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Abstract The theory of the Kauffman bracket, which
describes the Jones polynomial as a sum over closed circles
formed by the planar resolution of vertices in a knot diagram,
can be straightforwardly lifted from s((2) to s[(N) atarbitrary
N —but for a special class of bipartite diagrams made entirely
from the antiparallel lock tangle. Many amusing and impor-
tant knots and links can be described in this way, from twist
and double braid knots to the celebrated Kanenobu knots
for even parameters — and for all of them the entire HOM-
FLY polynomials possess planar decomposition. This pro-
vides an approach to evaluation of HOMFLY polynomials,
which is complementary to the arborescent calculus, and this
opens a new direction to homological techniques, parallel to
Khovanov-Rozansky generalizations of the Kauffman calcu-
lus. Moreover, this planar calculus is also applicable to other
symmetric representations beyond the fundamental one, and
to links which are not fully bipartite what is illustrated by
examples of Kanenobu-like links.
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1 Introduction

Knot calculus in the three-dimensional Chern—Simons the-
ory [1-3] provides an example of exact non-perturbative cal-
culation in quantum field theory and emphasizes the role of
hidden symmetries and integrability in this kind of problems.
Of special importance there is the possibility to substitute the
complicated algebraic machinery by a much simpler geomet-
rical and homological one — which is still under-investigated
and therefore somewhat restricted. This paper enlarges appli-
cability of this kind of approaches and shows a possible way
out of the long-standing constraints, by releasing a parameter
N (related to the rank of a gauge group in this case) at the
expense of restricting the moduli space (from all knots and
links to bipartite ones).

From the point of view of quantum field theory, we con-
sider the three-dimensional topological Chern—Simons the-
ory with SU (N) gauge group defined by the following action:

2
Scs[Al = %/ytr(%l/\dfl+ gA/\A/\A). (1.1)

The belief is that the gauge invariant Wilson loops in this
theory are quantum knot invariants called the colored HOM-
FLY polynomials:

HX(q. A) =<trR Pexp (% A)> ,
K cs

where the gauge fields are taken in an arbitrary s[(N) repre-
sentation A = A/‘i TaR dx" with T, being generators of s[(N)
Lie algebra and the integration contour can be tied in an arbi-
trary knot. A generalization to the link case is straightfor-
ward. Wilson loops are of great importance in the theoretical
physics. For example, these operators are long known to gov-
ern one of the most intriguing physical phenomena such as
the quark confinement in QCD [4,5].

A crucial property of the Chern—Simons theory is that
correlators, in particular (1.2), can be computed exactly, and
the answers are strongly non-perturbative — polynomials in

(1.2)

2mi
K+N

several methods for non-perturbative calculations. One of
them is the so-called Reshetikhin—Turaev approach [6—10]
coming from hidden quantum group sl, (N) symmetry, and
another one is related to an intriguing duality between the 3d
Chern—Simons theory and the 2d Wess—Zumono—Novikov—
Witten theory [11-13]. However, these methods imply cal-
culations of concrete correlators in concrete representations
and become drastically complicated even to computer cal-
culations with the growth of complexity of the representa-
tion and the knot/link. Moreover, they are not well suited
for examination of properties common for different repre-
sentations and particular families of knots/links. Thus, other
methods to calculate Wilson loops in the Chern—Simons the-
ory are also needed.

the variables ¢ = exp( ) and A = ¢". There are

@ Springer

So far, these alternative methods are applicable only to
special kinds of links — but within these families they are
remarkably efficient and provide a lot of interesting informa-
tion about the hidden properties of the Wilson observables.
One of such techniques is the so-called tangle calculus [14—
18] which allows to calculate the HOMFLY polynomials for
links that can be split into some simple tangles. Another one
is applicable only to the family of the arborescent knots [19].

In this paper, we introduce a very different method — of
planar calculus for the HOMFLY polynomial generalizing
to arbitrary N the celebrated Kauffman-bracket approach to
the Jones polynomials at N = 2 (Fig. 1). It works for a
specific but rather large family of bipartite knots, and more-
over, can be applied to simplify calculations of the HOMFLY
polynomials for some other knot families. Some examples
of calculation of the HOMFLY polynomials via the planar
technique are provided in Sects.6 and 7. Here we mostly
consider the fundamental representation' and give just a
brief announcement for other symmetric representations (see
Sect. 10) where additional ideas and techniques are needed.
They will be considered in more details in a companion paper.
We also speculate on a possible Khovanov—Rozansky calcu-
lus for bipartite links in Sect. 11.

A relative simplicity of the Jones polynomials, i.e. of rep-
resentation theory of sl,(2), is explained by the Kauffman
rule for the quantum R-matrix:

R N2 ey —q - i8] (1.3)

In application to knot/link calculus this implies the planar
decomposition of the Jones polynomials in a sum of pow-
ers of Dy = Trg[q(z) 1=012]=q+ q_l, associated with
cycles,? which are formed by various resolutions of vertices
of the knot/link diagram. This provides the Jones polynomial
as a sum over vertices of the hypercube of resolutions, which
afterwards can be T-deformed to give the Khovanov poly-
nomial. See [20,21] for comprehensive reviews. This works
so easily for N = 2 (i.e. for two colors), because in this case
the contravariant invariant tensor €/ has just two variables —
and becomes far more sophisticated for the HOMFLY poly-
nomials at an arbitrary N [22,23].

In this paper, we note that the same trick can be applied
for an arbitrary N — but for a very special kind of knot dia-
grams, which are made entirely from the antiparallel (AP)
lock tangles, depicted in Figs. 2, 3 and 4 (and also ones hav-
ing inverse orientation) and studied in some detail in [15,24].
Knots and links possessing such realization are sometimes
called bipartite [25,26], and we discuss examples and the
intriguing question of their abundancy in the special Sect. 3.

! Throughout the paper, we utilize standard enumeration of s[(N) rep-
resentations by Young diagrams, and in particular, we use the box [ to
denote the fundamental representation.

2 We denote by 1 the identity matrix.
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Fig. 1 The celebrated “Kauffman bracket” — the planar decomposi-
tion (1.3) of the R-matrix vertex for the fundamental representation of
5, (2). In this case (N = 2) the conjugate of the fundamental represen-
tation is isomorphic to it, thus, tangles in the picture has no orientation.
Indices can be raised with the help of the invariant tensor €'/, which is
exactly of rank N =2

K- O X

Fig. 2 The antiparallel (AP) lock — the main hero of this paper. It is in
the picture in the middle, while to the left and to the right sides are its
two abbreviated notation, which will be used in the text. We mark the
orientation explicitly — and sometimes we call the lock in the picture
“vertical”. The name and the small segments in these picture are vertical
— point in the direction of locking. This is the standard notation in the
theory of bipartite knots [25,26]

The AP lock tangle is the convolution of two R-matrices
r I = (R % R) = Ri" Rm-j and admits the following
planar decomposmon :

r__ymu+¢%y with ¢ = A(g — g~ 1) := Afq}).
(1.4)

Pictorially it is shown in Fig.3 and derived in Sect.2. The
“opposite” element in Fig.4 is

(1.5)

Emphasize that the decomposition in Fig.3 turns into
the Kauffman decomposition in Fig.1 when transforming
¢ — —q (forinverse crossings ¢ — —g ). This fact allows
to provide general computations valid both for the bipartite
HOMFLY polynomial and for the Jones polynomial for a link
obtained from a bipartite link by shrinking every AP lock to
a single crossing. We call such a diagram a precursor dia-
gram. Thus, the computation of the HOMFLY polynomial

(@ =576, +@ojs] with ¢=—-A""{g).

3 Throughout the paper we use the standard notation {x} x —
x~!, and A = ¢". Then the quantum number is [1n] = , and the
dimension of the fundamental representation of sl, (N ) Wthh will be
associated with each closed cycle, is Dy = [N] = . Sometimes
we omit the subscript N of Dy. We denote incoming mdlces either by
a superscript or by a conjugate subscript, and outcoming indices are
the opposite: either a subscript or a conjugate superscript. The invariant

tensor is either S,i and 8[! with upper and lower indices of the same type

or 8"/ and 8,7 with both upper or lower indices of different types.

of a bipartite link can be made as easy as the computation
of the Jones polynomial for the corresponding precursor dia-
gram. One just needs to substitute ¢ and ¢ instead of —g and
—g~ ! correspondingly in the Kauffman-bracket calculus for
the Jones polynomial (Fig. 5).

Substituting the decompositions in Figs.3 and 4 for all
vertices in a link we get a sum over various non-intersecting
(planar) cycles, each contributing D with coefficients, which
are made from products of ¢ and ¢. From this planar resolu-

tion we write down the polynomial

blpa.rtlte

(1.6)

ZD“¢ ¢°,

where v is the number of vertices in the diagram. Note that
all the items here come with unit coefficients (!), thus the
only needed information is pure combinatorial/geometrical,
reflecting the selection of powers a, b, ¢ for each planar res-
olution of the AP lock diagram. In fact, the powers b and ¢
are distributed in a very simple way, see (5.2) below — thus,
the only issue is the distribution of a.

Due to the above discussion, the polynomial Pp bipartite
from (1.6) corresponds to both the bipartite HOMFLY poly-
nomial and to the Jones polynomial for the corresponding
precursor diagram. The final answers for these polynomials
are obtained by the substitutions from Table 1, or explicitly:

2U
bivarti B _
Hmlpamte —A w} :D;zv¢b¢c’

¢ =Alg), d=-A"{q),

J precursor

(_1)%(w+n+fn,) . qf%UJ*%(nJr*n—) (]7)

21]
Y DI =) (—g) "

A possible formulation of our statement is that a single
knot/link diagram can describe the Jones polynomial by a
direct application of the Kauffman rule (1.3) at all vertices
and simultaneously a whole bunch of the HOMFLY polyno-
mials for a variety of knots/links, obtained by insertion of dif-
ferently oriented AP lock tangles at every vertex, see Sect.4
for more details. Expressions for these HOMFLY polyno-
mials are just the same as for the Jones polynomials, with
powers of g in a cycle decomposition changed for ¢ and ¢,
and D; changed for Dy .

Note that one can consider one intersection in the lock
tangle to be virtual what leads to the construction of virtual
links [27,28]. The planar technique for such virtual links is
an interesting question for future research.

@ Springer
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K= X
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Fig. 3 The planar decomposition of the lock vertex — the main statement of the present text

XX )0 =

Fig. 4 The “opposite” of the vertical lock denoted by a double segment. It is made from inverse vertices, thus ¢ = d)‘ A Al
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Fig. 5 The Kauffman and lock decompositions can be generalized to describe both the bipartite HOMFLY polynomial and the precursor Jones

polynomial

Table 1 These substitutions turn (1.6) into the HOMFLY and Jones polynomials. Here w is the write number of the corresponding diagram, n is

the number of “4”-crossings shown in Fig. 1 and n_ is the number of the opposite

“_

-crossings in a link diagram

knot diagram ¢ ] D Framing factor
HOMFLY bipartite Alg) —A"Yq) Dy = % A~V
Jones Precursor —q —q7! Dy=q+q! (—1)%(“’“’**”*) . q*%“’*%(“*"*)

2 Derivation of planar decomposition

In this section we derive the planar decomposition for the
AP lock in Fig.3. As shown in Fig. 6, equation (1.4) is a
direct corollary of the skein relation, Fig.7, saying that the

fundamental R-matrix has two eigenvalues ¢ and —g '

R-—¢)R+¢H=0 = R=R""+{q} -1
— r:R*R:R*(R’l+{q}-]l)=||+A{q}':~
2.1)

At this point, we have fixed the framing, and preferable
choice is vertical® rather than topological — it allows to keep
the coefficients in front of || unit. The price to pay is the over-
all framing factor in the HOMFLY polynomial, see Table 1,
which should be restored to provide a topological invariant
quantity.

In Sects. 6 and 7 we provide various examples of the fun-
damental HOMFLY polynomials, calculated in by this pla-

4 This is the standard term for the representation-theory framing — not
to be mixed with the word “vertical”, which we use to characterize our
way of drawing the locks.

@ Springer

nar decomposition method. After that in Sect. 10, we discuss
generalizations to other symmetric representations and to the
Khovanov calculus in Sect. 11 (which can provide not the
usual Khovanov—Rozansky polynomials for bipartite knots
but still looks potentially interesting).

3 Which knots are bipartite?

In this section, we present some known results about bipartic-
ity of links. We call links bipartite if they can be represented
by a diagram obtained by gluing together antiparallel lock
tangles only. Such diagrams are often called in literature as
matched diagrams [25,26], we mostly call them bipartite or
lock diagrams in this paper. Matched diagrams were first
introduced in 1987 in paper [29]. Until the work [25] (for
24 years), nobody succeeded in finding or even proving that
non-bipartite knots do exist.

To find the obstacles for existence of bipartite realiza-
tion of a given knot/link one needs to find a link invariant
which has some special property in bipartite case but not
in general. In [25], it was suggested to look at the Alexan-
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Fig. 6 Substituting the skein relation from Fig.7 for the right vertex,
we get the two diagrams in the second line. As shown in the third line,
the first is trivial and the second is trivialized by the first Reidemeister
relation. Altogether we get the decomposition of the AP lock into two
planar trivialities — exactly like it was in the Kauffman case. The three
differences are: applicability at arbitrary N, the presence of orientation,
a more sophisticated N-dependent coefficient A{g} = ¢" (g — ¢~ ).
Note that of crucial importance is the presence of two vertices in the
lock and the antiparallel choice — this allows the arrows to be directed in
a peculiar way, consistent with planar decomposition. Direct general-
ization of the Kauffman rule for a single vertex gives rise to non-planar
decomposition [22]. The planar decomposition rule in the box is the
main statement of this paper. All the rest results are illustrative exam-
ples and possible applications

\\ ) X”“X

Fig. 7 The skein relation following from the knowledge of R-matrix
eigenvalues in the fundamental representation, see (2.1). This relation
is used in the derivation of the planar decomposition of AP lock in Fig. 6

der ideals. Since the HOMFLY polynomial has a symmetry
Hgv(q, A) = Hg(g~', A) and transposition (denoted by
V) does not change the fundamental representation, (1Y =
[, the Alexander polynomial at A = ¢V = 1 satisfies
Alg(g) = Alg(g~") and depends on ¢ only through the
Conway variable z> = {¢}>. However, the Alexander poly-
nomial has an alternative realization in terms of the determi-
nant of the Alexander matrix A = ¢>S — SV obtained from
the Seifert matrix S. It turns out that the mth ideal being
defined as the ideal in Z[¢?, ¢ 2] generated by all minors of
an arbitrary Alexander matrix of size n — m + 1, where n is
the smallest among the number of columns and rows in A, are
also invariants — not directly expressible through the HOM-

FLY polynomials. Thus, these Alexander ideals can depend
on g2 and ¢ 2 separately. The claim of [25] is that for bipar-
tite knots this does not happen — the entire Alexander matrix,
and thus, all its minors can be chosen to depend polynomi-
ally on z2. At the same time there are knots with Alexander
ideals generated by 1+¢2 not expressible through z> — which
therefore cannot be bipartite. For computations of the second
Alexander ideals see Appendix A.

Theorem 1 (Duzhin, Shkolnikov, 2011, [25]) If a higher
Alexander ideal of a knot contains the polynomial 1 + g2,
then this knot is not bipartite.

Due to this observation one immediately gets a series of
non-bipartite knots by the tables and the computer pro-
gram of Knot Atlas [30]. The first examples in the Rolf-
sen table are 935, 937, 941, 946, 947, 948, 949, 1074, 1075,
10103, 10155, 10157, 11ai23, 11a;3s, 11ayss, 11ay73, 11agsy,
1laygs, 1lazsg, 1lazsz, 1lazer, 1lazes, 1lazia, 1lazyy,
110321 , 11a366, 1 1n126, 1 1n133, 11n167. The second Alexan-
der ideals of these knots are (b, 1 + ¢2) with some integer
number b, and due to the discussed criteria these knots are
non-bipartite. Among these non-bipartite knots, there is the
pretzel knot pretzel (3, 3, —3) = 94¢. In fact, this generalizes
to pretzel(p, g, r) knots with p, g, r odd and the greatest
common divisor of these numbers A = gcd(p, ¢q, r) > 1,
because their second Alexander ideal is generated by A and
144, [26].

It seems that many links are bipartite. For all knots in the
Rolfsen table with up to 8 crossings, the authors of [25,31]
claim that explicit bipartite realizations can be provided. Note
that sometimes the z%-dependence of an ideal can be a bit
obscure, e.g. for 813 from Knot Atlas, the second ideal is
(g* — g% + 1). However, these ideals are in Z[g?, ¢ —] what
in particular means that their generators can by multiplied by
g*",n € Z. Thus, (¢* —q>+ 1) = (zZ + 1), and the knot
818 is bipartite.

Additional claims is that all rational knots [32] and Mon-
tesinos links® of special kind [26] are bipartite. The explicit
statements are provided below.

Theorem 2 (Duzhin, Shkolnikov, 2010, [32]) All rational
knots are bipartite.

Theorem 3 (Lewark, Lobb, 2015, [26]) Consider the unori-
ented Montesinos link L = M(p1/q1, ..., Pn/qn)- If L has
more than one component, then it is bipartite. If L is a knot
and one of the denominators q; is even, then L is bipartite.

3 A Montesinos link M(p1/q1, ..., pn/qn) is a generalization of pretzel
links, where the 2-strand braids are replaced by rational tangles. In
particular, a knot M(p/q) is a rational knot, and thus, bipartite (see
Theorem 2). Montesinos realizations of knots with up to 12 crossings
are available in [33].

@ Springer
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Fig. 8 The simplest examples of bipartite diagrams for knots and links
under our consideration

It is worth noting that non-Montesinos knots can also be
bipartite. For example, the knots 8¢, 817, 813 are not Mon-
tesinos, but was proved to be bipartite, as we have already
discussed. The actual abundance of bipartite knots — even if
they are of measure zero or one in the space of all knots —
remains unknown (at least to us).

Some examples of bipartite links and knots are shown in
Fig. 8. Asusual in the Kauffman calculus, separation between
knots and links is artificial — in this formalism they form
closely related families, as we will also see in sample calcu-
lations of Sects.6 and 7.

4 Lock diagrams and lock hypercube(s)
A natural step in the study of bipartite diagrams is to try to

substitute them by the simpler ones, obtained by shrinking
of AP locks to points. We call them precursor diagrams.

@ Springer

The idea is that the expression for the HOMFLY polyno-
mial of a bipartite diagram can be obtained from that for the
(Kauffman-expanded) Jones polynomial of the correspond-
ing precursor diagram by a simple substitution of ¢ and ¢
dictated by a lock diagram in the expansion coefficients. In
particular, it should be possible to read this expression from
the lock hypercube, i.e. the hypercube of resolutions of a lock
diagram.

One immediate word of caution is that we need not just the
final expression for the Jones polynomial as a function of ¢,
but rather its cycle expansion J§ (g, D>), where we are going
to substitute D, by Dy and the g-dependent coefficients by ¢
and ¢. But this double expansion is exactly what is provided
by hypercube calculus, see [20]. Note that the mentioned
substitution depends on a bipartite diagram.

The idea of a hypercube of resolutions is that there are
two choices at every vertex of the diagram, thus a total of 2"
choices for n vertices. With each choice one associates a ver-
tex of the hypercube, and its edges correspond to the flips of
choices at all possible vertices — thus there are n edges at each
hypercube vertex, and the total number of edges is 2"~ 'n. In
Fig.9, one can see an example of the Jones hypercube of
resolutions from [34]. We use italic to denote vertices and
edges of the hypercube, to distinguish them with vertices of
the diagram. For the Jones and the bipartitt HOMFLY count-
ing we need just a hypercube with a system of closed planar
cycles hanged over each vertex — formula (1.6) is then a sum
over vertices. For categorification leading to Khovanov-like
calculus, one introduces a vector space at each vertex and
associate nilpotent maps (differentials) between them with
all edges. This is a well known construction for the Jones—
Khovanov polynomials, but what would it give for the bipar-
tite HOMFLY polynomials remains to be studied.

The next issue is what is the “choice”, mentioned in the
previous paragraph. In the HOMFLY case, we have a big
variety of “choices” leading potentially to different construc-
tions. The standard one for the Jones and the Khovanov poly-
nomials [20] implies that the “choice” is between two reso-
lutions at the r.h.s. of Fig. 1. But in general, we have many
more options.

e First, our diagram can be interpreted as the ordinary one
or the lock diagram — we build the bipartite HOMFLY
polynomial in the latter case or the precursor Jones poly-
nomial in the former case.

e Second, if this is a lock diagram, its resolutions depends
on the orientation of locks. The locks can be vertical
or opposite horizontal, as in Fig. 10), but after shrinking
leading to the same single intersection in Fig. 1. Thus,
there are many different hypercubes, associated with dif-
ferent orientations of locks inside a bipartite diagram but
still reduced to the same precursor diagram.
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(with (ny,n_) = (3,0))

=q¢2+1+¢*—¢

Fig. 9 Calculation of the Jones polynomial by the hypercube of res-
olutions for the trefoil knot from [34]. A calculation of the bipar-
titt HOMFLY polynomial is the same and provided by the change

e Third, since 4_5 is now essentially different from ¢, the
change to the opposite vertices is no longer a part of the
same hypercube — hypercube depends on the diagram
stronger than usually.

e Fourth, one can choose the flips to switch not between
the resolutions, but between orientations. In this case,
we distinguish this hypercube by calling it a hypercube
of bipartite diagrams (not to be confused with a hyper-
cube of resolutions!). This looks like an exotic option,
see Fig. 10, and it is not immediately clear what kind if
counting one can ascribe to this kind of lock hypercubes,
— still it can be interesting.

All this diversity of lock hypercubes opens roads to various
categorifications. Probably, no one of them will reproduce the
conventional Khovanov and Khovanov—Rozansky homolo-
gies invariant under all the Reidemeister moves. Instead,
there can be a whole family of Khovanov-like polynomi-
als for bipartite diagrams, which are not fully topological
invariant, still can be interesting, see also the discussion in
Sect. 11.

Y
+ 3% (g+qh)? -

a+d@+q¢ —¢°

v
?la+qh)?
(q+g-1)-1

(q q ) J(@)=q2+q6_q8

Dy = g+ g~ ' — Dy and g-powers to ¢- and ¢-powers depend-

ing on orientation of AP locks to be inserted instead of single vertices

1000 1100

N

1010

1011
1101

0111

0010 1001
0110

0101
0011

0001

Fig. 10 Hypercube of bipartite diagrams for a chain with 4 AP locks;
only some diagrams and edges are shown explicitly
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5 Differential expansion

In the abelian case, when N = 1 and A = ¢, all knot and link
polynomials become trivial. This means that the fundamental
HOMFLY polynomials for knots in the topological framing
(which we actually deal with in this paper) have the form

i@, A) =D (1+ Flj@. Alagiia/g)) G

where the only dependence on aknot is contained in a polyno-
mial F [IIC] (g, A) called the cyclotomic function. This differen-
tial expansion [35] (also known as the cyclotomic expansion
[36—42]) has a less trivial generalization to higher represen-
tations, at least symmetric [43—49], which we do not touch
in this paper, but will appear in our forthcoming paper. As to
the fundamental representation, in this case the differential
expansion is a direct consequence of (1.7) — what we need is
to substitute D = D; = 1, and note that the number of terms
with powers b and c is defined just by the number of black
and white vertices defined in Figs.3 and 4:

21}
bipartite D=1, _2(pe—v, brc A=4  _2(ve—uv,
H[;parle =1 4 2e v)_Z¢ ¢ =g (ve—vo)

(14+¢)(1+ @) = 1. (5.2)

For higher representations the interference between the two
structures — planar and differential — seem an interesting sub-
ject for further investigations.

The planar calculus for the bipartite HOMFLY polynomi-
als also allows to further investigate the property of factor-
ization of the cyclotomic function. It was first discovered for
the family of double-braid knots, see [43]. Namely, it turned
out that

poseman _ (1= A7) (1- A7)
(1] (A)?

(5.3)

what is also obtained in Sect.6.3. Here the dependences on
two parameters split. It is an interesting topological phenom-
ena whose nature is still to be understood. Moreover, this
factorization property helped to calculate some previously
unknown Racah matrices [43]. We guess that the same prop-
erty can hold if vertical and horizontal braids are connected.
If these braids additionally are antiparallel and have even
numbers of intersections, then the planar technique is appli-
cable, and such knots/links can be easily calculated. Exactly
this happens with our generalization of Kanenobu knots, and
for them the cyclotomic function hopefully factorizes (7.21),
see Sect.7.4.2 for details.

@ Springer

6 Simple examples

In this section we consider several simple examples of the
planar technique for calculation of the HOMFLY polynomi-
als for lock diagrams.

6.1 Necklace

As we have discussed, the vertical lock 7 = = + ¢ - ||
with ¢ = A{q} in the HOMFLY case. Its vertical iteration is

a necklace tangle with an explicit expression
ON= &, -7 + ¢"-| (6.1)

where
~_ln k k.n—k_i n_ n
B, = Dk;c" D" = = ((D+)" = ¢"). (©62)

Pictorially the vertical AP lock, a necklace tangle and its
open and closed closures are shown in Fig. 11. Considering
the necklace with n + m lock elements, one can easily prove
that

EIV)n+m = EI\I)n(NDmD + d)m ’ asn + ¢n ' asm- (6.3)

Gluing the remaining legs provides closed or open necklace
—the n and n+ 1 component links respectively, and we imme-
diately write down

Neckd  ~
P = @,D +¢" D,

Neck” ~
PDeC n+1 — chD2 + ¢”D

(6.4)

Recall that these polynomials provide both the bipartite
HOMFLY and the precursor Jones polynomials by substi-
tutions from Table 1. In particular, for the HOMFLY poly-
nomial we get:

ngckf,] — A2 ((D + )"+ ¢”(D2 - 1))
—pr (14 ADA) ).
(ap=t
(6.5)
Neck®, | —2n n

= (1 B )

where A=2" is a framing factor, ¢ = A{g} and F| [1] being
some polynomial cyclotomic functions. Note that to provide a
polynomiality of the cyclotomic function, one must factorize
{A}~! to the power of number of link components minus one
and also keep an overall factor being the quantum dimension
to the power of link components [50] (to be compared with
the knot case (5.1)).

In the particular case of n + 1 = 2 we get the Hopf link:

_ HNeck;p

HHopf A

O
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Fig. 11 The vertical AP lock and the necklace operator obtained by
its vertical iterations. It can be closed in two different ways giving rise
to open and closed necklace links. If a necklace operator contains n

=A_1{{61%(—A_2+q2+q_2—1>
:Dz<y—A*-£ﬁg§ﬁﬁ>. (6.6)

All formulae for ¢-necklaces are obtained from the above
ones by the substitution g — q_l, A — A~ So that, for
example, inverse necklace tangle is D, - Y= 49"
with

T 1 - k k  Tn—k 1
Prmp LGPy

([D+8]" -4").

6.7)
All these expressions for the HOMFLY polynomial, begin-
ning from (6.1) and (6.2), are just the same for their Jones
precursors — these are obtained by substitutions from Table 1.

As the result, we get for the precursor diagrams:
Jé[zvn] — (_1)%(w+n) . q—%w—%n
(=o' +(ar"@*-1)
zq‘”«—qa‘”+q2+q‘2+l),

Jﬁnknot — qn -D-(D— q)” = D. (6.8)

=]

:
:

locks, then open chain is a link with n + 1 components, while the closed
one has n components. A better way (not shown) to draw the closed
necklace is by a circle

6.2 Chain

The horizontal lock t_ = || +¢ -~ withthe same ¢ = A{q}
in the HOMFLY case. Its vertical iteration which we call an
antiparallel chain is || + ®, - _, see Fig. 12. Considering
the chain with n + m locks, it is easy to derive the boxed rule
below. Knowing the initial conditions, one gets the general
formula for ®,;:

d=¢, D=0 D=4,
’q)ner =&, + Oy +¢n©mD‘

1+¢D)" — 1
BN G ity (6.9)
D
For the opposite qS-chain we get:
— 1+¢D)" —1
%=®W=Li%%——. (6.10)

Cancellation of two inverse vertices gives the following rela-
tion:

¢+¢+¢p-D=0. 6.11)

It can be straightforwardly checked by substitutions from
Table 1. Again, we have two different closures of a chain
tangle. The open closure of a chain gives the unknot,
while another closure gives the 2-component antiparallel link

@ Springer
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Fig. 12 The horizontal AP lock tangle and the vertical chain operator
obtained by vertical iteration of this lock. Since it will appear in many
further examples, we also introduce a special abbreviated notation. A
chain tangle can be closed in two different ways giving rise to the unknot
and to the 2-component 2-strand AP torus links APT[2, 2n]. With the
exception of Hopf at n = 1, they are different from the more familiar
parallel torus links, which are more similar to torus 2-strand knots with

APTI[2,2n]:

PéPT[Z,Zn] — D(D + q)n)’ 12
Punknot _ D(] + D® ) ( ! )
o = n)-

Multiplying by the framing factor from Table 1 and putting
¢ = A{q}, one gets for the HOMFLY polynomial

HAPTI21 g2 (D2 140+ qu)")

_p? (1 N {ACI{}I{L‘?/Q} .F[/?]Pr[z,zn]>7

HE*t = A7 . D(1 4+ ¢D)" = D. (6.13)
The cyclotomic function gets a simple form:
AT — 1
APT[2.2n] _
F T A (6.14)

Again, one can obtain the Jones polynomials for precursor
diagrams from polynomials (6.12) by the appropriate substi-
tutions from Table 1:

Jé[Z,n] — (_1)%(w+n) . q—%w—%n ([1 —¢D]" + D2 _ 1)

=q" ((—qz)" +q*+q7 + 1) :
Juknet — (—g%)™". D -[1 —¢D]" = D. (6.15)
From the discussion in Sect. 4, it follows that the ¢-necklace

and the ¢-chain with n lock tangles reduce to the same pre-
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g

odd number of intersections. Two-strand torus knots are also bipartite
(as being rational, see Theorem 2 in Sect.3) — but depicted by more
sophisticated diagrams. Since the decomposition of the chain is just the
same as for the single AP lock (only ¢ is changed for ®,)), it is espe-
cially simple to make further compositions beginning from the double
braids

cursor diagrams. This fact can be also seen by the correspon-
dence between (6.15) and (6.8).

6.3 Composite chains and double braids including twist
knots

Relation (6.9) allows us to treat a chain with n parallel edges
as a single multiple edge, see denotations in Fig. 12. Here
we demonstrate how it works in the two simplest generaliza-
tions of a chain. They are the joint sum of two chains and the
double braid composed of two orthogonal chains, Fig. 13. In
each case, we draw a tree that shows consequent resolution of
all crossings and the corresponding coefficients. The answer
in the vertical framing is read just from the lower level of a
tree if we add obtained factors on each leaf with the coeffi-
cient D¢ where ¢ is the number of cycles. The answers for
the HOMFLY polynomials and the Jones polynomials in the
topological framing are obtained by multiplication on the
corresponding framing factors from Table 1.
In the joint sum case, we read from Fig. 13 on the left:

PE’PT[zzmj#APT[z,sz — D3 + Dz(q)n + @m) + DCDMCI)”

= D(D + ®,)(D + ®y), (6.16)

i.e. factorization of the polynomials of the connected sum
PAPTR22m#APTRZ20] takes place already with general @,
and D. In particular, it leads to the standard identities

HEIPT[Z,ZmJ#APT[Z,ZnJ — D_1 . HéPT[2,2m] . HSPT[Z,Zn] in the
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%m
n
_ |
= ohch
S o0 o2 )

P=D3*+(®, +P,)D*+D P, D

Fig. 13 The computation for the joint sum of two antiparallel braids
(on the left) and of the double braids composed of the same two braids
(on the right) by subsequent resolution of multiple edges. By P we
denote a polynomial in the vertical framing read directly from the dia-

HOMFLY case, and J/>"#2" = p=1. yIlzml. jTi2nl i
the Jones case.

In the double braid case, we read from Fig. 13 on the
right:

DB(2m,2n) __

P3 =D+ (&, + ®,,)D* + ©, D, D. (6.17)

Substituting (1.4), (6.9) and multiplying by the framing fac-
tor = A~2"~2" we obtain the HOMFLY polynomial in the
topological framing:

DB(Q2m,2n)
Hp

= A" D ((1+¢D)" + (1+¢D)"
+D72[(1 +¢D)" — 1]-[(1 + ¢DY" — 1] — 1)

—D (1 ~(1=a) (1-a) Mq{ié/ﬂ)

- D(l 1 {Ag}A/q) - FDB@'"J")) (6.18)
with the cyclotomic function
DB(2m,2n)
Fy
= (Aq)"(A/g) (A7 (14 0, D,
+(®y + Pp)D) — 1)
1— A—2m 1— A—Zn

{A}?

which factorizes into a product of the cyclotomic functions of
antiparallel torus links (6.14), as we have already discussed
in Sect. 5. In particular, we obtain the standard formulae for
twist knots with two orientations of the lock element:

HEWZ" _ Hé)B(Z,Zn)
_ o le | AJalAG) s
_D<A +A Al +—{A} A >

qnm© q>rg>n:©

P=D+(®,+d,)D’*+D D, D

/
/

/
/

O pOO

gram. It turns either to the HOMFLY polynomial of a bipartite knot,
or to the Jones polynomial of a knot with shrinked locks by a proper
fixation of D and &,

HETW72” — HSB(—Z,ZH)
-D (Az —A@ _ {A/q}{Aq}A—znﬂ)
{A} {A}

(6.20)

Similarly, one obtains the Jones polynomials from (6.17) by
substituting (6.9), ¢ — —¢g and by multiplying by the fram-
ing factor = (—1)%(w+"+”’) . q_%“’_%(’”'m):

.q—%w—%(n—ﬁ—m)
-D ((1 —gD)"+ (1 —gD)"
+D72[(1 —¢gD)" —1]
Jd—gD)y" —1] 1)
3u)—%(n—&—m)

. q_f
D ((=g¥)" + (=" + D7 [(=g>" 1]

[ 1]

In particular, for knots obtained from twist knots by the
change of locks to single intersections:

JDDB(m,n) — (_1)%(w+n+m)

= (- 1)%(w+n+m)

6.21)

DB(1,n) T[2,n—1]
= J
O

Jo
=—q"" ((—qz)” —q*—q* - 1) ,
DB(—1,n) _ ;T[2,n+1]
J5 =Jg

— ((_q2)"+2 S G - 1) . (622)

These are the same formulae as (6.15) for the Jones poly-
nomials corresponding to the chain HOMFLY polynomials.
Indeed, the precursor diagrams are the same for a twist knot
and for a chain with the corresponding number of cross-
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ings (see also Sect.4). We discuss this phenomenon in more
details in the next section.

6.4 Same Jones, different HOMFLY: general vertex in the
hypercube

In Sects.6.1 and 6.2, we have considered two examples of
bipartite diagrams that correspond to the same precursor dia-
gram. In fact, this precursor diagram (which is actually a
2-strand torus knot/link with n crossings) generates a hyper-
cube of 2" bipartite diagrams obtained from each other by
flipping between horizontal and vertical edges (see Sect.4).
Part of this hypercube of bipartite diagrams for n = 4 is
shown in Fig. 10.

In this section, we compute a general vertex of the hyper-
cube (see Fig. 14) giving the same Jones polynomial. Remind
that double edge means taking inverse lock elements. In this
tangle, all horizontal edges can be localized in a single circle
due to the topology of the tangle. The resolution of the hori-
zontal edge of multiplicity n — k in the r.h.s. of the equality
in Fig. 14 gives the necklace and the necklace with one torn
edge, so that this tangle gives

(D+¢) —¢*

k
o1+ -
necklace
+ @ D+ T=¢ 1+ 0k T (6.23)
~—— ———
torn necklace
with
D+ k 1+ _D n—k _ 4k
O i = ( $»)(1+¢D) ¢ . 6.24)

D

In Sect. 7.4, we also need opposite to Fig. 14 tangle. Its reso-
lution is obtained by the change ¢ — ¢~ ' and A — A~ ! so
that it takes the following form:

¢ ||+ Opx - with
_ Nk 1 n—k _ 3k
5, , = DO +D¢D> i 6.25)

Considering a general vertex with n 4+ m AP locks and k +/
vertical edges, one can easily prove the following relation:

Ontmiil = P Omi +¢'Oy  + 0,10, 4 D. (6.26)

Two different closures of the tangle in Fig. 14 give the
following polynomials:

P(ml ..... mi)op _ PDCC K+l ¢kD + ®n,kD2
= DD +¢) (1+¢D)" ™ = DD + )",

Pé’]"l ,,,,, miel _ ¢k D? + O, D. (6.27)

@ Springer

Fig. 14 A general vertex in the
hypercube of bipartite diagrams
with k vertical edges and
n—k=my+---+my
horizontal inverse lock
elements, so that the total
number of locks equals n. It is
easy to see that all these tangles
are topologically equivalent for
the fixed sum mj| + - - - 4 my

k

n-k
It is easily seen that the open closure of the tangle in Fig. 14
is the same as the open closure of the necklace with k vertical
edges. The bipartite HOMFLY polynomials are given by the
second formula in (6.5) and

Hé’ml ..... mp)el — A2n74k . ((D + ¢)k(l _{_q;D)n*k

+ ok (D? - 1))
_ Dk <1 + {A{qj}{lﬁ/lq} 'F[(ﬁ” ----- mk)cl)

(6.28)

with some polynomial cyclotomic functions. For the precur-
sor Jones polynomial we get by the substitution from Table 1:

JEInkl‘lot — (_l)n—qul’l—k . D(D —q)k(l _q—lD)n—k — D,
Jé[zvn] — (—l)kq_n_k
(D=1 g7 Dy + (=t (0? - 1))

—g" ((—qz)*" +q*+q 2+ 1) : (6.29)

Asithas been discussed at the beginning of this section, these
are the same answers as in (6.8).

6.5 Wheels

One more natural family of bipartite diagrams is the family of
wheel diagrams. Example is shown in Fig. 8 on the right. All
“wheels” should rotate in the same direction and be linked
only pairwise (not Borromean). Below we compute several
examples.

The diagram technique is very similar to that shown in
Fig. 13 butnow we reduce the original diagram to any already
computed diagram, which is not necessarily a collection of
cycles. We substitute the corresponding expressions at the
bottom level of the trees in Figs. 15 and 16 so that it remains
to take the sum over all leaves to obtain an answer. As we shall
see, “wheels” can be always eliminated, leaving behind just
an overall factor, multiplying the remaining diagram.
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%i)@ o,

N
(@,+D) 1)

Fig. 15 Examples of simple wheel configurations. Left picture: A
wheel attached to an arbitrary diagram through a multilock. Right pic-
ture: Two lock-connected wheels attached at the neighboring positions.
In both cases, wheels can be fully eliminated and substituted by certain
factors

AN
+fo

®(P,+D)

3

(¢+D)?

The first observation is demonstrated in Fig. 15 on the left.
Namely, if a “wheel” is connected with the rest diagram by
a single (maybe multiple) edge, this “wheel” contributes to
the answer by the factor of

(P + D) (6.30)

with m being the multiplicity of an edge. Then such a tree
wheel diagram (which contains only “wheels” connected by
a single edge) gives [ [;(®; + D) factor where the product
is taken over all edges, and m; are their multiplicities.

The simplest non-tree diagram contains two “wheels” and
is shown in Fig. 15 on the right. It is immediately computed
with help of the rule in Fig. 15 on the left. Summing over the

leaves in the right part of Fig. 15, we get the total factor
(¢ + D)’ +¢(®2+ D). (6.31)

Two simplest generalizations are shown and computed in
Fig. 16. Both diagrams are reduced by subsequent resolutions
to those in Fig. 15. At the last stage, one takes the sum over

N

(@+D)’  (¢+D)+¢X(P,+D)

Fig. 16 Further examples of wheel elimination

the the leaves. The answer for the left diagram in Fig. 16 is

(@ + D)’ + ¢ (¢ + D)* + ¢*(d2 + D). (6.32)
The answer for the right diagram in Fig. 16 is
(¢ + D)’ +2¢(¢p + D) (P2 + D) + ¢*(®3+ D).  (6.33)

Now, it is easy to get sure that wheels always give a fac-
tor in the resulting HOMFLY polynomial. This is actually a
consequence of the property shown in Fig. 15 and the HOM-
FLY factorization for composite knots. For example, for a
link shown in Fig. 17 the polynomial is

Ly, Ly, L3, L4, m)
P( 1, L2, L3, La,
O

= (¢ + D) +26(8 + D)(®2 + D) +¢*(®3+ D))

6.33)
(@+D)? + @2+ D)) (@ + D) D7 PE!
—
6.31) (6.30)
P5 - PE RS (6.34)

with L1, Lo, L3, L4 being arbitrary links. Thus, we see that
wheels contribute as a factor both in the bipartite HOMFLY
and in the precursor Jones cases.

7 Kanenobu(-like) links

In this section we consider a rich family of Kanenobu-like
links. One can see a spoiler of the results in Table 2. The
closure of a tangle shown in Fig. 18 gives a Kanenobu knot
Kan(p, g) [51]. For even p, ¢, this knot provides a famous
example of a 2-parametric bipartite family [52] where the
fundamental HOMFLY polynomial depends on the sum of

N

2
b

N
of #fO

O*(P3+D)

(¢+D)((9+D)*+¢(P,+D))

o(¢+D)(P,*D)
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. Ky ]

GO0

Fig. 17 Example of a link diagram with wheels. Wheels give only a
factor in the HOMFLY polynomial

two parameters p + ¢, though it is not obvious from the
picture.

A Kanenobu knot Kan(p, ¢) actually provides an exercise
about a vertical chain (see Sect. 6.2), and the mentioned above
property is a direct corollary of the chain planar decompo-
sition shown in Fig. 12; for details, see Sect.7.2. Moreover,
this approach allows immediate generalization to families of
3 and 4 parameters (see Sect.7.4.2) possessing an intriguing
factorization property of cyclotomic functions discussed in
Sect. 5.

7.1 Precursor diagram

First of all, a Kanenobu diagram with even numbers of twists
Kan(2m, 2n) is fully bipartite. Then, it has the precursor dia-
gram in Fig. 19 on the left, which is topologically equivalent
to the diagram in Fig. 19 on the right. The Jones polynomial
of the latter one clearly depends on m + n, but not on m and
n separately, and the Jones polynomial of the original dia-
gram is just the same. Hence, for the precursor diagram, the
(m + n)-property of the Jones polynomial is trivial.

Yet, there is no immediate analogue of this nice argument
for the corresponding bipartite HOMFLY polynomial. The
first reason is an ambiguity in the bipartite diagram corre-
sponding to the given precursor diagram (see Sect.4), and
the fact that not any bipartite diagram lifted from the pre-
cursor one possess the (m + n)-property, see Sect.7.4.1 for
a discussion. The second reason is that the III Reidemeister
move which we use to pass from the left diagram in Fig. 19

i\

”@/—

Fig. 18 Closure of this tangle gives a Kanenobu knot Kan(p, ¢),
[51,52]. We mostly consider even p and ¢ when the diagram is fully
bipartite. However, this is not a restriction, and the actual arguments do
not use this — sufficient will be planar decomposition of braids shown
inside p, ¢ rectangles which turn out to be always antiparallel without
dependence on parity of p and g; see Sect. 7.2 for further details. Thus,
Kanenobu p + g property holds for arbitrary parities of p and ¢

AN 47\

m n m n

)

Fig. 19 The precursor of a Kanenobu diagram where each AP lock is
substituted by an ordinary vertex. Planar decomposition of AP lock from
Fig. 3 then turns into the Kauffman rule in Fig. 1. Reidemeister moves
now allow to carry the long line through the m box what converts the
picture into a linking of the unknot with the (m +n)-fold (2-strand torus)
knot/link. Thus, at the precursor level the Kanenobu property just gets
trivial

to the right one becomes non-trivial for lock diagrams (see
Sect.9), and we cannot use it without additional analysis.
The question of extension of the Jones argument to the origi-

Table 2 Summary of main properties of the Kanenobu-like links considered in this section

Notation Diagram (p+q) Biparticity HOMFLY Jones Factorisation
Kan(p, q) Fig. 18 Yes For p =2m,q =2n Eq. (7.1) Eq. (7.8) -

KanGen(p, g, 2k, 21) Fig. 23 Yes For p =2m,q =2n Eq. (7.10) Eq. (7.8) No

- Fig. 24b No For p =2m,q =2n - Eq. (7.8) -

Kan(2m, 2n,2j, 2i) Fig. 25 Yes Yes Eq. (7.20) Eq. (7.23) Yes, eq. (7.21)
KanGen(p, q, 2k, 21, 2j,2i) - Yes For p =2m,q =2n Eq. (7.22) Eq. (7.23) In general, no
K(p1,.... pn) Fig. 26 Yes No Eq. (7.26) Eq. (7.26) -
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Fig. 20 Four resolutions of the chain parts in the Kanenobu tangle
Kan(2m, 2n) from Fig. 18. Moreover, substitution of a general vertex
of the bipartite hypercube from Fig. 14 (or its mirror) instead of chain
parts still leaves these four resolutions the same. Note that resolutions

i:q

(

Fig. 21 Another presentation
of a Kanenobu knot from [52]
used in Sect.7.3

Y

q

C
C

nal bipartite diagram via lock Reidemeister moves should be
further explored.

7.2 Why HOMFLY polynomial for Kan(p, ¢) depends on
p+q?

Now, we proceed to the HOMFLY case. Let us resolve chain
parts in a Kanenobu knot Kan(p, ¢). The resolution results to
four contributions, see Fig. 20. The first one is the Kanenobu

O

753

S\
o) /¢\

of the chain parts with m and n AP lock elements leave the resolved dia-
grams independent on the parameters n and m. The (m, n)-dependences
factorize to the multipliers ®,, ®,, of the corresponding diagrams

knot withe; » = 0, 1intersections in the chain parts depend-
ing on the parity of the initial knot parameters. This contri-
bution for Kan(2m, 2n) is shown in the upper left picture
in Fig. 20. The remaining parts are universal — they are two
unknots (upper right and lower left pictures in Fig.20) with
®,, and ,, factors and three unknots (lower right picture in
Fig.20) with &, ®,, factor. In total, we get for the HOMFLY
polynomial:

Kan(2m+e¢1,2n+¢3)
Hp
= A (Héa“‘gm) + D*(®y + Py + d>nq>mD))

(6£9) A—2m=2n (Héan(m,m) + Dz@n+m>-
(7.1)

This explains why the HOMFLY polynomial for a Kanenobu
knot Kan(p, ¢) depends only on the sum p + g irrespective
of parities of p and ¢, but inside families of fixed parities
of these parameters. Note that only Kanenobu diagram with
even number of intersections is fully bipartite. The answers
for the smallest numbers of intersections are:
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HEan(O,O) =D(1+(D-D"9 +<1_5))2

(A4q2—A2q4+A2q2—A2+q2)2

— _ n-1 4,\2
=D. gt =D~ (HM)",

HKan(ly—l)_D A4q10_A4q8+2A4q6_A4q4+A4q2_A2q12+A2q10_3A2q8 +3A2q6—3A2q4+A2q2—A2 +q10_q8+2q6_q4+q2 (7'2)
O -7 A246 ’
HKan(l,O)_HKan(O.l)_iD Aéqﬁ_A6q4+A6q2_A4q8+2A4q6_4A4q4+2A4q2_A4_A2q8+2A2q6_3A2q4+2A2 2_A2+q6_q4+q2

] =g =-b- Yo .

so that due to (7.1) there are three families of Kanenobu knots - (1.3

dependent only on the sum of parameters — Kan(2m, 2n),
Kan(2m+1, 2n) =Kan(2m, 2n+1) and Kan2m+1, 2n+1).

7.3 Another explanation of Kanenobu (p + ¢)-property

Instead of resolving chain parts in a Kanenobu knot, as it has
been done in Sect.7.2, for p = 2m, ¢ = 2n one can deal
with lock elements explicitly shown in Fig. 21. Resolution of
these four AP locks gives 16 diagrams of 5 types shown in
Fig.22A. These diagrams can be topologically transformed
to simpler diagrams in Fig.22B. This simplification shows
that the type-(1) diagram is the open closure of the chain with
n—+m locks, and its polynomial is given by the second formula
in (6.12). The type-(2) diagram gives the composite knots
Chain® # Chain,! or Chain # Chain,", and the type-(0) dia-
gram presents the disjoint sums of the same knots, also see
Sect. 6.2. The type-(3) diagram is the composite knot of two
closed chains Chainft1 #Chain;}, the polynomial of a closed
chain is given by the first formula in (6.12). What remains to
calculate is the polynomial for the type-(4) diagram. In total,
we get:

P = D(1+ D®pin).
0)

m,n

P(z) = D :D(l‘i‘Dq)n)(D"‘q)m)»

m.,n
(7.3)

where (i)-superscript indicates the correspondence to the
type-(i) diagram from Fig.22. Then we read the answer for
the Kanenobu knot in the vertical framing from Fig. 22(A):

PEI’(an(Zm,Zn) = +¢2(£2)Pr£ll’3l

+(@+ ¢+ @+ +D)pg) (P + Fil)

+(@?+ %) P + 200 - P (7.4)
One can now use that P,ff:, — P,,(ffz, = D(D? — 1), substitute
(7.3) and simplify this answer by algebraic manipulations:
P[I|(an(2m,2n) = +¢2(f_)2)P,$1]’21

+{@+6+ Do) (1 + 56 + )

—L@+ <5)2}(P,5,2,?1 +P2)
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+P2 (¢ +¢)* +2D(1 — DHpp ' =
= D(1 + ¢*¢>) (1 + DDpyi)

+D(¢ + ¢)*

(D? =2 = 5 (@ + Py) — Dy Py)

(D=35)*= 57 (14D ®w) (14D by
+2D(1 — D*)p¢p + D($ + ¢ + Do)
(14 %@+ @) (1 + DP,)(D + D)

+(1 4 D®y) (D + D). (7.5)

We have two identities for the underlined terms valid for
both the bipartite HOMFLY and the precursor Jones cases
(see Sect.6.2):

(I1+D2,)(1+D®,) =1+ DDy,

¢+ ¢+ Dpp = 0. (7.6)
Modulo these identities:
PR = D(1 49737 = 25 (@ +$)) (1 + DOprsn)
+D(D - 5% +¢)?
_ 1 - 1 - .
+2D(1 —D2>(¢¢+5<¢+¢)—5(¢+¢>) 7D
= | P52 = D2gyp + D(1+ (D - DTG+ )’

what obviously depends on m and n through the sum
m + n. Note that the restoration of the framing factor for
the HOMFLY polynomial gives exactly the formula (7.1) for
&1 = &3 = O together with the first expression in (7.2). While
the precursor substitution from Table 1
gives for the link shown in Fig. 19:

JE = g (=g =1+ (g gD (78)
Amusingly, in the Jones-precursor case also
1+ L(@+¢) =0. (7.9)

what is an algebraic justification of the Reidemeister trick in
Fig. 19.
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Fig. 22 Resolutions of a Kanenobu knot with p = 2m, ¢ = 2n shown
in Fig.21. Each diagram contains 2m crossings in the upper box and 2n
crossings in the lower box. A 16 Kanenobu diagrams with the resolved
four 2-twists, with coefficients in front of the corresponding resolutions

7.4 Generalizing Kanenobu knots

In this section, we consider different generalizations of
Kanenobu knots in Figs. 18 and 21.

4
——

!

and labels of the diagram type; B simplified versions of the same 16
diagrams in the same order, which were used to specify the diagram
types

7.4.1 General vertex of the hypercube instead of
(p, q)-chain tangles

We can replace the chain parts with m and n AP locks of

Kanenobu knot Kan(2m + &1, 2n + &3), €12 = 0, 1, with
the corresponding general vertices of the bipartite hypercube
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k locks

Fig. 23 [ and k horizontal locks in 2-strand braids of p and g crossings
correspondingly can be substituted to / and k vertical opposite locks.
A precursor diagram remains the same (see Fig. 19) and the (p + ¢)-
property still holds. Note that in general such a generalization is a link

shown in Fig. 14 (or their mirror). Namely, we replace the
chain part with m AP locks with a general vertex with /
vertical opposite edges and m AP locks in total and the chain
part with n AP locks with a general vertex with k opposite
vertical edges and n AP locks in total, see Fig.23. Then, we
get the same four resolutions as in Fig.20 but with factors
coming from (6.25), and the HOMFLY polynomial is

HKanGen(2m+£1,2n+£2,2k,21)
O
— A—2m—2n+4k+4l ((ISkHHéan(smz)

(6.26)

+D2(¢;l(:)n,k + q;k(:)m,l + én,kém,ll))>
— A-2m—2n+4k+4l ((l;k+lHéan(8|,ez) 4 D2®n+m,k+1)

(7.10)

where €12 = 0,1. Note that again, for fixed k + [,
there are three families of Kanenobu knots dependent

@ Springer

only on the sum of parameters — KanGen(2m, 2n, 2k, 21),
KanGen(2m + 1, 2n, 2k, 21) = KanGen(2m, 2n + 1, 2k, 21)
and KanGen(2m + 1, 2n + 1, 2k, 21), and only the family
KanGen(2m, 2n, 2k, 21) is bipartite.

However, if one changes one of the four horizontal locks
explicitly shown in Fig. 18, the m + n symmetry breaks. For
example, when the left horizontal opposite lock is changed to
a vertical lock (see Fig.24), the framing factor still depends
on m + n while another (m, n)-dependent part underlined
in (7.10) changes to

50 PE" + 56y P

+0,,40,, PLP*P D

(6.26) - = DB(2,2 = DB(2,2
=7 @O (PST = PO 4 O PP

(7.11)

where PPB(2.2) is the double braid polynomial from (6.17):

PEP®? — D(1 4 ¢2 +2¢D), (7.12)

and

P = D(D +¢) {(D+¢) (1 + $(D +¢)) + ¢
+D¢d(1 + ¢ D) (7.13)

Obviously, Pﬁ‘ef - Pé) B@2.2) # 0. Thus, for this deformed

Kanenobu knot, the HOMFLY polynomial is separately
dependent on m and n.

Therefore, the analysis shows that we cannot start from the
precursor of a Kanenobu diagram shown on the left of Fig. 19
in order to prove dependence of the HOMFLY polynomial for
a Kanenobu knot only on the sum of parameters. The reason
is that this precursor diagram generates a whole hypercube of
bipartite diagrams (see Sect.4, fourth option), and we have
shown that for some of these bipartite diagrams the (m 4+ n)-
dependence of the HOMFLY polynomial breaks.

Note that all bipartite Kanenobu-like links considered in
this section are from the same hypercube, so that their pre-
cursor Jones polynomials are given by (7.8).

7.4.2 Replacing four locks explicitly shown in Figs. 18 and
21

The computations in Sect.7.3 are easily promoted to a 3-
parametric family of knots. Indeed, the Kanenobu diagrams
in Figs. 18 and 21 contains 4 AP explicitly shown locks. Each
lock can be substituted by the chain of j locks of the same
orientations. The resulting tangle is shown in Fig.25 where
i =i’ = j/ = j. This correspond to changing elsewhere
(but not inside ®,,, ®,,!)

¢— ®; and ¢ — ;. (7.14)
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(a)

Fig. 24 a Kanenobu tangle from Fig. 18 copied for convenience to
compare with Fig.24b. b The left horizontal opposite lock in Fig.24a
is changed to a vertical lock. The chain parts in p- and g- boxes can
be changed to a general vertex of bipartite hypercube in Fig. 14, as it

This simple correspondence works because ® j, @ ; obey the
same relation as ¢, ¢ :

¢+¢+Dpp=0 — @;+®;+Dd;D,; =0.
(7.15)

Thus, making substitutions (7.14) in Eq. (7.7), we get

pACM2N2D = P2, 4y 4 D(14+ (D~ D@+ )))’.

(7.16)

For the colored HOMFLY polynomial, one has

Kan(2m,2n,2j)

Hp = AT D (DD

+(1+ (D - D@ +3))°) X

N2
=D |1+ {Ag}{A/q) - A72m—2n (—{AJ}>
( +{Aq}{A/q} A

x |2+ {Aq}{A/ }(@)2
q q (A} s

and the differential expansion (5.1) dictates that

(7.17)

Kan(2m,2n,2j)
Fry)

— A" 2m=2n (—{AJ}) 2 + {Ag}{A <—{AJ}>
y +{Aq}{A/q} y
(7.18)

so that the dependencies on m + n and j factorize like in
the double-braid case (6.19), see the discussion in Sect.5.

)

- p

iy
N

(b)

/

is done in Fig. 23. In these cases, the precursor diagram stays the same
but the (p + g)-property is spoiled. Emphasize that this family does not
contained in one from Fig. 25

A

N

N

Fig. 25 Inthe case p = 2m, g = 2n, one can replace explicitly shown
AP locks in Fig. 18 to AP chains of the same orientation. Overlining
in 2i’, 2j' means taking opposite locks. The HOMFLY polynomial
depends on the sum p + ¢ but not on each parameter separately only in
the casei =i’, j = j’

The question for future research is to find out whether this
factorization property holds for higher representations.

Using the method from Sect.7.2, it can be easily shown
that the greatest generalization saving (p + g)-property in
the direction of substitution of these 4 AP locks (as shown
in Fig. 25) is done by substituting vertical chain and opposite
chain of j locks instead of two left locks in Fig. 18 and ver-
tical chain and opposite chain of i locks instead of two right
locks in Fig. 18, see Fig.25 in the case of i = i’, j = j'.
Again, a trick is that after resolution of (p, g)-chain parts,
the resulting 4 diagrams untie to a collection of unknots as
in Fig.20. As a result, we get
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pRIEm2n2120 2, 4+ D(14-(D—D ) (@ 4P ) (14+(D—D ) (@ +D))+D*(D — DN ®;_;, | (7.19)

and restoring the framing factor for the HOMFLY poly-
nomial:

Hé’(an(Zm,2n,2j,2i) _ pA—2m=2n <D2<I>m+n

HKan(O,O,Zj,2i)

+D(1+(D-D )@ +®))(1+ (D - D )P +®;)) + D*(D — D*‘)cb,-_ja_j) =

6.9

2 N 2 i 2 iy 2 i—j1\ 2
—D(141A0v(A/q). A=2m—2n <{A’}> (@) Ag}{A (_{A/}> (ﬂ) _<{A 'l}) . (7.20
D( +{Aq}{A/q} ( ) Ty ) Tadda | s {A} {A) 720

Again, the dependencies of the cyclotomic function on
m +n and i, j factorize:

F[i(]an(Zm,Zn,Zj,Zz)

L2 SN2
=A—2m—2n ({A_]}> (m)
( @) T

(A4 2({A"}>2 ({Af—f})2
AgiA/gy (22) (22 - .
Hagl /‘”<{A}) (A) (A)

(7.21)

Actually, the same way the HOMFLY polynomial (7.10) are
generalized:

KanGen(2m+-¢1,2n+¢2,2k,21,2j,2i)
Hp

— A-2m—2n+4k+4l (¢k+l Héan(m,Sz,Z./,Zt)

+D?Gp i k11 (7.22)
where 1 2 = 0, 1. Note that only the family KanGen(2 m, 2n,
2k,21,2j,2i) is bipartite. It can be shown that for k # 0,
I # 0, there is no factorization property of the cyclotomic
function like in (7.21).

The Jones precursor diagram in this case is not so topo-
logically simple as in Fig. 19, so that even in the Jones case it
is not clear that the family depends only on m + n but not on
m, n separately. The Jones polynomial of KanGen(2 m, 2n,
2k,21,2j,2i) precursor is:

Jé(aﬂ(ms",]',i) — (_1)%(w+n+m) . —%w—%(n+m)D

q
(=¢*) +(=¢>) 7 -2
(@+q 1?2

x ((—q2)"+m 1+ (1 +
x (@ +q 2+ 1)

(=*) +(=¢*) ' =2
1
: ( " (q+q1?

@ +q+ 1))
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g T (g -2
(@+q 1?2

@ +a72+1).
(7.23)

7.4.3 Kanenobu family of an arbitrary number of
parameters [51]

In [51], Kanenobu has suggested another family of knots
K(p1, ..., pn) shownin Fig.26. The HOMFLY polynomial
for these knots also have a property to depend only on the
sum of the parameters. The interesting cases in this sense are
ones of n > 3 asn = 1 gives just the unknot, and for n = 2,
the knots turn out to be the same for any fixed p; + p, what
can be seen by easy topological manipulations. Note that the
n = 2 case does not give Kanenobu knots from Fig.21, i.e.
describes a different 2-parametric family, which has a far-
going generalization to n parameters in Fig.26. Moreover,
this general family in Fig. 26 is not realized in a bipartite way.
Still, it can be handled with the help of our planar decompo-
sition method, because all the constituent 2-braids in boxes
P1,---,, Pn pOssess antiparallel orientation — and explicit
gluing of boxes is a simple procedure.

Consider the case of three-parametric family K (p1, p2, p3)
with p; = 2m; + ¢; where ¢; = 0, 1 depending on the parity
of the corresponding p;. Resolutions of chain parts, i.e. locks
from boxes p1, pa2, p3, gives (analogously to Sect.7.2) two
unknots with the coefficients ®,,,, three unknots with the
coefficients ®@,,, @, i i # j, four unknots with the coeffi-
cient ®,,, ®,,, ®,,, and the Kanenobu knot K (¢1, €2, £3). As
the result, we get

P K(2mi+e1,2ma+e,2m3+e3)
O
_ PK(51752a33) 4 ((D ) +d )D2
— ;O my my m3
F( Py Py + Py Py + By Ory) D

4@y, Py @y D?, (7.24)
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Fig. 26 A part of a knot providing Kanenobu knots K (py, ..., pn) of
an arbitrary number of parameters considered in [51]

and property (6.9) leads to

KQ2mi+e1,2my+e3,2m3+e3)
g

K (e1,62,
= Pl:’ (e1.62,63) + cbm1+mz+m3D27 (725)

so that the HOMFLY polynomial depend on the sum m +
my + m3. In the case of generic n, the calculations are the
same, and the final answer is

P KQ2m+ey,..., 2mp+ep)
O

(7.26)

where the polynomial also depends on the sum of the param-
eters, but not on the parameters separately.

7.5 Back to Jones polynomial

In this section, we gather knowledge about the precursor dia-
grams and their Jones polynomial of all discussed Kanenobu-
like links.

e First, the precursor of the simplest Kanenobu knot,
Fig. 18, is topologically the same for all m, n with fixed m+n,
and obviously depends only on n 4 m, see Fig. 19.

e Second, one can think whether there is a straightfor-
ward lift from the (m + n) precursor property to the one for
the bipartite HOMFLY. The initial precursor diagram on the
left of Fig. 19 generates a whole hypercube of 2”4 bipar-
tite diagrams, and the question is whether all these diagrams
respect the (m + n) property. We have shown that any bipar-
tite diagrams of type in Fig.23 possess the (m + n) property
while for the diagram in Fig. 24b the (m + n) property is vio-
lated. Thus, not all the diagrams from the bipartite hypercube
have the (m + n) property, and the Jones precursor argument
cannot be lifted to the HOMFLY case by such a way.

e Third, we have considered the bipartite generalization of
Kanenobu knots from Fig. 18, see Fig.25. In the case of i =
i’, j = j’ the HOMFLY polynomial possesses the (m + n)-
property. However, the precursor diagram is of the same form,

and the dependence of its Jones polynomial on (m + n) is
not obvious, as it was in Fig. 19.

7.6 Outcome

In this section we provide a resulting table summarizing main
properties of the Kanenobu-like links under consideration.
By “factorisation” we mean the factorization property of the
cyclotomic function discussed in Sect. 5, and by (p + ¢g) we
mean the property of the HOMFLY polynomial to depend on
the sum of parameters but not on the parameters separately.
From Eq. (7.26), one gets the corresponding HOMFLY and
Jones polynomials by substitutions from Table 1. Note that
the Kanenobu-like links KanGen(p, ¢, 2k, 21, 2, 2i) do not
possess the factorization property of the cyclotomic function
in general, butin the case k = =0 and p = 2m, g = 2n
they reduce to Kan(2m, 2n, 2, 2i) for which the factoriza-
tion property holds.

8 Planar technique for non-bipartite families

The above examples illustrate that sometimes the described
planar decomposition method can be applied to calculate the
HOMFLY polynomial for non-fully bipartite links, or at least
to simplify their calculations. A trick is applicable to links
having just tangles constructed by AP locks but which may
be not fully bipartite. In this case, the planar decomposition
method should be applied to these bipartite tangles, and an
initial link turns to a collection of simpler links.

Letus briefly repeat the Kanenobu examples from Figs. 18,
23 and 26. In all these links, for any choice of parame-
ters (even in not fully bipartite cases), 2-strand braids are
always antiparallel and thus, form bipartite tangles. Reso-
lutions of these tangles lead to just a collection of unknots
giving D to the power of number of unknots contributions so
that the HOMFLY polynomial is easily computed, see for-
mulas (7.1), (7.10), (7.22), (7.26). In general, resolution of
bipartite tangles does not give just unknots but an initial link
always simplifies.

9 On III Reidemeister moves for lock diagrams

Knot diagrams can be bipartite, and it is a question, if a par-
ticular knot or link can have such a realization. Diagrams
result from projections on a plane (naturally arising in the
temporal gauge Ag = 0 in the Chern—Simons theory [3]),
and associated with knots/links diagrams are ones modulo
Reidemeister moves. Bipartite property is not Reidemeister
invariant, and only appropriate 2d projection can be bipartite
(if any). For example, the trefoil 31 is not bipartite if real-
ized as a 2-strand torus knot 7'[2, 3], but becomes bipartite if
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Fig. 27 The III Reidemeister move

represented as a twist knot Twy. Planar decomposition of a
diagram is also not Reidemeister invariant. Thus, though the
HOMFLY polynomials are topological invariant, our planar
calculus for the HOMFLY polynomial is not. It is also unclear
what are the obstacles for existence of bipartite realization
for a given knot or link — and thus, how broad (generically
applicable) is actually this approach, see Sect.3 for the dis-
cussion.

An amusing exercise — of yet unclear value — is to check
what happens if Reidemeister moves are extended to lock
diagrams — we call these moves the lock Reidemester moves.
The point is that there are now an additional freedom — to
switch between vertical and horizontal vertices, and what
happens is that lock Reidemester moves mix them.

As an example, let us consider the third Reidemeister
move shown in Fig.27. Each diagram generates 2° = 8
bipartite diagrams, and each bipartite diagram has the same
resolutions shown in Fig.28. Figure 28 also shows equiv-
alences between various resolutions of the lock diagrams
being the bipartite extensions of the Lh.s. and r.h.s. of the
initial IIT Reidemeister move from Fig.27. As the result, we
get a system of 5 equations on 16 variables, which we denote
xi, i = 1,...,16. Of course, the solution of this system is
not unique, but among them there are 22 “minimal” non-
trivial solutions involving only four bipartite diagrams. One
of these solutions is shown in Fig.29. The first two diagrams
are shrinked to the left Jones precursor diagram in Fig.27,
and the other ones are shrinked to the right diagram in Fig. 27.

An interesting peculiarity of lock Reidemeister moves is
that there exist relations involving locks coming from oppo-
site to ones shown in Fig.27 intersections in bipartite dia-
grams. If we include such locks, than each diagram in Fig. 27
gives 43 = 64 diagrams. Let us describe in detail the exam-
ple in Fig.30 where only locks but not opposite locks are
included. We want to find a solution of the equation with 5
diagrams and 4 coefficients. The solution is unique because
this equation leads to a system of 4 distinct equations on
coefficients of 5 resolutions. In the Jones case, only two dia-
grams shown at the top of Fig. 30 survive. Shrinking the locks
in these diagrams leads exactly to the III Reidemeister move
shown in Fig.27. From Fig. 30, we write down 4 distinct lin-
ear equations on 4 variables:

20 + ¢ + D@ = x1 + x20 + x50° + x30°,
= x1¢ + x20% + x50 + x36°,
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Fig. 28 Resolutions of the lock Reidemeister diagrams and their topo-
logical equivalences. On the left hand side, resolutions of the lock dia-
grams coming from the precursor diagram on the r.h.s. of Fig.27 are
shown. On the right hand side, resolutions of the lock diagrams com-
ing from the precursor diagram on the Lh.s. of Fig.27 are shown. The
precursor diagrams are drawn as light gray avatars behind the corre-
sponding resolutions. Numbers near diagrams enumerate resolutions

1 =x1¢ + x2 + x5¢0° + x3¢%,
¢ = x13¢* + D¢*) + x2(2¢ + ¢* + D¢?)
+x52¢> + 1 + D¢) + x3(3¢p + D).

©.1)
This system has the solution
¢> + D¢ +1
X| = —x5 =x3/¢p = w,
—D¢> +3¢? — 1
X = 1) 9.2)

In particular, this solution gives the regular third Reidemeis-
ter move in the Jones case because

$=—-q, D=q+q
= X1ZX5=)C8=0,

1
v =1 9.3)

10 Towards planar calculus for other symmetric
representations

Extension of our bipartite Kauffman calculus to the colored
HOMFLY polynomial can seem problematic. The problem is
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Xg J% +X;  H O Xp3 %f tX1s jgi( =0

Fig. 29 The lock Reidemeister move. The coefficients are x¢ =

AR
1+¢d +¢?

are shrinked to the left Jones precursor diagram in Fig.27, and the

Jones \% = ,;%

—x13 = Lx;s = —x7 = The first two diagrams

Bipartite
HOMFLY

2L 20rgDg 1

Y o
) C

Fig. 30 In the second line, the lock Reidemeister move is shown. The
coefficients x1, x2, x5, xg are given by (9.2) and can be found by solving a
system of equations (9.1) formed from coefficients of resolutions below.

3¢2+D¢3

that cabling is inconsistent with planarity. If we just substitute
lines by cables, then the cabled lock does not decompose into
elementary locks — non-bipartite diagrams arise and cabled
lock diagram is not reduced to ordinary lock diagrams. Thus
cabling does not help — the lock-intersection of multiple lines
is not planarized. However, projection to (at least) the sym-
metric representations is planar, see Fig. 31. The point is that
the product of two symmetric representations contains » + 1
irreducibles: [r]1®[r] = Z?:o Adjy, where Adj;y are rep-
resentations from the adjoint sector — and this is exactly the
number of different planar resolutions of the r-cable. Thus,
if we project out [r] from the r-cables at each end, it will be
possible to adjust the r + 1 coefficients in the planar expan-
sion of the colored lock. For example, for r = 2 we get

bro0=1, ¢1=A¢{q}q*),

%é’:xl % +X

other ones are shrinked to the right diagram in Fig.27. In the Jones
case x;5 — ¢!, and we return to the ordinary Reidemeister move in
Fig.27

K e X

¢ ¢? ¢’

¢* ¢ ¢°

1 ¢’ ¢*

¢° ¢ ¢?
20+0°+DO?  1+20*+Do 3¢+D

In the top line, the bipartite diagrams contributing in the Jones case are
shown. The corresponding Jones precursor diagrams give exactly the
III Reidemeister move from Fig. 27

$22 = [214¢%{q*). (10.1)

Details involve somewhat different technique of a projector
calculus and its quantization, together with amusing parallels
with [22,23] — and will be presented elsewhere.

11 Khovanov-like calculus

One more natural question to ask concerns Khovanov cal-
culus [20,34,53]. Since we have a direct generalization of
Kauffman decomposition and a hypercube formalism, is it
possible to raise it to homological level, i.e. perform a cate-
gorification? The usual story is that at each vertex of hyper-
cube we have a system of cycles, which can be easily pro-
moted to the product of linear spaces, each of quantum
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Fig. 31 If all the external legs are projected to the symmetric representation [r] = [3], than it is possible to adjust the coefficients at the r.h.s. to

make this identity valid

dimension D. What remains to do is to promote the reshuf-
fling of cycles into linear maps with the nilpotent property
— what allows then to consider cohomologies of the emerg-
ing complex and their generating function, known as Kho-
vanov polynomial. Usually things get much simplified by the
fact that along every edge of the hypercube the reshuffling
reduces to a single operation of cutting or joining a single pair
of cycles, what allows to look for the differentials among the
standard and easily constructed cut-and-join operators, see
[20] for a presentation in these terms.

A straightforward lift of this construction from the Jones
polynomial to the HOMFLY polynomial is not so easy [22],
because one of the resolutions of ordinary R-matrix vertices
at N > 2 involves a difference, thus there are differences of
cycles athypercube vertices and their natural lifting are cosets
(factor spaces). Generic theory of cut-and-join operators in
this case remains obscure (does not attract enough interest
to be developed). Just a guess-work instead of established
theory is quite hard and not fully satisfactory [23].

However, for bipartite diagrams things can be different:
decompositions are in terms of ordinary cycles and there is
no need for factor spaces. Thus, categorification should be
much simpler, if not straightforward. It will be in terms of lock
hypercube, thus, its relation to full topological invariance and
to Khovanov—Rozansky calculus [54—56] can be absent — still
it would be interesting to see what will emerge in this way
and what can be its potential use. These are also questions
for the future.

12 Conclusion

In this paper we explained how Kauffman planar decom-
position for N = 2 can be lifted to an arbitrary N at the
expense of restriction to peculiar bipartite knot diagrams.
Many knots and links actually possess bipartite realizations
—and for them, the calculation of the HOMFLY polynomials
and study of various evolutions become very simple. More-
over, this calculus can be extended to the symmetrically col-
ored HOMFLY polynomial. In another direction, Kauffman
decomposition for the Jones polynomial is used in numerous
attempts to apply knot theory to anyon physics, to quantum
computers and algorithms. This means that our far-going gen-
eralization can probably be straightforwardly used for appli-
cations, considered in [57,58] and especially in their version
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in [59]. There are numerous interesting questions, raised by

the construction of planar calculus to the HOMFLY polyno-

mial, some of them are explained in the mini-sections of the

above text, and we write down them briefly below.
Directions for future research include

e lift from the Khovanov polynomials to the Khovanov—
Rozansky polynomials for bipartite knots, as described
in Sect. 11;

e explicit bipartite realization of torus knots and other knot
families;

e developing non-biparticity criteria via Alexander ideals
and Seifert matrices, see Sect. 3;

e study on factorization property of cyclotomic functions
of higher representations for Kanenobu-like links, see
Sect.7.4.2;

e planar decomposition of the HOMFLY polynomial for
virtual knots, see the last paragraph in Introduction;

e applications of lock Reidemeister moves, see Sect.9.
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Appendix A: Computation of second Alexander ideals

In this section, we provide examples of computations of the
second Alexander ideals needed to distinguish non-bipartite
knots, see Sect. 3. The Seifert matrices are taken from [33].

Knot 34

For the trefoil knot, the Seifert matrix is

-10
S_<_1_1>. (A1)
Then, the Alexander matrix is
1-¢% 1
A= 2S—Sv=< ) (A.2)
q _qz 1 — qz

Its minors of matrices of size 1 = generators of the 2-nd
Alexander ideal in Z[g2, g ~%] are

(1-g¢% 1, —¢*, 1 —g%) = (1), (A3)
The Alexander polynomial is
Alg =detA = g* — ¢> + 1. (A.4)
Knot 83
For the knot 8g, the Seifert matrix is
10 00-10
0—-1 0000
0—-1-1000
$= 1—-1-11-111" (A-5)
0—-1-10-10
10 —-10-11
Then, the Alexander matrix is
A=g’S—58"
g>—1 0 0o -1 —g> -1
0 1—-¢% 1 1 1 0
_ 0 —g% 1—¢% 1 1 1
¢ -4 -4* -1 —¢* ¢
1  ER—_ 1 1-4¢% 1
q2 0 _q2 -1 _q2 q2_1
(A.6)

Its minors of matrices of size 5 = generators of the 2-nd
Alexander ideal in Z[g?2, g ~%] are

(—(-1+¢°0 —¢” +¢". —¢*(1 = ¢* + "),
(2447 (1 —¢* + g%,
(—14+¢DA = ¢* + 4%, (=1 +¢)*A —¢> + 4.
— (=1+2¢)(1 = ¢* + 4%, ¢* 1 = ¢* + 4%,
(—1+¢%1 - ¢* + 4%,

—q* (1= g*+qY, —(=14+2¢H)1 - ¢> + 4%,
—(—14+¢)¢* (1 —q* + Y. (=1 +¢*)*¢* (1 — g* + q*).
(—14+2¢)0 = ¢> + g%, ¢*(1 —¢* + ¢,

— (14’0 = g* + 4",

—?(1—g* +4%., —(=1+¢H*(1 — ¢* + g%,
(—14¢%)q* (1 — g% + g%,

— -1+ g1 —g* + 4%, —(=2+¢g* (1 — > + %),
U =g*+qH, (—14+¢)°0 = ¢* + 4",

(—1+2¢H0 - ¢* + 4%,

= (—1+¢°¢* (1 —q* + 4%,

— (=1+¢M** (1 - ¢* + ¢,

—(—14+g)¢* (1 —q* +¢%). (=14 49> —q* +4").
(=2 +¢q* (1 = ¢* +qY,

(—14+¢>°0=g*+ 4", —¢*(1 — ¢ + ¢,

— (=24 ¢)q* (1 —¢* + g%,

— (144’0 —¢* +4%.

(=1 +¢3q*(1 - ¢* +qY,

(—14+¢H*(1—g* + g, ¢*(1 —q* + 4",

— (14U =g+ =1 -¢" + 4. (A7)
The Alexander polynomial is
Alg = detA = —q12 +5q10 — 10q8
+13¢% — 10¢* + 54> — 1. (A.8)
Knot 935
For the knot 935, the Seifert matrix is
-3 -1
S—<_2 _3). (A9)
Then, the Alexander matrix is
3-3¢% 2—q?
_ 2¢_ ¢V _ q q
A=qg°S-S§ _(1_2q23_3q2>. (A.10)

Its minors of matrices of size 1 = generators of the 2-nd
Alexander ideal in Z[¢2, g 2] are

(=3(=144¢%),2—¢% 1-2¢% =3(-1+4*%)

=3, 1447 (A-1D
because
1-2¢>=3-2(¢>+ 1),
—3(=1+4¢%)=6-3("+ 1), (A.12)

2-¢*=3—-(¢*+1).

Thus, the second Alexander ideal of the knot 935 contains
the polynomial 1 4+ ¢2, and thus, 935 is not bipartite due to
Theorem 1 of Sect. 3.
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Alg =detA = 7¢* — 13¢> + 7.

The Alexander polynomial is

(A.13)
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