfect

agreement between the energies of the string theory states and the correspond-

ing eigenvalues of the dilatation operator is demonstrated. In sections 2.7 and

2.8 we consider the problem of magnon scattering, both in the bulk and off

the boundary magnons. We have checked that the magnon scattering matrix

we compute is consistent with scattering results obtained in the weak coupling

limit of the theory. One important conclusion is that the spin chain is not

integrable. In section 2.9 we review the double coset ansatz and describe the

dual string theory interpretation of these results. Our conclusions and some

discussion is given in section 2.10. Some technical details are collected in the

appendices
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2.3 Giants with open strings attached

In this section we will review the gauge theory description of the operators dual

to giant graviton branes with open string excitations. In this description, each

open string is described by a word with order
√
N letters. Most of the letters

are the Z field. There are however M ∼ O(1) impurities which are the magnons

of the spin chain. For simplicity we will usually take all of the impurities to be

a second complex matrix Y . This idea was first applied in [76] to reproduce the

spectrum of small fluctuations of giant gravitons [77]. The description was then

further developed in [78; 79; 80; 81; 82]. The articles [80; 81; 82] in particular

developed this description to the point where interesting dynamical questions1

could be asked and answered. The open string words are then inserted into a

sea of Zs which make up the giant graviton brane(s). Concretely, the operators

we consider are

O(R,Rk1 , R
k
2 ; {ni}1, {ni}2, · · · , {ni}k)

=
1

n!

∑
σ∈Sn+k

χR,Rk1 ,Rk2 (σ)Zi1iσ(1)
· · ·Ziniσ(n)

(Wk)
in+1

iσ(n+1)
· · · (W2)

in+k−1

iσ(n+k−1)
(W1)

in+k

iσ(n+k)

(2.7)

where the open string words are

(WI)
i
j = (Y Zn1Y Zn2−n1Y · · ·Y ZnMI−nMI−1Y )ij . (2.8)

We have used the notation {ni}I in (2.7) to describe the integers {n1, n2, · · · , nMI
}

which appear in the Ith open string word. This is a lattice notation, which lists

the number of Zs appearing to the left of each of the Y s, starting from the

second Y : the Zs form a lattice and the ni give a position in this lattice. This

notation is particularly convenient when we discuss the action of the dilata-

tion operator. We will also find an occupation notation useful. The occupa-

tion notation lists the number of Zs between consecutive Y s, and is indicated

by placing the ni in brackets. Thus, for example O(R,R1
1, R

1
2, {n1, n2, n3}) =

O(R,R1
1, R

1
2, {(n1), (n2 − n1), (n3 − n2)}). R is a Young diagram with n + k

boxes. A bound state of ps giant gravitons and pa dual giant gravitons is de-

scribed by a Young diagram R with pa rows, each containing order N boxes

1For example, one could consider the force exerted by the string on the giant
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and ps columns, each containing order N boxes. χR,Rk1 ,Rk2 (σ) is a restricted

character [7] given by

χR,Rk1 ,Rk2 (σ) = TrR,Rk1 ,Rk2 (ΓR(σ)) (2.9)

Rk is a Young diagram with n boxes, that is, it is a representation of Sn .

The irreducible representation R of Sn+k is reducible if we restrict to the Sn

subgroup. Rk is one of the representations that arise upon restricting. In

general, any such representation will be subduced more than once. Above we

have used the subscripts 1 and 2 to indicate this. We have in mind a Gelfand-

Tsetlin like labeling to provide a systematic way to describe the possible Rk we

might consider. In this labeling, we use the transformation of the representation

under the chain of subgroups Sn+k ⊃ Sn+k−1 ⊃ Sn+k−2 ⊃ · · · ⊃ Sn. This is

achieved by labeling boxes in R. Dropping the boxes with labels ≤ i, we obtain

the representation of Sn+k−i to which Rk belongs. We have to spell out how

this chain of subgroups are embedded in Sn+k . Think of Sq as the group which

permutes objects labeled 1, 2, 3, · · · , q. Here we have q = n+ k and the objects

we have in mind are the Z fields or the open string words. We associate an

integer to an object by looking at the upper indices in (2.7); as an example, the

open string described by W2 is object number n + k − 1. To go from Sn+k−i

to Sn+k−i−1 , we keep only the permutations that fix n + k − i. We can put

the states in Rk1 and Rk2 into a 1-to-1 correspondence. The trace TrRk1 ,Rk2 sums

the column index over Rk1 and the row index over Rk2 . If we associate the row

and column indices with the endpoints of the open string, we can associate the

endpoints of the open string I with the box labeled I in Rk1 and Rk2 . The

numbers appearing in the boxes of Rk1 literally tell us where the k open strings

start and the numbers in Rk2 where the k open strings end. See Figure 2.1 for

an example
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Figure 2.1: A cartoon illustrating the R,Rk1 , R
k
2 labeling for an example with

k = 4 open string strings and 3 giant gravitons. The shape of the strings

stretching between the giants is not realistic - only the locations of the end

points of the open strings is accurate. The giant gravitons are orbiting on the

circles shown; the radius shown for each orbit is accurate. They wrap an S3

which is transverse to the plane on which they orbit. The smaller the radius of

the giants orbit, the larger the S3 it wraps. The size of the S3 that the giant

wraps is given by its momentum, which is equal to the number of boxes in the

column which corresponds to the giant. The numbers appearing in the boxes of

R4
1 tell us where the open strings start and the numbers appearing in the boxes

of R4
2 where they end.

of this labeling. Each Y in an open string word is a magnon. We will take the

number of magnons MI = O(1)∀I. The Ziσ(j) with 1 ≤ j ≤ n belong to the

system of giants and the Zs appearing in WI belong to the Ith open string. It

is clear that n ∼ O(N).

Each giant graviton is associated with a long column and each dual giant

graviton with a long row in the Young diagrams labeling the restricted Schur
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polynomial. Our notation for the Young diagrams is to list row lengths. Thus a

Young diagram that has two columns, one of length n1 and the second of length

n2 with n2 < n1 is denoted (2n2 , 1n1−n2), while a Young diagram with two rows,

one of length n1 and one of length n2 (n1 > n2) is denoted (n1, n2).

We want to use the results of [7; 8; 9] to study correlation functions of these

operators. The correlators are obtained by summing all contractions between

the Zs belonging to the giants, and by grouping the open string words in pairs

and summing only the planar diagrams between the fields in each pair of the

open string words. To justify the planar approximation for the open string

words we take ni ≥ 0 and
∑L
i=1 ni ≤ O(N). For a nice careful discussion of

related issues, see [83].

We can put these operators into correspondence with normalized states

O(R,Rk1 , R
k
2 ; {ni}1, {ni}2, · · · , {ni}k)↔ |R,Rk1 , Rk2 ; {ni}1, {ni}2, · · · , {ni}k〉

(2.10)

by using the usual state-operator correspondence available for any conformal

field theory. In what follows we will mainly use the state language.

2.4 Action of the Dilatation Operator

The one loop dilatation operator, in the SU(2) sector, is [84; 85]

D = −g
2
YM

8π2
Tr

(
[Y,Z]

[
d

dY
,
d

dZ

])
(2.11)

Our goal in this section is to review the action of this dilatation operator on

the restricted Schur polynomials, which was constructed in general in [8; 9].

When we act with D on O(R,Rk1 , R
k
2 ; {ni}1, {ni}2, · · · , {ni}k) the derivative

with respect to Y will act on a Y belonging to a specific open string word.

Thus, in the large N limit we can decompose the action of D into a sum of

terms, with each individual term being the action on a specific open string. If

we act on a magnon belonging to the bulk of the open string word, then the only

contribution comes by acting with the derivative respect to Z on a field that

is immediately adjacent to the magnon. We act only on the adjacent Z fields

because to capture the large N limit we should use the planar approximation for

– 37 –



CHAPTER 2. ANOMALOUS DIMENSIONS OF HEAVY OPERATORS FROM
MAGNON ENERGIES

the open string word contractions. To illustrate the action on a bulk magnon,

consider the operator corresponding to a single giant graviton with a single open

string attached. The giant has momentum n so that R is a single column with

n + 1 boxes: R = 1n+1. Further, R1
1 = R1

2 = 1n. The open string has three

magnons and hence we can describe the |1n+1, 1n, 1n; {n1, n2}〉. The action on

the bulk magnon at large N is

Dbulk magnon|1n+1, 1n, 1n; {(n1), (n2)}〉 =
g2
YMN

8π2

[
2|1n+1, 1n, 1n; {(n1), (n2)}〉

− |1n+1, 1n, 1n; {(n1 − 1), (n2 + 1)}〉 − |1n+1, 1n, 1n; {(n1 + 1), (n2 − 1)}〉
]

(2.12)

If we act on a magnon which occupies either the first or last position of the open

string word, we realize one of the four possibilities listed below.

1. The derivative with respect to Z acts on the Z adjacent to the Y , be-

longing to the open string and the coefficient of the product of derivatives

with respect to Y and Z replaces these fields in the same order. None of

the labels of the state change. This term has a coefficient of 1 [8; 9].

2. The derivative with respect to Z acts on the Z adjacent to the Y , belong-

ing to the open string word and the coefficient of the product of derivatives

with respect to Y and Z replaces these fields in the opposite order. In this

case, a Z has moved out of the open string word and into its own slot in

the restricted Schur polynomial - a hop off interaction in the terminology

of [8]. In the process the Young diagrams labeling the excited giant gravi-

ton grows by a single box. If the string is attached to a giant graviton,

the column the endpoint of the relevant open string belongs to inherits

the extra box. If the string is attached to a dual giant graviton, the row

the endpoint of the relevant open string belongs to inherits the extra box.

The coefficient of this term is given by minus one times the square root

of the factor associated with the open string box divided by N [8; 9]. We

remind the reader that a box in row i and column j is assigned the factor

N − i+ j.

3. The derivative with respect to Z acts on a Z belonging to the giant and the

coefficient of the product of derivatives with respect to Y and Z replaces

– 38 –



CHAPTER 2. ANOMALOUS DIMENSIONS OF HEAVY OPERATORS FROM
MAGNON ENERGIES

these fields in the opposite order. In this case, a Z has moved from its

own slot in the restricted Schur polynomial and onto the open string word

- a hop on interaction in the terminology of [8]. In the process the Young

diagrams labeling the giant graviton shrinks by a single box. The details

of which column/row shrinks is exactly parallel to the discussion in point 2

above. The coefficient of this term is given by minus one times the square

root of the factor associated with the open string box divided by N [8; 9].

4. The derivative with respect to Z acts on a Z belonging to the giant and

the coefficient of the product of derivatives with respect to Y and Z re-

places these fields in the same order. This is a kissing interaction in the

terminology of [8]. None of the labels of the state change. The coefficient

of this term is given by the factor associated with the open string box

divided by N [8; 9].

For the example we are considering the dilatation operator has the following

large N action on the magnons closest to the string endpoints

Dfirst magnon|1n+1, 1n, 1n; {(n1), (n2)}〉 =
g2
YMN

8π2

[(
1 + 1− n

N

)
|1n+1, 1n, 1n; {(n1), (n2)}〉

−
√

1− n

N
(|1n+2, 1n+1, 1n+1; {(n1 − 1), (n2)}〉 − |1n, 1n−1, 1n−1; {(n1 + 1), (n2)})〉

]
(2.13)

and

Dlast magnon|1n+1, 1n, 1n; {(n1), (n2)}〉 =
g2
YMN

8π2

[(
1 + 1− n

N

)
|1n+1, 1n, 1n; {(n1), (n2)}〉

−
√

1− n

N
(|1n+2, 1n+1, 1n+1; {(n1), (n2 − 1)}〉 − |1n, 1n−1, 1n−1; {(n1), (n2 + 1)})〉

]
(2.14)

There are a few points worth noting: The complete action of the dilatation

operator can be read from the Young diagram labels of the operator. The factors

of the boxes in the Young diagram for the endpoints of a given open string

determine the action of the dilatation operator on that open string. When the

labels Rk1 6= Rk2 , the string end points are on different giant gravitons and

the two endpoints are associated with different boxes in the Young diagram

so that the action of the dilatation operator on the two boundary magnons
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is distinct. To determine these endpoint interactions we must go beyond the

planar approximation. Notice that for a maximal giant graviton we have n = N .

In this case, most of the boundary magnon terms in the Hamiltonian vanish and

the boundary magnons are locked in place at the string endpoints. The giant

graviton brane is simply supplying a Dirichlet boundary condition for the open

string. For non-maximal giants, all of the boundary magnon terms are non-

zero and, for example, Z fields that belong to the open string can wander into

slots describing the giant. Alternatively, since the split between open string and

brane is probably not very sharp, we might think that the magnons can wander

from the string endpoints into the bulk of the open string. The coefficient of

these hopping terms is modified by the presence of the giant graviton, so that

the boundary magnons do not behave in the same way as the bulk magnons do.

As a final example, consider a dual giant graviton which carries momentum

n. In this case, R is a single row of n boxes and we have

Dfirst magnon|n+ 1, n, n; {(n1), (n2)}〉 =
g2
YMN

8π2

[(
1 + 1 +

n

N

)
|n+ 1, n, n; {(n1), (n2)}〉

−
√

1 +
n

N
(|n+ 2, n+ 1, n+ 1; {(n1 − 1), (n2)}〉 − |n, n− 1, n− 1; {(n1 + 1), (n2)})〉

]
(2.15)

In the Appendix A we discuss the action of the dilatation operator at two loops.

2.5 Large N Diagonalization: Asymptotic States

We are now ready to construct eigenstates of the dilatation operator. We will

not construct exact large N eigenstates. Rather, we focus on states for which all

magnons are well separated. From these states we can still obtain the anomalous

dimensions. In section 2.7 we will describe how one might use these asymptotic

states to construct exact eigenstates, following [12; 13]. In the absence of inte-

grability however, this can not be carried to completion and our states are best

thought of as very good approximate eigenstates.

The Zs in the open string word define a lattice on which the Y s hop. Our

construction entails taking a Fourier transform on this lattice. The boundary
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interactions allow Zs to move onto and out of the lattice, so the lattice size is

not fixed. To implement this idea, we introduce the phases

qa = e
i2πka
J (2.16)

with kq = 0, 1, · · · , J − 1 as well as a cut off function whose form is shown in

figure 2.2. The eigenstate with two magnons is then given by

|ψ(q1)〉 =

n+J∑
m2=0

m2∑
m1=0

f(m2)qm1−m2
1

∣∣1n+J+m1−m2+1, 1n+J+m1−m2 , 1n+J+m1−m2 ; {m2 −m1}
〉

+

m2+J∑
m1=0

n∑
m2=0

f(m2)f(J −m1 +m2)

× qm1−m2
1

∣∣1n+J+m1−m2+1, 1n+J+m1−m2 , 1n+J+m1−m2 ; {m2 −m1}
〉
(2.17)

For a detailed discussion of the construction, we refer the reader to Appendix

A. At large N it is now simple to show that

D|ψ(q1)〉 = 2
g2
YM

8π2

(
1 +

[
1− n

N

]
−
√

1− n

N
(q1 + q−1

1 )

)
= 2g2

(
1 +

[
1− n

N

]
−
√

1− n

N
(q1 + q−1

1 )

)
(2.18)

Figure 2.2: The cutoff function used in constructing large N eigenstates

Since both magnons are boundary magnons, the above formula shows that

boundary magnons carry momentum and it characterizes their anomalous di-
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mension. The analysis for the dual giant graviton of momentum n leads to

D|ψ(q1)〉 = 2
g2
YM

8π2

(
1 +

[
1 +

n

N

]
−
√

1 +
n

N
(q1 + q−1

1 )

)
|ψ(q1)〉

= 2g2

(
1 +

[
1 +

n

N

]
−
√

1 +
n

N
(q1 + q−1

1 )

)
|ψ(q1)〉 (2.19)

For the generalizations to states with more magnons and further details, the

reader should consult Appendix A. This completes our discussion of the large N

asymptotic eigenstates. We will now consider the dual string theory description

of these states.

2.6 String Theory Description

The string theory description of the gauge theory operators is most easily de-

veloped using the limit introduced by Maldacena and Hofman [22], in which

the spectrum on both sides of the correspondence simplifies. The limit con-

siders operators of large R charge J and scaling dimension ∆ holding ∆ − J
and the ’t Hooft coupling λ fixed. Both sides of the correspondence enjoy an

SU(2|2)× SU(2|2) supersymmetry with novel central extensions as realized by

Beisert in [12; 13]. Once the central charge of the spin-chain/worldsheet excita-

tions have been determined, their spectrum and constraints on their two body

scattering are determined. A powerful conclusion argued for in [22] using the

physical picture developed in [48] is that there is a natural geometric interpre-

tation for these central charges in the classical string theory. This geometric

interpretation also proved useful in the analysis of maximal giant gravitons in

[21]. In this section we will argue that it is also applicable to the case of non-

maximal giant and dual giant gravitons.

Giant gravitons carry a dipole moment under the RR five form flux F5 .

When they move through the spacetime, the Lorentz force like coupling to F5

causes them to expand in directions transverse to the direction in which they

move [85]. The giant graviton orbits on a circle inside the S5 and wraps an

S3 transverse to this circle but also contained in the S5 . Using the complex

coordinates x = x5 + ix6, y = x3 + ix4 and z = x1 + ix2 the S5 is described by

|z|2 + |x|2 + |y|2 = 1 (2.20)
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in units with the radius of the S5 equal to 1. The giant is orbiting in the 1− 2

plane on the circle |z| = r. The size to which the giant expands is determined

by canceling the force causing them to expand, due to the coupling to the F5

flux, against the D3 brane tension, which causes them to shrink. Since the

coupling to the F5 flux depends on their velocity, the size of the giant graviton

is determined by its angular momentum n as [4; 5; 6]

|x|2 + |y|2 =
n

N
(2.21)

Figure 2.3: The giant is orbiting on the smaller circle shown. Each red segment

is a magnon. The arrows in the figure simply indicate the orientation of the

central charge ki of the ith magnon. The LLM disk is shaded in this and

subsequent figures. This is done to distinguish the rim of the LLM disk from

the orbits of the giant gravitons.

Using (2.20) we see that the giant graviton orbits on a circle of radius [86]

r =

√
1− n

N
< 1 (2.22)

Consider now the worldsheet geometry for an open string attached to a giant

graviton. Following [22], we will describe this worldsheet solution using LLM

coordinates [50]. The worldsheet for this solution, in these coordinates, is shown

in Figure 2.3. The figure shows an open string with 6 magnons. Each magnon

corresponds to a directed line segment in the figure. The first and last magnons

connect to the giant which is orbiting on the smaller circle shown. Between the
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magnons we have a collection of O(
√
N) Zs. These are pushed by a centrifugal

force to the circle |z| = 1 giving the string worldsheet the shape shown in the

figure 2.3.

In the limit that the magnons are well separated, each magnon transforms

in a definite SU(2|2) representation. The open string itself transforms as the

tensor product of the individual magnon representations. The representation of

each individual magnon is specified by giving the values of the central charges ki

, k∗i appearing in (2.5). Regarding the plane shown in Figure 2.3 as the complex

plane, k is given by the complex number determined by the vector describing the

directed segment corresponding to the magnon. In particular, the magnitude of

k is given by the length of the line corresponding to the magnon. The energy

of the magnon, which transforms in a short representation, is determined by

supersymmetry to be[12; 13]

E =
√

1 + 2λ|k|2 = 1 + λ|k|2 − 1

2
λ2|k|4 + · · · (2.23)

Figure 2.4: A bulk magnon subtending an angle θ has a length of 2 sin 2 .

For a magnon which subtends an angle θ as shown in figure 2.4, we find [22]

E = 1 + 4λ sin2 θ

2
+O(λ2) = 1 + λ(2− eiθ − e−iθ) +O(λ2). (2.24)

This is in perfect agreement with the field theory answer (A.12) if we set λ = g2

and

q = ei
2πk
J = eiθ θ =

2πk

J
(2.25)
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Thus the angle that is subtended by the magnon is equal to its momentum,

which is the well known result obtained in [22]. Consider now the boundary

magnon, as shown in Figure 2.5. The circle on which the giant orbits has a

radius given by

r =

√
1− n

N
(2.26)

The large circle has a radius of 1 in the units we are using. Thus, the length

of the boundary magnon is given by the length of the diagonal of the isosceles

trapezium shown in Figure 2.5. Consequently

E = 1 + λ((1− r)2 + 4r sin2 θ

2
) +O(λ2)

= 1 + λ(1 + r2 − r(eiθ + e−iθ)) +O(λ2) (2.27)

Figure 2.5: A boundary magnon subtending an angle θ has a length√
(1− r)2 + 4r sin2 θ

2 .
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Figure 2.6: A two strings attached to two giant gravitons state. To distinguish

the two strings, one of them has been indicated with dashed lines. Both giants

are submaximal and so are moving on circles with a radius |z| < 1. One of the

strings has only two boundary magnons. The second string has two boundary

magnons and three bulk magnons. Notice that each open string has a non-

vanishing central charge. It is only for the full state that the central charge

vanishes. See [1] for closely related observations.

This is again in complete agreement with (A.12) after we set θ = 2πk
J and

recall that r =
√

1− n
N . This is a convincing check of the boundary terms

in the dilatation operator and of our large N asymptotic eigenstates. In the

description of maximal giant gravitons, the boundary magnon always stretches

from the center of the disk to a point on the circumference of the circle |z| = 1.

Consequently, for the maximal giant the boundary magnon subtends an angle

of zero and it never has a non-zero momentum. For submaximal giants we see

that the boundary magnons do in general carry non-zero momentum. This is

completely expected: in the case of a maximal giant graviton, the boundary

magnons are locked in the first and last position of the open string lattice. As

we move away from the maximal giant graviton, the coefficients of the boundary

terms which allow the boundary magnons to hop in the lattice, increase from

zero, allowing the boundary magnons to move and hence, to carry a non-zero

momentum. In the Appendix B we have checked that the two loop answer in

the field theory agrees with the O(λ2) term of (2.23).
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Notice that the vector sum of the directed lines segments vanishes. This is

nothing but -1 the statement that our operator vanishes unless q−1
M = q1q2 · · · qM−1.

This condition ensures that although each magnon transforms in a representa-

tion of SU(2|2) with non-zero central charges, the complete state enjoys an

SU(2|2) symmetry that has no central extension. It is for this reason that

the central charges must sum to zero and hence that the vector sum of the

red segments must vanish. This is achieved in an interesting way for certain

multi-string states: each open string can transform under an SU(2|2) that has

a non-zero central charge and it is only for the full state of all open strings plus

giants that the central charge vanishes. An example of this for a two string

state is given in Figure 2.6.

To conclude this section, we will consider an example involving a dual giant

graviton. In this case, the giant graviton orbits on a circle [4; 5]

r =

√
1 +

n

N
> 1 (2.28)

Figure 2.7: A boundary magnon subtending an angle has a length of√
(r − 1)2 + 4r sin2 θ

2 .

The length of the line segment corresponding to the boundary magnon is

again given by the length of the diagonal of an isosceles trapezium, as shown in
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Figure 2.7. Consequently

E = 1 + λ((1− r)2 + 4r sin2 θ

2
) +O(λ2)

= 1 + λ(1 + r2 − r(eiθ + e−iθ)) +O(λ2) (2.29)

which is in perfect agreement with (2.19) after we set θ = 2πk
J and r =

√
1 + n

N .

2.7 From asymptotic states to exact eigenstates

The states we have written down above are asymptotic states in the sense that

we have implicitly assumed that all of the magnons are well separated. In this

case the excitations can be treated individually and the symmetry algebra acts

as a tensor product representation. However, the magnons can come close to-

gether and even swap positions. When they swap positions, we get different

asymptotic states that must be combined to obtain the exact eigenstate. The

asymptotic states must be combined in a way that is compatible with the alge-

bra, as explained in [12]. This requirement ultimately implies a unique way to

complete the asymptotic states to obtain the exact eigenstate.

When two bulk magnons swap positions, the corresponding asymptotic states

are combined using the two particle S−matrix. The relevant two particle

S−matrix has been determined in [12; 13]. It is also possible for a bulk magnon

to reflect/scatter off a boundary magnon. For maximal giant gravitons [21], the

reflection from the boundary preserves the fact that the boundary magnon has

zero momentum and it reverses the sign of the momentum of the bulk magnon.

In this section we would like to investigate the scattering of a bulk magnon off

a boundary magnon for a non-maximal giant graviton.

We must require that the total central charge k of the state vanishes. Thus,

after the scattering the directed line segments must still sum to zero. Further

the central charge C of the state must remain unchanged. Taken together, these

conditions uniquely fix the momentum of both bulk and boundary magnon after

the scattering.

In Figure 2.8 the process of scattering a bulk magnon off the boundary

magnon is shown. After the scattering the magnons that have a different mo-

mentum, corresponding to line
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Figure 2.8: A bulk magnon scatters with a boundary magnon. In the process

the direction of the momentum of the bulk magnon is reversed.

segments that have changed and these are shown in green. In this case the

giant graviton is close enough to a maximal giant that the momentum of the

boundary magnon is reversed, so this is a reflection-like scattering. Before and

after the scattering the line segments line up to form a closed circuit, so that the

central charge k of the state before and after scattering is zero. To analyze the

constraint arising from fixing the central charge C, we parametrize the problem

as shown in figure 9. There is a single parameter which is fixed by requiring√
1 + 8λ sin2 ϕ2

2
+

√
1 + 8λ

(
[1 + r]2 + 4r2 sin2 ϕ1

2

)
=

√
1 + 8λ sin2 θ

2
+

√
1 + 8λ

(
[1 + r]2 + 4r2 sin2

(
ϕ1 + ϕ2 + θ

2

))
(2.30)

which is the condition that the state has the correct central charge C. In the

above formula we have

r =

√
1− b0

N
(2.31)

The equation (2.30) has two solutions, one of which is negative θ = −ϕ2 and

describes the state before the scattering. We need to choose the solution for

which θ 6= −ϕ. Notice that for b0 = N this condition implies that θ = ϕ2 which

is indeed the correct answer [21]. In this case, the bulk magnon reflects off the

boundary with a reverse in the direction of its momentum but no change in its
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magnitude. The momentum of the bulk magnon remains zero. When b0 = 0 the

momenta of the two magnons is exchanged which is again the correct answer

[12; 13]. When 0 < b0 < N we find the solution to (2.30) for the momentum

of the bulk magnon interpolates between reflection like scattering (when the

momentum of the magnon is reversed) and magnon like scattering (when the

momenta of the two magnons are exchanged). In this case though, in general,

the magnitude of the momenta of the bulk and the boundary magnons are not

preserved by the scattering - the scattering is inelastic. Finally, the scattering

of a bulk magnon from a boundary magnon attached to a dual giant graviton

is always magnon like scattering. i.e. neither of the momenta change direction.

The fact that the scattering between boundary and bulk magnons is not

elastic has far reaching consequences. First, the system will not be integrable.

In the case of purely elastic scattering for all magnon scatterings, the number of

asymtotic states that must be combined to construct the exact energy eigenstate

is roughly (M − 1)! for M magnons.

Figure 2.9: A bulk magnon scatters with a boundary magnon. In the process

the direction of the momentum of the bulk magnon is reversed. Before the

scattering the boundary magnon subtends an angle ϕ1 and the bulk magnon

subtends an angle ϕ2 . After the scattering the boundary magnon subtends an

angle ϕ1 + ϕ2 + θ and the bulk magnon subtends an angle −θ.
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This is the number of ways of arranging the magnons (distinguished by their

momentum) up to cyclicity. There are M magnon momenta appearing and these

momenta are the same for all the asymptotic states. The exact eigenstates can

then be constructed using a coordinate space Bethe ansatz. For the case of

inelastic scattering, the momenta appearing depend on the specific asymptotic

state one considers and there are many more than (M − 1)! asymptotic states

that must be combined to construct the exact eigenstate. In this case construct-

ing the exact eigenstates from the asymptotic states appears to be a formidable

problem.

2.8 S−matrix and boundary reflection matrix

We have a good understanding of the symmetries of the theory and the repre-

sentations under which the states transform. Following Beisert [12; 13], this is

all that is needed to obtain the magnon scattering matrix. In this section we

will carry out this analysis.

Each magnon transforms under a centrally extended representation of the

su(2|2) algebra

{Qαa , Q
β
b } = εαβεab

ki
2
, {Saα, Sbβ} = εαβε

ab k
∗
i

2
, (2.32)

{Saα, Q
β
b } = δabL

β
α + δβαR

a
b + δab δ

β
αCi (2.33)

There are also the usual commutators for the bosonic su(2) generators. There

are three central charges ki, k
∗
i , Ci for each SU(2|2) factor. Following [21] we

set the central charges of the two copies to be equal. It is useful to review how

the bosonic part of the SU(2|2)2 symmetry acts in the gauge theory. N = 4

super Yang-Mills theory has 6 hermitian adjoint scalars φi that transform as a

vector of SO(6). We have combined them into the complex fields as follows

X = φ1 + iφ2, X̄ = φ1 − iφ2,

Y = φ3 + iφ4, X̄ = φ3 − iφ4,

X = φ4 + iφ6, X̄ = φ5 − iφ6. (2.34)

– 51 –



CHAPTER 2. ANOMALOUS DIMENSIONS OF HEAVY OPERATORS FROM
MAGNON ENERGIES

The bosonic subgroup of SU(2|2)2 is SU(2) × SU(2) = SO(4) that rotates

φ1, φ2, φ3, φ4 as a vector. In terms of complex fields, Y , X and Ȳ , X̄ transform

under the different SU(2|2) groups. Z, Z̄ do not transform. To specify the

representation that each magnon transforms in, following [12; 13] we specify

parameters ak, bk, ck, dk for each magnon, where

Qαa
∣∣φb〉 = a+ kδba|ψα〉, Qαa

∣∣ψβ〉 = bkε
αβεab

∣∣φb〉,
Saα
∣∣φb〉 = ckεαβε

ab
∣∣ψβ , 〉 Saα

∣∣ψβ〉 = dkδ
β
α|φa〉,

for the kth magnon. We are using the non-local notation of [13]. Using the

representation introduced above

Q1
1Q

2
2

∣∣φ2
〉

= akQ
1
1

∣∣ψ2
〉

= bkakε
12ε12

∣∣φ2,
〉

Q2
2Q

1
1

∣∣φ2
〉

= 0, (2.35)

so that kk = 2akbk. An identical argument using the Saα supercharges gives

kk = 2ckdk. Consider next a state with a total of K magnons. If we are to

obtain a representation without central extension, we must require that the

central charges vanish

k

2
=

K∑
k=1

kk
2

=

K∑
k=1

akbk = 0,

k∗

2
=

K∑
k=1

k∗k
2

=

K∑
k=1

ckdk = 0. (2.36)

To obtain a formula for the central charge C consider

QαaS
b
β |φc〉 = ckQ

α
a ε
bcεβγ |ψγ〉 = ckbkε

bcεβγε
αγεad

∣∣φd.〉 (2.37)

Now set a = b and = and sum over both indices to obtain

QαaS
a
α|φc〉 = 2bkck|φc〉 (2.38)

Very similar manipulations show that

SaαQ
α
a |φc〉 = 2akdk|φc〉 (2.39)

so that we learn the value of the central charge Ck

{Qαa , Saα}|φc〉 = 4C|φc〉 = 2(akdk + bkck)|φc〉, ⇒ Ck =
1

2
(akdk + bkck).

(2.40)
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Using

{S1
2 , Q

1
1} = L1

2 L1
2

∣∣ψ2
〉

=
∣∣ψ1
〉

(2.41)

we easily find

{S1
2 , Q

1
1}
∣∣ψ2
〉

= (akdk − bkck)
∣∣ψ1
〉
⇒ akdk − bkck = 1. (2.42)

This is also the condition to get an atypical representation of su(2|2) [13].

Following [12], a useful parametrization for the parameters of the represen-

tation is given by

ak =
√
gηk, bk =

√
g

ηk
fk

(
1−

x+
k

x−k

)
, (2.43)

ck =

√
giηk

fkx
+
k

, dk =

√
gx+

k

iηk

(
1−

x−k
x+
k

)
. (2.44)

The parameters x±k are set by the momentum pk of the magnon

ei
2πpk
J =

x+
k

x−k
. (2.45)

The parameter fk is a pure phase, given by the product
∏
j e
ipj , where j runs

over all magnons to the left of the magnon considered. To ensure unitarity

|ηk|2 = i(x−k − x
+
k ). The condition akdk − bkck = 1 to get an atypical represen-

tation implies that

x+
k +

1

x+
k

− x−k −
1

x−k
=
i

g
. (2.46)

This equation will be very useful in verifying some of the S−matrix formulas

given below. A useful parametrization for the parameters specifying the repre-

sentation for a boundary magnon is given by

ak =
√
gηk, bk =

√
g

ηk
fk

(
1− r

x+
k

x−k

)
, (2.47)

ck =

√
giηk

fkx
+
k

, dk =

√
gx+

k

iηk

(
1− r

x−k
x+
k

)
. (2.48)

where r =
√

1− n
N is the radius of the path on which the giant graviton of

momentum n orbits2 and the parameters x±k are again set by the momentum

2For an open string attached to a dual giant graviton, we would have r =
√

1 + n
N

where

n is the momentum of the dual giant graviton.
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carried by the boundary magnon according to (2.45). For the boundary magnon,

fk is again a phase as described above and now |ηk|2 = i(rx−k − x
+
k ). For a

maximal giant graviton r = 0 and the boundary magnon carries no momentum

and |ηk|2 = ix+
k . For the boundary magnon, the condition akdk − bkck = 1 to

get an atypical representation implies that

x+
l +

1

x+
k

− rx−k −
r

x−k
=
i

g
. (2.49)

This equation will again be useful below. Equation (2.49) interpolates between

(2.46) for r = 1, which is the correct condition for a bulk magnon and the

condition obtained for r = 0

x+
k +

1

x+
k

=
i

g
(2.50)

which was used in [21] for the boundary magnon attached to a maximal giant

graviton.

Following [12; 13] one can check that the above parametrization obeys (2.36).

Finally,

akbkckdk = g2(e−pk − 1)(eipk − 1) = 4g2 sin2 pk
2

=
1

4

[
(akdk + bkck)2 − (akdk − bkck)2

]
=

1

4

[
(2Ck)2 − 1

]
(2.51)

so that

Ck = ±
√

1

4
+ 4g2 sin2 pk

2
(2.52)

The components of an energy eigenstate in different asymptotic regions are re-

lated by the bulk-bulk and boundary-bulk magnon scattering matrices S and R.

S and R must commute with the su(2|2) group. The labels of the representa-

tions of individual magnons can change under the scattering but they must do

so in a way that preserves the central charges of the total state. In the picture

of the energy eigenstates provided by the LLM plane, the central charges are

given by the directed line segments (which are vectors and hence can also be

viewed as complex numbers), one for each magnon. The fact that these line

segments close into polygons is the statement that the central charges k and

k∗ of our total state vanishes. The sum of the lengths squared of these line

segments determines the central charge C. By scattering these segments can
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rearrange themselves as long as the sums
∑
i

√
1 + 2λl2i with li the length of

segment i is preserved and so long as they still form a closed polygon

Implementing the consequences of invariance under SU(2|2)2 is exactly par-

allel to the analysis of [12; 13; 21]. For the S−matrix describing the scattering of

two bulk magnons, the reader is referred to [12; 13]. When considering the equa-

tions for the reflection/scattering matrix describing the reflection/scattering of

a bulk magnon from a boundary magnon, we need to pay attention to the fact

that the central charges of the representation are no longer swapped between the

two magnons. Rather, the central charges after the reflection are determined

by solving (2.30). Denote the central charge of the boundary magnon before

the reflection by pB . Denote the central charge of the bulk magnon before the

reflection by pb. Denote the central charge of the boundary magnon after the

reflection by kB . Denote the central charge of the bulk magnon after the reflec-

tion by kb. Denote the reflection/scattering matrix by R. Since the S−matrix

has to commute with the bosonic su(2) generators Schurs Lemma implies that

it must be proportional to the identity in each given irreducible representation

of su(2). This immediately implies that

R
∣∣φapBφbpb〉 = AR12

∣∣∣φ{akBφb}kb〉+BR12

∣∣∣φ[a
kB
φ
b]
kb

〉
+

1

2
CR12ε

abεαβ

∣∣∣ψαkBψβkb〉 (2.53)

R
∣∣ψapBψbpb〉 = DR

12

∣∣∣ψ{akBψb}kb〉+ ER12

∣∣∣ψ[a
kB
ψ
b]
kb

〉
+

1

2
FR12ε

abεαβ

∣∣∣φαkBφβkb〉 (2.54)

R
∣∣φapBψβpb〉 = GR12

∣∣∣ψβkBφb}kb〉+HR
12

∣∣∣φakBψβkb〉 (2.55)

R
∣∣ψαpBφbpb〉 = KR

12

∣∣∣ψαkBφb}kb〉+ LR12

∣∣φakBψαkb〉 (2.56)

The analysis now proceeds as in [12; 13]. Demanding the S−matrix commutes
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with the supercharges implies

AR12 = S0
12

η1η2x
′+
1 x+

1 (x−1 −x
+
2 )
(

(x+
2 −rx

−
2 )(rx′+2 −x

′−
2 )x+

2 +(x−2 −rx
+
2 )(x′+2 −rx

′+
2 )x′+2

)
η′1η
′
2x
′+
2 x+

2 (x−1 −x
+
1 )(x+

1 −x
′+
1 )
(
x+

1 (rx+
2 −x

−
2 )+x−2 (rx−2 −x

+
2 )
) ,

BR12 = AR12

[
1 +

2x′−2 (x′−1 −x
′+
1 )

x′+1 (x−1 −x
+
2 )(x′−1 x′−2 −rx

′+
1 x′+2 )

B1

B2

]
B1 = x−2 x

′+
1

[
(x−1 − x

+
1 )(2x−1 − x

′−
1 )(x+

2 x
′+
1 − x

+
1 x

+
2 )

−x′+1 x−1 (x+
2 − rx

−
2 )(x−1 − x

+
2 )
] rx′+2 − x′−2
rx′−2 − x

′+
2

+
[
x′+1 x+

1 (x−1 − x
+
2 )(x−2 − rx

+
2 ) + x+

2 x
−
2 (x−1 − x

+
1 )(x′+1 − x

+
1 )
]
x′−1 x′−2 ,

B2 = (rx−2 − x
+
2 )
[
x+

1 x
′−
2 x′−1

rx+
2 −x

−
2

rx−2 −x
+
2

− x′+1 x−1 x
−
2
rx′+2 −x

′−
2

rx′−2 −x
′+
2

]
,

CR12 = S0
12

2η2η1C1

fx+
2 (x+

1 − x
′+
1 )(x+

1 (rx+
2 − x

−
2 ) + x−2 (rx−2 − x

+
2 ))(x′−1 x′−2 − rx

′+
1 x′+2 )

C1 = x′+1
x−1 − x

+
2

x−1 − x
+
1

(
x′+1 x−1 x

−
2 (x+

2 − rx
−
2 (rx′+2 − x

′−
2 ) + x+

1 x
′−
1 x′−2 (x−2 − rx

+
2 )(x′+2 − rx

′−
2 )
)

+ x−2 x
+
2 (x+

1 − x
′+
1 )
(
x−1 (rx′+1 x′+2 + x′−1 x′−2 − 2x′+1 x′−2 ) + x′−1 x′−2 (rx−2 − x

′−
1 + x′+1 − x

′+
2 )
)

DR
12 = −S0

12

ER12 = −S0
12

1− 2x+
1 x
′−
2

x′−1
x−1

(x′−1 − x
′+
1 + x′+2 − rx

′−
2 )− (x′−1 − x

′+
1 )− x′+1 x−2

x+
1 x
′−
2

x+
2 −rx

−
2

x−2 −rx
+
2

(x′−2 − rx
′+
2 )

[x+
1 + x−2

x+
2 −rx

−
2

x−2 −rx
+
2

][rx′+1 x′+2 − x
′+
1 x′+2 ]


FR12 = S0

12

2x+
1 x
′+
1 f(x′−1 − x

′+
1 )(x′−2 − rx

′+
2 )(x−2 − rx

+
2 )

η′1η
′
2x
−
1 x
′−
1 [x+

1 (x−2 − rx
+
2 ) + x−2 (x+

2 − rx
−
2 )][x′−1 x′−2 − rx

′+
1 x′+2 ]

×
[
x−1 − x

′−
1 +

rx−2 − x+2

x−2 − rx
+
2

x−2 x
−
1

x+
1

+
x′+2 − rx

−
2

x′−2 − rx
′+
2

x′−1 x′−2
x′+1

]

GR12 = S0
12

η1x
+
1

[
x+

2 (rx−2 − x
+
2 )(rx′+2 − x

′−
2 ) + x′+2 (rx+

2 − x
−
2 )(x′+2 − rx

′−
2 )
]

η′2x
′+
2 (x−1 − x

+
1 )
[
x+

1 (x−2 − rx
+
2 ) + x−2 (x+

2 − rx
−
2 )
]

HR
12 = S0

12

η1(x′−1 − x
′+
1 )
[
x−1 x

−
2 (rx−2 − x

′−
2 ) + x+

1 x
′−
1 (rx+

2 − x
−
2 )
]

η′1x
′−
1 (x−1 − x

+
1 )
[
x+

1 (x−2 − rx
+
2 ) + x−2 (x+

2 − rx
−
2 )
]

KR
12 = S0

12

η2x
−
2

[
x−1 x

′+
1 (rx′+2 − x

′−
2 ) + x′−1 x′−2 (rx′−2 − x

′+
2 )
]

η′2x
′−
1 x′−2

[
x+

1 (x−2 − rx
+
2 ) + x−2 (x+

2 − rx
−
2 )
]

LR12 = S0
12

η2x
−
2 (x−1 − x

′−
1 )(x′−1 − x

′+
1 )

η′1x
′−
1

[
x+

1 (x−2 − rx
+
2 ) + x−2 (x+

2 − rx
−
2 )
] (2.57)
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where

x+
1

x−1
= eipb

x+
2

x−2
= eipB (2.58)

x+
1′

x−1′
= eikb

x+
2′

x−2′
= eikB (2.59)

Figure 2.10: A bulk magnon scatters with a boundary magnon. The sum of the

momenta of the two magnons is . Here we only show two of the magnons; we

indicate them in red before the scattering and in green after the scattering. In

the process the direction of the momentum both magnons is reversed.

Thus, the S−matrix is determined up to an overall phase. Here we have simply

chosen DR
12 = −S0

12 which specifies the overall phase. This overall phase is

constrained by crossing symmetry [87]. It is simple to verify that this R matrix

is unitary for any value of r and any momenta, and further that it reproduces

the bulk S−matrix for r = 1 and the reflection matrix for scattering from a

maximal giant graviton for r = 0. In performing this check we compared to

the expressions in [88]. To provide a further check of these expressions, we have

considered the case that the boundary and the bulk magnons have momenta that

sum to π, as shown in figure 2.10. In this situation it is very simple to compute

the final momenta of the two magnons - the final momenta are minus the initial

momenta. In Appendix E we have computed the value of 1
2

(
1 +

BR12

AR12

)
at one

loop. We find this agrees perfectly with the answer obtained from (2.57). To
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perform this check, one needs to express x± in terms of p by solving x+ = x−eip

and (2.49) for the boundary magnon or (2.46) for the bulk magnon. Doing this

we find

x− = ei
p
2

(
1

2g sin p
2

+ 2g sin
p

2

)
+O(g2) (2.60)

for a bulk magnon and

x− = − i

g(r − eip)
+ ige−ip(r − eip)re

ip − 1

r + eip
+O(g2) (2.61)

for a boundary magnon. Inserting these expansions into (2.57) and keeping only

the leading order (which is g0 ) at small g, we reproduce (E.13) for any allowed

value of r.

It is a simple matter to verify that the boundary Yang-Baxter equation is not

satisfied by this reflection matrix, indicating that the system is not integrable.

This conclusion follows immediately upon verifying that changing the order in

which the bulk magnons scatter with the boundary magnon leads to final states

in which the magnons have different momenta. Consequently, the integrability

is lost precisely because the scattering of the boundary and bulk magnons, for

boundary magnons attached to a non-maximal giant graviton, is inelastic.

2.9 Links to the Double Coset Ansatz and Open

Spring Theory

There is an interesting limiting case that we can consider, obtained by taking

each open string word to simply be a single Y , i.e. each open string is a sin-

gle magnon. In this case one must use the correlators computed in [10; 11]

as opposed to the correlators computed in [7]. The case with distinguishable

open strings is much simpler since when the correlators are computed, only con-

tractions between corresponding open strings contribute; when the open strings

are identical, it is possible to contract any two of them. In this case one must

consider operators that treat these “open strings” symmetrically, leading to the

operators constructed in [10]. In a specific limit, the action of the dilatation

operator factors into an action on the Zs and an action on the Y s [15; 16]. The

action on the Y s can be diagonalized by Fourier transforming to a double coset
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which describes how the magnons are attached to the giant gravitons [16; 20].

For an operator labeled by a Young diagram R with p long rows or columns,

the action on the Zs then reduces to the motion of p particles along the real

line with their coordinates given by the lengths of the Young diagram R, inter-

acting through quadratic pair-wise interaction potentials [17]. For interesting

related work see [89]. Our goal in this section is to explain the string theory

interpretation of these results.

The conclusion of [16; 20] is that eigenstates of the dilatation operator given

by operators corresponding to Young diagrams R that have p long rows or

columns can be labeled by a graph with p vertices and directed edges. The

number of directed edges matches the number of magnons Y used to construct

the operator. These graphs have a natural interpretation in terms of the Gauss

Law expected from the worldvolume theory of the giant graviton branes [63].

Since the giant graviton has a compact world volume, the Gauss Law implies

the total charge on the giants world volume vanishes. Each string end point is

charged, so this is a constraint on the possible open string configurations: the

number of strings emanating from the giant must equal the number of strings

terminating on the giant. Thus, the graphs labeling the operators are simply

enumerating the states consistent with the Gauss Law. To stress this connection

we use the language “Gauss graphs” for the labels, we refer to the vertices of

the graph as branes since each one is a giant graviton brane and we identify the

directed edges as strings since each is a magnon. The action of the dilatation

operator is nicely summarized by the Gauss graph labeling the operator. Count

the number nij of strings (of either orientation) stretching between branes i and

j in the Gauss graph. The action of the dilatation operator on the Gauss graph

operator is then given by

DOR,r(σ) = −g
2
YM

8π2

∑
i<j

nij(σ)∆ijOR,r(σ). (2.62)

The operator ∆ij is defined in Appendix C. For a proof of this, see [16; 20]. To

obtain anomalous dimensions one needs to solve an eigenproblem on the R, r

labels, which has been accomplished in [17] in complete generality.

For three open strings stretched between three giant gravitons we have to
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solve the following eigenvalue problem

g2
YM

8π2

[
(2N − c1 − c2 + 3)O(c1, c2, c3)−

√
(N − c1 + 1)(N − c2 + 1)O(c1 + 1, c2 − 1, c3)

−
√

(N − c1)(N − c2 + 2)O(c1 − 1, c2 + 1, c3)
]

g2
YM

8π2

[
(2N − c2 − c3 + 5)O(c1, c2, c3)−

√
(N − c2 + 1)(N − c3 + 1)O(c1, c2 − 1, c3 + 1)

−
√

(N − c2 + 2)(N − c3 + 2)O(c1, c2 + 1, c3 − 1)
]

g2
YM

8π2

[
(2N − c1 − c3 + 4)O(c1, c2, c3)−

√
(N − c3 + 2)(N − c1 + 1)O(c1 + 1, c2, c3 − 1)

−
√

(N − c3 + 3)(N − c1)O(c1 − 1, c2, c3 + 1)
]

= γO(c1, c2, c3) (2.63)

where c1, c2 and c3 are the lengths of the columns = momenta of the three

giant gravitons and γ is the anomalous dimension. At large N , approximating

for example O(c1, c2, c3) = O(c1 + 1, c2, c3 − 1) which amounts to ignoring back

reaction on the giant gravitons, we have

g2
YMN

8π2

[√
1− c1

N
−
√

1− c2
N

]2
O(c1, c2, c3) +

g2
YMN

8π2

[√
1− c2

N
−
√

1− c3
N

]2
O(c1, c2, c3)

g2
YMN

8π2

[√
1− c3

N
−
√

1− c1
N

]2
O(c1, c2, c3) = γO(c1, c2, c3). (2.64)

The Gauss graph associated with this operator has a string stretching between

the brane of momentum c1 and the brane of momentum c3 , a string stretching

between the brane of momentum c1 and the brane of momentum c2 and a string

stretching between the brane of momentum c2 and the brane of momentum c3.

On the string theory side, since our magnons don’t carry any momentum, we

have three giants moving in the plane with magnons stretched radially between

them. Identifying the central charges, we find they are radial vectors with length

equal to the distance between the giants. With these central charges we can

write down the energy

E =
√

1 + 2λ(r1 − r2)2 +
√

1 + 2λ(r1 − r3)2 +
√

1 + 2λ(r3 − r2)2. (2.65)

Using the usual translation between the momentum of the giant graviton and

the radius of the circle it moves on

ri =

√
1− ci

N
i = 1, 2, 3 (2.66)
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we find that the order λ term in the expansion of (2.65) precisely matches the

gauge theory result (2.64).

If we don’t ignore back reaction on the giant graviton, we find that (2.63)

leads to a harmonic oscillator eigenvalue problem. In this case, we are keeping

track of the Zs slipping past a magnon, from one giant onto the next. In this

way, one of the giants will grow and one will shrink thereby changing the radius

of their orbits and hence the length of the magnon stretched between them. In

this process we would expect the energy to vary continuously, which is exactly

what we see at large N . A specific harmonic oscillator state (see [17] for details)

corresponds to two giant gravitons executing a periodic motion. In one period,

the giants first come towards each other and then move away from each other

again. Exciting these oscillators to any finite level, we find an energy that is of

order the ’t Hooft coupling divided by N . These very small energies translate

into motions with a huge period.

There is an important point worth noting. The harmonic oscillator problem

that arises from (2.63) is obtained by expanding (2.63) assuming that c1− c2 is

order
√
N and c1, c2 are of order N . The oscillator Hamiltonian then arises as a

consequence of (and depends sensitively on) the order 1 shifts in the coefficients

of the terms in (2.63). Thus to really trust the oscillator Hamiltonian we find

we must be sure that (2.63) is accurate enough that we can expand it and the

order 1 term we obtain is accurate. This is indeed the case, as we discuss in

Appendix D.

2.10 Summary of chapter

To summarize this chapter we have used the description of the action of the

dilatation operator derived using an approach which relies heavily on group

representation theory techniques, to study the anomalous dimensions of opera-

tors with a bare dimension that grows as N , as the large N limit is taken. For

these operators, even just to capture the leading large N limit, we are forced

to sum much more than just the planar diagrams and this is precisely what the

representation theoretic approach manages to do. We have demonstrated an

exact agreement with results coming from the dual gravity description, which

– 61 –



CHAPTER 2. ANOMALOUS DIMENSIONS OF HEAVY OPERATORS FROM
MAGNON ENERGIES

is convincing evidence in support of this approach. It gives definite correct re-

sults in a systematic large N expansion, demonstrating that the representation

theoretic methods provide a useful language and calculational framework with

which to tackle the kinds of large N but non-planar limits we have studied in

this chapter. Of course, we have mainly investigated the leading large N limit

and the computation of 1
N corrections is an interesting problem that we hope

to return to in the future.

The progress that was made in understanding the planar limit of N = 4

super Yang- Mills theory is impressive (see [47] for a comprehensive review).

Of course, much of the progress is thanks to integrability. There are however

results that do not rely on integrability, only on the symmetries of the theory.

In our study we clearly have a genuine extension of methods (giant magnons,

the SU(2|2) scattering matrix) that worked in the planar limit, into the large

N but non-planar setting. Further, even though integrability does not persist,

it is present when the radius r of the circle on which the graviton moves is

r = 0 (maximal giant graviton) or r = 1 (point-like giant graviton). If we

perturb about these two values of r, we are departing from integrability in a

controlled way and hence we might still be able to exploit integrability. For more

general values of r, we have managed to find asymptotic eigenstates in which the

magnons are well separated and we expect these to be very good approximate

eigenstates. Indeed, anomalous dimensions computed using these asymptotic

eigenstates exactly agree with the dual string theory energies. Without the

power of integrability it does not seem to be easy to patch together asymptotic

states to obtain exact eigenstates.

We have a clearer understanding of the non-planar integrability discovered

in [64; 14; 15; 16; 20; 17]. The magnons in these systems remain separated and

hence free, so they are actually non-interacting. One of the giants would need to

lose all of its momentum before any two magnons would scatter. It is satisfying

that the gauge theory methods based on group representation theory are pow-

erful enough to detect this integrability directly in the field theory. The results

we have found here give the all loops prediction for the anomalous dimensions

of these operators. In the limit when we consider a very large number of fields

there would seem to be many more circumstances in which one could construct
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operators that are ultimately dual to free systems. This is an interesting av-

enue that deserves careful study, since these simple free systems may provide

convenient starting points, to which interactions may be added systematically.

A possible instability associated to open strings attached to giants has been

pointed out in [80]. In this case it seems that the spectrum of the spin chain

becomes continuous, the ground state is no longer BPS and supersymmetry is

broken. The transition that removes the BPS state is simply that the gap from

the ground state to the continuum closes. Of course, the spectrum of energies is

discrete but this is only evident at subleading orders in 1/N when one accounts

for the back reaction of the giant graviton-branes. The question of whether

these BPS states with given quantum numbers exist or not has been linked to

a walls of stability type description [90] in [1]. It would be interesting to see if

these issues can be understood using the methods of this chapter.
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Chapter 3

Interacting double coset

magnons

3.1 Outline of chapter

In this chapter we consider the anomalous dimensions of restricted Schur poly-

nomials constructed using n ∼ O(N) complex adjoint scalars Z and m complex

adjoint scalars Y . We fix m� n so that our operators are almost half BPS. At

leading order in m
n this system corresponds to a dilute gas of m free magnons.

Adding the first correction of order m
n to the anomalous dimension, which arises

at two loops, we find nonzero magnon interactions. The form of this new op-

erator mixing is studied in detail [91] for a system of two giant gravitons with

four strings attached. The work discussed in this chapter was reported in Phys.

Rev. D 93, 0650057 (2016).

3.2 Chapter introduction

The original instance of the AdS/CFT correspondence [92] provides a defini-

tion for a class of quantum type IIB string theories: those that are embedded

in spacetimes which are asymptotically AdS5 × S5 with background five form

flux. The definition for this class of string theories is in terms of the highly
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symmetric superconformal four dimensional N = 4 super Yang-Mills theory

with gauge group U(N). The correspondence claims a one-to-one and onto

mapping between states of the quantum gravity and quantum operators of the

gauge theory. Consequently, the mapping will identify all the objects known to

string theory, perturbative and nonperturbative, with operators in N = 4 su-

per Yang-Mills theory. Apart from the perturbative spectrum of closed strings,

there are D-branes and their open string excitations, as well as other spacetime

geometries, living in the gauge theory. An interesting class of D-branes are the

giant graviton branes [4; 5; 6]. We now have a good idea of how to describe the

operators that correspond to certain examples of these branes. The examples

we have in mind are almost 1
2−Bogomol’nyi-Prasad-Sommerfield (BPS) giant

gravitons. The dual operators are built from two complex scalar fields Z and Y

of the N = 4 super Yang-Mills theory. We need to use order N fields, so that

these operators have a large dimension in the large N limit. For operators with

such a large classical dimension the usual large N techniques, i.e. an expansion

organized by genus of contributing ribbon graphs, is not possible [51]. New

techniques to study the large N limit have been developed. For the free theory,

bases of operators that diagonalize the two point function to all orders in 1/N

have been identified [3; 52; 53; 54; 55; 56; 57; 61; 7; 10; 93]. Techniques to study

the anomalous dimension of these operators have also been developed, first for

descriptions in which the giant graviton plus open string system is treated using

words in the gauge theory to represent the open string [63; 8; 9; 76; 79; 80; 82]

and second for descriptions which treat all fields in the operator democratically

[15; 16; 20; 17]. Our operators are built using n ∼ O(N) Zs and m Y s with

n� m, which implies that we are close to the 1
2−BPS giant graviton and that

we have a new small parameter m
n in the game. The condition that n � m

is crucial for our approximations which is not too surprising: a systematically

small deformation of a BPS operator will be simpler than the generic operator.

Part of the motivation for this chapter is to consider the first order correction in

a systematic m
n expansion. In both the open string description and in the more

democratic description, there is a close connection [94] between the dynamics of

the Y fields and the LLM plane [50] description of giant magnon dynamics in the

dual string theory [21; 48; 22]. In this study we are interested in the anomalous
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dimensions of gauge theory operators corresponding to restricted Schur poly-

nomials that treat the fields democratically. This corresponds to a dilute gas

of magnons. The spectrum of anomalous dimensions has been computed to all

loops at large N and to leading order in the small parameter m
n [94; 19]. This

all loop answer is possible thanks to supersymmetry [12]. The result agrees with

explicit one loop computations in [16; 20], two loop computations in [18] and

even three loop computations performed in [95] using a collective coordinate

[71; 72; 74; 1] approach. The result has an interesting structure which is worth

understanding to appreciate the results we report here. The operators we study

are labeled by irreducible representations of the symmetric group Sn, that is,

by Young diagrams with n boxes. To specify the Young diagram we can write a

list of row lengths. The row lengths must sum to n, so that the Young diagram

is determined by some partition of n. Denoting the Young diagram by r the

notation “r ` n” says “r is a partition of n”. The operator we are interested in

is defined by

χR,(r,s)αβ(Z, Y ) =
1

n!m!

∑
σ∈Sn+m

χR,(r,s)αβ(σ) Tr(σZ⊗n ⊗ Y ⊗m). (3.1)

The labels R ` n + m, r ` n, s ` m label irreducible representations of Sn+m,

Sn and Sm respectively. (r, s) labels a representation of the subgroup Sn × Sm.

The above polynomial is only nonzero if (r, s) arises from R after restricting to

the Sn×Sm subgroup. Since it may arise more than once, we need multiplicity

labels (denoted α and β above) to keep track of the copy we are considering.

One way to ensure that (r, s) arises after restricting to the subgroup is to realize

r by removing m boxes from Young diagram R. These removed boxes are then

reassembled to give s. Use mi to count the number of boxes that must be

removed from row i of R to get r. Assemble the mi to produce the vector

~m. The vector ~m is conserved to leading order in m
n . In this thesis we will

study the first subleading corrections in m
n to the anomalous dimension. This

explores the first contributions which induce magnon interactions for the dilute

magnon gas. If we are ever to understand the non- perturbative sectors of

string theory using the gauge theory/ gravity correspondence, it seems that we

must move beyond small deformations of 1
2−BPS operators. One way to do

this is to construct a good understanding of this system, beyond the leading
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order in m
n . This is a key motivation for this chapter. There are already

corrections of order m
n to the one loop anomalous dimension. These corrections

do not lead to new operator mixing they only correct the anomalous dimension.

The first nontrivial corrections appear at two loops. Consequently, in Sec. 3.3

we review the structure of the two loop dilatation operator. It is useful to

rewrite the action of the two loop dilatation operator in a basis, the Gauss graph

basis, that diagonalizes the leading order. In this way it will become apparent

that the subleading correction induces new operator mixing. In the process of

transforming to the Gauss graph basis we encounter new types of traces that

have not been computed before. In Appendix I we develop techniques powerful

enough to evaluate the most general trace we could encounter, which is much

more general than the traces that appear at two loops. These results will be

useful in further studies of the dynamics of Gauss graph operators. To illustrate

our results, in Sec. 3.4 we consider a state of two giant gravitons with four

strings attached. Our results show a number of interesting features. Operators

labeled by different Gauss graphs start to mix implying that we do indeed

have an interacting system of magnons. As a consequence of these interactions,

the vector ~m is no longer conserved and operators with different ~m labels mix.

Finally, at the leading order in m
n and at large N , the all loop dilatation operator

factorizes into an action on the Y s times an action on the Zs. Although this

factorization was only exhibited at one loop in [16] and at two loops in [18], the

arguments of [19] as well as the form of the all loop anomalous dimension [12]

implies that this factorization holds to all loops; see [94] for further discussion.

The subleading term that we have evaluated does not factorize into an action on

the Y s times an action on the Zs. This proves that the action of the dilatation

operator only factorizes into an action on the Y s times an action on the Zs at

the leading order in a systematic m
n expansion. In Sec. 3.5 we discuss these

results and suggest a number of interesting directions in which the present study

can be extended.
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3.3 The two loop dilatation operator

The complete two loop dilatation operator in the su(2) sector is given by [85]

D4 = D
(1)
4 +D

(2)
4 +D

(3)
4 (3.2)

where

D
(1)
4 = −2g2 : Tr

([
[Y,Z],

∂

∂Z

] [[
∂

∂Y
,
∂

∂Z

]
, Z

])
:

D
(2)
4 = −2g2 : Tr

([
[Y,Z],

∂

∂Y

] [[
∂

∂Y
,
∂

∂Z

]
, Y

])
:

D
(3)
4 = −2g2 : Tr

(
[[Y, Z], T a]

[[
∂

∂Y
,
∂

∂Z

]
, T a

])
: (3.3)

and

g =
g2
YM

16π2
. (3.4)

The sum over a in D
(3)
4 is easily performed with the help of the identity

Tr(T aAT aB) = Tr(A) Tr(B). (3.5)

which follows from the completeness of the T a ∈ u(N). The size of these three

terms is easily estimated as follows: D
(1)
4 has two derivatives with respect to Z

which act on n Z fields and one with respect to Y which acts on m Y fields.

The size of this term is thus ∼ n2m. Similarly, we estimate that D(2) ∼ nm2

and D(3) ∼ Nnm ∼ n2m. Thus, the leading order comes from D
(1)
4 and D

(3)
4 ,

while the first correction to the leading term comes from D
(2)
4 . In Sec. 3.3.1 we

will review the results for the action of D
(1)
4 and D(3). In the process we will

introduce the basis of operators, the Gauss graph operators, that diagonalizes

the action of the leading dilatation operator. Following this, we study the action

of D
(2)
4 in Sec. 3.3.2. To transform this action to the Gauss graph basis requires

that we develop new techniques to evaluate certain traces that appear. These

techniques are developed in Appendix I and the action of D
(2)
4 in the Gauss

graph basis is discussed in Sec. 3.3.2.

3.3.1 Leading contribution

Acting on a restricted Schur polynomial, the action of D
(1)
4 is

D
(1)
4 χR,(r,s)αβ = g2

∑
(L

(a)
T,(t,u)µν;R,(r,s)γδ + L

(b)
T,(t,u)µν;R,(r,s)γδ)χT,(t,u)γδ (3.6)
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where

L
(a)
T,(t,u)µν;R,(r,s)γδ =

∑
R′′T ′′

dTn(n− 1)m

dtdudR′′(n+m)(n+m− 1)
cR,R′cR′,R′′

[
Tr(IT ′′R′′(2,m+ 2,m+ 1)

× PR,(r,s)αβ [(1,m+ 2)− (1,m+ 1)](2,m+ 2)IR′′T ′′(2,m+ 2)

× PT,(t,u)δγ(2,m+ 2)[(m+ 1, 2, 1)− (2,m+ 1, 1)])

+ Tr
(
IT ′′R′′(2,m+ 2)[(1,m+ 1)− (m+ 2,m+ 1)]PR,(r,s)αβ(1,m+ 2, 2)IR′′T ′′

× ((1,m+ 1)(2,m+ 2)PT,(t,u)δγ(2,m+ 2)(2,m+ 1)

− (m+ 1, 2,m+ 2)PT,(t,u)δγ(2,m+ 2)(2, 1))
)]

(3.7)

and

L
(b)
T,(t,u)µν;R,(r,s)γδ =

∑
R′T ′

dTn(n− 1)m

dtdudR′(n+m)
cR,R′

[
Tr(IT ′R′ [(1,m+ 2,m+ 1)PR,(r,s)αβ

− (m+ 2,m+ 1)PR,(r,s)αβ(1,m+ 1)]IR′T ′

× [(1,m+ 1)PT,(t,u)δγ − PT,(t,u)δγ(1,m+ 1)])

+ Tr
(
IT ′R′ [(1,m+ 1,m+ 2)PR,(r,s)αβ − (m+ 2,m+ 1)PR,(r,s)αβ(1,m+ 2)]

× IR′T ′ [(1,m+ 1)PT,(t,u)δγ − PT,(t,u)δγ(1,m+ 1)]
)]

(3.8)

In the above expression the traces run over the direct sum of the carrier spaces

R ⊕ T . The Young diagrams R and T both label irreducible representations

of Sn+m. Primes denote Young diagrams obtained by dropping boxes, with

one box dropped for each prime. Thus, for example, T ′′ is an irreducible rep-

resentation of Sn+m−2, obtained by dropping two boxes from T . The factors

IT ′R′ and IT ′′R′′ are intertwining maps mapping from the carrier space T ′ to

R′ and from T ′′ to R′′ respectively. cRR′ is the factor of the box that must

be dropped from R to get R′. We use a little letter to denote dimensions of

irreducible representations of the symmetric group so that, for example, dR

is the dimension of the symmetric group representation labeled by Young di-

agram R. Finally, PR,(r,s)αβ denotes the intertwining maps which correctly

restrict the trace in R to the subspace relevant for the restricted character,

that is χR,(r,s)αβ(σ) = Tr(PR,(r,s)αβΓ(R)(σ)). The above result is exact in the

sense that all orders in 1/N are included. The traces appearing in the above

expression run over the direct sum of carrier spaces R⊕T . To exploit the simpli-

fications of the large N limit, we now employ the distant corners approximation.
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In this approximation, the traces over R ⊕ T are reduced to a trace over the

tensor product of the direct sum of the carrier spaces r ⊕ t and V ⊗mp where R

has a total of p rows and Vp is a pdimensional vector space. The trace over

r ⊕ t is rather straightforward. The bulk of the work then entails tracing over

V ⊗mp . From now on we will work with normalized restricted Schur polynomials

OR,(r,s)αβ which are a scaled version of the χR,(r,s)αβ

OOR,(r,s)αβ (Z, Y ) =

√
hooksr hookss
fR hooksR

χOR,(r,s)αβ (Z, Y ). (3.9)

To denote the length of a given row of a Young diagram, we will indicate the

Young diagram label with a subscript which identifies the row. Thus r1 is the

length of the first row of r and T2 is the length of the second row in T . After

tracing over r ⊕ t, we have

D
(1)
4 OR,(r,s)αβ(Z, Y )

= −2g2
∑
i<j

m√
duds

(
TrV ⊗mp

(E
(1)
ii PR,(r,s)αβE

(1)
jj PT,(t,u)δγ)

+ TrV ⊗mp
(E

(1)
ii PR,(r,s)αβE

(1)
jj PT,(t,u)δγ)

)
∆ijOT,(t,u)δγ(Z, Y ) (3.10)

where

∆ijOT,(t,u)γδ(Z, Y ) ≡
[√

(N +R2)(N +R2 − 1)(N +R1 − 1)(N +R1 − 2)δT ′′jj ,R′′iiδt′jj ,r′ii

+
√

(N +R2 − 2)(N +R2 − 3)(N +R1)(N +R1 + 1)δT ′′ii,T ′′jjδt′ii,r′jj

− (2N − 3)
(√

(N +R1 − 1)(N +R2 − 1)δT ′j ,R′iδt′j ,r′i

+
√

(N +R2 − 2)(N +R1)δT ′i ,R′jδt′i,r′j
)

+ [2(N +R1 − 1)(N +R2 − 2)− (n− 1)(2N + n− 3)]δT,Rδt,rOT,(t,u)γδ(Z, Y )

(3.11)

and of course n = r1 + r2. The delta functions which appear are 1 if the Young

diagram labels have the same shape and 0 otherwise. In the above formula, the

matrices E
(A)
ij which appear are a basis for the representation of u(p) on V ⊗mp .

Concretely, Eij is a matrix with every entry equal to zero except for the entry

in the ith row and jth column, which is equal to 1. In terms of Eij we can write

E
(A)
ij = 1⊗ 1⊗ · · · ⊗ Eij ⊗ · · · ⊗ 1 (3.12)
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where Eij appears in the Ath factor of the tensor product and 1 is the p dimen-

sional unit matrix. To obtain the result (3.10) we have used√
hooksT hooksr
hooksR hookst

= 1
(

1 +O
(m
n

))
(3.13)

and we have only kept the leading order. The action of D
(1)
4 is a product of

two factors: an action on Young diagrams R, r and an independent action on

Young diagram s. To evaluate this second action explicitly, we need to trace

over V ⊗mp . This is most easily achieved by moving to the basis of Gauss graph

operators. Each Gauss graph operator is labeled by an element of the double

coset H \ Sm/H where H = Sm1
× Sm2

· · · × Smp . The relation between the

Gauss graph operator [OR,r(σ)] and the normalized restricted Schur polynomial

is

OR,r(σ) =
|H|√
m!

∑
j,k

∑
s`m

∑
µ1,µ2

√
dsΓ

(s)
ij (σ)Bs→1H

jµ1
Bs→1H
kµ2

OR,(r,s)µ1µ2
. (3.14)

This transformation can be understood as a Fourier transform applied to the

double coset. The branching coefficientsBs→1H
jµ1

give a resolution of the projector

from the irreducible representation s of Sm to the trivial representation of H

1

|H|
∑
σ∈H

Γ
(s)
ij (σ) =

∑
µ

Bs→1H
jµ Bs→1H

kµ (3.15)

In terms of the Gauss graph operator, we find

D
(1)
4 OR,r(σ) = −2g2

∑
i<j

nij(σ)∆ijOR,r(σ). (3.16)

The numbers nij(σ) can be read off of the element of the double coset element

σ. For more details see Appendix H

After using (3.5), the action of D
(3)
4 reduces to the action of the one loop

dilatation operator. Consequently, we will not discuss this term further.

3.3.2 Subleading contribution

There are a number of different sources for the subleading contribution. Firstly,

the leading two loop terms computed above receive corrections-see equation

(3.3). These corrections do not lead to additional mixing. They only imply a
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correction to the anomalous dimension. Similarly, even the one loop anomalous

dimension receives an m
n correction [also from using the approximation given in

(3.3)], without any additional operator mixing. The first correction that implies

new operator mixing comes from the leading contribution to D
(2)
4 and it will be

the focus of this subsection. This term has not been considered before.

Acting on a normalized restricted Schur polynomial, we find

D4OR,(r,s)αβ(Z, Y ) =
∑

T,(t,u)µν

(
M

(a)
T,(t,u)µν;R,(r,s)αβ −M

(b)
T,(t,u)µν;R,(r,s)αβ

−M (c)
T,(t,u)µν;R,(r,s)αβ +M

(d)
T,(t,u)µν;R,(r,s)αβ

)
OT,(t,u)µν(Z, Y ), (3.17)

where

M
(a)
T,(t,u)µν;R,(r,s)αβ =

∑
R′R′′

δR′′T ′′
dTm(m− 1)ncRR′cR′R′′

dR′′dtdu(m+ n)(m+ n− 1)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

× Tr
(
IT ′′R′′ΓR

(
(2,m+ 1)

)
[ΓR
(
(1,m+ 1)

)
, PR,(r,s)αβ ]

× IR′′T ′′ΓT
(
(1,m+ 1)

)
[ΓT
(
(2,m+ 1)

)
, PT,(t,u)µν ]

)
,

M
(b)
T,(t,u)µν;R,(r,s)αβ =

∑
R′

δR′T ′
dTm(m− 1)ncRR′

dR′dtdu(m+ n)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

× Tr
(
IT ′R′ΓR

(
(2,m+ 1)

)
[ΓR
(
(1,m+ 1)

)
, PR,(r,s)αβ ]

× IR′T ′ [ΓT
(
(1,m+ 1)

)
, PT,(t,u)µν ]

)
,

M
(c)
T,(t,u)µν;R,(r,s)αβ =

∑
R′

δR′T ′
dTm(m− 1)ncRR′

dR′dtdu(m+ n)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

× Tr
(
IT ′R′ [ΓR

(
(1,m+ 1)

)
, PR,(r,s)αβ ]ΓR

(
(2,m+ 1)

)
× IR′T ′ [ΓT

(
(1,m+ 1)

)
, PT,(t,u)µν ]

)
,

and

M
(d)
T,(t,u)µν;R,(r,s)αβ =

∑
R′R′′

δR′′T ′′
dTm(m− 1)ncRR′cR′R′′

dR′′dtdu(m+ n)(m+ n− 1)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

× Tr
(
IT ′′R′′ [ΓR

(
(1,m+ 1)

)
, PR,(r,s)αβ ]ΓR

(
(2,m+ 1)

)
× IR′′T ′′ [ΓT

(
1,m+ 1)

)
, PT,(t,u)µν ]ΓT

(
(2,m+ 1)

))
.

The traces appearing above again run over the direct sum of carrier spaces

R ⊕ T and the action given above is again correct to all orders in 1/N . To
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take advantage of the simplifications of the large N limit, we again employ the

distant corners approximation, which again leads to an expression that has a

single trace over V ⊗mp remaining

M
(a)
T,(t,u)µν;R,(r,s)αβ =

∑
R′R′′

δR′′T ′′
dTm(m− 1)nCRR′CR′R′′

dR′′dtdu(m+ n)(m+ n− 1)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

dr′iδr′it′l

×
[

TrV ⊗mp

(
E

(1)
kj E

(2)
ll psαβE

(1)
ii E

(2)
jk puµν

)
− TrV ⊗mp

(
E

(1)
kj psαβE

(1)
ii E

(2)
jk puµν δkl

)
− TrV ⊗mp

(
E

(1)
ki E

(2)
ll psαβE

(2)
ik puµν δij

)
+ TrV ⊗mp

(
E

(1)
ki psαβE

(2)
ik puµν δijδkl

) ]
,

M
(b)
T,(t,u)µν;R,(r,s)αβ =

∑
R′

δR′T ′
dTm(m− 1)ncRR′

dR′dtdu(m+ n)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

dr′iδr′it′k

×
[

TrV ⊗mp

(
E

(1)
ka E

(2)
ak psαβE

(1)
ii puµν

)
− TrV ⊗mp

(
E

(1)
ba E

(2)
ab psαβE

(1)
ii puµν δik

)
− TrV ⊗mp

(
puµνE

(1)
ki E

(2)
ik psαβ

)
+ TrV ⊗mp

(
E

(1)
bi E

(2)
ib psαβE

(1)
kk puµν

) ]
,

M
(c)
T,(t,u)µν;R,(r,s)αβ =

∑
R′

δR′T ′
dTm(m− 1)ncRR′

dR′dtdu(m+ n)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

dr′iδr′it′k

×
[

TrV ⊗mp

(
E

(1)
kk psαβE

(1)
ic E

(2)
ci puµν

)
− TrV ⊗mp

(
psαβE

(1)
ik E

(2)
ki puµν

)
− TrV ⊗mp

(
E

(1)
ii psαβE

(1)
ab E

(2)
ba puµν δik

)
+ TrV ⊗mp

(
E

(1)
ii psαβE

(1)
ck E

(2)
kc puµν

) ]
,

and

M (d)4T,(t,u)µν;R,(r,s)αβ =
∑
R′R′′

δR′′T ′′
dTm(m− 1)ncRR′cR′R′′

dR′′dtdu(m+ n)(m+ n− 1)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

dr′iδr′it′k

×
[

TrV ⊗mp

(
E

(1)
ka E

(2)
ai psαβE

(1)
ib E

(2)
bk puµν δijδkl

)
− TrV ⊗mp

(
E

(1)
la E

(2)
ai psαβE

(1)
ik E

(2)
kl puµν δij

)
− TrV ⊗mp

(
E

(1)
ki E

(2)
ij psαβE

(1)
jb E

(2)
bk puµν δlk

)
+ TrV ⊗mp

(
E

(1)
li E

(2)
ij psαβE

(1)
jk E

(2)
kl puµν

) ]
.

To compute the remaining trace over V ⊗mp we will again move to the Gauss

graph basis. This requires computing traces that have not been considered in

previous works. Schematically, these traces are of the form

Tr(ApsµνBpuγδ) (3.18)

where A and B can be any product of the E
(A)
ab s. The details of how to compute

these traces in general are given in Appendix I. To summarize the key ideas,

consider an intertwining map psµν built on the state |v̄1, ~m1〉 with symmetry
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group H1 and the map ptγδ built on the state |v̄2, ~m2〉 with symmetry group

H2. The transformation to Gauss graph basis is given by

T =
∑
sµνlm

∑
uγδnp

Tr(ApsµνBpuγδ)B
s→1H
mµ Bs→1H

lν Γ
(s)
ml(σ1)Bs→1H

pγ Bs→1H
nδ Γ(u)

pn (σ2)

=
1

|H1||H2|
∑

ψi∈Sm

〉v2|σ−1
2 (ψ−1

2 Aψ2)ψ1|v1〉〉v2|(ψ−1
2 BTψ2)ψ1σ1|v1.〉 (3.19)

The final sum over ψ1 and ψ2 then gives

T =
(m− 2)!

|H1||H2|
|O(σ1)|2nab(σ2)ncd(σ2)δAB([σ1], [σ2]) (3.20)

The indices a, b, c, d are read from A and B as explained in Appendix I and

|O(σ1)|2 =

p∏
i,j=1

nij(σ1)! = 〈OR,r(σ1)†OR,r(σ1)〉. (3.21)

The delta function δAB([σ1], [σ2]) is defined using A and B. This is also ex-

plained in Appendix I. Using these results, we find

D
(2)
4 OR,r(σ1) =

∑
T,t,σ2

(
M1,σ1,σ2

T,t;R,r −M
2,σ1,σ2

T,t;R,r −M
3,σ1,σ2

T,t;R,r +M4,σ1,σ2

T,t;R,r

)
OT,t(σ2),

(3.22)

where

M1,σ1,σ2

T,t;R,r =
∑
R′,R′′

δR′′T ′′δr′it′l

√
CRR′CR′R′′CTT ′CT ′T ′′

lRj lTk
|OR,r(σ1)|2 δAB([σ1], [σ2])

×
[
nik(σ2)nkl(σ2)− δkl

p∑
a=1

nik(σ2)nka(σ2)

− δij
p∑
b=1

nbk(σ2)nkl(σ2) + δijδkl

p∑
a,b=1

nbk(σ2)nka(σ2)

]
.
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Similarly

M2,σ1,σ2

T,t;R,r =
∑
R′

δR′T ′δr′it′k

√
CRR′CTT ′ |OR,r(σ1)|2 δAB([σ1], [σ2])

×
[ p∑
a,b=1

nik(σ2)nba(σ2)− δik
p∑

a,b,c=1

nib(σ2)nca(σ2)

−
p∑

a,b=1

nak(σ2)nbi(σ2) +

p∑
a,b=1

nkb(σ2)nai(σ2)

]
,

M3,σ1,σ2

T,t;R,r =
∑
R′

δR′T ′δr′it′k

√
CRR′CTT ′ |OR,r(σ1)|2 δAB([σ1], [σ2])

×
[ p∑
a,b=1

nbk(σ2)nia(σ2)−
p∑

a,b=1

nka(σ2)nib(σ2)

− δik
p∑

a,b,c=1

nbi(σ2)nac(σ2) +

p∑
a,b=1

nki(σ2)nba(σ2)

]
,

(3.23)

M4,σ1,σ2

T,t;R,r =
∑
R′,R′′

δR′′T ′′δr′it′k

√
CRR′CR′R′′CTT ′CT ′T ′′

lRj lTl
|OR,r(σ1)|2 δAB([σ1], [σ2])

×
[
δijδkl

p∑
a,b=1

nbl(σ2)nla(σ2)− δij
p∑
a=1

nkl(σ2)nla(σ2)

− δkl
p∑
b=1

nbl(σ2)nli(σ2) + nkl(σ2)nli(σ2)

]
, (3.24)

Notice that both M1,σ1,σ2

T,t;R,r and M4,σ1,σ2

T,t;R,r depend on the length of the rows of the

Young diagrams R and T that participate. Since these lengths determine the

angular momentum of the giants, they determine the radius to which the giants

will expand. This is the first dependence of the anomalous dimensions on the

geometry of the giant graviton.

3.4 Example: A 2 giant graviton boundstate

with 4 strings attached

In this section we will consider the simplest nontrivial system that exhibits the

general structure of the subleading operator mixing problem. This problem
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is a system of two giant gravitons with four strings attached. As we have

explained, there are m
n corrections to the anomalous dimension from the one

loop contribution as well as from D
(1)
4 and D

(3)
4 at two loops. These corrections

do not induce extra operator mixing, so that the Gauss graph operators continue

to have a good anomalous dimension. The only extra operator mixing comes

from the subleading contribution D
(2)
4 , and this is what we aim to explore.

Each element of the Gauss graph basis is labeled by two Young diagrams

R, r as well as a Gauss graph. We will number the states according to their

Gauss graph labeling as shown below

|1, R, r〉 =
∣∣∣ , R, r

〉
, |2, R, r〉 =

∣∣∣ , R, r
〉
, |3, R, r〉 =

∣∣∣ , R, r
〉
,

|4, R, r〉 =
∣∣ , R, r

〉
, |5, R, r〉 =

∣∣∣ , R, r
〉
, |6, R, r〉 =

∣∣∣ , R, r
〉
,

|7, R, r〉 =
∣∣∣ , R, r

〉
, |8, R, r〉 =

∣∣∣ , R, r
〉
, |9, R, r〉 =

∣∣∣ , R, r
〉
.

The states |i〉 for i = 5, 6, 7, 8, 9 are BPS at the leading order in m
n . The

subleading corrections to the anomalous dimension coming from one loop, as

well as fromD
(1)
4 andD

(3)
4 at two loops is a multiplicative order m

n correction and

vanishes because the leading order anomalous dimension vanishes. Evaluating

the subleading order contribution coming from D
(2)
4 , we find

D
(2)
4 |i, R, r〉 = 0 i = 5, 6, 7, 8, 9 (3.25)

so that the states that are BPS at the leading order do not receive a subleading

correction. This is not peculiar to the example we consider and is to be expected

generally, since for the BPS states we have nab(σ2) = 0 for a 6= b. The state

|4, R, r〉 also does not mix with other states. However, for this state we have a
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nontrivial correction to the eigenvalue since

D4|4, R, r〉 =
∑
T,t

64

[
δRT

(
δr′1t′1
lR2

+
δr′2t′2
lR1

)
δR′′12T

′′
12

(N + lR1
− 1)(N + lR2

− 2)

+ δRT
δr′1t′1
lR1

δR′′11T
′′
11

(N + lR1
− 1)(N + lR1

− 2) + δRT
δr′2t′2
lR2

δR′′22T
′′
22

(N + lR2
− 2)(N + lR2

− 3)

− δRT δr′1t′1δR′1T ′1(N + lR1
− 1)− δRT δr′2t′2δR′2T ′2(N + lR2

− 2)

− δR+
21T

δr′1t′2√
lR1

(lR1
− 1)

δR′′11T
′′
12

(N + lR1
− 2)

√
(N + lR1

− 1)(N + lR2
− 1)

− δR+
12T

δr′2t′1√
lR1(lR1 + 1)

δR′′12T
′′
11

(N + lR1 − 1)
√

(N + lR1)(N + lR2 − 2)

− δR+
12T

δr′2t′1√
lR2

(lR2
− 1)

δR′′22T
′′
12

(N + lR2
− 3)

√
(N + lR1

)(N + lR2
− 2)

− δR+
21T

δr′1t′2√
lR2(lR2 + 1)

δR′′12T
′′
22

(N + lR2 − 2)
√

(N + lR1 − 1)(N + lR2 − 1)

+ δR+
21T

δr′1t′2δR′1T ′2

√
(N + lR1 − 1)(N + lR2 − 1)

+ δR+
12T

δr′2t′1δR′2T ′1

√
(N + lR1

)(N + lR2
− 2)

]
|4, T, t〉 (3.26)

The remaining states |i〉 with i = 1, 2, 3 mix under the action of D
(2)
4 . Using

a matrix notation

D
(2)
4 |i, R, r〉 =

∑
T,t

(D
(2)
4 )ij |j, T, t i, j = 1, 2, 3〉 (3.27)

the action of D
(2)
4 in this subspace is given by

D
(2)
4 = A


8 0 0

0 4 0

0 0 8

+B


0 1 0

1 0 1

0 1 0

+ C


0 1 0

0 0 1

0 0 0

+ C†


0 0 0

1 0 0

0 1 0


where the coefficients A, B and C are quoted in Appendix I. The coefficients

A, B and C are operators that have a nontrivial action of the R, r labels of

the Gauss graph operators. It is straightforward to check that the matrix coeffi-

cients of these operators do not commute and hence they are not simultaneously

diagonalizable. This implies that the action of the dilatation operator no longer

factorizes into commuting actions on the Z and Y fields. It is this failure of fac-

torization that we were referring to when we talked about the general structure

of the mixing problem.

– 77 –



CHAPTER 3. INTERACTING DOUBLE COSET MAGNONS

3.5 Summary of chapter

Our results have a number of interesting features that deserve comment. In

the m
n = 0 limit, the action of the dilatation operator factorizes into an action

on the Z fields and an action on the Y fields. The subleading correction has

spoiled this factorization of the dilatation operator. This is rather natural: in

the limit m
n = 0 we consider a giant graviton built with an infinite number

(n = ∞) of Z fields, so that the backreaction of the magnons on the giant

graviton can be neglected. Without backreaction, we expect the dynamics of

the giant is completely decoupled from the dynamics of the magnons and this

is the root of the factorized action of the dilatation operator. By adding the

first correction, we are saying that n is large but not infinite. In this situation,

although backreaction is small, it is not zero. The magnons will now provide

a small perturbation to the dynamics of the giant; the action of the dilatation

operator will no longer factorize into an action on the giant (i.e. on the Zs)

times an action on the magnons (i.e. on the Y s).

The subleading correction spoiled the factorization of the dilatation opera-

tor by introducing further operator mixing. Another interesting results of our

analysis is that the subleading corrections did not induce extra mixing for the

BPS operators. Indeed, after accounting for the complete m
n correction to two

loops, we found our BPS operators remain uncorrected and continue to have a

vanishing anomalous dimension. Although our computation is performed in a

specific example, we argued that we expect this conclusion to be general since

for the BPS operators we have nab(σ) = 0 for a 6= b. Looking at the result

(3.22), it is clear that vanishing nab(σ) implies a vanishing action of D
(2)
4 .

The form of the action of the dilatation operator implies that when the

correction to the anomalous dimension is nonzero it will depend on the length

of the rows of the Young diagrams labeling the operator. Since these lengths

determine the angular momentum of the giants, they determine the radius to

which the giants will expand. This implies that the anomalous dimensions start

to depend on the geometry of the giant graviton.

The dynamics of open strings on the worldvolume of a giant graviton is

expected to give rise to a Yang-Mills theory at low energy. The lightest mode of
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the open strings attached to the giant becomes the gauge boson of the theory.

This suggests that within kalN = 4 super Yang-Mills theory, we should see

classes of operators whose dynamics is captured by a new emergent gauge theory.

The acronym emergent is particularly apt in this case because this new Yang-

Mills theory will be local on a space that is distinct from the space of the original

spacetime of the kalN = 4 super Yang-Mills theory. The gauge symmetry which

determines the interactions of the theory is a local symmetry with respect to this

new space and the time of the original spacetime. The space of the emergent

Yang-Mills theory is the worldvolume of the giant graviton, which itself is built

from the Zs. So this space and an associated local gauge invariance is to emerge

from the dynamics of the Z matrices in the large N limit. For the operators dual

to giant gravitons studied in this thesis, it is natural to think that the magnons

themselves will become the gauge bosons. Indeed, the allowed state space of

the magnons is parametrized by a double coset. The structure of this double

coset is determined by the expected Gauss law of the emergent gauge theory.

To really understand the mechanism behind this emergence it is important that

we get a good handle on how the magnons interact. It is by studying these

interactions that we may hope to recognize the Yang- Mills theory that must

emerge. In this thesis we have computed the first of these interactions and we

have developed tools that allow us to study these interactions in general.
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Conclusions

In this thesis, we used the duality between the type IIB superstring theory and

the U(N), N = 4 SYM theory in a large N but non-planar limit. On the gauge

theory side of the correspondence, we computed all loop anomalous dimensions

in the restricted Schur polynomial basis. These restricted Schur polynomials

are dual to a system of excited strings suspended between giant gravitons. The

excitations of the strings are identified as magnon particles. The anomalous

dimensions compute the energy spectrum of the magnon particles. The energies

of the magnons computed in the string theory are in complete agreement with

the anomalous dimensions computed in the SYM. This result is a consequence

of the SU(2|2)2 symmetry.

Another interesting result is the complete determination, up to an overall

phase, of the reflection/scattering matrix between a boundary magnon and a

bulk magnon. Recall that a boundary magnon is a magnon stretched from an

end point of a string to a giant graviton. Again, we have used the constraints

following from the SU(2|2)2 symmetry to determine the S−matrix. As a con-

sequence of the boundary conditions on the open spin chain, the system is not

integrable. This result is developed in the Chapter 2 of this dissertation.

Apart from the above results we have also derived in Chapter 3 the two-

loop subleading contribution to the magnon energies. The corrections induce

a mixing of the double coset operators. The action of the leading higher-loop

dilatation operator is decoupled in terms of two separate actions on the Z’s and
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Y ’s. The subleading contribution we have considered spoils this factorization.

We have given the complete formula for the interaction of Gauss graphs at

subleading order and at two loops.

There are many sectors other than the su(2) sector of N = 4 SYM. Among

these sectors, one can for instance study the su(3) sector, which was already ini-

tiated in the previous years. Other sectors that can be considered are su(2|3),

sl(2) and psu(2, 2|4). In fact, especially for the case of the sl(2) and su(2|3)

sectors, a basis of operators was constructed in terms of restricted Schur poly-

nomials that take into account fermions. Another interesting problem is to

study the overall phase of the S−matrix using crossing symmetry.
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Appendix A

Large N eigenstates

In section 2.5 we explained that at any finite loop order (γ) the change in length

∆L = γ of the open string word lattice is finite while the total length L of the

lattice is N . This implies that at large N the ratio ∆L
L → 0 and we can treat the

lattice length as fixed. This observation is most easily used by first introducing

“simple states” that have a definite number of Zs, in the lattice associated to

each open string. This is accomplished by relaxing the identification of the

open string word with the lattice. The dilatation operators action now allows

magnons to move off the open string, mixing simple states with states that

are not simple. However, by modifying these simple states we can build states

that are closed under the action of the dilatation operator. Our simple states

are defined by taking a “Fourier transform” of the states (2.10). The simplest

system to consider is that of a single giant, with a single string attached, excited

by only two magnons (i.e. only boundary magnons - no bulk magnons). The

string word is composed using J Z fields and the complete operator using J +n

Zs. Introduce the phases

qa = e
i2πka
J (A.1)

with ka = 0, 1, · · · , J − 1. As a consequence of the fact that the lattice is a

discrete structure, momenta are quantized with the momentum spacing set by

the inverse of the total lattice size. This explains the choice of phases in (A.1).
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The simple states we consider are thus given by

|q1, q2〉 =

J−1∑
m1=0

m1∑
m2=0

qm1
1 qm2

2 |1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J −m1 +m2}〉

+

J−1∑
m2=0

m2∑
m1=0

qm1
1 qm2

2 |1n+J+m1−m2+1, 1n+J+m1−m2 , 1n+J+m1−m2 ; {m2 −m1}〉

(A.2)

This Fourier transform is a transform on the lattice describing the open string

worldsheet. The two magnons sit at positions m1 and m2 on this lattice. If

m2 > m1 , there are m2 −m1 Zs between the magnons. If m1 > m2 , there

are J + m2 − m1 Zs between the magnons. The Zs before the first magnon

of the string and after the last magnon of the string, are mixed up with the

Zs of the giant - they do not sit on the open string word. All of the terms

in (A.2) are states with different positions for the two magnons, but each is a

giant that contains precisely n Zs with an open string attached, and the open

string contains precisely J Zs. We cant distinguish where the string begins

and where the string begins and where the giant ends: the open string and

giant morph smoothly into each other. This is in contrast to the case of a

maximal giant graviton, where the magnons mark the endpoints of the open

string1. If this interpretation is consistent we must recover the expected inner

product on the lattice and we do: Consider a giant with momentum n. An open

string with a lattice of J sites is attached to the giant. The string is excited

by M magnons, at positions n1, · · · , nM − 1 and nM , with nj+1 > nj . The

corresponding normalized states, denoted by |n; J ;n1, n2, · · · , nk〉 will obey2

〈n; J ;n1,m2, · · · ,mM |n, J, n1, n2, · · · , nM 〉 = δm2n2
· · · δmknk (A.3)

nk+1 > nk,mk+1 > mk

1For the maximal giant graviton, the boundary magnons are not able to hop and so sit

forever at the end of the open string. For a non-maximal giant graviton the boundary magnons

can hop. Even if they are initially placed at the string endpoint, they will soon explore the

bulk of the string.
2As a consequence of the fact that it is not possible to distinguish where the open string

begins and where the giant ends, there is no delta function setting the positions of the first

magnons to be equal to each other - we have put this constraint in by hand in (A.3).

– 84 –



APPENDIX A. LARGE N EIGENSTATES

This is the statement that, up to the ambiguity of where the open string starts,

the magnons must occupy the same sites for a non-zero overlap. It is clear that

(G(X) ≡ 1x+1, 1x, 1x and again, nj+1 > nj ,mj+1 > mj)

〈G(n+ J +m1 −m2); {m2, · · · ,mM}|G(n+ J + n1 − n2); {n2, · · · , nM}〉

= δm2n2
· · · δmknk

reproducing the lattice inner product. The simple states are an orthogonal set of

states. To check this, compute the coefficient c a of the state |1n+a+1, 1n+a, 1n+a; J − a〉.
Looking at the two terms in (A.2) we find the following two contributions

ca =

J−1∑
m1=a

qm1
1 qm1−a

2 +

a−1∑
m1=0

qm1
1 qm1−a

2

=

Jq
−a
2 if k1 + k2 = 0

0 if k1 + k2 6= 0
(A.4)

Thus, q1 = q−1
2 to get a non-zero result. We will see that this zero lattice

momentum constraint maps into the constraint that the su(2|2) central charges

of the complete magnon state must vanish. Our simple states are then given by

setting q2 = q−1
1 and are labeled by a single parameter q1 ; denote the simple

states using a subscript s as |q1〉s. The asymptotic large N eigenstates are a small

modification of these simple states. When we apply the dilatation operator to

the simple states nothing prevents the boundary magnons from “hopping past

the endpoints of the open string”, so the simple states are not closed under

the action of the dilatation operator. We need to relax the sharp cut off on

the magnon movement, by allowing the sums that appear in (A.2) above to be

unrestricted. We accomplish this by introducing a “cut off” function, shown in

Figure 2.2. In terms of this cut off function f(·) our eigenstates are

|ψ(q1)〉 =

n+J∑
m2=0

m2∑
m1=0

f(m2)qm1−m2
∣∣1n+J+m1−m2+1, 1n+J+m1−m2 , 1n+J+m1−m2 ; {m2 −m1}

〉
+

m2+J∑
m1=0

n∑
m2=0

f(m1)f(J −m1 +m2)

× qm1−m2
∣∣1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J +m2 −m1}

〉
(A.5)
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The dilatation operator can not arrange that the number of Zs between two

magnons becomes negative. Thus, any bounds on sums in the definition of our

simple states enforcing this are respected. On the other hand, the dilatation

operator allows boundary magnons to hop arbitrarily far beyond the open string

endpoint. Bounds in the sums for simple states enforcing this are not respected.

Replace these bounds enforced as the upper limit of a sum, by bounds enforced

by the cut off function. From figure 2.2 we see that the cut off function is defined

using a parameter δJ . We require that δJ
J → 0 as N → ∞, so that at large N

the difference between these eigenstates and the simple states |q1〉s vanishes, as

demonstrated in Appendix C. We also want to ensure that

f(i) = f(i+ 1) + ε ∀i (A.6)

with ε → 0 as N → ∞. (A.6) is needed to ensure that we do indeed obtain an

eigenstate. It is straight forward to choose a function f(x) with the required

properties. We could for example choose δJ to be of order N
1
4 . Our large N

answers are not sensitive to the details of the cut off function f(x). When 1/N

corrections to the eigenstates are computed f(x) may be more constrained and

we may need to reconsider the precise form of the cut off function and how we

implement the bounds.

It is now straight forward to verify that, at large N , we have

D|ψ(q1)〉 = 2
g2
YM

8π2

(
1 +

[
1− n

N

]
−
√

1− n

N
(q1 + q−1

1 )

)
= 2g2

(
1 +

[
1− n

N

]
−
√

1− n

N
(q1 + q−1

1 )

)
(A.7)

For the dual giant graviton of momentum n

D|ψ(q1)〉 = 2
g2
YM

8π2

(
1 +

[
1 +

n

N

]
−
√

1 +
n

N
(q1 + q−1

1 )

)
= 2g2

(
1 +

[
1 +

n

N

]
−
√

1 +
n

N
(q1 + q−1

1 )

)
(A.8)

The generalization to include more magnons is straight forward. We will

simply consider increasingly complicated examples and for each simply quote

the final results. The discussion is most easily carried out using the occupation
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notation. For example, the simple states corresponding to three magnons are

|q1, q2, q3〉 =

J−1∑
n3=0

n3∑
n2=0

n2∑
n1=0

qn1
1 qn2

2 qn3
3 |G(n+ J + n1 − n3); {(n2 − n1), (n3 − n2)}〉

+

J−1∑
n1=0

n1∑
n3=0

n3∑
n2=0

qn1
1 qn2

2 qn3
3 |G(n+ n1 − n3); {(J + n2 − n1), (n3 − n2)}〉

+

J−1∑
n2=0

n2∑
n1=0

n1∑
n3=0

qn1
1 qn2

2 qn3
3 |G(n+ n1 − n3); {(n2 − n1), (J + n3 − n2)}〉

(A.9)

where we have again lumped together the Young diagram labelsG(x) = R,R1
1, R

1
2 =

1x+1, 1x, 1x. The coefficient of the ket |G(n+ J − a− b); {(a), (b)}〉 is given by

the sum
J−1∑
n1=0

(q1q2q3)n1qa2q
a+b
3 (A.10)

which vanishes if k1 + k2 + k3 6= 0. Consequently we can set q3 = q−1
1 q−1

2 .

Including the cut off function, our energy eigenstates are given by

|ψ(q1, q2)〉 =

∞∑
n3=0

n3∑
n2=0

n2∑
n1=0

qn1−n3
1 qn2−n3

2 f(n3)|G(n+ J + n1 − n3); {(n2 − n1), (n3 − n2)}〉

+

J+n2∑
n1=0

∞∑
n3=0

n3∑
n2=0

qn1−n3
1 qn2−n3

2 f(n1)f(J + n3 − n1)|G(n+ n1 − n3); {(J + n2 − n1), (n3 − n2)}〉

+

J+n3∑
n2=0

n2∑
n1=0

∞∑
n3=0

qn1−n3
1 qn2−n3

2 f(n2)f(J + n3 − n1)|G(n+ n1 − n3); {(n2 − n1), (J + n3 − n2)}〉

It is a simple matter to see that

D|ψ(q1, q2)〉 = (E1 + E2 + E3)|ψ(q1, q2)〉 (A.11)

where

E1 = 2g2

(
1 +

[
1− n

N

]
−
√

1− n

N
(q1 + q−1

1 )

)
E2 = g2(2− q2 − q−1

2 )

E3 = 2g2

(
1 +

[
1− n

N

]
−
√

1− n

N
(q3 + q−1

3 )

)
(A.12)
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Now consider the extension to states containing many magnons: For an M

magnon state, consider all M cyclic orderings of the “magnon positions”

n1 ≤ n2 ≤ n3 ≤ · · · ≤ nM−2 ≤ nM−1 ≤ nM ≤ J − 1

nM ≤ n1 ≤ n2 ≤ n3 ≤ · · · ≤ nM−2 ≤ nM−1 ≤ J − 1

nM−1 ≤ nM ≤ n1 ≤ n2 ≤ n3 ≤ · · · ≤ nM−2 ≤ J − 1

...
...

...

n2 ≤ n3 ≤ · · · ≤ nM−2 ≤ nM−1 ≤ nM ≤ n1 ≤ J − 1 (A.13)

Construct the differences {n2−n1, n3−n2, n4−n3, · · · , nM −nM −1, n1−nM}.
Every difference except for one is positive. Add J to the difference that is

negative, i.e. the resulting differences are {∆2,∆3,∆4, · · · ,∆M ,∆1} with

∆i =

ni − ni−1 if ni ≥ ni−1

J + ni − ni−1 if ni ≤ ni−1

(A.14)

For each ordering in (A.13) we have a term in the simple state. This term is

obtained by summing over all values of {n1, n2, · · · , nM} consistent with the

ordering considered, of the following summand

qn1
1 qn2

2 · · · q
nM
M

∣∣1n1+∆1+1, 1n+∆1 , 1n+∆1 ; {(∆2), (∆3), · · · , (∆M )}
〉

(A.15)

Repeating the argument we outlined above, this term vanishes unless q−1
M =

q1q2 · · · qM−1 so that the summand can be replaced by

qn1−nM
1 qn2−nM

2 · · · qnM−1−nM
M−1

∣∣1n1+∆1+1, 1n+∆1 , 1n+∆1 ; {(∆2), (∆3), · · · , (∆M )}
〉

(A.16)

Finally, consider the extension to many string states and an arbitrary system

of giant graviton branes. Each open string word is constructed as explained

above. We add extra columns (one for each giant graviton) and rows (one for

each dual giant graviton) to R. The labels Rk1 and Rk2 specify how the open

strings are connected to the giant and dual giant gravitons. When describing

twisted string states, the strings describe a closed loop, “punctuated by” the

giant gravitons on which they end. As an example, consider a two giant graviton

state, with a pair of strings stretching between the giant gravitons. The two
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strings carry a total momentum of J . Notice that we are using the two strings

to define a single lattice of J sites. One might have thought that the two strings

would each define an independent lattice. To understand why we use the two

strings to define a single lattice, recall that we are identifying the zero lattice

momentum constraint with the constraint that the su(2|2) central charges of

the complete magnon state must vanish. There is a single su(2|2) constraint on

the two string state, not one constraint for each string. We interpret this as

implying there is a single zero lattice momentum constraint for the two strings,

and hence there is a single lattice for the two strings. This provides a straight

forward way to satisfy the su(2|2) central charge constraints. The first giant

graviton has a momentum of b0 and the second a momentum of b1. The first

string is excited by M magnons with locations {n1, n2, · · · , nM−1, nM} and the

second by M̃ magnons with locations {ñ1, ñ2, · · · , ñM̃−1, ñM̃} where we have

switched to the lattice notation. We need to consider the M + M̃ orderings of

the {ni} and {ñi}. Given a specific pair of orderings, we can again form the

differences

∆i =

n1 − ñM if n1 ≥ ñM

J + n1 − ñM if n1 ≤ ñM

∆i =


ni − ni−1 if ni ≥ ni−1

i = 2, 3, · · · ,M

J + ni − ni−1 if ni ≤ ni−1

∆M+1 =

ñ1 − nM if nM ≥ ñ1

J + ñ1 − nM if nM ≤ ñ1

∆M+i =


ñi − ñi−1 if ñi ≥ ñi−1

i = 2, 3, · · · , M̃

J + ñi − ñi−1 if ñi ≤ ñi−1

(A.17)

For each ordering we again have a term in the simple state, obtained by summing

over all values of{n1, n2, · · · , nM−1, nM , ñ1, ñ2, · · · , ñM̃−1, ñM̃} consistent with
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the ordering considered, of the following summand

qn1
1 qn2

2 · · · q
nM
M q̃ñ1

1 q̃ñ2
2 · · · q̃

ñM̃
M̃

×
∣∣G(∆1,∆M+1); {(∆2), (∆3), · · · , (∆M )}, {(∆M+2), (∆M+3), · · · , (∆M+M̃ )}

〉
(A.18)

where

G(x, y) ≡ ,
2

1

,
1

2

(A.19)

In the first Young diagram above there are b1 + y+ 1 rows with 2 boxes in each

row and b0 +x−b1−y−1 rows with 1 box in each row. Repeating the argument

we outlined above, this term vanishes unless q̃−1

M̃
= q1 · · · qM q̃1 · · · q̃M̃−1 so that

the summand can be replaced by

q
n1−ñM̃
1 q

n2−ñM̃−ñM̃
2 · · · qnM−ñM̃M q̃

ñ2−ñM̃
2 · · · q̃ñM̃−ñM̃

M̃

×
∣∣G(∆1,∆M+1); {(∆2), (∆3), · · · , (∆M )}, {(∆M+2), (∆M+3), · · · , (∆M+M̃ )}

〉
(A.20)
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Appendix B

Two loop computation of

boundary magnon energy

The dilatation operator, in the su(2) sector, can be expanded as [84; 85]

D =

∞∑
k=0

(
g2
YM

16π2

)k
D2k =

∞∑
k=0

g2kD2k, (B.1)

where the tree level, one loop and two loop contributions are

D0 = Tr

(
Z
∂

∂Z

)
+ Tr

(
Y

∂

∂Y

)
, (B.2)

D2 = −2 : Tr

(
[Z, Y ]

[
∂

∂Z
,
∂

∂Y

])
:, (B.3)

D4 = D
(a)
4 +D

(b)
4 +D

(c)
4 , (B.4)

D
(a)
4 = −2 : Tr

([
[Y,Z],

∂

∂Z

] [[
∂

∂Y
,
∂

∂Z

]
, Z

])
:

D
(b)
4 = −2 : Tr

([
[Y,Z],

∂

∂Y

] [[
∂

∂Y
,
∂

∂Z

]
, Y

])
:

D
(c)
4 = −2 : Tr

(
[[Y,Z], T a]

[[
∂

∂Y
,
∂

∂Z

]
, T a

])
: (B.5)

The boundary magnon energy we computed above came from D2 . By com-

puting the contribution from D4 we can compare to the second term in the

expansion of the string energies. Since we are using the planar approximation

when contracting fields in the open string words, in the limit of well separated
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magnons, the action of D4 can again be written as a sum of terms, one for each

magnon. Thus, if we compute the action of D4 on a state
∣∣1n+1, 1n, 1n; {n1, n2}

〉
with a single string and a single bulk magnon, its a trivial step to obtain the

action of D4 on the most general state.

A convenient way to summarize the result is to quote the action of D4 on

a state for which the magnons have momenta q1, q2, q3. Of course, we will

have to choose the qi so that the total central charge vanishes as explained in

Chapter 2. Thus we could replace q3 → (q1q2)−1 in the formulas below. We

will write the answer for a general giant graviton system with strings attached.

For the boundary terms, each boundary magnon corresponds to an end point

of the string and each end point is associated with a specific box in the Young

diagram. Denote the factor of the box corresponding to the first magnon by

cF and the factor of the box associated to the last magnon by cL. A straight

forward but somewhat lengthy computation, using the methods developed in

[8; 9] gives

(D4)first magnon|ψ(q1, q2, q3)〉 = −g
4

2

[(
1 +

cF
N

)2

−
(

1 +
cF
N

)√cF
N

(q1 + q−1
1 )

+
cF
N

(q2
1 + 2 + q−2

1 )
]
|ψ(q1, q2, q3)〉

= −g
4

2

[
1 +

cF
N
−
√
cF
N

(q1 + q−1
1 )

]2

|ψ(q1, q2, q3)〉

= −1

2

[
g2

(
1 +

cF
N
−
√
cF
N

(q1 + q−1
1 )

)]2

|ψ(q1, q2, q3)〉

(B.6)

in perfect agreement with (2.23). The term D
(b)
4 does not make a contribution

to the action on distant magnons, since we sum only the planar open string

word contractions. The remaining terms D
(a)
4 , D

(c)
4 both make a contribution

to the action on distant magnons. For completeness note that

(D4)first magnon|ψ(q1, q2, q3)〉 = −1

2

[
g2
(
2− (q1 + q−1

1 )
)]2 |ψ(q1, q2, q3)〉 (B.7)
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Appendix C

The difference between

simple states and

eigenstates vanishes at large

N

In this section we want to quantify the claim made in section 2.5 that the

difference between our simple states and our exact eigenstates vanishes in the

large N limit. We will do this by computing the difference between the simple

states and eigenstates and observing this difference has a norm that goes to zero

in the large N limit.

For simplicity, we will consider a two magnon state. The generalization to

many magnon states is straight forward. Our simple states have the form

|q〉 = N

(
J−1∑
m1=0

m1∑
m2=0

qm1−m2
∣∣1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J −m1 +m2}

〉
+

J−1∑
m2=0

m1∑
m1=0

qm1−m2
∣∣1n+J+m1−m2+1, 1n+J+m1−m2 , 1n+J+m1−m2 ; {m2 −m1}

〉)
(C.1)
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Requiring that 〈q|q〉 = 1 we find

N =
1

J
√
J + 1

(C.2)

With this normalization we find that the simple states are orthogonal

〈qa|qa〉 = δkakb +O

(
1

J

)
where qa = ei

2πka
J , qb = ei

2πkb
J . (C.3)

This is perfectly consistent with the fact that in the planar limit the lattice

states, given by
∣∣1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J −m1 +m2}

〉
are or-

thogonal and our simple states are simply a Fourier transform of these.

Our eigenstates have the form (we will see in a few moments that the nor-

malization in the next equation below is the same as the normalization in (C.2))

|q〉 = N

( ∞∑
m2=0

m2∑
m1=0

f(m2)qm1−m2
∣∣1n+J+m1−m2+1, 1n+J+m1−m2 , 1n+J+m1−m2 ; {m2 −m1}

〉
+

J+m2∑
m1=0

∞∑
m1

f(m1)f(J −m1 +m2)qm1−m2
∣∣1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J −m1 +m2}

〉)
≡ |q〉+ |δq〉 (C.4)

where

|δq〉 = N

(
n+J+1∑
m2=J

m2∑
m1=0

f(m2)qm1−m2
∣∣1n+J+m1−m2+1, 1n+J+m1−m2 , 1n+J+m1−m2 ; {m2 −m1}

〉
+

J+m2∑
m1=J

n+m1∑
m2=0

f(m1)f(J −m1 +m2)qm1−m2
∣∣1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J −m1 +m2}

〉)

+

J−1∑
m1=0

m1+n∑
m2=m1+1

f(J −m1 +m2)qm1−m2
∣∣1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J −m1 +m2}

〉)

= N

(
J+δJ∑
m2=J

m2∑
m1=0

f(m2)qm1−m2
∣∣1n+J+m1−m2+1, 1n+J+m1−m2 , 1n+J+m1−m2 ; {m2 −m1}

〉
+

l−∑
m1=J

J+δJ∑
m2=0

f(m1)f(J −m1 +m2)qm1−m2
∣∣1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J −m1 +m2}

〉
+

J−1∑
m1=0

m1+δJ∑
m2=m1+1

f(J −m1 +m2)qm1−m2
∣∣1n+m1−m2+1, 1n+m1−m2 , 1n+m1−m2 ; {J −m1 +m2}

〉)
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and l− is the smallest of J +m2 and J + δJ . It is rather simple to see that |δq〉
is given by a sum of O(J) terms and that each term has a coefficient of order

δJ . Consequently, up to an overall constant factor cδq which is independent of

J , we can bound the norm of |δq〉 as

〈δq|δq〉 ≤ cδqJ(δJ)N 2 = cδq
(δJ)2

J(J + 1)
(C.5)

which goes to zero in the large J limit, proving our assertion that the difference

between the simple states and the large N eigenstates vanishes in the large N

limit.
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Appendix D

Review of dilatation

operator action

The studies [64; 14] have computed the dilatation operator action without in-

voking the distant corners approximation. The only approximation made in

these studies is that correlators of operators with p long rows/columns with op-

erators that have p long rows/columns and some short rows/columns, vanishes

in the large N limit. These results are useful since they provide data against

which the distant corners approximation could be compared. Further, we have

demonstrated that the action of the dilatation operator reduces to a set of de-

coupled harmonic oscillators in [15; 16; 20; 17]. However, to obtain this result

we needed to expand one of the factors in the dilatation operator to subleading

order. The agreement of the resulting spectrum1 is strong evidence that the

distant corners approximation is valid. It is worth discussing these details and

explaining why we do indeed obtain the correct large N limit. This point is not

made explicitly in [15; 16; 20; 17].

DOR,(r,s)(Z, Y ) =
∑
T,(t,u)

NR,(r,s);T,(t,u)OT,(t,u)(Z, Y )

1One can also compare the states that have a definite scaling dimension. The states ob-

tained in the distant corners approximation are in perfect agreement with the states obtained

in [64; 14] by a numerical diagonalization of the dilatation operator.
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is given by

NR,(r,s);T,(t,u) = −g2
YM

∑
R′

cRR′dTnm
dR′dtdu(n+m)

√
fT hooksT hooksr hookss
fR hooksR hookst hooksu

×

× Tr
([

ΓR((n, n+ 1)), PR→(r,s)

]
IR′T ′

[
ΓT ((n, n+ 1)), PT→(t,u)

]
IT ′R′

)
The above formula is exact. After using the distant corners approximation to

simplify the trace and prefactor, this becomes

DOR,(r,s)µ1µ2
= −g2

YM

∑
uν1ν2

∑
i<j

δ~m,~nM
(ij)
sµ1µ2;uν1ν2

∆ijOR,(r,s)ν1ν2
(D.1)

Notice that we have a factorized action: the ∆ij (explained below) acts only on

the Young diagrams R, r and

M (ij)
sµ1µ2;uν1ν2

=
m√
dsdu

(
〈~m, s, µ2; a|E(1)

ii ~m, u, ν2; b〉〈~m, s, µ1; b|E(1)
jj ~m, u, ν1; a〉

+ 〈~m, s, µ2; a|E(1)
ii ~m, u, ν2; b〉〈~m, s, µ1; b|E(1)

jj ~m, u, ν1; a〉
)

(D.2)

where a and b are summed, acts only on the s, µ1, µ2 labels of the restricted

Schur polynomial. a labels states in the irreducible representation s and b labels

states in the irreducible representation t. To spell out the action of operator

∆ij it is useful to split it up into three terms

∆ij = ∆+
ij + ∆0

ij + ∆−ij . (D.3)

Denote the row lengths of r by ri and the row lengths of R by Ri. Introduce the

Young diagram r+
ij obtained from r by removing a box from row j and adding

it to row i. Similarly r−ij is obtained by removing a box from row i and adding

it to row j. In terms of these Young diagrams we have

∆0
ijOR,(r,s)µ1µ2

= −(2N +Ri +Rj − i− j)OR,(r,s)µ1µ2
, (D.4)

∆+
ijOR,(r,s)µ1µ2

=
√

(N +Ri − i)(N +Rj − j + 1)OR+
ij ,(r

+
ij ,s)µ1µ2

, (D.5)

∆−ijOR,(r,s)µ1µ2
=
√

(N +Ri − i+ 1)(N +Rj − j)OR−ij ,(r−ij ,s)µ1µ2
. (D.6)

As a matrix ∆ij has matrix elements

∆R,r;T,t
ij =

√
(N +Ri − i)(N +Rj − j + 1)δT,R+

ij
δt,r+

ij
(D.7)

+
√

(N +Ri − i+ 1)(N +Rj − j)δT,R−ijδt,r−ij − (2N +Ri +Rj − i− j)δR,T δt,r.
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In terms of these matrix elements we can write (D.1) as

DOR,(r,s)µ1µ2
= −g2

YM

∑
uν1ν2

∑
i<j

δ~m,~nM
(ij)
sµ1µ2;uν1ν2

∆R,r;T,t
ij OR,(r,s)ν1ν2

(D.8)

Although the distant corners approximation has been used to extract the large

N value of M
(ij)
sµ1µ2;uν1ν2 the action of ∆R,r;T,t

ij is computed exactly. In partic-

ular, the coefficients appearing in (D.7) are simply the factors associated with

the boxes that are added or removed by ∆R,r;T,t
ij , and hence in developing a

systematic large N expansion for ∆R,r;T,t
ij we can trust the shifts of numbers of

order N by numbers of order 1.

The limit in which the dilatation operator reduces to sets of decoupled os-

cillators corresponds to the limit in which the difference between the row (or

column) lengths of Young diagram R are fixed to be O
√
N) while the row lengths

themselves are order N . The continuum variables are then

xi =
Ri+1 −Ri√

R1

, i = 1, 2, · · · , p− 1 (D.9)

when R has p rows (or columns) and the shortest row (or column) is R1. In

this case, the leading and subleading (order N and order
√
N) contribution to

∆ijOR,(r,s)µ1µ2
vanish, leaving a contribution of order 1. This contribution is

sensitive to the exact form of the coefficients appearing in (D.7), and it is with

these shifts that we reproduce the numerical results of [64; 14].
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One loop computation of

bulk/boundary magnon

scattering

In this appendix we will compute the scattering of a bulk and boundary magnon,

to one loop, using the asymptotic Bethe ansatz. See [96] where studies of this

type were first suggested and [97] for related systems. We can introduce a wave

function ψ(l1, l2, · · · ) as follows

O =
∑
l1,l2,···

ψ(l1, l2, · · · )O(R,Rk1 , R
k
2 ; {l1, l2, · · · }) (E.1)

We assume that the boundary magnon (at l1) and the next magnon along the

open string (at l2) are very well separated from the remaining magnons. These

magnons are both assumed to be Y impurities. To obtain the scattering we

want, we only need to focus on these two magnons. The time independent

Schrödinger equation following from our one loop dilatation operator is

Eψ(l1, l2) =
(

3 +
c

N

)
ψ(l1, l2)−

√
c

N
(ψ(l1 − 1, l2) + ψ(l1 + 1, l2))

− (ψ(l1, l2 − 1) + ψ(l1, l2 + 1)) (E.2)
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where c is the factor of the box that the endpoint associated to the magnon at

l1 belongs to. The equation (E.2) is valid whenever the two magnons are not

adjacent in the open string word, i.e. when l2 > l1 + 1.1 In the situation that

the magnons are adjacent, we find

Eψ(l1, l1 +1) =
(

1 +
c

N

)
ψ(l1, l1 +1)−

√
c

N
ψ(l1−1, l2)−ψ(l1 +1, l1 +2) (E.3)

We make the following Bethe ansatz for the wave function

ψ(l1, l2) = eip1l1+ip2l2 +R12e
ip′1l1+ip′2l2 (E.4)

It is straight forward to see that this ansatz obeys (E.2) as long as

E = 3 +
c

N
−
√

c

N
(eip1 + e−ip1)− (eip2 + e−ip2) (E.5)

and√
c

N
(eip1 + e−ip1) + eip2 + e−ip2 =

√
c

N
(eip

′
1 + e−ip

′
1) + eip

′
2 + e−ip

′
2 (E.6)

Note that (E.5) is indeed the correct one loop anomalous dimension and (E.6)

can be obtained by equating the O(λ) terms on both sides of (2.30), as it should

be. From (E.3) we can solve for the reflection coefficient R. The result is

R12 =
2eip2 −

√
c
N e

ip1+ip2 − 1

2eip
′
2 −

√
c
N e

ip′1+ip′2 − 1
(E.7)

Two simple checks of this result are

1. We see that R12R21 = 1.

2. If we set c = N we recover the S-matrix of [96].

We will now move beyond the su(2) sector by considering a state with a

single Y impurity and a single X impurity. The operator with a Y impu-

rity at l1 and an X impurity at l2 is denoted O(R,Rk1 , R
k
2 ; {l1, l2, · · · })Y X and

the operator with an X impurity at l1 and a Y impurity at l2 is denoted

1Notice that we are associating a lattice site to every field in the spin chain and not just

to the Zs.
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O(R,Rk1 , R
k
2 ; {l1, l2, · · · })XY . We now introduce a pair of wave functions as

follows

O =
∑
l1,l2,···

[
ψY X(l1, l2, · · · )O(R,Rk1 , R

k
2 ; {l1, l2, · · · })Y X

+ ψXY (l1, l2, · · · )O(R,Rk1 , R
k
2 ; {l1, l2, · · · })XY

]
. (E.8)

From the one loop dilatation operator we find the time independent Schrödinger

equation (E.2) for each wave function, when the impurities are not adjacent.

When the impurities are adjacent, we find the following two time independent

Schrödinger equations

EψY X(l1, l1 + 1) =
(

2 +
c

N

)
ψY X(l1, l1 + 1)−

√
c

N
ψY X(l1 − 1, l1 + 1)

− ψXY (l1, l1 + 1)− ψY X(l1, l1 + 2) (E.9)

EψXY (l1, l1 + 1) =
(

2 +
c

N

)
ψXY (l1, l1 + 1)−

√
c

N
ψXY (l1 − 1, l1 + 1)

− ψY X(l1, l1 + 1)− ψXY (l1, l1 + 2) (E.10)

Making the following Bethe ansatz for the wave function

ψY X(l1, l1 + 1) = eip1l1+ip2l2 +Aeip
′
1l1+ip′2l2

ψXY (l1, l1 + 1) = Beip
′
1l1+ip′2l2 (E.11)

we find that the two equations of the form (E.2) imply that both ψXY (l1, l2)

and ψY X(l1, l1 +1) have the same energy, which is given in (E.5). The equations

(E.9) and (E.10) imply that

A =
eip
′
2 + eip2 − 1−

√
c
N e

ip′1+ip′2

1 +
√

c
N e

ip′1+ip′2 − 2eip
′
2

B =
eip2 − eip′2

1 +
√

c
N e

ip′1+ip′2 − 2eip
′
2

. (E.12)

It is straight forward but a bit tedious to check that |A|2 + |B|2 = 1 which

is a consequence of unitarity. To perform this check it is necessary to use the

conservation of momentum p1 + p2 = p′1 + p′2 , as well as the constraint (E.6).

We now finally obtain

A

R12
=
eip
′
2 + eip2 − 1−

√
c
N e

ip′1+ip′2

2eip2 −
√

c
N e

ip1+ip2 − 1
. (E.13)
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SCATTERING

This should be equal to
1

2

(
1 +

BR12

AR12

)
(E.14)

where AR1 2 and BR12 are the S-matrix elements computed in section 2.8, describ-

ing the scattering between a bulk and a boundary magnon. This allows us to

perform a non-trivial check of the S-matrix elements we computed.
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Appendix F

Another check of the

S−matrix

F.1 Numerical one-loop perturbative check of

the reflection S−matrix

In this section we perform numerical checks of the analytic expression for the

S−matrix between a boundary and a bulk magnon, for various values of r ∈
[0, 1]. Toward this end, recall the following elements the S−matrix

AR12 = S0
η1η2x

′+
1 x+

1 (x−1 −x
+
2 )
(

(x+
2 −rx

−
2 )(rx′+2 −x

′−
2 )x+

2 +(x−2 −rx
+
2 )(x′+2 −rx

′+
2 )x′+2

)
η′1η
′
2x
′+
2 x+

2 (x−1 −x
+
1 )(x+

1 −x
′+
1 )
(
x+

1 (rx+
2 −x

−
2 )+x−2 (rx−2 −x

+
2 )
) , (F.1)

and

BR12 = AR12

[
1 +

2x′−2 (x′−1 −x
′+
1 )

x′+1 (x−1 −x
+
2 )(x′−1 x′−2 −rx

′+
1 x′+2 )

B1

B2

]
(F.2)

where

B1 = x−2 x
′+
1

[
(x−1 − x

+
1 )(2x−1 − x

′−
1 )(x+

2 x
′+
1 − x

+
1 x

+
2 )

−x′+1 x−1 (x+
2 − rx

−
2 )(x−1 − x

+
2 )
] rx′+2 − x′−2
rx′−2 − x

′+
2

+
[
x′+1 x+

1 (x−1 − rx
+
2 )(x−2 − rx

+
2 ) + x+

2 x
−
2 (x−1 − x

+
1 )(x′+1 − x

+
1 )
]
x′−1 x′−2 ,

B2 = (rx−2 − x
+
2 )
[
x+

1 x
′−
2 x′−1

rx+
2 −x

−
2

rx−2 −x
+
2

− x′+1 x−1 x
−
2
rx′+2 −x

′−
2

rx′−2 −x
′+
2

]
,
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and the initial and final boundary momenta of the boundary magnon are coded

in x±2 and x′±2 . For the bulk magnon x±1 and x′±1 capture the initial and final

momenta. We denote by 1
2

(
1 +

BR12

AR12

)∣∣∣
1−loop

the one loop piece of (E.14). To

evaluate this one loop piece we need a relation between the initial and final

momenta which can be obtained by solving the conservation of energy and

momentum conditions p1 + p2 = p′1 + p′2,

eip1 + e−ip1 + r(eip2 + e−ip2) = eip
′
1 + e−ip

′
1 + r(eip

′
2 + e−ip

′
2)

(F.3)

The solutions to (F.3) are used in the one loop correct expressions for x±;

1.

x+ = x−eip (F.4)

2. For a bulk magnon

x− = e−i
p
2

(
1

2g sin(p2 )
+ 2g sin(

p

2
)

)
+O(g2). (F.5)

3. For a boundary magnon

x− = − i

g(r − eip)
+ ige−ip(r − eip)re

ip − 1

r + eip
+O(g2). (F.6)

We use (F.4), (F.5) and (F.6) to numerically evaluate 1
2

(
1 +

BR12

AR12

) ∣∣∣∣
1−loop

.

The expression (E.13) becomes

A

R12
=
eip
′
1 + eip1 − 1− reip′1+ip′2

2eip1 − reip1+ip2 − 1
(F.7)

We now are ready to compare (F.7) and 1
2

(
1 +

BR12

AR12

) ∣∣∣∣
1−loop

.

F.2 Setting up the numerical test

F.2.1 Solutions for p2 = 0

As a warm up example set the initial boundary magnon momentum

p2 = 0
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and consider a bulk magnon with initial momentum p1 treated as an independent

variable. In this case one can solve the one loop conservation of energy and

momentum, and (F.3) becomesp
′
1 + p′2 = p1

r cos(p1 − p′1) + cos(p′1) = r + cos(p1)
(F.8)

The non-trivial analytic solutions to (F.8) in terms of p1 are

p′1 = 2 atan

(
r − 1

r + 1
tan

(p1

2

))
(F.9)

p′2 = p1 − p′1 (F.10)

F.2.2 General solutions for p2 6= 0

Now consider the case p2 6= 0. Recall the energy momentum conditionsp
′
1 + p′2 = p1 + p2

r cos(p′2) + cos(p′1) = r cos(p2) + cos(p1)
(F.11)

If we fix p2 constant and non-zero and treat p1 as an independent variable, we

can solve (F.11) analytically. We find

p′1 = 2 atan

[
1
2

(
2r tan( p1

2 ) cos(p2)+r sin(p2)−r tan2( p1
2 ) sin(p2)

1+r cos(p2)−r tan( p1
2 ) sin(p2)

)
±
(

1
4

[
2r tan( p1

2 ) cos(p2)+r sin(p2)−r tan2( p1
2 ) sin(p2)

1+r cos(p2)−r tan( p1
2 ) sin(p2)

]2
+

tan2( p1
2 )(1−r cos(p2))−r tan( p1

2 ) sin(p2)

1+r cos(p2)−r tan( p1
2 ) sin(p2)

) 1
2

]
(F.12)

Given 0 ≤ r ≤ 1 and p2 6= 0, one finds the solutions

p′1 = 2 atan

[
1
2

(
2r tan( p1

2 ) cos(p2)+r sin(p2)−r tan2( p1
2 ) sin(p2)

1+r cos(p2)−r tan( p1
2 ) sin(p2)

)
−
(

1
4

[
2r tan( p1

2 ) cos(p2)+r sin(p2)−r tan2( p1
2 ) sin(p2)

1+r cos(p2)−r tan( p1
2 ) sin(p2)

]2
+

tan2( p1
2 )(1−r cos(p2))−r tan( p1

2 ) sin(p2)

1+r cos(p2)−r tan( p1
2 ) sin(p2)

) 1
2

]
(F.13)

p′2 = p1 + p2 − p′1. (F.14)
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Setting p2 = 0, one quickly checks that (F.13) and (F.14) reduce to (F.9) and

(F.10).

Now, use (F.13) and (F.14) to compare the two sets of complex numbers A
R12

and 1
2

(
1 +

BR12

AR12

) ∣∣∣∣
1−loop

.

F.2.3 Numerical plots for the magnitudes

The following numerical plots compare the magnitudes 1
2

∣∣∣1 + B12

A12

∣∣∣ and
∣∣∣ AR12

∣∣∣ for

the set of values {r = 0.01, p2 = −3.1416}, {r = 0.55, p2 = −3}, {r = 0.8, p2 =

−2.7}, {r = 0.95, p2 = 2}, {r = 0.99, p2 = 1.308} and {r = 1, p2 = 1}. The

range of the initial momentum of the bulk magnon p1 is shown on the horizontal

axis of the plots.
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F.2.4 Numerical plots for the phase differences

Similarly, the following numerical plots compare the phases of 1
2

(
1 + B12

A12

)
and(

A
R12

)
for the set of values where {r = 0.01, p2 = −3.1416}, {r = 0.55, p2 =

−3}, {r = 0.8, p2 = −2.7}, {r = 0.95, p2 = 2}, {r = 0.99, p2 = 1.308} and

{r = 1, p2 = 1}. The range of the initial momentum of the bulk magnons p1

appear on the horizontal axis.
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F.2.5 Relative errors in the magnitudes

We have studied the relative errors

∣∣∣ A
R12

∣∣∣−∣∣∣(1+
B12
A12

)
1
2

∣∣∣∣∣∣ A
R12

∣∣∣ for each of the above cases.

The size of the errors are due to the numerical precision offered by matlab. To

see this, one can change the numerical precision. The relative errors decrease

as we increase numerical precision. For example, fixing the matlab precision to

be 10−16 we find the following numerical plots.
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In this way, we confirm the S−matrix describing the scattering of a bulk and a

boundary magnon.
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Appendix G

No integrability

The (boundary) Yang-Baxter equation makes use of the boundary magnon (B)

and two bulk magnons (1 and 2). For our purposes, it is enough to track only

scattering between bulk and boundary magnons. The Yang-Baxter equation

requires equality between the scattering1 which takes B + 1 → B′ + 1′ and

then B′ + 2 → B̃′ + 2̃ and the scattering which B + 2 → B′ + 2′ and then

B′+ 1→ B̃′+ 1̃ For the first scattering, given the initial momenta p1, p2, pB we

need to solve√
1 + 8λ sin2 p1

2
+

√
1 + 8λ

(
(1 + r)2 + 4r sin2 pB

2

)
=

√
1 + 8λ sin2 p1

2
+

√
1 + 8λ

(
(1 + r)2 + 4r sin2 pB

2

)
(G.1)√

1 + 8λ sin2 p2

2
+

√
1 + 8λ

(
(1 + r)2 + 4r sin2 q

2

)
=

√
1 + 8λ sin2 k2

2
+

√
1 + 8λ

(
(1 + r)2 + 4r sin2 kB

2

)
(G.2)

1There are some bulk magnon scatterings that we are ignoring as they dont affect our

argument.
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for the final momenta k1, k2, kB . For the second scattering we need to solve√
1 + 8λ sin2 p2

2
+

√
1 + 8λ

(
(1 + r)2 + 4r sin2 pB

2

)
=

√
1 + 8λ sin2 l2

2
+

√
1 + 8λ

(
(1 + r)2 + 4r sin2 s

2

)
(G.3)√

1 + 8λ sin2 p1

2
+

√
1 + 8λ

(
(1 + r)2 + 4r sin2 s

2

)
=

√
1 + 8λ sin2 l1

2
+

√
1 + 8λ

(
(1 + r)2 + 4r sin2 lB

2

)
(G.4)

for the final momenta l1, l2, lB . It is simple to check that, in general, k1 6= l1,

k2 6= l2 and kB 6= lB , so the two scatterings cant possibly be equal.
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Double Coset background

The double coset ansatz was formulated in [20] by diagonalizing the one loop

dilatation operator. In this section we will review those aspects of [20] that are

crucial for our study

At the most basic level, the double coset ansatz follows from the fact that

there are two ways to decompose V ⊗mp . To start, refine V ⊗mp by the U(1)p

charges measured by Eii, as follows:

Vp = ⊕pi=1Vi (H.1)

The vector space Vi is a one-dimensional space. It is spanned by the eigenstate

of Eii with eigenvalue one. Consequently if vi ∈ Vi we have

Eiivj = δijvi

Eijvk = δjkvi. (H.2)

In the restricted Schur polynomial construction of [16] for long rows, a state

in Vi corresponds to a Y -box in the ith row. The U(1) charges of a restricted

Schur polynomial can be collected into the vector ~m, which corresponds to a

vector with m1 copies of v1, m2 copies of v2 etc.

|v̄, ~m〉 =
∣∣v⊗m1

1 ⊗ v⊗m2
2 ⊗ · · · ⊗ v⊗mpp

〉
. (H.3)

A general state with these charges is given by acting with a permutation

|vσ〉 = σ
∣∣v⊗m1

1 ⊗ v⊗m2
2 ⊗ · · · ⊗ v⊗mpp

〉
. (H.4)
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where

σ
∣∣vi1 ⊗ vi2 ⊗ · · · ⊗ vip〉 =

∣∣viσ(1)
⊗ viσ(2)

⊗ · · · ⊗ viσ(p)

〉
. (H.5)

This description enjoys a symmetry under

H = Sm1
× Sm2

× · · · × Smp (H.6)

and as a consequence, not all σ give independent vectors

|vσ〉 = |vσγ〉 (H.7)

if γ ∈ H. The restricted Schur polynomials are organized by reduction mul-

tiplicities of U(p) to U(1)p , which are counted by the Kotska numbers and

resolved by the Gelfand-Tsetlin patterns. It is possible to prove the equality

of Kotska numbers and the branching multiplicity of Sm → H. This is a very

direct indication that there are two possible ways to organize the local operators

of the theory.

We can develop the steps above at the level of a basis for V ⊗mp . In terms of

the branching coefficients, defined by

1

|H|
∑
γ∈H

Γ
(s)
ik (γ) =

∑
µ

Bs→1H
iµ Bs→1H

kµ (H.8)

we have

|~m, s, µ; i〉 ≡
∑
j

Bs→1H
jµ |vs,i,j〉

=
∑
j

Bs→1H
jµ

∑
σ∈Sm

Γ
(s)
ij (σ)|vσ〉. (H.9)

The µ index is a multiplicity for the reduction of Sm into H. We also have

〈~m, s, ρ, j| = ds
m!|H|

∑
σ∈Sm, k

〈v̄, ~m|σ−1Γ
(s)
jk (σ)Bs→1H

kρ . (H.10)

which ensures the correct normalization

〈~m, u, ν; j|~n, s, µ; i〉 = δ~m~nδusδjiδµν . (H.11)

Finally, the group-theoretic coefficients

Csµ1µ2
(τ) = |H|

√
ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

(H.12)
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provide an orthogonal transformation between double coset elements labeled by

σ and the restricted Schur polynomials labeled by an irreducible representation

s ` m and a pair of multiplicities µ1, µ2.
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Appendix I

How to compute traces

In this appendix we will compute the traces needed to evaluate the action of

D
(2)
4 in the Gauss graph basis. The generic form of the trace we need to evaluate

is

Tr(ApsµνBpuγδ) (I.1)

with A and B any arbitrary product of the E
(A)
ij s. If we are able to compute

this trace, we are able to evaluate the action of any differential operator that

does not change the number of Z or Y fields, on the Gauss graph operator in

the displaced corners approximation. This therefore provides a general method

to exploit the simplifications of the large N limit, for this class of operators.

The Fourier transform we want to consider maps between functions labeled

by an irreducible representation s and a pair of multiplicity labels and functions

that take values on the double coset H \ Sm/H We can choose a permutation

σ to represent each class of the coset [σ]. The transform is then

f̃ =
∑
sα,β

Γs(σ)abB
s→1H
aα Bs→1H

bβ f(s, α, β). (I.2)

For further details the reader is referred to [20].
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I.1 Projector transformed

In this section we will Fourier transform the intertwining map used to define

the restricted Schur polynomial. The projector that participates in the trace

(I.1) can be expressed as

puµν =
∑
b

|~m2, u, µ, b〉〈~m2, u, ν, b| (I.3)

We will make use of the relations

〈~m, s, ρ, j| = ds
m!|H|

∑
σ∈Sm, k

〈v̄, ~m|σ−1Γ
(s)
jk (σ)Bs→1H

kρ . (I.4)

and

|~m, s, τ, i〉 =
∑

σ∈Sm, k

Γ
(s)
ik (σ)Bs→1H

kτ σ|v̄, ~m〉, (I.5)

as well as

〈v̄, ~m|σ|v̄, ~m〉 =
∑
γ∈H

δ(σγ) (I.6)

and ∑
ρ

Bs→1H
cρ Bs→1H

dρ =
1

|H|
∑
γ∈H

Γ
(s)
cd (γ), (I.7)

We will use the notation |vσ〉 = σ|v̄〉. It is then simple to show that∑
sµνlm

psµνB
s→1H
lµ Bs→1H

mν Γ
(s)
ml(σ) =

∑
sµνlma

|~m, s, µ, a〉〈~m, s, ν, a|Bs→1H
lµ Bs→1H

mν Γ
(s)
ml(σ)

=
1

|H|3
∑

τ,ψ∈Sm

∑
γ1,γ2∈H

|v̄τ 〉〈v̄ψ| δ(ψ−1τγ2σγ1)

(I.8)

This last equation implies that the permutation applied to the ket and the

permutation applied to the bra are related by multiplication by a permutation

representing the double coset element.

I.2 Summing over H

We consider an intertwining map psµν built on the state |v̄1, ~m1〉 with symmetry

group H1 and intertwining map ptγδ built on the state |v̄2, ~m2〉 with symmetry
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group H2. We make no assumptions about H1 and H2. In general they will

be different groups and hence we Fourier transform psµν and ptγδ to different

double cosets. Using the result obtained above, the Fourier transform of

Tr(ApsµνBpuγδ) (I.9)

is

T =
1

|H1|3|H2|3
∑
γi∈Hi

∑
τi∈Hi

∑
ψi∈Sm

〈v2|γ2σ
−1
2 τ2ψ

−1
2 Aψ1|v1〉〈v1|γ1σ

−1
1 τ1ψ

−1
1 Bψ2|v2〉

=
1

|H1|3|H2|3
∑
γi∈Hi

∑
τi∈Hi

∑
ψi∈Sm

〈v2|γ2σ
−1
2 τ2ψ

−1
2 Aψ1|v1〉〈v2|ψ−1

2 BTψ1τ1σ1γ1|v1〉.

(I.10)

To get to the last line, we used the fact that the matrix element 〈v1|γ1σ
−1
1 τ1ψ

−1
1 Bψ2|v2〉

is a real number and the permutations are represented by matrices with real el-

ements. To make the discussion concrete, it is useful to make a specific choice

for A and B. This will allow us to illustrate the argument in a very concrete

setting. In the end we will state the general result. Choose, for example,

A = E
(1)
ki E

(2)
ij B = E

(1)
jl E

(2)
lk (I.11)

Using the facts that

γ|v1〉 = |v1〉 ∀γ ∈ H1

β|v2〉 = |v2〉 ∀β ∈ H2

ψ−1E(a)
qr ψ = Eψ(a)

qr ∀ψ ∈ Sm (I.12)

we readily find

T =
1

|H1||H2|
∑

ψi∈Sm

〈v2|σ−1
2 E

ψ2(1)
ki E

ψ2(2)
ij ψ1|v1〉〈v1|Eψ2(1)

lj E
ψ2(2)
kl ψ1σ1|v2〉

=
1

|H1||H2|
∑

ψi∈Sm

〈v2|σ−1
2 ψ−1

2 Aψ2ψ1|v1〉〈v2|ψ−1
2 BTψ2ψ1σ1γ1|v1〉. (I.13)

where on the last line we have written the general result. Our next task is to

compute the sums over ψ1 and ψ2.
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I.3 Summing over Sm

In this subsection we consider two increasing difficult examples before we state

the general result. The first example is closely related to the trace needed to

obtain the one loop dilatation operator. Since we know the result of this trace,

this example is a nice test of our ideas. The second example is a simple but

nontrivial example which will illustrate how the general case works. In the

following section we will quote the result for the general case.

I.3.1 First evaluation

Choose A = E
(1)
ab and B = E

(1)
ba to get

T =
1

|H1||H2|
∑

ψi∈Sm

〈v2|σ−1
2 E

ψ2(1)
ab ψ1|v1〉〈v1|Eψ2(1)

ab ψ1σ1|v2〉

=
1

|H1||H2|
∑

ψi∈Sm

〈v1|ψ−1
1 E

ψ2(1)
ba σ2|v2〉〈v2|Eψ2(1)

ab ψ1σ1|v1〉. (I.14)

We must turn a b vector in |v1〉 into an a vector (and possibly permute) to get

|v2〉. Since the ordering of the slots in |v1〉 and |v2〉 is arbitrary, we can remove

this possible permutation by declaring

|v2〉 = E
(1)
ab |v1〉 |v1〉 = E

(1)
ba |v2〉. (I.15)

Thus [in the computation below we denote by S1
a (S2

a) the set of all slots in

|v1〉(|v2〉) that are filled with an a vector]

T =
1

|H1||H2|
∑

ψi∈Sm

〈v1|ψ−1
1 E

ψ2(1)
ba σ2E

(1)
ab |v1〉〈v1|E(1)

ba E
ψ2(1)
ab ψ1σ1|v1〉

=
1

|H1||H2|
∑

ψi∈Sm

〈v1|ψ−1
1 σ2E

σ2ψ2(1)
ba σ2E

(1)
ab |v1〉〈v1|E(1)

ba E
ψ2(1)
ab ψ1σ1|v1〉

=
1

|H1||H2|
∑

ψi∈Sm

∑
γi∈H1

δ
(
γ1ψ

−1
1 σ2(1, σ2ψ2(1))

)
δ
(
γ2σ
−1
1 ψ−1

1 (1, ψ2(1))
)

×
∑
x∈S2

a

δ(σ2ψ2(1), x)
∑
y∈S2

a

δ(ψ2(1), y)

=
1

|H1||H2|
∑

ψi∈Sm

∑
γi∈H1

δ
(
γ1σ1γ2(1, ψ2(1))σ2(1, σ2ψ2(1))

)
×
∑
x∈S2

a

δ(σ2ψ2(1), x)
∑
y∈S2

a

δ(ψ2(1), y) (I.16)
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Now consider the final sum over ψ2, ψ2(1) is the start point of an oriented

edge in Gauss graph σ2, σ2ψ2(1) is the end point of the same edge. The delta

functions on the last line ensure that both endpoints of this string are attached

to node a in the Gauss graph. This is swapped with the edge labeled 1 (i.e.

the edge in the first slot) and compared to σ1. According to (I.15), the edge in

the first slot of |v1〉 is attached to node b. Thus the above sum is ensuring that

when a closed loop on node a of σ2 is removed and reattached to node b of σ2

we get σ1. The above sum is nonzero only when σ1 and σ2 are related in this

way. The deltas only fix ψ2(1), so summing over Sm the remaining “unfixed”

piece of ψ2 gives (m− 1)!. The first delta will, as usual, give the norm of Gauss

graph σ1 and we will get a nonzero contribution whenever ψ2(1) is one of the

values in S2
a. There are naa(σ2) possible values. Thus, when T is nonzero it

takes the value

T = (m− 1)!naa(σ2)|O(σ1)|2 (I.17)

where we have assumed that both σ1 and σ2 have a total of p nodes and we

denote the number of oriented line segments stretching from node k to node l

of σ by nkl(σ). We have denoted the “norm” of the Gauss graph operator by

|O(σ1)|2. This is the value of the two point function of the Gauss operator

|O(σ1)|2 =

p∏
i,j=1

nij(σ1)! = 〈OR,r(σ1)†OR,r(σ1)〉. (I.18)

The value of the trace (I.17) is in perfect agreement with the known result [? ].

I.4 Second evaluation

For the second example we consider, we choose

A = E
(1)
ki E

(2)
ij B = E

(1)
jl E

(2)
lk (I.19)

There is some freedom in the placement of the indices on A and B. To see why

this is the case, recall that we are evaluating the Fourier transform of

Tr(ApsµνBpuγδ) (I.20)
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The intertwining maps psµν and puγδ commute with any element of Sm. Con-

sequently we have

Tr(ApsµνBpuγδ) = Tr(Aσσ−1psµνBpuγδ)

= Tr(Aσpsµνσ
−1Bpuγδ) (I.21)

where σ is any element in Sm. Choosing σ = (12) and using the representation

(12) = E
(1)
ab E

(2)
ba where a and b are summed from 1 to p, as well as the product

rule

E
(A)
ab E

(B)
cd = E

(B)
cd E

(A)
ab A 6= B E

(A)
ab E

(A)
cd = δbcE

(A)
ad (I.22)

we find

A(12) = E
(1)
ki E

(2)
ij (12) = E

(1)
ki E

(2)
ij )E

(1)
ab E

(2)
ba = E

(1)
kj E

(2)
ii (I.23)

(12)B = (12)E
(1)
jl E

(2)
lk = E

(1)
ab E

(2)
ba E

(1)
jl E

(2)
lk = E

(1)
ll E

(2)
jk (I.24)

This implies that we can rather consider A = E
(1)
kj E

(2)
ii and B = E

(1)
ll E

(2)
jk

without changing the value of the trace. In this case we have (argue as we did

above and use |v2〉 = E
(1)
kj |v1〉)

T =
1

|H1||H2|
∑

ψi∈Sm

〈v2|σ−1
2 E

ψ2(1)
kj E

ψ2(2)
ii ψ1|v1〉〈v2|Eψ2(1)

ll E
ψ2(2)
kj ψ1σ1|v1〉

=
1

|H1||H2|
∑

ψi∈Sm

〈v1|ψ−1
1 E

ψ2(1)
jk E

ψ2(2)
ii σ2|v2〉〈v2|Eψ2(1)

ll E
ψ2(2)
kj ψ1σ1|v1〉.

(I.25)

Notice that when E
ψ2(2)
ii acts on |v2〉, it does not change the identity of any of

the vectors appearing in |v2〉. On the other hand, E
ψ2(1)
jk will turn an ek into an

ej . Thus, again up to an arbitrary permutation which we can always remove,

we must have

|v2〉 = E
(1)
kj |v1〉 (I.26)
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The trace now takes the value

T =
1

|H1||H2|
∑

ψi∈Sm

〈v1|ψ−1
1 E

ψ2(1)
kj E

ψ2(2)
ii σ2E

(1)
kj |v1〉〈v1|E(1)

jk E
ψ2(1)
ll E

ψ2(2)
kj ψ1σ1|v1〉

=
1

|H1||H2|
∑

ψi∈Sm

〈v1|ψ−1
1 σ2E

σ2ψ2(1)
kj E

σ2ψ2(2)
ii E

(1)
kj |v1〉〈v1|E(1)

jk E
ψ2(1)
ll E

ψ2(2)
kj ψ1σ1|v1〉

=
1

|H1||H2|
∑

ψi∈Sm

∑
γi∈H1

δ
(
γ1ψ

−1
1 σ2(σ2ψ2(1), 1)

)
δ
(
γ2σ
−1
1 ψ−1

1 (1, ψ2(2))
)

∑
x∈S2

l

δ(ψ2(1), x)
∑
y∈S2

k

δ(ψ2(2), y)
∑
W∈S2

k

δ(σ2ψ2(1), w)
∑
v∈S2

i

δ(σ2ψ2(2), v)

=
1

|H1||H2|
∑

ψi∈Sm

∑
γi∈H1

δ
(
γ1σ1γ2(1, ψ2(1))σ2(1, σ2ψ2(1))

)
∑
x∈S2

l

δ(ψ2(1), x)
∑
y∈S2

k

δ(ψ2(2), y)
∑
W∈S2

k

δ(σ2ψ2(1), w)
∑
v∈S2

i

δ(σ2ψ2(2), v)

=
(m− 2)!

|H1||H2|
nlk(σ2)nki(σ2)

p∏
q=1

nqq(σ1)!

p∏
r,s=1,r 6=s

nrs(σ1)! (I.27)

whenever it is nonzero.

I.5 General result

Recall that both T and R have p long rows or columns. For the general result

we consider∑
sµν m

∑
uγδnp

Tr(ApsµνBpuγδ)B
s→1H
mµ Bs→1H

lν Γ
(s)
ml(σ1)Bu→1H

pγ Bu→1H
nδ Γ(u)

pn (σ2)

=
1

|H1||H2|
∑

ψi∈Sm

〈v2|σ−1
2 (ψ−1

2 Aψ2)ψ1|v1〉〈v2|(ψ−1
2 BTψ2)ψ1σ1γ1|v1〉 (I.28)

where A and B are each products of a collection of the E
(a)
ab s with 1 ≤ a, bleqp

and 1 ≤ α ≤ m. We say that E
(a)
ab occupies slot α. The sum over ψ2 sums over

the possible choices for the slots into which we place the factors of E
(a)
ab in A

and B. Thus, the specific slots chosen for the factors in A and B are arbitrary -

we must simply respect the relative ordering of factors in A and B, i.e. factors

sharing the same slot in one labeling share the same slot in all labelings. The

sum over ψ1 ensures that the relative labeling of the vectors appearing in |v1〉
and |v2〉 is arbitrary. Thus, the specific labeling of the directed edges in the
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Gauss graph is arbitrary which ensures that the above sum is indeed defined on

the relevant double cosets to which σ1 and σ2 belong. There are two pieces of

information that we need to read from σ1 and σ2, A and B:

(1) When is the sum nonzero?

(2) What is the value of the sum?

It is simplest to begin with the second question first. Towards this end, consider

the expressions for A and B. After using the algebra for the E
(a)
ab if needed, we

know that at most a single E
(a)
ab acts per slot in both A and B. By inserting

factors of
p∑
a=1

= E(a)
aa = 1 (I.29)

if necessary, we can ensure that the same set of occupied slots appears in A and

B. For concreteness, assume that q slots are occupied in both. Use irα (icα) to

denote the row (column) indices of the Eab in the αth slot in B and use jrα (jcα)

to denote the row (column) indices of the Eab in the αth slot in A. Thanks to

the lessons we have learned from the examples treated above, when the sum is

nonzero it is given by

1

|H1||H2|
∑

ψi∈Sm

〈v2|σ−1
2 (ψ−1

2 Aψ2)ψ1|v1〉〈v2|(ψ−1
2 BTψ2)ψ1σ1γ1|v1〉

=
(m− q)!|O(σ1)|2

|H1||H2|

q∏
α=1

nicαjrα(σ2). (I.30)

If any particular nij(σ2) appears more than once, each new factor in the product

is to be reduced by 1. For example, n12(σ2)3 would be replaced by n12(σ2)(n12(σ2)−
1)(n12(σ2) − 2). By taking the transpose of (I.30), the value of the sum is not

changed because it is a real number. However, the roles of σ1 and σ2, as well as

of A and B are reversed on the left-hand side of (I.30). Consequently, we must

also have

1

|H1||H2|
∑

ψi∈Sm

〈v2|σ−1
2 (ψ−1

2 Aψ2)ψ1|v1〉〈v2|(ψ−1
2 BTψ2)ψ1σ1γ1|v1〉

=
(m− q)!|O(σ2)|2

|H1||H2|

q∏
α=1

njrαicα(σ1). (I.31)
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The equality of (I.30) and (I.31) defines our delta function. We find that

δAB([σ1], [σ2]) = 1 if

(m− q)!|O(σ1)|2

|H1||H2|

q∏
α=1

nicαjrα(σ2) =
(m− q)!|O(σ2)|2

|H1||H2|

q∏
α=1

njrαicα(σ1) (I.32)

and it is zero otherwise.

We will sketch how the general result is proved. First, even if A and B

straddle q ≤ m slots, by using (I.29) we can always introduce further E(a)s so

that all m slots are straddled. Thus, without loss of generality we can now focus

on the q = m case. In this case, it is easy to prove that if
∏q
α=1 nicαjrα(σ2) is

nonzero, it is given by
q∏

α=1

nicαjrα(σ2) = |O(σ2)|2 (I.33)

which again proves the general result.

I.6 Illustration of the general result

To illustrate the formula derived in the previous section consider computing the

trace for the case that

A = E
(1)
23 E

(2)
23 E

(3)
11 E

(4)
13 E

(5)
31 E

(6)
23

B = E
(1)
31 E

(2)
11 E

(3)
32 E

(4)
12 E

(5)
32 E

(6)
33 (I.34)

For our example we have m = 6, q = 6 and p = 3, so that (m − q)! = 1. We

choose σ1 and σ2 as illustrated below
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From these Gauss graphs we easily read offH1 = S2×S3 and H2 = S4×S2.

Consequently |H1| = 12 and |H2| = 48. If we choose the permutation

σ1 = (13)(24)(56) ∈ H1 \ S6/H1 (I.35)

to represent the first Gauss graph, then we can choose the first factor in H1 to

permute 1 and 2 and the second factor to permute 3, 4 and 5. If we choose the

permutation

σ1 = (12)(45) ∈ H2 \ S6/H2 (I.36)

to represent the second Gauss graph, then we can choose the first factor to

permute 2 and 5 and the last factor to permute 1, 3, 4 and 6.

From the row indices of A given by the ordered set {3, 1, 3, 1, 3, 3} and the

column indices of B given by the ordered set {3, 3, 1, 3, 1, 3}, we read off

q∏
α=1

nicαjrα(σ2) = n33(σ2)n31(σ2)n13(σ2)n31(σ2)n13(σ2)n33(σ2)

→ n33(σ2)(n33(σ2)− 1)n31(σ2)(n31(σ2)− 1)n13(σ2)(n13(σ2)− 1)

= |O(σ2)|2 = 8. (I.37)

which indicates that the sum may indeed be nonzero. From the column indices

of A given by the ordered set {1, 1, 2, 2, 2, 3} and the row indices of B given by

the ordered set {2, 2, 1, 1, 3, 2}, we read off

q∏
α=1

njrαicα(σ1) = n12(σ1)n12(σ1)n21(σ1)n21(σ1)n23(σ1)n32(σ1)

→ n12(σ1)(n12(σ1)− 1)n21(σ1)(n21(σ1)− 1)n23(σ1)n32(σ1)

= |O(σ1)|2 = 4. (I.38)

which indicates that the sum is indeed nonzero. We finally obtain

1

|H1||H2|
∑

ψi∈Sm

〈v2|σ−1
2 (ψ−1

2 Aψ2)ψ1|v1〉〈v2|(ψ−1
2 BTψ2)ψ1σ1γ1|v1〉 =

32

|H1||H2|
=

1

18
.

(I.39)
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I.7 Results for the 2−brane 4−string system

In this section we collect the operator valued coefficients that are relevant for

the example described in Sec. III. The coefficients are

A = δRT

(
δr′1t′1
R2

+
δr′2t′2
R1

)
δR′′12T

′′
12

(N +R1 − 1)(N +R2 − 2)

+ δRT
δr′1t′1
R1

δR′′11T
′′
11

(N +R1 − 1)(N +R1 − 2)

+ δRT
δr′2t′2
R2

δR′′22T
′′
22

(N +R2 − 2)(N +R2 − 3)

− 2
(
δRT δr′1t′1δR′1T ′1(N +R1 − 1) + δRT δr′2t′2δR′2T ′2(N +R2 − 2)

)
− δR+

21T

δr′1t′2√
R1(R1 − 1)

δR′′11T
′′
12

(N +R1 − 2)
√

(N +R1 − 1)(N +R2 − 1)

− δR+
12T

δr′2t′1√
R1(R1 + 1)

δR′′12T
′′
11

(N +R1 − 1)
√

(N +R1)(N +R2 − 2)

− δR+
12T

δr′2t′1√
R2(R2 − 1)

δR′′22T
′′
12

(N +R2 − 3)
√

(N +R1)(N +R2 − 2)

− δR+
21T

δr′1t′2√
R2(R2 + 1)

δR′′12T
′′
22

(N +R2 − 2)
√

(N +R1 − 1)(N +R2 − 1)

+ 2
(
δR+

12T
δr′2t′1δR′2T ′1

√
(N +R1)(N +R2 − 2) + δR+

21T
δr′1t′2δR′1T ′2

√
(N +R1 − 1)(N +R2 − 1)

)
(I.40)

B = −8δr′2t′1δRT δR′′12T
′′
12

√
(N +R1 − 1)(N +R2 − 1)

R1R2
(I.41)

C = 8

[
δR++

21 T

δr′1t′2√
R1(R2 + 2)

δR′′11T
′′
22

√
(N +R1 − 1)(N +R1 − 2)(N +R2 − 1)(N +R2)

− δR+
21T

δr′1t′1√
R1(R2 + 1)

δR′′11T
′′
12

(N +R1 − 2)
√

(N +R1 − 1)(N +R2 − 1)

− δR+
21T

δr′2t′2√
R1(R2 + 1)

δR′′12T
′′
22

(N +R2 − 2)
√

(N +R1 − 1)(N +R2 − 1)

]
(I.42)
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C† = 8

[
δR++

12 T

δr′2t′1√
R2(R1 + 2)

δR′′22T
′′
11

√
(N +R1)(N +R1 + 1)(N +R2 − 2)(N +R2 − 3)

− δR+
12T

δr′2t′2√
R2,(R1 + 1)

δR′′22T
′′
12

(N +R2 − 3)
√

(N +R1)(N +R2 − 2)

− δR+
12T

δr′1t′1√
R2, (R1 + 1)

δR′′12T
′′
11

(N +R1 − 1)
√

(N +R1)(N +R2 − 2)

]
.

(I.43)
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Gauss graph normalization

In this Appendix we prove the formula1

〈
O†(σ−1)|O(σ)

〉
≡ |O(σ)|2 =

∑
γ1,γ2∈H

δ(γ1σγ2σ
−1) =

p∏
i,j=1

nij(σ)!, (J.1)

which is the magnitude squared of a Gauss graph O(σ). This formula is derived

in [98]. Recall that nij(σ) is the number of strings starting from the i’th giant

and ending on the j’th giant. We also recall that H ≡ Sm1 ×Sm2 × · · ·×Smp is

the largest permutation group that leaves the Gauss graph label σ ∈ H \Sm/H
invariant. In this discussion, consider a concrete example and use it to define

our notation. Accordingly, consider the Gauss graph

Figure J.1: This Gauss graph is one of the double coset elements defined by the

charge ~m = [2, 4]. One possible label is σ = (1, 4)(2, 3).

This Gauss graph corresponds to an element σ ∈ H \S6/H, where H = S2×S4.

It is useful to consider the following representation of a Gauss graph

1Recall that δ(ρ) = 1 if only if ρ is the identity of Sm otherwise it is equal to zero.
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Figure J.2: Above, the two dashed horizontal lines are identified. In doing so,

this Gauss graph is another graphic representation of the Gauss graph in Figure

J.1

A generic Gauss graph, specified by the charge ~m = [m1,m2, · · · ,mp]
2 is

Figure J.3: Illustration of a generic Gauss graph label by σ ∈ H \Sm/H. Again

the two dashed horizontal lines are identified.

In figure J.3, there are a total of m strings stretching between the p− giant

gravitons. The black nodes on the dashed-horizontal lines represent the giants.

These two lines are identified. We label the giants by the integers in the range

{1, · · · , p}. In this way, labels of the string end points attached to the I’th giant

2Recall that, by definition
∑p
i=1mi = m.
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take values in the set {MI−1 + 1, · · · ,MI}, where

M0 ≡ 0, MK =

K∑
i=1

mi. (J.2)

According to the above discussion, it follows that Mp = m. σ in Figure J.3

permutes the integers labeling the starting points of the strings and maps them

to the integers labeling the ending points of the strings. For a concrete example

see Figure J.2. We can now prove (J.1).

Proof. Note that the terms summed in (J.1) can be written as∑
γi∈H

δG̃γi ,Gσ
. (J.3)

Trade the δ(·) function in (J.1) for a Kronecker delta. The sum in (J.3) is

counting how many times G̃γi = Gσ. The Gauss graph has a symmetry that

we now explain. If we fix the permutation γi ∈ H, the graph for G̃γi is the

same as the Gauss graph configuration labeled by γ1σγ2. In terms of pictures

we manipulate the graph G̃γi as follow

Figure J.4: Graphical manipulation of the Gauss graph labeled by γ1σγ2 and

its relation to the Gauss graph labeled by σ.

Accordingly, the graph G̃γi is the same configuration as that obtained from

Gauss graph Gσ. The sum (J.3) is counting the elements γi ∈ H that satisfy

the graph equality G̃γi = Gσ.

Recall that nij(σ) counts the number of strings starting from the i’th giant

and end at the j’th giant. Hence, the following cases are clear:
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1. Given a Gauss graphs O(σ) with

0 ≤ nij(σ) ≤ 1, ∀i, j = 1, · · · , p (J.4)

the only element γi ∈ H such that Gγi = Gσ are γ1 = γ2 = 1H . In

this case the sum (J.3) is trivially equal to 1 and the magnitude of the

corresponding Gauss graph is

|O(σ)|2 =

p∏
i,j=1

nij(σ)! = 1. (J.5)

2. If a Gauss graph O(σ) has

nij(σ) ≥ 1, (J.6)

then the γ1, γ2 ∈ H that contribute to the sum in (J.3) belong to two

isomorphic subgroups of H with order nij(σ)!.

Figure J.5: Above, we have only illustrated the nij parallel strings stretching

from the i’th giant to the j’th giant. The nij + nij different integers labeling

these strings belong respectively to {Mi−1 + 1, · · · ,Mi} for the starting points

and {Mj−1 + 1, · · · ,Mj} for the ending points.

Accordingly, the permutation subgroups Hi and Hj are respectively con-

structed from the nij integers in {Mi−1 + 1, · · · ,Mi} and the nij integers

in {Mj−1+1, · · · ,Mj}, which label the end points of the nij strings visible

in Figure J.5.
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This is the only source of symmetry so that

|O(σ)|2 =

p∏
i,j=1

nij(σ)! (J.7)

A straightforward example illustrating (J.1) is the trivial Gauss graph σ =

1SM which is a BPS state. Given U(1)p charge ~m = [m1,m2, · · · ,mp], the BPS

state has

nij =

mi i = j,

0 i 6= j.
(J.8)

It follows that

|O(1)|2 = |H| =
p∏
i=1

mi!. (J.9)

This is indeed correct since H itself leaves the graph invariant.
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The projective null cone in

D = 6 and CFT in R1,3

We review the connection between conformal transformations in R1,3 and Lorentz

rotations in R2,4. Our convention1 for the metric of R2,4 is

ηMN ≡



−1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


MN

. (K.1)

The coordinates in R2,4 are XM . The main idea of the projective null cone

is to embed our physical 4−dimensional space R1,3 in R2,4. Let xµ
∣∣
µ=0,··· ,3

be the coordinates of spacetime R1,3. There are two extra dimensions in the

6−dimensional space that we have to project out if we want to return to lower

dimensional space. A simple way - due to Dirac [99] - to remove dimensions in

an SO(2,4) covariant way is to restrict to the subspace {XM} defined by

ηMNX
MXN = 0. (K.2)

1The indices M,N · · · run from 0, · · · , 5
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The set of points {XM} satisfying (K.2) defines a light cone in R2,4. To build

some geometrical intuition expand (K.2) as

(X0)2 + (X5)2 = (X1)2 + (X2)2 + (X3)2 + (X4)2. (K.3)

A geometrical representation of this light cone is given in the following figure.

Figure K.1: This figure gives an illustration of the light cone of the spacetime

R2,4. The red section line is identified with the 4−dimensional spacetime R1,3.

X± are light cone coordinates defined by X± = X5±X4
√

2
.

We will use the canonical basis2 B ≡ {eM}M=0,··· ,5 for the spacetime R2,4. The

eM ’s are 6−dimensional column vectors with components

(eM )N = δNM . (K.4)

An equivalent matrix representation suggested by the light cone is to use light

cone coordinates. Toward this end, define the light cone basis vectors3 B̂ ≡ {êM̂}
where

êµ = eµ, , ê− =
e5 − e4√

2
, ê+ =

e5 + e4√
2

. (K.5)

2More precisely, one also needs to consider the dual basis B∗ ≡ {e∗M}M=0,··· ,5, where

e∗0,5 = −eT0,5 and e∗i
∣∣
i=1,··· ,4 = eTi

∣∣
i=1,··· ,4 - with T : signifies taking the transpose.

3All hatted indices M̂, N̂ , · · · take value in {0, 1, 2, 3,−,+}
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In this light cone basis the metric of R2,4 becomes

η̂ ≡ [η̂M̂N̂ ] =



−1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0


. (K.6)

Indeed,

ds2 = ηMNdX
MdXN

= −(dX0)2 + (dX1)2 + (dX2)2 + (dX3)2 + (dX4)2 − (dX5)2,

= −(dX0)2 + (dX1)2 + (dX2)2 + (dX3)2 − 2dX+dX−,

= η̂M̂N̂dX
M̂dXN̂ ,

where

X± =
X5 ±X4

√
2

.

Following [100], define a section 
Xµ = xµ,

X− = x2

2 ,

X+ = 1,

(K.7)

where x2 = ηµνx
µxν . Equation (K.7) gives the parametric equation of the

section illustrated as a red curve in Figure K.1. xµ are the coordinates of the

4−dimensional spacetime R1,3. A generic section on the light cone is obtained

by fixing4 X+ = f(xµ) = const. We choose f(xµ) = 1 for simplicity. The

motivation for considering the section (K.7) is now explained. Following [100],

the image of a point on the section with coordinate xµ ∈ R1,3 after the action

of some Lorentz rotation Λ ∈ SO(2, 4) is another point x′µ on the section. This

follows because the light cone has isometry group SO(2, 4). It follows that any

point xµ on the section is mapped by Λ ∈ SO(2, 4) back to the light cone

4f is a function only depending on the coordinates xµ ∈ R1,3
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but not necessarily on the section itself. One has to perform a rescaling λ(X)

to get back to the section. The two successive transformations reproduce the

conformal transformations in R1,3. Consider the induced metric on the section

dŝ2 = dxµdx
µ − 2dX+dX−

∣∣
X+=f(xµ),X−= xνxν

2f(xµ)

. (K.8)

For the moment allow f(xµ) 6= 1 so that our discussion is general.

Figure K.2: Illustration of the action of Λ ∈ SO(2, 4) followed by rescaling λ(X)

on a small displacement in the section of the light cone, which is identified to

be the 4−dimensional space R1,3.

Assume that the action of Λ maps xµ → X ′µ, X+ → X ′+ = f(X ′ρ) and

X ′− =
X′µX

′µ

2f(X′ρ) . The point X ′ is not necessarily on the section R1,3. To return

to the section R1,3 we have to perform a rescaling λ(X ′). Performing a scale

transformation X ′ → λ(X ′)X ′ at each point on the light cone is an homogeneous

transformation. To understand this, consider

d[λ(X ′)X ′] · d[λ(X ′)X ′] = [λ(X ′)dX + (dX ′M∂
Mλ)X ′] · [λ(X ′)dX + (dX ′N∂

Nλ)X ′],

= λ2dX ′ · dX ′,

where we have used the fact that X ′ ·dX ′ = X ′ ·X ′ = 0 on the light cone. Using

this homogeneity, we find

dX ′µdX
′µ = (λ(X ′))2dx′µdx

′µ, (K.9)
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where x′ are the coordinates of the section R1,3. To complete the argument,

return to the original definition of the section R1,3 by setting f(xµ) = 1 so that

dX+ = 0. Summarizing the above idea, after an action of Λ ∈ SO(2, 4) followed

by a rescaling λ(X), one finds

dŝ2 = (λ(x))2dŝ′2. (K.10)

This is indeed the definition of conformal transformations in R1,3.

K.1 Reproducing conformal transformations in

R1,3

In this section we will reproduce some conformal transformations in R1,3 using

Λ ∈ SO(2, 4) followed by a scaling λ(X). The group SO(2, 4) is the set of 6× 6

matrices, that satisfy

ΛT ηΛ = η, det(Λ) = 1, (K.11)

where ΛT is the matrix transpose of Λ. Work in the light cone basis. A point

P in R2,4 has light cone coordinates P̂ M̂ ≡ (Pµ, P−, P+). Furthermore, if we

restrict to a point P on the section R1,3, it has the light cone coordinates
P̂µ = xµ,

P̂− = x2

2 , x2 ≡ ηµνxµxν ,

P̂+ = 1.

(K.12)

Introduce a four vector bµ ≡ [b0, b1, b2, b3]T and construct the matrix Λ̂SCT such

that

Λ̂SCT =


14×4 bµ 0

0 1 0

bµ
bµb

µ

2 1

 =



1 0 0 0 b0 0

0 1 0 0 b1 0

0 0 1 0 b2 0

0 0 0 1 b3 0

0 0 0 0 1 0

−b0 b1 b2 b3
bµb

µ

2 1


. (K.13)
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This matrix obeys

det
(

Λ̃SCT

)
= 1 (K.14)

and (
Λ̂SCT

)T
η̂Λ̂SCT = η̂.

and so it is an element of the group SO(2, 4).

Consider the transformation of the point P on the section defined in (K.12).

We have 
P̂ ′µ

P̂ ′−

P̂ ′+

 =


14×4 bµ 0

0 1 0

bµ
bµb

µ

2 1



xµ

x2

2

1

 , (K.15)

⇒ P̂ ′M̂
′

=


P̂ ′µ = xµ + bµ

2 x
2

P̂ ′− = x2

2

P̂ ′+ = 1 + bµx
µ +

bµb
µ

4 x2.

(K.16)

The point P̂ ′M̂
′ ≡ (Λ̂SCT)

M̂ ′

N̂ P̂ N̂ , is on the light cone but does not belong to the

section R1,3. Indeed,

P̂ ′µP̂
′µ − 2P̂ ′−P̂ ′+ =

(
xµ +

bµ
2
x2

)
·
(
xµ +

bµ

2
x2

)
− 2

x2

2

(
1 + bµx

µ +
bµb

µ

4
x2

)
,

= x2

(
1 + x · b+

b · bx2

4

)
− x2

(
1 + bµx

µ +
bµb

µ

4
x2

)
= 0.

Knowing that P̂ ′M̂
′

lives on the light cone, we can rescale by λ(P̂ ′) to recover

R1,3. To do this

λ(P̂ ′) =
1

P̂ ′+
, (K.17)

to yield

P̂ ′′µ ≡ x′µ =
xµ + bµ

2 x
2

1 + b · x+ x2 b·b
4

(K.18)

P̂ ′′− =
x2

2(1 + b · x+ x2 b·b
4 )

(K.19)

P̂ ′′+ = 1. (K.20)

– 138 –



APPENDIX K. THE PROJECTIVE NULL CONE IN D = 6 AND CFT IN R1,3

Define aµ =
bµ
2 , (K.18) becomes

x′µ =
xµ + aµ

1 + 2x · a+ a2x2
. (K.21)

This is a special conformal transformation in R1,3.

Now, consider a translation. To reproduce a translation in R1,3 from an

element Λ̂ ∈ SO(2, 4) consider the matrix

Λ̂T =


14×4 0 bµ

bµ 1
bµb

µ

2

0 0 1

 =



1 0 0 0 0 b0

0 1 0 0 0 b1

0 0 1 0 0 b2

0 0 0 1 0 b3

−b0 b1 b2 b3 1
bµb

µ

2

0 0 0 0 0 1


. (K.22)

Λ̂T is an element of SO(2, 4). After the action of this matrix on a point in the

section
P̂ ′µ

P̂ ′−

P̂ ′+

 =


14×4 0 bµ

bµ 1
bµb

µ

2

0 0 1



xµ

x2

2

1

 , (K.23)

⇒ P̂ ′M̂
′

=


P̂ ′µ ≡ x′µ = xµ + bµ

P̂ ′− = x2

2 + bµx
µ +

bµb
µ

2 = 1
2 (xµ + bµ) · (xµ + bµ)

P̂ ′+ = 1.

(K.24)

It is straightforward to see that the above matrix Λ̂T maps P̂ M̂ ∈ R1,3 to another

point P̂ ′M̂
′

which is already on the section R1,3. Moreover, if we restrict to the

xµ−direction then (K.24) tells us that Λ̂ translates xµ ∈ R1,3 by bµ on the

section R1,3.
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Finally, consider a dilatation in R1,3. Use

Λ̂D =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 e−φ 0

0 0 0 0 0 eφ


, (K.25)

where φ is some real parameter. The action of this matrix on a point P̂ in the

section R1,3 gives

P̂ ′
ˆ̂
M =


P̂ ′µ = xµ

P̂ ′− = e−φ x
2

2

P̂ ′+ = eφ.

(K.26)

It follows that one has to rescale by

λ(P̂ ′) =
1

P̂ ′+
= e−φ (K.27)

in order to get back to the section R1,3. After rescaling we find

P̂ ′′
ˆ̂
M =


x′µ = e−φxµ

P̂ ′′− = e−2φ x2

2

P̂ ′′+ = 1.

(K.28)

Again, restricting to the xµ−direction the action of Λ̂D followed by rescaling

produces dilatation transformations in R1,3. Λ̂D takes a special form if we rotate

back to the canonical basis representation using the matrixM defined from the

change of basis (K.5)

ΛD =M−1Λ̂DM =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 cosh(φ) sinh(φ)

0 0 0 0 sinh(φ) cosh(φ)


. (K.29)
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Since, the direction X5 is timelike in R2,4, the relation (K.29) shows that a boost

along the direction X4 with parameter φ in the canonical basis gives rise to a

scaling transformation in R1,3.
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Review of the two point

CFT correlation function

In this Appendix, we review the two point functions of primary operators in

CFT. Concretely, we argue that given two spin-zero primary operators O1 and

O2 with classical dimensions ∆1 and ∆2,

〈O1(x)O2(y)〉 =
δ∆1,∆2

|x− y|∆1+∆2
. (L.1)

The action of a conformal transformation g on a primary field with non-trivial

spin in D−dimensional spacetime is

U(g)OA(x)U†(g) = LAB(g)

∣∣∣∣ ∂x∂x′
∣∣∣∣∆
D

OB1 (g−1x) = O′A(x′), (L.2)

where U(g) is an unitary representation of the conformal group. LAB(g) is a finite

dimensional matrix. More precisely, LAB(g) is an irreducible representation spec-

ifying the spin transformation under the orbital transformation xµ → [g−1]µνx
ν .

Close to the identity this transformation take the form

O′A(x′) = OA(x) + δOA(x). (L.3)

In addition, we assume that conformal symmetry is not spontaneously broken,

i.e. the vacuum state is invariant under conformal transformations

U(g)|0〉 = |0〉. (L.4)
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With the above assumptions, the statement of conformal invariance of correla-

tion functions is

〈0|OA1
1 (x1)OA2

2 (x2) · · · OAnn (xn)|0〉 = 〈0|O′A1
1 (x′1)O′A2

2 (x′2) · · · O′Ann (x′n)|0〉,

= 〈0|U†(g)U(g)OA1
1 (x1)U†(g)U(g)OA2

2 (x2)U†(g) · · ·U(g)OAnn (xn)U†(g)U(g)|0〉,

= 〈0|OA1
1 (x1)OA2

2 (x2) · · · OAnn (xn)|0〉+ 〈0|δOA1
1 (x1)OA2

2 (x2) · · · OAnn (xn)|0〉

〈0|OA1
1 (x1)δOA2

2 (x2) · · · OAnn (xn)|0〉+ · · ·+ 〈0|OA1
1 (x1)OA2

2 (x2) · · · δOAnn (xn)|0〉.

It follows that

〈0|δOA1
1 (x1)OA2

2 (x2) · · · OAnn (xn)|0〉+ 〈0|OA1
1 (x1)δOA2

2 (x2) · · · OAnn (xn)|0〉+ · · ·

+ · · ·+ 〈0|OA1
1 (x1)OA2

2 (x2) · · · δOAnn (xn)|0〉 = 0. (L.5)

Now we use (L.5) to prove (L.1). First, simplify our notation as

〈OA1
1 (x1)OA2

2 (x2) · · · OAnn (xn)〉 ≡ 〈0|OA1
1 (x1)OA2

2 (x2) · · · OAnn (xn)|0〉. (L.6)

Using the above identities, we start by requiring translation invariance. Focus

on the two point function. The translation invariance coming from (L.5) is

〈δO1(x)O2(y)〉+ 〈O1(x)δO2(y)〉 = aµ
(

∂

∂xµ
+

∂

∂yµ

)
〈O1(x)O2(y)〉 = 0. (L.7)

This equation implies that 〈O1(x)O2(y)〉 must be a function of the difference

xµ − yµ, i.e.

〈O1(x)O2(y)〉 ∼ f(xµ − yµ). (L.8)

Next, by requiring Lorentz invariance, it is not difficult to argue that f is a

function of the magnitude of the distance

〈O1(x)O2(y)〉 ∼ f(|x− y|). (L.9)

Scaling invariance implies

λ∆1+∆2f(λ|x− y|) = f(|x− y|). (L.10)

Thus

f(|x− y|) =
const.

|x− y|∆1+∆2
. (L.11)
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To determine the constant in the numerator we require invariance under a special

conformal transformation (SCT) of this function. Recall that a SCT is a compo-

sition of an inversion followed by a translation and then a second inversion. The

constraints following from invariance under special conformal transformations

are most easily obtained by requiring invariance under inversion. The inversion

transformation is

xµ → x′µ =
xµ

x · x
.

Thus, the action of an inversion on the field is

O′∆(x′) =

∣∣∣∣ ∂x∂x′
∣∣∣∣∆
D

O∆(x) =
1

(x′2)
∆
O∆(x). (L.12)

The implication of this for the two point functions is

〈O′1(x′)O′2(y′)〉 =
1

(x′2)∆1

1

(y′2)∆2
〈O1(x)O2(y)〉. (L.13)

In terms of the function f in (L.11), the equation (L.13) becomes

(x′2)∆1(y′2)∆2

|x′ − y′|∆1+∆2
=

1

|x− y|∆1+∆2
. (L.14)

It is possible to verify the identity

1

|x− y|∆1+∆2
=

(
x′2y′2

|x′ − y′|2

)∆1+∆2
2

(L.15)

Hence, invariance under inversion implies

(x′2)∆1(y′2)∆2

|x′ − y′|∆1+∆2
=

(
x′2y′2

|x′ − y′|2

)∆1+∆2
2

. (L.16)

This equation is only true if ∆1 = ∆2. Thus, after a normalization of the

operators Oi, we conclude that

〈O1(x)O2(y)〉 =
δ∆1,∆2

|x− y|∆1+∆2
. (L.17)
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