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Abstract

The gauge/gravity duality, also known as the AdS/CFT correspondence or
holography, relates quantum field theories to theories of quantum gravity in one
dimension higher. When one theory is strongly coupled, and therefore very difficult
to study directly, the other one is weakly coupled. In this thesis, we will use this
duality to study a variety of physical phenomena in strongly coupled quantum field
theories by performing computations in their weakly coupled gravitational duals.

After reviewing the gauge/gravity duality in the first part, we discuss various
aspects of non-conformal holography in part II. We construct new solutions of ten-
dimensional type II supergravity which describe the back-reaction of Dp-branes, for
1≤ p ≤ 6, with a spherical worldvolume. These solutions are holographically dual
to maximally supersymmetric Yang-Mills (SYM) theory on a (p+ 1)-dimensional
sphere, Sp+1. The finite size of the sphere provides a IR cut-off in the gauge
theory, which is reflected in the dual geometry as a smooth cap-off. In the UV, the
size of the sphere plays no role and our solutions asymptote to the well-known
supergravity backgrounds describing the near-horizon limit of flat Dp-branes. Using
these solutions we can holographically compute the free energy and 1/2−BPS Wilson
loop vacuum expectation values in the dual gauge theory. Using supersymmetric
localization, we can perform the same computation directly in planar maximal SYM
theory on Sp+1 at strong coupling. We find excellent agreement between the two
sets of results for all values of p. This constitutes a highly non-trivial precision test
of holography in a non-conformal setting.

In part III we study a class of AdSp solutions of type II supergravity which describe
the IR dynamics of p-branes wrapped on a Riemann surface. Such solutions are
classified by solutions of the Liouville equation. Regular solutions lead to well-
known wrapped brane supergravity solutions with the constant curvature metric on
the Riemann surface. We show that singular solutions of the Liouville also have a
physical interpretation as explicit point-like brane sources on the Riemann surface.
These supergravity solutions are dual to strongly coupled (p − 1)-dimensional
conformal field theories obtained as the IR fixed point of a renormalization group
flow across dimensions starting in p+ 1 dimensions. These theories are strongly
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iv ABSTRACT

coupled and extremely hard to access using purely field theoretical methods. We
test the details of our proposal by focusing on N = 1 superconformal field theories
of class S, arising from M5-branes wrapped on a punctured Riemann surface. We
present explicitly the dual AdS5 solutions and check the proposed duality by finding
non-trivial agreement of the ’t Hooft anomalies, the dimension of the conformal
manifold and the conformal dimensions of various operators in the theory with
their holographic duals.



Beknopte samenvatting

De ijk/zwaartekracht dualiteit, ook gekend als de AdS/CFT correspondentie of
simpelweg holografie, relateert een kwantumvelden theorie aan een theorie van
kwantumzwaartekracht in één dimensie hoger. Wanneer de ene theorie sterke
interacties bevat en daardoor bijzonder moeilijk te bestuderen is, zal de andere
theorie zwak gekoppeld zijn. In deze thesis bestuderen we verschillende fysische
fenomenen in sterk interagerende kwantumveldentheorieën door gebruik te maken
van hun duale gravitationele representatie.

Nadat we in het eerste deel van deze thesis de ijk/zwaartekracht dualiteit ingeleid
hebben, bestuderen we in het tweede deel verschillende aspecten van niet conforme
holografie. We construeren nieuwe oplossingen van type II superzwaartekracht die
de gravitationele vervorming, veroorzaakt door een stapel Dp-branen, 1≤ p ≤ 6,
met een sferisch wereldvolume, beschrijven. Deze oplossingen zijn holografisch
duaal aan maximaal supersymmetrische Yang-Mills (SYM) theorie op een (p+ 1)-
dimensionale sfeer, Sp+1. De eindige grootte van de sfeer fungeert als een lage
energie cut-off in de ijktheorie. In de duale theorie is deze cut-off gerealiseerd als
een gladde afkapping van de geometrie. Bij hoge energieën speelt de grootte van de
sfeer geen rol en bijgevolg benaderen onze oplossingen in dit regime de welgekende
superzwaartekracht oplossingen die de regio dicht bij de horizon, gecreëerd door
vlakke Dp-branen, beschrijven. Met behulp van deze oplossingen kunnen we
holografisch de vrije energie en de vacuüm verwachtingswaarde van 1/2-BPS Wilson
lussen berekenen. Dankzij de techniek van supersymmetrische lokalisatie kunnen
we dezelfde berekening ook uitvoeren in de sterk interagerende duale ijktheorieën.
Voor alle waarden van p vinden we uitstekende overeenkomst tussen de resultaten.
Dit is een erg niet triviale test van holografie buiten het conforme regime.

In deel III bestuderen we een klasse van AdSp oplossingen van type II superzwaar-
tekracht die de IR dynamica van p-branen gewikkeld rond een Riemann oppervlak
beschrijven. Zulke oplossingen zijn geclassificeerd door oplossingen van de Liouville
vergelijking. Reguliere oplossingen van deze vergelijking resulteren in welgekende
superzwaartekracht oplossingen die branen gewikkeld rond een glad Riemann
oppervlak, met een metriek met constante kromming, beschrijven. We tonen aan
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vi BEKNOPTE SAMENVATTING

dat singuliere oplossingen van de Liouville vergelijking ook een fysische interpretatie
hebben als expliciete punt-bronnen van branen op het Riemann oppervlak. Deze
zwaartekracht oplossingen zijn duaal aan sterk interagerende (p− 1)-dimensionale
kwantumveldentheorieën die verkregen kunnen worden als het IR vast punt van
een renormalisatie groep stroom vertrekkende van een (p+1)-dimensionale theorie.
Deze theorieën zijn sterk gekoppeld en extreem moeilijk te bestuderen zijn met
puur veldtheoretische methodes. We bestuderen de details van deze dualiteit door
ons toe te leggen op het voorbeeld van N = 1 superconforme veldentheorieën van
de S klasse die ontstaan als de lage energie limiet van M5-branen gewikkeld rond
een Riemann oppervlak. We presenteren de expliciete duale AdS5 oplossingen en
testen de holografische dualiteit door de gelijkheid van de ’t Hooft anomalieën, de
dimensie van de conforme variëteit en de conforme dimensies van verschillende
operatoren aan beide zijden van de dualiteit aan te tonen.
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Chapter 1

Introduction

Quantum field theories (QFTs), and in particular gauge theories, play an extremely
important role in theoretical particle and condensed matter physics. Apart from
gravity they describe all the fundamental forces of nature. However, in all but the
simplest cases, exact calculations are impossible. To make progress, the traditional
tool is perturbation theory. The idea behind this technique is to consider an
expansion in the coupling constants around a simple theory. This technique works
extremely well for many theories. Some theories, however, have large coupling
constants, in which case one cannot obtain good results by truncating the theory
after a few orders in the perturbation. Such QFTs are called strongly coupled.

1.1 Strongly coupled field theories

As an example, consider the strong nuclear force, the interaction that bind the
quarks into hadrons, despite their electromagnetic repulsion. At very high energies
this force becomes weakly coupled, the theory is asymptotically free, so we can use
perturbation theory to predict scattering amplitudes for particle accelerators. This
method works extremely well and has been corroborated to incredible accuracy in
particle accelerators such as the LHC at CERN. However, the interaction strength of
this force depends heavily on the length or energy scale at which interactions take
place. This behavior is encoded in the renormalization group flow (RG flow) and
it turns out that the strong force at low energies becomes strongly coupled. From
experiments it is evident that in this regime quarks are always bound into hadrons
and never appear solitary. From a theoretical point of view, an understanding of
this phenomenon remains elusive. Further examples of strongly coupled systems
are abundant in condensed matter physics and include ultra-cold Fermi gases and
cuprate high-temperature superconductors. To study such systems, new tools are
needed.

1



2 INTRODUCTION

Even if the interaction strength is weak and perturbation theory gives good
results, we run into problems. The method of perturbation theory is conceptually
straightforward but as we want to compute higher and higher order effects it quickly
becomes cumbersome. Furthermore, it is well-known that this approach does not
capture all the relevant effects. Non-perturbative effects, such as instantons, arising
from non-trivial solutions to the equations of motion are typically exponentially
suppressed. Such effects are completely missed in a perturbative approach. Using
only perturbation theory we would never see the tunneling of a quantum mechanical
particle!

The task to understand strongly coupled gauge theories seems daunting. We will
have to resum all terms in the perturbative expansion and on top of that also include
all non-perturbative effects. Understanding this strongly coupled regime in quantum
field theory remains a very important challenge. However, not all is lost. Throughout
the last decades, substantial progress has been made to understand aspects of this
problem. One approach is to use numerical techniques, in particular lattice Monte
Carlo simulations. In lattice QCD for example this has been used successfully to
compute for example the spectrum of light hadronic particles [90] or to compute
hadron decay constants [13]. However, these simulations are computationally very
expensive and due to the sign problem1 of limited use for strongly interacting many-
body systems. Apart from these numerical methods, various analytic techniques
have evolved and many complementary tools have been developed.

1.2 Supersymmetric localization

Certain observables, for example specific Wilson loops, can be computed exactly
using supersymmetric localization [243]. What makes these examples more
tractable is the adjective supersymmetric. This additional symmetry describes
a relation between the bosonic and fermionic degrees of freedom in the theory and
often implies that certain contribution from the bosons cancel against contributions
from the fermions. The part that remains might then be (a lot) easier to compute.
Although this method does not work for all observables, it does provide the full
non-perturbative answer for those it can be applied to.

Our world might not be supersymmetric but, nonetheless, important lessons can
be learned by analyzing supersymmetric theories. Many of the characteristic
phenomena observed in supersymmetric theories are believed to hold in much larger
generality. The study of supersymmetric field theories can offer us a promising path

1The sign problem is a problem arising when numerically evaluation highly oscillatory integrals, such
as path integrals in quantum field theory. It poses one of the major limitations in numerical many-body
physics. See [1] for a review.
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to enter in the largely unexplored world of non-perturbative and strongly coupled
phenomena in quantum field theory.

1.3 The power of dualities

Another important strategy that has been pursued to learn more about strongly
coupled theories is inspired by various dualities. In the most interesting cases, there
exists a strongly coupled regime in the gauge theory parameter space in which
there is a hidden weakly coupled, perturbative description which can be recovered
by introducing a suitable new set of field variables. Whenever this occurs, we might
be able to obtain non-trivial information about a strongly coupled gauge theory by
studying a dual weakly coupled formulation. We can divide such dualities roughly
in two classes: IR dualities and UV dualities. An IR duality arises as an equivalence
of certain low energy effective actions, where the UV physics might be completely
different. This type of dualities are omnipresent when considering RG flows towards
an IR fixed point. The second class of dualities is much more dramatic and states
that the dual theories are completely equivalent up to arbitrarily high energies.

The idea behind the first class of dualities is most easily described for theories which
have a low energy description in terms of an abelian gauge field A, coupled to
charged matter fields q. The effective action S[A, q;τIR] for this theory will depend
on the effective IR coupling constant τIR. Due to the well-known phenomenon of
electro-magnetic duality we can represent the theory at strong coupling by a dual
action S[A′, q′,τ′IR] that depends on a dual abelian gauge field A′ which is related
to A through the following relation

F ′µν =
1
2
εµνρσFρσ . (1.1)

The relation between the couplings is then given by

τ′IR = −
1
τIR

, (1.2)

therefore, we see that the dual theory is weakly coupled. The relation between q
and q′ in general is not so simple. Very often the dual matter fields are related to
solitons, localized particle-like excitations, such as magnetic monopoles for example,
in the original theory. Such solitons are usually very heavy at weak coupling but may
become light at strong coupling and can be identified with the dual fundamental
particles.

For other theories there exist even deeper dualities, relating full UV quantum field
theories. Such dualities between QFTs or string theories are often referred to as
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S-dualities. The earliest examples ( [112,190], and further refined in [200,252])
conjecture that N = 4 super Yang-Mills (SYM) with gauge group G and coupling τ
is completely equivalent to the N = 4 SYM with gauge group LG and coupling −1

nGτ
,

where LG is the Langlands dual of the original gauge group and nG is the lacing
number of the Lie algebra corresponding to G. This duality is very powerful and has
survived an extensive series of tests [236]. In [101] this type of dualities has been
substantially generalized to apply to a large class of N = 2 supersymmetric gauge
theories giving rise to a completely new strongly coupled class of non-Lagrangian
gauge theories known as class S. Finally, for N = 1 theories a wide range of IR
dualities has been discovered, which collectively go under the name of Seiberg
dualities [224].

1.4 The gauge/gravity correspondence

Another particular set of dualities, especially relevant for my work, are gauge/gravity
dualities. The assertion behind this type of dualities is that hidden within every non-
abelian gauge theory, with strong or weak coupling, there is a theory of quantum
gravity. This duality is rather different from the other ones considered so far in
that it relates a quantum field theory to a theory of gravity. As it turns out this
gravity theory does not even live in the same number of spacetime dimensions.
In some cases, where the duality is most powerful, it represents the equivalence
between a strongly coupled gauge theory and a weakly coupled supergravity theory.
The original formulation of this duality relates N = 4 SU(N) SYM at large N with
type IIB string theory in AdS5 × S5, for this reason it is also known as the AdS/CFT
correspondence. Although at present there is no rigorous proof for this conjecture,
it has withstood impressive quantitative checks and continues to improve our
understanding of strongly coupled QFTs as well as quantum gravity.

When little or no supersymmetry is present it is very hard to perform such tests.
However, using the tools of supersymmetric localization, we are now able to compute
various supersymmetric observables such as partition functions and Wilson loop
expectation values exactly which open the way to perform more precision tests
of the gauge/gravity duality. Whenever we know the dual supergravity or string
theory description we will be able to compare various observables holographically.
These exact results can then be used to study the behavior and phase structure
of the corresponding gauge theories as a function of the ’t Hooft coupling, see
for example [216,218,251]. This correspondence can and has given many hints
leading to the discovery of new strongly coupled quantum field theories. The most
striking example is without a doubt the six dimensional N = (2, 0) theory which was
conjectured to exist from M-theory [226,246,248] as the worldvolume theory on a
stack of coincident M5-branes. This theory has attracted a great deal of attention
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over the last two decades but remains largely uncharted. Nevertheless, the mere
existence of this theory leads to a plethora of highly non-trivial predictions. For
example, by studying this theory on manifolds of the form M4 ×Σ, where Σ is a
Riemann surface, we can obtain an effective IR description as a four-dimensional
quantum field theories on M4. Playing with the choice of Σ and the choice of Lie
algebra g one obtains a large new set of four dimensional strongly coupled gauge
theories. These gauge theories are exactly the theories of class S discussed above.
Using this new geometric intuition we have a new tool to study these theories and
various dualities between them. These discoveries subsequently led to a whole new
set of dualities such as the AGT duality. More generally, we are not restricted to
two-manifolds but we can wrap this six-dimensional theory on a whole set of other
manifolds and as such obtain a whole new set of theories in dimensions d < 6.
These theories are extremely difficult to study using field theoretical methods alone,
and often, the only way to access them is through holography.

There are many cases where strongly coupled supersymmetric field theories are
known to exist but no Lagrangian of any form is known. The existence of these
theories on itself is extremely interesting and as we have seen from the example
of the 6d N = (2,0) theory they can be used as building blocks to construct new
quantum field theories. The gauge/gravity duality gives us a new tool, often the
only one, to study these theories in more detail and provides us with a new vantage
point to study the space of possible (supersymmetric) quantum field theories.

1.5 What’s in this thesis

The goal of this thesis is to further investigate the gauge/gravity duality and
explore its range of validity, test it and use it to probe the space of consistent
QFTs. Understanding this duality better will allow us to compute a larger range of
observables in a larger class of (possibly strongly coupled) quantum field theories
and ultimately can provide us with a consistent definition of quantum gravity
through quantum field theory.

This thesis will be organized in three parts:

I Introduction to the gauge/gravity correspondence.

II Spherical branes, localization and holography.

III Wrapped branes and punctured horizons.

In the first part we introduce the gauge/gravity duality and the necessary tools
to successfully apply it in the following parts. The best understood class of
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gauge/gravity dualities describe an equivalence between a conformal field theory
(CFT) and a theory of gravity in anti-de Sitter space. Before defining the duality
in detail in Chapter 5 we will review various aspects of the two sides separately,
starting with CFTs in Chapter 2, followed by a discussion of anti-de Sitter space in
Chapter 3. To introduce this duality in full detail would take a book on its own so
we will skip many interesting topics and focus mainly on the objects that will appear
later in this thesis. The original conjecture of the gauge/gravity correspondence
originated from string theory and many more concrete examples were provided by
string and M-theory. In Chapter 4 we review some aspects of these theories relevant
to this thesis.

In part II (which contains material from [50,52]) we will discuss the extension of
the holographic correspondence to non-conformal field theories and develop an
explicit model realizing such a duality. We construct ten-dimensional supergravity
solutions with sixteen preserved supercharges which describe the back-reaction
of Dp-branes with a spherical worldvolume. These solutions are holographically
dual to (p+ 1)-dimensional maximally supersymmetric Yang-Mills (SYM) theory
on a (p+ 1)-dimensional sphere, Sp+1. The finite size of the sphere acts as an IR
cut-off for the gauge theory which is manifested in the supergravity as a smooth
cap-off of the geometry. At high energies, the size of the sphere plays no role and
our solutions asymptote to the near-horizon limit of flat Dp-branes. These spherical
branes provide us with an ideal testbed to study the holographic correspondence
away from conformality. Once we have constructed the dual pairs, we carefully
compute the free energies and supersymmetric Wilson loop expectation values of
maximal super Yang-Mills theory on Sp+1 using supersymmetric localization and
successfully compare with the results obtained from the supergravity solutions. In
this way we provide a non-trivial precision test of holography in a non-conformal
setting.

Finally, in part III of this thesis, which can be read independently of part II, we use
holography to study a set of strongly coupled (p− 1)-dimensional CFTs realized as
the low energy dynamics of a Dp-brane wrapped on a punctured Riemann surface.
In [101], Gaiotto identified a large class of four-dimensional N = 2 superconformal
field theories (SCFTs) by wrapping M5-branes on a punctured Riemann surface
and together with Maldacena constructed the holographically dual geometry in
eleven-dimensional supergravity [102]. This class of SCFTs was dubbed class S
and its study has led to many new developments in supersymmetric quantum field
theory. The N = 1 generalization of this class of theories is even richer but far less
explored. In [51] we study this enlarged class of theories from the viewpoint of
seven-dimensional supergravity. The branes wrapped on the punctured Riemann
surface are realized in seven dimensions as solutions of the form AdS5×Σg,ξi

where
Σg,ξi

is a Riemann surface of genus g with a number of conical singularities with
opening angles ξi specifying the type of singularity. We show that the supergravity
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BPS equations reduce to a single partial differential equation (PDE) – the Liouville
equation for the conformal factor of the metric – and that all other fields are
determined in terms of this conformal factor. We subsequently lift these solutions
up to eleven dimensions and compute the conformal anomalies and the dimensions
of various operators. By integrating the anomaly polynomial over the punctured
Riemann surface and by explicitly constructing the dual quiver gauge theories
we can reproduce the quantities obtained from our supergravity analysis. We
furthermore enlarged the scope of this project and studied the low energy dynamics
of M2-,D3-,and D4-D8-branes wrapped around a singular Riemann surface and
constructed the corresponding supergravity solutions. This will provide a window
to study new interacting SCFTs in d = 1, 2 and 3 dimensions.

The explorations made in this thesis open up many new and interesting questions
which will be further discussed in the concluding Chapters 10, 16 and 17.





Part I

Introduction to the
gauge/gravity correspondence





Chapter 2

Conformal field theory

Conformal field theories are ubiquitous in physics. They generically appear when
considering the long distance limit of physical systems. For this reason they are
present in a wide variety of physical systems. More abstractly, we can think of
UV complete QFTs as an RG flow between two CFTs. Studying CFTs allows us
to classify the possible end points of RG flows and thus understand the space of
possible phases of QFTs.

Figure 2.1: A UV complete QFT can be represented as an RG flow starting at a CFT
fixed point in the UV towards a second fixed point in the IR.

CFTs can arise as the large distance limit of continuum QFTs but more generally
they arise from a large variety of microscopic systems [211]. An example is the
three-dimensional Ising model, which is a lattice of classical spins with nearest-
neighbor interactions. In the IR this system at its critical temperature is described
by a CFT, and in fact it is described by the same IR CFT as the φ4 scalar field theory.
Even more surprisingly the Ising CFT appears as well when describing the critical
point on the phase diagram of water (and various other liquids) and the critical
point of a uniaxial magnet. All these theories are described by the same IR CFT.

11
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This phenomenon of IR equivalences is called critical universality and is another
reason why CFTs are so interesting to study.

Figure 2.2: One CFT can describe the IR dynamics of very different microscopic
theories. This phenomenon is called critical universality.

CFTs are quantum field theories invariant under the conformal group. We will
start this lightning review by introducing the conformal group and then discuss the
implications this additional symmetry has on the dynamics of a QFT.

2.1 The conformal group and algebra

The conformal group of d-dimensional spacetime is the set of invertible maps
x → x ′ which map the line element to itself

x → x ′ , ηµνdxµdxν→ ηµνdx ′µdx ′ν = Ω(x)2ηµνdxµdxν , (2.1)

up to an arbitrary function Ω(x) where µ,ν = 0, . . . d − 1 and ηµν is the Minkowski
metric. Such transformations include:

• Translations, x ′µ = xµ + aµ along a constant vector aµ,

• Lorentz transformations, x ′µ = {Λµ}νxν with Λ ∈ SO(1, d − 1),

• Dilatations or scale transformations, x ′µ = λxµ,

• Special conformal transformations, x ′µ = xµ−bµ x2

1−2bµ xµ+b2 x2 .

The generators of these symmetries are given by respectively Pµ for translations,
Jµν for Lorentz transformations, D for dilatations and Kµ for special conformal
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transformations. These generators satisfy the following commutation relations:

[Jµν, Jρσ] =− iηµρJνσ ± permutations , [Jµν, Pρ] =− i(ηµρPν −ηνρPµ) ,

[Jµν, Kρ] =− i(ηµρKν −ηνρKµ) , [Jµν, D] =0 , (2.2)

[D, Pµ] =iPµ , [D, Kµ] =− iKµ ,

[Pµ, Kν] =2i
�

Jµν −ηµνD
�

,

with all other commutators vanishing. The first line of relations is familiar and
represent the algebra of the usual Poincaré symmetries. The remaining lines
complete it to form the full conformal algebra. This algebra is isomorphic so(d, 2)1

and can be brought to the standard form of the so(d, 2) algebra by defining the
generators Lab, a, b = 0, . . . d + 1

Lµν =Jµν , Lµ(d) =
1
2
(Kµ − Pµ) , (2.4)

L(d+1)d =D , Lµ(d+1) =
1
2
(Kµ + Pµ) . (2.5)

In this thesis we will also encounter Euclidean CFTs, in this case the conformal
group takes the form SO(d + 1, 1). Up to some well-placed i’s and minus signs, the
commutation relations for the generators of the Euclidean conformal algebra are
identical to (2.2)

In the presence of supersymmetry the conformal group is enhanced to a supergroup,
the superconformal group. This supergroup is obtained by adding fermionic
supercharges Qa and the R-symmetries rotating them to the algebra. Additionally,
we need to add a so-called superconformal charges Sa which are required to close
the algebra. The full classification of superconformal algebras was performed
in [191] and several examples can be found in Appendix K for various dimensions
and numbers of supercharges. Schematically, the commutation relations for the

1There is an extra discrete symmetry that acts as a conformal transformation, namely the inversion

x ′µ =
xµ

x2
, ηµνdx ′µdx ′ν = x2ηµνdxµdxν . (2.3)

Including this transformation enlarges the conformal group to O(d, 2).
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superconformal algebra (in addition to (2.2)) are given by

[D,Q] =
i
2

Q , [D, S] =
−i
2

S , [K ,Q]∼S ,

[P, S]∼ Q , {Q,Q} ∼ P , {S, S} ∼K , (2.6)

{Q, S} ∼ M + D+ R .

The exact form of the commutation relations depends on the dimension and R-
symmetry of the theory under consideration.

2.2 Conformal quantum field theories

In a Poincaré invariant quantum field theory particles are identified by their mass
and Lorentz quantum numbers, corresponding to the Casimir operators of the
Poincaré algebra. When dilatations and special conformal transformations are
added, the mass operator PµPµ does no longer commute with all operators in the
spectrum. If a representation of the conformal group contains a state with a given
mass or energy, it will contain states with all energies by applying dilatations. For
this reason the usual machinery of the S-matrix can no longer be applied and we
need a new way of labeling states.

In a Lorentz invariant QFT, local operators at the origin naturally fall into
representations of the Lorentz group SO(1, d − 1). In a scale-invariant theory
it is also useful to diagonalize the dilatation operator acting on operators at the
origin

[D,O(0)] =∆O(0) . (2.7)

We will call the eigenvalue of the dilatation operator,∆, the conformal dimension of
a field. From the commutation relations (2.2) we see that P and K act as raising and
lowering operators for the eigenvalues of D. Because in any sensible physical theory
dimensions are bounded from below every operator will be annihilated by acting on
it with Kµ a finite number of times. The lowest dimensional operators, which are
subsequently annihilated by a single application of Kµ are called primary operators.
Such primary operators are classified according to their conformal dimension and
Lorentz quantum numbers. Given a primary operator we can obtain operators
of higher dimension, so-called descendants, by successively applying the raising
operator Pµ. Since the conformal algebra is a subalgebra of the superconformal
algebra, representations of the superconformal algebra will split up in several
representations of the conformal algebra. Generically, a superconformal primary
(a field annihilated by both K and S) will decompose in several primaries of the
conformal algebra which arise by applying Q to the superconformal primary.
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Similar to usual spacetime symmetries, we can construct a conserved current for
every conformal transformation

Jµ = Tµνδxν , (2.8)

where δxµ represents an infinitesimal coordinate transformation. Conservation of
this current applied to translations implies conservation of the energy-momentum
tensor, ∂ µTµν = 0. The Lorentz symmetry of the theory forces the energy-
momentum tensor to be symmetric. The current for dilatations Jµ = Tµνxν on the
other hand is conserved if

∂ µ(Tµνxν) = Tνν = 0 . (2.9)

Scale invariance requires the energy-momentum tensor to be traceless. Finally, it is
easily seen that the current for special conformal transformations is automatically
conserved if the above criteria hold.

Conformal invariance gives rise to many constraints on a quantum field theory. It
has been shown [170] that the Green’s functions can be analytically continued from
Euclidean to Lorentzian signature and that the Hilbert space of the resulting theory
carries a unitary representation of the conformal group. The constraints we discuss
below thus hold both in Lorentzian and Euclidean theories.

The Ward identities of the conformal group strongly constrain the correlation
functions. The tracelessness of the energy-momentum tensor requires that all
one-point functions vanish

〈O(x)〉= 0 . (2.10)

Because of translation and Lorentz invariance, two point functions can only depend
on the distance between the two points, |x− y|. Furthermore, demanding covariance
on dilatations requires them to take the form

〈O1(x)O2(y)〉=
cδ∆1,∆2

|x − y|2∆1
(2.11)

where c is a constant determined by normalization. By also demanding covariance
under the special conformal transformations one can fully fix the three-point
functions to be

〈O1(x1)O2(x2)O3(x3)〉=

f123

|x1 − x2|∆1+∆2−∆3 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1
. (2.12)

Similar expressions can be found for non-scalar operators. Using the operator
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product expansion (OPE) one can reduce all higher-point functions to sums of two-
and three-point functions [241,242]. Therefore, once the full spectrum of operators,
(Oi ,∆i), and the full set of three point coefficients fi jk is known all higher point
functions are fully determined in terms of these data. The field content of any CFT
includes a stress tensor Tµν, with dimension ∆ = d. Similarly, whenever the theory
possesses a global symmetry, there is a conserved current with dimension∆ = d−1.
The scaling dimensions of the other fields are not fixed by conformal symmetry and
often receive quantum corrections.

The hermiticity of the generators of the conformal algebra imply certain unitarity
bounds on the possible spectra of conformal field theories. For example, in a d-
dimensional CFT the dimension of a scalar field is restricted to be either ∆ = 0,
which is the identity operator, or ∆≥ d−2

2 . When this bound is satisfied the scalar
field is free. Similar bounds can be found for spin-s traceless symmetric field,
∆ ≥ s + d − 2 [189].2 Various further bounds on the dimension of operators
follow from energy positivity [131], dispersion relations [161,162] and causality
[126,171].

2.3 The Weyl anomaly

We have seen above that in a classical CFT, the trace of the stress tensor vanishes
when the equations of motion are satisfied. Indeed, by definition the action of a
CFT is invariant under such transformations. To make this more concrete consider
an infinitesimal Weyl transformation,

gµν→ (1+ 2ε)gµν , Φa → (1− ε∆a)Φa , (2.13)

where ∆a is the conformal dimension of the field Φa. The change in the action S is

δS =

∫

dd x

�

2
δS
δgµν

gµν −
∑

a

δS
δΦa

∆aΦa

�

ε(x)

=

∫

dd x
p

−gTµνgµν .

(2.14)

In the second line we have used the equation of motion for Φa and the definition of
the energy-momentum tensor. In a CFT this quantity vanishes, implying that

Tµνgµν = Tµµ = 0 . (2.15)

2These bounds can be obtained by demanding that the norm of φ, Pµφ and PµPµφ are positive.
Similarly, for spinning operators one can obtain unitarity bounds by demanding that the norm of all
descendants should be positive.
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In a QFT, the vanishing of the trace of the energy-momentum tensor is encoded
in the Ward identity for dilatations. Upon quantization the conformal invariance
generically becomes anomalous. If any coupling has a non-vanishing β-function
then scale invariance is broken by the renormalization scale. For example, 4d Yang-
Mills theory coupled to massless charged particles is classically a CFT. However, in
the quantum theory one finds (see [206] for example)

〈Tµµ 〉=
β(e)
2e3

FµνFµν , (2.16)

where β(e) is the β-function for the gauge coupling e and Fµν is the background
value of the gauge field strength.

On the other hand, even when conformal invariance is not broken upon quantization,
〈Tµµ 〉 generically does not vanish when the theory is put on a curved manifold. In
this case the non-vanishing of the trace of the energy-momentum tensor is known as
the Weyl anomaly. By dimensional analysis one can immediately see that the Weyl
anomaly has to vanish in odd dimensions. In even dimensions, the Weyl anomaly is
determined by solving the Wess-Zumino consistency condition [240] which states
that the commutator of two Weyl transformations acting on the generating function
has to vanish. On flat space we have 〈Tµµ 〉= 0, while in curved space we find [86]

〈Tµµ 〉= aEd +
∑

n

cn In , (2.17)

where Ed is the Euler class which can be integrated to obtain the Euler characteristic
of the curved manifold. The In are contractions of products of Riemann tensors
and the Laplacian that transform homogeneously under conformal transformations,
i.e. In→ Ω−d In as gµν→ Ω2 gµν. The anomaly is then parameterized by the theory
dependent coefficients a and cn.

For example, in two dimensions E2 is proportional to the Ricci scalar, R, and there
are no In. In this case, the Weyl anomaly is given by

〈Tµµ 〉=
aR
4π

, (2.18)

where c = −6a is the central charge of the 2d CFT. c roughly counts the degrees of
freedom of the CFT and decreases monotonically along the RG flow [254] between
two fixed points. Similarly in four dimensions it was shown in [162] that a decreases
along the RG flow. Such monotonicity arguments are very useful for ruling out
possible IR fixed point as end points of an RG flow.



Chapter 3

Anti-de Sitter space

The next acronym we need to discuss is AdS, or anti-de Sitter space. In particular
we want to study gravity in an Anti-de Sitter space. Anti-de Sitter space is a solution
to Einstein’s equations with a negative cosmological constant Λ. It is a maximally
symmetric spacetime, meaning that in any coordinate system its Riemann curvature
tensor is given in terms of the metric by

Rµνρσ = −
1

L2
AdS

(gµρ gνσ − gµσgνρ) , Λ= −
d(d − 1)

2L2
AdS

(3.1)

where d is the space dimension and LAdS is the characteristic length scale of the
anti-de Sitter space.

3.1 Global coordinates

There are many different ways of representing Anti-de Sitter space. Depending
on the situation one representation might be beneficial over another. A first
representation, which makes most of the global structure and symmetries manifest
can be obtained by considering the embedding of AdSd+1 in (d + 2)-dimensional
flat space

ds2
d+2 = ηMN dX M dX N , ηMN = diag(−1, 1, . . . , 1,−1) , (3.2)

where the indices M and N run from 0 to d + 1. Anti-de Sitter space is defined as
the (d + 1)-dimensional hyperboloid,

ηMN X M X N = −L2
AdS . (3.3)

18
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The symmetries of this space are given by the rotations of flat space with signature
defined by ηMN . By construction, this space has isometry group SO(d, 2), which we
recognize as the conformal group in d dimensions. The generators of this group are

LMN = XM∂N − XN∂M . (3.4)

We can also give an intrinsic definition using the d + 1 coordinates, (t,ρ,θ a),

Figure 3.1: AdS2 embedded in three-dimensional space.

without making reference to the specific embedding. These coordinates are called
global coordinates and are defined as

X 0 =LAdS coshρ cos t , X d+1 = LAdS coshρ sin t ,

X i =LAdS sinhρωi ,
(3.5)

where i runs from 1 to d and the ωi represent the standard embedding of the unit
(d − 1)-dimensional sphere, with coordinates θ a, in d-dimensional flat space, given
by the constraint

d
∑

i=1

�

ωi
�2
= 1 . (3.6)

The resulting induced metric on the hyperboloid is given by

ds2 = L2
AdS

�

− cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2
d−1

�

, (3.7)

where dΩ2
d−1 is the metric on Sd−1. By taking ρ ≥ 0 and 0≤ t < 2π, we cover the

entire hyperboloid once. However, since the t direction has the topology of an S1,
this space however contains closed timelike curves. To restore the causality we
can simply unwrap the S1, i.e. take −∞< t <∞ in (3.7) to obtain the universal
covering of the hyperboloid without closed timelike curves. This coordinate system
can teach us several interesting facts about the geometry of anti de-Sitter space.
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For example, we can see that any light ray will reach spatial infinity in finite time t.
Indeed, if we consider a light ray at constant position on the (d − 1)-sphere we find

∆t = LAdS

∫

dt = LAdS

∫ ∞

0

dρ
coshρ

=
πLAdS

2
. (3.8)

This has the important implication that all observers in AdS space can communicate
with each other from any point in space within finite time.

Notice that when ρ→∞, the metric blows up. The locus ρ =∞ is strictly not a
part of AdS. However, it is possible to define a conformal compactification of AdS
including this point. ρ =∞ is called a conformal boundary.1

3.2 Poincaré coordinates

Another useful set of coordinates we will often encounter in this thesis are called
Poincaré coordinates (z, xα). They do not cover all of AdS but have the advantage
that the metric in these coordinates is conformal to flat space. More precisely, the
metric in these coordinates is given by

ds2 =
L2

AdS

z2

�

dz2 +ηabdxadx b
�

, (3.9)

where a, b run from 1 to d − 1 and η= diag(−1, 1, · · · , 1) and z > 0. Alternatively
this system of coordinates can be obtained from the embedding space coordinates
as

X 0 =
LAdSx0

z
, X d =

L2
AdS − z2 −ηab xa x b

2z
, (3.10)

X a =
LAdSxa

z
, X d+1 =

L2
AdS + z2 +ηab xa x b

2z
. (3.11)

From this one can see that indeed the Poincaré coordinates only cover the part of
AdS for which X d + X d+1 > 0. This part is called the Poincaré patch. The limit
z→ 0 corresponds to the conformal boundary of AdS while the limit z→∞ is a
horizon. At this point the killing vector ∂ /∂ t vanishes. This point however is not
a true singularity and the metric can be analytically continued past the horizon.2

1More precisely, the conformal boundary is defined as the conformal equivalence class of metrics
ds̃2 = e−2ρds2 with boundary Rd−1,1 at ρ =∞.

2This is clear by going back to the global coordinate system for example.
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There are many equivalent forms of the metric in the Poincaré patch and we will
often switch between different forms. They all differ by a redefinition of the radial
coordinate z.

3.3 Conformal structure of AdS

Particularly interesting for our purposes is the relation between the conformal
compactification of AdS and flat space. It is well-known that Euclidean flat space
can be compactified to the d-sphere, Sd by adding a point at infinity. On the other
hand, Euclidean AdSd+1, which is simply the hyperbolic space, can be conformally
mapped to the (d+1)-dimensional disk. Therefore the boundary of the compactified
Euclidean AdS space is the compactified Euclidean plane.

Similarly, in Lorentzian signature, by changing coordinates sinhρ = tanθ of AdSd+1

in global coordinates we obtain

ds2 =
L2

AdS

cos2 θ

�

−dt2 + dθ 2 + sin2 θdΩ2
d−1

�

, (3.12)

which after a conformal rescaling becomes the metric of the Einstein static universe.
However, it is only half of the Einstein static universe since θ is restricted to the range
[0,π/2) rather then [0,π). The boundary of this space is at θ = π/2 and is given
by R× Sd−1. This is identical to the conformal compactification of d-dimensional
Minkowski space. This identification will play an essential role in the AdS/CFT
correspondence.

3.4 Matter fields in AdS

Often, we want to consider gravity in AdS spaces coupled to various matter fields.
As a first step, which already allows us to describe the most salient features, let us
consider matter fields fluctuating in a fixed AdS background. For simplicity, we will
here only consider a massive scalar field, but similar analyses could be performed
for fields with non-zero spin. The bulk action is given by

S = −
Ld+1

AdS

2

∫

dd+1 x
p

−g
�

gµν∂µφ∂νφ +m2φ2
�

, (3.13)

and the corresponding equations of motion read

zd+1∂ z
�

∂zφ

zd−1

�

+ z2∂ a∂aφ = m2 L2
AdSφ . (3.14)
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Figure 3.2: AdSd+1 can be conformally mapped into one half the Einstein static
universe. This space has boundary R × Sd−1 which is exactly the conformal
compactification of Minkowski space.

The eigenstates of the flat space Laplacian ∂ a∂a are Fourier modes. Therefore, it
will be useful to consider solutions of the form φ(z, x) = φk(z)eika xa

. After inserting
this ansatz, the equations of motion reduce to a Bessel equation for the z dependent
Fourier coefficients

zd+1∂ z
�

∂zφk

zd−1

�

− (z2k2 +m2 L2
AdS)φk = 0 . (3.15)

where k2 = ηabkakb. The exact solutions to this equation are indeed Bessel functions
but we are more interested in the behavior near the conformal boundary z → 0.
Indeed, the dynamics in the bulk of AdS will depend heavily on the specific model
under consideration, while the boundary behavior, in a sense, is universal. In this
limit we can neglect the term z2k2 and to leading order the solutions behave like

φ ∼ φ0z∆+ +φ1z∆− , (3.16)

where ∆± solve the equation

∆(∆− d) = m2 L2
AdS , (3.17)

and are given by ∆± =
d
2 ±

q

d2

4 +m2 L2
AdS. In order for the ∆±’s to be real we

demand that m2 L2
AdS ≥ −

d2

4 . We see that a range of tachyonic masses is allowed.
In Minkowski space this would lead to an instability of the perturbative vacuum.
In AdS space, whenever the mass-squared lies above this bound the free energy of
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the field is bounded from below and no instabilities arise. This bound is called the
Breitenlohner-Freedman (BF) bound [63].

The coefficients φ0,1(x) correspond to linearly independent solutions of the
equations of motion. They are distinguished by the fact that φ1 is not normalizable
near the boundary while the solution corresponding to φ0 is. On the other hand,
φ0 will blow up in the center of the bulk, where φ1 remains regular. Therefore
φ1 will be the key player in holography and will act as a source for a dual CFT
operator.3

3.5 Asymptotically locally AdS spaces

When we consider matter fields coupled to gravity they will back-react on the metric
and we will no longer have an exact AdS space. However, a lot of the machinery
developed for AdS spaces will still be valid. By adding matter to the theory the bulk
of AdS will change but the conformal boundary is a rather robust characteristic of
spaces with a negative cosmological constant. It takes an infinite energy to change
the asymptotics of such spaces. Therefore we will be able to extend the analysis of
pure AdS to the class of asymptotically locally AdS (AlAdS) spaces. In particular
they all have the same conformal boundary.

In Poincaré coordinates this statement implies that the metric of any AlAdS space
near the conformal boundary is of the form

ds2 =
L2

AdS

z2

�

dz2 + gab(z, x)dxadx b
�

, (3.18)

where gab(z, x) is smooth and finite as z → 0. This function can be expanded in
powers of the radial coordinate near the conformal boundary as

gab(z, x) =
∞
∑

n=0

zn g(n)ab (x) . (3.19)

Similarly, the matter fields coupled to gravity can be expanded near the conformal
boundary. This expansion is called the Fefferman-Graham expansion and is
instrumental in defining a precise dictionary for holographically dual observables.

3When the mass is sufficiently small, −d2/4< m2 L2
AdS < −d2/4+1 both modes are admissible. Thus

for these masses there are two possible fall-off behaviors for a scalar wave function. This possibility
was initially overlooked but as pointed out in [159] is necessary to account for certain low dimension
operators in the dual CFT picture.





Chapter 4

Strings, branes and
supergravity

String theory was first developed as a possible theory of the strong nuclear force
before being abandoned in favor of QCD. However, the very properties making it
unsuited to describe the strong force made it a promising candidate for a consistent
theory of quantum gravity. The first string theories were bosonic string theories and
only contained bosons. Later, they developed into superstring theory, which provides
a connection between the bosons and fermions in the theory through supersymmetry.
In the mid 90s, it was realized that the various string theories are all limiting cases
of another, even more fundamental theory, called M-theory [133,247].

4.1 Superstring theory and supergravity

The thesis of string theory is that fundamental particles are not point-like but instead
correspond to tiny one-dimensional strings. The fluctuations of such strings are
quantized, and the fluctuation modes correspond to the different particles in the
theory. The spectrum of fluctuations always includes a spin-2 particle, the graviton,
so string theory automatically includes gravity!

There are five types of supersymmetric string theories, corresponding to the different
ways of implementing supersymmetry: type I, type IIA and type IIB and two
flavors of heterotic string theory, SO(32) and E8× E8. Each of these theories must
be formulated in ten dimensions in order to avoid the presence of a conformal
anomaly, which would render the theory inconsistent.1 The different theories allow
different types of strings and the particles arising at low energies exhibit different

1Formulating the theory in ten dimensions is one way to assure the vanishing of the conformal
anomaly. However, there are many alternatives to construct systems with c = 26. These theories
usually go under the name of non-critical string theories and are an interesting topic on there own.
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+

Figure 4.1: All five string theories are linked to each other by various dualities.
They can all be obtained as a limiting case of an even more fundamental theory
called M-theory.

symmetries. For example, the perturbative spectrum of type I string theory around
flat ten-dimensional Minkowski space contains open and closed strings, while the
other superstring theories only contain closed strings.2

One particularly interesting example is c = 1 string theory which consists of one timelike free boson X 0

together with c = 25 Liouville theory and a b, c ghost system, see for example [30,107,177].
2Of course open strings are also essential ingredients in type II string theory. However, they appear

as non-perturbative objects in string perturbation theory around the vacuum. When one considers
perturbation theory around the background sourced by a D-brane, open strings will appear in the
spectrum.
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String theory contains one dimensionful parameter, namely the string length `s.
Massive string fluctuations have masses of the order 1/`s.3 When we consider the
theory at energies scales small compared to `−1

s , we can ignore all massive modes
and obtain an effective low-energy description by only retaining the massless modes.
The resulting theory is ten-dimensional supergravity. There are multiple variants of
this theory corresponding to the different superstring theories. In this thesis we will
mostly be interested in type IIA and type IIB supergravity theories, both contain
two supercharges. In type IIB these have the same chirality, while in type IIA the
supercharges have opposite chirality. In the low-energy limit these theories contain
the following massless bosonic fields:

• a metric gµν,

• a two-form gauge field, Bµν,

• a scalar field φ, called the dilaton, and

• a collection of n-form gauge field Cn, with n odd (even) in type IIA(B)
supergravity.

In addition they contain a collection of fermionic N = 2 superpartners. In the
second string revolution, it was realized that string theory does not only contain
strings but also a collection of dynamical extended objects called Dp-branes [209].
A Dp-brane is a (p + 1)-dimensional object, p space dimensions and one time,
and is electrically charged under the gauge field Cp+1. Open strings can end on
D-branes, explaining their name, i.e. they provide Dirichlet boundary conditions for
the open strings. The massless open strings moving on a single D-brane constitute
the degrees of freedom of a U(1) gauge theory. When N branes are coincident this
gauge symmetry is enhanced to U(N) under which the endpoints of the strings
transform in the fundamental representation.

4.2 M-theory and eleven-dimensional supergravity

In [247], partly based on observations made in [140], it was realized that at strong
coupling type IIA superstring theory looks like a compactification of an eleven-
dimensional theory on a circle, where the radius of the circle is parameterized by
the string length. Similarly, applying various perturbative and non-perturbative
dualities one can connect all five superstring theories. We are thus led to suspect
that there exists an underlying theory whose various limits of its moduli space

3Often, one uses the Regge slope α′ as the worldsheet coupling parameter of superstring theory. This
parameter, in our conventions, is related to the string length as α′ = `2

s .



28 STRINGS, BRANES AND SUPERGRAVITY

reproduce the different weakly coupled ten-dimensional superstring theories. This
fundamental eleven-dimensional theory is called M-theory.

M-theory 11d supergravity

type IIA string theory 10d type IIA supergravity

small coupling limit

low energy limit

low energy limit

KK reduction on S1

Figure 4.2: A defining characteristic of M-theory is that it reduces to IIA superstring
theory at small coupling. In the low energy limit M-theory reduces to eleven-
dimensional supergravity, which after a KK reduction on a sphere reduces to ten-
dimensional type IIA supergravity.

M-theory is a theory of membranes, which come in two types, M2- and M5-
branes. After compactification to ten dimensions the M2-brane corresponds to the
fundamental string. Similarly, all other branes can be obtained as compactifications
of various configurations of M-branes. In the low-energy limit, M-theory is described
by eleven-dimensional supergravity. This theory contains an eleven-dimensional
metric, a three-form gauge field A3 and a gravitino. The M2-brane is electrically
charged under A3, while M5-branes are electrically charged under a six-form gauge
field A6 defined by dA6 −

1
2 dA3 ∧ A3 = G7 = ?G4 where G4 is the field strength

associated to A3 and ? denotes the eleven-dimensional Hodge dual.

M-theory remains mysterious, we still have no fundamental formulation of it. The
reason for this is that in contrast to the superstring, the M2-brane does not support
perturbation theory. Because of this, the upper left corner in Figure 4.2 remains
largely unknown. However, evidence that interesting dynamics takes place there
arises from all other corners of the diagram. Using their low-energy descriptions,
a bunch of consistency checks have been performed corroborating the relation
between string and M-theory. One notable example is that type IIA string theory
with a D0-brane condensate behaves like a ten-dimensional theory which develops
a further circular dimension with radius scaling with the density of D0-branes [31].
Not a lot is known, but what little is known is powerful enough to lead us to new
and interesting phenomena. In particular the M5-brane is believed to support a
self-dual non-local theory on its worldvolume, known as little string theory. At low
energies this theory is described by the six dimensional (2, 0) theory which will be
a key player in part III of this thesis.



Chapter 5

The gauge/gravity
correspondence

The AdS/CFT correspondence [120, 173, 250] is one of the most active areas of
research in string theory. AdS/CFT stands for anti-de Sitter/conformal field theory,
an expression that’s not particularly elucidating. This correspondence will have a
central role in the remainder of this thesis so let us have a closer look at what it
represents.

AdS/CFT is a particular, and deeply surprising, example of a duality. It relates
two very different theories and at first sight seems obviously wrong. It states that
there is a duality between string theories in a particular background with a (d + 1)-
dimensional anti-de Sitter component and a conformal field theory in d dimensions.
For this difference in dimension, the correspondence is also sometimes dubbed
the holographic correspondence, in analogy with the more familiar holograms
where three-dimensional information is encoded in a two-dimensional screen. This
correspondence was first formulated by Juan Maldacena in 1997 [173], and is
generally thought to be the single most important result in string theory in the last
two decades.

In this chapter we will mainly discuss the best understood examples of the
correspondence. In the original example the gravitational side consists of ten-
dimensional type IIB string theory in a particular geometry, namely AdS5 × S5. The
QFT on the other hand is the unique1 four dimensional theory with the largest
possible amount of supersymmetry, namely N = 4 super Yang-Mills theory. The
duality has been extended to many other cases, and AdS/CFT is more generally
referred to as the gauge/gravity correspondence. Formally, this is the statement
that gravitational theories in (d + 1) dimensions can be completely equivalent to
non-gravitational quantum field theories in d dimensions. The class of dual pairs

1Up to the choice of gauge group and complex coupling.

29
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we will focus on in this chapter is the set of gravity theories in asymptotically locally
AdS spaces dual to conformal field theories. However, the duality is much more
general then only CFTs and AdS spaces. As we will see in the following parts of
this thesis, it can be used to describe non-conformal field theories as well as RG
flows in QFTs. So far there is no formal mathematical proof of this relationship.
However, a large number of checks have been performed. These checks involve
two calculations, using different techniques and methods, of quantities related by
the holographic dictionary. Continual agreement of these calculations constitutes
strong evidence for the correspondence.

In this chapter I will try to answer some very basic questions about the duality.
How can a QFT be a theory of quantum gravity? When is this gravity theory
classical? And hopefully, along the way I will convince you that it is interesting.
For this introduction I have liberally borrowed ideas and arguments from various
review articles including [8,134,180,193,210,253] complemented with my own
imagination.

5.1 Holographic hints

The assertion that hidden within every non-abelian gauge theory, with strong or
weak interactions, there is a theory of quantum gravity at first seems absurd. We
will start this short review with some facts, often using the benefit of hindsight,
hinting that this assertion might not be so unreasonable after all. These hints come
from:

1. The Weinberg-Witten theorem

2. The holographic principle

3. RG flows

4. Large N gauge theories

5.1.1 The Weinberg-Witten theorem

A theory of quantum gravity is a quantum theory with a dynamical metric. This
means that the spectrum of particles contains a spin-2 massless particle which
we call the graviton. For the gauge/gravity correspondence to be true we should
thus be able to construct a composite object made out of gauge theory degrees of
freedom representing the graviton. However this seems to go directly against the
Weinberg-Witten no-go theorem [239]:
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In a QFT with a Poincaré-covariant stress-energy tensor Tµν, any particle, elementary
or composite, with spin j > 1 which carries momentum (i.e. Pµ =

∫

dd x T0µ 6= 0) is
forbidden.

This theorem immediately seems to contradict the assertion of the gauge/gravity
correspondence. However, it is better looked at as a sign indicating that we are
not looking in the right place. Indeed, in hindsight the loophole is evident. The
graviton does not need to live in the same spacetime as the QFT!

5.1.2 The holographic principle

A further hint that the gravity theory might not live in the same spacetime comes
from black hole physics. More precisely, from the holographic principle [?,228,230].
Naively, the degrees of freedom both in a theory of gravity as well as in a quantum
field theory should grow as the volume of the space they live in. However, as
pointed out by ’t Hooft and Susskind, this is not the case. Let us illustrate this by
counting states.

Consider a region of space Γ , with volume V, and for simplicity let us assume it is a
sphere. Now let us compare for various systems the space of states describing an
arbitrary system that fits in Γ with the region outside Γ empty. As a first example
consider a three-dimensional lattice of spins with lattice spacing a. The number of
spins in this system is V/a3 and the number of possible states in Γ is

N = 2V/a3
. (5.1)

Next consider a QFT, in this case the number of states obviously diverges but let us
regulate it by introducing a UV cutoff on the energy density ρmax. In this case the
states can be counted by the thermodynamic entropy S of the system. The total
entropy is given by

S = s(ρ)V (5.2)

The total number of states can then be approximated as

N ∼ eSmax = es(ρmax)V . (5.3)

In both cases we see that the number of states is exponential in the volume. This
is a general property of local field theories, the number of degrees of freedom is
additive in the volume. In counting the states we used the concept of entropy,
this quantity is not really a property of the system but requires the knowledge of
a particular state. The maximum entropy on the other hand is a property of the
system and is given by the logarithm of the total number of states.

Let us now describe a similar system which includes gravity. For definiteness we will
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take spacetime to be four-dimensional and again focus on a spherical region of space
Γ with boundary ∂ Γ , which has an area A. Consider a system with thermodynamic
entropy S. The total mass of this system cannot exceed the mass of a black hole
with horizon area A, otherwise it would not fit in the region Γ . Thus we are let to
consider the black hole with exactly the right energy to completely fill the region Γ .
Black holes are regions in spacetime from which no timelike trajectory can escape.
They are formed when an enormous amount of mass is squeezed together in a
sufficiently small volume and are bounded by an event horizon of size A= 4πR2.
Depending on the mass, charge and angular momentum there is a unique black hole
solution in general relativity describing the resulting black hole. However, black
holes are not entirely black. As was noticed by Stephen Hawking they have a certain
thermodynamic temperature and evaporate by radiating thermal radiation. Since
they have a temperature one can attribute further thermodynamic properties to
black holes, such as entropy. When the mass of the black hole is large, it evaporates
very slowly and can be treated semi-classically. A computation in the background
of the black hole shows that this entropy is given by [33,128]

SBH =
A

4GN
, (5.4)

where GN is Newton’s constant. The Bekenstein-Hawking entropy was furthermore
argued to be the maximal possible entropy that can be assigned to a region of space
in any gravitational theory. In other words, the maximal entropy of a region of
space is proportional to its area! This is the content of the holographic principle.
We conclude from this that a theory of quantum gravity must have a number of
degrees of freedom which scale like those of a QFT in one dimension lower. This
property is believed to be fundamental for any theory of quantum gravity and has
inspired theorists to come up with the holographic duality.

In fact, we already know an example of this, namely gravity in three dimensions. As
is well-known this is a topological theory and can be rewritten as a Chern-Simons
gauge theory with action [85]

SCS ∼
k

4π

∫

Tr A∧ dA+
2
3

A∧ A∧ A . (5.5)

If you put this theory on a space with boundary, there are local degrees of freedom
which live on the boundary and constitute a WZW model, a 2d CFT [244]! This
can be considered as a first example of the gauge/gravity correspondence, however,
the examples we will discuss below are much more dramatic. In contrast to this
simple case, there will be additional dynamics in the bulk.
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5.1.3 RG flows and the extra dimension

A hint to what this extra dimension might be comes from the renormalization group
flow. Wilson taught us that the best way to think of a QFT is as a renormalization
group flow, sliced up by energy scale. The couplings of the theory at different length
scales are related by the RG equations as a function of the RG scale u

u∂u g = β(g(u)) (5.6)

This equation is local with respect to the RG scale. It is a non-linear evolution
equation determining the evolution of the coupling constants at a given energy
scale u without the need to know the full IR or UV behavior of the theory. Because
of this locality we can entertain the idea of interpreting this RG scale as the extra
dimension suggested by the holographic principle.

Figure 5.1: The RG scale can be thought of as the extra dimension of a theory. This
dimension can be seen as the resolution scale of the field theory. The left hand side
illustrates a “block spin”-like decimation procedure à la Kadanoff. The orange dots
denote degrees of freedom which are averaged over a block to obtain a coarser
set of degrees of freedom. On the right hand side is a picture of anti-de Sitter
space which organizes field theory information in the same way. In this sense the
AdS picture is a hologram, excitations at different wavelengths are put in different
places in the bulk image.

Let us consider an example to make this more concrete. The simplest example
of a RG flow is when β = 0 as a result of which the flow is self-similar. In a
Lorentz-invariant theory this implies that scale transformations xµ → λxµ, and
typically the enlarged set of all conformal transformations, are symmetries of the
system. In other words, this is a CFT. If we think of the extra coordinate u as an
energy scale, by dimensional analysis, it should transform as u→ u

λ under these
transformations. The most general (d + 1)-dimensional metric with this symmetry
and Poincaré invariance is of the form

ds2 =
�

LAdS

u

�

du2 +
�

u
LAdS

�2

ηµνdxµdxν . (5.7)
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This is exactly AdSd+1 space!2 The parameter LAdS has the dimension of length and
is called the AdS length. This space consists of a family of copies of Minkowski space,
parameterized by u whose size varies with u. This hint from the RG flow suggests
that a d-dimensional CFT should be related to a theory of gravity on AdSd+1. This
kind of geometry indeed arises from a bulk action of the form

Sbulk =
1

16πGN

∫

dd+1 x
p

−g(R− 2Λ+ · · · ) , (5.8)

where the cosmological constant Λ = − d(d−1)
2L2

AdS
. The dots denote additional terms

which can include higher order curvature terms or other bulk fields (that vanish in
the pure AdS solution). In many applications in this thesis this type of action will
precisely arise from string theory at low energies, when the curvature is gentle.

5.1.4 The large N limit for gauge theories

A last clue comes from gauge theory and suggests that the dual theory might have
something to do with strings. In the ’t Hooft limit [132] the relevant degrees of
freedom in the gauge theory seem to describe closed strings, and thus include
gravity.

To see this let us consider a U(N) gauge theory in the limit of large number of colors
N . The Lagrangian of this theory is given by

L=
1

g2
YM

Tr
�

FµνFµν + · · ·
�

(5.9)

where the dots denote additional matter fields which we ignore for now. gYM

is the Yang-Mills coupling constant and the gauge fields transform in the adjoint
representation of the gauge group so they can be written as Aµi j , where i, j = 1 . . . N .
The ’t Hooft limit consist of the limit N → ∞ while at the same time keeping
λ = g2

YMN constant. This limit greatly simplifies the perturbative analysis but it
is general enough to still contain a lot of interesting dynamics. Even though the
Yang-Mills coupling goes to zero in this limit, the theory does not become free since
the number of modes diverges as well.

A very useful way to draw Feynman diagrams, which allows us to keep track of the
N -dependence of various quantities, is illustrated in Figure 5.2. These diagrams
use double line notation which makes the adjoint indices explicit. We can draw a
propagator and vertex as

2Indeed, by defining z =
L2

AdS
u we obtain the metric of AdS in Poincaré coordinates as defined in

(3.9).
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Figure 5.2: Left: The gluon propagator for U(N) in double line notation. Right: A
cubic vertex in double line notation.

A general diagram built from these elements consists of a number of propagators,
interaction vertices and index loops. It therefore gives a contribution

diagram∝
�

λ

N

�#prop. �N
λ

�#vert.

N#loops . (5.10)

To see the implications of this new way of drawing diagrams, let us consider the
free energy, or zero-point function. Figure 5.3 shows three diagrams contributing
to this zero-point function. All these diagrams are planar, meaning that one can
draw them on a piece of paper without intersecting lines.

Figure 5.3: Three planar graphs contributing to the free vacuum to vacuum
amplitude. All these diagrams can be drawn on a flat sheet, or a sphere, without
crossing lines.

As can be seen from (5.10), they all scale as λnN2. As the graphs becomes more
complicated, i.e. the more loops they contain, the power of λ becomes higher. The
diagram in Figure 5.4 on the other hand is non-planar. It can not be drawn on a
piece of paper, however, it can be drawn on a torus. This diagram contributes as
λN0.

We can generalize this preliminary set of examples and see that every possible graph
can be drawn on some Riemann surface with Euler characteristic χ = 2− 2g =
F − V + E where F, E and V are the number of faces (or loops), edges and vertices
of the graph. Applying the Feynman rules to these graphs we see that a genus
g graph scales as N2−2gλE−V . The Euler characteristic is a topological invariant
of a Riemann surface so all graphs with the same topology will scale in the same
way with N . The exponent of λ on the other hand is not a topological invariant



36 THE GAUGE/GRAVITY CORRESPONDENCE

Figure 5.4: An example of a non-planar graph. This graph can not be drawn on a
flat sheet or sphere without crossing lines. It can however be drawn on a torus as
shown on the right.

and depends on the triangulation (or Feynman diagram) of the Riemann surface.
Therefore when expanding the free energy in powers of N the expansion nicely
organizes itself according to the genus

F =
∞
∑

g=0

N2−2g fg(λ) . (5.11)

Similarly, we can write a genus expansion for all the other n-point functions in the
theory. This expansion is very similar to a perturbative world-sheet expansion of
a string theory and the expression for the free energy is exactly analogous to the
loop expansion of a closed string with coupling gs = eφ = 1

N . In the large N limit
the string coupling is very small so all stringy interactions are heavily suppressed.
In this limit the closed string theory reproduces gravity with Newton’s constant
GN ∝ N−2. We can push this analogy a bit further and ask what plays the role of
the worldsheet coupling? We can think of λ as a type of chemical potential for edges
in our triangulations. As can be seen from the scaling relation (5.10) diagrams
with lots of edges are important when λ is large. Thus at large values one gets a
smoother world-sheet which we can interpret as less quantum fluctuations. From
this we expect a relation of the form λ−c ∝ α′, with c some positive constant. This
is indeed what is found in various well-understood examples of the gauge/gravity
duality.

So far we only considered gauge fields. However, often we would like to include
matter fields. We can easily extend the analysis above to also include fundamental
matter fields such as quarks. These fields ψi have only one SU(N) index so can
be represented as additional single lines in the diagrams above. Because of this
there will also appear odd powers of N , which can be incorporated in the genus
expansion by summing over Riemann surfaces with boundaries. The addition of
boundaries allows the Euler characteristic to take odd values, χ = 2− 2g + b and
thus further pursuing the analogy with string theory we can associate fundamental
matter fields with open strings.
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5.2 Putting things together

From the early 70s hints were piling up that indeed hidden within a non-abelian
gauge theory there might be theory of quantum gravity. These hints come from
the Weinberg-Witten theorem, the holographic principle, RG flows and large N
gauge theories. They all suggest a deep connection between gauge theory and
string theory. Clearly, the dual to a weakly coupled field theory must be strongly
coupled. Indeed, classical Yang-Mills is certainly not the same as classical general
relativity (GR). If gravity is to emerge from a gauge theory we should expect this
to happen in a strongly coupled regime where the gravitational fields emerge as
effective classical fields. The large N discussion above indeed suggested that in the
regime of large N and large λ classical gravity might emerge.

In [173] all these hints were finally put together resulting in our modern
understanding of the gauge/gravity duality. The need for strings was already
anticipated by ’t Hooft so it can not be too surprising that the “cleanest” way to
outline the correspondence is through string theory. Let us therefore review the
original argument of Maldacena. This example concerns a duality between the
N = 4 super Yang-Mills theory and type IIB string theory on AdS5 × S5. The
former turns out to be a CFT and for this reason one often talks about the AdS/CFT
correspondence.

5.2.1 Open versus closed strings

Consider a stack of N coincident D3-branes in type IIB superstring theory in R1,9.
The worldvolume of these branes extends along the directions xµ with µ = 0, . . . , 3
where x0 plays the role of time. In the six internal dimensions we can choose
spherical coordinates so that they are spanned by a five-sphere S5 together with
the radial direction r.

The type IIB geometry sourced by this configuration is uniquely fixed by the
translational and rotational symmetries, the energy density and the RR-fluxes
of the D3-brane. The target space metric takes the following form

ds2 =H−1/2(r)ηµνdxµdxν +H1/2(r)
�

dr2 + r2dΩ2
5

�

,

H(r) =1+
L4

AdS

r4
, L4

AdS = 4πgsN`s
4 .

(5.12)

Each of the branes couples to gravity with a strength proportional to the string
coupling gs. So the distortion of metric caused by the stack of branes is proportional
to gsN . Furthermore, there are a constant dilaton gs = eΦ and axion C0 and a
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five-form flux
F5 = (1+ ?10)d(gs H)−1 ∧ dx0 ∧ · · · ∧ dx3 . (5.13)

In the metric above the branes are located at r = 0 but they are completely redshifted
away and have disappeared in this picture.

Let us now consider the low-energy limit of this system. We can obtain this limit by
sending `s → 0 while keeping the energies E of all physical processes fixed. In this
way the dimensionless energy ε = `s E indeed goes to zero. In the metric (5.12)
this implies that H(r)→ 1 at r 6= 0. Away from the branes we therefore recover
ten-dimensional flat space on which we have to consider low-energy excitations,
described by type IIB supergravity.

Figure 5.5: In string theory a given worldsheet with boundaries can typically be
read in at least two different ways as describing either a closed string or an open
string.

On the other hand, by the open-closed string duality we see that the branes
themselves can be described in two ways, see Figure 5.5. Either in terms of open
strings or in terms of closed strings. For any process, the string scattering amplitudes
are the same. The fact that we have two different ways of describing this physical
system will ultimately lead us towards the AdS/CFT correspondence.

Open string description

The first way to describe the D3-branes is using open strings attached to the stack
of branes. At low energies the effective degrees of freedom of these string modes
describe the adjoint gauge fields of a U(N) gauge group together with their fermionic
counterparts. This gauge theory is constrained to live on the (3+ 1)-dimensional
worldvolume of the stack of D3-branes and for this reason we often refer to it as
the worldvolume theory. It is given by the N = 4, SU(N) super Yang-Mills theory.3

In addition to the gauge fields, this theory contains four chiral fermions and six
3Since all fields of the gauge theory transform in the adjoint of the gauge group U(N) = SU(N)oU(1),

the U(1) factor becomes free. This U(1) multiplet described the center of mass motion of the stack of
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Figure 5.6: The D3-branes can be described in two different ways. Either by open
strings attached to the stack of branes or as closed strings moving in the infinite
throat created as the back-reaction of the branes on the geometry.

real scalars, all transforming in the adjoint representation of the gauge group.
The R-symmetry is given by Spin(6) ' SU(4) and the fermions transform in the
fundamental representation of SU(4). The scalars on the other hand transform in
the fundamental of SO(6). The Lagrangian is given by

LSYM =
1

g2
YM

Tr
�

1
4

FµνFµν −
1
2

DµΦDµΦ− iψ̄σ̄µDµψ

+ψ[Φ,ψ] + ψ̄[Φ, ψ̄]−
1
4
([Φ,Φ])2

�

+
θ

2π
Tr F ∧ F , (5.14)

where Dµ is the gauge covariant derivative and we have suppressed all spinor and
R-symmetry indices. The Yang-Mills coupling constant is given in terms of the
string coupling as g2

YM = 2πgs and the θ -angle is given in terms of the string theory
axion as θ = 2πC0. In [223] it was shown that the β-function for the Yang-Mills
coupling vanishes to all orders in perturbation theory and this is believed to hold
non-perturbatively as well. This implies that gYM is a physical parameter of the
theory and that the theory remains scale invariant also on the quantum level. This
scale invariance can be extended to the full conformal group which makes N = 4
SYM a conformal field theory.

In addition to these open strings there are the aforementioned closed strings away

branes. In the low energy limit we can safely assume the branes are at rest so what one is left with is a
SU(N) gauge theory.
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from the brane. In principle these could also interact with the open strings on the
brane. However, as `s → 0 these modes completely decouple, since the interaction
strength scales as GN ∼ `2

s .

Closed string description

The second way to describe the brane system is in terms of closed strings. In this
description we have to take into account the gravitational redshift of the excitation
in the geometry (5.12). The energy E of an excitation at a certain value of the
radial coordinate r as seen by an observer at infinity is redshifted to

E∞ = H(r)−1/4E . (5.15)

To take the low energy limit in the closed string theory we can again send the
dimensionless energies `s E∞ to zero by taking the limit `s → 0. However, as can
be seen from (5.15) this does not send all energies `s E to zero. Indeed, as r → 0,
H(r)→∞ so the modes localized at r = 0 survive. In this limit,

H(r)→
4πgsNz4

`4
s

, (5.16)

where we have defined the new coordinate z = L2
AdS/r, so the metric becomes

ds2 = L2
AdS

�

1
z2
ηµνdxµdxν +

dz2

z2
+ dΩ2

5

�

. (5.17)

This is precisely the metric of AdS5×S5 where both factors have a radius of curvature
LAdS.45 In this limit, the five-form flux becomes

F5 = −(1+ ?10)
4gs

z5
dx0 ∧ · · · ∧ dx3 ∧ dz . (5.18)

When we take the low energy limit, from the viewpoint of an asymptotic observer,
two types of modes will survive: massless strings propagating in the bulk with very
large wavelengths and massive excitations in the throat region near r = 0. Just as in
the open string picture, the low energy limit is a decoupling limit, meaning that the
interactions of the massless excitations away from the brane with the near-horizon
modes vanish. This can be seen from the fact that the redshift factor diverges as
r → 0, i.e. the throat region is infinitely deep and only modes with infinite energy

4This is directly analogous to the well-known four-dimensional Reissner-Nordström black hole where
the near horizon metric takes the form AdS2 × S2.

5The factors of `s in the definition of the AdS length LAdS make the metric very small. However, in
the worldsheet sigma model this factor cancels against a prefactor in the worldsheet string action. By
absorbing this prefactor in the metric we can safely forget about its smallness.
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can escape out of it. Furthermore the closed strings in the bulk cannot probe the
AdS region since the absorption cross section vanishes in the low energy limit [173].

The AdS/CFT correspondence

We have observed that in the low energy limit of string theory, a stack of D3-branes
can be described by two very different theories. In one description we recover
the N = 4 SU(N) SYM theory, while in the other we find type IIB closed string
theory on an AdS5 × S5 background. We are therefore led to the conjecture that
these two theories are entirely equivalent. This is the statement of the AdS/CFT
correspondence.

N = 4 SU(N) SYM = Type IIB string theory on AdS5 × S5 . (5.19)

This heuristic derivation makes the statement of the duality more concrete, but it
does not provide a rigorous proof. However, it has been put through various tests
and so far has passed all of them.

Now that we have an equivalence between two theories, we can ask how exactly
they are related? To answer this question, let us first have a look at the different
parameters on both sides. On the gravity side we have three parameters, the string
coupling gs, the length scale of AdS LAdS and the string length `s.

6 On the gauge
theory side there are two parameters, the rank of the gauge group, N and the ’t
Hooft coupling λ= g2

YMN . The AdS/CFT correspondence maps these parameters
as follows

gs = g2
YM =

λ

N
,

LAdS

`s
= λ1/4 . (5.20)

Therefore, we immediately notice that when λ is large the stringy corrections are
small, and when N is large, the quantum corrections are small. The AdS/CFT
correspondence is a weak-strong duality meaning that it maps a weakly coupled
theory to a strongly coupled one. By studying a weakly coupled gravity solution
we can thus learn about a strongly coupled field theory and vice versa! When we
furthermore consider both N � λ� 1 we have a weakly coupled classical theory
of gravity on AdS5 × S5.

6A well-known fact states that "In string theory there are no adjustable couplings" but what does the
string coupling represent then? In string theory the string coupling gs is determined by the expectation
value of the dilaton Φ, gs ∼ e〈Φ〉. Therefore, it is not an adjustable parameter of the theory but rather a
dynamical parameter, a field in fact.
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The supergravity limit

In this thesis we will be working predominantly with the (semi-)classical limit of the
closed string theory, which in this case reduces to type IIB supergravity on AdS5×S5.
This approximation is only valid in the limit when the radius of curvature LAdS is
large in units of `s. This implies that

gsN � 1 . (5.21)

Furthermore, we want to suppress string loops so we require gs � 1 (so N � 1). In
this limit the higher curvature terms can be neglected and the low energy effective
action becomes that of type IIB supergravity.7

In the dual field theory the same limit reduces to the ’t Hooft limit introduced
in Section 5.1.4. In this limit the planar Feynman diagrams are dominant and
the effective loop counting parameter for the gauge theory is given by λ= g2

YMN .
In the supergravity limit (5.21) this coupling is very big so the field theory is
strongly coupled. Therefore we can not use a perturbative approach to compute
observables in the quantum field theory making it very hard to explicitly test the
correspondence. On the other hand, it offers us a valuable opportunity to compute
new observables in the strongly coupled field theory by performing relatively
straightforward computations in the supergravity theory.

Symmetries

As a first check of this duality we can compare the symmetries of the two systems.
The isometries of the AdS5 × S5 supergravity background are given by SO(4,2)×
SO(6). On the gauge theory side the Lorentz symmetry is enhanced to the full
conformal symmetry SO(4, 2). The SO(6) symmetry of the sphere on the other hand
is realized as the R-symmetry of the N = 4 SYM theory. On both sides of the duality
this bosonic symmetry is enhanced by supersymmetry to the superconformal group
PSU(2,2|4). Additionally, both the four dimensional N = 4 gauge theory and type
IIB string theory enjoy a weak-strong SL(2,Z) duality.

Generalizations

By describing the low energy excitations of a system of D3-branes in two different
ways we have encountered a spectacular equivalence between a theory of gravity
and a gauge theory. We discussed the relation between the various parameters on
both sides of the duality and matched the symmetries. Additionally, we discussed

7The action together with our conventions can be found in Appendix A.
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how the supergravity limit of string theory reduces to the ’t Hooft limit of the gauge
theory. In the next section, we will continue to explore this duality and discuss how
to match various observables.

This correspondence belongs to a much wider class of dualities. Over the years there
have been discovered more and more examples by considering other D- or M-branes,
brane intersections or even more exotic string theory backgrounds. One can study
the near-horizon limit of a variety of brane systems to uncover new AdSd+1/CFTd

dualities for general d. For each of these dualities there is a internal compact
manifold analogous to the S5 in the example above. Deforming this internal
manifold breaks part of the supersymmetry and opens the door to many more
generalizations. In the dual field theories these deformations generally correspond
to switching on sources or vacuum expectation values (VEVs) for specific operators,
which can trigger an RG flow to an IR (S)CFT. Finally, one can also consider theories
where the dual field theory is no longer conformal even in the UV. In these examples
the dual background consequently will not be asymptotic to AdS but some more
general space. Therefore it is more appropriate to refer to these dualities in general
as gauge/gravity dualities.

All these dualities have a very similar structure. In particular, we can introduce a
dictionary to translate between observables on both sides of the duality.

5.3 The dictionary

In the preliminary analysis above we checked that the global symmetry group
agrees on both sides of the duality. A conformal field theory in d dimensions and a
gravity theory in AdSd+1 both are invariant under SO(d, 2) transformations. The
additional isometries of the internal space of the string theory are matched to the
R-symmetry of the supersymmetric gauge theory. Since the objects in these two
theories live in different dimensions it is very hard to imagine a connection between
them. However, in the seminal work [173] (leading to the more concrete conjecture
formulated in [120,250]) and a multitude of works after that, a precise dictionary
to map observables between the two sides was formulated. In the following we
introduce how to use this dictionary. The main focus will be on the objects we
will encounter in part II and III of this thesis while some other very interesting
observables will not be discussed.

We will often refer to the fields in AdS as bulk fields and the CFT fields as boundary
fields. We assume that the interactions of the bulk theory are described by an
action SAdS(g, A,φ, . . . ) which has an AdS vacuum. The fields appearing in this
action are the metric, gauge fields, scalar fields and all other possible matter fields,
both fermionic and bosonic. In most applications in this thesis this action will
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be obtained as a consistent truncation of some higher dimensional supergravity.
Similarly, we assume that the boundary CFT has a Lagrangian, given by LCFT;
These assumptions do certainly not encapsulate all interesting examples of the
gauge/gravity correspondence but for pedagogical reasons we restrict to this class.
Many phenomena observed for this restricted subset of dualities hold in much
greater generality.

The spectrum of the gauge theory is defined by the set of primary operators in the
CFT. An operator on the boundary is related to a field in the bulk by having the
same quantum numbers and they can communicate through boundary couplings.
In the CFT we can associate to every operator O a source h and add the following
coupling to the Lagrangian

LCFT +

∫

dd x hO . (5.22)

In this formulation h(x) is a d-dimensional background field obtained by evaluating
the bulk field h(x , z) on the conformal boundary at z = 0. This background field
can then be used to compute connected correlation functions for the operator O in
the usual way by defining the functional generator

eW (h) =
¬

e
∫

hO
¶

CFT
(5.23)

and differentiating W with respect to h(x)

〈O(x1) · · ·O(xn)〉=
δnW

δh(x1) · · ·δh(xn)
. (5.24)

By demanding that the bulk field h(x , z) satisfies the (d +1)-dimensional equations
of motion one can prove that the extension from the boundary to bulk is unique
when appropriate boundary and regularity conditions are imposed. The equations
of motion in AdS are second order so we need to specify two boundary conditions in
order to find a unique solution. Both boundary conditions require some care. First,
at the conformal boundary, we cannot simply put h(x , 0) = h(x) since solutions
to the equations of motion either diverge or vanish at this location. The correct
boundary condition at the AdS boundary is thus of the form h(x , z) = f (z)h(x)
for some function f of the radial coordinate. To fully fix the solution a second
boundary condition has to be imposed in the bulk of AdS where we shall require
the solution to be regular.

The fundamental statement of the AdS/CFT correspondence is then

eW [h(x)] = eSAdS[(h(x ,z))] . (5.25)

On the left hand side we have an arbitrary d-dimensional field configuration h
while on the right hand side we have the on-shell value of the (d + 1)-dimensional
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gravitational action, evaluated on the unique regular solution of the equation of
motion that reduces to h(x) on the boundary. Since the knowledge of W [h] on
the field theory side completely determines the CFT this formula indeed states the
equivalence between this CFT and the (d + 1)-dimensional bulk theory. So far, the
statement (5.25) uses the effective AdS action. When we furthermore have a UV
completion of the theory we can also consider quantum effects on the right hand
side.

So far we have not specified how to exactly match CFT states to bulk fields. In
general this will depend on the details of the theory. In the remainder of this
chapter we will discuss various examples. However, a lot can already be learned by
looking at the symmetries. Indeed, the bulk field h and the CFT operator O have
the same O(2, d) quantum numbers. For example, the boundary value of the bulk
metric is the boundary metric which is the source for the stress tensor Tµν which
has dimension ∆ = d. As a second example we can consider a gauge field AM in
the bulk. The dual operator must then be a vector Jµ coupled to the source as

∫

dd xAµJµ . (5.26)

Since the bulk is invariant under gauge transformations, the boundary coupling
should be invariant as well.8 Therefore, Jµ should be a conserved current in the
boundary theory with dimension ∆ = d − 1. From this we can extract a general
rule, “gauge symmetry in the bulk is mapped to global symmetry on the boundary”.
By covariantizing the CFT action by adding background field to the Lagrangian we
have found the following natural couplings

LCFT +

∫

dd x
p

−g
�

gµνTµν + AµJµ +ΦFµνFµν + · · ·
�

(5.27)

The CFT field associated to the graviton is the stress tensor, the field associated to a
gauge field in AdS is a current. The last operator we added appears in all gauge
theories. In many applications, the scalar operator source Φ corresponds to the
string theory or supergravity dilaton.

5.3.1 Correlation functions in AdS/CFT

As a first holographic observable let us briefly discuss correlation functions. As was
already suggested by the notation in Chapter 3, the conformal dimension of a CFT
field is mapped to the exponent ∆ appearing in Equation (3.17). For example, for

8In the absence of anomalies
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a massless scalar in AdS we find that the corresponding scalar operator in the dual
CFT has dimension ∆= d.

For simplicity, we will focus on scalar fields φi with masses mi interacting through
some Lagrangian LAdS(φi). We denote by φ0

i the boundary value of the scalar field
as determined in Section 3.4. On the CFT side these fields are identified with sources
for a dual operator Oi with dimension ∆i determined by (3.17). The generating
function of the CFT can then be obtained by evaluating the bulk on-shell action
with the prescribed boundary conditions. A n-point function can be obtained by
differentiating this on-shell action with respect to the sources φ0

i evaluated φ0
i = 0,

〈O1O2 · · ·On〉=
δnSon−shell

δφ0
1δφ

0
2 · · ·δφ0

n

�

�

�

φ0
i =0

. (5.28)

To go beyond the classical contribution one should consider loop contributions
which extend in the bulk. These can be computed elegantly using so-called Witten
diagrams. For details we refer to the reader to [250].

5.3.2 Holographic renormalization

In quantum field theory correlation functions suffer from various UV divergences
and one needs to renormalize the theory to obtain sensible results. It turns out
that all diverging quantities on the field theory side similarly diverge on the gravity
side. Indeed, since the volume of an AlAdS spaces is infinite, the naive on-shell
action will always be infinite as well. Therefore, we should introduce a holographic
renormalization procedure.

In the QFT the divergences arise from the UV of the theory and are not affected
by the IR. According to the UV/IR connection [229], UV phenomena in the field
theory should be related to IR phenomena in gravity and vice-versa. Therefore the
holographic renormalization procedure should only care about the near-boundary
region, z ≈ 0. The full correlation functions, however, capture the dynamics
of the theory and thus should depend on the full bulk solutions. A holographic
renormalization method was introduced in [83,129,130] and proceeds very similar
to the renormalization method in QFT. In particular, the metric blows up near the
conformal boundary z = 0 so to regularize one can apply a cutoff at z = ε, close
to the boundary, i.e. ε � 1. Next, the divergences can be removed by adding
appropriate boundary counterterms evaluated at z = ε. After all divergences
have been removed one can take the limit ε → 0 to obtain the holographically
renormalized result. This analysis heavily relies on the conformal structure at
the boundary and the associated Fefferman-Graham expansion of fields near the
boundary. This structure allows us to identify the relevant sources and vacuum
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expectation values for all the fields needed to properly carry out this renormalization
procedure.

The precise counterterm action is far from arbitrary. First of all, the counterterms
have to be boundary terms in order for them not to affect the bulk equations
of motion. In addition they should be covariant under boundary coordinate
transformations and should also be local functionals of the induced fields on the
slice z = ε in order not to change the dynamical part of the on-shell action. Finally,
in order to respect the variational principle all counterterms should be defined
in terms of the fields themselves and should not include conjugate momenta or
radial derivatives. The precise counterterm action for AlAdS spacetimes depends on
the bulk theory under consideration. However, it is independent of the particular
solution to the equations of motion. Given a specific theory, the counterterms are
universal and make the on-shell action finite for any solution to the equations of
motion. This is dual to the QFT statement that the renormalizability of the field
theory is a UV property of the theory independent of the correlation functions.

5.3.3 Holographic Weyl anomaly

Consider now a (d + 1)-dimensional gravity theory in a AlAdS space. After
introducing a cut-off and adding the appropriate counterterms to cancel the
divergences we are left with a renormalized on-shell action

Sren. =
1

16πGd+1
N

lim
ε→0

∫ ∞

ε

dz

∫

dd xLfin. , (5.29)

with a finite limit as ε goes to zero. The variation of the renormalized Lagrangian
under an infinitesimal Weyl transformation, δg(0) = 2δσg(0), is of the form

δSren. = −
∫

dd x
Æ

g(0)δσA , (5.30)

As was shown in [129] the quantity A vanishes for odd d, while in even d it reduces
to [59,86]

A= −
d Ld−1

AdS

8πGd+1
N

�

Ed +
∑

n

In

�

, (5.31)

where Ed is the d-dimensional Euler density of the boundary and In are conformal
invariants. If we compare this to the two-dimensional CFT result in equation (2.18)
we see that the central charge of a holographic CFT is given by

c =
3LAdS

2G3
N

. (5.32)
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On the other hand, when comparing (5.30) to the four dimensional CFT result, we
find that every 4d CFT with a weakly coupled supergravity dual has c = a.

5.3.4 Wilson loops

Another natural observable that appears in every gauge theory is the Wilson loop.
For every closed contour C and every representation R we can define this non-local
operator as the path ordered exponential of the holonomy of the gauge field around
the loop C ,

WR(C) = TrRPexp

�

i

∫

C

Aa
µT adxµ

�

, (5.33)

where T a are the generators of the gauge group in the representation R.

Figure 5.7: Left: A heavy quark anti-quark pair at fixed distance L. Right: The
Wilson loop contour C for the computation of the quark-anti-quark potential.

Given a pure gauge theory we can add a term
∫

jµAµ corresponding to adding
background quarks. Under a gauge transformation the quark field q transforms in
the fundamental representation of the gauge group. When we translate the quark
field around the closed loop C , it picks up a phase given exactly by the Wilson loop
in the fundamental representation,

q(x + C) =W�(C)q(x) . (5.34)

The vacuum expectation value of the Wilson loop encodes interesting information
about the gauge theory. It provides an order parameter for confinement and
deconfinement. As an example we consider the contour C to be a rectangle in the
(t, x1)-plane as shown in Figure 5.7. In the limit when L� T this corresponds to a
static quark–anti-quark pair at fixed distance L. For this rectangular Wilson loop
only the potential energy term contributes and we have

W�(C)∝ e−T E(L) , (5.35)
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Figure 5.8: Heavy fundamental particles can be introduced in N = 4 SYM by
higgsing a U(1) of the SU(N + 1) gauge group. Geometrically, this corresponds to
separating one brane from stack of N + 1 D3-branes. The separation parameterizes
the mass of the fundamental particle.

where E(L) is the energy of the quark–anti-quark pair at distance L. The Wilson loop
vacuum expectation value can thus be used to determine the inter-quark potential
and signal confinement in the gauge theory. If the Wilson line grows with the area
of the loop the inter-quark energy grows linearly with the length so the theory is
confining. On the other hand when the theory is asymptotically free the energy
of the quark pair has the form of a Coulomb potential E∝ 1/L and therefore the
Wilson loop will depend on the scale invariant quantity T/L. This is the behavior
expected in a conformal field theory.

But how can we describe this operator holographically? To answer this question let
us first take a look at the Wilson loop operator in N = 4 SYM. Since all the degrees
of freedom in this theory are massless and transform in the adjoint representation
of the gauge group we must find a natural way to introduce very heavy particles
transforming in the fundamental representation. In order to do so it proves useful
to go back to the worldvolume description of N = 4 SYM as the theory living on a
stack of D3-branes.

To introduce a fundamental particle consider a stack of N +1 branes instead, where
a single brane is separated from the N remaining ones in at least one of the six
transverse directions. We can parameterize this separation by a vector Mni , where
ni is a unit vector indicating the direction while M � 1 is the modulus of the
distance between the stack and the separated brane. This separation corresponds to
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giving a VEV to the six scalars Φ̂i . We can view this system as an SU(N + 1) N = 4
SYM theory, where the six scalars can be expressed as

Φ̂i =

�

Φi W i

W †i Mni

�

. (5.36)

Φi are the remaining massless scalars of an SU(N) theory, while the fields W and W †

transform in the fundamental and anti-fundamental representation of SU(N). The
component Mni corresponds to the VEV which will, through the Higgs mechanism,
give rise to masses, of the order of M , for the W and W † fields. These massive
fundamental particles correspond to the ground states of the open strings stretching
between the stack of D3-branes and the single separated brane and are often called
W -bosons. The trajectories of such W -bosons around a closed loop C gives rise to
a phase factor, given by the vacuum expectation value of

W (C) =
1
N

TrPexp

�

i

∮

C

ds(Aµ ẋµ + | ẋ |Φin
i)

�

. (5.37)

Next, we want to determine the corresponding observable in the dual gravity
theory [172]. Let us go back to the system of N + 1 D3-branes but now consider
a closed string description of this system. As we have discussed in Section 5.2,
this consists in replacing the stack of N D3-branes by their back-reaction on the
geometry, i.e. AdS5 × S5. The single separated D3-brane is located at z = 0, on the
conformal boundary of AdS5. The fundamental particles now move on a closed
loop C on the single D3-brane. Therefore, the expectation value of the Wilson loop
operator is dual to the semi-classical partition function of a macroscopic probe
string in AdS5 × S5 whose worldsheet ends on the path C of the Wilson loop at
the boundary, see Figure 5.9. The above discussion suggests that the Wilson loop
should be described as the partition function of a string with boundary C ,

〈W (C)〉= e−Sstring[C] , (5.38)

as we will show now.

The string has tension, so it wants to have minimum area. In flat space, this minimal
surface would be entirely located on the boundary such that W (C) = LT , indicating
a confining theory. In AdS however, things are different. Namely, in AdS the metric
diverges near the boundary so it will be energetically favorable for the string to
extend in the bulk. We can make this more precise by introducing the Nambu-Goto
action for the string

Sstring =
1

2π`2
s

∫

Σ

dσdτ
Æ

det(gMN∂aX M∂bXN ) (5.39)
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Figure 5.9: The Wilson loop contour is located on the conformal boundary at z = 0.
A string ending on this contour will extend in the bulk spacetime and stretch down
to z = z0. In flat space (left) the string remains on the boundary, z0 = 0, and the
string worldsheet will be flat. In AdS on the other hand (right), gravity will pull
the string into the bulk of AdS.

where Σ is the string worldsheet which ends on the boundary contour C and the
XM (σ,τ) parameterize the embedding of the string in spacetime and a = τ,σ. For
the string ending on the contour as in Figure 5.9 we can define τ= t and σ = x1.
Furthermore, we can assume that the worldsheet is translation invariant along the
time direction. Since we have a static configuration we are thus left with a single
variable z(x1) = z(x). The string action in terms of this variable reduces to

Sstring =
T L2

AdS

2π`2
s

∫

dx

p

1+ (∂xz)2

z2
. (5.40)

Finding the minimal area is now a simple one-dimensional classical mechanics
problem. Since the action does not depend on x explicitly, we immediately find
that the solution satisfies

z2
Æ

(∂xz)2 + 1= z2
0 . (5.41)

where z0 is the maximal value of z(x), which by symmetry occurs at x = 0. The
solution can then be found as

x = ±z0

∫ 1

z/z0

y2 dy
p

1− y4
, (5.42)

where the two signs correspond to the two sides of the hanging string. To find z0

we first note that at the boundary, z = 0, we have x = ± L
2 and therefore

L
2
= z0

∫ 1

0

y2 dy
p

1− y4
=
p

2π3/2z0

Γ (1/4)2
. (5.43)
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We can now compute the energy of this configuration by inserting the solution
(5.42) in the string action. Noting that z(x) is double valued we find,

Sstring = 2
T L2

AdS

2π`2
s z0

∫ 1

0

dy

y2
p

1− y4
. (5.44)

Naively integrating this, however, results in an infinite answer. Indeed, this infinity
arises from the fact that the string is stretching all the way to the boundary at z = 0,
where the AdS metric diverges. This infinite result has a very natural interpretation
in the field theory discussion and corresponds to the mass of the W-boson which
corresponds to the string stretched between the separated branes. We can regularize
this expression by integrating the on-shell action up to a cut-off z = ε.

Sstring = 2
T L2

AdS

2π`2
s z0

∫ 1

ε

dy

y2
p

1− y4
=

T L2
AdS

π`2
s z0

 

−
p

2π3/2

Γ
�

1
4

�2 +
z0

ε

!

. (5.45)

By adding a counterterm

Lc t = −lM ≈ −
2T
ε

, (5.46)

we can subtract the diverging term. Here l ≈ 2T is the length of the Wilson
loop and M ∝ 1/ε represents the diverging mass. After Subtracting the diverging
contribution we find

Sstring = −

p
2π3/2T L2

AdS

π`2
s z0Γ

�

1
4

�2 . (5.47)

This action now should correspond to T E(L) where E(L) represents the inter-quark
potential,

E(L)∝
T
z0
∝

T
L

. (5.48)

As predicted, we see that the holographic Wilson loop, in type IIB string theory
in AdS5 × S5, exhibits the behavior of a Wilson loop in a conformal field theory,
such as N = 4 SYM. In part II we will discuss further examples that are no longer
conformal and holographically realize confinement. In this example we considered
a square contour, however, this analysis can easily be generalized to more general
contours by arranging infinitely thin squares next to each other, see Figure 5.10.

5.4 Non-conformal theories and RG flows

Holography works very well for conformal theories, however, realistic gauge theories
are often not conformal. For example, pure N = 1 or non-supersymmetric SU(N)
Yang-Mills theory confines, has a mass gap and a discrete spectrum of glueballs. To
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Figure 5.10: One can approximate a loop C to arbitrary accuracy by thin rectangles.

finish this chapter, we will briefly introduce some simple and universal properties
of non-conformal gauge theories and RG flows from a holographic viewpoint. In
our examples so far we focused largely on pure AdS spaces or zoomed in on the
asymptotic structure of the solutions only. However, as already alluded to in Section
5.1.3 we can interpret the radial coordinate of AdS as energy scale and the radial
evolution as an RG flow in the dual field theory.

One way to obtain a non-conformal theory, which we already encountered before is
by turning on sources in the CFT. If the source is associated to a relevant operator,
this induces an RG flow to some other fixed point. Another way to break conformal
invariance, which is available when the CFT has a moduli space of vacua, is to turn
on a VEV for some operator without sources.

Let us for now restrict to examples in which the bulk spacetime is asymptotic to AdS
space. The metric is still Poincaré invariant and we impose the following domain
wall ansatz

ds2 = dy2 + e2A(y)dxµdxµ , (5.49)

where e2A(y) is the warp factor, which at the boundary (y →∞) reduces to9

A(y)→
y

LAdS
, y →∞ . (5.50)

To make this more concrete, let us start with a simple (d + 1)-dimensional
gravitational theory coupled to a number of scalar fields described by the action

S =

∫

dd+1 x
p

−g
�

R
4
−

1
2

Gab∂µΦ
a∂ µΦb − V (Φ)

�

. (5.51)

where Gab is a matrix. This theory could for example arise as the bosonic part of the

9This is the metric of anti-de Sitter space in the Poincaré patch (3.9) with radial coordinate y
LAdS

=

log LAdS
z . In these coordinates the conformal boundary of AdS is located at y =∞.
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dimensional reduction of some higher-dimensional supergravity theory. Consider
now domain wall solutions to the equations of motion of this system such as (5.49).
When A(y) = y

LAdS
we recover AdSd+1 with AdS length LAdS. An obvious solution to

the equations of motion is then given by the critical points of the scalar potential
V (Φ), if the potential at the critical point is negative. In this case we can set all
scalar fields to be constant

∂ V
∂Φa

= 0 ,
∂Φa

∂ y
= 0 ,

∂ (A2)
∂ y

= −
Vcrit.

d − 1
. (5.52)

As a solution we find AdS space with the AdS length determined by the critical
point of the potential, L2

AdS = −(d−1)/Vcrit.. From our general discussion we expect
these solutions to be described by a dual CFT.

However, we can also consider more general solutions which start from a critical
point, say at Φa = 0 and have a nontrivial profile for the scalars in the bulk. By
expanding the action around Φa = 0 we can find the masses ma of the scalars from
which we can determine the dimensions of the dual operators Oa

m2
a L2

AdS =∆a(∆a − d) . (5.53)

Since asymptotically the solutions for the scalar behave as

Φa(y)' sae(∆a−d)y + vae−∆a y (5.54)

we can associate sa and va respectively with a source and a vacuum expectation
value in the dual UV CFT. When sa 6= 0 for one of the scalars, this solution describes
a deformation of the dual CFT by an operator Oa,

LCFT → LCFT +

∫

dd xsaOa . (5.55)

On the other hand, when all sources sa vanish the solutions describe a different
vacuum of the CFT where 〈Oa〉 = va. In both cases however, the UV CFT is deformed
and the conformal invariance is broken. This deformation triggers an RG flow in the
CFT to which the domain wall gravity solution is dual. The profile of the scalars and
the warp factor A describe the running of the deformation parameters. For generic
values of the VEVs and sources in equation (5.54), these solutions are singular in
the IR. These singularities reflect the fact that the dual field theory for these values
of va and sa flow towards a free or gapped theory. However, as we will explore in
more depth in part II, by finely tuning the sources and vacuum expectation values
one can nonetheless land on a regular IR fixed point. Particularly interesting is the
case when the original CFT is perturbed by a relevant operator, ∆a < d and the
QFT flows to another fixed point of the potential. In this case the gravity solution
describes a kink interpolating between two fixed points.
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The search for such domain wall solutions is often simplified in the presence of
supersymmetry. In that case the potential can usually be rewritten in terms of a
superpotential and the second order equations of motion consequently reduce to
first order BPS equations. In part II and III of this thesis we will discuss particular
examples of holographic RG flows and study their strongly coupled dual QFTs.
However, in both parts the RG flows will differ from the basic ones discussed here
in various aspects. In part II we will study QFTs on a curved manifold which do not
necessarily have a UV CFT as the fixed point of the RG flow. In part III on the other
hand, both fixed points of the flow will be CFTs but the dimension of the IR and UV
CFT will not be the same.





Part II

Spherical branes, localization
and holography





Chapter 6

Introduction to part II

This second part is adapted from [50,52].

Brane solutions in supergravity have offered multiple important insights into the
structure of string theory, supergravity, and holography. They were first constructed
as extremal black branes in ten- and eleven-dimensional supergravity which preserve
half of the maximal supersymmetry [135]. An important insight came from the
realization that they should be thought of as sourced by the D- and M-branes of
string and M-theory [209], based on the earlier work [82, 165]. The dichotomy
between the gauge theory living on the worldvolume of the D-branes and their back-
reacted p-brane solutions ultimately led to the development of the gauge/gravity
duality [120,173,250] and to important insights into black hole physics in string
theory [227].

6.1 Curved branes

In the standard treatment of Dp-brane supergravity solutions the world-volume
of the brane is (p + 1)-dimensional flat space, R1,p. For general values of p the
near-horizon limit of the supergravity background exhibits a singularity where
the running dilaton diverges. This bodes well for the holographic interpretation
of these backgrounds as dual to (p + 1)-dimensional maximally supersymmetric
Yang-Mills (SYM) theory on R1,p. For general values of p this theory is not conformal
and it is expected that the weakly curved region of the supergravity solution is
dual to the regime of strong gauge coupling while for small values of the running
coupling the supergravity description is not valid and the background develops a
singularity [146].

Given the importance of flat Dp-branes and their supergravity description it is
natural to explore the more general situation when the worldvolume of the brane

59
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is curved. Since supersymmetry offers a great deal of computational control which
often elucidates the underlying physics, one is led to look for curved supersymmetric
Dp-branes. Indeed, this question was addressed in [47] where Dp-branes with
worldvolumes of the form R1,m ×Mq, with m+ q = p and Mq a general Euclidean
manifold, were studied. To preserve supersymmetry the worldvolume theory on
the brane is partially topologically twisted on Mq [243]. This setup has a beautiful
extension into the arena of holography as emphasized in [174]. However it is well-
known that the topological twist is not the only way by which a supersymmetric
gauge theory can be placed on a curved manifold, see for example [48,93,207,208].
A particularly simple example of a curved manifold on which a SYM theory can be
placed in a supersymmetric way is offered by the sphere equipped with an Einstein
metric [48]. Thus it is natural to ask whether this gauge theory construction admits
a realization in string theory on the worldvolume of spherical Dp-branes and how
to construct the supergravity solutions describing the back-reaction of these branes.
The goal of this part the of the thesis is to address this question from the point of
view of supergravity and holography.

The spherical Dp-brane solutions can also be interpreted from a different vantage
point. It is standard in the context of non-conformal holography to encounter
supergravity solutions that exhibit IR singularities, see for example [60, 97, 109,
119, 146, 158]. Whenever these singularities are physically acceptable they are
interpreted in the dual field theory as arising from a free or gapped phase of the
IR dynamics [119]. The singularity is usually remedied by replacing the singular
background by a black hole solution with the same asymptotics and a regular
horizon. In the dual gauge theory this corresponds to turning on finite temperature,
which in turn introduces a finite IR cut-off in the gauge theory. In the context of the
flat Dp-brane solutions this is discussed in some detail in [146] and summarized
in Appendix E. Our spherical brane solutions provide an alternative way to excise
the singularity of flat Dp-brane supergravity backgrounds. Due to the finite length
scale introduced by the sphere one finds a smooth cap-off of the metric instead of
a singularity in the IR region of the geometry. We interpret this as a gravitational
manifestation of the the IR cut-off for the gauge theory on Sp+1. The difference
with the more common finite temperature cut-off is that spherical branes preserve
sixteen supercharges which provides better computational control. We believe that
this is the unique IR cut-off compatible with the maximal number of supercharges
for a non-conformal SYM theory.

6.2 Spherical branes and SYM

Our approach to construct the supergravity solutions describing spherical Dp-branes
is informed by the knowledge of the Lagrangian of the maximally supersymmetric
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Yang-Mills theory on Sp+1 for p ≤ 6 [48, 186]. For general values of p 6= 3
the maximal SYM theory is not conformal and coupling it to the curvature of
the sphere while preserving sixteen supercharges necessitates certain couplings
in the Lagrangian. These couplings in turn break the R-symmetry of the SYM
theory from SO(1,8 − p) to SO(1,2) × SO(6 − p).1 It is natural to assume that
the worldvolume theory for spherical Dp-branes at low energies is the same as
this maximal SYM on Sp+1. The symmetry breaking pattern combined with the
presence of sixteen supercharges then leads to a very restrictive ansatz for the type
II supergravity backgrounds describing the spherical branes. Nevertheless it is still
difficult to solve the supergravity BPS equations and find the explicit solutions
directly in ten dimensions. We circumvent this impasse by employing the well-
known technique of reducing the ten-dimensional supergravity theory to an effective
gauged supergravity in p+ 2 dimensions. The spherical brane solutions of interest
are then found as supersymmetric domain walls in this gauged supergravity with
non-trivial profiles for the metric as well as three scalar fields.2 These scalar fields
are the supergravity manifestation of the running gauge coupling of SYM theory
and the couplings in the Lagrangian on Sp+1 that need to be turned on to preserve
supersymmetry. Working with this (p+ 2)-dimensional gauged supergravity we are
able to construct explicitly the supersymmetric spherical domain wall solutions of
interest and then use standard uplift formulae from the literature to convert them
to solutions of type II∗ supergravity.

Our spherical brane solutions exhibit some common features which are in harmony
with the physics of the SYM theory. In the IR region of the geometry the solution is
regular and the radial coordinate combines with the metric on Sp+1 to produce a
smooth cap-off that locally looks like Rp+2. This behavior reflects the fact that in the
dual SYM theory the length scale associated with the sphere provides and IR cut-off
for the dynamics and one cannot probe energies smaller than this scale. This type of
smooth cap-off of supergravity solutions dual to non-conformal gauge theories on a
sphere is a familiar feature from recent holographic studies of mass deformations
of three-dimensional ABJM, four-dimensional N = 4, and five-dimensional D4-
D8 SCFTs [54,55,57,98,123]. In the UV region of the spherical brane solutions
the background is the same as the near-horizon limit of the usual flat Dp-brane
backgrounds [135], albeit with Euclidean worldvolume. This behavior is also in line
with the dual gauge theory where at high energies the radius of the sphere should
not affect the dynamics and one expects to recover the physics of SYM theory in
flat space.

1The R-symmetry group is non-compact due the fact that the SYM theory is defined in Euclidean
signature.

2For p = 6 there are only two scalar fields needed in the eight-dimensional supergravity theory. This
is related to the fact that the R-symmetry in this case remains unbroken upon putting the theory on a
sphere.
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6.3 Supersymmetric localisation

Supersymmetric localization is a powerful tool to study the dynamics of strongly
coupled supersymmetric QFTs which has been efficiently exploited in a variety
of examples [208]. We can use this tool to study the correspondence between
gauge theories and their gravity duals. In many situations the calculation of
supersymmetric observables in the field theory reduces to an evaluation of a matrix
integral which can then be studied in the planar limit using saddle point techniques.
In the cases when the supersymmetric theory has a known gravitational dual
this provides a fruitful avenue to quantitatively test the details of the AdS/CFT
correspondence.

It is natural to consider questions on the interface of holography and supersymmetric
localization for conformal theories with maximal supersymmetry, like four-
dimensional N = 4 SYM and the three-dimensional ABJM theory, on the round
sphere. Indeed this was pursued extensively and many important developments are
summarized in [208]. These two examples also offer the possibility to break
conformal invariance and part of the supersymmetry while still maintaining
computational control both in the field theory [65,217–219] and the supergravity
side [54,55,57,58,98,155–157]. This collection of results provides a non-trivial
precision test of holography away from the conformal limit. Our goal is to extend
this success to maximally supersymmetric Yang-Mills on the d-dimensional round
sphere, Sd .

Supersymmetric localization reduces the path integral of the theory to an ordinary
matrix integral. Despite this drastic simplification the explicit evaluation of this
integral is still non-trivial due to the presence of non-perturbative effects like
instantons. However, when the rank of the gauge group is large it is believed that
these non-perturbative effects are suppressed and the matrix integral becomes more
tractable. As we discuss in detail below, for all values of d it is possible to compute
the free energy and the vacuum expectation values (VEV) of a supersymmetric
Wilson loop using this matrix model.3 A further simplification occurs in the limit
where the dimensionless ’t Hooft coupling, defined as

λ≡R4−d g2
YMN , (6.1)

where R is the radius of Sd , is large. In this case the results can be written in
analytic form and can be formally analytically continued even to non-integer values
of d.

3See [108] for calculations of the free energy on Sd of QFTs without gauge fields.
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6.4 Non-conformal precision holography

To study these MSYM theories on Sd we will use their dual formulation as spherical
branes.4 Equipped with these supergravity backgrounds we can apply the tools
of holography and compute the free energy and Wilson loop VEV at large λ. As
introduced in Chapter 5, the holographic free energy is calculated by evaluating the
on-shell action of the supergravity solution while the Wilson loop VEV is computed
by first finding an appropriately embedded probe string and then computing
the Nambu-Goto action on-shell. Both of these calculations can be performed
explicitly and the results are in agreement with the ones obtained by supersymmetric
localization.

The analysis on the gravity side for all d 6= 4 goes beyond the realm of the
usual holographic dictionary. The spherical brane solutions for d 6= 4 are
not asymptotically locally AdS and therefore there is no generally established
holographic renormalization procedure. Despite this obstacle we are able to adapt
the results in [149, 150] to our setting and construct appropriate counterterms
in supergravity which lead to a finite on-shell action for the spherical brane
backgrounds and the probe strings. The approach of [149, 150] is however not
applicable for d = 6 due to the linear dilaton characteristic of the little string theory.
Inspired by the regularization procedure in the matrix model analysis and the results
in [7,77,176] we are able to propose a way to cancel the divergences appearing
in the spherical D5-brane solution and obtain an agreement with the results from
supersymmetric localization.

6.5 Outline

In Chapter 7, we start with a discussion of maximally supersymmetric Yang-Mills
theory on Sp+1. We explain how one can put this theory on a sphere, and we use
supersymmetric localization to compute the free energy and 1/2-BPS Wilson loop
vacuum expectation value. Next, in Chapter 8 we present the dual spherical brane
solutions in a unified manner and show how they can be obtained by uplifting
supersymmetric domain wall solutions of lower-dimensional gauged supergravity.
Finally, in Chapter 9, we show how the usual holographic renormalization procedure
can be generalized to apply to our solutions and subsequently compute the
holographic free energy and Wilson loop VEVs for 2≤ d ≤ 7. In the appendices A-G
we clarify our conventions and elaborate on many technical results used throughout
this part.

4See also [179,187,188,234] for other constructions of supersymmetric solutions sourced by curved
Euclidean branes.





Chapter 7

SYM on a sphere

An important guiding principle for constructing supersymmetric spherical Dp-brane
solutions is the fact that the low-energy dynamics on the worldvolume of D-branes
in flat space is governed by a maximally supersymmetric Yang-Mills theory. Thus, it
is natural to expect that for spherical Dp-branes the low-energy physics is the same
as that of maximal SYM theory on Sp+1. Since for general values of p maximal
SYM is not conformal it is non-trivial to couple it to the curvature of the sphere.
Therefore, let us briefly review the construction of the Lagrangian of maximal SYM
on Sp+1.

7.1 Maximal SYM on a sphere

Maximally supersymmetric Yang-Mills theory in d = p + 1 dimensions has 16
real supercharges and consists of a vector multiplet transforming in the adjoint
representation of the gauge group G. The fields in this multiplet are the gauge
field Aµ, 9 − p real scalar fields, Φm, and 16 fermionic degrees of freedom, or
gaugini, collectively denoted by Ψ. Depending on the dimension and signature of
spacetime the fermionic degrees of freedom are arranged into spacetime spinors as
summarized in Table 7.1.

The index m, which labels the scalar fields, transforms in the fundamental
representation of the R-symmetry group, which is SO(9−p) for Lorentzian1 theories
and SO(1,8− p) for the Euclidean ones. We are mostly interested in Euclidean
theories, as we intend to study SYM on Sp+1, but for the moment we keep the
discussion general and discuss both cases.

1We work with a “mostly +” signature.
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Dimensions Lorentzian Euclidean

7 1 2 (Majorana)
6 2 (Weyl) 2 (Majorana)
5 2 2
4 4 (Majorana) 4 (Weyl)
3 8 (Majorana) 4
2 16 (Majorana-Weyl) 8 (Majorana)

Table 7.1: Number of minimal spinors in each dimension used in Lorentzian and
Euclidean field theories. The conditions the spinors satisfy are indicated in brackets.
In all cases we denote the collective 16-component fermion with the symbol Ψ.

The classical action for the (p+1)-dimensional maximal SYM theory on flat space can
be derived by dimensionally reducing the unique SYM action in ten dimensions [64],

L10d
SYM =

1
2g2

YM

Tr
�

−FµνFµν + Ψ̄Γ µDµΨ
�

. (7.1)

Here Ψ̄ = Ψ†Γ0 is the Dirac adjoint with Γ0 the ten-dimensional gamma matrix along
the time direction. Note that to obtain a lower-dimensional Euclidean theory one
must perform a timelike dimensional reduction. Explicitly the Lagrangian of the
d-dimensional SYM theory on flat space reads2

LSYM =
1

2g2
YM

Tr
�

− FµνFµν − DµΦmDµΦm + Ψ̄γµDµΨ

−
1
2
[Φm,Φn][Φ

m,Φn] + Ψ̄Γm[Φm,Ψ]
�

. (7.2)

In our conventions the (9− p)-dimensional internal gamma matrices are denoted
by Γm and the (p+ 1)-dimensional spacetime ones are γµ. The Clifford algebra is
{γµ,γν} = 2gµν, with gµν the spacetime metric. The Yang-Mills field strength is
given by Fµν = 2∂[µAν] + [Aµ, Aν], and the gauge covariant derivatives are

DµΦm = ∂µΦm + [Aµ,Φm] , DµΨ = ∂µΨ + [Aµ,Ψ] . (7.3)

The m, n indices are raised and lowered with the flat metric on R9−p for Lorentzian
theories and R1,8−p for Euclidean theories. For Euclidean theories this implies that
one of the scalar fields, Φ0, has the ’wrong sign’ kinetic term.3 Notice also that the

2Since we are interested in QFTs we take p ≥ 1. We also set the θ -term in the four-dimensional SYM
action to zero.

3At first sight one might worry that the energy is not bounded from below. However, as the sphere
does not have a preferred Killing vector, there is no natural notion of a Hamiltonian in this theory and
therefore this ’wrong sign’ kinetic term does not cause any trouble.
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scalar-fermion interaction term involves internal gamma matrices, Γm, associated
with the R-symmetry.

The Yang-Mills coupling constant, gYM, is dimensionful for d = p+ 1 6= 4. Its mass
dimension is given by [g2

YM] = 3−p. This means that maximal SYM theories are non-
renormalizable for p > 3 and have to be incorporated in an appropriate UV complete
theory at high energies. Indeed, maximal SYM in five dimensions, i.e. p = 4, is
conjectured to grow an extra dimension at high energies and flow towards the (2,0)
CFT in six dimensions [88, 164]. Maximal SYM in six dimensions is expected to
be UV completed by a non-gravitational but non-local theory called little string
theory. Little string theory comes in two flavors, depending on the chirality of the
supercharges in six dimensions. Six-dimensional SYM has (1,1) supersymmetry
and therefore flows towards the corresponding (1, 1) little string theory in the UV,
see [4,163] for reviews and further references. For p > 5 maximal SYM has a UV
completion within string theory as the worldvolume theory on Dp-branes. For p ≤ 3
the UV physics is under better control. When p = 3 it is well-known that maximal
SYM is conformally invariant and thus UV finite. For p < 3 the YM coupling is
asymptotically free and the physics at low-energies is strongly coupled. The theory
in three dimensions, i.e. p = 2, is believed to flow to the interacting ABJM CFT
which has maximal supersymmetry and describes the low-energy dynamics of M2-
branes [5]. The IR dynamics of the maximal two-dimensional SYM is somewhat
more involved, see [160] for a recent discussion.

Placing SYM on curved backgrounds such as Sp+1 via a minimal coupling, i.e.
replacing ηµν with gµν and partial with covariant derivatives in (7.2), results in
an action that in general does not preserve any supersymmetry. This is because
constant supersymmetry transformation parameters, ε, do not exist on a general
curved manifold. The supersymmetry transformation of the action is proportional
to the derivative of ε which in general does not vanish. Understanding which
supersymmetric QFTs can be placed on which curved manifolds while preserving
some amount of supersymmetry can be done systematically using the formalism
described in [93]. For maximal SYM on Sp+1 this question was addressed in the
earlier work [48], see also [186,207].

In this paper we are interested in the maximal SYM theory placed on Sp+1 with
metric R2dΩ2

p+1 where R is the radius of the sphere and dΩ2
p+1 is the unit radius

Einstein metric on Sp+1.4 It was shown in [48] that these Euclidean theories can
preserve 16 real supercharges and the supersymmetry parameter obeys the equation

∇µε=
1

2R
γµΛε with Λ= Γ 012 , (7.4)

This construction requires at least three internal Γ -matrices and we are therefore

4The Ricci scalar of the sphere with metric R2dΩ2
p+1 is equal to p(p+1)

R2 .
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restricted to p ≤ 6. This is closely related to the fact that superconformal algebras
only exist in six or fewer dimensions. The action for maximal SYM on Sp+1 is
explicitly given as a deformation of the action in (7.2). First we have to introduce
a minimal coupling of the Lagrangian in (7.2) to the metric on the sphere. In
addition, to ensure that the the supersymmetry generated by the spinor in (7.4) is
preserved, we have to add the following terms to the Lagrangian

δL= −
1
R2

Tr [(p− 1)ΦmΦ
m + (p− 3)ΦaΦ

a]

+
1

2R
(p− 3)Tr

�

Ψ̄ΛΨ − 8Φ0[Φ1,Φ2]
�

,

(7.5)

where the index a only runs from 0 to 2 and is contracted using the Lorentzian
metric just like the m, n indices [48]. The Lagrangian in (7.5) for p /∈ {3, 6} breaks
the SO(1,8− p) R-symmetry group of the maximal theory in Euclidean space to
the subgroup5

SU(1, 1)× SO(6− p) . (7.6)

This symmetry breaking pattern is an important guiding principle for constructing
the spherical brane solutions of ten-dimensional supergravity. The full superalgebras
realized by these theories are given in Table 7.2 and are equal to a superconformal
algebra in p Euclidean dimensions with eight real supercharges Q and eight
superconformal charges S. The lack of superconformal algebras in more then
six dimensions gives an additional reason why we are limited to p ≤ 6.

p g

1 osp(4|2)
2 D(2|1;α)n D(2|1;α)
3 psu(4|4)
4 su(4|2)
5 f4
6 osp(8|1,R)

Table 7.2: The superalgebras corresponding to (p+ 1)-dimensional MSYM theories.
For all p 6= 2 these are the unique choices consistent with the symmetries of SYM
on a sphere. For p = 2 there is an infinite family of possibilities parameterized
by α ∈ C\{0,−1}. To determine the precise value of α one should match the full
algebra.

There are at least three important reasons to study SYM theories on Sp+1. First, this
is a maximally symmetric space which is also the unique curved manifold on which
one can preserve 16 supercharges. Placing a supersymmetric theory on a sphere is
an essential ingredient in the context of supersymmetric localization and indeed it

5For p = 6 the R-symmetry group is SO(1, 2)' SU(1, 1) and is preserved by the Lagrangian in (7.5).
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was recently shown in [186], following the seminal work [207], how to study the
partition function of maximal SYM using this method for any 1≤ p ≤ 6. This in turn
paves the way to compute exactly certain supersymmetric correlation functions of
the SYM theory. Finally, the radius, R, of the sphere provides a natural IR cut-off for
the dynamics of the SYM theory which is compatible with supersymmetry. This is
especially important in the holographic context where the IR physics of SYM theories
for p 6= 3 results in singularities of the dual supergravity solutions. Alternatively,
these can be resolved by introducing finite temperature in the form of a black hole
horizon [146], see Appendix E for more details and a comparison to the spherical
branes. The finite temperature is a convenient IR regulator which, however, breaks
supersymmetry completely. As we show below, our spherical Dp-brane solutions,
which are holographically dual to the maximal SYM on Sp+1, are regular in the IR
while preserving all 16 supercharges.

7.2 Supersymmetric localization

Now that we have formulated a Lagrangian for maximal SYM, the full information
on these quantum field theories is encoded in various path integrals. These are
infinite-dimensional integrals on the space of Euclidean field configurations with
a weight exp (−S/ħh) determined by the Euclidean action. Ideally, we could obtain
any correlation function by computing such path integrals. However, in practice
this is very hard because of the infinite range of integration. In our first course on
quantum field theory we learn how to compute path integrals perturbatively using
Feynman calculus. This method is however only valid at weak coupling and even if
we are able to compute the full perturbative series the result typically is only an
asymptotic series with vanishing radius of convergence. Only after accounting for
various non-perturbative corrections we can obtain well-defined results for finite
coupling.

In light of these limitations it is tempting to look for situations where the path
integral can be computed exactly. Apart from free theories where the path integral
is a Gaussian integral, the only known examples until recently were topological
and cohomological theories defined on compact manifolds [243,245]. However, in
2007 a wealth of new exact results emerged in the context of supersymmetric QFTs
on curved backgrounds following the work of Pestun [207]. The key technique
that allowed both for the computation of path integrals in topologically twisted
theories as well as more general rigid supersymmetric theories on curved spaces
is called supersymmetric localization. This technique relies on supersymmetry to
prove that the path integral only receives contributions from the locus of fixed
points of the supersymmetry transformations. Supersymmetric localization is a
natural generalization of equivariant localization.
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The power of localization is that it reduces the infinite-dimensional path integral
of a D dimensional theory to a path integral of a lower dimensional field theory.
A particularly favorable situation arises when the localization locus consists of
constant field configurations only and consequently reduces the full path integral
to a finite-dimensional matrix integral. Physically the localization formulae can
be viewed as instances where the semi-classical one-loop (WKB) approximation is
exact. A crucial point is that this saddle point approximation is not for the original
action with parameter ħh but rather for a modified action with a deformation term
weighted by an auxiliary parameter t which does not change the result of the path
integral.

In the remainder of this section we present a lightning introduction to supersymmet-
ric localization from a physicists point of view. For a more complete and rigorous
review we refer the reader to [208].

Let us start by considering a supersymmetric quantum field theory. In such theories
there exists a conserved fermionic supercharge, Q, generating supersymmetry
transformations, which squares to a bosonic charge B,

Q2 = B , (7.7)

which may generate a linear combination of spacetime symmetries, global internal
symmetries or gauge symmetries. We can divide the fields in our theory into bosonic
and fermionic fields, or equivalently Grassmann even and odd fields. The objects we
will be able to compute using localization are supersymmetric or BPS observables
OBPS which are defined by being annihilated by the supercharge Q, and therefore
by B 6

QOBPS = 0 . (7.8)

OBPS may be a local operator or a combination of local operators and more generally
it can also be a non-local operator such as a supersymmetric Wilson or ’t Hooft loop
or a surface operator for example. Our present aim is to compute the expectation
value 〈OBPS〉 of such operators exactly using supersymmetric localization. Written
as a path integral, this expectation value is given by

〈OBPS〉=
∫

[DX ] OBPSe−S[X ] . (7.9)

First of all, by Stokes’ theorem, the expectation value of a Q-exact observable
vanishes

〈QO〉=
∫

[DX ] QO e−S[X ] =

∫

[DX ] Q
�

Oe−S[X ]
�

= 0 , (7.10)

where we have used the fact that the action of a supersymmetric theory is invariant

6Here and in the following QO represents the adjoint action of Q on an operator, i.e. QO ≡ [Q,O].
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under Q, i.e. QS = 0. We thus end up with an integral of a total derivative in field
space, which vanishes provided there are no boundary terms. In the following we
always assume that the integrand decays fast enough so that we can ignore all
possible boundary terms. As a result, path integrals of BPS observables depend
only on the Q-cohomology class of the inserted operator,

〈OBPS〉= 〈OBPS +QO〉 . (7.11)

Next, we show how these path integrals of BPS observables localize to the BPS locus
MQ of Q-supersymmetric field configurations. In the following we require that the
path integral is well-defined and free of IR divergences. This is guaranteed by placing
the supersymmetric theory on a compact manifold or Ω-background [198]. Since
we have shown that the expectation value OBPS only depends on the Q-cohomology
class we can consider a different Q-cohomology representative obtained by adding
the Q-variation of a B-invariant fermionic functional V to the action.

〈OBPS〉=
∫

[DX ] OBPSe−S[X ]−tQV . (7.12)

The B-invariance of the operator V ensures that the deformed observable is Q-
cohomologous to the original one. This equality is valid for all t and all functionals
V that do not change the asymptotics of the integrand. It is easy to see that indeed
the right hand side of (7.12) is independent of t,

d
dt

∫

[DX ] OBPSe−S[X ]−tQV =−
∫

[DX ] (QV )OBPSe−S[X ]−tQV

=−
∫

[DX ] Q
�

VOBPSe−S[X ]−tQV
�

=0 .

(7.13)

Assuming that the deformation term QV is positive (semi-)definite we can evaluate
the expectation value 〈OBPS〉 by taking the t →∞ limit in (7.12). In this limit the
integrand is dominated by the saddle points of the localizing action Sloc =QV . The
canonical choice of localizing Lagrangian is

Lloc =Q
∑

Ψ

�

(QΨ)†Ψ +Ψ†(QΨ†)†
�

, (7.14)

where the sum runs over all fermions in the theory. In this case, the saddle points
of the localizing action are given precisely by the BPS configurations

Ψ = Ψ† = 0 , QΨ =QΨ† = 0 . (7.15)
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In the following we denote this BPS locus by X0. To evaluate the deformed path
integral (7.12) we first expand the fields, collectively denoted by X , around the
saddle point configurations

X = X0 +
1
p

t
δX (7.16)

and take the limit t →∞. The semi-classical expansion of the action in 1
t reduces

to

S[X ] = S[X0] +
1
2

∫

δ2Sloc

δX 2

�

�

�

�

X=X0

δX 2 (7.17)

which is exact, since higher order terms in the expansion involve negative powers of
t and thus vanish in the t →∞ limit. Integrating out the fluctuations δX normal
to the localization locus we obtain schematically the localization formula

〈OBPS〉=
∫

[DX0] OBPS

�

�

X=X0
e−S[X0]SDet

�

δ2Sloc[X0]
δX 2

0

�−1

+ · · · , (7.18)

where SDet is the superdeterminant or Berezinian, a generalization of the
determinant to supermatrices. The original path integral has localized to a lower-
dimensional integral over the BPS locus where in addition to the classical action
on the BPS locus there is a one-loop correction due to integration out the field
fluctuations δX given by the superdeterminant of δ

2Sloc[X0]
δX 2

0
. Note that in deriving

this localization formula there is some freedom if there are multiple conserved
supercharges Q i since any of them can be used to define a set of BPS observables.
Secondly, at fixed localization charge Q we still have a choice of B-invariant operator
V which is not necessarily the canonical one. These choices affect the localization
locus and one-loop determinants so different localization schemes typically lead to
very different looking results. However, the answers must eventually agree since
they only differ by Q-exact observables.

Unfortunately, this is not yet the complete story. Generically, the result (7.18) should
be completed by non-perturbative terms denoted by the dots. In general these
contributions are largely unknown and very hard to compute explicitly. In the case
of interest to us, namely SYM on a sphere, some results are known in the literature.
In the case of SYM on S2 the dots correspond to non-perturbative contributions
coming from other localization loci with non-trivial magnetic fluxes [39]. For
SYM on S3 there are no non-perturbative corrections [124,125,147,151]. For S4,
the non-perturbative contributions come from instantons localized at the north
and south pole of the sphere and can are computed by the Nekrasov instanton
partition function [198]. For S5 and S7, there are non-perturbative contributions
from additional localization loci around non-trivial connections satisfying certain
non-linear PDEs [153, 186, 212]. There are some natural guesses about these
corrections but no systematic derivation or understanding, especially for the case
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of S7. Finally, for S6 the nature of the dots remains a mystery. When the rank
of the gauge group is large, these contributions are believed to be exponentially
suppressed and can therefore be ignored. In general, the k-instanton contribution
is of the form

Z (k)inst. ∼ e
− 8π2k N2

g2
Y M . (7.19)

However, to obtain the instanton partition function one has to integrate over the
instanton moduli space, which can considerably change the instanton weight and
even overcome the exponential suppression. For N = 2 and N = 2∗ SYM it was
argued in [219] that this does not happen and that the instanton contribution
remains exponentially suppressed. Further evidence for this suppression has been
supplied by holography, see for example [57], where such contributions are absent
to leading order in N . However, in two-dimensional QCD it was shown in [115]
that at large coupling the moduli space integration can overcome the exponential
suppression and lead to instanton induced phase transitions. By constructing dual
supergravity solutions we therefore not only test the holographic correspondence
but also show that at leading order in N such instanton contributions are indeed
absent.

7.3 Localising SYM

By exploiting the supersymmetric localization technique we can compute various
observables in maximal SYM on a sphere. Our starting point is the MSYM Lagrangian
on Sd with radius R from (7.2) and (7.5),7

L= −
1

2g2
YM

Tr

�

FMN F MN − Ψ̄ /DΨ −
(d − 4)

2R
Ψ̄ΛΨ +

(d − 4)
R2

ΦaΦa

+
(d − 2)
R2

ΦmΦm +
2

3R
(d − 4)Φa[Φb,Φc]εabc − KiK

i

�

. (7.20)

where a = 0,1,2, m = 3, . . . , 8 − p and M , N = 0, . . . 9. Furthermore, we have
introduced 7 additional auxiliary fields Ki which allow for an off-shell formulation
of supersymmetry. An off-shell formulation does not exist for all 16 supercharges,
but for the purpose of localization we only need an off-shell formulation for one
particular ε. By introducing the vector field vM such that

vM ≡ εΓ Mε , (7.21)

7For the sake of brevity we use the full 10d gauge fields. Their kinetic term includes the gauge kinetic
term as well as the kinetic terms for the scalars in the lower dimensional SYM theory.
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we can elegantly encode this choice of ε. The Lagrangian (7.20) is invariant under
the off-shell supersymmetry transformations

δεAM = ε ΓMΨ , (7.22)

δεΨ =
1
2
Γ MN FMNε+

(d − 3)
d

Γ µAΦa∇µ ε+
1
d
Γ µmΦm∇µ ε+ K iζi , (7.23)

δεK
i = −ζi /DΨ +

(d − 4)
2R

ζiΛΨ , (7.24)

where ε is a bosonic 16 component real chiral spinor that satisfies the conformal
Killing spinor equation

∇µε=
1

2R
ΓµΛε , (7.25)

and we have introduced seven bosonic pure spinors ζi defined by the following
orthogonality relations [186,207]

εΓ Mζi = 0 , ζiΓ Mζ j = δi j vM . (7.26)

By choosing Q to be the supercharge generated by ε and defining

V =

∫

dd x
p

−gΨδεΨ , (7.27)

the path integral localizes to the BPS locus defined by Q [113,186]. Given any ε
satisfying (7.25), the vector field vM = εΓ Mε automatically satisfies vM vM = 0. We
can then choose ε such that v0 = 1, v8,9 = 0, and such that it generates rotations
along one particular equator of the sphere, i.e. vµvµ = 1. After Wick rotating the
Φ0→ iΦ0, and K i → iK i the theory localizes onto the locus where

Aµ = 0 , ΦI = 0 for I 6= 0 , ∇µΦ0 = 0 , Ki = −
(d − 3)

R
Φ0(ζiΛε) . (7.28)

Substituting this fixed point locus in the Lagrangian we find the classical action

S0 =
Vd

2g2
YM

(d − 1)(d − 3)
R2

Tr (Φ0Φ0) =
4π

d+1
2 Rd−4

g2
YMΓ

�

d−3
2

�Trσ2 (7.29)

where Vd is the volume of Sd and we have defined the dimensionless N×N Hermitian
matrix σ ≡RΦ0. Note that this result holds for any hypermultiplet content. The
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full partition function for general d then reduces to [113,182,186]

Z =

∫

Cartan

[dσ] exp

�

−
4π

d+1
2 Rd−4

g2
YMΓ

�

d−3
2

�Trσ2

�

Z1−loop(σ)ZInst. . (7.30)

where ZInst. accounts to the non-perturbative effect of instantons and Z1−loop(σ) is
the contribution of the Gaussian fluctuations around the fixed point. For maximal
SYM the field content consists of only vector multiplets and when combined with
the Vandermonde determinant the one-loop determinant becomes

Z1−loop(σ)
∏

γ>0

〈γ,σ〉2 =
∏

γ>0

∞
∏

n=0

�

n2 + 〈γ,σ〉2

(n+ d − 3)2 + 〈γ,σ〉2

�
Γ (n+d−3)

Γ (n+1)Γ (d−3)

, (7.31)

where γ are the positive roots for the gauge group. If d < 6 then (7.31) is convergent.
For d ≥ 6 it diverges and has to be regularized. For the rest of this chapter we assume
that d < 6. The d = 6 and d = 7 cases will be considered separately. Note that in
the matrix model defined by (7.30), the integration over σ is restricted to adjoint
matrices in the Cartan of the gauge group. We can therefore fully parameterize σ
by its eigenvalues σi .

7.4 Free energy and Wilson loop VEVs

Using localization we have reduced the full path integral to a finite dimensional
matrix model. However, in most cases the instanton partition function is unknown
and we cannot evaluate the matrix model exactly. Nonetheless, we can extract a lot
of information by going to the large N limit where the instantons contributions are
believed to be exponentially suppressed and can be ignored [54,217]. In this limit
the matrix model partition function is dominated by an eigenvalue distribution
solving the following auxiliary saddle point equation

C1N
λ
σi =

∑

j 6=i

G16(σi j) , C1 ≡
8π

d+1
2

Γ
�

d−3
2

� , (7.32)

where we have introduced the dimensionless ’t Hooft coupling

λ= g2
YMNR4−d (7.33)

and σi j ≡ σi −σ j . The kernel G16(σ) is given by [182],

iG16(σ)
Γ (4− d)

=
Γ (−iσ)

Γ (4−d − iσ)
−

Γ (iσ)
Γ (4−d + iσ)

−
Γ (d−3− iσ)
Γ (1− iσ)

+
Γ (d−3+ iσ)
Γ (1+ iσ)

. (7.34)
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Its behavior is shown in Figure 7.1 for various values of d. Notice that in this figure
we are not restricting the dimension d to be an integer. Indeed, the kernel G16(σ)
is a meromorphic function of d.

For small eigenvalue separations, i.e. |σi j | � 1, the kernel has the weak coupling
behavior

G16(σi j)≈
2
σi j

, (7.35)

which is independent of d. We are however more interested in strongly coupled
theories where λ� 1. In this regime the central potential for the eigenvalues is
relatively weak so the repulsive force coming from the kernel pushes the eigenvalues
far apart for d < 6. Hence, for generic i 6= j we have that the eigenvalues are
widely separated, |σi j | � 1 when λ is large, in which case the kernel (7.34) can be
approximated by

G16(σi j)≈ C2|σi j |d−5sign(σi j) , (7.36)

where
C2 = 2(d − 3)Γ (5−d) sin π(d−3)

2 . (7.37)

The saddle point equation then reduces to

C1

λ
Nσi = C2

∑

j 6=i

|σi −σ j |d−5sign(σi −σ j) . (7.38)

Notice that C2 in (7.37) has a pole at d = 6 and a double zero at d = 3. This
restricts our general analysis to the range 3< d < 6. We will return to d = 2, 3 in
Chapter 9.

Next, we define the eigenvalue density ρ(σ),

ρ(σ)≡ N−1
N
∑

i=1

δ(σ−σi) , (7.39)

which at large N becomes a continuous function. Assuming strong coupling, the
saddle point equation (7.38) for 3< d < 6 can be written as

C1

λ
σ = C2

∫ b

−b

− dσ′ρ(σ′)|σ−σ′|d−5sign(σ−σ′) , (7.40)

where b marks the endpoints of the support of the eigenvalue distribution. Using
the result in (B.1), we see that (7.40) is satisfied if the density has the form

ρ(σ) =
2π

d+1
2

πλ Γ (6− d)Γ
�

d−1
2

�

(b2 −σ2)(d−5)/2
. (7.41)



FREE ENERGY AND WILSON LOOP VEVS 77

d=3.5

d=4

d=5

d=5.5

d=5.7

-1.5 -1.0 -0.5 0.5 1.0 1.5
σ

-20

-10

10

20

G16(σ)

Figure 7.1: The kernel G16(σ) for various values of d. For |σ| � 1 the curves
approach the same weak coupling behavior. For |σ| > 1 they approach different
strong coupling behavior.

Using (B.2), we can determine b by properly normalizing the density,

b = (4π)
d+1

2(d−6)
�

32λ Γ
�

8−d
2

�

Γ
�

6−d
2

�

Γ
�

d−1
2

��
1

6−d . (7.42)

To verify the validity of the strong coupling approximation in (7.36) we can test the
solutions to the saddle point equation numerically using the full function G16(σi j)
defined in (7.34). As can be seen from the graphs in Figure 7.2, the numerical
solutions at strong coupling are in very good agreement with the eigenvalue density
(7.41) in dimensions 3< d < 6.

In the strong coupling regime the large N limit of the free energy, F = − log Z , is
given by

F = N2

�

C1

2λ

∫ b

−b

dσρ(σ)σ2

−
C2

2(d − 4)

∫ b

−b

dσρ(σ)

∫ b

−b

dσ′ρ(σ′)|σ−σ′|d−4

�

. (7.43)
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Figure 7.2: The eigenvalue density obtained from the numerical solutions of the full
saddle point equations (7.32) with various choices of parameters. Top left: d = 4.5,
N = 80, λ = 350. Top right: d = 4.98, N = 100, λ = 500. Bottom: d = 5.5,
N = 80, λ= 100. The dashed lines represent the eigenvalue density in (7.41).

Dividing by the N2 factor and performing the second integral over σ by parts results
in

F
N2
=

C1

2λ

∫ b

−b

dσρ(σ)σ2 −
C2 f (b)
d − 4

∫ b

−b

dσ′ρ(σ′)|b−σ′|d−4

+
C2

2

∫ b

−b

dσ f (σ)

∫ b

−b

dσ′ρ(σ′)|σ−σ′|d−5 , (7.44)

where f (σ) is defined in (B.4) and we only used the fact that it is an odd function.
Substituting (7.40) in the last integral and integrating once more by parts we find

F
N2
=

C1

4λ

∫ b

−b

dσρ(σ)σ2+
C1

2λ
f (b)b2−

C2 f (b)
d − 4

∫ b

−b

dσ′ρ(σ′)|b−σ′|d−4 . (7.45)
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The remaining integrals are evaluated in (B.5) and (B.6). Using these, as well as
f (b) = 1/2 and the expression for b in (7.42), we can simplify the free energy to

F
N2
=−

C1

2λ
(6− d)

(8− d)(d − 4)
b2

=−
16π

(d+1)(4−d)
2(6−d) (6− d)

λ Γ
�

d−3
2

�

(8−d)(d−4)

�

λ

4
Γ
�

8−d
2

�

Γ
�

6−d
2

�

Γ
�

d−1
2

�

�
2

6−d

.

This is our final result for the free energy as a function of d in the strong coupling
limit.

Next, we can use our large N matrix model to compute the vacuum expectation
value of a 1

2 -BPS Wilson loop W wrapping the equator of Sd . The VEV of this
operator is given by

〈W 〉=
¬

Tr
�

Pexpi
∮

d xµAµ+i
∮

ds vAΦ
A
�¶

(7.46)

where vAvA = 1 and the direction of vA is fixed by the choice of localizing supercharge.
If the loop is chosen to be invariant with respect to the same supersymmetry used
to localize the partition function then the Wilson loop can also be localized. For
our choice of supersymmetry this sets v0 = 1 [186,207]. In the large N limit the
Wilson loop reduces to

〈W 〉=
¬

Tr
�

Pexpi
∮

ds·Φ0
�¶

≈
∫ b

−b

dσρ(σ)e2πσ

=(πb)
d−6

2 Γ
�

8−d
2

�

I 6−d
2
(2πb) ,

(7.47)

where we used the eigenvalue density in (7.41) to evaluate the integral. The
functions I 6−d

2
(2πb) are modified Bessel functions which reduce to spherical Bessel

functions when d is odd.

When d = 4, the result (7.47) is valid for any value of λ. In Chapter 9 we will show
that this is also true for d = 3. For all other values of d the result in (7.47) is valid
only for large λ. When comparing these results to supergravity we will mainly be
interested in the strong coupling limit. In this case the Wilson loop VEV is generally
determined by the highest eigenvalue b, in which case we find

〈W 〉 ' e2πb . (7.48)



Chapter 8

Spherical branes

After introducing maximally supersymmetric Yang-Mills theory on the sphere we
will now construct the dual supergravity backgrounds holographically describing
this theory. Once these backgrounds are found, we will in the next chapter
holographically compute the free energy and 1/2-BPS Wilson loop VEV.

Maximal SYM on a (p+1)-dimensional sphere is realized as the worldvolume theory
on a stack of Dp-branes. Before embarking on the journey towards constructing
supergravity solutions describing Dp-branes with a spherical worldvolume let us
first review the physics of their flat counterparts.

8.1 Flat branes

Black branes are solution of ten-dimensional type II supergravity that source the
metric, the dilaton, as well as (p+ 2)-form field strengths [135]. These solutions
are characterized by their conserved electric charge µp and the ADM tension Tp.
They break either all of the original 32 supercharges of type II supergravity or only
half of them. We will focus on the latter case for which the branes are extremal
in the sense that their tension equals their charge, i.e. Tp = µp. Within string
theory these supergravity backgrounds are interpreted as the back-reaction of a
large number of fundamental Dp-branes on the ten-dimensional geometry in which
they are immersed [209]. This interpretation has passed many consistency checks
in string theory and ultimately led to the AdS/CFT correspondence. The low-energy
physics on the flat worldvolume of the fundamental Dp-branes is described by
maximal SYM in flat space. This implies that upon gravitational back-reaction the
supergravity solutions describing supersymmetric black branes are holographically
dual to these SYM theories as first suggested in [146].

The full ten-dimensional supergravity solution describing Dp-branes with flat

80
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worldvolume, with p ≤ 6, in asymptotically flat space and in string frame is (see
for example [49])

ds2
10 = H−1/2ds2

p+1 +H1/2ds2
9−p , (8.1)

eΦ = gsH
(3−p)/4 , (8.2)

Cp+1 = (gsH)
−1 volp+1 . (8.3)

Here ds2
p+1 and ds2

9−p denote the flat metrics on R1,p and R9−p respectively, volp+1

is the volume form on R1,p and H is a harmonic function on R9−p. The harmonic
function has isolated singularities at the position of the branes. For a single stack of
Dp-branes at the origin we have ds2

9−p = dr2+ r2dΩ2
8−p, with dΩ2

8−p the unit radius
metric on a round 8− p sphere. The harmonic function in this case is

H = 1+
gsN

µ6−pV6−p r7−p
, (8.4)

where Vn−1 = 2πn/2/Γ (n/2) is the volume of the unit radius n-sphere. The
fundamental charge of a Dp-brane is given by1

µp =
2π

(2π`s)p+1
, (8.5)

and the Yang-Mills coupling constant of the worldvolume gauge theory is

g2
YM =

(2π)2 gs

(2π`s)4µp
. (8.6)

The constants in (8.4) must satisfy a Dirac quantization condition. Indeed,
integrating the magnetic field strength over dΩ2

8−p leads to

1
2κ2

10µp

∫

?dCp+1 =
N(7− p)V8−p

2κ2
10µpµ6−pV6−p

= N ∈ Z , (8.7)

where the integer N is interpreted as the number of Dp-branes.

The field theory limit of Dp-branes in a holographic context was first studied in [146]
(see also [60]). Introducing the dimensionless radial coordinate U = r/(2π`s), this
limit is equivalent to zooming in on the near-horizon region of the branes:

gsN U p−7

2πV6−p
� 1 . (8.8)

1The ten-dimensional Newton constant is related to the string length `s through 4πκ2
10 = (2π`s)8,

therefore 2κ2
10µpµ6−p = 2π. Note that in our conventions the Newton constant does not depend on gs .
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Using (8.8), the metric and dilaton simplify to

ds2
10 = (gU)

7−p
2 ds2

p+1 + (gU)
p−7

2

�

dU2 + U2dΩ2
8−p

�

, (8.9)

eΦ = gs(gU)
(p−3)(7−p)

4 , (8.10)

Cp+1 = g−1
s (gU)7−pvolp+1 , (8.11)

where we have introduced g as2

(2π`s g)p−7 =
gsN

2πV6−p
. (8.12)

For 0< p < 3 at high energies, U � 1, the string coupling becomes small indicating
that the theory is free in the UV. As discussed in Chapter 7 this is the expected
UV behavior of maximal SYM theory in 1 < d < 4 dimensions. Conversely for
3 < p < 7 the dilaton increases at high energies indicating that the field theory
is strongly coupled. This again fits nicely with the non-renormalizability of SYM
theory for d > 4. Clearly the case p = 3 is special since the string coupling is
constant throughout the solution and the metric is that of AdS5 × S5. This is the
well-known holographic dual description of the conformal N = 4 SYM theory in
d = 4. The background in (8.9)-(8.11) possesses ISO(1, p)× SO(9− p) isometry
for p 6= 3 and SO(2, 4)× SO(6) for p = 3. This is the same as the global symmetry
group of the SYM theories discussed in Chapter 7. It is therefore clear that this
near-horizon solution nicely exhibits the physics we expect from a holographic dual
to SYM on flat space. We refer to [146] and references thereof for further support
of this holographic duality.

Our goal is to generalize the solutions in (8.9)-(8.11) and construct supergravity
backgrounds which correspond to spherical Dp-branes and provide a holographic
description of maximal SYM on Sp+1. This necessitates an understanding of how to
construct supergravity solutions for D-branes with Euclidean worldvolume. This
was addressed in several papers by Hull [137–139] where he argued that there
are Euclidean branes, or E-branes, not of regular type II string theory but of the
so-called type II∗ string theory. The existence of a low-energy supergravity limit of
these type II∗ string theories can be deduced independently from a supergravity
point of view [45]. The type II∗ supergravity theories admit E-brane solutions3 for
which the brane worldvolume is Euclidean and the time direction is transverse to
the brane worldvolume, i.e. E-branes resemble instantons. The E-brane solutions
can be obtained from the Dp-brane solutions above by analytically continuing the

2The real constant g will be identified with the coupling constant of the (p+ 2)-dimensional gauged
supergravity theory in which the brane solutions can be effectively described.

3Note that in the notation of [137–139] an E(p+ 1)-brane is the Euclidean version of a Dp-brane.



SPHERICAL BRANES 83

time direction of the brane worldvolume into a spatial coordinate and at the same
time analytically continuing the polar angle of the sphere transverse to the brane
into a time-like coordinate. This analytic continuation results in changing the
worldvolume of the brane from R1,p to Rp+1 and the transverse S8−p sphere in (8.9)
to de Sitter space, dS8−p. The analytic continuation does not only affect the metric,
but also changes the R-R fields. In [137–139] all R-R fields are taken to be real
with “wrong sign” kinetic terms. In this paper we use an equivalent formulation in
which all R-R fields are imaginary with “usual sign” kinetic terms. Finally we note
that solutions of the Lorentzian type IIA∗ string theory should uplift to solutions
of the so-called M∗ theory, see [137–139], which has the somewhat exotic (2,9)
signature of the metric, i.e. two time-like and nine spatial dimensions.

8.2 Spherical branes

To construct the near-horizon solutions for Euclidean Dp-branes wrapped on spheres
we can utilize the intuition gained from the field theory discussion in Chapter 7 and
make a suitable ansatz for the ten-dimensional metric. The total isometry group of
the solution should be a direct product of the isometry group of the Sp+1 which the
Dp-brane is wrapping and the R-symmetry group of the Yang-Mills field theory in
p+ 1 dimensions:

SO(p+ 2)× SU(1,1)× SO(6− p) . (8.13)

A ten-dimensional metric ansatz that implements these symmetries is given by

ds2
10 =∆

�

dr2 +R2e2AdΩ2
p+1 + e2B

�

dθ 2 + P cos2 θ deΩ2
2 +Q sin2 θ dΩ2

5−p

��

.
(8.14)

The functions A, B, ∆, P, and Q depend on r and θ and satisfy suitable positivity
conditions such that the metric is non-degenerate and has the correct signature,
while R is a constant that sets the radius of Sp+1. The metric on a unit radius round
n-sphere is denoted by dΩ2

n with volume form voln. Clearly the dΩ2
p+1 and dΩ2

5−p
factors in the metric realize the SO(p+2)×SO(6− p) part of the isometry group in
(8.13). The non-compact SU(1,1) factor in the R-symmetry of the SYM theory is
realized as the isometry group of two-dimensional de Sitter space with metric

deΩ2
2 = −dt2 + cosh2 t dψ2 , (8.15)

where ψ is 2π-periodic.

Note that for P = Q = 1 the metric in (8.14) simplifies significantly, namely the
metric transverse to the worldvolume of the branes is the round metric on dS8−p

which has SO(1,8 − p) isometry group, i.e. the same as for the Euclidean Dp-
branes in flat space discussed at the end of the previous section. Even before
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having an explicit solution for spherical branes, intuition from field theory suggests
that for values of the radial coordinate much larger than the scale set by R the
supergravity solution should reduce precisely to the Euclidean Dp-brane background
with P = Q = 1. This is suggested by the UV limit in the field theory where the
curvature of Sp+1 should play no role in the high energy dynamics of the SYM
theory and therefore should reduce to SYM in flat space.

In addition to the metric (8.14), we also have to make an appropriate ansatz for
the type II NS-NS and R-R form fields and the dilaton. Dp-branes are electrically
charged under Cp+1 thus it is natural to expect there to be a non-zero component
of Cp+1 along the spherical worldvolume of the branes. We should also allow for all
other form fields in the supergravity to have non-zero values as long as they preserve
the isometry group in (8.13). In addition the dilaton can be an arbitrary function
of r and θ . With this ansatz at hand one should analyze carefully the equations
of motion and the supersymmetry variations of the ten-dimensional supergravity
theory imposing that the background preserves 16 out of the 32 supercharges.
This analysis should result in a system of coupled non-linear partial differential
equations for the unknown functions in the ansatz. It is fair to assume that without
any further insight it will be difficult to solve explicitly this system of equations.
Fortunately, progress can be made by employing a well-tested strategy in top-down
holography, namely reduce the ten-dimensional problem to a supergravity problem
in p+ 2 dimensions. This can be achieved by employing a consistent truncation of
the ten-dimensional supergravity to an appropriate gauged supergravity in p+ 2
dimensions.

8.2.1 Supergravity in p+ 2 dimensions

The gauged supergravity theories of interest are maximally supersymmetric and
arise as consistent truncations of type II supergravity on S8−p. The vacua of
these supergravity theories are directly related to the field theory limits of Dp-
branes discussed in Section 8.1 and thus for p 6= 3 the vacuum breaks half of
the supersymmetries. In order to describe spherical branes we must analytically
continue these gauged supergravity theories so as to work with an Euclidean
theory. After constructing the solutions of interest we can uplift them to ten
dimensions where we recover the time direction, as in (8.14), and thus obtain
a fully Lorentzian solution of type II supergravity. In this section we start by
briefly describing the Lorentzian gauged supergravity theories before performing
the analytic continuation. Since the construction of the spherical brane solutions
proceeds similarly in different dimensions we present a uniform description of the
Lagrangian and BPS equations for all values of p. In Appendix D we give a more
detailed discussion of the various lower-dimensional supergravity theories used in
this paper and carefully analyze their analytic continuation.
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The field theory discussion in Chapter 7 suggests that to construct the spherical
brane solutions of interest we can restrict to an SU(1,1) × SO(6 − p) invariant
truncation of the maximally supersymmetric gauged supergravity theory. This
ensures that the R-symmetry of the SYM theory, realized as a gauge symmetry in
the supergravity theory, is preserved. In addition we are interested in supergravity
solutions which preserve the SO(p+2) isometry of the sphere which the branes are
wrapping. This in turn implies that all fields present in the gauged supergravity
theory, except the metric and scalar fields, should be set to zero. As discussed
in detail in Appendix D, imposing these symmetries on the gauged supergravity
leads to a consistent truncation which includes only the metric and three real scalar
fields: the “dilaton” φ, a real scalar x and a pseudoscalar χ.4 These scalar fields
have a nice interpretation in the SYM theory on Sp+1. The dilaton is dual to the
Yang-Mills coupling, the scalar field x is dual to the bosonic bilinear mass terms Φ2,
and the pseudoscalar is dual to the fermionic bilinear mass term Ψ̄ΛΨ appearing in
the field theory Lagrangian (7.5). It turns out that it is more convenient to work
with the scalar fields η and β (discussed further in Appendix D) which are linear
combinations of the scalar fields x and φ. In terms of these fields, the bosonic
actions for the truncated gauged supergravity theories take the following uniform
form for 0< p < 6,

S =
1

2κ2
p+2

∫

?p+2

§

R+
3p

2(p− 6)
|dη|2 −

1
2

�

|dβ |2 + e2β |dχ|2
�

− V
ª

. (8.16)

V in this equation denotes the scalar potential and ?p+2 is the (p+ 2)-dimensional
Hodge star operator. It is clear from the kinetic terms that (β ,χ) span an
SL(2)/SO(2) coset which can be conveniently parameterized by a single complex
scalar

τ≡ χ + ie−β . (8.17)

The kinetic term for τ can then be written in terms of the Kähler potential

K = − log
�

τ− τ̄
2

�

= β , (8.18)

as

Kττ̄|dτ|2 =
1
4

�

|dβ |2 + e2β |dχ|2
�

, (8.19)

where Kττ̄ = ∂τ∂τ̄K is the Kähler metric. The scalar potential can be compactly
expressed in terms of a superpotential which is holomorphic in τ and reads:

W =

(

−g e
1
2η
�

3τ+ (6− p)ie−
p

6−pη
�

for p < 3 ,

−g e
3(2−p)
2(6−p)η

�

3ie
p

6−pη + (6− p)τ
�

for p > 3 .
(8.20)

4The cases p = 3 and p = 6 are somewhat special and will be discussed separately.
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Here g is the SO(9−p) gauge coupling constant of the maximal gauged supergravity
theory. The scalar potential is given by

V =
1
2

eK
�

6− p
3p

�

�∂ηW
�

�

2
+

1
4
Kττ̄DτWDτ̄W −

p+ 1
2p
|W|2

�

, (8.21)

where Da = ∂a + ∂aK is the Kähler covariant derivative.

It is clear from the kinetic term of the scalar η in (8.16) as well as the superpotential
in (8.20) that p = 6 has to be treated separately. This is in harmony with the field
theory discussion in Chapter 7 where it was shown that the R-symmetry is unbroken
upon placing SYM on S7. This in turn implies that in the supergravity theory we
should retain only the complex scalar field, τ, and not include the scalar η. The
eight-dimensional gravitational action for p = 6 then reads5

S =
1

2κ2
8

∫

?8

�

R− 2Kττ̄|dτ|2 − V
	

, (8.22)

where

V =
1
2

eK
�

1
4
Kττ̄DτWDτ̄W −

7
12
|W|2

�

, (8.23)

and
W = −3i g . (8.24)

It is reassuring to observe that the supergravity action in (8.22) can be obtained as
a formal limit of the action in (8.16) by taking η/(p− 6)→ 0 and p→ 6.

As mentioned above, due to the runaway behavior of potential for the dilaton φ
there is no vacuum solution of the gravitational theories in (8.16) and (8.22) that
preserves all 32 supersymmetries.6 There are however domain wall solutions which
preserve 16 supercharges and are closely related to the flat brane solutions in ten
dimensions discussed in Section 8.1, see for example [60]. These solutions are
obtained by setting χ = x = 0, or equivalently β = p

p−6η, and read

ds2
p+2 = dr2 + e

2(9−p)
(6−p)(p−3)ηds2

p+1 , e
(p−3)
6−p η =

g(3− p)2

2p
(r − r0) , (8.25)

where ds2
p+1 is the flat metric on Minkowski space and r0 is an integration constant

that can be set to zero by shifting appropriately the radial coordinate r. These
solutions can be uplifted to solutions of type II supergravity using the uplift formulae
discussed in Section 8.2.3. The end result of this uplift is given by the following

5Again we refer to Appendix D for more details on how to obtain this action from maximal supergravity
in eight dimensions.

6The case p = 3 is an exception.
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ten-dimensional background

ds2 = eη
�

ds2
p+2 +

1
g2

e
2(p−3)

6−p ηdΩ2
8−p

�

, (8.26)

eΦ = gse
p(7−p)
2(6−p)η , (8.27)

F8−p =
7− p
gs g7−p

vol8−p . (8.28)

This solution precisely matches the near-horizon limit of the flat Dp-brane solutions

in (8.9)-(8.10) where gU = e
2p

(6−p)(p−3)η and the number of branes N is related to the
supergravity coupling constant g via (8.12).

So far we have discussed only Lorentzian supergravities. However the spherical
branes of interest here have a Euclidean worldvolume and thus should be described
by Euclidean gauged supergravity theories. Such theories should be maximally
supersymmetric with an SO(1, 8− p) gauge group and should be closely related to
the more familiar SO(9− p) maximal gauged supergravity theories in Lorentzian
signature. These Euclidean supergravity theories are unfortunately not available
in the literature. We resolve this impasse by performing an analytic continuation
of the truncated Lorentzian supergravity theories described by the Lagrangians in
(8.16) and (8.22).

At the level of the action the analytic continuation is straightforward. The metric
becomes Euclidean and the only real modification to the action stems from the fact
that the pseudo scalar χ becomes purely imaginary

χ → iχ . (8.29)

This results in the “wrong sign” kinetic term for χ. The scalar τ in (8.17) appears
to be a purely imaginary scalar field and thus is not appropriate to describe two
independent scalar fields. We must therefore consider τ = i(χ+e−β ) and, what used
to be its complex conjugate, τ̃= i(χ − e−β ) as two independent scalar fields in the
Euclidean theory.7 Similarly we should work with two independent superpotentials,
W as defined in (8.20) and fW obtained by complex conjugation of W accompanied
by the replacement τ̄→ τ̃,

fW =

(

−g e
1
2η
�

3τ̃− (6− p)ie−
p

6−pη
�

for p < 3 ,

g e
3(2−p)
2(6−p)η

�

3ie
p

6−pη − (6− p)τ̃
�

for p > 3 .
(8.30)

7This is a familiar predicament from similar constructions of Euclidean supergravity solutions in a
holographic context [54,98].
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The scalar potential of the Euclidean theory is obtained by replacing W by fW in
(8.21).

With this Euclidean supergravity theory at hand we are now in a position to discuss
how to construct the spherical branes of interest. We start by writing the following
metric ansatz compatible with the spherical symmetry of the worldvolume of the
brane

ds2
p+2 = dr2 +R2e2AdΩ2

p+1 . (8.31)

In addition we assume that the scalar fields and the warp factor A only depend on
the radial variable r. The constant R should be thought of as the radius of Sp+1

and is auxiliary since it can be absorbed into a redefinition of metric function A.8

To obtain the brane solutions with flat worldvolume one should take R→∞. As
we shall discuss below this is not a smooth limit, nevertheless it still proves useful
to keep the constant R explicitly in the formulae below.

Equipped with this ansatz we can plug it in the supersymmetry variations of the (p+
2)-dimensional gauged supergravity theory and look for solutions which preserve
16 supercharges. This is discussed in some detail in Appendix D. The end result
is the following system of BPS equations which should be obeyed by the metric
function and the three scalar fields:

(η′)2 = eK
�

6− p
3p

�2

(∂ηW)(∂ηfW) , (8.32)

(η′)(τ′) = eK
�

6− p
12p

�

�

∂ηW
�

Kττ̃Dτ̃fW , (8.33)

(η′)(τ̃′) = eK
�

6− p
12p

�

(∂ηfW)Kτ̃τDτW , (8.34)

(η′)(A′ −R−1e−A) = −eK
�

6− p
6p2

�

(∂ηW)fW , (8.35)

(η′)(A′ +R−1e−A) = −eK
�

6− p
6p2

�

(∂ηfW)W , (8.36)

where Kτ̃τ is the inverse of the Kähler metric in (8.19). Equations (8.32),
(8.33), and (8.34) arise from the spin- 1

2 supersymmetry variations of the gauged
supergravity theory, while (8.35) and (8.36) arise from the spin- 3

2 variations.

8To stay in the regime of validity of supergravity we have to make sure that ReA is larger than the
Planck and string scale throughout the solution.
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Equations (8.35) and (8.36) lead to a first order differential equation together with
the following algebraic relation for the metric function A(r)

eA =
1

Rg2

2p
6− p

τ̃−τ
τ̃+τ

e
2(p−3)

6−p η(η′) . (8.37)

Fortunately these two equations are compatible with each other. In addition one
can explicitly check that all BPS equations in (8.32)-(8.36) are compatible with
the second order equations of motion derived from the action in (8.16) after the
analytic continuation in (8.29).9

Note that upon taking the limit R→∞ in (8.32)-(8.36) accompanied with τ = τ̃,
which in turn implies W = fW, we obtain the BPS equations for a domain wall with
flat slices. These equations are then solved by the Euclidean analog of (8.25).

8.2.2 Analysis of the BPS equations

Let us now perform a preliminary analysis of the BPS equations (8.32)-(8.36). It
proves convenient to introduce a new parameterization of the scalar fields given by

τ= ie−
p

6−pη(X + Y ) , τ̃= −ie−
p

6−pη(X − Y ) , for p < 3 ,
τ= ie

p
6−pη(X + Y ) , τ̃= −ie

p
6−pη(X − Y ) , for p > 3 .

(8.38)

When the BPS equations are solved it is important to impose appropriate boundary
conditions in the IR. The physics of the SYM theory on Sp+1 suggests that the
supergravity solutions should cap off smoothly in the IR and it is thus natural
to look for solutions in which close to some finite value of the radial coordinate
r → rIR the metric looks like the metric on (p+2)-dimensional flat space in spherical
coordinates

ds2
p+2 ≈ dr2 + (r − rIR)

2dΩ2
p+1 . (8.39)

In the UV, i.e. for large values of r, the solution should asymptotically approach the
flat brane domain wall solution (8.25) as depicted in Figure 8.1. This implies that
in this UV limit one should have X = 1 and Y = 0. In the IR region the scalar fields
should approach a constant finite value in order to have a regular solution. These
IR values for the scalars can be found as the critical points of the superpotential W
(or equivalently, fW)

∂ηW = DτW = 0 , (8.40)

9The case p = 6 should again be treated separately and is discussed in more detail in Appendix D.1.
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Figure 8.1: The regular geometries interpolate between flat Euclidean Dp-branes
in the UV and Rp+2 in the IR.

which in terms of the new variables X , Y read:

X IR =
p
3 , YIR = ±

2(p−3)
3 , for p < 3 ,

X IR =
p

(6−p)(p−2) , YIR = ±
2(p−3)

(6−p)(p−2) , for p > 3 .
(8.41)

The upper sign in the expressions above refers to a critical point of W whereas the
lower sign refers to a critical point of fW. Notice that for p = 4 the critical value
of the superpotential is at the UV point X = 1. We will discuss this in more detail
below. Even though X and Y approach fixed values in the IR, the scalar η can take
any value η= ηIR. As discussed in Chapter 9 below, ηIR is related to the effective
gauge coupling constant of the dual SYM theory at the IR energy scale set by the
radius of the sphere.

Finally we want to point out that when solving the BPS equations in (8.32)-(8.36)
it sometimes proves useful to use the scalar X as a new radial variable. This is
possible when X is a monotonic function of the original radial variable r in (8.31).

8.2.3 Uplift to ten dimensions

After this uniform treatment of the gauged supergravity theories in p+2 dimensions
and their spherical brane solutions, we provide general uplift formulae that we
use to obtain the spherical brane solutions in ten dimensions. These are distilled
from the literature and brought into a universal form in Appendix D. In this section
we merely quote the results. The ten-dimensional metric takes the expected form
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(8.14)

ds2
10 =

eη
p

Q

�

ds2
p+2 +

e
2(p−3)

6−p η

g2

�

dθ 2 + P cos2 θ deΩ2
2 +Q sin2 θ dΩ2

5−p

�

�

. (8.42)

The squashing functions P and Q are determined in terms of the gauged supergravity
scalars as

P =

¨

X
�

X sin2 θ + (X 2 − Y 2) cos2 θ
�−1

for p < 3 ,

X
�

cos2 θ + X sin2 θ
�−1

for p > 3 ,
(8.43)

Q =

¨

X
�

sin2 θ + X cos2 θ
�−1

for p < 3 ,

X
�

X cos2 θ + (X 2 − Y 2) sin2 θ
�−1

for p > 3 .
(8.44)

The ten-dimensional dilaton is

e2Φ = g2
s e

p(7−p)
6−p η P Q

1−p
2 , (8.45)

and the non-vanishing type II form fields are given by

B2 = e
p

6−pη
Y P
g2X

cos3 θ vol2 ,

C5−p = ie−
p

6−pη
YQ

gs g5−pX
sin4−p θ vol5−p ,

C7−p =
i

gs g7−p

�

ω(θ ) + P cosθ sin6−p θ
�

vol2 ∧ vol5−p .

(8.46)

Here vol5−p and vol2 refer to the volume forms on dΩ2
5−p and deΩ2

2, respectively, see
(8.14) and (8.15). The function ω(θ ) is defined such that in the UV the derivative
of C7−p simply gives the volume form on the (8− p)–dimensional de Sitter space,
namely

d
dθ

�

ω(θ ) + cosθ sin6−p θ
�

= (7− p) cos2 θ sin5−p θ . (8.47)

8.3 Details of the solutions

In this section we perform a case-by-case study of the various spherical brane
solutions. The simplest example is provided by the near-horizon geometry of
Euclidean D3-branes. It is simply given by H5 × dS5. Writing the metric on H5 in
global coordinates

ds2
H5 = dη2 + sinh2η dΩ2

4 , (8.48)
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makes it clear that flat Euclidean D3-branes are described by the same supergravity
solution as spherical D3-branes. This is of course a reflection of the fact that the
worldvolume N = 4 SYM theory is conformal and the four-sphere is a conformally
flat manifold.

As discussed in Chapter 7, placing non-conformal maximal SYM theories on spheres
in a supersymmetric way must be accompanied by adding particular mass terms,
in addition to the standard conformal coupling term, to the Lagrangian. In the
bulk supergravity solutions this is manifested by modifying the usual flat Euclidean
Dp-brane solutions to genuinely new supergravity solutions which we now exhibit
explicitly.

8.3.1 D1-branes

Let us start with the supergravity solution for spherical D1-branes. In this case
we have to deviate slightly from our general approach of first finding the solution
of interest in a lower-dimensional gauged supergravity and then uplifting it to
ten dimensions. The reason for this is that we are not aware of an appropriate
three-dimensional supergravity theory that is obtained by a consistent truncation
of type IIB supergravity on S8. Nevertheless, we are still able to make progress
and find the solution directly in ten dimensions by solving a system of ordinary
differential equations (ODEs), which resemble BPS equations derived from a three-
dimensional supergravity theory, and are obtained by analytically continuing the
equations in Section 8.2.1 to p = 1. We then use the solution of these effective BPS
equations in a ten-dimensional background of the form presented in Section 8.2.3
with p = 1 and check explicitly that the equations of motion of type IIB supergravity
are obeyed. It is highly non-trivial that this procedure works and we consider
this sufficient evidence that the resulting solution describes the back-reaction of
spherical D1-branes.

To describe the solution we use the scalar X to parameterize the radial direction.
The BPS equation for Y then reduces to

dY 2

dX
=

Y 2(7X 2 + 1− Y 2)
X (2(X 2 − 1) + Y 2)

. (8.49)

A particular solution to this ODE that interpolates between the IR at (X , Y ) = ( 1
3 ,± 4

3 )
and the UV at (X , Y ) = (1, 0) is

Y 2 =
(X + 1)(1− X 2)

X
. (8.50)
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Next, the equation for the scalar η can be can be readily integrated, resulting in

η(X ) = ηIR +
5
2

log
1− X
2X

. (8.51)

The three-dimensional metric in (8.42) is explicitly given in terms of the scalars Y
and η by

ds2
3 =
(1+ X )2 − Y 2

g2Xe
4
5η

�

dX 2

(2(1+ X )(X − 1) + Y 2)2
+

X 2

Y 2
dΩ2

2

�

. (8.52)

One can then set p = 1 in the formulae in Section 8.2.3 and obtain an explicit
solution of type IIB supergravity.

Regularity in the IR completely fixes the profile for Y as a function of X and the only
integration constant of the solution is the one that appears in the expression for η
in (8.51). A plot of the numerical solution for the scalar fields is given in Figure
8.2. We find that in the UV region the ten-dimensional background we construct is
asymptotic to the flat D1-brane solution of type IIB supergravity. In the IR region
the solution caps off smoothly which reflects the IR cut-off provided by the scale of
the S2 in the dual two-dimensional maximal SYM theory.
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Figure 8.2: A numerical solution in the case p = 1. The UV region is at X = 1,
Y = 0 and the IR is indicated by the solid dots.

Although the three-dimensional solution is completely regular, the ten-dimensional
background appears to be singular in the IR due to the fact that there is a region in
the plane spanned by X and θ for which the metric function Q becomes negative.
This problem can be circumvented completely by performing a double analytic
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continuation,
θ →

π

2
+ iθ̃ , ψ→ iψ̃ , (8.53)

where θ is the coordinate appearing in the uplift formula for the metric (8.42)
and ψ is a coordinate on the dS2 in (8.15). This analytic continuation leaves the
functions P and Q positive in the full range of the new coordinates, 0 ≤ θ̃ ≤∞
and 2

3 ≤ X ≤ 1, so the metric and all other fields are now regular. Furthermore, the
metric remains with signature (1, 9) where now θ̃ parameterize the time direction.
A careful study of the form fields shows that the continued solution is also a solution
of type IIB∗ with all R-R fields purely imaginary and the NS-NS fields real. Finally,
the global symmetries of the solution matches with the field theory expectation
where the non-compact SU(1,1) factor is now realized by the isometries of the
hyperbolic plane spanned by (t, ψ̃). The need to perform this analytic continuation
can be traced back to the the fact that in the field theory Lagrangian, (7.20), the
coefficient of one of the bosonic bilinear terms changes sign as one goes from p > 3
to p < 3. As we will see in the next case, this interpretation is consistent with the
D2-branes where we will have to perform the same analytic continuation to obtain
a fully regular solution.

8.3.2 D2-branes

Next, we consider spherical D2-branes. These are constructed in maximal
supergravity in four dimensions with ISO(7) gauge symmetry. This theory was first
constructed by Hull in [136] and later argued to arise as a consistent truncation
of type IIA supergravity on S6 [141], see Appendix D.4 for more details. Again
we will use the scalar X as radial coordinate to reduce the set of BPS equations
(8.32)-(8.36) to a single ODE

dY 2

dX
=

Y 2(7X 2 − 4X − Y 2)
X (2X (X − 1) + Y 2)

. (8.54)

This ODE is solved by

Y 4 = cX
�

X (X − 1)− Y 2
�3

, (8.55)

where c is an integration constant. When setting c = −1 we obtain a solution
connecting the UV values of the scalars X = 1, Y = 0 with their IR values as in
(8.41) with p = 2. This choice of integration constant still leaves us with six distinct
solutions for Y (X ). However, two of them, Y = ±X , are not physical since the
metric

ds2
4 =

X 2 − Y 2

g2Xeη/2

�

dX 2

(2X (X − 1) + Y 2)2
+

X 2

Y 2
dΩ2

3

�

(8.56)
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vanishes for these flows. Of the remaining four solutions, only two flow to the
(regular) IR. These are given by

Y 2 =
(1− X )

2X

�

(1− X )(1+ 2X ) +
Æ

(1− X )(1+ 3X )
�

. (8.57)

The BPS equation for η can now be readily integrated and yields

e2(η−ηIR) =
1− 2X 2 + X 3 − X Y 2

(1− X )2
, (8.58)

with Y 2 given by (8.57). To illustrate this analytic solutions we plot it in Figure 8.3.
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Figure 8.3: The full analytic solution for the functions Y (X ) and η(X ) in the case
p = 2. The UV region is at X = 1, Y = 0 and the IR region is indicated by the solid
dots.

This four-dimensional supergravity solution can be uplifted to a ten-dimensional
solution of type IIA supergravity using the uplift formulae in Section 8.2.3 with p = 2.
We have verified that all equations of motion in ten dimensions are satisfied by the
above solution. In the UV one finds that X → 1 and Y → 0 and the ten-dimensional
solution reduces to the near-horizon limit of D2-branes with flat worldvolume.
Similar to the spherical D1-brane, the ten-dimensional metric becomes singular
in the IR. This time however, the metric does not become negative in a region
of the coordinate space but one still finds a singularity located at the IR fixed
point X = 2

3 and θ = 0. Just as for the spherical D1-brane we can cure this
problem by performing a double analytic continuation (8.53). This renders the
new ten-dimensional configuration a completely regular background of type IIA∗

supergravity.
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As discussed in Section 8.1, flat D2-branes are singular in the IR since the dilaton
blows up. It is well-known that this singularity can be better interpreted in eleven-
dimensional supergravity, since flat D2-branes uplift to M2-branes smeared over
the M-theory circle. The IR singularity can therefore be understood as a direct
consequence of the smearing and its resolution is achieved by replacing the smeared
M2-branes by a point-like stack localized on the circle. In this way the singular
supergravity solution is resolved by replacing it with the AdS4 × S7 solution of
eleven-dimensional supergravity. On the gauge theory side this interpretation is
mirrored by the expectation that maximal SYM theory in three dimensions flows
to the conformal ABJM theory in the deep IR. For our spherical D2-brane solution
there is no singularity in the IR and in fact the dilaton is never so large as to warrant
an uplift to eleven dimensions. In the dual field theory the interpretation is clear.
Placing three-dimensional maximal SYM on a three-sphere introduces an IR cut-off
and the RG flow never reaches the superconformal ABJM theory in the IR. Indeed
this interpretation will be confirmed in the next chapter when we compute the free
energy and Wilson loop VEV for this configuration. As a final comment we note
that the spherical D2-brane supergravity solution should lie in region (b) of Figure
1 in [146], reproduced in Figure 8.4.

Figure 8.4: The spherical D2-brane map: The horizontal line separates small
from large N . The blue line represents the cut-off provided by the sphere. Our
supergravity solutions always lie in region (b). The dilaton never grows so large to
warrant an uplift to eleven dimensions.
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8.3.3 D4-branes

Since we have already discussed D3-branes, the next case is spherical D4-branes.
these solutions are constructed in the six-dimensional gauged supergravity theory
obtained by reducing the maximal SO(5) gauged supergravity in seven dimensions
on a circle. As explained in more detail in Appendix D.3, we first introduce a
seven-dimensional scalar x that breaks SO(5)→ SU(2)×U(1) together with a U(1)
gauge field A. Reducing this theory on a circle introduces the dilaton φ as well
as an additional scalar field arising from the component of the gauge field on the
reduction circle, i.e. A= χdω where ω is the coordinate on the circle. As a result
we obtain the desired three scalar fields, x , φ and χ.10 After rewriting the BPS
equations using the scalar X as the radial coordinate, the system reduces to a single
ODE which controls the full solution

dY 2

dX
=

Y 2(1− 12X + 12X 2 − 4Y 2)
2X (1− X )(1− 2X )

. (8.59)

This equation is solved by

Y 4 = cX (1− X )
�

(1− 2X )2 − 4Y 2
�2

, (8.60)

where c is an integration constant. The critical point of the superpotential
determines the IR values of the scalar field as in (8.41) which for p = 4 yields
X IR = 1 and YIR = ±1/2. However, the analytic solutions (8.60) only reach the
IR for diverging c, i.e. when (1− 2X )2 − 4Y 2 = 0. This is a solution to the BPS
equation (8.59) but it is not physical since the metric

ds2
6 =
(1− 2X )2 − 4Y 2

g2Xe−η

�

dX 2

4(1− 2X )2(X − 1)2
+

X 2

Y 2
dΩ2

5

�

, (8.61)

vanishes completely. All solutions in (8.60) with finite c correspond to gravitational
domain walls with singular IR behavior. These singular flows still provide solutions
to the ten-dimensional equations of motion via the uplift formulae in Section 8.2.3.
Furthermore an uplift of these solutions to eleven-dimensional supergravity is given
in Section D.3. Still, the conclusion remains that there is no smooth solution with
running scalar X that connects the UV to a regular IR region. This is perhaps not
surprising since the IR value of the scalar X is located at X = 1 which is also the UV
value for X .

We are thus lead to explore solutions with constant X = 1. The original BPS
equations (8.32)-(8.36) are solved by 2Y = e2ηIR−2η where ηIR is an integration

10These scalars are the ones discussed in Section 8.2.1.
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constant. The BPS equation for η then reduces to

(η′)2 =
g2

16
e−5η

�

e4η − e4ηIR
�

. (8.62)

Notice that the scalar χ = e2ηIR/2 is constant (cf. (8.17) and (8.38)). Using η as a
coordinate, the six-dimensional metric can be written as

ds2
6 =

8e3η−2ηIR

g2

�

sinh−1(2η− 2ηIR)dη
2 + sinh(2η− 2ηIR)dΩ

2
5

�

. (8.63)

Since the six-dimensional supergravity theory used to construct this solution
is obtained from a reduction of the maximal seven-dimensional SO(5) gauged
supergravity it is possible to uplift the solution above to seven dimensions.
Performing this uplift, see Appendix D.3, one finds that the metric and the
scalar fields in seven dimensions are simply those corresponding to the maximally
supersymmetric AdS7 (or rather H7) vacuum of the gauged supergravity, albeit
with an asymptotic S5× S1 metric on the boundary. There is however an additional
non-vanishing gauge field A = χdω, see (D.29), which is pure gauge since the
six-dimensional scalar field χ is constant. Note that due to the topology of S1 it
requires a large gauge transformation to set the field A to zero.

The six-dimensional spherical D4-brane solution above can also be uplifted to
ten-dimensional type IIA supergravity. The explicit form of the solution is

ds2
10 =

eη
p

Q

�

ds2
6 +

eη

g2

�

dθ + cos2 θ dΩ̃2
2 +Q sin2 θ dζ2

�

�

, (8.64)

e2Φ = g2
s e6ηQ−3/2 , (8.65)

B2 =
e2ηIR

2g2
cos3 θ vol2 , (8.66)

C1 =
ie2ηIR

2gs g
e−4ηQ dζ , (8.67)

C3 = −
i

gs g3
cos3 θ vol2 ∧ dζ . (8.68)

This background is of the general form discussed in Section 8.2.3 with

P = 1 , Q = 4
�

4− e4ηIR−4η sin2 θ
�−1

. (8.69)

In the IR region the scalar η which determines the behavior of the dilaton is finite
and approaches the constant ηIR. In the UV region however, the scalar η diverges
and the the type IIA dilaton blows up. This indicates that the proper description of
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the solution is in eleven-dimensional supergravity. To find this eleven-dimensional
background we can use the uplift formulae in Appendix A. However we should
remember that we are working in the type IIA∗ theory of Hull which uplifts to the
M∗-theory in which the eleven-dimensional circle is timelike. We take this into
account by using a purely imaginary x11. Keeping this in mind we find the following
eleven-dimensional background

ds2
11 =

1

g2/3
s g2

�

8e2η̃

�

dη̃2

sinh 2η̃
+ sinh2η̃ dΩ2

5

�

− 4e4η̃dω2

+ dθ + cos2 θdΩ̃2
2 + sin2 θ (dω− dζ)2

�

, (8.70)

A3 =
i

gs g3
cos3 θ (dω− dζ)∧ V2 , (8.71)

where we shifted η such that e2ηIR−2η = e−2η̃ and parameterized the eleventh
dimension as g gse

2ηIR x11/2= iω. This eleven-dimensional solution is valid in the
limit when η̃ is very large. As it turns out, the first line of (8.70) is simply the global
metric on AdS7, whereas the second line is a metric on four-dimensional de Sitter
space. Indeed, the full solution in eleven dimensions is an analytic continuation of
the well-known AdS7×S4 solution of standard eleven-dimensional supergravity. It is
encouraging to find that in the far UV region of our spherical D4-brane solution we
find this metric which should be associated with the near-horizon limit of Euclidean
M5-branes. This is in line with the expectation discussed in Section 7 that the five-
dimensional maximally symmetry SYM theory on S5 flows to the superconformal
(2, 0) theory on S5 × S1 in the UV.

8.3.4 D5/NS5-branes

For p = 5 the solution is constructed in the maximal SO(4) gauged supergravity
in seven dimensions, [222], which arises as a consistent truncation of type IIB
supergravity on S3, see [60]. Just like the well known SO(5) gauged supergravity
theory [203], obtained by reducing eleven-dimensional supergravity on S4, this
theory has maximal supersymmetry.

Using the three scalar truncation of the SO(4) theory discussed in Appendix D.2 one
can derive the BPS equations given in (8.32)-(8.36). As in the previous sections, it
is convenient to use X as a coordinate and express the remaining scalar fields Y and
η as functions of X . The solutions to the BPS equations are then fully determined
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by the following ODE

dY 2

dX
=

Y 2

X

�

1− 16X + 15X 2 − 9Y 2

2− 8X + 6X 2 − 3Y 2

�

, (8.72)

together with the integral

η(X ) = ηIR +

∫ X

X IR

3 dx

5
�

1− x
�

�

�

x −
1
3

�d log Y (x)
dx

− 1
�

. (8.73)

In terms of the new coordinate, the seven-dimensional metric takes the form

ds2
7 =
(1− 3X )2 − 9Y 2

g2Xe−4η

�

dX 2

(2− 8X + 6X 2 − 3Y 2)2
+

X 2

Y 2
dΩ2

6

�

. (8.74)

Unfortunately, we are not able to find an analytic solution to the equations above
that connects the IR values of X and Y given in (8.41) to the UV values X = 1, Y = 0.
To construct such solutions to (8.72), we therefore have to resort to numerical
methods. A numerical plot of the solution is given in Figure 8.5. Its uplift to ten-
dimensional type IIB supergravity is given by the general formulae in Section 8.2.3
with p = 5.
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Figure 8.5: A numerical solution for the functions Y (X ) and η(X ) in the case p = 5.
Notice that since (8.72) is quadratic in Y , the function −Y is also a solution with η
unchanged. The far UV region is at Y = 0, X = 1 and the IR region where the S6

smoothly caps of is indicated by the solid dots.

The numerical solution interpolates between a regular IR region where X , Y , and
η approach a constant value and the metric caps off smoothly and the near-horizon
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geometry of D5-branes in the UV. The uplift to ten dimensions provides a full solution
to the type IIB supergravity equations of motion describing D5-branes wrapped on
S6. Furthermore by performing an SL(2,R) transformation we can obtain a solution
describing NS5-branes (or more generally (p, q)-fivebranes) wrapped on S6 and all
equations of motion of course remain satisfied. The wrapped NS5-brane solution is
particularly interesting since the sphere provides an IR cut-off of the linear dilaton
geometry sourced by NS5-branes in flat space. As briefly discussed in Chapter 7,
the UV completion of SYM theories in six dimensions is believed to be given by a
non-local, non-gravitational theory called little string theory (LST). This theory can
be understood as the decoupling limit of NS5-branes, where the string coupling
vanishes gs → 0 [225]. A holographic model for LST was considered in [6] and
studied in more detail in [110,111]. The original construction is based on the linear
dilaton vacuum which is simply the near-horizon limit of N flat NS5-branes.11 The
metric and dilaton of this type IIB solution are

ds2
10 = ds2

6 + dη2 + g−2dΩ2
3 , Φ= log gs − gη , (8.75)

where g2 = gsN
−1`−2

s . Although these fields together with a Yang-Mills instanton
provide an exact background of heterotic string theory [67], interpreting it in the
context of holography is somewhat problematic due to the singular behavior of the
dilaton for large negative η. In particular, it makes the holographic computation of
LST correlation functions impossible without further information about the singular
region η→ −∞ [6]. In [110, 111] a resolution of the singularity was proposed
whereby the N NS5-branes are spread out on a circle breaking the SO(4) isometry
group of the space transverse to the branes to an SU(2) subgroup. In a T-dual frame
the singularity corresponds to the origin of an asymptotically locally Euclidean
(ALE) space

zN
1 + z2

2 + z2
3 = 0 , (8.76)

and the resolution of the singularity is achieved by introducing a non-zero right-
hand side in (8.76). Our type IIB supergravity solution provides an alternative way
to resolve the problem. Remember that the singularity can be understood as a result
of the dual SYM theory becoming weakly coupled in the IR. As we have explained,
placing the SYM on S6 introduces an effective IR cut-off set by the radius of the
sphere. In the supergravity description this is manifested by the smooth cap-off of
the geometry in the IR. More explicitly we find that the dilaton of our spherical
NS5-brane background takes the form

Φ= log

�

gs
p

P
X

�

− 5η , (8.77)

11This background can be obtained from (8.9) for p = 5 by an SL(2,R) transformation.
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which in the IR reduces to

ΦIR = log

�

3gs
Æ

5(3 sin2 θ + 5 cos2 θ )

�

− 5ηIR , (8.78)

and therefore eΦ can be made arbitrarily small throughout the full solution by
suitably tuning ηIR. In the next chapter we will study the holographic implications
of our spherical NS5-brane background for the physics of little string theory.

8.3.5 D6-branes

Finally, let us discuss the spherical D6-branes. As discussed in Section 8.2.1, the
case of spherical D6-branes is a degenerate limit of our equations since now we
only have two scalar fields instead of three. This is consistent with the fact that for
the maximal seven-dimensional SYM theory on S7 the R-symmetry is unbroken. In
addition we showed in (8.24) that the superpotential is a purely imaginary constant
which implies that the pseudoscalar χ does not appear in the scalar potential. This
in turn means that the BPS equations derived in Appendix D.1 only result in first
order equations for the scalar β and the warp factor A. A first order equation for χ
is obtained directly from the equations of motion. We refer to Appendix D.1 for
further details on the eight-dimensional supergravity and the derivation of the BPS
equations. Keeping this in mind, it is still useful to mimic the structure of the BPS
equations with p < 6 and introduce new scalar variables

τ= i(X + Y ) , τ̃= −i(X − Y ) . (8.79)

In these variables the BPS equations together with the equation of motion for Y
reduce to the following system of coupled first order ODEs

(X ′)2 =
9
4

g2X + 36R−2e−14AX 4 , (8.80)

Y ′ = 6R−1X 2e−7A , (8.81)

(A′)2 =
1

16
g2X−1 +R−2e−2A , (8.82)

where by prime we denote a derivative with respect to r. We have checked that
this system of equations implies the equations of motion of the gauged supergravity
theory. To solve the flow equations in (8.80) it is convenient to use the metric
function A as a radial variable. One then finds

X = e6A . (8.83)
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We can then proceed by defining yet another radial coordinate

ρ = arcsinh
�

4
gR

e2A
�

, (8.84)

such that the metric takes the form

ds2
8 =

gR3

16
sinhρ

�

dρ2 + 4dΩ2
7

�

, (8.85)

and
X =

�

(gR/4) sinhρ
�3

. (8.86)

The full solution of the gauged supergravity theory is obtained by integrating the
equation

dY
dρ
=

3
16

g3R3 sinh3ρ tanh2ρ . (8.87)

We will not need the lengthy analytic expression for Y (ρ) in the present analysis
and thus refrain from presenting it here.

Many of the interesting properties of this solution are only apparent when uplifted
to ten or eleven dimensions. Unfortunately we are not able to directly use the
general formulae presented in Subsection 8.2.3 since they are not valid for p =
6. Nevertheless, since our eight-dimensional solution is rather simple the uplift
formulae of [10] can be readily applied and yield the following type IIA background

ds2
10 =

R2e2Φ/3

g2/3
s

�

1
4

dρ2 + dΩ2
7 +

1
16

sinh2ρ deΩ2
2

�

, (8.88)

H3 =
3

g2 g2
s

e2Φdρ ∧ V2 , (8.89)

F2 =
i

gs g
V2 , (8.90)

e2Φ = g2
s

�

gR
4

sinhρ
�3

. (8.91)

For ρ→ 0 the metric and dilaton approach that of a D6-brane in flat space:

ds2
10 ≈

1
p

H
R2dΩ2

7 +
p

H
�

dr̃2 + r̃2deΩ2
2

�

, (8.92)

e2Φ ≈ (H)−3/2 , (8.93)

where 16r̃ = g(Rρ)2 and H = 1/g r̃. The function H is precisely the harmonic
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function for N D6-branes in the near-horizon limit upon replacing g with N using
(8.12)

H =
gsN`s

2r̃
. (8.94)

We thus conclude that ρ→ 0 should be identified with the UV limit of the dual gauge
theory. In the limit ρ→∞ we should be exploring the IR regime of the field theory
where the finite size of S7 should play a role. Indeed the metric in this limit caps off
in the expected regular manner whereas the dilaton blows up. This is an indication
that we must further uplift our type IIA solution to eleven dimensions and interpret
it in M-theory. The uplift to eleven dimensions has to be done with some care
because the two-form field strength F2 and its one-form potential, C1, are imaginary.
The one-form potential appears in the eleven-dimensional metric as a Kaluza-Klein
vector and so if it is imaginary it would render the eleven-dimensional metric
complex. This is resolved by remembering that, as discussed in Section 8.1, our
type II solutions can be interpreted as solutions of Hull’s type II∗ theories [138]. Hull
has argued in [137] that the type IIA∗ theory uplifts to an eleven-dimensional version
of M-theory with two time directions called M∗-theory. In our formulation this
means that we can apply the standard uplift formulae presented in Appendix A with
a purely imaginary M-theory circle parameterized by iω with ω ∈ R. Performing
this uplift for the solution in (8.88) we obtain, quite surprisingly, a metric on
H2,2/ZN × S7 where H2,2 ≡ SO(3,2)/SO(2,2). Explicitly we find

ds2
11 =

R2

4g2/3
s

�

ds2
4 + 4 dΩ2

7

�

, (8.95)

where

ds2
4 = dρ2 −

1
4

sinh2ρ
�

dt2 − cosh2 t dψ2 + (N−1dω− sinh t dψ)2
�

, (8.96)

is a metric on H2,2 with three-dimensional anti-de Sitter spacetime boundary, albeit
in the wrong signature. Even though the coordinate ω is timelike, it should still be
treated as periodic, just like in the standard relation between type IIA and eleven-
dimensional supergravity. We have parameterized the M∗-theory circle such that ω
has periodicity ω∼ω+ 4π. Notice that crucially the metric on AdS3 is not regular
unless N = 1. In fact the structure of the metric is precisely that of an extremal BTZ
black hole. The analytic continuation of this metric to eleven spacelike dimensions
yields a metric on

H4/ZN × S7 , (8.97)

where the four-dimensional hyperbolic space has a boundary that is a Lens space
S3/ZN . Given that the eleven-dimensional metric above is closely related to the
standard AdS4 × S7 solution of eleven-dimensional supergravity, it is not surprising
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to find that up to factors of N , the four-form flux is the standard one

G4 =
3i

2g2 g2
s `s

�

gR
4

sinhρ
�3

dρ ∧ vol2 ∧ dω=
3i
L4

volH2,2 , (8.98)

where we have introduced
L4 =

R

2g1/3
s

. (8.99)

As expected we also find that the M2-brane flux

NM2 =
1

(2π`s)6i

∫

G7 =
2L6

4

N2π2`6
s

∈ Z , (8.100)

is properly quantized. The explicit appearance of i in (8.98) and (8.100) is a
result of our choice of conventions for IIA∗ and M∗ theories. We will discuss the
holographic interpretation of this curious eleven-dimensional background further
in the next chapter.





Chapter 9

Non-conformal precision
holography

In Chapter 7, we have introduced maximal SYM on a sphere, Sp+1, and computed
its free energy and a 1/2-Wilson loop VEV, for 1 ≤ p ≤ 6. Next, in Chapter 8, we
constructed the dual gravity solutions in ten-dimensional type II supergravity. With
these solutions at hand our aim in this chapter is to holographically compute the
corresponding free energies and Wilson loop VEVs.

9.1 The effective ’t Hooft coupling

An important ingredient in relating the supergravity results to the field theory
results obtained using supersymmetric localization is the definition of holographic
’t Hooft coupling. In our conventions, the Dp-brane tension and the Yang-Mills
coupling constant are given in terms of the string coupling as

µp =
2π

(2π`s)p+1
, g2

YM =
(2π)2 gs

(2π`s)4µp
=

2πgs

(2π`s)3−p
. (9.1)

The dimensionless holographic ’t Hooft coupling, λhol, is defined by

λhol(E) = g2
YMN Ep−3

hol , (9.2)

where N is the number of Dp-branes. The quantity Ehol is a finite energy scale
defined in an appropriate way through the supergravity solution. Since the
supergravity backgrounds of interest here are not asymptotically locally AdS it
is a priori not straightforward to define this quantity. A reasonable choice is to
define it as the inverse of the effective radius Reff of the (p + 1)-sphere dΩ2

p+1 in
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(8.42), i.e.
Reff =Q−

1
4 eA+ η2 , (9.3)

and multiply it by the ten-dimensional dilaton eΦ (8.45). This definition amounts
to the following result1

Ep−3
hol = R3−p

eff

eΦ

gs
= e(3−p)Ae

9−p
6−pη

P1/2

Q1/2
. (9.4)

This energy scale is finite in the UV limit r →∞ and thus we propose to identify
the holographic ’t Hooft coupling in (9.2) by evaluating (9.4) in the UV where

A→
(p− 9)

(6− p)(3− p)
η+ const . (9.5)

The constant in this equation is fixed by regularity of the full supergravity
background in the IR, it can therefore not be deduced directly by an UV analysis
of the BPS equations. Using that limr→∞ P(r) = limr→∞Q(r) = 1 we arrive at the
following explicit result2

λhol ≡
2πgsN
(2π`s)3−p

e(3−p)Ae
9−p
6−pη

�

�

�

�

r→∞
. (9.6)

We will sometimes express λhol in terms of the supergravity gauge coupling g using
(8.12). We note that the expression (9.6), which allows us to find a match between
supergravity and field theory, does not agree with the one proposed in [150] for all
values of p.

9.2 Holographic free energy

The holographic free energy of the spherical Dp-brane solutions is given by the
on-shell action in p+ 2 dimensions. This action can be derived from the (p+ 2)-
dimensional gauged supergravity, as was shown in the previous chapter, and takes
the form

S =
1

2κ2
p+2

∫

dp+2 x
p

g
§

R+
3p

2(p− 6)
|dη|2 − 2Kττ̃|dτ|2 − V

ª

, (9.7)

1We divide by a factor of gs since we have already included a factor of gs in the definition of g2
YM in

(9.1).
2An alternative way to obtain (9.6) is to define the running gauge coupling, as it appears in the probe

action for Dp-branes, by g2
YM = 2πeΦ/(2π`s)3−p. Then the energy scale is defined by E = R−1

eff . When
these two expressions are inserted into (9.2) and evaluated at r →∞ we obtain (9.6).



HOLOGRAPHIC FREE ENERGY 109

where the potential V is given in Appendix D in terms of a superpotential W. The
(p+ 2)-dimensional Newton constant can be expressed as3

κ2
p+2 =

(2π`s)8 g2
s

8π

Γ
� 9−p

2

�

π
9−p

2

g8−p . (9.8)

Evaluating the action in (9.7) on the spherical brane solutions leads to divergences
arising from the UV region. Since for p 6= 3 the metric is not asymptotically locally
AdS, one cannot apply the standard technology of holographic renormalization
to cancel these divergences systematically. As explained in [149, 150] a useful
approach to circumvent this impasse is to perform a conformal transformation of
the metric to the so-called dual frame. This changes its UV asymptotics to a locally
AdS form and for the solutions of interest here is achieved by the following rescaling
of the metric,

gµν = e2aη g̃µν , where a =
p− 3
6− p

. (9.9)

Note that the case p = 6 needs to be treated separately. For p = 3 the background
is asymptotically AdS5 and no rescaling is needed. In terms of this transformed
metric, the action takes the form

S =
1

2κ2
p+2

∫

dp+2 x
p

g̃ epaη
¦

R̃+
� 3p

2(p−6) + a2p(p+ 1)
�

|dη2| − 2Kττ̃|dτ|2 − e2aηV
©

.

(9.10)
In this frame the metric is asymptotically AdS and we can use the standard
framework of holographic renormalization to obtain the holographic counterterm
action. When transformed to the dual frame the Gibbons-Hawking boundary term
is given by

SGH =
1
κ2

p+2

∫

dp+1 x
Æ

h̃eapη(p+ 1)
�

A′ − aη′
�

. (9.11)

The remaining divergences should be canceled by the standard curvature
counterterms [91]. However, as discussed in [149], the coefficients of these
counterterms should be changed with respect to the ones in [91] and are determined
by the constant σ = 7−p

5−p . These infinite counterterms are built out of the induced

3This expression is derived in some detail in Appendix D.5.
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boundary metric in the dual frame, h̃µν, and are given by

Sct,curv =
1
κ2

p+2

∫

dp+1 x
Æ

h̃eapη

�

2σ− 1
σ− 1

g +
1

4g
Rh̃

+
1

16g3

σ− 1
σ− 2

�

Rh̃abRab
h̃
−

σ

2(2σ− 1)
R2

h̃

�

�

. (9.12)

The counterterms in the second line of (9.12) are only needed when p ≥ 4. Note
that this infinite counterterm analysis in the “dual frame” formalism is not applicable
for p = 5. We will treat this case separately in Section 8.3.4.

Apart from these curvature counterterms we typically need additional infinite
counterterms including the scalar fields. For supersymmetric backgrounds we can
take advantage of the Bogomol’nyi trick, see for example [54,98], to construct these
infinite counterterms. This amounts to adding the following counterterm built out
of the superpotential of the gauged supergravity theory

Sct,superpot =
1

2κ2
p+2

∫

dp+1 x
Æ

h̃e(p+1)aη
Æ

eKWW
�

�

�

Y→0
. (9.13)

This counterterm is precisely the one that appears when regularizing the free
energy of supergravity backgrounds with flat space boundary. There might be
additional counterterms appearing, such as conformal couplings of the scalars
or terms depending on the scalar field Y , for more general solutions such as our
spherical branes. The precise form of these extra infinite counterterms terms as
well as any potential finite counterterms will be determined on a case-by-case basis
in Section 9.4.

9.3 Holographic Wilson loop VEV

Now, let us demonstrate how to compute supersymmetric Wilson loop vacuum
expectation values. The 1/2-BPS Wilson loop captured by supersymmetric
localization lies on the equator of the (p+1)-sphere and is invariant with respect to
the localization supercharge if and only if it is aligned along the field theory scalar
field Φ0. This is realized by a fundamental string wrapping the equator of Sd in the
spherical brane solutions and embedded in a specific way in the internal space. To
understand this in more detail we consider the embedding of the internal space
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I8−p in R1,8−p,

X I : I8−p → R1,8−p : (9.14)

{θ , t,ψ,ωi} 7→ {cosθ sinh t, cosθ cosh t sinψ, cosθ cosh t cosψ, sinθ YA} ,

where the YA parameterize the standard embedding of the (5− p)-sphere in R6−p.
This embedding provides us with an explicit map from the internal space of our
supergravity solutions to the field theory scalars appearing in the Lagrangian (7.20),
e.g. the scalars ΦI can be identified with X I . Therefore, the BPS condition requires
that the corresponding holographic Wilson loop lies at constant θ = 0 and cosh t = 0.
This implies that the holographic evaluation of the Wilson loop VEV must be
performed using the analytically continued fully Euclidean background. Indeed,
this is how we obtained a finite Newton constant in (9.8).

Figure 9.1: A string wrapping the equator of a (p+ 1)-sphere.

In the holographic context we are thus lead to study a probe fundamental string
wrapping the equator of the spherical brane as in Figure 9.1. The expectation value
of a Wilson line operator in the fundamental representation of the gauge group
along a contour C can be calculated holographically by evaluating the regularized
on-shell action of the probe string. More precisely,

log〈W (C)〉= −SRen.
string , (9.15)

where SRen.
string is the renormalized on-shell action. The probe string is governed by

the Nambu-Goto action,

Sstring =
1

2π`2
s

∫

Σ

d2σ
Æ

det P[GMN ]−
1

2π`2
s

∫

Σ

det P[B2] , (9.16)
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where P[. . . ] denotes the pull-back of the bulk fields onto the string worldsheet Σ
parameterized by σ1 and σ2 and GMN is the ten-dimensional string frame metric.
In order to determine the Wilson loop expectation value we have to minimize the
string action, regularize it and finally evaluate it on-shell. In order to do this, we
parameterize the worldsheet by the coordinates σ1 = r and σ2 = ζ ∈ [0, 2π], use
that translations along ζ are a symmetry of the ten-dimensional solution described
in Section 8.2.3, and assume that the induced fields depend only on r. Since B2

has legs only along the internal de Sitter part of the geometry we conclude that
P[B2] = 0. The induced metric on the other hand takes the form

P[ds2
10] =

eη
p

Q

��

1+ Gmn
∂Θm

∂ r
∂Θn

∂ r

�

dr2 + e2Adζ2
�

, (9.17)

where Gmn is the metric on the internal space and the functions Θm(r) describe
the profile of the string worldsheet in the internal directions. We can identify
the functions Θm with the 8 − p coordinates (θ , t,ψ,ωi) with i = 1, . . . , 5 − p.
Minimizing the string action is equivalent to minimizing

det P[GMN ] =
e2η+2A

Q

�

1+ Gmn
∂Θm

∂ r
∂Θn

∂ r

�

. (9.18)

Since we are performing the holographic computation for the ten-dimensional
metric analytically continued to Euclidean signature, the internal metric Gmn is
positive definite. All terms in the parentheses above are therefore manifestly positive
and thus can be minimized by setting each term to zero, i.e. by taking constant Θm.
To determine the exact position of the string in the internal space, i.e. the constant
values of Θm, we have to minimize the function

det P[GMN ]
�

�

∂rΘm=0 =
e2η+2A

Q

=

�

e2η+2A

X

�

sin2 θ + X cos2 θ
�

for p < 3 ,
e2η+2A

X

�

X cos2 θ + (X 2 − Y 2) sin2 θ
�

for p > 3 .

(9.19)

The extrema of these functions are at

θ =
nπ
2

for n ∈ Z . (9.20)

Since the range of θ is [0,π) there are only two inequivalent extrema: θ = 0 and θ =
π/2. However, as explained at the beginning of this section, only θ = 0 corresponds
to a Wilson loop which is BPS with respect to the localizing supercharge.4

4See [57] for a similar analysis in the context of the four-dimensional N = 2∗ theory on S4.
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We have thus arrived at the following probe string action (9.16)

Sstring =
1
`2

s

∫

dr
Æ

det P[GMN ] =
1
`2

s

∫

dreη+A , (9.21)

where we have already performed the integral over the great circle. This on-shell
string action diverges close to the UV boundary of the supergravity solution and we
have to renormalize it using appropriate covariant counterterms built out of the
ten-dimensional supergravity fields. This can be realized by adding the following
counterterm commonly used to regularize string on-shell actions [57,89]. In terms
of the gauged supergravity fields, this counterterm takes the form

Sstring,ct =
1

g`2
s

eA+ 3
6−pη

�

�

�

r→∞
. (9.22)

Note that in addition to canceling the divergences of the on-shell string action, in
some cases this counterterm contains a finite contribution which will prove to be
crucial for our analysis.

Before we discuss the various Dp-branes in detail it is worthwhile to study how the
Wilson line VEV scales with N and λhol. Using the scaling relation (9.2), we find
that

log〈W 〉 ∼ N0λ
1

(5−p)

hol . (9.23)

This scaling exactly matches the expectations from supersymmetric localization. In
addition the same scaling of the Wilson loop vacuum expectation value was found
in a holographic finite temperature setting in [61].

9.4 Case-by-case analysis

After discussing the general framework for computing the free energy and Wilson
loop expectation values, both from a supergravity and field theory point of view, we
proceed with a case-by-case study of the different values of p, starting at p = 1 and
working our way up to p = 6. For D5- and D6-branes some aspects of the general
analysis above do not apply and we treat these two cases in some more detail. To
avoid confusion, in this section we will denote the QFT ’t Hooft coupling in (6.1) by
λQFT to explicitly distinguish it from the one used in supergravity denoted by λhol.
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9.4.1 D1-branes

Field theory

In Chapter 7 we performed a general strong coupling analysis of the matrix model
of [182] at large N . Strictly speaking, the matrix model is only well defined for
dimensions in the interval 3< d < 6. To go beyond this interval let us first try to
return to the general form of the kernel in (7.34). If we set d = 2 we find that the
kernel takes the particularly simple form,

G16(σ) =
4

σ+σ3
. (9.24)

A matrix model with this kernel was previously analyzed in [152] where the free
energy was derived parameterically in terms of complete elliptic integrals. However,
in our case the central potential has a negative sign at d = 2, which leads to
many subtleties. In particular a straightforward analytic continuation of the results
in [152] gives a complex free energy in terms of λQFT.

Instead, we propose to analytically continue the dimension to d = 2 in the
expressions for the free energy and Wilson loop VEV in (7.46) and (7.47). Both the
free energy and Wilson loop are expressible in terms of the eigenvalue endpoint
which, upon substituting d = 2 into (7.42), becomes

b2 =

�

8λQFT

π

�1/4

, (9.25)

which is real and positive. Having found b2 we can read of the free energy from
equation (7.46),

F2 = −
2π

3λQFT
(b2)

2 N2 = −
4(2π)1/2

3λ1/2
QFT

N2 . (9.26)

Note that the free energy increases with increasing λQFT. The Wilson loop VEV is
obtained from (7.48) by setting b = b2

log〈W 〉= 2πb2 = 27/4π3/4λ
1/4
QFT . (9.27)

Supergravity

The supergravity solution for spherical D1-branes is most conveniently described
using the scalar field X as the radial variable which in this case runs from 1/3 in
the IR to 1 in the UV. The full solution is specified in Section 8.3.1.
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To compute the holographic free energy we evaluate the regularized supergravity
action on the spherical D1-brane solution and subtract the counterterms (9.11),
(9.12), and (9.13). In addition, due to the presence of the scalar Y we have to
subtract the following infinite counterterm

Sct,inf = −
1
κ2

3

∫

d2 x
Æ

h̃e−
2
5η

g
4

Y 2 . (9.28)

Furthermore, there is a unique covariant finite counterterm that can be built out of
the boundary metric and scalar fields which reads

Sct,fin =
1
κ2

3

∫

d2 x
Æ

h̃e−
2
5η

�

cx

g
R̃ log X

�

. (9.29)

Evaluating the holographic ’t Hooft coupling (9.6) in the UV leads to the following
expression,

λhol =
1

27 g8`8
sπ

3
e4ηIR/5 . (9.30)

Substituting this expression and subtracting all infinite and finite counterterms we
arrive at the following result for the holographic free energy

Fhol = −
2(2π)1/2N2

3λ1/2
hol

(3− 4cx) . (9.31)

We do not have a rigorous argument to fix the coefficient cx of the finite counterterm
but we observe that if we set cx = 1/4 the holographic result in (9.31) agrees
with the field theory answer in (9.26) upon identifying λhol with λQFT. It will be
most interesting to fix cx by a first principle calculation. This can be presumably
achieved by ensuring that the holographic renormalization procedure we employ is
compatible with supersymmetry.

To compute the Wilson loop vacuum expectation value we start from the integral
(9.21). For p = 1 the on-shell probe string action becomes

Sstring =
1
`2

s

∫ 1

1/3

dX
X ′

eη(X )+A(X ) =
eηIR/5

p
2g2`2

s

∫ 1

1/3

dX
p

1− X 2(1− X )
. (9.32)

This integral is divergent and we have to regularize it in the UV by introducing a
cutoff at X = 1− ε and subsequently subtracting the counterterm (9.22),

Sstring,ct =
eηIR/5

g2`2
s

1
p
ε
+O(

p
ε) , (9.33)
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in order to obtain the renormalized on-shell action. Using the relation (9.30) we
find the following holographic result for the Wilson loop expectation value

log〈W hol〉= 27/4π3/4λ
1/4
hol . (9.34)

This precisely agrees with the QFT result in (9.27).

A comment on the Yang-Mills action

We close this discussion with a comment. In [39,87] (see also [75] for extensions of
this analysis) it was shown that there is a Yang-Mills action for an N = (2, 2) vector
multiplet on S2 that is Q-exact and hence the partition function is independent
of the Yang-Mills coupling. In terms of the conventions used here, the N = (2,2)
vector multiplet contains the gauge fields Aµ, the scalar fields Φ0 and Φ3, and the
Dirac field Ψ with the projections

Γ 6789Ψ = Ψ , Γ 4567Ψ = Ψ , (9.35)

which reduces Ψ to four independent real components. There is also one auxiliary
field K1. All other scalar and auxiliary fields are turned off. If we restrict to four
independent supersymmetry transformations where

Γ 6789ε= ε , Γ 4567ε= ε , (9.36)

and set ν1 = Γ 89ε, the transformations on the fields in (7.22) reduce to

δε

�

F12 −
Φ3

R

�

= −εΓ12 /DΨ (9.37)

δε

�

K1 −
Φ0

R

�

= εΓ 89 /DΨ (9.38)

δεΨ =
�

F12 −
Φ3

R

�

Γ 12ε+
�

K1 −
Φ0

R

�

Γ 89ε

+ DµΦIΓ
µIε− i[Φ0,Φ3]Γ

03ε (9.39)

δεΦI = εΓIΨ . (9.40)

It is then straightforward to show that the flat-space Yang-Mills Lagrangian is
invariant under the transformations in (9.37) if F12 is replaced with F12 −

Φ3
R and

K1 is replaced with K1 − Φ0
R . At the localization locus both terms are zero so the

action is also zero.
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If we were to compare this Lagrangian to the one in (7.20) at d = 2 and with the
fields reduced as described above, then the Lagrangians differ by

−
1

2g2
YM

Tr
�

2
R

F12Φ3 −
1
R2
Φ3Φ3 −

3
R2
Φ0Φ0 −

2
R

K1Φ0 −
1
R
ΨΛΨ

�

. (9.41)

One can show that (9.41) changes by a total derivative under the supersymmetry
transformations in (9.37). Hence, both actions preserve N = (2, 2) supersymmetry.
However, only the second action can be extended to 16 supersymmetries. The extra
term in (9.41) is not Q-exact so it will contribute a coupling dependent part to the
partition function.

9.4.2 D2-branes

Field theory

The matrix model analysis in this case is more subtle and one has to be careful
when taking the different limits to obtain the kernel. If we set d = 3+ ε then we
can approximate G16(σ) for ε→ 0, (ε > 0), as

G16(σ) =
2ε2

ε2σ+σ3
+
πσ(coth(πσ) +πσcsch2(πσ))− 2

σ3
ε2 +O(ε3) . (9.42)

The first term in (9.42) comes from the n = 0 term in (7.31) while the second term
comes from all other values of n. We can also see from (7.32) that C1 ≈ 4π2ε in this
limit, which approaches zero because the super Yang-Mills action is Q-exact in three
dimensions. Aside from the first term, all other terms in (9.42) are nonsingular on
the real line and of order ε2 or higher. Hence they can be dropped in the saddle
point equation in (7.32). Therefore, in the large N limit the saddle point equation
reduces to the integral equation5

4π2ε

λQFT
σ = 2

∫ b

−b

−
ρ(σ′)dσ′

σ−σ′
−
∫ b

−b

ρ(σ′)dσ′

σ−σ′ + iε
−
∫ b

−b

ρ(σ′)dσ′

σ−σ′ − iε
+O(ε2) . (9.43)

Naively it looks like the right hand side of (9.43) is even in ε. However, because of
the poles at σ± iε, (9.43) reduces to

4π2ε

λQFT
σ = πi

�

ρ(σ+ iε)−ρ(σ− iε)
�

+O(ε2) = −2περ′(σ) +O(ε2) . (9.44)

5After a rescaling the integral equation in (9.43) has the same form as in [152] and we could extract
the the free energy by taking a limit of their results.
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Hence, to leading order in ε we have that ρ(σ) = π
λQFT
(b2 −σ2). The value of b is

fixed by setting
∫ b

−b ρ(σ)dσ = 1, which gives

b = b3 ≡
�

3λQFT

4π

�1/3

. (9.45)

The density ρ(σ) and value for b3 are precisely what one finds when analytically
continuing (7.41) and (7.42) to d = 3. We can then use (7.46) and (7.47) to find
the free energy and the expectation value of the BPS Wilson loop. For the free
energy we find

F3 = 0 , (9.46)

which is not surprising given the Q-exactness of the SYM action in three dimensions.
However, the Wilson loop is surprisingly non-trivial. We find that

〈W 〉=
3
ξ3
(ξ coshξ− sinhξ) , ξ= 61/3π2/3λ

1/3
QFT . (9.47)

To compare with supergravity we note that for λQFT � 1 the logarithm of the Wilson
loop VEV is approximately

log〈W 〉 ≈ 61/3π2/3λ
1/3
QFT . (9.48)

We stress however that (9.47) is exact for any nonzero λQFT. If we expand (9.47)
at small λQFT we find that

〈W 〉= 1+
1

10
(6π2λQFT)

2/3 +O(λ4/3
QFT) , (9.49)

hence this result cannot be reproduced in perturbation theory. Strictly speaking,
the perturbative behavior is only found for λQFT < ε

2 where the matrix model
approaches a Gaussian model. In this sense, d = 3 MSYM is strongly coupled for
any nonzero coupling.

One can also see that the behavior of the Wilson loop VEV is essentially an infrared
effect as the only relevant contribution to G16(σ) comes from the n = 0 term in
the partition function (7.31). The numerator of this term is the Vandermonde
determinant while the denominator is the uncanceled contribution of the constant
spherical harmonics about the localization locus [113].
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Supergravity

The supergravity solution for spherical D2-branes was derived in 8.3.2. Like for
D1-branes we use X as the radial variable which ranges from 2/3 in the IR to 1 in
the UV.

In order to obtain the holographic free energy we proceed similarly to the previous
case and subtract the counterterms (9.11), (9.12), (9.13) and an additional infinite
counterterm

Sct,inf = −
1
κ2

4

∫

d3 x
Æ

h̃ e−
1
2η

g
4

Y 2 , (9.50)

in order to obtain a finite free energy. In this case we do not find any finite
counterterms. Evaluating the regularized on-shell action we find that the
holographic free energy vanishes

Fhol = 0 . (9.51)

This agrees with the supersymmetric localization result in (9.46).

In order to compute the holographic Wilson loop expectation value we have to
evaluate the following integral,

Sstring =
1
`2

s

∫ 1

2/3

dX
X ′

eη(X )+A(X ) =
1

g2`2
s

∫ 1

2/3

dX
eη/2(X 2 − Y 2)

Y (−2X + 2X 2 + Y 2)
. (9.52)

By substituting the solution, (8.57)-(8.58), one can show that the integral reduces
to

Sstring =
eηIR/2

g2`2
s

∫ 1−ε

2/3

dX
1

p

(1− X )3(1+ 3X )
=

eηIR/2

g2`2
s

�

1
p
ε
−

3
2

�

, (9.53)

where we have introduced a cutoff ε � 1. To regulate the integral we need to
subtract the counterterm (9.22) given by

Sstring,ct =
eηIR/2

g2`2
s

�

1
p
ε
−

1
2
+O(

p
ε)
�

. (9.54)

Note that this counterterm contains a crucial finite piece needed to match the
localization result. After substituting the explicit expression (9.6) for λhol,

λhol = −
1

6g6`6
sπ

2
e3ηIR/2 , (9.55)
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we find the following holographic result for the Wilson loop vacuum expectation
value

log〈W hol〉= −SRen.
string = 61/3π2/3λ

1/3
hol . (9.56)

This agrees with the field theory result (9.48).

9.4.3 D3-branes

The worldvolume theory on spherical D3-branes is simply the Euclidean N = 4
SYM theory on S4. Since this is a conformal theory we can apply a conformal
transformation to map S4 to R4 and then analytically continue to Lorentzian
signature. The supergravity dual to this the theory is the the well-known AdS5 × S5

background of type IIB supergravity. Both the QFT and supergravity evaluations of
the free energy and Wilson loop vacuum expectation value are well-known results
available in the literature. Here we briefly summarize how they can be obtained
from our general formalism.

Setting d = 4 in (7.42) we find the eigenvalue endpoint

b4 =

Æ

2λQFT

2π
, (9.57)

which is the expected result from the Wigner semi-circle distribution,

ρ(σ) =
4π
λQFT

p

b2 −σ2 . (9.58)

To determine the free energy, we set d = 4+ ε and take the limit ε→ 0 since there
is a singularity in (7.46) at d = 4. We find

F4 = −
2π2N2

λQFT ε

�

λQFT

2π2

�1+ε/2

+O(ε) = −
N2

ε
−

N2

2
logλQFT +O(ε) . (9.59)

The divergent piece proportional to ε−1 is an overall constant that can be removed,
leaving the well-known result for the Gaussian matrix model. The Wilson loop VEV
can be found by inserting b4 in (7.47)

log〈W 〉=
Æ

2λQFT . (9.60)

The free energy and the Wilson line VEV for N = 4 SYM can also be computed
holographically using standard results in the literature. An efficient way to obtain
the end result on S4 is to take the m = 0 limit of the N = 2∗ calculations in [54]
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and [57].6

9.4.4 D4-branes

Field theory

Next we consider the case of spherical D4-branes which can be studied by setting
p = 4, or equivalently d = 5, in the various general expressions above. From (7.42),
with d = 5 substituted, we find that the eigenvalue endpoint is at

b5 =
λQFT

4π2
. (9.61)

The free energy computed from (7.46) is then given by

F5 = −
λQFTN2

12π
, (9.62)

which agrees with the results in [148,154,185].

To compute the VEV of the BPS Wilson loop we need to plug the expression for b5

in (7.47) and take the large λ limit to find

log〈W 〉=
λQFT

2π
. (9.63)

Supergravity

The supergravity solution for spherical D4-branes is particularly simple as it is just a
dimensional reduction of the AdS7×S4 solution of eleven-dimensional supergravity.
In this case the AdS7 space has an S5×S1 boundary. The spherical D4-brane solution
is obtained by a reduction along S1 leading to the solution derived in Section 8.3.3.
Notice that in this case it is convenient to use η as the radial variable which runs
from ηIR in the IR to infinity in the UV.

To compute the holographic free energy we follow the, by now familiar, procedure
of evaluating the on-shell action and subtracting the infinite counterterms (9.11),
(9.12), (9.13). No other counterterms are required in order to regularize the
action. However, we do find a number of covariant counterterms which give finite

6Note that for p = 3 our convention for g2
YM as given in (9.1) differs by a factor 2 from the convention

used in [54,57].
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contribution to the on-shell action. These are given by7

Sct,fin =
1
κ2

6

∫

d5 x
Æ

h̃e2η

�

c1

�

1
g

R̃Y 2 − 20gY 4
�

+ c2 gY 6

+
c3

g
R̃Y 4 +

c4

g3
R̃2Y 2

�

. (9.64)

Although these counterterms look innocuous in six-dimensional gauged supergravity,
from the perspective of the parent SO(5) gauged seven-dimensional supergravity
they are not gauge invariant. This is because the scalar field Y arises as the
component of one of the SO(5) gauge fields, Aµ, along the S1 direction along
which we reduce the seven-dimensional theory [50]. Therefore the Y 2 term in six
dimensions corresponds to terms of the form AµAµ.

After adding all these contributions and substituting the ’t Hooft coupling

λhol =
2π

g2`2
s

e2ηIR , (9.65)

the renormalized holographic free energy reads

Fhol = −
λholN

2

96π
(10+ 80c1 + c2 + 20c3 + 400c4) . (9.66)

Similar to the discussion of the on-shell action for spherical D1-branes in
Section 8.3.1 we do not know how to fix the coefficients c1,2,3,4 from a first principle
calculation. However, we note that a convenient choice, namely

c1 = c2 = c4 = 0 , c3 = −
1

10
, (9.67)

makes the holographic result agree with the QFT calculation (9.62). Gauge
invariance of the seven-dimensional supergravity theory would indicate that all
four finite counterterms should vanish, however in this case we reproduce the
result of [148] and do not find a match with the localization result. However, if
we choose the counterterm coefficients as in (9.67) we obtain an agreement with
the supersymmetric localization calculation at the expense of breaking the gauge
invariance of the supergravity counterterms. This predicament is reminiscent of
the results in [34,35] in the context of holographic renormalization for AdS5 with
an S3 × S1 boundary.

To evaluate the Wilson loop VEV we substitute the solution into the general

7Two more finite counterterms can be written as a product of quadratic curvature invariant times Y 2,
for an S5 boundary, these are related to the last term in (9.64).
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expression (9.21) using η as a radial variable. We are then left with the following
integral

Sstring =
1
`2

s

∫

dreη+A =
1
`2

s

∫

dη
η′

eη+A =
8

g2`2
s

∫ ∞

ηIR

dηe4η−2ηIR . (9.68)

Evaluating the UV regulated integral and subtracting the counterterm in (9.22)
results in

log〈W hol〉=
λhol

2π
, (9.69)

which matches with the localization result in (9.63).

9.4.5 D5/NS5-branes

Field theory

Next, we discuss MSYM on S6 which was previously investigated in [183]. This
case is subtle because both (7.42) and (7.46) have an essential singularity at d = 6.
To deal with this we set d = 6− ε, after which we find

F6 = −
32π4εN2

λb
e−8/3−γE

�

3λb

8π3ε

�2/ε

, (9.70)

where γE is the Euler-Mascheroni constant and λb is bare ’t Hooft coupling. Hence
the free energy is negative and infinite for any value of λb in the limit ε → 0+.
However, if we substitute d = 6− ε directly into (7.32) it takes the form to leading
order in ε

C1

λb
Nσi =

�

6
ε
− 6γE + 4

�

Nσi − 3
∑

j 6=i

(σi −σ j) log(σi −σ j)
2 . (9.71)

The first term on the right hand side can be absorbed into the ’t Hooft coupling,
hence we define the renormalized coupling λQFT in terms of λb as

1
λQFT

=
1
λb
+ Cλ , (9.72)

where the constant Cλ is given by

Cλ = −
�

6
ε
− 6γE + 4

�

C−1
1 = −

3
8π3

�

1
ε
+

1
2

log (4π)−
1
2
γE −

1
3

�

(9.73)

Notice that since the r.h.s. of (9.71) contains ε−1 it is crucial to expand C1 up to
first order in ε to obtain Cλ to order O(ε0). Substituting λb in terms of λQFT into
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(9.70) we find

F6 = −12πe−8/3−γE N2

�

1− ε
�

8π3

3λQFT
−

1
3
−

1
2
γE +

1
2

log (4π)

��2/ε

= −3N2 exp

�

−
16π3

3λQFT
− 2

�

. (9.74)

The −2 in the argument of the exponent could be removed by a different scheme
choice for Cλ.

A similar treatment can be applied to b6. Again using (9.72) for λQFT we find

b6 = 4
p
πe−4/3−γE/2

�

3λb

8π3ε

�1/ε

= 2exp

�

−
8π3

3λQFT
− 1

�

. (9.75)

This leads to the following expectation value for the BPS Wilson loop

log〈W 〉 ≈ 4πexp

�

−
8π3

3λQFT
− 1

�

. (9.76)

The above results can also be directly obtained from the saddle-point equation
(9.71) which we consider in detail in Appendix F. While the prefactors of the
exponential functions in (9.74) and (9.76) are scheme dependent since they can
be changed by a shift of the renormalized coupling λQFT, we can take the following
combination of the free energy and the Wilson-loop VEV,

F6

(log〈W 〉)2
= −

3N2

16π2
, (9.77)

which is scheme independent.

The form of (9.70) and (9.76) is also suggestive. We expect that the UV completion
of 6D maximal super Yang-Mills is the (1,1) little string theory. If we now write the
free energy in terms of the little string tension T = 2π2

g2
YM

, we get

F6 ∼ N2 exp

�

−
16π3

3
TR2

N

�

. (9.78)

In the large R limit S6 approaches flat space and F6 falls off to zero, consistent with
the flat space free energy found in [77]. The correction away from flat space is
suggestive of a non-perturbative contribution coming from the string world-sheet.
It would be interesting to explore this further.

Note that (9.75) and the assumption that the eigenvalues are widely separated
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imply that λQFT is small and negative. However, (7.35) and (7.36) show that near
d = 6 the crossover from the weak to the strong regime happens when |σi j | ∼ ε1/2.

The approximation is then valid if b6� ε1/2 which corresponds to λQFT�
4π3

3(− logε) .
Therefore, in the limit ε→ 0 the results in (9.70) and (9.76) can be trusted for any
positive ’t Hooft coupling.

Supergravity

As can already be seen from the localization computation, handling the divergences
in this case is subtle. It is clear that the scaling relation in (9.23) breaks down for
p = 5 and there are also special features of the supergravity solution which render
the evaluation of the probe string action difficult. Additionally, the dual frame
formalism of [150] is not adapted to the case of five-branes.

The supergravity solution for spherical D5-branes can be obtained from the following
system of equations

X ′ =e−2η
p

X g
2− 8X + 6X 2 − 3Y 2

p
1− 6X + 9X 2 − 9Y 2

,

(Y 2)′ =e−2ηY 2 g
1− 16X + 15X 2 − 9Y 2

p

X (1− 6X + 9X 2 − 9Y 2)
,

η′ =−
1

10
e−2ηg

p
1− 6X + 9X 2 − 9Y 2

p
X

,

e2A =
e4ηX ((1− 3X )2 − 9Y 2)

g2Y 2
.

(9.79)

We were not able to find an analytic solution to this system of equations. However,
a numerical solution that interpolates between the IR at (X , Y 2) = (4/3, 16/9) and
the UV at (X , Y 2) = (1,0) is plotted in Figure 8.5.

In order to extract holographic observables we must find asymptotic expansions for
the supergravity fields. Unfortunately the BPS equations do not admit a simple UV
expansion. Expressing Y 2 as a function of X results in an asymptotic series which
is simultaneously an expansion in (X − 1) and e−1/(X−1) of the general form

Y 2 = P0(X ) + e−1/(X−1)P1(X ) + e−2/(X−1)P2(X ) +O(e−3/(X−1)) . (9.80)
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where Pi denotes a power series (possibly with negative powers) in (X − 1). The
first two terms P0 and P1 can be resummed to yield

Y 2 =−
5X − 6X 2 +

p

X (4− 3X )
6

+ Ce−
1+
p

X (4−3X )
X−1

2X + 3X 2 + 3X
p

X (4− 3X )
p

X (4− 3X )
+O(e−2/(X−1)) ,

(9.81)

where C is a constant that must be carefully chosen so that the UV expansion
matches onto the IR. Note that the first line in the above expansion is in fact an
exact solution of the BPS equations, However, this solution does not reach the IR
since one encounters a singularity at X = 4/3. The corresponding UV expansion
for η takes the form

η=ηUV +
1

20

�

2+ 2
p

X (4− 3X )
X − 1

+ log
2− X +

p

X (4− 3X )
4X

�

−
6Ce−2/(X−1)

5(X − 1)2
+O

�

e−2/(X−1)

X − 1

�

.

(9.82)

In the IR we find an asymptotic series which follows the numerical solution to
a very good approximation for a large part of the domain but deviates from the
actual solution in the UV. This implies that the IR expansion will not be useful for
extracting the holographic observables from the background. Instead we will use
our numerical solution. As we will explain, the linear behavior of the “dilaton” η in
the UV will prevent us from performing a complete holographic renormalization as
we did in the previous examples.

First let us evaluate the expression (9.6) for p = 5 to determine the relation of the
supergravity parameters to the field theory data. Surprisingly we find that λhol does
not depend on ηIR at all. In fact we find

λhol = lim
X→1

8π3Y 2

X ((1− 3X )2 − 9Y 2)
= lim
ε→0

�

8π3ε

3
+O(ε2)

�

= 0 , (9.83)

where we use X = 1+ε and ε→ 0+ in the UV. Since this vanishes in the strict ε→ 0
limit we do not have a good definition of λhol for D5-branes. We will therefore
proceed with the computation of holographic observables and extract the λhol by
relating the localization and supergravity result for one of the observables, say the
Wilson loop VEV. This relation can then be used to compare the supergravity result
for the free energy with (9.74).

Let us therefore evaluate the Wilson loop VEV for spherical D5-branes. In order to
do so we can again use X as a radial variable and evaluate the on-shell probe string
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action. Inserting the expressions (9.79) in the on-shell probe string action, we are
left with the following integral

Sstring =
1
`2

s

∫

dreη+A =
1
`2

s

∫

dX
X ′

e5η

Y
(1− 3X )2 − 9Y 2

2− 8X + 6X 2 − 3Y 2
. (9.84)

Notice that the integrand depends exponentially on the dilaton η, which in the UV
diverges as 5η = 1/ε+O(logε). This implies that the integrand diverges in the UV
with a combination of polynomial and exponential powers in the cutoff 1/ε

Lstring =
1

g2`2
s

�

e1/ε
p

3
�1
ε
− 1+O(ε)

�

+O(e−1/ε)
�

(9.85)

where, as before, X = 1+ ε. Remarkably, the standard worldsheet counterterm,
discussed around (9.22) cancels the entire exponential divergence and leaves a
finite on-shell action. Explicitly this counterterm has the form

Sstring,ct = e5η

p
X
p

(1− 3X )2 − 9Y 2

g2`2
s Y

�

�

�

�

X=1+ε
. (9.86)

Once the action has been made finite in the UV we can evaluate it numerically
using the numerical solution to the BPS equations. The accuracy of the numerical
procedure is limited due to the fact that in the implementation of holographic
renormalization we have to subtract large numbers. Nevertheless, we were able to
show that with 1% accuracy the following result holds

log〈W hol〉= −SRen.
string ≈

1
g2`2

s

e5ηIR . (9.87)

Comparing this expression with (9.76) suggests the relation

ηIR =
1
5

�

log(4πg2`2
s )− 1

�

−
8π3

15λQFT
. (9.88)

Let us now return to the supergravity action with the aim to extract the holographic
free energy. The UV analysis of the bulk supergravity action integrand has the
following structure

Son-shell =
π3

5g5κ2
7

�

e2/ε
�576
ε5
+

1248
ε4
+O(ε−3)

�

+O(e1/ε)
�

. (9.89)

The polynomial divergence multiplying e2/ε can be canceled by the standard
covariant counterterms. However this still leaves seemingly infinitely many finite
terms multiplying an exponential divergence. But this need not be a problem, since
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in the case of five-branes, infinitely many counterterms are available due to the
linear dilaton behavior in the UV. It therefore seems that it is required to use infinitely
many counterterms to eliminate the exponential divergence in (9.89). Indeed, we
have not been able to find a finite set of counterterms that renders the action finite.8

If we nevertheless assume that (finitely or infinitely many) counterterms can be
found that render the action finite, the form of the resulting expression can be
deduced on general grounds. Since the bulk action is proportional to e10η we expect

SRen.
on-shell = −

6π3 I
g5κ2

7

e10ηIR , (9.90)

where I is an undetermined constant that we are not able to evaluate without a
full knowledge of the counterterms. Using (9.88) we find

Fhol = SRen.
on-shell = −3IN2 exp

�

−
16π3

3λQFT
− 2

�

, (9.91)

in a nice agreement with the field theory result (9.74). As we argued above,
the coefficients of the exponentials in (9.74) and (9.76) are dependent on the
renormalization scheme but a scheme independent quantity can be found by
combining the two as in (9.77). We observe that the same combination in
holography does not rely on the map (9.88) and we find

SRen.
on-shell

(SRen.
string)

2
= −

3N2I
16π2

, (9.92)

which matches (9.77) if the constant I equals one.

9.4.6 D6-branes

Field theory

Finally, we turn to d = 7 and start by rewriting the one-loop determinant in (7.31)
as

Z1−loop(σ) = exp

 

∑

i< j

∞
∑

n=1

2(n2 + 1) log

�

1+
σ2

i j

n2

�

!

. (9.93)

8Such a finite set of counterterms was shown to exist in a recent study of five-branes on some curved
manifolds [7].
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To test the divergence we expand the log at large n, showing that the log of the
determinant behaves as

log Z1−loop(σ)∼
1
2

∑

i, j

∑

n

2σ2
i j

�

1+ n−2
�

−σ4
i j

�

n−2 + n−4
�

+ . . . . (9.94)

The sum over n leads to a linear divergence for the σ2
i j term while the higher terms

are finite. The divergent piece can be rewritten as

2n0 N
∑

i

σ2
i , (9.95)

where n0 is a UV cutoff in n. This divergence has the form of the action in (7.30)
and can be absorbed by shifting the coupling. As for the D5-brane case, we can
define a bare and a renormalized ’t Hooft coupling through the relation

1
λQFT

=
1
λb
−

n0

2π4
. (9.96)

d=7
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Figure 9.2: The kernel G16(σ) for d = 7. At |σ|= 1 the kernel crosses over from
repulsive to attractive behavior.

The finite remainder from Z1−loop(σ) is what contributes to the analytic continuation
of (7.34) around the singularity at d = 7. If we assume large separation between
the eigenvalues then we can use (7.38) if we replace λ with λQFT in the left-hand
side of the equation. However, C2 in (7.37) is negative at d = 7. This is evident in
Figure 9.2 which shows G16(σ) for d = 7. At short distance the kernel is repulsive,
but becomes attractive for |σ|> 1. Because of this negative sign, if we analytically
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continue (7.42) to d = 7 we find that the eigenvalue endpoint is at

b7 = −
2π3

λQFT
. (9.97)

The negative value for (9.97) indicates that strictly speaking this is not a solution to
(7.40) assuming the eigenvalue distribution has the form in (7.39). This is obvious
since (7.40) corresponds to an attractive central potential and an everywhere
attractive potential between the eigenvalues. In this case the only solution has all
eigenvalues at zero.

To sort this out let us consider the full d = 7 kernel shown in Figure 9.2,

G16(σ−σ′) = 2π(1− (σ−σ′)2) cothπ(σ−σ′) , (9.98)

and take the strong coupling limit so that the inverse renormalized coupling
approaches λ−1

QFT→ 0+. While we cannot solve (7.32) analytically in this limit, we
can determine the eigenvalue distribution numerically. This is shown in Figure 9.3
where we see that the short distance repulsion stabilizes the eigenvalues into a
bounded two hump distribution. Hence the free energy approaches a constant
multiplied by N2 in the strong coupling limit.

Now suppose we continue λ−1
QFT through zero, such that λQFT < 0. The central

potential is now repulsive and the eigenvalues are pushed farther away from the
center, but are still stabilized by the attractive long-range force. As we let λ−1

QFT
become more and more negative the two humps in Figure 9.3 get pushed farther
apart and we can then use the large separation approximation in (7.36). In fact,
in this approximation the eigenvalue density becomes two delta functions, as is
shown in Appendix G.1. In Appendix G.2 we numerically show that the short range
repulsion between the eigenvalues widens the delta functions to a width of order 1.

Since λQFT < 0, b7 in (9.97) is positive. In order for the large separation assumption
to be valid we require b7� 1, which happens when λ−1

QFT�−1. Hence we are in a
negative weak regime for the renormalized coupling, which is distinctly different
from the usual positive weak coupling regime. Note that while λ−1

QFT � −1, λb

which appears in the original Lagrangian satisfies λ−1
b � 1. If we now carry out the

analytic continuation of (7.46) we find

F7 =
4π4N2

3λQFT

�

−
λr

2π3

�−2

=
16π10N2

3λ3
QFT

, (9.99)
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Figure 9.3: Distribution of eigenvalues obtained from (7.32) numerically for d = 7,
λ−1

QFT = 0 and N = 501. The eigenvalues are clearly bounded within a finite region.

which diverges toward negative infinity as λ−1
QFT→−∞. Likewise, for the Wilson

loop using (7.47) we find that

log〈W 〉= log cosh(2πb7)≈ −
4π4

λQFT
, (9.100)

which increases as λ−1
QFT→−∞. Note that the cosh function is consistent with the

delta function support at d = 7.

Since the central potential is unbounded from below, the position of the eigenvalue
center of mass is unstable. However, if the gauge group is SU(N) and not U(N)
then the eigenvalues satisfy the trace constraint

∑

i σi = 0, which keeps the center
of mass of the eigenvalues at the origin. This suggests that the U(N) theory cannot
be continued to negative λQFT.

Note further that the saddle point analysis is robust if λQFT is small and negative,
even when N is finite. As an example, consider an SU(2) gauge group. This has
two eigenvalues σ1 = −σ2, and following the analysis in Appendix G.3 the saddle
point gives the same free energy as (9.99) with N = 2. From G.3 we also see that
the fluctuations to the free energy about the saddle point are

δF = −
4π4

λQFT
(δσ1)

2 , (9.101)

hence the fluctuations are sharply suppressed and can be ignored if λ−1
QFT�−1.



132 NON-CONFORMAL PRECISION HOLOGRAPHY

Supergravity

Similarly on the gravity side, the spherical D6-branes do not fit in the general
framework described in Section 9.2 and 9.3. In this case the SO(6− p) symmetry is
trivial, hence the internal space is given simply by the two-dimensional de Sitter
factor. Furthermore the eight-dimensional supergravity featured in the construction
is particularly simple and contains only two scalar fields instead of the familiar three.
For this reason the analysis of spherical D6-branes in supergravity will proceed
differently than the cases above in several ways.

The spherical D6-brane solution is given by the following type IIA supergravity
background, where we keep the radius R of the sphere arbitrary,

ds2
10 =

R2e2Φ/3

g2/3
s

�

1
4

dρ2 + dΩ2
7 +

1
16

sinh2ρ deΩ2
2

�

,

H3 =
3

g2 g2
s

e2Φdρ ∧ vol2 ,

F2 =
i

gs g
vol2 ,

e2Φ =g2
s

�

gR
4

sinhρ
�3

.

(9.102)

The radial coordinate ρ takes values from 0 to∞. It is convenient at this point to
define the new coordinate

U ≡
2π4R2 sinh2ρ

g2
YMN

. (9.103)
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The equations in (9.102) then reduce to

ds2
10 =`

2
s

��

g2
YMN

2(2π)4U

�1/2
dU2

1+ g2
YMNU

2π4R2

+

�

2(2π)4U
g2

YMN

�1/2

R2dΩ2
7

+

�

g2
YMNU3

2(2π)4

�1/2

deΩ2
2

�

,

H3 =
3`2

s g2
YMNU

(2π)4R
dU ∧ vol2
r

1+ g2
YMNU

2π4R2

,

F2 =
iN`s

2
vol2 ,

e2Φ =

�

g2
YMU3

2π4N3

�1/2

.

(9.104)

These equations reduce to the flat space supergravity solutions in [146]when taking
R→∞ while keeping U and g2

YMN fixed. The parameter U can be thought of as
the energy of a string stretched between a probe D6-brane and the N D6-branes.
For small U this is directly probing the weakly coupled 7D MSYM which has an
effective coupling g2

eff = g2
YMU3. However, in string units one sees that the curvature

on the dS2 is large for small U so supergravity can not be trusted in this regime.

Following work of Susskind and Witten [229], Peet and Polchinski observed that
in fact, U is not the energy scale for a probe in supergravity [202]. Instead, this
energy scale is determined by the wave equation for a field in the bulk, say a scalar
ψ, which is given by

�

−
∂ 2

∂ U2
+

k2 g2
YMN

2(2π)4U

�

Uψ= 0 , (9.105)

where we have ignored the modes on dS2. From this we see that the energy scale
for supergravity is

E =

�

2(2π)4

g2
YMNU

�1/2

. (9.106)

In terms of this energy we have that effective coupling is

g2
eff = g2

YM

�

2(2π)4

g2
YMNU

�3/2

, (9.107)

which decreases with increasing U . At the same time, the curvature on dS2 is small
if U3 � 2(2π)4

g2
YMN , which corresponds to g2

effN � 2(2π)4. Hence it seems that the
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supergravity is dual to a weakly coupled gauge theory, but not the standard weakly
coupled gauge theory since that is found at small U where we cannot trust the
supergravity.

Now let us assume that R is large but finite. We then see from (9.104) that we
are in the flat brane regime when E as defined in (9.106) satisfies E�R−1. This
shows that an observer starts seeing the curvature of the branes when the energy
scale is on the order of the inverse radius. Furthermore, the radius of the S7 should
be small in string units, which requires that E� 2(2π)4R3

g2
YMN R−1, hence we need weak

coupling in order to trust the supergravity for distances significantly below the size
of the sphere. As E approaches the scale set by the sphere its dependence on U
starts to change in such a way that when U � 2π4R2

g2
YMN , E scales as (log U)−1 ∼ ρ−1.

As we keep increasing U the string coupling eventually becomes large and we
should uplift the solution to eleven-dimensional supergravity. As demonstrated in
Section 8.3.5, the uplifted metric and form fields take the form of H2,2/ZN × S7.
Explicitly, the eleven-dimensional metric is given by

ds2
11 =

L2

4

�

ds2
4 + 4dΩ2

7

�

, L =R/g1/3
s (9.108)

ds2
4 = dρ2 −

sinh2ρ

4

�

dt2 − cosh2 t dψ2 + (N−1dω− sinh t dψ)2
�

.

This metric has two time directions, t and ω, which is to be expected since it
describes the M-theory lift of a Euclidean brane. The eleven-dimensional 4-form is
given by

G4 =
6 i
L

volH2,2 , (9.109)

where volH2,2 is the volume form for the H2,2/ZN metric. The energy scale on the
sphere maintains the ρ−1 fall off so that for large ρ the only mode accessed is the
constant one. Note that there is also a conical singularity at ρ = 0 if N > 1. This
singularity is what is left of the highly curved IIA theory at small U .

Let us now use the results from the previous section to propose a dual theory to the
supergravity. We saw using localization that there was a smooth transition between
positive and negative λQFT. We also noticed that the “strong coupling" behavior,
with widely separated eigenvalues, occurs when λ−1

QFT � −1. If we assume that
g2

YM < 0 in the supergravity, then (8.12) and (9.1) imply that the metric and e2Φ

in (9.102) have a negative sign. To compensate for this we can send ρ→−ρ in
which case we go back to the original signs for the metric and string coupling, while
the H3 field changes sign. The eleven-dimensional supergravity metric in (9.108)
is unchanged but the four-form field in (9.109) changes by a sign under these
transformations. Hence, now everything looks almost the same as before, except
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any dictionaries we have between the supergravity and the gauge theory should
have g2

YM replaced with −g2
YM. For example, the condition for small curvature on

the dS2 is now U3�− 2(2π)4

g2
YMN , which translates to the relation −g2

effN � 2(2π)4 for

the effective coupling .

We are now ready to compute the free energy and Wilson loop VEV using
supergravity. One way to evaluate the free-energy of the spherical D6-brane is to
use the eight-dimensional gauged supergravity used to construct the background.
The eight-dimensional action is

S =
1

2κ2
8

∫

?8

§

R−
1
2

�

|dβ |2 + e2β |dχ|2
�

−
3g2

2
eβ
ª

, (9.110)

where κ2
8 is given by (9.8). The eight-dimensional BPS equations are written in

terms of the metric
ds2

8 = dr2 +R2e2AdΩ2
7 , (9.111)

where the metric function A is only a function of the radial variable r. The BPS
equations read

β = − 6A ,

χ ′ =6iR−1e−7A−2β ,

(A′)2 =R−2e−2A+
g2eβ

16
.

(9.112)

These equations can be easily solved by using the function A as the radial variable. It
can then be related to the coordinate ρ appearing in (9.102) by the transformation

e2A =
gR
4

sinhρ . (9.113)

Evaluating the action on-shell using the above expression for the eight-dimensional
fields results in

S =
gR9

211 g2
s `

8
sπ

2

∫ ∞

0

(1+ 7cosh 2ρ) sinhρ dρ , (9.114)

where we have included the Gibbons-Hawking term and performed the integral
over the 7-sphere. This integral diverges as ρ→∞ which as we argued before is
the IR of the geometry. The eight-dimensional metric is in fact completely regular
there whereas the scalar β diverges. This statement is of course dependent on the
frame we use in supergravity. It is a lucky coincidence here that the Einstein frame
metric is regular whereas the string frame or any other frame which is related to the
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metric above via a power of the scalar field eβ is singular. Subtracting divergences
at ρ → ∞ can therefore be done as before, by changing frame and introduce
curvature counterterms such that the divergences cancel. We can also perform
minimal subtraction; expand out the divergent terms and remove them by hand. In
both cases the result is the same, the contribution of the IR is eliminated completely.
The on-shell action is completely dominated by its contribution in the UV. Using the
relations in (8.12) and (9.1) with g2

YM replaced with −g2
YM we find

Fhol =
16π10N2

3λ3
hol

, (9.115)

where

λhol ≡ N g2
YMR

−3 = −
25π4`2

s

gR3
, (9.116)

is defined as before but since there is no η-scalar in this case the equation (9.6) is
not directly applicable. The extra minus sign is to account for the negative Yang-
Mills coupling. This result is in complete agreement with the localization result in
(9.99).

We can also obtain the result (9.115) from the eleven-dimensional supergravity
solution. Before any Wick rotation the eleven-dimensional action is given by [137,
138]

S =
1

16πG11

∫

d11 x
Æ

g(11)
�

R(11) − 1
2 |G4|2

�

, (9.117)

where

|G4|2 ≡
1
4!
(G4)µ1...µ4

(G4)
µ1...µ4 . (9.118)

Substituting the solution (9.108)-(9.109) into (9.117) results in

S =
1

16πG11

∫

d11 x
Æ

g(11) 12
L2

. (9.119)

In order to evaluate this on-shell action we need to Wick rotate one of the time
directions as t →−iτ in (9.108). This changes the metric ds2

4 to

ds2
4 → dρ2 +

sinh2ρ

4

�

dτ2 + cos2 τdψ2 − (N−1dω+ i sinτdψ)2
�

, (9.120)

Note that the M-theory circle parameterized by ω remains time-like. Even though
the metric is now complex, its determinant remains real. The on-shell action then
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becomes9

Son−shell = −
1

16πG11

∫

d11 x
Æ

−g(11) 12
L2
= −

1
16πG11

π6 L9

2N

∫ ρ0

0

dρ sinh3ρ ,

(9.121)
where we have introduced a UV cutoff ρ0 to regulate the volume of H3,1 in (9.120).
As we take ρ� 1 the on-shell action behaves as

Son−shell = −
1

16πG11

π6 L9

2N

�

1
24

e3ρ0 −
3
8

eρ0 +
2
3
+O(e−ρ0)

�

. (9.122)

The divergent contributions in this expression should then be removed to obtain a
finite action. Using G11 = 16π7`9

s and the modified AdS/CFT dictionary to account

for the negative coupling, (2π`s)3 gs = −
g2

YM
2π , we find10

SRen.
on−shell =

16π10

3λ3
hol

N2 . (9.123)

This again agrees nicely with the free energy in (9.99).

The BPS Wilson loop can be computed using the IIA solution in (9.102). The
on-shell string action in this case is given in terms of the eight-dimensional metric
function

S =
1
`2

s

∫

ReA dr . (9.124)

Changing coordinates to the radial coordinate ρ as above we find

Sstring =
gR3

8`2
s

∫ ∞

0

dρ sinhρ , (9.125)

Just like the on-shell action, this integral diverges in the IR and can be regularized
by adding a simple counterterm analogous to (9.22). This counterterm implements
minimal subtraction resulting in the following expression for the Wilson line
expectation value

log〈W hol〉= −
4π4

λhol
, (9.126)

9The contribution to the integral over ρ in (9.121) might not be trustworthy for ρ ® |λQFT|1/3.
However, if |λQFT| � 1, then this will lead to corrections of order |λQFT|2/3 and the results in (9.123)
can be trusted to leading order.

10Note that in [50] the regularized on-shell action was computed using a four-dimensional effective
supergravity approach leading to a result which differs by a factor of 2 from (9.123). The eight-
dimensional and eleven-dimensional approaches we use here is better justified and should be employed
instead.
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where we have again flipped the sign of g2
YM in the dictionary. This precisely agrees

with the localization result in (9.100).

An alternative way to compute the Wilson loop VEV is to evaluate the on-shell action
of an appropriately embedded M2-brane in the eleven-dimensional solution (9.108).
The M2-brane wraps the equator of S7 and extends along ρ and the M-theory circle
ω. In particular the brane is fixed along t and ψ since it should be constant along
the field theory scalar φ0. The holographic dual to the Wilson loop VEV is then
given by

log〈W hol〉= −SRen.
M2 , (9.127)

where the probe M2-brane on-shell action is given by

SM2 = µ2

∫

d3σ
Æ

det P[GMN ] . (9.128)

P[GMN ] denotes the pullback of the determinant of the eleven-dimensional metric
to the M2-brane worldvolume and the brane tension is given by µ2 =

2π
(2π`s)2

.
Evaluating this action on our solution gives the following diverging result

SM2 = µ2
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4
2π
N
(2π)

∫ ∞
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dρ sinhρ =
g L3

8`2
s

(coshρ0 − 1) . (9.129)

where in the second step a cut-off ρ0 was introduced to regulate the divergence.
By adding a simple counterterm

SW,ct = −
g L3

8`2
s

sinhρ0 , (9.130)

very similar in spirit to the counterterm (9.22), we obtain the following renormalized
on-shell action

SRen.
M2 = −

g L3

8`2
s

. (9.131)

Inserting the expression for λhol in this equation with a sign change in the dictionary
results in the following expression for the holographic Wilson loop VEV

log〈W hol〉= −
4π4

λhol
. (9.132)

This agrees nicely with the type IIA calculation in (9.126) and the localization result
in (9.100).

In [146] it was noted that the supergravity solution for D6-branes could be trusted
even for small N . This is consistent with our results here. As we showed in the last
section, the form of the free energy holds for small N , at least if N is even. In the
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classical supergravity we find the same free energy as a function of N so this appears
to align well with the claim in [146]. There is a subtlety however for odd N . As
follows from (G.18), the localization result for the free energy comes with an extra
factor of N(N−1)

(N−1/2)2 . This arises because one eigenvalue has to be placed at the origin
in the solution to the saddle point equation. Hence, it is essentially a quantization
condition that supergravity does not directly see. In the N = 1 case the free energy
is zero for the gauge theory, not surprisingly since the gauge group is SU(1) which
is trivial. The supergravity does not look trivial although the eleven-dimensional
uplift is now smooth at the origin. It would be interesting to understand this point
better.





Chapter 10

Discussion and future
directions

In this part we constructed explicit supergravity solutions preserving sixteen real
supercharges, describing the back-reaction of spherical Dp-branes with 1≤ p ≤ 6.
We argued that these backgrounds are holographically dual to the planar limit
of maximally supersymmetric Yang-Mills theory on Sp+1. To check this claim we
computed both on the field theory and the gravity side the free energy and the
vacuum expectation value of a 1/2-BPS loop. On the field theory side, thanks to
supersymmetric localization, we can compute these observables by reducing the
full path integral to a finite dimensional matrix model. In the large N limit we
can explicitly compute analytic expressions for both these observables. On the
other hand, on the supergravity side, by employing a non-trivial application of
holographic renormalization, we can compute the same observables and find an
exact match at leading order in N . This constitutes a non-trivial check of holography
in a non-conformal setting.

However, our work also opens up many questions and interesting directions to
extend and generalize it. A first interesting path is to consider SYM theories with
less supersymmetry. Both pure and matter coupled super Yang-Mills theories with
eight supercharges exist on Sd with d ≤ 6 and it is possible to study them in the
large N limit using supersymmetric localization. In [113, 182] the localization
computation was carried out both for pure SYM as well as SYM coupled to
fundamental hypermultiplets. Furthermore for d ≤ 4, theories preserving only
four supercharges were localized as well. It would be very interesting to study
the resulting matrix models in more detail and compute the free energy and
various Wilson loop vacuum expectation values as well as extend the analysis
to more general matter content. Constructing the dual supergravity solutions is not
straightforward, since it is not a priori clear which classes of SYM theories have a
weakly coupled dual. At present we do not know how to extend our construction
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to d > 7 but it is certainly an interesting question to consider. See [184] for a
QFT construction that may be relevant to answer this question. Furthermore, in
this work we have focused on maximal super Yang-Mills theories on the round
sphere. Another way one can reduce supersymmetry is by placing supersymmetric
gauge theories on other curved manifolds. A natural first example of this would
be a squashed S2k+1 with k ∈ {1,2,3}. In this case, the sphere can be viewed
as a U(1) bundle over CPk and one could squash the Einstein metric on the
sphere while preserving SU(k + 1) × U(1) invariance. This construction should
preserve eight supercharges and the partition function of the gauge theory should
be computable using supersymmetric localization, see for example [125,142,143].
Other interesting examples would be to consider products of spheres.

In the analysis of the matrix models we have mainly focused on the large N and
large λ limits. It will be very interesting to extend our analysis beyond leading
order to finite values of N or λ. To understand finite N we should obtain a proper
understanding of the non-perturbative instanton sectors of the theories in question.
This is obviously very interesting but also very hard. More feasible would be
to consider finite λ, while remaining in the large N limit. This will allow us to
understand whether there are any interesting phase transitions as a function of λ
akin to the ones observed for N = 2∗ in [216,218]. For MSYM on S3, our results
appear to be valid at all values of λ. While the free energy vanishes in this case,
the BPS Wilson loop has a non-trivial vacuum expectation value and does not have
a form suggesting a phase transition. It would be desirable to understand this
result from a perturbative analysis in weakly coupled planar limit. Alternatively,
one could study the 1/λ corrections to the on-shell action of the probe string in the
supergravity solution, analogous to [74].

In the holographic analysis of our spherical brane backgrounds we successfully
employed a holographic renormalization procedure in non-AlAdS spacetimes. It
is desirable to put this procedure on a more solid footing using the generalized
conformal structures discussed in [150] and formulate a systematic procedure á
la Fefferman-Graham. This would allow us to address the subtle questions on
how to fix the coefficients of the finite counterterms in the on-shell actions we
encountered for D2- and D4-branes and would additionally be applicable for more
general non-conformal supergravity backgrounds.

Finally, we would like to stress that for D5/NS5-branes, both in the matrix model
and the supergravity solution, we encounter intriguing UV divergences which we
managed to regularize in a seemingly consistent way. It would be very interesting
to better understand these calculations and find out what exactly they can teach us
about the structure of (1, 1) little string theory.
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Chapter 11

Introduction to part III

This third and last part is adapted from [51].

Studying the low-energy physics of p-branes in string and M-theory wrapped around
an n-dimensional curved manifold, Mn, has provided a rich arena for understanding
the dynamics of strongly coupled quantum field theories. This is facilitated by three
distinct vantage points that provide complementing insights into the physics of
these systems. One can view this setup as realizing a partial topological twist on
Mn of the (p+ 1)-dimensional supersymmetric QFT on the world-volume of the
brane. At low energies this leads to a QFT in (p−n+1) dimensions which preserves
part of the original supersymmetry. Alternatively, one can realize the same system
more geometrically by studying the low-energy dynamics of the p-brane wrapped
on a calibrated cycle Mn in a special holonomy manifold. Holography offers a
third point of view on the same physics. When the number of p-branes is large they
back-react on the geometry and this often leads to supergravity solutions dual to
the QFTs of interest. In this work we will study the case n = 2, i.e. Mn is a Riemann
surface, and show how to construct the supergravity solutions corresponding to
various p-branes in the presence of punctures on the Riemann surface.

11.1 Wrapped branes and topological twists

Studying wrapped branes on Riemann surfaces using holography was initiated in
the seminal work of Maldacena and Núñez [174], see [104] for a review. In this
work the large N limit of a system of branes with worldvolume R1,d−1 ×Σg were
studied, where Σg is a smooth genus g Riemann surface. At low energies, i.e. at
energies small compared to the inverse radius of curvature of the Riemann surface,
these theories become effectively d-dimensional. They constructed supergravity
solutions describing the flow starting at a UV theory in d + 2 dimensions towards a
d-dimensional theory in the IR. More precisely, they studied 4d N = 4 SYM and
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the 6d (2,0) theory wrapped on a Riemann surface. The basic technique used to
find these solutions is the topological twist [47]. Apart from coupling the theory
to curvature of the worldvolume, there is an additional coupling to an external
SO(n) gauge field, where n is the number of transverse directions to the brane. By
carefully choosing a specific form for the SO(n) background gauge field one can
construct solutions preserving 1/2 or 1/4 of the original supersymmetry depending
on how the holonomy group of the Riemann surface is embedded in the higher
dimensional space. In the field theory limit, these distinct possibilities correspond
to different normal bundles and therefore different external SO(n) gauge fields.
There are various cases in which the low energy theory is a conformal field theory.
In this case we find AdSd+1 geometries in the dual IR regime. Both the metric and
the SO(n) gauge fields are modes of the maximal gauged supergravity in d + 3
dimensions, therefore one can greatly simplify the analysis of such solutions by
considering the (d + 3)-dimensional supergravity equations.

Figure 11.1: A QFT defined on a manifold of the form M= R1,d−1 ×Σg,n, with an
appropriate topological twist, will flow in the IR to a d-dimensional SCFT. g is the
genus of the Riemann surface, while n denotes the number of punctures. The type
of puncture determines the flavor symmetry it adds to the QFT.

11.2 SCFTs of class S

Renewed interest in the physics of these wrapped brane systems arose after
understanding the four-dimensional N = 2 quantum field theories of class S
which emerge as the low energy limit of the worldvolume-theories of M5-branes
wrapping a Riemann surface [101,103]. The worldvolume theory living on a stack
of N M5-branes is given by the six-dimensional N = (2, 0) theory of type g. When
compactified on a Riemann surface, the resulting four-dimensional low energy
effective theory is characterized by the simply laced Lie group g,1 the Riemann
surface Σg,n, and the type of punctures on the Riemann surface. The low energy

1When the 6d theory is compactified on a circle, the Lie group g becomes the gauge group of the
resulting five-dimensional SYM theory.
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theory however, only depends on the complex structure moduli of the Riemann
surface which arise as exactly marginal operators in the 4d theory. All other UV
metric fluctuations are washed away by the RG flow, they correspond to irrelevant
operators. A key role in the class S construction is played by punctures on the
Riemann surface. In the UV theory, each puncture corresponds to a codimension
two defect of the (2,0) theory. In the low energy theory, such punctures encode
information about additional flavor symmetries and matter fields in the quantum
field theory. In the brane setup these punctures arise from additional flavor M5-
branes, intersecting the Riemann surface at points and sharing four dimensions
with the wrapped branes. At low energies, thanks to the marginality of the complex
structure moduli, we can decompose the Riemann surface in pairs of pants and
cylinders. In this way we can map a decomposition of the Riemann surface to a
specific four-dimensional quiver representation, see Figure 11.2. Cylinders represent
simple gauge group factors, while the pairs of pants are genuinely new building
blocks denoted by T Λ1,Λ2,Λ3 or simply TN when g = AN−1 and all punctures are
maximal. These new building blocks represent isolated non-Lagrangian SCFTs
with no tunable couplings. Of course, there are many different pairs of pants
decompositions for a given punctured Riemann surface corresponding to different
weakly coupled descriptions of the same SCFT. They are all related by generalized
S-dualities.

Figure 11.2: A specific pair of pants decomposition of a genus two Riemann surface
with one minimal puncture (g = AN−1). The corresponding quiver diagram is
illustrated on the far right where the circles denote simple SU(N) N = 2 vector
multiplets. The red dot is a minimal puncture which corresponds to a hypermultiplet
in the 4d theory.

Such punctures on the Riemann surface can also be incorporated in the holographic
description of the class S setup. Indeed, it was shown in [102] that the gravitational
description of this system is captured by a generalization of the class of 1/2-BPS
AdS5 solutions described in [167]. These solutions are characterized by a single
function obeying the non-linear SU(∞) Toda equation which in the presence of
punctures on Σg,n is modified by including singular sources. A large number of
non-trivial consistency checks of this proposal were performed in [102] and all of
them lead to nice agreement with the field theory analysis of [101,103].

Given this success it is natural to ask whether this supergravity description of
wrapped branes on punctured Riemann surfaces can be generalized to D- or M-
branes in other dimensions or to systems with a smaller number of supercharges.
Unfortunately the approach followed in [102] is very hard to generalize to such
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setups. For instance, if one wants to generalize the N = 1 class S construction
of [18,19,41] to Riemann surfaces with punctures one has to study 1/4-BPS AdS5

backgrounds of eleven-dimensional supergravity. While solutions of this type have
been classified in [106] the supergravity BPS equations reduce to a complicated
system of coupled nonlinear PDEs in four variables which are extremely hard to
solve. Despite the progress described in [16,17], it appears to be hard to apply the
idea of [102] and introduce singular brane sources to this system of equations and
find explicit solutions. This state of affairs is even more grim for other wrapped
brane systems like D3- or M2-branes. In these cases one should classify 1/8-BPS
AdS3 or 1/16-BPS AdS2 solutions of type IIB or eleven-dimensional supergravity and
introduce singular sources to the corresponding BPS equations. Given this impasse
it is clearly beneficial to explore alternative approaches to the construction of this
type of supergravity solutions. Our goal in this part is to present one such new
approach.

11.3 What about punctures?

Our strategy is based on the observation that the constructions of many wrapped
branes supergravity solutions proceeds along the lines of [174]. Namely, one
starts with an appropriate lower-dimensional gauged supergravity which is a
consistent truncation of ten- or eleven-dimensional supergravity on a compact
manifold (typically a sphere). One then studies an appropriate ansatz for the fields
of the gauged supergravity theory which implements the holographic description
of the partial twist of the dual SCFT on the compact Riemann surface and then
constructs solutions of the supergravity BPS equations. We modify this procedure
in a simple way, we allow for the metric on the Riemann surface to be general, as
opposed to the constant curvature metric in [174]. We then study this setup in
the maximal gauged supergravity theories in four, five, six and seven dimension
relevant for the holographic description of M2-, D3-, D4-D8-, and M5-branes. We
find that in all cases the supergravity BPS equations reduce to the following PDE
on the Riemann surface

�ϕ +κeϕ = 0 , (11.1)

for one of the functions in the ansatz, where κ is the normalized curvature of
Σg,n. This is the Liouville equation. Its regular solutions lead to the well-known
supergravity solutions describing branes wrapped on a smooth compact Riemann
surface. Our main observation is that introducing a singular source on the right hand
side of the Liouville equation allows for new solutions that have not been explored
before. We interpret these solutions as providing the supergravity description of
branes wrapped on a punctured Riemann surface. We can then rely on a well-
known supergravity uplift formulae to present the corresponding ten- or eleven-
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dimensional supergravity solutions. In this way we circumvent the need to classify
AdS supergravity solutions and solve complicated PDEs directly in the ten or eleven-
dimensional theory.

To gain confidence in the proposal described above we study in detail the case
of M5-branes wrapped on a punctured Riemann surface with a general choice of
topological twist preserving N = 1 supersymmetry. We first show that for the
special twist preserving N = 2 supersymmetry our results are compatible with the
ones in [102]. This comparison also exhibits a small limitation in our approach. The
singular source in the Liouville equation does not capture the full information about
the puncture present in the eleven-dimensional solutions of [102] and only serves
as an approximate description. Nevertheless, the gauged supergravity approach
provides enough information for many interesting questions, in particular in the
large N approximation. We show this utility by studying more general N = 1 setups
of class S where we show how the results computed using the supergravity solutions
agree with the M5-brane anomaly polynomial as well as explicit constructions of
the dual quantum field theories using vector and hypermultiplets as well as TN

building blocks.

11.4 Outline

In the next chapter we present our main proposal on how to treat punctured
Riemann surfaces in gauged supergravity and present some details on solutions
corresponding to wrapped M2-, D3-, D4-D8-, and M5-branes. From Chapter 13
onward, we focus on M5-branes wrapped on punctured Riemann surfaces in order
to accumulate evidence for our general prescription. We start by describing the
different twists of the N = (2,0) theory and summarize how to integrate the
anomaly polynomial of the M5-branes over the punctured Riemann surface to obtain
the anomalies of the four-dimensional IR theories. In Chapter 14 we revisit the AdS5

supergravity solutions of Chapter 12 and describe our treatment of singularities
on the Riemann surface. We also compute the conformal anomalies of these
solutions holographically and obtain an exact match with the result from the
anomaly polynomial at leading order in N . Moreover, we compute the dimensions
of protected operators arising from M2-branes wrapping the Riemann surface and
describe the marginal deformations of our solutions. Finally, in Chapter 15 we
construct the quiver gauge theories dual to a subset of our supergravity solutions.
We compute the conformal anomalies, the dimensions of the M2-brane operators
and the dimension of the conformal manifold and on all fronts find agreement with
supergravity and the anomaly polynomial. We finish by briefly discussing various
non-trivial Seiberg-like dualities. The Appendices H-K contain technical details
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on the supergravity constructions we employ, a review of some solutions of the
Liouville equation, as well as a brief summary of our SCFT conventions.



Chapter 12

Punctured horizons

We consider d-dimensional SCFTs arising from twisted compactifications of SCFTs
in d +2 dimensions on a punctured Riemann surface Σg,n. These can be realized as
the theories living on the worldvolume of D- or M-branes where the worldvolume
takes the form R1,d−1×Σg,n. In general when putting a supersymmetric field theory
on a curved manifold all supersymmetries are broken. However, by performing a
(partial) topological twist we can preserve some supersymmetry [47,174,243]. The
generator of supersymmetry is a spinor, ε, which in the presence of a background
metric and R-symmetry gauge field obeys an equation of the schematic form

�

∂µ +
1
4
ωab
µ γab + AI

µΓI

�

ε= 0 . (12.1)

Here ωab
µ is the spin connection and Aµ is the background gauge field coupled

to the R-symmetry. By identifying the structure group of Σg,n with a subgroup of
the R-symmetry this equation can be solved by taking a constant spinor obeying
∂µε= 0. In order to perform a topological twist on a Riemann surface we need at
least U(1)R superconformal R-symmetry. In this thesis we focus on SCFTs with the
maximal number of supercharges in three, four, five, and six dimensions which have
a larger R-symmetry group and thus the d-dimensional SCFTs in the IR preserve
some amount of supersymmetry.1

Following the seminal work [174], we study these twisted SCFTs using holography.
To this end we consider maximally supersymmetric gauged supergravity theories in
d+3 = 4, 5, 6 and 7 dimensions and study the most general topological twist on Σg,n

in every dimension. The construction follows a similar pattern for all dimensions
so before we focus on each individual case we describe the general structure.

We work with a truncation of the maximal gauged supergravity which reduces the

1The analysis below can be extended to SCFTs and supergravity theories with smaller amount of
supersymmetry, see for example [38,53].
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bosonic fields to the metric and a number of abelian gauge fields and real scalars.
The supergravity solutions dual to the twisted SCFTs described above are of the
following form

ds2
d+3 =e2 f (r,x1,x2)

�

−dt2 + dz2
1 + · · ·+ dz2

d−1 + dr2
�

+ eϕ̂(r,x1,x2)
�

dx2
1 + dx2

2

�

,

A(i) =A(i)x1
(r, x1, x2)dx1 + A(i)x2

(r, x1, x2)dx2 ,

λI =λI (r, x1, x2) .
(12.2)

The range of the indices i = 1, . . . , nA and I = 1, . . . , nλ differs on a case by case
basis and will be specified for each dimension separately. In these expressions all
functions – f , ϕ̂, A(i)x1,x2

and λI – only depend on the radial coordinate r and the
coordinates x1 and x2 of the Riemann surface. For Riemann surfaces with Gaussian
curvature κ = −1, the coordinates (x1, x2) parameterize the hyperbolic plane H
which we quotient by a discrete Fuchsian subgroup Γ ∈ PSL(2,R) to obtain a genus
g> 1 Riemann surface. Furthermore we focus on the IR behavior of these wrapped
brane solutions where the geometry becomes AdSd+1 ×Σ. The metric functions in
this IR region are fixed to

f =− log r + log
2
g
+ f0 ,

ϕ̂ =ϕ(x1, x2) + 2 log
2
g
+ϕ0 ,

(12.3)

where f0 and ϕ0 are constants and the scalars take constant values. The gauge
coupling g is related to the radius of the UV AdSd+3 solution, RAdSd+3

= 2
g . It is worth

pointing out that the more general BPS equations which describe the holographic
RG flow from the AdSd+3 UV region to the AdSd+1 IR near-horizon region were
studied in detail in [11, 56].2 The result is that these equations admit solutions
for arbitrary metric on the Riemann surface in the UV region, however in the IR
the metric flows to the constant curvature metric on Σ. This behavior is known as
holographic uniformization [11,56]. From now on we concentrate solely on the
IR region and investigate the resulting near-horizon geometries. As described in
Appendix H one can show that the BPS equations at the IR fixed point reduce to a
number of algebraic equations for the scalars together with one universal second
order equation for the conformal factor ϕ of the metric on the Riemann surface.
The gauge fields in turn are – up to a choice of twist – fully determined in terms of
this function ϕ. The equation determining ϕ is given by

�ϕ + κeϕ = 0 (12.4)

2See [95] for a generalization of this setup to M5-branes wrapped on Kähler 4-cycles.
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This is nothing but the Liouville equation for the conformal factor of the metric on
the Riemann surface.3. When one considers smooth Riemann surfaces one finds
the constant curvature metric on the covering space

ϕ(x1, x2) = −2 log x2 + log 2 for κ= −1 ,
ϕ(x1, x2) = 0 for κ= 0 ,
ϕ(x1, x2) = −2 log(1+ x2

1 + x2
2) + log 8 for κ= 1 .

(12.5)

The crucial observation for our work is that there are more general solutions to the
Liouville equation. One can construct many more IR AdSd+1 solutions by allowing
singular solutions to the Liouville equation where the Riemann surface includes
conical defects or punctures.

Our main observation is that regular punctures on the wrapped curve correspond
to conical defects of the Riemann surface in the lower dimensional supergravity
description. In order to accommodate such singularities one has to add localized
sources to the Liouville equation

�ϕ +κeϕ =
∑

i

4π(1− ξi)δ
(2)(Pi) . (12.6)

where i runs over all singularities and 0≤ ξi ≤ 1 specifies the opening angle of the
conical defect at the point Pi . The limiting values ξ= 0 and ξ= 1 correspond to
respectively a true puncture and a regular point. Near a singular point the Liouville
field needs to satisfy appropriate boundary conditions. Near a conical singularity
with defect angle ξ, the boundary conditions are

ϕ = −2(1− ξ) log r , for r → 0 . (12.7)

where r2 = x2
1 + x2

2 and the coordinates are chosen such that the singularity lies at
the origin. Once a solution to the Liouville equation on a Riemann surface with
prescribed singularities is given, the gauge field strength is fully determined by the
conformal factor ϕ, up to a choice of partial topological twist. In terms of the spin
connection ωµ =

1
2ω

ab
µ εab, we choose the R-symmetry background gauge field Aµ

such that its field strength is, up to a d-dependent prefactor, given by

F=
∑

i

F (i)Ti ∼ −κV−1
g,ξ T dω . (12.8)

for κ 6= 0 and F ∼ −Tvolg,ξ for κ = 0. Here we defined volg,ξ to be the volume form
on the singular Riemann surface of genus g with n conical defects with opening

3Some properties of the Liouville equation are summarized in Appendix I.
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angles ξ j and Vg,ξ is its volume

Vg,ξ =
2π
κ

 

2− 2g−
n
∑

j=1

(1− ξ j)

!

. (12.9)

This implies that in order guarantee that the volume is positive we must have
κ = sgn[2 − 2g −

∑n
j=1(1 − ξ j)]. The gauge field is taken along the generator

T =
∑

ai Ti where Ti are the generators of the Cartan of the R-symmetry group.
The ai are constants parameterizing the partial topological twist. In order to
preserve supersymmetry ai need to obey the constraint

2π
∑

i

ai = −κVg,ξ . (12.10)

For smooth Riemann surfaces the condition for the R-symmetry bundle to be well
defined, together with the twisting condition, (12.10), imply that the ai can only
take quantized values ai ∈ Z. On the other hand, for a singular Riemann surface
with conical singularities, with deficit angles {ξ j} j=1,··· ,n, the quantization condition
is slightly altered and becomes

lcm({ξ−1
j })a

i ∈ Z . (12.11)

This condition corresponds to the quantization of the fluxes F (i) and is very similar in
spirit to the quantization of electric charge in the presence of a magnetic monopole.
Namely, when a monopole of magnetic charge m is present the charge quantization
condition takes the form mn ∈ Z.

Another useful point of view on this quantization condition is more geometric and is
offered by uplifting these backgrounds to string or M-theory. There the quantization
arises for imposing the normal bundle to the wrapped branes is well-defined. For
an SU(N) gauge group the twisted SCFTs theories describe the low energy limit of
a D- or M-brane wrapped on a singular curve Σ inside a Calabi-Yau m-fold, where
m= nA+ 1, which is a

⊕nA
i=1 Li bundle over Σ.

CnA
⊕nA

i=1 Li

Σ
(12.12)

The degrees of the line bundles Li are deg(Li) = −κai for κ 6= 0 and deg(Li) = ai

for κ = 0. The Calabi-Yau condition of the total space reduces to the condition
⊗nA

i=1 Li = KΣ, where KΣ is the canonical line bundle ofΣ. This relation is equivalent
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to the twist condition (12.10). Note that due to the presence of singularities the
degrees of the line bundles can take rational values [214].

It proves convenient for the subsequent analysis to split the parameters ai into
global and local parts

ai = ai
global + ai

local , (12.13)

where the global part corresponds to the background flux present for the topological
twist on a smooth Σ, i.e. such that

∑

i ai
global = (2g− 2). For each puncture there is

a choice to add the local contribution to one of the magnetic fields or equivalently
to one of the ai ’s indicating in which direction normal to the branes the puncture
extends.4 Graphically we can represent this choice by assigning a color to each
conical defect, see Figure 12.1 for an illustration valid for M5-branes wrapped on
Σ, as follows

a1
local =

∑

red punctures

(1− ξ j) , a2
local =

∑

blue punctures

(1− ξ j) , · · · (12.14)

For theories of class S with gauge group SU(N) regular punctures are classified

Figure 12.1: Regular punctures on the wrapped Riemann surface correspond to
conical defects on the Riemann surface in the lower dimensional supergravity. The
local information of a puncture is encoded in the opening angle of the corresponding
conical defect. The color of the shading surrounding the singularity determines in
which transverse direction the puncture extends.

by Young tableaux with N boxes [68,101]. Similarly we conjecture that in other
dimensions and with smaller number of supercharges many punctures can be
classified in the same manner. Around a puncture we can uplift our supergravity

4One can consider the more general case where the contribution from a single singularity is split over
multiple ai . In this case the singularity still extends in a one-dimensional subspace of the transverse
space the will locally still preserve half-maximal supersymmetry. By choosing a different basis for the
transverse space we recover the same picture as above. However, when a singularity extends in a
subspace of the transverse space with dimension d > 1 we have a truly different situation and the
intuitive picture developed above will no longer be correct. To the best of our knowledge this situation
has not been studied in the literature and we do not consider it here.
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solution to ten or eleven dimensions. For ξ−1 ∈ Z the uplifted geometry around the
puncture in 10 or 11 dimensions takes the form

ds2
10(11) ' ds2

AdSd−1
+ ds2

R4/Zξ−1
+ ds2

S7(8)−d . (12.15)

In class S theories this kind of geometry corresponds to a puncture characterized by a
rectangular Young tableau with rows of equal length ξ−1. The geometrical structure
associated to punctures with more general Young tableaux is more complicated
as the singularities are spread out along the internal space [102]. In order to
analyze these singularities in full detail one should consider the full ten- or eleven-
dimensional description of the solution. However, in the large N limit we can
approximately describe these solutions with conical singularities with defect angles
ξ ∈ { r

N |r = 1, . . . , N − 1}. A conical defect with ξ= r
N corresponds to the set of all

regular punctures described by Young tableaux with r rows; to select the specific
Young tableau from this class one needs additional information encoded in the
transverse geometry. Such more general punctures might violate the quantization
conditions formulated above. For the moment we do not worry about this and
merely consider this as an effective description in the gauged supergravity. Using
this approximation we show that for N = 1 theories of class S we can match the
conformal anomalies and dimensions of specific operators for all types of punctures
in the dual field theory.

In the remainder of this chapter we construct explicit gauged supergravity solutions
corresponding to M2-, D3-, D4-D8- and M5-branes wrapping the singular Riemann
surface Σg,n.

12.1 M2-branes on singular curves

The gauge theory arising on the worldvolume of N M2-branes is given by the
three-dimensional N = 8 ABJM theory [5] which at large N is dual to eleven-
dimensional supergravity on AdS4 × S7.5 A twisted compactification of this theory
on a complex curve Σ is described holographically by an eleven-dimensional
supergravity background which is asymptotically locally AdS4 × S7 but for which
the topology at a fixed value of the radial coordinate is an S7 fibration over Σ.
An efficient way to construct these supergravity solutions is to study them in the
maximal four-dimensional SO(8) gauged supergravity [84] which is a consistent
truncation of the eleven-dimensional theory on S7. For our purposes we do not
need the full structure of the four-dimensional N = 8 theory and restrict to a further
truncation studied in [80]. The bosonic subsector of this truncation consists of a
metric, four abelian gauge fields in the Cartan of the SO(8) gauge group and three

5For simplicity we focus on the ABJM theory with Chern-Simons level k = 1.
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real neutral scalars. It can been shown that all solutions of this truncation can be
uplifted to solutions of eleven-dimensional supergravity [80].

In [40,105] the near-horizon geometry of M2-branes wrapped on a smooth Riemann
surface was analyzed using the same truncation. One can show that by inserting
our ansatz in the BPS equations they indeed reduce to the Liouville equation for
the conformal factor ϕ together with algebraic equations for the other fields [56].
In terms of ϕ, the gauge field strengths are given by6

F i
(2) = −κ

2π ai

g
V−1

g,ξ volg,ξ , (12.16)

where g is the gauge coupling constant of the supergravity theory and i = 1, 2, 3, 4.
The constants ai determine the specific choice of twist and are constraint to satisfy
the condition in (12.10). For generic choices of ai the solution preserves 2 real
supercharges, i.e. it is 1/16-BPS. When one of the ai is zero the solution is 1/8-BPS,
when two vanish 1/4-BPS, and when three vanish 1/2-BPS. As discussed around
(12.13) all ai consist of a global part ai

global and a local part ai
local accounting for the

local contributions of the punctures. For each puncture there is a choice to add the
puncture contribution to one of the four ai . We can illustrate this choice by giving
each puncture a color – red, green, blue or yellow. The puncture contributions now
becomes

a1
local =

∑

Pi=green

(1− ξi) , a2
local =

∑

Pi=red

(1− ξi) ,

a3
local =

∑

Pi=blue

(1− ξi) , a4
local =

∑

Pi=yellow

(1− ξi) .
(12.17)

This construction can be phrased more geometrically in M-theory. The twisted
ABJM theory describes the low-energy dynamics of N M2-branes wrapped on a
holomorphic two-cycle Σ in a local Calabi-Yau five-fold X , which is constructed as
four line bundles over Σ

C4 L1 ⊕L2 ⊕L3 ⊕L4

Σ
(12.18)

The degree of each line bundle Li is ai hence the coloring indicated in which
transverse direction to Σ the puncture extends. The constraint coming from
the twisting, (12.10), translates into the Calabi-Yau condition for X . The local

6Here and in the upcoming cases this expression for the field strengths is valid only when κ= ±1.

When κ= 0, the field strengths are given by F i = ai

g dx1 ∧ dx2.
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contributions ai
local account for the local information encoded in the specific

geometry of the punctures.

To fully specify the supergravity solution we need to solve also for the three scalar
fields. They are expressed in terms of the flux parameters ai as

eλ1 =
2(a2 + a3)(a1 − a4)2 − (a1 + a4)

�

(a2 − a3)2 + (a1 − a4)2
�

− 8κ(a4 − a1)T
2a4(a4 − a1 + a2 − a3)(a4 − a1 − a2 + a3)

,

eλ2 =
2(a1 + a3)(a2 − a4)2 − (a2 + a4)

�

(a1 − a3)2 + (a2 − a4)2
�

− 8κ(a4 − a2)T
2a4(a4 + a1 − a2 − a3)(a4 − a1 − a2 + a3)

,

eλ3 =
(a1 + a2)(a3 − a4)2 − (a3 + a4)

�

(a1 − a2)2 + (a3 − a4)2
�

− 8κ(a4 − a3)T
2a4(a4 + a1 − a2 − a3)(a4 − a1 + a2 − a3)

.

(12.19)
Where we introduced the function

T =
1
2

�

1− 3
∑

i

(ai)2
�1/2

− 8
p

a1a2a3a4 . (12.20)

Finally the constants appearing in the metric are given by

e2 f0 =
2e

1
2 (λ1+λ2+λ3)

(1+ eλ1 + eλ2 + eλ3)2
,

eϕ0 =
1
2

e−
1
2 (λ1+λ2+λ3)

�

a1eλ2+λ3 + a2eλ1+λ3 + a3eλ1+λ2 − a4eλ1+λ2+λ3
�

.

(12.21)

We can uplift these solutions to solutions of eleven-dimensional supergravity using
the uplift formulae in Appendix J.1. Locally around each of the punctures we can
analyze the uplifted solution. The puncture locally preserve half of the maximal
supersymmetry so we can make a local gauge and coordinate transformation such
that a1 = χg,ξ and a2 = a3 = a4 = 0 and ξ = 1

k . In that case we find that the
eleven-dimensional solution is regular up to a Zk singularity at α = 0. Near that
point the uplifted metric becomes

ds2
11 =∆

1/2
�

ds2
AdS2
+ ds2

S5 + ds2
R4/Zk

�

, (12.22)

which matches the expectation (12.15) from the general discussion above.
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12.2 D3-branes on singular curves

The gauge theory living on the worldvolume of N D3-branes is given by four-
dimensional N = 4 super Yang-Mills theory which at large N and large ’t
Hooft coupling is dual to ten-dimensional type IIB supergravity on AdS5 × S5.
Compactifying the N = 4 theory on the surface Σ is described holographically
by a ten-dimensional supergravity background which is asymptotically locally
AdS5 × S5 but for which the topology at a fixed value of the radial coordinate
is an S5 fibration over Σ [37,174]. Once again the construction of these solutions
is most efficient in a truncation of the maximal five-dimensional SO(6) gauged
supergravity [121,122,204] studied in [80]. This truncation contains the metric,
three abelian gauge fields in the Cartan of the SO(6) gauge group and two real
scalars. All solutions of this truncated theory can be uplifted to solutions of type
IIB supergravity on S5 [80].

In [37] the near-horizon geometry of N D3-branes wrapped on a smooth Riemann
surface was analyzed using this truncation. We can extend this analysis by using
the more general ansatz in (12.2). The BPS equations then reduce to the Liouville
equation (12.4) for the conformal factor ϕ. In terms of this conformal factor, the
field strengths are given by

F (i) = κ
aiπ

g
V−1

g,ξ volg,ξ , (12.23)

where g is the gauge coupling of the supergravity theory and i = 1,2,3. The
constants ai determine the choice of topological twist and have to satisfy (12.10).
For generic choices of ai the theory preserves N = (0,2) supersymmetry, when
one of the ai is zero and the other two are equal we get N = (2,2), when two
ai vanish the supersymmetry is N = (4,4) and when all ai vanish (and g = 1)
we have N = (8,8) supersymmetry. As in (12.13) all ai consist of a regular part
ai

global and a local part associated to the punctures ai
local. For each puncture we have

the choice to add the puncture contribution to one of the three ai . We represent
this choice by assigning a color to each puncture – red, green or blue. Then the
puncture contribution to the ai becomes

a1
local =

∑

Pi=green

(1− ξi) , a2
local =

∑

Pi=red

(1− ξi) , a3
local =

∑

Pi=blue

(1− ξi) ,

(12.24)
The geometric interpretation of this construction is by now familiar The twisted
N = 4 theory describes the low-energy dynamics of N D3-branes wrapped on a
holomorphic two-cycle Σ in a local Calabi-Yau four-fold X, which is composed of
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three line bundles over Σ

C3 L1 ⊕L2 ⊕L3

Σ
(12.25)

As before, the degree of each line bundle L1 is ai and the coloring describes in
which part of the line bundle the puncture. Finally the twist condition (12.10)
translates into the Calabi-Yau condition on X . The local information of the puncture
is captured by ai

local.

The solution for the two scalars, λ1 and λ2, is given by

e3λ1+λ2 =
a3(a1 + a2 − a3)

a1(−a1 + a2 + a3)
,

e2λ2 =
a2(a1 − a2 + a3)

a1(−a1 + a2 + a3)
,

(12.26)

and the constants appearing in the metric by

e3 f0 =
a1a2(a1 − a2 − a3)(a1 + a2 − a3)(a1 − a2 + a3)
((a1)2 + (a2)2 + (a3)2 − 2(a1a2 + a1a3 + a2a3))3

,

e3ϕ0 =
1
26

(a1)2(a2)2(a3)2

(a1 + a2 − a3)(a1 − a2 + a3)(−a1 + a2 + a3)
.

(12.27)

We can uplift these five-dimensional solutions to type IIB supergravity using the
uplift formulae in Appendix J.2 and analyze the solution locally around each
puncture. The punctures locally preserve N = (4,4) supersymmetry so we can
make a local change of coordinates such that a1 = χg,ξ and a2 = a3 = 0 and ξ = 1

k .
The result is a regular solution up to a Zk singularity at α= 0. Near this point the
uplifted metric becomes

ds2
10 =∆

1/2
�

ds2
AdS3
+ ds2

S3 + ds2
R4/Zk

�

(12.28)

which matches the expectation (12.15) from the general discussion above.
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12.3 D4-D8-branes on singular curves

The gauge theory living on the worldvolume of a stack of N D4-branes in a
background of N f D8-branes with an O8-plane is non-renormalizable but flows
to a five-dimensional N = 1 SCFT in the UV. At large N the SCFT is dual to
ten-dimensional massive type IIA supergravity on AdS6 × S4/Z2 [62]. A twisted
compactification of the SCFT on a curve Σ results in a ten-dimensional supergravity
background which is asymptotically locally AdS6×S4/Z2 but for which the topology
at a fixed value of the radial coordinate is an S4/Z2 fibration overΣ, see [27,79,199].
Massive type IIA supergravity admits a truncation to the Romans six-dimensional
SU(2) gauged supergravity [215]. For the solutions of interest we can restrict to a
further truncation containing only the metric, an abelian gauge field in the Cartan
of the SU(2) gauge group and one real scalar. All solutions of this truncation can
be uplifted to solutions of massive type IIA supergravity [81].7

As shown in [56] inserting the ansatz (12.2) in the BPS equations of the six-
dimensional supergravity leads to the Liouville equation for ϕ. Since the
supergravity truncation has only one gauge field there is only one possible twist
and all fields are fully fixed in terms of ϕ. The field strength F is given by

F = −
κ

2g
volg,ξ . (12.29)

The scalar λ and the metric constants are given by

e4λ =
2
3

, e f0 =
31/4

23/4
e−λ , eϕ0 =

p
3

8
p

2
. (12.30)

Here g is the gauge coupling of the six-dimensional supergravity which is related
to the mass parameter m of massive type IIA supergravity by m=

p
2

3 g.

We can uplift this solution to massive type IIA supergravity using the uplift formulae
of [81] (which are summarized in Appendix J.3) and study the resulting ten-
dimensional solution near a conical defect with opening angle ξ. Due to the fact
that the uplift only includes half of the four-sphere, S4/Z2 this case deviates slightly
from the general story. The resulting geometry takes the form

ds2
10 '∆

3/8
�

ds2
AdS4
+ ds2

6

�

, (12.31)

where the six-dimensional internal space is given by

ds2
6 =

3
8

dα2 + ξ2ρ2dθ 2 + dρ2 + (σ2
1 +σ

2
2) + (σ3 + (1− ξ)dθ )2 , (12.32)

7Solutions of the six-dimensional Romans supergravity can also be uplifted to type IIB supergravity.
We do not consider this possibility here and restrict to uplifts to type IIA.
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and the Riemann surface is parameterized by the coordinatesρ and θ . The (σ2
1+σ

2
2)

part of the metric has the correct symmetries to account for the U(1)R R-symmetry
of a three-dimensional N = 2 theory however it is non-trivially fibered over the
remainder of the internal space. Analyzing the global structure of this solution goes
beyond the scope of this work.

12.4 M5-branes on singular curves

The gauge theory living on the worldvolume of N M5-branes is the six-dimensional
N = (2, 0) theory of type AN−1. At large N this theory is dual to eleven-dimensional
supergravity on AdS7 × S4. The large N dual of a twisted compactification of this
theory on a complex curve Σ is an eleven-dimensional supergravity background
which is asymptotically locally AdS7×S4 but for which the topology at a fixed value
of the radial coordinate is an S4 fibration over Σ. Eleven-dimensional supergravity
admits a consistent truncation to the lowest Kaluza-Klein modes given by maximal
SO(5) gauged supergravity in seven dimensions [203]. Once more we can restrict
to a further truncation of the theory, containing only the metric, two abelian gauge
fields in the Cartan of the SO(5) gauge group, and two real scalars parameterizing
the squashing of the S4 [80, 168]. Moreover, all solutions we obtain in seven
dimensions can be uplifted to eleven dimensions using the results in [80,195,196].

The near-horizon geometry of the M5-branes wrapping smooth curves was
considered in [19, 174]. We summarize the derivation of the BPS equations for
this construction in Appendix H. Yet again these equations reduce to the Liouville
equation for ϕ and all other fields are determined in terms of this function only.
The field strengths are given by

F (1) =−κ
a1π

4g
V−1

g,ξ volg,ξ ,

F (2) =−κ
a2π

4g
V−1

g,ξ volg,ξ ,

(12.33)

where g is the supergravity gauge coupling and we have the usual condition (12.10).
As in the previous cases we can assign a color to each puncture – red or blue –
indicating to which of the ai it contributes,

a1
local =

∑

Pi=red

(1− ξi) , a2
local =

∑

Pi=blue

(1− ξi) . (12.34)

This construction can again be interpreted geometrically as the low energy dynamics
of N M5-branes wrapping a holomorphic two-cycle Σ in a Calabi-Yau three-fold X
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with local geometry

C2 L1 ⊕L2

Σ
(12.35)

Where L1 and L2 are two line bundles of degree ai and the twisting condition for
the ai again translates into the Calabi-Yau condition for X .

The solution for the supergravity scalars λ1 and λ2 is given by

e10λ1 =
1+ 7z + 7z2 + 33z3 +κ(1+ 4z + 19z2)

p
1+ 3z2

4z(1− z)2
,

e2(λ1−λ2) =
2z − κ

p
1+ 3z2

1+ z
.

(12.36)

where as in [18,19] we have defined

z =
a1 − a2

a1 + a2
. (12.37)

Finally the constants appearing in the metric are given by

e f0 =
1
2

e4λ1+4λ2 ,

eϕ0 =
e2λ1+2λ2

64

�

(1+ z)e2λ2 + (1− z)e2λ1
�

.

(12.38)

Once more, we can analyze the uplifted geometry locally around a puncture with
opening angle ξ = 1

k using the uplift formulae of [80], summarized in Appendix
J.4. Locally around the puncture we preserve N = 2 supersymmetry and we can
thus, without loss of generality, restrict to the case a2 = 0. The uplifted solution
gives a regular geometry up to a single Zk singularity at α= 0. The geometry near
this singularity takes the form

ds2
11 =∆

1/2
�

ds2
AdS5
+ ds2

S2 + ds2
R4/Zk

�

, (12.39)

which again is in line with the general discussion above.





Chapter 13

Wrapped M5-branes and
twists of the (2,0) theory

From now on we focus on M5-branes and will accumulate evidence for the claim
that punctures can indeed be treated in gauged supergravity as discussed in the
previous chapter. We start by reviewing the six-dimensional N = (2, 0) theory and
its partial topological twists and discuss their realization as the worldvolume theory
of M5-branes wrapped on complex curves. For concreteness here and in most of
the following we limit ourselves to N = (2,0) theories of type AN−1. Parts of our
analysis admits generalizations to DN or E6,7,8 type theories.

13.1 Partial twists of the N = (2, 0) theory

We are interested in the six-dimensional N = (2, 0) theory of type AN−1 defined on
a spacetime of the form

R1,3 ×Σ (13.1)

where Σ is a Riemann surface of genus g > 1 with prescribed singularities. To
preserve supersymmetry on R1,3 we perform a partial topological twist [47,243]
by turning on a background flux for the SO(5) R-symmetry of the (2,0) theory. A
choice of twist corresponds to a choice of abelian subgroup U(1)′ ⊂ U(1)Σ×SO(5)R
such that a number of supercharges are invariant under U(1)′. Here U(1)Σ is the
structure group of the Riemann surface.

Since only an abelian factor of the structure group is being twisted it suffices to look
at the Cartan of the R-symmetry group, i.e. U(1)+ ×U(1)− ⊂ SO(5)R. Under the
subgroup SO(1, 3)×U(1)Σ ×U(1)+ ×U(1)− ⊂ SO(1, 5)× SO(5)R, the supercharges
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of the (2, 0) theory decompose as

4× 4→
�

(2,1) 1
2
⊕ (1,2)− 1

2

�

⊗
��

1
2

,
1
2

�

⊕
�

−
1
2

,
1
2

�

⊕
�

1
2

,−
1
2

�

⊕
�

−
1
2

,−
1
2

��

, (13.2)

and satisfy a reality constraint coming from the symplectic-Majorana condition.
Thus under the U(1) subgroup generated by a Lie algebra element t′ = tΣ+a t++b t−,
where the t’s are the generators of the respective U(1)’s, the supercharges transform
with charges ± 1

2 ±
a
2 ±

b
2 . For any choice of a and b such that a± b = ±1 there are

at least four real supercharges. Choosing a = a1

a1+a2 and b = a2

a1+a2 we can identify
the generator of the holonomy group U(1)h with the linear combination

th =
a1

a1 + a2
t+ +

a2

a1 + a2
t− . (13.3)

This twist in general preserves four supercharges and therefore leads to a N = 1
supersymmetric field theory in four dimensions. The field theory has U(1)2 flavor
symmetry with generators

R0 =
1
2
(t+ + t−) , F =

1
2
(t+ − t−) . (13.4)

Where R0 is the UV R-symmetry. In the IR, the superconformal R-symmetry will in
general be given by a combination

RN=1 = R0 + εF . (13.5)

of the two U(1)s. ε is a priori unknown but will be fixed by a-maximization [145].

When either a1 or a2 vanishes, the theory preserves eight supercharges and resp.
U(1)± is enhanced to SU(2)±. In this case, twisted compactifications of the
N = (2,0) theory flow to four-dimensional N = 2 SCFTs of class S [101]. When
a1 = a2 6= 0 the diagonal subgroup U(1) ⊂ U(1)+ ×U(1)− is used to perform the
twist. This procedure preserves the diagonal subgroup SU(2)F ⊂ SU(2)+ × SU(2)−
and consequently the flavor symmetry is enhanced from U(1)F to SU(2)F . This
corresponds to the N = 1 SCFT of Maldacena and Núñez [174].

In M-theory we can construct these partially twisted theories by wrapping M5-
branes on a complex curve with prescribed singularities. We can decompose the
eleven-dimensional spacetime as

M1,10→ R1,3 ×R× CY3 . (13.6)

The M5-branes extend along R1,3 and wrap a complex curve Σ ⊂ CY3 inside the
Calabi-Yau threefold. In general this Calabi-Yau threefold is an SU(2) bundle over
the curve whose determinant line bundle equals the canonical line bundle KΣ of
the curve. When the structure group is reduced from SU(2) to U(1), in addition



CENTRAL CHARGES FROM THE ANOMALY POLYNOMIAL 167

to the U(1)R R-symmetry, the local geometry enjoys an additional U(1)F flavor
symmetry under which the supercharges are invariant. Under these circumstances
the local geometry takes the form presented in (12.35) where L1 and L2 are two
complex line bundles subject to the condition L1 ⊗L2 = KΣ. While the Chern class
fails to be well-defined for singular Calabi-Yau manifolds, the canonical bundle and
canonical class can still be defined for mild singularities.1 The two line bundles are
associated to the U(1)± above and the Calabi-Yau condition simply reproduces the
twist condition

a1 + a2 = −χ(Σ,β) = 2g− 2+
n
∑

j=1

β j , (13.7)

where n is the number of singularities, β j is a puncture dependent contribution,
χ(Σ,β) is the modified Euler characteristic of the singular curve and a1 and a2 are
the degrees of the line bundles,

deg(L1) = a1 , deg(L2) = a2 . (13.8)

For conical singularities on the Riemann surface the puncture contribution is given
exactly by β j = 1 − ξ j where ξ j is defined in Chapter 12 as the defect angle at
the conical singularity. For different choices of a1 and a2 the fields of the M5-
branes transform in different representations of the flavor symmetry U(1)F and
one generically ends up in different N = 1 IR fixed points.

13.2 Central charges from the anomaly polynomial

A powerful tool to study the six-dimensional N = (2,0) theory and its partial
topological twists is provided by anomalies. The central charges of the resulting
four-dimensional theory can be computed by integrating the M5-brane anomaly
polynomial over the curve Σ. This procedure was introduced in [9, 25, 70] and
further explored in the present context in [21–23, 25]. Here we summarize the
main ingredients of these calculations.

The a and c anomaly of a four-dimensional N = 1 SCFT are completely determined
by the linear and cubic ’t Hooft anomalies of the superconformal R-symmetry [12],

a =
3

32

�

3Tr R3
N=1 − Tr RN=1

�

, c =
1

32

�

9Tr R3
N=1 − 5Tr RN=1

�

. (13.9)

1The criterion for the singularities to be mild enough to still be able to define the canonical class is
that all singularities have to be Gorenstein. This is the case for all singularities we consider.
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These anomalies can be read off from the six-form anomaly polynomial given by

I6 =
Tr R3

N=1

6
c1(F)

3 −
Tr RN=1

24
c1(F)p1(T4) , (13.10)

where F is the U(1) bundle which couples to the R symmetry and T4 is the tangent
bundle to the four-dimensional spacetime manifold. This anomaly six-form can
in turn be obtained by integrating the anomaly eight-form of the six-dimensional
theory over a (possibly) singular curve Σ. As explained in [25], the contributions
to the anomaly six-form can be separated in two parts, one geometric part and a
second part accommodating the local contributions of the different singularities on
Σ

I6 = I6(Σ) +
∑

i

I6(Pi) . (13.11)

We discuss these two contributions separately below.

13.2.1 Bulk contribution

We start by computing the geometric part of the anomaly polynomial. In our
treatment we will apply a slightly different split than the one in [25] by defining
the geometric part to contain information only about the smooth Riemann surfaces.
All information about the punctures is packaged in the local contributions. The
anomaly eight-form for a single M5-brane is given by [127,144,249]

I8[1] =
1

48

�

p2 (NW )− p2 (TW ) +
1
4
(p1 (TW )− p1 (NW ))2

�

, (13.12)

where by NW and TW we denote the normal and tangent bundle to the brane
world volume and p1 and p2 are the first and second Pontryagin classes. For a
general N = (2, 0) theory of type g ∈ ADE, the anomaly polynomial takes the form

I8[g] = rG I8[1] +
dGhG

24
p2 (NW ) . (13.13)

Here rG , dG , and hG stand for the rank, dimension and Coxeter number of the
group G, see Table 13.1. The normal bundle can be thought of as the SO(5) bundle
coupled to the R-symmetry of the six-dimensional theory. The first and second
Pontryagin classes of a vector bundle E can be expressed in terms of the Chern
roots ei as

p1(E) =
∑

i

e2
i , p2(E) =

∑

i< j

e2
i e2

j . (13.14)
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g rg dg hg

AN−1 N − 1 N2 − 1 N
DN N N(2N − 1) 2N − 2
E6 6 78 12
E7 7 133 18
E8 8 248 30

Table 13.1: Rank, dimension and Coxeter number for the simply laced Lie algebras.

To compute the anomaly six-form for a U(1) R-symmetry of the form

RN=1 = R0 + εF , (13.15)

we need to couple the symmetry to a non-trivial U(1) bundle F over the flat four-
dimensional part of the brane worldvolume. This induces a shift in the Chern
classes

c1(L1)→ c1(L1) + (1+ ε)c1(F) , c1(L2)→ c1(L2) + (1− ε)c1(F) . (13.16)

There are an infinite number of such decomposable bundles over the smooth
Riemann surface, labeled by the Chern numbers of the line bundles

c1(L1) = p , c1(L2) = q . (13.17)

The Calabi-Yau condition in this case reduces to p+q = 2g−2. We can now integrate
the eight-form (13.13) over the smooth curve Σ to obtain

I6(Σ) =

∫

Σ

I8[g] = −
χ(Σ)

12

�

(rG + dGhG)(1+ zε3)− dGhG(ε
2 + zε)

�

c1(F)3

+
χ(Σ)

48
rG(1+ zε)c1(F)p1(T4) , (13.18)

where χ(Σ) is the Euler characteristic of the curve Σ and we have defined

z=
p− q
p+ q

. (13.19)

13.2.2 Punctured intermezzo

To compute the local contributions from each puncture to the anomaly polynomial
we need some more information about the different types of punctures that can
appear in our setup. We only consider punctures that locally preserve N = 2
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supersymmetry. Each such puncture is characterized by an embedding Λ : su(2)→ g

and a sign σi = ±1. The flavor symmetry of the puncture is determined as the
commutant h ⊂ g of the image of Λ and the sign determines whether the puncture
preserves the U(1)+ × SU(2)− or SU(2)+ ×U(1)− symmetry. This Z2 valued label
determines the directions normal to the M5-branes along which the puncture
extends. We represent this label by coloring each puncture as in Figure 12.1. For
g = AN−1, the choice of embedding Λ is in one-to-one correspondence with a
partition of N and thus with a Young tableau Y . A Young tableau with nh columns
of length h corresponds to a puncture P with global flavor symmetry group

GP = S

�

∏

h

U(nh)

�

. (13.20)

A maximal puncture is represented by a Young tableau with a single row of length
N , see Figure 13.1, and has the maximal amount, i.e. SU(N), of global symmetry
associated to it, a minimal (or simple) puncture is represented by a Young tableau
with one row of length 2 and N − 2 rows of length 1 and preserves the minimum
amount of global symmetry, namely U(1). Equivalently one can label every puncture
with a set of integers, pk, characterizing the pole structure of the degree k Seiberg-
Witten differentials at the puncture.2 These integers can be obtained from the
Young tableaux as follows: Start with the first row and label the first box with
p1 = 0, then increase the label by one as you move to the right along the first row
of the Young tableau. When this row is finished, move to the next row and label the
first box of the row with the same label as the last box in the previous row. Repeat
this labeling process in every row until all N boxes have a label pk. This labeling
procedure is illustrated in Figure 13.1 for some simple examples with N = 5. To

0 1
1
1
1

0 1 2 3 4 0 1 2
2 3

Figure 13.1: Labeling Young tableaux by their pole structure pk. The first Young
tableau corresponds to the minimal puncture with p = (0, 1, 1, 1, 1). The second one
is the maximal puncture with p = (0, 1, 2, 3, 4) and the third diagram corresponds
to an intermediate puncture with p = (0, 1,2, 2,3).

each puncture one can associate an effective number of vector multiplets, nv(Pi),

2Often it is useful to rewrite the Seiberg-Witten curve C in terms of the Seiberg-Witten differential λ
as

C : λN +φ2(z)λ
N−2 + · · ·φN (z) = 0 , (13.21)

where N is the rank of the gauge group. The type of puncture can then be specified by the pole structure
of the degree k differentials φk(z).
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and hypermultiplets, nh(Pi), given by [68,101]

nv(Pi) =
N
∑

k=2

(2k− 1)pk , nh(Pi) = nv(Pi) +
1
2

�

−(1+ rG) +
∑

r

l2
r

�

, (13.22)

where lr is the length of the rth row of the Young tableau. The numbers nv and
nh represent the effective degrees of freedom of the specific puncture3 and indeed
when considering free theories these numbers agree with the actual number of
vector and hypermultiplets. These constants can now be used to determine the
local contribution of each puncture to the anomaly polynomial.

13.2.3 Contribution from a puncture

After this short intermezzo, we are ready to compute the local contribution of each
puncture Pi to the anomaly polynomial. A puncture (locally) preserving flavor
symmetry G with Z2-label σi contributes the following [25,232]:

I6(Pi) =
1
6

�

(1+σiε
3)nv(Pi)−

1
4
(1+σiε)

3nv(Pi)
�

c1(F)3

+
1

24
(1+σiε) (nh(Pi)− nv(Pi)) c1(F)p1(T4)

−
kG

3
(1+σiε) c1(F)c2(FG) . (13.23)

For a puncture associated to a Young tableau Y , the central charge of the flavor
symmetry factor SU(nh) is given by

kSU(nh) = 2
∑

i≤h

si , (13.24)

where si is the length of the ith row of Y T , the transpose of the original Young
tableau.

Summing over all punctures in the theory one can easily read off the ’t Hooft
anomalies of the four-dimensional R-symmetry and compute the trial central charges
as a function of ε. The correct value of the central charge is then obtained by
maximizing a with respect to ε. When we set all σ = 1 and q = 0 (or σ = −1 and
p = 0) one finds an N = 2 theory and one can check that the anomalies reduces to

3The definition we use differs slightly from the ones in [68]. Our definition only accounts for the
local degrees of freedom near the punctures, all global information is absorbed in I6(C).
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the known results for N = 2 class S theories [102]. In the limit with no punctures
the anomalies reduce to the results obtained in [19].



Chapter 14

Punctures in gauged
supergravity

In this chapter we go back to the solution described in Section 12.4 and carefully
study the geometry around a puncture, first in eleven and then in seven dimensions.
Once we have understood how to describe punctures, we compute the holographic
central charges of these AdS5 solutions for a generic punctured Riemann surface
and find an exact match at leading order in N with the results in Chapter 13.
Furthermore, we compute the energy of an M2-brane wrapping the Riemann surface,
which corresponds holographically to the conformal dimension of a protected
baryonic operator, and discuss the exactly marginal deformations of our solutions.

14.1 Seven-dimensional supergravity solution

The seven-dimensional solution corresponding to M5-branes wrapped around a
curve Σ takes the form (12.2)

ds2 =
4e2 f0

g2r2
(−dt2 + dz2

1 + dz2
2 + dz2

3 + dr2) +
4eϕ0+ϕ(x1,x2)

g2
(dx2

1 + dx2
2) ,

A(i) =A(i)x1
(x1, x2)dx1 + A(i)x2

(x1, x2)dx2 .

(14.1)

where g is the coupling constant of the gauged supergravity, i = 1, 2, I = 1, 2 and
the scalars λI take constant values in the IR. The Riemann surface has Gaussian
curvature κ = ±1,0. In this section we consider only κ = ±1. The analysis for
κ = 0, i.e. the torus without punctures or the flat punctured sphere1, deviates
slightly from the discussion below. For the torus without punctures our solution

1A sphere with n punctures with puncture contributions
∑n

i=1(1− ξi) = 2 summing exactly to 2
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reduces to the one found in [19]. For the flat sphere the discussion is very similar
but since the Liouville equation (12.4) reduces to the Laplace equation one has to
study the solution of this equation with singular sources. We will not investigate
this situation in detail here.

As discussed above the BPS equations governing this setup reduce to the Liouville
equation for the conformal factor ϕ, (12.4), together with algebraic equations
for the other fields. When the Riemann surface contains punctures or conical
singularities one has to add local source terms to the right hand side of (12.4) as
in (12.6). Given a solution to the Liouville equation, all other fields are fixed in
terms of ϕ. The field strengths are given by (12.33), the scalars λ1 and λ2 are
as in (12.36), and the constants appearing in the metric are given by (12.38). As
discussed in Chapter 12, the parameters a1 and a2 consist of a global part and a
local part accounting for the local contribution of the punctures, see (12.13). We
can identify the global geometric contributions a1

global and a2
global with the Chern

numbers of the line bundles in the smooth case and thus a1
global + a2

global = 2g− 2.
The parameter z defined in Chapter 13 is related to the parameter z as

z =
(2g − 2)z+ (a1

local)− (a
2
local)

a1 + a2
. (14.2)

We now explicitly uplift such a solution around a puncture and provide an
interpretation of the local contribution of each puncture.

14.1.1 N = 2 and Gaiotto-Maldacena

Locally, around a single puncture we can without loss of generality restrict ourselves
to the situation z = 1, i.e. by performing a gauge transformation we can always
locally put a2 = 0. In this case supersymmetry is enhanced to N = 2 and the
solution simplifies considerably. The various fields are given by

λ2 = −
2
3
λ1 =

1
5

log2 , F (1)x1 x2
=

1
8g

eϕ , F (2)x1 x2
= 0 . (14.3)

where ϕ still solves the Liouville equation (12.4). We can uplift this solution using
the uplift formulae summarized in Appendix J.4 to find the metric

ds2
11 =

1
2g2
∆̃1/3ds2

AdS5
+
∆̃−2/3

4g2

�

∆̃ds2
Σ + ∆̃dα2 + cos2α(dβ2 + sin2 βdφ2

2)

+ 2 sin2α(dφ1 + 2mA1)2
�

, (14.4)
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where ∆̃ = 1+cos2α and ds2
Σ = eϕ(dx2

1+dx2
2) is the metric on the Riemann surface

with unit Gaussian curvature. When we make the following coordinate change

cos2α→
y2

N2
, (14.5)

we can fit this solution in the analysis of Lin-Lunin-Maldacena [167] to find the
following eleven-dimensional supergravity background

ds2
11 =

�

π`3
p

2

�2/3

e2λ̃
�

4ds2
AdS5
+ y2e−6λ̃dΩ̃2

2 + ds2
4

�

ds2
4 =

4
1− y∂y D

(dχ + vidx i)2 +
−∂y D

y

�

dy2 + eD(dx2
1 + dx2

2)
�

vi = −
1
2
εi j∂ j D v = vidx i

e−6λ̃ = −
∂y D

y(1− y∂y D)

G4 =
π`3

p

2
F2 ∧ dΩ2

F2 =2
�

(dt + v)d(y3e−6λ̃) + y(1− y2e−6λ̃)dv −
1
2
∂yeDdx1 ∧ dx2

�

(14.6)

where the function D satisfies the SU(∞) Toda equation
�

∂ 2
x1
+ ∂ 2

x2

�

D+ ∂ 2
y eD = 0 , (14.7)

and we have used the fact that the gauge coupling constant is related to the radius
of the AdS7 appearing in the UV, RAdS7

= 2
g = (πN)1/3`p. For our N = 2 solution

(14.3), the function D takes the form

eD =
eϕ

2

�

N2 − y2
�

. (14.8)

When the Riemann surface is smooth the conformal factor ϕ reduces to the constant
curvature metric (12.5) and the solution (14.4) reduces to the N = 2 solution of
Maldacena-Núñez [174].
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14.2 Punctures in eleven dimensions

Since locally all punctures we consider preserve N = 2 supersymmetry it suffices
to discuss them in the N = 2 framework of [102]. After a discussion in eleven
dimensions we will go back to seven dimensions and learn how to characterize the
punctures there. We will then extend the analysis to include N = 1 supersymmetric
solutions in seven dimensions.

Solving the Toda equation in a background with a general Riemann surface with
localized punctures is hard to do in a closed form. However, locally around a
puncture one can analyze the Toda equation and describe the boundary conditions
for all types of regular punctures. Around an N = 2 punctures, the function D
satisfies the axially symmetric SU(∞) Toda equation. By performing a Bäcklund
transformation [102]

r2eD = ρ2 , y = ρ∂ρV ≡ V̇ , log r = ∂ηV ≡ V ′ , (14.9)

we can transform the problem of solving the Toda equation to a three-dimensional
axially symmetric electrostatics problem [237]. After this transformation the Toda
equation becomes the cylindrically symmetric Laplace equation in three dimensions,

V̈ +ρ2V ′′ = 0 . (14.10)

It was understood in [102] that solutions to this equation correspond to regular
geometries, up to possibly Ak−1 singularities, if and only if the line charge density V̇
is given by a piece-wise linear function with decreasing integer slopes where slope
changes only occur at integer values of η (or y). At points where the slope decreases
by k units one finds an Ak−1 singularity. Near a segment with constant slope V̇ ′ the
potential behaves as V ∼ V̇ (η) logρ. This implies that log r = V ′ = V̇ ′ logρ and

D = 2 (logρ − log r) = −2
�

1−
1

V̇ ′

�

log r . (14.11)

This expression is valid in the range of y where the slope is constant. The general
boundary conditions for the Toda equation at a specific puncture thus become

�D = −4π`(y)δ(2)(r) (14.12)

where `(y) is a piece-wise constant function which only changes value at integer
values of y . These constants decrease and take value

�

1− 1
ni

�

where ni ∈ N is the
slope of the ith segment. This is illustrated in Figure 14.1.
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η

y(η)

1 2 3 4

y1

y2

N

y

`(y)

1 2 3 4 5 N

1

1− 1
n1

1− 1
n2

1− 1
n3

Figure 14.1: piece-wise linear function y(η) and the accompanying step function
`(y).

If we have various segments with change in slope ki then the total global symmetry
associated to this puncture is

G =

∏

i U(ki)
U(1)

, (14.13)

The overall U(1) is related to the axial symmetry around the puncture which is not
a real global symmetry of the system and hence is modded out.

Let us now relate these geometries to the punctures introduced in Chapter 13. The
geometry around a puncture is fully determined by the piece-wise linear function
y(η). To every such function we can associate a set of integers ni representing the
slopes of the segments extending from η = i − 1 to η = i. To the puncture with
slopes ni , we associate a Young tableau such that ni is the length of the ith row. We
illustrate this for N = 4 in Figure 14.2. This provides the connection between the
supergravity punctures and the correct Young tableau; indeed we see that the global
symmetries preserved at each puncture matches with the discussion in Chapter 13.
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This analysis shows that every puncture is determined by a y dependent function
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Figure 14.2: The Young diagrams and accompanying piece-wise linear functions
for N = 4. The first diagram from the left represents a maximal puncture, the third
is a Z2 singularity, the fourth is a minimal puncture, while the rightmost diagram
corresponds to a regular point.

η(y) determining the structure of the puncture. We will not be able to capture all
information contained in this function in seven dimensions but we will see that we
nevertheless can extract a lot of information about the puncture solely from the
seven-dimensional supergravity.

14.3 Punctures in seven dimensions

When we insert (14.8) in the SU(∞) Toda equation (14.7) we obtain the Liouville
equation for ϕ (12.4). Similar to the Toda equation, finding global solutions to the
Liouville equation in closed form on a general Riemann surface with punctures is
hard. Nevertheless, we can learn a lot about the solutions of interest by analyzing
them locally near a puncture. At a fixed value of y , the boundary condition of the
Toda equation (14.12) reduce to the following boundary condition for the Liouville
equation

ϕ ∼ −2(1− 1
ni
) log r , as r → 0 . (14.14)

This is exactly the boundary condition describing a conical defect on the Riemann
surface where 0< 1

ni
< 1 parameterizes the opening angle at the conical singularity.

We thus conclude that the different punctures in eleven dimensions correspond to
conical defects on the Riemann surface of our seven-dimensional solutions, where
the opening angle changes as a function of y. This change of opening angle goes
beyond the seven-dimensional supergravity approximation and can only be treated
approximately in the seven-dimensional framework. However, for some solutions
– such as Zk orbifold singularities – there is only one value of the slope in eleven
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dimensions and exact results can be obtained purely from seven dimensions. This
kind of punctures correspond to rectangular Young tableaux and for them we can
identify

ξ=
1
n

. (14.15)

For more general punctures, where the piece-wise linear function consists of more
then one linear piece, we have to content ourselves with an approximate description
of the eleven-dimensional puncture by specifying a single ξ as the inverse of the
average slope of the various segments.2

Let us now go back to the supergravity solution in Section 14.1 and translate our
results to seven dimensions. In an N = 2 theory the field strengths F (1),(2) are
completely fixed by the twist in terms of ϕ and the contribution of the punctures
manifests itself only through the volume, Vg,ξi

, of the Riemann surface which
explicitly depends on the opening angles of the conical defects,

Vg,ξ =
2π
κ

 

2− 2g−
∑

Pi

(1− ξi)

!

. (14.16)

In an N = 1 theory the punctures still contribute to the volume but also the field
strengths will be modified. More specifically, every puncture in an N = 1 theory is
labeled by a sign σi indicating in which transverse direction the puncture extends.
This label indicates whether the puncture Pi contributes to a1

local or a2
local and results

in
a1

local =
∑

{Pi |σi=1}

(1− ξi) ,

a2
local =

∑

{Pi |σi=−1}

(1− ξi) ,
(14.17)

where ξi is the inverse of the average slope of the ith puncture and the sums above
run exclusively over punctures with σi = ±1 respectively.

14.3.1 Central charges and M2 brane energy

We can now proceed and compute the central charges a and c for our supergravity
solutions using standard holographic results [129]. The holographic conformal
anomalies at leading order in N are given by

a = c =
πR3

AdS5

8G(5)N

=
�

2
g

�2 2π3R3
AdS5

R4
S4Vg,ξe

ϕ0

3G(11)
N

, (14.18)

2For example in Figure 14.2 the average slopes would be resp. 4, 2, 2, 4/3, 1.
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where `p is the Planck length in eleven dimensions, G(5)N and G(11)
N = 16π7`9

p are the

five- and eleven-dimensional Newton constants, and RAdS5
= 2e f0

g = (πN)1/3`pe f0

and RS4 = 4
g = 2(πN)1/3`p are the radii of AdS5 and the four-sphere respectively.

Inserting this in (14.18) we obtain

a = c =
2Vg,ξ

3π
N3e3 f0+ϕ0 . (14.19)

Using the expressions (12.38) for f0 and ϕ0, we find

a = c = −
κVg,ξ

2π
N3
κ(1− 9z2) +

�

1+ 3z2
�3/2

96z2
. (14.20)

This matches exactly the large N result obtained from the anomaly polynomial
in Chapter 13. Furthermore when we remove all the punctures we recover the
result for the central charges of M5-branes wrapped on a smooth Riemann surface
in [19]. If all the punctures are minimal, the leading order result for the large N
central charges is not affected. This is indeed as expected since minimal punctures
correspond to the addition of hypermultiplets to the dual quiver gauge theory. These
indeed only contribute at order N2 and will thus not be visible at leading order in
N .

For g = 0 we find that the central charges are negative for
∑

i(1−ξi)< 2 indicating
the presence of enhanced global symmetries rendering our a-maximization
calculation invalid. Indeed it is a well-known fact that one can use this leftover
global symmetry to fix the positions of three labeled points on the sphere. The
minimal case with no extra symmetries is the sphere with three maximal punctures
which corresponds to a TN building block and indeed the large N anomalies (14.20)
correctly describe those of a single TN .

Similarly for the torus without punctures the anomaly vanishes implying there
is a leftover symmetry which can be used to fix the position of a single labeled
point. Indeed for a torus with one or more punctures there is no extra symmetry
left and we find non-vanishing positive anomalies. For a torus with one or more
punctures which contribute at order N3 we again find agreement with the anomaly
polynomial. When the torus has only minimal punctures, we correctly reproduce
the expected N2 scaling of the anomalies. However, the anomaly thus obtained
does not exactly match the one obtained from the anomaly polynomial due to the
presence of other ’subleading’ terms which also scale as N2 which are not included
in our analysis. We will discuss this setup in more detail in Section 15.3.

Our supergravity backgrounds describe the so-called wrapped brane geometries,
see [104] for a review, where the curve Σ is a supersymmetric cycle to which one
can associate a canonical BPS operator corresponding to an M2-brane wrapping this
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cycle [102]. The dimension of this operator is given by the energy of the wrapped
M2-brane, which we can compute at leading order in N using the supergravity dual.
The result is

∆(OM2) =
2Vg,ξi

π
Ne f0+ϕ0−2(λ1+λ2) = −κ

Vg,ξi

4π
N
�

1−
κ

2

p

1+ 3z2
�

, (14.21)

which at large N and for specific values of the parameters indeed matches with
the known results in [19,41,102]. In Section 15.4 we show how to reproduce this
conformal dimension directly using the holographically dual SCFT.

14.3.2 Marginal deformations

From our supergravity solutions we can also compute the exactly marginal
deformations of the dual SCFT. Doing this calculation rigorously requires computing
the spectrum of KK excitations around the eleven-dimensional solutions presented
above and identify the scalar modes with vanishing mass. This is a hard task which
we do not know how to perform in general. Nevertheless, there is a natural set
of massless modes in the solutions which we believe to exhaust the list and thus
span the superconformal manifold in the dual SCFT. To illustrate this we focus on
the case of Riemann surfaces with n indistinguishable minimal punctures. One in
principle can straightforwardly extend this computation to compute the dimension
of the moduli space of a Riemann surface with different kinds of punctures but the
computations quickly become very tedious.

The first set of marginal deformations is given by the moduli space of the algebraic
curve Σ denoted by Mg,n. For g> 1 these enter the construction in the action of
the Fuchsian group Γ on the hyperbolic plane H spanned by (x1, x2). For g > 1
the dimension of this moduli space is dimC Mg,n = 3g − 3 + n.3 These moduli
correspond to the complex structure deformations of the curve and can be identified
with the complex gauge couplings in the dual field theory. For N = 2 solutions
these are the only moduli present compatible with supersymmetry.

For N = 1 solutions a second set of exactly marginal deformations arises from the
freedom to shift the gauge fields by a flat connection on Σ,

A(1)→ A(1) + Aflat , A(2)→ A(2) − Aflat . (14.22)

Such a shift leaves the BPS equations invariant. For generic g and n there are 2g+n
flat U(1) connections. Additionally every puncture contributes an additional real
parameter corresponding to the CP1 worth of direction inside the two-dimensional
fiber over Σ, see [41] for a discussion on this extra modulus. Therefore the complex

3For the two-sphere dimC M0,0 = dimC M0,1 = dimC M0,2 = 0. For n≥ 3 punctures M0,n = n− 3.
A torus with n punctures has dimC M1,n = n+ 1.
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dimension of the supersymmetric conformal manifold of the dual SCFT is

dimC MC = 4g− 3+ 2n . (14.23)

In the special case when z = 0 there is an overall SU(2)F flavor symmetry leading
to additional marginal deformations related to SU(2)F Wilson lines on Σ, see [41].
There are 6g−6+3n such flat connections and thus the dimension of the conformal
manifold becomes dimC MC = 6g− 6+ 3n.



Chapter 15

Dual quiver gauge theories

In this chapter we describe the four-dimensional quiver gauge theories dual to the
N = 1 AdS5 solutions studied in the previous chapters. As in the gravitational case
we restrict ourselves to SU(N) quiver gauge theories originating from the AN−1 type
N = (2, 0) theory. It is possible to study other gauge groups and quivers originating
from DN or even En type theories along similar lines by using the results in [68,69,
71–73, 101, 231]. We also restrict our analysis to minimal, or simple, punctures
and compute the ’t Hooft anomalies, the dimensions of protected operators and
the dimension of the conformal manifold for these quiver gauge theories. Minimal
punctures correspond in the quiver gauge theory to hypermultiplets connecting
adjacent gauge groups. This is the simplest case to analyze but one can also study
more general punctures by adding more intricate quiver tails [2, 68, 101]. We
emphasize that many of the results in this chapter have appeared in the literature
before or can be derived in a straightforward manner following the discussion
in [2, 18–20, 24, 29, 41, 99].1 Nevertheless, we believe that the summary below
serves a useful purpose to illustrate the salient features of our construction.

15.1 Setup and symmetries

The quiver gauge theories we consider are constructed from TN building blocks
connected by strands of linear quivers build from vector and hyper multiplets. This
type of quiver is sketched in Figure 15.1 which should be interpreted as follows:

• Nodes without ears denote N = 1 vector multiplets with SU(N) gauge groups.

• Nodes with ears denote N = 2 vector multiplets with SU(N) gauge groups.
The ear represents the adjoint chiral.

1To the best of our knowledge, the relation between the Laba SCFTs and theories of class S described
in Section 15.3 has not appeared explicitly in the literature before.

183
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• Double lines between two vector multiplets denote hypermultiplets in the
bifundamental representation of the two adjacent gauge groups.

• TN building blocks are denoted by triangles which are connected to three
vector multiplets.

• The coloring of the matter field is associated to a Z2 valued label σi . Matter
field with σi = 1 are colored red and those with σ = −1 are blue.

Figure 15.1: An example of a genus g= 3 quiver.

A general quiver of genus g contains 2g − 2 TN building blocks combined with
3g− 3 strands built out of vector and hypermultiplets. Every such linear quiver
is built out of ni hypermultiplets and ni + 1 vector multiplets. Consequently, the
total number of hypermultiplets is n =

∑

i ni and the number of vector multiplets is
v = 3g− 3+ n. Let us denote the number of N = 2 vectors by v2, analogously v1 is
the number of N = 1 vectors.

The TN theory was proposed in [101] as the low-energy theory coming from N
M5-branes wrapping a trice punctured sphere, see [232] for a review. It is an N = 2
building block with SU(N)3 × SU(2)R ×U(1)r global symmetry. Except for the case
where N = 2 there is no known weakly coupled Lagrangian description for these
theories.2 The spectrum of the TN theory includes Higgs branch operators µa with
a = 1,2,3 called moment maps; one triplet for each SU(N) flavor group. Each
such operator has dimension two and transforms in the adjoint of one of the SU(N)
factors. Additionally there are also Coulomb branch operators u(i)k with k = 3, . . . , N
and i = 1, . . . , k − 2 associated to each TN with dimension k. Finally there are
dimension N − 1 operators Q and eQ transforming, respectively, in the (N,N,N) and
(N,N,N) representation of SU(N)3. To each hypermultiplet we can also associate a

2In this case the T2 theory reduces to eight free chiral multiplets transforming in the trifundamental
of the SU(2)3 global symmetry.
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triplet of moment map operators µ transforming in the adjoint of the SU(N) flavor
symmetry.

Since in general we consider N = 1 quiver gauge theories, it is convenient to think of
N = 2 vector multiplets, hypermultiplets and TN theories as N = 1 building blocks.
An N = 2 vector multiplet can be thought of as a N = 1 vector with an additional
adjoint chiral. A TN on the other hand can be though of as a N = 1 building block
with an additional U(1) flavor symmetry. Finally every hypermultiplet consist of
two chiral multiplets in conjugate representations Hi = {qi , q̃i}. In terms of these
constituent fields the moment map triplet of the hypermultiplet takes the form
µ+i = qi q̃i , µ

0
i = |qi |2−|q̃i |2 and µ−i = (µ

+
i )
∗. When expressing the theory as a N = 1

theory the generators of the N = 2 R-symmetry decompose into a generator for
the N = 1 superconformal R-symmetry and a generator for an extra U(1) flavor
symmetry,3

RN=1 =
1
3

RN=2 +
4
3

I3 , J = RN=2 − 2I3 . (15.1)

where I3 is the Cartan of SU(2)R. When the supersymmetry is broken to N = 1, RN=1

will no longer be in the same multiplet as the stress tensor and the superconformal
R-symmetry at the IR fixed point may potentially mix with U(1) flavor symmetries.

Now that we have introduced all the building blocks we can use them to construct
generalized quiver gauge theories by gauging the various SU(N) global symmetries.
Every N = 2 gauging introduces a superpotential term of the form

Wgauging
N=2 = Trφi(µi +µi+1) , (15.2)

where the µi,i+1 are the moment maps belonging to the adjacent matter building
blocks. This superpotential breaks all the baryonic symmetries which are otherwise
present. A general quiver (like the one in Figure 15.1) has N = 1 supersymmetry.
However, in addition to N = 1 supersymmetry such quivers possess large amounts
of global symmetries. We always have an overall U(1)R R-symmetry and additionally
for each hyper, TN and adjoint chiral there is an associated U(1). We denote the
U(1) symmetries acting on the hypers and TN blocks by Ji and the ones acting on
the adjoint chiral by Fi . The full global symmetry is thus U(1)v2+2g−2+n × U(1)R.
However some of these symmetries are anomalous. Each gauge group, except
for one global combination, provides one anomaly constraint so we end up with
2g− 2+ v2 anomaly-free U(1) global symmetries.4

We can consider such gauge theories without extra superpotential terms. However,
we expect these quivers to break up in smaller quivers in the IR [20]. Indeed, the

3See Appendix K for more detail on our SCFT conventions.
4This result is only valid for quivers with g> 1, for g= 1 we find v2 + 1 anomaly-free U(1)s.
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one-loop beta-functions for the gauge group couplings are

b0(V
N=2
i ) = 0 , b0(V

N=1
i ) = −N . (15.3)

The gauge couplings for the N = 2 gauge groups are marginal and without
superpotential, they should be marginally irrelevant [114]. As a result, the N = 2
gauge groups are non-dynamical in the IR and the quiver will break up at these
sites.

We are more interested in finding situations where the IR dynamics of the gauge
theory is non-trivial. We expect that for an appropriate choice of the superpotential
the IR physics is governed by an N = 1 SCFT. By adding specific superpotential
terms we can prevent the quivers from breaking apart in the IR. At N = 1 sites we
turn on

WN=1
i = αiTrµi−1µi , (15.4)

where αi are arbitrary complex numbers. At N = 2 sites on the other hand we turn
on the superpotential

WN=2
i = β L

i Trφiµi−1 + β
R
i Trφiµi , (15.5)

where β L,R
i are complex numbers. The superpotentials (15.4) and (15.5) always

preserve the U(1)R R-symmetry R0 generated by

R0 = RN=1 +
1
6

∑

i

Ji . (15.6)

To see if these superpotentials leave another anomaly-free U(1) unbroken we first
need to understand how the chiral anomaly is canceled locally at every site. At
the ith node of the quiver the combination Ji−1 − Ji is always anomaly-free. When
this site also contains an adjoint chiral there is a second anomaly-free U(1) with
generator Ji−1 + Ji − 2Fi . Note that Tr(Ji−1 − Ji) = 0 so this global symmetry is
baryonic and will by itself be broken at N = 2 sites by the superpotential (15.5).
However, by combining it with the U(1)’s coming from the adjoint chirals we are
able to construct a non-baryonic anomaly-free U(1) global symmetry.

In order to construct such a global U(1) we can assign to all matter multiplets,
hypermultiplets and TN blocks, a sign σi as indicated by the coloring in Figure 15.1.
When crossing an N = 1 vector the sign of two neighboring matter fields flips.
When crossing an N = 2 vector multiplet the sign remains unchanged. Not every
quiver configuration allows for such an assignment of Z2 label. If a quiver does not
allow the assignment we expect that it will flow to the universal N = 1 IR fixed
point discussed in [233]. If a quiver does allow for a consistent sign assignment
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complying to these rules we have an additional U(1) flavor symmetry with generator

F =
1
2

n
∑

i=1

(σiJi − (σi−1 +σi)Fi) . (15.7)

This is the only anomaly-free flavor U(1) preserved by the superpotential terms
(15.4) and (15.5). This setup and the rules for finding the global flavor U(1) follow
the construction in [19,20,29].

One might additionally want to add the superpotential term

W♠
i = γi(µi)

2 , (15.8)

where the γi are arbitrary complex numbers. However, when one of the γi 6= 0 the
superpotential (15.8) breaks the extra flavor symmetry F . As we will discuss in the
next section, when this happens the theories always flow to the same universal IR
SCFT as in [233]. In the following we tune all γi to zero and consider quivers gauge
theories with the extra U(1) global symmetry in (15.7). These theories allow for
interesting new IR SCFTs since the anomaly-free flavor symmetry can mix with the
R-symmetry in (15.6). To determine the correct N = 1 superconformal R-symmetry
one then has to take the linear combination

Rε = R0 + εF , (15.9)

and fix the real number ε using a-maximization [145].

15.2 IR dynamics

Now that we have set the stage let us study the IR dynamics of the N = 1 quiver
gauge theories introduced above. the upshot is that whenever the quiver allows
for a consistent assignment of the labels σi , we find interacting SCFTs dual to the
gravity solutions described in Chapter 14. Since the quivers with g = 1 do not
contain any TN building blocks we first focus on the generic situation with g > 1
and discuss g = 1 in Section 15.3. For a quiver of genus g > 1 we have 2g − 2
TN building blocks and 3g− 3 strands of linear quiver. We have p TN blocks with
positive sign and q with negative sign. Similarly, we have x hypers with positive
sign and y with negative sign. If the theory flows to an IR SCFT we can determine
the IR superconformal R-symmetry using a-maximization [145]. We can compute
the a and c anomaly and determine the dimensions of the chiral operators. The
central charges a and c are given by the ’t Hooft anomalies associated with the
superconformal R-symmetry RN=1 as in (13.9).
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Our quivers admit a one-parameter family of R-symmetries which are linear
combinations of the UV R-symmetry R0 and the global flavor symmetry F as
in (15.9). For each Rε we can compute the trial central charge a(ε). The
superconformal R-symmetry maximizes this function a(ε) and in this way uniquely
determines the value of ε. The charges of the superfields under Rε are

Rε(qi) = Rε(q̃i) =
1
2
(1+ εσi) , and Rε(φi) = 1−

1
2
ε(σi−1 +σi) . (15.10)

Consequently, the ’t Hooft anomalies for the ith hypermultiplet are

TrRε(Hi) = N2(εσi − 1) , TrRε(Hi)
3 =

1
4

N2(εσi − 1)3 , (15.11)

while for the ith vector multiplet we find

TrRε(Vi) =(N
2 − 1)

�

1−
1
2
ε(σi−1 +σi)

�

,

TrRε(Vi)
3 =(N2 − 1)

�

1−
1
8
ε3(σi−1 +σi)

3
�

.

(15.12)

For a single TN we have

TrRε(TNi) =
1−σiε

2
TrR3

N=2 ,

TrRε(TNi)
3 =
(1−σiε)3

8
TrR3

N=2 +
3
2
(1−σiε)(1+σiε)

2Tr RN=2 I2
3 ,

(15.13)

where

TrRN=2 I2
3 =

1
12
(6− N − 9N2 + 4N3) ,

TrR3
N=2 =2+ N − 3N2 .

(15.14)

In the equations above the trace Tr denotes the sum over all chiral fermions in the
ith hyper, vector or TN , together with the trace over the gauge indices.

We can now write the anomaly of one strand by summing over all fields in the linear
piece to obtain5

Tr Rε(H) =N2li(ηiε− 1) ,

Tr Rε(H)
3 =

N2li

4

�

ηiε
�

3+ ε2
�

−
�

1+ 3ε2
��

,
(15.15)

5Here we sum over a linear quiver with li + 1 vectors, li hypers and 2 TN blocks at the endpoints.
The TN contribution is considered separately, only the sign coming from the TN is used.
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for the hypermultiplets and

Tr R(ε)(V ) =
�

N2 − 1
�

[li + 1− ε(liηi +κi)] ,

Tr R(ε)(V )3 =
�

N2 − 1
� �

li + 1− ε3(liηi +κi)
�

,
(15.16)

for the vector multiplets. Here the trace Tr denotes the sum over all chiral fermions
of the ith linear strand of the quiver together with the trace over gauge indices. In
the expressions above we have introduced the new parameters

ηi =
1
li

li
∑

i=1

σi =
x i − yi

li
, and κi =

σa +σb

2
, (15.17)

where σa and σb are the signs of the TN block adjacent to the linear strand. Now
summing over all linear strands and TN blocks and inserting the result in (13.9)
results in the trial central charge

a(ε) =
3

32
(pA(ε, N) + qA(−ε, N)) +

3
32

nN2

4

�

ηε(3ε2 + 5)− (9ε2 − 1)
�

+
3

32
(N2 − 1)

�

2n+ 3(p+ q) + nη(ε− 3ε3) +
3
2
(p− q)(ε− 3ε3)

�

,

(15.18)
where we have introduced the function

A(t, N) =
�

3
8
(1− t)3 −

1
2
(1− t)

�

TrR3
N=2 +

9
2
(1− t)(1+ t)2TrRN=2 I2

3 , (15.19)

and the new parameters

n=
3g−3
∑

i=1

li and η=

∑3g−3
i=1 liηi
∑3g−3

i=1 li

=
x − y

n
. (15.20)

We also used the fact that p+q = 2g−2 and
∑

i κi =
3
2 (p−q). Rewriting this using

the parameter z defined in (13.19) we exactly recover the result obtained from the
anomaly polynomial calculation presented in Chapter 13. Note that this agreement
holds even before a-maximization providing strong evidence that we have identified
the correct M5-brane constructions corresponding to these four-dimensional quiver
theories. When all li = 0 our results reduce to the ones found in [19] for quivers
corresponding to smooth Riemann surfaces. We can now maximize the function
a(ε) to find the IR R-symmetry and the actual central charges. In general this is a
rather complicated and non-illuminating function of z, η, n and N which we refrain
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from presenting here. However, in the large N limit, εmax reduces to

εmax =
1−

p

1+ 3z2

3z
, (15.21)

and we find the large N central charges

a = c = (1− g)N3 1− 9z2 − (1+ 3z3)3/2

48z2
. (15.22)

This agrees with the result from the dual gravity solution presented in (14.20). To
show this note that in the case of minimal punctures we have ξ = N−1

N and at large
N the supergravity parameter z in (14.20) reduces to z,

z =
p+ x(1− ξ)− q− y(1− ξ)

2g− 2+ n(1− ξ)
−→

p− q
2g− 2

= z . (15.23)

The leading order large N result remains unchanged by adding minimal punctures.
From the gauge theory point of view it is easy to see that this should indeed be the
case since hypermultiplets only contribute at order N2.

15.3 g= 1 and Laba

The quiver gauge theory obtained by putting the N = (2, 0) theory on a torus with
n minimal punctures, without extra flux is given by a necklace quiver composed of
n vector and hypermultiplets and no TN blocks, see Figure 15.2.

Figure 15.2: A Necklace quiver composed of N = 1 and N = 2 vector multiplets
connected by hypermultiplets.
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We can repeat the analysis for g> 1 and obtain the ’t Hooft anomalies by combining
the R-charges of all chiral fermions in the theory. Summing over all hyper and
vector multiplets in the quiver we find

Tr Rε(H) =N2n(ηε− 1) ,

Tr Rε(H)
3 =

N2n
4

�

ηε
�

3+ ε2
�

−
�

1+ 3ε2
��

,
(15.24)

for the hypermultiplets and

Tr R(ε)(V ) =
�

N2 − 1
�

n(1− εη) ,

Tr R(ε)(V )3 =
�

N2 − 1
�

n(1− ε3η) ,
(15.25)

for the vector multiplets. Here the trace denotes the sum over all chiral fermions
in all the hypers or vectors, of the full quiver together with the trace over gauge
indices. With (15.24) and (15.25) at hand we can compute the trial central charge

a(ε) =
3n
32

�

9
4

N2(1−ηε)(1− ε2)− 2+ηε(1− 3ε2)
�

. (15.26)

This function is maximized at ε= εmax where

εmax =
3N2 −

p

9N4 + (16− 48N2 + 27N4)η2

3 (4− 3N2)η
. (15.27)

Inserting εmax in (15.26) we exactly reproduce the a anomaly obtained in Chapter
13 from the anomaly polynomial. Similarly we can exactly reproduce the c anomaly
by inserting εmax in the corresponding formula for c

c =
n

32

�

27
4

N2(1−ηεmax)(1− ε2
max)− 4+ηεmax(5− 9ε2

max)
�

. (15.28)

In [42,66,96] a large class of four-dimensional quiver gauge theories, known as
Labc , arising from D3-branes probing toric Calabi-Yau singularities were obtained.
The quiver gauge theory in Figure 15.2 corresponds to the theories Laba studied in
Section 3.1 and 6.2.3 of [96]. The map between the parameters used in our work
and the ones in [96] is

n= a+ b , ξ=
b− a
a+ b

. (15.29)

A consistency check of this identification is provided by the agreement between the
large N limit of the a-anomaly in (15.26) and the expression in Equation (6.11)
of [96]. This analysis shows that the class of Laba quiver gauge theories can be
obtained by wrapping M5-branes on a punctured torus and therefore these theories
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belong to the landscape of N = 1 theories of class S.

15.4 Consistency, duality, and the conformal mani-
fold

Given the IR superconformal R-symmetry we can compute the scaling dimension of
the various chiral primaries in our theory. These are given by

RN=1(µi) = 1+σiεmax , RN=1(φ2
i ) = 2− (σi−1 +σi)εmax ,

RN=1(uk) = 1−σiεmax , RN=1(Q i) =
1
2 (N − 1)(1+σiεmax) .

(15.30)

The maximizing value εmax takes values between − 1
3 ≤ εmax ≤

1
3 where the lower

and upper bound are attained for η = z = 1 and η = z = −1. Using this we find
that the unitarity bound

∆=
3
2

RN=1 ≥ 1 , (15.31)

is always satisfied. Moreover, the Hofman-Maldacena bound [131] for N = 1 SCFTs

1
2
≤

a
c
≤

3
2

(15.32)

is obeyed in the case of n minimal punctures for all values of the parameters.

From now on without loss of generality we take εmax > 0. We can construct
all relevant and marginal operators solely from µ and φ. Every N = 2 node is
associated to two marginal operators, Trµiφi and Trµi+1φi . If the gauge node
connects two blue matter fields (i.e. σi = −1) it has two relevant operators, Trµ2

i
and Trµ2

i+1, associated to it. If it connects two red matter fields (i.e. σi = 1) there
is only one relevant operator Trφ2

i . At an N = 1 node we have a single marginal
operator, Trµiµi+1, and a single relevant one, Trµ2

i , where the adjacent blue matter
field is labeled with i. Furthermore, we can construct gauge invariant operators out
of the trifundamental fields Q and eQ. These operators correspond to the wrapped
M2-brane operator considered in Chapter 14 and are given by

OM2 =
2g−2
∏

i=1

n
∏

j=1

Q iµ
+
j , eOM2 =

2g−2
∏

i=1

n
∏

j=1

eQ iµ
−
j . (15.33)

These operators have dimensions

∆(OM2) =∆( eOM2) =
3
4
(N −1)(p+ q+ ε(p− q))+

3
2
(x + y + ε(x − y)) , (15.34)
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For large N this dimension exactly matches the energy of the wrapped brane
computed in (14.21). This provides a further consistency check of our construction.

Using the results above we can also compute the dimension of the N = 1 conformal
manifold using the strategy of [114,166]. Our theory contains 3g− 3+ n gauge
couplings and v1 + 2v2 additional marginal operators from the vector multiplets,
giving a total of 3g− 3+ n+ v1 + 2v2 marginal deformations. However, there are
constraints on the anomalous dimensions coming from each of the 2g−2 TN blocks
and from all N = 2 vectors with the exception of one overall combination. Thus
we find the dimension of the conformal manifold,

dimC MC = g+ n+ v1 + v2 = 4g− 3+ 2n , (15.35)

which matches the counting in the dual gravity solutions (14.23).

Additionally we can deform our theory with relevant operators corresponding to
mass terms for the adjoint chiral. In [233] it was shown that when an N = 2 SCFT
with a marginal coupling is deformed by adding mass terms for all the adjoint chirals
in the vector multiplet it flows to a N = 1 SCFT and the central charges of the IR
theory are related to those of the UV theory by a universal linear transformation

aIR =
9

32
(4aUV − cUV) , cIR =

1
32
(−12aUV + 39cUV) . (15.36)

In the large N limit this implies that the ratio of the central charges is given by

aIR

aUV
=

cIR

cUV
=

27
32

. (15.37)

We observe that indeed the relations (15.36) are satisfied by our quiver gauge
theories provided that the UV theory is the one with z = 1 and the IR theory is
the one with z = 0 for fixed N and n. These are exactly the two cases where
a-maximization was not needed as a result of which the central charges are rational.
At the universal IR point we have ε = 0 and the superconformal R symmetry is
simply R0. At this point there are no relevant operators left solidifying its status as
the inevitable universal IR fixed point. At this point the flavor symmetry is enhanced
to SU(2)F . Using the same arguments as in [41] we can show that the dimension
of the conformal manifold in this case becomes

dimC MC = 6g − 6+ 3n . (15.38)

To finish this chapter, we briefly consider the various Seiberg duality transformations
[43,224] of our quiver gauge theories. Our SCFTs are labeled by four parameters,
{N , n, z,η}. For one possible set of parameters there may be multiple UV quivers
realizing that particular set and we conjecture that they are all Seiberg dual. As a
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first example we consider the torus with z= 0. For n= 6 there are three quivers
with η= 0, three quivers with η= 1

3 , one quiver with η= 2
3 and one quiver with

η= 1. All quivers with n= 6 and η= 1
3 are depicted in Figure 15.3.

a) b)
c)

Figure 15.3: All quivers with g= 1, n= 6, z= 0 and η= 1
3 . The three quivers are

related by Seiberg dualities.

Performing a Seiberg duality on the rightmost N = 1 node of Figure 15.3a results in
Figure 15.3b. On the other hand, performing a Seiberg duality on the lower N = 1
node of Figure 15.3a results in Figure 15.3c corroborating the conjecture that all
quivers with the same parameters are Seiberg dual to each other. For higher genus
Riemann surfaces there are even more intriguing Seiberg-like dualities where one
can move vector multiplets across TN blocks. An example is of this is presented in
Figure 15.4

Figure 15.4: An example of two different quivers which describe the same IR SCFT.
The parameters specifying the quiver are g = 3, z = 1

2 , η = − 1
2 . The rank of the

theory, N , is arbitrary.

As noted in [19] for g> 1 quivers with no punctures, a naive counting of the relevant
operators suggests a difference in the spectrum of chiral operators. However, when
considering the N = 1 superconformal index [32,100,213] of the two theories it
has been shown that indeed the number of relevant operators is equal in both cases.
The apparent difference in the spectrum of the chiral ring is due to non-trivial chiral
ring relation that have to be taken into account properly. We thus conjecture that,
in a similar vein, all quiver theories with the same discrete parameters we discussed
here are dual to each other. In this way we uncover a multitude of interesting new
Seiberg-like dualities similar to the ones studied in [99].



Chapter 16

Discussion and future
directions

The goal of this third part of the thesis was to show that one can use gauged
supergravity in 4, 5, 6, and 7 dimensions to study the IR dynamics of M2-, D3-
, D4-D8- and M5-branes wrapped on a singular complex curve Σ. This goal is
achieved by reducing the BPS equations of the supergravity theory to the Liouville
equation on Σ. We show that singular solutions to this equation can be interpreted
in supergravity as holographically dual to the topologically twisted SCFTs living on
the worldvolume of the wrapped branes. To provide evidence for our construction
we described the details of this picture for the case of four-dimensional N = 1
SCFTs of class S arising from M5-branes wrapped on Σ. There are several natural
and important directions to pursue in order to elucidate exploring these ideas and
we discuss a few of them below.

Given the successful implementation of our approach to the physics of M5-branes
wrapped on Σ it is natural to study in detail the physics of the other wrapped branes.
The SCFTs dual to the known supergravity solutions corresponding to a smooth Σ
are under much less control when compared to the class S theories we studied here.
Indeed, this provides an instance where the supergravity analysis may inform the
construction of the dual field theories. A particularly rich class of examples is offered
by D3-branes wrapped on a complex curve Σ. When the Riemann surface is smooth
the corresponding two-dimensional (0,2) SCFTs were studied in [36, 37] and it
will be most interesting to extend this to supergravity solutions with punctures
on Σ. Work along these lines is currently in progress [56]. Another important
question is to study higher-curvature corrections to our supergravity solutions which
should capture 1/N effects in the dual SCFTs. A possible starting point to attack
this is provided by the construction in [15]. Finally, it will be very interesting
to generalize our construction to twisted compactifications of brane setups with
smaller amount of supersymmetry, like the ones studied in [14,38,53], or to other
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gauged supergravity theories arising as consistent truncations of string or M-theory,
see [26,117].

Our construction provides a roundabout way to construct 1/4-BPS AdS5 solutions
of eleven-dimensional supergravity with explicit brane sources. These solutions
should fall within the general classification of [106] of supersymmetric AdS5

solutions in eleven dimensions. In fact, such backgrounds with explicit brane
sources corresponding to punctured Riemann surface were studied in [16,17] and
it is desirable to make the connection between that approach and our construction
more explicit. A common feature between our setup and the one in [16,17,102] is
that the punctures/singularities on the Riemann surface are introduced “by hand”
as explicit singular sources in the BPS equations of the supergravity theory. It is
desirable to make this more rigorous by adding explicit sources to the supergravity
Lagrangian due to the presence of branes in gauged supergravity. These arise from
a dimensional reduction of the D- or M-branes in ten and eleven dimensions. The
brane sources would allow us to derive more directly the BPS equations we used. A
potentially useful alternative approach is to explore the connection between these
constructions and SU(2) Yang-Mills theory on the Riemann surfaces [32,94].

The gravity solutions discussed in Chapter 13 and Chapter 14 allow for the line
bundles over the Riemann surface to have negative degrees. In the field theory
discussion of Chapter 15, however, we restricted to positive degrees only. The quiver
gauge theories dual to these negative degree line bundle setups can be constructed
by introducing additional field theory building blocks T (m)N discussed in [3]. These
building blocks can be obtained by adding adjoint chiral multiplets charged under
the global symmetry of TN and giving them a nilpotent vacuum expectation value,
which in turn spontaneously breaks the global symmetry. In this way one can
obtain more general quivers [92, 178, 192] allowing for negative degrees of the
line bundles. Furthermore, using these building blocks we can construct gauge
theories on the torus which include background flux. It will be interesting to study
these more general setups in detail. It should also be stressed that in this work we
focused on quivers built out of SU(N) vector multiplets and SU(N) TN theories only,
i.e., theories describing the infrared dynamics of the AN−1 type N = (2,0) theory
on Σ. It is clear that these constructions could be generalized to quivers built out of
SO(2N) and Sp(2N − 2) vector multiplets and the SO(2N) TN theories to describe
the infrared limit of the DN theory compactified on Σ, see for instance [231].

In Section 15.3 we noted that the Laba quiver gauge theories arising on the
worldvolume of D3-branes probing a conical CY singularity can be constructed also
from M5-branes wrapped on a torus with punctures. It is important to understand
whether other quiver gauge theories in the Labc or Y pq can also be realized in terms
of M5-branes in the spirit of class S. The fact that the AdS5 solutions associated to
the Y pq metrics were first constructed in [106] as (singular) solutions of eleven-
dimensional supergravity suggests that such a connection may be possible.
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In this work we focused on studying wrapped branes on a Riemann surface with
punctures. A natural generalization is to study similar supergravity setups for branes
wrapped on higher-dimensional calibrated cycles. When the cycles are smooth and
compact it is well-known how to construct the corresponding supergravity solutions,
see [53,104] for a review. These constructions again typically involve studying the
BPS equations of a lower-dimensional gauged supergravity. It will be interesting to
apply our approach and introduce explicit singular sources to these BPS equations
to study the supergravity solutions describing branes wrapped on manifolds with
various defects. A particularly accessible example is offered by the case of M5-
branes wrapping a four-cycle given by a product of two Riemann surfaces. The
supergravity solutions corresponding to smooth surfaces were analyzed in detail
in [37], see also [28], and it should be straightforward to apply our construction to
this setup to construct solutions with punctures.

Given the appearance of the Liouville equation in our construction and the SU(∞)
equation in the supergravity analysis of [102,167] it is natural to wonder whether
these equations are some remnant of the underlying AGT correspondence for M5-
branes wrapped on Σ.





Chapter 17

Parting thoughts

That’s that, I hope you enjoyed the process of reaching this page. If not, you can
rejoice at the thought that the end is near.

The main goal of this thesis consisted of trying to understand better how to
describe branes on curved worldvolumes from the point of view of string theory
and supergravity. Through the gauge/gravity correspondence this understanding
provides us with a new window into obtaining more information on the strongly
coupled dual quantum field theories.

In part II, of this thesis we showed how one can construct supergravity solutions
holographically corresponding to maximally supersymmetric Yang-Mills theory on
a sphere. We constructed the supergravity solutions, computed various observables
in the SYM theory using localization and formulated a method to match observables
across the gauge/gravity duality. This provides a non-trivial precision test of
holography beyond conformality.

In part III, we holographically studied IR SCFTs by wrapping various types of branes
on a punctured Riemann surface. We described how one can efficiently use lower
dimensional gauged supergravity solutions to compute various observables, such as
anomalies or conformal dimensions of selected operators, to leading order in N .
These solutions describe an RG flow across dimensions from a SCFT in d dimensions
to a (d − 2)-dimensional one. All the solutions we constructed describe flows that
end in an AdSd−1 IR fixed point and thus describe a dual IR SCFT. Our solutions
thus provide non-trivial evidence for a myriad of new IR SCFTs.

However, not all is done. Our work elucidates a small part of the road towards
understanding curved branes and strongly coupled field theories but a much larger
part is left unexplored. As discussed in Chapters 10 and 16, our work opens up
several new interesting directions and there are many open ends left to understand.
In the following years I hope to be able to continue this path and gradually clarify
and understand more and more of these questions.
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To be continued.



Part IV

Appendices





Appendix A

Conventions for type II
supergravity

The spherical Dp-brane backgrounds constructed in this thesis solve the equations
of motion of ten-dimensional type II supergravity. This theory comes in two flavors,
type IIA and type IIB, depending on whether the chirality of the supersymmetry
generators ε1,2 is opposite or the same. The bosonic field content consists of the
NS-NS sector, common to both type IIA and type IIB, and the R-R sector. The metric
GMN , the dilaton Φ, and the three-form H3 build up the NS-NS sector, while the
R-R sector contains the n-form field strengths Fn, with n= 0, 2, 4 for type IIA and
n = 1,3,5 for type IIB. In type IIA F0, i.e. the Romans mass, does not have any
propagating degrees of freedom and is set to zero throughout this paper. In type
IIB F5 has to obey a self-duality condition. The fermionic field content consists of a
doublet of gravitinos, ψM , and a doublet of dilatinos, λ. The components of these
doublets are again of opposite chirality in type IIA and of the same chirality in type
IIB.

We use the democratic formalism in which the number of R-R fields is doubled such
that n runs over 0,2,4,6,8,10 for type IIA and 1,3,5,7,9 for type IIB [44]. This
redundancy is removed by introducing duality conditions for all R-R fields

Fn = (−1)
(n−1)(n−2)

2 ?10 F10−n . (A.1)

These duality conditions should be imposed by hand after deriving the equations of
motion from the action. The bosonic part of the action written in string frame is
given by1

Sbos =
1

2κ2
10

∫

?10

�

e−2Φ
�

R+ 4|dΦ|2 −
1
2
|H3|2

�

−
1
4

∑

n

|Fn|2
�

, (A.2)

1We mostly follow the conventions of [49].
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where the ten-dimensional Newton constant κ10 is related to the string length
through 4πκ10 = (2πls)8 and we have defined

?10 |A|2 ≡ ?10
1
n!

Aµ1...µn
Aµ1...µn = ?10A∧ A . (A.3)

This action should be completed by its fermionic counterpart, which we do not
write explicitly, and is invariant under the following supersymmetry variations2

δψ1
M =

�

∇M −
1
4
/H3M

�

ε1 +
1

16
eΦ
∑

n
/FnΓMΓ10ε

2 ,

δψ2
M =

�

∇M +
1
4
/H3M

�

ε2 −
1

16
eΦ
∑

n

(−1)
(n−1)(n−2)

2 /FnΓMΓ10ε
1 ,

δλ1 =
�

/∂Φ−
1
2
/H3

�

ε1 +
1

16
eΦΓ M

∑

n
/FnΓMΓ10ε

2 ,

δλ2 =
�

/∂Φ+
1
2
/H3

�

ε2 −
1

16
eΦΓ M

∑

n

(−1)
(n−1)(n−2)

2 /FnΓMΓ10ε
1 ,

(A.4)

where ΓM are the ten-dimensional gamma matrices and Γ10 is the chirality operator.
The Feynman slash notation for an n-form field is defined as follows

(/An)Mk+1···Mn
≡ Γ M1···Mk(An)M1···Mk Mk+1···Mn

, (A.5)

for k ≤ n and Γ M1···Mk ≡ 1
k!Γ
[M1 · · · Γ Mk] is the totally antisymmetric product of k

gamma matrices.

The Bianchi identities and equations of motion derived from the action (A.2) are

dH3 = 0 , and d(e−2Φ ?10 H3) +
1
2

∑

n

?10Fn ∧ Fn−2 = 0 , (A.6)

for the NS-NS field H3 and

dFn −H3 ∧ Fn−2 = 0 , (A.7)

for the R-R form fields. The NS-NS and R-R fluxes can be written in terms of
potentials as

Fn = dCn −H3 ∧ Cn−2 , H3 = dB2 . (A.8)

2In these formulae we have implicitly chosen positive chirality spinors in type IIB supergravity.
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The dilaton and the Einstein equations of motion can be written as

0=∇2Φ− |dΦ|2 +
1
4

R−
1
8
|H3|2 ,

0= RMN + 2∇M∇NΦ−
1
2
|H3|2MN −

1
4

e2Φ
∑

n

|Fn|2MN ,
(A.9)

where we have defined

|An|2MN ≡
1

(n− 1)!
(An)M

M2···Mn(An)N M2···Mn
. (A.10)

In the strong coupling limit, gs � 1, type IIA string theory is expected to be
described by M-theory. Therefore it will sometimes be useful to uplift our ten-
dimensional type IIA supergravity solutions to eleven-dimensional supergravity.
When compactified on a circle the eleven-dimensional theory has two parameters,
the eleven-dimensional Newton constant κ11 and the radius of the circle R11. These
are related to the ten-dimensional parameters as follows

R11 = `s and κ2
11 = 2πR11κ

2
10 . (A.11)

The bosonic fields of eleven-dimensional supergravity are the metric and a three-
form potential A3. Their dynamics is governed by the following action

S =
1

2κ2
11

∫

?11

�

R−
1
2
|dA3|2

�

−
1

12κ2
11

∫

A3 ∧ dA3 ∧ dA3 . (A.12)

To reduce to ten dimensions we make the following Kaluza-Klein ansatz

ds2
11 = e−

2
3ΦGMN dx M d xN + e

4
3Φ
�

dx11 + C1

�2
,

A3 = C3 + B2 ∧ dx11 .
(A.13)

All fields appearing on the right hand side of (A.13) are the ten-dimensional type
IIA fields in string frame.





Appendix B

Useful integrals

The following integrals are useful for the calculations in Chapter 7

∫ b

−b

−
dσ′|σ−σ′|αsign(σ−σ′)

(b2 −σ′2)α/2
= πασ csc

�

πα
2

�

, (B.1)

and
∫ b

−b

dσ′

(b2 −σ′2)α/2
=

b1−απ1/2Γ ( 2−α
2 )

Γ ( 3−α
2 )

, (B.2)

where we have defined α≡ d − 5. Note that the result in (B.1) is independent of b.
The result in (B.1) can be understood by splitting the integral into two parts,

∫ σ

−b

dσ′(σ−σ′)α

(b2 −σ′2)α/2
−
∫ b

σ

dσ′(σ′ −σ)α

(b2 −σ′2)α/2
. (B.3)

Both integrals in (B.3) are discontinuous as σ crosses the branch cuts between
−∞ < σ < −b or b < σ < ∞. However, it is straightforward to show that
the discontinuities cancel between the two integrals and so the sum must be a
holomorphic function of σ in the complex plane. By taking σ to a large imaginary
value in (B.3) one can see that the combined integrals have a leading linear behavior
inσwith the coefficient in (B.1), while the constant piece is zero because the integral
in (B.1) is clearly an odd function of σ.

It proves useful to define the following function

f (σ)≡
Γ ( 3−α

2 )

π1/2Γ ( 2−α
2 )

σ

b 2F1

�

1
2

,
α

2
;

3
2

;
σ2

b2

�

. (B.4)

One can show that f ′(σ) = ρ(σ) where ρ(σ) is defined in (7.41), and that f (b) =
1/2. Note that since ρ(σ) is an even function of σ, f (σ) is an odd function.
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Finally, we present two integrals which are useful for the calculation of the free
energy

I1 ≡
∫ b

−b

dσρ(σ)σ2 =
b2

8− d
, (B.5)

and

I2 ≡
∫ b

−b

dσρ(σ)(b−σ)d−4 = 2bd−4π−1/2Γ ( d−1
2 )Γ (

8−d
2 ) . (B.6)



Appendix C

Flat Euclidean branes

In this appendix we explicitly show that flat Euclidean Dp-branes are indeed
supersymmetric solutions of type II∗ supergravity. For more details on these theories,
including the type II∗ actions, see for example [46].

The supersymmetry variations are exactly the same as those of regular type II
supergravity, see (A.4), with the only difference that the R-R fields now have to be
treated as purely imaginary and the spinor obeys an unusual reality condition. For
type IIA∗ the spinors satisfy a MW∗ condition

ε∗ = −CAΓ(10)ε , (C.1)

and similarly for type IIB∗

ε∗ = CAσ3ε , (C.2)

where ε= (ε1,ε2)T and A and C define respectively Dirac conjugation, χ̄D ≡ χ†A,
and Majorana conjugation, χ̄ ≡ χTC. The reality conditions for the spinors are thus
equivalent to

ε̄= −ε̄DΓ(10) , (C.3)

for type IIA∗ while for type IIB∗ we find

ε̄= ε̄Dσ3 . (C.4)

We can now check explicitly that the flat Euclidean branes of Hull are indeed 1
2 -BPS

solutions of type II∗ supergravity, i.e. they preserve 16 real supercharges. The
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solutions are given by

ds2
10 = H−1/2ds2

p+1 +H1/2ds2
1,8−p , (C.5)

eφ = gsH
(3−p)/4 , (C.6)

Cp+1 = i(gsH)
−1volp+1 (C.7)

In these solutions ds2
p+1 is the metric of flat (p+ 1)-dimensional Euclidean space,

ds2
1,8−p is the Minkowski metric on R1,8−p, and H is a harmonic function on this

Minkowski space.

Inserting these solutions into the supersymmetry variations we see that they can
indeed be solved by imposing the usual Dp-brane projector with an extra i inserted

�

1+ iΓ 0...pΓ(10)P
�

ε= 0 . (C.8)

Here P = σ1 when p(p+1)
2 is even and P = iσ2 when p(p+1)

2 is odd. It is important to
note that the projector above is consistent with the reality condition obeyed by the
spinors in the type II∗ supergravity theory. We would like to stress that this subtle
interplay of imaginary R-R fluxes and unusual reality conditions on the spinors is
the reason why Euclidean branes preserve supersymmetry in type II∗ string theory
and supergravity.



Appendix D

Gauged supergravity for
spherical branes

In this appendix we introduce, case by case, the (p + 2)-dimensional gauged
supergravity theories used to construct the spherical Dp-brane solutions discussed
in the main text. The supergravity theories available in the literature are Lorentzian
and we need to analytically continue them to Euclidean signature. After presenting
in some detail the construction of the gauged supergravity solutions we perform
their uplifts to ten-dimensional type II and/or eleven-dimensional supergravity.

As emphasized in the main text, we start with a maximally supersymmetric gauged
supergravity theory in p + 2 dimensions and perform a consistent truncation,
following the method of [238], to preserve an SO(3) × SO(6 − p) subgroup of
the SO(9 − p) gauge group, corresponding to the R-symmetry in the dual SYM
theory. By analytically continuing the supergravity theory to Euclidean signature
we end up with a non-compact SO(1, 2)× SO(6− p)' SU(1, 1)× SO(6− p) gauge
group, in harmony with (7.6). We start with the case p = 6 and work our way
down to p = 2.

D.1 Spherical D6-branes

The supergravity theory appropriate for our construction is the maximal SO(3)
gauged supergravity in eight dimensions, originally constructed in [221], analyti-
cally continued to Euclidean signature and non-compact gauge group. The uplift of
this theory to eleven-dimensional supergravity as well as more general gaugings
are discussed in [10].

211
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D.1.1 Maximal eight-dimensional SO(3) gauged supergravity

The maximal N = 2 ungauged supergravity theory in eight dimensions has
E3(3) ' SL(3,R) × SL(2,R) global symmetry under which the bosonic fields of
the theory transform. In particular, the 7 scalars parameterize the five-dimensional
and two-dimensional coset spaces SL(3,R)/SO(3) and SL(2,R)/SO(2) and are most
conveniently expressed in terms of two matrices Z and A transforming according to

Z→ GZH , where G ∈ SL(3,R) and H ∈ SO(3) ,

A→ KAL , where K ∈ SL(2,R) and L ∈ SO(2) .
(D.1)

The fermionic fields transform under SO(3)×SO(2)' SU(2)×U(1)which acts as the
R-symmetry of the supergravity theory.1 In total, the field content of the ungauged
theory consists of the metric gµν, two sixteen-component gravitini ψa

µ, six gaugini

ηa
i , seven scalars ZM

i and AI J , one three-form tensor field Aµνρ, three two-form
tensor fields AM

µν, and six one-form vector fields AMN
µ . We use the following index

conventions: µ,ν,ρ = 0, . . . 7 are eight-dimensional spacetime indices; M , N =
1, 2, 3 are SL(3,R) indices in the fundamental; I , J = 1, 2 are SL(2,R) indices in the
fundamental; i, j = 1, 2, 3 are in the 3 and a, b = 1, 2 are in the 2 of SU(2)' SO(3),
respectively.

To obtain a gauged supergravity theory with a non-trivial potential for the scalars a
subgroup of the global symmetry group should be promoted to a local symmetry.
This can be done in several inequivalent ways by gauging a subgroup of the global
symmetry group. By gauging the maximal compact subgroup SO(3) in SL(3,R)
one obtains the theory studied by Salam and Sezgin in [221]. This theory can be
obtained by reducing the eleven-dimensional supergravity to eight dimensions on
an SU(2) group manifold. As described in [10] one can also obtain more general
gaugings by reducing the eleven-dimensional supergravity on different group
manifolds. One example is a reduction on an SU(1, 1) group manifold resulting in
the Lorentzian eight-dimensional SO(1,2) ' SU(1,1) gauged supergravity. This
case can be understood as an analytic continuation of the Salam-Sezgin theory
or as a “non-compactification” of eleven-dimensional supergravity. However, this
SU(1,1) gauged supergravity theory is still Lorentzian. To obtain the Euclidean
action appropriate for constructing the spherical brane solutions of interest we
need to combine this analytic continuation of the gauge group with an analytic
continuation of the time direction in space-time.

1We are cavalier about the global difference between SO(3) and SU(2).
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D.1.2 SO(3) invariant truncation

We begin with the SO(3) gauged supergravity of [221] and are interested in
constructing solutions which preserve the SO(3) gauge symmetry and have a
maximally symmetric seven-dimensional factor in the metric. These requirements
eliminate all tensor fields in the supergravity theory except the metric itself. There
are two scalars, a “dilaton” β and an “axion” χ, parameterizing an SL(2,R)/SO(2)
coset, which are not charged under the SO(3) gauge symmetry.

The Lagrangian for the bosonic fields in this SO(3) invariant truncation reads2

S =
1

2κ2
8

∫

?8

§

R−
1
2

�

|dβ |2 + e2β |dχ|2
�

− V
ª

. (D.2)

The potential is proportional to the gauge coupling constant, g, of the supergravity
theory and is given by

V = −
3
2

g2eβ . (D.3)

It proves convenient to introduce the complex scalar τ = χ + ie−β as in (8.17),
the Kähler potential as in (8.18), and superpotential as in (8.24) The potential in
(D.3) can then be written in terms of the superpotential (8.24) using the expression
(8.23).

The supersymmetry variations of this truncation of the supergravity theory can be
read off from [10,221]. They can be explicitly written as

δψµ = ∇µε+
1
8

eK∂µ(τ+ τ̄)ε+
1

24
eKWγ9γµε , (D.4)

δηi =
�

τ− τ̄
2
∂µτ̄γ9γ

µ +
1
6

eKDτW
�

σiε , (D.5)

where γ9 = iγ01...7, the spinor εa is in the 2 of SO(3), (σi)ab are SO(3) Pauli matrices,
and Dτ is the Kähler covariant derivative defined below (8.21).

As described in the main text, we are interested in an analytic continuation of this
gravitational theory and its supersymmetry variations into Euclidean signature.
This is achieved by changing the signature of the metric as well as replacing the
pseudoscalar as follows, χ → iχ. In addition we should treat the complex conjugate
of the scalar τ as an independent scalar. We emphasize this by using the notation
W → fW and τ̄→ τ̃.

2Our notation is different from the one in [221]. We have defined β ≡ −2φSS, χ ≡ −2BSS, g ≡ gSS
2 ,

where quantities with an SS subscript are the ones used in [221].
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To find the solution of interest we impose the usual spherically symmetry domain
wall ansatz for the metric as in Equation (8.31)

ds2
8 = dr2 +R2e2AdΩ2

7 , (D.6)

and assume that the the scalar fields only depend on the radial coordinate r.

To solve the supersymmetry variations in (D.4) we use a conformal killing spinor
on S7 obeying

∇S7

µ ε=
i
2
γµε . (D.7)

Here ∇S7
is the covariant derivative on the unit radius S7. Note that this is in

harmony with the expected supersymmetry generator for the seven-dimensional
SYM theory on S7, see (7.4).

The vanishing of the gaugino and gravitino variations then leads to the following
differential equations

Kτ̃τ(τ̃′)(τ′) =
1
16

eKWfW , (D.8)

(A′)2 −R−2e2A =
1

144
e2KWfW , (D.9)

where a prime denotes differentiation with respect to r. Notice that the equations
in (D.8) correspond to a degenerate limit of (8.32)-(8.36) in which we remove the
scalar η and set p = 6.

There is a subtlety when analyzing the BPS equations in this truncation of the
eight-dimensional supergravity. There are only two independent equations in (D.8)
and thus one of the two scalars in the model appears to not be constrained by a
differential equation. This problem is fixed by the equations of motion which lead
to the following first order differential equation for the scalar χ

χ ′ =
6
R

e−2Ke−7A . (D.10)

We have a first order equation in (D.10) because the scalar χ does not appear in
the potential V in (D.3) and the usual second order differential equation has an
integral of motion which reduces the order of the equation. The constant coefficient
on the right hand side of (D.10) is the unique value of this integral of motion which
makes the BPS equations in (D.8) together with (D.10) compatible with all other
equations of motion and with the integrability of the supersymmetry variations in
(D.4).

The gauged supergravity solution discussed above can be uplifted to type IIA and
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eleven-dimensional supergravity and the explicit result is presented in Section
8.3.5.

D.2 Spherical D5/NS5-branes

To construct a supergravity solution describing spherical D5- or NS5-branes we
consider the maximal seven-dimensional SO(4) gauged supergravity constructed
in [222]. We then use the results of [175] to uplift this seven-dimensional solution
to ten-dimensional type IIB supergravity.

D.2.1 Maximal seven-dimensional SO(4) gauged supergravity

The maximal N = 4 ungauged supergravity theory in seven dimensions has E4(4) =
SL(5) global symmetry under which the bosonic fields transform. In particular the
fourteen scalars span the coset space SL(5)/SO(5) and can be parameterized by a
matrix Z that transforms according to

Z→ GZH , where G ∈ SL(5) and H ∈ SO(5) . (D.11)

In addition to the bosonic fields, the fermions transform under SO(5) ' USp(4)
which acts as the R-symmetry group of the supergravity theory. In total the field
content of the ungauged theory consists of the metric gµν, four gravitini ψa

µ, five

two-forms BM
µν, ten vector fields AMN

µ , sixteen gaugini χabc , and fourteen scalar

fields Z ab
M . We use the following index conventions: a, b = 1, . . . , 4 denote USp(4)

indices; M , N = 1, . . . , 5 are SL(5) indices, and µ,ν = 0, . . . , 6 are seven-dimensional
spacetime indices.

The global symmetries can be promoted to a local symmetry in several inequivalent
ways. Gauging the maximal compact subgroup SO(5) ⊂ SL(5) one obtains the
well known gauged supergravity theory [203]. This theory has a maximally
supersymmetric AdS7 vacuum and can also be obtained by performing a consistent
truncation of eleven-dimensional supergravity on S4. Further gaugings were
discovered in [205] and a complete classification was obtained in [222] using
the embedding tensor formalism. We are interested in a maximal supergravity with
an SO(4) gauge group which should capture domain wall solutions describing the
back-reaction of NS5/D5-branes. It was anticipated in [60] that such a supergravity
theory should exist and indeed it was explicitly constructed in [222].3

3A half-maximal version of the supergravity theory which can be viewed as a consistent truncation of
the maximal theory was studied in [220].
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In the maximal SO(4) gauged theory the SL(5) representations of the bosonic fields
are decomposed into representations of the gauge group. The ten vector fields that
transform in the 10 of SL(5) transform in 6+4 of SO(4) where the 6 plays the role
of the SO(4) gauge field. Four of the two-forms BM

µν become massive by combining

with the 4 other vector fields. The fifth two-form is uncharged and is present also
in the N = 2 theory [220]. Finally, the scalars transform in the symmetric traceless
of SL(5), i.e. the 14, which decomposes into the 9+ 4+ 1 representation of SO(4).

D.2.2 SO(3) invariant truncation

The R-symmetry of the six-dimensional SYM theory on S6 is SO(1,2) and thus
we should find an SO(3) invariant truncation of the SO(4) gauged supergravity
which we can then analytically continue. Imposing this symmetry on the theory and
keeping only fields compatible with a solution preserving the isometries of S6 leads
to a consistent truncation of the SO(4) gauged supergravity consisting of the metric
and three real scalar fields. This is in agreement with the field theory discussion
in Chapter 7. More precisely, the three supergravity scalars should be dual to
the Yang-Mills coupling and the two independent operators in the deformation
Lagrangian (7.5).

The three scalars invariant under the SO(3) symmetry of interest here are the
singlets in the branching rules of the breaking of SO(4) to SO(3)

9→ 5⊕ 3⊕ 1 , 4→ 3⊕ 1 , 1→ 1 . (D.12)

In the notation of [222] the parameterization of the scalar coset element for these
three scalars is

Z=











e−φ−x 0 0 0 0
0 e−φ−x 0 0 0
0 0 e−φ−x 0 0
0 0 0 e−φ+3x e4φχ

0 0 0 0 e4φ











. (D.13)

Notice that χ is a pseudoscalar. These three scalars parameterize the following
submanifold of the SL(5)/SO(5) scalar coset

R+ ×
SL(2,R)
SO(2)

, (D.14)

where R+ is parameterized by the combination η ≡ −φ − x and SL(2,R)/SO(2)
is parameterized by β ≡ 5φ − 3x and χ. The bosonic action for this consistent
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truncation takes the familiar form (8.16) with p = 5

S =
1

2κ2
7

∫

?7

§

R−
15
2
|dη|2 −

1
2

�

|dβ |2 + e2β |dχ|2
�

− V
ª

. (D.15)

The potential is proportional to the gauge coupling constant g and takes the form

V =
g2

2
eβ (−3eη − 6e−4η−β + e−9η−2β + e−9ηχ2) . (D.16)

After introducing the scalarτ = χ+ie−β one can use the superpotential in (8.20) and
the Kähler potential in (8.18) to write the potential in terms of the superpotential
as in (8.21).

The supersymmetry variations for this consistent truncation can be obtained from
the results in [222]. The vanishing of the spin- 1

2 variations leads to the equations

∂µ(η)γ
µε1 = −

1
15

eK/2∂ηWε4 , ∂µ(η)γ
µε4 = −

1
15

eK/2∂ηWε1 , (D.17)

∂µτ̄γ
µε1 =

�

e−KKτ̄τ
�1/2

DτWε4 , ∂µτγ
µε4 =

�

e−KKττ̄
�1/2

Dτ̄Wε1 .(D.18)

From the spin- 3
2 variations we find

∇µε1 +
i
8

eK∂µ(τ+ τ̄)ε
1 = −

1
20

eK/2Wγµε4 , (D.19)

∇µε4 −
i
8

eK∂µ(τ+ τ̄)ε
4 = −

1
20

eK/2Wγµε1 . (D.20)

There are four supersymmetry generators, εa, in the maximal supergravity theory.
However the equations for the pair (ε2,ε3) are identical to the ones presented
above for (ε1,ε4).

As described in the main text, the analytic continuation to Euclidean signature
corresponds, at this level, to the replacement χ → iχ accompanied by the
substitutions W → fW and τ̄→ τ̃. After this analytic continuation we can look for
the spherical brane solution by imposing the domain wall metric ansatz as in (8.31)

ds2
7 = dr2 +R2e2A(r)dΩ2

6 , (D.21)
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and assume that all scalars depend only on the radial coordinate r. Furthermore
we can assume that ε1,4 are conformal Killing spinors on S6

∇S6

α

�

ε1

ε4

�

=
1
2
γ∗γα

�

ε1

−ε4

�

, (D.22)

where γ∗ ≡ iγ123456. With this at hand we can derive the system of BPS equations in
(8.32)-(8.36) with p = 5. Furthermore, combining the spin- 1

2 and spin- 3
2 equations

we can find an algebraic equation for A as in (8.37) with p = 5.

D.2.3 Uplift to type IIB supergravity

Any solution of the seven-dimensional SO(4) gauged supergravity can be uplifted to
the ten-dimensional type IIB supergravity using the uplift formulae of [175]. When
we apply these uplift formulae to the solutions of the BPS equations in (8.32)-(8.36)
with p = 5 we obtain the spherical NS5-brane solution with the following string
frame metric

ds2 =
1
p

X

�

e−4ηdr2+
X ((1− 3X )2 − 9Y 2)

g2Y 2
dΩ2

6+
1
g2

dθ 2+
sin2 θX

g2(sin2 θ + X cos2 θ )
deΩ2

2

�

.

(D.23)
The remaining ten-dimensional fields are given by

e2Φ =
e−10η

X (sin2 θ + X cos2 θ )
,

C0 = iY e5η cosθ ,

B2 = −
1
g2

�

θ −
sin 2θX

2(sin2 θ + X cos2 θ )

�

vol2 ,

C2 = −i
Y e5η sin3 θ

g2(sin2 θ + X cos2 θ )
vol2 ,

(D.24)

where vol2 is the volume element of the deΩ2
2 metric in (8.15). Integrating the H

and F3 flux derived from (D.24) over the three-dimensional space spanned by θ
and deΩ2

2 we find that the D5-brane charge is vanishing while the NS5-brane charge
is not. This fits nicely with the interpretation of this background as corresponding
to spherical NS5-branes.

The spherical D5-brane solution can be obtained from the spherical NS5-brane
solution above by acting with the SL(2,R) global symmetry of the type IIB
supergravity. This transformation acts on the supergravity background fields as
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follows

τIIB 7→
aτIIB + b
cτIIB + d

,

�

C2

B2

�

7→
�

a b
c d

��

C2

B2

�

, where

�

a b
c d

�

∈ SL(2,R) .

(D.25)
Here τIIB ≡ C0 + ie−Φ is the axion-dilaton field and the Einstein frame metric
remains unchanged. Applying this transformation to the background in (D.24)
with a = d = 0 and b = −c = 1, yields the spherical D5-brane solution in type IIB
supergravity. The fluxes of this D5-brane solution are the same as the ones in (8.46)
with p = 5. In particular the H flux integral over dθ and deΩ2

2 vanishes while the R-R
flux integral over this space does not. For other values of the SL(2,R) parameters
in (D.25) we obtain more general solutions which should describe (p, q)-fivebranes
wrapped on S6.

D.3 Spherical D4-branes

If we are to follow the pattern of gauged supergravity theories used to construct
spherical Dp-brane solutions we should use a maximal six-dimensional SO(5)
gauged supergravity. This theory is not so well studied in the literature
and the only analysis we are aware of is the one in [78] where the author
constructed the six-dimensional theory through a dimensional reduction of the
maximal seven-dimensional SO(5) gauged supergravity on a circle. We will thus
describe the spherical D4-brane background as a solution of this maximal seven-
dimensional supergravity theory. The SO(5) gauged supergravity has a maximally
supersymmetric AdS7 solution dual to the conformal vacuum of the (2,0) six-
dimensional SCFT which fits well with the field theory expectation, discussed in
Chapter 7, that the five-dimensional maximal SYM theory on S5 flows in the UV to
the six-dimensional (2,0) theory on S5 × S1.

The maximal SO(5) gauged supergravity in seven dimensions was constructed
in [203] and can be obtained as a consistent truncation of eleven-dimensional
supergravity on S4. Any solution of the seven-dimensional theory can be uplifted to
eleven dimensions using the uplift formulae of [194]. The field content of the theory
is the same as for the SO(4) gauged supergravity discussed in Appendix D.2.1. The
difference comes from the gauging which in this case is SO(5). This gauging of
course fits in the general classification of [222], whose conventions we use, and
affects the details of the Lagrangian of the theory and thus the space of solutions.
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D.3.1 SO(3) invariant truncation

The R-symmetry breaking pattern discussed around (7.6) dictates that we should
look for the spherical D4-brane solutions in an SO(3)× SO(2) invariant truncation
of the SO(5) gauged supergravity. This, combined with the requirement that the
solution should have the isometries of S5 × S1, leads to a consistent truncation
which consists of the metric, a single real scalar field, x , and a single SO(2) gauged
field, A.4 The scalar coset matrix (D.11) for this truncation is diagonal and reads

Z= diag(e−x , e−x , e−x , e3x/2, e3x/2) . (D.26)

The bosonic action can be obtained from [222] and reads

S =
1

2κ2
7

∫
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§

R7 −
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2
|dx |2 −

1
2

e6x FµνFµν − V7

ª

, (D.27)

where F = dA is the gauge field strength of A and the potential is proportional to
the gauge coupling constant g,

V7 = −
3
8

g2e−x(4+ e5x) . (D.28)

We can now dimensionally reduce this theory on S1 to a six-dimensional
gravitational theory.5 To this end we use the following metric and gauge field
ansatz

ds2
7 = e−φds2

6 + e4φdω2 , A= χdω . (D.29)

The scalar fields φ and χ depend only on coordinates of the six-dimensional space
with metric ds2

6. To conform with the notation used throughout this work it is
convenient to define the following combination of these two scalars

β ≡ 3x − 2φ , and η≡ x +φ . (D.30)

The six-dimensional Lagrangian of the dimensionally reduced theory then reads

S =
1

2κ2
6

∫
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§

R− 3|dη|2 −
1
2

�

|dβ |2 + e2β |dχ|2
�

− V
ª

, (D.31)

4The SO(2) gauge field generator can be thought of as the 45 component of the 5×5 matrix generator
of the SO(5) gauge field.

5It should also be possible to construct this six-dimensional theory as a consistent truncation of the
six-dimensional maximal gauged supergravity studied in [78].
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where R is the Ricci scalar for the metric ds2
6 and the six-dimensional potential is

V = −
3
8

g2e−η(4+ eβ+2η) . (D.32)

The derivation of the BPS equations now follows a familiar pattern. We work with
the supersymmetry variations of the seven-dimensional maximal supergravity theory
as given in [222]. To present them succinctly we define the scalar τ = χ + ie−β and
the superpotential as in (8.20) with p = 4. Using the Kähler potential in (8.18) one
can then show that the six-dimensional potential in (D.32) can be written in the
general form (8.21) with p = 4. Combining the gaugino and gravitino variations
of [222] we find

∂µηγ
µε =

1
6

eK/2∂ηWε , (D.33)

∂µτγ
µ = (e−KKτ̄τ

�1/2
DτWε , (D.34)

∇µε+
i
8

eK∂µ(τ+ τ̄)ε = −
1

16
eK/2Wγµε . (D.35)

Now we can perform the familiar analytic continuation to Euclidean signature
by treating τ and τ̄→ τ̃ as independent scalars and performing the substitution
χ → iχ. For the metric we use the usual spherical domain wall ansatz

ds2
6 = dr2 +R2e2AdΩ2

5 , (D.36)

and assume that all scalar fields depend only on r. The supersymmetry parameter
ε is a conformal Killing spinor on S5 obeying

∇S5

µ ε=
i
2
γµε . (D.37)

We can plug this in the supersymmetry variations (D.33) and derive the system of
BPS equations in (8.32)-(8.36) and the algebraic equation in (8.37) with p = 4.

D.3.2 Uplift to eleven-dimensional and type IIA supergravity

The solution of the maximal seven-dimensional SO(5) gauged supergravity
described above can be uplifted to eleven dimensional M∗ theory using the uplift
formulae presented in [195,196]. Using the functions P and Q defined in (8.43)
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we can write the eleven-dimensional metric as

ds2
11 =e−ηP−1/3 ds2

6 − e4ηQ P−2/3
�

dω+
cos2 θY
ge2ηX Q

dξ
�2

+
P1/3

g2

�

dθ 2 + P sin2 θ dΩ̃2
2 +Q cos2 θ dξ2

�

,

(D.38)

where ω spans a timelike U(1) and ξ spans a spacelike U(1). The three-form gauge
field is

A(3) =
i sin3 θ

g3(sin2 θ + X cos2 θ )
vol2 ∧ dξ+

ie2ηY sin2 θ

g2(sin2 θ + X cos2 θ )
vol2 ∧ dω (D.39)

where vol2 is the volume form of the two dimensional de Sitter space in (8.15).

This eleven-dimensional solution can be dimensionally reduced to ten-dimensional
type IIA∗ supergravity along the timelike U(1) spanned by ω using the formulae in
(A.13). The result is a type IIA background of the form described in Section 8.2.3
with p = 4.

D.4 Spherical D2-branes

To construct spherical D2-branes we employ the four-dimensional maximal ISO(7)
gauged supergravity as presented in [118]. We construct spherical brane solutions
to this theory which can then be uplifted to both type IIA and eleven-dimensional
supergravity.

D.4.1 ISO(7) gauged supergravity in four dimensions

The maximal ungauged supergravity in four dimensions has E7(7) global symmetry
under which the bosonic fields transform. In particular, the scalars parameterize
the 70-dimensional coset space E7(7)/SU(8) with coset element Z that transforms
according to

Z→ GZH , where G ∈ E7(7) and H ∈ SU(8) . (D.40)

In addition to the bosonic fields, the fermions transform under SU(8) which acts
as the R-symmetry of the supergravity theory. In total, the field content of the
ungauged theory consists of the metric gµν, eight gravitini ψi

µ, 56 gaugini χ i jk, 28

gauge fields AM
µ and 70 scalars Zi j

M . Here we use the following index conventions:
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µ,ν = 0, . . . , 3 are four-dimensional spacetime indices, M = 1, . . . , 56 are E7(7)
indices and i, j = 1, . . . , 8 are SU(8) indices.

A subgroup of the global symmetry group of the supergravity theory can be promoted
to a gauge group in several inequivalent ways. The well-known SO(8) gauged
supergravity theory described in [84] is obtained in this way and is relevant
for the low-energy dynamics of a system of coincident M2-branes since it arises
as a consistent truncation of the eleven-dimensional supergravity on S7. Here
we are however interested in D2-branes and thus should use an ISO(7) gauged
four-dimensional supergravity. There are two inequivalent ways to find a four-
dimensional maximal supergravity theory with an ISO(7) gauge group. The
“electrically gauged” theory was constructed in [136] (see also [141]) and is the one
that admits an uplift to type IIA supergravity with vanishing Romans mass. This
will be the theory we focus on for our analysis. The other inequivalent gauging
is described in detail in [118] and is relevant for compactifications of the massive
type IIA supergravity on S6 [116].

D.4.2 SO(3) invariant truncation

We use the results of [118] and focus on the electric gauging with m= 0 relevant
for type IIA supergravity with vanishing Romans mass. We want to study a solution
that preserves SO(4)× SO(3) gauge symmetry and has maximally symmetric three-
dimensional factor in the metric. This truncation eliminates most scalars and
all tensor fields except the metric. A larger truncation of this four-dimensional
supergravity which imposes only SO(4) symmetry was studied in Section 5 of [118].
The SO(4) × SO(3) truncation of interest here can be obtained from that larger
truncation by setting one of the pseudoscalars in [118] to zero. To comply with
the notation used in the main text we make the following change of notation with
respect to [118]

η≡ 2ϕGV , β ≡ φGV , χ ≡ ρGV , χGV = 0 , (D.41)

where the subscript GV refers to the quantities used in Section 5 of [118].

The bosonic Lagrangian of this supergravity truncation can be read off from [118]
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, (D.42)

where the potential V is given by

V = −
1
2

g2e−β
�

24eη/2+β + 8e2β + 3eη(1+χ2e2β )
�

. (D.43)
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and as usual g is the gauge coupling. Notice that this Lagrangian is of the general
form in (8.16) with p = 2.

We are not aware of a reference in the literature where the explicit fermionic
supersymmetry variations for this ISO(7) gauged supergravity were presented.
However the authors of [118] write down an explicit superpotential for our
truncation and, after defining τ = χ + ie−β , it can be readily checked that it
coincides with the one in (8.20) with p = 2. Using the Kähler potential in (8.18)
one can then show that the potential in (D.43) can be written in the general form
(8.21) with p = 2. In addition one can show explicitly that the system of BPS
equations in (8.32)-(8.36) and the algebraic equation (8.37) (with p = 2) imply
the equations of motion derived from the Lagrangian in (D.42).6 We consider
these results as sufficient evidence that any solution to the system of equations in
(8.32)-(8.36) describes a supersymmetric solution of the four-dimensional ISO(7)
electrically gauged supergravity theory.

Finally we point out that one can use the uplift formulae provided in [116] to
uplift any solution of the four-dimensional ISO(7) gauged supergravity to a solution
of type IIA supergravity. For the SO(4)× SO(3) truncation described above this
uplifted ten-dimensional background has the form presented in Section 8.2.3. The
ten-dimensional solution has vanishing Romans mass and thus can be further
uplifted to a solution of eleven-dimensional supergravity using the formulae in
(A.13).

D.5 Evaluation of κp+2

Here we provide a derivation of the Newton constant in p+ 2 dimensions from the
one in ten dimensions by employing dimensional reduction. Consider the metric
(8.42) transformed to Einstein frame and evaluated in the UV, i.e.

ds2
E = g−1/2

s e−
(8−p)(p−3)

4(6−p) η

�

ds2
p+2 +

e
2(p−3)
(6−p) η

g2
dΩ2

8−p

�

. (D.44)

The type II supergravity action is given by

S10 =
1

2κ2
10

∫

d10 x
Æ

−g(10)R(10) + · · · , (D.45)

where the dots represent other terms in the Lagrangian which are not important
for the present discussion and κ2

10 =
(2π`s)8

4π . The (p+ 2)-dimensional supergravity

6We perform our usual analytic continuation to Euclidean signature and take a spherically symmetric
ansatz for the four-dimensional metric and scalar fields.
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action obtained from this action is

Sp+2 =
1

2κ2
p+2

∫

dp+2 x
Æ

−g(p+2)R(p+2) + · · · , (D.46)

The goal is now to obtain κ2
p+2, i.e. the Newton constant on the (p+2)-dimensional

space. To do this we insert the metric (D.44) in the ten-dimensional action and
integrate over the internal (8− p)-dimensional space. Doing this results in a warp
factor which we eliminate by performing the conformal transformation

g̃µν = g−1/2
s e−

(8−p)(p−3)
4(6−p) ηg(10)

µν ,
p

− g̃R̃= g−p/2
s e−

p(8−p)(p−3)
8(6−p) η

Æ

−g(10)R(10) . (D.47)

This transformation exactly removes all factors of the function η from the internal
space and thus we find the unambiguously defined (p+ 2)-dimensional Newton
constant

1
2κ2

p+2

=
1

2κ2
10

V8−p

g2
s g8−p

, (D.48)

where Vn−1 = 2πn/2/Γ ( n
2 ) is the volume of the unit n-sphere.





Appendix E

Finite temperature

As we have emphasized numerous times in our discussion in part II, the finite
size of Sp+1 provides an IR cut-off for the low-energy dynamics of the SYM theory
which is compatible with supersymmetry. A more commonly used IR cut-off is to
consider SYM at finite temperature. This procedure of course breaks supersymmetry
but keeps all the R-symmetry unbroken. The dual supergravity description of a
(p+1)-dimensional maximal SYM theory at finite temperature is given by a (p+2)-
dimensional black brane solution which we summarize below. In this appendix
we consider these backgrounds in some more detail and compare with the results
found for spherical branes.

The black branes of interest are most easily described as solutions to the (p+ 2)-
dimensional gauged supergravity theory described in Section 8.2.1. In contrast to
the spherical brane solutions, these non-supersymmetric backgrounds preserve the
full gauge symmetry. This fits well with the fact that in the dual gauge theory at
finite temperature the R-symmetry is preserved. The metric of the solution takes a
standard black hole form

ds2
p+2 = dr2 + e2A(r)

�

−h(r)dt2 + dx2
p

�

, (E.1)

where dx2
p is the usual metric on Rp. In addition to the metric the only field with

a non-trivial profile is the scalar η(r). The equations of motion reduce to the
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following set of equations1

A=
9− p

(6− p)(p− 3)
η , (E.2)

log(1− h) =
2p(p− 7)
(6− p)(p− 3)

(η−η0) , (E.3)

�

e
p−3
6−pη

�′
= −

g(3− p)2

2p

p

h , (E.4)

where η0 is an integration constant. When the integration constant is chosen such
that h = 1 we recover the supersymmetric flat domain wall solution in (8.25). The
horizon of the black hole is located where η→ η0 and the asymptotic infinity (UV)
is located where h→ 1. Notice that for p < 3 the UV is located at large negative η
but for p > 3 it is located at large positive η. In the near-horizon region the metric
takes the form

ds2
p+2 = dr2 −

g2(7− p)2

4
e

2(5−p)p
(6−p)(p−3)η0(r − r0)

2dt2 + e
2(9−p)

(6−p)(p−3)η0dx2
p . (E.5)

The temperature of the black hole can be determined using the standard trick of
ensuring that the near-horizon metric does not have conical singularities when
analytically continued to Euclidean time, τ= i t. The result is

T =
g(7− p)

4π
e

(5−p)p
(6−p)(p−3)η0 . (E.6)

This black brane solution can be uplifted to ten dimensions using the formulae in
Section 8.2.3 and the metric in string frame reads:

ds2
10 = (gU)

p−7
2

�

h−1dU2 + (gU)7−p
�

−h dt2 + dx2
p

�

+ U2dΩ2
8−p

�

, (E.7)

where gU = e
2p

(6−p)(p−3)η such that

h= 1−
U7−p

0

U7−p
, gU0 = e

2p
(6−p)(p−3)η0 . (E.8)

The dilaton and R-R fields are the same as for the flat supersymmetric brane solution
in (8.10) and (8.11).

Similar as in the supersymmetric case we should carefully analyze how to identify
the holographic effective ’t Hooft coupling. However, in this appendix we will
only care about qualitative features so we will not compute the exact prefactors

1These black brane solutions are clearly well-known and studied in many references, see for example
[201]. For convenience we rederive them here in our conventions and notation.
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and content ourselves with the scaling behavior. Motivated by the discussion
in [149,150] and the analysis in the main text we can identify the effective ’t Hooft
coupling in terms of the temperature as,

λ∝ (gsN)
2(5−p)

7−p

�

T
g

�p−3

∝ (gsN)(2π`s T )
p−3 . (E.9)

An alternative way to arrive at the same scaling relation is to first identify the energy
scale in the QFT, E, with the temperature of the black hole, T . The entropy of the
black branes was computed in [146] and can be evaluated in terms of the Einstein
frame area of the horizon which is

AEinst = e−2Φ(U0)Astr ∼ g−2
s (gU0)

9−p
2 g p−8Vp , (E.10)

where Vp is the spatial volume of the Dp-branes. The area of the horizon determines
the entropy of the black brane via S = 2AEinst/κ

2
10 which in terms of the field theory

quantities takes the form

S ∼ N2λ
p−3
5−p T pVp . (E.11)

It is then clear that the thermal free energy F ∼ TS has the same scaling in terms
of N and λ as the supersymmetric free energy in (7.46). This can be viewed as
another consistency check of our field theory interpretation of the spherical brane
backgrounds as holographically dual to the maximal SYM theory on Sp+1.





Appendix F

Alternative derivation for
p = 5

In this appendix we present an alternative derivation for the free energy and Wilson
loop expectation values of 6d MSYM theory that were obtained in Section 9.4.5. For
this purpose we start with the saddle-point equation (9.71) in d = 6−ε dimensions.
After renormalization (9.72) of the coupling λb these equations reduce to

16π3

λQFT
Nσi = −3

∑

j 6=i

(σi −σ j) log(σi −σ j)
2 . (F.1)

Notice that the r.h.s. of this equation describes repulsive interaction between
eigenvalues at short distance of the eigenvalues and attractive at large distance.
Hence in order to have stable distribution of the eigenvalues with large size of the
support we should consider λQFT < 0 which is consistent with the conclusions of
Section 8.3.4.

In the continuous limit we as usually introduce eigenvalue density according to
(7.39) and rewrite saddle-point equation (F.1) as the following integral equation

−
16π3

3λQFT
σ =

b
∫

−b

dσ′ρ(σ′)(σ−σ′) log(σ−σ′)2 . (F.2)

This equation has already appeared before in the context of 4d N = 2 theories
in [217,218]. To solve it we should differentiate it twice w.r.t. σ in order to obtain

b
∫

−b

dσ′
ρ(σ′)
σ−σ′

= 0 , (F.3)

231



232 ALTERNATIVE DERIVATION FOR P = 5

which is the standard singular integral equation with Cauchy kernel. This equation
has the following unbounded normalizable solution

ρ(σ) =
1

π
p

b2 −σ2
, (F.4)

In order to define position of the support endpoint b we can use the following
integral:

b
∫

−b

dσ′
(σ−σ′) log(σ−σ′)2

π
p

b2 −σ′2
= 2σ log

�

be
2

�

. (F.5)

Comparison with (F.2) immediately gives

b = 2 exp

�

−
8π3

3λQFT
− 1

�

, (F.6)

which precisely reproduces expression (9.75) we have obtained previously
considering ε→ 0 of general expression (7.42).

It is also worth noticing that the eigenvalue density (F.4) which solves (F.2) is
consistent with the ε → 0 limit of the general expression (7.41) provided we
also use coupling renormalization (9.72). On Fig.F.1 we also compare numerical
solutions of equations (F.1), (7.32) and analytical solution (F.4). As we see solutions
to the equation (7.32) with full kernel agrees with the solution of (F.1) when d is
close to 6. Also the solution (F.4) describes both numerical solutions very well.

Finally to find the free energy instead of substituting eigenvalue density (F.4) into
free energy functional we notice the following identity

1
N2

∂ F
∂ λr

= −
8π3

λ2
QFT

b
∫

−b

ρ(σ)σ2 = −
16π3

λ2
QFT

e−
16π3

3λQFT
−2 . (F.7)

Integrating this identity we easily obtain

F
N2
= −3e−

16π3

3λQFT
−2 , (F.8)

which exactly reproduces expression in (9.74). We can obtain the Wilson loop
from (F.4) and (F.6) which will obviously also reproduce previously obtained result
(9.76).
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Figure F.1: The eigenvalue distribution of 6d MSYM for N = 100 and λQFT = −20.
In particular the orange dots correspond to the numerical solution of (7.32) at
λb = 0.42 and d = 5.995 (ε = 0.005). The latter parameters correspond to
λQFT = −20 according to (9.72). The red dots in turn correspond to the numerical
solution of (F.1) at N = 100 and λQFT = −20. Finally, the dashed blue line shows
the eigenvalue density (F.4) with the endpoint position b given by (F.6).





Appendix G

Alternative solution for p = 6

G.1 An alternative derivation for the eigenvalue den-
sity

In this part of the appendix we present an alternative way to analyze the matrix
model (7.30) for the d = 7 case. For this purpose we have to solve the saddle point
equation (7.40)

C1

λQFT
σ = C2

∫ b

−b

dσ′ρ(σ′)|σ−σ′|2sign(σ−σ′) , (G.1)

with the regularized ’t Hooft coupling λQFT which we assume is small and negative
such that the eigenvalues are in general widely separated. The integral equation
in (G.1) is closely related to the saddle point equation of the matrix model for
five-dimensional SYM in the decompactification limit, i.e. when the radius R of S5

is taken to infinity. A detailed analysis of this matrix model can be found in [197].

To solve (G.1) we differentiate both sides of the equation twice with respect to σ.
This leads to the simple equation

∫ b

−b

dσ′ρ(σ′)sign(σ−σ′) =
∫ σ

−b

dσ′ρ(σ′)−
∫ b

σ

dσ′ρ(σ′) = 0 . (G.2)

This equation should be satisfied for any σ on the support, but this is possible only
if the eigenvalue density ρ(σ) is zero everywhere except at the support endpoints,
±b. Hence, we can assume the following form for the solution,

ρ(σ) =
1
2
(δ (σ+ b) +δ (σ− b)) , (G.3)
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where the factor of 1/2 is introduced to normalize the eigenvalue density. The
endpoints of the distribution can then be found by substituting the density (G.3)
back into the integral equation (G.1). This then results in the simple algebraic
equation

C1λ
−1
QFTσ =

1
2

C2

�

(σ+ b)2 − (σ− b)2
�

, (G.4)

which, using (7.32) and (7.37), leads to

b =
1

2λ
C1

C2
= −

2π3

λQFT
. (G.5)

The final expression agrees with (9.97) determined from the general expression.
One can also easily obtain the free energy in (9.99) using the distribution in (G.3)
and the value of b in (G.5).

Note that we can also derive the δ-function behavior in (G.3) directly from the
expression for the density in (7.41). If we let d = 7− ε then it is straightforward
to see that the density approaches zero in the limit ε→ 0, everywhere except at
σ = ±b.

G.2 Numerical solutions at weak negative coupling

In this part of the appendix we analyze numerically the solution to (7.32) for d = 7
and a weak negative renormalized ’t Hooft constant. Here we solve a “heat equation”
numerically1, which at large “times” approaches asymptotically the solution to the
saddle point equation below in (G.17). However, we also assume that the solution is
symmetric around the origin, i.e. for each eigenvalue σi there is another eigenvalue
−σi . As can be seen from the left panel of Figure G.1, which compares the numerical
and analytical results, the solution in (G.3) indeed reproduces the behavior of the
eigenvalue distribution at weak negative coupling. Notice that the graph is for
λQFT = −1 which is not very small. Our solution works whenever

|λQFT |
4π3 � 1, which

obviously holds for λQFT = −1.

For −λ−1
QFT �

1
4π3 the eigenvalue distribution separates into two widely separated

peaks according to (G.3) with distance 4π3

|λQFT |
between them. However, if we include

subleading terms in the kernel we can argue that the peaks are actually humps with
a width of order 1. Including the next term, G(7)16 (σ) in (9.98) has the expansion

G(7)16 (σ) = 2π(1−σ2)sign(σ) +O(e−π|σ|) . (G.6)

1See [197] for a more detailed explanation of the numerical techniques.
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Figure G.1: Eigenvalue distribution of 7d MSYM for N = 400 and λQFT = −1 and
λQFT = −3. In the left panel we compare numerical results for λQFT = −1 against
the eigenvalue density (G.3), while on the right panel we compare numerics for
λQFT = −3 against the analytical solution (G.13). The latter one takes into account
the finite width of the eigenvalue support.

At this order in the approximation there is a repulsive force at short distance which
smears the peaks into finite size humps. To estimate the size of these humps we
note that the eigenvalue distribution is even about σ = 0. Hence, assuming that N
is even, we can express the eigenvalues as

σi = −σ0 −δσi 1≤ i ≤
N
2

, (G.7)

σi = σ0 +δσN−i
N
2
+ 1≤ i ≤ N .

Here we assume that σ0� |δσi | and

N/2
∑

i=1

δσi = 0 , (G.8)

to keep the center of mass of the eigenvalues on each hump fixed at ±σ0.
The equation of motion in (7.32) for the positive eigenvalues can then be well
approximated as

4π3N
λQFT

(σ0+δσi) =
N/2
∑

j 6=i

�

1−σ2
i j

�

coth
�

πσi j

�

+
N/2
∑

j=1

(1−(2σ0+δσi+δσ j)
2) . (G.9)

Setting σ0 = −
2π3

λ , (G.9) reduces to

− 1=
2
N

N/2
∑

j 6=i

��

1−σ2
i j

�

coth
�

πσi j

�

−σ2
i j

�

, (G.10)

where the condition on the sum in (G.8) is also imposed. This last equation has no
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λ dependence and we can expect that the σi range over a size of order 1. This can
be confirmed numerically as can be seen in the right picture of Figure G.1.

On the right hand panel of Figure G.1 we can see an exponential fall-off of the
humps. We can capture this behavior using the expression (G.6) for the kernel. In
this case the continuous limit of (7.32) can be written as

4π3

λQFT
σ =

∫ σ

−b

(1− (σ−σ′)2)ρ(σ′)dσ′ −
∫ b

σ

(1− (σ−σ′)2)ρ(σ′)dσ′ . (G.11)

Taking three derivatives with respect to σ on both sides of the equation gives

2ρ′′(σ)− 4ρ(σ) = 0 , (G.12)

hence

ρ(σ) =
k
p

2
cosh

�p
2σ
�

, (G.13)

with the constraints

1=

∫ b

−b

k
p

2
cosh

�p
2σ
�

dσ = k sinh
�p

2 b
�

, (G.14)

4π3

λQFT
=
p

2k
�

cosh
�p

2 b
�

−
p

2 b sinh
�p

2 b
��

. (G.15)

Using (G.14) we can rewrite (G.15) as

sinh
�p

1+ k2 − t
�

=
1
k

, (G.16)

where t ≡ 2
p

2π3/λQFT. For a given λQFT one can solve (G.16) for k numerically,
and thus determineρ(σ) in (G.13). The dashed line in the right picture of Figure G.1
shows this density at λQFT = −3.

G.3 Solutions at weak negative coupling and finite
N

In this part of the appendix we consider d = 7 solutions at finite N . For small
negative regularized coupling we can use the approximate equations of motion in
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(7.38), which for d = 7 are

−
4π3N
λQFT

σi =
∑

j 6=i

σ2
i jsign

�

σi j

�

. (G.17)

Assuming that N is even, the solution that corresponds to the large N solution in the
previous section has N/2 eigenvalues at σ+ = b7 = −

2π3

λQFT
and N/2 at σ− = −σ+.

However, if we put 2M eigenvalues at σ = 0, then we can also satisfy (G.17) if we
place N/2−M eigenvalues at σ+ = −

2π3

λQFT

N
N−M and the same number at σ− = −σ+

2. We have ignored short range interactions here, but as is shown in the previous
section they only spread the eigenvalues an order 1 distance from the peaks.

The free energy for these more general solutions is given by

F =
16π10N2

3λ3
QFT

�

1−
M2

(N −M)2

�

, (G.18)

demonstrating that the free energy increases with increasing M since λQFT < 0.
Assuming that λQFT is also small (G.18) shows that the solutions with nonzero M
are heavily suppressed. If N is odd then M is replaced with M + 1/2 in (G.18).

The quadratic fluctuations about the lowest energy solution are

δF =
4π4N
λQFT

∑

i

(δσi)
2 + 2π

∑

j 6=i

|σi −σ j |(δσi)
2 − 2π

∑

j 6=i

|σi −σ j |δσiδσ j

=
4π4

λQFT

�N/2
∑

i

δσ
(+)
i

��N/2
∑

i

δσ
(−)
i

�

, (G.19)

where δσ(+)i are the fluctuations of the eigenvalues at σ+ and δσ(−)i are the
fluctuations of the eigenvalues at σ−. Hence, to quadratic order there is a tachyonic
mode corresponding to the overall center of mass motion, which is not present
for SU(N), and a positive mode corresponding to the average of the left and right
eigenvalues moving in the opposite direction. This latter mode has a large positive
coefficient and thus is sharply suppressed. All other modes are zero modes.

The zero modes are not exact as there are nonzero cubic terms. Since the center
of mass modes are either removed or suppressed, we can assume that

∑

i δσ
(+)
i =

2There are still other solutions, e. g. one can have an unequal number of eigenvalues at σ+ and σ−,
in which case σ− 6= −σ+.
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∑

i δσ
(−)
i = 0. Then the fluctuations of the free energy are
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π
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j |
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(G.20)

+
π

3

 

−N
N/2
∑

i

(δσ(−)i )
3 +

N/2
∑

i, j

|δσ(−)i −δσ
(−)
j |

3

!

,

where we see that right and left fluctuations decouple from each other. Note that
these fluctuations are of order 1 and independent of λQFT, hence their only effect is
to shift the free energy by an unimportant constant and can be ignored even for
small N .



Appendix H

Derivation of the BPS
equations

The gauged supergravity BPS equations for the ansatz in Chapter 12 can be reduced
to the Liouville equation on the Riemann surface accompanied by a set of algebraic
equations. This is shown in detail in [56] for gauged supergravity theories in four,
five, six and seven dimensions. Here we provide a derivation of this for the case of
main interest in this paper, namely seven-dimensional maximal gauged supergravity.

As in [11,18,19] we work with the U(1)×U(1) invariant truncation of the seven-
dimensional maximal SO(5) gauged supergravity of [203]. The supersymmetry
variations for the fermionic fields were derived in [203]. For the truncation of
interest here they read [168]

δψµ =
h

∇µ + 2g(A(1)µ Γ
12 + A(2)µ Γ

34) +
g
2

e−4(λ1+λ2)γµ +
γµ

2
γν∂ν(λ1 +λ2)

i

ε

+
γν

2

�

e−2λ1 F (1)µν Γ
12 + e−2λ2 F (2)µν Γ

34
�

ε ,

δχ(1) =
�

g
2
(e2λ1 − e−4(λ1+λ2))−

γµ

4
∂µ(3λ1 + 2λ2)−

γµν

8
e−2λ1 F (1)µν Γ

12
�

ε ,

δχ(2) =
�

g
2
(e2λ2 − e−4(λ1+λ2))−

γµ

4
∂µ(2λ1 + 3λ2)−

γµν

8
e−2λ2 F (2)µν Γ

34
�

ε ,

(H.1)

where g is the gauge coupling of the supergravity theory which is related to
the radius of the maximally symmetric AdS7 solution. The Γ i are SO(5) gamma
matrices, the γµ seven-dimensional space-time gamma matrices, and we have
defined γµ1...µp

= γ[µ1
. . .γµp]. From now on we suppress all spinor indices and use

hats to indicate tangent space indices. The partial topological twist of the boundary
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field theory suggests the following projectors,

γ x̂1 x̂2
ε = iε , Γ 12ε = iε , Γ 34ε = iε , γr̂ε = ε . (H.2)

Therefore, in general, our solutions preserve one quarter of the supersymmetry.
Four-dimensional Poincaré invariance implies that the spinors are constant in the
R1,3 directions,

∂tε = ∂zi
ε = 0 . (H.3)

Note however that we do not assume that the spinors are independent of the
coordinates (x1, x2) parameterizing the Riemann surface. The conditions for the
supersymmetry variations (H.1) to vanish are of two types. Vanishing of the
variation of the dilatinos χ(i) and the (t, z1, z2, z3) components of the gravitino
ψµ leads to differential equations for the background fields, while the integrability
of this system imposes additional constraints. One can show that for the truncation
of interest and with the ansatz in (12.2)-(12.3) these reduce to:

∂r(3λ1 + 2λ2)− 2ge f +2λ1 + 2ge f −4λ1−4λ2 − eh−ϕ̂−2λ1 F (1)x1 x2
= 0 ,

∂r(2λ1 + 3λ2)− 2ge f +2λ2 + 2ge f −4λ1−4λ2 − e f −ϕ̂−2λ2 F (2)x1 x2
= 0 ,

(∂x1
+ i∂x2

)(3λ1 + 2λ2)− e− f −2λ1(F (1)x2 r − iF (1)x1 r) = 0 ,

(∂x1
+ i∂x2

)(2λ1 + 3λ2)− e− f −2λ2(F (2)x2 r − iF (2)x1 r) = 0 ,

∂r ( f +λ1 +λ2) + ge f −4λ1−4λ2 = 0 ,

∂x1
( f +λ1 +λ2) = ∂x2

( f +λ1 +λ2) = 0 ,

∂r(ϕ̂/2− 4λ1 − 4λ2) + 2ge f +2λ1 + 2ge f +2λ2 − 3ge f −4λ1−4λ2 = 0 ,

∂r∂x2
(ϕ̂/2− 4λ1 − 4λ2) + 4gF (1)r x1

+ 4gF (2)r x1
= 0 ,

∂r∂x1
(ϕ̂/2− 4λ1 − 4λ2) + 4gF (1)x2 r + 4gF (2)x2 r = 0 ,

(∂ 2
x1
+ ∂ 2

x2
)(ϕ̂/2− 4λ1 − 4λ2)− 4gF (1)x1 x2

− 4gF (2)x1 x2
= 0 .

(H.4)

Imposing that the variations of the (r, x1, x2) components of the gravitino vanish
implies the equation

∂rε−
1
2 (∂r f )ε= 0 , (H.5)

which is solved by ε= e f /2ε0 with ε0 a constant spinor obeying the projectors in
(H.2). In addition these gravitino equations imply that the two U(1) gauge fields



DERIVATION OF THE BPS EQUATIONS 243

are given by

A(1) =
a1

8g(a1 + a2)
ω , A(2) =

a1

8g(a1 + a2)
ω . (H.6)

Here we show that in the IR, where the metric takes the form AdS5×C these equation
reduce to a single second order equation for the conformal factor ϕ together with
algebraic equations for the other fields. Plugging the IR fields (12.3) in (H.4) results
in the following equations

2ge2λ1 − 2ge−4λ1−4λ2 + e−ϕ−ϕ0−2λ1 F (1)x1 x2
= 0 ,

2ge2λ2 − 2ge−4λ1−4λ2 + e−ϕ−ϕ0−2λ2 F (2)x1 x2
= 0 ,

1− 2e f0−4λ1−4λ2 = 0 ,

e2λ1 + e2λ2 −
3
2

e−4λ1−4λ2 = 0 ,

(∂ 2
x1
+ ∂ 2

x2
)ϕ − 8g(F (1)x1 x2

+ F (2)x1 x2
) = 0 .

(H.7)

The third and fourth of these equations, together with a linear combination of
the first two lead to algebraic equations for the scalars, and the metric constants.
Finally, after defining,

eϕ0 =
e4λ1+4λ2

16g2
(e8λ1+4λ2 + e4λ1+8λ2 − e−2λ1 − e2λ2)−1 (H.8)

and combining the second linearly independent combination, together with the last
equation we find the Liouville equation

�ϕ +κeϕ = (∂ 2
x1
+ ∂ 2

x2
)ϕ + κeϕ = 0 , (H.9)

which has to be satisfied by the conformal factor ϕ.





Appendix I

The Liouville equation

Here we give a short overview of the Liouville equation and some of its properties
that are relevant in the context of this work. The Liouville equation is the non-linear
partial differential equation (H.9) satisfied by the conformal factor ϕ of a metric
ds2 = eϕ(dx2

1 + dx2
2) on a surface of constant Gaussian curvature κ.1 This equation

can be used to prove the uniformization theorem which states that every simply
connected Riemann surface is conformally equivalent to one of three Riemann
surfaces:

• the hyperbolic plane for κ < 0,

• the complex plane for κ= 0,

• the Riemann sphere for κ > 0.

In particular this implies that every Riemann surface admits a Riemannian metric
of constant curvature. For compact Riemann surfaces, the hyperbolic Riemann
surfaces with genus g> 1 have the hyperbolic plane as universal cover and have
a non-abelian fundamental group. The torus, g = 1 has the complex plane as
universal cover and the fundamental group is Z2. Finally the Riemann sphere with
genus g= 0 has a trivial fundamental group.

Apart from regular solutions to the Liouville equation we also consider Riemann
surfaces with prescribed singularities. This results in the addition of localized
sources on the right hand side of the Liouville equation

�ϕ + κeϕ = 4π
∑

i

(1− ξi)δ
(2)(pi) , (I.1)

1Note that it is sometimes convenient to work in complex coordinates z = 1
2 (x1 + ix2) where

�= ∂ 2
x1
+ ∂ 2

x2
= 4∂z∂z̄ .
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where 2πξi parameterizes the opening angle of the conical defects located at the
point pi and we restrict the parameters to lie within the interval 0< ξi < 1. We can
specify a Riemann surface of interest by specifying a set of parameters {g, J , ~ξ, ~p,κ},
where g is the genus, J a complex structure, ~ξ and ~p two vectors with entries
the opening angles and positions of the conical singularities and κ the Gaussian
curvature. Given a metric g on the Riemann surface, we can compute the volume
using the Gauss-Bonnet theorem.

Vg,ξ =

∫

Σ

κgdωg =
2π
κ
χ(Σ, ~ξ) =

2π
κ

�

χ(Σ)−
∑

i

(1− ξi)

�

, (I.2)

where χ(Σ) = 2g − 2 is the topological Euler characteristic and we call χ(Σ, ~ξ)
the conic Euler characteristic. In algebraic geometry language this represents
the twisted anticanonical divisor, −KΣ −

∑

i(1− ξi)pi on Σ, where KΣ = T 1,0∗Σ

denotes the class of the canonical divisor of the smooth Riemann surface Σ, see
for example [169,181,235]. When a constant curvature metric exists the sign of
the curvature κg agrees with the sign of χ(Σ, ~ξ). To extend the uniformization
theorem to include Riemann surfaces with conical singularities, one looks for a
metric compatible with the complex structure J , with conical singularities at points
pi and constant curvature away from the singularities. Indeed, using (I.1) it follows
that the Ricci scalar, given by R = −e−ϕ�ϕ, is constant away from the singularities.
Near a conical singularity, ϕ∝ log |z| implying that at these points −�ϕ is given
by a multiple of delta functions at z = 0.2 In [169,181,235] it was shown that such
a constant curvature metric always exists when χ(Σ, ~ξ)≤ 0 or when χ(Σ, ~ξ)> 0
and 1− ξi >

∑

j 6=i(1− ξ j) for all i. This metric is furthermore unique except when

χ(Σ, ~ξ) = 0 when it is unique up to an overall constant, or when Σ= S2 with less
than three punctures when it is unique up to a Möbius transformation which fixes
the position of the singularities. It is known that to each such set of parameters
there exists a unique metric on Σwith constant Gaussian curvature κ and prescribed
singularities at the points pi .

Away from the singularities, the most general solution to the Liouville equation is
given by

ϕ = log

�

4
|∂zu(z)|2

(1+κ|u(z)|2)2

�

, (I.3)

where u(z) is a meromorphic function with non-vanishing holomorphic derivative
and at most simple poles. Close to the punctures, the Liouville equation implies the
following asymptotic behavior:

ϕ = −2(1− ξi) log |z − zi | , as z→ zi . (I.4)

2This can be seen by excising a small circle around the origin and invoking the Stokes theorem.
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The problem of finding a general solution with conical singularities is closely related
to the Riemann-Hilbert problem of finding functions with prescribed monodromies
in the complex plane. In order to solve this problem we introduce the Fuchsian
equation, given n singularities with opening angles ξi this equation is given by

d2w
dz2

+
n
∑

i=1

�

(1− ξi)(1+ ξi)
4(z − zi)2

+
ci

2(z − zi)

�

w= 0 , (I.5)

where the ci are known as the accessory parameters which have to satisfy the
equations







∑

i ci = 0
∑

i(2cizi + (1− ξi)(1+ ξi)) = 0
∑

i(ciz
2
i + zi(1− ξi)(1+ ξi)) = 0 .

(I.6)

The double poles of (I.5) fix the behavior of the solutions near the singular points
to

w(z)∼ A(z − zi)
(1+ξi)/2 + B(z − zi)

(1−ξi)/2 , (I.7)

from which one can easily read of the monodromies. Given a pair of linearly
independent solutions w1 and w2 one can see that by plugging the function u =
w1/w2 in (I.3) we find a solution ϕ to the Liouville equation with the prescribed
singularities. In general the monodromies belong to SL(2,C), and ϕ will not be
a single valued function. In order to find a single valued function we need to
furthermore require all monodromies to lie in SU(2), or SU(1, 1) for κ < 1. These
conditions uniquely determine the accessory parameters ci and consequently the
function w1,2. Since now u transforms as

u→
au+ b

−b̄u+ ā
, where |a|2 + |b|2 = 1 , (I.8)

all monodromies leave ϕ invariant.





Appendix J

Uplift formulae

In this appendix we collect all the relevant uplift formulae used in part III of
this thesis. The uplift formulae for the maximal four, five and seven-dimensional
supergravities to string and/or M-theory were given in [80]. The uplift formulae
from the maximal six-dimensional supergravity to ten-dimensional type IIA
supergravity was given in [81].

J.1 S7 reduction of eleven-dimensional supergravity

The eleven-dimensional metric is given by

ds2
11 =∆

2/3ds2
4 +
∆−1/3

g2

4
∑

i=1

X−1
i

�

dµ2
i +µ

2
i

�

dφi + gA(i)
�2�

. (J.1)

Here the four functions µi satisfy the constraint
∑

i µ
2
i = 1 and the X i are defined as

X1 = e
1
4 (3λ1−λ2−λ3) , X2 = e

1
4 (3λ2−λ1−λ3) ,

X3 = e
1
4 (3λ3−λ1−λ2) , X4 = e

1
4 (−λ1−λ2−λ3) .

(J.2)

A convenient parameterization for the µi is given by

µ1 = sinα , µ2 = cosα sinβ ,

µ3 = cosα cosβ sinγ , µ4 = cosα cosβ cosγ .
(J.3)

The function ∆ appearing in the metric is given by

∆=
∑

i

X iµ
2
i . (J.4)
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There is also a four-form field strength, given by

F(4) = 2g
∑

i

�

X 2
i µ

2
i − X i∆

�

ε4

−
1

2g2

∑

i

X−2
i d(µ2

i )∧
�

dφi + gA(i)
�

∧ ?4F (i) . (J.5)

Here ε4 is the volume form on the four-dimensional part of the metric ds2
4.

J.2 S5 reduction of type IIB supergravity

The uplift to type IIB supergravity is given by

ds2
10 =∆

1/2ds2
5 +
∆−1/2

g2

3
∑

i=1

X−1
i

�

dµ2
i +µ

2
i

�

dφi + gA(i)
�2�

(J.6)

where µi are subject to the constraint
∑

µ2
i = 1. The X i are given by

X1 = e−λ1−λ2 , X2 = e−λ1+λ2 , X3 = e2λ1 . (J.7)

A convenient parameterization for the µi is given by

µ1 = cosα sinβ , µ2 = cosα cosβ , µ3 = sinα . (J.8)

The function ∆ is given by

∆=
3
∑

i=1

X iµ
2
i . (J.9)

The self-dual five-form field strength is given by F5 = G5 + ?10G5 with

G5 = 2g
∑

i

�

X 2
i µ

2
i −∆X i

�

ε5 −
1

2g2

∑

i

X−2
i d

�

µ2
i

�

∧
�

dφi + gA(i)
�

∧ ?5F (i) (J.10)

where ε5 is the volume form on ds2
5 and ?5 is the five-dimensional Hodge dual with

respect to the same metric.
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J.3 S4/Z2 reduction of massive type IIA supergravity

In ten dimensions, the metric is given by

ds2
10 = (sinαX

3
2 )

1
12∆

3
8

�

ds2
6 +

2X 2

g2
dα2 +

1
2g2X∆

cos2α
�

σ2
1 +σ

2
2 + (σ3 − gA)2

�

�

.

(J.11)
The only non-vanishing field strength is given by

F(4) = −
p

2 sin
1
3 α cos3α

6g3
∆−2Udα∧ ε3 +

sin
1
3 α cosα
p

2g2
F ∧ (σ3 − gA)∧ dα

+
sin

4
3 α cos2α

2
p

2g2
∆−1X−3F ∧ dσ3 (J.12)

Finally the dilaton is given by

eφ = sin−
5
6 α∆

1
4 X−

5
4 . (J.13)

In these expressions we have introduced the functions

∆=X cos2α+ X−3 sin2α ,

U =X−6 sin2α+
�

4X−2 − 3X 2
�

cos2α− 6X−2 .
(J.14)

The σi are left-invariant one-forms of SU(2) which satisfy dσi = −
1
2εi jkσ j ∧σk.

The gauge coupling constant g is related to the mass parameter M of the massive
type IIA theory by M =

p
2

3 g.

J.4 S4 reduction of eleven-dimensional supergravity

The eleven-dimensional metric is given by

ds2
11 =∆

1/3ds2
7 +

1
4g2
∆−2/3

�

X−1
0 dµ2

0 +
2
∑

i=1

X−1
i (dµ

2
i +µ

2
i (dφi + 2gA(i))2)

�

.

(J.15)
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The four-form flux takes the form

?11 F4 = 4g
2
∑

i=0

�

X 2
i µ

2
i −∆X i

�

ε7 + 2g∆X0ε7

+
1

4g2

2
∑

i=1

X−2
i d(µ2

i )∧ (dφi + 4gA(i))∧ ?7F (i) . (J.16)

Here we have introduced the functions X0,1,2:

X1 = e2λ1 , X2 = e2λ2 , X0 = (X1X2)
−2 . (J.17)

and

∆=
2
∑

i=0

X iµ
2
i , (J.18)

while the µi are constrained to lie on the hypersurface
∑2

i=0µi = 1. A convenient
parameterization for the µi is given by

µ0 = cosα cosβ , µ1 = sinα , µ2 = cosα sinβ . (J.19)



Appendix K

SCFT trivia

Here we collect some of our conventions and useful facts about SCFTs in various
dimensions. The number of supercharges preserved by SCFTs in different
dimensions is summarized in the table below. Additionally the supergroup and
R-symmetry are given in this table.

Dimension 2Q’s 4Q’s 8Q’s 16Q’s

6 / / N = (1, 0) N = (2, 0)
su(2)R ⊂ osp(8|2) sp(4)R ⊂ osp(8|4)

5 / / N = 1 /
su(2)R ⊂ f4

4 / N = 1 N = 2 N = 4
u(1)R ⊂ su(2, 2|1) su(2)R × u(1)r ⊂ su(2,2|2) su(4)R ⊂ su(2,2|4)

3
N = 1 N = 2 N = 4 N = 8

; ⊂ osp(1|4) u(1)R ⊂ osp(2|4) so(4)R ⊂ osp(4|4) so(8)R ⊂ osp(8|4)

Table K.1: The superconformal algebra corresponding to a number of supercharges
Q is given for dimensions d = 3,4,5,6, [76]. Furthermore we specify the
corresponding R-symmetry.

A four-dimensional N = 2 SCFT has SU(2)R ×U(1)r R-symmetry. We denote the
generator of the diagonal Cartan of SU(2)R by I3 and the generator of U(1)r by RN=2.
The charge assignments for the components of a N = 2 vector and hypermultiplet
are given as follows: Since we study both N = 1 and N = 2 theories, it is useful

RN=2 \ I3
1
2 0 − 1

2
0 Aµ
1 λ λ′

2 φ

RN=2 \ I3
1
2 0 − 1

2
−1 ψ

0 Q eQ†

1 eψ†

to consider an N = 1 subalgebra of the N = 2 algebra. A choice of subalgebra
corresponds to a choice of Cartan of SU(2)R. The unique N = 1 superconformal
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R-symmetry generator in an N = 2 SCFT is given by

RN=1 =
1
3

RN=2 +
4
3

I3 . (K.1)

The linear combination
J = RN=2 − 2I3 , (K.2)

commutes with the chosen N = 1 subalgebra and is thus a flavor symmetry from
the N = 1 point of view.

Finally we note that the operators in a TN theory have charges

RN=2 I3

uk 2k 0
Q 0 1

2 (N − 1)
eQ 0 1

2 (N − 1)
µ 0 1
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