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Abstract: This thesis can be split into two parts. In the first, we expound the
alpha space formalism [1] and extend it beyond two dimensions. By performing a
Sturm-Liouville analysis of the conformal quadratic Casimir differential equation,
we define an invertible integral transform which maps functions on the Lorentzian
square to alpha space. We explain how poles correspond to conformal blocks and
provide numerous examples of interesting densities. After lifting the crossing equa-
tion to alpha space, we present a new representation of the accompanying kernel in
terms of analytic Wilson functions. We also offer some comments on Regge physics
and analyticity. In the second, we investigate the perturbative renormalisation of
deformed conformal field theories from the Hamiltonian perspective. We discuss the
relation with conformal perturbation theory, to which we provide an explicit match
up to third order in the coupling, and show how second-order anomalous dimensions
in the Wilson-Fisher fixed points are straightforwardly computed in the Hamilto-
nian framework. We then focus on the cut-off employed in the truncated conformal
space approach of Yurov and Zamolodchikov [2]. We discuss the appearance of
non-covariant and non-local counterterms to second order in the cut-off, explicitly

in ¢* theory, and find a smooth cut-off to tame subleading oscillations.
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Chapter 0O

Introduction

This thesis can be cleanly split into two parts. Making up the majority of the
work, the first part consists of Chapters 2 and 3. Here, we extend the alpha space
formalism of [1]. Chapter 4 makes up the second part, where we investigate cut-off
dependent counterterms in the truncated conformal space approach of Yurov and

Zamolodchikov [2].

The underlying link between these two projects is conformal field theory, a subject
that is briefly reviewed in Chapter 1 and is a ubiquitous presence in modern phys-
ics. The important role played by conformal field theories has become increasingly
apparent since the early pioneering work of Ferrera, Grillo, Gatto, Belavin, Parisi,

Polyakov and Zamolodchikov [4, 5, 6, 7].

At critical points of phase transitions, quantum field theories typically enjoy an
enlarged symmetry group as correlation lengths diverge. Supplementing this scale
invariance, unitarity typically promotes the usual Lorentz group to the full conformal
group [8].

Equivalently speaking, the space of quantum theories can be explored using the
renormalisation group and, at fixed points of the flow, theories typically become
conformal. This enhancement is discussed in Section 1.1. Due to the augmented
symmetry group, these theories tend to be simpler and so they offer invaluable

insight as important signposts in the space of all theories.
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The bootstrap is a pivotal tool in the analysis of conformal field theories. It is a
set of ideas which combines unitary, crossing symmetry and conformal invariance to
constrain allowed theories. Introduced in the 1970s [5] and revived in 2008 [9], the
bootstrap has provided an abundance of numerical and analytical insights; see for
instance [10, 11, 12, 13].

Alpha space [1] is defined by performing a Sturm-Liouville analysis on the differential
operator built from the quadratic Casimir of the conformal group. The output of this
procedure is an invertible integral transform that allows us to naturally decompose
a function into a linear combination of eigenfunctions. In the language of conformal
field theory, these are the blocks which encode the contribution of an intermediate

operator to a four-point correlation function.

In Chapter 2 we work in one and two dimensions, reviewing and then extending the
results of [1]. That paper sought to initiate the study of the conformal bootstrap
via an integral kernel by looking at the crossing equation in alpha space. Perhaps
our most significant new contribution for d = 1 is Eq. (2.6.12), which gives the split

kernel in terms of analytic Wilson functions.

In Chapter 3, we move beyond two dimensions and define alpha space more gener-
ally. In essence, poles in alpha space map to blocks in position space. Harmonic
analyses of the conformal group are not new; see for instance [14, 15]. However, our
approach is slightly different in that we do not start from the Euclidean inversion
formula, which is essentially a statement about the orthogonality and completeness
of conformal partial waves. Instead, we use the Sturm-Liouville approach to build
a new orthogonal set of functions, defined in Eq. (3.1.7). In the future, it will be
important to exactly understand how our integral transform differs from that of

Caron-Huot [16] and this is something that we comment on in Section 3.1.2.

Finally, Chapter 4 is adapted from our paper [3] which deals with counterterms in
truncated conformal field theories. One way to study renormalisation group flows is
to start at a conformal fixed point and then perturb the system with some relevant

operator. Under the assumption that the fixed point is solved (in the sense that we



fully understand the spectrum), the flow can be reproduced using the conformal data.
In practice, we need to truncate the Hilbert space in order to put the computation
on a computer. This cut-off is in general non-local and so the required counterterms
are necessarily non-local too. However, we see in Section 4.2 that all hope is not
lost and that the allowed guises of the counterterms are tractable. We illustrate our

general results by considering ¢* theory in Section 4.3.






Chapter 1

Conformal Field Theory

In this chapter, we present some well-established results in conformal field theory.
The subject is vast and so we have cherry-picked calculations relevant to subsequent
chapters without claiming to be encyclopaedic. There are a number of excellent

review articles which go into much greater detail [17, 18].

Conformal field theories describe certain physical systems at critical points of phase
transitions, where the correlation length becomes infinite. As such, there are no
scales in a conformal field theory and there is no consistent interpretation in terms

of particles.

Techniques for tackling conformal fixed points have typically involved Monte Carlo
simulations, lattice calculations or epsilon expansions. Recently however, significant
progress has been made using the bootstrap; a non-perturbative approach that
looks to constrain the space of conformal field theories, usually through demanding

consistency under crossing symmetry and unitarity.

Aside from phase transitions, conformal field theories are also widely studied because
they make up half of the AdS/CFT correspondence. This is the statement that
certain theories of quantum gravity in anti-de Sitter space are equivalent in some
sense to conformal field theories with one fewer dimension. Early pioneering work

includes [19, 20, 21] and a good review of gauge/gravity duality can be found at [22].
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In Section 1.1, we discuss the interpretation of conformal field theories as fixed
points along renormalisation group flows. We then go on to introduce the conformal
algebra in Section 1.2. There we derive some constraints of conformal symmetry
using the embedding space formalism, which thinks of Euclidean space as embedded
in a higher-dimensional space where the conformal group acts as the linear Lorentz
group. Following on from this, we investigate three- and four-point correlation

functions in Section 1.3.

Crucially, the operator product expansion is convergent in conformal field theories

and the significance of this fact is detailed in Section 1.4.

Within a conformal correlator, the contribution of an intermediate operator is en-
coded in a so-called conformal block. These are fixed by the symmetries and are

studied in Section 1.5.

To conclude the chapter, we talk about crossing symmetry in Section 1.6. At the
heart of this is the associativity of the operator product expansion, which places

rigorous constraints on the spectra of conformal field theories.

1.1 Renormalisation Group

The physics governing a system is highly dependent on the pertinent energy scale.
For example whilst the Navier-Stokes equation might accurately model the bulk
dynamics of certain fluids, it is vastly different from the quantum equations of
motion describing two of the constituent interacting molecules; both superficially

and in terms of degrees of freedom.

A renormalisation group flow is the evolution of a quantum field theory from the
ultraviolet to the infrared. As a group it is a misnomer because the flow from small
scales to large ones is in general not invertible. The physical justification for this is

that degrees of freedom are integrated away as we ‘zoom out’ from the ultraviolet.

The Wilsonian approach [23] to the renormalisation group heuristically starts with
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Figure 1.1: This figure represents a lattice of spins, modelling for ex-
ample a ferromagnet. A discrete renormalisation group
flow can be performed by grouping the spins into blocks.
This is effectively zooming out from the ultraviolet re-
gime. The effective Hamiltonian describing the inter-
actions between lattices sites changes but the overall
partition function remains the same. A scale invari-
ant theory is found when the effective Hamiltonian is
unchanged under a course of blocking.

a partition function

zZ= /nge—sm (1.1.1)

— D¢ e~ eff[d)}

low

where the path integral is in some manner split into high and low energy modes,

with the effective action defined through the expression

e~Setldl = highme-sm (1.1.2)

By altering the scale dividing high and low energy modes, the couplings evolve
and the space of theories is explored. Fig. 1.1 shows a discrete lattice model equi-
valent, where spins are ‘blocked’ together. Each time this is done, the couplings
in the effective action are altered despite the overall partition function remaining

unchanged.

Along a renormalisation group flow, beta functions chronicle the development of
the theory. These functions are derivatives of the couplings with respect to the
renormalisation scale. Fixed points of the flow are defined by tuning the couplings
to set the beta functions to zero. At these points, the theory is then by definition

scale invariant. Under the assumption of unitarity, which demands that all physical
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states have a non-negative norm, this enlarged symmetry group is typically enhanced
further to include conformal transformations. These preserve angles in the sense
that they only alter the metric by some local factor. The question of scale versus
conformal symmetry is subtle and interesting but we do not consider theories that

have the former without the latter in this work.

With this fixed point interpretation, conformal field theories can therefore be thought
of as important signposts in the space of all quantum field theories. As they typically
tend to be simpler, they are subsequently studied to learn about phenomena present
in more general theories. The canonical sandbox is N = 4 supersymmetric Yang-
Mills theory as it shares some similarities with Quantum Chromodynamics and

because it is dual to a string theory through the AdS/CFT correspondence [19].

Different ultraviolet theories may flow to the same infrared fixed point. This univer-
sality is typified by the Ising model, the critical exponents of which match a variety

of experimentally observed phase transitions [8].

Formalising the notion that a quantum field theory has more degrees of freedom
in the ultraviolet and that information is somehow lost as it flows to the infrared
has been the topic of some notable work. One stand-out result is the c-theorem
[24], which states that there exists a function that decreases monotonically along
a two-dimensional renormalisation group flow and is equal to the central charge of
the theory at the fixed points. Similar progress has been made in higher dimensions

with the a- and F-theorems [25, 26, 27].

1.2 Conformal Algebra

At a reductive level, a conformal field theory is a quantum field theory that is
invariant under the conformal group. This is the standard Poincaré group augmented
by dilations and special conformal transformations, where the latter is an inversion-

translation-inversion combination. Explicitly, the associated Lie algebra is so(p+1, ¢+



1.2. Conformal Algebra 9

1) for a conformal field theory with metric signature (p, q) where p + ¢ = d is equal
to the spacetime dimension. Concretely, d-dimensional Euclidean and Minkowskian
conformal field theories have so(d+ 1,1) and so(d, 2) respectively as their associated

Lie algebras.

1.2.1 Embedding Space Formalism

We stated that the conformal algebra is so(d + 1,1) for a d-dimensional Euclidean
conformal field theory. This is the familiar Lorentz algebra for (d + 1, 1) spacetime,
meaning that conformal transformations act linearly on R%1! despite acting non-
trivially on R%. Therefore, it is natural to embed the latter into the former and
have some consistent prescription for projecting away two of the dimensions. This
formalism was first introduced by Dirac in 1936 [28]. Usually, the recipe is to go to

a specific section of the light-cone.

Putting this all together, a conformal spacetime transformation can be realised

through the following algorithm.

1. Take a vector z in R%.

2. Lift this vector to the Euclidean sector of the light-cone to give X = (1,22, z).
In this basis, the inner product between the vectors A = (A", A~ ,a) and
B = (B*,B7,b)is AB=ab— (A"B~ 4+ A B")/2. For vectors represented

by lower-case letters, a.b is the standard Euclidean inner product in R

3. Lorentz transform X and scale the resulting vector back to the Euclidean
sector to give Y = (1,42, y). Note that a Lorentz transformation will preserve

the norm of the vector and so will not move it off of the light-cone.

4. Read off y from Y.

Throughout this work, a vector raised to some power is defined to be equal to the

norm of that vector raised to that power.
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Primary operators in a conformal field theory are those that transform homogen-
eously on the light-cone. As such, deriving their conformal kinematics becomes as
straightforward as the Lorentzian counterpart. Other local operators are known as

descendants and can be written as derivatives of primary operators.

Several of the quoted results in Section 1.3 can be neatly derived using this formalism.
Below, we reproduce the simplest case but the embedding space logic is the same
for higher-point correlators and is particularly powerful when dealing with spinning
operators. In this work, we freely use the terms correlation function, correlator and

n-point function interchangeably.

Consider (¢(X)o(Y)), the correlation function of two identical scalar primary oper-

ators lifted up to R, Homogeneity demands that
P(AX) = A2 9(X) (1.2.1)

for some scale transformation parametrised by A, where A, is known as the scaling
dimension of ¢. Therefore, the only consistent and Lorentz invariant object that can

be written down is
1

(P(X)p(Y)) = (Cax v A

(1.2.2)

where we were free to scale the operators themselves to fix the overall factor. Terms
like X.X and Y.Y are not present as they become zero on the light-cone. Note that
if we had considered operators with different scaling dimensions then the two-point
function would be necessarily zero to be consistent with homogeneity. Projecting

down to R, the inner product is

L A et )8 (1.2.3)

XY =2y — _
vy 2 2

All in all, we have derived that the two-point function of identical scalar primaries

in a conformal field theory is

(0(2)¢(v)) = —3a; (1.2.4)
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That we have power-law rather than exponential fall-off is consistent with the fact
that a conformal field theory describes the critical point of a phase transition, where

the correlation length becomes infinite.

Similar logic can be applied to give other correlators involving potentially spinning

operators. For example, the correlator between two identical spin-one primaries is

. . _ . 2(z — y)u(x — Y 1
<]#($)]u<y)> = (du,l/ (SL’ — y)2 ) (I — y)2Aj (1.2.5)

where 0, , is the Kronecker delta symbol.

As clarification, the kinematics for operators with spin are additionally fixed using

the transverse condition
XM(pp(X)...) =0 (1.2.6)
and the operators themselves are projected to R? using

oXM
OxH

Ou(@) = Pnr(X)

(1.2.7)

where ;o and M are spacetime indices in R? and R respectively.

1.2.2 A Comment on Virasoro Symmetry

In two dimensions, we acknowledge that local conformal transformations are cap-
tured by two copies of the infinite-dimensional Virasoro algebra. This leads to a
significant simplification and has allowed for some great work to be done, notably
the classification of the minimal models. For a comprehensive review, consult what
is affectionately called the ‘Yellow Pages’ [29]. In this work, we do not offer any
significant comments on theories with Virasoro symmetry but believe that their

importance demanded at the very least a cursory comment.
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1.3 Conformal Kinematics

In Section 1.2.1, we used the embedding space formalism to show that the correlation
function between two identical scalar primary operators is equal to the distance
between them raised to the inverse power of twice their scaling dimension, as given

by Eq. (1.2.4). In this section, we discuss three- and four-point functions.

1.3.1 Three-Point Functions

For three scalar primaries, the embedding space formalism can analogously be used

to show that conformal symmetry fixes the correlation function to be

123
<¢1¢2¢3> = A1+As—A; AotA3—A1 Ast+Al—As (131)
D) To3 L31

where the operator ¢; has scaling dimension A; and is located at position z;. Also,

we have introduced the shorthand expressions A;; = A; — A; and ; = o; — ;.

We are not free to fix the coefficient \i93 as the operators have already been normal-
ised to fix the two-point function to equal Eq. (1.2.4). Aj93 is the operator product
expansion coefficient introduced in Section 1.4, as we demonstrate for a particular

case in Eq. (1.4.4).

1.3.2 Four-Point Functions

Things are slightly more complicated for the four-point correlation function. Con-
formal symmetry permits that one of the insertion points can be mapped to infinity.
A second can then be shifted to zero and a third moved to the point (1,0, ...,0)
through a dilation and a rotation. This is ultimately why the two- and three-point
functions are so simple. However, it does mean that the four-point correlator will
only be fixed up to some function of the conformally invariant cross-ratios z and z,

which are related to the coordinates through the expressions

2 .2 2 .2
Tals gy - z) = DTl (1.3.2)

2z =
2 2 2 .2
T13T24 L1324
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The s-channel limit is defined by taking the first operator close to the second, or
equivalently taking 2z small. Comparably, the t-channel limit is defined by taking
(1 —2)(1— %) small.

In a Lorentzian theory, z and z are independent real numbers and in a Euclidean

theory z is a complex number with Z as its conjugate (that is, z = 2*).

Explicitly, the embedding space formalism can be used to show that conformal

symmetry fixes the correlation function to the functional form

N 1 Tog \ 212 (@14 A _
(P1920304) = AT A () () G(z,z) (1.3.3)

L14 L13
where once again the operator ¢; has scaling dimension A; and is located at position

Z;.

1.4 Operator Product Expansion

In a quantum field theory, the product of two nearby operators within a correlation
function can be approximated with a sum over operators. This is known as the

operator product expansion (OPE).

With the addition of conformal symmetry, the OPE becomes a pivotal tool. Qualit-
atively, this is because scale invariance promotes the OPE to an exact, convergent
statement. In essence, two operator insertions that can be separated by a hyper-
sphere from any others define a state on the surface of that sphere. A local operator

can then be defined by dilating the sphere to a point.

Foliating spacetime with hyperspheres such that the dilation operator evolves the
theory like a Hamiltonian is the crux of radial quantisation. This leads to a state-
operator correspondence in conformal field theories, whereby an operator insertion
defines a unique state on any sphere that separates it from other operators and

vice-versa.

Therefore, the product of two primary operators within a correlation function may
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be written as
Oi(2)0;(0) = XijuCiji(z, 9y)Ok(Y)l,—g (1.4.1)
k

where we have here chosen to centre the sphere on the origin and have assumed
that it only contains O; and O;. Note that we have placed O; and the sphere’s
centre at the origin only to make this expression cleaner; it was not required but
no additional insight would have been gleaned from shifting things. In general, the
operators have spin and we have suppressed any potential indices. The sum is over
all primary operators in the theory and C,j;;(x, d,) is a differential operator fixed by
conformal invariance. Consequently, the contribution of a descendant (a derivative
of a primary) is fixed by the contribution of the primary itself. In Eq. (1.4.4) we

quote C;ji, for the simple scalar case with O; = O;.

The structure constants \;j; in the operator product expansion are known as OPE
coefficients. These, along with the spectrum (the set of operator quantum numbers),

define the theory and make up what is known as the conformal data.

Using the OPE to fuse two operators, an n-point correlator can be reduced to a sum
over (n — 1)-point correlators and so on and so forth. As an example, the three-point
function (¢p¢1)) where ¢ and 1 are scalar primaries can be written in terms of two

point functions like

<¢(w>f$iw(z)> = Cogy (7, 9y) W (W)Y (2))],— = C¢¢¢(x,ay)(y_1z)m (1.4.2)

y=0

That this is the only term in the OPE contributing stems from the fact that two-point

functions between non-identical scalars vanish.

However, we know from Eq. (1.3.1) that (¢¢1)) is also equal to

(G)0)(:) = e (143

and so, expanding both expressions in the limit that the two ¢ operators collide, we

find

| L0 [ A2 o 0
— e MV
Coon(:00) = amm; (1 Ty g (8(A¢ T 1)) T g oy
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A, L0 0
- + ... 1.4.4
(16(Aw -5+ 1Ay + 1)) " oy oy, ) 4

where d is the spacetime dimension. Note that Ay does not appear in Cggy. In

general, C;;;, depends only on A; and A; through the combination A; — A;.

Convergent operator product expansions allow for the function G(z, z) in Eq. (1.3.3)
to be decomposed into a sum over conformal blocks G, 5(z, Z), weighted by the
theory-dependent OPE coefficients. Each block is fixed by conformal symmetry and
encapsulates the contribution of an intermediate primary operator and its descend-

ants. The nature of conformal blocks is discussed in more detail in Section 1.5.

The s-channel decomposition, where ¢, fuses with ¢o and ¢3 fuses with ¢y, is

G(2,2) = > M20M310 Gaa(z, 2) (1.4.5)
0

where the sum is over all of the primary operators in the theory and A\js0 is the

coefficient of O in the ¢; x ¢ OPE. That is,

[

¢1(2)$2(0) D Aypp z2 A1 742 ( ) Oy, (0) (1.4.6)

x/

where we have made the possible spin indices explicit.

The intermediate operator O has dimension A and spin J, which are related to the

variables that we have chosen to label the blocks with through the equalities

d d
A:o?—i-oH—E J:o?—oz—kl—i (1.4.7)
which invert to
A — 1— A -1
o= ‘]; d oz:—{_é] (1.4.8)

These are the o and & variables that play a leading role in the alpha space construc-

tion detailed in Chapters 2 and 3.
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1.5 Conformal Blocks

In this section, we present some well-established results on conformal blocks; the
functions encapsulating the contribution of an intermediate primary operator and

all of its descendants to a four-point function.

Workable expressions for these blocks are required for many bootstrap calculations,
both analytical and numerical. Impressive computations have been performed to
find closed-form expressions in even dimensions and for spin-zero blocks, to derive

recursion relations and to determine exact formulae on the diagonal where z = Z.

In this work, we only consider conformal blocks for external operators without spin.
That is, we restrict ourselves to four-point functions of scalars. Recently, good
progress has been made on spinning conformal blocks [30], which has allowed the

bootstrap community to study more complicated configurations.

1.5.1 Casimir Equations

In Section 1.2, we gave the conformal algebra as so(p + 1,¢ + 1) and so states in a
theory lie in irreducible representations of this algebra. Furthermore, a differential
operator can be built from the accompanying quadratic Casimir. Since a block
encodes the contribution of an intermediate primary operator and its descendants,

it ends up being an eigenfunction of the Casimir [31].

In one dimension, the quadratic Casimir equation is

1
D.Ga(2) = (a* = 1) Gal2) (15.1)
with
D =z2(1—z)a—2—(1+a+b)z2g—abz (1.5.2)
T 022 0z o
_ Ap _ Ay

Note that we only have one conformally invariant cross-ratio z in d = 1 and therefore

the blocks only have an « label. The scaling dimension of the intermediate operator
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isa—i—%.

Eq. (1.5.1) is a hypergeometric differential equation and a solution is

1 1
Go(2) = 2""1,F (2+a+a,2+b+a;2a+1;z> (1.5.4)

Since the eigenvalue is invariant under o — —a, G_,(2) is also a solution. Around

z =0, Eq. (1.5.4) behaves like
Gol(2) = 2°T2(1 4 O(2)) (1.5.5)

and therefore, because we physically expect the contribution of a single operator
of positive dimension to be non-singular in the s-channel limit (as dictated by the
OPE), G, is established as the true block as opposed to G_,. This hierarchy can

be further justified mathematically by considering higher order Casimirs.

For spacetime dimension d > 1, the quadratic Casimir equation for the block G, 5 is
DGus= <a2 +a? — ) Gaa (1.5.6)

with

D(2.2) = D, + Dx + (d — 2) ( ZE) ((1 _ z)aaz - @i) (1.5.7)

zZ—Z

which simplifies to D, + D; in two dimensions.

In addition, G, 4 satisfies a quartic Casimir eigen-equation given by

Z—Zz Z—Zz
d—2\° d—2\"
(a4+@4_2 <2> (o + a?) — 2002 + <2> ) Goalz,2)

As all of these equations are invariant under z <» z (which is a consequence of the

( Z5_>d—2 (D. - D.) ( 25_>2—d (D. — D) Gun(s,7) = os)

symmetric definitions in Eq. (1.3.2)), the blocks satisfy Ga(z,2) = Gaa(Z, 2).
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1.5.2 Normalisation Conventions

Analyses of Egs. (1.5.6) and (1.5.8) show that the blocks can be written as a sum of

so-called ‘pure’ functions like
Gaa(z,2) = Gog (2,2) + GEo (2, 2) (1.5.9)

Throughout this paper we have chosen to normalise the blocks so that

d—1

GR(2,2) T y(a — @)2*T7 Ga(2) (1.5.10)

for finite z and the pure blocks are defined by these asymptotics. Fundamentally,
the pure blocks are the independent solutions to the quadratic Casimir equation.

There are eight due to the eigenvalue symmetries &« — —a, @ - —a and a <> a.

In Eq. (1.5.10), G4(2) is the one-dimensional block introduced in Eq. (1.5.4). The

coefficient function is defined to be

Vo) = o rera ) (1.5.11)
2
To assuage the fears of the reader, both v(a — &) and (@ — «) are functions of spin
(according to Eq. (1.4.8)) that are finite for physical values.

The normalisation chosen here means that a block is manifestly invariant under
a <> «. This is natural in the sense that the associated eigenvalues share this

symmetry.

On the diagonal, it can be shown that a block behaves near the origin like

Goalz,z) 238 potats (1.5.12)
and more generally
Goalz,7) 22 (1.5.13)
(22) LR <§—1+a—a,g—1+a—a,d;1,1;x>

. oy » . _ +z
where the limit is taken with z = ;—\/z% fixed.
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Recalling Eq. (1.4.8), the pure blocks behave like

pure (Z 2)
Af‘];lfd’Aﬁéffl ’ A—J A+J

N (1 i J) =22 22 (1+0(2/z,2)) (1.5.14)

for 0 < 2 < z < 1, in terms of the dimension and spin of the intermediate operator.

Although Egs. (1.5.6) and (1.5.8) are much more formidable than their one-dimensional
counterparts, they are soluble in certain circumstances. For example, in even di-
mensions they can be solved in terms of d = 1 blocks. However, in odd dimensions
the current state-of-the-art is to use recursion relations [32] for series expansions of

Ga,&(z, 5)

Two Dimensions

In two dimensions, the quadratic Casimir Eq. (1.5.6) reduces to D, + D; and so the

block can immediately be written down as

(1.5.15)

Four Dimensions

In four dimensions, Egs. (1.5.6) and (1.5.8) can be solved to give the block as

2z ) (Ga(z)G@(z) - Ga(z)G&(Z)> (1.5.16)

zZ— 2z

Goalz,3) = (

Six Dimensions

In d =6 (with a and b set equal to zero to ease notation), the block is

Gonl(2,5) = ((_ Ga(2) < 2z >3 <6Ga—1(5) N 3(a+a—1)2a+ 1)2Ga+1(5)>

a—a\zZ—2z a—a—1 R2a(a+1)((a+1)2 —a?)

+ (2 ¢ Z)) + (a ¢ @)) (1.5.17)
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Three Dimensions

Currently, a closed-form expression for the d = 3 block has only been derived on the

diagonal (z = 2) [33]. It is equal to

Goalz,2) = (1.5.18)
2 ( 4z )“““5 atgjatgatatyy 2
41473 YT
VI—z A+ vI=2)p a+la+la+a+1 LHVI=2)

1.6 Crossing Symmetry

In Eq. (1.3.3), we gave the correlation function of four scalars. This expression is
fixed by conformal symmetry up to a function G(z, z) of the conformal cross-ratios

defined in Eq. (1.3.2).

The value of a correlator is independent of how the constituent operators are fused
using their operator product expansions. If instead we had chosen to fuse in a
‘t-channel manner’ (effectively swapping the operators ¢, <> ¢3), we would have got

a slightly different expression which must be non-trivially equal to the first.

All in all, this means that the function G can be related to its t-channel analogue G’

via a simple crossing symmetry equation. Namely,

: (275 .
G(z,2) = a9 (1—2,1-2 1.6.1
T | e

where the prime on G’ indicates that it naturally admits a t-channel decomposition.

Specifically,
G'(2,2) = Y Ap0Auo Gu (2, 2) (1.6.2)
o

with G, 5 being a t-channel block, equal to Gos up to the redefinitions

A A
a—a = % b—)b’E—% (1.6.3)

Eq. (1.6.1) therefore relates a sum over s-channel blocks to a sum over t-channel

blocks. This non-trivial equivalence is represented schematically in Fig. 1.2.
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O N o

Figure 1.2: A common schematic for crossing symmetry, the left of
the figure represents the sum over s-channel operators
O following the fusion pattern (¢; X ¢2) X (3 X ¢4).
Likewise, the right of the figure represents the sum over
t-channel operators 0’ following the fusion pattern (¢, x
¢1) X (P2 X ¢3). The bootstrap community uses this non-
trivial equivalence to constrain the space of conformal
field theories.

A lot of work has been done to constrain the space of conformal field theories by
analysing crossing equations both numerically and analytically. Perhaps one of the
most impressive results is a highly accurate determination of the 3d Ising spectrum

[10].






Chapter 2

Alpha Space

In this chapter, we explain the philosophy behind alpha space before detailing the
one-dimensional transform, which was first delineated in [1]. We then present several

new results and applications of the formalism.

As discussed in Chapter 1, the correlation function of four primary scalar operators

in a conformal field theory is

L14 x13

_ 1 Tog \ 212 (T4 A3 _
(P1020304) = AT A ( ) () G(z, %) (2.0.1)

where the operator ¢; has scaling dimension A; and is located at position z;. The

cross-ratios are defined in Eq. (1.3.2) and, as before, A;; = A; — A, and z;; = z; — ;.

The function G(z, 2) is known as the stripped correlator. It admits a decomposition
into universal s-channel conformal blocks, weighted by theory-dependent operator

product expansion (OPE) coefficients. That is,

G(2,2) =D M20A310 Gaalz, 2) (2.0.2)
0

Each block encodes the contribution of a primary operator O and its descendants.

The scaling dimension and spin of O are related to a and & through Eq. (1.4.8).

A natural question is then, what is the conformal block decomposition for a function

G(z,2)? This is what the alpha space approach sets out to answer. This is not new a
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question; the harmonic analysis of the conformal group has been studied both in the
1970s [14] and more recently [15]. Furthermore, progress has been made both on a
Lorentzian inversion formula and in Mellin space, with the latter seeming to offer a
natural language for AdS/CFT correlators. We comment on these in Sections 3.1.2

and 3.6.

All of this detail is really necessary because the blocks themselves to do not form a
complete orthogonal basis. Therefore, we cannot integrate a block against G(z, z) to

‘pick out’ its contribution.

The alpha space approach differs slightly from previous attempts as it looks to apply
Sturm-Liouville theory directly to the quadratic Casimir differential operator in
Eq. (1.5.7). This delivers an orthogonal basis of eigenfunctions and an invertible

integral transform.

[lustratively, the alpha space algorithm is as follows. Start with a function f(z, z)
(it need not be a stripped correlator in general). Then, use the alpha space integral
transform f(z,z) — f(a, @) to get the density. Next, read off the conformal data
from f (v, ). The pole locations end up giving the dimensions and spins of the

intermediate operators and the residues give the weightings (OPE coefficients).

Another motivation for working in alpha space is that it allows for Eq. (1.6.1) to be
written as an integral equation. The consequences of crossing symmetry can then
be investigated by studying the analytic properties of the kernel. This is done in
Section 2.6.1.

In this work, we focus on the Lorentzian square z,z € (0,1). This is done so that
the Casimir operator is elliptic and so that both the s- and t-channel decompositions

converge.

After introducing the d = 1 case in Section 2.1, we explain how large imaginary «
corresponds to the z — 1 limit in Section 2.2 before discussing how Casimir singular

and regular terms have different alpha space signatures in Section 2.3.
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Since polylogarithms are simply expressed in alpha space, we make a comment in

Section 2.4 on Witten diagram calculations, where such functions are abundant.

We then move on to d = 2 alpha space in Section 2.5. This turns out to be no
more difficult than the d = 1 case because of the simplicity of the quadratic Casimir

differential equation.

To conclude the chapter, we return to the crossing equation in Section 2.6. There
we introduce an integral equivalent of the crossing equation in Eq. (1.6.1), delve into

the analytic properties of the kernel and compute anomalous dimensions.

In Sections 2.1, 2.5 and 2.6, we allow for non-equal external scalars. For the rest of
the chapter, we implicitly work with a = b = 0 and take the external operators to

have scaling dimension Ay.

2.1 Alpha Space in One Dimension

In this section, we present the Sturm-Liouville analysis of the d = 1 quadratic
Casimir. This is a more tractable problem than the higher dimensional case because
there is only one cross-ratio and the differential equation can be easily put into

standard Sturm-Liouville form.

The integral transform itself is fleshed out in Section 2.1.2, some simple examples
are given in Section 2.1.3 and the interesting case of logarithms is discussed in

Section 2.1.4.

Working with d = 1 theories may seem restrictive but they in fact display much of
the salient features of higher dimensions. For example, they appear naturally as line

defects and in the light-cone limit of d > 1 theories [34, 35].

2.1.1 Sturm-Liouville

A second-order ordinary differential operator which is linear and Hermitian on some

interval is known as a Sturm-Liouville operator. The associated eigen-equation,
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along with a set of boundary conditions to guarantee a Hermitian inner product,
is called a Sturm-Liouville equation. Hypergeometric, Bessel, Legendre and simple

harmonic equations are common examples.

All of these properties ensure that the eigenvalues are real and the eigenfunctions can
form an orthogonal basis on the interval. An integral transform can then naturally

be defined by using the orthogonality of the eigenbasis.

2.1.2 Defining the Transform

In one dimension, there is only a single cross-ratio and the blocks are given by
Eq. (1.5.4). They satisfy Eq. (1.5.1) and so a general eigenfunction of the quadratic

Casimir operator D, can be written as a linear combination of G,(z) and G_,(2).

The Sturm-Liouville analysis of D, on z € (0,1) begins by defining an appropriate
measure p and a bracket for which the operator is self-adjoint. This is done by first

defining the bracket
(.9 = [ =) () (2) 2.1.)

for two functions f, g taking (0,1) — C and then by requiring that

/01 dz p(z) (£*(2)D=g(2) — 9(2) D.f*(2)) (2.1.2)

is zero up to boundary terms. This fixes the measure to be

(1 — z)atPb

wu(z) = — (2.1.3)

so that Eq. (2.1.2) becomes

[l (0= (re®2 0 TE)) e

which is a boundary term.

The measure in Eq. (2.1.3) tells us that if a function f has power-law behaviour
around z = 0, a necessary condition for (f, f) to be finite is that the exponent must

be greater than % Unfortunately, this means that a stripped correlator containing
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an identity operator contribution will always have a divergent norm with respect to

the bracket. This is because the leading term will be
G(z) = if there is an intermediate identity operator. (2.1.5)

Here we have assumed that each of the other intermediate operators has a positive
scaling dimension, as is the case in a unitary theory. However, we show in Sec-
tion 2.1.3 that such problems can be rigorously circumnavigated through contour

deformations.

The blocks themselves are divergent at z = 1. That a single block has power-law
behaviour as z — 0 but is logarithmically (for a = b = 0) divergent in the limit z — 1
is physically linked to the fact that a t-channel operator can only be reproduced by
an infinite sum of s-channel operators. By way of illustration, the block behaves

asymptotically like

I'(1+ 20)

Go(2) oo =3 — o=/
(2)la=b=0 I2(1+a)

log(1 — z) (2.1.6)

The next step in the Sturm-Liouville procedure is to find the linear combinations of

Go and G_,, that are orthogonal with respect to the bracket. Defining Q(«) as

2T (—2a)T(1 4 a + b)

Qla) = rC+a-a)l(l+b—a)

(2.1.7)

we have that

Vo (2) = 1<Q(Q)Ga(z) + Q(—a)G_a(z)> (2.1.8)

1 1 1-—
=z % <2+a+a,2+a—a;1+a+b;— ZZ>

is finite in the z — 1 limit. In fact, we have normalised the function to ¥, (1) = 1.
The second line of Eq. (2.1.8) is derived by combining the two terms in the first line
using a hypergeometric identity. Interestingly, W,(z) is not the standard conformal

partial wave that appears in the Euclidean inversion formula [14].

Often in this work, we employ a Mellin-Barnes integral representation for the function
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Figure 2.1: W, (2)/+/z is plotted against z for imaginary o = 2i
(blue) and o = 67 (orange) with a = b = 0. Note that
both functions equal 1 at z = 1 despite being sums
of two divergent blocks. Inspiration for this plot came
from an almost identical figure in [1].

U, (z). After defining I'(z £ y) = T'(x 4+ y)I'(x — y), the two most common are

R A

e j:i(;;(aﬁ?i ) J s T —a S)F(; TatsE O‘> (i)

where we have introduced the shorthand expression

/[dﬁ] E/m a» (2.1.10)

—ico 271

(2.1.9)

I(-s)'i+a+s+a) (1 —z)s

I'l+a+b+s)

for which the integration contour is deformed off of the imaginary axis to separate

left- and right-running, semi-infinite sequences of poles, if necessary.

Up to some simple redefinitions, ¥, (z) is the main ingredient in the Jacobi transform
[36] which maps between Jacobi and Wilson polynomials. Consequently, ¥, (z) with
a € iR forms an orthogonal basis. Explicitly, this statement means that for some

function f defined along the imaginary axis, it is true that

Q(a)Q(—a) <f<a> + f(—oo)

[ 1dB) (W, w5) f(5) = (2.1.11)

2 2

which essentially means that (V,, Us) acts like a delta function along the imaginary

o-axis.
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Duly, one-dimensional alpha space can be defined through the transform

. 1
fla) = [ dzp(z)¥a(2)1(2) (21.12)
and an alpha space density can be taken back to position space using the inverse
transform
20, (2)f(a)
z) = [ |do)| ———————+ 2.1.13
f() = [ 1da] G =S (2.1.13)

Formally, this is a map between the Hilbert spaces

L2<(O,1),u(z)dz> = L2<(—z’oo,z'oo), mQ(oiZ)Oég(—a)> (2.1.14)

[7.4] E/[da] 211 (@)gla) (2.1.15)

Fig. 2.1 plots ¥,(z)//z for two different imaginary « values. In hindsight, it is
natural for the inverse alpha space transform to be defined along the imaginary
axis. For real alpha, the power-law behaviour of ¥, (z) near the origin has exponent
:+ — |a| and so it is not formally normalisable. Conversely, the oscillatory behaviour

for imaginary « gives us some faith in Eq. (2.1.11).

2.1.3 Some Examples
Here we present the alpha space densities for some simple functions. This is done
to seed some intuition for the following sections.

Densities are straightforwardly related to conformal block decompositions. The
symmetry « <> —a allows for W, (z) in Eq. (2.1.13) to be replaced with Q(a)G4(2)

to give the split inverse transform
(2.1.16)

Under the assumption that f(a) decays sufficiently fast at infinity, the contour can

then be closed in the right half-plane. If f (c) is a meromorphic function then closing
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the contour picks up poles to give a sum over conformal blocks. The semi-infinite
series of poles from the 1/Q(—«) factor is left-running and so the contour only picks

up poles from f(a).

Blocks

As the first example, consider a (symmetrised) pole in alpha space, located at « = £+

with residue —Q(—/)/2. This maps to G(z) because the split inverse transform is

~ [ 1do] Q(g}f)jc;(z) (a ! - aiﬂ) (21.17)

and the contour can be closed to the right to give a single block. That is,

Gp(z) — ~Q(=8) (a i G aiﬁ) (2.1.18)

where we have used the notation f(z) — f () for a map from position to alpha

space.

All-in-all, simple poles in d = 1 alpha space are conformal blocks in position space,

and the residues are simply related to the OPE coefficients.

A pole at § = A:5+;

Residue equal to R = Ais0A340 = —

Q(=75)

In deriving Eq. (2.1.18), we have assumed that 5 > 0 so that closing the contour
picks up the pole at o« = 8 but not the one at a« = — /3. However, the range of scaling
dimensions 0 < A < % corresponds to —% < B < 0. Therefore to encode an operator
in this range, the contour must be deformed to an ‘s-bend’ to separate the two poles

correctly. This is illustrated in Fig. 2.2.

It is this deformation prescription that solves the normalisation problem raised in
Section 2.1.2. There we saw that (f, f) diverges if f(z) behaves like z? near z = 0
as p is dialled below % Now we understand this as two poles crossing the imaginary

axis in alpha space and the remedy is to deform the inverting contour off of the
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Figure 2.2: This figures illustrates the importance of the contour
prescription for the inverse alpha space transform. Each
plot shows the contour for an inverse alpha space trans-
form of the form Eq. (2.1.13) and the crosses represent
simple poles. The density is assumed to be the same
for both plots but the left integral produces an operator
with scaling dimension % < A <1 whereas 0 < A < %
on the right. The take-home lesson is that we need
both the density and the contour to go back to position
space.

imaginary axis to separate the ‘right-hand’ pole on the left of the axis from the

‘left-hand’ one on the right.

There are two limit cases that deserve a mention. We present these for a = b = 0 but
the generalisation is straightforward. Firstly, 1/Q(—c) itself has a pole at a = —3
and so a density only needs to be finite at this point for an identity contribution, with
the ‘s-bend’ contour prescription now going around o = j:%. Secondly, 1/Q(—«)

has a zero at @ = 0 and so a density requires a double pole here for an operator of

dimension %, with the contour deformed slightly to the left of the origin.

Powers

Simple powers are mapped to gamma functions in alpha space. This is shown by

using the first Mellin-Barnes representation in Eq. (2.1.9) to get

/01 dz p(2)2P¥,(2) = (2.1.19)
I'l+a+b)
L(p+b)I'(3 +ata)

/[ds]F(—s)F(p— l—a-— s)F(i +a+sj:a>
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where we have integrated away z. This integral can be computed by using Barnes’

first lemma, which is

F'(a+c)I'(a+d)(b+ c)I'(b+ d)

ds|T L(b+s)'(c—s)['(d—s) = 2.1.20
[ [ds] D (a+5)T(b+5)D (= )T (d—s) Mo rbrord (2.1.20)
The resultant map from position to alpha space is
(1 b)['(p— i+
oy LAFat b= +a) (2.1.21)

Fip+a)l'(p+b)

which basically says that 2P is a sum over blocks with integer-spaced scaling dimen-
sions, starting at p. The OPE coefficients can be read off from Eq. (2.1.21) using

Eq. (2.1.18) and the fact that the residues of the gamma function are

Res(T(a)],_ = =" (2.1.22)

a=n n!

for any natural number n € N = Z=9.

A similar calculation yields the result

s\ T(l-plp-Lta)
(l—z) ~ L(p)L(5 £ a)

which we use in Sections 2.2 and 2.3.

Jacobi and Wilson Polynomials

More generally, the d = 1 alpha space transform maps Jacobi to Wilson polynomials

according to

P P@ATPI (] 92) (2.1.24)
Fl+a+b)'(p—3=+a)
n!T'(p+a+n)'(p+b+n

( 131 1+b>
n{QPD — 55 — T, 5 a5
AN I R

The Jacobi polynomial is

(14 2),

PV (2) = ,
n:

1—
o (—n, l+x+y+nl+ua 5 Z) (2.1.25)
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and the Wilson polynomial is

pu(asa, b, c,d) = (2.1.26)
—-n,a+a,a—a,n+a+b+c+d—1
(a+b),(a+c)pla+d)nsFs 1
a+ba+ca+d

where we have introduced the Pochhammer symbol,

(@) = F(ff(j;)n) (2.1.27)

The simple z? map in Eq. (2.1.21) can then be recovered by setting n = 0.

Eq. (2.1.24) is slightly more general then the analogous result of [1] in that it includes

the free parameter x.

The Wilson polynomial and the more general Wilson function play a pivotal role in

the split kernel introduced in Section 2.6.1.

2.1.4 Logarithms

Since simple poles in alpha space map to conformal blocks, it is sensible to also
appraise higher-order poles. These singularities roughly correspond to derivatives of

blocks. As an example, consider the integral

Q(=8) 20, (2) 1 1
2 /[da] Q(a)Q(—a) ((a — [)2 + (a +5)2) (2.1.28)

Once again, the symmetry of the integrand allows for the substitution ¥,(z) —

Q(a)Ga(z). After this split, the contour can be closed to the right to pick up the

double pole and give

D (G 06
Q- (5255) = 25 4 )6t (2.129)

where the function () is defined to be

0(B) = —dbgg_ﬁ) = (; + 8 +a> o (; + 8 +b> _20(28)  (2.1.30)
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Figure 2.3: Plotted are the contours for the integral Eq. (2.1.33).
The blue contour gives log(1 — z) whereas the figure-of-
eight red one gives 2(1 — log(z)). The double poles at

a = +1/2 are marked by black dots.

and () is the digamma function

_ dlogI'(B)

Y(p) = a5 (2.1.31)

Putting this all together, the first derivative of a block maps to alpha space like

9Gs(z) . Q(=p) ( 1 - o
98 2(a—p) <a—ﬁ w(ﬁ))ﬂ — —a) (2.1.32)

Such block derivatives produce log(z) terms and so the alpha space density for the

logarithm deserves some attention. With a = 0 and b = 0, consider the integral

do 2V, (2)
2mi Q(a)Q(—a)(a — 3) (e + 3)

(2.1.33)

over the two contours plotted in Fig. 2.3. The blue contour is the standard alpha

space one. Therefore, ¥, can be replaced by Q(a)G, under the integral and the
contour closed in the right half plane to give the single block

2G1 (2)

- Q(=3)

=—G1(z) =log(l — 2) (2.1.34)

N|—=



2.1. Alpha Space in One Dimension 35

However, two double poles are enclosed by the red contour because of the () factors

and so the integral is

—4

0 ( U, (2) (e + 1)
Q(

as-1/2 Oar 2)Q(—a) (o — §)> = 2(1 —log(z)) (2.1.35)

We note that in terms of the derivative of a block, the logarithm is

0G4(2)
Oa

log z = (2.1.36)

a=-1/2

The red contour may appear to be peculiar, but it arises naturally via the following

argument.

The derivative of z? with respect to p is 2P log(z) and so a regularised alpha space

density for the logarithm can be defined through

Plog(=) - 2 (W)

o (2.1.37)

where we have used the density for 2P in Eq. (2.1.21). We can get higher powers
of the logarithm by taking further p derivatives. The standard alpha space contour
for this density is pinched at a = j:% as p — 0 and so it makes sense to pull the

% — p) with p small, picking up the residues at these points

contour through o = +(
and leaving an integral along the imaginary axis. The contribution of this integral
vanishes as p — 0 because the integrand vanishes, and so it can be dropped. The

contribution of the residues as p — 0 amounts to

oV, (z)
Oa

= log(2) (2.1.38)

a=-1/2
and we see that everything is consistent. The two small contours around oo = j:(% —p)
giving rise to these residues can be joined up nicely to give a figure-of-eight path

analogous to the red contour in Fig. 2.3.
Similar alpha space densities can be defined by substituting Eq. (2.1.21) into various
Taylor series expansions. Two interesting examples are

log(2) log(1 — 2) > @M)l@ — <2r(; i—a) _ @M)l(; _a)> (2.1.39)
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and the polylogarithm

1

< T'(p—1+a) 1 ttos—al,..1
Lis(2) — 2:F<:|:Oz)s F i1 2.1.40
( ) pgl p8F2(p) 92 +1 5 5 ( )

g eeey

for s € Z=1.

Now that we understand the logarithm, we can also think about constant alpha
space densities. In Fourier space, the inverse transform of a constant gives a delta

function and we expect something similar to happen in alpha space. In fact, since

1

log(1—z2) — =1 (2.1.41)
we can use Parseval’s formula from Eq. (2.1.15) to say that
(D-og(1 — 2), f(2)) = [ % F(2)D- log(1 =) (2.1.42)
_ 2f(@) (a®—3
- 0ol ey (=)
N 20, (1) f(a)
= /1 gt
= f(1)
where we have used the fact that
D.f(2) > (a2 _ D f(a) (2.1.43)

which follows from Eq. (2.1.13) along with the observation that W,(z) is an eigen-
function of D,. Therefore, an alpha space density of 1 corresponds to the position
space function D, log(1 — z), which is equivalent to 6(1 — 2) in the context of the

integral above.

2.2 Large Alpha Limit

Analogously to how large momenta probe short distances through the Fourier trans-

form, the large imaginary « limit in alpha space corresponds to taking the cross-ratio
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z close to 1. This can be seen by applying the quadratic Casimir n times to an

inverse alpha space integral. Since ¥, is an eigenfunction, we get

o [ 2@ Yy
D21() = [ o) griaray (48— 7) ¥el2) (2:2.)

Now because ¥, (1) = 1, if f(1) is well-defined but D, f(z)|,=; is not then

2f(a)
/A[da] m converges but (222)
2f (@) 2 1
/[da] 00)0(-a) (a — 4) does not converge. (2.2.3)

All we have done is modify the integrand by a polynomial factor and so we conclude

that the large imaginary o behaviour of f(a) reflects the z — 1 limit of f(z).

As an explicit example, consider the function
f(z) = darccos(vz) — 2 = 4V/1 — 2z — 21 + O((1 — 2)*/?) (2.2.4)

After applying the Casimir, this function becomes

z

D.f(z) = (2.2.5)

11—z
Crucially, D,f(z) is undefined at z = 1 in this instance. From Eqs. (2.1.23)

and (2.2.1), the corresponding alpha space densities are

—TR()Q(—a) = + .. (2.2.6)

4arccos(v/z) — 2m =1 Q(a)Q(—a) <&21_ 1) = aQ\/l__&Q + ..

where the ellipses here represent subordinate terms in the large imaginary « limit.

Indeed, the inverse alpha space integral clearly converges for the f(z) density but

not for the D, f(z) density, mirroring the worsening z — 1 behaviour.

More generally, if a function behaves like

fl2)=(1—2)P1+0(1—2)) (2.2.7)
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then

fla) = (-a2p H P o) 228)

as can be seen from the large a limit of Eq. (2.1.23).

To conclude this section, if D f(z)|,=; remains well-defined for arbitrarily large n
then Bq. (2.2.1) tells us that f(«) must fall off faster than any power for large
imaginary «. This is exemplified by the density for z? in Eq. (2.1.21), which falls off

exponentially like

,  Llp-— sta) ome~ ™0 (—q2)p-1 02
2P () = T20) (14 0(a™2)) (2.2.9)

2.3 Casimir Regular Terms

A Casimir singular term is defined as a function that becomes arbitrarily divergent

in the z — 1 limit after repeated applications of the Casimir D,. Terms that do not

4
1—

suffer this fate are known as Casimir regular. By way of example, 4/ 17 and = are

1—2
z

Casimir singular whereas 27, G,(z), and (1 — 2)?log(1 — 2) are all regular.

In alpha space language, if a density behaves asymptotically like
fla)=(=a®P(1+0(?) p¢Z (2.3.1)

then the corresponding function f(z) is Casimir singular.

This distinction is useful because the addition of any regular term will not alter the
asymptotic Casimir singular part of the density, which itself can be unambiguously
related to the associated asymptotic z — 1 behaviour through equations such as

Eq. (2.2.8).

As an example of a density corresponding to a Casimir regular function, we note

that

z

1+<1_Z)10g(1—z)|—>;<(a_g)1(a+g)— I >:a—4+0(a—6)
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It is worth bearing in mind that not all Casimir singular functions behave like
Eq. (2.3.1) in alpha space. Take for example z/(1 — z). Expanding Eq. (2.1.23)

around p = 1 and dropping the divergent term gives us the density

z

- (Hosjut Ho1y) (2.3.3)

where H,, is the n™® Harmonic number.

Asymptotically away from the real axis, this density behaves like
— (H_%Jra + H_%_a) = -2 <7E + log(v —aQ)) +O0(a™?) (2.34)

where v is the Euler-Mascheroni constant. This logarithmic behaviour does not fit
into the pattern of Eq. (2.3.1) but it still cannot be reproduced by Casimir regular

terms.

Why we were allowed to simply drop the divergent term to find this density is not
immediately obvious and so it needs to be retrospectively justified. This can be done

by numerically checking that the integral

. 20a(:) | Hopeot Hoyo
/[da] (Q(Q)Q(_a)> (@I (2.3.5)
is equal to

3 (Lis(z) 4+ Lis(1 — z)) — 2 (log(2)Lia(2) + log(1l — 2z)Lis(1 — 2)) (2.3.6)

—; log(z) log(1 — 2) (log(z) + log(1 — 2)) — 3¢(3)

which reduces to z/(1 — z) after two applications of D,. In this expression, we have

S

introduced the Riemann zeta function ((s) = > °° ; n=*. Another justification is that
the divergent term is a constant in alpha space, and so it simply maps to a delta

function in position space.

The author of [37] procured a formula relating a Casimir singular term to a sum over
conformal blocks, up to a sum over regular terms. In the remainder of this section,

we re-derive their expression using the alpha space formalism.
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A sum over derivatives of some function f can be represented like

= df(k) _ [ ds ( ™ >2f(_3) (2.3.7)

= dk 2mi \ sin(ms)

for a suitable contour. As such, the sum

C;ZY+-(Fﬁ(B+ Lm§2§«f><£w;&;kém<?zzf>)
2.3.8

which is a Casimir singular term plus an infinite sum over regular terms, is equal to

(1—3P+F%W5—§—m ds T*(s)L(B+5 —s) G_Zyﬂ (2.3.9)

z —p)T'(B+ % +p)J 2mi(s+p)'(B— % + s5) z
where the contour encircles the (double) poles at s = —N in a counter-clockwise
manner.
Pulling this contour up to lie along the imaginary axis picks up the pole at s = —p,

which contributes

z

—»(1_‘Z)p (2.3.10)

to cancel against the (%)p term already present.

The remaining integral can then be taken to alpha space by transforming the z-

dependent factor under the integral according to

1—2\"* TQQ-sI(s—3i+a)
( ; > 7T TeT(ta) (23.11)
to give
I'(3—35—p) /wﬂW®N1—$N5+§—®Ns—i®
P2(—p)L(B+ 5 +p)l(3 £ a) (s+p)T(B—5+5)

(2.3.12)

This integral produces poles in the a plane because the s contour separating left- and
right-running semi-infinite sequences of poles is pinched whenever « = £(5+N). As
usual, these poles encode a block decomposition. The residues at the pinch-points

prove that Eq. (2.3.8) is equal to

1 JI*B+3+n)l(B—5-p+n)
WPME:

= TREB+n)TB+5+p+n)

Gin(2) (2.3.13)
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1—2
z

which reduces to the block decomposition of ( )p when [ is tuned to —p — %

The significance of this equality is that the residue of the pole at a = 5+ n in alpha

space is

B (Q(—B - n)) F2F2(5 ty (B -3 —ptn) (2.3.14)

2 (—p)T2(B+n)T(B+ 35 +p+n)

which is asymptotically equal to

B 7;_;((2:) (1 L0 (i)) (2.3.15)

That is, the leading asymptotic behaviour is independent of § and is exactly equal

to the leading large n asymptotic behaviour of

D(=2p—1+n)
n!I'2(—p)

(2.3.16)

which is the residue of the alpha space density for (1_7Z)p at @« = —p — % +n. In
conclusion, the addition of the Casimir regular terms has shifted the locations of
the blocks and their OPE coefficients without changing the leading asymptotics. A

more complete discussion can be found in [37].

2.4 Witten Diagrams

We have shown that functions such as logarithms and polylogarithms can be taken
to d = 1 alpha space in a fairly straight forward manner. Therefore it is our hope
that the alpha space formalism can one day say something about Witten diagram
calculations, where these functions are abundant. While this may seem optimistic,

some confidence can be drawn from the progress made in Mellin space [38, 39, 40].

As a first baby-step, consider the tree-level Witten diagram in AdSs for four identical

external scalars of scaling dimension 1. The stripped correlator is then

5,2 <log(1 —2) N log(z)> (2.4.1)

z 1—2

The Mellin-Barnes representations in Eq. (2.1.9) can be used to show that the
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relevant alpha space density is

2.7 <1°g(12_ 2 lfg_(zz)> 4 ai; <logF<i + ;‘)) (2.4.2)

This goes like 2/a? for large «, which is consistent with the fact that the function is

Casimir regular.

The density in Eq. (2.4.2) has double poles at v = +(2 + 2n) for n € N, meaning
that the decomposition is made up of both blocks and their derivatives for operators

of dimension 2(1 4+ n). Reading off the residues, we have

922 (10g(1z_ 2 lfg_(zz)> - 8;_0:0 B (5(55?)> p=3+2n o

where () was defined in Eq. (2.1.30). The anomalous dimensions and tree-level

corrections to the OPE constants can then be directly read off.

A similar function appearing in a discussion of d = 4 supergravity [41] is

2 2:>  22°log(2) _ _;Dz(Dz B 2)zlog(z)

-2z (1—2)2 (1—2)3

o (2.4.4)

Using the fact that applying the quadratic Casimir to a function only changes the

alpha space density by a polynomial factor and that

”’11‘)%(5) > — r2<; + a> (2.4.5)

we immediately arrive at the result

= O [ R

whence the OPE data can be easily extracted in the usual manner. This function is
Casimir regular, which is consistent with the exponential suppression of the density

at large imaginary «.

It is not much more of a leap to consider comparable functions composed of even
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higher derivatives of blocks. By way of example, we found that

2(12Lig(2) — 6log(z)Lis(2) — log®(2) — 373 log(z) — 12¢(3))
6(1 —2)

> r4<; + a> (2.4.7)

That such a complicated position space function can be packaged up nicely makes
us sanguine about the prospect of investigating objects like the D-functions in alpha

space.

2.5 Two Dimensions

The Sturm-Liouville analysis in two dimensions is no more difficult than the d =1
case because the quadratic Casimir equation of Eq. (1.5.6) factorises nicely, reducing
to

(D. + D:)Gun(,2) = <a2 +a?— ;) Goal22) (2.5.1)

which is effectively like the sum of two d = 1 equations. The block in two dimensions
is defined in Eq. (1.5.15). This factorisation means that we do not need a new
bracket or a new measure and we can use many of the earlier results. This all being

so, alpha space for d = 2 can immediately be defined through the integral transform

fla, a) :/01 i /01 4z j(2)u(2) <\Ija(z)qja(2>;q}a(z)wa(z)>f(z,z) (2.5.2)

and the inverse transform

4 f(a, @) (llla(z)llla(z) + %(@%@))

7.2 = [ el [ 18] G oraiara

From this, is it clear that we can only accommodate for functions satisfying f(z,z) =
f(z, z). Assuming this symmetry, the two equivalent terms can be combined, meaning

that the transform simplifies to

flasa) = [ de [ a2 p(z)p(2) () Wa(2) (2. 2) (2.5.4)
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and the inverse transform to

f(.2) = | [da] [ [da) Q4 (2.5.5)

Scaling dimension and spin are related to o and & through Eq. (1.4.8) with d = 2.

Explicitly, this means that

A—-J—-1 A+J-1
— N=_— 7 = 2.5.
a 5 a 5 (2.5.6)
or equivalently
A=a+a+1 J=a—a«a (2.5.7)

Generalising Eq. (2.1.18) using Eq. (2.5.3), a block once again maps to a symmetrised

pole according to

Gpp(z,2) — ( Q(_ﬁ)Q(_BZ + ‘seven images’) (2.5.8)

8(a—p)(a—p)
and we recall that G 5(z, z) is a two-dimensional conformal block for an operator
of dimension  + 3 + 1 and spin 5 — 3. The seven images are found from the three

Zy symmetries of the Casimir eigenvalues, which are

a— —a, a——a, o (2.5.9)

2.5.1 Ising Model in Two Dimensions

As a simple check of the two-dimensional alpha space formalism, consider the four-

1

gandAezlandsoa:land

point function (oeoe) of the Ising model. A, = i

. 7 . .
b = —4. The stripped correlator is

Goere(2,2) = 9(2)9(?) (2.5.10)

with

9(2) = ——F— (2.5.11)
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Expanding around z = 0, g(2) is

Z1/16 n)(n— 3
g(z) = _4ﬁ§0(1+2 25( Q)z” (2.5.12)

Using Eq. (2.1.21), g(z) can be converted to alpha space by replacing each power of

z to give

(14 2n) r( —3) Tln—£+w)

Z T(n+ Hl(n—2)

8

r(—ﬁia) 17 7 31
=" (483 ] (_7__ y T T4 7_aa]->
96ﬁr(—g)< Ty T T T T Y TR ) T

19 9 5 3
49 — 2 ja 2 ra 22
(49 - 2560%) 5 2(2 6 YT %y ))

(2.5.13)

Na)
/—\

This has poles at o = (N — &) and so, according to Eq. (2.1.18), the conformal

block decomposition of g(z) is then

=D XnGn_z(2) (2.5.14)
n=0
where

Xn =

3nIT(=2)T(2n — ) 82

(—1V212"F0V+§HY%1—1)(
_l’_

1 7 31
33F5 (— n——<,—n;—— '1) — (2.5.15)
3
2

11 5
2n(8n — 7) s F (2,n I 1))

Therefore, the conformal block decomposition of G, consists of operators o, ,, with

dimensions A =1 4 m+n, spins Jom.n = m —n and squared OPE coefficients

Tm,n

given by

2
22 = mXn 2.5.16
e <1+6m,n> XmX ( )

The Kronecker delta is necessary to ensure that we do not double count the spin-0
operators. All together, the stripped correlator decomposes into
oo

g0'60'6(z72) = Z /\gegm,nGn_lG7m_l(Z,2) (2517)

m,n=0
m>n

The sum is limited to m > n to avoid double counting and to ensure that the

decomposition only contains operators with positive scaling dimensions.
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2.6 Split Kernel and Crossing Symmetry

Beside from decomposing functions into conformal blocks, one of the initial goals of
the alpha space construction was to further understand the consequences of crossing

symimetry.

The crossing symmetry equation in Eq. (1.6.1) equates a stripped correlator in the
s-channel to one in the t-channel, up to some kinematical pre-factor. The bootstrap
community have done some impressive work to numerically constrain conformal
field theories using this equation. Furthermore, analytic insight can be gained from
studying the crossing equation in various limits. As an example, the light-cone limit
can be used to show that every conformal field theory contains families of operators
within which dimensions asymptote to the generalised free field values at large spin
[12, 42]. It is also known that the anomalous dimensions of these operators are
determined by the minimal twist sector of the theory, where twist is defined as
the difference between dimension and spin. We recover this result for d = 2 in

Section 2.6.2.

To clarify terminology, if we consider the four-point function (p@p@p¢@) then the tower
of operators whose dimensions approach the generalised free field values 2A 4+ J +2n
make up the n'® double-twist family in this work. Asymptotically, the operators can

be schematically thought of as ¢0/ 00" ¢.

2.6.1 Split Kernel

In two dimensions, the alpha space transform in Eq. (2.5.2) can be applied to the

crossing equation of Eq. (1.6.1) to give

A1+Ao

A Y RY
(1=2)(1—=2)) >

A

Glo,a) = [ dz [ 4z p(a)p(z) Wa(2)Wa(?)
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where we have used the fact that G'(z, 2) = G'(Z, z) to combine the two equivalent

terms. The t-channel stripped correlator can be written like

4G (o, @)W (1 — 2)W. (1 — 2)
Q' ()Q()Q' (—)Q'(—a)

where Q'(a) and ¥/ (2) are equal to Q(«) and W, (z) respectively, up to the redefini-

G(1—21-73) = / [dal] / [da) (2.6.2)

tions in Eq. (1.6.3).
Putting these two expressions together, we arrive at

Gl @) = [ 1as] [ [df] K(a: BIA)K (@ 180G (5,5)  (2.63)

where A; is shorthand for the set of external scaling dimensions and the crossing

kernel is defined as

A1+A2
== Uo(2)Us(1—2)  (2.6.4)

However, the crossing equation integrand is even in 3 and /3. Therefore, an equally

K(o; 0|A) = ——— / dz p

valid integral equation can be build by splitting W}5(1 — 2) in the definition of the

kernel to give

Go.0) = [ 48] [ [48] K0: 810 Ko (@: 518G (B.5)| (2:65)

where the split kernel is defined as

A{+Ag
A 2

—ay Ya(2)G(1 - 2) (2.6.6)
(1—2)"=2 "

and G/ (z) equals G, (z) up to the redefinitions in Eq. (1.6.3).

9 1
8pht( s B1A;) = Q'(—B)/O dz p(z)

The instantaneous advantage of expressing crossing symmetry as an integral equation
is that some physical consequences can be probed by investigating the analytic
structure of the kernel itself. The first step in doing this is to write the crossing
kernel in a more lucid form. It turns out that the split kernel can be written in
terms of analytic Wilson functions. All of the divergent structure then comes from

the multiplying gamma functions.
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Here, we present our derivation of the split kernel in terms of Wilson functions for
equal external scalars to make the argument more cogent. Then we quote our general

result in Eq. (2.6.25).

Taking the external scalars to be identical and of dimension Ay, Eq. (2.6.6) simplifies

to

tdz ( z )Aq’ U (2)Gs(1 — 2) (2.6.7)

2
Kot (o B]Ay) = Q(—ﬁ)/o 2 \1_ .,

Now we replace ¥, (z) and Gg(1 — 2) in this integral with the Mellin-Barnes repres-

entations

e

and

L sT(1+28)

Gs(l—2)=(1-2)2 P15 / [dt] F2(—t)F2(; + 6+ t) 2 (2.6.9)

The cross-ratio z can then be integrated out to give a double contour integral. The
resultant ¢-dependent part can be solved using Barnes’ first lemma in Eq. (2.1.20)

to contribute

T+ ATHA, — 1 5)

1
dt) T?(—t r(+ +t>FA —1—s+41t)= 2.6.10
J T4 (5 + 5+ t) T(A, )= ta, 1igog (20
Putting this all together, we are left with the single contour integral
Kaprit(a; B]Ag) = (2.6.11)

2 / s D(=s)2(Ap —1—s)T(3+sta)(3 - Ay +5+ )
rtta)) ™ T(1+s)(Ay—L+3—s)

The pole structure of Eq. (2.6.11) in the a- and S-planes can be determined by
looking at the where the s contour gets pinched. Doing this, we find that there are
single poles at § = —% —Nand 8 =A4 — % — N. There are also double poles at the

generalised free field values o = £(Ay — 1 + N).

The advantage of using the split rather than the full kernel is now apparent. The
split kernel does not have any sequences of poles running to the right in the -plane.

Therefore, it is conceivable that the contours in Eq. (2.6.5) can be closed to the right
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to only pick up poles in G’ (B, ). Then, an s-channel density can be thought of as a
sum over t-channel residues weighted by split kernels and vice-versa. It also means
that we can consider the contribution to one channel of a single operator in the
crossed channel. In particular, the fact that there are double poles in the split kernel
establishes the well known result that a t-channel operator cannot be reproduced by
a finite sum of s-channel operators. This is simply because a double pole cannot be

written as a finite sum of single poles.

The authors of [1] took the contour integral in Eq. (2.6.11) and closed it to the left to
give a sum over three 4F3 functions. Unfortunately, each of these hypergeometrics is
non-analytic in v and . Furthermore, these terms introduce additional singularities
that cancel amongst one another. Therefore, it is difficult to study the analytic
structure of the split kernel with this representation. However, we found that a

series of hypergeometric identities can be employed to massage the sum into

1 1
Kpiit (c; B|Ag) =281 (Ag)T'(1 — A¢)F<A¢> 5% 04>F<2 + 5) (2.6.12)
I'(: +a)
LAy — 14 5)
where
a—a,a+a,a—B,a+
F(d—a) 4F3 6 6,1

a+ba+c,a—d+1

W.(B;a,b,¢,d) = +(a+d) (2.6.13)

T(a+b)T(a+c)(d+a)(d+p)
is called the Wilson function [43]. It is symmetric in its final four arguments and

the dual variables are

St D
IsH

a+b+c+d ¢
~ 2 b

(2.6.14)

QU
s
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such that

Wa(ﬁ;aa b7 &) d) = Wﬁ(aa dal;? a d) (2615)

Another useful representation in terms of a single well-poised 7 Fy hypergeometric

function is

W.(B;a,b,e,d) = (2.6.16)

5 d—a,g—a,é—a,2a+d—1—oz,w%,a—ﬁ,oﬂ—ﬁ
F(QCL-{—CZ-O() 7F6

- )
a4 b, a+ca+ d, 2a+d271704’ a+bJ2rc+d —a— 67 a+bJ2rc+d a4+ B

['(a+b)(a+c)(a+d)I(d+ a)l(“ietd — o 1)
The Wilson function reduces to the polynomial introduced in Eq. (2.1.26) through

the equality

(_1)npn(5’ a, ba C, 1- d)
(a+b+n)'(a+c+n)I(b+c+n)(d£p)

Wiain(B;a,b,¢,d) = T (2.6.17)

when n € N.

The main argument in favour of the representation in Eq. (2.6.12) is that the Wilson
function W, (53; a, b, ¢, d) is analytic in both o and 3. Therefore, all of the singularities
come from the gamma functions. The only blemish is that there naively seems to be
simple poles in Eq. (2.6.12) for 8 = 1 + N from the overall I'(3 — 3) factor. However,

it can be shown that the associated residues vanish.

The asymptotic properties of the Wilson function are well understood and so it is
not difficult to establish the large a and /3 behaviours of the split kernel. For large

non-real a, Kyit(a; B]A,) goes like

2F(% — A¢ + 5)
Q(—=B)T(Ay — 5 — B)

Ko (o; BlA) = (—a®)2 281+ 0(a"?)  (2.6.18)

Eq. (2.6.7) tells us that the split kernel is ultimately the alpha space transform of a

single t-channel block, up to an overall factor. That is,

Q(iﬂ) (1 i Z>A¢ Go(1 = 2) = Kspinla; BlAy) (2.6.19)
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Figure 2.4: Fig. 2.4a plots Kgpit(o; |Ay) normalised by the lead-
ing term in Eq. (2.6.18) against the absolute value of a.
Likewise, the split kernel in Fig. 2.4b is plotted against
Abs(f) and is normalised by Eq. (2.6.21). The real part
(blue) asymptotes to 1 whereas the imaginary part (or-
ange) falls to zero. Peculiar values for the parameters
have been picked to demonstrate that the asymptotic
formulae hold for Arg(a) # 0,7 and Arg(5) # m re-
spectively.

In addition, in the limit z — 1 this function is

Ay )

(1 : ) Ga(l—2) = (1 — 2)F535(1 4 O(1 — 2)) (2.6.20)
— 2z

and so, the asymptotic behaviour at large v in Eq. (2.6.18) is in exact agreement

with what was expected from Eq. (2.2.8).

Similarly, the split kernel in the large non-negative [ limit is

Kot 5180) = Q(—0) T*? (A¢ - ; - a) g2 (14 0(577)

+ (0 — —a) (2.6.21)

where either term can dominate. Fig. 2.4 plots the split kernel normalised by the

large o and (8 expressions.

Using Eq. (2.6.21), we can investigate how asymptotic t-channel discontinuities map
into the s-channel. An alpha space density can be taken from the s-channel to the
t-channel by integrating against the split kernel. By default, the contour lies along

the imaginary axis. If it is deformed to embrace the positive real axis, this integral
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schematically becomes

[ 8 Kopnla; 814 disea( £(5)) (2.6.22)
where
_ . [ fla+ie) — fla —ie)
disc, =1 2.6.2
s () =t (I 2629
is effectively a sum over delta functions. For example, disc,(a™') = —d(a).

The question now is, how does the discontinuity need to asymptotically behave in

order to develop the opposite channel in a certain way?

From Eq. (2.6.21), it seems to be the case that if along the real, positive 3 axis

discs(f(8)) = B~2(1+ O(872) (2.6.24)

then in the s-channel, poles are produced at a = £(x + A, — %) The subleading
asymptotics will produce additional poles further away from the origin, the first
correction being at @ = £(x+1+Ay— %) Importantly, this means that subordinate
contributions to the double-twist operators are seemingly captured by Casimir regular
terms (i.e. with x = 1,2,3,...). In Section 2.6.2 and Appendix A, we talk about

asymptotic discontinuities more rigorously using a Tauberian theorem.

To conclude this section, we found that the split kernel in Eq. (2.6.6) can be written

as

Ko (0 BIA) = 260 (14 a+ b)T'(A)I(1 — A)D(B3t24=L + )T(3 + (a’ + B))
P T (a4 p)I( = b+ BT (] a )l (& (355 1 5))

F<;+b,+ﬁ>F<A1—FA2—1ia>F<1i <A1+A4 _,_5)) W

2 2 2
1 1 — A1 —A
+F(2—b’+ﬁ)F(2+aj:a>F<3;4j:ﬁ>W] (2.6.25)
for non-zero a and b, where the first W is
1 1 Al +A;—1 Az+A4—1
- —a, - 2.6.2
Wg(&,z a,2+b, 9 y 9 ) ( 6 6)



2.6. Split Kernel and Crossing Symmetry 53

and the second is

—+b 2.6.2
5+ b 5 : 5 (2.6.27)

1 1 3—A;1—Ay A Ay—1
W5<oz;2+a, ! 2 B3t A )

This result is also new and enjoys the same advantages as Eq. (2.6.12).

2.6.2 Anomalous Dimensions

Using the pole map in Eq. (2.5.8) and the crossing equation in Eq. (2.6.5), a single

t-channel block in d = 2 alpha space is

| 140) 00 Kool o1 ((E TP soven e
(2.6.28)

This double integral is solved by closing both the ¢ and ¢ contours to the right to
pick up the poles at 8 and 3, to become

Q'(-B)Q (-5
8

(K5p11t<04§ BlA) Ksprit (@ BIA) + (a @)) (2.6.29)

As a quick sanity check, setting f = § = —% should reproduce the identity contri-
bution when a = b = 0. Specialising to equal external scalars for the remainder of

this section, we found that

lim (QQ(_ﬁ)Ksplit<O¢; 6|A¢)Ksplit(@; B’A¢>)> (2630)
B—1 4
I2(A)P(E £ )3 £ a)
Using Eq. (2.1.23), this is the d = 2 alpha space density for the function
_ A _
2Z ¢ o 21— Ay)L(Ay — s £a)[(Ay — S £ @) (2.6.31)
T-20-2 (BTGl (E £a) o

which is the identity operator in the t-channel according to crossing symmetry
through Eq. (1.6.1). The constituent operators in the block decomposition of this

function are generalised free fields at the double-twist values.

For future reference, we take the residue of Eq. (2.6.30) at « = Ay — % +nforneN
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and expand in large imaginary a to give

Res <F2(1 —AYT(Ay — 3£ )l (Ay — 5 & 50)

2(A)T(E + )T (L + @) (2.6.32)

a:A¢—%+n

- nIT3(A,) (a7 (1+0@™)

It is worth taking a moment to think about this expression more carefully. We
have expanded in large (imaginary) &, which corresponds to taking z close to 1.
Likewise, we are looking at an « pole, which arises from the z behaviour near the
origin. Therefore, this is tantamount to taking the light-cone limit. Equivalently,
Eq. (2.6.32) is the leading term (i.e. from the t-channel identity) in the light-cone

bootstrap [44, 13].

After changing variables from @ to J, Eq. (2.6.32) matches the asymptotic d = 2
OPE coefficient found using the light-cone bootstrap [45]. In comparing our results
to the literature, it is important to understand how to go from large imaginary J to
real spins. This is detailed below in Eq. (2.6.35) and in Appendix A. Furthermore,
we have to pencil in a factor of 2 because the spin can only take on even values when
the external scalars are equal. We also have to dress the answer with a factor of

4/Q(—a)Q(—(Ay — 1 4+ n)) as usual to go from residue to OPE coefficient.

A complete density is made up of a weighted sum over contributions like Eq. (2.6.29).

That is,

Q(a, a) = Z /\5,5— (Ksplit(a; 5|A¢)Kspht(5¢§ B|A¢) + (o ¢ 5‘))

(2.6.33)
where Az 5 is the t-channel OPE coefficient for the fusion ¢ x ¢ — O 5. Eq. (2.6.33)
is subtle and we must exercise prudence. Firstly, there must be a infinite number of
terms because a split kernel has double-poles at the double-twist locations whereas
the full density does not. Secondly, the sum is asymptotic and will not converge
when there is an identity operator present. This is because Kqpit(cv; B]Ay) goes like
321=8¢%) according to Eq. (2.6.21) and the discontinuity of the density goes like

B32Bs=1) to reproduce the correct z — 1 behaviour (i.e. p = A, in Eq. (2.2.8), for
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the identity). The total summand then has terms that go like 5* and 5%, making
the sum divergent. When there is not an identity operator in the spectrum the sum

may converge for some range of o and &, as we demonstrate in Section 2.6.3.

In order to loosely gain some control over the sum, we expand in large and imaginary
a. This is done because the split kernel behaves as in Eq. (2.6.18) and so if there is
a twist gap above the (t-channel) identity then the we can focus on the terms in the

sum with lowest 5. Eq. (2.6.33) then becomes

5 _ A ,’Q(_B)F(%_Aqﬁ‘{'B)KSPHt(O‘;B’Acﬁ) ~2\Ay—3— —_9
Gla,a) =y 22 T Ay— (-a*)* 2P (1+ 0(a?))

B?B

(2.6.34)
where we have dropped the Kqput(a; 5]Ag) term because S > (. An exception to
this rule is a scalar in d = 2 for which 8 = . In this case, we must pencil in a factor

of 2.

In Eq. (2.6.34) we are expanding in large imaginary & but we ideally want to be
working in the large real & limit to be confident of the twist suppression. Going
from asymptotic imaginary values to the large positive limit boils down to the

replacement’
P

- T(p)T(1-p)

This is of course not exactly true because the density has poles along the real axis.

(—a®)P = (2.6.35)

In fact, it is only true in an aggregate sense for the discontinuity and this is justified
more properly in Appendix A using a Tauberian theorem. A rough vindication

follows from thinking about the complex function (—a?)P itself. Splitting this using

the identity
(—a)* + o

(o) = 2 cos(mp)

(2.6.36)

we see that it is made up of two functions; one with a right-running cut and one

with a left-running cut. Therefore across the positive real axis, the discontinuity as

1With this replacement, the expression picks up a factor of sin(mp). Perhaps this is somehow
linked to Caron-Huot’s double discontinuity [16], which gives a factor of sin?(7p) to a term like
(1—2)P.
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defined in Eq. (2.6.23) is

] oy discg(—a)?? L %P
discg(—a)P = Yeos(rp)~ TITA—p) (2.6.37)
All in all, Eq. (2.6.34) becomes
. 5 _ /\3,5 Q(_B)Ks 11t(04§B|A¢) 9N, —3— __
discs (g(a, a)) = % 41“2(A¢ _p% — 6) 2R3 2ﬁ(1 + O(Oé 2)) (2638)

and 1/a is now the small and real parameter that we can expand in. As we mentioned
before, the operators with lowest twist (i.e. smallest ) will dominate and we can

focus on these terms in the sum.

It is clear from Eq. (2.6.12) that the split kernel has double poles at the generalised
free field values a = +(Ay— 5 +N) in general. The split kernel is the s-channel alpha
space incarnation of a t-channel block and we have seen that adding an identity
operator to one channel establishes a double-twist sector in the other. Additional
operators then correct this contribution in some sense. Here, we formalise this

argument and recover an important result in Eq. (2.6.46).

The coefficient of the double pole in Ky (a; B|As) at v = Ay— 2 +n with n € N can

be written as a Wilson polynomial using Eq. (2.6.17). We found that it is %, (3, Ay)

where
28T (2A —1+4n) 11 1 1
Likewise, the residue is h,, (5, Ag) where
(8, A) = %, (8, A) (mtan(mB) + 2Hya1)4n — 2H,) (2.6.40)
L2805 £BI22A —1+n) 0 11 1 1
+(_1) (TL‘)2 %Wa <572727A_ §7A_ 2) weAlin

Putting this all together, we can take the identity from Eq. (2.6.32) along with a

single operator of small twist in Eq. (2.6.38), expand around oo = A, — % +n and
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divide by a*®¢=1 to give
W 0
a—(A—f+m @ ((a— AP a- (A_;+n>)+--- (26.41)
where
0y = P(2Ay—1+n)
n!T4(Ay)
agy = szf(Qi _) _(§>) (2.6.42)

(1) g5 Q(— )hn(
BETATY Ay — 5 - B

2

a

The final expression should of course have simple rather than double poles, and so

terms should exponentiate to something like

) 5, R, (a
dlsc@<g(a,0z)) ~ o B, =1 —|(— 72 T IT @) (2.6.43)

close to the pole. Expanding in large & and comparing to Eq. (2.6.41), we interpret

the residue and the anomalous dimension as

()
a —
R, (@) = a®@eh (al + @fﬁ’fl + .. ) (2.6.44)
-
T,(a) = s el (2.6.45)

That is, the first contribution to the anomalous dimension is

2a(52,)3 _ As.5 Q(—B)THA,) n! %, (5, Ag) (2.6.46)
a; 2Pt a2t \2I2(Ay — B —3) ) \I'(244 — 1 +n) o

to leading order in large positive a. As a recap, Eq. (2.6.46) is the leading anomalous
contribution to the scaling dimension of 0™ "0"¢ due to an operator in the t-
channel of dimension 8 + 5 + 1 and spin  — /3 in the large & = m — n limit with
n finite. Eq. (2.6.46) matches the literature [12] for n = 0 and it is clear that there
is a suppression in (s-channel) spin to the power of (t-channel) twist. Note that we
are of course restricting ourselves to d = 2 theories without Virasoro symmetry, so

that we can assume a twist gap above the identity.
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The subleading terms in Eq. (2.6.44) come from t-channel operators with higher
twist but also from subordinate terms in the expansion of the split kernel. For the
latter case, the expansion is in integer powers of 1/&* with respect to the leading

split kernel term, as we saw in Eq. (2.6.18).

The expansion of the split kernel in integer powers of a~2 corresponds to the ‘reci-
procity principle’ for the double-twist operators that was highlighted in [42]. To see
this, we again have to realise that discg (Q(a, 07)) is really a sum of delta functions
and that we can undo the averaging in the above formulae by realising that a pole
at a given « can only give rise to poles in @ at the values & = J + a with J an (in
our case) even integer. The poles in a are at Ay — % +n+ %Fn(@), which implies

that we can substitute a for J through

1 1

The expansion in even powers of a then becomes an expansion in even powers of the
square of the right-hand side. For n = 0 this is (up to a constant shift) precisely the
two-dimensional version of the ‘Casimir’ defined in [42], whereas the case n > 0 was

not discussed in that work.

To finish this section, we make a quick comment on the exponentiation of poles. A
single split kernel only has double poles but we need to have arbitrarily high-order
ones to compare to an expansion of Eq. (2.6.43). This equation gives the requisite
poles upon expansion for small I',(@), allowing us to determine the anomalous
dimensions as written in Eq. (2.6.46). However if Eq. (2.6.43) is correct then the
higher-order terms in the small I', (@) expansion require higher-order poles in a.
More precisely, one would expect terms in the discontinuity like
20 6—3-28k

=B, —Trn)m for k,me Nand m <k +1 (2.6.48)
2

near the double-twist a-values. A single t-channel block only gives double poles, so
this exponentiation of the anomalous dimension is not automatic. What would the

t-channel density have to look like to reproduce these singularities?
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First of all, the power of & in the above expansion indicates that such operators
come from t-channel operators with twists that equal 2k5 + 1. In other words, the
exponentiation of the s-channel anomalous dimensions due to a single t-channel
operator O, of twist 23 4 1 requires the existence of further t-channel operators with
twist 2k + 1 (the multi-twist versions of the original t-channel operator). A single
such multi-twist t-channel operator will not produce the higher-order pole in a that
the above expression requires, and therefore we actually need an infinite family of
such multi-twist t-channel operators. If we think of O, as ‘single-particle exchange’,
then a k-particle exchange diagram is necessary to reproduce the (k + 1)-th order
pole in the above expression. Notice furthermore that this k-particle exchange must

somehow conspire to give the corresponding higher-order pole for all n.

Whilst we do not fully understand exactly how all of the poles will exponentiate,
the take home lesson is that towers of operators are seemingly more natural than
isolated poles. This is something that we return to in Section 3.5, where we discuss

Regge trajectories.

2.6.3 Crossing Symmetric Example

Here we investigate a density with a = b = 0 that can be written as a convergent
sum over split kernels in some region of the a, & plane. The example we have chosen
does not have an identity operator in its spectrum because this would shrink away

the region of convergence, as discussed in Section 2.6.2.

The function

Ql-SZ-@)%M (2049

is crossing symmetric, according to Eq. (1.6.1). Therefore, we expect from Eq. (2.1.23)

that

(2.6.50)

O(}+a) N AT
F(Aq’z_l + ) INCENE)
Assuming that the contour can be closed to the right, the left-hand side of Eq. (2.6.50)

/[dﬁ] Kot (a; B|Ag) (
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Figure 2.5: The absolute value of the truncated sum in Eq. (2.6.51)
is plotted against the real part of a for n,., between 0
(blue) and 5 (brown) with A, = 3 and Im(a) = 1. The
sum appears to be converging to the dotted black line
as Nmax increases, in agreement with Eq. (2.6.52).

is

(2.6.51)

L(3 +a) iKsht<CY'A¢_1+TL|A¢> I'(Ag—1+n)
Nt ta)m T 2 nIT(52)0(1 — 52)

and so Eq. (2.6.50) can by tested by plugging in values of «, truncating the sum and

checking convergence with increasing n.x.

Physically, this truncation corresponds to only crossing the ng., + 1 t-channel
primaries of lowest weight. When it comes to reproducing the correct poles, this
approach will never work because a finite sum of split kernels only has double-twist
singularities. Note that this is effectively a one-dimensional problem because of the

factorisation of the density, and so spin does not play a role.

Using the large 3 asymptotics of Eq. (2.6.21), the sum will in fact converge whenever
2 |Re(a)] < Re(Ay) — 1 (2.6.52)

and this convergence is tested numerically in Fig. 2.5.

More generally, if the lowest operator contributing to the crossing-symmetric function

in Eq. (2.6.50) had been of weight p (rather than simply A,/2), then the residue

series would have asymptotically gone like 52(2¢=P=1 and the region of convergence
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would have been

2 |Re(a)| < 2Re(p) — 1 (2.6.53)

Notice that this means that summing over split kernels will not converge anywhere in

the a-plane if there is an identity operator present, as was discussed in Section 2.6.2.

2.6.4 Doubly-Split Kernel

In Eq. (2.6.5), we wrote an s-channel alpha space density as an integral against the
product of a t-channel density and the split kernel of Eq. (2.6.6). We then argued
that closing the contours to the right gives a sum over split kernels which is formally
asymptotic. One way to bypass the issue of non-convergence is to instead consider

the doubly-split kernel, built from breaking up ¥,. That is,

Gla,a) = ((/[dﬁ]/ {dﬂ deplit(@;5|Ai)deplit(@;B|Ai)él(ﬁ>ﬁ)
+ (a — —a)) + (a < 54)) (2.6.54)

where the doubly-split kernel is defined as

Q)
Q'(=p)

A1+Ag

/ 'de He) s GalGH(1 - 2)  (2655)

depht( 5‘A ) (1 B z)

From the large 5 asymptotics in Eq. (2.6.21), we see that a sum over doubly-split
kernels might converge in one half-plane. The images then need to be added by
hand via some analytic continuation. We can see this explicitly by returning to the
example of Section 2.6.3. Indeed, we have numerically checked that

Z Kaspiit ( a; A2—1 tn | A¢> nl?((ﬁ;z);(llt”%)

1 tan(ma)
T2 (1 B tan(ﬂAd,/Z)) (2.6.56)

(%
rAs—1 |y

P(=5

when the real part of « is sufficiently large. Notice that we were fortunate to find the
true analytic continuation in this case (we gracelessly broke apart the full density

with an educated guess); it is generally not possible to add the images by hand.






Chapter 3

Beyond Two Dimensions

In this chapter, we look to extend the alpha space formalism beyond two dimensions.
Once again, the philosophy is to apply a Sturm-Liouville analysis to the quadratic

Casimir differential operator in Eq. (1.5.7), which we reproduce here for convenience:

D(z,z)EDz+Dg+(d—2)< 2 )((1_2)8_(1_2)8>

z—Z 0z 0z
D, = 2*(1 — z)—2 —(1 —Fa—i-b)z22 —abz
‘ 072 0z

Life was made easier for d = 2 because D(z, z) reduced to D, + Ds, the sum of two
d = 1 Casimirs. However, we are not afforded this luxury beyond two dimensions

where the differential operator does not factorise as neatly.

In one dimension, the process was fairly algorithmic. Firstly, an inner product was
built for which the Casimir is a self-adjoint operator. Secondly, a linear combination
of eigenfunctions was found such that the singularities at z = 1 cancel to leave us with
something finite. This defined ¥, (2), which is detailed in Eq. (2.1.8). Since (¥, Ug)
acts like a delta function along the imaginary axis according to Eq. (2.1.11), an
invertible transform could be written down in Eq. (2.1.12). Mathematically speaking,

this turned out to be equal to the Jacobi transform up to some substitutions.

The hope is that a similar procedure works in higher dimensions. The asymptotic

form of the conformal blocks is known for when z or z approaches 1 and so in principle
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we can build a combination of eigenfunctions without logarithmic divergences. This
defines W, 5(z, 2), which can be used as the kernel in an integral transform. Whether
or not this is a well-defined and invertible transform will be a matter of debate since
the process is somewhat precipitous with two variables to consider. In this work, we
offer some corroborating evidence in favour of our transform and we also recognise
its limitations. Perhaps most convincingly, the transform seems to reproduce the
correct block decompositions, so it is probably a good transform for CFT correlators

at least.

After discussing the general transform in Section 3.1 we present the alpha space
density for generalised free fields in Section 3.2. Following this, we substantiate the

alpha space formalism by looking at four and six dimensions in Section 3.3.

Progress has been slightly hampered in d = 3 because the blocks are not known in
closed form. However, some headway has been made and we provide some analytical

and numerical checks of the three dimensional formalism in Section 3.4.

In the latter parts of the chapter, we comment on what we can learn about Regge
behaviour using alpha space in Section 3.5. We then discuss what constant Mellin
amplitudes look like in alpha space in Section 3.6. Finally, we outline possible future

directions in Section 3.7.

In Sections 3.1, 3.3 and 3.5.3, we allow for non-equal external scalars. For the rest
of the chapter, we implicitly work with a = b = 0 and take the external operators

to have scaling dimension A.

3.1 General Alpha Space Transform

For general d > 2, the Sturm-Liouville procedure (once again over the Lorentzian
interval z,z € (0, 1)) begins by defining an inner product for two arbitrary functions

f and g. In analogy with the d = 1 case, this is

(f,g) = /01 dz /01 dz u(z,2) f*(z,2)g(z, 2) (3.1.1)
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Self-adjointness of D requires the bracket to satisfy

(Df,g)—(fDg)=0 (3.1.2)

up to boundary terms, where D(z, z) is the quadratic Casimir differential operator

defined in Eq. (1.5.7).

Accordingly, the measure p is found to be

) (3.13)

zZ—Zz

pn(z,z) =

74

where the d = 1 measure u(z) was defined in Eq. (2.1.3).

The next step is to take linear combinations of eigenfunctions of D that are orthogonal
with respect to Eq. (3.1.1). Our approach is to build a candidate for the transform
kernel U, 5(z, ) by taking a linear combination of conformal blocks with coefficients
chosen such that all of the z,z — 1 divergences are tamed. We use the general
asymptotics of the blocks because G,a(z,2) is not known in a closed form for

arbitrary dimension.

Taking z close to 0 and z close to 1, Eq. (1.5.10) tells us that the pure blocks behave
asymptotically like

«

Gh(2,2) hy(a — @)= T Q(-a) (“ AT <a+b
+o((1 - z))) +0((1- 2’)0))

where the coefficient function v(«) was defined in Eq. (1.5.11). As a reminder, a full

(3.1.4)

block is the sum of two pure terms according to Eq. (1.5.9).

We can then take the linear combination of full blocks

i(@l(a, a)Gas+ Qa(a,0)G_na + Qs(a,@)Go —a + Qu(a, oz)G_a’_C—,> (3.1.5)

with four unknown @Q-functions. Expanding using Egs. (1.5.9) and (3.1.4), we can
look at the coefficients of 2%, 2% and place constraints on the @Q-functions by

demanding that the z — 1 divergences drop out. Further limitations can be placed
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by ensuring the o <+ @ symmetry and by expanding the blocks around z,z = 1 to

fix Uoa(l,1) =1.

This procedure uniquely determines ¥, 5. By defining Q(«, @) as

Q) = (g te s e (19

the asymptotic behaviour of the blocks can be used to confirm that the linear

combination

Vo6 = (Q(a, a)Gas+ Q(—a,a)G_pna+ Qla, —a)Go -5 + Q(—a, —a)G_a,_a>

(3.1.7)

1=

is perfectly well behaved as z or z — 1 and is normalised to W, (1,1) = 1; this
can moreover be checked numerically. This combination in Eq. (3.1.7) has been
optimistically called ¥, 5 and is assumed to be the correct Sturm-Liouville function
for the time being. U, 5 is a highly symmetric combination of pure blocks but it is

not the standard conformal partial wave.

In fact, we can take an ansatz for ¥, (2, Z) by expanding in non-negative integer

powers of 1 — z,1 — z. Plugging this in to the Casimir equations, we find that

4(a? + a?) —d(d — 2) — 2+ 8ab
4d + 8(a+ b)

Uyalz,2) =1+ 2—2z—2)+... (3.1.8)

where the ellipses denote subleading 1 — 2,1 — 2z terms. This is in perfect agreement

with an expansion of Eq. (3.1.7).

The transform taking functions (that are square-normalisable with respect to Eq. (3.1.1)

and symmetric under z <+ Z) to alpha space for general d is then

Fla,a) = /01 dz /01 dz (2, 2) Uoa(z, ) f(2, 7) (3.1.9)

the inverse of which is

_ walz2) f(a,@)
f(z,2) = /[da]/[da] Q(a,@)@( 0 —a)(e—a)E—a) (3.1.10)

provided that our analysis is legitimate. As in d = 2, non-normalisable functions
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0 —a A—J+d-1
J—>A+1—-d
& —& A—1-—J
J—=1-A
a+a | Jo>2—-d-—J
GO A S d—A
o — —Q

Table 3.1: This table shows some alpha space transformations and
their equivalents in terms of dimension and spin. The
first three are the standard Z, symmetries of the Casimir
eigenvalues. The fourth is a combination of the others
and is known as a shadow-symmetry transformation.

can then be dealt with by deforming the contours and/or applying the Casimir.

The equalities relating «, & to the dimension and spin A, J are given in Eq. (1.4.8).

For convenience, we reproduce them here:

A—J+1—-d B d
a= A=a+a+ -
2 2
A -1
@:+; J:&—a+1—§

Analogously to the one-dimensional case, it is our hope that U, 5(z, ) acts like a

delta-function along the imaginary axis. That is,

o, —a)y(a —a)y(a—a) 8

/[dﬁ]/ [dﬁ] Q@30 sz D) (Yaa Y5 f(a, @) + ‘seven images’

(3.1.11)
where once again the seven images are found from the three Z, symmetries'. A selec-
tion of allowed transformations is listed in Table 3.1, where they are also expressed

in terms of spin and dimension.

Using these symmetries, it can be shown that each term in Eq. (3.1.7) contributes

equally to the inversion formula of Eq. (3.1.10) and so the split inverse transform is

=\ o o Ga,a(za E)f(O‘?&)
ﬂ%@_/w]/W]QPm—M%a—Mwa—w (3.1.12)

For even d, the only poles in the right-hand o and & planes come from f (v, @) and

!Together they generate the non-abelian dihedral group D,.
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so the explicit map between poles and blocks is then

o Q(—B,-B(B—BB—-B) . . :
Gpp(z,2) — < o= )G - B) + ‘seven images ) (d even)

(3.1.13)
However, when d is odd, the factor 1/yv has an infinite series of simple poles for
physical spins (whenever a«—a+1 —g is a non-negative integer). As a result, the alpha
space density must have single poles for operators (for example ~ (o — 3)~! rather
than ~ (o — 8)~*(a — B)!), as appropriate. This behaviour suggests that ‘operator
trajectories’” may be more natural then simple poles, an idea that is investigated in
Section 3.5. The fact that the integrand can automatically contain the physical spin
poles within the 1/4v factor may have forced us to treat odd and even dimensions
qualitatively differently. However, densities can often be re-written to include a
factor of I'(—J), circumnavigating the problem. As a simple d = 2 example with

a =b =0, we have that the density for (22)P is

Ip—i+a

=
=
|
=
H_
\Q/l

2 _ (3.1.14)

Fl-pTp-Lt+a)lp-Lt+a)l(l—a+a)l(a—a)
AB(PIrE o)l -p+a)

+ ‘seven images’

where I'(«w — @) = I'(—=J). This is an infinite series of poles for physical spins which

mimics an odd-dimensional 1/ factor.

So far, this analysis has relied heavily on one-dimensional intuition and it is not
clear whether Eq. (3.1.10) is truly the inverse of Eq. (3.1.9) with W, 5 defined in
Eq. (3.1.7). Subsequent sections offer some substantiating evidence and check this

claim on a case-by-case basis.

To conclude this section, it is interesting to consider ¥, 5 with o and & set to specific

values. As an example, tuning to the stress tensor gives
1
=—-4+--1 (3.1.15)
z  z

which is independent of d.
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3.1.1 General Split Kernel

As in the d = 1 case, a crossing kernel can be defined for arbitrary d by taking the
crossing symmetry equation in Eq. (1.6.1) and going to alpha space using Eq. (3.1.9).

The resulting integral equation is
G(a,a) = / 18] / [4B] Kopiel, a: B, B1A)G (o0, @) (3.1.16)
where the split kernel Kpii(cv, &; 8, 3|A;) is defined to be

Keie(a, a; 8, B|A;) = (3.1.17)
Aq+Ay

[z [z w2)(Ez) 7 Yealz 2G50~ 21 7 2)
0 0 ((1—2)(1— 5))% Q' (=8,—B)v(B - B)v(B —B)

where Q'(a, @) is equal to Q(a, &) up to the redefinitions in Eq. (1.6.3). The split

kernel in four dimensions is discussed in more detail in Section 3.3.1. There we show

that it can be written in terms of d = 1 kernels.

3.1.2 Lorentzian Inversion Formula

The alpha space integral and its inverse in Egs. (3.1.9) and (3.1.10) should be
compared to Caron-Huot’s Lorentzian inversion formula, which first appeared in [16]

and is valid down to spin J > 1. In our a and & variables, it is

D, a) = 2&;;2_)1) /01 dz /01 dz pu(z,2) G_q.a(z, 2) dDisc [G(z, Z)] (3.1.18)

where the double discontinuity is defined as the stripped correlator minus two analytic

continuations. Specifically,

dDisc [G(z, )] = cos(m(a + b))G(z, 2) — ; (ei“(a+b)go(z, Z) 4 eTim@P) GO z))
(3.1.19)
and the arrows indicate the direction that z takes around 1. There is also an
interesting interpretation of dDisc in terms of commutators. That is, the double

discontinuity is equal to —1([d2, ¢3][¢1, ¢4]), which is non-negative in any quantum
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field theory due to a Cauchy-Schwartz inequality used in conjunction with Rindler

positivity [46].

The full density is then the sum of ‘t-channel” and ‘u-channel’ terms, each of which

are analytic functions. That is,
(o, @) = D (a, @) + (1)~ 20 (o, @) (3.1.20)

and ¢ (a, @) differs from ¢ (o, @) through the exchange of operators 1 and 2.

The stripped correlator is then equal to

(3.1.21)

gzz—l—i-Z/

st+ico dA (o, @) Foa(2, 2)
gl

—100 2772 o — @) q=A=Jtl-d 5 AfJ-1
= 2 YO=ET

which is the Euclidean inversion formula. It is worth keeping in mind that the
s-channel identity operator shown in this expression will only actually be present if

a=b=0.

The conformal partial wave is

Foa(z,2) == <f@(a, a)Gaa(z,2) + k(—a, —a)G 5 —a(2, z)> (3.1.22)

and
H(a&):r(§+@ia)r(§+@ib)r(@+a+g—1) (3.1.23)
O 22l 2a)l(2a+ 1)I(a + «) o

The density in Eq. (3.1.18) differs from its definition in the original work in two
regards. Firstly, the density here has been made shadow-symmetric and secondly,
the blocks in this paper are normalised with a relative factor of v, as detailed in Sec-
tion 1.5.2. Similarly, the conformal partial wave is different here. For completeness,
shadow-symmetry is invariance under the transformation (« - —a&, @ — —a) such

that A — d — A whilst the spin J remains unchanged.

The first undeniable advantage to Eq. (3.1.18) is that it has been rigorously derived
directly from the well-established Euclidean formula by taking a series of analytic
continuations. The second is that Eq. (3.1.21) explicitly includes a sum over J. In

contrast, the fact that spin is necessarily restricted to the non-negative integers is
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obscured in the alpha space formalism because we have a double contour integral.
However, this perhaps is the strength of Eq. (3.1.10) because analyticity in both

spin and dimension is more emphatic.

To gain some insight into how our density differs from Eq. (3.1.20), we conclude this
section by considering a simple example in d = 2 with a = b = 0. The alpha space
density is

ZZ

((1—2)(1—2)) = flona) = 2L £ o)l £ a)

whereas the density from Eq. (3.1.18) is

o, @) =

_7'('2 I2(1—p) <aa Q(a)Q(—a)T(p — % —a)l(p— % + a)
I(p) (

Therefore, for this example we have that
(€(0, 0)Q(~)Q(a) + (@ = —0a)) + (@ — —a) = 4sin*(7p) f(e, @)  (3.1.26)

That is, Caron-Huot’s density can be thought of (in this case at least) as a split

version of our alpha space density.

3.2 Generalised Free Fields

A generalised free field ¢ is defined to have a stripped correlator equal to a sum of

Wick contractions. That is,

e D

Garr(z, 2)

(9dpo) = T A, A, Garr(z,2) =1+ (22)A¢ + (

Lo Ty

Since the operator product expansion (OPE) coefficients are known, the correspond-

ing alpha space density Ggpp(a, &) can be reverse-engineered. We found that

Garr(o, @) = (3.2.2)
< B cos(ma) cos(ma) ) I(d—- 1Ay — S+ a)T(Ay — S+ @)
sin(mAg) sin(r(A, — 2)) I2(AgT2(As+1—9)
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Figure 3.1: Plotted is the d = 4 integrand in Eq. (3.2.7) against
11

imaginary « and a for Ay, = %, z = % and z = }L. Nu-
merically integrating under this graph gives 1, in sup-
port of the hypothesised alpha space density for (2z)%¢,
which is the first term in Eq. (3.2.2). Note that Ay
has been chosen to be large enough to ensure that the
contours along the imaginary axes separate left- and
right-running sequences of poles without the need for

any deformations.

which can be inverted using Eq. (3.1.10) to give

2 o, o
Gore(2) = 1+ m,zn;O fes (Q(_O‘a —@f’CY;FZ(—,@))’Y(@ - 04)) a=an Clonan(2:2)
" : (3.2.3)
where
anEA¢—%+n deA¢,—%+m (3.2.4)

Eq. (3.2.3) is true for arbitrary d > 2. Note that although C;GFF(oz,E\z) has poles
at unphysical spins when d is odd, these are cancelled by zeros in 1/7y. As an
example of this, Gapp(av, @) for d = 3 has right-running poles for o, @ = Ay —1+N.
These would naively imply half-integer spins because of how «a, & are related to A, J
through Eq. (1.4.8). However, the factor (y(a — @)y(@ — a))~! has zeros at these
points. In fact, 1
1 (s £ (a0 —«
Y —a)y(a—a)|,_, - l"((ilz(&(— a)) - (3:25)

so this term is the source of the physical poles as well as the necessary zeros.
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As a quick consistency check for the generalised free field density, a and a can be
tuned to the stress tensor values such that U, 5 is given by Eq. (3.1.15). The integral
taking the function (22)2¢ to alpha space can then be done explicitly to give

2/01 dz /Oz ij (5 _ z>d2 (5150 (1 . 1 1> _ 2A,T(d - DI'(Ay — d) (3.2.6)

d+1

which matches the first term in Eq. (3.2.2) fora = —3,a =%

Fig. 3.1 plots the d = 4 integrand

Voa(z, 2)I(d— 1Ay — G £ a)(Ay — & +a)

(2m)2Q (e, @)Q(—a, —a)y(a — @)y(@ — )T2(A)T2(Ay + 1 — D)(22)20 d:4(3.2.7)

against imaginary a and a. Numerically integrating this tells us that the area
under the plot is equal to 1, in support of the alpha space density in Eq. (3.2.2).
One obvious feature of this figure is the eight-fold symmetry from the three Z,

symmetries.

3.3 Four and Six Dimensions

In even dimensions, the conformal blocks are known in closed form in terms of
hypergeometric functions. The d = 4 and d = 6 blocks were given in Egs. (1.5.16)

and (1.5.17) respectively.

3.3.1 Four Dimensions

In four dimensions, the definition in Eq. (3.1.7) gives ¥, (%, Z) as a symmetrised sum
over four blocks. A d = 4 block can be written in terms of one-dimensional blocks
and we found that it is possible to express ¥, 5(z, Z) in terms of one-dimensional

W-functions. Explicitly,

s (1+a+b) (3.3.1)

Vaa(s,9) = (S ) PelERelE = TlEa)

zZ—Zz
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The benefit of writing ¥, 5 like this is that the d = 1 orthogonality relation in
Eq. (2.1.11) can used to quickly confirm that Eq. (3.1.11) holds for d = 4. The

derivation starts by noting that

2(1+a+b)?
(07— &)~

(W, Uy 5) = ) (o, W) (Wa, W) — (Vs W) (W, U5)) (3.3.2)

such that

> f(ﬂ,ff)(%,a, ‘115,5'>
19 [ 1) et e — 2 =a
_ 2 2(@2 _0_52)]?(676) <\Pa,\Dﬁ><\II—7\IJB> - <\I;077\Ijﬁ><qja7\1],§>
=[] (47 ( o ) Q)Q@Q-a)Q(-a)
<q10“\115> f(ﬁ?d +f(67_@)
0()Q(~a)

(3.3.3)

= [ 1d8] (a® - &%)

B f(a, @) + ‘seven images’
8

Therefore Eq. (3.1.10) is indeed the inverse of the alpha space transform in Eq. (3.1.9),

at least in this number of dimensions.

A second benefit of this representation is that the split kernel of Eq. (3.1.17) can be
written in terms of d = 1 kernels. This is done by starting with the definition of the
kernel in Eq. (3.1.17) and substituting in Eqgs. (1.5.16) and (3.3.1). All in all, we

found that

Ksplit(aya;B7B|Ai> - (334>

1/1+a+b)\ [(pB*—/? - _
- 5 (1 + a + b,) <a2 _ &2 Ksplit(a;ﬁ‘Ai - 1)Ksplit(a;5’Ai - 1) + (CV <~ Oé)

The shorthand A; — 1 here means that each external dimension has been reduced

by 1 with respect to the kernel in Section 2.6.1. That is,

1 Z%
(2) e Val(2)Ga(1 —2) (3.3.5)

2
split (@ B]A — 1) = ——+ [ d
K, 1 (a 6| 1) Q;(_B)/O Y (1_2) i

Eq. (3.3.4) is arguably the most important result in this work. It gives the d = 4
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split crossing kernel in terms of gamma and analytic Wilson functions, after using
Eq. (2.6.25) to rewrite Kqpit(o; B|A; — 1). We can integrate a density against the

kernel in Eq. (3.3.4) to determine the crossed-channel density.

Performing a calculation analogous to the one in Section 2.6.2, we found that the
leading d = 4 asymptotic correction to the anomalous dimension of ¢0’0"¢ due to

a single t-channel operator is

__2eB (Q(_—B)Fz(A@FQ(Aas - 1)) (n! (B, Ay — 1)>
(J/2)243 \ (B = B)T2(Ag — B —3) ) \T (244 =3 +n)

Once again, there is a suppression in spin to the power of twist. Since Eqgs. (2.6.46)

(3.3.6)

and (3.3.6) are so similar, we tentatively hypothesise the d-dimensional result as

M (@(—M?(Amm F1- (8- B)) ( (B g+ 1 3))
(J/2)26+d-1 (A, — B — 52) T(2A, +1—d+n)
(3.3.7)

For n = 0, this matches the literature [12]. When comparing our work to the
citation, please remember that we include a factor of v(3 — 3) which comes from

the normalisation conventions set out in Section 1.5.2.

3.3.2 Six Dimensions

As in four dimensions, the d = 6 version of ¥, 5(z,2) can be massaged into a

representation composed of d = 1 functions. We found that

Uoa(z2) = (_ 2a3‘1’a(z> ( 2z )3 <<2a —D)¥s4(3) | 20+ 1)\Ifa+1(z)>

(@2 —a?) \z -2z (a@—1)2—a? (@+1)2—a?
+(z ¢ z)) + (o <> @) (3.3.8)
where a and b have been set to zero to ease notation, as in Eq. (1.5.17) where the
d = 6 block was defined.

Analogously to the derivation in Eq. (3.3.3), the d = 6 representation of ¥, 5(z, 2)
in terms of d = 1 functions can be used to prove the orthogonality relation of

Eq. (3.1.11).
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3.4 Three Dimensions

Unfortunately, the alpha space formalism set out in Section 3.1 is not as easy to
implement in odd dimensions. In essence, this is because the blocks G, 4(2, Z) are
not known in a closed form. Therefore, we cannot write Eq. (3.1.7) in terms of a
finite? sum of hypergeometric functions, which would have allowed us to calculate

some alpha space densities in the usual manner.

However, the function ¥, (2, Z) can still be expressed as a series expansion around

z,z = 1. With Egs. (3.3.1) and (3.3.8) in mind, a sensible ansatz for d = 3 is

U,a(z,2) = i a(n,m) (Z — 1)n (Z — 1>m (3.4.1)

n,m=0 Z z
where the coefficients are symmetric in m <> n and the function is normalised to 1

at z = z = 1. That is,
a(n,m) = a(m,n) a(0,0) =1 (3.4.2)

The quadratic and quartic Casimir equations in Eqs. (1.5.6) and (1.5.8) can then be

used to derive recursion relations for a(n,m). With d = 3, the function ¥, 5(z, 2)

satisfies

DV, 4 = <a2 +a? — i) Voa (3.4.3)

and

zZ z—Z
D.—-D D,—D;z) V¥ Z) = 4.4
(z—z>( : Z>< 2Z )( : ) Vaalz 2) (3:44)
2, =2
<oc4 yat - ¢ o 202a% + 1 >\I/a,a(z, Z)
with
. 2z 0 0

D(z,%) = D. + D + (Z_Z) ((1—2)82 _ (1_Z>8z> (3.4.5)

Plugging the ansatz from Eq. (3.4.1) into these differential equations, we found that

2Tt might be possible to write ¥, 5(z,2) for d = 3 as an infinite sum over hypergeometrics using
the results of [47]. That paper used dimensional reduction to write d-dimensional blocks as infinite
sums over (d — 1)-dimensional blocks.
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Mo o1 2 3
n

0 |1 5 9 5
1 |5 6 -3 0
2 |9 3 0 0
3 155 0 0 0

Table 3.2: This table gives the values of a(n,m) appearing in the

d = 3 ansatz sum for ¥, 5z (Eq. (3.4.1)) for the case of
—%, a = 4. These values of o and a correspond
to the spin-4 conserved current. The sum terminates in

this case and these are the only non-zero terms.

o =

a(n, m) satisfies

a(n,0) = ((271 — 1)(8n<Zn_2(12>71151)_ Ho'+a ))> a(n —1,0) (3.4.6)
dn—14a)(n—1—-a)n—1+a)(n—1—a)
B ( n?(4n? —1) ) a(n = 2,0)

and
(4(m+n+1)(m—n—2)>a(n+1,m— 1) (3.4.7)
(4m(m — 1) +4n(n+2)+5 —4(a® + 072)>a(n, m—1)
—|—(4(n + 2)2>a(n +2,m—2)
—(4m(m —2) +4n(n+3)+ 13 — 4(a® + a2)>a(n +1,m— 2)>
These are slightly unwieldy but no worse than the usual recursion relations for the

d = 3 conformal block. Fig. 3.2 plots a finite number of terms from the ansatz sum

with z = z to check that it converges to the true function.

In fact, we found that Eqgs. (3.4.6) and (3.4.7) can be solved with o and & suitably
tuned. As a first example, for values corresponding to the spin J € Z=! conserved

current we found that the sum truncates to

Uy (2,2) = (3.4.8)

(=) (J+n+m)!T(n+ H)0(m+3) /2 —1\" /z2— 1\"
2 an!m!F(J—n—m)F(Q(l—i—n—l—m))( 2 ) ( )

m,n=0
m4n<J
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1.4}
1.2
1.0
0.8
0.6 /
0.4

Figure 3.2: This figure plots the ansatz sum in Eq. (3.4.1) up to
n,m = 2 (orange) and n,m = 6 (green) against z with
=z a= %, a= % As more terms are kept, the sum
converges to the true function ¥, 4(z, z) (blue) which
we know from Egs. (1.5.18) and (3.1.7).

Table 3.2 shows all of the non-zero coefficients a(n, m) for ¥_ 14(2, z), which corres-

ponds to the spin-4 conserved current.

As a second example, we found that the recursion relations can be solved when o

and & are tuned to scalar values. In this case, ¥V, 5 becomes

Vaeaa(z2)= (3.4.9)
> yrn+m)L(n+ £)L(n+E2T(m+ $)T(m+ 52) /2 —1\" [z — 1\"
2 2(n!)2(m!)2 r(n+m+ )F2(—A)F (2) ( ) ( Z )

n,m=0

\ >

which is significant because a closed-form expression for the scalar block itself is not

known. Interestingly, this simplifies to

M

2

3 1-
Vo ai(z1) = 2F1< - z) (3.4.10)

for® z = 1.

3.4.1 Tests for d =3

Here we present some tests of the d = 3 alpha space transform, its inverse and

the recursion relations for W, 5. Whilst none conclusively prove the validity of

3Intriguingly, this is equal to the d = 1 alpha space function 22V¥,(z) with a = b = % and

o= 2A4_3. This reminds us of work done on the crosscap [48] and it would be interesting to further

understand how this phenomenon emerges at the boundary z = 1.
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0.03
0.02
0.01

=]

3 (22 =
(b) %:zzzzl,pz

Figure 3.3: Plotted are two inverse alpha space integrands, norm-
alised by the apposite position space terms. Fig. 3.3a
is for (22)P on the diagonal, where we use an exact ex-
pression for ¥, 5(z, z) using Egs. (1.5.18) and (3.1.7).
Fig. 3.3b is for ;52)2 at z = z = 1 where we use
% _._, equal to 2(a(2,1) — a(1,1)). The re-
cursion relations in Egs. (3.4.6) and (3.4.7) are used to
find a(n,m). Numerically integrating, we found that
the area under each graph is 1, in support of the inverse
alpha space transform of Eq. (3.1.9).

Egs. (3.1.9) and (3.1.10), they are at least pleasing and reassuring.

Exact Check

As an exact check, we note that the recursion relations of Eqs. (3.4.6) and (3.4.7)
can be solved exactly for the conserved currents where J € Z=! and the ansatz sum

terminates to Eq. (3.4.8). Therefore, we can exactly perform the integral

2 01 g/ﬂzg <zz—;> (2P W1 4(2,7) = % (3.4.11)

which is in exact agreement with the density for (22)? given by the first term in

Eq. (3.2.2) after replacing A, with p.

Numerical Checks

A couple of numerical checks are plotted in Fig. 3.3. The plots show two normalised
inverse alpha space integrands in the imaginary «, @ plane. The area under each

graph is equal to 1, as predicted by the inverse alpha space transform of Eq. (3.1.9).
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Notice that once again the eight-fold Zy symmetry is present in the plots and this

makes the numerical integration less computationally expensive.

3.5 Regge Behaviour

In Section 3.1, we noticed that the 1/ factor in the inverse alpha space integral of
Eq. (3.1.10) has poles at values corresponding to physical spins for odd dimensions.
Furthermore, we mentioned that this hints that operator trajectories may be more
natural than isolated poles. In this section, we make this statement more precise
in three dimensions. We then hypothesis what Regge trajectories [49] look like in
alpha space in Section 3.5.1 before asking what we can learn about the Regge limit

in Section 3.5.2.

Consider a d = 3 alpha space density of the form

11
a—pla)  a+p@)

flas) = (@ )+@oa (351)

where we assume that f (@) and B(@) are both analytic and even functions. We also
assume that the equation a = f(a)+ % +n has a unique solution for n € N, which we
call a,, with 3, = 5(&,). The picture that we have in mind is drawn schematically

in Fig. 3.4.

Plugging this density into the inverse alpha space integral, splitting in the usual

manner and closing the a and & contours to the right gives

$5 200+ 20250 + W1 (=260 W) (G0 + 4+

=0 Q(= (B + 3 +n)Q(=5,) Bubutin(z,2)  (35.2)

as the position space analogue of f (o, @). This is a sum over operators lying on a

trajectory and approaching constant twist S... This is known as a Regge trajectory.
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Figure 3.4: Plotted is a schematic for 5 (blue line) as a function of a.
The equation a = B(a) + % +n has a unique solution for
n € N, which we call a,, with 5, = B(@,). The topmost
red line corresponds to n = 0, the next is n = 1 and so
on. The green lines mark the intersection points and
asymptote to have integer spacing as n becomes large.
This defines a Regge trajectory in d = 3, as discussed
in the text of Section 3.5.

3.5.1 Analyticity and Regge Trajectories

In Fig. 3.5, we hypothesis analytic structure in alpha space by drawing Regge
trajectories in the real «, & plane. We only draw them from a physical pole off to
constant twist as we are unsure how or if individual trajectories will match up. If we
can smoothly deform a physical pole along a line of constant spin from the ‘GFF-like’
picture of Fig. 3.5a to Fig. 3.5b then the trajectory should presumably go on to turn

and asymptote to the blue dashed line once again, as we have plotted.

In Fig. 3.5¢, the original pole has been shifted to such an extent that it has left the
physical zone. In our picture, the image that it exchanges with becomes the physical
pole and we have marked this in blue. Importantly, this allows for the image of
one operator to lie on the Regge trajectory of some other physical operator. This

phenomenon has been commented on before [50].

Finally, we remark upon the curious case of Fig. 3.5d. Here, the deformation has been
tuned so that one of the images is physical. It would be interesting to understand

whether or not this situation could be realised in a conformal field theory.
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(a) Straight ‘GFF-like’ trajectory. (b) Slightly deformed trajectory.

(c) Leaving the physical triangle. (d) Fine-tuning.

Figure 3.5: Here we plot a hypothesised picture of an operator and
its shadows in the real a, & plane. The physical pole
is marked in blue and the black dots are its images.
The pole is part of a Regge trajectory (blue line) that
tends to a constant twist. The light grey box denotes
the region where the dimension is greater than zero
and the dark grey triangle marks the positive spin zone.
The medium-tone grey overlap is then where physical
operators can live, although images may also be present
here. Integer spins are marked by the red lines, the
right-most one being the spin-zero line. The individual
plots themselves are discussed in Section 3.5.1. This
plot is for d = 2 but other dimensions only differ by
shifts of the physical zones.
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3.5.2 Regge Limit and Alpha Space

The Regge limit of a stripped correlator is defined by taking z counter-clockwise
around the branch point at 1 and then bringing both z and z to 0 with z/z held
finite. In this limit, the asymptotics are conjectured to be dominated by the leading
Regge trajectory. That is, the tower of operators that tends to the smallest twist

value.

The t-channel identity operator offers a simple test of conformal Regge theory. In
this case, the analytic continuation around z = 1 simply introduces a phase of
e~2m% and so the Regge limit is equivalent to the familiar s-channel limit. Using
the density in Eq. (3.2.2), the twist n contribution is then O(z%#+*™). That is, the
leading twist tower dominates in the Regge limit as conjectured. This is admittedly
a very simple example with straight trajectories, however many good justifications

of conformal Regge theory can be found in the literature; see for instance [51].

Taking the inverse alpha space transform of Eq. (3.1.10), we might naively say that
we cannot access the Regge limit because U, 5(z, Z) does not have a branch point
to encircle at z = 1. This apparent paradox is resolved by the understanding that
we must keep track of the contours themselves during the analytic continuation. If
the integral’s region of convergence moves away from the imaginary axes then the

contours must shift accordingly.

Indeed, we found that the contours tend to make half-rotations as z is taken around
1. This reveals to us an inconvenient truth. As the contours rotate, they necessarily
pick up the poles along the real-axes. That is, we are forced to sum up the blocks
and analytically continue the resulting function. Unfortunately, we have not found
a short-cut around this issue. Even if the « integral is split and the contour closed
to pick up the leading Regge pole, the remaining & contour still rotates as we

analytically continue the integrand.

Eq. (5.20) of [51] hypothesised the leading Regge behaviour as an integral parallel

to the imaginary A-axis. It would be interesting to understand whether or not their
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contour suffers the same fate as ours as the integrand is analytically continued.

3.5.3 Ising Model in Three Dimensions

In this section, we invite the reader to engage in some astrology by looking for
patterns in the incomplete ‘dot-to-dot’ puzzle of Fig. 3.6. The figure plots a portion
of the Zs-even spectrum [37] for the d = 3 Ising model with o and @ increasing
to the east and north respectively. Although it is believed that Regge trajectories
should tend to ‘GFF-like’ straight lines, the behaviour around the origin is more
complicated. It is unclear how the trajectories join (if at all), if they can leave the

plane altogether and whether or not all physical operators must lie on one.

3.6 Mellin Space

In this section, we briefly comment on the feasibility of going between Mellin and

alpha space by way of a simple example.
A stripped correlator G(z, z) can be written in terms of a Mellin space integral like
M (s,t) (z2)t/?

99 = [ 0] [ g ==y (2 - 1) T(-5) ()
(3.6.1)

where M (s,t) is called the Mellin amplitude. There are a number of reasons why
this is a sensible thing to do [38, 39, 40]. One is that the OPE causes M(s,t) to
factorise in some sense. Another is that Mellin space offers a natural language for
AdS/CFT correlators. In particular, contact Witten diagrams have constant Mellin

amplitudes.

In four dimensions, we can use the expression for ¥, 5 in Eq. (3.3.1) along with

Eq. (2.1.21) and the fact that 2P(1 — 2)79 = >>°° (¢),2T"/n! to determine that

(22)"

(1 =2)(1 = 2))

fp—lvq(a)fp,q(@) - fp—l,q@‘)fnq(a)

042—6(2

> fp,q(a, a) = 2( (d=4)

(3.6.2)
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Figure 3.6: Plotted is a portion of the Zs-even spectrum for the
d = 3 Ising model with o and & increasing to the east
and north respectively. We invite the reader to engage
in some astrology and complete the ‘dot-to-dot’ puzzle
by drawing some Regge trajectory candidates. Common
belief is that they should tend to straight lines, as we
see for generalised free fields. The trajectories may pass
through both physical (red) and image (black) poles.
We have chosen not to dress this diagram with the lines
of positive integer spin or with the physical wedge as
we did in Fig. 3.5. However, they can both be imagined
by looking at how the red poles fall. The raw data is
from [37].
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where f, ,(a) is the d = 1 density for 27(1 — z)~? that was calculated in [1]. That is,

I T(p—1+a p—3tap—3—aq
21 —2)" " f.(a) = (Fz(Qp)) 3 Fy 2 2 1| (3.6.3)
psp

Therefore, the d = 4 alpha space density for a contact Witten diagram is proportional

to

Geontact(0,3) = [ [as] [ [a]) fy o5 (a,a)FQ(A¢ - ;) r2<—;) r2(3‘2”> (3.6.4)

2

As usual, the spectrum can be determined by looking at the divergences. Varying
a, & does not pinch the s-contour and so we can focus on the ¢-integral. The t-poles

from f% syt (cv, @) are left-running and so can pinch the contour against some of the

right-running poles from the factor I'2 (A¢ — %) Therefore, we can safely tune «
and o after pulling the contour through enough of the ¢t = 2(A, + N) poles. As an
example, the lowest lying operator is the scalar of dimension 2A,. For this, we only
need the residue at ¢ = 2A,. Taking this, expanding around o = A, — %, a=A7A,— %

and evaluating the resulting integral in s, we found the leading divergence to be

Gcontact (O{, a) ~

@A, - 1) ( 1
405(Ap —2) +3 \(a = (Ay — 3))2(a = (Ay — 3))

Getting a general expression is a bit tricky as multiple poles get pinched. However,

) (3.6.5)

alpha space has provided a simple algorithm for finding any of the residues.

3.7 Future Directions

In this chapter, we have extended the alpha space formalism of [1] beyond two
dimensions. We have hypothesised an invertible integral transform in Eq. (3.1.9)

based on the Sturm-Liouville intuition that we established for d = 1 in Chapter 2.

There are many potential directions that future work can take. Primarily, we believe
that it will be important to more rigorously underpin the alpha space construction.

This may perhaps be achieved by formalising Section 3.1.2 through a more complete
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comparison between our transform and the Lorentzian inversion formula of Caron-
Huot [16]. In addition, it should be possible to extend the formalism to accommodate

for spinning external operators without too much difficulty.

Conformal partial waves can be written as a conformally invariant integral over the
product of two three-point functions, enabling them to be interpreted as 65 symbols
[52]. An attractive thought is that W, 5(z, Z) also can be written and interpreted in
a similar manner. The work done on representation theory and Wilson functions in

[53] leaves us optimistic.

Thereafter, it will be interesting to understand how we may place constraints on
crossing-symmetric conformal field theories using alpha space. The integral equation
of Eq. (3.1.16) provides an interesting kernel but it is unclear whether or not we can
perform any useful bootstrap-style calculations as yet. Future work should perhaps
also improve our slightly nebulous discussion on the exponentiation of poles by using

doubly-split kernels, which tend to lead to better convergence.






Chapter 4

Truncated Conformal Space

In this chapter, we address several questions about perturbative renormalisation from
the Hamiltonian perspective. Our main interest in this method is its importance for
the truncated conformal space approach (TCSA) of Yurov and Zamolodchikov [2].

We go on to illustrate our general results with the ¢* theory in d dimensions.

The TCSA is the Rayleigh-Ritz method adapted to quantum field theory. The main
idea is to truncate the discrete Hilbert space of a field theory on a compact spatial
manifold to a certain finite-dimensional vector space. This in particular truncates
the Hamiltonian to a finite-dimensional matrix, which one then proceeds to diagon-
alise numerically to obtain an estimate of the field theory spectrum. In practical
computations one is confronted with an exponential growth in the number of states
which necessitates improvements to this ‘bare’ procedure in order to obtain mean-
ingful results. One such an improvement is to add counterterms to the Hamiltonian
in order to approximately take into account the effect of states above the cut-off.
This idea was introduced first in [54] and implemented and refined in several other
works: see [55, 56, 57, 58, 59] and more recently [60] (which includes a review of

earlier works) and [61, 62, 63, 64, 65]; a recent review is [66].

Our first question concerns the connection between the anomalous dimensions of
composite operators in the plane, and the eigenvalues of the Hamiltonian on the

cylinder. For conformal field theories (CFTs), the state-operator correspondence
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dictates that these ought to be completely equivalent, and whilst this is easily
verified at first order in perturbation theory (see e.g. [8, Chapter 5]), it becomes
less straightforward at the next order. Here, we find the explicit relation up to third
order using an argument which is easily extendable to higher orders. In Section 4.1,
we explain that the precise connection is provided by using conformal perturbation
theory on the plane, rather than the usual Feynman diagrams. In Section 4.3, we
use these newfound equations to compute the anomalous dimensions at the Wilson-
Fisher fixed points to second order in the epsilon expansion. This computation
is remarkably straightforward and avoids the evaluation of (two-loop) Feynman
diagrams. It would be interesting to investigate if this relative simplicity persists at

higher orders and/or for other classes of theories.

Our second question is ‘precisely what is allowed in the counterterm action?’. As
usual, this is intricately related to the nature of the cut-off and the symmetries that
it preserves. Implementing a TCSA cut-off is a non-local operation, and correspond-
ingly the counterterm action could feature non-local terms as well [60]. Clearly, an
arbitrarily non-local counterterm action could be disastrous for the viability of the
Hamiltonian truncation method, but fortunately the non-localities are suppressed
by powers of the cut-off. In Section 4.2, we use crossing symmetry to analyse the
structure of the leading-order divergence. At subleading orders we cannot use any
general theorems, but for the ¢* theory we can make progress by analysing a partic-
ular summand; this we do in detail in Section 4.3. This allows us to demonstrate the
necessity of non-local counterterms at second order, as well as tensorial counterterms

that in principle could break Lorentz invariance.

Lastly, with an eye towards numerical work we consider the perturbative determina-
tion of the coefficients of the counterterm action for the ¢* theory at second order.
When a counterterm is marginally relevant, this may be of limited relevance for
practical numerical computations because in such cases the counterterms receive
corrections at all orders in perturbation theory and numerical tuning will be required

to obtain finite answers in the large cut-off limit. However, when the counterterms
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are strictly relevant, they receive only a finite number of pertubative contributions
and the determination of these coefficients is directly useful for numerical studies.
We provide precise expressions in Section 4.3.2, including non-divergent subleading

terms which can be used to improve the Hamiltonian in numerical studies.

4.1 Anomalous Dimensions from Infinite Matrix

Diagonalisation

In this section we explain how the perturbative computation of the anomalous
dimensions of composite operators is related to the diagonalisation of the infinite,
tree-level matrix of operator product expansion (OPE) coefficients. We start with a
CFT in d dimensions and deform it by a relevant operator that we call o(x), with

dimension A,. We work perturbatively in the corresponding coupling constant g.

4.1.1 The Hamiltonian Perspective

The Hamiltonian procedure starts by putting the d-dimensional ultraviolet (UV)
CFT on the cylinder R x Sj‘%’l where, by virtue of the state-operator correspondence,

the Hamiltonian is simply the dilation operator:

_ A

Hepr|Os) 7

;). (4.1.1)

where R is the cylinder radius and we label states by their corresponding local
operator O;(x). A relevant deformation of the CFT by an operator ¢ with coupling

g modifies the Hamiltonian to

H = Hepr + R LY o(r,n) + Hy, (4.1.2)

where n is a unit vector in R? which parametrises S4~!. We will be consistent in
writing operators in the cylinder picture with two arguments (a ‘time’ component

and a unit vector in RY) whereas flat space operators will be given one argument (a
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vector in ]Rd). H_; is the counterterm Hamiltonian, which we assume starts at order

9>

We can compute the matrix elements of the Hamiltonian in the UV basis by trans-
forming to flat space and using the standard CFT OPE introduced in Section 1.4,

which here takes the form

o(2)0;(0) = mok(()) +... (4.1.3)

with the dots here representing non-scalar operators (and so O may or may not be

primary). Also, we define A;; = A; — A;. Then, in terms of

Vi7 = SR AN,/ (4.1.4)
we find that
1 . 4 .
H|0) = & (A + V! + W) 10)) (4.1.5)

where RflVVij are the matrix elements of H. in the CFT basis. Here, S; =
2742 /T(d/2) is the volume of the unit radius sphere embedded in d dimensions.
In this chapter, we are careful to differentiate between )\ijk and \;j, because we later

introduce the Gram matrix which raises and lowers indices.

In order to find the spectum of the deformed theory, we need to diagonalise the

Hamiltonian matrix. To second order in the coupling g, we find the eigenvalues

_ !

E;
R

. VIV ! ,

A4+ Vi"+> ZA”J + W'+ ... (4.1.6)
i

where the index ¢ is not summed over and we only keep the second-order term in

W,%. For this equation to be valid we need to request that V;7 is diagonal in the

finite-dimensional subspace of operators with the same A;, and that any degeneracies

are broken by the second-order correction. If these conditions are not met, we need

to resort to the usual methods of degenerate perturbation theory to find the correct

eigenvalues.

Since the energies are supposed to be finite, the role of the counterterms at second
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order is to make finite the expression

V; ka J
Ay,

+ W’ (4.1.7)

D

ki
for ¢ = j. Notice that it is not necessary for the counterterms to also make this
expression finite when ¢ # j and we comment further on this below. For later
reference, we note that the third-order corrections also take a well-known form and

are given by

ViIwW. .
+> ’Ai]? +W/> (4.1.8)

J#i

VIVRE VIV WA
(ZZ Az]Azk’ _Z A2 Z A

k#£i j#i Ve k#i

where each instance of the counterterm Hamiltonian W is taken at the appropriate

order.

4.1.2 The Lagrangian Perspective

In the Lagrangian approach, or more precisely in conformal perturbation theory,
we compute the perturbative renormalisation of O; by introducing the renormalised
operator

[0]i(z) = Z7O;(x) (4.1.9)

and perturbatively evaluating correlation functions of the form

G = (... [01:(0), = (...exp (— [t (gote) + Lct(x))> Z30,00)  (4.1.10)

now evaluated on flat R?. Here the ellipses signify a string of operators inserted
away from the origin and the expectation values on the right-hand side are those of
the undeformed theory. Our aim is to compute the matrix of anomalous dimensions

4 o .
Ii=_ " logZ’ 4.1.11
oy, o8 ( )

9B

where the partial derivative is taken with the bare (dimensionful) coupling gp held
fixed. We assume that the counterterms start at O(g®) and we work to second order

in g. We shall also assume that the dimension A, of the perturbing operator is
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nearly marginal,

Ap=d—c (4.1.12)

and that e is small, which essentially amounts to working in dimensional regularisa-

tion. As usual, we ignore power law divergences and focus on the poles in .

The expansions

Z7 =6+ 92" + P2 +
G=6" 496" +¢26% + ... (4.1.13)
Lo =g*LE + ...

then give
(4.1.14)

In calculating Zij we may focus on some neighbourhood of O;, where the pertinent
divergences appear. Therefore we limit all spatial integrals to a spherical region of
radius R, away from the other operator insertions. For definiteness, one may think
of this procedure as the perturbative computation of one-point functions on the ball
given by |z| < R, but in practice such a physical picture is not important for the

computations of the renormalisation constants.

Upon substitution of the OPE (Eq. (4.1.3) into Eq. (4.1.14)), we find divergences
which we can make finite using dimensional regularisation. Collecting the first-order

terms, we find that

. A\
ZWi _ / ddy Dot _
Z al<k |a|fetA
S0 _ Sk BT
‘ e—A

(4.1.15)
tj

should be finite. We see that there are divergences only when A;; = O(¢). What's
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more, since R is a scale which is set far away from the operator insertion, locality dic-
tates that Z;” cannot depend on R. We therefore need to introduce a renormalisation
scale . Altogether, we therefore set

Sd)\gij“7€+Aij )
wi_ )T e—n,  TAs=00
7,7 = €T 2 (4.1.16)

i
0 otherwise
Now we need a little discussion about \,/. As observed in [60], there is a clear
problem if A;; = €, since in that case the integral would not be rendered finite by
dimensional regularisation. Therefore )\m-j must vanish precisely for these cases, at
least for every theory that is made finite by dimensional regularisation. (This was
also explicitly shown to be the case in the ¢* theories in [60].) In fact, if A;; = kije
with x;; finite as d — 4, then A,; = 0 unless ki; = 0. Furthermore, since operators
are orthogonal unless A;; = 0 for all d,! it follows that we can pick an orthogonal
basis in the space of operators where both the tree-level scaling dimensions are
diagonalised for all d and also )\Uij is diagonal on every finite-dimensional subspace
of operators whose scaling dimensions coincide for d — 4. (Of course, outside of
this subspace it can have all kinds of off-diagonal terms.) In this basis, we find the

simpler structure

Sd)‘aii:u_e :
wmi_) e« TO=0
A - (4.1.17)

0 otherwise

and, again in this basis, the leading order anomalous dimensions are then simply
L= gu=Sa\,' +0(g°) (4.1.18)

where we used that gg = g + O(g?). This expression agrees precisely with the
Hamiltonian picture discussed previously, which is Eq. (4.1.6) to first order in the

coupling. This first-order computation can also be found in the textbook [§].

ITo clarify: here we use the fact that we can track operators @; in the free theory whilst varying
d, so their dimensions A; then become simple functions of d. The claimed orthogonality then
follows from the ¢-type selection rule in [67].
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At second order, we find some new structures. For now, we assume that the coun-

terterm Lagrangian is given by a simple renormalisation of the coupling,
LY = g SuX 0(x) (4.1.19)

with the dimensionless coefficient X7 tuned to make the second-order results finite.
(In subsequent sections, we allow for other operators to appear in the counterterm
action.) For future reference, we mention that with this counterterm the bare
coupling is

989, 11) = g+ g* " SaX? + O(g°) . (4.1.20)

Using then that § [d% [ d% o(x)o(y) = [ d*x [j,<u d%y o(x)o(y) to make sure the

OPE expansion is valid, we find

]

(6 — Azk)(QE — Az]) B € — Akj

G = ( ApifAgy SARZ S Z{VRN I8, R A

X\ jS2/L_€R€_Ai' (4121)
(2)J _ o1 ~d J '
+7 A ). 0300

and therefore the term in parentheses should be finite. We see that possible diver-
gences can arise through the sum over intermediate operators k, but also through
small denominators, for example when A;; = O(e). The latter divergences are

cancelled by setting

i _

i

j —2e+A 1)k j —e+Ap - i — i
_AﬂikAakjsgu >t * Zz< ) Ao’lcjsdu - ki X Aaijsgu e i lf A = O(E)
(efAlk)(QefA”) E*Akj (67A1‘j) L)

0 otherwise
(4.1.22)
This cancellation is not entirely obvious since there are double poles, but upon sub-

stituting the lower-order result from Eq. (4.1.16), one finds that all of the divergences

are indeed removed. Let us now choose the aforementioned basis of operators, where
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we find the simpler expression:

A
2, —2¢ k i i i )
Sd/i <_ 2)‘(,_-,:72012) + >\U7;€Ao-i —I'_ XU}‘O’;) lf OZ = O] (4123)
0 otherwise

Using this expression to compute the matrix of anomalous dimensions, we find that

the double poles cancel precisely and that

V;_kvki

ik

ki

+ W'+ O(g°) (4.1.24)

where now

V;j = Sd:u_eg)‘aij ) Wii - SﬁM_QGXU)‘m‘i- (4.1.25)
At an IR fixed point the T';' will be the anomalous dimensions of the composite
operators, so the coefficient X? should be chosen such that these are finite for

all 7. That this can be done at all is of course a consequence of perturbative

renormalisability.

The third-order correction can be found in the same manner. We will not spell out
the details of the tedious but straightforward computation and instead quote the
result:

v, ky, my . V kY,
i m . V; i i

kv i k1i7 i
"‘Z(VVZ Vi'+ Vi Wk)+Wii
ki Aip — €

(4.1.26)

where we work in the basis discussed above and the third-order counterterm action

is assumed to take the form
LY = g*u > S3Y 0 (x) (4.1.27)

for some (divergent) c-number Y.

From the renormalisation of composite operators, we can work out the beta function
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to one higher order using a familiar trick. Consider

(...exp (—gB(g,u) /dd:r a(a:))) (4.1.28)

away from any operator insertions, and with the bare coupling gg(g, ) = g +
G Sq X7 + ¢3u=2S2Y7 + O(g*), which ensures that the result is finite. Taking a
derivative with respect to g, we produce an extra insertion of o. This is still finite,

so we conclude that

0
(.. exp <—gB(g) [t a(g;)) aggBo—(o» (4.1.29)
is also finite. But then we can choose

dgn
7 7 === 4.1.
= (4.1.30)

for the renormalisation of the operator o(z). Using that

%

Blg) = o

(4.1.31)

9B

and doing a little rewriting, we find the familiar relation between the anomalous

dimension and the derivative of the beta function:

B .
a9y =1 (4.1.32)

Below, we use this to find the beta function at order ¢ from the renormalisation

factor Z_ at order ¢>.

4.1.3 Comparing the Hamiltonian and Lagrangian

Approaches

We now have an abstract way to compute two sets of observables to third order in
the deforming operator g: the spectrum of the theory on the cylinder expressed in
Egs. (4.1.6) and (4.1.8), and the matrix of anomalous dimensions in Eqs. (4.1.24)

and (4.1.26). Both expressions are similar and become equivalent if we ignore the
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additional € in the denominators and identify R and p~!.2

Altogether, we can view the perturbative computation of anomalous dimensions in
a new light: not as the diagonalisation of the finite-dimensional matrices Fij whose
elements we need to compute order by order in perturbation theory, but rather as the
perturbative diagonalisation of the infinite-dimensional matrix V; 7 whose elements

are just those of the unperturbed theory.

We should stress that the two pictures do not always have to agree. In fact, they agree
if two conditions are met. First of all, the perturbing operator should be marginal
or marginally (ir)relevant. Indeed, if this condition is not met there are (generically)
no logarithmic divergences, there is no renormalisation scale p, and the matrix of
anomalous dimensions vanishes. In our computations, this shows up because we need
poles in € in the Lagrangian computation but not in the Hamiltonian one. Secondly,
the theory should remain conformal or flow to a nearby IR (or UV) fixed point.
Only in this case can we use the Callan-Symanzik equation to relate Fij to scheme-
independent observables like the anomalous dimensions of local operators, and of
course the state-operator map to relate these scaling dimensions to the spectrum of

the theory on the cylinder.

Both of the conditions discussed above are met in Wilson-Fisher type fixed points, to
which we turn our attention in Section 4.3. This will also allow us to investigate the
counterterm action W’ in more detail. To do so we however first need to improve

our understanding of the generally infinite sum in Eq. (4.1.6), which we discuss in

the next section.

2Ignoring the ¢ factors in the denominators is not obviously allowed, since the whole sum is
divergent and, after defining it through analytic continuation, has a pole at ¢ = 0. Nevertheless,
we find in the next subsection that the finite part is unmodified by the presence of the additional
€ in the denominator. Similar cancellations are presumably required for the Hamiltonian and
Lagrangian perspectives to agree also at higher orders, but we have not investigated this in detail.
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4.2 Divergences with the TCSA cut-off

In a nutshell, the TCSA procedure of Yurov and Zamolodchikov [2] amounts to
truncating the Hamiltonian matrix by ignoring all states (in the UV basis) with
dimensions larger than a cut-off value A,... The resulting matrix can then be
diagonalised numerically, which for sufficiently small couplings (made dimensionless
by using powers of R) ought to give an accurate representation of the spectrum of

the deformed theory.

On the cylinder R x S9! this truncation procedure preserves the rotations SO(d)
and time translations R, so in principle the regularisation prescription does not break
more symmetries than the background geometry, which itself serves as an infrared
regulator. The counterterms that we find will therefore preserve these symmetries,
but a priori one may not recover a full Lorentz symmetry as we send the sphere
radius to infinity. Another issue is that the truncation of the Hilbert space breaks
locality on the sphere, so locality of the counterterm action is no longer guaranteed.
The two issues of non-Lorentz invariant counterterms and non-local counterterms

were raised before in [60].

In the radial quantisation picture, we can mimic the cut-off in the TCSA by sand-

wiching the insertions of the perturbing operator between a Hilbert space projector

P

> 1000 (4.2.1)

Ap<Amax
which removes intermediate states of weight greater than A,,... Notice that this
amounts to a cut-off in energies with associated scale A = A/ R, with R the radius
of the sphere where we insert P. This cut-off breaks locality on these spatial spheres
(but not in the radial ‘time’ direction), as well as covariance under translations on

the plane.

To take the new cut-off into account we need to modify the analysis in the preceding
section as follows. First of all, we need to more carefully keep track of power law

divergences and not just the poles as ¢ — 0 in dimensional regularisation. This
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P = ZAngAmax |On><0n|

Figure 4.1: A Hilbert space projector P is placed between the two
o operators, removing intermediate states of weight
greater than A, and regulating contact divergences.

implies that, compared to Section 4.1, we need to modify the counterterm action to
LY (1) = g SuX Ou(2) + g1 SaX "0 (x) (4.2.2)

with some operators O (z) and coefficients X* and X°. We expect L to include
Ay divergent counterterms defined to cancel divergences arising from the hard
truncation of the Hilbert space, as well as 1/e divergent counterterms associated
with the same coupling renormalisation. In terms of the double limit, we should
technically take Ap.x — oo with € finite prior to taking ¢ — 0. However, we only
analyse the A, divergences, which suffices to get a finite answer at fixed €, so e.g.

at € = 1 for the ¢* theory in d = 3.3

The coefficients X* and X7 are non-trivial functions of the cut-off, and are fixed by
the requirement that physical observables are finite. In the Hamiltonian perspective

(to second order), this concretely means that there should be no divergences in

/\zk)\kz k i o i
>R XN+ XN, (4.2.3)
AkSAmax

as we send A, — 0o. Clearly, in order to determine the counterterms, we need

to have some amount of control over the asymptotics of the sum. To start with,

3Notice that we should also be able to renormalise the second-order divergences for € < 0; there
is a suitable counterterm action for the ¢* theory for any d to any finite order in perturbation
theory.



102 Chapter 4. Truncated Conformal Space

we focus on the behaviour of the summand as a function of the dimension of the
intermediate operator. That is, we consider the object

Z Mg Ak’ (4.2.4)

N

as a function of A (and i and j).
In this section, we review the analysis in [60], which uses crossing symmetry and
a Tauberian theorem to constrain the large A behaviour in full generality. In
Section 4.3.2, we then apply the results to the free scalar theory, and show that there

we can obtain better results than those rigorously proven by the Tauberian theorem.

4.2.1 Tauberian Theorem

In an attempt to estimate the divergences in Eq. (4.2.3), we introduce the four-point

function studied in [60]:

./—"]Z(T) = T(AU+AZJ/2) /Sd 1 /Sd 1dn O‘ T/2 ) ( —T/2n/)0i(0>> (425)

where 7 > 0 and O(00) = lim|00 |2[**°O(x). The exponential pre-factor is pulled

out for later convenience. Evaluating this gives
Fji(r) = Sger=erai N ey kAL (4.2.6)
k

with A, = 32 A, Gy, where Gyj is the Gram matrix (which will drop out from all
our relevant results below). As in Section 4.1, the sum is over intermediate scalars
only, because of the spherical integrals. We can try to get an idea of the asymptotic
behaviour of the sum by using an inverse Laplace transform. For example, if the

behaviour near 7 = 0 is of the form
Fii(T) = cam (1 + O(7)) (4.2.7)

with a > 0, then we would roughly speaking expect that

k CaAa 1
Z Aoi A Ty as A — o0, (4.2.8)

k:Ap=
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simply because

/OO Ae ™ ATIA =T'(a)T° (4.2.9)

0

and the non-analytic behaviour in 7 originates from the large A part of the integral.

Of course, the preceding claim cannot be exactly true, for the simple reason that the
left-hand side of Eq. (4.2.8) is not a smooth function of A. The precise statement
follows from the Hardy-Littlewood Tauberian theorem, which states that this holds
only in an aggregrate sense. The version that we need is the one explained in [68]
and proven, for example, in [69]: take a (positive) measure du(A) such that [7du(A)

is finite for every finite a and b. Now if

F(r) = / T A du(A) (4.2.10)
0
behaves for small 7 as
F(r) ~77" (4.2.11)
with p > 0, then
B (A ~ 4.2.12
| ) ~ e (4:2.12)

for large Apax. Here a ~ b means that a/b — 1 in the relevant limit.

Unfortunately, without further assumptions we can say little useful about the sub-
leading terms. For example, if we try to subtract the leading term from du(A), then

it is generally no longer positive and the theorem ceases to apply.

4.2.2 Using Crossing Symmetry

To estimate the small 7 behaviour of Eq. (4.2.5), we expand in the crossed channel
by first fusing the two o operators, as indicated in Fig. 4.2. Taking z and z as the

standard cross-ratios introduced in Eq. (1.3.2), we then obtain

dn [ dn'} Yoo i G (2, 2) (4.2.13)
gd—1 Gd—1 k n_e Tl’l’)zA JAN Z, % 2.

sm H)d_Q)\ >\k )
= do J F z 4.2.14
= Sada1 Z/ (1+e2" —2e 7 cosh)d- :Ga; (2:2) ( )
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O 0, 0; 0,

Figure 4.2: Crossing symmetry allows us to equate fusion channels.
This is integral in the arguments of Section 4.2 and
Section 4.3 which explain why counterterms are made
up from the local operators in the o x ¢ OPE, dressed
with dilation operators.

with cos(f) = n - n" and with
zz=m—e M) =1+e? —2 " cosd (1—-2)1—-2)=e?" (4.2.15)

This time, the sum is over all of the primaries in the theory, which we have indicated
with a hatted index k. The conformal blocks are fixed by conformal symmetry and
encode the contribution of the descendants, as discussed in Section 1.5. As always,
the blocks implicitly depend on A;;. For the decomposition, we set z; = e™’n,
zy = e 7/?n’, 3 = 0 and 24 = oo and we follow the familiar conventions of Dolan and
Osborn [31]. This OPE expansion is not strictly valid across the whole integration
domain because the operator at the origin sits midway between the two o operators
when they are at antipodal points. However, we are only interested in the non-

analytic part as 7 — 0, which comes from the o OPE region where cos(#) is close to

1, and in this region the sum converges.

A conformal block can be expanded [70] as a sum of Gegenbauer polynomials:

s !
GR(2:2) = A 2 enmlel g gy Cil* ™ (coslang(2))) (4.2.16)
n,m=0 - m

The coefficients ¢, ,,, depend on A;;,l,d and A. In Appendix B, we review how to

determine ¢, ,, recursively from the Casimir equation.

Notice that we use a more traditional notation and normalisation for the blocks in

this chapter. To convert between the two representations used in this work, use the
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equivalence
Ga a\~; z
(s, 7) = Gaals:?) (4.2.17)
Yyl — Oé) azA—J;l—d &:A+2J—1
for y(a) defined in Eq. (1.5.11).
The complex cross-ratio in our conventions is given by
z=1—e T (4.2.18)
and therefore
1—e " cosb
2> =1+4¢e* —2e " cosf cos(arg z) = ¢ (4.2.19)

V14 e 2" —2eTcosf
This leads us to define the integrals:

sin(6)4-2

(12 — 2 cosf)i o a/QCd/2 Y(cosargz) (4.2.20)

109 (r) := S35, 1/ do
which have small 7 behaviour of the form, for example,
10(7) = 7710252 (¢(a) + O()
IV (1) = 77 @H1=e=29 62 (_(q — 2)¢(a — 1) 4+ O(7)) (4.2.21)

19(r) = ey (=B 2060 ) 4 0(r))

where we have introduced

D(T(e — )

2 2

2y/7l(d —§ —¢€)

The integral of a conformal block is then an infinite sum of these integrals:*

§(a) =

(4.2.22)

m!
IO(Nyi7) = Z o (). 1% (1) (4.2.23)

n,m=0 2)m Bn

and now we can efficiently write

Z Ao N I (A7) (4.2.24)

kij

4In practice we expand this expression around 7 = 0, which means we restrict ourselves to only
the leading terms in this sum. We are therefore not worried about convergence of the sum.
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For concreteness, an integrated scalar block looks like

JAVS +A
IO (Aiysm) = 10(r) + (c]i Q)IAH()

2+A)(A; +A)2+ A5 +A)

d -2 D) IA+2( 7)
A )+ a22s)

which we can subsequently expand for small 7 using the previous expressions.
The leading term in the o self-OPE corresponds to the identity operator. Its entire
contribution to F;(7) is
Fii(1) D Xag G Te” (D3 7) = A" Cis s (7)
= Ao Gy 7 TI2952¢(0) (1 + O(7)) (4.2.26)

If we set j = i to ensure positivity, we find that the Hardy-Littlewood Tauberian

theorem rigorously applies and therefore (with no sum over 1)

Z . ] A 1Ad+1 2e
NN~ oo B e(0) ) (4.2.27)
ket A <Amaetd—et A ['(d+ 2 — 2e)

where the offset in the sum on the left-hand side (which is actually subleading here)

originates from the shift in the exponent in Eq. (4.2.6).

Eq. (4.2.27) is as far as rigorous results can carry us [68]. However, in Section 4.3.2 we
show that we can do much better by following [60] and inverse Laplace transforming
the subleading terms in 7 to estimate the subleading terms in the A, expansion.
Below, we use the closed-form OPE coefficients for the ¢* operators in the free scalar

theory to illustrate this procedure in detail.

4.3 Scalar Theory

In this section, we exemplify the abstract computations of Section 4.1 and Section 4.2
by considering the second-order corrections in a theory of an interacting scalar field

¢(x) in d dimensions. We perturb the free massless theory by the operator ¢*(z)
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and investigate the anomalous dimensions of the subset of operators ¢'(x) with

1 €{1,2,3,...}. Asin Eq. (1.2.4), the scalar is normalised such that

(G0 = o (13.1)

in the unperturbed theory. Here A, = (d — 2)/2.

We now compute, using Wick contractions, the following OPE:

for o) =27 < )( ) [, dnlal 5 s 0P (@)g(0)
S

(4.3.2)

where the integral serves to project onto scalar operators, (a), = I'(a + n)/T'(a)
is the usual Pochhammer symbol and we use colons to explicitly mark normal
ordered operators only when there is a potential ambiguity. (;) is the usual binomial

coefficient. The OPE coeflicients can then be read off:

S k\ (1 p!
by gl=POngk _ N 4.3.
oF ¢t ) \p 22”n!(d/2)n ( 3 3)

and a similar computation yields, for n > 0 and r = k —p+ 52 € Z,

e 0121 [ )22"<mA¢>n<<m DA, (43.4)

po r m r—m

Notice in particular that

Ao =611 1), A =0, (4.3.5)

¢t ¢t ¢® ¢t

which we use below.

We can now compute the corrections to the cylinder energies by summing them as

in Eq. (4.1.6), and we therefore consider

oo min(kl) ) Z¢Z*PD"¢’“*P)\ o o @7
=, 0= 0" ¢ o ¢ PngTP 4.3.6
H n; pz% 1A, — (I+Fk—2p)Ay — 2n (4.3.6)

It is remarkable that we can find a simple closed-form expression for this sum where

every intermediate operator is clearly identifiable. As we show below, this offers us
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a unique playground to test the ideas introduced in the previous sections without

having to resort to any numerical approximations.

The sum in Eq. (4.3.6) is infinite and we will regularise it in three different ways.
Our first regularisation procedure is the familiar dimensional regularisation, which
will allow us to check our computations and recover the perturbative anomalous

dimensions at the Wilson-Fisher fixed points.

4.3.1 Dimensional Regularisation and Wilson-Fisher Fixed

Points

For each p, the infinite sums in Eq. (4.3.6) turn out to be of a 3F» hypergeometric
nature, and after using some hypergeometric identities we can perform the required
analytic continuation in €. Collecting all the factors and the lower-order terms as in

Eq. (4.1.6), we find that the second-order energies on the cylinder are given by

RE,u =146l —1)gR “Sq
+ <—2161(l —1) — 681 + 1321 — 521 + 6X°I(l — 1) + O(e)> PRS2+ 0(g°).
(4.3.7)
In the Lagrangian perspective we are supposed to perform as in Eq. (4.1.24), which
differs from Eq. (4.3.6) by an additional € in the denominator of the sum. This

happens to make the sum slightly easier since we get just o F; hypergeometric sums,

and we find that the resulting small € expansion up to O(e) is exactly the same. So,

% =611~ 1)gR Sy
21
+ (—661(1 — 1) — 680° + 1321 — 521 + 6X7I(l — 1) + 0(e)> G R*S5 + O(g*)
(4.3.8)

This result is in agreement with the above discussion: the Lagrangian and Hamilto-
nian perspectives match for small e. That is, REy =1+ T ¢l¢l + O(e) up to second

order in g.
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Finding the counterterm action is straightforward, as X7 is the only counterterm
coefficient that we can tune. Notice that it should remove the divergences for every
[, but this works out perfectly and all anomalous dimensions (or cylinder energies

in Eq. (4.3.7)) are finite if we set

X0 == (4.3.9)

It is worthwhile to work out the details a bit further and get the two-loop anomalous

dimensions. For [ = 4, we find

T, = 72890 — 244852 ™ (4.3.10)

¢4
and therefore

36

. i 17 o
Z¢4¢ =1+ ?Sdg,u + 72 <€2 - 6> SgQQM 2 +0 (93) (4'3'11)

which we can integrate once more with respect to g to see that

36 . 36 17 iy
95(9,1t) = g+ —Sag’p " + 24 (62 - E) Sig*u* + 0 (g") (4.3.12)
The leading term already agrees with the counterterm we found above, but we now
also have the next-order counterterm at our disposal. Similarly, the quantum beta
function for the dimensionful coupling is 8(g) = 36S9°1~¢ — 816S2¢° =2 + O(g*)
from integrating I’ ¢4¢4 and so the dimensionless coupling ¢§ = gu~° has a beta

function of the form

B(§) = —€d + 36S45° — 816525 + O(3") (4.3.13)
The fixed point is located at
€ 17€2
JF=|—=+-—1|/S 4.3.14
g (36 * 972>/ ‘ (4.3.14)
resulting in the fixed-point anomalous dimensions:
cot El(l—1) (4T +1(171 - 67))

e — - . 4.3.15
¢! 6 324 ( )
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Plugging in [ = 1,2, 3,4 then gives the familiar results

% = €°/108 I =€/3+ 19¢° /162

[%s = e+ € /108 [i=p0'(g") = e — 176 /27 (4.3.16)

The similarity between I';, and I'}; arises due to the fact that the conformal multiplets
of ¢ and ¢ recombine at the Wilson-Fisher fixed point, according to the equation

of motion.

In exactly the same manner we find the following results for the ¢* theory in d =
6 — 2e:

I,% = 31(6 — 50)g°S3u > (4.3.17)

Notice that A 4 ¢l¢l = 0 and therefore the operators do not ‘see’ the ¢ counterterm.
This implies that the sums in I" ¢l¢l have to come out finite, as indeed they do. We

deduce:

B(g) = —eg — 27834’ (4.3.18)

and find a (non-unitary) fixed point at ¢*S; = /—€/27, leading to the anomalous

dimensions
F; = —¢/9 F;2 =8¢/9 T's =3¢ F;@; = 6'(9*) = 56¢/9 (4.3.19)

and this time the first two are related precisely such that Agy = A2, as expected by
the equation of motion. Notice that we did not use the wave function renormalisation

counterterm here.

4.3.2 TCSA Cut-Off

We have seen that the sum in Eq. (4.3.6) can be regulated by dimensional regu-
larisation, which allowed us to find a somewhat novel way to extract the correct
second-order anomalous dimensions. Our main focus in this paper is however the
TCSA cut-off introduced in Section 4.2. In this section, we use this cut-off to

regularise the sum in Eq. (4.3.6).
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Determination of the Counterterm Action

Section 4.2.1 instructs us to consider the four-point function F;(7), which is schem-
atically (j| [ o [o]i). In our case o(x) = ¢*(x) and we take O; to be ¢* and O; to
be ¢!. Terms in the self-OPE of the ¢* operator like

24 96
#*(z)9*(0) D |:7c|8A¢1 + P (gb2(0) —l—desc) z |4A (qb4( )—i—desc.) +

(4.3.20)

and similarly for the stress tensor 7T, lead to small 7 behaviour dictated by the

expansion

Fy(7) D 240757 (1) + 96X o /TR (1) + 72050 P TAR, (7) + Ay A/ TP (1) +
(4.3.21)

which concretely leads to small 7 behaviour of the form

S 2 Fi(r) = 246]7°7%€(0) | L + (4 — ze)r+1(2 —€)(23 — 126)7% + ...
— 6

A,
+96)\ J 2e— 35 4 25—|—2>T+horr1d7' + . )

e
+ 72X, /T4 — 2¢) (1 ( A2> +)
o (w )

+)\¢4¢4 )\TZ] Ze= 15

(4.3.22)
where
horrid — 3AF e — 12A;5(€ — 2)(2¢ — 1) + 2(e — 2)(e(24€ — 59) + 24) (4.3.23)
12(2¢ — 1)
and also
Mgt Ap g = 241(2 — €)20},. (4.3.24)

In which sense does this predict the leading behaviour of the squared OPE coeffi-

cients? If we inverse Laplace transform the very leading coefficient, which is the
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Figure 4.3: Tests of the approximation in Eq. (4.3.25) with [ = k =
2 and € = 1 so d = 3. As a function of A.,., we plot
on the left the ratio r between the left-hand side and
the right-hand side (solid line) as well as an improved
estimate obtained by including on the right-hand side
also the two terms labelled #2 (dashed line). On the
right, we log-plotted (from top to bottom) first the value
of the left-hand side and then the values obtained by
subtracting the terms #1 and the terms #1 and #2,
respectively.

term labelled #1, then we find that

AE’)*SE
A g~ A8OF Mg () (4.3.25)

A
"T(6 — 3¢)

m:Am <Amax+d—e+lAy

¢t ¢!

For k = [ this estimate should be correct by the Tauberian theorem quoted above.
This is confirmed for e = 1 and [ = k = 2 by the top line in Fig. 4.3, where we plot
the ratio r between the left-hand side and just the leading term on the right-hand

side — the ratio converges to one as expected.

Let us now investigate the subleading terms. At e = 1, the first subleading terms
arise from the terms labelled #2 above. If we add the inverse Laplace transform of
these terms on the right-hand side of Eq. (4.3.25), we find the improved convergence
behaviour shown by the dashed line on the left in Fig. 4.3. Although this might look
encouraging, the applicability of this result is limited. After all, we are actually not
interested in the ratio between the two terms but in rather in their difference since
we are trying to estimate the correct counterterm action. On the right in Fig. 4.3
we see that the leading term #1 subtracts a nice chunk of the value of the sum.

We do even better by including #2. However, at the next order we would run into
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trouble: there are visible subleading oscillations which do not decrease in size. Our
approximations are based on keeping only a few terms in a power series in 7, which
(inverse) Laplace transform to a smooth function of A. It is therefore simply not
possible to reproduce such oscillating behaviour within our framework. We address
this issue below, but for the remainder of this subsection we simply sidestep it by

considering the summand itself.

To do so, let us first discuss how the summand

UPITRLD WPL PR (4.3.26)

ot ¢’“m

admits a natural analytical continuation in A. The OPE coefficients in Eqgs. (4.3.3)
and (4.3.4) are smooth functions of n, for fixed & and p . For each p, we thus
obtain a smooth function of n, which we can trade for A,, (and hence A) by simply
setting A, = ([ +4 —2p)A, + 2n. We then perform the finite sum over p to obtain
the desired continuation. We evaluate this function (for now) at the shifted value
A — A+d— e+ kA, to take into account the extra 7 dependence in the prefactor
in Eq. (4.2.6), just as we did in Eq. (4.2.27).

The analytic continuation admits a simple asymptotic power series expansion. We

find
Agig Agt m¢k | Am=Atd—ctin,
— 4867 A1~ 365(0)( 51_ 2 + rix_ SE)A Ly (2 _6;2;23 ;6)126) A2+...>
+102) 7 AT 2 (2 (F T2 L iE(;_(ZQZ()A—l + Féor_rige) 2 )
210" Ap” ATE( ( 3¢ —4 1-20 )
144X, € ' A€<F1_E : )

(4.3.27)

As far as we checked, both the powers and coefficients in this expansion precisely

match those predicted by the inverse Laplace transform of the leading terms in
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F ¢l(7‘), with an extra factor 2 arising only because the A’s that contribute to the
sum are spaced in units of two (since the Laplacian operator has dimension 2). In

equations, we can say that to every order in the small 7 and large A expansion:
_ _ k 1 m k
LTSPFY y(r)ir = Al = oA i |An—Ard—cria, (4.3.28)

with the inverse Laplace transform obeying

-1 [T*p;T R A} — (4.3.29)

L(p)

and the right-hand side considered as an analytic function in A. We have checked
this claim for the identity operator (which reproduces the A*=3¢ terms) to second
subleading order, for the ¢* operator and the stress tensor (the A*72¢ and A%
terms) together also to second subleading order, and finally to leading order for the
¢* operator (the A~ terms). Altogether, this shows that the subleading terms in
the large A expansion would be captured perfectly by the subleading terms in Fj;(7),
were it not for the fact that we sum rather than integrate over the intermediate

operators.

Ignoring (still) the issue of the oscillations, we can use the subleading terms in
F;i(T) to compute the counterterms to high subleading orders. The counterterm

Hamiltonian will then look like this:

Hy, = g2SdR2(deg)f1/

[, o (1X1 + R ¢ X2 + BT, X + R 6" X 1)

(4.3.30)
with dimensionless Xy coefficients which are roughly speaking determined by the

inverse Laplace transform of F;(7) given in Eq. (4.3.27). If we set A = A,.x/R,

20, —d—Ap to

then it follows from a dimensional analysis argument that Xo ~ AZ2s

leading order. There are however several subtleties that we need to address before
we can use Eq. (4.3.27) to obtain the explicit form of the Xo. Let us discuss them

one at a time.

Offset in A, Our first subtlety is the extra prefactor exp (7(d — e+ 4;)) in
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Eq. (4.2.6) which leads to a small imperfection in the relation between the in-
verse Laplace transform of F;;(7) and the sum of squared OPE coefficients. This
is reflected in the offset on the left-hand side of Eq. (4.3.27). This will have to be

taken into account by non-local counterterms of the form already written down in

Apax | Hopr\"
W > g*R* <R> (/Sd_l dn Ok> (RA CFT) (4.3.31)
R max

which leads to matrix elements of the form:

[60]:

RW,7 D g? R*S ;AL Jk=n Ay, I (4.3.32)

max

These operators can be made Hermitian by instead considering anti-commutators,
for example {Og, Hcpr}. The commutators that this introduces are discussed further

on.

Since Hepr is the integral of a local density but not a local operator itself, it follows
that the counterterm is not local (unless Or = 1 and n = 1). In practice, we get
finitely many non-local counterterms because we keep only finitely many terms in

the ALax expansion.

The Denominator and the Integral In our analysis we have seen that F;(7)
provides a good approximation of the sum of squared OPE coefficients A\ *\,1; but
we need to still add the denominator (A; — A) in Eq. (4.1.6) and integrate over
A. The A, dependence in the denominator translates into yet another non-locality
of the same type as dicussed in our previous point. Altogether, we can take into
account both the offset and the denominator by the following replacement rule: any
A% in the inverse Laplace transform of F;;(7) — so in Eq. (4.3.27) — needs to be

replaced by

_ Amax (A — d + € — RHCFT)a
A® s Ao = / dA
- RHopr — A

max

(4.3.33)

a—1

1 d—
- Af;lax <_O[ + Ar;lelix (RHCFT + OM) + O<Ar:1£21x>>

If we keep only finitely many terms in the A-expansion, then the counterterm will
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be polynomial in RHcpr.

A;; Dependence in the Blocks For non-identical operators, the conformal blocks
depend on the difference A;; in operator dimensions. This is a generic property,
and in our case this shows up in the subleading terms in the expansion of Fj;(7)
given above in Eq. (4.3.22). By their very nature, these terms only show up in the
off-diagonal elements in sums like Eq. (4.1.6), so in the terms with ¢ # j. These
terms are unimportant for the computation of second-order energies, and therefore
we can set to zero the A;; terms in the inverse Laplace transform of the blocks. We

give a more elaborate discussion of this below.

With this notation in place our counterterms take the form:

Al=Sc (4 —2)AB3e  (2—¢)(23 — 12¢)AZ_3e )

X1 = —24£(0) (r(5 nfxse) T(4— 3:1)2le 6I(3 — 3¢) -

A2 (4— 2(—:)5—\26 horrid A-2¢
X — _96 2 _ max max max
¢ §2-¢) (F(3 —2¢) | T(2—2¢) T(1—2e) )
QEA/_E
Xo= A, £(4— max .
T = A (=) ((36 —OT(1—26) )

e
Xyt = —T26(4 — 2¢) (F(lm_e) +. )

(4.3.34)

with all-important minus signs because they are supposed to cancel divergences, and
with A;; — 0 also in ‘horrid’ as given in Eq. (4.3.23). The preceding equation is the

main result of this section, and few more comments are in order.

First of all, as noticed already in [60], the counterterm action has certain non-
localities. Of course, a completely arbitrary non-local counterterm action would be
worrying. However in this case, the non-locality enters in a mild and prescribed
way, namely only through the substitution in Eq. (4.3.33). Unfortunately, at higher
orders things appear less benign, for example in [64] a counterterm : [ ¢? [ ¢? : was
introduced. The restoration of locality in the continuuum limit therefore hinges
on the irrelevance (in the technical sense) of these non-local counterterms. For the

examples considered in the literature this seems to work well, but for less relevant
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(in the technical sense) perturbations this may become an issue.

Secondly, the conformal block decomposition of the four-point function organises the
counterterms also in conformal multiplets. More precisely, we only need to add the
conformal primary Og(x) as an explicit operator in the counterterm Hamiltonian,
and can then take into account descendants (i.e. subleading terms in the block
expansion) by improving its coefficient X*. Notice that if we want finite energies
at second order then we can extract the necessary counterterms from only those
four-point functions F;;(7) with j = 4, so the A;; terms that appear in a general
conformal block can be ignored. We are again supposing here that all degeneracies
have been resolved and therefore that A,/ has been diagonalised within small blocks

as explained above.

Thirdly, manifestly Lorentz-violating counterterms can only arise from other Lorentz-
violating primary operators in the OPE expansion. Such counterterms are clearly
allowed as long as the vectorial indices point in the 7 direction to preserve rotational
invariance on the spacelike sphere, and then they are also expected since they do
not break more symmetries than our regulator. The need for tensorial counterterms
had been noticed in [60], but in the examples considered in that paper they were
subleading and not worked out in detail. Of course the integral of T, is special since
it is just the Hamiltonian again and, despite appearances, it does not break Lorentz
invariance. We believe that the corresponding counterterm can be interpreted as
wave function renormalisation, which would be absent with a local Lorentz-invariant
cut-off but does show up here. Notice also that it has the same matrix element as the
subleading term proportional to Hepr in the expansion of the identity counterterm.
However they appear with very different powers of Ap.., so they are certainly

different counterterms, and our analysis rigorously establishes the appearance of

both.

Our fourth and last comment concerns the off-diagonal elements in Eq. (4.1.6). These
terms are equally divergent and we would like to ask whether the counterterm action

is expected to make the terms with ¢ # j finite as well. As we have discussed, this is
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not necessary to have renormalised energies at second order. In fact, because of the
A; in the denominator the sum in Eq. (4.1.6) is not even Hermitian (real symmetric
in this case) so there is no Hermitian counterterm that can make that expression
finite to arbitrary subleading order. One may of course try to modify the expression

to e.g.
‘/; kaJ
%(Az + A]) — Ak

(4.3.35)

but the question then arises what the motivation would be for these ad hoc replace-

ments.

An issue that is very much related to the issue of off-diagonal elements is the existence

of counterterms that arise from commutator operators like
[Herrs - - - [Herr, O] ~ 0, ... 0,0 (4.3.36)

whose matrix elements between states (j| and [i) are proportional to A;;, to an

ij>
arbitrary power. These counterterms are compatible with the residual symmetries
of the cylinder and so can in principle be added; one might in fact be tempted to
do so at subleading orders when there is A;; dependence in the blocks. However, to
maintain a real symmetric Hamiltonian one can only add terms with even powers of

A

ij» and we have already seen that the blocks contain terms linear in A;; above.

We believe the question of the off-diagonal term could be addressed by going one
order higher and looking at the third-order correction. This is because, for a local
cut-off at least, we may expect the third-order counterterm to be completely local. If
we look at Eq. (4.1.8), this for example implies that divergences arising in the limit®
j — oo for fixed but finite k& ought to be cancelled automatically by the counterterms
in the latter two sums rather than by the third-order counterterm, which is the last
term in Eq. (4.1.8). One could for example speculate that W,’ for a local cut-off

instead makes finite an expression of the form

U7 .= Wiu_% when i = j
ik

5More precisely, the analogue limit in the case of a local cut-off.
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kY1 1 A+ A
Vi Vi ( _ait ]> when i # j (4.3.37)

+
2 JAN A VA VWA

Indeed, in terms of these new matrices, Eq. (4.1.8) becomes

R

A (2

ij

1 (U, + VU .
( ! L+ W.Z) (4.3.38)
and, provided the divergences take a local form, the diagonal elements of W,* may

now also be fixed to a local expression.

Unfortunately, the TCSA cut-off is not local, so the reasoning of the previous
paragraph does not obviously apply and it remains an interesting question to what
extent we can use locality of third-order counterterms to gain insight in the off-
diagonal terms at second order. For example, in [65] non-local counterterms of the
schematic form [ ¢? [ ¢* were introduced at third order, and it would be interesting
to work out how second-order off-diagonal counterterms like those in Eq. (4.3.36)

would modify the coefficient of that counterterm.

Oscillations and a Smoothly Varying Projector

Eq. (4.3.27) relates the summand in Eq. (4.3.6) order-by-order to a simple asymptotic
power series. The oscillations in Fig. 4.3 exemplify how the full sum can only be
replicated on average by an integral of the series. Up to now, we have flagrantly
ignored these subleading oscillations, which arise inevitably from the discreteness of
spectrum. One may wonder if there exists a more sophisticated counterterm action
that takes into account these oscillations. For example, we can make the coefficients
Xo in Eq. (4.3.34) more complicated functions of A, which also oscillate and then
precisely cancel the oscillating sum. This is not a straightforward task and may
drastically increase the non-locality of the counterterm action. In this section we
therefore suggest how the issue can be mitigated by using a smoothed-out cut-off,
centered around A,... Concretely, we replace the TCSA projector P introduced
above with a projector that smooths out the hard truncation at A,... This leads to

a new version of the replacement rule in Eq. (4.3.33), but otherwise the counterterms
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are unchanged.

Specifically, we consider a smoothly varying projector which flips from 1 to 0 around

Apnax With a transition width growing slower than A,... For example,

P = Pri=>_ |A)F(A, Apax) (A (4.3.39)
A
with
F(A Apax) = ; (1 — tanh (AJA_A‘“")) (4.3.40)

Asymptotically, we have that (for a > 0)

foz(Amax> Aﬁlax
(6]

/ TUA (A, Apa) A ~ (4.3.41)

where

7T>k By, AE

o]
— _ k _ Qk—l o max
fo(Dmax) = kzzjgz( DF(1 =221 (8 2 o) o (4.3.42)

and B, is the n*® Bernoulli number. This implies that the reincarnation of Eq. (4.3.33)

with the smoothed cut-off should be

e o0 (A—d—i‘G—RHCFT)a
A s Ao = / dA ALA, 43.43
—> max RHCFT _ A f( Y ) ( )
[0 Amax o— Amax d -
_pe <_f( )+ Ja—1( ) <RHCFT+Q( 6)) +>
o Apax a—1

Each singly hatted Ap.x in Eq. (4.3.34) can be replaced with a doubly hatted one,

and this gives the counterterms within the smoothly truncated theory.

Fig. 4.4 provides evidence that these smooth counterterms work in the ¢* theory.
The oscillations that arose due to the discreteness of the spectrum get trampled and

we end up with a convergent sum.
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Example: Three Dimensions

As an explicit example in an integer dimension, Eq. (4.3.34) with € = 1 becomes

Xy = —6A,.. — 12A0

max

o (4.3.44)
Xy = —48A0

max

where each singly hatted A, is replaced with a doubly hatted one in the smooth

theory.

Some care must be taken at this stage, since the replacement rules have to be

extended to include logarithmic divergences:

Kn;( = —Apnax +2log Apax + . ..
- (4.3.45)
AY = —log Apax + - ..

To this order, A/n;( = A/n;( and E’n;( = ﬁn;(.

Fig. 4.5 shows how these counterterms nicely regularise the d = 3 variant of

Eq. (4.2.3).

Decaying Counterterms

The d = 3 counterterms can be extended to include some decaying contributions, in

an attempt to improve convergence. Taking the first decaying term,

Xy = —6A,.. — 12A0

max

Xyo = —48A0 (4.3.46)
Xy = —36A-1

where

—

Amax = _Amax +2 log Amax - 2RI{CFT A_l =+ ...

max

A = —10g Ay + RHepr Ak, + ... (4.3.47)

max
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Figure 4.4: The negative of Eq. (4.2.3) in ¢* theory is plotted as a
function of Ayax for O; = O; = ¢? and € = 1/5, so that
d = 3.8. The blue line is the raw data and the orange
line incorporates the naive counterterms in Eq. (4.3.34).
The red line displays the same sum but with the smooth
projector in Eq. (4.3.39), and it includes the leading
correction. Finally, the green line utilises all smooth
counterterms. The dashed lines are discussed in the
‘Decaying Counterterms’ part of Section 4.3.2.
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Figure 4.5: Eq. (4.2.3) in ¢* theory is plotted as a function of Ay.x
for O; = O; = ¢* (I = 2) and € = 1, so that d = 3.
The blue line is the raw data, whereas the orange line
includes the addition of the naive counterterms and the
green line is the regularised smoothed data. The oscil-
lation amplitude appears to stay finite for this special
case. The dashed lines are discussed in the ‘Decaying
Counterterms’ part of Section 4.3.2.
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To this order, we have some discrepancy between singly and doubly hatted coun-

terterms:
Amax - Amax +
125 (4.3.48)
X ——

max — “—max m
The dashed lines in Fig. 4.5 show how including these decaying counterterms can
significantly improve convergence. Also note that the analogous dashed lines in
Fig. 4.4, which indicate a massive improvement in convergence that arises because

the first correction is increasingly large as € — 0; that is as ¢* becomes marginal.

4.3.3 TCSA-Inspired Cutoffs for the Scalar Theory

The TCSA offers a natural and universally implementable cut-off. For the scalar
theory we can however consider more customised cut-offs which would be suitable

for perturbative computations.

A particularly natural perturbative cut-off to consider would be a spatial momentum-
space cut-off on the cylinder. In terms of canonical quantisation, this amounts to
setting to zero all the creation operators with large momentum on the sphere. This
would be a local cut-off in the sense that any momentum-space cut-off is local: it

morally corresponds to discretising space to a lattice.®

The state-operator corres-
pondence maps these high-momentum modes to operators with many derivatives,
and therefore it amounts to setting to zero operators with more than, say, nmax
derivatives per ¢. This cut-off is however not easily implemented for our sum =,
in Eq. (4.3.6), because we would then have to work out the Laplacians in the in-

termediate operator ¢'P[0"¢* P and keep only those operators with less than 7.y

derivatives per ¢.

A somewhat related perturbative cut-off would be to limit the total spatial mo-

6This cut-off would exactly correspond to a spatial lattice if the spatial manifold was a torus.
For the sphere, we are not aware of an explicit lattice that would truncate the spherical harmonic
expansion, but see [71] for an attempt at a lattice formulation of radial quantisation.
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mentum on the cylinder. Again through the state-operator correspondence, this
cut-off amounts to a bound on the total number of derivatives in a given composite

operator. For our sum =, , given in Eq. (4.3.6), this truncation is simply:
1 < N (4.3.49)

and the UV cut-off scale is A = 2N,/ R. This cut-off does not appear to be local:
for example, for a two-particle state the momentum of one particle is constrained in

terms of the momentum of the other.

It is important to realise that the energy of a state (or the scaling dimension of
an operator) can grow very large not only by taking large momentum (or many
derivatives in the operator) but also by taking many particles (or many fundamental
fields in the operator). Since we did not truncate the latter, any possible divergences
arising from arbitrarily-many-particle states are not regulated by these cut-offs.
Although this implies that these cut-offs are problematic non-perturbatively, such
divergences are absent at any finite order in perturbation theory, since at every order
a ¢F interaction adds only up to k (i.e. finitely many) extra fields. This is why the

momentum cut-offs work only in perturbation theory.

Let us consider the ¢* theory again, now with the cut-off in total spatial momentum
of Eq. (4.3.49). Analysing the large n behaviour of the summand is simple, both at
the level of the integrand and using some simple modifications of the results in the

previous section. The dimension of the intermediate operator in =,,? is given by
A= (+k—-2p)As+2n (4.3.50)

and so to leading order the cut-off in n essentially agrees with a cut-off in A. We
therefore propose the same leading-order counterterms. At subleading orders, there

are small modifications. These are not interesting enough to write down explicitly,
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except that structurally we observe that with the cut-off of Eq. (4.3.49):

Zp’ = N (#6] 4+ O(1/Ninay))
Nria)%e<#)\¢2¢l¢q + #(l —dq + 6 - 12€)Nmax)\¢2 v + 0(1/ max)) (4351)
max(#A¢4¢l¢ + #(l —q— 4 — 4€)Nmax>\¢4¢l¢ + O(l/ max))
where the coefficients # are unimportant functions of € only.

We can offer two interesting observations about this cut-off. The first pertains to the
oscillations discussed in the previous subsection. We observe that for the diagonal
elements with [ = ¢ the dependence on [ in Eq. (4.3.51) is fully captured by the OPE
coefficients. This means that there exists non-trivial counterterm coefficients Xp,
functions of A,ax and € only, which can get rid of the oscillations in =, ,? completely.
The question that arises now is whether this holds for arbitrary external operators —
in that case we could claim that this cut-off allows us to get rid of the oscillations

without introducing drastic new non-localities.

Our second observation concerns the off-diagonal matrix elements. In Eq. (4.3.51), we
observe subleading off-diagonal terms, only one power down in the N,., expansion,
with non-trivial dependence on [ and ¢, so the naive counterterms do not make the
full matrix =,,7 finite. In fact, as we pointed out before, the divergences are not

Hermitian and so no reasonable counterterm action can cancel them.

Things marginally improve once we symmetrise the denominator as in Eq. (4.3.35):
in that case we find that Eq. (4.3.51) gets modified so that only even powers of (I —q)
appear, with the leading appearance one power further down. Remarkably, this is
precisely the kind of subleading divergence that can in principle be addressed with
Hermitian counterterms of the form 9?¢? and 92¢*. However, without a third-order
analysis along the lines sketched in Section 4.3.2 we cannot be sure whether we need

to add them.

Finally, passing to the more sophisticated Eq. (4.3.37) we observe that, with the Nyax
cut-off, there is an additional non-trivial l-dependence in the analogue of Eq. (4.3.51),

and we need to either include non-local counterterms or new operators to cancel
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these terms. It follows that (with this cut-off) the naive counterterm action does
not make Eq. (4.3.37) finite. The subleading terms again have even powers of (I — q)

beginning at one power further down than in Eq. (4.3.51).

4.4 TCSA Conclusions

The TCSA has proven to be a very useful numerical method for a wide variety of field
theories. One of its main virtues is its simplicity, relying only on a simple Hamiltonian
perspective that is familiar from quantum mechanics. In this work, we studied the
TCSA cut-off in the framework of perturbative renormalisation and discussed some
of its less attractive features like non-localities, non-covariant counterterms, and
oscillations that are not easily cancelled. Fortunately, these effects are all suppressed
by powers of the cut-off, and the suppression becomes stronger for more strongly
relevant deformations. Morally speaking then, our results support the usual lore

that the TCSA is at its most useful for strongly relevant deformations.

There are several possible future directions that naturally arise from this work.
Firstly, we have seen that the conformal perturbation theory framework replaces the
usual Feynman integrals with sums over computable free-field OPE coefficients. This
offered us a remarkably simple way to compute second-order anomalous dimensions
at the Wilson-Fisher fixed points. It would be interesting to see how this approach
compares in difficulty to the Feynman diagram expansion in more general theories
and/or at higher orders. How would the computational cost compare with the
Feynman diagram expansion? Also, we have seen how the Hamiltonian viewpoint
leads to an unconventional picture where anomalous dimensions arise from the
diagonalisation of a single infinite matrix. We would be interested in learning the

analogous picture for gauge theories and in particular integrable theories like planar

N =4 SYM.

In numerical work, the focus has been on finding a counterterm action that approx-

imates well the full matrix in Eq. (4.1.6) (for reasons that are explained in [60]). In
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perturbation theory, we only care about diagonal elements in these kind of sums and
there are subleading divergences in the off-diagonal terms that are not obviously can-
celled by the counterterm action. In the future it would be interesting to understand
these differences further. To do so one could for example work out the third-order
correction for a local cut-off, which we expect to give us more information about
the off-diagonal divergences at second order. Related to this, one could analyse the
dependence of non-local divergences at third order (with the TCSA cut-off) on the

details of the second-order counterterm action.

Finally, our work can provide a stepping stone for the numerical TCSA | in particular
for the ¢* theories in three dimensions. We have provided the explicit second-order
counterterm action in the ‘Three Dimensions’ part of Section 4.3.2 above. This
counterterm action should suffice to get finite numerical results. However, to get
accurate results one may need to add further improvement terms, similar to those
obtained in two dimensions in [65, 64], and perhaps a smoother cut-off like the one
introduced above may be necessary to deal with any remaining oscillations. It would
be very interesting to see if this will suffice to get accurate predictions from the

TCSA in three spacetime dimensions.






Appendix A

Discontinuity Trick

In this appendix, we explain how to go from expansions of alpha space densities
which are valid for large imaginary values to asymptotic discontinuities across the

real axis. This is the trick that allows for the replacement in Eq. (2.6.35).

Consider a density f(a) that asymptotically goes like
fl@) = (=a*P(1+0(a™?)) (A.0.1)

at large imaginary a. We then claim that on average

2p

discq f(o) = T =p)

(1+0(a?) (A.0.2)

where the discontinuity is across the real axis and is defined in Eq. (2.6.23). By
average, we mean in the integrated sense of the Hardy-Littlewood Tauberian theorem

discussed in Section 4.2.1. Explicitly, we mean that

_ T@p+1)
s T (p)I'(1 - p)

/Oo dave™** disco f (o) = (1 + O(sz)) (A.0.3)

This is a consequence of a dispersion relation proved! nicely in the appendices of

!The really nice aspect of this proof is that it is for a complez Tauberian theorem. Therefore,
the authors have better control over the subleading terms.
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[72] (in a slightly different context). As a knavish justification, we note that

. L(p+3+ta)

flo) - friay” = et (06a) (4.04)

That is, the two densities are equivalent to leading order in the large imaginary o

limit. The Laplace transform of the latter density is

o Fp+5+a)) e *P1—e)> ([ T'(2p+1)
/0 ds e** disc, <Iw> Y, — (F(p)F(l —p)) (A.0.5)

_ I'(2p+1) 52
=g o)

and so we can call upon Egs. (A.0.4) and (A.0.5) to partially legitimise Eq. (A.0.3).



Appendix B

Block Recursion Relations

Conformal blocks obey a quadratic Casimir equation [73]:
pGY =cal (B.0.1)

with the eigenvalue equal to

) — A(A —d) +2J(J+d—2) (B.0.2)

The differential operator is given by

D(z,2) = Da o+ Ds + (d = 2) ((1 — 28, — (1 z)az) (B.0.3)
where
D, =2*(1-2)0° - (a+b+1)2%0, — abz (B.0.4)
and
1 1
a = —§A12 b = §A34 (B05)

We can expand the conformal block as a sum of Gegenbauer polynomials [70]:

s > m!
68 = 3 o0 ) = 42 3 ol s~ Cfeoslarg(s)) (B0
n,m=0 n,m=0 m

where we have defined v = d/2 — 1 and, in general, ¢, ,,, depends on a, b, J,d and A.

A Gegenbauer polynomial is a particular type of Jacobi polynomial. The latter was
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introduced in Eq. (2.1.25). Explicitly,

(2a)n (a_%va_

o
b (2) (B.0.7)

Cr(z) =

Defining
zZ+z
2|]

(B.0.8)

r=]z2  y=cos(arg(z)) =

we have that

D= ;(Do + D + Dext) (B.0.9)
Dy = 2202 — (1 — y2)85 — (2v + 1)(20, — y0,)
Dy =z (—a?yd? + y(1 — y*)02 + 22(1 — y*)0,0, — xy0: — (2v +y°)0),)

Dext = —2z(a + b)(zyd, — (1 — y*)9,) — 4zyab

Using some Gegenbauer identities, we see that these operators act nicely on our

summand:
DGy (n,m) = CX77, G (n,m) (B.0.10)

Dlgg) (n,m) = —vfj%gg‘])(n +1,m+1)— 7,(;77)19&]) (n+1,m—1)

DGy (n,m) =~ G (n+1,m + 1) = )6 (n + 1,m — 1)

where
mm 2(m+v) nm 2(m+v)
and
o) = (m+2v)((a+b)(A+n+m)+ 2ab) (B.0.12)
’ m—+ v
) _ m((a+b)(A+n—m-—2v)+2ab)
7711,m - m -+ v

from which we find the following recursion relation:

Cn,m (C(An-ll—)n - CX)> - Cnfl,m—lgq(mt)l,m—l + Cn—l,m+1f7(;)1,m+1 (B.0.13)
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where £(1/7) = (/=) + (/=) With the initial condition ¢, = 6.7, at the first

n,m

level we have

J+2v (A4+J a+b ab
= B.0.14
LT J+1/< TR +A+J> (B.0.14)
. _J A—J—2v+a+b+ ab
A 4 2 A—J—2

Higher levels can then be found recursively. We note that the only non-zero coeffi-

cients at the second level are ¢ 5, c2 j12 and ¢y j_o.
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